
Foreword 

About forty years ago, the development of computer-aided design and manufactur- 
ing created the strong need for new ways to mathematically represent curves and 
surfaces" the new representations should possess enough flexibility to describe 
almost arbitrary geometric shapes; be compatible with efficient algorithms; and be 
readily accessible to designers who could manipulate them simply and intuitively. 
Although these new requirements presented a difficult challenge, the search for 
appropriate mathematical tools has been very successful within a relatively short 
period of time. Curves and surfaces with a piecewise polynomial or rational para- 
metric representation have become the favorites, in particular if they are represented 
in so-called B6zier or B-spline form. A new field, called computer-aided geometric 
design (CAGD) emerged. Deeply rooted in approximation theory and numerical 
analysis, CAGD greatly benefited from results in the classical geometric disciplines 
such as differential, projective, and algebraic geometry. 

Today, CAGD is a mature field that branches into various areas of mathematics, 
computer science, and engineering. Its boundaries have become less defined, but its 
kernel still consists of algorithms for interpolation and approximation with piece- 
wise polynomial or rational curves and surfaces. 

Pyramid Algorithms presents this kernel in a unique way. A few celebrated 
examples of pyramid algorithms are known to many people: I think of the de Castel- 
jau algorithm and de Boor's algorithm for evaluation and subdividing a B6zier or Bo 
spline curve, respectively. However, as Ron Goldman tells us in this fascinating 
book, pyramid algorithms occur almost everywhere in CAGD: they are used for 
polynomial interpolation, approximation, and change of basis procedures; they are 
even dualizable. Dr. Goldman discusses pyramid algorithms for polynomial curves, 
piecewise polynomial curves, tensor product surfaces, and triangular and multisided 
surface patches. 

Though the book focuses mainly on topics well known in CAGD, there are 
many parts with unconventional approaches, interesting new views, and new 
insights. Surprises already appear in Chapter 1 on foundations: I had always thought 
that projective geometry was the ideal framework for a deeper study of rational 
curves and surfaces, but I must admit that Ron Goldman's preference of Grassmann 
space over projective space has its distinct advantages for the topics discussed in this 
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book. Surprises continue to occur throughout the book and culminate in the last 
chapter on multisided patches. Here we find a brand new exposition of very recent 
results, which eloquently connects the well-established theory of CAGD to ongoing 
research in the field. 

I am convinced that reading this book will be a pleasure for everyone interested 
in the mathematical and algorithmic aspects of CAGD. Ron Goldman is a leading 
expert who knows the fundamental concepts and their interconnectedness as well as 
the small details. He skillfully guides the reader through subtle subjects without get- 
ting lost in pure formalism. The elegance of the writing and of the methods used to 
present the material allows us to get a deep understanding of the central concepts of 
CAGD. The presentation is clear and precise but never stiff or too abstract. This is a 
mathematically substantial book that lets the reader enjoy the beauty of the subject. 
It achieves its goal even without illustrating the creative shape potential of free-form 
curves and surfaces and without espousing the many important applications this field 
has in numerous branches of science and technology. In its simplicity and pure 
beauty, the theory indeed resembles the pyramids. 

Helmut Pottmann 
Vienna University of Technology, Austria 



Preface 

Every mature technical subject has its own distinct point of view~favorite methods, 
cherished formulas, standard examples, preferred algorithms, characteristic projects, 
common folklore, pet principles and paradigms. Initially, computer-aided geometric 
design (CAGD) grew out of approximation theory and numerical analysis, adapting 
the tools of these disciplines for its own devices. Differential, algebraic, and projec- 
tive geometry also contributed to the development of CAGD, which borrowed 
heavily from each of these fields. 

Outside of mathematics, CAGD was strongly influenced by computer science 
and mechanical engineering. Indeed, it was the ability to solve computational prob- 
lems in mechanical design and manufacture that gave CAGD its initial impetus, its 
original reason to exist. It is no accident that many of the founders of the field~Bez- 
ier, de Casteljau, Coons, and Gordoniworked in some capacity for automotive 
companies. 

Today CAGD is a distinct science with its own unique criteria and prerequisites, 
themes and leitmotifs, tactics and strategies, goals and aspirations, models and repre- 
sentations, problems and procedures, challenges and requirements. The purpose of 
this book is to present this fresh point of view by reinvestigating polynomial, ratio- 
nal, and piecewise polynomial interpolation and approximation from this contempo- 
rary computational perspective. 

There is a unity to CAGDIdynamic programming procedures, pyramid algo- 
rithms, up and down recurrences, basis functions, dual functionals, rational schemes, 
tensor product and triangular patches~these themes recur again and again in differ- 
ent guises throughout the subject. One deliberate goal of this book is to capture this 
unity by presenting different topics exercising these same basic techniques. 

To achieve this goal, this book begins with an introductory chapter, followed by 
two main parts: Part I covers Interpolation (Chapters 2-4) and Part II, Approxima- 
tion (Chapters 5-8). 

Foundations are presented in Chapter 1. These root topics are the underlying 
geometric ideas~the essential, often unwritten, fundamentals of the field. 

Geometry is the bedrock of CAGD. Numerical analysis and approximation the- 
ory investigate functions defined over the fields of real or complex numbers; classi- 
cal algebraic geometry focuses on polynomials defined on real or complex projective 
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spaces. In contrast, the natural geometric domains for CAGD are affine spaces and 
Grassmann spaces. Polynomial curves and surfaces, along with their control points, 
control polygons, and control polyhedra, typically lie in affine spaces; rational 
curves and surfaces are projections of polynomial curves and surfaces from Grass- 
mann spaces to affine or projective spaces. Thus the control structures of rational 
curves and surfaces consist of mass-points in Grassmann space, not of ordinary 
points in affine space or homogeneous points in projective space. Blossoming too 
requires the formalisms of affine spaces and Grassmann spaces. The domain of the 
standard blossom is affine space; the domain of the homogeneous blossom is Grass- 
mann space. 

Although affine spaces and Grassmann spaces are known in classical mathemat- 
ics, they are somewhat obscure and rarely treated in standard texts. Students are 
almost never familiar with these geometric spaces. We begin, then, with an overview 
of different ambient spaces~vector spaces, affine spaces, Grassmann spaces, and 
projective spaces~the spaces that support the geometry of CAGD. Definitions, 
examples, distinguishing features, embeddings, projections, and other relationships 
between these four distinct spaces are discussed in considerable detail to clarify the 
underlying algebraic structures of these geometric spaces. 

We stress as well in Chapter 1 a coordinate-free approach to geometry. This 
style has at least two distinct advantages over coordinate methods: First, this tech- 
nique allows us to distinguish clearly between points and vectors in affine space, as 
well as between mass-points in Grassmann space and homogeneous points in projec- 
tive space. Coordinates obscure these distinctions, confusing rather than clarifying 
these issues for the student. Second, this coordinate-free notation is very concise; it 
is a great deal more convenient to write one formula for points or for vectors rather 
than two or three formulas for their coordinates. Algorithms, identities, and compu- 
tations are much cleaner to express and a good deal easier to understand in this nota- 
tion. 

The main objects of study in CAGD are smooth curves and surfaces. Many rep- 
resentations for curves and surfaces are available; smooth shapes can be defined by 
functions that are explicit, implicit, parametric, or procedural. In Chapter 1 we fix 
our attention once and for all on parametric curves and surfaces. Differential geome- 
try also studies smooth parametric curves and surfaces, but with this difference: in 
differential geometry the parametrizations are typically implicit; in CAGD they are 
always explicit. In differential geometry it is enough to know that a smooth parame- 
trization exists--one often works implicitly with the arc length parametrization of a 
differentiable curve; in CAGD the parametrization must be explicit--typically a 
polynomial or rational function~for computational considerations. 

Last, but not least, in Chapter 1 we also discuss barycentric coordinates. These 
coordinates provide the natural domain parameters for the triangular patches that 
occur in various guises throughout the text, including triangular Lagrange interpola- 
tion, triangular Bezier approximation, and triangular B-patches. Generalized bary- 
centric coordinates are also central to the construction in Chapter 8 of a general 
theory of multisided Bezier patches. 
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Part I of this text focuses on polynomial and rational interpolation. This investi- 
gation of interpolation is divided into three chapters: Lagrange (Chapter 2), Hermite 
(Chapter 3), and Newton (Chapter 4). 

We introduce Lagrange and Hermite interpolation via Neville's algorithm. This 
approach allows us to discuss many of the classical themes of CAGD~dynamic 
programming procedures, pyramid algorithms, up and down recurrences, tensor 
product and triangular patches, existence and uniqueness theorems~in the context 
of interpolation, which many beginning students find more intuitive than approxima- 
tion. One innovation here is that we often derive properties and formulas for 
Lagrange and Hermite interpolation directly from the dynamic programming dia- 
gram for Neville's algorithm, an approach that students typically find more appeal- 
ing than manipulating formulas in which many distracting indices may be present. 
This method of reasoning from the structure of the diagram for a dynamic program- 
ming procedure will be pursued throughout the text; several of the basic properties, 
fundamental formulas, and principal algorithms for Bezier and B-spline curves and 
surfaces are also derived in this manner. 

Our choice of topics in interpolation is not always standard. For example, our 
interest in triangular grids for bivariate Lagrange interpolation is a bit unconven- 
tional but not at all whimsical; we intentionally emphasize this topic here to pave the 
way later on for the study of triangular Bezier patches. We also examine rational 
Lagrange and rational Hermite interpolation~topics not typically covered in texts 
on CAGD~as  a prelude to the investigation of rational Bezier and rational B-spline 
curves and surfaces. Finally, we present one additional innovation: as an application 
of Lagrange interpolation, we examine the Fast Fourier Transform. Strictly speak- 
ing, Fast Fourier Transform is not a concern of CAGD, but this topic provides an 
excellent application of Lagrange interpolation in computational science outside of 
strict data interpolation, so we include a short discussion of this subject here as well, 
to broaden the outlook of the student. 

Newton interpolation and the divided difference round out our discussion of 
polynomial interpolation. Although these subjects are classical topics in approxima- 
tion theory and numerical analysis, they are not as well known as they should be to 
the CAGD community. Therefore we take the time to provide a thorough presenta- 
tion of these topics in Chapter 4. 

The divided difference provides the Newton coefficients of the polynomial inter- 
polant. This observation allows us to introduce the notion of dual functionals, antici- 
pating our investigation of blossoming in Chapter 6. To prepare the way for 
blossoming, we provide, in addition to the classical definitions, an axiomatic charac- 
terization of the divided difference. These divided difference axioms are akin to the 
blossoming axioms, so some of the analysis techniques developed here can be 
reprised in Chapter 6 when blossoming is investigated. 

Numerous identities for the divided difference are developed in the text and in 
the exercises. Since there are so many divided difference identities, we list these for- 
mulas for easy reference at the end of Chapter 4. These identities can be applied in 
several areas: for example, B-splines are often presented from the perspective of 
divided differences. Therefore we shall have occasion to return to several of these 
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identities when we study B-splines in Chapter 7. Also, because the blossoming axi- 
oms are so similar to the divided difference axioms, some blossoming identities have 
analogues in divided difference identities. We shall follow up some of these connec- 
tions to divided difference when we come to study blossoming in Chapter 6. 

Part II of this text is devoted to polynomial, rational, and piecewise polynomial 
approximation. Bezier curves and surfaces, blossoming, and B-splines are the most 
successful areas of CAGD, and in Part II of this text a chapter is devoted to each of 
these topics. 

We begin our investigation of polynomial approximation with the study of Bez- 
ier curves and surfaces. Free-form curves and surfaces are shapes with no n a m e ~  
hard to describe in precise words or explicit formulas but conspicuous in aesthetic 
and practical design. The key geometric feature of Bezier curves and surfaces from 
the perspective of CAGD is that they approximate~in a way that is intuitively natu- 
ral and can be made mathematically precise~the contour described by their control 
points. Thus they lend themselves readily to the design of free-form shapes. 

What makes Bezier curves and surfaces so attractive analytically is that they 
possess straightforward algorithms for evaluation, subdivision, differentiation, and 
degree elevation. This suite of algorithms is what permits exhaustive computer anal- 
ysis of free-form shapes represented in Bezier form. For example, recursive subdivi- 
sion leads to simple divide-and-conquer procedures for rendering and intersecting 
Bezier curves and surfaces. 

Bernstein/Bezier approximation is an extremely rich theory, and we purposely 
approach this topic from as many different analytic perspectives as possible, includ- 
ing dynamic programming procedures, Bernstein polynomials, generating functions, 
the binomial theorem, the binomial distribution, and discrete convolution. Although 
any one of these techniques may be powerful enough to develop the entire Bernstein/ 
Bezier canon, we have intentionally avoided consistently adopting any one particular 
method in order not to impoverish the theory. At first, this very richness of the theory 
may seem daunting to the novice, but the student should keep in mind when faced 
with new problems that a variety of approaches are possible. There are many weap- 
ons in the Bernstein/Bezier arsenal. 

In contrast to standard texts that treat Bezier curves and surfaces, we have incor- 
porated the following innovations in our approach to this subject: 

Reasoning directly from the dynamic programming diagram for the de 
Casteljau algorithm to provide easy derivations for some elementary proper- 
ties of Bezier curves and surfaces. 

�9 Developing algorithms for differentiating and blossoming Bezier curves and 
surfaces by differentiating and blossoming the diagram for the de Casteljau 
algorithm. 

�9 Introducing general principles of duality to simplify the study of change of 
basis procedures. 

�9 Providing an elementary proof of the Weierstrass Approximation Theorem, 
which is then applied to establish the convergence of the degree-elevation 
algorithm for Bezier curves. 
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�9 Presenting Wang's formula to avoid flatness testing and speed up algorithms 
for rendering and intersection based on recursive subdivision. 

�9 Using discrete convolution to derive differentiation formulas for the Bern- 
stein polynomials. This approach not only simplifies the study of derivative 
algorithms for Bezier curves and surfaces, but also prepares the way for 
understanding the symmetry property when in Chapter 6 we study how to 
blossom the de Casteljau algorithm. It also anticipates the central role that 
discrete convolution plays in Chapter 8, where we study multisided Bezier 
schemes. 

�9 Treating the subject of integration for the Bernstein polynomials. Definite 
integrals provide the most direct way to prove that the arc length of a Bezier 
curve is bounded by the perimeter of its control polygon. In addition, inte- 
gration formulas for the Bernstein basis functions prepare the way for 
developing integration formulas for the B-splines. 

�9 Comparing and contrasting pyramid algorithms with the de Casteljau 
approach to evaluation and differentiation for tensor product and triangular 
Bezier surfaces. 

In addition, at the end of the chapter, we provide a comprehensive list of identities 
for the univariate and bivariate Bernstein basis functions for easy reference. 

Blossoming is an elegant and potent tool for analyzing Bezier and B-spline 
curves and surfaces. Nevertheless, we resolutely postpone blossoming till Chapter 6, 
even though blossoming could effectively be applied in Chapter 5 to derive algo- 
rithms for subdivision, degree elevation, differentiation, and change of basis for Bez- 
ier curves and surfaces. 

There are two problems with introducing blossoming too early in the text. First, 
blossoming is too powerful. If students come to believe that they can do everything 
with blossoming, why should they learn any other approach? We delay blossoming 
so that students are forced to learn a variety of techniques that they may then use in 
extensions of the Bezier setting where blossoming no longer applies. Second, stu- 
dents do not appreciate the real power of blossoming unless they get to see how 
many disparate techniques blossoming can be used to replace. In Chapter 5 we 
derive subdivision from the binomial distribution, degree elevation from polynomial 
identities, differentiation from discrete convolution, and change of basis from mono- 
mial to Bezier form by invoking the binomial theorem and generating functions. 
Each of these approaches is quite elegant when viewed in isolation, but altogether 
this variety of approaches can be quite overwhelming. For Bezier curves and sur- 
faces, blossoming can be used to replace all of these methods. By deferring blossom- 
ing till after our initial investigation of Bezier curves and surfaces and then 
reinvestigating topics such as subdivision, differentiation, degree elevation, and 
.~hange of basis in light of this new tool, students come to appreciate the full power 
~f blossoming. 

We highlight both the affine and the homogeneous blossom. The affine blossom 
is appropriate for studying points, function values, and change of basis procedures; 
the homogeneous blossom is the natural way to investigate derivatives. The study of 
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derivatives via blossoming is applied in Chapter 7 in our investigation of splines 
since blossoming can be used to determine when two polynomials meet smoothly at 
their join. 

Blossoming prepares the way for B-splines. Some authors begin the study of B- 
splines by writing down the de Boor recurrence without any motivation. Students 
may then follow the development of the theory, but they are unable to fathom the 
inspiration for this recurrence. Blossoming provides the motivation for the de Boor 
algorithm since the de Boor recurrence is identical with the blossoming recurrence 
for computing values along the diagonal, and this blossoming recurrence is, in turn, 
a straightforward generalization of the de Casteljau algorithm. 

B-spline curves and surfaces have two advantages over Bezier curves and sur- 
faces. For a large collection of control points, a Bezier curve or surface approximates 
the data with a single polynomial of high degree. But high-degree polynomials take 
a long time to compute and are numerically unstable. B-splines provide low-degree 
approximations, which are faster to compute and numerically more secure. For these 
reasons B-splines have become extremely popular in large-scale industrial applica- 
tions. 

We begin the study of B-splines by analyzing the dynamic programming dia- 
gram for the de Boor algorithm. Reasoning from the diagram, we can derive many of 
the elementary properties of B-spline curves such as the local convex hull property. 
By overlapping these dynamic programming diagrams for adjacent polynomial seg- 
ments and then using blossoming to differentiate these diagrams, we provide a sim- 
ple proof that adjacent polynomial segments meet smoothly at their join. This proof 
from overlapping de Boor diagrams is much more natural and easier for students to 
grasp than proofs by induction or by divided difference. We also develop algorithms 
for differentiating and blossoming B-spline curves and surfaces by showing how to 
differentiate and blossom the diagram for the de Boor algorithm. 

Knot insertion is one of the main innovations of CAGD. Nested knot vectors 
generate nested spline spaces. Given a knot sequence and a control polygon, knot 
insertion algorithms construct a new control polygon that generates the same B- 
spline curve as the original control polygon by inserting control points correspond- 
ing to the new knots. The motivation is to create a control polygon with additional 
control points that more closely approximates the curve than the original control 
polygon. 

Knot insertion is to B-splines what subdivision is to Bezier schemes. The new 
control polygons generated by knot insertion can be used for rendering and intersect- 
ing B-spline curves and surfaces, as well as for providing additional control over the 
shape of a B-spline curve or surface. Differentiation, too, can be viewed as a knot 
insertion procedure. Both the standard derivative algorithm and Boehm's derivative 
algorithm can be understood in terms of knot insertion. The variation diminishing 
property for B-spline curves also follows from knot insertion, an insight unique to 
the geometric spirit of CAGD. 

Many knot insertion algorithms are now available: Boehm's algorithm, the Oslo 
algorithm, factored knot insertion, Sablonniere's algorithm, and the Lane-Riesenfeld 
algorithm for uniform B-splines. Blossoming provides a unified approach to knot 
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insertion as well as insight into the connections between different knot insertion pro- 
cedures, so we use blossoming to derive most of these algorithms. We study each of 
these knot insertion algorithms in turn, and we compare and contrast their relative 
benefits and limitations. 

Midway through Chapter 7, we shift the focus to the B-spline basis functions, 
and we explain the links between B-splines and divided differences. Divided differ- 
ence is the classical way to introduce B-splines, so students need to learn this 
approach if only to be able to understand many of the standard tracts on B-splines. In 
addition, divided differences allow us to derive those properties of B-splines that do 
not follow readily from blossoming. For example, we use the connection between B- 
splines and divided differences together to develop a geometric characterization of 
the univariate B-splines. This geometric approach is often taken as the starting point 
for the development of the theory of multivariate B-splines, so it is important for stu- 
dents to see this formula first in the univariate setting. 

The Bernstein basis functions can be generated from discrete convolution; uni- 
form B-splines can be constructed from continuous convolution. We derive this con- 
volution formula and then use this convolution technique to derive the Lane- 
Riesenfeld knot insertion algorithm for uniform B-spline curves. 

NURBS is an acronym for non-uniform rational B-splines. At this late stage in 
the text, students are well prepared for the study of rational B-splines since they have 
already encountered rational schemes in the Lagrange and Bezier settings. NURBS 
are the projection from Grassmann space to affine or projective space of integral B- 
spline curves and surfaces. Therefore NURBS inherit most of the standard properties 
and algorithms of ordinary B-spline curves and surfaces. Thus once we have 
explained B-splines thoroughly, NURBS are quite easy to understand. 

Catmull-Rom splines are interpolating splines constructed by combining 
Lagrange interpolation with B-spline approximation, fusing Neville's algorithm 
together with the de Boor algorithm. Studying Catmull-Rom splines near the end of 
Chapter 7 allows us to reprise some of the high points of interpolation and approxi- 
mation in the context of interpolating spline curves. 

We close Chapter 7 with the study of B-spline surfaces. Tensor product surfaces 
are introduced in the standard way by repeated application of the univariate de Boor 
algorithm. But there is another approach to tensor product B-spline surfaces, less 
well known than the de Boor algorithm, but highly in keeping with one of the major 
themes of this book, pyramid algorithms. We derive the pyramid algorithm for tensor 
product B-spline surfaces from blossoming and then show that this algorithm can be 
extended to a kind of local triangular B-spline surface~the B-patch. Unlike the pyr- 
amid construction for the tensor product B-spline surface, there is no easy way to 
piece together polynomial B-patches to form a spline surface over a triangular grid. 
There is, however, a construction of multivariate B-splines from B-patches, but, 
unfortunately, this construction is a bit beyond the scope of this text. 

At the end of Chapter 7~as  we did at the end of Chapter 4 for the divided dif- 
ference, at the end of Chapter 5 for the Bernstein polynomials, and at the end of 
Chapter 6 for blossoming~we gather, for easy reference, a comprehensive list of 
identities for the B-spline basis functions. 
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Chapter 8 is devoted to multisided Bezier patches, including S-patches, C- 
patches, and toric Bezier patches. Each of these schemes has a pyramid evaluation 
algorithm that generalizes the de Casteljau evaluation algorithm for triangular and 
tensor product Bezier patches. These pyramid algorithms can also be blossomed to 
provide the dual functionals for these multisided Bezier schemes. Three key ideas 
link together and unify these different constructions of multisided Bezier patches: 
discrete convolution, Minkowski sum, and the general pyramid algorithm. A vital 
role is also played by different approaches to indexing multisided arrays and differ- 
ent ways to construct generalized barycentric coordinate functions. These concepts 
and techniques extend many of the salient ideas and insights encountered in earlier 
chapters, so this topic, which is still ongoing research, makes a fitting final chapter 
for this book. 

Unlike the rest of this book, much of the material in Chapter 8 is new and is pre- 
sented here in a coherent and unified fashion for the first time. Although for the most 
part I have based this chapter on what has come before it in the text, a higher level of 
mathematical sophistication is required here on the part of the reader. In contrast to 
the other chapters, this chapter is written for experts rather than for neophytes. 

My goal has been to write a book that can serve both as a reference and as a text. 
As a text for a one-semester 15-week course, I envision that the class could cover the 
first seven chapters, devoting the first week to Chapter 1 and roughly two weeks 
apiece to Chapters 2-7. Obviously, there is far too much material to read everything 
in each of these chapters, so instructors must pick and choose according to their 
tastes. The remaining material can serve either as a future reference or as material 
for a second semester course. 

Many exercises are included at the end of each section, and many should be 
assigned; it is not possible to learn this material to any depth without working 
through many, many exercises. The exercises are intended both to complement and 
to illuminate the text. Alternative approaches, as well as additional examples, algo- 
rithms, identities, theorems, and proofs, are included in the exercises. The relative 
difficulty of these exercises varies widely, ranging from simple illustrative examples 
to straightforward algorithms to complicated proofs. I have provided hints for some 
of the more challenging and more interesting problems. 

This book is intended for engineers and computer scientists, as well as for 
applied mathematicians. To accommodate the engineers, I have tried to include 
enough detail to make the subject fully intelligible while not drowning in rigor. I 
have also tried to keep notation to a minimum, erring if necessary on the side of 
naivete rather than pedantry. I trust that applied mathematicians will also benefit 
from this presentation. " 

Prerequisites include only a standard freshman calculus course along with a lim- 
ited amount of linear algebra. Students should have at least a passing acquaintance, 
for example, with vector spaces and linear transformations. To provide some familiar 
models of affine spaces for engineers, Chapter 1 refers briefly to matrix algebra and 
to ordinary differential equations. Readers not versed in matrices or differential 
equations can simply skip these examples with little loss of content. The remainder 
of the book is self-contained. 
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A word about some of the choices in this book: Inevitably I have had to leave 
out subjects that others would consider vital to the field. I have not included material 
on rates of convergence, algebraic curves and surfaces, Coons patches and Gordon 
surfaces, Pythagorean hodographs, or geometric continuity. Partly these omissions 
reflect my own unconscious biases and interests, and partly they reflect a conscious 
decision on my part to stick to certain major themes and not to stray too far or too 
often from this path. Others I am sure would make different choices, just as valid, 
equally compelling. 

Finally, this point is the place in the preface where I get to thank all those people 
who inspired me and helped me to write this book. Unfortunately, this list is way too 
long for publication. Family and friends, teachers and students, colleagues and confi- 
dants, collaborators and competitors, predecessors and contemporaries, Americans, 
Europeans, Asians, Africans, and Australians have all contributed to this effort. I 
have borrowed ideas from almost everyone I know who works in the field--scien- 
tists in academia, engineers in industry, and even aspiring undergraduate and gradu- 
ate students in colleges and universities. Conspicuously, this book was written on 
three different continents, where I was hosted by various genial colleagues and sup- 
ported by several generous grants. CAGD, like most large-scale human endeavors, is 
a collaborative effort. This book is the work of many, many people. I am only their 
conduit. Do not confuse the dancer with the dance. 



C H A P T E R  

Introduction: Foundations 

We begin with some background material that will be assumed throughout the 
remainder of this book. Although we shall discuss several generic types of curve and 
surface representations, our main focus here is on the ambient mathematical spaces 
in which these shapes reside. We will also review barycentric coordinates, a topic 
that is central to the construction of conventional triangular surface patches. 

1.1 

1.1 .I 

Ambient Spaces 

Four different kinds of mathematical spaces support the representation and analysis 
of free-form curves and surfaces: vector spaces, affine spaces, Grassmann spaces, 
and projective spaces. When first reading this chapter, you should focus your atten- 
tion on vector spaces and affine spaces. Not only are these spaces more familiar, but 
they are fundamental both for the construction of polynomial curves and surfaces and 
for the development of the more complicated Grassmann spaces and projective 
spaces. Grassmann spaces and projective spaces are discussed here as well, but you 
can defer reading about these mathematical spaces till later in the book when we shall 
need these tools to clarify some of the properties of rational curves and surfaces. We 
adopt a coordinate-free approach to geometry. Try to get used to coordinate-free 
methods now because we plan to employ this approach throughout the text. 

Vector Spaces 

You should already be familiar with vector spaces from linear algebra. Informally a 
vector space is a collection of objects called vectors that can be added and subtracted 
as well as multiplied by constants. Vectors are often represented geometrically by 
arrows. These arrows are added and subtracted by the familiar triangle rules; multi- 
plication by constants is represented by stretching or shrinking the arrows, reversing 
the orientation when the constant is negative (Figure 1.1). 
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v + w /  

v 

(a) Vector addition 

/ 
(b) Scalar multiplication 

Figure 1.1 Addition and scalar multiplication of vectors. 

Examples of vectors include the standard elements of mechanics~velocity,  
acceleration, and force. However, there are many other important models of abstract 
vector spaces. For example, the space of all polynomials of degree less than or equal 
to n is a vector space because addition, subtraction, and scalar multiplication are all 
well-defined operations for polynomials of degree less than or equal to n. 

Solutions to systems of homogeneous linear equations also form a vector space. 
Consider the system of m linear equations in n unknowns: 

al 1Xl + al 2 x2  + " "  + a lnXn - 0 (1.1) 

a m l X  1 + a m 2 X  2 + ' " +  amnX n - 0 . 

Collecting the coefficients {aij } into a matrix A and the variables {x k } into a column 
array X, we can rewrite (1.1) in matrix notation as 

A X  = 0 .  (1.2) 

Now if S 1 and S 2 are solutions of (1.2), then by the linearity of matrix multiplication 
so are S 1 + $2 and cS1, so the arrays S that represent solutions of (1.2) form a vector 
space. 

Similarly, solutions to linear homogeneous ordinary differential equations form 
a vector space. Consider the ordinary differential equation 

an(x)y  (n) + an_l(x)y  (n-l) + ' " +  al (x)y '  + aO(x)y - O. (1.3) 

If y - j~ (x) and y = f2(x) are solutions of (1.3), then by the linearity of differentia- 
tion so are y = j~ (x)+ f2 (x) and y - cJi (x), so the functions y - f ( x )  that represent 
solutions of (1.3) also form a vector space. 

Thus vector spaces are ubiquitous in science and mathematics. It is for this rea- 
son that you have encountered vectors and vector spaces before and studied them 
formally in courses on linear algebra. 

1.1.2 Affine Spaces 

Despite their familiarity, vector spaces are not the appropriate mathematical setting 
for studying the geometry of curves and surfaces. Curves and surfaces are collec- 
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tions of points, and points are not vectors. Vectors add and scale; points do not. Vec- 
tors have size; points do not. Vectors are represented geometrically by arrows; points 
by dots. Arrows have direction and length, but no fixed position; dots have a fixed 
position, but no direction or length. Points are moved by translation; vectors are 
unaffected by translation. To emphasize these distinctions, we shall typically use 
lowercase letters u ,v ,w  ... .  from the end of the alphabet to represent vectors and 
uppercase letters P, Q,R .... from the middle of the alphabet to represent points. Sca- 
lars will typically be represented either by lowercase letters a, b, c .... from the begin- 
ning of the alphabet or by lowercase Greek letters a, fl, y . . . .  

Although points do not add, we would still like to have an algebra for points. If 
we were to introduce a rectangular coordinate system, then we could add two points 
P and Q by adding their coordinates. Unfortunately, the resulting point would 
depend on our choice of coordinate system (see Figure 1.2). In disciplines such as 
computer graphics, robotics, and geometric design, there may be several local coor- 
dinate systems in any particular model. It would be extremely confusing if our 
notion of addition were to depend on our choice of coordinate system. Notice that 
the definition of vector addition in Figure 1.1 is independent of any coordinate sys- 
tem. We seek a similar coordinate-free algebra for points. 

Consider the expression (P + Q ) / 2 .  Even though the term P + Q is indetermi- 
nate, the full expression (P + Q ) / 2  does have a clear coordinate-free meaning: it 
denotes the midpoint of the line segment joining P and Q. Are there any other unam- 
biguous expressions involving points? 

If Vo,...,v n is a collection of vectors and Co,...,c n is a collection of constants, 
then we can form the linear combination 

11 

v -  ~ c k v  k, 
k = 0  

o'(-1,o) 
A 

l w  

P(1,o) 
b(o,o) 

Q(2,1) R(3,1) S(4,1) T(5,1) 

Figure 1.2 Where is P + Q? lf the origin is at O, then P -  (1,0) a n d Q - ( 2 , 1 ) s o P + Q = ( 3 , 1 ) = R .  But if 
the origin is moved to 0 ' =  (-1,0), then the coordinates of P and Q change. Now P -  (2,0) 
and Q = (3,1), so P + Q = (5,1) and this point is located at S = (4,1) in the original coordinate 
system. Confused? You should be. Adding points by adding their coordinates is a bad idea 
and leads both to general bewilderment and incorrect programs. 
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and since addition and scalar multiplication are defined for vectors, v is a well- 
defined vector. Similarly if PO ..... Pn is a collection of points, then we would like to 
form the combination 

n 

P -  2CkP k �9 
k=0 

Unfortunately, this expression generally has no fixed, coordinate-free meaning, so P 
is not really a point. What is to be done? 

Let us begin again by thinking geometrically about points and vectors. Points 
are represented by dots, vectors by arrows. Two points P,Q determine a vector v ~ t h e  
arrow joining the dots P and Q. We shall denote this vector by Q - P. Subtraction is 
then defined for points. Similarly, a point P and a vector v determine another point Q 
by placing the tail of the vector v at the point P and letting Q be the point at which 
the head of v rests. We shall denote this point Q at the head of v by the sum P + v 
(see Figure 1.3). 

To summarize: so far we have defined Q - P to be a vector and P + v to be a 
point. Moreover, these definitions are consistent with the usual cancellation rules for 
addition and subtraction. For example, it follows from our geometric interpretation 
that 

i. P + ( Q - P ) = Q  

ii. ( R - Q ) + ( Q - P ) -  R - P .  

The first rule is just the definition of subtraction for points; the second rule is the 
triangle rule of vector addition (redraw Figure 1.1(a) with P,Q,R at the vertices of 
the triangle). 

Now we are ready to define the notion of an affine combination of points. Earlier 
we saw that we could not take arbitrary linear combinations of points, but some 
combinations like (P + Q ) / 2  do make sense. This particular expression can be 
rewritten using the formal identity 

(P + Q) ( Q -  P) 
= P + ~  

2 2 

Q - P  

P 

P + v  

P 

P 

Figure 1.3 Subtraction of points and addition of points and vectors. 
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The right-hand side of this equation defines the left-hand side. Moreover, the right- 
hand side now has a clear meaning, since it is the sum of a point P and a vector 
( Q - P ) / 2 .  We make this definition because formally it obeys the usual rules of 
arithmetic; that is, if we want the standard rules of addition, subtraction, and scalar 
multiplication to apply, then this identity must hold. 

Taking our cue from this example, we see that we want to define 

n n n 

ZckPk - ( 2ck~P0 + Zc~(Pk - P0~ 
k=0 k=0 k=l 

(1.4) 

since formally all the terms involving P0 on the fight-hand side cancel except coP o. 
The second summation on the right-hand side makes good sense since 
~,kck(Pk - PO) is a linear combination of vectors, but what meaning can we assign to 
(~kck)P0? In general, we cannot multiply a point by a scalar in a coordinate-free 
manner, but there are two exceptions. We can define 

l o P - P  

O ~  

cP - undefined c ,  0,1. 

By the way, notice that in the second equation the zero on the left-hand side is the 
zero scalar, but the zero on the fight-hand side denotes the zero vector. 

Now Equation (1.4) suggests that 

/'/ n n 

Z ckPk - PO + ~, ck (Pk - PO) provided that Z ck - 1 
k=0 k=l k=0 

n 
n 

= ~, Ck (Pk - PO) provided that Z ck - 0 
k=l k=O 

= undefined otherwise. 

We shall adopt these definitions because formally they obey the usual rules of arith- 
metic. 

Combinations of the form ~,kckPk where ~kck = 1 are called affine combina- 
tions. Each difference P k - P 0  is a vector, so the affine combination ~,kckPk is the 
sum of a point P0 and a vector v = Y~kck(Pk- P0); thus an affine combination of a 
collection of points generates a new point. For example, 

P + Q  ( 1 - c ) P + c Q  P + 2 Q + R  
2 4 

are affine combinations of points and thus are well-defined points, but 

P Q P + Q  2 P + 5 Q + 2 R  
_ _  . 3 1 _  ~ 

2 3 3 10 
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are meaningless expressions. Notice, in particular, that the points on the line deter- 
mined by P and Q can be represented by taking the affine combinations (1 - t)P + tQ 
for all values of t. 

There are other combinations of points that have meaning, even though the coef- 
ficients do not sum to one. For example, Q -  P is a meaningful expression, but the 
sum of the coefficients is zero. In general, ~,kckPk is a vector, not a point, when 
~kCk = 0. Again this definition is consistent with the usual rules of arithmetic as 
well as with the geometry we have constructed for points and vectors. 

An affine space is a collection of elements called points for which affine combi- 
nations are defined. Associated with every affine space is a vector space whose vec- 
tors are generated by differencing the points. Vectors can be added to the points in 
the affine space, and the sum of a point and a vector is a point. The usual rules of 
addition, subtraction, and scalar multiplication apply, but the only combinations of 
points allowed are those where the scalar coefficients sum to either zero or one. 

Since we can subtract points to produce vectors, for every pair of points P and 
Q, there is a unique vector v such that Q = P + v; indeed v = Q -  P. Thus most of the 
information contained in an affine space is stored in the vectors; you really need to 
know only one point. In geometry you often simply pick an origin and then represent 
the points as vectors emanating from the origin. It is for this reason that vector 
spaces are studied so intensely and affine spaces may seem so unfamiliar. 

Nevertheless, in this book we shall insist on the framework of affine spaces. One 
reason is that to avoid confusion we need to do all our work independent of the 
choice of any coordinate system. We want to study the intrinsic properties of curves 
and surfaces, not their relationships to coordinate systems. Moreover, it is actually 
often simpler to work directly with the curves and surfaces without referring to any 
specific coordinates. For this purpose, affine spaces are often the most appropriate 
setting. 

There are many important models of affine spaces. In computer graphics, the 
points on the graphics screen form an affine space, not a vector space. Points can be 
translated by adding vectors, but only the points, not the vectors, are actually visible 
on the graphics terminal. 

As with vector spaces, there are also abstract, nongeometric models of affine 
spaces. The space of all monic polynomials of degree nmthat  is, all polynomials of 
degree n with leading coefficient l ~ i s  an affine space. Affine combinations of 
monic polynomials generate monic polynomials. The difference of two monic poly- 
nomials of degree n is a polynomial of degree at most n -  1. Thus the associated vec- 
tor space is the space of all polynomials of degree less than or equal to n -  1. The 
sum of a monic polynomial of degree n and an arbitrary polynomial of degree at 
most n - 1 is again a monic polynomial of degree n. Thus, the sum of a point and a 
vector is a point as it should be. 

Solutions to systems of nonhomogeneous linear equations also form an affine 
space. Consider the system of m linear equations in n unknowns: 

al lXl + al 2x2 + " "  + alnXn = bl (1.5) 

amlX  1 + am2X 2 + . . .  + amnX n - - b  m 
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As before, we can rewrite (1.5) in matrix notation as 

AX = B.  (1.6) 

If S O ..... Sp are solutions of (1.6), then by the linearity of matrix multiplication so is 
2kcl~Sk provided that 2kck = 1, so the arrays S that represent solutions of (1.6) 
form an affine space. The difference of two solutions of (1.6) is a solution of the 
associated homogeneous system (1.2). Thus the associated vector space consists of 
the solutions to the associated system of homogeneous linear equations. Again by 
the linearity of matrix multiplication, if S is a solution of (1.6) and v is a solution of 
(1.2), then S + v is a solution of (1.6)~that  is, the sum of a point and a vector is a 
point as required. 

Similarly, solutions to nonhomogeneous linear ordinary differential equations 
form an affine space. Consider the ordinary differential equation 

an(x)y (n) + an_l(x)y (n-l) + ' " +  al(x)y' + ao(x)y - b(x). (1.7) 

If F, (x), ,F (x) are solutions of (1.7), then by the linearitv of differentiation so is 
1 "'" p 

~kckFk(x) provided that ~kck = 1, so the functions y - / ~ ( x )  that are solutions of 
(1.7) form an affine space. The difference of two solutions of (1.7) is a solution of 
the associated homogeneous ordinary differential equation (1.3). Thus the associated 
vector space consists of the solutions to the associated homogeneous ordinary differ- 
ential equation. Again by the linearity of differentiation, if F(x) is a solution of (1.7) 
and v(x) is a solution of (1.3), then F(x)+ v(x) is a solution of (1.7)~that  is, the 
sum of a point and a vector is a point. 

Thus, like vector spaces, affine spaces are really omnipresent in computational 
science and engineering. 

When we study geometry, we often need to know the dimension of the ambient 
space. For vector spaces and affine spaces the notion of dimension is tied to the con- 
cept of independence. Recall that a collection of vectors v 1 ..... v n is said to be lin- 
early independent if we cannot write any vector in the set as a linear combination of 
the remaining vectors. A maximal linearly independent set of vectors is called a 
basis. The dimension of a vector space is the maximum number of linearly indepen- 
dent vectors in the space--that is, the number of vectors in a basis. 

Similarly, a collection of points Po ..... Pn is said to be affinely independent if we 
cannot write any point in the set as an affine combination of the remaining points. A 
maximal affinely independent set of points is said to be an affine basis for the affine 
space. The dimension of an affine space is one less than the maximum number of 
affinely independent points in the space. 

For example, the dimension of a single point is zero, the dimension of the affine 
line is one, and the dimension of the affine plane is two. Thus our notion of dimen- 
sion is consistent with the standard dimensions in geometry. Moreover, it is not hard 
to show that the dimension of an affine space is the same as the dimension of its 
associated vector space (see Exercise 6). 

The natural transformations on vector spaces are the transformations that pre- 
serve linear combinations. We say then that a transformation L is a linear transfor- 
mation if 
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L(EkCkVk) = ZkCkL(Vk) .  

Similarly, the natural transformations on affine spaces are the transformations that 
preserve affine combinations. Thus we say that a transformation A is an affine trans- 

format ion  if 

A ( ~ k C k P  k) = ~kCkA(Pk)  whenever ~kCk = 1. 

Many familiar transformations of space such as translation, rotation, scaling, and 
shearing are affine transformations. To learn more about affine transformations, see 
Exercises 15-17. 

We mentioned at the start of this chapter that there are two other kinds of spaces 
that arise in the study of free-form curves and surfaces: projective spaces and Grass- 
mann spaces. Projective spaces introduce points at infinity that are convenient for 
investigating intersections and poles. Projective spaces are also related to the homo- 
geneous coordinates that you may already have encountered in computer graphics. 
In Grassmann spaces, points have mass as well as location. Assigning mass to points 
is a venerable technique for studying geometry by applying mechanical principles, 
an idea first introduced by Archimedes and later refined by Grassmann. Mass-points 
permit us to complete the definition of ~kCkPk by allowing us to define combina- 
tions where ~kCk ~ 0,1. Projective spaces and Grassmann spaces both come into 
play during the construction of rational curves and surfaces. We shall discuss these 
spaces in the next two sections, but if you like you can postpone reading these sec- 
tions for now and come back to them later when we introduce rational curves and 
surfaces in subsequent chapters. 

Exercises 

1. Prove that if ~kCk = 1, then for any two points R,S  

R + ~kCk(Pk - R) = S +ZkCk(ek  -- S). 

Interpret this result geometrically. 

2. Archimedes' law of the lever asserts that the center of mass P of two masses 
ml and m 2 situated respectively at the points P1 and P2 is located at the point 
along the line segment P1P2 characterized by the property that the first 
moment of m 1 around P balances the first moment of m 2 around P. Thus 

m I l P 1 - P I = m  2 1 P 2 - P I .  

a. Use Archimedes' law of the lever to verify that the center of mass of two 
masses m I and m 2 situated respectively at the affine points P1 and P2 is 
located at the affine point e = (mlP 1 + m2P2)/ (m 1 + m2). 

b. Suppose that the masses m k are located at the affine points Pk, k = 1 ..... n. 
Use induction to show that the center of mass of the masses m k, 
k = 1 .... ,n, is located at the affine point 

n n 

P =  ~,mkP k / Z m  k . 
k=l k=l 
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c. Show that the center of mass of three mass-points (mlP 1,ml),(m2P2,m2), 
(m3P3,m3) can be computed by first computing the center of mass 
(m12Plz,m12) of (mlPl,m 1) and (m2P2,m 2) and then computing the cen- 
ter of mass of (mlZPlZ,m12) and (m3P3,m3). 

3. Prove that the affine dimension of the affine line is one and that the affine 
dimension of the affine plane is two. 

4. Prove that every vector can be written in a unique way as a linear combina- 
tion of a fixed basis. 

5. Prove that every point can be written in a unique way as an affine combina- 
tion of a fixed affine basis. 

6. Prove that the dimension of an affine space is the same as the dimension of 
its associated vector space. 

7. What is the dimension of the affine space of monic polynomials of degree 
n? Justify your answer. 

8. Consider the collection of all arrays of real numbers (a 0 ..... a n) for which 

Zkak  = 1. 

a. Show that these arrays form an affine space under coordinate addition 
and scalar multiplication. 

b. What is the dimension of this affine space? 

c. Describe the associated vector space. 

9. Consider the collection of all arrays of real numbers (a 0 ..... a n) for which 

a 0 =1. 

a. Show that these arrays form an affine space under coordinate addition 
and scalar multiplication. 

b. What is the dimension of this affine space? 

c. Describe the associated vector space. 

(When n = 3, these affine coordinates correspond to the standard affine 
coordinates used in computer graphics and robotics.) 

10. Suppose that A,B,C ~ O. Show that the points (x,y) on the line Ax + By + C = 0 
form an affine space. What is the associated vector space? 

11. Show that under the usual operations of addition and scalar multiplication 
on functions the collection of all real-valued functions on a set S such that 
f ( a )  = 1 for all a ~ A, where A c S, forms an affine space. Describe the 
associated vector space. 

12. Consider the collection of all sequences {a n } that satisfy the linear recur- 
rence relation 

a n = Clan_ 1 + C2an_ 2 + ... + Ckan_ k + d ,  

where c 1 ..... Ck, d are fixed nonzero constants. 



q 0 c H A P T E R 1 In troduct ion:  Foundat ions  

1.1.3 

a. Show that these sequences form an affine space under the usual opera- 
tions of addition and scalar multiplication for sequences. 

b. What is the dimension of this affine space? 

c. Describe the associated vector space. 

13. Let v 1 ..... v n be a basis for a vector space V. 

Show that a - { Z k C k V k l Z k C k  = 1} is an affine a.  space. 

b. What is the associated vector space? 

c. How is the dimension of A related to the dimension of V? 

14. In the text we showed that with every affine space there is associated a cor- 
responding vector space. Here we show that the converse is also true--that 
with every vector space there is associated a corresponding affine space. Let 
V be a vector space and let A = {(v, 1) I v e V }. 

a. Show that A is an affine space under coordinate addition and scalar multi- 
plication. 

b. Show that the vector space associated with A is isomorphic to V. 

15. Prove that the translation map T ( P )  = P + v is an affine transformation. 

16. Prove that an affine transformation is completely defined by its action on an 
affine basis. 

17. Let A be an affine transformation. 

a. Show that if Q -  P = T -  R, then A ( Q ) -  A ( P )  = A ( T ) -  A ( R ) .  

b. Let v = Q -  P, and define A(v)  = A ( Q ) -  A(P) .  Using part (a), show that 
A induces a well-defined map on vectors. That is, A(v )  is independent of 
the choice of P and Q. 

c. Show that A ( P  + v) = A(P)  + A(v).  

d. Show that A induces a linear transformation on vectors~that  is, 

A ( u + v ) = A ( u ) + A ( v )  

A(cu)  = cA(u). 

e. Conclude from parts (c) and (d) that every affine transformation A is 
determined by a linear transformation L together with the value of A at a 
single point. 

f. Prove that an affine transformation maps each line in an affine space to 
either a point or a line. 

Grassmann Spaces and Mass-Points 

The algebra of points in affine space is incomplete. For example, scalar multiplica- 
tion of points is defined only for the scalars 0,1; that is, 
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c P - P  c - 1  

= 0  c - 0  

= undefined c ~: 0,1 . 

More generally, we cannot take arbitrary linear combinations of points; only affine 
combinations---combinations where the scalars sum to one--yield new points. 
Grassmann spaces extend affine spaces so that all the usual operations of arithmetic 
are valid. 

How is this done? Since Grassmann spaces are not so familiar as vector spaces 
or even affine spaces, we shall provide three distinct models for Grassmann space" 
physical, algebraic, and geometric. We shall then combine all three models into a 
single diagram (Figure 1.6). 

We take our initial inspiration from physics. In classical mechanics there are 
points (locations) and vectors (forces), but in addition there are also objects (masses) 
on which the forces act. The masses reside at points, so it is natural to combine a 
mass and a point into a single entity called simply a mass-point. In this framework 
masses are allowed to be negative, so perhaps we should call them charges instead of 
masses, but the term mass-point is fairly standard so we shall stick to it here. Vectors 
are incorporated into this scheme as entities with zero mass. 

To develop an algebra for mass-points, we need suitable notation. It might seem 
reasonable, at first, to denote mass-points by pairs (P,m), where P is a point in affine 
space and m is a nonzero scalar mass. Unfortunately, the algebra of mass-points is 
not at all natural in this notation. For example, the sum of two mass-points is not 
simply the sum of the points juxtaposed with the sum of the masses. Indeed, the sum 
of two points in affine space is not even well defined. 

By introducing a slight abuse of notation, however, we can generate a simple 
algebraic formalism for mass-points consistent both with the mathematics of affine 
spaces and with the physics of classical mechanics. We shall denote the mass-point 
with the nonzero mass m located at the affine point P by the pair (mP, m). Of course, 
strictly speaking, the expression mP by itself is meaningless, since mP is not a well- 
defined, coordinate-free expression in affine space. (If we were to introduce rectan- 
gular coordinates, however, then the expression mP would represent the first 
moment of the mass m around each of the coordinate planes. The pair (mP, m) is then 
called the Grassmann coordinates of the mass-point--see Section 1.2.2.) Neverthe- 
less, if we adopt the convention of writing our mass-points in this way, we can cer- 
tainly recover the affine point P by formally dividing the expression mP by the mass 
m. Since, by convention, vectors have zero mass, vectors v are written as (v,0). 

Scalar multiplication of mass-points is defined by multiplying the mass by the 
scalar and leaving the point unchanged. If the scalar is zero, then its product with the 
mass would be zero, so we set the result to the zero vector. Thus, we define 

c(mP, m) - (cmP, cm) c 4= 0 (1.8) 

= (0, O) c - 0 .  
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dl ~ d2 
,Ih , a l l  

' I F  'qW 

(mlP l ,ml )  (mlP1 + m2P2,m 1 + m 2) (m2P2,m2) 

Figure 1.4 The sum of two mass-points (mlPl,m 1) and (m2P2,rn2)--represented here by dots at the 
corresponding points of sizes proportional to their masses is located at their center of mass, 
where mid 1 = m2d2. 

To add two mass-points, we need to specify both the position and the mass of 
the sum. We define the position to be the center of mass (see Exercise 2 of Section 
1.1.2) of the two mass-points and the mass to be the sum of the two masses (see Fig- 
ure 1.4). Formally this means that 

(mlPl,ml) + (m2P2,m2) - (mlP 1 + m2P2,m 1 + m2) m 1 + m 2 :r 0. (1.9) 

Our inspiration for this definition comes from classical mechanics, where typi- 
cally we can replace the physical effects of two masses by a single mass that is the 
sum of the two masses located at their center of mass. Since in this framework 
masses can be negative, we also need to worry about what happens when 
m 1 + m 2 = 0. In this case we define the sum to be the vector from P1 to P2 scaled by 

the mass at P2. That is, 

( -mP1,-m)  + (mP2,m) - (m(P2 - P1 ), 0) . (1.10) 

Notice that with these definitions addition of mass-points is associative and 
commutative. Moreover, scalar multiplication distributes through addition, since 

c((mlPl,m 1) + (m2P2,m2)} - c(mlP 1 + m2P2,m 1 + m2) 

= (CmlP 1 + cm2P2,C(ml + m2) ) 

= c(mlPl,m 1) + c(m2P2,m 2) . 

Equations (1.8), (1.9), and (1.10) define a complete arithmetic for mass-points. 
But what about vectors? Addition and scalar multiplication are already defined for 
vectors, so we can just carry over these definitions in the obvious manner. That is, 
we set 

( v , O ) + ( w , O ) - ( v + w , O )  (1.11) 

c ( v , O ) - ( c v ,  O) . 

To complete our algebra of mass-points and vectors, we need to define how to 
add a vector to a mass-point. Again we take our inspiration from mechanics. Think 
of the vectors as forces acting on the masses. The forces try to pull the masses in the 
directions of the force vectors. But mass has inertia. The more mass there is at a 
point, the harder it is to move the mass. A convenient convention is that a force v 
relocates a mass-point (mP, m) to the new position P + v / m .  Thus, the larger the 
mass m, the smaller the net effect of the force v. Therefore we define 
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(raP, m) + (v, O) - (rap + v,m) . (1.12) 

Notice that if a unit mass is located at P, then the vector v moves the mass-point (P, 1) 
to the location P + v, which is the location of the standard sum of a point and a vector 
in affine space. Multiplication distributes through addition for mass-points and vec- 
tors, since 

c{(mP, m) + (v, 0)} - c(mP + v,m) 

= (croP + cv, cm) 

= c(mP, m) + c(v,O) . 

Thus we have a complete algebra for mass-points and vectors that extends the 
limited algebra of points and vectors in affine space. Indeed we see now that the 
algebra of points and vectors in affine space is the algebra of mass-points and vec- 
tors, where the point masses are restricted to unit masses. 

We have a complete algebra of mass-points and vectors because addition, sub- 
traction, and scalar multiplication are well-defined operations that satisfy the usual 
rules of arithmetic. But whenever these operations satisfy the standard rules, we 
have a vector space. So the mass-points and vectors form a vector space that incor- 
porates both the original affine space and its associated vector space. This new vec- 
tor space is called Grassmann space. The dimension of the Grassmann space of 
mass-points and vectors is one higher than the dimension of the original affine space. 
This new dimension arises from the masses, which at any location form a one- 
dimensional subspace. 

Adopting the convention of writing mass-points in the form (raP, m) makes addi- 
tion and scalar multiplication quite natural computationally; it also allows us to 
avoid, or at least to postpone, division by storing denominators as masses. Equations 
(1.8)-(1.12) provide as well a purely formal algebraic model for Grassmann space. 
This algebraic model also guarantees that Grassmann space is a vector space, since 
the arithmetic operations are performed independently on the coordinates pairs. 

There is also a simple geometric model for Grassmann space. Affine space actu- 
ally consists of two disjoint components represented by the points (mass = 1) and the 
vectors (mass = 0)--see  Figure 1.5. We can embed these two distinct models of n- 
dimensional space as two isolated components inside a vector space of dimension 
n + 1. This higher-dimensional vector space is the geometric model of Grassmann 
space. 

In this geometric model for Grassmann space, the notation (mP, m), m r O, repre- 
sents the point on the line L( t )= ( 1 - t ) ( 0 , 0 ) +  t (P ,1 )~ the  line from the zero vector 
through the affine point Pmlocated  at the parameter t -  m. Equivalently, (mP, m) is 
equal to the vector (arrow) from the zero vector (0,0) to the affine point (P, 1) scaled 
by the mass m. Thus, geometrically, Grassmann space is the vector space consisting 
of all affine vectors, together with the points on the lines connecting the zero vector 
with the points in affine space (see Figure 1.5). In this purely geometric model, mass 
encodes distance rather than an inertial property of matter. 

We can tie together our physical, algebraic, and geometric models of Grassmann 
space within a single diagram (see Figure 1.6). In the physical model, we start with 
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(mP, m) 
. i ,  

Affine points ( m ~ , l / / =  1 

Affine vectors m = 0 
(0,0) = zero vector 

Figure 1.5 A geometric model for Grassmann space as the space of all affine vectors, together with the 
points on the lines connecting the zero vector with the points in affine space. 

(mlPl ,ml )+ (m2P2,m2)= (mlP1 + m2P2,ml+ m 2 ) - ( m ]  +m2)J ml-P-1 ( + m2P2,1j ~ J 
k ml +m2 

(mlPl,ml)  - ml(Pl,1) 

Affine points 
(P1,1 ) / ~ - ~  (P2,1 ) 

/ 

Affine vectors 
(0,0) = zero vector 

Figure 1.6 Two characterizations for addition in Grassmann space: physical and geometric. Addition is 
represented by adding mass-points (dots of different sizes)in an affine space or by adding 
vectors (arrows of different lengths)in a higher-dimensional vector space. 

two points P1,P2 in affine space with which we associate the scalar masses m 1,m 2. 
As mass-points, their sum is given by the point (mlP 1 + m2P2)/(m 1 + m2) in affine 
space associated with the mass m I + m 2. In this physical model, mass-points (raP, m) 
are represented by dots of different sizes in affine space (see Figure 1.4). Alterna- 
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tively, in the geometric model, we encode a mass-point (mP, m) by the arrow from the 
zero vector (0,0) to the affine point (P, 1) scaled by the mass m; that is, 

(mP, m ) -  m((P,1)-  (0,0)) - m(P,1). 

Now the sum (mlPl,ml)+(mzP2,m2) is given by adding the corresponding arrows 
ml(Pl,1) + mz(P2,1) using the standard triangle rule for vector addition (see Figure 
1.1). 

To demonstrate that our physical and geometric models are consistent, we need 
to show that 

ml(Pl,1) + m2 (P2,1) - (m 1 + m2)((mlP 1 + mzP2)/(m 1 + m2),l ). 

We proceed in the following manner. Let P be the projection into the affine space 
m = 1 along the line to the origin of the sum ml(Pl,1)+ m2(P2,1). Then there are con- 
stants a , ~  such that 

ml (PI,1) + m2 (P2,1)- ~(P, 1) 

(1 - a ) ( P l , 1 )  + a ( P 2 , 1  ) - ( P , 1 )  . 

The first equation holds from the definition of P as a projection, and the second 
equation must hold because (P, 1) lies on the line in affine space joining the points 
(PI,1) and (P2,13. Multiplying the second equation by ~ and subtracting it from the 
first equation yields 

(m 1 - (1  - a)2)(Pl,1) + (m 2 - a2)(P2,1) = 0 . 

Since P1 and P2 are distinct points in affine space, the vectors (PI,1) and (P2,1) in 
Grassmann space are linearly independent, so 

(1 - a ) 2 ,  - m 1 

a ~ = m  2 . 

Adding these equations and solving first for 2 and then for a yields 

- m 1 + m 2 

a -  m 2 /(m l + m2) . 

It follows that the sum of the arrows generates the vector (P,1) = 
((mlP 1 + mzP2)/(m 1 + m2),l ) scaled by the mass 2 -  m 1 + m 2. Thus the projection of 
the arrow ml(Pl,1)+ m2(P2,1) back into affine space gives the point in affine space 
corresponding to the addition of the original mass-points (center of mass), and the 
scale factor is the sum of the original masses. So in the geometric model of Grass- 
mann space, affine points encode direction, mass encodes scale, and these encodings 
are consistent with the standard addition of mass-points from classical mechanics. 

One final observation about our notation for mass-points in Grassmann space: 
consider what happens in the limit to a mass-point (mP, m) as m --> 0. From the geo- 
metric interpretation of Grassmann space (Figures 1.5 and 1.6), we observe that 
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l i m m ~ o ( m P ,  m) = (0,0) = zero vector. This limit is the same for all affine points P, so 
in Grassmann space the zero vector is arbitrarily close to every point When the mass 
is small. This phenomenon occurs because the mass-points (mP, m),  P fixed, m g: 0, 
all lie on the line through (0,0) and (P, 1), rather than on the vertical line over (P, 1). 
Thus, from the geometric perspective as well as from the algebraic point of view, the 
natural representation for mass-points in Grassmann space is indeed (mP, m)  and not 
(P,m) (see also Section 1.2.2 on Grassmann coordinates). 

Exercises 

1. (Ceva's Theorem) Let P1,P2,P3 be the vertices of a triangle, and let M i be a 
point on side PjPk, i ~ j , k .  Define 

IPj-Mil i - 1,2,3. 
ri - Iek - Mi[ 

Prove that the lines P1M1, P2M2, P3M3 are concurrent if and only if rlr2 r3 = 1. 

(Hint: Place appropriate masses at the vertices of the triangle.) 

2. The space of all monic polynomials of degree n ~ a l l  polynomials of degree 
n with leading coefficient l ~ i s  an affine space. 

a. What is the associated Grassmann space? 

b. Where are the masses stored? 

c. What are the elements of this Grassmann space with zero mass? 

d. Describe addition and scalar multiplication on this space. 

3. Show that a Grassmann space can always be embedded in an affine space of 
the same dimension. (Hint: See Exercise 14 of Section 1.1.2.) 

4. Consider a system of homogenized linear equations: 

allX 1 + al2x 2 + ... + alnX n = blw 

amlxl  + am2X 2 + ... + amnX n = bmw . 

We can rewrite these equations in matrix notation as AX = B w .  

a. Show that the solutions ( X , w )  of this homogenized system of linear 
equations form a Grassmann space. 

b. What are the points with unit mass? 

c. What are the vectors? 

5. Define the product of two elements of Grassmann space by setting 

( m l P l , m l ) ~  = mlm2(P2 - P1) mlm2 :/: 0 

(raP, m)  �9 (v, O) = mv  m :/: 0 

(v, O) �9 (mP,  m)  = - m v  m r 0 

(v, O) �9 (w, O) = 0 . 
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Show that this product 

a. is not associative: 

{(mlPl,ml ) o (m2P2,m2)} o (m3P3,m3) :/: (mlPl,ml ) o {(m2P2,mz)  o (m3P3,m3)}. 

b. is anti-commutative: 

(mlP1, m 1)~ (m2P2,m 2) = - (m2P2 ,m  2)o (mlP1, m 1). 

c. commutes with scalar multiplication: 

c{(mlPl ,ml  ) ~ (m2P2,m2)} - {c(mlPl ,ml  )} " (m2P2,m2) - (mlPl,ml ) ~ {c(m2P2,m2)}.  

d. distributes through addition: 

(wQ, w) o {(mlP1, m 1 ) + (m2P2,m2) } = (wQ, w) o (mlP1, m 1) + (wQ, w) . (m2P2,m2)" 

Projective Spaces and Points at Infinity 

Affine space is flawed in two ways: both its algebra and its geometry are incomplete. 
Grassmann space completes the algebra; projective space completes the geometry. 

The geometry of affine space is incomplete because there are no points at infin- 
ity. Typically two lines in the affine plane intersect at a point. But where do two par- 
allel lines intersect? We need points at infinity to complete the geometry of the affine 
plane. 

Points at infinity are needed as well to complete the definition of perspective 
projection. Given an eye point E and an affine plane S not containing E, we can map 
points P in affine 3-space onto S by perspective projection~that is, by taking the 
intersection of the line EP with the plane S (see Figure 1.7). For most points P, we 
get a well-defined intersection point, but what does perspective projection do to the 
points P' on the plane through E parallel to S? Where do lines parallel to the plane S 
intersect S? Again we need points at infinity to complete our geometry. 

E(eye) P" 

Figure 1.7 Perspective projection from the eye point E to the affine plane S The points P,Q,R have well- 
defined images P*,Q*,R* in the plane S But what is the image of the point P'? 
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Projective space is, by definition, the collection of the points in affine space 
together with the points at infinity. The points at infinity are constructed by asserting 
that in each direction there lies a unique point at infinity (see Figure 1.8). By conven- 
tion, directions that are 180 ~ apart define the same point at infinity; otherwise paral- 
lel lines would intersect at two points instead of just one. 

A point at infinity can be represented by a direction, and a direction can be 
described by a vector. So we shall use vectors to represent points at infinity. But 
there is a slight problem with this approach because the vectors incorporate length as 
well as direction. That is, the point at infinity represented by the vector v is the same 
as the point at infinity represented by the vector cv, c ~ O. To overcome this difficulty, 
we shall simply identify v and cv as the same point at infinity; that is, we shall ignore 
nonzero scalar multiples. Notice too that the zero vector does not represent a point at 
infinity, since the zero vector does not correspond to a fixed direction. 

We can adapt the notation of mass-points to represent points in projective space. 
For vectors we ignore length; for points we ignore mass. That is, we simply identify 
two mass-points with different masses if they are located at the same affine point. 
Thus in projective space, 

[P,1] = [cP, c] c ~a 0 �9 

Points at infinity 

Points at infinity 

18 

Points at infinity 

Figure 1.8 Projective space consists of affine points and points at infinity. Intuitively, the vectors are 
pasted onto the affine points as points at infinity, so projective space consists of a single 
connected component. 
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The pairs [cP, c], where c ~: 0, represent affine points; the pairs [v,0] represent points 
at infinity. Now every pair IX, w] ~ [0,0] has a well-defined meaning in projective 
space, either as a point in affine space or as a point at infinity. The parameter w is 
called a homogeneous coordinate; these are the standard homogeneous coordinates 
used in computer graphics in order to represent projective transformations such as 
perspective projection by 4 • 4 matrices. Points at infinity have homogeneous coor- 
dinate zero, reminding us that they are often introduced to account for division by 
zero. 

The homogeneous coordinates w in this representation for projective space are 
sometimes confounded with the masses m of Grassmann space, and the points [X,w] 
of projective space are sometimes confused with the mass-points (X,w) of Grass- 
mann space. These identifications are not correct. In Grassmann space 
(mP, m) ~ (P,1) because even though these mass-points are located at the same affine 
point P they have different masses. On the other hand, in projective space there is no 
distinction whatsoever between the affine points [P,1] and [cP, c]; mass is not a con- 
stituent of projective space. Notice too that (0,0) is a well-defined object in Grass- 
mann space, namely, the zero vector, but the pair [0,0] is meaningless in projective 
space. 

Nevertheless, Grassmann space and projective space are intimately related. The 
points in projective space are made up of equivalence classes of points in Grass- 
mann space. Indeed each line through the origin in Grassmann space corresponds to 
a distinct point in projective space (see Figure 1.5). But the topology of Grassmann 
space and the topology of projective space are quite different. Grassmann space con- 
nects the two disjoint components (points and vectors) of affine space by embedding 
them in a vector space of one higher dimension. Projective space connects these two 
components by pasting the vectors onto the affine points at infinity. As a conse- 
quence there are no longer any affine vectors in projective space, so there are no 
notions of direction or length in projective space. Also, there is no concept of orien- 
tation in projective space, since v and-v are identified. 

The algebra of projective space is also quite different from the algebra of Grass- 
mann space. We have already seen that in projective space scalar multiplication has 
no effect. What about addition? We cannot simply define 

[ClPl,Cl ] + [c2P2,c2 ] = [ClP 1 + c2P2,c 1 + c2 ] (1.13) 

as we did for mass-points in Grassmann space because the projective point on the 
right-hand side of (1.13) would depend on our choices for the representatives of the 
projective points [ClPl,C 1] and [c2P2,c2]. Indeed evidently 

[P1,1] + [P2,1] = [P1 + P2, 2] g: [ClP1 + c2P2,Cl + c2] = [ClPI,Cl ] + [c2P, c2]" 

What works instead is to define the sum of [clPI,C 1 ] and [c2P2,c 2 ] to be the projec- 
tive line joining these two projective points. Then the fight-hand side of Equation 
(1.13) represents one point on this line, the affine point (ClP 1 +czP2)/(q + c2). By 
taking all the representatives of [ClPl,Cl] and [c2P2,c2] and adding their coordi- 
nates, we can generate all the points along the projective line joining these two pro- 
jective points. This convention works equally well for two affine points, for one 
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affine point and one point at infinity, or for two points at infinity. Thus we add two 
projective points by taking the projective line determined by these two points; we 
sum three projective points by taking the projective plane determined by the three 
points; and so on for more and more points. With this definition, addition of projec- 
tive points is associative and commutative. But projective space is not a vector space 
because the sum of two projective points is not a projective point. Moreover, there is 
no nontrivial notion of scalar multiplication in projective space. 

Thus the Grassmann space of mass-points and vectors is a vector space, but the 
projective space of affine points and points at infinity is not a vector space. The vec- 
tor space algebra of Grassmann space is much more powerful than the limited alge- 
bra of projective space. Consequently, to construct free-form curves and surfaces 
algebraically, we shall prefer to work primarily in Grassmann space. Only when we 
need to complete our geometry with points at infinity shall we appeal to projective 
space. 

Exercises 

1. Consider ordered pairs of integers (p,q). We shall say that two such pairs 
(p,q) and (r,s) are equivalent if (mp,mq) = (nr, ns) for some nonzero integers 
m,n. Denote by [p,q] the equivalence class of the pair (p,q). We can identify 
an ordered pair (p,q) with the fraction p/q and the equivalence class [p,q] 
with the rational number p/q (or with oo if q = 0). 

a. Show that the operations of addition, subtraction, and scalar multiplica- 
tion defined by 

p+r_p+r_ 

q s q+s  

nxP=P__+...+P__- nP 
q q q nq 

Y 

n 

are well defined on fractions (ordered pairs), but not on rational numbers 
(equivalence classes of ordered pairs). 

b. What is the identity for this addition operation? 

c. Which set is more like a projective space: the set of fractions or the set of 
rational numbers? Which set is more like a Grassmann space? 

2. The projective plane is not oriented because the vectors v and-v  are identi- 
fied with the same point at infinity. We can, however, define an oriented 
version of the projective plane by setting 

[cv, 0] = [dv, 0] cd > 0, 

[cP, c] = [dP, d] cd > O. 

a. Explain the geometric relationship between Grassmann space and the 
oriented projective plane. 
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b. How should Figure 1.8 be changed to model the oriented projective 
plane? 

3. Show that by choosing different representatives for the points [ClPl,c l] and 
[c2P2,c2] Equation (1.13) can be used to generate all the points on the pro- 

jective line joining [ClPI,Cl] and [c2P2,c2]. 
4. What is the analogue to Equation (1.13) for generating points along the line 

joining two points at infinity? Show that by choosing different representa- 
tives for the same two points at infinity this formula generates all the points 
along the projective line joining these two projective points. 

1.1.5 Mappings between Ambient Spaces 

We have constructed four kinds of ambient spaces: vector spaces, affine spaces, 
Grassmann spaces, and projective spaces. These four spaces are intimately related: 
the affine points live inside of Grassmann space as the points with unit mass and the 
vectors reside there as well as objects with zero mass, while in projective space all 
mass-points located at the same affine point but with different mass are identified to 
the same projective point and vectors are replaced by points at infinity. These obser- 
vations lead to the following four natural maps between these ambient spaces: 

affine space --4 Grassmann space affine space --4 project ive space 

P --4 (P,1) P --4 [P,1] 

v ~ (v, 0) v ~ [v, 0] 

Grassmann space --9 affine space Grassmann space ~ project ive space 

mP 
(mP, m) --4 ~ = P 

(v, O) --4 v 

m 

(mP, m) ~ [raP, m] - [P,1] 

(v,0) ~ [v,0] - ,0 

Notice that the projections from Grassmann space and affine space onto projective 
space are well defined everywhere, except at the zero vector. 

The coordinates (P, 1) for affine points and (v,0) for affine vectors introduced by 
the embedding of affine space into Grassmann space are called affine coordinates 
and are familiar both in computer graphics and in robotics, where the additional 
coordinate is used to distinguish between points and vectors in affine space (see 
Section 1.2.2). The embedding from affine space to Grassmann space via affine 
coordinates captures the algebraic structure of affine space by preserving affine com- 
binations. Indeed, if ~,kCk = 0,1, then 

n n 

ZCkP k ~ ~,Ck(Pk,1). 
k=0 k=0 

The natural projection from Grassmann space onto affine space is the left-sided 
inverse of the natural embedding of affine space into Grassmann space. Notice, 
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however, that this projection is not a continuous map because Grassmann space is 
connected whereas the space of affine points and affine vectors consists of two dis- 
joint components. 

The projections from affine space and Grassmann space onto projective space 
are continuous maps. But these projections do not preserve the algebraic structures 
on their domain spaces because, as we have seen in Section 1.1.4, projective space is 
not a vector space--addition and scalar multiplication are not well-defined opera- 
tions in projective space. 

Exercises 

1. Show that the following diagram commutes: 

Grassmann space 
Projection 

..-~ Affine space 

Projection 

Projective space 

Conclude that the projection from Grassmann space onto projective space 
factors through the projection from Grassmann space onto affine space, 
even though the projection onto projective space is continuous while the 
projection onto affine space is discontinuous. 

2. Show that the affine points Po ..... Pn form an affine basis on an affine space if 
and only if the mass-points (P0,1) ..... (Pn, 1) form a vector space basis for the 
associated Grassmann space. 

3. A transformation A on Grassmann space is said to be mass preserving if the 
mass of a transformed mass-point is the same as the mass of the correspond- 
ing untransformed mass-point. Let A be an affine transformation on affine 
space. Define a transformation A* on Grassmann space by setting: 
A* (mP, m) = (mA(P),m) and A* (v,0) = (A(v),O). 

a. Show that A* is a mass-preserving linear transformation on Grassmann 
space. 

Conversely, let A* be a mass-preserving linear transformation on Grass- 
mann space. Define a transformation A on affine space by setting A(P) = A* 
(P,1). 

b. Show that A is an affine transformation on affine space. 

c. Show that the following diagram commutes: 
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Affine space 

Embedding 

Grassmann space 

A 

A* 

"- Affine space 

Embedding 

Grass ann space 

d. Conclude that the affine transformations on affine space are equivalent to 
the mass-preserving linear transformation on Grassmann space. 

4. Let L be a linear transformation on Grassmann space. 

a. Show that if L is nonsingular, then L induces a unique, well-defined 
transformation L* on projective space so that the following diagram 
commutes: 

Grassmann space 

Projection 

Projective space 

L 

L* 

---"- Grassmann space 

Projection 

Projective space 

b. Show that if L is singular, then L still induces a unique, well-defined 
transformation 

L*: Projective s p a c e -  [ker(L)] ~ Projective space, 

where ker(L) - {P]L(P) = 0}, so that the following diagram commutes: 

Grassmann space - ker(L) 

Projection 

Projective s p a c e -  [ker(L)] 
L* 

---"- Grassmann space 

Projection 

"--..- Projective space 

A transformation L* on projective space induced in this fashion by a lin- 
ear transformation L on Grassmann space is called a projective transfor- 
mation. 

5. Let L" Grassmann space ~ R be a linear map between vector spaces. Then 
H = {PIL(P) - 0} is called the hyperplane defined by L, and H* = {[P]] 
L(P) = 0} is called the projective hyperplane induced by L. Fix a point E in 
Grassmann space such that E is not an element of H, and define the map 

Perps: Grassmann space ~ Hyperplane H 
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1.1.6 

by setting 

Persp(P) = L(P)E - L(E)P. 

Show that 

a. Persp(P) lies on the hyperplane H. 

b. Persp(P) = 0 if and only if P = cE. 

c. Persp induces a unique projective transformation 

Persp*: Projective space-  [E] ~ Projective hyperplane H* 

such that Persp*[P] = [Persp(P)]. (Hint: See Exercise 4.) 

d. if P and E are points in affine space, then 

i. Persp*[P] lies on the intersection of the line [EP] and the hyperplane 
H*; 

ii. Persp*[P] is a point at infinity in projective space if and only if the 
vector P - E lies in the hyperplane H. 

In three dimensions, the map Persp* is the standard perspective projection 
from an eye point [E} onto a projective plane H*. 

Polynomial and Rational Curves and Surfaces 

For the study of polynomial curves and surfaces, affine spaces usually suffice. Typi- 
cally we define a polynomial curve P(t) by choosing a sequence of affine control 
points PO ..... Pn and a collection of polynomial blending functions Bo(t) ..... Bn(t), 
and setting P(t) to be the set of points in affine space determined by the equation 

n 

P ( t ) -  ~,Bk(t)P k �9 (1.14) 
k=O 

Similarly, we define a polynomial surface by choosing an array of affine control 
points {P/j] and a collection of bivariate polynomial blending functions {Bij(s,t)}, 
and setting P(s,t) to be the set of points in affine space determined by the equation 

P(s,t)  = Zij  Bij(s,t)Pij . (1.15) 

For this to work in affine space, the blending functions {Bk(t ) for curves and 
{Bij(s,t) } for surfaces must form a partition of unity; that is, we must have 

(1.16) n 

~,Bk(t) ~ 1 
k=0 

~ijBij(s , t)  - 1 . 

We shall see in subsequent chapters that Lagrange polynomials, as well as B6zier 
and B-spline curves and surfaces, are defined in precisely this fashion. 

Curves and surfaces generated by Equations (1.14) and (1.15) are said to be 
translation invariant. Translation invariance means that to translate the curve or sur- 
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face by a vector v, we need only translate each control point by v. This result follows 
from the fact that the blending functions form a partition of unity, since for such 
blending functions 

n n n 

P(t) + v = ~,Bk(t)P k + EBk(t)v  - ~,Bk(t)(P k + v) 
k=O k=O k=O 

f ( s , t )  + v - EijBij(s,t)Pij + EijBij(s,t)v - E, ijBij(s,t)(Pij + v) . 

More generally, these curves and surfaces are affine invariant. That is, if A is any 
affine transformation, then since A preserves affine combinations 

n 

A ( P ( t ) ) -  EBk(t)A(Pk) 
k=O 

A ( P ( s , t ) ) -  EijBij(s,t)A(Pij) . 

Thus to perform an affine transformation such as rotation or scaling on such a curve 
or surface, we need only apply the affine transformation to each control point. 

The Grassmann space of mass-points is used for the construction of rational 
curves and surfaces. To define a rational curve R(t), we start with a sequence of 
mass-points and vectors (moPo,mo) ..... (mnPn,mn). (If m k - 0, we replace the mass- 
point (mkPk,m k) by a vector (v k, 0), and we do not insist that rnkP k - 0 .) Now given 
an arbitrary collection of polynomial blending functions Bo(t ) ..... Bn(t ), we define 
R(t) to be the set of points in affine space determined by the curve P(t) in Grassmann 
space given by the equation 

/ n / 
P( t )=  ~ B k ( t ) ( m k P k , m k ) -  ~ Bk(t)mkP k, Y~Bk(t)m k �9 

k=0 k=0 k-0 
(1.17) 

To project P(t) into affine space, we divide by the mass to generate the curve 

n 

~.,mjPjBj(t) 
R ( t ) -  j=O _ ~ ? j B j ( t )  PJ 

EmkBk( t  ) j=O ~,mkBk(t ) 
k=0 k=0 

(1.18) 

which is indeed a rational curve in affine space. Rational surfaces are defined in an 
analogous fashion. Observe that to define P(t), we need to work in a vector space so 
that we can perform both addition and scalar multiplication. Thus P(t) must be con- 
structed in Grassmann space, not in projective space. Notice too that changing the 
mass of one of the mass-points (mkP k,m k) alters both P(t) and R(t), so again the con- 
trol points we are dealing with here are mass-points, not points in projective space. 

Projective space comes into the picture when the denominator of R(t) vanishesm 
that is, when 

17 

Z, m k B k ( t o ) - O  
k=O 
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for some parameter t - t 0. Division by zero is not well defined in affine space, and 
therefore in affine space the rational curve R(t) would have a discontinuity. More- 
over, the natural projection from Grassmann space to affine space would send 

/ n 
(to)mkPk,O ~ ]~Bk(tO)mkP k , k=0 

which is a vector, not a point, in affine space. But curves and surfaces are collections 
of points, not points and vectors. To avoid these problems, we typically map P(t) 
from Grassmann space, not to affine space, but to projective space using the canoni- 
cal projection. That is, we simply set 

I n 1 I n n 1 R(t)  - ~_~ Bk(t)(mkPk,m k) = ~ Bk(t)mkP k, ~ Bk(t)m k . (1.19) 
k =0 k =0 k-0 

Notice that the affine points on this curve are the same as in Equation (1.18), but now 
R(to) is a point at infinity in projective space rather than a vector in affine space. 
Moreover, the curve R(t) is a continuous curve in projective space. Thus for rational 
curves, the control points lie in Grassmann space, but the curves reside in projective 
space! 

Exercises 

1. Let P(t) be a curve in affine space. 

a. Using the definition of P'(t) as the limit of a difference quotient, show 
that P'(t) is a vector fieldmthat is, a one-parameter family of vectors--in 
affine space. Interpret this vector field geometrically. 

b. Suppose that P(t) = ~,k Bk (t)Pk is a polynomial curve, where ZkBk(t) = 1. 
Without appealing to part (a), show that the derivative P'(t) = ZkBk'(t)Pk 
is a vector field. 

2. Show that for curves in Grassmann space differentiation and projection do 
not commute. That is, show that the following diagram does not commute" 

Grassmann space 

Projection 

Projective space 

Differentiation 

Differentiation 

~-- Grassmann space 

Projection 

~-- Projective space 

3. Recall that when we project a mass-point from Grassmann space to projec- 
tive space, the result is a point in affine space---only the vectors project to 
points at infinity. 
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a. Show that for mass-points translation and projection to affine space do 
not commute. That is, for mass-points the following diagram does not 
commute: 

Grassmann space 

Projection 

Affine space 

Translation 

Translation 

---"- Grassmann space 

Projection 

Affi space 

b. What operation does translation of mass-points in Grassmann space cor- 
respond to in affine space? 

c. Consider a polynomial curve in Grassmann space that projects to a ratio- 
nal curve in affine space. Show that we generate two different curves in 
affine space, depending on whether we apply translation before or after 
projection. 

4. Show that rational curves are invariant under projective transformations (see 
Exercise 4 of Section 1.1.5). That is, show that if L* is a projective transfor- 
mation induced by the transformation L on Grassmann space and if 

E ] R(t)= 2Bk( t ) (mkPk,m k) 
k=O 

is a rational curve in projective space, then 

= (t)L(mkPk,mk) �9 

1.2 Coordinates 

In most of this book, we shall adopt a coordinate-free approach to geometry. We 
have already illustrated this technique in the preceding section in our discussion of 
ambient spaces. This coordinate-free style works well for the range space where our 
curves and surfaces reside, but we are going to study parametric curves and surfaces, 
so we need as well a way to represent the parametric domain. In Section 1.1.6 we 
implicitly resorted to rectangular coordinates for our parameters. For certain types of 
surfaces, however, in particular for triangular patches, rectangular coordinates are 
not the most convenient way to represent the parameter domain. Here we shall intro- 
duce another kind of coordinates, called barycentric coordinates, which are more 
suitable for representing the domain of a triangular surface patch. 

We begin with a brief review of rectangular coordinates and go on to provide a 
short sketch of affine, Grassmann, and homogeneous coordinates--that is, rectangu- 
lar coordinates adapted to affine, Grassmann, and projective spaces. We then present 
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a more thorough exposition of barycentric coordinates for affine spaces. You can 
skip this section for now if you like and return to it later when we study triangular 
patches in subsequent chapters. 

1.2.1 Rectangular Coordinates 

In Euclidian space it is often convenient to introduce rectangular (Cartesian) coordi- 
nates. This can be done by selecting an orthonormal basis v 1 ..... v n - - a  basis whose 
vectors are mutually orthogonal unit vectorsmand representing any vector v by a 
unique linear combination of these basis vectors. If 

f/ 

v = ~, CkV k , 
k = l  

then we say that (c 1 . . . . .  Cn) are the rec tangu lar  coord ina tes  of v. When the basis is 
fixed, often we abuse notation and write v = (c I ..... Cn). 

We can proceed in a similar fashion in affine space. Here we need a fixed point 
O in the affine space as well as an orthonormal basis v 1 ..... v n for the associated vec- 
tor space. Now any point P in the affine space can be written uniquely as 

n 

P = 0 + ~,CkV k �9 
k = l  

Again we say that (c I . . . . .  Cn) are the rec tangu lar  coord ina tes  of P. The point O plays 
the role of the origin, and the vectors v 1 ..... v n are parallel to the coordinate axes (see 
Figure 1.10(a) in Section 1.2.3). Once more when the origin and axes are fixed, we 
often abuse notation and write P = (c I ..... Cn). 

1.2.2 Affine Coordinates, Grassmann Coordinates, and Homogeneous 
Coordinates 

Rectangular coordinates do not permit us to distinguish between points and vectors. 
In an n-dimensional affine space both points and vectors are represented by n rectan- 
gular coordinates. But points and vectors convey different information, and the rules 
of linear algebra are different for points and for vectors. Therefore it is important for 
us to differentiate somehow between coordinates that represent points and coordi- 
nates that represent vectors. 

The natural embedding from affine space to Grassmann space presented in Sec- 
tion 1.1.5 provides a simple way to discriminate the points from the vectors. This 
embedding assigns an additional mass coordinate to both points and vectors: points 
are assigned a mass equal to one, vectors a mass equal to zero. Thus we write 

P = ( C  1 . . . . .  Cn,1) 

V ' - ( C  1 . . . . .  cn,O) . 
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These rectangular coordinates followed by a zero or a one are called affine coordi- 
nates,  and they are the coordinates most commonly adopted for affine space. 

Grassmann space extends affine space by incorporating mass-points with arbi- 
trary masses. The mass-points are combinations of affine points P and scalar masses 
m. If we were to use rectangular coordinates (c 1 ..... c n) to represent the affine point 
P and one additional coordinate to represent the scalar mass m, then a mass-point 
would be written in terms of coordinates as 

( P , m ) = ( c  1 . . . . .  Cn,m). 

But we observed in Section 1.1.3 that with this representation the rules for addition 
and scalar multiplication for mass-points would not correspond to the natural rules 
of addition and scalar multiplication on coordinates. To adapt our coordinates to the 
algebra of mass-points, we instead represent a mass-point with the notation 

(raP, m) = (mc 1 ..... m c n , m  ). 

We call these coordinates the Grassmann  coordinates  of a mass-point. Note that we 
can recover the rectangular coordinates (c 1 ..... c n) of the affine point from the Grass- 
mann coordinates ( m q  . . . . .  m c n , m )  of the corresponding mass-point by dividing the 
first n coordinates (mc 1 ..... mc n) by the (n + 1)st coordinate m. For points with unit 
mass, Grassmann coordinates coincide with affine coordinates. 

Thus the first n coordinates of a mass-point are the rectangular coordinates of 
the affine point P scaled by the mass m. For vectors, however, the mass is zero, so it 
would not be prudent to scale the rectangular coordinates (Cl ..... cn) of a vector v by 
its mass. Instead, the Grassmann coordinates of a vector are just its rectangular coor- 
dinates followed by a zero mass, just like in affine space--that  is, for vectors we 
write the Grassmann coordinates as 

(v,0) = (q ..... c.,0). 

Points in projective space are equivalence classes of points in Grassmann space. 
Thus we can adapt Grassmann coordinates to represent points in projective space by 

writing ImP, m] - [mc 1 . . . . .  m c n , m  ] 

[V, 0 ] = [ C  1 . . . . .  C n,O] . 

These coordinates for points in projective space are called h o m o g e n e o u s  coordi- 
nates. Note that, unlike in Grassmann space, in projective space 

[mc 1 . . . . .  mcn,m] = [c 1 ..... cn,1] 

[~tcl ..... j2c~,0] = [q , . . . , c~ ,0 ] ,  

since in projective space we are dealing with equivalence classes of points in Grass- 
mann space. A point in projective space that corresponds to a point in affine space 
has a nonzero final coordinate. Thus, just as in Grassmann space, we can recover 
the rectangular coordinates (c 1 ..... Cn) of an affine point from the homogeneous 
coordinates [mc 1 . . . . .  m c n , m  ] ot the corresponding projective point by dividing the 
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first n homogeneous coordinates (mc  1 . . . . .  mc n) by the (n + 1)st homogeneous coor- 
dinate m. 

Exercises 

1. Let L be a linear transformation on an n-dimensional vector space with a 
fixed basis v 1 ..... v n and let v = (c 1 ..... c n) be an arbitrary vector. Suppose 
that 

L ( v  k)  = (Ckl . . . . .  Ckn), k = 1 . . . . .  n. 

Show that 

fL Vl  I IC!l 
L(v) = (c  1 . . . . .  Cn) " = (6' 1 . . . . .  Cn) �9 : 

~L(vn)) \Cnl ... 

Cln I 
Cnn 

Thus linear transformations on vectors can be computed by matrix multipli- 
cation on their coordinates. 

2. Let A be an affine transformation on an n-dimensional affine space. Let 
v 1 ..... v n be a fixed orthonormal basis of the associated vector space, and let 
O be a fixed point in the affine space. With respect to this origin and axes, 
suppose that 

A ( v  k)  = (Ckl . . . . .  Ckn,O), k = 1 . . . . .  n 

A ( O ) = ( d  1 ..... dn,1) . 

Suppose further that P is an arbitrary affine point, that v is an arbitrary 
affine vector, and that, with respect to the same origin and axes 

P = ( P l  . . . . .  Pn, 1) 

v = ( c  1 . . . . .  cn,O) . 

Show that the affine coordinates of A ( P ) , A ( v )  are given by 

A(Vl )  0 /Cl.1 "'" Cln 0 

. . . ' ' i  cnn i Icn  A ( P )  = (Pl ..... P n , 1 ) l A ( v n )  = (Pl ..... Pn, 1) 

I 
A(O) ~ d 1 "" d n 

A ( V l )  

A(v) = (c 1 ..... cn,O)lA(vn) 

~ A ( O )  

0 rCl.1 "'" Cln 0 
/ �9 �9 ! ! " " = ( e l  . . . . .  Cn, O) 

C 1 "'" Cnn 

~ d  1 ...  d n 
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1.2.3 

Thus affine transformations on points and vectors can be computed by 
matrix multiplication on their affine coordinates. 

3. Show that in Grassmann space, linear transformations can be computed by 
matrix multiplication on Grassmann coordinates. Given a fixed origin O and 
axis vectors v 1 ..... v n for the naturally embedded affine space, what are the 
entries of the matrix M associated to the linear transformation T? 

4. Show that in projective space, projective transformations (see Exercise 4 of 
Section 1.1.5) can be computed by matrix multiplication on homogeneous 
coordinates. Given a fixed origin O and axis vectors v 1 . . . . .  v n for the natu- 
rally embedded affine space, what are the entries of the matrix M* associ- 
ated to the projective transformation T*? 

Barycentric Coordinates 

Rectangular coordinates and affine coordinates are not always the most convenient 
way to represent points in affine space. We introduced affine spaces because we plan 
to work directly with points rather than vectors, so rectangular or affine coordinates 
are often unnatural for our purposes. Therefore, especially when representing trian- 
gular surfaces, we shall routinely replace rectangular coordinates for the domain 
parameters with another type of coordinates called barycen t r ic  coordinates .  

Let Po . . . . .  Pn be an affine basis. Then any point P can be represented by a unique 
affine combination of the points PO . . . . .  Pn. Thus we can write 

/7 /7 

P - ]~ ~kPk where Z flk - 1. 
k=0 k=0 

We call (/3 o ..... fin) the barycen t r ic  coordinates  of P with respect to the affine basis 
Po . . . . .  Pn. Just like rectangular coordinates, barycentric coordinates depend on the 
choice of basis: the same point P will have different barycentric coordinates with 
respect to different affine bases. Notice, however, that in an affine space of n dimen- 
sions each point has n+ 1 barycentric coordinates but only n rectangular coordinates, 
since an affine basis has n+l elements whereas a basis for the associated vector 
space has only n elements. Still, barycentric coordinates represent only n degrees of 
freedom because, unlike rectangular coordinates, barycentric coordinates satisfy a 
re la t ion~they sum to one. 

Barycentric coordinates in affine space are related to masses in Grassmann 
space. If Po . . . . .  Pn is an affine basis, then for any affine point P and any mass m ~ 0 
there is a collection of masses m o . . . . .  m n such that (mP, m) is the center of mass of 
the mass-points (moPo,m O) . . . . .  (mnPn,m n) (see Exercise 2 of Section 1.1.5); that is, 

n 

Z m k P k  
p = k = O  

n 

~.,mj 
j=O 
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The barycentric coordinates of P are given by 

It is easy to check that indeed 

mk 
i l k=  n 

Z m j  
j=0 

/7 

P =  ~,~kPk. 
k=0 

Notice, however, that the barycentric coordinates ~k are unique, but the masses mk 
are defined only up to constant multiples. 

We shall most often apply barycentric coordinates in one and two dimensions, 
so let us now get a feel for these new coordinates by computing explicit formulas for 
them in low dimensions. 

The one-dimensional case is easy. An affine basis for the affine line is given by 
two distinct points T O and T 1 . To compute the barycentric coordinates (rio, 3]) of an 
arbitrary point T in terms of T O and T1, we write 

T=/~0T0 +/~IT1 �9 

Since flo + ]31 = 1, 

T = (1-  ill)To + tilT1 = T o + ill(T1 - To). (1.20) 

Let IT 1 -To l  denote the distance between T O and T 1. Then subtracting T O from 
both sides of (1.20) and solving for ,61, we get 

I T -  T O I (1.21) t = - - .  
I rl-Tb I 

Similarly, we also find that 

I/30 I= IT1 - T I. (1.22) 
i r l - r 0  I 

The signs of /30 and 13] depend upon the relative ordering of To,T1,T along the 
affine line: by Equation (1.20) t31 is positive if and only if T is on the same side of 
T O as T1 ; a similar analysis shows that [30 is positive if and only if T is on the same 
side of T 1 as T o, Thus [30 and /31 are both positive along the line segment ToT 1 . 
Moreover, 

3o-1 T=To 31-0 T=To 
= 0  T=T1 and =1 T = T  1 . 

Equations (1.21) and (1.22) represent the barycentric coordinates of T in terms 
of distances between T and the affine basis TO, T 1. We can also apply these equations 
to convert from rectangular to barycentric coordinates. Let t o and t 1 be the rectan- 
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gular coordinates of T O and T 1 , and let t be the rectangular coordinate of T along the 
affine line. Then by (1.21) and (1.22) 

t31= t - t  o and fl0 = t l - t .  
t 1 - t  0 tl - t  0 

(See Figure 1.9.) Notice that in these two equations the signs of the barycentric coor- 
dinates are generated automatically from the signs of the rectangular coordinates. 

Let us look now at the affine plane. Given any three noncollinear points P1, P2, P3, 
we can represent any other point Q in the affine plane as an affine combination 

Q = fliP1 + f12P2 + f13P3 where /J1 + f12 + f13 = 1. (1.23) 

We can solve for the barycentric coordinates fll,fl2,fl3 explicitly using determi- 
nants. Substituting fll = 1-/32 - ]33 and rearranging the terms in (1.23), we find that 

Q - P 1  =/~2(P2 - P1) + f13(P3 - P1) �9 

Taking the determinant of both sides with P2 -P1 and recalling that the determinant 
is multilinear and that det(v, v) - 0, we obtain 

de t (Q-  P1, P2 - P1) -/33 det(P3 - P1,/~ - P1). 

So, solving for 13 3 , we arrive at 

f13 = 
de t (Q-  P1,/~ - P1) 

det(P3 - P1,P2 -P1) 
(1.24) 

Similarly, we find that 

f12 = 
det(Q -/~ P1 - P3 ) (1.25) 

det(P2 -/~ P1 -/~ ) 

fll - det(Q - P2,/~ -/~ . (1.26) 

det(P1 -/~ P3 -/~ ) 

When we want to specify that flk is the barycentric coordinate of a point Q, we 
shall write ilk(Q). Notice, in particular, from Equations (1.24)-(1.26) we can con- 
clude that 

t o t -  t o t t ]  - t t ]  

t -  t o T t 1 - t T] 
TO i l l -  riO- 

t 1 - t o t l  - t o 

Figure 1.9 Rectangular and barycentric coordinates along the aff ine line. 
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f ik(Pj)-O j ~: k 

=1 j - k  . 

(1.27) 

More generally, if Q is any point on the line joining Pi and Pj, then Q = Pi + t(Pj - 
Pi); hence again from Equations (1.24)-(1.26) and the multilinearity of the determi- 
nant function, flk (Q) = O. 

Since, up to sign, determinants represent areas (see Exercise 1), barycentric 
coordinates in the plane have a geometric interpretation. Equations (1.24)-(1.26) 
yield 

fl3(Q) - + area(AQP1P2) 
area(AP1P2P 3) 

fl2(Q) - + area(AQP1P3) 
area( AP1P2 P 3) 

fll (Q ) - +- area( AQP 2 P3 ) 
area(AP1P2P 3) 

where the sign of fli(Q) is positive if Q lies inside AP1P2P 3 and negative when Q 
crosses the line PjPk, j,k r i. These area formulas are illustrated in Figure 1.10(b). 

v2 

Q(s,t) 

Po �9 s ' -~ vl 

(a) Rectangular coordinates 

Pl 

C 3 (s, t) t) = o 

P2 ~ fll " P3 
L l (S,t ) = 0 

(b) Barycentric coordinates 

Figure 1.10 Rectangular and barycentric coordinates in the affine plane. Rectangular coordinates are 
represented by signed ratios of lengths; barycentric coordinates, by signed ratios of areas. 
The rectangular coordinate of Q relative to the axis v k is given by the projection of Q on the 
v k axis (divided by the unit length). The barycentric coordinate of Q relative to the point Pk is 
represented by the area of the triangle opposite to Pk divided by the area of AP 1P2P3 . Since Q 
splits AP1P2P 3 into three subtriangles, it follows immediately from this normalization that the 
barycentric coordinates of Q sum to one. The barycentric coordinate of Q relative to Pk can 
also be represented by the value at Q of the linear expression Lk(S,t) for the line PiPj when 
properly normalized. 
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Just as on the affine line, Equations (1.24)-(1.26) can be used to convert from 
rectangular coordinates to barycentric coordinates in the affine plane. By writing 
P1,P2,P3, Q in terms of rectangular coordinates and expanding the determinants on 
the right-hand side of these equations, it is easy to see that the barycentric coordi- 
nates fll(Q),fl2(Q),fl3(Q) are linear functions in the rectangular coordinates s,t of Q. 
This observation leads to another interesting way to generate barycentric coordi- 
nates, which we will have occasion to use in subsequent chapters. 

Consider the lines joining the points P1,Pz,P3. Let lk(S,t) = 0 denote the equa- 
tion in rectangular coordinates of the line in the st-plane determined by Pi and Pj, 
i, j ~: k. We are going to show that the barycentric coordinates relative to the affine 
basis P1,P2,P3 are given by the functions lk(s,t ) when properly normalized. 

First observe that 1 k and flk agree on tlae lane determined by Pi and Pj, i, j ,  k. 
In particular, by construction, lk(Pa) = 0, and by Equation (1.27), flk(Pa) = O, a r k,  
so we are off to a good start. However, we still need to be sure that lk(Pk) = flk(Pk). In 
fact, this need not be the case. In rectangular coordinates 

l k (s,t) = aks + bkt + c k 

for some constant coefficients ak,bk,c k, but the coefficients ak,bk,c k are uniquely 
determined only up to constant multiples because multiplying lk(S,t ) by a constant 
does not alter the line lk(s , t)= 0. Thus, without some normalization, we cannot 
know the value of lk(s,t) off the line. Let (sk,tk) be the rectangular coordinates of Pk" 
Since the points P1,P2,P3 form an affine basis, the point Pk cannot lie on the line lk; 
hence lk(Sk,t k) ~ O. Therefore we can normalize the coetticients ak,bk,Ck by setting 

/~(s,t) = lk ( s , t )  

After this normalization, we can be sure by Equation (1.27) that L k (Pk) = flk (Pk) = 1. 
Since L k and flk are both linear functions of the rectangular coordinates s,t and since 
they also agree at the points Pi,Pj, i, j ;e k, it follows that i lk(Q)= Lk(Q) for all Q, 
since linear functions in the plane that agree at three noncollinear points are identical 
(see part (a) of Exercise 4). 

The area formula and the line formula for barycentric coordinates in the affine 
plane can both be extended to higher-dimensional affine spaces. However, our focus 
here is on the affine line and the affine plane because these spaces serve as the 
parameter spaces for curves and surfaces. Hence we shall leave the extension of 
these formulas for barycentric coordinates in higher dimensions to the exercises (see 
Exercises 6 and 7). Their derivations are much the same as in the planar case. 

We close this section with a theorem summarizing for future reference the main 
properties we have just derived of barycentric coordinates in the affine plane. 
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THEOREM 
1.1 

Properties o f  Barycentric Coordinates in the Affine Plane 

Let /31, f12, f13 be barycentric coordinates relative to an affine basis P1,P2,P3. 
Then 

3 
1. E f l ~ = l .  

k=l 

2. flk > 0 in the interior of z ~ f 2 P  3 . 

3. flk - 0 on the line PiP j ,  k ~: i, j .  

4. flk(Pj) - O j ~: k 

=1 j - k  . 

5. ill, f12, f13 are linear functions in the rectangular coordinates s,t. 

Exercises 

1. Let P0, P1, P2 be the vertices of a triangle. Show that the following are equiv- 
alent: 

a. 2 x area( AP 1 P2 1'3) 

b. I P2-P1 II P3-P1 Isin0, where 0 is the angle between P2-P1 and 

e 3 - e l  

c. ](e2 - P1) • (e3 - 

d. ]det(P 2 - P1,P3 - P1) 

2. Let ill, f12,f13 be barycentric coordinates for the affine plane relative to the 
affine basis P1,P2,P3, and let ~., yj be the barycentric coordinates for the af- 
fine line PiPj relative to the points Pi ,Pj Suppose that Q is a point on the line 
PiPj. Show that f l i (e)  - Yi(Q) and f l j (e)  = ?'j(Q). 

3. Let flo,fll be barycentric coordinates for the affine line relative to the affine 
basis To,T 1, and let L,L 1,L 2 be linear functions on the affine line. Show that 

a. If L 1 (t) and L 2 (t) agree at two distinct values of t, then L l(t) - L 2 (t) for 
all t. 

b. L(T) - L(To)f lo(T)+ L(T1)fll(T) for all points T on the affine line. 

4. Let ill, f12, f13 be barycentric coordinates for the affine plane relative to the 
affine basis P1,P2,P3, and let L,L 1,L 2 be linear functions on the affine plane. 
Show that 

a. If L l(s,t ) and L2(s,t ) agree at three noncollinear points, then L l(S,t ) 
= L2(s,t ) for all (s,t). 

3 
b. L(Q) - ~, flk(Q)L(Pk) for all points Q in the affine plane. 

k=l 
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3 
c. Q - Z flk (Q)Pk for all points Q in the affine plane. 

k=l 

5. Prove that the barycentric coordinate functions 131,132,133 are the only func- 
tions satisfying the five properties listed in Theorem 1.1. (Hint: Use part (a) 
of Exercise 4). 

6. Let flo (Q) .. . . .  fin (Q) be the barycentric coordinates of Q relative to an affine 

basis Po ... . .  Pn. 

a. Prove that 

i lk(Q) - d e t ( Q -  Pj , Po - Pj .. . . .  Pn - Pj ) j :I: k 

det(Pk - Pj , Po - Pj .. . . .  Pn - Pj ) 

where the terms P k - P  j ,  P j - P j  are omitted from the sequences 
Po - Pj . . . . .  Pn - Pj in m e  numerator  and denominator .  

b. Conclude that 

flk(Pj)-O j ~ k 

=1 j - k  . 

c. Interpret the result in part (a) geometrically when n = 3. 

7. Let flo (Q) .. . . .  fin (Q) be the barycentric coordinates of Q relative to an affine 
basis Po ..... Pn. Introduce rectangular coordinates (t 1 ..... tnl and call a func- 
tion L(Q)  linear if it is linear in (t 1 ..... tn). Prove that 

a. If L 1 (P) and L 2 (P) are two linear functions that agree at the n + 1 points 
Po ..... Pn, then they agree everywhere. 

b. For each k there is a linear equation Lk(P)  = 0 satisfied by all the points 
in the affine basis except for Pk" 

c. If the function Lk(P) in part (b) is normalized so that Lk(P  k) - 1, then 

/~k (Q) =/~k (Q). 
/7 

d. If L is a linear function, then L(Q) = ~, f lk(Q)L(Pk) for all points Q in 
affine n space, k=0 

/7 

e. Q - Z,6k (Q)Pk for all points Q in affine n space. 
k=0 

8. Consider the rectangle in Figure 1.11. 

a. Show that the functions 

fll (s,t) = (1 - s)(1 - t) 

~ 2 ( s , t )  = (1 - s ) t  

/33(s,t) = s(1 - t) 

~ 4 ( s , t )  = st  

behave like barycentric coordinates for the rectangle P1P2P3P4 . 
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In particular, show that these functions satisfy all five conditions of The- 
orem 1.1, except for condition 5, which must be replaced by 5*. 

ill, f12, f13, f14 are bilinear functions. 

b. Give a geometric interpretation for these barycentric coordinates. 

c. Generalize the results in parts (a) and (b) to arbitrary rectangles with 
sides parallel to the coordinate axes. 

1.3 Curve and Surface Representations 

This is a book about curves and surfaces. So far, however, we have discussed mostly 
ambient spaces and coordinate systems. Be patient. We still must address one more 
preliminary issue before we can proceed to our main theme. We need to decide how 
we shall represent curves and surfaces inside our ambient spaces. 

Four types of representations for curves and surfaces are common in computer 
graphics and geometric design: explicit, implicit, parametric, and procedural. Here 
we shall look briefly at each of these alternatives and then settle on one particular 
form to use throughout this text. 

When you first studied analytic geometry, you used rectangular coordinates and 
considered equations of the form y = f(x). The graphs (x, f(x)) of these functions 
are curves in the plane. For example, y = 3x + 1 represents a straight line, and y = x 2 
represents a parabola (see Figure 1.11). Similarly, you could generate surfaces by 
considering equations of the form z = f(x,y): the equation z = 2x + 5 y -  7 represents 
a plane in 3-space, and z = x 2 - y 2  represents a hyperbolic paraboloid. Expressions of 
the form y = f(x) or z = f(x,y) are called explicit representations because they 
express one variable explicitly in terms of the other variables. 

Not all curves and surfaces can be captured readily by a single explicit expres- 
sion. For example, the unit circle centered at the origin is represented implicitly by 
all solutions to the equation x 2 + y2 _ 1 = 0. If we try to solve explicitly for y in terms 
of x, we obtain 

y = / 1 - x  2 , 

4 
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Figure 1.11 Graph of the parabola given by the explicit function y = x 2. 
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which represents only the upper half circle. We must use two explicit formulas 

y = _+~/1- x 2 

to capture the entire circle. Often it is easier just to stick with the original implicit 
equation rather than to solve explicitly for one of the variables. Thus x 2 + y2_  1 = 0 
represents a circle, and x 2 + y 2  + z 2 _ 1 = 0 represents a sphere. Equations of the form 
f(x, y) = 0 or f(x, y,z) = 0 are called implicit representations because they represent 
the curve or surface implicitly without explicitly solving for one of the variables. 

Implicit representations are more general than explicit representations. The 
explicit curve y = f(x) is the same as the implicit curve y -  f(x) = 0, but as we have 
seen it is not always a simple matter to convert an implicit curve into a single explicit 
formula. Moreover, implicit equations can be used to define closed curves and sur- 
faces or curves and surfaces that self-intersect, shapes that are impossible to repre- 
sent with explicit functions (see Figure 1.12). 

For closed curves and surfaces, the implicit equation can also be used to distin- 
guish the inside from the outside by looking at the sign of the implicit expression. 
For example, for points inside the unit circle x 2 + y2 _ 1 < 0, and for points outside 
the unit circle x 2 + y 2 _  1 > 0. This ability to distinguish easily between the inside 
and the outside of a closed curve or surface is often important in solid modeling 
applications. 

Nevertheless, implicit representations also have their drawbacks. Given an 
explicit representation y = f(x), we can easily find lots of points on the curve 
(x,f(x)) by selecting values for x and computing f(x). If our functions f(x) are 
restricted to elementary functions like polynomials, then for each x there is a unique, 

1 

0.5 

-1 

-0.5 

-1 

Figure 1.12 The lemniscate of Bernoulli: (x 2 + ]/2)2_ (x 2 _]/2)= O. Notice that unlike explicit functions, the 
graphs of implicit equations can self-intersect. 
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easily computable y. Thus it is a simple matter to graph the curve y = f ( x ) .  On the 
other hand, it may not be so easy to find points on the curve f (x ,y)  = 0. For many val- 
ues of x there may be no y at all, or there may be several values of y, even if we 
restrict our functions f (x ,y)  to polynomials in x and y. Finding points on implicit sur- 
faces f(x,y,z) = 0 can be even more formidable. Thus it can be difficult to render 
implicitly defined curves and surfaces. 

There is another standard way to represent curves and surfaces that is more gen- 
eral than the explicit form and yet is still easy to render. We can express curves and 
surfaces parametrically by representing each coordinate with an explicit equation in 
a new set of parameters. For planar curves we set x = x(t) and y = y(t); for surfaces 
in 3-space we set x = x(s, t) ,  y = y(s,t) ,  and z = z(s,t). For example, the parametric 
equations 

2t 1 -  t 2 

x(t) - 1+ t 2 y(t) - 1+ t 2 

represent the unit circle centered at the origin because by simple substitution we can 
readily verify that x2(t) + y2(t) - 1 - 0. Similarly, the parametric equations 

2s 2t 1 - s  2 - t  2 
x ( s , t ) -  l + s 2  +t2  y(s , t )=  l + s 2  + t2  z ( s , t ) -  l + s  2 + t  2 

represent a unit sphere, since x 2 (s,t) + y2 (s,t) + z 2 (s,t) - 1 - 0. Often we shall 
restrict the parameter domain. Thus a parametric curve is typically the image of a 
line segment; a parametric surface, the image of a region--usual ly  rectangular or tri- 
angularmof  the plane. 

The parametric representation has several advantages. Like the explicit repre- 
sentation, the parametric representation is easy to render: simply evaluate the coordi- 
nate functions at various values of the parameters. Like implicit equations, 
parametric equations can also be used to represent closed curves and surfaces as well 
as curves and surfaces that self-intersect. In addition, the parametric representation 
has another advantage: it is easy to extend to higher dimensions. To illustrate: if we 
want to represent a curve in 3-space, all we need do is introduce an additional equa- 
tion z = z(t). Thus the parametric equations 

x(t) - 2 t -  5 y(t) - 3t + 7 z(t) - 4t + 1 

represent a line in 3-space. Figure 1.13 illustrates a more complicated parametric 
curve in 3-space. 

The parametric representation has its own idiosyncrasies. The explicit repre- 
sentation of a curve is unique: the graph of y = g(x) is the same curve as the graph 
of y -  f ( x )  if and only if g(x) = f(x).  Similarly, if we restrict to polynomial  func- 
tions, then the implicit representation f(x,y) = 0 is essentially unique. Indeed if 
f(x,y) and g(x,y) are polynomials, then g(x,y) = 0 represents the same curve as f ix ,y)  
- 0 over the complex numbers if and only if g(x,y) is a constant times a power of 
f(x,y). However, the parametric representation of a curve is not unique. For exam- 
ple, the equations 
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Figure 1.13 The helix: x = cos(t), y = sin(t), z = t / 5 .  

2t 1 -  t 2 
x( t )  - 1 +  t 2 y(t) - 1+ t 2 

x(t) - sin(t) y(t) - cos(t) 

are two very different parametric representations for the unit circle x 2 + y2 = 1. 
Moreover, if we restrict our attention, as we shall in most of this text, to polynomial 
or rational parametrizations, then it is known that every such parametric curve or 
surface lies on an implicit polynomial curve or surface. The converse, however, is 
not true. There exist implicit polynomial curves and surfaces that have no polyno- 
mial or rational parametrization. Thus, the implicit polynomial form is more general 
than the rational parametric form. 

Nevertheless, because of their power, simplicity, and ease of use, we shall choose 
to represent all the curves and surfaces in this book using parametric representations. 
Moreover, our curves and surfaces will lie in an unspecified number of dimensions, 
since the parametric representation works equally well in an arbitrary number of 
dimensions. Note that in the one-dimensional case the parametric representation is 
the same as the explicit representation, so we cover explicit representations automati- 
cally as a special case. Sometimes it will be helpful to think about the special case of 
explicit representations, but more often than not this can confuse the issue because 
parametric curves exhibit geometric properties such as self-intersection that can never 
occur in explicit representations. Planar parametric curves (x(t), y(t)) are much more 
flexible than the planar graphs (t,x(t)) of explicit functions. 

It remains to say what kinds of functions we shall allow in our parametric repre- 
sentations. Most of  the remainder of  this book is about how to choose the parametric 
functions in order to generate suitable curves and surfaces. Generally our functions 
shall be variants of polynomials: either simple polynomials or rational functions 
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(ratios of polynomials) or piecewise polynomials (splines) or piecewise rational 
functions. 

Polynomials have many advantages, especially when used in conjunction with a 
computer. Polynomials are easy to evaluate. Furthermore, more complicated func- 
tions are generally evaluated by computing some polynomial approximation, so 
nothing is really lost by restricting to polynomials in the first place. In addition, there 
is a well-developed theory of polynomials in numerical analysis and approximation 
theory; computer graphics and geometric modeling borrow extensively from this 
theory. 

We have yet to mention procedurally defined curves or surfaces. In geometric 
design, offsets, blends, and fillets are often specified by procedures rather than by 
formulas. In solid modeling, geometry is often constructed procedurally using Bool- 
ean operations such as union, intersection, and difference. Most fractal surfaces and 
space-filling curves are defined by recursive algorithms rather than with explicit for- 
mulas. We shall not discuss any of these kinds of procedures in this text. Sculpting or 
subdivision is another paradigm for defining curves and surfaces by exploiting recur- 
sive procedures. Since certain subdivision techniques are closely related to paramet- 
ric curves and surfaces, we will have a good deal more to say about these methods 
later in this book. 

One final point. Although we are going to resort to parametric representations, 
we want to get away almost entirely from using coordinate systems and coordinate 
functions. In Section 1.1 we spoke extensively about ambient spaces and coordinate- 
free operations, and we want to take advantage of these notions. How then shall we 
proceed? 

We will write P(t) to represent a parametric curve and P(s,t) to represent a para- 
metric surface. Applying the algebra of affine space or Grassmann space, we will 
provide explicit formulas or recursive procedures for computing P(t) and P(s,t) 
directly without resorting to coordinates in the range. We have already encountered 
such formulas in Section 1.1.6, where we wrote 

n 

P(t) = E Bk (t)Pk 
k=O 

P ( s , t ) -  ~,ijBij(s,t)Pij . 

In terms of rectangular coordinates Pk - (Xk, Yk,Zk), Pij - (xij, Yij,zij), P(t) = 
(x(t) ,y( t) ,z( t )) ,  and P ( s , t ) -  (x(s , t ) ,y(s , t ) , z (s , t ) ) ,  but we shall almost never write 
such explicit coordinate formulas in this text. There are several reasons for adopting 
a coordinate-independent approach. First, we do not want to carry around coordi- 
nates all the time; it is simpler and cleaner to deal with one equation for P rather than 
with three equations for x,y,z. Also, as we stressed in Section 1.1, all our algebraic 
operations are going to be coordinate free. Thus not only do we not need coordi- 
nates, they would actually get in our way by obscuring the geometric meaning of our 
algorithms. Coordinate techniques are for computation; coordinate-free methods are 
for comprehension. It may take a little getting used to, but in the end we expect the 
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coordinate-free approach to pay off in much better geometric understanding and far 
more comprehensible programming. 

Exercises 

1. Let P,Q,R be the vertices of an isosceles right triangle with P opposite to the 
hypotenuse. Show that the parametric equation 

2t 1 - t  2 
P(t) - P + 1+ t 2 (Q - P) + 1+ t2 (R - P) 

represents a circle centered at P. 

2. Let a,b be fixed constants. 

a. How is the graph of y --- f (ax  + b) related to the graph of y = f(x)? 

b. How is the implicit curve f (ax  + b,y)= 0 related to the implicit curve 
f ( x , y )  = 07 

c. How is the parametric curve P(at + b)related to the parametric curve 
P(t)? 

1.4 Summary 

In this chapter, we have discussed ambient spaces (vector spaces, affine spaces, 
Grassmann spaces, and projective spaces), coordinate systems (rectangular, affine, 
Grassmann, homogeneous, and barycentric), and curve and surface representations 
(explicit, implicit, parametric, and procedural). We fixed on the parametric represen- 
tation for curves and surfaces, and settled upon affine spaces for modeling such 
polynomial schemes. A coordinate-free approach was adopted for the range, but 
barycentric coordinates were chosen for representing the domain. Grassmann spaces 
and projective spaces were studied in order to prepare the way for investigating 
rational curves and surfaces. 

If you have understood all the tools in this chapter, you will have a solid founda- 
tion for reading the rest of this book. If not, you may want to return to this chapter from 
time to time to refresh your understanding of this material. But you should not proceed 
any further until you have a firm grasp at least of affine spaces and coordinate-free 
methods. These techniques are assumed almost everywhere throughout the text, so you 
need to be comfortable with them before you proceed to subsequent chapters where we 
begin in earnest the study of free-form curves and surfaces. 
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Lagrange Interpolation 
and Neville's Algorithm 

Perhaps the easiest way to describe a shape is to select some points on the shape. 
Given enough data points, the eye has a natural tendency to interpolate smoothly 
between the data. Here we are going to study this problem mathematically. Given a 
finite collection of points in affine space, we shall investigate methods for generating 
polynomial curves and surfaces to go through the points. We begin with schemes for 
curves and later extend these techniques to surfaces. 

2.1 Linear Interpolation 

Two points determine a line. Suppose we want the equation of the line P(t) passing 
through the two points P and Q in affine space. Then we can write 

e(t) = P + t ( Q -  e).  (2.1) 

The curve P(t) passes through P at t = 0 and Q at t = 1. Moreover, as t varies, the 
points on P(t) extend in the direction along the vector from P to Q; thus, these points 
lie along the line in affine space generated by P and Q. Rearranging terms, we can 
rewrite (2.1) as 

P(t) = (1 - t )e + tQ. (2.2) 

Equation (2.2) is called linear interpolation; this equation is the foundation of all we 
plan to accomplish in this chapter. 

Notice that the formula for linear interpolation is given by an affine combina- 
tion, so the fight-hand side of (2.2) represents a well-defined collection of points in 
affine space. 

One subtle issue. We saw that in (2.2) P(t) passes through P at t = 0 and through 
Q at t = 1. We did not specify this requirement in the original problem. All we 
wanted was a line passing through the two points P and Q; the parameters t at which 
the line was to pass through these points were not mentioned. Suppose, however, 

47  
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that we do wish to specify these parameters as well. That is, now we require a line 
Pol(t) to pass through Po at t = t o and through P1 at t = q. Mimicking (2.2), we 
expect to write an equation of the form 

P01 (t) = (1-  f (t))P 0 + f (t)P 1. (2.3) 

Moreover, still emulating (2.2), we wantf(t) to be linear and to satisfy 

f(to) = 0 and f ( t  1) = 1. 

These equations for u = f(t)represent another linear interpolation problem; this 
time in the tu-plane. That is, now we need to find the line in the coordinate plane 
interpolating the data (to,0) and (q,1). Of course you learned long ago, when you 
first studied analytic geometry, how to solve such problems. This line is given by the 
equation 

f(t) - 
( t - t 0 ) ,  (2.4) 

(t 1 - t o) 

as you can readily verify by evaluatingf(t) at t - t O and t - t 1. Substituting (2.4) into 
(2.3), we obtain 

- t -  t o PO1 (t) - tl------~t PO + PI' (2.5) 
t 1 - t O tl - t o 

where we have used the identity 1 -  f(t) = (t 1 -t)/(t  I -to). Notice, by the way, that 
the coefficients of P0 and/'1 are precisely the barycentric coordinates (see Section 
1.2.3) of the point P01 (t) with respect to the points P0 and P1, so linear interpolation 
is just another way of deriving barycentric coordinates along a line. 

Equation (2.5) is so fundamental that we are going to represent it graphically 
with a simple diagram. In Figure 2.1(a) the value at the apex of the triangle is com- 
puted by multiplying the points at the base by the values along the arrows and then 
adding the results. The end product is just Equation (2.5). Figure 2.1(b) represents 
exactly the same computation as Figure 2.1(a). Here, however, we have removed the 
normalization in the denominator to simplify the diagram. The denominator can be 
retrieved by summing the numerators, since in affine space the functions multiplying 
the points must sum to one. The advantage of Figure 2.1(b) is that it is much less 

Po (t) 
t l - t  / ~x,,,. t - to  

t 1 - t o / " " Q , -  to 

Po Pl 

(a) Normalized 

Po P~ 

(b) Unnormalized 

Figure 2.1 Graphical representations of Equation (2.5). 
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cluttered than Figure 2.1(a), so in the future we shall usually draw these graphs in 
this unnormalized form. You should get used to this simple diagram now because 
you are going to see many more like it throughout this book. 

Exercises 

1. Describe the curve represented by the equation P01 (t) = (1-  f ( t ) )P 0 + f ( t )P  1 
when f(t) = t 2, t 3, cos(t), e t. 

2. A table of sines states that sin(24 ~ = 0.40674 and sin(25 ~ = 0.42262. Use 
linear interpolation to estimate sin(24.3~ 

3. Let fll,fl2,fl3 be barycentric coordinate functions relative to AP1P2P 3. Let Q 
be an arbitrary point in AP1P2P 3 and let R k -P iP j  n PkQ. Suppose that 
a k (Q) is the coefficient of Pk computed by first performing linear interpola- 
tion along PiPj to find R k, and then performing linear interpolation along 
PkRk to find Q. Show that ilk(Q) = ak(Q), k = 1,2,3. 

2.2 Neville's Algorithm 

Let's try a slightly harder problem. Suppose we now have three points Po,P1,P2 in af- 
fine space that we wish to interpolate at the parameters to,t 1,t 2. How shall we proceed? 

We already have a way to interpolate Po,P1 at to,tl; we can join these points with 
the straight line 

- t -  t o P01 (t) - tl------~t P0 + PI" 
t 1 - t o tl - t o 

Similarly, by reindexing, we can interpolate P1,P2 at tl,t 2 with the straight line 

- t - t  1 
P12 ( t ) - t 2-----~t P1 + P2 " 

t 2 - t 1 t2 - t 1 

The piecewise linear curve given by 

P ( t ) -  P01 (t) t ~ t 1 

= P12(t) t > t 1 

certainly interpolates the points P0,P1,P2 at the parameters to,tl,t 2. However, this 
curve is not smooth; it has a sharp point at P1. Sharp points are potentially dangerous 
and hence undesirable in objects designed for human consumption. We seek a 
smooth curve that does the job. 

To generate a smooth curve, apply linear interpolation to the two curves Pol(t) 
and P12 (t): 

- t -  t o 
P o 1 2 ( t )  - t 2 - - - ~ t p o l ( t ) +  P 1 2 ( t ) .  

t 2 - t o t2 - t o 
(2.6) 
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By substitution it is easy to verify that Pol2(t) interpolates P0 and P2 at t o and t 2, 
since by (2.6) 

Pol2(to) = Pol(to)= Po 

P012(t2) = P12(t2)= P2" 

To verify that Pol2(t) also interpolates P1 at t 1, observe that P01(t) and P12(t) both 
interpolate P1 at t 1. Therefore 

- t 1 - t o 
P01z(t l )-  t2 tl P01(tl)+ PlZ(tl) 

t 2 - t o t2 - t o 

- t 1 - t o t2 tl P1 + P1 
t 2 - t o t2 - t o 

If we were to expand the fight-hand side of (2.6), we would find that P012(t) is a 
quadratic polynomial in t, since Pol(t) and P12(t) are both linear in t. Thus we have 
constructed a smooth curve that interpolates the given points at the specified param- 
eter values (see Figure 2.2). Figure 2.3 is a graphical representation of Equation 
(2.6). 

What if we want to interpolate four points Po,P1,P2,P3 at parameter values 
to,tl,t2,t3? We already know how to build quadratic curves to interpolate portions of 
this data. We can construct P01z(t)to interpolate Po,P1,P2 at to,tl,t 2 and Plz3(t)to 
interpolate P1,P2,P3 at tl,t2,t 3. Diagramming P123(t) yields Figure 2.4. 

Figures 2.3 and 2.4 share the little subtriangle with vertex P12(t). Overlapping 
these two figures and joining Po12(t) and P123(t) by yet another linear interpolation 
step 

- t -  t o 
P0123(t) - t3------f-tpolz(t)+ Plz3(t), 

t 3 - t o t3 - t o 

we arrive at Figure 2.5. 

Po 

Po (O 
P] 

P12(t) 

Po12(t) 

P2 

Figure 2.2 The two lines Pol(t) and P12(t), and the quadratic interpolant Po12(t). 
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Po12(t) 

POI(t) P12(t) 

/ / 
Po P] P2 

Figure 2.3 A graphical representation of Equation (2.6). The first level is just two juxtaposed copies of 
Figure 2.1, one for P01(t) and one for P12(t). The second level represents the linear interpola- 
tion step joining P01(t) and P12(t). Here we have adopted our convention of leaving off the 
denominators to avoid cluttering the diagram. 

P123(t) 

P12(O P23(0 

/ / 
P1 P2 P3 

Figure 2.4 A graphical representation for the curve P123(t). 

Now it is easy to verify directly from the figure that Po123(t) interpolates the 
given data at the specified parameter values. By substitution, we see that 

P0123(t0) = P012(t0)= PO 

P0123(t3) = P123(t3)= P3 �9 

Moreover we already know that 

Po12(tk) = P123(tk)= Pk k = 1,2 

and since the labels onthe arrows exiting Pol2(t) and P123(t) sum to one (remember 
the normalization), it follows that 

Po123(tk) = Pk k = 1,2. 
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P0123(t) 

P012(t) P123(t) 

t 2 - /  ~ t 3 - t /  ~ 
/ / 

POI(t) P12(t) P23(t) 

t l - /  ~ t 2 - t /  ~ t 3 - /  
/ / / 

PO P1 P2 /:'3 

Figure 2.5 Neville's algorithm for cubic interpolation. 

-4 / \  :1 2 4 

-4 

Figure 2.6 Figure 2.6 The cubic Lagrange polynomial for the control points Po = (-4,4), P1 = (4,-5), 
P2 = (4,5), P3 = (-4,-5)(dots), interpolated at the nodes t k = k, k = 0 ..... 3. 

The algorithm for computing Po123(t) represented by Figure 2.5 is called Neville's 
algorithm. We shall have a lot more to say about this algorithm shortly. The curves 
generated by Neville's algorithm are called Lagrange interpolating polynomials. We 
illustrate an example of a Lagrange interpolating polynomial in Figure 2.6. 

We could go on introducing more and more data points and constructing higher- 
and higher-order curves, but by now it should be clear how to proceed. Instead, let's 
summarize what we expect to be true in the following theorem. 
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THEOREM 
2.1 

Given affine points P0 ..... Pn and distinct parameters t o ..... t n, there is a poly- 
nomial curve Po...n(t) of degree n that interpolates the given points at the 
specified parameters. That is, Po...n(tk ) = Pk, k = 0 ..... n. 

Proof The proof is by induction on n. We have already established this result by 
construction for n = 0,1,2,3. Suppose this result is true for n - 1. Then by the 
inductive hypothesis, there are polynomial curves Po.. .n_l(t)  and P1.. .n( t)of  
degree n -  1 that interpolate the points PO ..... Pn-1 at the parameters 
t O ..... tn_ 1 and the points P1 ..... Pn at the parameters t 1 ..... t n. Define 

- t - t  o . ( t )  ~2 .7 )  Po...n(t) - tn-----f-t Po. . .n- l( t )  + P1..n �9 
t n - t  o t n - t  o 

Then applying the same arguments we used in the quadratic and cubic 
cases, you can easily verify that 

Po...n(tk) = Pk k = 0 ..... n.  

Moreover since Po...n-1 (t) and P1...n(t) are polynomials of degree n - 1, it 
follows from (2.7) that Po...n (t) is a polynomial of degree n. 

The parameter values t o ..... t n at which the interpolation occurs are called nodes,  
and the points PO ..... Pn that are interpolated are called control  po in t s  (see Figure 2.6). 
In general, if we change the nodes, then the interpolating curve Po...n (t) changes  
even if we leave the control points fixed (see Exercise 3). 

Exercises 

1. Complete the proof of Theorem 2.1 by showing that PO...n (tk) = Pk. 

2. Let Po...p,m(t) denote a polynomial curve of degree p + 1 that interpolates 
the points Po ..... Pp,Pm at the parameters t o ..... tp,t m. Prove that Po...p,m(t) can 
be generated from the recurrence 

- t - t p  
Po...p,m(t) = tm______~t po. . .p(t)  + Po. . .p_l ,m(t) .  

t m - t p  t m - t p  

3. Give an example to show that changing the nodes alters the interpolating 
curve Po...n (t) even if we leave the control points fixed. 

4. Let P(t)  be the Lagrange interpolating polynomial for the control points 
PO ..... Pn and nodes t o ..... t n. Form a new Lagrange interpolating curve Q(t)  
by replacing each node tk by the node rk = ark + b for some fixed con- 
stants a > 0 and b. Show that changing all the nodes in this way has no affect 
on the shape of the interpolating curve. In particular, using Neville's algo- 
rithm, show that Q(at  + b) = P(t) .  What happens if we choose a < 0? 
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2.3 The Structure of Neville's Algorithm 

Equation (2.7) is a recursive formula for Po...n(t). It asserts that we can compute 
Po...n(t) by calculating Po...n_l(t) and P1...n(t) and then taking a specific affine 
combination of the results. Continuing in this manner, we can also compute 
Po...n-l(t) and P1...n(t) recursively. This recursion bottoms out at the constant func- 
tions Pk( t ) -  Pk. 

It we proceed in this manner, we arrive at an algorithm with the structure of a 
binary tree as illustrated in Figure 2.7. This algorithm is very inefficient because it 
requires an exponential number of procedure calls. Moreover, all the interior 
nodes~that  is, all the nodes not lying along the periphery of the diagram~are com- 
puted twice; for example, P12 (t) is computed once during the computation of Po12 (t) 
and once again during the computation of Plz3(t). Thus, implementing (2.7) recur- 
sively is not a good idea. 

There is a better way: apply dynamic programming. In dynamic programming, 
we first compute all the constant interpolants, then all the linear interpolants, then all 
the quadratic interpolants, continuing to build higher- and higher-order interpolants 
as we go. In this fashion, each interpolant is computed only once. This approach 
leads to an O(n 2) algorithm~there are n linear interpolants, n - 1 quadratic interpo- 
lants, n - 2 cubic interpolants, and so on, so altogether there are n + (n - 1) + ... + 1 
= n(n + 1)/2 = O(n 2) interpolants~rather than an exponential algorithm. It is pre- 
cisely this technique that is illustrated for cubic curves in Figure 2.5. 

Moreover, while the time complexity of this dynamic programming algorithm is 
O(n2), the space complexity is only O(n). Indeed once we have computed the inter- 
polants of order k + 1, we can discard the interpolants of order k, since they are no 
longer needed to compute the higher-order interpolants. This space efficiency is 
another advantage of dynamic programming. 

This dynamic programming approach to interpolation is called Neville's algo- 
rithm. This algorithm and algorithms like it are at the heart of what we plan to study 
throughout this text. Get accustomed to it now because it will be fundamental to all 
our work later on. In particular, be sure you understand the difference between the 

%123(0 / /  
PO12(O P123(0 

POl(O P12(O P12(O P23(0 

Po P]P]  P2 P] P2 P2 P3 

Figure 2.7 Performing interpolation by recursive calls: the cubic case. 
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dynamic programming algorithm illustrated in Figure 2.5 and the recursive proce- 
dure illustrated in Figure 2.7. 

Neville's algorithm has an interesting structure. Call the base of the diagram the 
zeroth level and the apex the nth level. Then the kth level of the algorithm represents 
kth-order interpolants because, by construction, Pj ..... Pj+k(t) interpolates the control 
points Pj ..... Pj+k at the nodes tj ..... tj+ k. Notice that in the figure the points Pj ..... Pj+k 
lie in the span of the curve Pj...j+k(t); that is, the points Pj ..... Pj+k form the base of the 
triangle with apex Pj..j+k(t). Thus each subtriangle reproduces in the small the struc- 
ture of the entire triangle in the large. 

The diagram for Neville's algorithm is easy to remember. Start with Po...n(t) at 
the apex. Strip off the index n and place Po...n-1 (t) below it to the left; strip off the 
index 0 and place P1 . . . n ( t )  below it to the right. Since the index n was removed to the 
left, label the left arrow with t n - t; since the index 0 was removed to the right, label 
the right arrow with t - t  o. Now proceed recursively stripping off labels from 
P o . . . n _ l ( t )  and P 1 . . . n ( t )  and labeling the arrows accordingly. Remember to join 
P1...n_l(t) to both Po...n_l(t) and P1...n(t) to generate a dynamic programming algo- 
rithm instead of a recursive procedure. Refer to Figure 2.5 for an illustration of the 
cubic case. 

There is another important structural property of Neville's algorithm that is an arti- 
fact of this construction. Look at Figure 2.5. Pick any direction and consider the labels 
along parallel arrows as you ascend the triangle in that direction. Notice that these 
labels appear to be identical; this observation holds for any degree. In fact, these labels 
are not really identical because we have suppressed the denominators. Only the numer- 
ators match; the denominators differ from level to level. Nevertheless, this parallel 
property of matching numerators along parallel arrows is fairly important, and we shall 
return to it again in subsequent sections. 

Neville's algorithm has one additional significant property. Suppose we have 
already interpolated the control points Po ..... Pn at the nodes t O . . . . .  t n and later we dis- 
cover that we need to interpolate one additional point Pn+l at the parameter tn+ 1. We 
need not restart our computations from the beginning. If we have saved the original 
triangular computation for P o . . . n ( t ) ,  then we need only add the edge computing 
Pn,n+l(t) ..... Po...n+l(t). That is, in the dynamic programming algorithm for 
Po...n+l (t), we need only add the computation of one curve of each degree. Thus, at 
the cost of increasing our storage from O(n) to O(n2), to complete our calculation, we 
need only add a computation of O(n) instead of redoing work of O(n2). This savings 
is yet another advantage of the dynamic programming approach to interpolation. 

Exercises 

1. Aitken's algorithm is very similar to Neville's algorithm except that it is 
based on the recurrence 

P o . . . p , m  (t) - tm - t 
t - t p  

- -  P o . . . p  ( t )  -t- P O . . . p - l , m  ( t )  for all m > p. 
t m - tp  t m - tp  

a. Use this recurrence to give an alternative proof of Theorem 2.1. 
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b. Explain how to generate a dynamic programming algorithm for interpo- 
lation based on Aitken's recurrence. 

c. Illustrate Aitken's algorithm with a diagram for the cubic case. 

2. Implement Neville's algorithm. Experiment with curves of different degrees. 

a. How does changing the order of the control points without altering the 
order of the nodes affect the shape of the curve? 

b. How does changing the values of the nodes affect the shape of the curve? 

c. Place the nodes at the integers 0,1 ..... n, and graph the curves with control 
points at Pk - (k,0), k ~ j, and Pj - (j,1). 

2.4 Uniqueness of Polynomial Interpolants and Taylor's 
Theorem 

Theorem 2.1 asserts that given any arbitrary sequence of points P0 ..... Pn and any 
collection of distinct parameters t o ..... t n , there ex is t s  a polynomial c u r v e  Po...n(t) of 
degree n that interpolates the given points at the specified parameters. Here we are 
going to show that this polynomial curve is u n i q u e ,  extending the result that two 
points determine a unique line. Notice, however, that uniqueness requires us to spec- 
ify the nodes as well as the control points. We begin by recalling some simple facts 
about polynomials. 

THEOREM 
2.2 

T a y l o r ' s  T h e o r e m  

Let P( t )  be a polynomial of degree n, and let r be a real number. Then 

P ( t )  - P ( r )  + P ' ( r ) ( t  - r)  + P " ( r )  (t - r) 2 +. . .  + p(n )  (r )  (t  - r ) ~  . 
2! n! 

Proof Since P( t )  is a polynomial of degree n, there must be constants Co ..... r 

such that 

P ( t )  = c o + clt  + . . .  + Cn tn �9 

Let Q( t )  = P ( t  + r). Then 

Q( t )  = c o +Cl(t + r ) + . . . + C n ( t  + r)  n . 

Expanding the powers of (t + r) and collecting the coefficients of the powers 
of t, we see that Q(t )  is also a polynomial of degree n in t, so there must be 
constants d o ..... d n such that 

Q ( t )  = d o + d l t  + . . .  + dn tn . 

But P ( t )  = Q ( t -  r), so by substitution 

P ( t )  = d o + d 1 (t - r)  + . . .  + d n (t - r)  n . 

Differentiating both sides k times and evaluating at t = r yields d k = P(k)(r) / k ! .  
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COROLLARY 
2.3 

Let P(t)  be a polynomial of degree n. Then r is a root of P(t)  if and only if 
t -  r is a factor of P(t).  

Proof Let P(t)  be a polynomial of degree n. Then by Taylor's Theorem 

P(t)  - P(r )  + P ' ( r ) ( t  - r) + P" ( r )  (t - r) 2" + . . .  + p (n ) ( r )  ~'r)~(t - 
2! n! 

Therefore, by inspection, P(r)  - 0 if and only if t -  r is a factor of P(t).  

COROLLARY 
2.4 

Every nonzero polynomial of degree n has at most n roots. 

Proof This result is an immediate consequence of Corollary 2.3, since a polyno- 
mial of degree n can have at most n linear factors. 

COROLLARY 
2.5 

Let P(t)  and Q(t) be two polynomials of degree n that agree at n + 1 param- 
eter values. Then P(t)  - Q(t). 

Proof Let R(t)  = Q(t) - P(t).  Then R(t)  is a polynomial of degree n. Moreover, since 
P(t)  and Q(t) agree at n + 1 parameter values, R(t)  has n + 1 roots. Therefore, 
by Corollary 2.4, R(t)  must be the zero polynomial, so P(t)  - Q(t). 

THEOREM 
2.6 

Given affine points P0 ..... Pn and distinct parameters t o ..... t n, there exists a 
unique polynomial curve of degree n that interpolates the given points at the 
specified parameters. 

Proof Existence has already been established in Theorem 2.1; it remains to dem- 
onstrate uniqueness. Suppose that P(t)  and Q(t) are two polynomial curves 
of degree n that interpolate the given control points at the specified nodes. 
Then P(t)  and Q(t) are polynomials of degree n that agree at the n + 1 
parameter values t o ..... t n. Hence by Corollary 2.5, Q(t) = P(t),  so the inter- 
polating polynomial is unique. 

Exercises 

1. Prove that the polynomials 1 , ( t - r )  ..... ( t - r )  n are linearly independent. 
Conclude that the polynomials 1 , ( t -  r ) , . . . , ( t -  r) n form a basis for the poly- 
nomials of degree n and use this fact to provide an alternative proof of Tay- 
lor's Theorem. 
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2. A polynomial P(t) is said to have a root of multiplicity m at the parameter r 
if P(k)(r)  - O, k - 0 ..... m - 1. 

a. Show that a polynomial P(t )  has a root of multiplicity m at r if and only if 
( t -  r) m is a factor of P(t) .  

b. Show that every nonzero polynomial of degree n can have no more than n 
roots counting multiplicities. 

3. Let P(t )  be a polynomial of degree n, and let Po...n (t)  be the polynomial that 
interpolates the control points P( t  o)  ..... P ( t  n) at the nodes t o ..... t n. Prove 
that Po.. .n(t)  = P( t ) .  

4. Letf(t) be a polynomial of degree n and let r be an arbitrary constant. 

a. Using long division of polynomials, show that there is a polynomial g(t )  

of degree n - 1 such that f (t)  - (t - r ) g ( t )  + f (r).  

b. Using part (a), conclude that f ( r )  - 0 r t -  r is a factor off(t). 

5. Let P ( t ) -  an tn + . . . +  al t  + a  O. Then P(t )  interpolates the control points 
PO ..... Pn at parameters t o ..... t n if and only if 

anto n + " "  + alto + ao = Po 
�9 o 

�9 ~ 

antn n + " "  + altn + ao = Pn �9 

a. Prove that this system of linear equations in the unknowns a o . . . . .  a n has a 
unique solution by showing that the determinant of the coefficients 

�9 ~ i ~ 0 .  

Itn ~ ' tn 

(Hint: Replace t n by t. Show that this determinant is a polynomial of 
degree n in t by proving that the coefficient of t n is not zero. Then using 
the properties of determinants, show that t o . . . . .  tn_ 1 are n roots of this 
polynomial. It follows by Corollary 2.4 that t n cannot also be a root of 
this polynomial, so the determinant cannot be zero.) 

b. Conclude that P o . . . n ( t ) e x i s t s  and is unique. 

2.5 Lagrange Basis Functions 

So far we have developed a recursive formula and a dynamic programming algo- 
rithm for computing the polynomial interpolant Po...n(t). Here we shall develop an 
explicit formula for this interpolant. 
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We begin by observing that there must exist polynomials 
/_~(t I t 0 ..... t n) ..... Lnn( t l to  ..... tn)mpolynomials of degree n in the variable t whose 
coefficients depend on the nodes t o ..... tn ~ s u c h  that 

n 

po. . .n( t )  - E L ~ ( t  l t 0 ..... tn)Plr . 
k=0 

This is clearly true for n = 1; in fact (2.5) gives explicit formulas for l_}o( t l to , t l )  and 
L~ ( t l t o , t  1). Now we proceed by induction on n. Suppose that 

n-1 
eo. . .n-1 (t)  - Z tnk -1 (t It 0 ..... tn-1)Pk 

k=0 

n-  l Lnk-1 
P1...n(t) - ~, ( t l t l  ..... tn)Pk+l �9 

k=0 

Then by (2.7) 

- t -  t o 
Po...n (t)  = tn-------L Po...n-1 (t) + P1...n ( t ) ,  

t n - t O tn - t o 

so substituting the preceding formulas for Po...n-1 (t) and P1...n(t) we obtain 

n tn t % 
--LT~ -1 (t I to ..... t~_l ) l~ + ~L~r l to ..... tn)Pk _ . /_1  

k=0 tn - to k=0 

t -  to 

tn - to k=0 

Equating the coefficients of Pk on both sides of this equation yields the recurrence 

L~( t  l t 0 ..... tn ) = t n - t  Lnk_l(t l to ..... tn_l)+ 
t n - t o 

t to 
L;'--lk-l(tltl . . . . . .  tn) k - 0 . . . .  n ,  (2.8) 

t n - t o 

where Lnk( t l to  ..... t n) is defined to be zero whenever k < 0 or k > n. Since by the 
inductive hypothesis L ~ - l ( t  l to ..... t n_ l )  and Lnk-~(t l tl ..... t n)  are both polynomials 
of degree n - 1 in t, it follows from (2.8) that L ~ ( t l t  0 ..... t n) must be a polynomial of 
degree n in t. Our goal is to find explicit formulas for these polynomials and to study 
their properties. 

Let's begin with the cubic case. Consider Figure 2.5, and let's try to calculate, for 

example, L ~ ( t l t  0 ..... t3). The contribution of P1 to Po123(t) is the sum over all paths 
from P1 to Po123(t), where a path is the product of the labels along the arrows. But 
notice that because of the parallel property all paths from P1 to P0123(t) produce the 
same product. In fact, disregarding signs, this product is just ( t -  t o ) ( t -  t2 ) ( t -  t3). 
Since we have omitted the normalization in the denominator, it follows that 
L 3 ( t l t o  ..... t3) is actually some constant multiple of this productmthat is, 

L3(t  l to ..... t3) - C l ( t -  t o ) ( t -  t 2 ) ( t _  t3 ) . 
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Simi la r ly ,  w e  f ind tha t  

L~( t  I t 0 ..... t 3) - Co( t -  t l ) ( t  - t2) ( t  - t 3) 

/_~(t I t 0 ..... t3) - c 2 ( t - t o ) ( t - t l ) ( t - t 3 )  

/ ~ ( t  I t 0 ..... t 3) - c 3 ( t -  t o ) ( t -  t l ) ( t  - t2). 

T h e r e  is an o b v i o u s  p a t t e r n  here .  E a c h  p o l y n o m i a l  L3( t l t o  ..... t3) c o n t a i n s  th ree  o f  

the  fou r  fac to rs  ( t -  t o ) , ( t -  t l ) , ( t -  t 2 ) , ( t -  t3), and  the  m i s s i n g  f ac to r  is ( t -  tk). 
It  r e m a i n s  to d e t e r m i n e  the  va lues  o f  the  c o n s t a n t  coe f f i c i en t s  cj. Thi s  is e a s y  to 

do  b e c a u s e  

3 
Pj - Po123(tj) - ~ ,L3( t j  l to ..... t3)P k. 

k=0 

B u t  w e  have  s een  tha t  i f  j ~ k ,  t hen  L3( t l t o  ..... t 3) c o n t a i n s  the  f ac to r  ( t -  tj); h e n c e  

L 3 ( t j l t o  ..... t 3) - 0  j g: k. 

Th i s  l eaves  us w i th  

so w e  m u s t  have  

Pj - L~.(tj l t 0 ..... t3)Pj, 

L~.(tj I t  0 ..... t3) 1. 

N o w  w e  have  o n e  e q u a t i o n  w i th  o n e  u n k n o w n ,  so w e  can  ea s i l y  so lve  for  cj. F o r  

e x a m p l e ,  i f  j = 1 w e  h a v e  

c 1 (t 1 - t 0 ) ( t  1 - t 2 )(t  1 - t 3 ) - 1, 

so w e  o b t a i n  

T h u s  

c 1 = 
(t 1 - t0)( t  1 - t2)( t  1 - t3) 

L~(t l t 0 ..... t 3) - 
(t - t 0 ) ( t  - t 2 ) ( t  - t 3) 

(t 1 - t0) ( t  1 - t2) ( t  1 - t3) 

N o t i c e  tha t  the  d e n o m i n a t o r  is j u s t  the  n u m e r a t o r  e v a l u a t e d  at t = t 1. U s i n g  this  

t r i ck  o f  e v a l u a t i n g  the  n u m e r a t o r  at t - t k to f ind the  d e n o m i n a t o r  a n d  r e c a l l i n g  tha t  

the  n u m e r a t o r  is m i s s i n g  the  f ac to r  (t - t k ) ,  w e  o b t a i n  the  g e n e r a l  f o r m u l a  

L3 (t l to ..... t3) = 
1-Ij~k (t - tj ) 

I-Ijr (tk - tj ) 
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1 

0.8 

0.6 

0.4 

0.2 

-0.2 

Figure 2.8 The four cubic Lagrange basis functions for the nodes t k = k, k = 0 .. . . .  3. 

These functions are called the cubic Lagrange basis functions.  We illustrate the 
cubic Lagrange basis functions for the nodes t k = k, k = 0 ..... 3, in Figure 2.8. 

We shall now show that this same analysis and a similar formula are valid for 
any degree, not just for n = 3. Let's generalize what we have discovered so far. We 
begin with two important observations connecting the polynomials Lnk(tlto ..... t n) 
with the structure of the triangle diagram for Neville's algorithm. 

1. Lnk(tlto ..... tn) = the sum over all paths from Pk to Po...n(t), where a path is 
the product of the labels along the arrows. 

2. All paths from Pk to Po...n (t) are identical, up to constant multiples. 

Statement 1 is just the observation that the contribution of Pk to Po...n(t) is the sum 
of all paths from Pk to Po...n(t), and since Lnk(tlto ..... t n) is the coefficient of Pk in 
Po...n(t), it must represent the sum of all these paths. Statement 2 is a simple conse- 
quence of the parallel property of Neville's algorithm, which was discussed in Sec- 
tion 2.3. 

Any path from Pk to Po...n (t) must take exactly k left turns and n -  k right turns. 
By the parallel property the labels on the k left turns are identical to the first k 
labelsmcounting down from Po.. .n(t)--on the right edge of Neville's triangle, and 
by construction these labels are ( t - t o ) , ( t - t l )  ..... ( t - t k _ l ) .  Similarly, the labels on 
the n - k right turns are identical to the first n -  k labels----counting down from 
Po.. .n(t)mon the left edge of Neville's triangle, and by construction these labels are 
( t -  t n ) , ( t - t n _ l )  ..... ( t -  tk+l). Multiplying all these labels to~ether, we find that any 

path from Pk to Po...n(t) is a constant multiple o f  I - I j~:k( t - t j ) .  Thus 

Lnk(t l to ..... t n) - C k I - I j , k ( t - t j )  k = 0 ..... n. 

It remains to find the constants c k. 
We proceed again exactly as in the cubic case. We know that 

/,/ 

Pk - Po...n(tk) - ~,L~(tk Ito ..... tn)Pj. 
j=O 

/-/ 
But by (2.9) if j ~ k, t h e n  Isj(t k It 0 ..... tn) contains the factor ( t -  t k); hence 

(2 .9)  

(2 .10)  
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L~(t k It  0 ..... t n) = 0 j ~ k,  

so by (2.10) we must have 

Lnk(tk It  0 ..... tn) = 1. 

Thus from (2.9) we obtain 

Therefore, as in the cubic case, 

c k = 
I-Ij~k (tk - tj ) 

Lnk(t l to ..... tn) = l " I j ~ k ( t - t j )  k = 0 ..... n.  
I-Ijr (tk - tj ) 

Notice again that the denominator is simply the numerator evaluated at t = t k. 
The polynomials 

L ~ ( t l t  0 ..... t n) ..... Ln( t  l to ..... t n) 

are called the L a g r a n g e  basis  f u n c t i o n s  for the nodes t o ..... t n. These functions play a 
fundamental role in the theory of polynomial interpolation. The following theorem 
and corollary summarize their principal properties. 

THEOREM 
2.7 

Proper t ies  o f  L a g r a n g e  Bas is  Func t ions  

1. L~(t  l t 0 ..... tn) = I - I j ~ k ( t - t j )  
I-Ij~:k (tk - tj  ) 

k = 0  ..... n .  (2.11) 

2. L~ ( t i t  0 ..... t n) is a polynomial of degree n. 

3. Lnk(tj It  0 ..... t n ) = 0  j 4: k 

= 1  j = k .  

4. If  P(t)  is a polynomial of degree n, then 

n 
e ( t )  = z e ( t k ) L n k ( t  l to ..... tn)" 

k=0 

n 

5. Po...n(t) = ZLnk(t l to ..... tn)P k . 
k=0 

e 

n 

~,Lnk(t l to ..... tn) = l. 
k=O 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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Proof Property 1 is the definition of L ~ ( t l t  o . . . . .  t n ) ,  and Property 2 is immediate 
from this definition since the numerator has n linear factors. Property 3 fol- 
lows by substituting t - tj into the definition of Lnk(tlto ..... t n) and observ- 
ing that 

i. the numerator of Lnk(tlto . . . . .  t n )  has a factor of ( t -  t j)  if j ;~ k 

ii. the denominator of L j ( t l t  0 ..... tn) is its numerator evaluated at 
t - t j  

To prove Property 4, let P(t) be an arbitrary polynomial of degree n and 
define 

n 

Q(t) = ~,P(tk)Lnk(t l to ..... tn). 
k=0 

Then by Property 3, Q ( t j ) =  P(t j ) ,  j = 0 ..... n. Hence by the uniqueness of 
the polynomial interpolant (Theorem 2.6), P ( t ) =  Q(t). Property 5 is an 
immediate consequence of Property 4, since by Property 4 

n n 

P o . . . n ( t )  = ~,L~(t l t 0 . . . . .  tn)PO...n(t k) = ~,Lnk(t l to ..... tn)P k. 
k = 0  k = 0  

Finally, Property 6 is the special case of Property 4 where P(t) - 1. 

COROLLARY 
2.8 

The polynomials /_~(t I t 0 . . . . .  t n )  . . . . .  Ln( t l t o  . . . . .  t n )  form a basis for all poly- 
nomials of degree n. 

Proof We need to show that the polynomials / _ ~ ( t  I t 0 . . . . .  t n )  . . . . .  L n ( t l t  0 . . . . .  tn) are 
linearly independent and that they span the space of all polynomials of 
degree n. By (2.13) they span the space of polynomials of degree n, so it 
remains only to verify that these functions are linearly independent. Sup- 
pose then that 

n 

~ , C k L ~ ( t  l t 0 . . . . .  t n )  = O. 
k = 0  

Substituting t = tj on the left-hand side and applying (2.12) yields cj - O. 
Hence the polynomials /_~(t I t 0 . . . . .  t n )  . . . . .  Ln( t l t o  . . . . .  tn) are linearly inde- 
pendent. 

Several parts of Theorem 2.7 stand out as exceptionally important. Equations 
(2.11) and (2.14) assert that we have indeed succeeded in finding an explicit formula 
for the polynomial interpolant. Equation (2.15) is critical because otherwise Equa- 
tion (2.14) would not make sense in affine space. Finally, notice that the proof of 
Corollary 2.8 relies heavily upon (2.12). The conditions in Equation (2.12) are called 
the cardinal conditions. These equations are fundamental to many interpolation 
schemes (see Exercise 4). 
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Exercises 
/1 

1. Prove the identity ( x - t )  n = ~,Lnk(t l to ..... t n ) ( X - t k )  n. 
k=0 

2. Prove that 
/1 

~,L~( t  l t 0 .... , tn) = l 
k=0 

by choosing Pk - 1, k = 0 .... ,n, as the control points in Neville's algorithm. 
(Hint: By (2.14), 

n 

p o . . . n ( t )  - ELnk(t l to ..... t n ) ,  
k=O 

so it is enough to prove that Po...n (t) -= 1. Now observe by induction from 
the bottom level up that when all the control points are set to one, the value 
in each node of Neville's algorithm is identically one (see Figure 2.9). 
Hence the value at the apex must be one.) 

1 

1 1 

/ / 
1 1 1 

/ / / 
1 1 1 1 

Figure 2.9 Neville's algorithm when all the control points are set to one. 

3. Prove that 

/1 

E L ~ ( t  l t 0 ..... tn) = 1 
k=0 

by using the cardinal conditions (Equation (2.12)) and invoking Corollary 
2.5. 

4. Suppose that D~( t )  ..... Dnn(t) are a collection of functions, not necessarily 
polynomials, that satisfy the cardinal conditions at t o ..... t n~ tha t  is, 
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D ~ ( t j )  - 0 j r k 

=1 j = k  . 

Let 
n 

Q(t) = Z o~(t)ek. 
k=0 

Show that Q( t )  interpolates the points Po ..... Pn at the parameters t o ..... t n. 

5. Give necessary and sufficient conditions on the control points for the curve 
Po...n (t)  to collapse to a single point. Justify your answer. 

6. Give necessary and sufficient conditions on the control points for the curve 
Po...n (t)  to collapse to a straight line. Justify your answer. 

7. Consider the curve P ( t )  - ~ k L n k ( t l t o  ..... t n ) P  k .  What are the control points 
of this curve relative to 

a. the degree n + 1 Lagrange basis with respect to the nodes t o ..... tn,tn+l; 

b. the degree n Lagrange basis with respect to the nodes s o .... ,s  n. 

8. Let Vk - a t k  + b, k -  0 . . . . .  n, for some fixed constants a > 0 and b. Show 
that 

Lnk(at + b l'c 0 ..... "c n)  - L~ ( t  l t 0 ..... tn). 

Compare this result to Exercise 4 of Section 2.2. 

9. Prove that 

a. t -  Zk tkEnk( t  l to ..... tn)  

p n 
b. t p - Z k t k  L~( t  l t 0 ..... tn)  , p - O . . . . .  n .  

10. Let P( t )  be a polynomial curve. Define G r a p h ( P )  = ( t , P ( t ) ) .  Show that if 
Po . . . . .  Pn are the control points for P( t )  relative to the Lagrange basis 
L~)(t l t 0 ..... tn) . . . . .  Ln ( t  [ to ..... tn), then ( t o , P  O) . . . . .  ( t n , P  n)  are the control 
points for G r a p h  (P)  relative to the same Lagrange basis. 

2.6 Computational Techniques for Lagrange Interpolation 

Equation (2.11) is an explicit formula for the Lagrange basis functions, but these 
basis functions can also be computed by a dynamic programming algorithm. Since 
by (2.14) 

n 

po. . .n( t )  - ~,Lnk(t l to ..... t n ) P  k, 
k=0 

if we choose the control points 

P k = O  k g : j  
=1 k = j  
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then we get 

Po...n(t) = L j ( t  l t 0 ..... tn). 

Thus the dynamic programming algorithm for Po...n(t) becomes a dynamic pro- 
gramming algorithm for L j ( t l t  0 ..... tn) when the jth control point is one and all the 
remaining control points are zero. We illustrate this up recurrence for/_~2(t I to ..... t 3) 
in Figure 2.10. This up recurrence is yet another manifestation of the observation we 
made in the previous section that Lnk(tlto ..... tn) is the sum over all paths from Pk at 
the base of the triangle to Po...n (t) at the apex. 

This insight about paths leads to yet another recurrence for the polynomials 
/_~ ( t i t  0 ..... t n) ..... L n ( t i t  0 ..... tn). Paths from the base to the apex of the triangle are 
identical to paths from the apex to the base. Thus we can compute all the Lagrange 
basis functions simultaneously by starting with a one at the apex, reversing all the 
arrows in Neville's algorithm, and collecting the results at the base of the triangle. 
The Lagrange basis functions emerge at the base because the functions at the base 
represent all paths from the apex to the base. We illustrate this down recurrence for 
the cubic Lagrange basis functions in Figure 2.11. Notice that although the Lagrange 
basis functions of degree n lie at the base of the triangle, the functions at nodes in 
intermediate levels are not Lagrange basis functions of lower degree. 

Both the up recurrence and the down recurrence are O(n 2) algorithms. However, 
we need to run the up recurrence once for each basis function, so naively the up 
recurrence is O(n 3) if we use it to compute all the basis functions. If we trim away 

L32(t l to,...,t3) 

PO12(t) P123(t) 

t 2 - / ~  t 3 - /  ~ 
/ / 

PO1 (t) P12( t ) P23( t ) 

tl_t / ~ t2_/ ~~N t3-t/ 
/ / / 

0 0 1 0 

Figure 2.10 The up recurrence for L](tlt0 . . . . .  t3 ) .  Arrows emerging from a zero may be trimmed away to 
simplify the algorithm. 
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1 

/ \ 
L~(t) L~( 0 

,/ / 
L2(t) L2(t) L2(t) 

/ ,/ 
L3o(t l to,...,t9 Q(t  l to,...,t9 L (t l to,...,t9 L (t l to,...,t9 

Figure 2.11 The down recurrence for the cubic Lagrange basis functions. Notice, for example, that the 
intermediate function L 2 (t)is not a degree 2 Lagrange basis function. 

the zeros, the up recurrence is O(n) for each basis function and hence only O(n 2) for 
all the basis functions. Nevertheless, the up recurrence is still less efficient than the 
down recurrence (see Exercise 4). 

If the control points lie in an affine space of dimension greater than one, Nev- 
ille's algorithm for Po...n(t) is somewhat inefficient because it must be applied once 
for each coordinate function. It is often faster to use the down recurrence once to 
compute all the Lagrange basis functions and then to multiply L~c(tlt 0 ..... tn) and Pk 
directly to compute 

n 

Po...n(t) = EL~( t  l t 0 ..... tn)P k" 
k=O 

This approach uses a single O(n 2) algorithm to calculate the basis functions and O(n) 
multiplications to generate each coordinate, rather than O(n 2) computations for each 
coordinate. 

Utilizing the down recurrence in this fashion still generates an O(n 2) evaluation 
algorithm for Po...n(t). There is, however, an O(n) evaluation algorithm due to Joe 
Warren that takes advantage of the special structure of the Lagrange basis functions. 
Whereas Neville's algorithm lies on a triangle, Warren's algorithm lies on a ladder, 
so we shall call it the ladder algorithm. 

Label the arrows on the left side of the ladder with the functions 
t - t  O ..... t -  tn_l, and on the fight side with the functions t -  t 1, .... t -  t n. Label the 
rungs with the constant values 

Pk 
Qk = i - i ( t k_ t j )  

j~k 

k - 0 ..... n, 
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t 

)r Q] / t -  

,ZQ2 

Poa23(t) 
Figure 2.12 The ladder algorithm for Po123(t). 

and place a one at the top of the ladder. Values at any node in the ladder are com- 
puted in the usual way by multiplying the arrows that enter the node by the values at 
the nodes from which they emerge and adding the results. Tracing through the paths 
in the ladder, it is easy to see that 

n 

po. . .n( t )  - ELnk( t  l to ..... tn)Pk 
k=O 

indeed emerges at the bottom of the ladder (see Figure 2.12). This ladder algorithm 
uses only 3n + 1 multiplications for each coordinate function--n along each side of 
the ladder and n + 1 along the rungs. 

Exercises 

1. Give an example to show that the functions at intermediate levels of the 
down recurrence are not Lagrange basis functions. 

2. a. Show that the functions on every level of the down recurrence sum to 
one. 

n 

b. Conclude that ~Lnk( t  l to ..... tn) - 1. 
k=O 

3. Define the polynomials pl(t) ..... Pn(t )  and qo( t )  ..... q n _ l ( t )  recursively by 

Pn( t )  - t -  t n 

Pk (t) = (t - t k )pk+l  (t) l < k < n - 1  

qo( t )  - t -  t o 

qk (t) - (t - t k )qk_ l  (t) l < k < n - 1  . 
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a. Show that the numerators of the Lagrange basis functions L~ ( t i t  0 ..... t n)  

are given by 

Ank (t I t o ..... tn)  = Pk+l ( t ) qk -1  ( t)  k m 0 ~ . . o ~ ] " ~  o 

b. As in the ladder algorithm, let 

Qk = k - O ..... n.  
1-I (t k - t j  ) 

j ~ k  

Show that 

n 

p o . . . n ( t ) -  ZA~(t I t 0 ..... t n ) Q k .  
k=0 

c. Explain why the preceding evaluation algorithm for Po. . .n( t )  is O ( n ) .  

d. Under what circumstances is this evaluation algorithm faster than the 
ladder algorithm? 

4. Show that if we trim away zeros, the up recurrence is identical to the ladder 
recurrence for L ~ ( t l t  o ..... tn). Conclude that the up recurrence is O ( n )  for 
one basis function and O(n 2) for all the basis functions. Explain why the up 
recurrence is still less efficient than the down recurrence. 

5. Generate the dynamic programming algorithm for the recurrence for 
Lnk( t l t o  ..... tn)  given in (2.8). Is this algorithm the same as either the up 
recurrence or the down recurrence or is it yet another recurrence? 

6. Implement the ladder algorithm. Run test cases comparing the speed of the 
ladder algorithm to the speed of Neville's algorithm. 

7. Let t 1 ..... t2n be fixed parameters, and define functions qJ/~ (t) by setting 

�9 ~ ( t)  = (t - tk+ 1 ) . . . ( t  - tk+ n ) k - 0 ..... n. 

Develop a ladder algorithm for evaluating expressions of the form 

n 

E(t)= 
k=0 

8. Develop an algorithm for differentiating 

a. the ladder algorithm 

b. Neville's algorithm 

2.7 Rational Lagrange Curves 

Lagrange interpolation generates polynomial curves. But many simple curves in 
computer graphics and computer-aided geometric design cannot be represented 
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exactly by parametric polynomials. Indeed, even the circle has no polynomial 
parametrization. We can, however, try to approximate a circle with polynomials by 
interpolating points along the circle. Figure 2.13 shows polynomial approximations 
of degree 2 and degree 4 to a semicircle, and Figure 2.14 shows a polynomial 
approximation of degree 6. 

So one way to proceed for a curve that is not a polynomial is to approximate the 
curve with a polynomial by interpolating more and more points along the curve. In 
many, but not all, cases this strategy works well, but the degree of the approximating 
polynomial may need to be quite high. For example, we see from Figures 2.13 and 
2.14 that we need to use a degree 6 polynomial to achieve a really good Lagrange 

-1 -0.5 0.5 1 

(a) Degree 2 approximation 

0.6 

0.4 

0.2 

-I  -0.5 0.5 1 

(b) Degree 4 approximation 

Figure 2.13 Polynomial approximations to the semicircle: (a) a degree 2 approximation interpolating three 
evenly spaced points, and (b) a degree 4 approximation interpolating five evenly spaced points. The degree 2 
approximation is a parabola, which undershoots the semicircle, while the degree 4 approximation over- 
shoots the semicircle near the end points. 

1 N 

0 . 8  - 

0.6 

0.4 

-1 -0.5 0.5 1 

Figure 2.14 A degree 6 approximation to the semicircle using a Lagrange polynomial that interpolates 
seven evenly spaced points. Here it is difficult to see any difference between the semicircle and the approxi- 
mating polynomial. 
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approximation for the semicircle. If we should want to approximate more than half 
the circle, we would have to use an even higher-degree polynomial. But high-degree 
polynomials are unwieldy to compute. Worse yet, in many cases high-degree inter- 
polatory polynomials introduce unwanted oscillations (see, for example, Exercise 1). 

For the circle and for many other curves, there is a better solution. Although the 
circle does not possess a polynomial parametrization, the circle does have a rational 
parametrization 

2t 1 - t  2 
x(t) = y(t) = 

1 + t 2 1 + t 2 

since it is easy to verify that x2(t) + y2(t) = 1. Thus if we want to represent the circle 
exactly, we can resort to rational functions. 

To use Lagrange interpolation to represent the circle exactly, lift the circle from 
affine space to Grassmann space by treating the denominator in affine space as a 
mass in Grassmann space. (Now would be a good time to review Section 1.1.3 on 
Grassmann space.) Lifting replaces rational curves in affine space by polynomial 
curves in Grassmann space. The circle lifts to the polynomial curve 

P(t)-(2t,  l - t2,1+t 2) 

in Grassmann space, and this polynomial curve projects to the rational curve 

12t l I 
l + t  2 ' l + t  2 

in affine space. So all we need to do to apply Lagrange interpolation is to find the 
mass-points (mkPk,m k) in Grassmann space that are the control points for the poly- 
nomial curve P(t) and then project onto affine space to retrieve the circle R(t). 

To carry out this computation explicitly, observe that P(t) is a curve of degree 2, 
so we can use Lagrange polynomials of degree 2 to represent P(t). We still need to 
choose our nodes. Any nodes will do, but since R(t) sweeps out the upper half circle 
for -1 < t < 1, we shall use the nodes (-1, 0,1). Now we need to find the mass-points 
(mkPk, mk), k = 0,1, 2, so that 

2 
Po12(t)-  ~(mkPk,mk)L2(t I - 1 , 0 , 1 ) -  (2 t ,1- t2 ,1  + t  2) : P(t). 

k=0 

By (2.13) we must choose 

(moPo,mo) = P ( - 1 ) =  (-2,0,2)  

(mlPl,ml) = P(0) = (0,1,1) 

(m2P2,m 2) = P(1) = (2, 0,2) . 

(2.16) 
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Thus we can read off the masses and the control points from (2.16): 

m 0 - 2 ,  m 1 - 1 ,  m 2 - 2  

PO - (-1,0), P1 - (0,1), P2 - (1,0) . 

In Grassmann space, we obtain the polynomial curve 

2 
P(t) - ]~ (mkPk,mk)L~ (t i -1, 0,1); 

k=O 

projecting into affine space generates the circle 

2 
EmkPkL2 (t l -l,O,1) 

R ( t ) -  k=O 
2 
]~mkL2 (t l -l,O,1) 

k=0 

Figure 2.15 illustrates the semicircle with its three control points using rational 
Lagrange interpolation. 

In general, we define a rational Lagrange curve in affine space to be the projec- 
tion of a Lagrange polynomial curve 

n 

P(t) - ]~(mkPk,mk)L~(t l to ..... t n) 
k=O 

in Grassmann space. In affine space P(t) projects to the rational curve 

] \  

0.8: 

0.6 i 

0.4: 

0 2 -  

I I I I ~ I 

-1 5 . ' ' ' ' o ' . s '  ' ' ' Y 

Figure 2.15 The semicircle as a degree 2 rational Lagrange curve. The three mass-points that serve as the 
control points are shown. The size of the dots indicates the relative masses of the points: the 
mass is two at (-1,0) and (1,0), while the mass is one at (0,1). 
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/7 

~,mkPkL~(t  l to , . . . , tn)  
Ro..., ,(t)- ~=o 

/7 

Y_.mkL~(t l t o . . . . .  tn) 
k=O 

Thus Ro...n(t) is called a rational Lagrange curve. Just like Lagrange interpolating 
polynomials, we have the following interpolation result for rational Lagrange 
curves. 

THEOREM 
2.9 

Ro.. .n(t j)  - Pj, j - 0 . . . . .  n. 

Proof This result follows because the Lagrange curve 

/7 

P(t)  - ~ , (mkPk ,mk)L~( t  l t 0 . . . . .  t n) 
k=O 

in Grassmann space interpolates the mass-point (mjPj ,mj )  at the parameter 
t jMtha t  is, P(tj)  - (mjPj ,mj) .  Projecting into affine space, we get 
Ro...n(t j )  - Pj. We can also obtain this result directly by observing that 

/7 

~'mkPkL~(tJ I to ..... tn) mjPj  

R0.. (tj) =k=~ 
n mj  

Z m k L k ( t j  It0 ..... t n) 
k=0 

Mass does not affect interpolation at the control points, but mass does alter the 
shape of the interpolating curve. Thus the masses in the rational Lagrange formula- 
tion serve as shape parameters (see, for example, Figure 2.16). These shape parame- 
ters are not always benign; even moderate changes to a single mass can produce 

-1 -0.5 0.5 1 

Figure 2.16 The effect of mass on the shape of a rational Lagrange curve. The semicircle has a unit mass 
at (0,1). Here we enlarge this mass to the values 1.5,3,10. The effect on the curve is to tense 
it towards the lines joining its control points and to increase the curvature at (0,1). 
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extreme changes in the shape of a curve and may even introduce singularities. Large 
changes to a single mass may create cusps and higher-order irregularities (see Exer- 
cise 8). Thus care must be taken when altering the masses of a rational Lagrange 
c u r v e .  

Indeed, although a rational Lagrange curve is continuous everywhere except at 
the parameter values where the denominator vanishes, the limit curve as any single 
mass m j  approaches infinity is not a continuous curve. In fact, the limit curve col- 
lapses to the control points, since 

l i m m j ~ o o R o . . . n ( t k )  = Pk' k -  0 ..... n 

limmj ~ ooRo...n(t) = Pj for all t ~ t k, k = 0 . . . . .  n .  

The first limit is valid because Ro. . .n( t  k )  = Pk independent of the value of the mass 
m j ;  the second limit holds because 

n mk 
limmj ~oo Z Pk L~ (t I t o . . . . .  t n ) 

l immj~ooRo . . . n ( t  ) _ k=0 m j  = P j L j ( t  l t 0 . . . . .  t n) = PJ" 
n mk limmj ~oo ~, Lnk (t I t o . . . . .  tn) L j  (t I t o . . . . .  t n) 

k=0 m j  

Thus we should expect a rational Lagrange curve to behave very strangely as we 
continue to increase the values of the masses (see Exercises 2, 3, 8, and 9). 

In a rational Lagrange curve some masses m k may be set to zero (see Exercise 
6). When m k = 0, the mass-point ( m k P k , m k )  is replaced by a vector (Vk,O) in 
Grassmann space. Thus m k = 0 does not necessarily imply that v k = 0. Typically, 
when m k = 0, the rational Lagrange curve Ro. . .n( t )  has a singularity at t = t k 
because when m k = 0 all the Lagrange basis functions in the denominator vanish at 
t = t k. If, however, both m k = 0 and v k = 0, then there is no longer a singularity at 
t = t k because the factor t - t  k appears in every term in both the numerator and 
denominator and therefore can be canceled. The resulting rational curve still interpo- 
lates the control points Pj, j ~ k.  

Computing points on a rational Lagrange curve is no different from computing 
points on a Lagrange interpolating polynomial. Although our analysis of interpolat- 
ing polynomials was carried out entirely in affine space, the same analysis holds as 
well in any vector space because all we require are affine combinations, and vector 
spaces permit arbitrary linear combinations. Thus to compute values on a rational 
Lagrange curve, we can apply Neville's algorithm or the ladder algorithm in Grass- 
mann space and then simply divide by the mass to project to the corresponding point 
in affine space. 

However, if the mass of a Lagrange curve in Grassmann space is ever zero, then 
the projection of the curve into affine space is not continuous. If the corresponding 
vector in Grassmann space is not zero, we can avoid these discontinuities by project- 
ing the curve instead into projective space. Therefore, for a rational Lagrange curve, 
the control points reside in Grassmann space, but the curve itself may lie in projec- 
tive space. 
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Exercises 

1. Consider the Gaussian curve G ( t )  (t,e -t2 - -  ). 

a. Plot G(t) on the interval [-1,1]. 

b. Approximate G(t) on the interval [-1,1] using polynomial Lagrange 
interpolation with 5, 7, 9, and 11 evenly spaced points, and compare your 
results to the original curve. 

c. Observe that Lagrange interpolation introduces oscillations that are not 
present in the curve G(t). 

2. Consider the rational quadratic parametrization of the semicircle given by 
the masses and control points in (2.16). 

a. Plot the point with t -  .99 for larger and larger values of the mass at 
(0,~). 

b. What do you observe? Explain what is happening. 

3. Consider the rational quadratic parametrization of the semicircle given by 
the masses and control points in (2.16). 

a. Plot some curves where the mass at (-1, 0) is increased and the masses at 
(0,1) and (1,0) are left unchanged. 

b. Plot some curves where the masses at (-1,0) and (1,0) are increased and 
the mass at (0,1) is left unchanged. 

c. Explain why these two effects are different. 

4. Experiment with altering the masses in a rational Lagrange curve. 

a. What are the local and global effects of altering a single mass? 

b. What is the effect of a negative mass? 

c. What happens if all the masses are changed simultaneously? 

5. Consider the ellipse with the implicit equation x 2 / a 2 + y2 / b 2 = 1. 

a. Verify that this ellipse has the rational parametrization 

2at b(1 + t 2)/  
R(t) = 1 + t 2' 1 + t 2 " 

b. Find the control points and weights of this ellipse for the nodes (-1,0,1). 

c. Use Neville's algorithm to draw this ellipse for a = 1 and b = 3. 

6. Consider the hyperbola with the implicit equation x 2 / a 2 - y2  / b 2 = 1. 

a. Verify that this hyperbola has the rational parametrization 

a(l + t 2) 2bt ) 

b. Find the control points and weights of this hyperbola for the nodes 

i. (-0.5,0,0.5) 
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ii. ( -4 , -3 , -2)  

iii. ( - 1 , 0 , 1 )  

c. Use Neville's algorithm to draw different parts of this hyperbola for a = 1 
and b =  3. 

7. Consider a rational Lagrange curve with nodes t o ..... t n and control points 
( m o P o , m  O) . . . . .  (mnPn ,mn) .  What does the limit curve look like if two or 
more masses are allowed to increase simultaneously? 

8. Let R(t )  be a rational Lagrange curve with nodes t O . . . . .  t n and control points 
( m o P o , m  O) . . . . .  ( m n P n , m n  ). Define 

n 

P( t )  - E m k P k L ~ ( t  l t 0 ..... tn) 
k=O 

n 

w( t )  - ~,mkLnk(t  l to . . . . .  tn) . 
k=O 

Then R( t )  - P ( t )  / w ( t )  or equivalently w ( t ) R ( t )  - P( t ) .  

a. Show that R ' ( t j )  - P ' ( t j )  - w ' ( t j ) P j  . 
m j  

b. Conclude that l i m m j ~ o o R ' ( t  j )  - O. 

k 
c. Prove that ~ ( k ) w ( i ) ( t ) R ( k - i ) ( t ) -  P(k ) ( t ) .  

i=0 

d. Using induction and part (c), show that l i m m j _ ~ o o R ( k ) ( t j ) - 0  for all 
k > 0 .  

e. Conclude that as the mass m j  gets large while the other masses are held 
fixed, the point at R ( t j )  = Pj becomes highly irregular. 

9. Let R(t )  be a rational Lagrange curve with nodes t o . . . . .  t n and control points 

( moPo , m O) . . . . .  ( mnPn , mn ) . 

a. Using arguments similar to those in Exercise 8 show that 

l i m m j ~ o o R ( k )  (t)  - 0 for all k > 0, whenever t ~: t k, k r j .  

b. Explain how this result is consistent with the results in the text and in 
Exercise 8. 

c. Explore what happens to the derivative if two or more masses are 
allowed to increase simultaneously. 

10. Given a collection of nodes t o . . . . .  t n and masses m o . . . .  , m  n, define 

R k ( t  l t 0 . . . . .  tn) - 
mkLnk(t l to . . . . .  t n) 
n 

E m j L j ( t  l t 0 . . . . .  t n) 
j=O 

, k - O  . . . . .  n .  
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Show that these functions behave like rational Lagrange basis functions. In 
particular, 

11 

Z R k ( t  l t 0 . . . . .  tn) - 1 
k=0 

b. Rk( t i  l t 0 . . . . .  t n) - 0 

=1 

i ~ k  

i - k  

n 

c. Ro. . .n( t  ) -  ~ , R k ( t  l t 0 . . . . .  tn)P k. 
k=O 

Fast Fourier Transform 

Before we move on to study the interpolation problem for surfaces, we pause briefly 
to consider another important application of univariate Lagrange interpolation: Fast 
Fourier Transform (FFT). One purpose of FFT is to perform fast multiplication of 
polynomials written in terms of the standard monomial basis 1,t ..... t n . We shall now 
examine how this is done. 

Consider two polynomials of degree n 

F/ /7 

f ( t ) =  ~ a k  tk and g(t)= Z b k  tk .  
k=O k=O 

Multiplying these polynomials in the usual fashion, 

f ( t )g ( t )  = ~, Z a i b  j , 
k=Ok.i+j=k 

would require computing O(n 2) products, since we would need to compute every 
product aib j ,  i , j  = 0 . . . . .  n. Suppose, however, that we had expressed these two 
polynomials with respect to a Lagrange basis of degree 2n: 

L2n( t  l to ..... t2n),...,I~2nn(t l to ..... t2n). 

Then by (2.13) 

2n 2n 2n 
f ( t )  - ~ , f ( t k ) L 2 k n ( t l t o  ..... t2n ) ,  g( t )  - ~ ,g ( t k )L  k ( t i t  0 ..... t2n), 

k=0 k=0 

and 

211 

f ( t ) g ( t )  - ~ , f ( t k ) g ( t k ) L 2 n ( t  l to ..... t2n ). 
k=0 
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Thus when polynomials are written in terms of the Lagrange basis, the product 
requires only O(n) multiplications, since we need only compute the 2n + 1 products 

f (t k )g(t k ), k = O, .... 2n. 
There are two subtleties here. First, although the original polynomials f ( t )  and 

g(t) are of degree n, we need to express them in terms of a Lagrange basis of 
degree 2n, since their product is of degree 2n. We can certainly do so, since every 
polynomial of degree n is also a polynomial of degree 2n. Second, even though we 
have writtenf(t) and g(t) in terms of a Lagrange basis of degree 2n, their product is 
still a polynomial of degree 2n, so the product can be expressed in terms of the 
same Lagrange basis as the original polynomials. In fact, it is for this reason that 
we initially choose a Lagrange basis of degree 2n instead of a Lagrange basis of 
degree n. These same observations hold if we use any Lagrange basis of degree 
m > 2n. It will actually be more convenient to employ a basis whose degree is 
almost a power of two. Thus we shall use a Lagrange basis of degree m = 2 P -  1, 
where 2P -1 - 1 < 2n < 2P-1 .  

Now our strategy for multiplying two polynomials is as follows. 

1. Convert from the monomial basis of degree n to a Lagrange basis of degree 
m, where m + 1 = 2 p > 2n. 

2. Perform fast multiplication in the Lagrange basis. 

3. Convert back from the Lagrange basis to the monomial basis. 

Step 2 can be performed with O(n) multiplies, so if we could perform steps 1 and 3 
with fewer than O(n 2) multiplies, we would have a fast way to perform polynomial 
multiplication starting and ending with a monomial representation. 

To convert from the monomial to the Lagrange basis, we need to perform poly- 
nomial evaluation. The standard way to evaluate a polynomial written in terms of the 
monomial basis is to apply Homer's method (see Exercise 3), which employs O(n) 
multiplies to evaluate a polynomial of degree n at a single parameter value. To con- 
vert from monomial to Lagrange form, we need to evaluate a polynomial of degree n 
at m + 1 > 2n nodes, so using Homer's method would require O(n 2) multiplies. We 
need to do better. 

The trick is to choose a special Lagrange basis~that  is, a Lagrange basis with 
special nodes t o ..... t m. In this book we deal mostly with real variables, but every- 
thing we have done so far in this chapter with polynomials is valid as well for com- 
plex variables. So our Lagrange basis functions can have complex nodes. We shall 
choose our nodes to be complex roots of unity and show that with this choice of 
nodes we can convert back and forth between the monomial and Lagrange represen- 
tation of a polynomial of degree n in O(n log(n)) time. 

Let t o . . . . .  t m denote the m + 1 distinct complex roots of un i ty~the  complex 
numbers that satisfy the equation t m+l = 1. Recall from complex analysis that 

e it = cos(t) + i sin(t). 

Therefore, e 2n/= cos(27r) = 1, so 

tk = e2k i rc / (m+l ) ,  k = 0,..., m. 
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k Define (.0m+ 1 = e 2 ire / (m+l) . ,  then t k = (_Om+ 1 , k = 0,..., m. Moreover, 

7 9  

(2.17) 2 k )2 = (.0~m+l) / tk  = ((-Om+l 2" 

Now comes the key observation on how to convert from the monomial coeffi- 
cients a 0 ..... a n of a polynomial f(t)  to its Lagrange coefficients f (to ),. . ., f (t m) in 
O(nlog(n))  time. Define 

... t ( m - 1 ) / 2  
feven(t) = a 0 + a 2 t  + a 4  t2 + + a m _  1 

fo~id(t) al + a3t + a5  t2  am t(m-1)/2 - -  + . . . +  . 

Then it is easy to verify that 

f ( t )  - feven (t2) -I- t f o d d ( t 2 ) .  (2.18) 

So evaluating one polynomial f(t) of degree m at the m + 1 values t o . . . . .  t m is equiv- 
alent to evaluating two polynomialsfeven(t) andfodd(t) of degree ( m -  1)/2 at the val- 

2 .  But by (2.17), the m + 1 values ues t~ . . . . .  t m 
2 k )2 

t k - ( w m +  1 , k - 0  ..... m 

are the same as the (m + 1)/2 values 

~-j J 
- ( . 0 ( m + l ) / 2 ,  j - 0 . . . . .  ( m -  1 ) / 2 .  

Therefore, we have reduced one problem of size m + 1 to two equivalent problems of 
size (m + 1)/2. Proceeding recursively in this manner, after p = log(m + 1) steps we 
are reduced to solving 2P = m + 1 problems of size one. To solve the original prob- 
lem, we must then combine these solutions using (2.18). Since there are p recursive 
steps, the work required to recombine each solution is p = log(m + 1). Hence the 
total amount of work to convert from monomial to Lagrange fo rm~tha t  is, to evalu- 
ate the polynomial at the nodes t o ..... t m ~ i S  p2P = O(mlog(m))  = O(nlog(n)) .  This 
recursive algorithm to convert from the standard monomial to the special Lagrange 
form is called the Discrete Fourier Transform (DFT). 

We can use the DFT to convert from the monomial to the Lagrange basis in 
O(nlog(n))  time. We can then multiply the two polynomials in the Lagrange basis in 
O(n) time. But after multiplying the two polynomials in the Lagrange basis, we still 
need to convert back from Lagrange to monomial form. It turns out that we can use 
the DFT to perform this operation as well. Here is how. Observe that the matrix that 
converts from monomial to Lagrange form is 

m 

1 1 . . .  1 1 1 . . .  1 

! m 
(.Om+ 1 --- (_Om+ 1 _ to tl  . . .  t m . 

i i " " i i " 
m . m 2 m 

0)m+ 1 .. (_Om+ 1 t t~ n . . .  t m 

That is, if we were to multiply the monomial coefficients by M on the right, we 
would obtain the Lagrange coefficients because multiplication by M on the right is 
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equivalent to evaluation at t o ..... t m . Discrete Fourier Transform is just a fast way to 
perform this matrix multiplication. To convert from Lagrange form back to mono- 
mial form, we need to apply M -1. 

LEMMA 
2.10 

(m + 1)M -1 

1 1 . . .  1 

__ ! (.oral 1 -m �9 .. (.0m+ 1 
�9 . ~ 

�9 , ~ 

- m  - m  2 

(.0m+ 1 ... 0)m+ 1 

Proof We can verify this result by multiplying the ith row of M by the jth column 
of (m+ 1)M -1 

m ~, ,.,ik ,.,-jk _ rn(i-j)k 
tUm+ltUm+l '*'m+l " 

k=0 k=0 

If i - j ,  then 

m ,.,ik , . , - j k  m 
~Wm+ltUm+ 1 -  ,~, l = m + l .  

k=0 k=0 

If i * j ,  then setting h = i - j  yields 

h )m+l [ m+l\h 
~,.,ik ~.,-jk ~ hk ('0m+l - 1  [OJm+l) -1  

- -  C O m +  1 - = tUm+ltUm+l h h 
k=0 k=0 (-0m+l - 1 09m+l - 1 

Hence M * (m + 1)M -1 - (m + 1)I as required. 

=0" 

We get from the matrix M to the matrix (m + 1)M -1 by replacing O)m+ 1 by 
coml+l . Thus to convert from Lagrange to monomial form, we can simply replace 

corn+ 1 by cOml l in the Discrete Fourier Transform (DFT -1) and divide the final result 
by m + 1. That is, we can proceed in the following fashion. Suppose that we have 
computed 

m 

f ( t )g( t )  = ~,f(tk)g(tk)Erff (t l to ..... tm). 
k=O 

Let 

m 

h(t) - E f (tk )g(tk )t k. 
k=0 

Applying DFT to h(t) with O)m+ 1 replaced by a~mll and then dividing the result by 
m + 1 will yield a polynomial h * (t) in Lagrange form whose Lagrange coefficients 
are identical to the monomial coefficients of f(t)g(t).  Again this algorithm has a 
speed of O(n log(n)). 
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Monomial  form 

DFT O(n log(n)) 

Multiplication 
Monomial  form 

O(n log(n)) 

O(n 2) 

DFT q 

Multiplication 
Lagrange form ~ Lagrange form 

O(n) 

Figure 2.17 The Fast Fourier Transform (FFT) for polynomial multiplication. 

Figure 2.17 summarizes our results. In the exercises we shall show how to 
extend these results on fast polynomial multiplication from the univariate to the 
bivariate setting (see Exercises 4 and 5). 

Exercises 

1. The convolution of two sequences A = (a o ..... a n) and B = (b 0 ..... bn) is 
given by the sequence C = (c o ..... Czn), where c k = Z i + j = k a i b j .  

a. Show that convolution of sequences is equivalent to multiplication of 
polynomials. 

b. Conclude that two sequences of size n + 1 can be convolved in time 
O ( n l o g ( n ) ) .  

2. The elementary symmetric functions a k ( u  1 . . . . .  Un) ,  k = 0 . . . . .  n are defined 
by setting ak(U 1 ..... u n) = ~,uil . . .uie where the sum is taken over all subsets 
of {1 ..... n} of order k. 

a. Let f ( t )  be a polynomial of degree n with roots u 1 . . . . .  u n. Show that the 
coefficients of f ( t )  in the monomial  basis are given by CYk(U 1 ..... Un), 
k = 0 ..... n. 

b. Given n arbitrary values u 1 ..... u n, show how to use FFT to compute 

ak(Ul  . . . . .  Un), k = 0 . . . . .  n ,  in time O ( n l o g Z ( n ) ) .  

3. Let f ( t)  - an tn + an_l  tn-1  + . . . +  al t  + a o be a polynomial of degree n. 
Define 

f k ( t )  - an tk + an_l  tk -1  + " ' +  an_k+l t  + an_ k k = 0 ..... n. 

Show that 

a. f k+l  ( t)  = tfk ( t)  + a n _ k _  1 

b. f n ( t )  - f ( t)  

Computing f ( t )  in this fashion by starting with f o ( t ) -  a n and recursively 
computing f k ( t ) ,  k - 1 . . . . .  n ,  is called Homer 's  method. 
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c. Conclude from Homer's method that every polynomial of degree n can 
be evaluated with at most n multiplications and n additions. 

d. Verify that Homer's method for cubic polynomials can be diagrammed 
as in Figure 2.18, and provide an analogous diagram of Homer's method 
for polynomials of arbitrary degree. 

aO 

f3(t) 

a 1 

fz(0 

fl(t) 

a2 a 3 

Figure 2.18 Horner's method for cubic polynomials. 

4. Let f(s,t) and g (s,t) be two polynomials of bidegree n. That is, 

n n . . n n 

f ( s , t )=  ~, ~,aijs't J and g(s,t)= ~, ~bijsit j. 
i=0 j=0 i=0 j=0 

a. Show that the naive algorithm for multiplying f(s,t) and g(s,t) would 
have a speed of O(n4). 

b. Now rewrite f(s,t) and g (s,t) as polynomials of degree n in t with coeffi- 
cients that are polynomials of degree n in s. Show that using this 
approach f(s,t) and g(s,t) can be multiplied using FFT in time 
O(n31og(n)). 

5. Let 
2n 2n 

h(s,t) = Z Zci j  sttJ 
i=0j=0 

be a bivariate polynomial of bidegree 2n. Define a univariate polynomial 
h * (u) by setting 

h * (u) - Zi,.jcijuJ(2n+l)+i. 
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a. Show that the map h ~ h * sends a bivariate polynomial of bidegree 2n 
to a univariate polynomial of total degree 4n 2 + 4n. 

b. Show that the map h ~ h * is 1:1 and onto. 

c. Show that (h 1 + h2)* - h~ + h 2 

d. Let f ( s , t )  and g( s , t )  be two polynomials of bidegree n, show that 

( f g ) *  = f * g *.  
e. Use parts (b) and (d) to develop an algorithm for multiplying two polyno- 

mials of bidegree n in time O ( n Z l o g ( n ) ) .  

2.9 Recapitulation 

We have encountered three strategies for solving the interpolation problem for 
curves" undetermined coefficients, recursion, and cardinal basis functions. 

1. U n d e t e r m i n e d  Coe f f i c i en t s  (Section 2.4, Exercise 5) 

Solve the system of linear equations 

anto n + " "  + alto + ao - Po 

�9 o 

antn n + " "  + altn + ao - Pn 

for the unknown coefficients a o ..... a n . This method is effective for demon- 
strating the existence and uniqueness of the polynomial interpolant, but it is 
not computationally stable. 

2. R e c u r s i o n  (Section 2.2, Theorem 2.1) 

Apply the recurrence 

- t -  t o 
P o . . . n ( t ) -  t n ~ t  p o . . . n _ l ( t ) +  P1...n(t) 

t n - t o tn - t o 

Pk( t )  - Pk �9 

This recurrence leads directly to Neville's dynamic programming algorithm 
for polynomial interpolation. 

3. C a r d i n a l  B a s i s  F u n c t i o n s  (Section 2.5, Theorem 2.7) 

Employ the basis functions 

L~( t  l to ..... t n ) _  1 - [ j , k ( t - t j )  

I-Ijc:k (tk - t j  ) 

n 

po. . .n( t )  - ELnk( t  l to ..... tn)Pk 
k=O 

k - 0 ..... n 
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These formulas provide an explicit expression for the polynomial interpolant. 
Each approach provides a different insight into the interpolation problem for 

curves, and each method leads to an alternative computational technique. We have 
focused mostly on recursion because this technique generates the most elegant com- 
putational scheme. Interpolation for surfaces is much harder than for curves, but 
these same fundamental approaches still apply. We shall consider each of these three 
basic strategies in our study of surface interpolation. 

Exercises 

1. Let Fo(t) ..... Fn(t) be a collection of blending functions. Show that there is a 
function 

n 

F ( t ) =  ~,CkFk(t) 
k=0 

such that F(t k) = Pk, k - 0 ..... n, for any choice of P0 ..... Pn if and only if 

I 
Fo(to) "'" F~(to))l 

�9 i " ~ 0 .  

Fo(tn) ... Fn(t n 

2. Let Fo(t) ..... Fn(t) be a collection of blending functions. Show that there is a 
function 

n 

F ( t ) =  ECkFk(t) 
k=O 

such that F(t k) - P k ,  k -  0 ..... n for any choice of distinct nodes t o ..... t n 
and any choice of control points P0 ..... Pn if and only if there are functions 

such that 

n 

Aj(t  l t o ..... t n) - ]~ajkFk(t ), j - 0 ..... n ,  
k=O 

Aj(tk l to ..... tn) = 0 j ~ k 

=1 j = k  . 

2.10 Surface Interpolation 

Given n + I points P0 ..... Pn and n + 1 distinct nodes t O ..... t n, we showed in Theorem 
2.6 that there exists a unique polynomial curve Po...n(t) of degree n that interpolates 
the given points at the specified parameters. That is, 

Po...n(tk) = Pk k = 0 ..... n. 
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Now we would like to study the equivalent problem for surfaces. 
Instead of a sequence of points and a sequence of nodes, we start with an array 

{~j } of control points and an array { (sij,tij) } of parameter values. We seek a polyno- 
mial surface P(s,t) that interpolates the given array of control points at the specified 
array of parameter values. 

How many control points could we hope to interpolate with a bivariate polyno- 
mial of degree n? A univariate polynomial of degree n has n + 1 coefficients, and we 
can interpolate n + 1 arbitrary control points. Similarly, a bivariate polynomial of 
degree n has 

( n+22 ) - (n + 2)(n + l) / 2 

coefficients (see Exercise 1); therefore applying the method of undetermined coeffi- 
cients, we might hope to interpolate (n~2) arbitrary control points. Unlike for 
curves, however, it is not always possible to solve the general bivariate interpolation 
problem for surfaces. 

Consider quadratic interpolation. Here we have a bivariate polynomial 

P(s,t) - A20 s2 + a 11st + A02 t2 + alOS + Aolt + AO0 

with six undetermined coefficients A20 ..... A00, and we wish to interpolate six arbi- 
trary points P1,..., P6 at six arbitrary, distinct parameter pairs (s 1, t 1) ..... (s 6, t 6). Thus 
we need to solve a system of six linear equations: 

A20Sl 2 + A1 lSltl + Ao2tl 2 + A10Sl + A01tl + Aoo - P1 

�9 . 

A20s62 + A1 lS6t6 + A02t62 + A10s6 + A01t6 + A00 - P6 

for the six unknown coefficients A20 ..... AO0. Rewriting these equations in matrix 
form, we have 

IS! Slt 1 t! S 1 t! 1.l/A?0 / _/ele6 / 
~s~ s6t 6 t~ s 6 t 6 1)~A00 

We can solve for the six unknowns A20 ..... A00 if and only if the 6 x 6 matrix of coef- 
ficients is invertible. But if the six parameter pairs lie on a conic 

Q20 s2 + Q11 st + Q02 t2 + Qlo s + Qol t + Qoo - 0 

~ t h a t  is, a second-degree curve in the st-parameter p lane~then  

Is? Sl,l: ,?: Sl: ,1: l! 
2 s6r 6 t 2 8 6 r6 1) Qoo 
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In this case the columns of the coefficient matrix are linearly dependent, so this 
matrix is not invertible. Thus we cannot solve the general quadratic bivariate interpo- 
lation problem when the parameters are aligned in certain positions. The same diffi- 
culty arises for arbitrary degree. 

Since it is hopeless to solve the general bivariate interpolation problem using 
polynomials of minimal degree, we shall examine instead some important special 
cases, where the nodes lie in special configurations. 

Exercises 

1. Show that the number of terms in a bivariate polynomial of degree n is 

2 

2. What conditions must be placed on the nodes in a plane in order to be able 
to interpolate three arbitrary control points with a linear function in two 
variables? 

3. Show that it is always possible to interpolate n + 1 control points at n + 1 
distinct parameter values with a bivariate polynomial of degree n. 

4. Consider a triangular array {P i j} of (n~2) control points in 3-space and an- 
other triangular array {(sij,tij)} of (n~2) nodes in the parameter plane. Sup- 
pose that there are n + 1 lines L1 ..... Ln+l in the parameter plane such that k 
nodes lie on line L k, k = 1 ..... n + 1, and no node lies on two lines L i, L j .  

a. Prove that there exists a bivariate polynomial of degree n that interpolates 
the given array of control points at the specified parameter values. (Hint: 
Use induction on n and Exercise 3.) 

b. Bezout's Theorem states that if a polynomial curve f ( s , t )  = 0 of degree m 
intersects another polynomial curve g (s,t) = 0 of degree n in more than 
mn points, then f ( s , t )  and g(s, t)  must have a common factor. Use 
Bezout's Theorem to prove that the interpolant in part (a) is unique. 

2.11 Rectangular Tensor Product Lagrange Surfaces 

Tensor product surfaces are some of the simplest surfaces to construct, but they are 
also some of the most important surfaces in computer graphics and computer-aided 
design. In the tensor product construction, we start with two rectangular arrays of 
size (m + 1) • (n + 1)" one for the control points {P/j } and one for the nodes { (sij,tij) }, 
where 0 < i < m and 0 < j < n (see Figure 2.19). 

The nodes are in special positions because they lie on a rectangular grid in the 
parameter plane; that is, they lie along the parameter lines s = s i and t - t j .  We shall 
assume further that s O < ... < s m and t O < ... < t n. We seek a bivarlate polynomial 
P(s,t)  of degree m in s and degree n in t that interpolates the given control points at 
the specified parameter values. That is, we seek a bivariate polynomial P(s,t)  of bide- 
gree (re,n) such that P(s i , t  j )  = PO" 
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t -  t 3 
P03 P13 P23 P33 

s -  s o s -  s 3 

~L  , L  - L  , 

t = t  0 

(a) Domain--rectangular grid 

P02 P12 P22 P32 

POl Pll P21 P31 

Poo P10 P20 P30 

(b) Rangemrectangular array of points 

Figure 2.19 Data for a tensor product bicubic interpolant: (a) represents the nodes in the domain and (b) 
represents the control points in the range. The nodes lie on a rectangular grid, but the con- 
trol points may be in arbitrary positions. The surface P(s,t) must interpolate the control points 
PO at the nodes (s i, tj)mthat is, P(s i, tj) = PO" 

This bivariate interpolation problem is easy to solve using univariate methods. 
In fact, we can simply set 

m n 
P ( s , t )  - E ZL~'(sls0 ..... Sm)ET(t  l t 0 ..... tn)Pkl ' (2.19) 

k=0 I=0 

where E~ (s i s  0 ..... Sm) and L T ( t l t o , . . . , t n )  represent the Lagrange basis functions for 
the nodes s o ..... Sm and t o ..... t n (see Section 2.5). By the cardinal conditions (2.12) it 
follows immediately that 

P ( s i , t j ) -  Pij '  

so we have indeed solved this interpolation problem. The surface defined by (2.19) 
is called a t e n s o r  p r o d u c t  L a g r a n g e  s u r f a c e  because the basis functions 
E~(s ls  0 ..... s m ) L  ~ ( t l t  0 ..... t n)  that multiply the control points Pkl are formed from 
products of univariate Lagrange basis functions (see Figure 2.20). 

The tensor product construction is a standard technique in geometric modeling. 
Become familiar with it now because you will see lots of other tensor product sur- 
faces later in this text. 

We can rewrite (2.19) in the following manner: 

Let 

m 

P ( s , t )  = ~,Lrff (s l so ..... Sm) ( t i t  0 ..... tn)Pkl �9 
k=0 1 

(2.20) 

n 

Pk( t )  - E L T ( t  l t 0 ..... tn)Pkl k - 0 ..... m .  
1=0 

(2.21) 
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Figure 2.20 The bicubic Lagrange basis function L 3 ( s l s o  ..... s 3 ) L 3 ( t l t o  ..... t3). Here the nodes are at the 
integersmthat is, s k = t k = k, k = 0 ..... 3. 

Then 
m 

P ( s , t )  - EErff (s l so ..... sm)Pk( t  ). 
k=0 

(2.22) 

If we fix the value of t = t *, then P ( s , t * )  is simply the univariate polynomial of 
degree m that interpolates the points Po(t*)  ..... Pm(t*)  at the parameter values 
s O ..... s m. Similarly, each degree n univariate polynomial Pk(t)  interpolates the con- 
trol points Pko ..... P~n at the nodes t o ..... t n . Thus the interpolation surface P(s , t )  

interpolates the interpolation curves Po(t)  ..... Pm(t)  (see Figure 2.21). An analogous 
argument shows that the surface P(s , t )  also interpolates the curves 

since 

m 

Ql(S)  - E E ~ ( s  l s 0 ..... sm)Pkl I -  0 ..... n,  
k=0 

n 

P ( s , t )  - E L ~ ( t  l t 0 ..... tn)Ql(s) .  
1=0 

Thus the surface P ( s , t )  actually interpolates the mesh of space curves {Pk( t ) ,Ql (S )}  

(see Figure 2.22). 
Notice that if we restrict to the domain s o < s < s m and t o < t < t n, then we get a 

four-sided surface patch. Moreover, it is easy to see that the boundary curves of this 
rectangular patch are the Lagrange polynomial curves that interpolate the boundary 
control points. 

Equations (2.21) and (2.22) lead to a bivariate version of Neville's algorithm. 
First apply Neville's algorithm m + 1 times to calculate points on each of the curves 
Po(t)  ..... Pm(t); then apply Neville's algorithm one more time with Po(t)  ..... Pm(t)  as 
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P03 

fo(O P3(O 

POI~_ P l l ~  P21~ ~2tU tP31 

Poo _ - - 
Plo P2o P3o 

Figure 2.21 Schematic view of bicubic interpolation. The curve Pk(t)interpolates the control points 
Pko ..... Pk3, and the surface P(s,t)interpolates the control curves Po(t) ..... P3(t). The boundary curves are the 
interpolating curves of the boundary control points. 

(a) Mesh of cubic space curves 

Figure 2.22 Bicubic interpolation. 

control points to compute P(s,t) (see Figure 2.23). Similarly, we could apply Nev- 
ille's algorithm n + 1 times to compute points along the curves Qo(s) ..... Qn(s) and 
then apply Neville's algorithm one more time to interpolate points on these curves 
(see Exercise 3). 

There is another dynamic programming algorithm for tensor product surfaces 
similar in spirit to Neville's algorithm but with a somewhat different structure. Let's 
assume for the sake of simplicity that the degree in s is the same as the degree in t 
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P(s,t) 

so 

POI(s) P12(s) 

s,_s  
/ \ J \ 

no(t) P~(O n2(o 

PO1 (t) P12 (t) PO1 (t) P12(t) PO1 (t) P12(t) 

,,>,.. , y ,;>. ..<,o ,, ;., ,). 
PO0 PO1 P02 P10 P11 P12 P20 P2 ] P22 

Figure 2.23 Neville's algorithm for a biquadratic patch. The three lower triangles in the two bottom tiers 
represent univariate interpolation in the t direction. The triangle at the top interpolates these results in the s 
direction. 

(i.e., m = n). Instead of constructing the interpolating surface from a sequence of lin- 
ear interpolations, we can construct the interpolating surface from a sequence of 
bilinear interpolations. This algorithm is based on the following bilinear generaliza- 
tion of linear interpolation. Let 

B(s,t) = (sl - s)(tl - t) (s - so)(t 1 - t) 
(s 1 s0)(tl to ) P00 + P10 _ _ ( s  1 - s O ) ( t l  - t O )  

(s 1 - s ) ( t -  t O) 
+ P01 + 

( S  1 - S O ) ( t l  - t O )  

Then it is easy to check that 

( s -  So)( t -  t O) Pll �9 
(s 1 - s 0)(tl - t 0) 

B(si,tj) - Pij i , j  - O,1. 

Now let Poo(S,t),POn(S,t),PnO(S,t),Pnn(S,t) be the rectangular interpolants for the 
four overlapping rectangular grids of size n x n with vertices at (So,to),(So,tn),(Sn,tO), 
(Sn,tn), and corresponding overlapping n x n arrays of control points with comers  at 
Poo,Pon,PnO,Pnn. That is, each surface Pij(s,t) has the same index as the unique cor- 
ner point interpolated by the surface (see Figure 2.24). 

By construction 

Pij ( sk , t t ) - Pk t 
i < k < i  J J - - + n - 1  and- - _ < l _ _ _ - + n - 1  for i , j - O , n  . 
n n n n 
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PO3 

/'02 

Pol 

Poo 

P]3 /:'23 
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P30 

(b) Overlapping control points 

Figure 2.24 Overlapping data for four biquadratic rectangular interpolants: (a) represents the four over- 
lapping domains. Each domain contains a 3 x 3 array of nodes; interior nodes (the black 
square) belong to all four domains; nodes along the edges (dark gray squares) belong to two 
overlapping domains; and nodes at the corners belong to a single domain. (b) represents the 
four overlapping arrays of control points corresponding to these four overlapping domains. 
Interior control points belong to all four arrays; control points along the edges belong to two 
arrays; and control points at the corners belong to a single array. 

Therefore it is easy to verify that the surface defined recursively by 

P ( s , t )  (Sn - s ) ( t n  - t)  ( s -  s O ) ( t  n - t )  
- e o o ( s , t )  + enO(S,t) 

(Sn - s o ) ( t n  - t o )  (Sn - s o ) ( t n  - t o )  (2.23) 

_ _ ( S - S o ) ( t - t o )  s)(t to) Po (s,t) + 
+ (s  n - s o ) ( tn  - t O) (Sn - s o ) ( tn  - t O) 

satisfies 

P ( S k , t l )  = Pk! 0 < k , l  < n .  

To apply dynamic programming to (2.23), we must first construct all the bilinear 
interpolants, then all the biquadratic interpolants, then all the bicubic interpolants, 
and so on, until after n stages we arrive at the bidegree n surface P ( s , t ) .  This algo- 
rithm has the shape of a square pyramid, so we shall call it the pyramid algorithm 
(see Figure 2.25). 

Both Neville's algorithm and the pyramid algorithm are O(n3), but Neville's 
algorithm is more efficient. When n = m, Neville's algorithm uses n + 1 triangles in 
the t direction to compute the points P o ( t )  . . . . .  P n ( t ) ,  and then one additional triangle 
in the s direction to interpolate these n + 1 points. Each triangle has n ( n  + 1)/2 
nodes, and there are n + 2 triangles so 

number of nodes in Neville's algorithm - n ( n  + 1)(n + 2) 
2 
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Figure 2.25 A schematic diagram of the pyramid algorithm for a bicubic patch, viewed from above. Each 
rectangular panel represents the computation of a point at its center by bilinear interpolation 
of the points at its corners; the darker the rectangle the higher the degree of the interpolant. 
Thus the light gray rectangles represent bilinear patches built directly from the control points, 
the darker gray rectangles represent biquadratic patches built from overlapping 3 x 3 arrays 
of control points, and the black rectangle represents the bicubic interpolant. The interior 
control points are obscured by the panels. 

On the other hand, the pyramid algorithm has one node at the top of the pyramid, 
four at the next level, then nine at the next level, and so on. Thus 

nk2 n(n+l)(2n+l) number of nodes in pyramid algorithm - ~ = 
k-1 6 

Since (2n + 1)/3 < n + 2, there are actually fewer nodes in the pyramid algo- 
rithm than in Neville's algorithm. However, each node in the pyramid algorithm rep- 
resents a bivariate bilinear interpolation, while each node in Neville's algorithm 
represents only a univariate linear interpolation. Counting just multiplies and 
divides, we find that each linear interpolation costs two multiplies and one divide, 
while each bilinear interpolation costs eight mult ipl ies~four for the four arrows 
entering a node and four more to compute the labels on each a r row~and  one divide 
(since the labels on all the arrows entering a node have the same denominator, we 
can perform this divide just once at each node; however if the control points lie in 
three dimensions, the real cost is actually three divides instead of one). Thus 

cost per node in Neville's algorithm = 3 

cost per node in pyramid algorithm = 9. 

Multiplying the cost per node by the total number of nodes, we find 

total cost of Neville's algorithm - 3n(n + 1)(n + 2) 
2 
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total cost of pyramid algorithm - 3n(n + 1)(2n + 1) 
2 

Since n + 2 < 2n + 1, Neville's algorithm is somewhat more efficient than the 
pyramid algorithm. It may also be easier to program, since it uses only univariate 
interpolation and this code is often already in place to generate curves. 

Neville's algorithm has another advantage over the pyramid algorithm that is 
even more substantial. Typically surfaces are rendered by generating points on the 
surface along isoparameter lines~that is, along lines of constant s or t. If we fix 
t = t* and vary only s, then we can reuse the computation of the points 
Po (t*) ..... Pm (t*). Thus along isoparameter lines, Neville' s algorithm for tensor prod- 
uct surfaces reduces to the univariate version of Neville's algorithm, which is only 
O(n2). No such reduction occurs for the pyramid algorithm along isoparameter lines. 
Nevertheless, it is worth taking the time to understand the structure of the pyramid 
algorithm because in the next section we shall develop a similar algorithm for trian- 
gular Lagrange patches where the univariate version of Neville's algorithm is not 
readily available. 

Finally, note that there is an even faster evaluation algorithm for tensor product 
Lagrange interpolation because the O(n 2) algorithm for the univariate Lagrange 
basis functions based on the univariate down recurrences leads to a simple O(n 2) 
algorithm for tensor product Lagrange interpolation (see Exercise 6). 

Exercises 

1. Prove that the boundary curves of an interpolating tensor product patch are 
the Lagrange polynomials that interpolate the boundary control points. 

2. Complete the analysis of the pyramid algorithm by showing how to imple- 
ment it when the degree in s is different from the degree in t. 

3. Consider an interpolating tensor product patch of bidegree (m,n), where 
m < n .  

a. Show that to compute a single point on the surface it is faster to apply 
Neville's algorithm first in the s direction and then in the t direction. 

b. Show that to compute many points along the surface it may be faster to 
apply Neville's algorithm first in the t direction and then in the s direction. 

c. Explain this apparent anomaly. 

4. Implement both Neville's algorithm and the pyramid algorithm for tensor 
product surfaces. Which algorithm do you prefer? Why? Experiment with 
tensor product surfaces of different degrees. 

a. How does altering the arrangement of the control points affect the shape 
of the surface? 

b. How does changing the values of the nodes affect the shape of the 
surface? 
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5. In Section 2.5 we discussed the up and down recurrences for the univariate 
Lagrange basis functions. What are the up and down recurrences in the case 
of tensor products for 

a. Neville's algorithm? 

b. the pyramid algorithm? 

6. Use the down recurrence for the univariate Lagrange basis functions to 
develop an O(n 2) evaluation algorithm for tensor product Lagrange interpo- 
lation. 

7. Prove that 
m n 

~, ~,Lrff (s l so ..... sm)L~(t l t 0 ..... tn) = 1. 
k=0l=0 

8. Give necessary and sufficient conditions on the control points for the inter- 
polating tensor product surface to collapse to 

a. a single point 

b. a line 

c. a plane 

Justify your answer. 

9. Complete the proof that the surface P(s , t )  defined by (2.23) satisfies 
P(Sk,t l)  = Pkl for 0 < k,l  < n. 

10. The surface generated by Neville's algorithm and the surface generated by 
the pyramid algorithm both interpolate the control points at the nodesmthat 
is, they both satisfy P(sk , t  l) = Pkl. But how do we know that these surfaces 
are actually identical at every point? Prove that the surface generated by the 
pyramid algorithm is identical to the surface generated by Neville's algo- 
rithm by using (2.23) and induction to show that the coefficient of Pkl in the 
pyramid algorithm is 

Lrff (s l so ..... sm)L~ (t l to ..... tn). 

(See also Exercise 1 of Section 2.13.) 

2.12 Triangular Lagrange Patches 

To define rectangular interpolating surface patches, we need to choose our parame- 
ters to lie on a rectangular grid. Similarly, to construct triangular interpolating sur- 
face patches, we must select our parameters to lie on a triangular grid. We can build 
a triangular grid of size n by selecting three sets of lines (R 0 . . . . .  Rn; S O ..... Sn; and 
T O ..... T n) in the parameter plane, and insisting that the three lines R i,Sj, T k intersect 
at a common point whenever i + j + k = n. Let 

Ri n S j  n T k  = Qijk i + j + k = n 

=dp i + j + k  < n  ; 
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Q3oo P3oo 

P201 P210 

P102 Pi l l  P120 

Qoo3 Qo3o 
Qo12 Q021 Po03 P o 1 2  P 0 2 1  P030 

(a) Domain~tr iangular  grid (b) Rangentriangular array of points 

Figure 2.26 Data for a cubic triangular interpolant: (a) represents the nodes in the domain and (b) repre- 
sents the control points in the range. The nodes lie on a triangular grid, but the control points may be in arbi- 
trary positions. The surface A(s,t) must interpolate the control points Pijk at the nodes Qdkmthat is, A(Qij k) = 
Pijk. Compare to Figure 2.19 for a tensor product surface. 

then the points Qijk are said to form a triangular grid (see Figure 2.26). Notice that 
a triangular grid of size n consists of one point at the apex of the triangle, two points 
at the next level, three points at the next level, and so on until the final level with 
n + 1 points. Thus the number of points in a triangular array of size n is 

n+l 
]~ k (n + 1)(n + 2) / 2 - (n+2), = 2 

k=l 

which is exactly the same as the number of coefficients in a bivariate polynomial of 
degree n (see Exercise 1 of Section 2.10). 

Neville's algorithm for triangular surface patches is a dynamic programming 
procedure for generating a bivariate polynomial of degree n that interpolates a trian- 
gular array of control points ~jk at parameter values Qijk lying on a triangular grid 
of size n. 

To develop Neville's algorithm, we shall use barycentric coordinates in the 
parameter plane. (To review barycentric coordinates, see Section 1.2.3.) Given three 
control points P1,P2,P3 and three noncollinear parameter values Q1 = (sl,tl), 
Q2 = (s2, t2), Q3 = (s3, t3), we can apply bivariate linear interpolation to interpolate 
the control points at the specified parameter values. Simply set 

P(s,t) = fll(S,t)P1 + fl2(s,t)P2 + fl3(s,t)P3, (2.24) 

where fll(s,t),fl2(s,t),fl3(s,t) are the barycentric coordinates with respect to the 
points Q1, Q2, Q3 of the point Q in the parameter plane with rectangular coordinates 
(s,t). Equation (2.24) is the analogue in the parameter plane of Equation (2.5) along 
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the parameter line. By the standard properties of barycentric coordinates (Theorem 
1.1, Properties 4 and 5), the function P(s,t) is linear in s and t, and 

P(Sk,tk) = Pk k = 1,2,3. 

Now just like in Neville's algorithm for curves, the trick for constructing inter- 
polating surfaces is to build higher-order interpolants by performing linear interpola- 
tion on lower-order interpolants. Suppose we can construct degree n -  1 polynomials 
that interpolate triangular data on a triangular grid of size n -  1. Let Anoo,Aono,Ao0 n 
be the triangular interpolants for the overlapping triangular grids of size n - 1 with 
vertices at Qnoo,Qono,Qoon and corresponding overlapping arrays of control points 
with comers at PnOO,POnO,POOn. That is, each surface has the same index as the 
unique comer point interpolated by the surface (see Figure 2.27). 

Then by construction 

AnOO(Qijk)- Pijk i r 0 

Aono(Qijk) = Pijk J r 0 

AOOn (Qijk ) = Pijk k :/: 0 . 

To build the degree n triangular interpolant A on the triangular grid of size n, set 

A(s,t) = flnOO(S,t)AnOO(S,t) + flOnO(S,t)Aono(S,t ) + flOOn(S,t)Aoon(S,t) (2.25) 

where ~nOO,flOnO,flOOn are the barycentric coordinates relative to the points Qnoo, 
Qono,Qoon. 

(b) Overlapping control points 

Figure 2.27 Overlapping data for three quadratic triangular interpolants: (a) represents the three overlap- 
ping domains. Each domain contains a triangular grid of size two. The interior node Qll l  belongs to all three 
domains; nodes along the edges (dark triangles) belong to two overlapping domains; and nodes at the cor- 
ners belong to a single domain. (b) represents the three overlapping arrays of control points corresponding 
to these three domains. The interior control point Plll belongs to all three arrays; control points along the 
edges belong to two arrays; and control points at the corners belong to a single array. Compare to Figure 
2.24 for tensor product surfaces. 
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It is easy to check that A(s,t) interpolates the triangular array of control points 
{Pijk } on the triangular grid of parameter values {Q6k } when i + j + k - n. Certainly 

A(Qijk ) = Pijk i f  i, j , k  :/: 0 

because, by assumption, 

A;~pv (Qijk) - Pijk i f  i, j ,  k :/: O, 

and the barycentric coordinates sum to one. It remains to verify interpolation along 
the boundaries of the grid. Let's check along the boundary defined by i = O. If i = 0 
and j , k  :/: O, then Qoj k lies on the line joining Qono, Qoon, so 

and by construction 

/ ~ . o o ( P i j ~ )  - o 

Aono (Qojk ) - AOOn (Qojk ) - Pojk" 

Again since the barycentric coordinates sum to one, 

A(Qojk ) - Pojk" 

Finally, if i - j = 0, then 

so again 

flZ/~v (Qoo, ) - 0 v - 0 

=1 v - n  

A(Q00n ) = A00n (Qoon) =POOn. 

Similar arguments apply along the other two boundaries of the triangular grid. 
The three boundaries of the triangular patch are the images of the lines 

Ro,So,To.  Along each of these lines, A(s,t) is a degree n univariate polynomial that 
interpolates the corresponding boundary control points. Thus each boundary of an 
interpolating triangular patch is the Lagrange polynomial curve that interpolates the 
corresponding boundary control points. 

Equation (2.25) can be converted into a dynamic programming algorithm for 
A(s,t) in the usual way by first computing the linear interpolants over triangular 
grids of size one, then computing the quadratic interpolants over triangular grids of 
size two, then the cubic interpolants over triangular grids of size three, and so on 
until finally the degree n interpolant over the triangular grid of size n is generated. 
This procedure constructs a triangular pyramid of points. Figure 2.28 illustrates this 
algorithm schematically for cubic interpolants. 

Neville's pyramid algorithm guarantees the existence of triangular Lagrange 
basis functions. That is, there are bivariate polynomials L(ik(s,t ) of degree n depend- 
ing on the grid {Qijl~} such that 

A(s,t) - Zijk Lijk (S,t)Pijk . 
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/903 0 

Figure 2.28 A schematic diagram of Neville's pyramid algorithm for cubic surface interpolation. Each tri- 
angular panel represents the computation of a point at its center by linear interpolation of 
the points at its corners. Thus the light gray triangles represent linear patches built directly 
from the control points, the darker gray triangles represent quadratic patches built from 
overlapping arrays of control points, and the black triangle represents the cubic interpolant. 
Notice that interior control points are obscured by the panels, and down-pointing (white) tri- 
angles are ignored. Compare to Figure 2.25 for tensor product surfaces. 

As in the univariate setting, the basis function Lijk(s,t) is given by the sum over all 
paths from the point Pijk at the base of the pyramid to the point A(s,t) at the apex. 
Thus the basis function Lijk(S,t) can be computed using the up recurrence by setting 
Pijk = 1 and all the other control points to zero, or from the down recurrence by plac- 
ing a one at the apex of the pyramid, reversing all the arrows, and collecting the 
functions Lijk(S,t) at the base of the pyramid. 

As in the case of curves, it is also possible to derive simple explicit formulas for 
the basis functions Lijk(s,t). In the univariate setting, we observed that, due to the 
parallel property, all paths from any fixed point at the base to the apex of the recur- 
rence are identical up to constant multiples, and we used this observation to derive 
explicit expressions for the Lagrange basis functions. Similar observations apply to 
Neville's pyramid algorithm for interpolating triangular surfaces, although the paral- 
lel property may be a bit more difficult to visualize. Therefore, here we shall take a 
more direct approach to deriving explicit formulas for the Lagrange basis functions. 

In Neville's pyramid algorithm all the arrows are labeled with barycentric coor- 
dinates, so the basis functions are products of barycentric coordinates. But recall 
from Section 1.2.3 that barycentric coordinates for a triangle can be constructed 
from the equations of the lines joining the vertices of the triangle. To construct a tri- 
angular grid, we start by selecting three sets of lines R o .... ,Rn; SO,...,Sn; and T O ..... T n 
in the parameter plane, and the points {Qijk} in the grid lie on the intersections of 
these lines (see Figure 2.26). Thus we can use the equations of these lines, properly 
normalized, to represent all our barycentric coordinates. Define Aijk(S,t) to consist 
of the product of n lines that pass through all the points in the triangular grid except 
for Qijk by setting 
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Aijk(S,t) = Ro(s,t). . .Ri_l (S,t)So(s,t).. .Sj_l (S,t)To(s,t)...Tk_l (S,t ) 

(see Figure 2.29). We claim that 

Lijk (S,t ) = Aijk (s't) . , ,  

A6k (Sijk,tijk ) 

where (s/j k,t6k) are the rectangular coordinates of Qijk �9 
Let's check that this really works. First observe that Aijk(s,t ) is a polynomial of 

degree n, since i + j + k = n. Thus L6k(s,t ) has the correct degree. Next notice that 
Aijk(s6k,tij k) ~: 0 since Qijk = Ri ~ Sj ~ T k, so Qok does not lie on any of the lines 

in the product for A0k. Finally, we have the carchnal conditions 

Lijk(Qafl r) = 0 (i , j ,k) r (a, fl, T) 

= 1 (i, j , k )  = (a ,  r ,  T). 
(2.26) 

The first equality follows because if (i , j ,k) :/: (a,  fl, T), then since a + fl + "f = n = 
i + j + k, either a < i or fl < j or 7 < k. Hence Aij k (Qafl),) = O. The second equal- 
ity follows by our normalization, since 

Therefore, 

A/j~(OUk) 
Lijk (Qijk ) = = 1. 

a i jk(a i j~ , )  

a(s,t) = Eij Lij (s,t)eij  

Qnoo 

SO . . TO 

Rijl 

Qoon QOnO 
Ro 

Figure 2.29 The function Aijk(S , t) consists of the product of n lines that pass through all the points in the 
triangular grid except for Qijk. 
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is indeed an interpolant because by (2.26) 

a(Oa#r ) = Paflr " 

In Exercise 9 you will show that this interpolant is exactly the same as the interpo- 
lant generated by the pyramid algorithm. Figure 2.30 illustrates the control points 
and the corresponding basis functions for the cubic triangular interpolant. 

P300 RoR1R2 

P201 P210 RoR 1 TO RoR 1 So 

P102 P 1 1 1  P120 RoToT1 R o S o T o  RoSoS1 

P003 /9012 /9021 /9030 ToT1T2 SoToT1  S o S 1 T o  SOSlS2 

(a) Array of control points (19) Array of basis functions 

Figure 2.30 Arrays of (a) the control points and (b) (unnormalized) Lagrange basis functions for triangular 
cubic Lagrange surface patches. Here Ri, S j, T k are linear functions representing the lines that 
define the triangular grid in parameter space (see Figure 2.26). 

Exercises 

1. Use the explicit formula for the triangular Lagrange basis functions to 
develop a ladder evaluation algorithm for triangular Lagrange surface 
patches. 

2. Suppose that the control points for a triangular surface are taken from the 
triangular array generated by Neville's algorithm for an interpolating curve. 
What will the surface look like? 

3. Suppose that the control points for a triangular surface are taken from one of 
the triangular faces of the pyramid generated by Neville's algorithm for a 
tensor product surface. What will the surface look like? 

4. Give necessary and sufficient conditions on the control points for the trian- 
gular Lagrange surface patch to collapse to 

a. a single point 

b. a line 

c. a plane 

Justify your answer. 
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5. Implement Neville's algorithm for triangular surface patches. Experiment 
with triangular surfaces of different degrees. 

a. How does altering the arrangement of the control points affect the shape 
of the surface? 

b. How does changing the triangular grid affect the shape of the surface? 

6. a. What is the down recurrence for Neville's pyramid algorithm for triangu- 
lar surface patches? 

b. Explain why this down recurrence is faster for evaluation than the up 
recurrence. 

7. Consider an array {Pij} of (n~2) control points in 3-space and another array 
{Qij} of (n~2) nodes in the parameter plane. Suppose that the nodes are 
generated by the intersection of n+ 2 lines L 1 . . . . .  Ln+ 2 in the parameter 
plane (see Figure 2.31). 

a. Prove that there exists a bivariate polynomial of degree n that interpolates 
the given array of control points at the specified parameter values. 

b. What are the Lagrange basis functions for this interpolant? 

Q3 

Q1 d / /  ~ Q6 
L1 Q5 

Figure 2.31 Six points generated by the intersection of four lines. 

8. Let Pijk be a triangular array of (n~2) control points. Suppose we wish to 
interpolate these points with a surface at the parameter values (si,t j). For 
each j, define Pj(s) to be the curve that interpolates the control points 
Po,j,n-j . . . . .  Pn-j,j,O at the nodes s o . . . . .  S n _  j . Now define a point on the sur- 
face P(s,t) to be the value of the curve P(t) that interpolates the points 
Po(s) ..... Pn(s) at the nodes t o ..... t n (see Figure 2.32). 

a. Show that the surface P(s,t) interpolates the points Pijk at the nodes 
(si,tj). 

b. Describe the curves s = s o and t =t 0. 

c. Show that this surface has a singularity at (so,t n). 
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d. Suppose that s i = i and tj = j for all i, j .  Then the points (si,t j)  = (i, j) 
lie on a triangular grid. 

i. Describe the image of the curve s + t = n on the surface P(s,t). In 
particular, which control points are interpolated by this curve? 

ii. Show that this surface is not the same as the triangular Lagrange 
interpolant for the same nodes and control points. 

iii. Describe a dynamic programming algorithm for generating this sur- 
face. Draw the diagram for n = 3. 

iv. Show how to express this surface as a tensor product surface. In par- 
ticular, describe the nodes and the control points. 

P21o 
/:'300 ~ o 

P201; P l l l ~  ~ 
\ \ ~Pz(s).., . ' / "  

" ~  P021 
P102 Po12 

PO03 

P030 = P3(s) 

Figure 2.32 The construction of a three-sided surface that interpolates a triangular array of points. 

9. Prove that the triangular surface generated by Neville's pyramid algorithm 
is identical to the triangular surface generated from the explicit basis func- 
tions {Lijk(S,t) by using (2.25) and induction to show that the coefficient of 
Pijk in the pyramid algorithm is Lijk(s,t ). 

10. Consider a collection of nodes Qijk, i + j + k = n, in the parameter domain 
such that any three nodes Qijk, Opqr, Ouvw are affinely independent provided 
that neither (i,p,u) nor (j ,q,v) nor (k,r,w) are identical. 

a. Given a triangular collection of control points Pijk, i+ j + k = n, show 
that the same tetrahedral algorithm that defines the Lagrange interpolant 
over a triangular grid generates a well-defined surface Q(s,t) relative to 
the nodes {Qijk} even if the nodes {Qijk} do not form a triangular grid. 

b. Explain why the surface Q(s,t) need not interpolate the points {Pijk} at 
the nodes {Qijk }" 



2.13 Uniqueness of the Bivariate Lagrange Interpolant 103 

11. L-patches are surfaces defined in the following manner. Consider three sets of 
l ines--R 0 ..... Rn_l ; S O ..... Sn_l; and To,. . . ,Tn_l--Such that R a ~  Sfl ~ T?,= ~), 

a + f l + 7 " < n .  

a. Show that if a +/3 + 7 < n, then there exist constants ra&,,saflT,ta&, 
such that 

raflrR a + saflTS fl + taflyT ? - 1. 

Given a triangular collection of control points P/tic, i + j + k - n, the L-patch 
L(s , t )  is defined recursively by the tetrahedral algorithm 

eij ~ - eij  

Pgfl7 d-1 d-1 d-1 - raflyRaPa+l,fl?, + saflySflPa,fl+l 7 + taflyTTPa,fl,7+ 1 

L ( s, t ) - P(~O0 a + 16 + Y= n - d 

Show that 

b. There are constants cij k such that 

Lijk(S,t) = CijkRo(s,t). . .Ri_l (S , t )So(s , t ) . . .S j_l  (s , t )To(s, t ) . . .Tk_l  (S,t) 

i + j + k = n ,  
L(s , t )  - ~,Lijk (S,t)Pij k �9 

i+j+k=n 

c. If R i n Sj n T k = Qijk, i + j + k = n, then L(s,t) is the triangular Lagrange 
interpolant for the control points {Pijk } with nodes {Qijk }. 

12. A basis {L~j k (s,t)}, i+  j + k = n, is called a lineal basis if there are three 
sets of linear funct ions~R0 ..... Rn-1; SO ..... Sn-1; and To ..... Tn_l~SUch that 

Lqk(S,t ) = CijkRo(s,t). . .Ri_l (S , t )So(s , t ) . . .S j_l  (S, t)To(s, t) . . .Tk_l (S,t ) 

i + j + k  = n .  

Show that the following bases are lineal bases: 

a. Mijnk(s,t) = (ij~ )sitJ (monomial basis) 

b. Bijnk(s,t) - (ijnk )sitJ ( 1 -  s - t )  k (Bernstein basis) 

2.13 Uniqueness of the Bivariate Lagrange Interpolant 

In the preceding section we provided two distinct constructions for the triangular 
Lagrange interpolant: a dynamic programming algorithm based on a bivariate ver- 
sion of Neville's algorithm and an explicit formula using bivariate Lagrange basis 
functions. In Exercise 9 of the preceding section you showed that these two con- 
structions generate identical surfaces. But perhaps there are yet other constructions 
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that lead to different interpolating surfaces of the same degree. Here we shall show 
that just like in the univariate setting, the bivariate interpolant of fixed degree is 
unique. We shall concentrate on triangular patches; the rectangular tensor product 
case is similar so we leave it as an exercise (see Exercise 1). We begin with some 
simple observations about bivariate polynomials. 

LEMMA 
2.11 

Let l(s,t) = as + bt + c, a r 0, be a linear function and let f(s,t) be a bivariate 
polynomial of degree n. Then there is a bivariate polynomial g(s,t) of 
degree n -  1 and a univariate polynomial h(t) of degree n such that 
f (s,t) = l(s,t)g(s,t) + h(t). 

Proof  Treating f(s,t) and l(s,t) as polynomials in s with coefficients in t, we can 
write 

f ( s , t )  = f o ( t ) s  n + " ' +  fn_ l ( t ) s  + fn( t )  

l ( s , t )  = 10(t)s + l l ( t ) ,  

where fk(t)  and lk(t) are polynomials of degree k in t. Since loft) is a non- 
zero constant, the standard long division algorithm for polynomials in s 
yields 

f (s,t) = l(s,t)g(s,t) + h(t), 

where g(s,t) is a polynomial of degree n -  1 and h(t) is a polynomial of 
degree n. 

PROPOSITION 
2.12 

Let l(s,t) be a linear function and let f(s,t) be a polynomial of degree n. If 
the two curves l(s,t) = 0 and f ( s , t )  = 0 have n + 1 points in common, then 
there is a polynomial g(s,t) of degree n -  1 such that f(s,t) = l(s,t)g(s,t). 

Proof  By Lemma 2.11, if l(s,t) = as + bt + c, a ~: 0, then 

f (s,t) = l(s,t)g(s,t) + h(t) 

where g(s,t) is a polynomial of degree n -  1 and h(t) is a polynomial of 
degree n. Suppose that l ( s , t )= 0 and f (s , t)  = 0 have n + 1 points (Sl,tl), 
.... (Sn+l,tn+l) in common. Then 

h(t k )=O,  k = l  ..... n + l .  

Thus h(t) is a polynomial of degree n with n + 1 distinct roots. Hence by 
Corollary 2.4 h(t) is identically zero, so f ( s , t ) =  l(s, t)g(s,t) .  On the other 
hand, if a = 0, then the result is still valid because we can just reverse the 
roles of s and t. 
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Proposition 2.12 is actually a special case of Bezout's Theorem, which is a fun- 
damental result in algebraic geometry. Bezout's Theorem asserts that if f(s,t) is a 
polynomial of degree m and g(s,t) is a polynomial of degree n and the curves 
f(s,t) = 0 and g(s,t) = 0 agree at more than mn points, thenf(s,t) and g(s,t) have a non- 
constant common factor. Here, however, we need only use our special case of 
Bezout's Theorem to establish the uniqueness of the triangular Lagrange interpolant. 

THEOREM 
2.13 

The degree n Lagrange interpolant on a triangular grid of size n is unique. 

Proof Consider a triangular grid of size n defined by three sets of lines R 0 ..... Rn; 
S O ..... Sn; and T O ..... T n. Suppose that F(s,t) and G(s,t) are two degree n 

polynomials that interpolate the same data on this grid, and let H(s,t) = 
F(s , t ) -G(s , t ) .  We shall prove that H(s,t)  is identically zero by showing 

that To(s,t ) ..... Tn(s,t ) are all factors of H(s,t). To proceed, observe that by 
construction, H(s,t) vanishes at all the points on the grid; hence the degree n 

curve H(s,t) = 0 and the line To(s,t ) = 0 agree at n + 1 points. Therefore, by 
Proposition 2.12, there is a polynomial Hl(s,t  ) of degree n - 1 such that 

H(s , t )= To(s,t)Hl(S,t ). Now suppose that we have already shown that 
H(s , t )= To(s,t)...Tp(s,t)Hp+l(S,t), where Hp+l(s , t ) i s  a polynomial of 
degree n -  p -  1. Then since H(s,t) vanishes at all points on the grid and the 
lines T O ..... Tp do not pass through any of the grid points on the line Tp+ 1, 
Hp+l(S,t) - 0 and Tp+l(S,t ) - 0 agree at n - p  points. Hence Hp+l(s,t ) is 
divisible by Tp+l(s,t). Therefore it follows by induction on p that H(s,t) = 
Hn+l(s,t)To(s,t)...Tn(s,t ), where Hn+ 1 is a constant. But this is impossible 
unless Hn+ 1 = 0, since, by construction, H(s,t) is a polynomial of degree n, 
so H(s,t)  cannot factor into n + 1 linear factors. Hence H(s,t) - O. We con- 
clude that F(s, t )= G(s,t), and therefore that the triangular interpolant is 
unique. 

It follows immediately from Theorem 2.13 that the bivariate version of Neville's 
algorithm and the explicit formula based on the bivariate Lagrange basis functions 
generate the same interpolating surface. 

COROLLARY 
2.14 

Let {Qijk} be the grid points on a triangular grid of size n. If P(s,t) is a 
polynomial of degree n, then P ( s , t ) -  Zijk Lijk(S,t)P(Qijk). 

Proof The polynomials P(s,t) and Zijk Lijk(S,t)P(Qijk) both interpolate the values 

{P(Qijk)} at the nodes {Qijk }. Hence by the uniqueness of the polynomial 

interpolant P(s,t) - Zijk Lijk (s,t)P(Qijk ). 



106 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm 

Exercises 

1. Let f (s , t )  be a bivariate polynomial of bidegree (m,n), and let a be a fixed 
constant. 

a. Show that there is a bivariate polynomial g(s,t) of bidegree ( m -  1,n) and 
a univariate polynomial h(t) of degree n such that f(s,t) = (s - a)g(s,t) + 
h(t). 

b. Show that if f (a , t )  = 0 has n + 1 roots, then there is a polynomial g(s,t) 
of bidegree (m - 1,n) such that f ( s , t )  = (s - a)g(s,t). 

c. Show that the tensor product Lagrange interpolant on a rectangular grid 
of size (m + 1) • (n + 1) is unique. 

d. Conclude that Neville's algorithm based on successive univariate inter- 
polation in s and t and the pyramid algorithm based on bilinear interpola- 
tion generate the same interpolating surface. 

2. a. Prove that the functions {Lr~(slso ..... sm)L~(slto ..... tn)} form a basis for 
the bivariate polynomials of bidegree (m,n) by using (2.12) to show that 
these functions form a maximal linearly independent collection of poly- 
nomials of bidegree (m,n). 

b. Using part (a), prove that the tensor product Lagrange interpolant on a 
rectangular grid of size (m + 1) • (n + 1) is unique. 

3. a. Without appealing to Corollary 2.14, prove that the functions {Lijk(S,t)} 
form a basis for the bivariate polynomials of degree n by using (2.26) to 
show that {Lijk(S,t)} is a maximal linearly independent collection of 
polynomials of degree n. 

b. Using part (a), prove Theorem 2.13. 

4. Prove that ~.,ijk Lijk (s,t) - 1. 
5. Show that the nodes of a triangular grid of size n cannot lie on a polynomial 

curve f(s,t) = 0 of degree n. 

6. Let {Qijk} be a triangular grid of size n. What coefficients should we put at 
the base of Neville's algorithm to generate the polynomials s,t,sPtq, 
O < p + q < n ?  

7. Suppose that {Qijk} is a triangular grid of size n. Let P(s,t) be a polynomial 
of degree n, and let A(s,t) be the polynomial generated by Neville's algo- 
rithm that interpolates the control points P(Qijk). Prove that A(s,t) - P(s,t). 

8. Without appealing to Proposition 2.12, give an elementary proof that if a line 
L(s,t) - as + bt + c = 0 intersects a degree n polynomial curve P(s,t) = 0 in 
more than n points, then every point on the line lies on the polynomial curve. 

9. We say that two surfaces P(s,t) and Q(s,t) are equivalent if P(s,t) = Q(s,t) 
for all (s,t). 

a. Show that every (m + 1) x (n + 1) rectangular grid is embedded in a trian- 
gular grid of size m + n. 
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b. Show that the triangular grid T n = { (i , j)  l i, j > O, i + j < n} of size n is 
embedded in an (n + 1) x (n + 1) rectangular grid. 

c. Show that every tensor product Lagrange interpolant P(s,t) of bidegree 
(m,n) is equivalent to a unique triangular Lagrange interpolant A(s,t) of 
degree m + n. 

d. Show that every triangular Lagrange interpolant A(s,t) of degree n on the 
grid T n is equivalent to a unique tensor product Lagrange interpolant 
P(s, t )  of bidegree (n,n). 

10. Suppose that {Fij(s,t)} is a collection of blending functions and that 
{(sij,tij)} is a collection of nodes for some fixed finite set of indices 
{(i, j) e II. 

a. Show that for each collection of points {P/j }, there is a function 

F(s, t )  - ~,(i,j)elCijFij(s,t) such that F(s~i,tij ) - Pij for all (i , j)  e I ,  

if and only if detlFpq(Skl,tkl)] ~: O. 

b. Show that if det[Fpq(Skl,tkl) I r O, then the interpolant 

F ( s , t ) -  Z(i,j)ezcijFij(s,t) 

that satisfies F(s(i,tij ) - Pij for all (i, j) e I is unique. 

c. Deduce that if an interpolant 

F(s, t )  = Z(i,j)ezc(iFij(s,t) 

exists for every collection of points {~j}, (i, j ) e  I,  then the interpolant 
must be unique. 

d. Conclude that 

i. The degree n Lagrange interpolant on a triangular grid of size n is 
unique. 

ii. The bidegree (m,n) Lagrange interpolant on a rectangular grid of size 
(m + 1) x (n + 1) is unique. 

2.14 Rational Lagrange Surfaces 

Many common surfaces such as the sphere and the torus cannot be represented 
exactly by polynomial parametrizations. As with nonpolynomial curves, we could 
try to approximate these surfaces with polynomials by interpolating lots of points 
along the surface. Unfortunately, often we would need to use polynomials of quite 
high degree to generate a good approximation. 

The sphere, however, like the circle, has a rational parametrization; in fact, the 
sphere has several different rational parametrizations. Below we give a rational qua- 
dratic and a rational biquadratic parametrization for the unit sphere. 
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�9 Quadratic parametrization of the sphere 

2s 2t 1 - s  2 - t  2 

x - 1+ s 2 + t 2 Y - 1+ s2 + t2 z - 1+ s2 + t2 (2.27) 

�9 Biquadratic parametrization of the sphere 

2s(1 - t 2) 2t(1 + s 2) (1 - s2)(1 - t2).  (2.28) 
- - z -  s2 x ( l + s  2 ) ( l + t  2) Y ( l + s  2 ) ( l + t  2) (1+ ) ( l + t  2) 

For both of these parametrizations, you can easily check that x 2 + y2 + z 2 = 1, so 
both parametrizations do indeed represent the same unit sphere. 

To represent a rational surface using Lagrange interpolation, we proceed just as in 
the case of a rational curve: we lift the surface from a rational parametrization in affine 
space to a polynomial parametrization in Grassmann space by treating the denomina- 
tor as mass. For example, for the sphere we can consider the four-dimensional surfaces 

x -  2s y -  2t z -  1 - s  2 - t  2 w -  l + s  2 + t  2 

x - 2s(1 - t 2) y - 2t(1 + s 2) z - (1 - s 2)(1 - t 2) w - (1 + s 2)(1 + t 2 ) . 

To find the mass-points that are the control points of a polynomial surface in Grass- 
mann space, we first select a g r idma  triangular grid for parametrizations of total 
degree n or a rectangular grid for parametrizations of bidegree ( m , n ) ~ a n d  then eval- 
uate the polynomial parametrization at the points of the grid. Dividing by the mass 
yields the control points along the original rational surface. 

We can also use the Lagrange blending functions to write explicit formulas for a 
rational surface. If (mijkPijk,mijk) or (mjkl~k,mjk) represent the control points of the 
corresponding polynomial surface in Grassmann space, then projecting from Grass- 
mann space to affine space, we obtain 

�9 Rational triangular Lagrange parametrization 

R ( s , t )  - ~'ijk mijkPijkLijk (S't) 

~,ijk mijk Lijk ( S, t) 
(2.29) 

�9 Rational tensor product Lagrange parametrization 

m n 

~, ]~mklPklldn~(s l so ..... sm)L~(t l t 0 ..... tn) 
R(s,t) = k=0/=0 

m ?'/ 

~., ~,mklErff (s Is 0 ..... sm)L~(t l t 0 ..... tn) 
k=0 l=O 

(2.30) 

Rational Lagrange surfaces defined by (2.29) and (2.30) interpolate their control 
points Pijk or Pjk, since the corresponding polynomial surfaces in Grassmann space 
interpolate the mass-points (mijkPijk,mij k) or (mjkPjk,mjk). Thus the masses serve as 
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shape parameters: they do not affect interpolation, but they do affect the shape of the 
surface. But just as in the case of rational Lagrange curves, modest changes to a sin- 
gle mass can produce drastic changes in the shape of a surface. Thus care must be 
taken when modifying the masses of a rational Lagrange surface. 

In a rational tensor product Lagrange surface some masses mkl may be set to 
zero. When mkl = 0 ,  the mass-point (mklPkl,mkl) is replaced by a vector (Vkl,O) in 
Grassmann space. Typically when mkl = 0 ,  the rational Lagrange surface R(s,t) has 
a singularity at (Sk,t !) because when mkl = 0 all the Lagrange basis functions in the 
denominator vanish a t  (Sk,tl). If, however, both mkl = 0 and Vkl = 0, the numerator 
also vanishes and the singularity is replaced by a base point, a parameter pair (Sk,tl) 
where both the numerator and the denominator vanish. Although, unlike curves, 
there may be no common factor in the numerator and denominator, base points lower 
the implicit degree of the parametric surface. Nevertheless, the resulting rational sur- 
face still interpolates the control points Pij, (i, j)  r (k,1). Analogous results hold for 
triangular surfaces. 

If the denominator of a rational Lagrange surface in (2.29) or (2.30) is ever zero 
and the numerator is nonzero, then we cannot project the surface continuously into 
affine space. Rather we must project the surface into projective space. Notice, there- 
fore, that for a rational triangular Lagrange surface, the parameter space is an affine 
space, the control points reside in a Grassmann space, and the surface itself lies in a 
projective space. 

Exercises 

1. What is the effect on a rational tensor product Lagrange surface if mkl = 0 
for all 1 = 0 ..... n ? 

2. Experiment with altering the masses in a rational Lagrange surface. 

a. What are the local and global effects of altering a single mass? 

b. What is the effect of a negative mass? 

c. What happens if all the masses are changed simultaneously? 

3. a. Find the control points and the masses for the sphere given by the 
quadratic parametrization (2.27) relative to the triangular grid 

T2 = { (i , j)  l i, j > O, i + j < 2 } .  

b. Use the results of part (a) together with Neville's pyramid algorithm to 
render the sphere. 

4. a. Find the control points and the masses for the sphere given by the bi- 
quadratic parametrization (2.28) relative to the rectangular grid 
R2, 2 = {(i,j) I 0 _< i , j  < 2}. 

b. Use the results of part (a) together with Neville's algorithm to render the 
sphere. 
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5. The torus with inner radius d -  a and outer radius d + a is the locus of points 
that satisfy the degree 4 algebraic equation 

a. Verify that 

x y2 z 2 d 2 a2)2 - + 4d2z 2 - 4a2d 2 - 0. + + 1 

d(1 + s 2)(1 - t 2) + a(1 - s 2)(1 - t 2) 
x -  

( l + s Z ) ( l + t  2) 

2d (1 + s 2 )t + 2a(1 - s 2 )t 
y =  

(1 + s2)(1 + t 2) 

2as(1 + t 2) 
2'-- 

( l + s 2 ) ( l + t  2) 

is a rational biquadratic parametrization of the toms. 

b. Find the control points and the masses for the toms given by the bi- 
quadratic parametrization in part (a) relative to the rectangular grid 
R2, 2 = {(i,j) I 0 < i , j  < 2}. 

c. Use the results of part (b) together with Neville's algorithm to render the 
toms with d = 5 and a = 2. 

6. Let x = f ( s ) ,  z = g(s )  be a curve in the xz-plane. 

a. Verify that the surface of revolution generated by rotating this curve 
around the z-axis can be represented by the parametric equations 

2 t f ( s )  (1 - t 2 ) g ( s )  x = ( 1 - t 2 ) f ( s )  Y - z = �9 
2 ' 2 '  2 

l + t  l + t  l + t  

b. Conclude that if the original curve x = f ( s ) ,  z = g(s)  is a rational curve 
of degree m, then the corresponding surface of revolution is a rational 
surface of bidegree (m,2). 

c. Use the result of part (a) to generate rational parametrizations for the 
right circular cylinder and right circular cone by rotating a line about the 
z-axis. 

i. Find the control points and the masses for the cylinder and cone 
given by these parametrizations relative to the rectangular grid 

R1, 2 = {(i,j) I 0 < i < 1,0 < j < 2}. 

ii. Use the results of part (i) together with Neville's algorithm to render 
the fight circular cylinder and fight circular cone. 

d. Use the result of part (a) to generate rational parametrizations for the 
sphere and the torus by rotating a circle about the z-axis. 

i. Find the control points and the masses for the sphere and the toms 
given by these parametrizations relative to the rectangular grid 

R2, 2 = {(i,j) I 0 < i , j  < 2}. 
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ii. Use the results of part (i) together with Neville's algorithm to render 
the sphere and the torus. 

7. a. Show that 

2s(1 - t 2) 4st (1 + s 2)(1 + t 2) 
m 

z -  t2 x (1 - s 2 )(1 + t 2)  Y (1 - s 2)(1 + t 2 ) (1 - s 2)(1  + ) 

is a parametrization for the hyperboloid z 2 - x 2 - y2 _ 1. 

b. Find the control points and the masses for this hyperboloid relative to the 
rectangular grid R2, 2 = {(i, j )  I 0 _< i , j  <_ 2}. 

c. Use the results of part (b) together with Neville's algorithm to render this 
hyperboloid. 

8. Let R(s,t) be a rational Lagrange surface over a grid G (triangular or rectan- 
gular) with control points (mgPg,mg), g e G. Let m h increase and hold mg 
fixed for g ~: h. 

a. Show that limmh~ooR(g ) - Pg. 

b. limmh~ooR(s,t) - Ph for all (s,t) ~ G. 

c. Conclude that the limit surface is a disconnected collection of points. 

d. What does the limit surface look like if several masses are allowed to 
increase simultaneously? 

9. Given a grid G (triangular or rectangular) and masses {mg }, g e G, define 

Rg (s,t) - mgLg (s,t) 
~. mhL h (s , t) '  g e G. 

h~G 

Show that these functions behave like rational Lagrange basis functions. In 
particular, 

a. EgeGRg(s,t)  - 1. 

b. Rg(h) = 0 h g: g 
=1 h - g .  

c. R(s,t)  - Zg~G Rg(s,t)Pg ~ R(h) - Ph for all h e G. 

2.15 Ruled, Lofted, and Boolean Sum Surfaces 

So far we have performed only discrete interpolation; that is, we have developed 
curve and surface techniques to interpolate finite collections of control points. But if 
we replace the control points by curves, then essentially the same techniques can be 
applied to accomplish transfinite interpolation--that  is, interpolation of an infinite 
collection of points on a finite collection of curves. 
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Suppose, for example, that we are given two curves Uo(s) and Ul(S) and we 
require a surface to pass through these curves. We can perform linear interpolation 
on the curves to generate the surface 

R(s,t) = (1-  t)Uo(s) + tUl(S ). 

This expression is the same linear interpolation formula we first used to interpolate 
two points, only now the two points have been replaced by two curves. If we fix the 
value of s = s*,  then R(s*,t) is the line connecting the two points Uo(s*) and 
U 1 (s*). Thus a line passes through each point on this surface. For this reason R(s,t) 

is called a ruled surface (see Figure 2.33). 
When U 1 (s) is a translate of U0(s)~that  is, when U 1 (s) = Uo(s)+ v~ then  

R(s,t) = Uo(s ) + tv 

is called a cylinder over Uo(s). When U 1 (s) collapses to a single point V, then 

R(s,t) = (1 - t)Uo(s ) + tV 

is called the cone over Uo(s ) with vertex V (see Figure 2.34). 
Lofting generalizes ruled surfaces by applying Lagrange interpolation to an 

arbitrary finite number of curves. Given a collection of curves Uo(s),...,Un(s ), we 
can construct a surface that interpolates all these curves by setting 

n 

Lu(S,t ) = y~Lnk(t l to ..... tn)Uk(s). 
k=O 

The surface Lu(s,t) is called the lofted surface generated by the rail curves 
Uo(s) ..... Un(s) (see Figure 2.35). It follows immediately from the cardinal condi- 
tions (2.12) that 

Lu(s, tj)= Ui(s). 

Ul(s) 

Uots) ,, 

Figure 2.33 A ruled surface interpolating the curves Uo(s) and Ul(s). 
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V 

Uo(S) 

Figure 2.34 The cone over Uo(s) with vertex V. 

Lu(s,t] 

U3(s) 

U1 ( s ) ~  

__j 
Figure 2.35 A lofted surface Lu(s,t)interpolating the curves Uo(s) . . . . .  U3(S). 

Provided we have some procedure for computing points along the rails 
Uo(s) ..... Un(s), we can compute points on this lofted surface using any of our evalu- 
ation algorithms for interpolating curves; we simply replace the control points 
PO ..... Pn by the rails Uo(s ) ..... Un(s ) and apply the method. Thus Neville's algorithm, 
the ladder algorithm, or the down recurrence can all be used to calculate points along 
Lu(s,t). 

Designers often prefer to specify a surface by a mesh of curves rather than a 
sequence of curves because a mesh gives them finer control over the shape of their 
surface. A mesh of curves is the image of a grid of lines in the parameter plane. Thus 
a mesh can be specified by two sets of curves Uo(s) ..... Um(s) and Vo(t) ..... Vn(t), 
where each U-curve intersects each V-curve at 

-- ( s j )  = vj(t ). 

A surface is then required to interpolate all the curves in the mesh or equivalently to 
fill in the spaces between the grid lines in the parameter plane (see Figure 2.36). 
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t = t  3 

S=So I I I I s = s 3  
n m 

�9 A A A 
�9 w w �9 

t = t  0 

(a) Grid of lines in the domain 

eo3 U3(s) 

~ P33 

Vo O k. k k I 

~ P 3 U o ( s )  o 

(b) Mesh of curves in the range 

Figure 2.36 A Boolean sum surface interpolates a mesh of curves in the range that is the image of a grid 
of lines in the parameter domain. 

How do we construct such a surface? We already have a surface that interpolates 
all the U-curves~the lofted surface Lu(s, t) .  Similarly, the lofted surface Lv(s , t )  
interpolates all the V-curves. One idea we might try is to add these surfaces together 
to generate a surface that interpolates the entire mesh. But this approach cannot be 
quite right for two reasons. First, surfaces are collections of points in an affine space, 
and you cannot add points in an affine space. Second, the intersection points Pjk 
would be counted twice, once for the U-curves and once for the V-curves. Thus we 
need somehow to subtract out one copy of the intersection points Pjk" The solution 
to both problems is to add the lofted surfaces, but then to subtract out the tensor 
product surface generated by the intersection points. This approach yields the Bool- 
ean sum surface defined by setting 

B(s,t) = Lu(s, t)  + L v ( s , t ) -  Tp(s,t), (2.31) 

where Lu(s, t )  is the lofted surface for the U-curves in the s direction, Lv(s , t )  is the 
lofted surface for the V-curves in the t direction, and Te(s,t)  is the interpolating ten- 
sor product surface for the control points Pjk. 

Let's check that the Boolean sum surface actually does interpolate all the curves 
in the mesh. We can expand (2.31) by substituting in the definitions of the lofted and 
tensor product surfaces to obtain 

m n 

B(s,t) = ~,L~(t  l t 0 ..... tm)Uk(s)+ ~,L~(s l s 0 ..... sn)Vj(t ) 
k=0 j=0 

m n 

- ~, ~,L~(s Is 0 ..... Sn)L~( t l t  0 .... ,tm)Pjk . 
k=0j=0 

Now let's evaluate along s = s i . By the cardinal conditions (2.12) 
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m m 
m B(si , t  ) - E L  k ( t i t0  ..... tm)Uk(Si)+ Vi(t) - ~,Erff (t l to ..... tm)Pik �9 

k=0 k=0 

But Uk(S  i) = Pik, SO the first and last sums cancel. Therefore, 

B(si , t  ) = Vi(t ) . 

Similarly, evaluating along t - t i, we obtain 

B(s, t i ) = U i ( s ) ,  

so the Boolean sum surface B(s,t)  does indeed interpolate the entire mesh of curves. 

Exercises 

1. Complete the proof that the Boolean sum surface interpolates a mesh of 
curves by showing that it interpolates the U-curves as well as the V-curves. 

2. Show that a lofted surface is equivalent to a tensor product surface if all the 
rails are polynomial curves. 

3. Show that a Boolean sum surface is equivalent to a tensor product surface if 
all the curves in the mesh are polynomial curves. 

4. Using the parametrization of the circle 

2t 1 - t  2 
x(t)  - 1+ t 2 y(t) 1+ t 2 

a. Generate a rational parametrization for a right circular cylinder as a ruled 
surface. 

b. Generate a rational parametrization for a right circular cone as a ruled 
surface. 

5. Consider three curves U 1,U2,U 3 defined over the edges of a triangle with 
vertices QI,Q2,Q3 such that Ui(Qk ) - U j ( Q k ) - P k ,  i r j :/: kmsee  Figure 
2.37. Let f l l , f l2, f13 be the barycentrlc coormnates on AQ1Q2Q3, and let 

Tp(fl l ,  fl2, fl3 ) = fliP1 + f12P2 + f13P3 

be the plane specified by the three points P1,P2,P3- Define three cones 

Cui( f l l , f l2 , f l  3) (1 - f l i )U i ( f l JQ~ '+  flkQk I - +fliPi, i v e j v e k  
- f l i  

and the surface 

B(fl l ,  f12, f13 ) = Cu 1 (ill, f12, f13 ) + CO 2 (ill, f12, f13 ) + CU 3 (ill, f12, f13 ) 

- 2 Tp ( fll , fl2 , fl3 ) " 
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Q1 

b .  
v 

Q2 " " Q3 P2 

P1 

P3 

Figure 2.37 Three curves  U1,U2,U 3 defined over the edges of triangle AQ1Q2Q 3. 

Show that 

a. Cui  ( ~ 1 , ~ , / ~ 3 )  -- Ui ' w h e n  f l i  = O ,  i - 1,2,3. 
b. B(fll ,  [32, [33) = Ui, when fli = 0, i = 1,2,3. 

Thus the surface B(fl l , f l2, f l3 ) is an analogue for triangles of the Boolean 
sum surface for rectangles. 

6. Suppose that D~(s)  ..... Dn(s)  and E ~ ( t )  ..... Em(t )  are collections of func- 
tions, not necessarily polynomials, that satisfy the cardinal conditions at 
s o ..... s n and t O ..... t m, that is, 

D~(s i )  = 0 i r k and E ~ ( t j )  - 0 j r k 

=1 i = k  =1 j - k  . 

Consider a mesh of curves Uo(s ) ..... Um(s  ) and Vo(t ) ..... Vn(t), where each 
U-curve intersects each V-curve at 

Pjk - Uk(s~)= vj(tk). 

Define 

11 m 
oee(s, t)= ~. X&(s)eT(t)e i  j 

i=0 j=0  

m 11 
eu(s,t)= XE~(t)Uk(s) Ov(s,t)= XO~(s)Vk(t) 

k=0 k=0 

O E u v ( S , t )  - Eu ( s , t )  + D v ( s , t ) -  O E e ( s , t )  

Show that 

a. DEp(si , t j )  = Pij 

b. Eu(s, t j )  = Uj(s) and Dv(si , t  ) - Vi(t ) 

c. DEuv(S i , t  ) = Vi(t ) and DEuv(S, t j )  = Uj ( s )  
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2.16 Summary 

In this chapter you have encountered most of the central ideas of this discipline: 
existence and uniqueness theorems; dynamic programming procedures; pyramid 
algorithms; up and down recurrences; basis functions; blends of overlapping data; 
rational schemes; tensor product, triangular, lofted, and Boolean sum surfaces; along 
with the use of barycentric coordinates to represent points in the domain of triangu- 
lar surface patches. These themes will recur in various guises throughout this book. 
If you have understood everything in this chapter, the rest will be easy! 

One core tenet of approximation theory and numerical analysis is that all poly- 
nomial bases are not equal. To solve problems in interpolation and approximation, 
we must use the basis most appropriate to the problem at hand. In this chapter we 
have seen that the Lagrange basis, and not the standard monomial basis, is most 
suited both for point interpolation and for polynomial multiplication. We continue 
with this theme in the next chapter, where we shall study Hermite interpolation-- 
interpolation of both point and derivative datamby invoking special Hermite basis 
functions. 
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Hermite Interpolation 
and the Extended 
Neville Algorithm 

Lagrange polynomials interpolate positions; Hermite polynomials interpolate posi- 
tions and directions~points and vectors, function values and derivatives. Hermite 
interpolation is important for several reasons. Frequently in computational science 
and engineering we have information about tangents, curvatures, or other higher- 
order derivatives at various locations, and we need to generate curves and surfaces 
that fit this data. In geometric design, interpolating derivative data gives us more 
control over the shape of the curve or surface. Moreover, often we want to connect 
two or more curves or surfaces; to join them smoothly, we require the ability to inter- 
polate derivatives across common boundaries. 

As we did with Lagrange interpolation, we will begin with curve schemes and 
then extend our techniques to surfaces. Many of the methods developed for 
Lagrange interpolation, including Neville's algorithm, extend readily to Hermite 
interpolation. 

3.1 Cubic Hermite Interpolation 

Two points determine a line, but a point and a direction vector also determine a line. 
Suppose we want the equation of the line P(t) passing through the affine point P0 in 
the direction v 0. Then we can write 

POO(t) = PO + tVo" (3.1) 

Notice that P00(0)= P0 and P~0(0)= v 0, so Poo(t) does indeed interpolate position 
and derivative data at t = 0. We denote the line that interpolates the points P0 at t = 0 
and P1 at t = 1 by P01(t); similarly we shall denote the line that interpolates the point 
P0 and the direction vector v 0 at the parameter t = 0 (or any other parameter t = t o ) 
by Poo(t). The double-zero subscript in Poo(t) indicates that two pieces of informa- 
tion, position and direction vector~function value and derivative~are interpolated 
a t t = 0 .  

119 
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Let's try a slightly harder problem. Suppose we have a pair of points and tangent 
vectors (Po,vo) and (Pl,Vl) that we wish to interpolate with a smooth curve at the 
parameters t = 0 and t = 1. How shall we proceed? 

We have a way to interpolate (Po,vo) at t = 0; we can use the straight line Poo(t). 
Similarly, we can interpolate (Pl,Vl) at t = 1 with the straight line 

P11(t) - P1 + (t - 1)v 1 . 

Somehow we need to blend these lines together to form a smooth interpolating 
curve. From Chapter 2 we know that with a quadratic curve, we can interpolate three 
data points. Here, however, we have four pieces of da ta - -  (Po, Vo) and (P1, Vl)~SO it 
is unlikely that we could succeed with just a quadratic curve. Perhaps we should first 
attack a simpler problem that does have a quadratic solution, interpolating only three 
pieces of data. Let's try then to find a smooth curve that interpolates the data (P o, vo) 
at t = 0 and the point P1 at t = 1. 

The line Poo(t) interpolates the data (Po,vo) at t = 0, and the line Pol(t) interpo- 
lates the points Po,P1 at t = 0,1. In Lagrange interpolation the trick for building the 
quadratic interpolant Pol2(t) is to perform linear interpolation on the linear interpo- 
lants Pol(t) and P12(t). Let 's try the same tactic here. 

Applying linear interpolation to the two curves Poo(t) and P01(t) generates the 
c u r v e  

POOl(t) = (1 - t)Poo(t) + tPo1 (t) (3.2) 

(see Figures 3.1 and 3.2). By substitution it is easy to verify that Pool(t) interpolates 
P0 at t = 0 and P1 at t = 1, since by (3.2) 

POOl(O) = eo0(O) = PO 

Pool (1) = Po1 (1) = P1 �9 

PO - Vo .. Poo(t) 
r -  

P] 

Figure 3.1 The two lines Poo(t) and Pol(t), and the quadratic interpolant Pool(t) generated by linear 
interpolation on the two lines. 
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Poo~(O 

/ 
Poo(t) POl(t) 

1 - t /  

Vo Po Pa 

Figure 3.2 A graphical representation of Equation (3.2). 

To verify that the derivative of P001 (t) also interpolates the vector v 0 at t = 0, observe 
that Poo(t) and P01 (t) both interpolate the point P0 at t - 0. Therefore, 

POOl (0) : Pd0 (0) - P00 (0) + P01 (0) = v 0 �9 

Thus our trick of performing linear interpolation on the linear interpolants actually 
works. Similarly, if we set 

Poll(t) = (1 - t)Pol(t ) + tP1 l(t), 

then it is easy to verify that PO11 (0) = P0, Poll (1) = P1, P(~I 1 (0) = v 1 . 
By construction both Pool(t) and POll(t) are quadratic curves. If Neville's algo- 

rithm really works for Hermite interpolation, then we should be able to form the 
cubic interpolant for the data (P0, vo) and (P1, Vl) by linear interpolation on the qua- 
dratic interpolants Po01 (t) and P011 (t). 

Let's try this ploy one more time. Set 

P0011 (t) = (1 - t)Po01 (t) + tPo11 (t). 

Using the properties already established for P001 (t) and P011(t), we find that 

P0011(0) = P001 (0) = P0 

P0011(1) = P011(i) = P1 

P(~011 (0) = P(~01 (0) - P001 (0) + P011 (0) = v 0 

P(~011 (1) = Pt~l 1 (1) - P001 (1) + P011(i) = v 1 

SO POOl 1 (t) really is the desired cubic Hermite interpolant. The repeated subscripts on 
P0011 (t) indicate that this function interpolates both the position and the tangent vec- 
tor at t - 0,1. We diagram our algorithm for building P0011 (t) from the data (P0,v0), 
(P 1,v 1) in our usual triangular fashion in Figure 3.3. 

We can also express the cubic Hermite interpolant explicitly in the form 

Pool 1 (t) - H o ( t ) p  0 + H 1 (t)P1 + ho( t )v  0 + h 1 (t)v 1" 
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Pooll(t) 

/ 
POOl( t ) POll( t ) 

/ / 
t'oo(0 Po (O PI (O 

Vo PO P1 vl 

Figure 3.3 Neville's algorithm for cubic Hermite interpolation at t = 0,1. Notice that the labels entering a 
node sum to one only if both arrows emerge from a point or a curve. Labels on arrows 
emerging from vectors do not need to be normalized, since for vectors we are not required 
to take affine combinations. 

As in Lagrange interpolation, the cubic Hermite basis functions Hj(t),hj(t), j = 0,1, 
are the sums over all paths from their coefficient at the base of the Neville triangle to 
P001 l(t) at the apex. Thus we can use either the up recurrence--replacing Pj or vj by 
1 and setting all the remaining data to 0 - - o r  the down recurrence~placing a 1 at the 
apex, reversing all the arrows, and collecting the basis functions at the base of the tri- 
a n g l e - t o  find explicit expressions for these Hermite basis functions. Performing 
these calculations yields 

no(t) - (1 -  t) 2 (1 + 2t) ho(t ) = t (1 -  t) 2 

H 1 (t) = t 2 (3 - 2t) h 1 (t) - t 2 (t - 1) . 

The formulas for the functions ho(t) and h 1 (t) are easy to derive: simply take 
the products of the labels along the left and right lateral edges of the triangle. The 
formulas for the functions Ho(t) and H 1 (t) are only slightly more difficult to deduce. 
Since every path from Po to the apex of the triangle contains two factors of (1-  t), 
we can factor out (1 - t) 2 and sum over the remaining paths. By inspection, this 
yields Ho(t) = (1 - t)2(1 + 2t). Similarly, every path from P1 to the apex of the trian- 
gle contains two factors of t, so here we can factor out t 2 and sum over the remaining 
paths. Again by inspection, this yields H l(t) = t2(3 - 2t). Now it is easy to verify that 
Ho(t ) + H i ( t ) -  1. This constraint is necessary, since these basis functions multiply 
points; there is no similar constraint on h0(t) and h l(t), since these functions multi- 
ply vectors. 
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The Lagrange basis functions are themselves Lagrange interpolants because 
they satisfy the cardinal conditions (2.12). Similarly, the cubic Hermite basis func- 
tions are individually cubic Hermite interpolants because by the up recurrence they 
satisfy 

Ho(0 ) = 1 Ho(1) = 0 H0(0) = 0 //6(1) = 0 

H 1 (0) = 0 H 1 (1) = 1 H~(0) = 0 HI(l) = 0 

ho(0) = 0 ho(1) = 0 h6(0) = 1 h6(1) = 0 

h 1 (0) - 0 h 1 (1) - 0 hi(O) - 0 hi(l) = 1 

One important application of cubic Hermite interpolation is to generate piece- 
wise cubic curves that join together smoothly. Given point and tangent vector data 
(Po,vo) ..... (Pn,vn),  let Pj(t)  be the cubic Hermite interpolant generated by the data 
(ej,vj),(ej+l,Vj+l). T h e n  the piecewise cubic curve 

P(t) - P j ( t -  j )  j <_ t <_ j + 1 

has a continuous derivative at every point and interpolates all the data. This construc- 
tion is one of the most common interpolation techniques in computer graphics and 
computer-aided design (see Figure 3.4). 

Po 

P2(t) 

v 2 

PI( 
l w  , - - -  

P1 vl 

A 
w 

v 3 

Figure 3.4 A smooth piecewise cubic curve that interpolates points and tangent vectors. 

Exercises 

1. Using Figure 3.2 for quadratic Hermite interpolation, compute the quadratic 
Hermite basis functions for the nodes 0,1. 

2. Implement cubic Hermite interpolation and use this technique to construct 
smooth piecewise cubic curves. 

3. Draw the diagram of Neville's algorithm for cubic Hermite interpolation at 
arbitrary nodes. What are the corresponding cubic Hermite basis functions? 
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4. a. Show that 

H 0 (  1 - t)  - H 1 ( t )  

U ~ ( 1 - t)  - U 0 ( t )  

ho(1 - t) = -h i  (t) 

h 1 ( 1 - t) - -ho(t). 

b. Let P(t) be the cubic Hermite curve that interpolates the data (P0,v0), 
(Pl,Vl) and let Q(t) be the cubic Hermite curve that interpolates the data 
(P1,-Vl), (P0,-v0) at t = 0,1. Conclude from part (a) that Q(t) - P ( 1 -  t). 

3.2 Neville's Algorithm for General Hermite Interpolation 

Now that we understand cubic Hermite interpolation, let's consider a much more 
general Hermite interpolation problem. Given a collection of points and vectors 

(Po, VO1 . . . . .  VO,flO -1  ) ..... (Pn, Vnl ..... Vn,~n-1 ) '  

we want to construct a polynomial curve Plao...l, tn(t)  that interpolates all this data at 
the parameter values t o .... ,t n. By interpolating all the data we mean that 

P m u .  (tj)- Pj 

P(~!..~n(tj) = Vjk l < k < f l j - 1 .  

Thus the vector vjk represents the kth derivative of the interpolant at the point Pj. In 
the notation Pluo...l.tn(t ) the integer n tells us there are n + 1 points to interpolate, and 
the integer ktj tells us we must interpolate ktj pieces of da ta - -  Pj, v j l  ..... v j , # j_ l__a t  the 
parameter tj. We expect that 

n 
degree {P~to...#n(t) } - ~, la k - 1 , 

k=0 

since there are a total of ~k,t/k pieces of data to interpolate. Note that the subscript 
ktj is really shorthand for repeating the subscript tj a total of juj t imes~ tha t  is, 

P m . . . ~ ( t )  - Pro . . . . .  to . . . . .  t .  . . . . .  t .  ( t ) .  

/a0 /-in 

(3.3) 

Thus, when the nodes are at t = 0,1 and both nodes have multiplicity two, we write 
P0011(t), not P22 (t). 

To take a more generic example, given the data 

(P0, v01, v02, v03 ), (P1, Vl 1 ), (P2, v21, v22 ) 

at the integer nodes t o - 0 , t  1 - 1 , t  2 - 2 ,  we seek a polynomial Pooool1222 (t) of 
degree 8 such that 
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P000011222(t0) = P0 

P(~00011222(t0) = v01 

P(~)0011222(t0) = v02 

P(~0011222 (t0) = v03 

Poooo11222 (tl) = P1 

P(~OOOl 1222 (tl) = v11 

Poooo11222 (t2) = P2 

P(~ooo 11222 (t2) - v21 

P(~)OO 11222 (t2) = v22 

As in cubic Hermite interpolation, we are going to proceed by extending Nev- 
ille's algorithm to general Hermite interpolation. First, however, we need to review 
the Taylor expansion because the Taylor polynomial will now appear as the base 
case in Neville's algorithm. 

When n = 0, Hermite interpolation requires a curve to fit the data P, v 1 ..... Vu_l at 
the parameter t o. The Taylor expansion at t = t o of a polynomial P(t) of degree/.t - 1 is 

P(t)  = P( t  O) + P ' ( t  O )(t - t 0) +. . .  + 
p(~t-1) (t0) 

(p t -  1)! 
( t -  to)t t-1 

(see Section 2.4). By matching constraints to coefficients we see that to construct a 
polynomial curve P#(t)  that interpolates the data P, Vl, . . . ,v#_ 1 at the parameter to, 
we must set 

P~ (t) - P + Vl(t - t0) + . . .  + v~_] (t - t 0 ) ~ - i  
( # -  1)! 

We shall see shortly that this polynomial is the base case of a recurrence for 
P~0 ..u (t).  

Now to develop Neville's algorithm for Hermite interpolation, we proceed 
almost exactly as we did for Lagrange interpolation. We need to be aware, however, 
of two subtleties. In the notation Ptto...ttn(t) if some ttj = O, then we simply ignore 
the parameter tj because there is no data to fit at tj. For example, if tt 0 - O ,  then 

Plio. . . lUn(t)-  Plul...lUn(t). Also, as we have already mentioned, the base cases for the 
Hermite version of Neville's algorithm are the Taylor expansions P~j (t), not the 
constants Pj .  After we derive Neville's algorithm, we shall describe a method for 
efficiently calculating all the Taylor polynomials that appear in Neville's algorithm 

from the original data. 

THEOREM 
3.1 

Given data (P0,v01 ..... v0,/.t0_l) ..... (Pn,Vnl ..... Vn,lUn_l) and distinct parame- 
.... . (t) of degree ters to, tn, there exists a unique polynomial curve P#0 "'#n 

]~k ~tk - 1  that interpolates the given data at the specified parameters. That 
is, 

Pluo . . .kt n ( t j ) - Pj 

p(k)  
l.to...Un(tj) - Vjk l < k < t ~ j - 1 .  
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Proof We shall leave uniqueness as an exercise (see Exercise 3); here we will con- 
centrate on proving existence. If Pk = 0 for all k ~ j ,  then we can apply the 
Taylor expansion at t -  t j  to construct the polynomial interpolant P~j(t).  

Otherwise the proof proceeds by induction on ~k t . t  k. Suppose then that 
there are at least two indices i, j such that l.t i, ].tj g: O. Reindexing if neces- 
sary, we can assume, without loss of generality, that these indices are /.to 
and Pn. Moreover, we can also assume, without loss of generality, that 
Pk > 0 for all k; if not, simply remove the indices where/.t k = 0 and rein- 
dex. Now by the inductive hypothesis, there are polynomial curves 
el.to...l.tn_l(t) and el.to_l...l.tn(t) of degree ~,kl.t k - 2  that, respectively, 
interpolate the data 

(Po, Vol ..... vo,po -1 ) ..... (Pn, Vnl ..... Vn,t.tn-2 ) 

(P0, v01 ..... v0,p0-2 ) ..... (Pn, Vnl, .... Vn,lAn-1) 

at the parameters to , . . . , t  n. Define 

ppo . . . pn ( t  ) = t n - t 
t n - t----~ PPo'" "Pn -1 (t)  + 

t -  to  (t) 
t n - t o Ppo- I ' "Pn  �9 

(3.4) 

Then by the inductive hypothesis 

PUo...Pn-1 ( tk )  - Ppo-1. . .pn ( tk )  - Pk 

so by (3.4) 

PU o . . . I.t n ( t k ) = Pk 

Moreover, again by the inductive hypothesis and (3.4) 

k = l  ..... n - 1  

k = l  ..... n - 1 .  

P12o...llA n ( to)  = PI.IO...]A n -1 ( to )  = PO 

PIAO'"IA n ( tn)  = PIAO-1. . . IA n ( tn)  = Pn 

so P~o...~n(t) certainly interpolates all the data points at the specified param- 
eter values. It remains to check the derivatives. By Leibniz's rule, differenti- 
ating (3.4) k times yields 

Pla k) (t) = tn - t  p(k) (t) k o(k_l) l(t) 
o '"Pn  t n - t o P~  - t n - t-----o" PO" 'Pn-  

t -  t o p ( k )  k p(k-1) 
+ (t) 

t n - t o Po -l''']'l n tn - t o /A0-1""lAn 

(see Exercise 2). Evaluating the fight-hand side at t = j ,  j r O,n, and applying 
the inductive hypothesis, we find that both kth derivatives are Vjk and both 
(k-1)st derivatives are Vj,k_ 1. Since the coefficients of the (k-1)st deriva- 
tives are negatives of each other and the coefficients of the kth derivatives 
sum to one, we conclude that 
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p(k) 
~lO.. .~l  n (tj ) = Vjk 1 < k < ]Aj -1  j ve 0,n. 

Similarly, evaluating at t = to,t n , we obtain 

p(k) (k) 
UO"'/Lln ( to)  = Pl.to'" . p , - 1  ( to )  - vOk 

p(k) (tn) = p(k) (tn) = Vn k 
IAO "" "~n IAO - l"  "lAn 

l _ < k _ < P 0 - 1  

l < k < P n - 1  . 

Thus Ppo...pn(t) does indeed interpolate all the data at the specified para- 
meter values. Finally, by the inductive hypothesis, epo...pn-l(t) and 
Ppo-1.. .p(t)  are polynomials of degree s - 2, so it follows from (3.4) 
that PPo'"Pn (t) is a polynomial of degree ]~k Pk - 1 

Starting with the Taylor polynomials P~j(t), j = 0 ..... n, we can apply dynamic 
programming to build the Hermite interpolant Ppo...#n(t) in the usual way, con- 
structing higher-order interpolants from lower-order ones using (3.4). If ]Aj = 1, then 
the Taylor interpolant Ppj ( t ) -  Pj. We illustrate Neville's algorithm for P0112(t) in 
Figure 3.5. 

Recall from (3.3) that in our notation the subscript pj in Pt~o...l~(t) is shorthand 
for repeating the node tj as a subscript a total of pj times. When the nodes and mul- 
tiplicities are known, instead of using pj as a subscript, we simply repeat tj a total of 
pj times. Thus P0112(t) means the Hermite interpolant for the nodes t = 0,1,2, where 
t = 0 has multiplicity one, t = 1 has multiplicity two, and t = 2 has multiplicity one. 

PO112( t ) 

Pol l (  t ) Pl12( t ) 

/ / 
POI(t) Pll(O P12(O 

l-t/  ~N N E-t/ / / 
PO P1 P1 P2 

Figure 3.5 Neville's algorithm for the cubic Hermite interpolant P 0 1 1 2 ( t )  �9 Here the nodes are at the inte- 
gers: t o = O,t 1 = 1,t 2 = 2. Notice that the Taylor polynomial P11(t) is one of the leaf nodes m 
that is, one of the base cases of the algorithm. 
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Since the dynamic programming algorithm bottoms out at the Taylor polynomi- 
als, we may need to compute several Taylor polynomials of different degrees for the 
same node tj. If the node tj has multiplicity/~j, then the Taylor polynomials 

ela j ( t ), elt j - l ( t ) ..... e j  

will all appear in Neville's triangle. It is wasteful to calculate all these polynomials 
independently, since 

(t _ tj )t'tJ -1 
Pltj (t) - Plt j- l  (t) + . (3.5) (]2j - 1)! vj'luj-1 

Using (3.5), we can apply dynamic programming to bootstrap ourselves up from 
the original data, calculating only one new term for each Taylor polynomial (see 
Figure 3.6). 

Neville's algorithm for Hermite interpolation now has the same general struc- 
ture as Neville's algorithm for Lagrange interpolation. Start with Pluo...l.tn(t) at the 
apex. Strip off the last index and place P~0...~-i (t) below it to the left; strip off the 
first index and place Pl.to_l...lUn(t) below it to the right. Since the index t n was 
removed to the left, label the left arrow with t n - t ;  since the index t o was removed 
to the right, label the right arrow with t -  t O . Now proceed recursively stripping off 

labels from Plao...lUn_l(t) and P~to_l...~n(t) and labeling the arrows accordingly. 
Remember to join P/.t0_l.../%_ 1 (t) to both P~to...~t,_ 1 (t) and P~0-1...z~(t) to generate a 
dynamic programming algorithm instead of a recursive procedure. When you arrive 

Poooo(t) / ,,q 
3! 
/ 

 'o3 Pooo(t) 

v02 Poo(t) 

/,/"-q 
Vo1 Po 

Figure 3.6 Applying dynamic programming to compute higher-order Taylor polynomials efficiently from 
lower-order Taylor polynomials at the node t = 0. Only one new term is computed for each 
successive Taylor polynomial. Here we illustrate the cubic case. 
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at P/xk (t) you are at a Taylor polynomial, so you should apply the dynamic program- 
ming algorithm for computing Taylor polynomials depicted in Figure 3.6. 

We illustrate this version of Neville's algorithm for P000112(t) in Figure 3.7; you 
should also look at Figure 3.3, where we have already adopted this strategy for 
P0011 (t). All the leaf nodes in Figure 3.7 now contain point or vector data rather than 
Taylor polynomials. We shall see shortly that this convention makes it easy to com- 
pute the Hermite basis functions from the up or down recurrence. Notice too that the 
parallel property (see Section 2.3) of Neville's algorithm remains valid for Hermite 
interpolation. 

000112 

22 ~ , J  ~ 2  

00011 O0112 

I/~ 2 2 / '~,~2 

0001 0011 O112 

1 - / ~  1 - / ~  2 2 / ~ 2  

000 O01 011 112 

1)02 O0 O1 1 1 12 

/~xl x 1 - / ~  t-/~ 2-/~- 1 
%1 PO P1 Vll P1 Q 

Figure 3.7 Neville's algorithm for P000112(t) �9 The interpolants are represented by their subscripts, and 
the Taylor polynomials are computed efficiently from lower-order Taylor polynomials. Here 
we have explicitly normalized the labels along the arrows to sum to one. The labels on ar- 
rows emerging from nodes that contain vectors do not need to be normalized. Notice that 
due to the presence of the Taylor polynomial P1 l(t), the point P1 now appears at two differ- 
ent leaf nodes. 

Exercises 

1. Draw Neville's triangle for POll 12 (t). 

2. Prove by induction on k that if L(t) is linear in t, then 

{L(t)P(t) }(k) _ L(t)p(k) (t) + kL'(t)P (k-l) (t). 

3. Prove that the Hermite interpolant P#o...#n(t) is uniquemthat is, there is no 
other polynomial of the same degree that interpolates the same data at the 
same nodes. (Hint: Use Exercise 2 in Section 2.4.) 

4. Implement Neville's algorithm for Hermite interpolation. Experiment with 
how changing the nodes or the data affects the shape of the curve. 
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5. Let P(t) be the Hermite interpolating polynomial for the nodes t o ..... t n and 
the data 

(e0,v01 ..... v0,/~0-1) .... , (en,Vnl  ..... Vn,t.tn-1)" 

Form a new Hermite interpolating curve Q(t) by replacing each node t k by 
the node 7r k = t k + b, k = 0,.. . ,n, for some fixed constant b. 

a. Show that changing all the nodes in this way has no affect on the shape of 
the interpolating curve. In particular, using Neville's algorithm, show 
that Q(t + b) = e(t) .  

b. Form a new Hermite interpolating curve R(t) by replacing each node t k 
by the node T k = at k + b for some fixed constants a > 0 and b. Show that 
R(t) is not a reparametrized version of P(t). What goes wrong in Neville's 
algorithm? 

c. Compare these results for Hermite interpolation to similar results for 
Lagrange interpolation in Section 2.2, Exercise 4. 

3.3 The Hermite Basis Functions 

In Hermite interpolation, we are given a collection of points and vectors 

(e0 ,  v01 ..... v0,u0 -1 ) ..... (en,  Vnl," ' ,  Vn,ktn-1)' 

and we construct a polynomial c u r v e  eluo...l~n(t ) of degree ]~k/lk - 1 that interpolates 
this data at the parameter values to,...,t n. For general Hermite interpolation, we can 
always write P~to...~(t) explicitly by setting 

n n / ~ j - 1  

P~o.. . lan(t) = ~ , H j ( t  l t 0 ..... tn)Pj  + ~, ~ , h j k ( t  l to .... , tn)Vjk" 
j=0  j=0  k=0 

As with Lagrange interpolation, the polynomials H j ( t  l t 0 ..... tn) and hjk(t l t 0 ..... tn) 
can be found by Neville's algorithm from either the up recurrence or the down recur- 
rence. Notice, however, that in the Hermite version of Neville's algorithm, a control 
point Pj can appear at more than one leaf node (see Figure 3.7). Therefore in calcu- 
lating Hj( t l to  ..... tn) using the up recurrence, we must take care to place a one at each 
of the leaf nodes where Pj appears. Similarly, when applying the down recurrence, 
we must sum all the values at the leaf nodes where Pj would appear in order to calcu- 
late the value of n j ( t  l t 0 ..... tn). 

Although it is difficult to compute simple explicit expressions for the general 
Hermite basis functions, there are four particularly important special cases of Her- 
mite interpolation where fairly elementary explicit formulas are available: 

i. Lagrange interpolationm~tj = 1, j = 0 ..... n 

ii. Taylor interpolation~n = 0 
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iii. Hermite interpolation, one derivative at each point~/2j = 2, j - 0 ..... n 

iv. Hermite interpolation at two points~n = 1, /~0 = ~tl 

We have already studied Lagrange interpolation extensively in Chapter 2, and by 
now you should be familiar as well with the Taylor polynomial. The last two cases of 
Hermite interpolation are straightforward generalizations of the cubic Hermite inter- 
polant discussed in Section 3.1. Here we focus our attention on case iii, which we 
shall apply in Section 3.5 to construct tensor product, lofted, and Boolean sum Her- 
mite surfaces. You will analyze case iv in Exercise 2. 

The problem in case iii is to interpolate the data (Po,vo)  ..... ( en , vn )  at the param- 
eter values to ..... t n . Since there are 2n + 2 pieces of data, the interpolant 

n n 

etoto...tntn (t) = ~ , H k ( t  l to , t  0 ..... t n , t n )P  k + ~ ,hk( t  l to , t  0 ..... tn, tn)V k 
k=0 k=0 

(3.6) 

is of degree 2n + 1. To find the Hermite basis functions H k ( t l t o , t  0 ..... tn, t  n) and 
hk( t  I to , t  O ..... tn , tn) ,  we must compute all paths from Pk or v k at the leaf nodes to the 
interpolant at the apex of the Neville triangle. Recall, however, that in general Her- 
mite interpolation a point Pk may appear at more than one leaf of the triangle (see 
Figure 3.7). 

To get from the apex etoto...tntn (t) of the triangle to any leaf node containing Pk, 

we must strip off each index j ~ k exactly twice (see Figure 3.8). Each time we 
remove the index j, we introduce a factor of t - t j  along an arrow. Thus any path 

001122 

00112 01122 

0011 0112 1122 

1 - / ~ , ~ , ,  2 - / ~ , ~  x 2 - / ~ N ~ x -  1 

001 011 112 122 

1 - / ~ ,  1 - / ' K N ~  2 - / ~ x , ~ _ l Z ~ ' K N ~ - I  

00 01 11 12 22 

/ ' K N ~  " 1 - / ' K , , ~  t - 1 ~  ~ , ,  2 - / ' K N ~ - 1  y ~ - 2  

Vo ~ P1 Vl P1 ~ v2 

Figure 3.8 Neville's algorithm for the interpolant P001122(t) �9 As in Figure 3.7, the interpolants are repre- 
sented by their subscripts, and higher-order Taylor polynomials are computed efficiently from 
lower-order Taylor polynomials. Unlike Figure 3.7, the functions along the arrows have not 
been normalized. 
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from the apex to a leaf containing P k must  contain two factors of t - t j  for each 

j ~: k. Therefore, 

Hk( t  l to,t  0 ..... tn,tn) - Ak(t)  [ I ( t - t j )  2, 
jg:k 

where 2,k(t) must be linear in t, since degree {Hk(t  I to,t 0 ..... tn,tn) } = 2n + 1. Recall- 
ing the explicit formula (2.11) for the Lagrange basis functions, we can rewrite this 
equation as 

Hk( t  l to,to ..... tn,tn) _ 2,k(t){Lnk(t l to ..... tn ) }2, 

where we have absorbed the constant in the denominator  of the Lagrange basis func- 
tion into the function /1, k (t). Similarly, we can argue that 

hk(t l to,to,. . . , tn,tn ) _ COk(t){Lnk(t l to ..... tn ) }2, 

where OOk(t) is linear in t. It remains only to find A,k(t) and COk(t). 
It is easy to find co k (t) because each vector v k appears at only one leaf node and 

the arrow emerging from this node is labeled t -  t k. Thus we must  have 

COk(t ) = C k ( t -  tk) 

for some constant Ok" Moreover,  since 

h~(t k I t0,t 0 ..... tn,tn) = 1, 

it follows that 

CO'k(tk){Lnk(tk I t0,..., tn)} 2 + 2COk(tk)Lnk(tk I t0,..., tn)--~dLnk It=tk - 1. 

Therefore, since COk(t k) = 0 and Lnk(tk It 0 ..... t n) = 1, 

c k - co~ (t k) - 1. 

To find Ak(t), we proceed in a similar fashion. Since Ak(t)  is linear, we can 
write 

Ak (t) = dl (t - tk ) + do �9 

But we know that 

Hk( t  k I t0,t 0 ..... tn,tn) = Lnk(tk It 0 ..... tn) = 1, 

so certainly 

do = &k( tk )=  l. 

Similarly since 

H~:(t k I to,t 0 ..... tn,tn) = 0 ,  
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we must  have 

" dZTc It_tk 0 ~k(tk){Lnk(tk l to ..... tn)} 2 + 2 ~ k ( t k ) L ~ ( t k  l t 0 ..... tn)--- ~ -  _ - . 

Thus, since Lnk(tk It 0 ..... tn) - 1 and 2,k(tk) - 1, 

d 1 - ~ c ( t k )  - - 2  dLnk It__tk. 
dt  

From the preceding analysis we conclude that 

H k ( t  l t o ' t o ' " "  t n ' t n ) -  { 1 - 2  dLnkdt It=tk ( t - t k ) }  {Lnk(t l tO ..... tn)}2 

hk(t  l to , t  0 ..... tn, t  n) - ( t -  t k ){Lnk(t l tO ..... tn ) }2 . 

(3.7) 

Notice how these formulas generalize the formulas for the cubic Hermite  basis func- 
tions derived in Section 3.1. 

Exercises 

1. Prove the identity 

t /  

(x - t) 2n+l - ~ , H k ( t  I to, t  0 . . . . .  tn , tn)(X _ tk)2n+l 
k=0 

n 

+ (2n + 1) ~,hk( t  I to, t  o . . . . .  tn , tn)(X _ tk)2n . 
k=0 

(Compare  to Section 2.5, Exercise 1.) 

2. Consider the special case of two-point  Hermite  interpolation, where we 
interpolate the data (P0, v01 ..... Vo,~-l), (P1, vl 1 ..... Vl,~_ 1) at the parameter  
values t - t o, t 1 . 

a. Show that this interpolant can be written as 

P/,t~(t) - H o ( t  l t 0 ..... t l )P  0 + Hl (t l t 0 ..... tl)P1 

+ Z h o k ( t l t o  ..... tl)VOk + ~ , h l k ( t l t o  ..... tl)Vlk �9 
k=l k=l 

b. Explain why each control point and each vector appear at only a single 
node in Nevil le 's  triangle. 

c. Find explicit formulas for the basis functions H o ( t l t o  ..... tl) and 

Hl ( t l t 0 ..... tl). 

d. Using the formulas from part (c), verify that 

H 0 ( t I t  0 ..... t 1 ) + H  l ( t l t  0 ..... t 1 ) -  1. 
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e. Find explicit formulas for the basis functions h o k ( t l t  0 ..... tl) and 

h lk ( t  l to , . . . , t l ) .  

3. Suppose we are given the data (P0,v01 ..... v0,p0_ 1) ..... (Pn,Vnl . . . . .  Vn,jAn_l) to 

interpolate at the parameters to ..... t n . Then the general Hermite interpolant 

can be written as 

n n /.t j - 1  
Ppo . . . pn ( t )  = ] ~ H j ( t  l t 0 ..... tn )Pj  + ~, ]~h jk ( t  l to ..... tn)Vjk" 

j=0 j=0 k=l 

Use Neville's triangle to show that 

a. H j ( t  l t 0 ..... tn) = A j ( t )  [ - I ( t - t i ) P i  
i~ j  

b. h j k ( t  l t 0 .... , tn)  = 0 9 j k ( t ) ( t - t j )  k r i ( t - t i ) p i ,  
i~ j  

where A j ( t )  is a polynomial of degree at most ]2j - 1, and O)jk(t  ) is a poly- 
nomial of degree at most ]2j - k -  1. 

n 
4. Prove that ~, H k (t I t o, t o . . . . .  tn, t n) = 1. 

k=0 

5. Let P( t )  = a2n+l t2n+l + . . .  + al t  + a o. Then P( t )  interpolates the data (Po,vo),  

. . . , (Pn,vn) at the parameters t o ..... t n if and only if 

a2n+ltO 2n+l + " " +  alto + ao = PO 

(2n + 1)a2n+ltO 2n + . . .  + 2a2t 0 + a 1 = v 0 

a2n+ltn 2n+l + "'" + altn + ao = Pn 

(2n + 1)a2n+ltn 2n + " "  + 2a2t  n + a 1 = v n . 

Prove that this system of linear equations in the unknowns a 0 ..... a2n+l has 
a unique solution by showing that the determinant of the coefficients 

t 2n+l . . .  t 2 t o 

( 2 n + l ) t  2n .. .  2t 0 1 

t2n+l 2 
n "'" tn tn 

( 2 n + l ) t  2n .. .  2t  n 1 

1 

0 

" s 0 .  

1 

0 

Conclude that etoto...tntn(t ) exists and is unique. (Compare to Section 2.4, 
Exercise 5.) 
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6. Develop an O(n) ladder evaluation algorithm to compute 

/7 n 
Ptoto...tntn (t) = ~,Hk( t  l to,t 0 ..... tn,tn)P k + ~,hk(t l to,t 0 ..... tn,tn)V k" 

k=0 k=0 

7. Consider the special case of two-point Hermite interpolation, where we 

interpolate the data (P0, v01 ..... v0,p-1), (P1, Vll ..... Vl,p_ 1) at the parameter 
values t = 0,1. Show that 

f] xl~- 1 ( 1 - x) !~- 1 dx 
Ho(t  [ 0 ..... 0 , 1 1 ) = 

~ fl0xP- 1 )p-1  p p (1 - x  dx  

ftoX].l- 1( 1 - -  x) ~ -  l dx  
Hi(t[ 0 ..... 0 , 1 1 )  - ~ f~X,U- 1 1 p p ( l - x )  tJ- dx .  

3 . 4  Rational Hermite Curves 

When we studied Lagrange interpolation, we observed that many common curves 
are not polynomial curves, but rather are rational curves. Therefore, we resorted to 
rational Lagrange interpolation to represent these curves in Lagrange form. Now that 
we are investigating Hermite interpolation, we would like to develop a similar 
approach to represent rational curves in Hermite form. 

To simplify the discussion, let's first consider cubic Hermite interpolation. Sup- 
pose that we have a rational cubic curve R(t) = P( t ) /Q( t )  that we wish to represent 
in rational Hermite form. As usual we lift this curve from a rational curve 
R(t) = P( t ) /Q( t )  in affine space to a polynomial curve S( t )=  (P(t) ,Q(t))  in Grass- 
mann space by treating the denominator Q(t) as mass. To find the cubic Hermite rep- 
resentation of S(t) in Grassmann space, we compute 

(moPo,m O) = (P(0),Q(0)) (/~0v0,X0) = (P '(0) ,Q'(0))  

(mlPl,ml) = (P(1),Q(1)) (~lVl,~l) = (P'(1),Q'(1)) . 

Then in Grassmann space, we have the cubic Hermite representation 

S(t) = (moPo,mo)Ho(t)  + (mlPl,ml )Hl (t) + (20v0,/~0)h0(t) + (2lVl,/~l )hl (t), 

and by construction 

S(O) = (moPo,mo) S'(0) = (2ovo,2 O) 

S(1) = (mlPl,ml) S'(1) = (/~lVl,X1) . 

Now let's project this curve back into affine space. Then we get the rational rep- 
resentation 
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R(t) - moPoHo(t) + mlP1Hl(t) + Aov~176 + AlVlhl(t) 

moHo(t)  + mlH 1 (t) + Aoho(t) + ~lhl(t) 
(3.8) 

Is this formula really a Hermite representation for the original rational cubic curve 
R(t)? It is easy to check that indeed R ( 0 ) - P 0  and R(1) -  P1. What about deriva- 
tives? We hope to get R'(0) - v 0 and R'(1) - Vl, but, in fact, after a bit of algebra, we 
find that 

R'(0) = A0v0 - 20P0 and R'(1) = /~ lv l  - ~ I P 1  

m0 ml 

Not the answers we expected. What did we do wrong? 
In Grassmann space we found that S'(0) = (2ov0,2 0) and S'(1) = (A, lVl,21), and 

these derivatives do indeed project to the values v 0 and v I in affine space. The prob- 
lem is that differentiation and projection do not commute (see Section 1.1.6, Exer- 
cise 2 )~ the  derivative of the quotient is not equal to the quotient of the 
derivatives~so this approach to rational Hermite interpolation cannot hope to 
succeed. 

Worse yet, the fight-hand sides of R'(0) and R'(1) are not well-defined expres- 
sions in affine space. In fact, looking back, we see that the expression for R(t) on the 
right-hand side of (3.8) is also not a well-defined expression in affine space, since the 
coefficients of P0 and P1 do not sum to one. So this approach is doomed to failure 
from the very beginning. We need a fresh start. 

In cubic Hermite interpolation, the coefficients of Ho(t)  and Hi(t) are points; 
the coefficients of h0(t) and hi(t) are vectors. To maintain these constraints in 
Grassmann space, we must write 

S(t) = (moPo,mo)Ho(t) + (mlPl ,ml)Hl( t )  + (Aov0,0)h0(t) + (XlVl,O)hl(t) . 

Projecting this formula into affine space yields 

R(t) = moPoHo(t) + mlP1Hl(t) + Aov~176 + AlVlhl(t) . (3.9) 

moHo(t ) + mlH 1 (t) 

Let's see if this works. 
Certainly the expression for R(t) is now well defined, since the coefficients of Po 

and P1 sum to one. Also it is easy to verify that R(0) = PO and R(1) = P1, so we still 
interpolate the point data. What about derivatives? To simplify our computation, let 

P(t) = moPoHo(t) + mlP1Hl(t ) + Aovoho(t) + AlVlhl(t) 

w(t) = moHo(t  ) + mlH 1 (t) . 

Then R(t) = P( t ) /w( t )  so by the quotient rule 

R'(t) - 
w ( t ) P ' ( t ) -  w'(t)P(t)  P ' ( t ) - w ' ( t ) R ( t )  

W2(t) w(t) 
(3.10) 
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Using the properties of the cubic Hermite basis functions provided in Section 3.1, it 
is simple to check that 

w(0) = m 0, w'(0)  = 0, P ' (0)  = 2ovo, 

w(1) -- m 1, w'(1) -- 0, P'(1) = ~lVl . 

Substituting t = 0,1 into (3.10), we get 

R'(O)  = 2oVo / m 0 

R'(1) = ~lVl / ml �9 

Thus if we want R ' ( 0 ) =  v 0 and R ' (1)=  Vl, we need to choose A,o = mo and 

~1 = ml. 
These observations lead us to define a rational cubic Hermite curve by setting 

R( t )  - m o P o H o ( t )  + mlP1Hl ( t )  + movoho( t )  + mlVlh l ( t )  

m o H o ( t )  + m l m  1 (t) 
(3.11) 

With this definition, the function R( t )  interpolates the data (P0, v0) and (P1, v]) at the 
parameters t = 0 and t = 1 independent of the choice of the masses m 0 and ml. 

For general Hermite interpolation, we have basis functions 

H j ( t  l t 0 ..... tn),  j - 0 . . . . .  n and h jk ( t  l t 0 ..... tn),  k - 0 . . . . .  ~ j - l '  

so we define the general rational Hermite curve by setting 

n n btj -1 
Z H j ( t  l t 0 ..... t n ) m j P j  + 2~ Z h j k ( t  l to ..... t n ) m j v j k  

R ( t )  = j -0  j=0 k=0 . (3.12) 
n 

Z m j H j ( t  l t 0 ..... t n) 
j=0 

THEOREM 
3.2 

Let R( t )  be defined as by Equation (3.12). Then 

R ( t i ) =  P i O < i < n 

R (k ) ( t i )  - Vik 1 < k < ],t i - 1  . 

Proof To simplify the computation, let 

n n /.t j-1 
P( t )  = ~ , H j ( t  l t 0 ..... t n ) m j P  j + ~, ~ , h j k ( t  l t 0 .... , t n ) m j v j k  

j - 0  j=0 k=0 

n 

w( t )  = ~ m j H j ( t  l t 0 ..... tn) . 
j=0 

Then R( t )  = P ( t ) / w ( t ) .  Now by the defining properties of the Hermite basis 

functions, P( t i )  = m i P  i and w(t  i) - m i , so certainly R( t i )  = Pi, 0 <_ i < n .  
Moreover, for 1 < k < ]-/i - 1, 
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n 

w(k)( t i )  = 2 m j H  ( t i l t  0 .... ,tn) - O 
j=O 

n /2j -1  
p(k)( t i )  = ]~n Hj(k)(ti l t 0 . . . .  . , t n )mjP  j + ~ ~ h~f)(ti l to .... tn )mjv j l  = mivik �9 

j=0 j=0 /=0 

In particular, since w(k)( t i )  = 0, 1 < k < ].t i - 1, it follows by induction (see 
Exercise 12) that 

(w(t )R( t ) ) (k)( t i )  = w(t i )R(k)( t i )  1 < k < 11i-  1. 

But w(t)R(t)  = P(t) ,  so 

w(t i )R(k)( t i )  - P(k)( t i )  1 < k < ]2 i - 1 ,  

or equivalently 

P(k)( t i )  
R(k)( t i )  = 1 < k < P i -  1. 

w(t i)  

Now P(k)(t i )  = mivik and w(t  i) = m i , so R(k)(t i)  - Vik , 1 < k < ]2 i - 1. 

Thus, as in rational Lagrange interpolation, the masses in rational Hermite inter- 
polation serve as shape parameters. That is, the masses do not affect interpolation at 
the nodes, but the masses do alter the shape of the interpolating curve. Again as with 
rational Lagrange interpolation, these shape parameters can be hard to control, so we 
must handle them with care (see Exercises 1 and 6). Nevertheless, for two-point Her- 
mite interpolation, the effect of the masses is fairly well behaved. In Figure 3.9 we 
illustrate the effect of the masses on the rational quadratic Hermite representation of 
the quarter circle. The effect of the masses on rational cubic Hermite curves as well 
as the effect of the masses on other examples of two-point rational Hermite interpo- 
lation is investigated in Exercises 8 and 9. 

To provide a concrete example, let's now represent the quarter circle in rational 
quadratic Hermite form. Recall from Section 2.7 that the unit circle has the rational 
quadratic parametrization 

2, 1-,_A 
R ( t ) =  l + t  2 ' l + t  2 " 

From Section 3.1, Exercise 1, the quadratic Hermite basis functions for the nodes 0,1 
a r e  

Ho( t  ) - 1 - t  2 Hl(t ) - t 2 ho(t ) - t ( 1 - t ) .  
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Figure 3.9 The quarter circle (dashed) as a rational quadratic Hermite curve with masses m o = 1,m 1 = 2 
at the control points Po = (0,1),(P 1 = (1,0) with control vector v 0 = (2,0). (The control vector is 
not drawn to scale in order not to dwarf the rest of the figure.) The outer curve represents 
the case where mo/m 1 = 20 and the inner curve where mo/m 1 = 1/40. 

Now we must  find the points P0,P1, the masses  mo ,m 1 and the vector  v o so that 

R(t) - moPoH~ + mlP1nl (t) + m~176176 " 

moHo(t)+mlHl(t) 

By Theorem 3.2 we need to choose 

Po = R(0) = (0,1) P1 - R(1) = (1,0) v 0 = R'(0)  = (2,0) . 

Moreover,  moHo(t) + mlH 1 (t) = 1 + t 2, so 

m o = l  m 1 = 2 .  

What  happens  if we alter the masses? Dividing the numera tor  and denominator  

by m 0 or m 1, we can rewrite R(t) as 

R ( t )  - 

ml mo 
eono(t) + P1H1 (t) + voho(t) mo eono(t) + elnl (t) + voho(t) 

mo ml ml 
, 

ml m0 
Ho(t) + H l ( t )  Ho(t) + Hl (t) 

mo ml 

Thus we find that 

m 0 - 4  0 ~ R(t)  --4 P1 and R(0) = Po, 
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so the curve collapses to two points; 

m 0 ---),,~ ~ R ( t ) ~  PO + hO(t) vo' 
Ho(t)  

which is the line through PO in the direction v O, and 

R(1) =P1,  

so the curve splits into a point and a line. 
Notice that only the ratios m 1 / m 0 and m 0 / m 1 matter, and not the particular val- 

ues of the individual masses. Thus we get similar, but reciprocal, behavior as m 1 
approaches zero or infinity. We illustrate this behavior in Figure 3.9. 

Despite all the similarities between Lagrange and Hermite interpolation, there is 
one very important difference between the rational Lagrange and rational Hermite 
representations. In rational Lagrange interpolation all the basis functions appear in 
the denominator, so we can represent any rational function using the rational 
Lagrange representation. But in rational Hermite interpolation, only the basis func- 
tions H j ( t [ t  o ..... t n) j = 0 ..... n appear in the denominator. Since the functions 
n j ( t l t o  ..... tn) by themselves do not form a polynomial basis, it is not possible to rep- 
resent arbitrary denominators of degree ]~k/~k - 1 with a rational Hermite represen- 
tation. Thus there are many rational curves that have no rational Hermite form. For 
example, the circle has no rational cubic Hermite representation (see Exercise 3). 

Nevertheless, we can still apply Neville's algorithm for Hermite interpolation 
to compute values along a rational Hermite curve. As usual, we perform the compu- 
tation in Grassmann space and then divide by the mass to get values along the curve 
in affine space. The only restriction is that the vectors representing the derivatives 
in Grassmann space must really be vectors in affine space, not arbitrary vectors in 
Grassmann space--that  is, their mass coordinate must be set to zero-- to  ensure that 
the vector components of the Hermite function appearing in the denominator of the 
rational function are all zero. 

If the mass of a Hermite curve in Grassmann space is ever zero, then the projec- 
tion of the curve into affine space is not continuous. As with rational Lagrange inter- 
polation, we can avoid these discontinuities by projecting the curve instead into 
projective space. 

Exercises 

1. Implement Neville's algorithm for rational Hermite interpolation, and 
experiment with altering the masses in a rational Hermite curve. 

a. What are the local and global effects of altering a single mass? 

b. What happens when one of the masses is set to zero? 

c. What is the effect of a negative mass? 

d. What happens if all the masses are changed simultaneously? 
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2. Consider the rational quadratic Hermite representation of the quarter circle 
given by the masses and control points in the text. 

a. Plot the point with t = .99 for larger and larger values of m 0. 

b. Plot the point with t = .99 for larger and larger values of ml. 

c. What do you observe? 

d. Explain what is happening. 

3. Show that it is not possible to represent the circle parametrized by 

R(t) - l + t 2 ' l  + t 2 

in rational cubic Hermite form. 

4. Find the rational quadratic Hermite representation for the ellipse parame- 
trized by 

R(t) = ( 2at b ( l + t 2 ) )  
l + t  2 '  l + t  2 

with respect to the nodes t = 0,1, and use Neville's algorithm to draw this 
segment of the ellipse for a = 2, b = 5. 

5. Find the rational quadratic Hermite representation for the hyperbola param- 
etrized by 

R(t) - I a(l + t2 ) 2bt I 
l _ t  2 ' l _ t  2 

with respect to the nodes t =-0.5,0.5;  t = -4,-2;  t = -1 ,1 ;  and use Neville's 
algorithm to draw different parts of this hyperbola for a = 2, b = 5. 

6. Let R(t) be a rational Hermite curve with nodes t o ... . .  t n, control points 
(moPo,m O) ..... (mnPn,mn), and control vectors {Vik}. Let mj increase and 
hold m i fixed for i ~ j .  Show that 

a. l i m m j ~ ( t  i) - Pi, i - 0 ..... n .  

b. l immj_~j~(t)  lies in the space spanned by Pj and {vjl} for all 

t : /: t  i, i = 0  ..... n. 

c. l immj~j~(k) ( t i )  - Vik, 1 < k < kti - 1, i - 0 11. 

d. l i m m j ~ R ( k ) ( t )  lies in the space spanned by {Vjl } for all t ~ t i, i - 0 ..... n. 

(Hint: See Section 2.7, Exercises 8 and 9.) 

7. Let R(t) be a rational Hermite curve with nodes to , . . . , t  n, control points 
(moPo,mo) ..... (mnPn,mn), and control vectors {Vik}. What does the limit 
curve look like if 
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a. two masses are allowed to increase simultaneously while the other 
masses are held fixed? 

b. three or more masses are allowed to increase simultaneously while the 
other masses are held fixed? 

8. Experiment with rational cubic Hermite interpolation at the nodes 0,1. 

a. What happens to the shape of the curve as you increase m 0 and leave m 1 
fixed? 

b. Show that limm0~ooR(t) lies on the line through P0 in the direction v 0 for 
all t ~ 1. 

c. Explain how it is possible for l i m m 0 ~ R ( t )  to lie on the line through PO 
in the direction v 0 for all t ~ 1, even though the curve still interpolates 
the data (P1, Vl) at t = 1. 

9. Generalize the results in Exercise 8 to arbitrary two-point rational Hermite 
interpolation. 

10. Implement Neville's algorithm for rational cubic Hermite interpolation at 
the nodes t = 0,1 and explore the different geometric effects of changing 

a. control points 

b. control vectors 

c. masses 

11. Experiment with rational quintic Hermite interpolation, where one point 
and one derivative is interpolated at each of the three nodes t o < t 1 < t 2 . 

a. What happens to the shape of the curve as you increase m 1 and leave m 0 
and m 2 fixed? 

b. What happens to the shape of the curve as you increase m 0 and leave ml 
and m 2 fixed? 

c. Show that in both cases l immj~~( t )  lies on the line through Pj in the 

direction vj for all t ~: t k, k ~: j. 

d. Explain in each case how it is possible for l immj~~( t )  to lie on the line 
through Pj in the direction vj for all t ~ t k, k ~ j, even though the curve 
still interpolates the data (Pk, Vk) at the nodes t = t k, k ~ j.  

e. Does your explanation account for the difference in the behavior of the 
curve that you observe when you increase the masses m 0 and ml ? 

12. Let 

n 

w(t) = ~ mjHj(t l t  o ..... t~) 
j=O 

Prove by induction on k that for any function R(t) 

(w(t)R(t))(k)(ti) = w(ti)R(k)(ti)-  miR(k)(ti) O < k < ] ~ i - 1 .  
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13. Given a collection of nodes to . . . . .  t n and masses m 0 . . . . .  m n ,  define 

m j H j ( t  l to ..... tn) 
R j ( t ) =  k=O,  n 

n ~ " * ' ~  

~ m i H i ( t  l t 0 ..... t n) 
i=0 

rjk(t ) = mjhjk( t  l to ..... tn) 1 < k < l l j -  1 
n ~ - -  - -  " 

~ m i H i ( t  l t 0 ..... t n) 
i=0 

Show that these functions behave like rational Hermite basis functions. In 
particular, 

n 

Z R j ( t )  =-- 1 
j=O 

b. R j ( t i ) - 0  i r  j 

=1 i - j  

c. rjk(P)(ti)= 0 i r j 0 < p < ~l i - 1  

= 0  i - j ,  p : / : k  O < k < p j - 1  

=1 i - j ,  p = k  l < k < p j - 1  

n n ~ t j -1  

d. R(t) - Z R j ( t  l t 0 ..... tn)Pj + Z Zr jk ( t  l to ..... tn)Vjk 
j=0 j=0 k=0 

interpolates the data (P0,v01 ..... v0,p0_ 1) ..... ( P n , V n l  . . . . .  Vn,Pn_ 1) at the 
nodes to . . . . .  t n .  

(Compare to Section 2.7, Exercise 10.) 

3.5 

3.5.1  

Hermi te  Surfaces 

Tensor product, lofted, and Boolean sum surfaces can all be generalized from 
Lagrange to Hermite interpolation. Here we shall briefly examine each of these sur- 
face schemes, beginning with the tensor product construction. Triangular and ratio- 
nal Hermite surfaces can also be developed, but since these Hermite surfaces are less 
common in practice they are relegated to the exercises. 

Tensor Product Hermite Surfaces 

In tensor product Hermite interpolation, we start with a rectangular grid of parameter 
values (si,t j )  in the domain and a rectangular array of control points {~j} in the 
range 0 < i < m, 0 < j < n.  Associated with each control point P/j is a set of vectors 
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{v~ l }, 0 < k < t - t -  1, 0 < l < v -  1, (k , l )  ~ (0,0), that represent mixed partial deriva- 
tives of the surface at P/j. For the construction given below to work, we require the 
same amount of derivative data to be associated with each control point. The general 
problem is to construct a surface that interpolates this data at the grid points; that is, 
to build a surface P(s,t)  such that 

P(s i , t j )  = Pij 

p(k,l) (s i , t j )  _ vkl 0 <_ k <_ 12-1,  0 _< 1 _< v -  1, (k,1) :/: (0,0) . 

This generic problem is difficult to visualize and not very important in practice, so 
we shall not attempt to study it in such generality here (see Exercise 2). Rather we 
shall concentrate our attention on a simple, but important, special case that illustrates 
the general procedure. We will then apply this special case to construct lofted and 
Boolean sum Hermite surfaces. 

Suppose then that at each point P/j we have only three vectors (uij ,vij , t i j) ,  and 
we seek a surface that interpolates this data (see Figure 3.10). That is, we seek a sur- 
face P(s,t)  such that 

P(s i , t j )  = Pij, P( l '~  - uij, P(O'l)(si , t j )  - vij, P( l ' l ) ( s i , t j )  = tij �9 

To solve this problem, we can apply the Hermite basis functions 

Hi(s  l sO,s 0 .... ,Sm,Sm), hi(s l so ,so, . . . ,Sm,Sm) 

H j ( t  l to,t  0 ..... tn,tn),  h j ( t  l to,to ..... tn,t  n) 

developed in Section 3.3 for interpolating one derivative at each point. 
In the Hermite tensor product construction we form the bivariate Hermite basis 

functions by taking the product of each univariate Hermite basis function in s with 
each univariate Hermite basis function in t. Thus the tensor product Hermite surface 
is defined by setting 

m ?/ 

P(s , t )  = ~ ~ H i ( s  l so,s  0 ..... Sm ,Sm)Hj ( t  l to,t  0 ..... tn,tn)Pij 
i=0j=0 

m ?/ 

+ ~ ~ h i ( s l s o , s o  ..... S m , S m ) H j ( t l t o , t  0 ..... tn,tn)Uij 
i=0j=0 

m t/ 

+ ~ ~ H i ( s l s o , s o  ..... S m , S m ) h j ( t l t o , t  0 ..... tn,tn)Vi j 
i=0j=0 

m n 

+ ~ ~ h i ( s l s o , s o  ..... Sm ,Sm)h j ( t l t o , t o  ..... tn,tn)tij �9 
i=0j=0 

(3.13) 

It follows easily from the properties of the Hermite basis functions that the surface 
P(s,t)  does indeed interpolate the given data at the specified parameter values (see 
Exercise 1). 
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Vo2L <'O2 V 2I ' 2 V22L/7'22 
P02" ~02 P12" "~12 P22- "u22 P32- "u32 

Vo1 kjtO1 Vll L j t l l  v21 L i t 2 1  VB1LJtB1 
POl" ~01 Pl l "  ~11 P21" ~21 P31" ~31 

voo .7,00 v.ob..7 V20L.." '20 V 0L..'7 
PO0 Uo0 P10" U l 0 P20" u20 P 3 0  h30 

Figure 3.10 Data for a Hermite tensor product surface control points Pij; first-order partial derivatives 
uij, vij, and twists tij. 

The vectors t(i are called twists.  The twists represent mixed partials of the sur- 
face. If the data (Pi j ,u i j ,v i j , t i j )  is taken off a surface we are trying to approximate 
with a polynomial, then the twists can be computed directly from the surface equa- 
tion. If, however, we are simply designing a free-form surface using Hermite inter- 
polation, then often it is unclear what values these twists should take. Nevertheless, 
simply setting them to zero~omit t ing the last summation in the definition of the ten- 
sor product surface~is  not a good strategy, since zeros can cause flat spots to appear 
on the surface (see Exercise 3(b)). The problem of how to set the twists in general is 
a difficult one; we shall not attempt to deal with it here. 

We can rewrite (3.13) in the following manner: 

m n 
P(s , t )  - Z H i ( s  I so,so ..... Sm,Sm) Z { H j ( t  l to,to ..... tn,tn)Pij + h j ( t  l to,to ..... tn,tn)Vij} 

i=0 j=0 

m n 
+ ~, h i ( s l s o , s  0 ..... Sm,S m) Z { H j ( t l t o , t  0 ..... tn,tn)Uij + h j ( t l t o , t  0 ..... tn,tn)tij}.  

i=0 j=0 

For i - 0 ..... m, let 

/7 
Pi(t) - ]~ { H j ( t  l to,to ..... tn,tn)Pij + h j ( t  l to,to ..... tn,tn)Vij } 

j=O 

n 
vi(t  ) - Z { H j ( t  l to , t  0 ..... tn,tn)Uij + h j ( t  l to , t  0 ..... tn, tn)ti j}  �9 

j=O 
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Then 

m m 

P(s, t )  = E H i ( s  l so,s 0 ..... Sm,Sm)Pi(t )+ Eh i ( s  l so,s 0 ..... Sm,Sm)Vi(t ) . 
i=0 i=0 

If we fix the value of t = t *, then P(s, t*)  is simply the univariate Hermite poly- 
nomial that interpolates the Hermite data {(Po(t*),vo(t*)) ..... (Pm(t*),Vm(t*))iat  the 
parameter values s o ..... s m. Similarly, each curve Pi(t) interpolates the Hermite data 
{(Pi0,vi0) ..... (Pin,Vin)} at the nodes t o ..... tn, and each vector field vi(t) interpolates 
the Hermite data {(Uio,tio ) ..... (Uin,tin)} at the nodes t o ..... t n (see Figure 3.11). 
Notice that if we restrict to the domain s o < s < s m and t o < t < t n, then we get a 
four-sided surface patch. Moreover, it is easy to see that the boundary curves of this 
rectangular patch are the Hermite polynomial curves that interpolate the Hermite 
data along the boundaries. 

Po3 P13 P23 

P22 

P33 

P02 ~ ~, P12 P(s,t) P~ft) ~ 

P3(O 
Po(O Pl(tl  0 ~ i ~(0 

, ~ 3P21 
PO1 ~ - ~  Pll 

Plo - P20 P30 

Figure 3.11 Tensor product Hermite interpolation. The curve Pi(t) interpolates the Hermite data {(Pio,Vio), 
(Pil,Vil), (Pi2,vi2), (Pi3,vi3)}, and the vector field vi(t) interpolates the Hermite data {(Uio,tio), 
(Uil,ti l), (Ui2,ti2), (Ui3,ti3)} at the nodes t0,t 1 t 2 t 3. The surface P(s, t) interpolates the Hermite 
data {(Po(t),Vo(t)), (Pl(t),Vl(t)), (P2(t),v2(t)),' (fi3(t),v3(t))} at the parameters So,Sl,S2,S 3. The 
boundary curves are interpolating curves for the boundary data. 

Exercises 

1. Consider the tensor product Hermite surface P(s,t) defined in (3.13). 

a. Show that this surface P(s,t) interpolates the data (Pij,uij,vij,tij) at the 
parameter values (s i , t j  ). 

b. Explain how to use Neville's algorithm for univariate Hermite interpola- 
tion to evaluate points on this tensor product Hermite surface. 

c. What data lies at the leaves of the graph constructed in part (b)? 
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2. Use the general tensor product construction to define a surface that interpo- 
lates an array of control points {Pi } and a set of vectors { v.k. / }, 0 < k < p - 1, ,7 q 
0 < l < v -  1, that represent the mixed partial derivatives of the surface at 
P0" That is, construct a surface P(s, t )  such that 

P ( s i , t j ) -  Pij 
P(k ' l ) ( s i , t j )  - v kl (k,1) :/: (0,0) . 

3. Implement  the tensor product Hermite surface for the data (Pij,uij, v6 , t i j ) .  

a. Experiment  with how changing the data affects the shape of the surface. 

b. What  is the effect on the shape of the surface when all the twists tij are 
set to zero? 

4. Define a tensor product rational Hermite surface R(s , t )  by setting 

m /7 

P(s , t )  - ~, ~ , H i ( s  l sO,s 0 ..... S m , S m ) H j ( t  l to, t  0 ..... tn,t/7)mijPij 
i=Oj=O 

m n 

+ ~ E h i ( s l s o , s o  ..... S m , S m ) H j ( t l t o , t  0 ..... tn, tn)mijuij  
i=Oj=O 

m n 

+ ~ ~ H i ( s l s O , s O  ..... S m , S m ) h j ( t l t o , t  0 ..... tn , tn)mijvi j  
i=0 j=0 

m n 
+ Z Z h i ( s l s o , s o  ..... S m , S m ) h j ( t l t o , t o  ..... tn, tn)mijt i j  

i=0j=0 

m n 
w(s , t )  = Z Z H i ( s  l so,so ..... S m , S m ) H j ( t  l to,to ..... tn , tn)mij  

i=0 j=0 

P(s , t )  
R(s , t )  = ~ " 

w(s,t) 

Show that 

R ( s i , t j )  - Pij, R( l 'O)(s i , t j )  = u~i, R(O' l ) (s i , t j )  - v~i, R ( l ' l ) ( s i , t j )  - tij �9 

5. Let {~j] be a rectangular array of control points, and let {v ~l ~j } be a set of vec- 
tors that represent the mixed partial derivatives of a surface at P... up to order 

~j 

Pij, i, j = 0 . . . . .  n. We would like to construct a surface that interpolates this 
data at the parameters (si , t  j) .  That is, we seek a surface Pp(s , t )  such that 

Pp (s i , t j )  - Pij i, j - 0 . . . . .  n 

p(k, l)  (s i , t j  ) = vkl 0 <_ k + l <_ Pij (k , l )  r (0, O) . 
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3.5.2 

Let P~'J(s,t) denote a surface that interpolates the same data, except that 
along the lines s = s i and t = tj we replace ].til by llil - 1 and Phj by Phj - 1, 
i , j  = 0 , n .  

a. Show that Pp (s,t) satisfies the recurrence 

- ( s -  s 0 ) ( t ~  - t)  , , 0  (s Sn)(t - tn) p~,O (s,t) + Pp (s,t) 
Pp (s,t) - (Sn _ So )(tn _ to ) (Sn _ So)(tn _ to ) 

(S n - s ) ( t -  to) O,n ( S -  S o ) ( t -  to) n,n 
+ (Sn _ so)(tn _ to) Pp (s,t) + (Sn _ So)(tn _ to) Pp (s,t) . 

b. What are the base cases for the recurrence in part (a)? 

c. Use the recurrence in part (a) to develop a rectangular pyramid algorithm 
for the interpolant Pp(s,t). 

6. Let {P/jk }, i + j + k - n, be a triangular array of control points, and let { vP~ } 
be a set of vectors that represent the mixed partial derivatives of a surface at 
P/jk up to order Pijk. We would like to construct a surface that interpolates 
this data at the points of a triangular grid {Qijk }. That is, we seek a surface 
Pp (s, t) such that 

P (Qijk) = P/jk 

P (  P ' q ) ( Q ij k ) - v 

i + j + k = n  

O < p + q  < Pijk (p ,q)  r (0,0) . 

Let P~(s,t) denote a surface that interpolates the same data, except that at the 
2 3 points aOjk w e  replace /-tojk by P07k - 1 . Let the surfaces P~ (s,t) and P~ (s,t) 

be similarly defined. Finally, let 13 l(s,t),fl2(s,t),fl3(s,t), denote the barycentric 
coordinate functions of AQnooQonoQoo n. 

a. Show that Pp(s,t)  satisfies the recurrence 

Pp (s,t) = fll (S,t)P~ (s,t) + fl2 (s,t)P~ (s,t) + fl3(s,t)P~ (s,t) . 

b. What are the base cases for the recurrence in part (a)? 

c. Use the recurrence in part (a) to develop a triangular pyramid algorithm 
for the interpolant Pp(s,t). 

Lofted Hermite Surfaces 

In the basic Hermite lofting problem, we are given a sequence of curves 
Uo(s) ... . .  Un(s) and a sequence of vector fields uo(s) ..... Un(S) representing cross- 
boundary derivatives along these curves (see Figure 3.12). We seek a surface 
Hu(s , t )  to interpolate this data. That is, we want to construct a surface Hu(s , t )  
such that for k = 0 ..... n 
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Figure 3.12 Data for a lofted Hermite surface: curves Uk(S) and vector fields Uk(S), k = 0 ..... 3. 

Hv(s,  tk) = U~(s) 

H(U 0'1) (s,t k) - u k (s) . 

Again we can apply the Hermite basis functions H k ( t l t o , t  o . . . . .  t m , t m ) ,  

h k ( t l t o , t  o . . . . .  t m , t m )  developed in Section 3.3 to construct this surface by setting 

m m 

H u ( s , t  ) = E H k ( t  l to,t  0 ... . .  tm,tm)Uk(S) + ~,hk(t  l to,t 0 .. . . .  tm,tm)Uk(S). 
k=0 k=0 

(3.14) 

Here we have simply replaced the points Pk with the curves Uk(s) and the vec- 
tors v~ with the vector fields uk(s) in (3.6). Hence it follows immediately from the 
properties of the Hermite basis functions that this lofted surface has the desired 
interpolation properties (see Exercise 1). 

One nice feature of this lofting procedure is that it allows us to piece surfaces 
together with smooth partial derivatives across common boundaries. Two lofted sur- 
faces with a common boundary curve and a common boundary vector field will, by 
construction, join continuously, and their partial derivative will also be continuous 
across the common boundary. More significantly, suppose we have two disjoint sur- 
face patches P1 (s,t) and P2(s,t) that we wish to connect smoothly by joining them 
with a third surface Q(s,t). Then we can construct Q(s,t) as a lofted surface with one 
boundary curve given by Pl(1,t) with the corresponding vector field ~P1 /bs, and the 
other boundary curve given by P2(0,t) with the corresponding vector field ~P2 / ~ .  
By the interpolation properties of lofted surfaces, Q(s,t) and Pj(s, t) ,  j -  1,2, will 
join smoothly across their common boundary (see Figure 3.13). 



150 CHAPTER 3 Hermite  Interpolation and the Extended  Neville Algor i thm 

P1 (s,t) 

P (O,O P (1,0 

3P 1 
~- Os 

Q(s,t) 
_..J 

OP 2 
Os 

P2(O,t) 

Figure 3.13 Joining the two surfaces Pl(s,t) and P2(s,t) with a third surface Q(s,t) so that derivatives are 
continuous across the common boundaries. 

3.5.3 

Exercises 

1. Show that the lofted Hermite surface defined in (3.14) interpolates the 
curves U k (s) and the vector fields u k (s), k = 0 ..... n. 

2. Given a collection of curves U k(s) and vector fields u k(s), k = 0 ..... n, use 
the lofted surface construction to define a surface P(s,t) that is piecewise 
cubic in t and interpolates the given curves and vector fields. 

3. Define a lofted rational Hermite surface R u ( s , t  ) by setting 

m m 

Z H k ( t  l to,t 0 ..... tm, tm)mkUk(s)  + Z h k ( t  l to,t 0 ..... tm,tm)mkUk(S) 
nU ~ Z s, t ~ = k=0 k=0 

Show that 

a. Ru(s ,  tk) = Uk(s ) 

b. R(U 0,1) (s,t k) = u k (s) 

m 

]~mkHk(t  l to,t 0 ..... tm,t m) 
k=O 

Boolean Sum Hermite Surfaces 

We can also construct Boolean sum Hermite surfaces. Here we are given a mesh of 
curves Uo(s ) ..... Um(s ) and Vo(t ) ..... Vn(t) together with a collection of vector fields 
Uo(S ) ..... Um(S ) and vo(t ) ..... Vn(t ) representing cross-boundary derivatives along 

these curves. We are also provided with an array of control points P0 and an array of 
twists t.. The problem is to interpolate all of this data: curves, cross-boundary q.  
derivatives, control points, and twists along a grid with prespecified nodes (see Fig- 
ure 3.14). 

Even in the Boolean sum Lagrange construction, we could not solve the interpo- 
lation problem without some compatibility conditions (see Section 2.15). For 
Lagrange interpolation, we need to assume that 
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Figure 3.14 Data for a Boolean sum Hermite surface: a mesh of curves {Ui(s),Vj(t)}, a band of vector fields 
{ui(s),vj(t)}, an array of control points {Pij}, and an array of twists {tij}. 

Pij = Uj ( s i )  = Vi(tj);  

that is, we require that the mesh of curves actually intersect. Here we need compati- 
bility conditions as well between the cross-boundary derivatives. Indeed we require 
the following compatibility conditions: 

1. Pij = Uj ( s i )  = Vi(t j )  (3.15a) 

2. U~.(s i ) -  v i ( t j )  (3.15b) 

3. Vi'(t j )  = u j ( s  i) (3.15c) 

4. tij - u j ( s i ) -  v~(tj) (3.15d) 

The first condition requires that the mesh of curves intersect at the nodes. The 
second and third conditions assert that the cross-boundary derivatives agree with the 
curve tangents at the grid points, and the last condition says that the mixed partials 
agree at the nodes. 

Now the Boolean sum Hermite surface is defined in a manner analogous to the 
Boolean sum Lagrange surface by setting 

B(s, t )  = H u ( s , t  ) + H v ( s , t  ) - Tp(s,t) ,  

where the Hermite tensor product surface Tp(s,t) is defined by (3.13) with respect to 
the points Pij ,  the derivative vectors uij - U~.(si) and vij - Vi'(tj), and the twists tij. 
Expanding this formula by substituting in the definitions of the lofted and tensor 
product surfaces, we find that 
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m m 

B ( s , t )  - ~ H j ( t  l to , t  0 ..... t m , t m ) U j ( s  ) +  ~ h j ( t  l to , t  0 ..... tm , tm)Uj (S  ) 
j=0 j=0 

n n 

+ ~ H i ( s l s o , s  0 ..... Sn ,Sn )V i ( t )+  ~ h i ( s l s o , s  0 ..... Sn,Sn)Vi( t )  
i=0 j=0 

n m 
- ~ ~ H i ( s l s O , s O  ..... S n , S n ) H j ( t l t o , t  0 ..... tm, tm)Pi  j 

i=0j=0 
(3.16) 

n m 
- ~ ~ h i ( s l s o , s o  ..... S n , S n ) H j ( t l t o , t  0 ..... t m , t m ) U j ( s  i) 

i=0 j=0 

n m 
- ~ ~ H i ( s l s O , s O  ..... S n , S n ) h j ( t l t o , t  0 ..... tm, tm)Vi ' ( t  j )  

i=0j=0 

n m 
- ~ ~ h i ( s l s o , s o  ..... S n , S n ) h j ( t l t o , t  0 ..... tm, tm)t i j  �9 

i=0 j=0 

By applying the properties of the Hermite basis functions together with the compati- 
bility conditions, you can check that this Boolean sum surface indeed has the desired 
interpolation properties (see Exercise 1). 

Using this Boolean sum construction, we can fill a four-sided hole so that the 
surface patches join with smooth cross-boundary derivatives, provided that the data 
from the bounding surfaces is compatible at the four comer points. We illustrate this 
construction in Figure 3.15. 

Exercises 

1. Show that when the compatibility conditions (3.15a-d) are satisfied, the 
Boolean sum Hermite surface defined in (3.16) interpolates all of the data- 
curves, cross-boundary derivatives, control points, and twis ts~along the 
parameter lines s = s i and t = tj. 

2. Let f l l , f le, f l3 be the barycentric coordinate functions for the triangle 

AQ1Q2Q3. Define three functions r i ( f l l , f l2 , f l3 ) ,  i = 1,2,3, by setting 

2 2 
fl j f l  k i :/: j :/: k . 

Show that 

a. ri(fl l ,  f l2, /33) = 0 i f  f l j  - 0 or flk - 0 ,  i ~ j ~ k 

b. ri ( fll , fl2 , fl  3) = 1 if fli = 0 

~ri 
c. ~)flJ - 0, if t ip = O, p - 1,2,3 
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Q2(s, t) 

OQ2 

,~___~ 3p 1 i 
as B(s,t) ! 

OQI~ ' 

- - 4  
Ql(S, 

aP2 

as 

P2(s,t) 

Figure 3.15 Filling the four-sided hole surrounded by the surface patches Pl(S,t), P2(s,t), Ql(S,t), Q2(s,t) 
with a Boolean sum Hermite surface B(s, t) so that derivatives are continuous across common 
boundaries. This construction only succeeds when the data from the patches surrounding 
the hole satisfy the compatibility conditions (3.15a-d) at the four corners. 

3 
d. 2ri(fll,fl2,fl3 ) ~ 1 

i=1 

3. Consider three curves U 1,U2,U 3 and three vector fields v 1,v2, v 3 defined 
over the edges of a triangle with vertices Q1, Q2, Q3 satisfying the compati- 
bility conditions 

ui(Qj) -  u k (Q j ) -  Pj, and vi(Qj ) - Vk(Qj ) - w j, i =it= j =it= k. 

Let fll,fl2,fl3 be the barycentric coordinate functions of AQ1Q2Q3, and let 
Ho(t),Hl(t),ho(t ) be the quadratic Hermite basis functions for the nodes 
0,0,1 (see Section 3.1, Exercise 1). Construct three quadratic cones 

Cui (fll,fl2,fl 3) Ho(fli)Ui( fljQj + flkQk ) - + H1 (fl i)Pi 
1- fli 

+ ho(fli)vi( flJQJ + flkQk fli i :/: j ~ k 

and the surface 

3 
B(fll, f12, f13 ) - 2 ri (ill, f12, f13 )Cu i (ill, f12, f13 )' 

i=l 



154 C H A P T E R 3 Hermi te  Interpolat ion and  the Ex tended  Nevil le  A lgor i thm 

where the functions ri(J~l,J~2,fl3),  i - 1 ,2 ,3 ,  are defined in Exercise 2. 
Using the properties of the quadratic Hermite basis functions and the func- 
tions ri(/31,fl2,fl3), i - 1,2,3, developed in Exercise 2, show that 

a. Cui (/31,132,133) - U i , when/3 i = 0, i = 1,2,3 

b. ~CUi = V i, when fli = 0, i = 1,2,3 

c. B(f l l , f l2,  f13) - Ui, when fli = O, i -  1,2,3 

d~ 
OB 

- v i along fli - 0, i = 1, 2, 3 

e. B(fl l ,  [32,,63) is well defined at fli = 1, i = 1,2,3 

Thus the surface B(fl l ,  f12, f13) interpolates the same data over triangles that 
the Boolean sum Hermite surface interpolates over rectangles. 

4. Develop an analogue of the construction in Exercise 3, where the three 
cones are replaced by three surfaces interpolating pairs of edges and corre- 
sponding vector fields, and the quadratic Hermite basis functions are 
replaced by cubic Hermite basis functions. 

3.6 Summary 

In this chapter we have extended the ideas and techniques from Chapter 2 on 
Lagrange interpolation of control points to Hermite interpolation of control points 
and derivatives. Most of the result on Lagrange interpolation including existence and 
uniqueness theorems, Neville's algorithm, dynamic programming procedures, up 
and down recurrences, basis functions, rational schemes, and tensor product, lofted, 
and Boolean sum surfaces extend readily to the Hermite setting. If you understood 
Chapter 2 well, this chapter will have been mostly a review with some modest exten- 
sions. 

We mentioned at the end of Chapter 2 that to solve problems in interpolation and 
approximation, we must  use the basis most  appropriate to the prob lem at hand. 
While the Lagrange and Hermite bases are improvements over the standard mono- 
mial basis for performing Lagrange and Hermite interpolation, they are not as effi- 
cient computationally as the monomial scheme. In the next chapter we introduce the 
Newton basis, a basis that is quite suitable for performing interpolation and as effi- 
cient computationally as the monomial basis. 
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Newton Interpolation 
and Difference Triangles 

We are going to revisit polynomial interpolation one more time. So far we have 
encountered several important polynomial bases, including 

�9 M o n o m i a l  basis:  1,t ..... t n 

�9 Tay lor  basis:  1,(t - to)  . . . . .  (t - to)  n 

�9 L a g r a n g e  basis:  /_~(tlt 0 ..... tn) . . . . .  L n ( t l t o  ..... tn) 

�9 H e r m i t e  basis:  H o ( t l t o , t  0 ..... tn , t  n)  . . . . .  H n ( t l t o , t  0 ..... tn , tn) ,  

ho( t  l to , t  0 ..... tn , t  n)  . . . . .  hn( t  l to , t  0 ..... tn , tn) .  

Here we plan to study yet another polynomial basis: the N e w t o n  bas is .  

Each of these bases has some good features and some bad features. Univariate 
polynomials written in terms of the monomial or Taylor bases can be evaluated 
quickly using Homer's method (see Section 2.8, Exercise 3), but computing the 
monomial or Taylor coefficients from Lagrange or Hermite data requires inverting a 
matrix, a slow and numerically unstable procedure. On the other hand, given 
Lagrange or Hermite data, we do not need to perform any computation to find the 
Lagrange or Hermite coefficients, since these coefficients are precisely the data we 
want to interpolate. This fact is one of the reasons we introduced these two bases in 
the first place. But Neville's evaluation algorithm for polynomials of degree n writ- 
ten in terms of the Lagrange or Hermite bases is O(n2), whereas Homer's method for 
polynomials written in terms of the monomial or Taylor bases is O(n) .  Thus polyno- 
mial evaluation is relatively slow for polynomials expressed in terms of the 
Lagrange or Hermite bases. Even the ladder algorithm for Lagrange polynomials 
(Section 2.6, Figure 2.12), which is O(n) ,  is slower than Homer's method because 
the ladder algorithm requires 3n multiplications compared to only n multiplications 
for Homer's approach. 

The Newton basis combines the best of both worlds. Given Lagrange or Hermite 
data, the coefficients of the interpolating polynomial relative to the Newton basis are 

155 
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easy to find using a simple recursive procedure. Moreover, we shall see that Homer's 
method for polynomial evaluation extends readily to the Newton basis. Thus the 
Newton basis combines some of the best features of the Lagrange and monomial 
bases: easy-to-compute coefficients and a fast evaluation algorithm. 

4.1 The Newton Basis 

To construct the Newton basis, we begin by fixing a set of nodes t o < t 1 <_... <_ t n. 

The Newton basis for these nodes is then defined by 

N o ( t  ) - 1 

m I (t)  - t - t o 

N n (t)  - (t - t O)..  .(t  - tn_ 1) . 

The nodes t o ..... t n need not be distinct. When all the nodes are identical, the Newton 
basis reduces to the Taylor basis at t - t o . Thus the Taylor basis is a special case of 
the Newton basis. 

The Newton bas'is has several rather obvious but important properties: 

1. N k ( t )  - ( t -  t o ) . . . ( t -  tk_ 1) is a polynomial of exact degree k. 

2. N ~ ) ( t j )  = lO, O < j < k, O < p < Pjk, 

where Jljk is the number of times tj  appears in t o ..... tk_ 1. 

3. N o ( t )  ..... N n ( t )  'form a basis for the polynomials of degree n. 

H 

4. ~ , C k N k ( t )  has an O ( n )  Homer evaluation algorithm. 
k=0 

The first two properties are immediate from the definition of the Newton basis, and 
the third property follows easily from the first (see Exercises 2 and 3). The fourth 
property is what currently interests us here. 

We illustrate the O ( n )  Homer evaluation algorithm for cubic polynomials writ- 
ten in terms of a Newton basis in Figure 4.1. Notice that the labels along edges enter- 
ing each node do not sum to one. This phenomenon is related to the fact that the 
Newton basis functions themselves do not sum to one. Thus, except for the coeffi- 
cient of N o ( t ) ,  the coefficients of the Newton basis functions are vectors, not points, 
so we need not take affine combinations of these coefficients for our results to make 
sense in affine space. 
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P(O 

Po 

v 1 

#= 

1/  / 
# 

v2 v 3 

Figure 4.1 Horner's O(n) evaluation algorithm for cubic polynomials (P(t) = PoNo(t) + VlNl(t) + v2N2(t) + 
v3N3(t) written in Newton form. The labels along the edges are not normalized, since the 
Newton coefficients are vectors, not points. Multiplication is performed only along the lateral 
right edge. Edges labeled with a 1 represent additions, not multiplications. Compare to Fig- 
ure 2.18, which is Horner's method for the monomial basis. 

Exercises 

1. What is the Newton basis when t k = 0, k = 0 ..... n ? 

2. Prove that 

N~)( t j )  - O, 0 < j < k, 0 < P <  jk, 

where ~tjk is the number of times t j  appears in t o ..... tk_ 1. 

3. Prove that the Newton polynomials form a basis for the polynomials of 
degree n. 

4. Diagram Homer's method for polynomials written in terms of the Taylor 
basis. 

4.2 Divided Differences 

Although we can quickly evaluate polynomials expressed in Newton form, it still 
remains to compute the Newton coefficients of the polynomial interpolant in an effi- 
cient manner. Let's begin then by trying a few simple calculations. 

Given an arbitrary curve F(t) ,  suppose we want to interpolate the points 
F( to)  ..... F ( tn )  with a degree n polynomial curve Po...n(t). We know how to compute 
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Po...n(t) using Neville's algorithm, but now, for fast evaluation, we want to find the 
Newton coefficients of Po...n (t). If n = 0, then 

Po(t) = F ( t o ) -  F( to)No( t ) ,  

so this case is easy. If n = 1, then we have 

P01 (t) = coNo(t)  + ClN 1 (t). 

Since N 1 (t 0) = 0, it follows once again that 

co = POl (to) = F(to). 

(4.1) 

T o  find c 1 , substitute t 1 into ( 4 . 1 )  to obtain 

F(t l)  = P01 (tl) = coNo(t l)  + ClNl(t 1) = F(to) + Cl(t 1 - to). 

Solving for c 1 , we find that 

F(tl ) - F(to ) (4.2) 
c I --- 

t 1 - t o 

What if tl = to? Then instead of Pol (t), we must consider the interpolating poly- 
nomial Poo(t). But Poo(t) is the Taylor polynomial 

Poo(t) - F(to) + F'( to)( t  - to). 

Thus we can simply read off the Newton coefficients c o = F(t o) and c I = F'(to).  
Notice that this result is consistent with our previous formulas, since 

F ( t l ) - F ( t  o) 
F ' ( to )  = lim t 

1 ~ to t 1 - t O 

We could go on to consider higher-order Newton coefficients, but although these 
computations are straightforward, they would not be very enlightening. Instead we 
shall soon take a less direct, but more revealing, approach. One thing you should 
notice now, however, is that 

eo...n (t) = eo...n-1 (t) + cnN n (t) 

because Nn(t  ~) = 0, k = 0 ..... n - 1 .  Therefore, once we know the Newton coeffi- 
cients for the nodes t o ..... tn_l, we need not recalculate them for the nodes t o ..... tn; 
all we need to do is to calculate the last coefficient c n . This observation remains 
valid even if some nodes tj have multiplicities ].tj > 1 because 

N (p) (t j )  = O, 0 <_ p < ,Uj. 

The Newton coefficient in (4.2) is a ratio of two differences. The general nth- 
order Newton coefficients are called divided differences. We begin with a recursive 
definition of the divided difference, and then argue from Neville 's  algorithm that 
these divided differences do indeed represent the Newton coefficients of the polyno- 
mial interpolant. 
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DEFINITION D i v i d e d  D i f f e r e n c e s  I 

F [ t 0 ] -  F ( t o )  

F(tl)  - F ( t  O) 
F[t o , t 1 ] = t 1 ~: t o 

t 1 - t o 

= F ' ( t 0  ) tl = to 
�9 o 

F[t  0 ..... t n] = F[tl  . . . . .  t n ] -  F[to . . . . .  tn-1] t n 4: t o 
t n - t o 

F ( n ) ( t o )  
= ~ t n = t o . 

n! 

In this notation we do not assume that the nodes t o .... , t  n are distinct, and we 
repeat a node inside the bracket of F[t  o ..... t n ] as often as its multiplicity. 

When the nodes are distinct, this definition of divided difference looks a lot like 
a discrete version of differentiation. We shall have more to say about the connection 
between divided differences and derivatives in Section 4.3. We illustrate the compu- 
tation of the divided difference for four distinct nodes in Figure 4.2. Notice the 
familiar triangular structure of this computation. In fact, if we look just at the indices 

F[to, t l , t2, t3] 

/ / ' ' , ,  
F[to, t],t2] F[t],t2,t3] / / ' , , ,  //',,,, 

F[to, tl ] F[t l , t2]  F[t2,t3] 

F(to)  F(tl) F(t 2) F(t 3) 

Figure 4.2 The triangular computation of the divided difference. Arrows entering the node F[tj ..... t k] are 
labeled _+ 1/(t k -  w These labels have been suppressed here to avoid cluttering the diagram. 
Notice that the indices in the nodes are identical to the indices in the nodes for Neville's algo- 
rithm; compare this diagram to Figure 2.5. 
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in the nodes and ignore the labels on the arrows, the structure of this algorithm is 
identical to the structure of Neville's algorithm. This connection between these two 
algorithms is not a coincidence; we shall investigate the link between the divided 
difference recurrence and Neville's algorithm shortly. 

Although this definition of divided difference is easy to understand and simple 
to compute, it does not, at first glance, seem to have much to do with polynomial 
interpolation. There are, however, two subtle clues that this construction might actu- 
ally generate the Newton coefficients of the polynomial interpolant. First, we have 
seen that F[t  0] and F [ t o , t  1 ] are the coefficients of No( t )  and Nl(t  ), so the recursion 
starts out in the right way. Second, the structure of the divided difference computa- 
tion exactly mirrors the structure of Neville's algorithm. 

There is another definition of the divided difference that, although somewhat 
more abstract, is much more closely tied to interpolation. It also turns out that this 
more abstract definition is often much easier to apply in deriving additional mathe- 
matical properties of the divided difference. We shall now give this alternative defi- 
nition and then prove that our two definitions are equivalent. 

DEFINITION D i v i d e d  D i f f e r e n c e s  I I  

Let F( t )  be an arbitrary curve, and let t o < t 1 <_ .. .  <_ t n be a set of n + 1 
nodes, not necessarily distinct. Denote by/ . t  k the multiplicity of t k in the 
sequence t o < t 1 < .. .  < t n. Let Po.. .n(t)  be the unique degree n polynomial 
that interpolates the data 

F( to  ) . . . . .  F(~t0 -1) (t o) ..... F ( t  n) . . . . .  F(~tn -1) (t n) .  

Then 

F[to , . . . , t  n ] = coefficient of t n in the monomial representation of the 
interpolant Po.. .n( t) .  (4.3) 

In this notation, we repeat the node t k a total of flk times inside the brackets of 

F[t  0 ..... tn]. 
For example, suppose that 

F ( t )  - 3t 4 - 5t 3 + 2t 2 - 2t + 3, 

and let t O = 0, t 1 = 0, t 2 = 1, t 3 = 1. Then in the cubic Hermite basis (see Section 
3.1) 

P0011 (t) - F(0)(1 - t) 2 (1 + 2t) + F(1)t 2 (3 - 2t) + F'(0)t(1 - t) 2 + F'(1)t 2 (t - 1). 

Substituting F(0) = 3, F ' (0)  = -2 ,  F(1) = 1, F'(1) = -1 and expanding in the mono- 
mial basis yields 

POOl l (t) - t 3 - t 2 - 2t + 3 . 



Therefore, F[0,0,1,1] - coefficient of t 3 - 1. 
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THEOREM 
4.1 

Let F i t  0 ..... tn]  be the divided difference as defined by (4.3). Then 
F [ t  0 . . . . .  tn] satisfies the recurrence 

F [ t  0 . . . . .  t n ] = F [ t l  . . . . .  t n ] - F [ t  0 . . . . .  t n _  1 ] tn ~ t o 

t n - t o 

F ( n ) ( t o )  
- t n - t o �9 

n! 

Thus Definition I and Definition II for the divided difference are equivalent. 

P r o o f  If t n r t 0 ,  then by Neville's algorithm (3.4) 

- t n - t  
Po. . .n  ( t )  - t t________O_ 0 P1.. .n ( t )  + P o . . . n - 1  ( t ) .  

t n - t o tn - t O 

Comparing the coefficients of t n on both sides of this equation yields 

F [ t  0 . . . .  , t  n] - F [ t l  . . . . .  t n ] -  F [ t  0 . . . .  , t n _  1] tn g: t O �9 

t n - t o 

If, on the other hand, t n - t 0, then P o . . . n ( t )  - P o . . . o ( t )  is the Taylor polyno- 
mial of degree n at t - t 0. Thus ~n+l 

n F (k) ( t  o )  k 
Po. . .n  ( t )  - E ( t  - t O) 

k=0 k! 

Comparing the coefficients of t n on both sides of this equation yields 

F [ t  0 . . . . .  to] = 

n+l 

F ( n ) ( t o ) .  

Although we now see a direct connection between divided differences, recur- 
sion, and interpolation, we have yet to link the divided difference to the Newton 
basis. Our next result states that divided differences are indeed the Newton coeffi- 
cients of the polynomial interpolant. 
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COROLLARY 
4.2 

Let F ( t )  be an arbitrary curve, and let t O < t 1 < . . .  < t n be a set of n + 1 
nodes, not necessarily distinct. Denote by ~t k the multiplicity of t k in the 
sequence t o < t 1 < . . .  < t n. Let Po. . .n( t )  be the unique degree n polynomial 
that interpolates the data 

F ( t o  ) . . . .  ,F(#0-1) (t 0), .... F ( t n  ) . . . . .  F(~tn-1)  (t  n)  

at the parameter values t o ..... t n. Then 
n 

eo. . .n ( t )  = Z F[to  . . . . .  t k ]U k (t). 
k=0 

That is, the Newton coefficients of the polynomial interpolant are divided 
differences. 

P r o o f  This result follows by induction on n. If n = 0, then by definition 
Po( t )  = F ( t o ) ,  so the result is certainly true. Now suppose the result is valid 
for all natural numbers less than n. Since the polynomials N o ( t  ) ..... N n ( t  ) 

form a basis, 
n-1 

Po. . .n( t )  = ] ~ C k N k ( t  ) + c n N n ( t ) .  
k=0 

Moreover, since 

N(n pk) (t  k ) = O, Pk = 0 ..... l.t k - 1, k = 0 ..... n -  1, Pn = 0 ..... ]1 n - 2, 

it follows that 

n-1 
eo . . .n-1  ( t )  - ~ C k N  k ( t )  

k=0 

because both sides are polynomials of degree n - 1 that interpolate the data 

F ( t o  ) ..... F(/~o -1) (t o ) ..... F ( t n _  1 ) ..... F(/ln- 1-1) ( tn_ 1 ) , F ( t n  ) ..... F(~tn -2) (t  n ) �9 

Hence by the inductive hypothesis 

c k = F [ t  0 ...... t k ] ,  k = O  ..... n - 1 .  

Finally, observe that since d e g r e e { N k ( t )  } = k, c n is the coefficient of t n in the 
monomial basis of the polynomial interpolant Po.. .n(t);  hence by (4.3), 

C n = F[ t  0 ..... tn]. 

Theorem 4.1 and Corollary 4.2 provide us with a fast way to compute the poly- 
nomial interpolant: first use the divided difference recurrence to find the Newton 
coefficients of the interpolant; then apply Homer's method to evaluate the interpo- 
lant in the Newton basis. The divided difference recurrence is O(n2) ,  but we need to 
apply this recurrence only once to find the Newton coefficients. We can then apply 
Homer's method, which is only O ( n ) ,  to evaluate the interpolant at as many parame- 
ter values as we like. 
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For fixed parameters t o ..... t n we can think of the divided difference as an opera- 
tor that assigns to each function F( t )  the constant F[t  o ..... tn]. The divided difference 
is a linear operator, since it is easy to show either by induction from Definition I or 
more directly from Definition II that 

(F +G)[t 0 ..... tn] = F[t  0 ..... t n ] + G [ t  0 ..... tn] 

( cF)[ t  0 ..... t n ] = c (F[ t  0 ..... t n ]) �9 

A linear operator that vanishes on all but one of a fixed set of basis functions and 
yields the value one on a single basis function is called a d u a l  f u n c t i o n a l .  For exam- 
ple, polynomial evaluation is the linear operator that provides the dual functionals 
with respect to the Lagrange basis {Lnk(t I t o ..... tn) } because by (2.12) 

L ~ ( t j  l t 0 ..... t n)  - 0  j 4: k 

=1 j = k .  

Similarly, divided difference is the linear operator that provides the dual functionals 
for the Newton basis. Indeed, if we set F ( t )  = N k (t)  in Corollary 4.2, then it follows 
from the uniqueness of the polynomial interpolant that P o . . . n ( t )  = N k ( t  ) (see Section 
2.4, Exercise 3), so 

N j [ t  o ...... tk ] = 0 j r k 

=1 j = k  . 

Dual functionals are convenient because if we know the dual functionals for a 
particular basis, then we can compute the coefficients of an arbitrary element with 
respect to this basis (see Exercise 11). For example, if P( t )  is a polynomial of degree 
n, then by Theorem 2.7 and Corollary 4.2 

n 

P ( t )  - Z P ( t k ) L ~ ( t  l t 0 ..... tn) 
k=O 

n 

P ( t )  - ~, P[t  0 . . . . .  t k ]N k (t)  . 
k = 0  

Dual functionals are important tools in interpolation and approximation. We 
shall return to this theme again in Chapter 6, where we discuss blossoming, which 
provides the dual functionals for the Bemstein and B-spline bases. 

Exercises 

1. Draw the diagram of the divided difference recurrence for F[0,1,1, 2]. Com- 
pare this diagram to Figure 3.5. 

2. Draw the diagram of the divided difference recurrence for F[0, 0, 0,1,1, 2] 
and F[0,0,1,1,2,2]. Compare your diagrams to Figures 3.7 and 3.8. Why do 
these figures differ from your diagram? 
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3. Use the mean value theorem to prove that if F( t )  is a differentiable function, 
then 

a. F[ to , t  1 ] = F ' ( c )  for some constant c such that t o < c _< t 1. 

F ( n ) ( c )  
b. F[ t  0 . . . . .  t n ] - for some constant c such that t o < c < t n . 

n! 
4. Prove that ( F  o G ) [ t o , t  1 ] = F [ G ( t  0) ,  G ( t  1)]G[tO,t 1 ]. 

5. Prove that if all the nodes are distinct, then 

n F ( t k  ) 
F[ t  o ..... tn] = 

k = 0  1-I ( t k  - t j )  
j ~ k  

(Hint: Consider Lagrange interpolation.) 

6. Let G ( t )  = F ( t  + b). Prove that G[t 0 . . . . .  t n ] = F[t  0 + b . . . . .  t n + b]. 

7. Let P( t )  be the Newton interpolating polynomial for F( t )  relative to the 
nodes t o ..... t n. Form a new Newton interpolating polynomial Q(t )  by 
replacing each node tlc by the node TIc = t k + b ,  k = 0 ..... n, for some fixed 
constant b. 

a. Show that changing all the nodes in this way has no effect on the shape of 
the Newton interpolating curve. In particular, show that Q(t  + b) = P ( t ) .  

b. Form a new Newton interpolating polynomial R( t )  by replacing each 
node t k by the node ~'k = a t k  + b for some fixed constants a > 0 and b. 
Show that R( t )  is not, in general, a reparametrized version of P(t ) .  

c. Compare these results for Newton interpolation to similar results for 
Hermite interpolation in Section 3.2, Exercise 5, and Lagrange interpola- 
tion in Section 2.2, Exercise 4. Why do these results for Newton interpo- 
lation resemble the corresponding results for Hermite interpolation rather 
than the corresponding results for Lagrange interpolation? 

8. Prove that if all the nodes are distinct, then 

F[t  0 ..... t n ] = 

F ( t o )  t~ -1 .. .  t o 

F ( t n )  t n-1 . . .  t n 

-1. .... to 
�9 ~ o ~ 

n-1 

(Hint: Consider interpolation using the monomial basis.) 

9. Let to < ... < t n be distinct nodes with multiplicities/.t o ..... /.t n. Generalize 
the result in Exercise 8 by replacing the row 
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n-1 R ( t j ) -  {F( t j )  tj ... tj 1} 

by the rows R(t j )  .,R (~/j-1) ,.. (t j ) ,  and the row 

n-1 r ( t j ) - { t j  tj ... tj 1] 

r(l~; -1) by the rows r(t j)  ..... (tj) for j = 0 ..... n. 

10. What are the dual functionals for the following bases? 

a. Taylor basis 

b. Hermite basis 

11. Let D~ (t) ..... D n (t) be a basis for the polynomials of degree n. Suppose that 
k,~ ..... ~n are linear functionals that assign a real number to each polyno- 

mial P(t) of degree n. Show that the following two properties are equivalent: 

f/ /7 
~ j ( D  k ) - 0 j :/: k 

=1 j - k .  

n 

ii. P(t) y_, n n = /~j(P)Dj ( t ) .  
j=O 

(Compare to Section 2.5, Exercise 4.) 

4.3 Properties of Divided Differences 

Divided differences have many interesting properties. When the nodes are distinct, 
the divided difference is a discrete version of the derivative, and when the nodes are 
identical, the divided difference is a derivative. Thus divided difference shares many 
of the familiar properties of differentiation. But divided differences are also the coef- 
ficients of a polynomial interpolant; thus they also possess properties related to inter- 
polation. We collect a dozen of the most important properties of divided differences 
and list them in the next theorem. Additional intriguing formulas can be found in the 
exercises. For easy reference many of these divided difference identities, and others 
as well, are listed together at the end of this chapter. 
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THEOREM 
4.3 

P r o p e r t i e s  o f  the D i v i d e d  D i f f e r e n c e  

Let F( t )  be an arbitrary curve, and let t o < t 1 < ... < t n be a set of n + 1 
nodes, not necessarily distinct. Denote by /t k the multiplicity of t k in the 
sequence t o < t 1 < ...  < t n. Let Po.. .n(t)  be the unique degree n polynomial 
that interpolates the data 

F( to  ) . . . . .  F(/Z0 -1)(t O) ..... F ( t n ) , . . . , F  ( l t " - l )  (t n) 

at the parameter values t O ..... t n.  Then the divided difference Fi t  0 ..... tn], 

where each distinct node t j  is r epea ted / / j  times, satisfies the following 
properties: 

1. R e c u r s i o n  

F[t  0 ..... t n ] = F[tl  ..... t n ] -  F[t  0 ..... tn_l]  tn :/: t o 

t n - t o 

F ( n ) ( t o )  
= ~  t n = t  o . 

n! 

2. S y m m e t r y  

F[t  0 ..... t n ] = F[tcr(O),...,tcr(n)], where cy is any permutation of {0 ..... n}. 

3. R e c u r s i o n  R e v i s i t e d  

F[t  0 ..... ti_ 1,ti+l ..... t n ] - F[t  0 ..... t j _ l , t j + l  ..... t n ] 
F[t  0 ..... t n ] = t j  f: t i . 

t j  - t  i 

4. L i n e a r i t y  

(F + G)[t 0 ..... t n ] - F[t  0 ..... t n ] + G[t 0 ..... t n ] 

( cF)[ t  0 ..... tn ] - c (F[ t  0 ..... t n ]) �9 

5. C a n c e l l a t i o n  

F[t  0 ..... t n] = { ( t -  t n + l ) F ( t )  }[t o ..... tn, tn+l].  

6. L e i b n i z ' s  R u l e  

n 

( F G ) [ t  0 ..... t n ] =  Y~F[t 0 .... , tk]G[t  k ..... tn].  
k=O 

7. H i g h e s t - O r d e r  C o e f f i c i e n t  o f  the P o l y n o m i a l  I n t e r p o l a n t  

F[t  0 ..... t n ] - coefficient of t n in the monomial representation 
of the interpolant Po.. .n(t) .  

8. H i g h e s t - O r d e r  C o e f f i c i e n t  o f  the N e w t o n  I n t e r p o l a n t  

F i t  0 ..... t n ] - coefficient of N n ( t  ) in the Newton representa- 
tion of the interpolant Po.. .n(t) .  



4.3 Properties of Divided Differences 167 

9. Newton  Coefficients o f  Polynomial  ln terpolant  

n 

Po. . .n ( t ) -  ~,F[to,. .... t k]Nk( t ) .  
k=0 

10. Dua l  Funct ionals  f o r  the Newton  Basis  

Nj[ t  0 ...... tk ]= 0 j ~ k 

=1 j - k  . 

11. Equali ty  Condit ions 

F (p) (t j)  = G (p) (t j)  O< p <  l t j - 1 ,  j - O  ..... n 

F[t 0 .... ,tn ] - G[t o .... ,tn]. 

12. Value on Low-Order  Polynomials  
a. If F(t) is a polynomial of degree n - 1, then F[t 0 ..... t n ] = O. 
b. If F(t) is a polynomial of degree n, then F[to,. . . , t  n] is the coeffi- 

cient of t n in the monomial representation for F(t). Thus, in this 
case, Fit o ..... t n ] is a constant independent of to,...,t n. 

Proo f  We are already familiar with some of these properties, and most of the remain- 
der are fairly simple to derive. We shall take Property 7 as the definition of the 
divided difference and deduce the other properties as a consequence. 

1. Follows from 7 by Theorem 4.1. 

2. Also follows immediately from 7 because the interpolant Po...n(t) is 
independent of the order of the nodes t o ..... t n . 

3. Follows immediately from Properties 1 and 2. 

4. Follows easily by induction from Property 1 or more directly from 
Property 7 by the linearity of the polynomial interpolant. 

5. Follows from Property 7 because if Po...n(t) is the polynomial interpo- 
lant for F(t), then ( t - tn+l)Po. . .n( t )  is the polynomial interpolant for 
( t - t n + l ) F ( t ) .  

6. This result is the analogue of Leibniz's rule for the nth derivative of the 
product of two functions. We shall prove this result separately below in 
Proposition 4.4. 

7. This property is the definition of the divided difference. 

8. Follows directly from Corollary 4.2. 

9. This result is Corollary 4.2. 

10. Follows easily from Property 9 with F(t)  = Nj ( t ) .  

11. Again this result follows easily by induction from Property 1 or more 
directly from Property 7 by the uniqueness of the polynomial interpolant. 
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12. Part (a) is a consequence of Property 7 because if F( t )  is a polynomial 
of degree n - 1, then F(t )  is the polynomial interpolant to the data gen- 
erated by F(t) .  But since F(t )  is a polynomial of degree n -  1, the coeffi- 
cient of t n in the monomial representation of F(t )  is zero, so 
F[t  0 ..... t n] = 0. Part (b) is also a consequence of Property 7 because 
again F( t )  is the polynomial interpolant to the data generated by F(t) .  

Thus by Property 7, F[t  0 ..... t n ] is the coefficient of t n in the monomial 
representation of F(t) .  It follows that F[t  o ..... t n ] is independent of the 
nodes t o ..... t n . 

Properties 1-3 and 7-11 are directly related to interpolation. For example, we 
have seen that the structure of the divided difference recurrence in Property 1 is 
identical to the structure of Neville' s algorithm for polynomial interpolation. Proper- 
ties 4, 6, and 12 are reminiscent of similar properties for differentiation. Here Prop- 
erty 6 reminds us of the product rule for higher-order derivatives (see Exercise 1), 
and Property 12 recalls the fact that the nth derivative of a degree n -  1 polynomial is 
zero while the nth derivative of a degree n polynomial is a constant. It remains then 
only to prove Leibniz's rule. 

PROPOSITION 
4.4 

L e i b n i z ' s  R u l e  

n 

( F G ) [ t  0 . . . . .  t n ] =  E F [ t  0 . . . . .  tk]G[t  k . . . . .  t n] 
k=O 

Proof This result can be proved directly from the recurrence by a hard induction. 
Here we shall adopt a much simpler proof due to E. T. Y. Lee. To shorten 
our notation, let P( t )  - Po.. .n(t) be the polynomial interpolant for F(t) .  Then 
by Property 9 of Theorem 4.3, 

n 

P( t )  - ~ ,F[ t  0 . . . . .  tk]( t - t o ) . . . ( t -  tk_l  ) . (4.4) 
k=0 

Now since F G  and P G  agree at the nodes, it follows from Property 11 of 
Theorem 4.3 that 

( F G ) [ t  0 . . . . .  tn ] - ( p G ) [ t  0 . . . .  , t  n ] . 

Therefore, by Equation (4.4) and Properties 4 and 5 of Theorem 4.3, 

n 

( F G ) [ t  0 . . . . .  t n ] - ~ ,F[ t  0 . . . . .  tk]{ ( t -  t o ) . . . ( t -  t k _ l ) G ( t )  }[t o ..... t n ] 
k=0 

n 

= ~ ,F[ t  o . . . . .  tk]G[t  k . . . . .  t n ] .  
k=0 
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Exercises 

1. Using Leibniz's rule for divided differences, prove Leibniz's rule for differ- 
entiation: 

n ) F ( k ) G ( n _ k ) .  ( F G )  ( n ) =  ~ . (~  

k=O 

2. Show that Property 5 (cancellation) in Theorem 4.3 is a special case of 
Leibniz's rule. 

3. Prove that 

a. 
~F[t  0 . . . . .  t k . . . . .  t n ] 

~t  k 
= # k F [ t o  . . . . .  t k , t  k . . . . .  tn],  

where Pk is the multiplicity of t k 

n 

b. F ' [ t  0 . . . . .  t n ] =  Z F [ t  0 . . . . .  t k , t  k . . . . .  tn] 
k=O 

n 0F[t0,.. tk .... tn] if all the nodes are distinct c. F ' [  t o . . . . .  t n ] = ]~ "' ' 
k=0 ~tk 

4. Prove that the divided difference of a polynomial is a polynomial. That is, 
prove that if P ( t )  is a polynomial in t, then P[t  o . . . . .  tn] is a polynomial in 
the variables t o , . . . , t  n. 

5. Prove that {t n } [v 1 ..... Vn_ k ] - ~ i l  <i2 <...<ik+l vii vi2 "" "vik+l , 0 <_ k < n - 1. 

6. Provethat  ~ 1 ~[t0 f ] ..... t n ] =  1 . 
[ t ( X -  t o ) . . . ( X -  tn)  

Here x is treated as a constant and the divided difference is taken with 
respect to t. 

7. Generalize the result in Exercise 6 by showing that if P ( t )  is a polynomial 
with degree(P) < n, then 

P ( t )  P(x) 
_ [to ..... tn] - 

{ x - t  ( X - t o ) ' " ( x - t  n)  

(Hint: Observe that r - t = (r - x) + (x - t) and apply Theorem 4.3, Property 
12a.) 

f } n 8. Prove that 1 [t0 ,tn] = ~_~ 1 

(x - t) 2 .... k=0(x - t o ) . . . ( x  - t k )2 . . . ( x  - tn)  

(Hint: See Exercise 3(b) and Exercise 6.) 
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4.4 

9. Use the recurrence for the divided difference to derive the Hermite-Genocchi 
formula: 

G[ x 0 ..... x n ] = ~A n G( n ) ( xo + Vl(X 1 - x0) +. . .  + Vn ( X n - Xo ) )dVl . . . dv n , 

where A n = {(Vl,. . . ,Vn) l V j >__ 0 and ~ j v j  <_ 1}. 

10. Use the recurrence for the divided difference to prove that 

F[t .... ,t,t+h]= 
h n 

n 

n 

F[t + h ] -  ~, h k - l F [ t  ..... t] 

k=l k 

An Axiomatic Approach to Divided Difference 

The divided difference has a bewildering array of remarkable properties. In Theorem 
4.3 we list a dozen such properties, and additional formulas and identities are pro- 
vided in the exercises at the end of Sections 4.2 and 4.3. It seems natural to ask, 
Which of these properties are most important? That is, which properties are primary 
and which are derived? Of course, the two definitions~the recursion formula and 
the highest-order coefficient of the polynomial interpolant~are fundamental. But 
there is another powerful mathematical paradigm for selecting basic properties: axi- 
omatic systems. Below we provide an axiomatic approach to divided differences. 

We have another, ulterior motive for introducing these axioms here. We observed 
at the end of Section 4.2 that the divided difference provides the dual functionals for 
the Newton basis. In Chapter 6, we are going to encounter another important linear 
operator called the blossom,  which furnishes the dual functionals for the Bernstein 
and B-spline bases. The blossom of a polynomial is typically introduced by a set of 
elementary axioms. Here we provide a simple axiomatic characterization of the 
divided difference to prepare the way for blossoming and to emphasize the close con- 
nection between the blossom and the divided difference. 

AXIOMS A x i o m s  f o r  the D i v i d e d  Di f ference  

1. S y m m e t r y  

F[to ..... tn] = F[ta(o)  ..... ta(n)] ,  where ~ is any permutation of {0,...,n} 

2. L inear i t y  

(F + G)[t 0 ..... t n ] = F[t  0 ..... tn] + G[t 0 ..... tn] 

(cF)[ t  0 ..... t n ] = r  0 ..... t n ]) 
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3. C a n c e l l a t i o n  

F[ t  0 ..... tn] = { ( t -  t n + l ) F ( t )  }[t o ..... tn, tn+ 1 ] 

4. D i f f e r e n t i a t i o n  

F[ t  0 .... ,t 0] = F ( n ) ( t o )  
n! 

n+l 

171 

The last axiom is a diagonal property that specifies how the divided difference 
behaves when all the nodes are the same. We shall see in Theorem 4.5 that the first 
three axioms completely characterize the divided difference when some of the nodes 
are distinct. Thus we can take these four axioms as the primary properties of the 
divided difference; all the other formulas and identities can be derived from these 
four axioms. 

THEOREM 
4.5 

The divided difference is the unique operator satisfying the four axioms of 
symmetry, linearity, cancellation, and differentiation. 

P r o o f  By Theorem 4.3, the divided difference operator certainly satisfies these 
four axioms. To prove that the divided difference is the only operator that 
satisfies these axioms, we shall derive the divided difference recurrence 
from these axioms. This derivation is straightforward, since by linearity, 
symmetry, and the cancellation axiom: 

(t n - t o )F[ to , . . . , t n ]  = { ( t -  t o ) - ( t -  t n ) F ( t  ) }[t o ..... tn] 

= {(t - t o ) F ( t )  }[t o ..... t n ] -  { (t  - t n ) F ( t  ) }[t o ..... tn] 

= F[ t  1 ..... t n ] - F[ t  o ..... t n -  1 ] �9 

Dividing both sides by t n - t o yields the recurrence. 

Notice that in the proof of Theorem 4.5 the cancellation axiom does most of the 
vital work. Often the cancellation axiom is easier to apply than the divided differ- 
ence recurrence; see, for example, the proof of Leibniz's rule in Proposition 4.4. To 
further exhibit the power of these axioms, especially the cancellation axiom, we 
prove the following result, which can be used to derive a generalization of the de 
Boor recurrence as well as Boehm's knot insertion formula for B-spline curves (see 
Section 7.7.4, Exercises 7 and 8). 
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PROPOSITION 
4.6 

Let �9 = ]~k ~'ktk, where ]~k 2k = 1. Then 

n 

F[to , . . . , tn]= ]~AkF[to ..... tk_l ,r ,  tk+l ..... tn]. 
k=0 

Proof If t 0 = t  l = . . . = t  n, then v = t  k, k = O  ..... n, and both sides reduce to 
F[t o ..... to]. Otherwise using only cancellation, linearity, and symmetry, we 
have 

F[t 0 ..... t n ] = { (t - T)F(t)  }[t o ..... t n, ~] 

= k ( t - t  k )F( t  t o .... ,t n,~:] 

n 

= 2 { ~ , k ( t - t k ) F ( t ) } [ t o  ..... tk ..... tn,~] 
k=O 

n 

= 2XkF[ to  ..... tk_l,~,tk+l ..... t n ] .  
k=O 

Exercises 

1. In this exercise you will need the following two results from complex analy- 
sis. Let C be a simple closed curve, and let t be any point in the complex 
plane that lies inside of C. Suppose that F(z) is analytic inside C. Then the 
following results are classical: 

THEOREMS Cauchy 's  Integral Formula 

1 ~c  F(z )dz  
F(t)  = - - ~  z - t 

Cauchy 's  Integral Formula fo r  Derivatives 

F (n-l) (t) = ~ f F(z)dz  

( n -  1)! 2~i ~r ( z - t )  n 

In this exercise you are going to generalize these results from complex 
analysis to develop the following complex contour integration formula for 
the divided difference. 
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THEOREM C o m p l e x  C o n t o u r  I n t e g r a t i o n  F o r m u l a  f o r  the D i v i d e d  D i f f e r e n c e  

1 f,~ F ( z ) d z  
F[to . . . . .  tn] - - ~ , j c  (z  - t o ) . . . ( z  - tn) 

(4.5) 

where C is any simple closed curve containing t o . . . . .  t n and F is analytic 
inside C. 

a. Use the axioms for the divided difference to prove (4.5). What is the 
diagonal property? 

b. Use the divided difference recurrence to prove (4.5). What is the base 
case? 

2. Use Equation (4.5) to prove that 

~F[t  0 . . . . .  t k . . . . .  tn] 

~t k 
of t k 

= PkF[ to  ..... t k , t  k . . . . .  tn], where Pk is the multiplicity 

n 

b. F ' [ t  o . . . . .  tn ] - ~ ,F[ t  o . . . . .  t k , t  k . . . . .  tn ] 
k = 0  

3. Prove that the linearity axiom for divided difference can be replaced by the 
following affinity axiom" 

{ (x - (1 - a ) u  - ~zv)F(x)  }[t o ..... t n ] 

= (1 - a){ (x  - u ) F ( x )  }[t o ..... t n ] + a{  (x  - v ) F ( x )  }[t o ..... tn] . 

4. Prove that the affinity axiom for divided difference in Exercise 3 can be 
replaced by the identity in Proposition 4.6. 

5. Prove that the differentiation axiom can be replaced by the following pair of 
axioms: 

i. E v a l u a t i o n  F[ t  O] = F ( t  O) 

ii. C o n t i n u i t y l i m t i ~ z F [ t o  ..... t i ..... t n] = F [ t  0 ..... "c ..... tn]. 

(Hint: Use the result of Section 4.3, Exercise 10.) 

4.5 Forward Differencing 

The fastest way to evaluate a polynomial at a single point is to apply Homer's 
method. But remarkably, if we wish to evaluate a polynomial at a great many points, 
then there are faster ways to compute these values. The fastest method is a technique 
called f a s t  f o r w a r d  d i f f e renc ing ,  which is closely related to the divided difference 
and the Newton basis. This method computes points along a polynomial curve at 
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equally spaced parameter values. After an initial start-up step, fast forward differenc- 
ing requires only n additions and zero multiplications to evaluate each new point on 
a degree n polynomial curve. 

The recursive definition of the forward difference AnF(to ..... tn) is similar to the 
recursive definition of the divided difference Fit o ..... t n ], but without the bothersome 
denominator: 

A~ = F(t 0 ) 

M~(to,q ) = F(q ) - F(t O) (4.6) 

�9 , 

AnF(to ..... tn) = An-lF(tl  ..... tn ) - An-IF(to ..... tn-1) �9 

We illustrate the recursive computation of A3F(t0 ..... t3) in Figure 4.3. Taking 
sums or differences in this way is closely related to Pascal's triangle (see Chapter 5). 
Not surprisingly, then, if we write out the first few differences explicitly, binomial 
coefficients begin to appear: 

AOF(to) = F(to) 

AF(t0,tl) = F ( t l ) -  F(t O) 

A2F(to,tl ,t2) = F(t2) - 2F(tl) + F(t O) 

A3F(to,q,t2,t3) = F( t3) -  3F(t2) + 3F( t l ) -  F(t O) . 

A3F(to, tl,t2,t 3) 

A2 f(to, tl ,t2) A2F(tl ,t2,t 3) 

AF(to, t 1) AF(tl,t2) 

,7,, 7/,,x,, 
F(t O) F(tl) F(t2) 

AF(t2,t 3) 

F(t3) 

Figure 4.3 The triangular computation of the forward difference. Notice once again that the indices in 
the nodes are identical to the indices in the nodes for Neville's algorithm; compare this dia- 
gram to Figures 2.5 and 4.2. 
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Proceeding by induction (see Exercise 1), we can express the nth forward difference 
explicitly in terms of the function values F ( t  O) . . . . .  F ( t  n)  by the formula 

n l ~ n - k i n  
AnF( to  . . . . .  t n ) -  ] ~ ( - ~ j  t k ) F ( t k ) .  

k=0 
(4.7) 

What is most important to us here is how the forward difference behaves when 
the values t o . . . . .  t n are evenly spaced along the parameter line. In this case it turns 
out that there is a simple relationship between the forward difference and the divided 
difference. 

PROPOSITION 
4.7 

Suppose that the values t o ..... t n are evenly spaced along the parameter 
line--that is, t k - t o + kAt ,  k - 0 . . . . .  n. Then 

A n F ( t o  . . . . .  tn)  = n ! ( A t )  n F[ t  0 . . . . .  tn]. (4.8) 

Proof We proceed by induction on n. Clearly the result is valid for n = 0,1, since 

AOF(to)  = E f t  O) - F[t0] 

A F ( t o ' t l  ) = F ( t l  ) - F ( t o )  - { F ( t l  ) - F ( t o )  } (tl - tO) - F[tO' t l  ]At - t o 

Suppose the result is valid for all natural numbers less than n. Then by (4.6) 
and the inductive hypothesis 

A n F ( t o  . . . . .  tn)  - A n - l F ( t l  . . . . .  tn)  - A n - I F ( t o  . . . . .  tn_l  ) 

= ( n -  1 ) ! ( A t ) n - l F [ t l  . . . . .  t n ] - ( n -  1 ) ! ( A t ) n - I F [ t o  . . . . .  tn_l] 

=(n-1)! (At)n-a{  f [ t l  . . . . .  tn ] - _ to . . . . .  tn-1] ) ( t n  - tO ) 

= (n - 1)!(At) n-1F[t 0 . . . . .  t n ] (nA t  ) 

= n ! ( A t )  n F [ t  0 . . . . .  t n] . 

Now recall that if F( t )  is a degree n polynomial, then F[t  0 . . . . .  tn] is a constant 
independent of the parameters t o . . . . .  t n (Theorem 4.3, Property 12b). Consequently, 
by Proposition 4.7, when the parameter values t o . . . . .  t n are evenly spaced along the 
parameter line--that is, when At is fixed~then AnF( to  . . . . .  t n)  is also a constant 
independent of t o . . . . .  t n. We shall now apply this observation to develop a fast eval- 
uation algorithm for polynomial curves. 
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Consider a degree n polynomial F(t) and a sequence to ..... tp of equally spaced 
parameter values. Suppose that somehow, by whatever means, we have already cal- 
culated the values 

AnF(to ..... tn ), An-a F(tl ..... t n) ..... AF(tn_l,tn ),F(tn). 

Then we can calculate the new values 

AnF(tl ..... tn+l ),An-lF(t2 ..... tn+l ) ..... AF(tn,tn+ 1),F(tn+l ) 

using only addition in the following manner: 

AnF(tl ..... tn+l ) = AnF(to ..... t n) 

An-lF(t2 ..... tn+l ) = An-lF(tl  ..... t n) + AnF(tl ..... tn+l ) 

~ ( t n , t n + l  ) = z~( tn_l , tn)  + A2F(tn_l,tn,tn+l ) 

F(tn+l ) = F(tn) + AF(tn,tn+ 1) �9 

The final equation gives us the value of F(tn+ 1) (see Figure 4.4). Iterating this proce- 
dure, we can calculate additional values F(tn+ 2),F(tn+3) ..... F(tp) of the polynomial 
F(t) still using only addition. 

To obtain the initial sequence AnF(to ..... tn),An-lF(tl  ..... tn) ..... F(tn), we sim- 
ply compute the difference triangle for AnF(to ..... t n) (Figure 4.3). In order to per- 
form this computation, we must calculate the initial values F(t O) ..... F(t n) at the base 

A3F(to, tl,t2,t3) = A3F(tl,t2,t3,t4) 

A2F(to, tl,t 2) A2F(tl,t2,t 3) A2F(t2,t3,t 4) 

AF(to, t 1) AF(tl,t 2) AF(t2,t 3) AF(t3,t 4) 

F(t o) F(tl ) F(t2) F(t3) F(t4) 

Figure 4.4 Two overlapping difference triangles for a cubic polynomial curve. The values at the apexes 
of the two triangles are identical by Proposition 4.7. Each value along the far right lateral 
edge can be computed by adding the values above it and to the left. Thus moving up the 
first triangle and then down the right lateral edge of the second triangle, we eventually cal- 
culate F(t4) from F(t o) ..... F(t 3) using only addition and subtraction. Iterating the second part 
of this procedure for more and more points is the fast forward differencing algorithm for 
polynomial evaluation. The triangle on the left represents the start-up step (see also Figure 
4.3), and the right lateral edge represents the fast forward differencing action (see also Fig- 
ure 4.5). 
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of the triangle, and for these calculations we can use Homer's method. Therefore, 
the start-up for the algorithm requires n(n+ 1) multiplications--n multiplications for 
each of the n + 1 values F(t k), k = 0 ..... n- -but  once the algorithm gets going no 
further multiplications are required to compute additional points. Thus from 
F(t O) ..... F(tn), we can calculate arbitrarily many points along the curve using only 
addition. This evaluation algorithm is called fast forward differencing. While for- 
ward differencing is very fast, care must be taken when using this evaluation tech- 
nique because fast forward differencing is numerically unstable. We illustrate this 
fast forward differencing algorithm for cubic polynomials in Figures 4.4 and 4.5. 

There is an interesting way to think about fast forward differencing that involves 
change of basis algorithms. Since by Corollary 4.2 the divided differences represent 
the coefficients of the polynomial interpolant relative to the Newton basis, it follows 
by Proposition 4.7 that when the parameter values are evenly spaced, the forward 
differences represent the coefficients of the polynomial interpolant relative to the 
rescaled Newton basis 

A3F(to, t 1 ,t2,t 3) 

1 
A? F(t 1 ,t2,t3,t 4) 

1 
ABF(t2,tB,t4,t 5) 

1 
A3F(t3,t4,t5,t 6) 

1 

A2F(t 1 ,t2,t 3) 

.~ A2F(t2,t3,t4) 

A2F(t3,t4,ts) 

A2F(t4,t5,t6) 

AF(t2,t3) F(t3) 

1 1 
AF(t3,t4) ~ F(t4) 

1 1 
AF(t4,t5) ~ F(t5) 

1 .1 
~ AF(t5,t6) .~ F(t6) 

1 1 
Figure 4.5 The fast forward differencing algorithm for a cubic polynomial curve F(t). The top row is 

computed from a difference triangle (Figure 4.3). Each value in subsequent rows is computed 
by adding the values at the nodes from the arrows that point into the node (the two values 
directly above it and to the left). The values in the leftmost column are all identical, and the 
values in the rightmost column are points on the curve at equally spaced parameter values. 
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N0(t) = 1 

N l ( t )  = 

N n ( t  ) = 

t -  t o 

At  

(t - t O ). . .(t  - tn_ 1) 

n ! (A t )  n 

Thus what fast forward differencing really does is to convert from the coefficients of 
one rescaled Newton basis to another closely related rescaled Newton basis. 

Forward differencing has another widespread application: IQ tests. In many 
mathematical IQ tests, the student is given a short sequence of numbers and asked to 
find the next value. Assuming the sequence is generated from a polynomial, we can 
find the next number using differencing. We illustrate with an example. 

Consider the sequence: 4, 13, 28, 49, 76. To find the next value, take differences. 
This generates the sequences 

A2F: 6 6 6 

AF: 9 15 21 27 

F: 4 13 28 49 76 . 

It is trivial to find the next value of A2F:  this value must be 6 because evidently 
A2F is the constant sequence. To find the next value of z~ ,  just add the last value of 
the second difference to the last value of the first difference, giving 27 + 6 = 33. 
Finally, to find the next value of the original sequence, add the newly calculated 
value of the first difference to the last value of the original sequence; this yields 
76 + 33 = 109. Here is this computation, where the values added to the old 
sequences are underlined: 

A2F: 

AF: 

F: 

6 6 6 6 

9 15 21 27 33 

4 13 28 49 76 109 . 

Notice that the procedure we just used to find the next value of the sequence F is 
identical to the fast forward differencing algorithm we presented for computing new 
values of a polynomial F at evenly spaced parameter values. 

The validity of this process is based on the simple assumption that the original 
sequence represents the values of a polynomial F at the integers 1,2 ..... Of course, 
even if this assumption is true, we may need to take more than two differences 
before we arrive at a constant sequence. How many differences we must take 
depends on the degree of the polynomial from which the initial sequence is gener- 
ated; a degree n polynomial will generate a constant sequence after n differences. 
The polynomial in our problem is of degree 2, since the second difference is a con- 
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stant. Moreover, we can easily retrieve an expression for this polynomial in Newton 
form because the differences represent the rescaled Newton coefficients. Since such 
a sequence represents values at the integers, At - 1, so 

6 ( t -  1)( t-  2) 
F ( t )  = + 9 ( t -  1) + 4. 

2 

The reader should check that this polynomial does indeed generate the original 
sequence for t = 1 ..... 5. 

If the original sequence does not represent the values of a polynomial of degree 
n at the integers, then, of course, this technique for generating new values will fail. 
For example, given the sequence 1 2 4 8 16 32 ..., we find that 

A2F: 1 2 4 8 ... 

AF: 1 2 4 8 16 ... 

F: 1 2 4 8 16 32 . . . .  

For an exponential sequence, we never reach a constant difference, and other tricks 
must be employed to generate the next value. 

Exercises 
n 

1. Prove that AnF( to  ..... tn) - ~ , ( - 1 ) n - k ( ] c ) F ( t k ) .  
k=0 

2. Prove that 

A j {AkF( to  . . . . .  t j+k)}  = AJ+kF( t  0 . . . . .  t j+k)  = A k {AJF(to  . . . . .  t j+k)}"  

3. Prove that forward difference is a linear operator. That is, prove that 

a. A n ( F  + G ) ( t  o ..... tn) = AnF( to  ..... t n ) +  AnG( to  ..... tn) 

b. An (cF) ( to  ..... tn) = cAnE( to  ..... tn) 

4. If the parameter values are evenly spaced, then the differencing triangle can 
be used to convert between the coefficients of which two bases? 

5. Consider the infinite Fibonacci sequence: 1 1 2 3 5 8 13 ... defined 
by the recurrence 

a 1 = a 0 = l  

an+ l = a n + an_ 1 . 

Prove that there is no polynomial F( t )  such that a n = F ( n )  for all n. 
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4.6 Summary  

The principal focus of this chapter is the divided difference, which provides the dual 
functionals for the Newton basis. The Newton basis allows us to use Homer's 
method for fast polynomial evaluation, and the divided difference generates the coef- 
ficients for the polynomial interpolant relative to the Newton basis. We developed 
three approaches to the divided difference: 

�9 Computational: a recurrence based on difference quotients 

�9 Theoretical: the highest-order coefficient of the polynomial interpolant 

�9 Axiomatic: a system of four properties (symmetry, linearity, cancellation, 
and differentiation) that completely characterize the divided difference 

We used these different approaches to derive properties, formulas, and identities for 
the divided difference. We also considered fast forward differencing, a technique for 
fast polynomial evaluation at equally spaced parameter values. 

This chapter concludes our study of interpolation. Although interpolation is a 
classical topic in approximation theory and numerical analysis, computer graphics 
and computer-aided design often deal with approximation as well as with interpola- 
tion, so it is to approximation schemes that we shall turn our attention in subsequent 
chapters. Many of the topics encountered in interpolation, including dynamic pro- 
gramming procedures, up and down recurrence, basis functions, dual functionals, 
divided differences, rational schemes, and tensor product, triangular, lofted, and 
Boolean sum surfaces will reappear in approximation theory. A good grounding in 
the principles of polynomial interpolation will serve you well when you go on to the 
study of polynomial approximation. 

4.6.1 Identities for the Divided Difference 

It is difficult to remember all the interesting identities for the divided difference that 
we have encountered in the text and in the exercises. For quick recall, we have col- 
lected the most important of these formulas here in one place. A few of these identi- 
ties will not be proved till later in the book, when we encounter blossoming and B- 
splines, but we list them here anyway for the sake of completeness. 

1. H i g h e s t - O r d e r  Coef f ic ient  o f  the Po lynomia l  In terpo lan t  

F[t  0 . . . . .  t n ] = coefficient of t n in the monomial representation of the poly- 
nomial interpolant Po...n (t) 

2. Recurs ion  

F[t 0 . . . . .  t n ] - F[tl . . . . .  tn] - F[t 0 . . . . .  tn_l ] 

t~ - t o  
t n ~: t O 
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3. S y m m e t r y  

F[t  0 ..... t n ] = F[ta(o) ..... ta(n)],  where (~ is any permutation of {O,...,n} 

4. L i n e a r i t y  

(F + G)[t 0 ..... t n ] = F[t  0 . . . . .  t n ] + G[t 0 . . . . .  t n ] 

(cF)[ t  o . . . . .  tn ] = c (F[ t  o . . . . .  tn ]) 

5. C a n c e l l a t i o n  

F[t  0 . . . . .  tn] = { ( t -  t n+l )F( t )  }[t o ..... tn,tn+ 1 ] 

6. D i f f e r en t i a t i on  

7. L e i b n i z ' s  R u l e  

F[t  . . . . .  t] = 
n! 

n+l 

F(n) ( t )  

n 

( F G ) [ t  0 . . . . .  t n ] -  ~ ,F[ t  0 . . . . .  tk]G[tk . . . . .  tn] 
k=O 

8. E q u a l i t y  C o n d i t i o n s  

F (p) ( t j )  = G (p) ( t j )  0 < p < IAj - 1, j - 0 . . . . .  n 

F[ t o . . . . .  t n ] = G[ t O . . . . .  t n ] 

9. Value on L o w - O r d e r  P o l y n o m i a l s  

a. If F(t )  is a polynomial  of degree n - 1, then F i t  0 . . . . .  t n ] - O. 

b. If F(t )  is a polynomial  of degree n, then F[t  0 . . . . .  tn] is the coefficient of t n 

in the monomial  representation for F(t) .  Thus, in this case, F[t  o . . . . .  tn] is 
a constant independent of t o . . . . .  t n. 

10. Af-fine C o m b i n a t i o n s  

n 

F[t  0 ..... t n] = ~ L k F [ t o  ..... tk_l , 'C, tk+ 1 ..... t n] 
k=O 

r = ~,k Aktk and 2 k  Ak = 1 

11. Values  on M o n o m i a l s  

{t n } [Vl ..... Vn_ k ] = ~ i l  <i 2 <...<ik+ 1VilVi 2 .. "Vik+l 

12. Value on ( x -  0 -1 

{ 1 } [ t O t n ] _  . . . . .  1 
x - t  ( x - t o ) ' " ( x - t  n) 
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13. Newton Coefficients o f  Polynomial Interpolant 

n 
Po...n (t) = ]~ F[t 0 .... .  t k ]N k (t) 

k=O 

14. Dual Functionals for  Newton Basis 

Nj[to ..... tk ]=O 

=1 

15. DeterminantFormula  

j ~ k  

j = k  

F(to) 

, 

F(tn) 
F[t 0 ..... t n ] = 

16. Lagrange Coefficients 

t~-I n-1 " "'" " to " ! 

t n ... t n 

t~ -1 ... t o 
~ . . 

�9 , . 

n-1 
t n ... t n 

to,..., t n distinct 

n F(tk ) 
F[ to" ' " tn  ]= Z 

k=O l I ( t k  - t j )  
jr  

17. Partial Derivatives with Respect  to the Nodes 

to,..., t n distinct 

OF[t O ..... t k ..... tn] 

atk 

where/1 k is the multiplicity of tk 

18. Antidifferentiation 

n 
F'[t 0 ..... tn]= ~,F[t 0 ..... tk,t k ..... t n] 

k=O 

19. Relation to Blossoming 

= l.tkF[t 0 ..... tk,tk ..... tn], 

e[v 1 ..... Vk] - 
( n - k + l ) !  

n! 
p(k-1) ( V j l  . . . .  , Vjn_k+ 1 ) 

20. B-splines as Divided Differences 

Nk,n(t) = { (tk+n+ 1 - t k ) ( X -  t)~}[tk ..... tk+n+l] 
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21. B-spline Integration 

F[tk ..... tk+n+l]= fS  upport { Nk'n(t) n? 

22. Complex Contour Integration 

1 f c  F(z)dz 
F[to .... 'tn] = - ~  ( z -  t o ) . . . ( z -  tn) 

�9 C is any s imple  c losed  curve  con ta in ing  {t o . . . . .  tn} 

�9 F is ana ly t ic  ins ide  C 

23. Hermite-Genocchi Formula 

F[t 0 .... ,t n] - fA  n F(n) (to + Vl(t 1 - to) + ... + Vn (t n - t0))dv 1 " " dv n 

w h e r e  A n = { (v i .... ,v n) I Vj >>_ 0 and  ~_,jvj <_ 1 } 

183 



C H A P T E  R 5 

Bezier Approximation 
and Pascal's Triangle 

In previous chapters, we used interpolation to specify shape. But interpolation is not 
always a good way to describe the contour of a curve or surface. To accurately repro- 
duce complicated shapes, we may need to interpolate lots of data. Polynomial inter- 
polation for many points is impractical because the degree of the interpolant can get 
extremely high, leading to slow and numerically unstable computations. Also poly- 
nomial interpolants may oscillate unnecessarily and fail to reproduce the desired 
shapes (see Figure 5.1). Thus, even if we were to specify more and more points, 
there is no guarantee that the polynomial interpolants would converge to the curves 
or surfaces we wish to represent. 

Spline interpolation~that is, interpolation by piecewise polynomial funct ions~ 
is better computationally because splines allow us to keep the degree low. But inter- 
polating splines may still oscillate unnecessarily and fail to reproduce the desired 
shapes. Our approach from here on will be to abandon interpolation altogether and 
to take a very different approach to describing the shape of a curve or surface. 

Given a relatively small collection of points in affine space, we are going to 
investigate methods for generating polynomial and rational curves and surfaces that 

1 

0.8 
0.6 
0.4 
0.2 

_0.2I .... k /  ......... k /  ..... 
--0.4 

Figure 5.1 Lagrange interpolation. Notice the oscillations in the interpolating polynomial curve, even 
though there is no oscillation in the original data points. 

187 
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approximate the shape described by these points. We shall not insist that our curves 
and surfaces go through these points, but we shall insist that these curves and sur- 
faces capture in some mathematically precise way the shape defined by these 
points. As usual we begin with schemes for curves and later extend our techniques 
to surfaces. 

5.1 De Casteljau's Algorithm 

Let's return for a moment to where we began our investigation of polynomial curves 
and surfaces: Lagrange interpolation and Neville's algorithm. Recall that Neville's 
algorithm (Figure 5.2) is a dynamic programming procedure for computing points 
along a polynomial interpolant. We are going to start our investigation of approxima- 
tion schemes by using the same basic triangular structure but simplifying the compu- 
tations along the edges. 

The simplest thing--you might almost say the only thing--we know how to do 
is linear interpolation. All our interpolation procedures, and especially Neville's 
algorithm, are based on this simple idea or some variant thereof. What makes Nev- 
ille's algorithm the least bit complicated is that we perform a different linear interpo- 
lation at each node of the diagram. To take the same triangular structure and make 
the evaluation algorithm as easy as possible, we will perform the same linear inter- 
polation at each node. This idea generates the algorithm represented in Figure 5.3. 

The algorithm represented in Figure 5.3 is called de Casteljau's evaluation algo- 
rithm, and the curves that emerge at the apex of this diagram are called Bezier 
curves. Intermediate nodes marked (> and , also represent Bezier curves, but of 
lower degree. Thus the de Casteljau algorithm is a dynamic programming algorithm 

P0123(t) 

PO12(t) P123(t) 

t277 ~NtO t~t/ ~~%~N 1 
POI(t) P12(O ,p,/'X,o 

PO P1 P2 

P23(0 

t 3 ~ t /  ~ 2  

1"3 

Figure 5.2 Neville's algorithm (unnormalized) for cubic polynomial interpolation. 
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B(t) 

Po P1 P2 P3 

Figure 5.3 The de Casteljau algorithm for a cubic Bezier curve B(t)in the interval [a,b]. The label on 
every edge must be normalized by dividing by b - a, so that the labels along arrows entering 
each node sum to one. 

P1- t-a 0 b- t  ..P2 
t-a 

b- t  b ~ ~ t - a  

- t  
t 

P3 
Figure 5.4 Geometric construction algorithm for a point on a cubic Bezier curve based on a geometric 

interpretation of the de Casteljau evaluation algorithm. At the parameter t, each line seg- 
ment in the trellis is split in the ratio ( t -  a)/(b - t). 

for computing points on a Bezier curve. Typically, for reasons that will become clear 
in the next section, Bezier curves are restricted to the interval [a,b]. Usually, for sim- 
plicity, we take a = 0 and b = 1, but there are cases, as we shall see later on, where it 
is useful to allow a and b to be arbitrary as long as b > a. Notice that when a = 0 and 
b = l, no normalization is required. 

The de Casteljau algorithm has the following elegant geometric interpretation. 
Since each node represents a linear interpolation, each node symbolizes a point on 
the line segment joining the two points whose arrows point into the node. Drawing 
all these line segments generates the trellis in Figure 5.4. 
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We are going to study the geometric characteristics of curves generated by de 
Casteljau's algorithm. We begin with some simple features before going on to derive 
the basis functions associated with Bezier curves. We shall then use these basis func- 
tions to develop the more advanced mathematical properties of this approximation 
scheme. 

Exercise 

1. Implement the de Casteljau algorithm for Bezier curves. Experiment with 
how moving control points affects the shape of the curve. 

5.2 Elementary Properties of Bezier Curves 

Bezier curves have the following elementary properties: 

1. Polynomial parametrization 

2. Affine invariance 

3. Convex hull 

4. Symmetry 

5. Interpolation of end points 

Below we briefly discuss and derive each of these properties in turn, and we explain 
as well why these features are important for geometric design. 

Most of these properties can be proved by direct observation or by easy induc- 
tive arguments using the de Casteljau algorithm. To set up these inductive argu- 
ments, let B[P 0 ..... Pn](t) denote the Bezier curve over the interval [a,b] with affine 
control points PO ..... Pn. Then the last stage of the de Casteljau algorithm can be writ- 
ten as 

t - a  
B[Po ..... pn](t) - b - t  B[Po ..... Pn_l](t) + B[P 1 ..... Pn](t). (5.1) 

b - a  b - a  

We are now ready to proceed with our derivations: 

1. Polynomial Parametrization 

In the de Casteljau algorithm, the only operations we perform involving the 
functions along the edges are addition and multiplication (see Figure 5.3). 
Since the functions along the edges are linear polynomials, it follows that a 
Bezier curve with n + 1 control points is a polynomial curve of degree n 
because there are n levels from the control points at the base to the curve at 
the apex of the triangle. (This result also follows by an easy induction from 
(5.1).) Since Bezier curves are polynomial curves, all the tools we know for 
polynomials apply. 
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2. Affine Invariance 

A curve is said to be affinely invariant if it consists of a collection of points 
in affine space. We can prove by induction on the number of control points 
that all Bezier curves are affinely invariant. Clearly a Bezier curve with only 
two control points is affinely invariant, since this Bezier curve is just the line 
segment joining the two affine control points. Suppose that all Bezier curves 
with n control points are affinely invariant. Since by the inductive hypothe- 
sis B[Po,...,Pn_I](t) and B[P 1 ..... Pn](t) are affinely invariant, it follows by 
(5.1) that B[P 0 ..... Pn](t) is also affinely invariant, since it is formed by tak- 
ing an affine combination of affinely invariant curves. Thus Bezier curves 
make sense in affine space. 

Affine invariance is a crucial feature for any curve scheme because it asserts 
that the curve is independent of the choice of the coordinate system. This 
property is essential for a good approximation scheme, since in a typical 
geometric model many different coordinate systems are available. Affine 
invariance guarantees that the curve will be the same no matter which coor- 
dinate system is invoked. 

3. Convex Hull Property 

A set S of points in affine space is said to be convex if, whenever P and Q 
are points in S, the entire line segment from P to Q lies in S (see Figure 5.5). 
The intersection S of a collection of convex sets { S i } is a convex set because 
if P and Q are points in S, they must also be points in each of the sets S i. 
Since, by assumption, the sets S i are convex, the entire line segment from P 
to Q lies in each set S i. Hence the entire line segment from P to Q lies in the 
intersection S, so S too is convex. 

(a) Convex set (b) Nonconvex set 

Figure 5.5 (a) In a convex set, the line segment joining any two points in the set lies entirely within the 
set. (b)In a nonconvex set, part of the line segment joining two points in the set may lie out- 
side the set. 
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The convex hull of a collection of points in affine space is the intersection of 
all the convex sets containing the points. Since the intersection of convex 
sets is a convex set, the convex hull is the smallest convex set containing the 
points. For two points, the convex hull is the line segment joining the points. 
For three noncollinear points, the convex hull is the triangle whose vertices 
are the three points. The convex hull of a finite collection of points in the 
plane can be found mechanically by placing a nail at each point, stretching a 
rubber band so that its interior contains all the nails, and then releasing the 
rubber band. When the rubber band comes to rest on the nails, the interior of 
the rubber band is the convex hull of the points. 

Since the convex hull of two points is the line segment joining the two 
points, 

ConvexHull{Po,P 1 } - {c0P 0 + ClP 1 I c o + c 1 = 1 a n d  Co,C 1 >_ 0}.  

More generally it follows by a simple inductive argument (see Exercise 3) 
that 

n n 

C~ ..... Pn} = { Z ckPk l ~,c~ = 1 and c k >0}. 
k=0 k=0 

Bezier curves always lie in the convex hull of their control points. That is, 

B[P 0 ..... Pn](t) c_ ConvexHul l{P 0 ..... Pn }" 

Again we can prove this assertion by a simple inductive argument. First 
recall that, by convention, we always restrict the Bezier curve B[P 0 ..... Pn ](t) 
in (5.1) to the parameter interval a < t < b. With this restriction, the convex 
hull property is certainly true for a Bezier curve with only two control 
points since, by construction, this curve is the line segment joining the two 
control points. More generally suppose that this result is valid for Bezier 
curves with n control points. By (5.1), B[P 0 ..... Pn](t) lies on the line seg- 
ment joining the points B[P 0 ..... Pn_l](t) and B[P 1 ..... Pn](t), and by the 
inductive hypothesis B[P 0 ..... Pn-1 ](t) and B[P 1 .... ,Pn ](t) both lie in the con- 
vex hull of the points PO ..... Pn. But if two points lie in a convex set, the 
entire line segment joining them also lies in the set; thus the entire Bezier 
curve B[P 0 ..... Pn](t), a < t < b, must lie in ConvexHul l{P 0 ..... Pn}. 

The convex hull property is important because it constrains Bezier curves to 
lie in the proximity of their control points. This property is a vital feature for 
an approximation scheme. Designers not only require curves that approxi- 
mate the shape defined by their control points, they also demand curves that 
lie in the same region of space as their control points. To be useful in design, 
the curves must be visible to the designer. The convex hull property guaran- 
tees that if all the control points are visible on the graphics terminal, then 
the entire curve is visible as well. The restriction a < t < b on the parameter 
t is there precisely to guarantee the convex hull property. 
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4. Symmetry 

Replacing t by a + b -  t reverses the order of the parameter domain. As the 
parameter t varies from a to b, the curve B[Po,...,P n ](a + b -  t) traverses the 
same points as B[P 0 ..... Pn ](t) but in the direction from b to a rather than 
from a to b. Thus B[P 0 ..... Pn](a + b - t )  is essentially the same curve as 
B[Po ..... Pn](t) but with opposite orientation. Similarly, reversing the order 
of the control points of a Bezier curve generates the same Bezier curve but 
with opposite orientation. Analytically this means that 

B[P n ..... Po](t) = B[Po ..... Pn](a + b -  t) a <_ t <_ b. (5.2) 

This symmetry property is what professional designers and most naive users 
would naturally expect of a simple approximation scheme, so it is gratifying 
to see that it holds for all Bezier curves. 

To prove (5.2), simply replace t by a + b -  t in the de Casteljau diagram and 
observe that the new diagram is the mirror image of the de Casteljau dia- 
gram for B[P n ..... P0](t) (see Figure 5.6). 

5. Interpolation o f  End Points 

Unlike Lagrange polynomials, Bezier curves generally do not interpolate all 
their control points. But Bezier curves always interpolate their first and last 
control points. In fact, 

B[Po ..... Pn](a) = PO and B[P 0 ..... Pn](b) - Pn" 

The first result follows easily from setting t = a in de Casteljau's algorithm 
and observing that all the labels on left-pointing arrows become zero while 

B(t) 

t -  a ~ ~ x ~ t  / /  

' , ; , / , , , , t , ,  
0 0 0 

P0 P1 P2 P3 

Figure 5.6 The de Casteljau algorithm for B[P o ..... Pn](a + b -  t). Compare to Figure 5.3 with the control 
points in reverse order. 
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all the labels on right-pointing arrows become one. If k ~ 0, then any path 
from P k to the apex of the triangle must traverse at least one left-pointing 
arrow, so there is no contribution from Pk to  the value of the curve at t = a. 
On the other hand, when t = a all the labels on the single path from P0 to the 
apex of the triangle are one. Hence B[P 0 ..... Pn](a) = P0. A similar argument 
for t = b shows that B[P 0 ..... Pn ](b) = Pn. Again an easy inductive argument 
based on (5.1) yields the same results. 

Interpolating end points is important because we often want to connect two 
curves. To assure that two Bezier curves join at their end points, all we need 
to do is to make sure that the first control point of the second curve is the 
same as the last control point of the first curve. This device ensures continu- 
ity. Later on, in Section 5.6.2, we shall develop techniques for guaranteeing 
higher-order smoothness between adjacent Bezier curves. 

Exercises 

1. Let P0 ..... Pn be a collection of points. Prove that for every vector v 

B[P 0 + v .... ,Pn + v] ( t )  = B[Po,. . . ,Pn](t  ) + v .  

That is, translating the control points by a vector v translates every point on 
the Bezier curve by the same vector v. 

2. Show that every affine space is convex. 

3. Let Po ..... Pn be a collection of points in an affine space. Prove that 

n n 

C~ ..... Pn} = { ]~ CkPk I ~,ck = 1 and c k > 0}. 
k=O k=O 

4. Prove that B[Po .... , Pn ](b) = Pn" 

5. Give an example to show that a degree n Lagrange interpolating polynomial 
with nodes to < tl < .-. < t n does not necessarily satisfy the convex hull 
property on the interval [tO,tn]. 

5.3 The Bernstein Basis Functions and Pascal's Triangle 

The de Casteljau algorithm is a dynamic programming algorithm for computing 
points on a Bezier curve from points on Bezier curves of lower degree. Here we shall 
also develop an explicit formula for evaluating points on a Bezier curve. 

We begin by observing that there must exist polynomials B~(t)  ..... Bn(t)  of 
degree n such that the Bezier curve B(t) = B[P 0 ..... Pn](t) is given by 

n 

B(t)= EB~(t)P~. 
k=O 

(5.3) 
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This result is just a restatement of the polynomial property we proved in the previous 
section. The functions B~(t),...,Bn(t) are called the Bernstein basis functions of 
degree n. 

There are many ways to compute the Bernstein basis functions. In the de Castel- 
jau algorithm if we set 

Pj -O jC:k 

=1 j - k ,  

then by (5.3) B(t)= B~(t). This algorithm is called the up recurrence for B~(t). 
Observe that by the up recurrence, the Bernstein basis function Bff (t) is simply the 
sum of all paths from Pk at the base to B(t) at the apex of the de Casteljau triangle. 
Recall that in Chapter 2 we had a similar up recurrence for the Lagrange basis 
functions. 

We can apply this insight about paths to compute all the Bernstein basis func- 
tions up to degree n simultaneously. Paths from a node to the apex of the triangle are 
identical to paths from the apex to the node. Thus if we place a one at the apex and 
reverse all the arrows, then the Bernstein basis functions emerge at the nodes of the 
triangle. In particular, the Bernstein basis functions of degree n emerge at the base of 
a de Casteljau triangle with n levels (see Figure 5.7). This algorithm is called the 
down recurrence for the Bernstein basis functions and is similar to the down recur- 
rence for the Lagrange basis functions we encountered in Section 2.6. But there is 
one very important difference between the down recurrence for the Bernstein basis 
functions and the down recurrence for the Lagrange basis functions. In the down 
recurrence for the Lagrange basis functions, the intermediate nodes do not contain 

nO(t) = 

/ 
U (O 

//  
Bg(o 

/ 
B3o(O B?(O 

B (O 

/ 
B (O B (O 

/ ,/ 
B (O B (O 

Figure 5.7 The down recurrence for the cubic Bernstein basis functions. 
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Lagrange basis functions of lower degree; in the down recurrence for the Bemstein 
basis functions the intermediate nodes are precisely the Bernstein basis functions of 
lower degree. 

Since the intermediate nodes in the down recurrence contain the Bernstein basis 
functions of lower degree, the down recurrence yields the following standard recur- 
sion formula for the Bernstein basis functions: 

B ~ (t)  - 1 
(5.4) 

B~ (t)  b - t n-1 t - a B n _  l (t) .  
- B k ( t )  + k -1  

b - a  b - a  

This recursion formula is just a restatement of the down recurrence. We shall see 
later that many results about Bemstein basis functions follow easily by induction 
from this recursion formula. 

Finally, as promised, we can also use path arguments to find explicit expressions 
for the Bemstein basis functions Bf (t), k = 0 ..... n. Observe that all paths between 
the apex and Bf (t) are identical. Indeed to get to Bf (t) from the apex of the triangle, 
we must make exactly k right turns and n -  k left turns (see Figure 5.7). Now every 
left-pointing arrow carries the label (b - t) / (b  - a) ,  and every right-pointing arrow 
carries the label (t - a ) / ( b  - a ) .  Thus we discover that 

( t  - a )  k ( b  - t )  ~ - ~  ' 
B/~ (t) P ( n , k )  

( b - a )  n 

where P ( n , k )  denotes the number of paths from the apex of the triangle to the kth 
position on the nth level. 

We can find P ( n , k )  from Pascal's triangle. From the structure of the de Casteljau 
triangle we observe that the only way to arrive at the kth position on the nth level is 
to arrive first at either the ( k -  1)st or kth position on the (n - 1)st level. This obser- 
vation yields the recurrence 

P(0,0) = 1 

P ( n , k )  = P ( n  - 1,k - 1) + P ( n  - 1,k). 

But this is exactly the recurrence in Pascal's triangle (Figure 5.8(a)): 

(0)= 1 
(n (n-1 n-1 
k) = k - l ) + (  k ) �9 

Thus the elements (n 's k) in Pascal triangle compute the number of paths P ( n , k )  from 
the apex to the node at which the entry (~) appears. Therefore, 

P ( n , k )  - (n k )  - 
n! 

k ! ( n - k ) !  
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1 

"'" ~'~ n f . . .  

(a) Pascal's triangle 

%o 

P(o,o) 

p(1, p(1,1) 
, / \  , / \  

P~3,0) P(3,1) . P(3,2) P(3,3) 
, ,  ; %, 

p(n -1 ,0 )  . . . p ( n -  1 ,k-  1) P(n-  1,k)... P(n-  1 ~ -  1) 

... \ / . . .  
P(n,O) P(n,k) P(n,n) 

(b) Paths triangle 

Figure 5.8 (a) Pascal's triangle and (b) the paths triangle represent the same recurrence. Therefore, the val- 
ues in Pascal's triangle represent the number of paths from the apex to the node in which the value appears. 

It follows immediately that 

B k (t) - (n (t - a) k (b - t) n-k n k ) " (5.5) 
( b - a )  n 

Another way to see that (5.5) is correct is to observe that in traversing the paths 
from the apex to the node containing B~ (t), you must select exactly k right turns out 
of n possible choices. Thus there are exactly n choose k paths from the apex to 
B~:(t), which again accounts for the coefficient (~) in the explicit expression for 

B ~ ( t ) .  

The explicit formula for the Bernstein basis functions given by (5.5) should look 
familiar, since it comes up in many other areas of mathematics. For example, by the 
binomial theorem 

t - a  
Setting x -  and y -  

b - a  

/7 
(x + y)n = Z ( ~ ) x k y  n-k 

k=O 
b - t  

yields 
b - a  

_ _ _  + - _ (~) 
1) -a  b a k=O 

( t - a ) k ( b - t )  n-k 

( b - a )  ~ 

Thus the binomial theorem gives us a quick proof that the Bernstein basis functions 
sum to one, and hence that Bezier curves are affinely invariant. (For an alternative, 
recursive proof, see Exercise 1.) 

Another place the Bernstein basis functions appear in mathematics is in proba- 
bility theory. If a = 0 and b = 1, then 

B f  (t)  - ( ~ ) t  ~ (1 - t) ~ - k ,  k - 0 , . . . ,  n, 
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is the familiar binomial distribution. Discrete distributions are important in approxi- 
mation theory and computer-aided design because the convex hull property requires 
that the blending functions must be positive and sum to one (see Section 5.2, Exer- 
cise 3). Thus discrete distributions are natural candidates for blending functions, so it 
is no accident that one of the most common distributions has been chosen to repre- 
sent one of the most common approximation schemes. We shall have occasion to 
take advantage of this connection to probability theory in Section 5.5.4, where we 
discuss Bezier subdivision, and again in Chapter 6, when we introduce blossoming 
via random walks. 

Exercises 

1. Use the down recurrence to prove that 

n 

EBb(t) - 1 
k = 0  

by showing that the functions on each level of the recurrence sum to one. 
Conclude that Bezier curves are affinely invariant. 

2. Prove that B~ (t) _> 0 for a _< t _< b, and use this result together with the 
results of Exercise 1 and Section 5.2, Exercise 3, to conclude that Bezier 
curves lie in the convex hull of their control points. 

n 3. Prove that B ~ ( a  + b - t ) -  B n _ k ( t ) ,  and use this identity to conclude that 
Bezier curves have the symmetry property described in Section 5.2. 

4. Prove that B~ (a)= S0k and B~ (b)= r and use this identity to conclude 
that Bezier curves interpolate their first and last control points. 

5. Let c o ..... c n be a collection of arbitrary constants. By reversing the arrows 
in Pascal's triangle, show how to compute 

n 

E( n k)ck 
k = 0  

without any multiplication. 

6. Let {Ckm}, k = 0 ..... m, m = 0 ..... n, be a collection of arbitrary constants. 
Show how to use Pascal's triangle to compute 

n m 

m = 0  k = 0  

without any multiplications and with only O(n 2) additions. 

7. Let {Ckm}, k = 0 ..... m, m = 0 ..... n ,  be a collection of arbitrary constants. 
Show how to use de Casteljau's algorithm to compute 

n m 

~, ~,CkmB~(t) 
m = 0  k = 0  

with a minimal amount of multiplication. 
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/'i/ 31 
O' ---2 ~4 ~6 

�9 �9 O 

Figure 5.9 A graph with the structure of Clenshaw's algorithm for the evaluation of orthogonal poly- 
nomials. 

8. Consider Figure 5.9, which arises in Clenshaw's algorithm for the evalua- 
tion of orthogonal polynomials. 

a. Find a recursive formula for the number of paths p(k)  from the node con- 
taining 0 to the node containing an arbitrary integer k in Figure 5.9. 

b. Let c O ..... c n be a collection of arbitrary constants. Show how to compute 

n 

ZP(k )Ck  
k=0 

without any multiplication. 

9. Prove by induction from the recurrence (5.4) that 

B~ (t) - (~ ) 
( t - a ) k ( b - t )  n -k  

( b - a )  n 

10. Prove that n f  +a2t tn Z ( - 1 ) k B ~ ( t )  - 
k=O ( b -  a) 

11. Define the Bernstein basis functions of negative degree by setting 

B~n( t )  = ( - ~ ) t k ( 1 - t )  -(n+k) k = 0,1 .... 

(-n ( - n ) ( - n  - 1)..-(-n - k + 1) _ ( 1 )  k (n+k-1 �9 
k ) -  - -  k ) 

k! 

a. Using the binomial theorem for negative integer exponents, prove that 

cx~ 

Z B ~ - ~ ( t )  = 1. 
k=O 

b. For what values of t does this series converge? 

( x _ ~  ) n n ) - l  Bn (x)B~ (t). 
- E ( - 1 ) ~ ( ~  ~ - k  12. Provethat b -  k=O 

(Hint: Use the identity (b - a ) (x  - t) = (x - a)(b - t) - (b - x)( t  - a).)  
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5.4 

5.4.1 

More Properties of BernsteinlBezier Curves 

There is a natural correlation between geometric properties of Bezier curves and 
algebraic properties of Bernstein basis functions. Thus one way to study the geome- 
try of Bezier curves is to investigate the algebra of Bemstein basis functions. This 
we now proceed to do (see also Section 5.3, Exercises 1-4). To simplify our notation 
from here on out, we shall let a = 0 and b = 1, although the proofs do not change 
much for arbitrary values of a and b. 

We begin with a simple trick that is worth remembering because we shall use it 
several times. Observe that 

B~ (t) _ (~)t  k (1 - t) n -k  n tk 

( 1  - t )  n - ( 1  - t )  n = ( k )  ( 1 -  t )  k "  

Making the substitution u = t / (1 -  t), we obtain 

B~( t )  = (~)u k _ M ~ ( u ) .  

( l - t )  n 
(5.6) 

Thus the Bernstein basis functions are readily transformed into the monomial basis 
functions. We shall use this simple device to show that many of the properties of the 
monomial basis carry over to the Bernstein basis. Conversely, many properties of the 
Bernstein basis are inherited by this scaled monomial basis, simply by replacing 
each factor of 1 - t by the 1. 

Exercise 

1 Let M ; ( t )  = (n) tk  k = O, n �9 k , . . . ,  �9 

a. Show that these functions satisfy the recurrence 

t M n - l ( t  ) M ~  (t) - M ~  -1 (t) + k-1 " 

b. Describe the analogue of the de Casteljau algorithm for polynomials 
P(t )  = ~,kCkM~ (t). 

Linear Independence and Nondegeneracy 

Let's now prove that the Bernstein basis functions of degree n do indeed form a basis 
for the polynomials of degree n. To show that they are linearly independent, suppose 
that there are constants c k, k = 0 ..... n, such that 

n 

E c~n~ (t) = O ; 
k=O 

we must show that c k = O, k = 0 ..... n. Dividing this equation by (1-  t) n and apply- 
ing (5.6), we obtain 
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n 

~, CkM ~ (u) - O . 
k=O 

Since the monomials M ~ ( u )  ..... M n ( u )  are linearly independent, it follows that 

c k = O, k = 0 ..... n. Thus the polynomials B~(t )  ..... Bn( t )  are indeed linearly indepen- 

dent. Therefore, these polynomials must form a basis for the polynomials of degree 

n, since the space of polynomials of degree n has dimension n + 1 and there are n + 1 

Bernstein basis functions of degree n. 

A curve scheme is said to be nondegenerate  if the curve never collapses to a sin- 
gle point unless all the control points are located at that point. Bezier curves are non- 
degenerate because the Bemstein basis functions are linearly independent. Indeed 
suppose that some Bezier curve B(t)  collapses to a single point Q. Then 

n 

B(t)  - E B f  ( t )P k - Q.  
k=O 

Since the Bernstein polynomials sum to one, it follows that 

n 

E B f  ( t ) (P k - Q) - O. 
k=O 

Dotting both sides with any vector v yields 

n 

EBf(t){ (Pk - e ) ~  v] - O. 
k=O 

Since the functions B~ (t) ..... B n (t) are linearly independent, we can conclude that 

(Pk - Q ) o  v - O k - O ..... n 

for every vector v. But this can happen only if Pk - Q for k = 0 ..... n, which estab- 
lishes that Bezier curves are indeed nondegenerate. 

Horner's Evaluation Algorithm for Bezier Curves 

The de Casteljau evaluation algorithm for Bezier curves is O(n2). But Homer's eval- 
uation algorithm for polynomials written in terms of the monomial basis is O(n). We 
would like to have an O(n) algorithm to evaluate polynomials written in Bernstein/ 
Bezier form. We can achieve this goal by applying (5.6) to transform the Bernstein 
basis into the monomial basis. 

n 

Let B(t)  - Z B~ (t)Pk be a Bezier curve. Using (5.6), we find that 
k=0 

rl 

X B f  (t)Pk 
n 

B(t___2_~ = ~-o = E Q ~ . ~  

(1 - t) ~ ( 1 -  t)  '~ k = o  
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where u = t / (1 -  t) and Qk - (~)Pk, k - 0 ..... n. Now we can apply Homer's method 
to evaluate 

B(t) n 
= ZO~u k, 

( l - t )  n k=0 

and this computation costs only O(n) multiplications. Notice that Qk, k = 0 ..... n, 
needs to be computed only once per curve, and setting u = t / ( 1 -  t) costs just one 
division. Finally, ( l - t )  n can be calculated in O(lgn) time and multiplying 
B( t ) / (1 -  t) n by ( 1 -  t) n costs only one more multiplication. Putting this all together, 
we can compute B(t) using only O(n) multiplications. 

There is one slight difficulty with this algorithm. If t is close to 1, then 
u = t / ( 1 -  t) gets very large and the computation is numerically unstable. To correct 
this problem, use the identities 

B~ (t~ = (~)u k 
( l - t )  n 

t 
u = ~  0 < t < 0 . 5  

1 - t  

B~ ~t) _ ~ ~v k 
t n 

1 - t  
v =  0 . 5 < t < l .  

Now proceed as before applying Homer's method to compute 

B(t) n = EQku ~, 
( l - t )  n k=0 

B(t) n 

= ~Qn_k vk, 
t n k=0 

0 < t < 0 . 5  

0 . 5 < t < l .  

This procedure is numerically stable and yields an O(n) evaluation algorithm for 
Bezier curves. 

Exercises 

1. Implement both de Casteljau's algorithm and Homer's method for evaluat- 
ing points on a Bezier curve. 

2. Derive an O(n) ladder evaluation algorithm for Bezier curves (see Section 
2.6). Which approach is faster, the ladder algorithm or Homer's method? 

5.4.3 Unimodality 
A function is said to be unimodal if it has only one local maximum. The Bemstein 
basis functions B; (t) are unimodal in the parameters k and t. That is, if we fix k, 
then each polynomial B; (t) is unimodal in t over the interval [0,1]. Furthermore, if 
we fix t ~ [0,1] and let B(k , t )= B;(t) ,  then B(k,t)  takes on the discrete values 
B~(t) ..... Bn(t) and these values are unimodal in k. Here we shall explore each of 
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these forms of unimodality for the Bernstein basis functions and examine their 
consequences for Bezier curves. 

The Bemstein basis functions B(~ (t) = ( 1 -  t) n and B n (t) = t n are monotonic on 
the interval [0,1] because the function (1 - t) n decreases monotonically from 1 to 0 
while the function t n increases monotonically from 0 to 1. Hence the Bemstein basis 
functions B(~ (t) and B n (t) are certainly unimodal in t on the interval [0,1]. 

To prove that each basis function B~ (t), k = 1 ..... n -  1, is also unimodal in t, we 
need to differentiate B~ (t) to find its local maxima. This computation is straightfor- 
ward, since we have a simple explicit formula for B~ (t). Recall that by (5.5) 

B~ (t) - (nk ) tk (1 - t) n-k" 

Differentiating this formula yields 

d B f  (t) 

dt 
= k (~ ) t k - l ( 1  - t) n -k  - ( n -  k ) (~) tk(1  - t) n -k -1  

_ (n) tk-1  (1 - t) n -k -1  - k { k ( 1  - t )  - ( n  - k)t} . 

Since k ( 1 - t ) - ( n - k ) t  = k - n t ,  we find that t = k / n  is the only solution of the 
equation 

dB; ( = 0 
dt 

for 0 < t < 1. Since the Bemstein basis functions B~ (t), k = 1 .... , n -  1, are positive in 
the open interval (0,1) and zero at the end points of the interval, it follows that each 
Bemstein basis function B~( t )  has a single maximum in [0,1]; hence the Bemstein 
basis functions are unimodal in t (see Figure 5.10). 

0.8 

0.6 

0.4 

0.2 

0.2 0.4 0.6 0.8 1 

Figure 5.10 The four Bernstein basis functions of degree 3. Each basis function is unimodal in t on the 
interval [0,1]. 



204 CHAPTER 5 Bezier Approximation and Pascal's Triangle 

This unimodality of the basis functions localizes the effect of the control points 
on the shape of a Bezier curve. As t increases from 0 to k /n ,  the value of the basis 
function B~(t) increases and the control point Pk has more and more influence on the 
position of the curve. This influence peaks at t = k /n  and recedes thereafter. Thus 
even though, in general, a Bezier curve does not interpolate its control points, we 
usually associate the control point Pk with the parameter value k /n  (see also Sec- 
tion 5.5.1, Exercise 2). 

The Bernstein basis functions are also unimodal in the discrete parameter k. This 
means that if we fix a parameter t* e [0,1], then there is an index k depending on t * 
such that 

B(~ (t*) <_ ... <_ B~_ 1 (t*)_< B~ (t*)>_ B~+ 1 (t*)_> ... >_ B n (t*). 

This result is easy to prove by induction on n. Certainly the result is true for n = 0,1. 
Suppose that it is true up to degree n -  1. Recall that by (5.4) 

Bj(t) : (1 - , )Bj- l ( t )  + ,B~_-11(t). 

Thus Bn(t *) is a convex combination of Bn-J(t *) and B~'-~l(t*). Hence Bn(t *) lies 
betweeJ on-lit , ) " * ~ J  ~" l ~ ~ - -  and Bin-1 (t*). Together with the inductive hypothesis, this observa- 
tion is enough to conclude that the sequence B~ (t*) ..... B n (t*) is unimodal, since we 
now have 

B~ (t*) _< B~-I (t *) _ ... _< B~c~(t*) <_ B~c (t*) <_ Bff-1 (t *) 

> n --n-l- . _ n-1 n 
_ Bk+ 1 ( t*)  > B~+ 1 ( t )  > . . .  > Bn_ 1 ( t*)  > B n ( t*)  . 

We illustrate these inequalities in Figure 5.11. 
This unimodality property tells us something important about how the control 

points influence a Bezier curve at a fixed parameter value t*. For each parameter t* 
there is some basis function B~ (t) such that 

B~ (t*) ~_ By (t*) 

for all j. (See Exercise 1 for how to determine k from t*.) Thus at t* the control point 
Pk has the most influence on the curve. Moreover, by unimodality, the influence of 
the other control points recedes as their index recedes from k because the values of 
the basis functions Bjn(t *) get smaller as j recedes from k. Thus if we want to change 
the position of the curve at t* by moving the control points as little as possible, we 
should first move the control point Pk, then the adjacent control points Pk-1 and 
Pk+l, continuing in this manner until we have adjusted the curve to the desired loca- 
tion. 
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Figure 5.11 The Bernstein basis functions of degree n - 1 are indicated schematically by thin vertical 
lines, and the Bernstein basis functions of degree n by thick vertical lines. The height of a line 
represents the value of the corresponding basis function. Because each basis function of 
degree n is a convex combination of two adjacent basis functions of degree n - 1, the height 
of any thick line must lie between the heights of the two surrounding thin lines. Thus the 
unimodality of the Bernstein basis functions of degree n - 1 implies the unimodality of the 
Bernstein basis functions of degree n. 

Exercises 

1. Prove that B~ (t) > Bj (t) for all j r k / ( n  + 1) < t < (k + 1)/(n + 1). 

2. Prove that the cubic Ball basis functions 

bo( t  ) - ( l _ t )  2 bl(t) = 2 t (1-  t) 2 b2(t) = 2 t2(1-  t) b3(t) - t 2 

are unimodal in both t and k for 0 < t < 1. 

3. Prove that the Taylor basis functions {t k / k!] are unimodal in both t and k for 
0 < t < o o .  

4. Define the Poisson basis functions {bk( t ) }  by setting 

e - t  t k 
b k ( t )  - ~ ,  k - 0,1,.... 

k! 

Prove that the Poisson basis functions {bk( t ) }  are unimodal in both t and k 
for 0 < t < ~ .  

5. Consider again the Bernstein functions of negative degree from Section 5.3, 
Exercise 11. 

a. Graph a few of the Bernstein basis functions of negative degree for 

t < 0 .  

b. Prove that the Bernstein basis functions of negative degree are unimodal 
in both t and k for t < 0. 
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6. Let Lnk(t), k = 0 ..... n, denote the Lagrange basis functions of degree n for 
the nodes t k = k/n ,  k = 0,...,n. Show by example that these functions are 
not unimodal over the interval [0,1 ] in either k or t for n > 2. 

5.4.4 Descartes' Law of Signs and the Variation Diminishing Property 

One of the drawbacks of Lagrange interpolation is that the interpolating polynomial 
may oscillate too much and fail to capture the shape defined by its control points (see 
Figure 5.1). We have abandoned Lagrange interpolation in favor of Bezier approxi- 
mation because, unlike the Lagrange interpolant, a Bezier curve never oscillates 
more than its control polygon. We shall now provide a precise mathematical defini- 
tion of this oscillation property and prove that it holds for all Bezier curves. 

We can measure the oscillations of a continuous curve in the plane with respect 
to a straight line by counting the number of intersections of the curve with the line 
(Figure 5.12). 

Of course a curve may intersect some lines more often than others, so we shall 
want to measure the oscillations of a curve with respect to every line. We say that a 
curve C1 oscillates no more than a curve C 2 if for every line L 

number of intersections of C1 and L _< number of intersections of C 2 and L. 

Let P(t) denote the polygon defined by the control points PO,...,Pn. Then P(t) 
can be parametrized as a continuous piecewise linear function over the interval [0,1] 
by setting 

P(t) - (k + 1 - nt)P k + ( n t -  k)Pk+ 1 0 < _k < t < k + 1 < 1. 
tl 12 

Figure 5.12 The curve C oscillates up, then down, then up again. These oscillations can be detected by 
observing that the curve C intersects the line L three times: once on the way up, then again 
on the way down, and yet again one more time on the way up. 
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We say that a curve scheme D(t) = ~,k Dk(t)Pk, 0 < t < 1, has the variation dimin- 
ishing property if the curve D(t) oscillates no more than the control polygon P(t) for 
every choice of control points Po ..... Pn (see Figure 5.13). Thus the curve scheme is 
variation diminishing if for every control polygon P(t) and every line L 

number of intersections of D(t) and L < number of intersections of P(t) and L. 

We are now going to show that Bezier curves have this variation diminishing prop- 
erty. 

It is easy to measure the number of intersections of a control polygon with a 
straight line. Let L be the line defined by the point Q and the normal vector v. Then a 
point P lies on the line L if v �9 ( P -  Q ) -  0. Moreover, as we can see from Figure 
5.14, two points R and S lie on opposite sides of L if and only if 

sign{v.  (R - Q) } - - s i gn{v .  (S - Q) }. 

If the line L intersects the control polygon P(t) along the edge joining Pk and 
Pk+l, then Pk and Pk+l must lie on opposite sides of the line L. Hence for every sign 
change in the sequence {v " ( P o - Q )  ..... v . ( P  n -Q)} ,  there must be an intersection 
between the line and the control polygon. Therefore, 

number of sign alternations of {v o (Po - Q) ..... v �9 (Pn - Q) } 
< number of intersections of P(t) and L. 

We have inequality here rather than equality because the line may intersect the con- 
trol polygon at a vertex Pk or along an edge PkPk+l. 

To simplify the rest of this discussion, we shall adopt the following notation: 

Zeros(a,b)(B(t)) = the number of roots of the function B(t) in the interval (a,b) 

SA(c 0 . . . . .  c n) = the number of sign alternations of the sequence (co,...,Cn). 

P1 P2 P1 P2 

(a) Variation diminishing (b) Not variation diminishing 

Figure 5.13 (a) The curve C is variation diminishing with respect to its control polygon, since C intersects 
any line L no more often than its control polygon intersects L. (b) On the other hand, the 
curve D is not variation diminishing with respect to its control polygon, since D intersects the 
line L three times while its control polygon intersects L only twice. 
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/.2 

- R  

v * ( R -  Q) > 0 

�9 ( P -  Q) = 0 
L 

v.(S_Q)<O Q 

--S 

~ . P  

Figure 5.14 Two points R and S lie on opposite sides of the line v �9 ( P - Q )  = 0 if and only if 
s ign{v  �9 ( R - Q ) }  = - s i g n { v  ~ R - O} = - s ign {v �9 ( S - Q ) } .  

Here roots are counted with multiplicity, and zeros are ignored in sign alternations. 
To prove that the Bezier curve 

B(t)  - E k  B~ ( t)P k 

oscillates no more than its control polygon P(t), we shall show that 

number of intersections of B(t) and L <_ SA{v ~ (Po - Q) ..... v~ (Pn - Q)}" 

It will then follow immediately from our previous discussion that 

number of intersections of B(t) and L _< number of intersections of P(t) and L. 

But 

number of intersections of B(t) and L - Zeros(o,1 ) {(B(t) - Q) ~ v} 

= Z e r o s ( o , 1 ) { ~ , k B ~ ( t ) ( P k - Q ) ~  �9 

Thus to prove the variation diminishing property for Bezier curves, we need to relate 
the number of zeros of a polynomial to the number of sign alternations of its Bern- 
stein coefficients. That is, we need to show that 

Zeros(o,1) {~,k B~ (t)(Pk - Q) o v} < SA{v o (P 0 - Q) ..... v o (P n -Q)} .  

To establish this result, we introduce Descartes '  Law o f  Signs. 
A sequence of functions Do(t  ) ..... Dn(t  ) is said to satisfy Descartes' Law of 

Signs in the interval (a,b) if for every sequence of constants c o ..... c n 

Zeros(a,b) kDk(t)  < SA(c 0 . . . . .  On) .  
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For example, the monomial basis 1,t ..... t n is known to satisfy Descartes'  Law of 
Signs in the interval (0,~).  Therefore, the polynomial 7t 3 + 3t 2 -  3t + 11 can have 
at most two positive roots. Similarly, the Bernstein basis B~ (t) ..... B n (t) is known to 
satisfy Descartes'  Law of Signs in the interval (0,1). Therefore, the polynomial 
7 ( 1 -  t) 3 + 3 t (1 - t )  2 -  3 t2(1-  t) + 11t 3 can have at most two roots in the interval 
(0,1). 

We are going to prove that the monomial basis 1, t , . . . , t  n satisfies Descartes' Law 
of Signs in the interval (0,~,,) and that the Bernstein basis B ~ ( t )  ..... B n ( t )  satisfies 
Descartes' Law of Signs in the interval (0,1). We shall then apply Descartes' Law of 
Signs for the Bernstein basis functions to conclude that Bezier curves are variation 
diminishing. We begin with the following lemma. 

LEMMA 
5.1 

n n+l 
Let f ( t )  - ~ c j t  j and g( t )  - ~ bk tk . If g( t )  - ( t -  r ) f ( t )  and r > 0, then 

j=O k=O 

Sa(b,,+l ..... % )  > S a ( c ,  ..... Co). 

Proof If g( t )  = ( t -  r ) f  ( t ) ,  then 

i .  b n +  1 - c n 

ii. b k = Ck_l - rc k 

i i i .  b o = - r c  0 

Consider the two sequences c n ..... c o and bn+ 1 ..... b o. By (i) the sequences 
start out with the same sign. Moreover, from (ii) and the assumption that 
r > 0, it follows that 

iv. s ign (c  k)  ~ s i gn (ck_  1) ~ s i gn (b  k)  = s i g n ( c k _  1). 

Therefore, between any two indices where the c's change sign exactly once, 
the b's must change sign at least once. That is, the two sequences look like 

c's: + ..... + , -  ..... - ,+ ..... + , -  .... 

b's: + .... ,-, ... ,+, . . . , - , . . .  

Now let c k , c k _ l ,  k _ 1, be the last sign change in the c's. Then 

SA(bn+ 1 ..... b k)  > SA(c  n ..... Ck_ 1 ) = S A ( c  n ..... Co)" 

But since r > O, it follows by (iii) and (iv) that 

s i g n ( b k )  = s i gn (ck_  1) . . . . .  s ign (co )  ~ s i g n ( b o ) .  

Hence there is at least one sign change between b k and b 0 . Therefore, 

SA(bn+l  ..... bo) > S A ( b n , ' " , b k  + 1) + 1 > S A ( c  n ..... Co) + 1. 



210 CHAPTER 5 Bezier  Approximat ion  and Pascal 's  Triangle 

PROPOSITION 
5.2 

Proof 

Descartes '  L a w  o f  Signs fo r  the Monomia l  Basis  

Zeros(o,oo) k t < SA{a n ..... a 0 }. 

n 

Let g(t) = ~ a k  tk and let rl,...,r m be the positive roots of g(t). Then 
k=O 

g(t) - (t - rm). . . ( t  - r 1)gO(t). 

Define the polynomials gl(t) ..... gm(t) by setting 

gk(t)  = ( t -  r k ) . . . ( t -  q)go( t )  

Then by construction 

k = 1 ..... m. 

gk (t) = (t - r k )gk_l (t) 

gm(t)  = g(t) . 

We are going to show by induction on k that 

sign alternations { coefficients gk (t) } > k. 

By Lemma 5.1 

sign alternations { coefficients gl (t) } > sign alternations { coefficients go(t) }. 

Therefore, 

sign alternations {coefficients gl(t) } > 1. 

Moreover, again by Lemma 5.1 

sign alternations { coefficients gk (t) } 
> sign alternations { coefficients gk-1 (t) }. 

Therefore, it follows by induction on k that 

sign alternations {coefficients gk(t) } > k. 

Hence 

sign alternations { coefficients g(t) } 
= sign alternations {coefficients gm(t) } > m. 

But m is the number of positive roots of g(t). Therefore, we have proved that 

{ ktk} SA{a n ..... a0 } > Zeros(o,oo ) 
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COROLLARY 
5.3 

Descar tes '  L a w  o f  Signs f o r  the Bernste in  Basis  

{# } Zeros(o,1 ) kB~: (t) < SA{a n ..... a 0 }. 

Proo f  Once again we shall use Equation (5.6) to convert from the Bemstein basis 
to the monomial basis. Let u - t / (1-  t). Then by Equation (5.6) and Propo- 
sition 5.2 

t l  

Zer~ 1) kB~ (t) - Zeros(o,1 ) k=O 
' = ( l - t )  n 

= Zeros(o,~) )akuk < SA{a n ..... ao}. 

COROLLARY 
5.4 

Bez ier  curves are variation diminishing.  

Proo f  Consider a Bezier B(t)  = Z k  B~ ( t )P k with control polygon P(t). Let L be the 
line defined by the point Q and the normal vector v. If L intersects the con- 
trol polygon P(t) along the edge between Pk and Pk+l, then Pk and Pk+l 
must lie on opposite sides of the line L. Hence 

SA{v ~ (Po - Q) ..... v ~ (Pn - Q) } < number of intersections of P(t) and L. 

On the other hand, 

number of intersections of B(t) and L = Zeros(o,1 ) {]~k B~ ( t)(P k - Q) o v}. 

Therefore, by Corollary 5.3 

number of intersections of B(t) and L <_ SA{v ~ (Po - Q) ..... v ~ (Pn - Q) } 

< number of intersections of P(t) and L. 

This proof of the variation diminishing property based on Descartes' Law of 
Signs is highly algebraic. We shall give two geometric proofs of the variation dimin- 
ishing property for Bezier curves in Section 5.5 when we study subdivision and 
degree elevation. 

Finally, notice that the definition and analysis of the variation diminishing prop- 
erty for Bezier curves was carried out here only for planar Bezier curves. But much 
the same analysis applies to Bezier curves in three dimensions. The only change is 
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that the lines with respect to which oscillations are measured must be replaced by 
planes. The remaining details are unchanged (see Exercise 6). 

Exercises 

1. Consider the Bemstein basis functions 

B~ (t) (k ) (t - a) k (b - t) n-k 
_ n k - O  ..... n .  

( b - a )  n 

a. Prove that these basis functions satisfy Descartes' Law of Signs in the 
interval (a,b). 

b. Conclude that Bezier curves defined over the interval [a,b] are variation 
diminishing. 

2. Prove that the cubic Ball basis functions 

b o ( t ) - ( 1 - t )  2 bl(t) = 2t(1-  t) 2 b2(t) = 2t2(1- t) b3(t ) - t 2 

satisfy Descartes' Law of Signs in the interval (0,1). 

3. Show that the Taylor basis 1 , ( t - t  0) ..... ( t - t o )  n/n!  satisfies Descartes' Law 
of Signs in the interval (to,~176 

4. Show that the Newton basis for the nodes t o < t 1 < ... < t n satisfies Des- 
cartes' Law of Signs in the interval (to,~176 

5. Show by example that the Lagrange basis for the nodes t o < t 1 < - . -<  t n 
does not satisfy Descartes' Law of Signs in the interval (tO,tn). 

6. Replace lines by planes in the definition of the variation diminishing prop- 
erty. That is, say that a curve scheme D(t) = Zk  Dk(t)Pk in three dimensions 
is variation diminishing if for every control polygon P(t) and every plane L 

number of intersections of D(t) and L 
< number of intersections of P(t) and L. 

Prove that the variation diminishing property holds for Bezier curves in 3- 
space. 

5.5 Change of Basis Procedures and Principles of Duality 

Consider two polynomial bases~a  basis for polynomials of degree n: 

B(t) = (Bo(t) ..... Bn(t)) 

and a basis for polynomials of degree m > n: 

O(t) = (Do(t) ..... Dm(t)) 

Let P(t) = ~,k Bk(t)Pk be a polynomial curve. Since m > n, there must be coefficients 
{Qj} such that P(t) = ~,jDj(t)Qj. The general problem we shall address here is how to 
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find the D-coefficients {Q j} given the B-coefficients {Pk }. We shall see in subsequent 
sections that the solution to this generic problem has substantial applications in the 
theory of Bezier curves, including conversion between Bezier and monomial form 
(Section 5.5.1), degree elevation (Section 5.5.3), and subdivision (Section 5.5.4). 

To simplify our notation, let P - (Po ..... Pn) and Q - (Qo ..... Qm). Then 

P ( t ) -  D( t )~  QT _ B(t)o pT,  

where the superscript T denotes transpose and �9 denotes matrix multiplication. Since 
D(t)  is a polynomial basis and m > n, there must be a matrix M - (Mjk )  such that 
M: D(t)  ~ B(t); that is, 

m 
Bk(t)  - ~ , M j k D j ( t )  k - 0 . . . . .  n 

j=0 

B(t)  - D( t )~  M . 

Therefore, 

D ( t ) .  QT _ B ( t ) .  p T  _ (D(t)  o M)  o p T  _ D(t )  o ( M o  p T ) .  

Since the polynomials D(t)  are linearly independent, we conclude that 

QT _ M �9 p T  

or equivalently taking the transpose of both sides: 

Q - P o M  r 

= MkjP k - ~ , M j k P  k j - 0 . . . . .  m. 
k=0 k=0 

Thus MT: P --~ Q. Therefore, we have established that 

M: D(t)  ~ B(t)  r M T" P ---) Q.  

These observations can be summarized by the following rule. 

RULE First  Principle  o f  Dual i ty  

M : D - b a s i s  --~ B - b a s i s  r M T ' B - c o e f f i c i e n t s  ~ D - c o e f f i c i e n t s  

m v/ 

Bk(t )  = ~ , M j k D j ( t )  k - O . . . . .  n r Qj - ~ , M j k P  k j - O . . . . .  m 
j=0 k=0 

Hence, the same change of basis matrix M used for representing the basis B(t)  in 
terms of the basis D(t)  can be used to convert from the B control points P to the D 
control points Q. In Section 5.5.1 we shall employ this strategy to convert between 
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the Bernstein and monomial bases and in Section 5.5.3 we shall use it as well to con- 
struct a degree elevation algorithm for Bezier curves. 

This principle of duality has an interesting interpretation in terms of triangular 
computations. We shall see shortly that many change of basis algorithms can be rep- 
resented by diagrams such as the one in Figure 5.15(a). The input P is placed at the 
base of the triangle, and the output Q emerges along the left lateral edge. Let M 
denote the matrix that represents this transformation from P to Q. Then there is a 
closely related diagram that represents the transformation matrix M T" just reverse the 
orientation of all the arrows in the diagram that represents the transformation M, 
leaving the labels along the arrows unchanged, and place the input at the nodes along 
the left lateral edge of the triangle. Now the output emerges at the base of the trian- 
gle, and the matrix representing this new transformation is M T (see Figure 5.15(b)). 
These observations can be condensed into the following rule. 

RULE Second Principle of Duality 

Reversing the arrows in a triangle that represents a transformation M yields 
a triangle that represents the transformation M T 

Notice that in Figure 5.15(b) values already exist at the nodes Ro,R1,R 2 where 
we are computing new values. When this occurs, we perform the usual computation 
and then add the value residing at the node as in Figure 5.16. 

Why does this work? Since M represents the transformation from P to Q, 

04 - k~= M j k Pk . 

Therefore, it follows from the diagram that 

Mjk - the sum of the products along all paths from Pk to Qj. 

Q3 R3 

Q2 * R2 * 

Q1 * * R1 * * 

Qo = Po P1 P2 P3 To * Ro T1 T2 T3 

(a) M: P ~ Q (b) Mr: R --9 T 

Figure 5.15 Schematic depiction of the Second Principle of Duality. If (a) represents the transformation M, 
then (b) represents the transformation M T. 
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R S 

T 

Figure 5.16 The value computed at the node labeled T is o~R + flS + T. 

Now let N denote the transformation from R to T depicted in Figure 5.15(b). Then 

1/ 

T k - ~,NkjR j , 
k=O 

and from the diagram we have 

Nkj - the sum of the products along all paths from Rj to T k. 

But Rj and Qj occupy the same node in these diagrams, and so too do P k and T k. 
Therefore, the paths between Rj and T k are identical to the paths between Pk and Qj. 
Thus 

Ukj - Mjk 

N - M  T . 

Combining our first two principles of duality produces the following rule. 

RULE Third Principle of  Duality 

Reversing the arrows in a triangle that represents a transformation from a 
D-basis to a B-basis yields the transformation from the B-coefficients to the 
D-coefficients and vice versa. 

For example, recall from Section 4.5 that the forward differences of a polyno- 
mial represent the coefficients of the polynomial with respect to a normalized New- 
ton basis. Thus Figure 4.3 is a transformation algorithm from the Lagrange 
coefficients (evaluation at the nodes) to the normalized Newton coefficients (differ- 
ences). By the Third Principle of Duality, reversing the arrows and placing the nor- 
malized Newton basis functions along the left lateral edge of the triangle generates 
the transformation from the normalized Newton basis to the Lagrange basis with the 
same nodes (see Figure 5.17 and Exercise 2). 

In the next few sections we shall apply only the First Principle of Duality. We 
will have occasion to apply the other two duality principles in Chapter 7 when we 
study change of basis algorithms for B-splines. 

Exercises 

1. Suppose that Z j D j ( t )  =ZkBk(t)  =1 and B(t) - D(t)o M. 
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t ( t -  1) ( t -  2)/3! 

2/'-,<, 
t ( t -  1)/2 

, /  / 
t ~ 

1 ~ L~(t) L3~(t) L32(t) L~(t) 

Figure 5.17 Computation of the cubic Lagrange basis functions with nodes 0,1,2,3 from the normalized 
cubic Newton basis functions with the same nodes by the Third Principle of Duality. The New- 
ton basis functions are placed along the left lateral edge, the arrows of the difference triangle 
are reversed, and the Lagrange basis functions emerge along the base of the triangle. 

a. Prove that ~ M j ~  = 1 for every j. That is, prove that when the curve 
schemes are affine invariant, every row of the change of basis matrix 
sums to one. 

b. When the rows of a matrix are nonnegative and sum to one, then the 
matrix is called a Markov chain. Markov chains play a prominent role in 
probability theory. Prove that if the change of basis matrix M is a Markov 
chain, then the D control points lie inside the convex hull of the B control 
points. 

2. Verify by direct calculation that in Figure 5.17 the cubic Lagrange basis 
functions with nodes at 0,1,2,3 emerge at the base of the diagram. 

3. Let M denote the matrix that represents the transformation where the input 
is placed at the base of the triangle, and the output emerges along the right 
lateral edge. What diagram represents the transformation MT? 

4. Show that 

a. If M represents the transformation in Figure 5.15(a), then M is lower tri- 
angular. 

b. If N represents the transformation in Figure 5.15(b), then N is upper tri- 
angular. 
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Conversion between Bezier and Monomial Form 

To convert between the Bezier and monomial forms of a curve, we must represent 
the Bemstein basis functions in terms of the monomial basis and represent the 
monomial basis functions in terms of the Bemstein basis. Then we can apply the 
techniques from Section 5.5. Here we shall derive both types of identities. 

To represent the Bemstein basis in terms of the monomial basis, start with the 
explicit formula (5.5): 

B~( t )  - (n) tk(1 t) n -k  
k ~ " 

Expanding the term (1-  t) n - k  by the binomial theorem yields 

n-k 
B k (t) - Z (-1) j(n n k)(n-)k)tJ+k 

j=O 

To represent Bf (t) in terms of powers of t j rather than powers of t j+k, reindex by 
replacing j by j - k to obtain 

Next observe that 

17 

Bf (t) - E (-1) j-k (nk)(j_kn-k)t j . 
j=k 

SO 

Bff (t) - ~ ( - 1 ) J - k ( J k ) ( j ) t J "  (5.7) 
j=k 

Because the factor (j)  appears repeatedly in these conversion formulas, it is more 
convenient to consider the scaled monomial basis Mn(t)  = (n)tj rather than the stan- 
dard monomial basis t J, j = 0 ..... n. Now by the First Principle of Duality from Sec- 

J , /  

tion 5.5, 

n n 
~ , Q j M j ( t ) -  ~ , B f ( t ) P  k r Qj  - ( -1 )J -k (Jk )P  k . (5.8) 

j=0 k=0 k=0 

Thus (5.8) converts polynomials from Bezier to monomial form. 
Conversely, to convert from monomial to Bezier form, we must represent the 

monomial basis in terms of the Bemstein basis. To do so, observe that by the bino- 
mial theorem 

n n 

((1--t)+tz)  n -  E ( j ) t J z J ( 1 - t )  n - j -  ~,B~(t)z j" 
j=0 j=0 
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n 

(The expression ~ B j  (t)z j is called the generating funct ion for the Bemstein basis 
functions.) j=0 

Differentiating both sides of this equation with respect to z a total of k times, we 
obtain 

= n j! 
n! t k ((1 - t) + tz) n-k ~, ~ B] (t)z j - k  �9 

( n - k ) !  j = k ( j - k ) !  

Dividing by k! and setting z = 1, we arrive at the identity 

n 
J M k (t) E n _ ( k ) B j ( t ) "  n 

j=k 

Hence again from the First Principle of Duality, 

(5.9) 

n 

~ B ; ( t ) e j  = ~ n = QkMk (t) r Pj (Jk)Qk " 
j=O k=O k=O 

(5.10) 

Thus the n + 1 rows of the change of basis matrix are the first n + 1 rows of Pascal's 
triangle. 

Formulas (5.8) and (5.10) are inverses. It turns out that these two formulas both 
have interesting interpretations in terms of triangular computations. 

Formula (5.8) is the expression for forward differencing (compare to Equation 
(4.7)). Thus if we place the Bezier control points at the base of a triangle and run the 
forward differencing computation (subtraction), the monomial coefficients emerge 
along the left edge of the triangle. This dynamic programming algorithm is illus- 
trated for cubic curves in Figure 5.18. 

The coefficients (~) in (5.10) are the entries in Pascal's triangle. Thus if we place 
the monomial coefficients at the base of Pascal's triangle and reverse all the arrows 
(addition), then the Bezier coefficients emerge along the left edge of the triangle (see 
Section 5.3, Exercise 5). This dynamic programming algorithm is illustrated for 
cubic curves in Figure 5.19. 

Exercises 

1. Suppose that the control points of a Bezier curve are evenly spaced along a 
straight line. That is, suppose that the control points are given by Pk = 

Po + (k / n)v, k = 0 ..... n. Show that the Bezier curve e ( t )  = ~,k B~ (t)P k is a 
straight line with a linear parametrization. 

2. Let B(t) be a polynomial with Bezier coefficients Pk, k = 0 ..... n. 

a. Show that the graph of B(t)mthat is, the curve ( t ,B ( t ) )mhas  control 
points (k/n,Pk),  k = 0 .... ,n. 
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Q3 

Q2 * 

/ / 
Q1 * * 

Qo = PO P1 P2 

Figure 5,18 Differencing can be used to convert from Bezier to monomial form. Place the Bezier coeffi- 
cients {Pk} at the base of the triangle and take differences. Then the coefficients {Qj} with 
respect to the monomial basis Mr](t) = (~)tJ emerge along the left edge of the triangle. Here 
the algorithm is illustrated for n = 3. Compare to Figure 4.3 for forward differencing. 

P2 * 

P1 * * 

Po = Qo Q2 Q3 
Figure 5.19 Pascal's triangle can be used to convert from monomial to Bezier form. Place the coefficients 

{Qk} with respect to the monomial basis Mnk(t) = (nk)tk at the base of the triangle and add up. 
Then the Bezier coefficients {Pj} emerge along the left edge of the triangle. Here the algo- 
rithm is illustrated for n = 3. This algorithm is the inverse of the algorithm illustrated in Figure 
5.18. 
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(Note that this is another reason that the control point Pk is usually associ- 
ated with the parameter value k/n . )  

b. Where are the control points for the graph of the basis function B~ (t)? 

3. Consider the generating function G(z) - ~ k  B~ (t)e kz . Prove that 

/7 

a. ~ , B ~ ( t ) e k z - ( ( 1 - t ) + t e Z )  n 
k=0 

n j n _ n! 
b. ~ k B k (t) ~ t  j +  lower-order terms 

k=O ( n -  j)! 

4. Suppose that the control points of a Bezier curve of degree n are evenly 
spaced points in parameter space on a polynomial curve of degree m < n. 
That is, suppose that Pk = P ( k / n )  where P(t) is a polynomial curve of 
degree m. Using the result of Exercise 3(b), show that the Bezier curve 
P(t) = Z k  B~ (t)P k is a polynomial curve of degree m. 

5. Develop change of basis algorithms to convert between the Taylor basis 

( j  )(t - a) j ,  j - 0 .. . . .  n, 

and the Bemstein basis 

( t - a ) k ( b - t )  n-k 
B~ (t) - (n k) , k - O  ... . .  n. 

( b - a )  n 

6. Explain why the same algorithm that converts curves from Bezier to mono- 
mial form also converts polynomials from Lagrange to Newton form when 
the nodes are at the integers and the Newton basis function N k (t) is normal- 
ized by dividing by k!. (Hint: Compare Figures 4.3 and 5.18.) 

7. Consider the functions {By n (t) } defined in Section 5.3, Exercise 11. Prove 
that 

o o  

(-n) tk ~,(Jk )B-jn (t) �9 
j=k 

8. Using the Third Principle of Duality from Section 5.5, show how to use Fig- 

ure 5.18 to compute the Bernstein basis functions {B~c (t)} from the mono- 

mial basis functions {M~ (t)}. 

5.5.2 The Weierstrass Approximation Theorem 

Every continuous curve on a closed interval can be approximated to within any 
desired tolerance by some polynomial curve. This statement is the Weierstrass 
Approximation Theorem. The Weierstrass Theorem justifies our preoccupation with 
polynomial curves because it asserts that to within any arbitrary tolerance all contin- 
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uous curves are essentially polynomials. The approximating polynomials in the 
Weierstrass Theorem need not be interpolating; indeed, a sequence of polynomials 
that interpolate more and more points on a fixed curve does not necessarily converge 
to the curve that is interpolated. 

For analytic functions we can resort to Taylor polynomials to approximate the 
curve to any desired tolerance, but for arbitrary continuous functions we need to 
invoke other techniques. Here we are going to use Bezier approximation to prove the 
Weierstrass Theorem. Our main technical tool will be the change of basis formula 
(5.9) that represents the monomial basis in terms of the Bernstein basis. We begin 
with a simple identity that comes up in the main body of the proof. 

.EMMA 
5.5 

n 

~, (k  - n t )  2 B~ (t)  - nt(1 - t) 
k=O 

Proof Begin by recalling (5.9): 

/7 
n(t) ]~ k n M j  - ( j  )Bk (t). 

k=j  

When j - 0,1,2, this formula specializes to 

ii. 
/7 

E B b ( t )  = 1 
k=O 

iii. 
/ /  

E k B f  (t)  - nt  
k=0 

iv. 
n 

E k ( k  - 1)Bff (t) = n(n  - 1)t 2 . 
k=0 

Adding (iii) and (iv), we obtain 

v. ~ 2 n k B k (t)  = n ( n -  1)t 2 + nt .  
k=0 

Therefore, by (ii), (iii), and (v), 

(k - nt) 2 Bf (t) - ~ (k 2 - 2knt + n 2t2 )Bf  (t) 
k=0 k=0 

n 2 n n n2t2  n 
= ~, k B k (t)  - 2n t  Z kB~ (t)  + Z B~ (t)  

k=0 k=0 k=0 

= n ( n -  1)t 2 + n t -  2n2t 2 + n2t  2 

= n t ( 1 -  t) . 
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Let F(t) be a continuous curve on the interval [0,1]. Define the nth Bernstein 
approximation to F(t) by setting 

n 

Bn[F](t) - ~,F(k / n)B~ (t) . 
k=O 

(5.11) 

The graph of the polynomial Bn[F](t) is the Bezier curve with control points at 
equally spaced parameter values along the continuous curve F(t). In general, the 
functions Bn[F](t) interpolate only the values F(0),F(1);  nevertheless, we shall now 
show that as the degree n increases, these approximating polynomials Bn[F](t) actu- 
ally converge uniformly to the continuous function F(t). 

THEOREM 
5.6 

l imn~Bn[F](t)  = F(t) { uniform convergence } 

Proof Consider the difference between F(t) and Bn[F](t ) . Since the Bernstein 
basis functions sum to 1, 

n 

F(t) - Bn[F](t ) = Z {F(t) - F(k / n)}B~ (t). 
k=O 

(5.12) 

Thus to analyze the difference between F(t) and Bn[F](t ), we need to ana- 
lyze the difference between F(t) and F(k /n ) .  To begin, notice that since 
F(t) is continuous on the closed interval [0,1], F(t) is bounded on this inter- 
val. Therefore, there is a constant M > 0 such that IF( t ) I<  M, so for all 

O< x , t < l  

I F ( x ) -  F(t) I< 2M. 

Now choose any e > 0. Again since F(t) is continuous on the closed interval 
[0,1], there is some t~ > 0 such that for all 0 < x,t <_ 1 

I x - t l < t ~  ~ I F ( x ) - F ( t ) l < e .  

Let us fix the value of t. Then for each k = 0 ..... n, either I k / n - t I< t5 or 
I k / n -  t I> t~. Therefore, we can split the sum on the fight-hand side of 

(5.12) into two sums: the first containing those terms where I k / n - t  I< t~ 
and the second containing those terms where I k / n -  t I> 8. Hence by (5.12), 

I (F(t) -nn[F](t) l 

lY~lk / n_tl<t~{F(t) - F(k / n) }B~ (t) + ~lk / n_tl>t~{F(t) - F(k / n) }B~ (,~] 

< ~lk / n-tl<•lF(t) - F(k / n)lB ~ (t) + ~,lk / n-tl>_6lF(t) - F(k / n)lB ~ (t) 

< ~lk / n-tl<t~ EB~ (t) + ~lk / n-tl>6 2MB~ (t) 

< 6~lk / n-tl<t~ B~ (t) + 2M]~lk / n-tl>_~ B~ (t) 

< e + 2M]~lk / n-tl>S B~ (t) . (5.13) 
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It remains only to bound the sum ~,lk/n_tl>6B~(t). But if I k / n -  t I~ ~, then 

( k -  nt) 2 > n2t~ 2 , 

so 

Therefore, 

( k -  nt) 2 

n2(~ 2 
>1. 

~,lk / n-tl>t~ n~ (t) < ~,lk / n-tl>t~ 

Hence by Lemma 5.5 

( k -  nt) 2 1 
nZt~ 2 B~ (t) ___ nZt~ 2 ~,k (k - nt) 2 B~c (t). 

~,lk / n-tl>r B~ (t) < 
n t (1 - t )  

n2S 2 

But the product t(1 - t) takes its maximum value at t = 1/2, so t(1 - t) < 1/4. 
Therefore, for all t 

Elk / n-tl>t~ n~ (t) < 
4nt~ 2 

Substituting this bound back into (5.13), we find that 

IF(t)- Bn[F](t)  I = e + 

M 
Now choose n > ; then 

2d;2e 

M 

2nt~ 2 

IF(t)- Bn[F]( t )  I < 2e, 

so for n sufficiently large Bn[F](t ) is arbitrarily close to F(t). 

COROLLARY 
5.7 

Weierstrass Approximation Theorem 

Let F(t) be a continuous function on the interval [0,1]. Then F(t) can be 
approximated to within any desired tolerance by some polynomial curve. 

Exercises 

1. Prove that if F(t) is a continuous function on the interval [a,b], then F(t) can 
be approximated by a polynomial to any desired tolerance. 

2. Prove that B n is a linear operatormthat is, 

Bn[aF + bG](t) = aBn[F](t ) + bBn[G](t ) . 
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3. Prove that if F(t) is a polynomial of degree m, then the Bernstein approxi- 
mation Bn[F](t) is always a polynomial of degree m for n > m. (Hint: See 
Section 5.5.1, Exercise 4.) 

4. Plot the Taylor and Bernstein polynomial approximations to the functions 
cos(at), sin(m) for different degrees n. Use these results to generate poly- 

nomial approximations to the semicircle (cos(m), sin(m)) for 0 <_ t _< 1. 
Which approximation scheme converges faster over the interval [0,1] ? 

5. Show that 

a. dB;  (t) = n ( B ~ z l ( t ) _  B/n_ 1 (t)] k = 0 ..... n 
dt i 

b. limn~Bn[F](t)~'- - - F'( t)  . 

(Hint: Apply part (a) and the mean value theorem together with Theorem 
5.6.) 

5.5.3 Degree Elevation for Bezier Curves 

Degree elevation is another change of basis algorithm that is important in the study 
of Bezier curves. Because the Bemstein polynomials form a basis, every degree n 
Bezier curve is also a Bezier curve of degree n + 1. Since higher-degree curves have 
more control points, we can degree elevate a curve to attain additional control over 
the shape of the curve. Given the control points {P0 ..... Pn} for a Bezier curve of 
degree n, we would like an algorithm to find the control points {Q0 ..... Qn+l} for the 
same curve represented now as a Bezier curve of degree n + 1. 

In Section 5.5 we showed that to find this change of basis algorithm, we need to 
represent the Bemstein basis functions of degree n in terms of the Bemstein basis 
functions of degree n + 1. There is a simple trick for doing this. Observe from (5.5) 

n + l  n that tB~(t) has the same powers of t and 1 - t as Bk+ 1 (t), and (1 - t)Bk(t) has the same 
n + l  n powers of t and 1 - t as B k (t) Thus, up to constant multiples, tBk(t) is the same as 

n n + l  n R n + l  ~'k+l (t) and (1 - t)Bk(t) is the same as B k (t). Adding these results will give us Bk(t) 
n + l  as a linear combination of B;+~(t) and  Bk+ 1 (t). 

Working through this algebra, we find that 

t~Rn,--'K (t) -- n + 1 - k on+l (1 ~ ' - ' k  (t) (5.14) 
n + l  

tB; (t) - k + 1 Bn+lk+l (t). (5.15) 
n + l  

Adding these equations yields 

n + l - k  
B f ( t )  = 

k +1 v n + l  
~  (t) (5 .16)  ~ o  k Ok+ 1 �9 

n + l  n + l  
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Thus the change of basis matrix M - (Mjk) is given by 

n + l - j  
Mjk = n + l  j -  k 

J = j = k + l  
n + l  

= 0  jc=k,k+l .  

Hence by the First Principle of Duality in Section 5.5, 

n R n+l (t) =~k PkB~ (t) <=:> Qj = Zjw~,j 
j n + l - j  

n + l Pj-I + ~ P j  + I (5.17) 

Equation (5.17) is the degree elevation formula for Bezier curves. It expresses 
the degree n + 1 control points in terms of the degree n control points. Notice that the 
point Qj lies on the line joining Pj-1 and Pj. We illustrate this degree elevation algo- 
rithm for cubic curves in Figure 5.20. 

Degree elevation is a corner-cutting procedure. Notice in Figure 5.20 that the 
degree elevated control polygon Q = (Qo, Q1, Q2, Q3, Q4) is obtained from the origi- 
nal control polygon P = (Po,P1,P2,P3) by cutting off the comers at P1 and P2. Since 
every Bezier curve lies in the convex hull of its control points, the degree elevated 
control polygon is closer to the Bezier curve than the original control polygon. Thus 
if we continue to degree elevate a Bezier curve, the control polygon gets closer and 

P 1  Q2 P2 

Q1 

Qo = Po Q4 = P3 

:igure 5.20 Degree elevation algorithm for a cubic Bezier curve. The points {Po,P1,P2,P 3} are the control 
points for the cubic Bezier curve B(t), and the points {Qo,Q1,Q2,Q3,Q4} represent the same 
curve B(t) as a quartic Bezier curve. 
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closer to the original curve. Moreover, in the limit, these control polygons converge 
uniformly to some continuous curve. We shall now apply the Weierstrass Approxi- 
mation Theorem to show that this limit curve is, in fact, the original Bezier curve. 

THEOREM 
5.8 

Let B(t) be a Bezier curve of degree n and let am(t) denote the control poly- 
gon that represents B(t) as a Bezier curve of degree m > n. Then 
limm~=Qm(t ) = B(t). That is, the control polygons generated by degree ele- 
vation converge uniformly to the original Bezier curve. 

Proof By construction am(t) is a piecewise linear curve over the interval [0,1] and 
Qm(k/m) is the kth vertex of am(t). Since Qm(t) is the control polygon that 
represents B(t) as a Bezier curve of degree m, Qm(k/m) is the kth control 
point of B(t) considered as a polynomial curve of degree m. Let Bm[F](t) 
denote the mth Bemstein approximation to F(t) (see (5.11)). Then 

m 

Bm[Qml(t) = ~_,Qm(k/m)B~(t)= B(t). 
k=0 

Let Q(t) = l imm~Qm(t) .  To show that Q(t) = B(t), we need to examine the 
difference between B(t) and Q(t). By Theorem 5.6, 

B(t) - a(t) = l i m m ~ ,  Bm[B - a](t)  

= limm~ ~ {Bm[B](t)- Bm[a](t)} 

= l i m m ~  {Bm[B](t)- Bm[Qm ](t) + Bm[Qm ] ( t ) -  Bm[a](t) } 

= l i m m ~  {Bm[B](t)- B(t)} + l imm~,Bm[Q m - a] ( t ) .  

But again by Theorem 5.6, 

l i m m ~  {Bm[B](t ) - B(t)} = 0, 

and the convergence is uniform. Moreover, since Q(t) = l imm~Qm(t) ,  
given any e > 0 for m sufficiently large 

]am(t)-a(t) I < e. 

Therefore, 

SO 

m 

IBm[am -a ] ( t )  I _< ~lam(k/m)-a(k/m)ln~(t)  < e, 
k=0 

limm~J3m[Qm - Q](t) = 0. 

Hence B( t ) -  Q(t) = 0, so B(t) = l imm~Qm(t)  and the convergence is uni- 
form on the interval [0,1 ]. 
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B 

E 

A 

Figure 5.21 Polygon ADEC is formed from polygon ABC by cutting off the corner at B. The line L inter- 
sects the edge DE and therefore must also intersect either edge DB or edge BE in the polygon 
ABC because if a line intersects one side of a triangle, then it must intersect one of the other 
two sides. 

Comer cutting reduces the oscillation of a polygon. If Q(t) is the piecewise lin- 
ear curve obtained by cutting comers off of another piecewise linear curve P(t), then 
any line L intersects P(t) at least as often as it intersects Q(t) because if a line inter- 
sects one side of a triangle, then it must intersect one of the other two sides (see Fig- 
ure 5.21). Thus corner cutting is a variation diminishing process. Since degree 
elevation is a comer-cutting procedure (see Figure 5.20), we can use this observation 
along with Theorem 5.8 to give a simple geometric proof that Bezier curves satisfy 
the variation diminishing property. 

COROLLARY 
5.9 

Bezier curves are variation diminishing. 

Proof Since comer cutting reduces oscillation, the limit curve of a corner-cutting 
procedure must be variation diminishing with respect to the original control 
polygon. But by Theorem 5.8, each Bezier curve is the limit curve of a 
degree elevation process, which is a comer-cutting procedure. Hence Bezier 
curves are variation diminishing. 

Exercises 

1. Prove that 

a. Br~ (t)B; (t) - (7)(~)  
cm+n 
~j+k ) 

Dm+n ~ o j +  k (t) 

m ( m  n 
j )(k) om+n 

b. B;( t )  - ~ m+n~ ~ +k (t) 
j=O (j+k ) 



228 C H A P T E R 5 B e z i e r  A p p r o x i m a t i o n  a n d  P a s c a l ' s  Tr iang le  

2. Let B( t )  be a Bezier curve of degree n with control points {Pk }. Use the 
results in Exercise 1 to find the control points {Q j} that represent B(t )  as a 
Bezier curve of degree m + n. 

3. Consider the negative binomial distribution defined in Section 5.3, Exercise 
11. Prove that for n > 1 

B k  n (t) _ ~n + k -  1 B k n +  1 (t) _ k + 1 o - n + l  (t)  
n -  1 n -  1 ~  " 

4. Prove that the arc length of a Bezier curve is always less than or equal to the 
perimeter of its control polygon. 

5. Use the degree elevation formula to derive Descartes' Law of Signs for the 
Bernstein basis. (Hint: First use degree elevation to prove an analogue of 
Lemma 5.1 for the Bernstein basis.) 

6. Show that 

( )AArn+l ( 
M;  (t) = k + 1 ~,, k+l (t) n + 1 - k'] ,,n+l 

: ) ~ , , k  ( t ) .  
n + l  t n + l  

7. Let t o < t 1 < ... < t2n+l and define 

~ ; ( t )  - (-1) n-k(tk+ 1 - t).  . .( tk+ n - t) k - 0 .... ,n 

I/t~ +1 (t) - (-1) n+l-k (t k - t ) . . . ( t k+  n - t) k - 0 ..... n + 1. 

a. Show that 

�9 n + l  ( t )  (t k - t ) ~ ( t )  = - V k  

(tk+n+ 1 - t)l/t~ (t) ='~'k+ln+l (t). 

b. Use the degree elevation formulas in part (a) to show that the functions 

~(t),k-0 . . . . .  n ,  

satisfy Descartes' Law of Signs in the interval (tn,tn+ 1). 

8. Suppose that {P0 ..... Pn} are the control points for a degree n Bezier curve, 
and that {Q0 ..... Qn+l } are the control points for the degree-elevated version 
of the same curve. Let Smax(P) be the largest side of the control polygon 
generated by the control points {P0 ..... Pn}, and let Smax(Q) be the largest 
side of the control polygon generated by the control points {Q0 ..... Qn+l }. 

n 
a. Prove that Sma x (Q) < Sma x (P)- 

n + l  

b. Conclude that as we continue to degree elevate a Bezier curve, the 
lengths of the sides of the control polygons approach zero. 
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5 . 5 . 4  Subdivision 

The control points of a Bezier curve describe the curve with respect to the parameter 
interval [0,1 ]. Sometimes, however, we are interested only in the part of the curve in 
some subinterval [a,b]. For example, when rendering a Bezier curve we may need to 
clip the curve to a window. Since any segment of a Bezier curve is a polynomial 
curve, we should be able to represent such a segment as a complete Bezier curve 
with a new set of control points. Splitting a Bezier curve into smaller pieces is also 
useful as a divide and conquer strategy for intersection algorithms (see below). The 
process of splitting a Bezier curve into two or more Bezier curves that represent the 
exact same curve is called subdivision. 

We begin with an important special case. Consider a Bezier curve B(t) = 
~ ,kBf ( t )Pk ,  where t �9 [0,1]. The curve B(rt) - 2 k B f ( r t ) P k ,  where t e [0,1], repre- 
sents the segment of B(t) for which t e [0,r] because as t varies from 0 to 1, B(rt) 
varies from B(0) to B(r). Thus by the results in Section 5.5, to subdivide a Bezier 
curve at t = r, we must represent the basis functions B~ (rt) ..... B n (rt) in terms of the 
standard basis B~ (t) ..... Bnn(t). A subdivision algorithm, then, is nothing more than a 
change of basis algorithm from the Bemstein basis B~(rt)  ..... Bn(rt)  to the standard 
Bemstein basis B~ (t) ..... B n (t). 

Using the binomial theorem, we could derive such a change of basis formula by 
purely formal algebraic methods (see Exercise 1). It happens, however, that this 
change of basis formula has a simple probabilistic interpretation that provides fur- 
ther insight into its meaning. Since probability also simplifies the derivation of this 
identity, we shall adopt a probabilistic approach. Later on we shall see that many 
other identities involving the Bemstein polynomials also have simple probabilistic 
interpretations that simplify their derivation (see Exercises 2 and 3). 

Bezier curves are related to probability theory because the Bemstein basis func- 
tions represent the binomial distribution. There are many ways to model this distri- 
bution: coin tossings, random walks, or urn models. For our purposes we shall adopt 
an um model based on sampling with replacement. 

5.5.4.1 Sampling with Replacement 

Consider an um containing w white balls and b black balls. One ball at a time is 
drawn at random from this urn, its color inspected, and then returned to the urn. 
Since we are performing sampling with replacement, the probability of choosing a 
white ball on any trial is t = w / ( w  + b), and the probability of choosing a black ball 
on any trial is 1 - t. Now there are (n k) ways of selecting exactly k white balls in n 
trials, so the probability of choosing exactly k white balls in n trials is given by the 
binomial distribution 

Bt~ (t) - (~ )t k (1 - t) n-k. 
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LEMMA 
5.10 

n j n 
B;(rt) - ~,Bk (r)B j (t) (5.18) 

j=k 

Proof Consider two urns: one with red and blue balls and another with white and 
black balls. Let 

r = probability of selecting a red ball from urn #1 

t = probability of selecting a white ball from urn #2. 

Applying the binomial distribution for sampling with replacement, we know 
that 

B i(r)  = probability of choosing exactly k red balls in j trials from urn 
#1 

Bj (t) = probability of choosing exactly j white balls in n trials from urn 

#2. 

Place these two urns into a super urn (see Figure 5.22). A selection from the 
super urn consists of selecting one ball at random from each regular urn, 
inspecting their colors, and returning the balls to their respective urns. 

The super urn also models sampling with replacement, where 

rt = probability of selecting a red-white combination 

B; (rt) = probability of selecting exactly k red-white combinations in n 
trials. 

To select a red-white combination from the super urn on any trial, we must 
certainly select a white ball from um #2 on this trial; if we select a black 
ball from um #2, we need not even inspect the color of the ball selected 
from urn #1. Suppose that we choose exactly j white balls in n trials from 
urn #2. Then to select exactly k red-white combinations in n trials from the 
super urn, we must select exactly k red balls from um #1 during the j trials 
that we selected a white ball from um #2. Thus 

B~ (rt) - probability of selecting exactly k red-white combinations in n 
trials 

= ]~j>k(probability of selecting exactly j white balls in n trials 
from um #2) 

• (probability of selecting exactly k red balls from urn #1 during 
the j trials in which white balls were selected from urn #2) 

j=k 
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0 

o Redo  
0 

0 0 

�9 Blue �9 

0 0 

o Whi te  
0 

0 

Black 

Urn #1 Urn #2 

Figure 5.22 The super urn contains two ordinary urns. A selection from the super urn consists of select- 
ing one ball at random from each regular urn, inspecting their colors, and returning the balls 
to their respective urns. 

5.5.4.2 

Equation (5.18) represents the scaled Bernstein basis B~(rt) ..... Bn(rt) in terms 
of the standard Bernstein basis B(~ (t) ..... Bn n (t). Hence by the First Principle of Dual- 
ity in Section 5.5, 

Z j O j B ; ( t )  = ZkekB~(rt)  r Qj - ~BJk(r)Pk. (5.19) 
k=0 

This formula leads to the following subdivision algorithm for Bezier curves. 

Subdivision Algorithm 

Let B(t) be a Bezier curve with control points P0 ..... Pn. To subdivide B(t) at t = r, run 
the de Casteljau algorithm at t = r. The points (20 ..... Qn that emerge along the left 
lateral edge of the triangle are the Bezier control points of the segment of the curve 
from t = 0 to t = r, and the points R o ..... R n that emerge along the right lateral edge of 
the triangle are the Bezier control points of the segment of the curve from t = r to 
t = 1 (see Figure 5.23). 

This construction works because the point Qj that emerges along the left lateral 
edge of the triangle at level j is the point at parameter t = r along the Bezier curve 
with control points PO ..... Pj. These points are given by Equation (5.19), so they rep- 
resent the Bezier curve B(t) between t = 0 to t = r. To find the points that represent 
the Bezier curve B(t) from t = r to t = 1, consider the curve B ( 1 -  t) from t = 0 to 
t = 1 - r. We know by symmetry (Section 5.2, Property 4) that the curve B(1 - t) can 
be represented as a Bezier curve with control points Pn ..... PO" To subdivide this 
curve from t = 0 to t = 1 - r, we can use our previous algorithm; that is, simply run 
the de Casteljau algorithm at t = 1 - r and read off the results from the left lateral 
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Q3 = Ro 

Q2 R1 

1 - r / ~ x  N 1 - 2 /  ~ / 
Q1 S R 2 

Qo = P0 P1 P2 P3 = R3 

Figure 5.23 The de Casteljau subdivision algorithm for a cubic Bezier curve with control points 
Po,P1,P2,P3. The points Qo,Q1,Q2,Q3 that emerge along the left edge of the triangle are the 
Bezier control points of the segment of the original curve from t - 0 to t - r, and the points 
Ro,R 1,R2,R 3 that emerge along the right edge of the triangle are the Bezier control points of 
the segment of the original curve from t = r to t = 1. 

S P1 ~ P 2  

Q3 = Ro 

Q1 ~ / ' / "  ~ ' x ~ R 2  

P0 = Qo P3 = R3 

Figure 5.24 Geometric interpretation of the de Casteljau subdivision algorithm for a cubic Bezier curve 
with control points Po,P1,P2,P3. The points Qo,Q1,Q2,Q3 are the Bezier control points of the 
segment of the original curve from t --- 0 to t = r, and the points Ro,R 1,R2,R 3 are the Bezier 
control points of the segment of the original curve from t = r to t = 1. 

edge of the diagram. But by symmetry, these points are precisely the points on the 
right lateral edge of the de Casteljau triangle for the original curve evaluated at t -- r. 

To find the control points of the segment of a Bezier curve between t = r and 
t = s, subdivide the original Bezier curve at t = s and then subdivide the first segment 
of the subdivided curve at t = r / s  (see Exercise 9). 
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The de Casteljau algorithm is a corner-cutting procedure (see Figure 5.24). 
Therefore, subdivision, like degree elevation, is also a corner-cutting procedure. If 
we continue recursively subdividing a Bezier curve, the control polygons get closer 
and closer to the original curve. Moreover, in the limit, these control polygons con- 
verge to a continuous curve. We shall now show that this limit curve is, in fact, the 
original Bezier curve. For convenience, we restrict our attention to recursive subdivi- 
sion at r = 1/2, though the results are much the same for any value of r between 0 
and 1 (see too Exercise 4). 

THEOREM 
5.11 

The control polygons generated by recursive subdivision converge to the 
original Bezier curve. 

Proof Suppose that the maximum distance between any two adjacent control 
points is d. By construction, the points on any level of the de Casteljau algo- 
rithm for t = 1 / 2 lie at the midpoints of the edges of the polygons generated 
by the previous level. Therefore, it follows easily by induction that adjacent 
points on any level of the de Casteljau diagram for t = 1/2 are no further 
than d apart (see Figure 5.25). 

By the same midpoint argument, as we proceed up the diagram adjacent 
points along the left (right) lateral edge of the triangle can be no further than 
d /2  apart. Hence as we apply recursive subdivision, the distance between 
the control points of any single control polygon must converge to zero. 
Since the first and last control points of a Bezier control polygon always lie 
on the curve, these control polygons must converge to points along the orig- 
inal curve. 

<d/2 S <d/2 P1 - - P2 

<d/2 / / ~ ~ \ <d/2 

Q1 
U(t) 

R2 

~_d/2 / /  N~ ~_d/2 

Po P3 

Figure 5.25 One level of the de Casteljau algorithm for a cubic Bezier curve. If adjacent control points 
Po,P1,P2,P3 are no further than d units apart, then adjacent points Q1,S, R2 on the second 
level of the de Casteljau algorithm can be no further than d units apart. 
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The convergence of recursive subdivision gives us yet another proof that Bezier 
curves are variation diminishing. 

COROLLARY 
5.12 

Bezier curves are variation diminishing. 

Proof Since recursive subdivision is a corner-cutting procedure, the limit curve 
must be variation diminishing with respect to the original control polygon. 
But by Theorem 5.11, the Bezier curve is the limit curve generated from the 
original control polygon by recursive subdivision, so Bezier curves are vari- 
ation diminishing. 

The convergence of recursive subdivision is much faster than the convergence of 
degree elevation. Degree elevation converges at a rate of O(1/n), where n is degree; 
recursive subdivision converges at a rate of O(h2), where h is the length of the 
parameter interval. This rapid convergence of recursive subdivision leads to the fol- 
lowing important recursive algorithms for rendering and intersecting Bezier curves. 

Rendering Algorithm 

1. If the Bezier curve can be approximated to within tolerance by the straight 
line joining its first and last control points, then draw this straight line. 

2. Otherwise subdivide the curve and render the segments recursively. 

Intersection Algorithm 

1. If the convex hulls of two Bezier curves fail to intersect, then the curves 
themselves do not intersect. 

2. Otherwise if each Bezier curve can be approximated within tolerance by the 
straight line joining its first and last control points, then intersect these 
straight lines. 

3. Otherwise subdivide the two curves and intersect the segments recursively. 

To determine whether a Bezier curve can be approximated to within tolerance 
by the straight line joining its first and last control points, it is sufficient, by the con- 
vex hull property, to test whether all the interior control points lie within tolerance of 
this straight line. By the Pythagorean theorem (see Figure 5.26), the distance 
between a point P and a line L determined by a point Q and a unit direction vector v 
is given by 

dist 2 (P,L) =l P - Q 12 -((P - Q) o v) 2. 

It may happen that a control point Pk is close to the line L determined by the first 
and last control points PO, Pn even though the projection of P k does not lie inside the 
line segment PoPn; that is, P k may be close to the line L even though it is not close to 
the line segment PoPn . To be sure that this is not the case, we need only check that 

o <_ (e~ -Po)  �9 (P~ -Po)  -< P~ - e o  I 2. 
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P 

w 

Q ( P - Q )  . v  

dist(P,L) 

Figure 5.26 A line L determined by a point Q and a unit direction vector v, and a point P not on L. By the 
Pythagorean theorem dist2(p,L) = I P -  O [2 _((p_ Q). v)2. 

Thus it is relatively easy to test whether or not a Bezier curve can be approxi- 
mated to within some tolerance by a straight line segment. On the other hand, find- 
ing and intersecting the convex hulls of two Bezier curves can be quite difficult and 
time consuming. In practice, the convex hulls in the intersection algorithm are 
replaced by bounding boxes, which are much easier to compute and intersect than 
the actual convex hulls. Since the subdivision algorithm converges rapidly, not much 
time is lost by replacing convex hulls with bounding boxes. 

Exercises 

1. Use the identity 1 - rt = (1 - r)t + (1 - t) together with the explicit formula 
for the Bernstein basis functions to give a direct derivation of Equation 
(5.18) without appealing to probability theory. 

2. Give a probabilistic interpretation for each of the following identities: 

n 

a. ~ , B ~ ( t ) -  1. 
k=O 

b. 8;(t)_> o. 

c. B ; ( O )  - 0 k ~ 0 

=1 k - 0 .  

d. 8 ; ( 1 ) -  0 k ~ n 

=1 k = n  . 

e. B n ( 1 - t ) = B ~ ( t )  n-k  

n _ Bn-1 f. B~ (t) - (1 t)B~ -1 (t) + t k-1 (t). 
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go 
n 
E k B f  (t) = nt. 

k=O 

3. a. Give a probabilistic proof of the identity 

k 
n n-J(r)B~(t)" B k ((1 - t)r + t) - ~ Bk_ j 

j=O 

b. Use the result of part (a) to show that the points that emerge along the 
fight lateral edge of the de Casteljau triangle are the Bezier control points 
of the segment of the curve from t = r to t = 1. 

4. Bezier subdivision at t = 1/2 generates the following binary tree, whose 
nodes are control polygons. Denote the original control polygon by P, and 
let this polygon be the root of the tree. Let P0--the left child of P---denote 
the control polygon for the left segment of the Bezier curve (from t = 0 to 
t = 1/2), and let P l ~ t h e  fight child of P---denote the control polygon for 
the fight portion of the curve (from t = 1/2 to t = 1). Continue to build the 
binary tree recursively in this fashion. Thus if Pb is a node in the tree, then 
Pb represents the control polygon for a portion of the curve, and Pb0~the  
left child of Pb~represents the control polygon for the left half of the Bez- 
ier segment represented by Pb, while Pbl - - the  right child of Pb--represents 
the control polygon for the right half of the Bezier segment represented by 
Pb (see Figure 5.27). 

a. Prove that Pb~...b, is the control polygon for the curve from t = b to 
t = b + 2 -n , where b is the binary fraction represented by 0.bl... b n . 

b. Prove that the sequence of control polygons Phi ,Pb~b2 ..... Pbl""bn .... , con- 
verges to the point on the Bezier curve at parameter value b = 
limn~ooO.bl...b n. 

s P] 

PO0 PO1 Plo Pll 

P000 Pool Po10 Poll PIOO PIO1 Pl]o Plll 

Figure 5.27 The binary tree generated by recursive subdivision of a Bezier curve at t = 1/2. 
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5. Let P(t) be a degree n Bezier curve with control points P = (P0 ..... Pn)" 
Define 

L(r) = 

(B3(r)  O 0 0 0 r) B~(r) "" Bn ( r )~  

I " " B~_ 1 Bn_I(r)[" Bl (r) Bl (r) 0 and M(r) - (r) ... n-1 

" Bni(r) . . . .  . ~B~ (r) B~ (r) ... 0 0 B 3 (r) ) 

Show that the points generated by the de Casteljau subdivision algorithm 
for Bezier curves are given by Q - L(r) * pT and R - M(r) * pT  where the 
superscript T denotes transpose and * denotes matrix multiplication. 

6. Implement the recursive subdivision algorithm for rendering a Bezier curve. 

7. Implement the recursive subdivision algorithm for intersecting two Bezier 
curves. 

8. Prove the identity 

B~((1- t ) r  + t s ) -  ~ (Zp+q=kBp-J(r)BJ(s)~;( t ) ,  
j=O 

and use this identity to derive an explicit formula for the control points that 

represent the Bezier curve ~k B~ (t)P k from t = r to t - s. 

9. Show that to find the control points of the segment of a Bezier curve 
between t = r and t = s, we can subdivide the original Bezier curve at t = s 
and then subdivide the first segment of the subdivided curve at t = r / s .  

10. Consider the negative binomial distribution {Bk n (t)} defined in Section 5.3, 
Exercise 11. Prove the identity 

c ~  

B~ n (rt) - Y= BJ k (r)B-j -n (t). 
j=k 

11. Consider the Poisson distribution {b k (t) } defined in Section 5.4.3, Exercise 
4. Prove the identity 

o o  

bk(rt) - ~,BJk (r)bj(t). 
j=k 

12. The following urn model is due to Polya: consider an urn containing w 
white balls and b black balls. One ball at a time is drawn at random from the 
urn and its color inspected. It is then returned to the urn and a constant num- 
ber c of balls of the same color are added to the urn. Let t = w/(w + b) and 
let a = c/(w + b). If we hold a constant and allow t to vary, we obtain a dis- 
crete probability distribution 

D~ (t) = probability of selecting exactly k white balls in n trials. 
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Given a collection of control points P0 ..... Pn, we can define Polya curves by 
setting D(t) = Zk D~ (t)P k. 

a. Find explicit and recursion formulas for D;(t) ,  k = 0 ..... n .  

b. Show that most of the geometric properties of Bezier curves carry over to 
Polya curves. Describe as many geometric properties of Polya curves as 
you can. 

c. Develop rendering and intersection algorithms for Polya curves. 

d. Experiment with the free parameter a. What is the geometric effect of 
increasing or decreasing the value of a? 

13. Generalize Polya's urn model in Exercise 12 by adding a different number 
of balls of the same color after every trial. 

a. Find explicit and recursion formulas for these new distributions. 

b. Use these new distributions to define generalized Polya curves, and show 
that most of the geometric properties of Bezier curves still carry over to 
these generalized Polya curves. 

c. Develop rendering and intersection algorithms for these generalized 
Polya curves. 

d. Experiment with the new free parameters in this generalized urn 
model. What are the geometric effects of increasing or decreasing 
these parameters? 

e. Show that the Lagrange basis functions can be generated from the gener- 
alized Polya um model by subtracting instead of adding balls of the same 
color to the um. 

14. Experiment with other um models or with more general stochastic models 
to develop new curve schemes. Determine the analytic and geometric prop- 
erties of these new schemes. 

5.6 Differentiation and Integration 

Given any number of control points, we can construct a smooth approximation to the 
shape of the control polygon using a single Bezier curve. But if there are a large 
number of control points, this Bezier curve will be a polynomial of high degree, 
leading to slow and numerically unstable computations. Rather than using a single 
polynomial of high degree, it would be better numerically to construct a sequence of 
low-degree curves that join together smoothly. Thus we need a way to ensure that 
two Bezier curves meet smoothly at their join. 

Bezier curves interpolate their first and last control points. Thus it is easy to con- 
nect two Bezier curves; all we need to do is to make sure that the first control point 
of the second curve is the same as the last control point of the first curve. This device 
ensures continuity, but what about smoothness? Smoothness depends on the differ- 
ential properties of Bezier curves, so it is to these properties that we now turn our 
attention. 
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To simplify our investigation of differentiation, we are going to introduce another 
technique for studying Bemstein polynomials and Bezier curves: discrete con- 
volution. Let A(t )  = {Ai( t )} ,  i = 0 ..... m, and Let B(t )  = {Bj ( t ) } ,  j = O,...,n, be 
two sequences of functions. Define the discrete  convo lu t ion  sequence 
(A | B) ( t )  = { (A  | B)k  (t) }, k = 0 ..... m + n, by setting 

(A  | B ) k ( t )  - ]~ i+j=kAi ( t )B j ( t ) ,  k - 0 ..... m + n. (5.20) 

The following two properties of discrete convolution follow easily from (5.20): 

i. A ( t )  | B( t )  = B( t )  | A ( t )  (Commutativity) 

ii. A( t )  | (B( t )  | C( t ) )  = (A( t )  | B( t ) )  | C( t )  (Associativity) 

What does discrete convolution have to do with Bemstein polynomials and Bez- 
ier curves? Consider the following example: 

{ (1 - t) , t} | { (1 - t) , t} - { (1 - t)2,2t(1 - t ) , t  2 }. 

Thus if we convolve the degree 1 Bemstein basis functions with themselves, we get 
the degree 2 Bemstein basis functions. Moreover, it is easy to verify that 

{ (1 - t) , t} | { (1 - t)2,2t(1 - t ) , t  2 } = { (1 - t)3,3t(1 - t)2,3t 2 (1 - t),t3}; 

so convolving the degree 1 Bernstein basis functions with the degree 2 Bernstein 
basis functions yields the degree 3 Bemstein basis functions. More generally, let 
B n ( t ) -  (B~( t )  ..... Bn ( t ) )  denote the sequence of degree n Bemstein basis functions. 
Then we have the following results. 

PROPOSITION 
5.13 

B n+l (t) = B 1 (t) | B n (t). 

Proof Let C(t )  = B 1 (t) | B n (t). Then by construction 

ck  (t) = (1 - t )8~  (t) + t s~ '_ l ( t ) .  

But by Equation (5.4) 

Bk n+l ( t)  - (1 - t ) B ;  (t) + tBff l(t) , 

Hence C k (t) - on+l  o k ( t ) .  

COROLLARY 
5.14 

(B~ (t) ..... Bn(t))= { ( 1 -  t),t} | . . . | { ( 1 -  t) , t} 
Y 

n factors 

Proof This result follows by induction from Proposition 5.13 and the associativity 
of discrete convolution. 
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Corollary 5.14 asserts that the Bemstein basis functions of degree n can be con- 
structed by convolving the sequence {(1- t),t} with itself n times. As the proof of 
Proposition 5.13 shows, this result is just a restatement of the two-term recursion 
formula (5.4) for the Bernstein basis functions, which is itself just a reformulation of 
the down recurrence for the Bernstein basis functions (Figure 5.7). 

Before we can show how to apply convolution to differentiate Bezier curves, we 
first need to generalize the down recurrence for the Bemstein basis functions to dis- 
crete convolutions of arbitrary pairs. Consider the sequences 

cn+l(t)  - { L o ( t ) , R o ( t )  } | 1 7 4  {Ln(t),Rn(t) l 
Y 

n+l factors 

Then by the definition of discrete convolution 

c~+l(t) - Ln(t)C~: (t ) + Rn(t)Ckn-l (t), 

which is a two-term recurrence for the functions 

pn+l on+l(t) - (C~+I(t) ..... '~+1 (t)). 

Iterating this recurrence for the sequences C n (t),C n-1 (t) ..... C 1 (t) generates a 
down recurrence for the functions cn+l(t). We illustrate this recurrence for n = 2 in 
Figure 5.28. 

Since discrete convolution is commutative, the order of the pairs {Lk(t),Rk(t)} 
in the convolution, and hence too in Figure 5.28, does not matter. Thus {Lo(t),Ro(t) } 
could appear on the third level and {L2(t),R2(t)} on the first level of the diagram, 
and the functions 

1 

LI(O/ 

Figure 5.28 A down recurrence for discrete convolution functions of degree 3. 
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c ~ ~,~ - ~C~o ~,~, c? ~,~, c~ ~,~, c~ ~o~ 

emerging at the base would not change. 
~n+l As in any down recurrence, the function Wk (t) is simply the sum of all paths 

from the apex to the kth position at the base of the diagram. Thus to evaluate an 
expression of the form 

c'n+l ( t)p k C( t ) -~ , k , - . k  

we simply place the values {Pk } at the base and reverse all the arrows in the diagram. 
This generates the evaluation algorithm in Figure 5.29. Notice that here we have not 
assumed that the functions L k (t) and R k (t) necessarily sum to one for all values of k. 

c(o 

/ 

L 2 ( t ) /  

Po P1 

/ 
L 2 ( t ) /  (t) 

P2 P3 
Figure 5.29 Evaluation algorithm for cubic polynomials represented with a convolution basis. 

Exercises 

( t - a ) k ( b - t )  n-k 
1. Let B~(t) - (~) , k - 0,...,n, 

( b - a )  n 

denote the Bernstein basis functions over the interval [a,b]. Show that 

(B~ (t) ..... Bn n (t)) - b - a '  b - a b - a '  b - a 

n factors 

2. Let B P ( t ) -  (B~( t ) , . . . ,BP( t ) ) .Prove  that 

a. B m+n (t) - B m (t) | B n (t) 

om+n (t) - E B m (t)B~ (t) b. o k i+j=k 
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3. Let B -n (t) = (no  n ( t ) ,B1 n (t) .... ) (see Section 5.3, Exercise 11.) Prove that 

a. B -n (t) = B -1 (t) |  | B -1 (t) 
x.- 

n factors 

b. B n (t) | B -n (t) = {1, O, 0 .... } 

c. B +m (t) | B +n (t) - B +m+n (t) 

4. Let M n (t) - (M~ (t) ..... M n (t)), 

where M~ (t) - (~)t k, k - 0, . . . ,  n . Prove that 

a. M n(t) - {1,t} |  | {1,t} - M 1 (t) |  | M 1 (t) 
�9 �9 ~, F 

n factors n factors 

b. M m+n (t) - M m (t) | M n (t) 

c. ( m ~ n ) _  Z i+j=k(m) ( j )  

5. Let M - n ( t ) -  ( M f f n ( t ) , M l n ( t )  .... ) ,  where M k n ( t ) -  ( ~ ) t  k k = 0,1,. , . .  

Prove that 

a. M -n (t) - M -1 (t) |  | M -1 (t) 

n factors 

b. M n ( t ) |  M -n( t )  = {1,O . . . .  } 

M+m M+n M+m+n c. - ( t ) |  - ( t )=  - (t) 

r+m+n (+m)(+n 
d. ~. k ) = ~ i + j = k ,  i j )  

6. Let cn+l( t )  - { L o ( t ) , R o ( t ) } | 1 7 4  Show that 

cn+l( t )  = ]~Lio (t)..  (t)Rjo (t) . . .  (t) k "Zin_ k e j k_  1 ' 

where the sum is taken over all sets I = {i0 ..... in_k} and J -  {J0 ..... Jk-1} 
such that I u J = {0 ..... n} and I ~ J = q~. 

7. Define the generating function of a sequence A(t) = {A k (t)} by setting 

n 

GA(X)=  ]~Ak(t)x k . 
k=O 

a. Prove that GA| - G A (X)GB(X). 

b. Using part (a), prove the following results: 

i. B+n(t) = (B~n( t ) ,B~n( t )  .... ) = ,  GB+n(X ) - ( ( l - t ) +  tx) +n. 
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ii. M+n(,) - (M~n( t ) ,Mfn( , )  .... ) ~ GM+_,(x) - (1 +tx) +n. 

iii. cn+] ( t ) -  {Lo(t) ,Ro(t)}|174 

acn+l (X) - ( go ( t )+  R o ( t ) x ) ' " ( t r l ( t  ) + erl(g)X ) . 

8. Let bk(t), k = 0,1... denote the Poisson basis functions defined in Section 
5.4.3, Exercise 4, and let b(t) = (bo(t),b l(t) .... ). Show that 

a. b(t) | b(t) = b(2t) 

b. Gb(X ) - e -t(1-x). 

9. Show that discrete convolution distributes through addition. That is, show 
that 

A(t) | (B(t) + C(t)) = A(t) | B(t) + A(t) | C(t) 

5.6.2 Differentiating Bernstein Polynomials and Bezier Curves 

By Corollary 5.14 the Bernstein basis functions of degree n + 1 can be constructed 
by convolving the sequence {(1-t),t} with itself n times. Thus to differentiate the 
Bemstein basis functions, all we need to know is how to differentiate discrete convo- 
lutions. But it follows easily from (5.20) that 

(A(t) | B(t))" = A'(t) | B(t) + A(t) | B'(t) 

where Z ' ( t ) -  (A~(t) ..... A~n(t)). Thus the rule for differentiating a discrete convolu- 
tion is identical to the rule for differentiating an ordinary product. More generally, it 
follows by induction on n that 

n 

(Ai(t) |  | An(t)),= ~ A l ( t ) |  | Ak ' ( t ) |  | An(t). (5.21) 
k=l 

Now we can use Corollary 5.14 together with our differentiation formula (5.21) 
to differentiate all the Bemstein basis functions simultaneously. 

COROLLARY 
5.15 

dt 
dBn I - n { - 1 , 1 }  | {(1 - t ) , t}  |  | { (1 - t ) , t} .  

dt ' n-1 factors J 

Proof This result is an immediate consequence of Corollary 5.14, Equation (5.21), 
and the commutativity of discrete convolution. 

By repeated differentiation we can generalize Corollary 5.15 to an arbitrary 
number of derivatives. Let 

A r - A | 1 7 4  
�9 J o  

~ f  

r factors 
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Then we have the following generalization of Corollary 5.15. 

COROLLARY 
5.16 I drB~ drBn l = n! 

dt r ..... dt r ( n -  r)! 
~ { - 1 , 1 }  r | { ( 1 -  t,t} n-r. 

Proof  This result follows from Corollary 5.15 by induction on r. 

We can interpret Corollaries 5.15 and 5.16 in several ways. First since 

- ( t ) ,  8 �9 ", n-1 , 

Corollary 5.15 gives us the explicit formula 

dB~ (t) [ Bn_ 1 n-1 ) 
dt = n~ k-1 ( t ) -  B k (t) k - 0 ..... n. 

More generally, since 

- t ) , t )  n-r  - (B~ -r  (t) ..... Bnn~_ r (t)] (o 
\ / 

( -1 ,1)  r - - ( ( - 1 )  r . . . . .  ( - 1 )  r - j ( J )  . . . . .  1) 

(see Exercise 7), it follows from Corollary 5.15 that 

(5.22) 

dr B~ (t) n! r r n-r  
= Z ( - 1 ) r - j ( j ) B k _ j ( t ) .  

dt r ( n - r ) ! j =  0 

We can also apply Corollaries 5.15 and 5.16 to generate recurrences to evaluate 
the derivatives of a Bezier curve. Exploiting the interpretation of discrete convolu- 
tion given in Figure 5.28, we observe that by Corollary 5.15 the derivatives of the 
Bernstein basis functions can be computed from the down recurrence for the Bern- 
stein basis if we replace { (1 - t),t} on one level of the algorithm by {-1,1} and multi- 
ply the result by n. So the same argument we used to generate Figure 5.29--  
reversing the arrows in this down recurrence--gives us an evaluation algorithm for 
the derivative of a Bezier curve (see Figure 5.30). 

There are several things to notice about Figure 5.30. First, by running only the 
lowest level of the algorithm, we see that, up to a constant multiple, we can think of 
the derivative of a cubic Bezier curve with control points {Pk} as a quadratic Bezier 
polynomial with coefficients {Pk+l - Pk }. In general, by the same argument 

n n-1 
B(t) = ~ B ~ ( t ) P  k :=~ B ' ( t )= n ~ B~c-l(t)(Pk+l-Pk)" 

k=O k=O 
(5.23) 
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F(0 

/ 

/ / 

P0 P1 P2 P3 

Figure 5.30 The first derivative of a cubic Bezier curve with control points Po,P1,P2,P3. To get the correct 
derivative, we must multiply the output P'(t) of this algorithm by n = 3. 

Thus, up to a constant multiple, the derivative of a Bezier curve with control points 
{Pk } is a Bezier polynomial of one lower degree with coefficients {Pk+l - Pk }. 

Because convolution is commutative, we can place {-1,1} on any level of the 
algorithm. If we place {-1,1} at the top level and let B[P o ..... Pn ](t) denote the Bezier 
curve with control points Po ..... Pn, then we find that 

B'[Po .... ,Pn ](t) - n(B[P1,. . . ,P n ](t) - B[Po,.. . ,Pn_ 1 ](t)) ; 

that is, we can compute the derivative of a Bezier curve by subtracting Bezier curves 
of one lower degree. 

We can generate Figure 5.30 from Figure 5.3 (with a = 0 and b = 1) by differen- 
tiating one level of the algorithm. To find the rth derivative of a Bezier curve, we see 
from Corollary 5.16 that we can simply replace {(1-t) , t}  by {-1,1} on r levels of 
the de Casteljau algorithm; in other words, we simply differentiate r levels of the de 
Casteljau algorithm. Moreover, because convolution is commutative, it does not 
matter which r levels we differentiate; any r levels will do the job. If we differentiate 
the r lowest levels, then, up to a constant multiple, we can express the rth derivative 
of a degree n Bezier curve with control points PO ..... Pn as a Bezier polynomial of 
degree n -  r. Since 

{_1,1} r - { (-1) r - j  (j) }, 

the Bezier coefficients are given by 

r 

Vk - ~, (-1) r - j  (j)Pj+k" 
j=O 
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That is, 

n 
B(t) = ~,B~(t)P k ~ B( r ) ( t ) -  

k=O 

z B# -r (0 -1) r-j �9 

( n -  r)! k=O 
(5.24) 

We began our discussion of differentiation by saying that we wanted to be able 
to join two Bezier curves together smoothly. To do so, we need to calculate deriva- 
tives at their end points. From Equation (5.24), we have 

r 
B (r) (0) = v 0 = 2 (-1) r - j  (j)/~ 

j=O 

(5.25) 

r 
B(r) (1) -  Vn_ r - 2 ( -1 ) r -J ( j )p j+n_  r. 

j=O 
(5.26) 

It follows that the rth derivative of a Bezier curve at t = 0 depends only on the first 
r + 1 control points Po ..... Pr and the rth derivative at t = 1 depends only on the last 
r + 1 control points Pn-r ..... Pn" 

Suppose then that we are given a Bezier curve B(t) = ~,k B~ (t)P k and we want to 
construct another Bezier curve C(t)= Y~kB~(t)Qk that meets B(t) and matches its 
first r derivatives at its end point. Then from Equations (5.25) and (5.26) we get 

r = 0 :  QO=Pn 

r =  1: Q 1 - O o  = en - en-1  ==~ Ol = en + ( en - en -1 )  

r = 2: Q2 - 2Q1 + Qo = Pn - 2Pn-1 + Pn-2 ==~ 02 = Pn-2 + 4(Pn - Pn-1) 

and so on. Each additional derivative allows us to solve for one additional control 
point. We could go on in this manner solving for one point at a time, but there is a 
better way that avoids all this tedious computation. 

Since B(t) is a polynomial curve, we can extend B(t) past the interval [0,1]. 
Now certainly at t = 1 the derivatives of the segment of the curve B(t) for t e [1,2] 
must exactly match the derivatives of the curve B(t) for t e [0,1] because these two 
curves are the same polynomial. But we can use subdivision to find the Bezier con- 
trol points of B(t) for the interval [1,2]; in fact, by the subdivision algorithm all we 
need to do is run the de Casteljau algorithm at t = 2 and read the control points off 
the fight lateral edge of the triangle (see Figure 5.31). 

Explicitly these control points are given by 

k 
Qk - ]~By(2)Pn-k+j, k = 0 ..... n. 

j=o 
(5.27) 

By Equation (5.25) the rth derivative of a Bezier curve at t = 0 is uniquely deter- 
mined by its first r + 1 control points. Thus the first r derivatives of a Bezier curve 
C(t) at t = 0 can match the first r derivatives of the Bezier curve B(t) at t = 1 if and 
only if the first r + 1 control points of C(t) are given by Equation (5.27). 
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Q3 

/ 
* Q2 // 'L 

* * Q1 

eo P1 P2 P3 = Qo 

Figure 5.31 Algorithm for finding the first r + 1 control points Qk, k = 0 ..... r, for a cubic Bezier curve 
whose first r derivatives at t = 0 match the first r derivatives at t = 1 of the cubic Bezier curve 
with control points Pj, j = 0 ..... 3. Notice that because of the labels-1 appearing along the 
edges, the points Qk do not lie in the convex hull of the points Pj. 

Exercises 

1. By differentiating the explicit formula B~(t)  = (n)tkk (1-  t) n-k,  show directly 
that 

dB~(t) 

dt 
_ n - l ( t ) ) .  

r n b. d B k (t) n! r r = ~ Z (-1) r - j  (j)Bff-ff (t)- 
dt r ( n -  r)! j=o 

c. Using parts (a) and (b), derive Formulas (5.23) and (5.24). 

2. Let B(t) be a Bezier curve with control points {P0 ..... Pn}, and let P(t) be the 
control polygon of B(t)~that is, P(t) is the piecewise linear function with 
P(k / n) - Pk" Show that 

., r 1 - - ~ . . . ~  a. B(r)(o) - (n - r)! n 

B(r)(1) _ n! An_r p (  n - r n )  
b. ( n - r ) !  n ..... 

7 0 B ~ - r  (t)Ar P .... , c. B(r)(t) - ( n -  r)! = n 
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3. Let B-n(t) = (B-on(t), Bln(t) .... ) (see Section 5.3, Exercise 11). Prove that 

dBk n (t) = n(Bk(n+l ) ( t ) -  Bk(7+l)(t)). 
dt 

4. Let M n (t) - (M~ (t) ..... M n (t)), where M ;  (t) = (~)t k, k = 0 ..... n. Show that 

a. ( dM~ 

dt 
dMnn ) }n-1 

-n{0 ,1}  | {1,t . 
dt 

d M n I -  n! b. drM~ r n 

dt r ..... dt r ( n -  r)! 
{0,1 }r | { 1,t}n-r. 

c. Develop de Casteljau-like algorithms to compute 

(M~(t) ..... Mnn (t)) (r) and (~,kM~(t)Pk) (r). 

(Hint: See Section 5.6.1, Exercise 4.) 

5. Let 

cn+l(t)  = (Co(t) ..... Cn+l(t)) - {Lo(t),Ro(t) } | . . . |  {Ln(t),Rn(t ) }, 

where Lk(t) and Rk(t) are linear functions in t for k = 0 ..... n. Develop de 
Casteljau-like algorithms to compute (Co(t) ..... Cn+ l (t))(r) and (ZkCk(t)Pk) (r). 

( t - a ) k ( b - t )  n-k 
B~ ( t )  - (~ k) , k = 0  ..... n, 

( b - a )  n 

6. Let 

be the Bernstein basis functions over the interval [a,b], and let 

a. Prove the identity n,{1 1}r{ ,,a)nr 
B(r)(t) = , | , �9 

( n - r ) !  b - a  b - a  b - a  b - a  
b. Find a de Casteljau-like algorithm for computing the derivatives of a 

Bezier curve defined over the interval [a,b] instead of over the interval 
[0,11. 

7. Prove by induction on r that (-1,1) r = "((-1) r ..... ( - 1 ) r - J ( j )  ..... 1)." 

8. Let 

A(t) - (A 1 (t) ..... Ap(t)) 

A ' ( t ) -  (Af (t) ..... Ap(t)) 
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Show that 

A n(t) - A ( t )  |  | A ( t ! .  

n factors  

A n (t))" - n A n-1 (t) | A'(t). 

9. Use Taylor's Theorem and Equation (5.25) to derive a change of basis for- 
mula from Bezier to Taylor form. Compare your result to Equation (5.8). 

10. Let P(t) be a Bezier curve with control points Po ..... Pn. 

a. Find a necessary and sufficient condition on the control points Po .... ,Pn 
so that P(t) degenerates to a polynomial curve of degree n - 1. 

b. Develop an algorithm to determine whether or not P(t) represents a poly- 
nomial curve of degree n - 1. 

(Hint: A Bezier curve P(t) represents a polynomial curve of degree n -  1, if 
and only if the nth derivative of P(t) is zero.) 

c. If P(t) degenerates to a polynomial curve of degree n - 1, develop an 
algorithm to find the control points Qo ..... Qn-1 that represent P(t) as a 
Bezier curve of degree n -  1 from the control points Po ..... Pn that repre- 
sent P(t) as a Bezier curve of degree n. 

11. Given point and derivative data (Po,vo) ..... (Pn,vn), explain how to place 
Bezier control points to generate a piecewise cubic Hermite interpolant for 
this data. 

12. The formulas for the unit tangent U(t), the curvature K(t), and the torsion 
T(t) of a parametric curve P(t) are given by 

�9 u ( t )  = 
P'(t) 

I P'(t) I 

�9 K ( t )  = 

�9 T ( t )  = 

IP ' ( t ) xP"( t ) l  
I P'(t)13 

P ' ( t ) . ( P " ( t ) x P " ( t ) )  

[P ' ( t )xP"( t ) [  2 

a. Compute the unit tangent, curvature, and torsion of a Bezier curve at 
t=  0,1. 

b. Find conditions on the control points of a Bezier curve C(t) so that it 
matches a given Bezier curve B(t) with continuous unit tangent, curva- 
ture, and torsion. 

13. Let P(t) be a Bezier curve of degree d. 

a. Show that the Bezier control points of P'(t) generated by first degree ele- 
vating and then differentiating P(t) are identical to the Bezier control 
points of P'(t) generated by first differentiating P(t) and then degree ele- 
vating P'(t). 



2 5 0  C !-I A P T E R 5 Bezier  Approx imat ion  and  Pascal ' s  Triangle 

5.6.3 

b. Let P~ ..... pn denote the degree n Bezier control points of P(t)--that is, 
the control points of P(t)  generated by degree elevating the curve n -  d 
times. Using part (a) and Theorem 5.8 on the convergence of degree ele- 
vation, show that the slopes of the degree-elevated control polygons con- 
verge to the tangents of the original Bezier curve. That is, prove that 

if k / n  ~ t, then limn+oo 
n n 

Pk+l - P k  

1 / n  
= n ' ( t )  

Wang's Formula 

Recursive subdivision is a powerful tool for rendering and intersecting Bezier 
curves. Since subdivision at t = 0.5 involves only averaging, subdivision itself is very 
fast. Thus in the rendering and intersection algorithms presented in Section 5.5.4.2 
most of the time is spent in testing whether or not each curve segment can be 
approximated to within some tolerance by a straight line. The purpose of Wang's for- 
mula is to avoid all these tests by computing in advance how many levels of subdivi- 
sion are required to assure that every segment will be approximated to within some 
prespecified tolerance by the straight line joining its end points. Wang's formula is 
based on bounds on the second derivative of a Bezier curve. To derive Wang's for- 
mula, we begin with a technical result from numerical analysis. 

PROPOSITION 
5.17 

Let P(t)  be any twice-differentiable parametric curve on the interval [a,b], 
and let L(t)  = ((b - t ) / (b  - a ) )P(a)  + ((t - a ) / (b  - a ) )P(b)  be a parametriza- 
tion of the straight line through the points P(a)  and P(b).  Then 

max I P ( t ) -  L(t ) I< 
( b - a )  2 

max I P"(t) I. 

Proof To simplify our notation, we introduce the vector-valued function 
E(t )  - P ( t ) -  L( t ) .  By construction, 

E(a)  = E(b)  = 0 ~ E(a)  o E(a )  - E ( b ) ~  E(b)  - O. 

Thus by Rolle's Theorem applied to the real-valued function E( t )o  E(t), 
there is a parameter v e [a,b] where E ( T ) � 9  E(T)  is maximal; hence 
(E(~:) �9 (E(7:))' - 0. Therefore, E ( v )  o E ' ( v )  = O. 

Now by the integral version of Taylor's Theorem with remainder 

E(t )  - E('c) + E ' ( ' c ) ( t -  v) + St ( t -  x ) E " ( x ) d x .  

Dotting both sides with E(T) and recalling that E(I:)~ E ' ( v )  = O, we get 

E ( v )  . E( t )  - E ( v )  . E ( z )  + E ( z )  o ~; (t - x ) E " ( x ) d x  . 
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Without loss of generality, we can assume that a < ~: < (a + b ) / 2  (the proof  
is symmetric if (a + b)/2 < "c < b). Now substituting t = a, recalling that 
E(a) = 0, and noting that E"(x)  = P ' ( x )  because L(x) is linear, we obtain 

- E ( r ) .  E( r )  - E ( r ) .  ~r(a-  x )e"(x)dx .  

Hence, since l a �9 b I<1 a II b I, 

[ E ( T ) [ 2  _< IE(r)I IIg(a-x)P"(x)d*l. 
Thus either E( r )  = 0 and there is nothing to prove, or since r _< (a + b ) / 2 ,  

I E(~')I < I ~ ( a - x ) P " ( x ) d x [  

< ~ i ( a -  x)lP"(x)idx 

-< maxlP"(x)l ~ ( a -  x)dx 

_< maxle,,(x)l (r - a) 2 
2 

_< max[P"(x)[ (b - a) 2 . 
8 

To apply Proposition 5.17 to Bezier curves, we need to bound the second deriva- 
tive of a Bezier curve. 

LEMMA 
5.18 

Let B(t) be a Bezier curve with control points P0 ..... Pn. Then 

Max I B"(t) I < n(n-  1)Maxo<_k<_~-2 l ek+2  - 2Pk+~ + e~]. 

P r o o f  By Equation (5.24) and the triangular inequality, 

n-2 [ 
I B"(t) I < n(n - 1) ]~ B/~ -2 (t)lPk+ 2 - 2Pk+ 1 + Pk} 

k=0 

n-2 n-2 
<_ n(n- 1) E B~ (t)lek+2 - 2 P k + l  + Pkl 

k=0 
n-2 

< n ( n -  1)Max]rk+ 2 - 2ek+ 1 + rkl Z B~ -2 (t) 
k=0 

< n ( n -  1)MaxlPk+ 2 - 2Pk+ 1 + Pkl �9 
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THEOREM 
5.19 

Let B(t) be a Bezier curve with control points P0 .... ,Pn" Given any e > 0 define 

m - MaxO<k<n_ 2 Pk+2 - 2 P k + l  + Pkl 

1> Log4|n(n-1)m]./'~ (Wang's formula) 
t, ) 8e 

Let C(t) be any segment of B(t) after at least l levels of subdivision at 
t - 1/2, and let L(t) be the straight line joining the end points of C(t). Then 

Dist(C(t)J~(t)) < e. Thus after I levels of subdivision, the straight lines join- 
ing the subdivision points approximate the Bezier curve B(t) to within a tol- 
erance of e. 

Proof Consider the curve segment C(t) between any two subdivision parameters t 1 
and t 2 after I levels of subdivision. By Proposition 5.17 and Lemma 5.18, 

Dist(C(t),L(t)) < Max C"(t) (t2 - tl)2 
8 

< n(n_l)m((0"5)l) 2 
8 

4-1 
< n(n-  1 ) m ~  

8 
___E . 

We can apply Theorem 5.19 to speed up substantially the algorithms for render- 
ing and intersecting Bezier curves based on recursive subdivision. The theorem 
asserts that if we subdivide down to a prespecified level 1, then we are guaranteed 
that the curve segments we generate will be approximated to within • by the 
straight line segments joining their end points. Thus by subdividing to 1 levels, we 
can avoid all testing. Although the value of 1 given in Theorem 5.19 is necessarily 
conservative~some curve segments may require fewer levels of subdivision than 
others~nevertheless, avoiding all testing substantially speeds up standard algo- 
rithms based on recursive subdivision. 

Exercises 

1. Implement the recursive subdivision algorithm for rendering a Bezier curve 
given in Section 5.5.4.2 with and without Wang's formula. How much does 
Wang's formula speed up this algorithm? 

2. Implement the recursive subdivision algorithm for intersecting two Bezier 
curves given in Section 5.5.4.2 with and without Wang's formula. How 
much does Wang's formula speed up this algorithm? 
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5.6.4 Integrating Bernstein Polynomials and Bezier Curves 

Many important geometric properties of curves such as arc length and total curvature 
are integral properties. Here we shall use the differentiation formulas derived in Sec- 
tion 5.6.2 to develop integration formulas for Bernstein polynomials and Bezier 
curves. 

We begin by computing the antiderivative of a Bernstein basis function. From 
Equation (5.22), 

dBn+l k+l(t) (n + l){Bff (t) n = - Bk+ 1 (t)} 
dt 

clS k ~ +1 ( t ) +2 = (n+l )  n n {Bk+l (t ) - Bk+ 2 (t)} 
dt 

dsg+ l ( t )  

dt 

dBn+l( t )  n+l 
dt 

_ B n n - (n  + 1){ n-1  ( t ) -  B n ( t ) }  

( n + l ) { B n ( t )  n = - B n + l ( t ) }  . 

The terms on the right-hand side form a telescoping series. Summing and observing 
n that Bn+ 1 (t) is identically zero, we obtain 

(n "+- 1)B/~ (t) _ n_~..+l~ dB n___J +1 (t) 

dt j=k+l 

Integrating both sides, dividing by n + 1, and dropping the constant of integration 
yields 

~B~:(t)dtn _ 1 n+lRn+l(t).~_,oj 
n + 1 j=k+l 

dB~ +1 
A similar argument starting the summation from shows that 

dt 

S B~ (t)dt - -1 ~ nn+l (t) 
n +  l j = o  j �9 

Definite integrals are also easy to compute. Integrating Equation (5.22) yields 

.4on+l (t) }d 
(n-l-1)~{Bff(t)-Bff+l(t)}dt- Is U~ t 

dt 

on+l(1)_ on+l 
= "k+l "k+l (0) 
- - 0  . 
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Therefore, 

~ n(t)d t ~ n B k = Bk+ l(t)dt k - 0 ..... n -  1. 

Thus these definite integrals of the Bernstein basis functions are all the same; we can 
compute them all by computing any one. Since B n (t) - t n, we have 

Hence 

~ B n (t)dt - ~ tndt - 
n + l  

~; B; (t)dt = ~1 k - 0,..., n. (5.28) 
n + l  

Equation (5.28) has some interesting consequences. For example, we can use 
this formula to prove that the arc length of a Bezier curve is bounded above by the 
perimeter of its control polygon. For a smooth curve B(t) defined on the interval 

[a,b], 

arc length {B(t) = ~abl B'(t) ldt.  

Therefore, for Bezier curves we have the following result. 

THEOREM 
5.20 

Let B(t) be a Bezier curve on [0,1] with control points P0 ..... In" Then 

n-1  
~1B'(t)  l dt <_ El Pk+l - Pk I. 

k=0 

Proof By Equation (5.23) if B(t) = ~,k B~ (t)Pk, then 

n-1 
B'(t) - n E B~ -l  (t)(Pk+l - Pk )" 

k=O 

Therefore, by the triangular inequality and Equation (5.28), 

n-k~l 0 n-1 [ ~11B'(t) l dt < I~ n B k (t)(Pk+ 1 - Pk) dt 

n-1 
<_ Sin ~ Bff-l(t)lPk+l- Pkldt 

k=O 
n-1 

-- n ~ ]Pk+l - Pk]I 1 B~ -1 (t)dt 
k=O 

n-1 

k=0 
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COROLLARY 
5.21 

Let B(t) be a Bezier curve on [0,1] with control points P0 ..... Pn. Then 
length of chord POPn < arc length B(t) < perimeter of the control polygon. 

Proof Since a Bezier curve interpolates its first and last control points, the lower 
bound follows because a straight line is the shortest distance between two 
points. The upper bound is just a restatement of Theorem 5.20. 

5.7 

Exercises 

1. Let B(t) be a Bezier curve on [0,1] with control points P0 ..... Pn. Prove that 

~lB(t)dt = center of mass of {P0 ..... Pn}. 

2. Prove that ~ B~ (t)dt = -1 kBn+l(t) .  
n + l j~o J 

3. Prove that 

1 n+l 
a. ~0 B~ (z')dr - x;' Bn. +1 (t) 

n+ l j-_~+l J 

rlBn 1 ~oBJ +l(t) 
b. .It k ('C)d'c - n + l j 

4. Let P(t) be a Bezier curve with control points P0 ..... Pn. Show that 

n-2 
fl[p"(t)ldt < n ]~1Pk.2 - 2Pk-1 + Pk I. 

k=0 

Rat iona l  Bezier  Curves 

Although the Weierstrass Approximation Theorem (Section 5.5.2) guarantees that 
every continuous curve on a closed interval can be approximated to within any 
desired tolerance by a polynomial curve, these approximating polynomials may have 
arbitrarily high degree. Moreover, there are some simple curves like circles that we 
would rather not approximate, but which cannot be represented exactly by polyno- 
mial parametrizations. As we have already seen in Chapters 2 and 3 in the context of 
Lagrange and Hermite interpolation, by resorting to rational functions we can 
greatly expand the range of curves with exact representations. Here we shall intro- 
duce rational Bezier curves in much the same way that we constructed rational 
Lagrange curves in Chapter 2, as projections of polynomial curves from a higher- 
dimensional Grassmann space. 

Indeed, by definition, a rational Bezier curve in affine space is the projection of 
a polynomial Bezier curve 
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n 

P(t) n = Z B  k (t)(WkPk,Wk) 
k=0 

0 < t < l  

in Grassmann space. The polynomial curve P(t) projects to the rational curve 

/2 

~,B; (t)WkPk 
R(t) - k=0 0 < t < 1. (5.29) 

n 

EWkB~(t)  
k=0 

Thus to represent a rational curve R(t) in Bezier form, we associate with each control 
point Pk a scalar mass or weight w k. Notice that we have also associated to each 
point R(t) on a rational Bezier curve the scalar weight w(t) defined by 

/1 

w(t) = E WkB~ (t). 
k=0 

Thus a rational Bezier curve is more than just a continuous collection of points in 
affine space; there is also a scalar field, a mass distribution, associated with each 
rational Bezier curve. 

If all the weights are equal and nonzero, then the rational Bezier curve R(t) 
reduces to an ordinary Bezier curve. To distinguish these polynomial Bezier curves 
from rational Bezier curves, we call such polynomial curves integral Bezier curves. 

Most of the standard properties of integral Bezier curves carry over readily to 
rational Bezier curves, although sometimes there are some minor restrictions on the 
weights. For example, it follows easily from Equation (5.29) that if w 0 ~: 0, then 
R(0) - P0; similarly, if w n ~ O, then R(1) - Pn. Thus rational Bezier curves interpo- 
late their first and last control points just like ordinary Bezier curves. 

If the weights are all nonzero, then it is natural to write 

WkB ~ (t) , k = O, ,n ( t )  = . . .  

~,wjB~(t)  
j=O 

/7 

R(t) - ~, R f  (t)P k . 
k=0 (5.30) 

Thus for a fixed set of nonzero weights, the functions Rf (t), k - 0 ..... n, are rational 
blending functions, and these functions behave much like the standard Bernstein 
blending functions. Indeed, since the denominator is the same for all values of k, it is 
easy to show that the rational functions {Rf (t)} incorporate many of the features of 
the Bernstein polynomials {Bf (t)}. For this reason rational Bezier curves with non- 
zero weights share many of the geometric properties of integral Bezier curves (see 
Exercises 1-5). 

If a weight wj - O, then the mass-point (wjPj,wj) is not just discarded but rather 
is replaced by a vector (v j ,  0). Thus, in general, 
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P(t) - ~, Bf  (t)(wkP k, w k) + ~, B~ (t)(vj, 0), 
Wk r/:O wj=O 

so first adding in Grassmann space and then projecting into affine space, we arrive at 
the rational Bezier curve 

E + Esf(t) j 
Wkr wj=O 

R ( t )  = 
E wk f(t) 

wk r 

Examples abound in which it is necessary to set some weights to zero in order to rep- 
resent a rational curve segment exactly in rational Bezier form (see Figure 5.33 dis- 
cussed later in this section and also Exercises 8-10). 

To see how the rational Bezier representation works in practice, let's consider 
the circle as a rational Bezier curve. Recall that the circle x 2 + y2 = 1 has the rational 
quadratic parametrization 

2t 1 - t 2 

x(t) - 1+ t 2 y(t) = 1+ t 2 " 

This parametrization lifts into Grassmann space to the polynomial curve 

P(t) - (2t, l -  t2,1+ t2 ). 

To find a rational quadratic Bezier representation for the circle, we need to find its 
control points Po,P1,P2 and scalar weights Wo,Wl,W 2. 

We begin by representing the mass distribution 1 + t2--the denominator of the 
rational curve-- in  terms of the Bernstein basis functions. Since the Bernstein poly- 
nomials form a polynomial basis, certainly there are constants w 0, w 1, w 2 such that 

1 + t 2 - Wo B2 ( t)+ WlB ? ( t)+ W2 B2 (t). 

Moreover, it is easy to show either directly or from Equation (5.9) (with k = 0,2 and 
n = 2) that 

1 + t 2 - B~ (t) + B 2 (t) + 2B 2 (t).  

Thus, we can just read off the weights from the coefficients of the Bernstein basis 
functions: 

w 0 = 1 w 1 = 1 w 2 = 2. 

To find the control points is also quite easy. Once more, since the Bemstein 
polynomials form a polynomial basis, we can certainly write 

( 2 t , 1  - t 2 ) - woPo B2 (t) + WlP1B ? (t) + w2P2 B2 (t) . 
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But again either directly or using Equation (5.9), we can represent the numerators of 
x(t) and y(t) in terms of the Bemstein basis functions: 

2t = B 2 (t) + 2B 2 (t) 

1 - t 2 = B0 2 (t) + B12 (t) .  [0,1] 

From these identities we can read off the xy-coordinates of WkP k" 

woP 0 = (0,1) w1P 1 = (1,1) w2P 2 = (2,0). 

Since we already know the weights, we can now solve for the control points: 

Po = (0,1) P1 = (1,1) P2 = (1,0). 

This representation of the unit circle in terms of control points and weights is 
not unique. Clearly we can multiply all the weights by the same nonzero scalar with- 
out affecting the curve. Moreover, we could reparametrize the curve by a rational 
linear change of parameter t = (au + b)/(cu + d), and this change of variables would 
affect both the control points and the weights but not the underlying curve. If we 
adopt our usual convention of restricting the parameter t to the interval [0,1], then 
the rational Bezier curve we have just constructed represents the portion of the circle 
in the first quadrant (see Figure 5.32). 

Other segments of the circle would require a different set of control points and a 
different set of scalar weights. For example, if we want to represent the semicircle in 
rational Bezier form over the interval [0,1], we must map [0,1] ~ [-1,1] by sending 
t ~ 2 t -  1. This linear change of parameter generates the reparametrized circle 

2 ( 2 t -  1) 4t(1 - t) 
x(t) = y(t) = , 

4t 2 - 4 t  + 2 4t 2 - 4 t  + 2 

which lifts in Grassmann space to the polynomial curve 

e(t) = ( 2 ( 2 t  - 1), 4t(1 - t), 4t 2 - 4t + 21. 
\ / 

(o,1,1) " (1,1,1) 

(2,0,2) 

Figure 5.32 A quarter circle as a rational Bezier curve. The control points are represented with three coor- 
dinates denoting (WkP k, Wk). 
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Solving as before for the scalar weights, we now find that 

4t 2 - 4t + 2 - 2B~ (t) + 2B 2 (t), 

SO 

w 0 = 2, w 1 = 0, w 2 = 2. 

Moreover, it is easy to verify that 

2(2t - 1) = - 2 B  2 (t) + 2B 2 (t) 

4t(1 - t) = 2B 2 (t) . 

Therefore, 

woP o = (-2,  O, 2) v 1 = (0,2, 0) w2P 2 = (2,0,2). 

We illustrate this rational Bezier representation for the semicircle in Figure 5.33. 
The weights of a rational Bezier curve can be used to control its shape. As the 

weight w k increases, the influence ofthe control point Pk increases and the curve 
passes closer to Pk; as w k decreases, the curve is pushed away from Pk" Thus the 
weights behave like tension parameters (see Figure 5.34). 

Typically all the weights are chosen to be positive to avoid singularities, but zero 
and negative weights are permitted and sometimes, as we have just seen, are even 
necessary to represent certain curves exactly. Unlike rational Lagrange or rational 
Hermite interpolation, the effect of increasing the weights on a rational Bezier curve 
is rather benign because rational Bezier curves are not constrained to interpolate 
their control points. Negative weights, however, may introduce singularities even if 

(-2,0,2) (2,0,2) 

(0,2,0) 

Figure 5.33 A semicircle as a rational Bezier curve. The two control points are represented with three 
coordinates denoting (WkP k, Wk). Notice here the control vector (0,2,0). 
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Figure 5.34 Bezier curves with fixed control points, but with different values for the weights. The dark 
curve is an integral cubic Bezier curve with control points at P0 = (0,0). P1 = (1,1), P2 = (2,1). 
P3 = (3,0). The upper and lower curves have the same control points, but in the upper curve 
the weight at P1 is increased to 3, while in the lower curve the weight at P1 is decreased to 
-0.05. 

we restrict the parameter domain to [0,1], so negative weights are generally avoided 
(see Exercise 12(b)). 

Nevertheless, even though a rational Bezier curve is continuous everywhere 
except at parameter values where the denominator vanishes, and even though the 
effect on the shape of the curve of increasing the weights is generally benign, in the 
limit as a single weight approaches infinity a rational Bezier curve collapses to a dis- 
joint collection of points. We already know that when w O, w n ~ 0 a rational Bezier 
curve interpolates its first and last control point, so for t = 0,1 

l i m w j - - > , , f l ( O )  - Po 

limwj___>~R (1) = Pn. 

But for any other value of t, 

n n Wk 
~, B f  (t)WkP k Y~ B f  (t) Pk 

l imwj~ j~ ( t  ) = limwj~ ~ k=0 = limwj~ ~ k=0 wj 
n n Wk n 
E w~8'~ (t) Z 8k (t) 

k=O k=O wj 
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Thus the limit curve consists of only three points. 
If the mass of a Bezier curve in Grassmann space is ever zero, then the projec- 

tion of the curve into affine space is not continuous. We can avoid these discontinui- 
ties by projecting the curve instead into projective space. Therefore, for a rational 
Bezier curve, just as for a rational Lagrange curve, the control points reside in Grass- 
mann space, but the curve itself may lie in projective space. 
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Typically, algorithms for integral Bezier curves carry over directly to algorithms 
for rational Bezier curves because generally we can apply these algorithms sepa- 
rately to the numerator and denominator. For example, we can evaluate points along 
a rational Bezier curve by applying the de Casteljau algorithm independently to the 
numerator and denominator. Similarly, change of basis algorithms can be applied 
separately to the numerator and denominator. Therefore, the algorithms for degree 
elevation and subdivision can be applied independently to the numerator and denom- 
inator. In essence there is nothing new here; we simply apply the algorithm in ques- 
tion to the control points (woPo,wo) ..... (wnPn,wn) in Grassmann space and then 
divide by the weight to get the desired result in affine space. 

Exercises 

1. Show that for rational Bezier curves reversing both the order of the control 
points and the order of the weights generates the same rational curve but 
with the opposite orientation. 

2. Show that the rational blending functions defined in Equation (5.30) satisfy 
the identity 

n 

ERa(t)--- 1. 
k=O 

3. Using Equation (5.30) and Exercise 2, show that if all the weights are posi- 
tive, then a rational Bezier curve lies in the convex hull of its control points. 

4. Using Equation (5.30), show that if all the weights are nonzero, then a ratio- 
nal Bezier is nondegenerate provided that there are no indices j,k for which 
(w~f  ~, wk ) = cj~ (w fl'j, wj ). 

5. Suppose that all the weights of a rational Bezier curve are positive. 

a. Show that the rational functions in Equation (5.30) satisfy Descartes' 
Law of Signs in the interval (0,1). 

b. Conclude that rational Bezier curves with positive weights satisfy the 
variation diminishing property. 

6. Show that for some choices of positive weights the rational blending func- 
tions in Equation (5.30) are not unimodal in k. 

7. Find control points and weights to represent the quarter circles in the sec- 
ond, third, and fourth quadrants as rational Bezier curves. 

8. Find control points and weights to represent the lower half circle as a ratio- 
nal Bezier curve. 

9. Apply the subdivision algorithm for rational Bezier curves to the quarter 
circle given in the text to derive the Bezier control points and weights for 
the upper half circle. 

10. Find Bezier control points and scalar weights for 

2at b(1 - t 2) 
a. the ellipse: x = 1+ t 2 Y - 1+ t 2 



262 C H A P Y E R 5 B e z i e r  A p p r o x i m a t i o n  a n d  Pasca l ' s  Tr iangle  

2a t  b(1 + t 2) 
b. the hyperbola: X - l _ t  2 Y -  1 - t  2 

Which segments of these curves are represented by your choice of control 
points and weights? 

11. Consider a rational Bezier curve with control points PO .. . . .  Pn and nonzero 
weights w 0 . . . . .  w n. What does the limit curve look like if two or more 
weights are allowed to approach infinity simultaneously? 

12. Consider the rational cubic curves in Figure 5.34. 

a. Plot the point with t = .99 for larger and larger values of the weight at 
P1 = (1,1). 

i. What do you observe? 

ii. Explain what is happening. 

b. Plot the curve for different negative values of the weight at P1 = (1,1). 

i. What do you observe? 

ii. Explain what is happening. 

13. Consider the conic section R(t )  = P( t )  / w( t ) ,  where 

2 2 
P ( t ) =  E B 2 ( t ) w k P k  and w( t )=  ~ ,WkB2( t ) .  

k=O k=O 

a. Show that degree (w( t ) )  < 2 r  w 0 - 2w 1 + w 2 = 0 .  

b. Conclude that if w 0 - 2w 1 + w 2 = 0, then 

R(t)  is a parabola r w(t )  does not divide P(t).  

c. Prove that if wo -2Wl + w2 * 0, then 

i. w(t)  has 2 real roots r w 2 - wow 2 > 0 

ii. w(t)  has 1 real root r w 2 - WoW 2 = 0 

iii. w(t)  has 0 real roots r w 2 - wow 2 < 0 

(Hint: Divide w(t)  by (1 - t )2 . )  

d. Conclude that if w 0 - 2 w  1 + w 2 ~ 0 and P ( t ) , w ( t )  have no nontrivial 
common factor, then 

i. R( t )  is a hyperbola r w 2 - wow 2 > 0 

ii. R(t)  is a parabola r w 2 - wow 2 = 0 

iii. R(t)  is an ellipse r w 2 - w o w  2 < 0 

Therefore, in general, the type of a rational quadratic Bezier curve 
depends only on the weights and not on the location of the control points. 

e. What is the curve R(t)  if P(t)  and w(t)  have a nontrivial common factor? 
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14. Suppose that R(t), 0 < t < 1, is a rational Bezier curve with control points 

Po ..... Pn and weights w 0 ..... w n. Let /~(t), 0 < t < 1, be the rational Bezier 

curve with control points PO ..... Pn and weights v~ k = (-1) k w k, k = 0 . . . . .  n. 

a. Show that/~(t) = R ( t ) / ( 2 t -  1). 

b. Conclude that the curve /~(t), t ~ [0,1], is the same as the curve R(t),  

t ~ { (-oo, oo)- (0,1)}. That is,/~(t) is the complement of R(t). 

c. Find the control points and weights for the complement of the quarter 
circle depicted in Figure 5.32. 

15. Consider a rational Bezier curve R(t),  0 < t < 1, with weights wo, . . . ,w n. 
Suppose that w o ,w n = 0, Wl, Wn_l ~ 0 and that the control vectors v0, Vn 
are the zero vector. Show that 

a. limt_~0R(0) = P1 

b. limt_ ~ 1R(1) - Pn -1 

16. Given a rational Bezier curve with control points Po ..... Pn and weights 
w 0 ..... w n, use the known formulas for integral Bezier curves to derive 

explicit formulas for the control points and weights of 

a. the degree elevated rational curve 

b. the subdivided rational curve 

17. Implement the following algorithms for rational Bezier curves: 

a. de Casteljau evaluation algorithm 

b. degree elevation algorithm 

c. subdivision algorithm 

18. Implement the recursive subdivision algorithm for 

a. rendering a rational Bezier curve 

b. intersecting two rational Bezier curves 

19. Let R(t) be a rational Bezier curve with control points P0,--., Pn and positive 
weights w0,..., w n. Show that the arc length of R(t) is bounded below by the 
length of the chord joining P0 and Pn and above by the perimeter of its con- 
trol polygon. 

(Hint: Use the result for integral Bezier curves and the fact that recursive 
subdivision commutes with projection.) 

20. Let R(t) be a rational Bezier curve with control points P0 ..... Pn and weights 
w 0 ..... w n . Define 

n n 

P(t)  - ~_, B~ (t)WkP k and w(t) = ~ WkB~c (t), 
k=0 k=0 

so that R(t)  = P(t).  Prove that 
w(t) 

a. SO w(t)dt  = average of the weights 
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5.7.1 

b. ~P(t )dt  

~lw(t)dt 
= center of mass of {(woPo,wo) ..... (wnPn,wn) } 

Differentiating Rational Bezier Curves 

One algorithm that cannot be applied independently to the numerator and denomina- 
tor of a rational Bezier curve is the algorithm for differentiating of Bezier curves 
because the derivative of a quotient is not equal to the quotient of the derivatives. To 
find the derivatives of a rational Bezier curve, we proceed in the following manner. 
Let 

r/  

ZB; (t)w P  
R(t) = k=0 

/,/ 

2; " wkBk(t) 
k=O 

be a rational Bezier curve. Then the numerator and denominator of R(t) behave like 
ordinary Bezier curves, which we already know how to differentiate. Let 

n 

P(t) - ~.Bf  (t)WkP k 
k=0 

n 

w(t) - ~. wkB ~ (t) . 
k=0 

Then R(t) - P(t) /w(t) ,  so multiplying both sides by w(t) we obtain 

w( t )R( t ) -  P(t). 

To find the derivatives of R(t), we proceed recursively using Leibniz's rule: 

F 
E (f) w(i) (t) R(r-i) (t) = p(r)(t). 

i=0 

By Equation (5.24), we have 

p(r)(t ) n! n-r r 
= E B~c -r (t) E (-1) r - j  (~)Wj+kPj+k 

(n-r)!k=O j=0 

(5.31) 

n! n-i i i 
- Z B; -i (t) Z (-1) i - j  (j)Wj+k" 

w(i)(t) (n-i)!k=O j=0 

Hence if we know R (p) (t) for 0 < p < r, then we can apply Equation (5.31) to com- 
pute R(r)(t). Indeed, we can find R(r)(t) by using Equation (5.31) with r = 1 to find 
R'(t), then with r = 2 to find R"(t), and so on, till finally we can apply this equation 
to compute R(r)(t). Notice too that P(i)(t),w(i)(t) can be computed algorithmically by 
differentiating i rows of the de Casteljau algorithm for the control points 
(woPo, w 0 ) ..... (wnPn, wn ) . 
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Suppose now that we are given a rational Bezier curve R(t)  with control points 
(woPo,wo) ..... (wnPn,wn) and we want to construct another rational Bezier curve 
C(t)  with control points (voQo,vo)  ..... (vnQn,v n) that meets R(t )  and matches its first 
r derivatives at its end point. For arbitrary r this problem is difficult, so let's consider 
only the cases r = 0,1. If the weights are nonzero, then by Equation (5.29) C(0) = Q0 
and R(1) = Pn, so continuity requires that Q0 = Pn just as for integral Bezier curves. 
Moreover, by Equation (5.31) 

w'(1)R(1) + w(1)R'(1) = P'(1), 

so substituting for the values of w and P we have 

n(Wn - Wn-1 )Pn + wnR'(1) = n(wnPn - Wn-lPn-1 ). 

Solving for R'(1), we obtain 

R'(1) - n Wn-1 (Pn - Pn-1)" 
w n 

Similarly, applying Equation (5.31) to C(t),  we get 

v'(0)C(0) + v(0)C'(0) = Q'(0). 

Substituting for the values of v and Q yields 

n(vl - vo)Qo + voC'(O) - n(VlQ1 - voQo), 

and solving for C'(0) gives 

Vl 
C'(O) - n - - ( Q  1 - Qo)" 

vo 

Therefore, R(t)  and C(t)  will meet with one continuous derivative if and only if 

C(O)-  R(1) ~ Qo - Pn 

Vl Wn-1 (en - Pn-1)" C ' ( 0 )  - R' (1)  ~ n - - ( Q  1 - Q o )  - n 
vo Wn 

Substituting Qo - Pn and solving for Q1, we find that the second condition reduces 
to 

Q1 - Pn + VOWn-1 (Pn - Pn-1 )" 
VlW n 

There are three free parameters in this equation: Ql,V0,Vl. Continuity of first 
derivatives does not specify the values of these parameters; rather it specifies only 
that these parameters must be in some specific relationship. Thus unlike the polyno- 
mial case, the location of Q1 is not fixed by insisting on continuity of first deriva- 
tives. Notice, however, that just as in the polynomial case, Q1 must still lie 
somewhere along the line joining Pn-1 and Pn" 



2 66  c H A P T E R 5 B e z i e r  A p p r o x i m a t i o n  a n d  P a s c a l ' s  Tr iang le  

Necessary and sufficient conditions for continuity of the first r derivatives for 
arbitrary values of r are difficult to obtain because we do not have a simple explicit 
formula for the rth derivative of a rational Bezier curve. However, sufficient condi- 
tions are easy to derive. The rth derivative of a quotient depends only on the first r 
derivatives of the numerator and denominator. Thus if R ( t ) =  P ( t ) / w ( t )  and 
C( t )  = Q ( t ) / v ( t ) ,  then sufficient conditions for R(i ) (1)  = c ( i ) ( o ) ,  i = 0 ..... n,  are 

p(i )  (1) = Q(i) (0)  i = 0 ..... n 

w (i) (1) = v (i) (0) i - 0 ..... n. 

Since P ( t ) , Q ( t ) , w ( t ) , v ( t )  can be thought of as integral Bezier curves, we can use the 
methods of Section 5.6.2 (e.g., Equation (5.27)) to find values for Qk and v k that 
guarantee these continuity conditions are satisfied. 

Exercises 

1. Let R( t )  be a rational Bezier curve with control points P0 ..... Pn and positive 
weights w o ..... w n. 

a. Find a bound on R"(t). 

b. Find an analogue of Wang's formula for the number of levels of subdivi- 
sion required so that the control polygon approximates the rational curve 
within a fixed tolerance e .  

c. Develop an algorithm for intersecting two rational Bezier curves with 
positive weights based on recursive subdivision and Wang's formula. 

2. Let R( t )  be a rational Bezier curve with control points PO ..... Pn and nonzero 
weights w 0 ..... w n . 

a. Compute explicit formulas for R " ( t ) , R " ( O ) , R ' ( 1 ) .  

b. Find necessary and sufficient conditions on the control points and the 
weights for two rational Bezier curves to meet with two continuous 
derivatives at their end points. 

3. Let R(t )  be a rational Bezier curve with control points (woPo,wo) .... , 

(wnPn, wn )" 

a. Using the formulas for the first derivative derived in the text, show that 

limw0~ooR'(0) - 0 and limw,~ooR'(1) = 0. 

b. More generally, show that 

limw0~ooR(k)(0) = 0 and limw,~ooR(k)(1) = 0, k > 1. 

c. Show that if t ~ 0,1, then l imwj~ooR(k)(t)  = 0 for all k > 1. 

4. The formulas for the unit tangent U(t) ,  the curvature K(t ) ,  and the torsion 
T(t)  of a parametric curve P(t )  are given in Section 5.6.2, Exercise 12. 
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a. Compute the unit tangent, curvature, and torsion of a rational Bezier 
curve at t = 0,1. 

b. Find conditions on the control points and weights of a rational Bezier 
curve C(t) so that it matches a given rational Bezier curve B(t) with con- 
tinuous unit tangent, curvature, and torsion. 

5.8 

5.8.1 

Bezier Surfaces 

Bezier surface patches come in two standard shapes: rectangular and triangular. We 
have already encountered both rectangular and triangular patches in the context of 
Lagrange interpolation in Chapter 2; here we explore the corresponding construc- 
tions for Bezier approximation. Just as de Casteljau's algorithm for Bezier curves is 
simpler than Neville's algorithm for Lagrange polynomials, so too are Bezier sur- 
faces simpler to define and analyze than the corresponding Lagrange surfaces 
because the absence of nodes in Bezier approximation simplifies the domains of 
these surfaces as well as many of their associated algorithms. 

We begin our study of Bezier surfaces with tensor product Bezier patches and 
then go on to explore the corresponding triangular patches. We also examine briefly 
rational Bezier patches, both rectangular and triangular. Rational Bezier patches 
with more than four sides are investigated in Chapter 8. 

Tensor Product Bezier Patches 

A rectangular tensor product Bezier patch B(s,t) of bidegree (m,n) is defined by setting 
m // 

8 ( s , t )  - z z 8 m (oe i j  
i=0j=0 

0 < s,t < 1. (5.32) 

The functions B m (s)B~( t ) - -where  B re(s) and B~ (t) are the standard Bernstein 
basis functions of degree m and n in the parameters s and t~are  the tensor product 
Bernstein basis functions (see Figure 5.35). 

The rectangular array of control points {P/j} generates a control polyhedron for 
the tensor product Bezier patch that controls the shape of the Bezier patch in much 
the same way that the Bezier control polygon controls the shape of a Bezier curve 
(see Figures 5.36 and 5.37). In particular, dragging a control point pulls the surface 
patch in the same general direction as the control point. 

Let Pi(t) be the Bezier curve with control points Pi0 ..... Pin-Then 

1/ 

n(t)Pij i -  O, . m Pi(t) = EBj  .., 
j=O 

(5.33) 

m 

B(s , t )= EBm(s)Pi(t)  
i=0 

(5.34) 
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Figure S.]S The bicubic Bernstein basis function B3(s)B3(t). Compare to the bicubic Lagrange basis func- 
tion L 3 (s)L 3 (t) in Figure 2.20. 

t = l  

s=O s = l  

t=O 

(a) Domain--unit square 

P03 P13 P23 P33 

P02 P12 P22 P32 

PO1 Pll P21 P31 

Poo P~o t'2o P3o 

(b) Range~rectangular array of points 

Figure 5.36 Data for a bicubic tensor product Bezier patch. Notice that the domain is simply the unit 
square and that, unlike Lagrange interpolation, the domain has no nodes and no grid. Com- 
pare to Figure 2.19. 
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Figure 5.37 A bicubic tensor product Bezier surface with its control polyhedron, formed by connecting 
control points with adjacent indices. The control points are the same as those for the 
Lagrange surface in Figure 2.22. 

Thus if we fix t, t henB(s , t )  is the Bezier curve with contro oints Po(t) ..... Pm(t) (see 
Figures 5.38 and 5.39). 

Equations (5.33) and (5.34) suggest the following evaluation algorithm for ten- 
sor product Bezier patches: first use de Casteljau's algorithm m + 1 times to compute 
the points at parameter t along the degree n Bezier curves Po(t) ..... Pm(t); then use de 
Casteljau's algorithm one more time to compute the point at parameter s along the 
degree m Bezier curve with control points Po(t) ..... Pm(t) (see Figure 5.40). 

Just as in Lagrange tensor product interpolation, there is also an alternative eval- 
uation algorithm for tensor product Bezier patches based on a bilinear recurrence. 
For simplicity, let us assume that m = n. Multiplying together the linear recurrences 

B[' (s) - (1 - s )B[  '-1 (s) + s S ~  1 (s) 

B; (t) - ( 1 -  t )U;  -1 (t) + tUjnl 1 (t) , 

generates the bilinear recurrence 

- - )B n-1 (s)Bj -1 (t) B n ( s ) S j  (t) - ( 1 -  s)(1 t )S  n-1 (s)B; -1 (t) + s(1 t i-1 

+ (1 - s)tB n-1 ( s )B;  -1  (t) + stBin__l 1 ( s )B;  -1  (t) . 

This recurrence can be diagrammed on a square pyramid, with (n + 1)2 nodes on 
the nth level of the pyramid, by placing a 1 at the apex of the pyramid and the four 
functions (1 - s)(1 - t), s(1 - t), (1 - s)t, st along the edges connecting the node 
labeled (i, j )  on the nth level respectively to the nodes labeled (i, j ) ,  ( i - l ,  j ) ,  
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Po2 

P13 

P03 / ~  P23 

 oC01 I r I 

Poo / 
o l 

ho 

P33 

P32 

P~.~ P31 

P3o 

Figure 5.38 A schematic construction for points on a bicubic tensor product Bezier surface B(s, t). First the 
Bezier curves Pi(t), i = 0 ..... 3 are constructed from the control points Pio,Pil,Pi2,Pi3. Then for 
a fixed value of t, the Bezier curve B(s,t)is constructed using the points Po(t),Pl(t),P2(t),P3(t) 
as control points. In general, the Bezier surface B(s,t) does not interpolate its control points. 
Compare to Figure 2.21 for bicubic Lagrange interpolation. 

Figure 5.39 The bicubic Bezier patch in Figure 5.37 along with its cubic Bezier control curves. Notice that 
only the boundary control curves are interpolated by the surface. Compare to the tensor 
product Lagrange surface in Figure 2.22. 
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B(s,t) 
'-sl 
J 

Po(t) P2(t) P~(t) 

Poo Po 1 P02 P10 P1 ~ P12 P20 P21 P22 

Figure 5.40 De Casteljau's evaluation algorithm for a biquadratic Bezier patch. The three lower triangles 
represent Bezier curves in the t direction, and the upper triangle blends these curves in the s direction. Com- 
pare to Figure 2.23--Neville's algorithm for a biquadratic interpolating patch. 

(1 - s ) t ~  / 
Blo(s)Bl(t) 

( a - s) ( ~ - t ) /  / 
B  s)B CO 

B 2 2 1 (s)B2(t) B2(s)B2(t) 

BI(s)BI( ) 

1 

(1 - s ) ( a  - t) 

/ 

(1 - s)(1 - t ) /  t ) ~  
/ /  s(1 - 

B 2 ( s ) B 2 ( t )  

/ i  

-s)(1 - t ) ~  
B2(s)B2(t) B2(s)B2(t) 

Figure 5.41 The pyramid algorithm for the biquadratic Bernstein basis functions viewed from above. The 
function B2(s) B2(t) on the base is not shown, since it is obscured by the upper portions of the pyramid. 

(i, j -  1), ( i -  1, j -  1) on the ( n -  1)st level. It follows by the bilinear recurrence and 
induction on n that the functions {B n (s)B ~] (t)} emerge on the nth level of the pyra- 
mid (see Figure 5.41). 
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Thus the function Bn(s)Bj(t)  is the sum over all paths between the node (i, j) 
on the nth level and the 1 at the apex of the pyramid. Therefore, if we place the con- 
trol points P ij at the base of the pyramid and reverse all the arrows in the diagram, 
the tensor product patch 

B(s,t) - Ei E j  Bm (s)Bj (t)Pij 

will emerge at the apex of the pyramid. This is the bilinear evaluation algorithm for 
tensor product Bezier patches (see Figure 5.42). 

Both the de Casteljau algorithm and the pyramid algorithm are O(n3). Neverthe- 
less, the de Casteljau algorithm is generally faster than the pyramid algorithm. The 
analysis here is much the same as the comparison between Neville's algorithm and 
the pyramid algorithm for tensor product Lagrange interpolation given in Section 
2.11. When m = n, the de Casteljau algorithm employs n + 2 triangles: n + 1 trian- 
gles in the t direction and one additional triangle in the s direction. Each triangle has 
n(n + 1)/2 nodes, and each node requires two multiplications. Therefore, 

number of multiplications in the de Casteljau algorithm = n(n + 1)(n + 2). 

Figure 5.42 A schematic diagram of the bilinear evaluation algorithm for a bicubic tensor product Bezier 
patch viewed from above. Each panel represents the computation of a point at its center by 
multiplying the points at its corners with the functions (1-s)(1-t), s(1-t), (1-s)t, st and 
adding the results. The black panel represents the bicubic Bezier patch for the control points 
at the base of the pyramid; interior control points are obscured by the panels. Notice that the 
light gray panels represent bilinear Bezier patches and the dark gray panels represent biqua- 
dratic Bezier patches. Compare to Figure 2.25, which is the pyramid algorithm for bicubic 
Lagrange interpolation. The same pyramid is used there, but the algorithm here is much sim- 
pler. In the pyramid algorithm for bicubic Lagrange interpolation, the rectangular domain for 
the interpolation algorithm varies from node to node and level to level, so the labels along 
the edges also vary from node to node and level to level. For bicubic Bezier patches the same 
rectangular domain is used at every node and every level, so the labels along the edges are 
the same from node to node and level to level. 
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On the other hand, the pyramid algorithm has 

n 

~,k 2 - n(n + 1)(2n + 1)/6 
k=l 

nodes, and each node requires four multiplications. Therefore, 

number of multiplications in the pyramid algorithm - 2n(n + 1)(2n + 1). 
3 

Since n + 2 < (4n + 2)/3 for n > 4, the de Casteljau algorithm is generally faster 
than the pyramid algorithm, though for the most common surfaces, namely, bicubic 
patches, n = 3 and the pyramid algorithm is slightly more efficient. 

As in tensor product Lagrange interpolation, the de Casteljau algorithm has 
another advantage over the pyramid algorithm that is even more substantial. Recall 
that surfaces are typically rendered by generating points on the surface along isopa- 
rameter l inesuthat  is, along lines of constant s or t. If we fix t = t * and vary only s, 
then we can reuse the computation of the points Po(t*) ..... Pm(t*). Thus along isopa- 
rameter lines, de Casteljau's algorithm for tensor product surfaces reduces to the 
univariate version of de Casteljau's algorithm, which is only O(n2). No such reduc- 
tion occurs for the pyramid algorithm along isoparameter lines. 

Tensor product Bezier patches inherit many of the characteristic properties of 
Bezier curves; they are affine invariant, nondegenerate, and lie in the convex hull of 
their control points (see Exercises 1 and 5). These properties follow easily from 
Equations (5.33) and (5.34) and the corresponding properties of Bezier curves. 
Moreover, the boundaries of a tensor product Bezier patch are the Bezier curves 
determined by their boundary control points, since by Equation (5.34) 

n 

~(o,t~ - eo(t) - E B j  (Oeoj 
j=0 

n 

B(1,t)- fm(0- E S j ( O e m j ,  
j=0 

and symmetric results hold for the boundaries t = 0 and t = 1. It follows that although 
tensor product Bezier patches do not generally interpolate their control points, they 
always interpolate the four comer points P00, PmO, POn, Pmn" 

One property, however, that does not carry over from curves to surfaces is the 
variation diminishing property. There is no known analogue of  the variation dimin- 
ishing property for tensor product Bezier patches. For example, it is not true that the 
number of intersections of a Bezier patch with a straight line is always less than or 
equal to the number of intersections of the same line and the Bezier control polyhe- 
dron (see Exercise 22). Nor is it true that a plane always splits a Bezier surface into 
fewer connected components than it splits the corresponding control polyhedron (see 
Exercise 23). Geometrically it is difficult to discover an analogue of the variation 
diminishing property for surfaces because subdivision and degree elevation for sur- 
faces (see below) are not simply vertex slicing procedures for polyhedra. Moreover, 
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algebraically there is no simple analogue of Descartes' Law of Signs in the bivariate 
setting. 

Tensor product Bezier patches do inherit many of the standard algorithms of 
Bezier curves. Degree elevation and subdivision can be performed independently in 
each variable. To degree elevate the surface B(s,t) in t, simply degree elevate each of 
the curves Po(t) ..... Pm(t). Similarly, to subdivide B(s,t) at t = r, subdivide each of the 
curves Po(t) .... ,Pm(t) at t = r. Symmetric algorithms can be used to degree elevate 
and subdivide with respect to s instead of t. 

To differentiate a tensor product Bezier patch, we can differentiate either de 
Casteljau's algorithm or the pyramid algorithm. To differentiate the de Casteljau 
algorithm with respect to s a total of p times, simply differentiate any p of the upper 
m levels (the s levels) of the de Casteljau algorithm and multiply the result by 
m ! / ( m -  p)!. To differentiate q times with respect to t, differentiate any q of the n 
levels (the t levels) in each of the m lower triangles (see Figure 5.40) and multiply 
the results by n ! / ( n -  q)!. That this algorithm works is an immediate consequence of 
the corresponding differentiation algorithm for Bezier curves discussed in Section 
5.6.2. Explicit formulas for these derivatives can be generated as well from Equation 
(5.24) by substituting this explicit formula for the derivatives of a Bezier curve into 
Equation (5.34). 

Differentiation of the pyramid algorithm works in a similar fashion. To find p 
derivatives with respect to s and q derivatives with respect to t, differentiate any p 
levels of the algorithm with respect to s~tha t  is, replace (1 - s)(1 - t) ~ -(1 - t), 
(1- s)t ~ - t ,  s(1- t) ~ (1- t), st ~ t on p levels of the algorithm~then differenti- 
ate any q levels (the same or different from the previous p levels) with respect to t, 
and multiply the result by (n!) 2/(n - p)!(n - q)!. This algorithm works because 

/ 
s(1- t )  st ) s(1- t )  st ) 

n f a c t o r s  

ii-sl (1-sl = |174 |  t ) | 1 7 4  t) 
S S ~ y , 

�9 ~ n f a c t o r s  
n f a c t o r s  

(see Exercise 15), so we can apply Equation (5.21) and the commutativity of discrete 
convolution to differentiate the basis functions Bn(s)Bj(t). 

Exercises 

m n 

1. a. Prove that X X B m ( s ) B j ( t )  - 1. 
/ = 0 j = 0  

b. Show that every tensor product Bezier patch lies in the convex hull of its 
control points. 

2. Consider a tensor product Bezier patch of bidegree (m,n), where m < n. 
Show that 
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a. To compute a single point on the surface it is faster to apply de Castel- 
jau's algorithm first in the s direction and then in the t direction. 

b. To compute many points along the surface it may be faster to apply de 
Casteljau's algorithm first in the t direction and then in the s direction. 

c. Explain this apparent anomaly. 

(Hint: Compare to Section 2.11, Exercise 3.) 

3. Complete the analysis of the pyramid algorithm by showing how to imple- 
ment this algorithm when the degree in s is different from the degree in t. 

4. What are the up and down recurrences in the case of tensor product Bezier 
patches for de Casteljau's algorithm and for the pyramid algorithm? 

5. Give necessary and sufficient conditions on the control points for the tensor 
product Bezier surface to collapse to 

a. a single point 

b. a line 

c. a plane 

Justify your answer. (Compare to Section 2.11, Exercise 8.) 

6. Let B[p~.n](s,t) denote the tensor product Bezier patch of bidegree (m,n) 
with control points {P/j ]. Show that tensor product Bezier patches have the 
following symmetry properties: 

a. B[p jm]( t , s ) -  B[p~n](s,t).  

b .  mrl mFl B[Pi,n_j](s,t) - B[P ij ](s,1 - t). 

m n  c. B[Pm_i, j ](s,t) = B[Pij n ](1 - s,t). 

7. Let B(s,t) - ~.i Z j  Bm (s)B; (t)Pij be a tensor product Bezier patch, and let 

~P+qB 
B(P'q)(s,t) = ~ .  

~sP~t q 

a. Show that B(I'~ (0, 0) - m(P10 - P00) and B(~ (0, 0) - n(P01 - PO0). 
b. Conclude that the normal vector at B(0, 0) is parallel to 

(PIo - PO0) • (Po1 - PO0)" 
c. Find the normal vectors at B(O,1),B(1,O),B(1,1). 

8. Let B ( s , t ) -  Zi ZjBm(s)Bj(t)Pij  be a tensor product Bezier patch, and let 

B(P,q)(s,t) denote the partial derivatives of B(s,t) as in Exercise 7. Compute 

explicit expressions for the partial derivatives B(1,~ ..... B(r'O)(s,t). 

9. Suppose we have a tensor product Bezier patch 

B(s,t)  - Ei E j  B m (s)Bj (t)Pij 

and we want to construct another tensor product Bezier patch 
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C(s, t )  = ~ i  2 j  Bm (s)B; (t)Qij 

to meet B(s,t) along the boundary B(1,t) and match its first p cross-boundary 
derivatives. That is, we want to construct a tensor product Bezier patch 
C(s,t) such that 

orc (o , t )  OrB(1,t) 
m 

~s r ~s r 
r - 0  ..... p. 

a. Show that 

i. p = 0  =r Q o k = P m k ,  k = 0  ..... n 

ii. p = 1 ==> Qlk = Pmk + (Pmk - em-l ,k  ), k - 0 ..... n 

b. Derive formulas for the location of the control points Qij that guarantee 

~rc(o't-------~ ) = ~rB(l't-------~ ) r - 0 ..... p .  

OS r OS r ' 

10. Implement both de Casteljau's algorithm and the pyramid algorithm for ten- 
sor product Bezier surfaces. Which algorithm do you prefer? Why? Experi- 
ment with tensor product surfaces of different degrees. Determine how 
changing the location of the control points affects the shape of the surface. 

11. Implement the recursive subdivision algorithm for tensor product Bezier 
patches. Apply this algorithm to 

a. render a tensor product Bezier patch 

b. intersect two tensor product Bezier patches 

12. Recall from Section 5.6.3 that we can speed up recursive subdivision for 
Bezier curves by applying Wang's formula. 

a. Develop an analogue of Wang's formula for tensor product Bezier 
surfaces. 

b. Implement the recursive subdivision algorithm for rendering a tensor 
product Bezier surface with and without Wang's formula. 

c. How much does Wang's formula speed up this algorithm? 

13. Prove that the control polyhedra generated by recursive subdivision con- 
verge to the tensor product Bezier patch. 

14. Prove that the control polyhedra generated by degree elevation converge to 
the tensor product Bezier patch. 

15. Define the convolution of two doubly indexed arrays of functions 
A ( s , t ) -  {Aij(s,t) } and B ( s , t ) =  {Bkl(S,t) } by setting 

(A | B)pq(S, t)  = ]~i+k=pZj+l=qAij(s, t)Bkl(S,t) .  
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Now introduce the following indexing scheme" 

Function Index 

1 - s ( 0 , 0 )  

1 - t  (0,0) 

s (1,0) 
t (0,1) 

Bin(s) (i,O) 

B](t)  (O,j) 

Bm (s)B] (t) (i,j) 

Show that with this indexing scheme 

- |  
a. s(1 - t) st ,) s 

t); 

b. 
B~(s) / 

' |  �9 . .  8 # ( t ) ) ;  

( )ll-s I ii-sl c. B m (s)BJ (t) - |  | | (1- t 
S S , 

Y 

n factors 

t ) | 1 7 4  t) 
J 

n factors 

I (1- s)t/st J | 1 7 4  / (1- s)(1- t ) s ( 1  - t) (1- s)t/st J 

J 
Y 

n factors 

e. Use the preceding results to derive the differentiation procedure for the 
pyramid algorithm described in the text. In particular, show that to com- 
pute p derivatives with respect to s and q derivatives with respect to t, we 
can differentiate any p levels of the pyramid algorithm with respect to s, 
then differentiate any q levels (the same or different from the previous p 
levels) with respect to t, and multiply the result by 

(n!) 2 

( n - p ) ! ( n - q ) !  

16. Describe the properties of the surface you would generate if you replace the 
Lagrange basis with the Bernstein basis in the Boolean sum construction 
given in Section 2.15. 
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17. Let Pj ( s ) -  EiBm(s)Pij, j = 0 ..... n, be a sequence of Bezier curves. Show 
how to combine Neville's algorithm and the de Casteljau algorithm to gen- 
erate a surface C(s,t) that interpolates the curves Po(s) ..... Pn(s) at the 
parameter values t o ..... t n. 

18. Let 

B(s,t) - E i  E j B n  (s)B; (t)Pij 

be a tensor product Bezier patch of bidegree (n,n), and let 

BSO 1 (s,t),B~o 1 (s,t),B~l 1 (s,t),B~l 1 (s,t) 

denote the four values computed by the pyramid algorithm on the penulti- 
mate level just below the apex of the pyramid. Show that 

a. B(s,t) - (1-  s)(1 - t)BSo 1 (s,t) 

+ s(1 -t)B~ol(s,t) + (1 -s)tB~)ll(s,t) + stBn-l(s,t) 11 

b~ 
8B 

0s 

8B 
C. 

- n(1-  t)(B~o 1 ( s , t ) -  B~O 1 (s,t))+ nt(B~l 1 ( s , t ) -  B~I 1 (s,t)) 

Ot 
- n(1-  s)(B(~l 1 ( s , t ) -  B(~O 1 (s,t))+ ns(B~l 1 ( s , t ) -  B~O 1 (s,t)) 

d. Conclude that to compute point values and normal vectors at any point 
on a tensor product Bezier surface of bidegree (n,n) by the pyramid algo- 
rithm costs 

2n(n+l) (2n+l)  

3 
multiplications and one cross product. 

19. Let 

+6 

n-l (s,t),B~-l (s,t) be a tensor product Bezier patch of bidegree (n,n), and let B 0 
denote the two values computed by the de Casteljau algorithm on the penul- 
timate level just below the apex of the algorithm. Show that 

a. B(s,t) - (1-  s)B8 -1 (s,t) 4- sB~ -1 (S,t) 

b~ = ( s , , )  - ( s , , ) )  
Os 

Let Poo(t),Pol(t) ..... Pno(t),Pnl(t) denote the values computed by the de 
Casteljau algorithm on the penultimate level for the curves 

F/ 

j=O 
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c. Show that ~B/~t can be computed from these values using only an addi- 
tional n(n + 1) multiplications. 

d. Conclude that to compute point values and normal vectors at any point 
on a bidegree (n,n) tensor product Bezier surface by the de Casteljau 
algorithm costs a total of n(n + 1)(n + 3) + 1 multiplications and one cross 
product, but that along isoparameter lines de Casteljau's algorithm for 
computing points and normals is only O(n2). 

20. Show that 

a. The pyramid algorithm is more efficient than the de Casteljau algorithm 
for computing point values and normal vectors at a single point when 
2 < n < 6 .  

b. The de Casteljau algorithm is more efficient than the pyramid algorithm 
for computing point values and normal vectors at a single point when 
n > 6 .  

c. Along isoparameter lines, the de Casteljau algorithm for computing point 
values and normal vectors is more efficient than the pyramid algorithm 
for all values of n. 

(Hint: Compare the results of Exercises 18(d) and 19(d).) 

21. a. Show that any level of bilinear interpolation in the pyramid algorithm 
can be replaced by one level of linear interpolation in s followed by one 
level of linear interpolation in t. 

b. Draw the diagram of the evaluation algorithm for bicubic Bezier patches 
where the second level of the pyramid algorithm is replaced by one level 
of linear interpolation in s followed by one level of linear interpolation in t. 

c. What would the evaluation algorithm look like for tensor product Bezier 
patches if each level of bilinear interpolation in the pyramid algorithm is 
replaced by two successive levels of linear interpolation? 

d. Which algorithm is more efficient: the pyramid algorithm or the algo- 
rithm where each level of bilinear interpolation is replaced by two suc- 
cessive levels of linear interpolation? 

22. Give an example to show that the number of intersections of a tensor product 
Bezier patch with a straight line may be greater than the number of intersec- 
tions of the same line and the corresponding Bezier control polyhedron. 

23. Give an example to show that a plane may split a tensor product Bezier sur- 
face into more connected components than it splits the corresponding con- 
trol polyhedron. 

Triangular Bezier Patches 

We can also define Bezier patches over triangular domains. To construct these trian- 
gular surfaces, we proceed by simplifying Neville's tetrahedral algorithm for inter- 
polation of a triangular array of control points over a triangular grid (Section 2.12). 
In Neville's algorithm, for triangular Lagrange interpolation we apply barycentric 
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coordinates at each node of the algorithm to build higher-order interpolants from 
lower-order interpolants. The domain triangles, and hence too the barycentric coordi- 
nates, vary from node to node and depend on the position of the node in the tetrahe- 
dron. In de Casteljau's tetrahedral algorithm for triangular Bezier patches, the domain 
is simplified from a triangular grid to a single triangle (see Figure 5.43), so we apply 
the same barycentric coordinates at each node of the algorithm (see Figure 5.44). 

Q1 

Q2 " " Q3 

(a) Domain triangle 

PBoo 

P201 P21o 

PlO2 Pil l  P12o 

Po03 Po12 P021 P030 

(b) Triangular array of control points 

Figure 5.43 Data for a cubic triangular Bezier patch. The domain is an arbitrary triangle. Compare to Figure 
2.26 for triangular Lagrange interpolation. 

Figure 5.44 Schematic version of de Casteljau's tetrahedral algorithm for a cubic Bezier patch over a trian- 
gular domain. Each triangular panel represents the computation of a point at its center calculated by multi- 
plying the points at its vertices by the barycentric coordinates of the domain triangle (Figure 5.43(a)) and 
adding the results. The light gray triangles represent linear triangular Bezier patches, and the dark gray trian- 
gles represent quadratic triangular Bezier patches. Notice that the control point Plll is obscured by the pan- 
els, and down-pointing triangles are ignored. Compare to Figure 2.28 for triangular Lagrange interpolation. 
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Just as we did for Bezier curves, we can develop explicit formulas for the basis 

functions of triangular Bezier patches. One way to do so is to observe that all paths 

between the apex of the tetrahedron and the control point Pij~ at the base of the pyra- 
i j k  mid are identical to fllflzfl3, i + j + k - n, where t31,/~2,/~3 are the barycentric coor- 

dinate functions with respect to the domain triangle AQ1Q2Q3. Every path has this 
form because there are n levels in the tetrahedron and to travel between the apex and 

the point Pijk we must choose the 131 direction i times, the 13 2 direction j times, and 
the 133 direction k times. Moreover, there are (~jk) = n! / i! j! k! paths between the apex 
and the point Pijk on the nth level of the triangle (see Exercise 1). Thus the basis 
functions for a degree n triangular Bezier patch are given by 

Bijnk(s,t) - (~.k)fl[(s,t)flJ2(s,t)flk(s,t) i+ j + k - n, 

n! (5.35) (~ 
ijk ) - i!j!k! 

Notice that the functions B~n~(s,t) are exactly those functions that appear in the 
trinomial expansion of (fll(s,t) -~fl2(s,t) + fl3(s,t)) n. An example of a triangular patch 
constructed using these basis functions is provided in Figure 5.45. 

The functions Bijnk(s,t), i+ j + k -  n, are called the bivariate Bernstein basis 
functions of  degree n. Notice that by the down recurrence~placing a one at the apex, 

Figure 5.45 A cubic triangular Bezier patch with its control polyhedron. Here the control points lie on a 
regular triangular mesh in the xy-plane, with the corner points raised to height z = 4. 



282 C H A P T E R 5 Bezier  Approximat ion and Pascal 's  Triangle 

reversing all the arrows, and collecting the blending functions at the base of the tetra- 
hedron--these bivariate Bernstein basis functions satisfy the recurrence 

Bijn+ l B n B n . k ( s , t ) - f l l ( S , t )Bn - l , j , k (S , t )+ f l2 ( s ,  t) i , j - l , k (S , t )+ f l 3 ( s , t ) i , j , k - l ( S ,  t) (5.36) 

The degree n triangular Bezier patch T(s,t) with control points {Pijk}, 
i + j + k = n, and domain triangle AQ1Q2Q3 can be written as 

T(s , t )  = ~i+j+k=nBijk(S,t)Pijk . (5.37) 

Typically we shall use the canonical triangle A = {(s,t) ls, t > 0 and s + t < 1} as 
our domain. For this triangle the barycentric coordinate functions are 131 = s, 132 = t, 
133 = 1 - s -  t, so the basis functions are given explicitly by 

Bijnk(s,t) = (g.k)sitJ(1 - s -  t) k i + j + k - n, 

n! (5.38) 

itjtkt 

To simplify our notation in the remainder of this section, we shall adopt this canoni- 
cal triangle as our domain and use these canonical basis functions as our blending 
functions. The proofs, however, do not change much for arbitrary domain triangles 
and arbitrary barycentric coordinates. Additional identities involving these bivariate 
Bernstein basis functions can be found at the end of this chapter. 

Many of the characteristic properties of Bezier curves extend to triangular Bez- 
ier patches. Triangular Bezier patches are affine invariant, nondegenerate, lie in the 
convex hull of their control points, and interpolate their comer points. These proper- 
ties follow easily from Equations (5.37) and (5.38) or more directly from de Castel- 
jau's tetrahedral algorithm. Moreover, the boundary curves of triangular Bezier 
patches are the Bezier curves determined by their boundary control points. For 
example, along the boundary s = 0, 

Bijnk(O,t) = 0 i ~ 0 

= ( j ) t  j (1 - t) n - j  i = O. 

Substituting into Equation (5.37), we find that 

n 
T(O,t) - ~,i+j+k=nBijnk(O,t)Pijk = ~ , B j  (t)Po,j,n_ j ,  

j=0 

which is the Bezier curve for the boundary control points Poon ..... P0n0--that is, the 
control points for which i = 0. Similar results hold along the boundaries t = 0 (j" = 0) 
and s + t = 1 (k = 0) (see Exercise 20). One property that does not extend from 
curves to triangular surfaces is the variation diminishing property. Just as with tensor 
product Bezier patches--and for much the same reasons- - there  is no known ana- 
logue o f  the variation diminishing property  f o r  triangular Bezier  patches.  

Standard algorithms for Bezier curves also extend readily to triangular Bezier 
patches. For example, the triangular arrays along the three lateral faces of the tetra- 
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hedral de Casteljau algorithm are the control points for the three surface patches that 
subdivide the triangular surface at the point T(s,t) (Exercise 12~see also Section 
6.5.1 for a simpler derivation). Moreover, the two-term degree-elevation formula for 
Bezier curves (Equation (5.17) extends to a three-term degree-elevation formula for 
triangular Bezier patches (Exercise 10)). 

Differentiating of the tetrahedral de Casteljau algorithm for triangular Bezier 
patches is very similar to differentiating of the pyramid algorithm for tensor product 
Bezier patches. To find p derivatives with respect to s and q derivatives with respect 
to t, differentiate any p levels of the algorithm with respect to smthat is, replace 
(1 - s - t) ~ -1, s ~ 1, t ~ 0 on p levels of the algorithmmthen differentiate any q 

levels (different from the previous p levels) with respect to t, and multiply the result 
by n!/(n - p -  q)!.  This algorithm works because it follows by induction from Equa- 
tion (5.36) that 

;) / l-s-, '0) k(S,t)  - | 1 7 4  
s s 

- v -  

n f ac to r s  

(see Exercise 18). Therefore, we can apply Equation (5.21) and the commutativity of 
discrete convolution to differentiate the basis functions {B. n (s,t)} ~jk 

Suppose now that we are given a triangular Bezier surface "P(s,t) with control 
points {Pijk }, i + j + k - n, and domain triangle AQ1Q2Q 3 and we want to construct 
another triangular Bezier surface R(s,t)  with control points {Rijk}, i + j + k = n, and 
domain triangle AQ1Q2~)3 that meets P(s,t)  continuously and matches its first r 
derivatives along the boundary parametrized by Q1Q2 (see Figure 5.46). For the sur- 
faces to meet continuously, the boundary curves must certainly be identical, so the 
control points along the common boundary, say, i = 0, must match. Thus we must 

have Pojk = Rojk. 
What about higher-order smoothness? We could try to compute cross-boundary 

derivatives to derive formulas for the location of the control points Rij k , i r O, but 
since, in general, the domain triangles need not line up with the coordinate axes, this 
computation is not so simple as the tensor product case. There is, however, a more 
straightforward way to proceed based on subdivision. If we apply de Casteljau's tet- 
rahedral algorithm to the patch P(s,t)  at the point Q3, then, since this algorithm is 
also a subdivision procedure, one of the triangular faces of the tetrahedron gives the 
control points for the surface P(s,t)  on the domain AQ1Q2Q3. Now this triangular 
patch certainly matches the original patch P(s,t)  smoothly, since it is the identical 
polynomial extended to the domain AQ1Q2Q3. But it is easy to show using our 
derivative algorithm that the first r partial derivatives and hence too the first r cross- 
boundary derivatives along the boundary i = 0 depend only on the control points Rij k, 

0 < i _< r (see Exercise 22). Thus we need only choose these control points to match 
the control points derived from the subdivision algorithm, and we will generate a 
surface that meets the original surface smoothly with r common derivatives across 
the common boundary; no derivative computations are ever required. This trick is 
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= R030 

Figure 5.46 Control points for two triangular cubic Bezier patches meeting across their common bound- 
ary with continuity of the first cross-boundary derivative: the domain is depicted on the left 
and the range is on the right. Shaded triangles sharing a common edge must be coplanar. In 
fact, Rio 2 = B1Poo 3 + B2P012 + B3Plo 2, where B1,B2,B 3 are the barycentric coordinates of Q3 
with respect to the domain triangle AQ1Q2Q 3. Similar identities must hold for the control 
points R111 and R120. 

essentially the same device we employed to match two Bezier curves smoothly at a 

common boundary point (see Section 5.6.2). We illustrate this result for continuity 

of the first cross-boundary derivative in Figure 5.46. 

There is another way to construct triangular Bezier patches that is quite similar 
in design to the de Casteljau algorithm for tensor product Bezier patches. Let {~jk} 
be a triangular array of control points. For i - 0 ..... n, define Pi(t) to be the Bezier 
curve of degree n - i for the control points ei ,o ,n- i  ..... Pi,n-i,O. That is, set 

n-i 
Pi( t) = ~ B~ -i (t)ei k n k i 

k=0 

Now define a point on the surface P(s,t) to be the value of the degree n Bezier curve 
P(s) for the control points Po(t) ..... Pn(t) (see Figure 5.47). That is, set 

12 
e ( s , t ) -  ~_~ B n (s)Pi(t) 0 < s,t < 1. 

i=0 

It is easy to verify that along the parameter lines s = 0, t = 0, t = 1 this surface 
interpolates the Bezier curves defined by the boundary control points. Indeed 

12 12 

P(O,t) - ~_~ B n (O)Pi (t) - Po(t) - Z B~ (t)Po,k,n_ k 
i=O k=O 

n t2 

P(s,O) = ZBn(s )Pi (O)= ZBn(s)ei ,o,n_i 
i=0 i=o 

( i - O )  

( j  - 0) 

n n 

P(s,1) - Z Bn (s)Pi(1) - Z Bn (s)Pi,n-i,O �9 
i=0 i=0 

(k-O). 
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P300 = P3(t) 

p 2 ( t ) ~  
P201 ~ f /  ~-P210 

l I p(s't) .P120 

PlO2 

Poo3 ~ - - -  _ ~  Po3o 

Po(t) / 

PO12 1" P021 

Figure 5.47 A schematic construction for a three-sided Bezier patch P(s,t). 

Moreover, along the boundary s = 1, the surface collapses to the point Pn(t)  = PnO0" 
Thus we have constructed a three-sided patch with the same boundaries as the trian- 
gular Bezier patch generated by de Casteljau's tetrahedral algorithm. But is this new 
triangular surface really the same as our original triangular Bezier patch? 

Yes and no! Point for point it is the same surface, but not parameter for parame- 
ter. That is, this construction generates the same triangular surface, but with a differ- 
ent parametrization. By the way, the analogous construction fails for triangular 
Lagrange patches; see Section 2.12, Exercise 8. 

The original triangular patch is parametrized by 

/ ' /  

T(s,t) = Ei+j+k=n(~.k)sitJ(1 - s -  t) k Pijk = E (n)siEj+k=n-i(n-ft)tJ(1- s -  t) k Pijk" 
i=0 

Multiplying and dividing the ith term by ( 1 -  s) n - i  , we can rewrite this parametriza- 
tion as 

n ( l_~s lJ ( l_s_ t )n - i - J  T(s,t) - E (n) si (1 - s)n-iEj+k=n_i(n-fi ) Pij'k" 
i=0 1- s 

Now if we let u = t/(1 - s), then 1 - u - (1 - s - t)/(1 - s) and 

n 

T(s,t) - E (7) Si (1 - S) n-i Ej+k=n_i(n-f i)u j (1 - u) n-i-j Pijk" 
i=0 



286 C H A P T E R 5 Bezier Approximation and Pascal's Triangle 

Setting Pi(u) = Zj+k=n_i(n-f i)u j (1 - u) n-i-j  Pijk, we arrive at 

n 

T(s,t)= EBn(s)Pi(u). 
i=0 

(5.39) 

By construction, the curve Pi(u) is the Bezier curve with control points 
ei,o,n-i ..... ei,n-i,O. Thus the triangular patch T(s,t) generated by de Casteljau's tetra- 
hedral algorithm is point for point the same as the patch depicted schematically in 
Figure 5.47. But the parametrization is different, since in the surface P(s,t), we set 
u = t rather than u = t/(1 - s). In fact, our new construction for the triangular patch 
P(s,t) is really a tensor product construction, since the domain is not the triangle, but 
the unit square. The transformation s = s, u = t / (1 -  s) maps the canonical triangle 
into the unit square, although there is a singularity along the edge s = 1. This singu- 
larity shows up on the surface as a singularity at the point PnO0. This surface singu- 
larity is not essential; it is an artifact of our artificial tensor product parametrization. 

Algorithmically, we can apply Equation (5.39) to compute points along a trian- 
gular Bezier surface using only the univariate version of de Casteljau's algorithm 
(see Figure 5.48). Notice how similar this algorithm is to the algorithm for comput- 
ing points along a tensor product surface (see Figure 5.40). Indeed, we could make 
this algorithm look exactly the same as the de Casteljau algorithm for tensor product 
Bezier surfaces by degree raising the curves Pi(u). 

Both the de Casteljau algorithm and the pyramid algorithm are O(n3). Neverthe- 
less, the triangular version of the de Casteljau algorithm is generally faster than the 
pyramid algorithm. The triangular de Casteljau algorithm has 

n(n + 1)/2 + ~,kk(k + 1)/2 

T(s,t) 

,_s,J l_s,J 
J J 

Po(~) Pl(u) 

* * PIO1 PllO 

/ N / N 
Poo2 Po~l Po2o 

P 2 ( " )  = e2oo 

Figure 5.48 A tensor product algorithm for computing points along a quadratic triangular Bezier patch. 
Here u = t / ( 1  - s). If u = t, this triangular version of the de Casteljau algorithm generates the same surface as 
the pyramid algorithm, but with a different parametrization. Compare to Figure 5.40. 
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nodes, and each node requires two multiplications. Therefore, this de Casteljau algo- 
rithm requires a total of n(n + 1) + ~kk(k  + 1) multiplies. But by Exercise 9 

nrk+l n (n+l ) (n+2)  
Z ~ , 2 )  = 

k=l 6 

Therefore, 

number of multiplications in the triangular de Casteljau algorithm = n(n + 1)(n + 5). 
3 

tk+l On the other hand, the tetrahedral algorithm has ~k ~, 2 ) nodes, and each node 
requires three multiplications. Therefore, 

number of multiplications in the tetrahedral algorithm = n(n + 1)(n + 2). 
2 

Since (n + 5)/3 < (n + 2)/2 for n > 4, the triangular de Casteljau algorithm is 
generally faster than the tetrahedral algorithm, although for the most common trian- 
gular surfaces, namely, cubic patches, n = 3 and the tetrahedral algorithm is slightly 
faster. Near s = 1 the triangular de Casteljau algorithm is unstable, but we can over- 
come this problem by reversing the roles of s and t near s = 1. 

Moreover, just like the tensor product de Casteljau algorithm for rectangular 
patches, the triangular de Casteljau algorithm for triangular patches has another 
advantage over the pyramid algorithm that is even more substantial. If we render the 
surfaces by generating points on the surface along isoparameter l ines~that  is, along 
lines of constant u~ then  we can reuse the computation of the points Po(u) ..... Pn (u). 
Thus along isoparameter lines, de Casteljau's algorithm for triangular Bezier sur- 
faces reduces to the univariate version of de Casteljau's algorithm, which is only 
O(n2). No such reduction occurs for the pyramid algorithm for triangular patches 
along isoparameter lines. 

Finally, notice that we can differentiate the triangular de Casteljau algorithm q 
times in t by differentiating any q levels (the u levels) in each of the n lower triangles 
(see Figure 5.48) and multiplying the result by n! / (n -q) ! .  That this algorithm 
works is an immediate consequence of the corresponding differentiation algorithm 
for Bezier curves discussed in Section 5.6.2. We cannot, however, differentiate this 
algorithm p times with respect to s by differentiating p levels of the upper triangle 
because u = t / (1-  s), so s appears as well in the lower triangles. To get around this 
problem, we can, if we like, simply reverse the roles of s and t. 

Exercises 

1. Prove that there are (gk) = n!/i!ilk! paths between the apex and the point 
Pijk at the base of a tetrahedron with n levels. 

2. Prove that 

a. Zi+j+k=nBijnk(s,t)= 1. 

b. Zi+j+k=n(-1)i+J Bijk(S,t) = ( 1 - 2 s - s t )  n. 
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c. Every triangular Bezier patch lies in the convex hull of its control points. 
(Hint: Use part (a).) 

3. What are the up and down recurrences for the bivariate Bernstein basis 
functions? 

4. a. Prove that the bivariate Bernstein basis functions {B~k(S,t)} form a basis 
for the bivariate polynomials of degree n. 

b. Conclude that triangular Bezier patches are nondegenerate. 

(Hint: Consider Bijnk (s,t) /(1 - s - t) n .) 

5. Give necessary and sufficient conditions on the control points for a triangu- 
lar Bezier surface to collapse to 

a. a single point 

b. a line 

c. a plane 

Justify your answer. 

6. Let P(s,t) be a triangular Bezier patch with control points{Pijk}, 
i+j+k=n. 

a. Develop an algorithm to determine whether or not P(s,t) represents a 
polynomial patch of degree n -  1. 

b. If P(s,t) degenerates to a polynomial surface of degree n - 1, develop an 
algorithm to find the control points { Qa/3~,}, a +/3 + ~'= n - 1, that repre- 
sent P(s,t) as a Bezier surface of degree n - 1 from the control points 
{P/jk}, i + j + k = n, that represent P(s,t) as a Bezier surface of degree n. 
(Hint: Compare to Section 5.6.2, Exercise 10.) 

7. Let {Pijk} be the triangular array of points generated from the de Casteljau 
algorithm for Bezier curves applied to the control points Qh, h = 0 ..... n, at 
some fixed parameter t. What is the triangular Bezier patch generated by 
the tetrahedral de Casteljau algorithm applied to the control points {Pijk}? 

8. Let B[Pij k ](s,t) denote the triangular Bezier patch with control points {Pijk }" 
Show that triangular Bezier patches have the following symmetry properties: 

a. B[Pji k ] ( s , t )  - B[Pij k ] ( t , s )  

b. B[Pikj](s,t ) -  B[Pijk](S,l- s -  t ) 

c. B[Pkj i ](s,t) - B[Pij k ](1 - s - t,t) 

9. Prove by induction that 

a. n~k+l n ( n + l ) ( n + 2 )  
Z~,2 ) -  

k=l 6 

b~ ~ tp+k ~n+p+l 
k=l~P+l) - ~ p+2 ) 
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10. Show that 

a. sBi jk (S , t  ) - i + 1 Bn+l  
n + 1 i+l,j,kl, S,t) 

b. tB~k(S , t  ) - j + 1 o n + l  ( s , t )  
n + 1 ~ 

k + 1 
c. (1 - s -  t ) B ~ k ( S , t  ) - Dn+l 

n + 1Di'j'k+l (s,t) 

d. Bijnk(S,t) - i + 1 Bn+l  j + 1 o n + l  k + 1 o n + l  
n + l  i+l'j'k(S't)+ ~ ~ 

n + l  n + l  

e. Conclude that for triangular Bezier patches the degree-elevation formula 
is 

i j k 
Qijk - ~ P i - l , j , k  + P i , j - l , k  + ~ P i , j , k - l  " 

n + l  n + l  n + l  

11. Prove that the control polyhedron generated by the degree-elevation for- 
mula in Exercise 10 converges to the original triangular Bezier patch. 

12. Use a three-color urn model and sampling with replacement to derive the 
following identities using probabitistic arguments: 

j k 
a. Bijk(SU, S v + t) - E E Bi,j_q,k_r(u,P v)Bpqr(S,t) 

q=0r=0 

i k 
b. Bijnk(tU + s, tv)  = ~ ~ Bi_p,j,k_r(U v)Bpqr(S,t ) 

p=0 r=0 

j i 
c. Bijnk((1-  s -  t )u  + s,(1- s -  t )v  + t) - E E Bri-p,j-q,k (u,v)Bpqr(S,t) 

q=0 p=0 

d. Use these identities to prove that the triangular arrays along the three lat- 
eral faces of the tetrahedral de Casteljau algorithm are the control points 
for the three surface patches that subdivide the triangular Bezier surface 
at T(s , t ) .  

13. Implement the de Casteljau subdivision algorithm for triangular Bezier 
patches described in Exercise 12. 

a. Explain why this subdivision algorithm is not an effective tool for ren- 
dering triangular Bezier patches. (For a more effective tetrahedral subdi- 
vision algorithm, see Section 6.5.1, Exercise 15.) 

b. Does this subdivision algorithm converge to the original triangular Bez- 
ier patch? 

14. Describe how to use the tensor product construction for a triangular Bezier 
patch to subdivide the patch. Explain why this subdivision procedure is 
superior to the subdivision procedure generated from the pyramid algo- 
rithm. 
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15. Implement the recursive subdivision algorithm for triangular Bezier patches 
described in Exercise 14. Apply this algorithm to 

a. render a triangular Bezier patch 

b. intersect two triangular Bezier patches 

~9P+qT 
16. Let T(s,t)= Zi+j+k=nBijnk(s,t)Pijk, and let T(P'q)(s,t)- 

~sP~t q 

a. Show that 

T(I'0)(0, 0) = n(P1,0,n-1 - POOn) and T(0'I)(0, 0) - n(Po,l,n-1 -POOn)" 

b. Conclude that the normal vector at T(0,0) is parallel to the vector 

(e0,1,n-1 - eoon) x (el,0,n-1 - eoon)" 

c. Find the normal vectors at T(0,1) and T(1,0). 

17. Define the convolution of two triply indexed arrays of functions 
A(s,t) = {Aijk(S,t) } and B(s,t)= {Bpqr(S,t) } by setting 

(A | B)aflT(s,t) = ~i+p=a]~j+q=fl~k+r=?,Aijk(S,t)Bpqr(S,t). 

Now introduce the following indexing scheme: 

Function Index 

s (1,0,0) 

t (0,1,0) 

1 - s -  t ( 0 , 0 , 1 )  

B~k ( s, t ) ( i,j,k) 

a. Show that with this indexing scheme 

lls' ;lO (is, ;I 
J 

Y 

n factors 
b. Use part (a) to derive the differentiation procedure for the pyramid algo- 

rithm presented in the text. 

18. Implement both de Casteljau's algorithm and the pyramid algorithm for tri- 
angular Bezier surfaces. Which algorithm do you prefer? Why? Experiment 
with triangular Bezier surfaces of different degrees. Determine how chang- 
ing the location of the control points affects the shape of the surface. 

19. Develop an O(n 2) ladder evaluation algorithm for triangular Bezier patches. 

20. Consider a degree n triangular Bezier patch T(s,t) with control points {Pijk }, 
i + j + k = n .  
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a. Show that the curve corresponding to the boundary t = 0 is given by the 
degree n Bezier curve for the boundary control points {P/jk } with j - O. 

b. Show that the curve corresponding to the boundary s + t = 1 is given by 
the degree n Bezier curve for the boundary control points {P,ik} with 
k=O.  

21. Show directly from de Casteljau's tetrahedral algorithm that the boundaries 
of a triangular Bezier patch are the Bezier curves determined by the bound- 
ary control points. 

22. Let P(s , t )  be a triangular Bezier patch with control points {Pijk }. Show that 
the first r partial derivatives across the boundary i = 0 depend only on the 
control points Pijk , 0 < i < r . 

23. Show that 

a. = n~ i _ l , j , k ( S , t ) -  i , j ,k-1 
as 

b. ~Bij k f Bn -1  n-1 
- Bi , j ,k_  1 t)} ~t - n~ i , j _ l , k ( S , t ) -  (s, 

c. Conclude that the function Bi jk (s , t )  is unimodal in (s,t)  and takes on its 
maximum value at (i / n, j / n). 

d. Prove the recurrence 

Bijk (S,t  ) _ n-1 Bn -1  n-1 n sBi_l , j ,  k (t)  + t i , j - l , k  (t) + (1 - s - t )B i , j , k_  1 ( t ) .  

e. Conclude that the functions {Bi jk(s , t  ) } are unimodal in (i , j ,k).  

24. Let A 2 = {(s,t) I 0 _ s , t  and s + t _< 1}. Using the results in Exercise 23(a) 
and (b), show that 

1 D .  n. (or, T ) d crd r 
o~J~ (n + 1)(n + 2)" 

25. Let 

T ( s , t ) -  Y_.i+j+k=nBijk(S,t)Pij.k 

be a triangular Bezier patch of degree n, and let 

Tlno01 ( s, t ), T(~{-O 1 ( s, t ), T(~6-11 ( s, t ) 

denote the three values computed by the pyramid algorithm on the penulti- 
mate level just below the apex of the pyramid. Show that 

a. T ( s , t )  - STlno01 (s , t )  + tT(~lO 1 (s , t )  + (1 - s - t ) T ( ~  1 (s , t )  

~ T  
b. 

bs 

bT 
C. 

bt 
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d. Conclude that to compute point values and normal vectors at any point 
on a triangular Bezier patch of degree n by the pyramid algorithm costs 

n(n+l)(n+2) 
+2 

2 

multiplications and one cross product. 

e. How does the result in part (d) compare to computing point values and 
normal vectors at any point using the triangular version of the de Castel- 
jau algorithm? 

26. Show that 
n-i 

- B n .  �9 . ( s , t )  a. Bn(s) Z l,J,n-l-J 
j=0 

n- j  
b. B j ( t )=  2 n Bi, j ,n-i- j (s , t )  

i = 0  

m+n m+i-j (P)(q](m+n-p-q 
, 'm- i+j-q  ) tlm+n (S,t) m n 

C. B i (s)Bj (t) = Z ~ (m+n "-'pqr 
p=i q=j , n ) 

d. Conclude that every tensor product surface of bidegree (m,n) can be rep- 
resented as a triangular Bezier patch of degree m + n. 

27. Show that 

a. ~i+j+k=nBijnk(s,t)xi y j = { ( 1 - s - t ) +  sx + ty) } n 

b. ~,i+j+k=nBijk(S,t)eiXe jy = { (1 - s - t) + se x + te y) }n 

28. Show that 
n 

a. Bijk(S,t)= ~ n~(-1)i+j+P+q(P)(q)(pqr)sPtq 
p=i q=j 

n n-p 
b. (g.k)sit j = ~., ~., (P)(~)Bpqr(S,t) 

p=iq=j 

29. Show that 

O < i + j < n  

n n-i 
(sx +ty+ l)n = Z 2 ( x  + l ) i (y+ l)JBijk (s't)" 

i=0 j=0 

30. Show by example that the number of intersections of a line with a triangular 
Bezier patch can be greater than the number of intersections of the line with 
its control polyhedron. Conclude that triangular Bezier patches do not sat- 
isfy this version of the variation diminishing property. 
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When we studied Lagrange interpolation, we observed that many common surfaces 
such as the sphere and the torus cannot be represented exactly by polynomial param- 
etrizations. As with nonpolynomial curves, we could approximate these surfaces 
with polynomials using a bivariate version of the Weierstrass Approximation Theo- 
rem. Unfortunately, as with curves, often we would need to use polynomials of quite 
high degree to generate a good approximation. 

The sphere, however, like the circle, has a rational parametrization; in fact, we 
observed in Chapter 2 that the sphere has different rational parametrizations, and we 
explicitly provided two distinct parametrizations. 

�9 Quadratic parametrization of the sphere 

2s 2t 1 - s 2 - t 2 
x - 1 +  s 2 + t 2 Y - 1 +  s2 + t2 z - 1 +  s2 + t2 (2 .27)  

Biquadratic parametrization of the sphere 

2s(1 - t 2) 2t(1 + s 2)  (1 - s 2)(1 - t 2) (2.28) 
x -  y -  z -  

(1 + s 2)(1 + t 2) (1 + s 2)(1 + t 2) (1 + s 2)(1 + t 2 ) 

Thus we need to introduce the notion of a rational Bezier surface to represent the 
sphere exactly. 

A rational Bezier surface in affine space, like a rational Bezier curve, is the pro- 
jection of a polynomial Bezier surface from Grassmann space. Thus rational Bezier 
patches can be introduced by associating a scalar weight wij (or wijk) with each con- 
trol point P6 (or P6k)" This approach leads to the following explicit formulas for 
rational triangular and rational tensor product Bezier patches. 

�9 Rational triangular Bezier representation 

Z WijkPijkBijnk (s't) 

R(s,t) - i+j+k=n 0 < s,t and s + t < 1 (5.4o) 
Z WijkBijnk (s't) 

i+j+k=n 

Rational tensor product Bezier representation 

m /7 

Z w fktB ' (s)Bf (t) 
R(s,t) = k=01=0 

m /7 

wktB ' (s)Bp (t) 
k=01=0 

0 < s,t < 1 (5.41) 

For example, we can represent the sphere in rational tensor product Bezier form 
by considering the biquadratic parametrization given in Equation (2.28). To find the 
weights, we express the denominator (the mass) in terms of the Bernstein basis by 
observing that 
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(1 + s2)(1 + t 2) = (B~(s)+ B?(s)+ 2B~(s))(B~)(t)+ B?(t)+ 2B2 (t)) 

2 2 
: z zw,j~?(s>~J( ,> .  

i=o j=0 

Comparing coefficients, we can read off the weights 

/i 1 i/ wij= 1 " 
2 

Similarly, to find the control points, we must express the numerators of x,y,z in 
terms of the bivariate Bemstein basis. To find the x-coordinates of the control points, 
observe that 

2s(1- t  2) - (B2(s )+  2B2(s))(B2(t)+ B2(t)) 
SO 

/i ~ ~ ( w ~ i e i i )  ~ = 1 

2 

Similarly, 

2t(1 +s 2) - (B? ( t )+  2B2(t))(B~(s)+ B?(s)+ 2B2(s)) 

SO 

Finally, 

0 1 2  

(wijPij)Y- 0 1 2  
0 2 4  

~ - s ~ o - , ~ -  (.~ ~s~ + .~ ~s~)(.~ ~,~ + .~ ~,~) 
SO 

/110 ~ ( w ~ i P i j )  z - 1 . 

0 

Now using the weights computed above, we can easily solve for the coordinates of 
the control points. 

As with rational Bezier curves, typically all the weights are chosen to be positive to 
avoid singularities, but zero and negative weights are permitted and sometimes, as we 
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have seen with curves, are even necessary to represent certain surface patches exactly. 
Like rational Bezier curves, the effect of increasing the weights on a rational Bezier sur- 
face is rather benign. Negative weights, however, may introduce singularities even if we 
restrict the parameter domain, so negative weights are generally avoided. 

Rational Bezier surfaces with positive weights share many of the geometric 
properties of standard Bezier surfaces. They are affine invariant, nondegenerate, lie 
in the convex hull of their control points, and interpolate the rational boundary 
curves determined by their boundary control points. These results follow easily from 
Equations (5.40) and (5.41). 

Typically algorithms for polynomial Bezier patches carry over directly to algo- 
rithms for rational Bezier patches because generally we can apply these algorithms 
separately to the numerator and denominator. For example, we can evaluate points 
along a rational Bezier patch by applying the pyramid algorithm independently to 
the numerator and denominator. Similarly, change of basis algorithms can be applied 
separately to the numerator and denominator. Therefore, the algorithms for degree 
elevation and subdivision can be computed by applying these algorithms on the 
mass-points (wijPij,wij) {(WijkPijk,Wijk)} and then dividing the results by the masses. 
One algorithm that cannot be applied in this way is the algorithm for differentiating a 
Bezier surface because the derivative of a quotient is not equal to the quotient of the 
derivatives, so here we must proceed recursively in a manner similar to our approach 
in Section 5.7.1 for differentiating rational Bezier curves. 

Exercises 

1. What is the effect on a rational Bezier surface if one of the mass-points has 
zero weight? 

2. Experiment with altering the weights in a rational Bezier surface. 

a. What are the local and global effects of altering a single weight? 

b. What is the effect of a negative weight? 

c. What happens if all the weights are changed simultaneously? 

3. a. Which part of the sphere does the Bezier representation given in the text 
represent? 

b. Use the results in the text together with de Casteljau's algorithm to render 
the sphere. 

4. a. Find the Bezier control points and the Bezier weights for the sphere 
given by the quadratic parametrization in Equation (2.27). 

b. Which part of the sphere does this Bezier patch represent? 

c. Use the results of part (a) together with the pyramid algorithm to render 
the sphere. 

5. Recall from Section 2.14, Exercise 5, that the torus with inner radius d -  a 
and outer radius d + a has the biquadratic parametrization 
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d(1 + s 2 )(1 - t 2 ) + a(1 - s 2 )(1 - t 2 ) 
X - -  

( l + s 2 ) ( l + t  2) 

2d(1 + s 2)t + 2a(1-  s 2)t 
y -  

( l + s 2 ) ( l + t  2) 

2as(1 + t 2) 
Z - -  

( l + s 2 ) ( l + t  2) 

a. Find the Bezier control points and the Bezier weights for the torus given 
by this biquadratic parametrization. 

b. Use the results of part (a) together with de Casteljau's algorithm to render 
the torus. 

6. Let x - f ( s ) ,  z - g(s) be a curve in the xz-plane. Recall from Section 2.14, 
Exercise 6, that the surface of revolution generated by rotating this curve 
around the z-axis can be represented by the parametric equations 

(1-  t z ) f ( s )  2tf(s) ( 1 + t2)g(s)  
x - t2 , y = t2 z = 2 " 1+ 1+ l + t  

a. Use this parametrization for a surface of revolution to generate rational 
s 

parametrizations for the right circular cylinder and right circular cone by 
rotating a line about the z-axis. 

i. Find the triangular Bezier control points and the Bezier weights for 
the cylinder and cone given by these parametrizations. 

ii. Use the results of part (i) together with the pyramid algorithm for tri- 
angular Bezier patches to render the right circular cylinder and right 
circular cone. 

b. Use this parametrization for a surface of revolution to generate rational 
parametrizations for the sphere and the torus by rotating a circle about 
the z-axis. 

i. Find the triangular Bezier control points and the Bezier weights for 
the sphere and the torus given by these parametrizations. 

ii. Use the results of part (i) together with the pyramid algorithm for tri- 
angular Bezier patches to render the sphere and the torus. 

7. Let R(s,t) be a rational Bezier surface (triangular or rectangular) with con- 
trol points (whPh,wh).  Let Wg increase and hold w h fixed for h ~ g. 

a. Show that l i m w g ~ R ( s , t )  = R(s,t) if (s,t) is a comer point of the domain. 

b. Show that l imwg~,R(s , t )  = Pg if (s,t) is not a comer point of the domain. 

c. Conclude that the limit surface is a disconnected collection of points. 

d. What does the limit surface look like if several weights are allowed to 
increase simultaneously? 
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5.9 

8. Let Bg(s,t), g ~ G, be a collection of Bernstein basis functions, either trian- 
gular or rectangular, and let {Wg }, g ~ G, be a collection of nonzero scalar 
weights. Define 

wgBg(s,t) 
Rg(s,t)- EWhBh(S,t) 

h~G 

, g ~ G .  

Show that these functions behave like rational Bernstein basis functions. In 
particular, show that 

a. EgeGRg(s,t)= l 

b. R(s, t)-  Eg~GRg(s,t)Pg 

9. Let R(s,t) be a rational Bezier surface (triangular or rectangular) with con- 
trol points (WhPh, Wh). What is the effect on the surface if the weight woo 
(Woo n) is zero and the corresponding control vector is also the zero vector? 
(Hint: Compare to Section 5.7, Exercise 15.) 

10. Let R(s,t) be a rational Bezier surface with control points (WhPh,Wh). 
Define 

P(s,t) - ~-~h Bf (s,t)WhP h and w(s,t) - ~-~h B~ (s,t)Wh, so that R(s,t) = 

Prove that 

• f  P(s,t)dsdt 
domain 

~ w( s, t )dsdt 
domain 

= center mass of { (WhPh,W h) }. 

P(s,t) 
w(s,t) 

Summary 

Bernstein/Bezier approximation is an extremely rich theory, which can be approached 
from many different analytic perspectives: dynamic programming procedures (the de 
Casteljau algorithm), Bernstein basis functions (explicit expressions and recursive 
formulas), the binomial theorem (generating functions), probability theory (the bino- 
mial distribution), conversion to monomial form (division by ( 1 -  t)n), and discrete 
convolution. Geometric constructions like subdivision also lead to rich and often 
unexpected results, including the variation diminishing property (comer cutting), ren- 
dering and intersection algorithms (divide and conquer), and methods for smoothly 
joining together Bezier curves and surfaces (extrapolation). 

Although any one of these techniques may be powerful enough to develop the 
entire Bernstein/Bezier canon, we have purposely avoided consistently adopting any 
one particular method in order not to impoverish the theory. Rather, in each instance 
we have tried to select the specific approach most suitable to the problem at hand. 
Each of these techniques may be a jumping-off point for a new class of curves and 
surfaces and a new line of investigation. Certain formulas~such as the two-term 
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degree elevation formula (Polya polynomials, Section 5.5.4.2, Exercise 12) and the 
two-term differentiation formula (B-splines, Chapter 7)--can also be taken as the 
starting points for the constructions of new approximation schemes. 

In the next chapter we shall introduce yet another powerful approach to the anal- 
ysis of Bernstein/Bezier curves and surfaces: dual functionals, embodied by blos- 
soming or polar forms. At first, this very richness of the theory may seem 
overwhelming, but it is well to keep in mind when approaching new problems that a 
variety of attacks are possible and there are many weapons in our arsenal. Below we 
summarize these analysis techniques, collect in one place the standard properties of 
and algorithms for Bezier curves and surfaces, and then list as well a collection of 
useful identities for the univariate and bivariate Bernstein basis functions. 

�9 Tools for Analyzing Bezier Curves and Surfaces 

1. De Casteljau algorithm 

�9 Pascal's triangle and paths arguments 

�9 Induction + recursion 

2. Bernstein basis functions 

�9 Properties of Bemstein polynomials ~ properties of Bezier curves 
and surfaces 

3. Binomial theorem 

�9 Generating functions 

4. Binomial distribution 

�9 Probability theory 

5. Conversion to monomial basis 

�9 Divide by ( l - t )  n 

6. Subdivision 

�9 Divide and conquer 

�9 Rendering and intersection algorithms 

7. Discrete convolution 

�9 Commutativity 

�9 Differentiation 

8. Dual Functionals 

�9 Blossoming (Chapter 6) 

Properties of Bezier Curves and Surfaces 

1. Polynomial 

2. Affine invariant 

3. Convex hull 

4. Symmetry 

5. Interpolation at boundaries 
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6. Nondegenerate 

7. Variation diminishing (curves only) 

Algori thms for  Bezier  Curves and Surfaces 

1. Evaluation 

2. Subdivision 

3. Differentiation 

4. Conversion to and from monomial form 

5. Degree elevation 

6. Blossoming (Chapter 6) 

5.9.1 Identities for the Bernstein Basis Functions 

1. Definitions 

a. Bf (t) - (~)t k (1 - t) n-k  

n! 
- 

k!(n-k)! 

b. Bij~(s, t)  - ( g k ) ~ i t J ( 1 -  s -  t) ~ 

n! 
(gk ) - i! j! k---~. 

2. Nonnegativity 

a. B~ (t) > O O < t < l  

b. Bijnk(s,t) > 0 

3. Symmetries 

a. B~ (t) = Bnn_k (1 - t) 

b. Bijnk (s,t) - Bjn.k (t,s) 

c. Bijnk(s,t) - B ~ j ( s , 1 -  s -  t) 

d. Bijnk(s,t) = B~.i(1-  s -  t,t) 

O < k < n  

i + j + k = n  

O < s , t  and s + t < l  
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4. C o m e r  values 

a. B (0)=0 k 

= 1  k - 0  

b. B ~ ( 1 ) = 0  k e n  

= 1  k - n  

C. Bijnk ( O, O ) = 0 k g: n 

= 1  k = n  

d. Bijnk (1, O ) - 0 i :/: n 

= 1  i - n  

e. B/~k(0,1 ) - 0  j r n 

= 1  j = n  

5. Bounda ry  values 

a. Bijnk ( S, O ) = 0 j :/: 0 

= Bn(s)  j = 0 

b. t ) - 0  i r  

= B]( t )  i =  0 

n c. Bi jk(S,1-  s) = 0 k :/: 0 

8n  (s) k - 0 

6. M a x i m u m  values 

a. Max{B~r (t) } occurs  at t = k / n 

b. Max{B/~ k (s, t) } occurs  at s = i / n, t - j / n 

7. Parti t ions of  uni ty 

n 

a. ~ , B ~ ( t )  = 1 
k=0 

b. ~,i+j+k=n Bijnk(s,t) = 1 

8. Al ternat ing sums 

n k 
a. E ( - 1 )  B~(t)  - (1 - 2t) n 

k=0 

b. ~,i+j+k=n(-1) i+j Bijnk(s,t) = ( 1 -  2 s -  st) n 



5.9 Summary 3 0 1  

9. Representation of monomials 

n k n 
a. (~ )t j = Z (j )Bk (t) 

k=j 

n n - p  n 
b. ( q k ) S  i t j  = ~. ~. ( P ) ( q ) B p q r ( S , t )  

p=i  q = j  

10. Representation in terms of monomials 
n 

a. B~.(t) = E(-1)J-k(J~)(j)t j 
j=k 

n n-p 
b. Bijk(S,t ) Z Z (-1)i+j+p+q(p q n n _ )(j )(pqr)sPt q 

p=i q=j 

11. Conversion to monomial form 

O < j < n  

O < i + j < n  

?l 

a. Bk(t)  =(~)uk  

( l - t )  n 

b. B f  (t) _ (n)un_ k 
- k t n 

c. B i~( s , t )  _ ( n  
(l _ s _ t)n iJ k )ui vj  

d. Bijk(S't) 
s ~ = (~k) u~vJ 

e. B~ k(s ' t)  _ ( n  
tn - ijk)uiv k 

12. Linear independence 

n 

U - -  

U - -  

1 - t  

1 - t  

1 - s - t  1 - s - t  

U -- 

s 
U - -  

t 

1 - s - t  t 

s s 

, V - -  

1 - s - t  

a. Z CkB ~(t) = O r c k = O for all k 
k = 0  

b. ~,i+j+k=nCijkBqk(S,t) = 0 r C6k - 0 for all i , j , k  

13. Descartes' Law of Signs 

a. Zeros in (0,1) kB~(t) < sign alternations Ic 0 ..... Cn} 

b. No known analogous formula exists for bivariate Bemstein bases. 
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14. G e n e r a t i n g  f u n c t i o n s  

/7 

a. ~_~ B~ ( t )x  k = {(1 - t) + tx) }n 

k=O 

n 

b. ~_~ B~ (t)e ky - { (1 - t) + te y) }n 
k=O 

C. Z i + j + k = n  Bij nk (s ' t )x i  y j  = { ( 1 -  s - t) + sx + ty) }n 

d. ~_~i+j+k=nBijnk(s,t)eiXe jy - { (1 - s - t) + se x + te y) }n 

15. R e c u r s i o n  

a. B~ (t) = tB~-~ (t) + (1 - t)B~ -1 (t) 

b. Bijk(S,t ) - n-1 tBn-1 t~Bn-1 n sBi_l,j, k (s,t)  + ,  i , j - l ,k  (s,t)  + (1 - s - ) i,j,k-1 (s,t)  

16. D i sc r e t e  c o n v o l u t i o n  

a. {B n (t) ..... B n (t) } = { (1 - t),t} |  | { (1 - t),t} 

1 - s - t  

S 

17. U n i m o d a l i t y  

n factors 

�9 . ( 1 - s - t  

;I 
n factors 

a. B(k , t )  = B~ (t) is u n i m o d a l  in k 

b. B ( i , j , k , t )  = Bijnk(s,t) is u n i m o d a l  in i,j,k 
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18. Subdivision 

n 

a. B n (rt) - 2 Bi k (r)B~ (t) 
k=i 

i 
- Bn-k ( r )B~( t )  b. B n ((1-  t)r + t) ~. i -k  

k=O n{ } 
c. B n ((1 - t)r + ts) - ~, ~-,p+q=i Bp -k  (r)Bkq (s) B~ (t) 

k=O 
j k 

d. Bijnk(su, sv + t ) =  ~, ~., BiPj_q,k_r(.,U)Bpqr(S,t ) 
q=O r=O 

i k 
e. Bijk(tU + s, tv) - 2 ~, Bq_p,j,k_r(U,V)Bpqr(S,t) 

p=O r=O 

j i 
f. B i j n k ( ( 1 - s - t ) u + s , ( 1 - s  t ) v + t ) -  ~, ~, r - Bi_p,j_q, k (u, v)Bpq r (s,t) 

q=O p=O 

g. Bijk((1 - s -  t)u 1 + sv 1 + tWl,(1- s -  t)u 2 + sv 2 + tw2) 

Ep+q+r:n A(Ul,U2, Vl, v2, Wl, w2 )Bpqr (s,t) 

A(Ul,U2,Vl,V2,Wl,W2) 

- ~,a+b+e=i ~,b+d+f=j Babc (Ul, u2)Bffef (Vl, v2)Bqhl(Wl, w2) 

19. Partial derivatives 

a - 

dt 
p n b. d Bk n! P 

- Z ( - 1 )  p - j ( p  ~ - P  - )Bk_ j (t) 
dt p ( n -  p)! j=o 

asg~ nr, Bn_ 1 ~-1 c. - ( s , t )  (s ,  t)s - [ i-l , j ,k - Bi,j,k_ 1 t)} 

d. OBij k nIBn-li n-1 
= Bi,j,k_ 1 (s, t)} Ot [ i '~ - l ' k (S ' t ) -  

e. ~P+q Bqk 

OsPOt q 

n! P q 
= Z Z (-1)  p+q+a+fl(paatq a ~ n - p - q  (S,t) 

�9 J~flJL'i-ot,j-fl,k+a+fl-p-q (n - p - q)' a=Ofl=O 
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20. Directional derivatives 

a. Du{B~k(s,t)} 

_ _ + B n - 1  . _ + n - 1  n{ulBn_-llj,k(S,t) u 2 i,j-l,kl, S,t) (u 1 u 2)Bi,j,k_ 1 (s,t)~ 1 

b . D  m ~ ( s , t )  = 
k ( n - m ) !  

{~a=Ofl=O~(-1)m-a-~(~y)uFufl2(Ul+U2)m-a-~Bin-a'J'-~'k-y(s't)} 

D u denotes the mth directional derivative in the direction u = (u 1,u2). 

21. Integrals 
is 1 n+l 

a. Bff ('c)dT - E R n + l ( t )  --j 
n + 1 j=k+l 

1 1 
b. It B; (r)dT = ~ E'-'JRn+l (t) 

n + l  j=0 

Bk (r)d~: = n + 1 

i+k+l 
Bn+l d. Bijk ( ~ ' t ) d ~ = ~  E h,j,i +k+l-h(s't) 

n + 1 h=i+l 

f" Io- t B ijnk ( cr' t ) d cr = ~n +1 1 o jR n + l ( t ) 

j+k+l 
t n 1 Bn+l 

g" IoBijk ( s ' ' g ) d ' C - ~  E i,h,j+k +l-h(s't) 
n + l  h=j+l 

J 
h. I~-SBijnk(s,T)dT : 1 ~ '  on+l 

hJ~O~ -h (s't) n + l  = 

i. Io -s n Bijk(S,,c)d.c= 1 Bn+l(s ) 
n + l  

1 
J. IIA2 Bqk ((y,'c)d(ydT = 

(n + 1)(n + 2) 

i 
1 ~ ,  B n + l  

n + 1 hZ~ 0 h,j,i+k+l-h (s,t) ~ --t n 
e. Bijk (cr, t)dcr - 
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22. Degree elevation 

a.  (1 - t)B~ (t) - n + l - k  n+l 
B k (t) 

n + l  

b. tB~ (t) - k + 1Dn+l (t) 
~ 

n + l  

on n + 1 - k on+l c. (t) (t) Ok + D k 
n + l  

k + l  n+l 
Bk+l (t) 

n + l  

d. SBgk(S,t) - i+ 1 Bn+l 
n + 1 i+l,j,k(S,t) 

e. tB; (s,t) - j + 1 on+l 
n + 1 ~ (s,t) 

f. (1 - s -  t)Bijk(s,t  ) - k + 1 on+l 
n + 1 "-'i,j,k+l (s,t) 

g. Bijnk(S,t) _ i + 1 on+l J + 1Bn+l k + 1Bn+l 
n + 1 ~  i ' j+l 'k(S' t)+ i'j 'k+l(S't) 

n + l  n + l  

23. Products and higher-order degree elevation 

a. B j  (t )B~ (t ) - ( ;  )+(!----~) B m+n 
j+k ) j+k (t) 

m n 
m ( j ) ( k ) o m + n  

b. B ~ ( t ) -  E ( m + n ) ~  +k (t) 
j=O j+k 

C. Bijmk(s,t)Bpqr(S,t) - (ijmk)(pqr) B m+n m+n i+P,J+q,k+r (s't) 
(i+p j+q k+r) 

d. Bpqr(S,t ) - Ei+j+k=m 
(~jk)(pnqr) 

(i+p m+n j+q k+r ) 

Rmwn 
~ 

24. Marsden identities 

a. ( x - O  n -  ~ (-1)k (x)B~( t )  
k=O (~) Bnn-k 

n n-i 
b. (sx + ty + 1) n - E E (x + 1) i (y + 1) j Bij k (s,t) 

i=0 j=0 
25. De Boor-Fix formulas 

n ( _ I ) J + P  (t)(p) 
a. ~, .B n Bn_j( t ) (n-P)  - 6i j 

p=O n!(n) 

i n -p  ( i ) ( j ) ( n  q)! :~p+qon ,p _ - P -  u Oklm (O, O ) b. E E 
p=0 q=0 n! OsP~t q 

-  ik jt 
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26. Relationships between univariate and bivariate basis functions 

a. Bn(s)= ~j+k=n_iBijnk(s,t) 

b. B j ( t )=  ~i+k=n_jBijnk(s,t) 

c. Bff (1 - s - t) = ~i+j=n-k Bijnk (s,t) 

n n-p n )B p(s)B q d. Bijnk(s,t) = Z Z (-1)n-p-q(p q n-p-q (t) 
p=i q=j 

n n-p 
e. B~k(su, tv ) - ~ ~ B#(s)B](t)Bpqr(S,t ) 

p=i q=j 
27. Conversion between bivariate and tensor product bases 

m+n m+i-j (p)(q~(m+n-.p-q 
, ,m-l+j-q ) tim+n (s,t) a. B m (s)BJ (t) - 2 2 (m+n "-'pqr 

p=i q=j , n ) 

I n )(h-i )(7 - q )  b. Bgk(S,t)= ~ ~+i  n~+j( -1)r (~r) (P)(  q n-p 

h=i l=j [ p=i q=j (~ )(~ ) 
~S~(s)SF(t) 
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Blossoming 

A good labeling scheme can provide a lot of information about an algorithm, but till 
now we have avoided labeling the interior nodes in de Casteljau's algorithm. Here 
we shall introduce a labeling scheme for these nodes suggested by a probabilistic 
interpretation of the de Casteljau diagram. This labeling scheme will lead us to the 
notion of blossoming, an extremely powerful technique for analyzing the properties 
of Bezier curves and surfaces. Blossoming is a particularly effective tool for deriving 
change of basis algorithms. In Sections 6.3 and 6.5 we will see that formulas for 
degree elevation, subdivision, and conversion from monomial to Bezier form are 
easily derived from blossoming. We shall also apply blossoming in Chapter 7 to 
extend the de Casteljau algorithm to a more general evaluation procedure called the 
de Boor algorithm and in this manner introduce B-spline curves and surfaces. 

6.1 Blossoming the de Casteljau Algorithm 

In Neville's algorithm for Lagrange interpolation there is a natural labeling scheme 
for the nodes: the jth node on the kth level above the base is denoted by Pj...j+k(t), 
since this polynomial interpolates the points Pj ..... Pj+k at the nodes tj ..... tj+ k (see Fig- 
ure 2.5). Similarly in de Casteljau's algorithm for Bemstein approximation the poly- 
nomial in the jth node on the kth level is the Bezier curve for the control points 
Pj ..... Pj+k (see Figure 5.3). Therefore, you might be inclined to label this curve as 
Bj...j+k(t); that is, you might be inclined to use much the same indices as in Neville's 
algorithm for the nodes in de Casteljau's algorithm. 

But this notation for the nodes would not capture the functions along the edges 
of the de Casteljau diagram. The labeling scheme for Neville's algorithm is compel- 
ling because it captures both the control points and their associated parameter val- 
ues; it tells us how to label the functions along the edges, and it tells us as well 
exactly where we are in the diagram. We would like to introduce a labeling scheme 
for the de Casteljau algorithm that captures these same properties. 

307 
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When we began our investigation of Bezier curves, we saw that de Casteljau's 
algorithm is much simpler than Neville's algorithm because the functions along the 
edges are all the same: ( b - t ) / ( b - a )  along all the left edges and ( t - a ) / ( b - a )  
along all the fight edges. One possible paradigm for labeling de Casteljau's algo- 
rithm is a random walk: at each node you can proceed with some probability either 
to the left (a) or to the fight (b). Remember that the Bemstein basis functions repre- 
sent the binomial distribution, so there is a probabilistic flavor already inherent in 
Bezier curves. 

Let us consider then the de Casteljau diagram for a degree n Bezier curve from 
this probabilistic point of view. Starting at the apex of the triangle, to arrive at the kth 
position at the base you must make exactly n - k left turns and k fight turns. If we 
think of the label along each arrow as the probability of proceeding left or fight, then 
when t = a the probability of turning left is one and when t = b the probability of turn- 
ing fight is one. Following this line of reasoning, we shall adopt the notation an-kb k to 
denote n - k left turns and k fight turns or equivalently the kth position along the base 
of the triangle. 

What about nodes above the base? Suppose we arrive at some internal node by 
making exactly j left turns and k fight turns; then we still have n - j -  k choices to 
make before arriving at the base of the triangle. At a left turn we set t = a and at a 
fight turn we set t = b, but there are still n - j -  k values of t that need to be decided. 
Thus we shall denote this node by aJbktn-j-k; that is, for an internal node at the kth 
position on the (n - j -  k)th level above the base, we adopt the notation aJbktn-J -k. The 
node at the apex of the triangle has the label t n, since no turns have yet occurred. This 
notation tells us precisely where we are in the diagram, and it captures as well the 
labels along the edges. We illustrate this labeling of the nodes for the case n = 3 in 
Figure 6.1. 

Notice that Figure 6.1 makes perfect sense if we interpret the values at the nodes 
as real numbers. Indeed multiplying the linear interpolation identity 

b - t  t - a  
t =  a + ~ b  

b - a  b - a  

by a ib j t  k-1 yields the identity 

- t - a aibJ+ltk_ 1 aibJtk  = b t ai+lbJtk_ 1 + ~  
b - a  b - a  

which is precisely the computation diagrammed in Figure 6.1. 
But does it really make sense to adopt the notation aJbktn-J -k for a node at the 

kth position on the ( n - j - k ) t h  level? We argued above that at each turn we must set 
t = a or t = b, so at the (n - j  -k)th level above the base we still need to set t a total of 
n - j -  k more times. But how can t keep changing value? If we are serious about set- 
ting some parameter to the value a or b depending on whether we turn fight or left in 
the diagram, then shouldn't we be setting the value of a new parameter each time? 
Let's then introduce n new variables u 1 ..... u n, where u k appears in place of t on the 
kth level of the diagram, and let's adopt the notation 

aJbkul  . . .Un_j_ k 
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m 

att btt 

/ / 
aat abt bbt 

/ / / 
aaa aab abb bbb 

Figure 6.1 The labeling of the nodes for a cubic Bezier curve suggested by a random walk in de Castel- 
jau's diagram. Here we have written aaa for a 3, bbb for b 3, and so on for reasons that will 
become clear in the next section. 

UlU2U3 
_ a 

au 1 u 2 bu 1 u 2 
b - u 2 /  ~ N ~  b - u 2 /  ~ 

aau 1 abu 1 
b - u l / /  -~a b - u , / /  -~a 

aaa aab 

bbu 1 

abb bbb 
Figure 6.2 The labeling scheme introduced by replacing t with u k on the kth level of the de Casteljau 

algorithm. The function that emerges at the apex of the triangle is the blossom of the Bezier 
curve depicted in Figure 6.1. Observe the close connection to discrete convolution--compare 
to Figure 5.29. 

for a node at the kth position on the (n - j - k ) t h  level of this diagram. This conven- 
tion generates the labeling scheme depicted in Figure 6.2. 

Notice again that Figure 6.2 makes perfect sense if we interpret the values at the 
nodes as multiplication of real numbers because 
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b - u  k u k - a  aibJul...Uk - ~ a i + l b J u l . . . U k _ l  + aibJ+lul...Uk_l 
b - a  b - a  

which is precisely the computation diagrammed in Figure 6.2. 
The function that emerges at the apex of this triangle is no longer a polynomial 

in t; rather it is a function of n variables u 1 ..... u n. If we place the control points 
PO ..... Pn of a Bezier curve P(t) at the base of the diagram, then the function of 
u 1 ..... u n that emerges at the apex is called the blossom of P(t)  and is denoted by 

p(u 1 ..... Un). 
The function p(u 1 ..... u n) is symmetric in the variables u I ..... u n, since the algo- 

rithm represents discrete convolution and discrete convolution is commutative (see 
Section 5.6.1). Indeed, let P = (P0 ..... Pn); then 

P(Ul . . . . .  u n) {( b - u l  u l - a ) |  . . |  U n - a ) }  = , . , �9 pT ,  

b - a  b - a  b - a  b - a  

where the functions 

Ul Un a / 
b - a '  b - a  b - a '  b - a  

are the convolution basis functions, pT denotes the transpose of P, and �9 signifies 
matrix multiplication. Also p(u 1 ..... Un) is multiaffine in the variables u 1 ..... Unmthat 
is, p preserves affine combinations in each parameter--because each variable 
appears only to the first power, since variables on the same level of the de Casteljau 
algorithm never multiply one another. Finally, notice that to blossom the de Castel- 
jau algorithm, we simply replace the parameter t on each level of the algorithm by a 
different variable u k. Thus if we replace each variable u k in the blossom by the 
parameter t, then we retrieve the original polynomial P(t)  because the algorithm 
reverts back to the de Casteljau algorithm for P(t). Thus along the diagonal, 
p( t  ..... t) = P(t) .  It turns out that these three propertiesmsymmetry, multiaffine, 
diagonal--completely characterize the blossom. In the next section we shall define 
the blossom abstractly in terms of these three properties and then relate this defini- 
tion back to our concrete construction of the blossom using the de Casteljau 
algorithm. 

6.2 Existence and Uniqueness of the Blossom 

Polynomial functions are complicated, but linear functions are simple. For example, 
if L(t) = at, then L(t.ts + At) = pL(s) + AL(t). More generally, if L(t)  = at + b, then it 
is easy to verify that L((1 - Z)s + At) = (1 - &)L(s) + 2L( t ) ,  so L(t) is an affine trans- 
formation since L(t) preserves affine combinations. On the other hand, if 
P(t)  = an tn +. . -+  a 0, n > 1, then 

e(t.ts + At) ~ p e ( s )  + AP(t) 

P((1 - &)s + Zt) ~: (1 - 2)P( s )  + XP(t) .  
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The main idea behind blossoming is to replace a complicated function P(t )  in one 
variable by a simple function p ( u  1,.. . ,u n) of many variables. 

The b l o s s o m  of a degree n polynomial P(t )  is the unique symmetric multiaffine 
function p(u l , . . . , u  n) that reduces to P(t )  along the diagonal. That is, p(u  1 ..... u n) is 
the unique multivariate polynomial with the following three properties: 

i. S y m m e t r y  

p ( u  1 ..... Un) = p(ucr(1 ) ..... ucr(n )) for any permutation cy of {1 ..... n}. 

ii. Mul t ia f f ine  

p ( u  1 ..... (1 - ct)u k + a w  k ..... Un) = (1 - a)p(u 1 ..... u k ..... u n) + ctp(u 1 ..... w k ..... u n) 

iii. D i a g o n a l  

p ( ~ )  = P( t )  

n 

The second property says that p ( u  1 ..... Un) is degree 1 in each variable (see Lemma 
6.2); the third property connects the blossom back to the original polynomial. 

Of course, it remains to establish the existence and uniqueness of a function sat- 
isfying these three properties. Shortly, we shall use the constructions in Section 6.1 
to establish both existence and uniqueness. But before we proceed, let's compute a 
few simple examples. 

Consider the functions 1,t,t2,t 3 as cubic polynomials. It is easy to blossom these 
monomials, since in each case it is easy to verify that the associated function 
p ( u l , u 2 , u  3) is symmetric, multiaffine, and reduces to the required monomial along 
the diagonal: 

P( t )  = 1 ~ p ( u l , u 2 , u 3 )  = 1 

P( t )  = t ~ p ( u l , u 2 , u 3 )  = ul + u2 + u3 
3 

P( t )  = t 2 ~ p ( u l , u 2 , u 3 )  - UlU2 + u2u3 + u3ul 
3 

P ( t ) -  t 3 ~ P(Ul,U2,U 3 ) -  UlU2U3 �9 

Now we can blossom any cubic polynomial, since 

P( t )  = a3 t3 + a2 t2 + alt  + a 0 

p ( u l , u 2 , u 3 )  = a3ulu2u 3 + a 2 
UlU 2 + u2u 3 + u3u 1 Ul + u 2 + u 3 

+ a 1 + a o. 
3 3 

Similar techniques can be used to blossom polynomials of arbitrary degree by 
first blossoming t k, k = 0 ..... n, (Exercise 1) and then applying linearity (Proposition 
6.4). Nevertheless, instead of proceeding in this manner, it is easier to apply the 
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Bezier constructions given in Section 6.1 to prove both existence and uniqueness. 
We begin by establishing a crucial connection between symmetric, multiaffine func- 
tions and the control points of Bezier curves. 

THEOREM 
6.1 

Let P(t)  be a Bezier curve defined over the interval [a,b] with control 
points PO ..... Pn, and let p(u  1 ..... Un) be a symmetric, multiaffine polynomial 
satisfying 

p( t  ..... t ) -  P(t) .  

n 

Then Pk - p (a  ..... a ,b  ..... b) .  

n - k  k 

P r o o f  Consider Figure 6.1. We can now interpret this diagram in the following 
fashion: 

i. a n - k b  k denotes p(a  ..... a,b ..... b), 

n - k  k 

ii. t n denotes p ( ~ ) -  P(t) ,  

n 

iii. aJbkt  n - j - k  denotes p ( ~ , b , . ~ ,  ~ ) .  

J k n - j - k  

Then Figure 6.1 shows how to compute P(t)  from 

p(a  ..... a ,b ..... b), k = 0 ..... n ,  

n-k  k 

recursively by applying the multiaffine and symmetry properties at each 
node of the triangle. But Figure 6.1 is also the de Casteljau algorithm for 
computing P(t)  from the control points Pk, k = 0 ..... n.  Since the Bernstein 
polynomials B~(t )  ..... Bn( t )  form a polynomial basis, the control points of 
a Bezier curve are unique. It follows then that the values represented by 
an-kb k, k = O,...,n, must be the control points of P(t); that is, 

Pk = p (a  ..... a ,b , . . . ,b) .  

n-k  k 

Theorem 6.1 is the central property relating the blossom to Bezier curves. This 
property is an extremely powerful result--in fact, it is equivalent to the diagonal 
property (see Section 6.3, Exercise 7)--and we shall have a good deal more to say 
about it in the next section. However, before we can proceed, we still need to estab- 
lish the existence and uniqueness of the blossom. For this purpose, we provide an 
alternative characterization of the multiaffine property. 
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LEMMA 
6.2 

Let p(u l  ..... Un) be a polynomial  in which each variable appears to at most 
the first power. Then p ( u  1 ..... u n) is multiaffine. 

Proof We must show that 

p(u l  ..... ( 1 -  a )u  k + m y  k ..... Un) - ( 1 -  a ) p ( u  1 ..... u k ..... Un) + a p ( u  1 ..... w k ..... Un) �9 

Since each variable appears to at most the first power in p(u l  ..... Un), we can 
write 

P ( U l  . . . . .  u k . . . . .  u n ) - q ( u  1 . . . . .  u n )  + u k r ( u  1 . . . . .  U n ) ,  

where q(u  1 ..... u n) and r(u  1 ..... u n) are polynomials in which u k does not 
appear. Therefore, 

p ( u l  ..... ( 1 -  a )u  k + r k ..... u n) 

= { (1 - a )  + a}q(u 1 ..... Un) + { (1 - a ) u  k + m v  k }r(u 1 ..... Un) 

= ( 1 -  a){q(u 1 ..... u n) + ukr (u  1 ..... u n)}  + a{q(u 1 ..... u n) + w k r ( u  1 ..... u n)}  

= ( 1 -  a ) p ( u  1 ..... u k ..... Un) + a p ( u  1 ..... w k ..... Un) . 

THEOREM 
6.3 

Let P( t )  be a polynomial  of degree n. Then its blossom p ( u  1 ..... Un) exists 
and is unique. 

P roof  E x i s t e n c e .  In Figure 6.2 we showed how to blossom any Bezier curve 

P( t )mtha t  is, how to generate a symmetric, multiaffine polynomial that 

reduces to P(t )  along the d i a g o n a l n b y  replacing t with u k on the kth level of 

the de Casteljau algorithm. (The multiaffine property follows from Lemma 

6.2 because in this construction each parameter u k appears only to the first 

power.) Since the Bernstein polynomials B ~ ( t )  ..... B n ( t )  form a basis for 

polynomials of degree n, every polynomial  can be written in Bezier form. 

Therefore, every polynomial has a blossom. 

U n i q u e n e s s .  Again consider Figure 6.2. We can now interpret this diagram 
in the following fashion: 

i. an-kb  k denotes p(a  ..... a, b ..... b), 
v.......,,,....~ ~ 

n - k  k 

ii. Ul . . . u  n denotes p ( u  1 ..... Un), 

iii. aJbku l  . . .Un_ j_  k denotes p ( a  ..... a ,b  ..... b,u  1 ..... Un_j_ k ) . 

j k 
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Then Figure 6.2 shows how to compute the blossom value Ul...u n from the 
blossom values an-kb k, k = 0 ..... n, recursively by applying the multiaffine 
and symmetry properties at each node of the triangle. Thus the blossom of 
P(t)  is completely determined by the blossom values an-kb k, k = 0 ..... n. But 
by Theorem 6.1 the blossom values an-kb k are the Bezier control points of 
P(t) .  Now suppose that the polynomial P(t)  has two blossoms p ( u  1 .... ,u n) 

and q(u  1 ..... Un). Then by Theorem 6.1 

p ( a  ..... a ,b  ..... b) = q(a  ..... a ,b  ..... b), 

n - k  k n - k  k 

since both sides must represent the Bezier control points of P(t)  and these 
control points are unique. But we have seen (Figure 6.2) that any arbitrary 
blossom value can be computed from the blossom values an-kb k, k = 0 ..... n. 

Therefore, 

p ( u  1 ..... u n)  = q ( u  1 ..... Un),  

so the blossom of P(t)  is unique. 

Why does this approach to blossoming work? Figures 6.1 and 6.2 were origi- 
nally derived for ordinary multiplication of real numbers. But the only properties of 
the real numbers that we need are that multiplication is commutative (symmetry) and 
distributes through addition (multiaffinity). Thus any function with these two fea- 
tures will satisfy these diagrams (see Exercise 10). This observation is the key to 
understanding the properties of the blossom. 

The uniqueness of the blossom plays an important role in the derivations of for- 
mulas for the blossom. If we want to establish that some polynomial p ( u  1 ..... Un) 

represents the blossom of P(t) ,  all we need to prove is that the expression 
p(u  1 ..... u n) is symmetric, multiaffine, and reduces to P(t)  along the diagonal. It then 
follows by the uniqueness of the blossom that the polynomial p(u  1 ..... Un) must be 
the blossom of P(t) .  We have seen this trick once before, in Section 4.4, where we 
introduced axioms for the divided difference. To verify that an expression repre- 
sented a divided difference, we simply verified that it satisfied the axioms character- 
izing the divided difference. We can now do the same for the blossom. We illustrate 
this proof technique in the following proposition. Additional examples are provided 
in the exercises. 

PROPOSITION 
6.4 

Let P(t)  and Q(t)  be polynomials of degree n. 

a. If R( t )  = P( t )  + Q(t), then r(u 1 . . . . .  Un) = p (u  1 . . . . .  Un) + q(u 1 .... ,Un). 

b. If S( t )  = cP( t )  , then s(u 1 ..... u n) = cp(u 1 ..... Un). 

Thus blossoming is a linear operator. 
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Proof Since both p and q are symmetric functions in the parameters Ul ..... Un, so 
too are the functions p + q and cp.  Similarly since both p and q are multi- 
affine functions in the parameters Ul ..... Un, the functions p + q and cp are 
also multiaffine functions in the parameters u 1 ..... u n (see Exercise 11). 
Moreover, along the diagonal 

p ( t  ..... t)  + q ( t  ..... t)  = e ( t )  + O ( t )  = e ( t )  

c p ( t , . . . , t )  = c P ( t )  = S ( t )  . 

Thus p ( u  1 ..... U n ) + q ( u  1 ..... Un) is a symmetric, multiaffine function that 
reduces to R ( t )  along the diagonal. Hence by the uniqueness of the blossom, 

r (u  1 . . . . .  Un) = p ( u  1 ..... Un) + q ( u  1 ..... u , ) .  

Similarly, c p ( u  1 ..... Un) is a symmetric, multiaffine function that reduces to 
S( t )  along the diagonal. Hence again by the uniqueness of the blossom, 

s (u  1 ..... u n ) - c p ( u  1 ..... u n ). 

Exercises 

1. Let M~ (t) = (~)t k, and consider the function 

H 
m k  (Ul ..... u n)  - ~Ui l  . . .Uik,  

where the sum is taken over all subsets {il ..... ik] of {1 ..... n}. Show that 
n n 

a. m k (u 1 ..... u n) is a symmetric multiaffine function that reduces to M k (t)  

along the diagonal. 

( . ) b. m~(u 1 ..... Un) . . . . .  m n (u 1 ..... Un) = (1,u 1) | | (1,Un). 

Use the result in part (a) to establish the existence of the blossom. 

2. Let P~ (t)  = (t - a k )n  and let p~ (u 1 ..... u n)  - (u 1 - a k ) . .  . (u  n - a k) ,  k = 0 ..... n. 

a. Show that p ~ ( u  1 ..... Un) is a symmetric multiaffine function that reduces 
to Pk n (t) along the diagonal. 

b. Use the result in part (a) to establish the existence of the blossom. 

3. Let bn(Ul  ..... Un) denote the blossom of the Bemstein basis function B n ( t ) .  

Prove that 

�9 ., - . B 1 B 1 (u n)  a. bn(Ul , .  Un) 2il+.. .+in=l l l  (Ul). . .  in  

b. (b(~(u 1 ..... Un) . . . . .  bn(Ul  ..... Un) ) = ( ( 1 - U l ) , U l ) | 1 7 4  

4. Let Lo(t),L 1 (t) be arbitrary linear functions in t, and suppose that 

(Fo ( t )  . . . . .  Fn ( t ) )  - ( L o ( t ) , L l  ( t ) )  | . . .  | ( L o ( t ) , L l  ( t ) )  " 
v 

n- fac tors  
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Show that 

(f0(ul ..... u n) . . . . .  fn(Ul  . . . . .  Un)) = (Lo(Ul ) ,L l  (Ul )) (~ ...  (~ (LO(Un) ,Ll  (Un)) �9 

5. Prove the converse of Lemma 6.2. That is, prove that if p ( u  1 ..... u n) is a multi- 
affine polynomial, then each variable appears to at most the first power. (Hint: 
Observe that u k = (1 - u k)  �9 0 + u k �9 1.) 

6. Let P( t )  be a polynomial of degree n. Then P( t )  is also a polynomial of 
degree n + 1, so the blossoms p ( u  I ..... u n)  and p ( u  1 . . . . .  Un,Un+l) both exist. 
Show that, in general, p ( u  1 ..... Un,0) ~ p ( u  1 ..... Un). 

7. Let P( t )  be a polynomial of degree n, and let qt(t) = (u 1 - t ) . . . ( u  n - t ) .  Prove 
that 

n ( _ l ) n - k p ( k )  
P(Ul ..... U n ) =  Z ('C)qt(n-k)('t:) �9 

k=0 n! 

The fight-hand side of this expression is called the de Boor-Fix form of the 
blossom. (Hint: Show that the right-hand side satisfies the three defining 
properties of the blossom and apply uniqueness.) 

8. Let P( t )  and Q(t)  be polynomials of degree n, and define 

[ p ( t ) , Q ( t ) ]  n - ~ ( - 1 ) n - k p ( k ) ( ' c ) Q ( n - k ) ( ' C ) .  

k=0 n! 

Show that 

a. [P ( t ) ,Q( t ) ]  n is a bilinear operator. 

b. [P( r ) ( t ) ,Q( t ) ]n  = ( - 1 ) r [ p ( t ) , Q ( r ) ( t ) ] n  . 

c. [P ( t ) ,Q( t ) ]  n is a constant independent of the choice of ~'. 

d. P ( x )  = [ P ( t ) , ( x -  t)n]n . 

n! 
e. p ( r )  ( x )  - ~ [P(t), ( x  - t ) n - r  ]n" 

( n - r ) !  

f. p ( u  1 . . . . .  Un) = [ P ( t ) , ( u  1 - t ) . . . ( u  n - t)] n. 

g. Compare part (f) to Exercise 7. 

9. Use the de Boor-Fix representation of the blossom given in Exercise 7 to 
show that the formulas for differentiating and degree elevating the Bemstein 
polynomials are equivalent~that is, show that either formula implies the 
other. 

10. Let u 1...Un denote the polynomial (Ul - x) '" (Un - x).  

a. Show that with this interpretation the algorithms represented by Figures 
6.1 and 6.2 remain valid. 
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6.3 

b. Recall the bracket operator defined in Exercise 8. What do you get if you 
bracket each polynomial in the algorithms represented by Figures 6.1 
and 6.2 with a fixed polynomial P(x)? 

11. Prove that if both p(u  1 ..... u n) and q(u 1 ..... u n) are symmetric multiaffine 
functions in the parameters u 1 ..... u n, so too are the functions p + q and cp. 

12. Let P(t)  be a polynomial of degree m, and let Q(t) be a polynomial of degree 
n. Derive the following blossoming identities: 

a. Products: If R ( t ) =  P( t )Q( t ) ,  then 

~ o  p(uo(1) ..... ucr( m) )q(ucr( m+ l ) ..... ucr( m+n ) ) 
r(ul ..... Um+n) - (m + n)! 

b. Composites: If S(t)  = (P o Q)( t ) ,  then 

] ~  P(q(ucr(1) ..... ucr(n) ) ..... q(ucr(mn-n+l) ..... Ua(mn) )) . 
S(Ul ..... Umn) - (mn)! 

(Hint: Check first that the right-hand side satisfies the blossoming axioms 
and then invoke uniqueness.) 

13. Let A(t )  = (Ao(t )  . . . . .  Am(t ) )  be a sequence of m + 1 polynomials of degree 
m with blossoms a(u 1 ..... u m) - (a0(u 1 ..... Um) ..... am(U 1 ..... Um) ), and let B(t)  = 
(Bo(t)  ..... Bn(t) ) be a sequence of n + 1 polynomials of degree n with blos- 
soms b(u 1 ..... u n) - (b0(u 1 ..... u n) ..... bn(u 1 ..... Un) ). If C(t) = A(t)  | B(t) ,  show 
that 

c ( u  1 ..... Um+ n ) -- 
~cr a(Uo-(1) ..... ucr(m))  | b (ucr(m+l  ) ... . .  Ucr(m+n)) 

( m + n ) !  

Change of Basis Algorithms 

Blossoming is a powerful machine for deriving change of basis formulas. Theorem 
6.1 is sometimes called the dual  f unc t i ona l  proper ty  of the blossom because it shows 
how to use the blossom to compute the Bezier control points of any polynomial 
curve. Indeed, just as the divided difference evaluated at the nodes provides the dual 
functionals for the Newton basis (see Section 4.2), the blossom evaluated at the end 
points of the parameter domain represents the dual basis for the Bernstein basis. 
Applying Theorem 6.1, we can convert any polynomial curve to Bezier form by 
blossoming the curve and evaluating the blossom at the end points of the parameter 
domain. Here we shall show how to apply blossoming to derive three important 
results from Chapter 5: subdivision, degree elevation, and conversion from mono- 
mial to Bezier form. 

Subdivision is very easy using blossoming. Let P(t)  be a Bezier curve over the 
interval [a,b] with control points Po ..... Pn. By the dual functional property, 

Pk = p (a  ..... a ,b  ..... b).  

n - k  k 
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To subdivide this Bezier curve at the parameter t, we must find the Bezier control 
points for the intervals [a,t] and [t,b]. Again by the dual functional property for Bez- 
ier curves, these control points Qo ..... Qn and R 0 ..... R n are 

Qk = p(a ..... a,t  ..... t) 
n-k k 

R k = p ( ~ , ~ ) .  
n-k k 

But look at Figure 6.1. If we interpret every triple uvw as the blossom value p(u,v,w), 
then the desired control points Qk and R k emerge along the left and fight edges of 
the triangle. Generalized to arbitrary degree, this observation is precisely the de 
Casteljau subdivision algorithm of Section 5.5.4.2. 

Let's try degree elevation. Here we are given the control points for a Bezier 
curve of degree n, and we must find the control points that represent the same curve 
as a Bezier curve of degree n + 1. Let P(t) be a Bezier curve of degree n over the 
interval [0,1] with control points PO ..... Pn, and let Qo ..... Qn+l be the control points 
that represent P(t) over the interval [0,1] as a Bezier curve of degree n + 1. If Pn 
denotes the blossom of P as a polynomial of degree n and Pn+l denotes the blossom 
of P as a polynomial of degree n + 1, then by the dual functional property 

Pk = Pn( 0 ..... 0,1 ..... 1) 
n-k k 

Ok - Pn+l( 0 ..... 0,1 ..... 1). 
n+l-k k 

Our problem is to find formulas for the control points Q0 ..... On+l in terms of the 
control points Po ..... Pn. From the perspective of blossoming, this problem reduces to 
finding a formula for the blossom Pn+l in terms of the blossom Pn" 

PROPOSITION 
6.5 

Degree Elevation 

n+l 
Pn (Ul ..... Ui-l ,Ui+l ..... Un+l ) 

Pn+l (Ul ..... Un+l ) _ i=1 
n + l  

Proof By the uniqueness of the blossom, it is enough to prove that the fight-hand 
side is symmetric, multiaffine, and reduces to P(t) along the diagonal. But 
the fight-hand side is certainly symmetric and multiaffine because Pn is 
symmetric and multiaffine. Moreover, by the diagonal property ofpn, 

P(t) = 

n+l 
~, Pn(t ..... t) 
i=1 n 

n + l  

Hence the result follows by the uniqueness of the blossom. 
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We can apply Proposition 6.5 to solve the degree-elevation problem for Bezier 
curves. By the dual functional property, we already know that 

Ok = P n + l (  0 . . . . .  0 ,1  . . . . .  1).  

n+l-k k 

By Proposition 6.5 omitting a single zero n + 1 - k times and omitting a single one k 
times yields 

n + l - k  k 
Qk = ~ P n ( 0 , ' " , 0 , 1  ..... 1) + Pn(O ..... 0,1 ..... 1) 

n + l  '----r "-"-'-~ n + l  '----,~-~ ~ 
n-k k n+l-k k-1 

n + l - k  k 
- ~ Pk + Pk-1 , 

n + l  n + l  

which is exactly the degree elevation formula derived in Section 5.5.3. 
Finally, to convert from monomial to Bezier form, let Mff(t) = (n) t k k  . Then the 

blossom of the monomial M;  (t) is given by the function 

n 
mk (Ul . . . . .  u n) = ~Uil .. "uik 

(6.1) 

where the sum is taken over all subsets {il ..... i k} of {1 ..... n}. This result follows by 
the uniqueness of the blossom because the fight-hand side is clearly symmetric, mul- 
tiaffine, and reduces to M~(t)  along the diagonal (see Exercise 1 of Section 6.2). 
Now to convert from monomial to Bezier form, consider a polynomial 
Q(t) - ~ k  QkM~ (t). By the linearity of the blossom (Proposition 6.4), 

n 

q(u 1 ..... Un)= Z a k m ~ ( u l  ..... Un).  
k=0 

Therefore, by the dual functional property of the blossom, the Bezier control points 
PO ..... Pn of Q(t) over the interval [0,1] are given by 

n 
= = Qkmk (0,...,0,1 ..... 1). Pj q(O ..... 0,1  . . . . .  1) ~ n 

n - j  j k=0 n - j  J 

But whenever we substitute 0 for one of the parameters Uih o n  the fight-hand side of 
Equation (6.1), the term vanishes. Hence we are concerned only with terms where a 
1 is substituted for each parameter Uih. Since there are k u-parameters and 1 is 
repeated j times, there are (i) ways to choose k Is. Thus 

SO 

mk(O ..... 0,1 ..... 1) = ) ~.....,~.~ ,.....,,,...~ 
n - j  j 

J 

k=0 

which is exactly the change of basis formula derived in Section 5.5.1. 
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The derivations of these three change of basis algorithms~subdivision, degree 
elevation, and conversion from monomial to Bezier form~are very slick. In Chapter 
5 we had to invent a new trick every time we wanted to convert from some new basis 
to Bezier form. We applied probability theory (urn models) to derive subdivision, 
algebraic identities to achieve degree elevation, and generating functions to convert 
from monomial to Bezier form. Here there is only one trick: blossoming. Thus blos- 
soming simplifies and unifies the analysis of Bezier curves. It is a very clever idea. 

Exercises 

1. Use blossoming to derive the following identities: 
?/ 

a. 2 8 ~ ' ( t )  = 1 
k=0 

b. ~ (-1) k B~ (t) - (1 - 2t) n 
k=0 

?/ 

C. ~ (Jk )B j  (t) = (nk ) tk 
j=k 

2. Apply blossoming and Exercise 12(b) of Section 6.2 to derive the following 
identities: 

n 

a. Bn (rt) = ~,Bk (r)B~ (t) 
k=i 

b. Bn((1 - t)r + t) - ~Bn-k(r)B~(t)i_k 
k=0 

3. Consider the following Marsden identity for the Bernstein basis: 

n (_1) k n 
(x t) n ~ (x)B~c . - = B , , _ k  ( t )  

k=0 (n k) 
Prove this Marsden identity using 

a. the binomial theorem (Hint: x -  t = x(1-  t ) -  (1- x)t . )  

b. blossoming 

4. Using the result in Exercise 3 and the bracket operator defined in Section 
6.2, Exercise 8, show that 

f ( 0  ..... 0,1,.. 1) - [ F ( t ) ,  (-1)k B n ~ (~) n-k (t)]n" 
n-k k 

5. Blossoming polynomial identities yields identities for the blossom. 

a. What are the blossom identities corresponding to the identities in Exer- 
cises 1-3? 

b. What formula for the blossom do you get when you blossom Taylor's 
Theorem? 
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6.4 

( t - t k )  n 
6. Let Pk n (t) = I-ljr (tj - t k) 

n 

, k - 0 ..... n, and let P(t) = Z P ~ ( t ) P  k. 
k=O 

Using the result of Section 6.2, Exercise 2, show that 

Pk - P(to ..... tk-l,tk+l ..... tn)" 

7. Let P(t) be a degree n Bezier curve defined over the interval [a,b] with con- 
trol points Po ..... Pn, and let p(u 1 ..... Un) be a symmetric, multiaffine polyno- 
mial satisfying the dual functional property 

Pk - p(a,. . . ,a,b ..... b) k - 0,... ,n. 

n-k k 

a. Show that P ( t ) -  p(t ..... t). 

b. Conclude that in the axioms for the blossom the diagonal property can be 
replaced by the dual functional property. 

c. In the axioms for the divided difference (see Section 4.4), which axiom 
corresponds to the diagonal property? What is the corresponding dual 
functional property? 

8. Let b;n(ul, ,Un) denote the blossom of the Bernstein basis function Bj( t )  j . . .  

over the interval [0,1 ]. Show that 

n b; (0 ..... 0,1 ..... 1) = ~jk" 
J , ~ . . . ~  ~ . . . . ~  

n-k k 
9. Generalize the degree elevation formula in Proposition 6.5 by showing that 

~,pn(Uil . . . . .  Ui n ) 
p ~ + k ( u l  . . . . .  u~+~)  - - ~ k  " 

( ' k  ) 

Differentiation and the Homogeneous Blossom 

We know how to represent points along polynomial curves in terms of blossom val- 
ues by invoking the diagonal property, but what about derivatives? Curves take on 
values that are points in affine space; so too does the blossom. Indeed, only affine 
combinations of blossom values are permitted. But derivatives are vectors, not 
points. We need a variant of the blossom that takes on values in a vector space, rather 
than an affine space. Here we shall construct such a blossom by applying the tech- 
nique of homogenization. Homogenization lifts the domain and the range from affine 
space to Grassmann space, so that all our computations can be performed in a vector 
space. 

Consider a degree n polynomial P(t) = Zkak  tk. To homogenize P(t), we multi- 
ply each term t k by w n-k. This creates a new polynomial in two variables, 

P ( t , w ) -  ZkaktkW n-k. 
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The point about P(t,w) is that it is homogeneous of degree n; that is, each term has 
the same total degree n. Homogeneous polynomials are sometimes simpler to 
manipulate. For example, it is easy to verify that P(ct, cw) = cnp( t ,w) ,  but there is no 
comparable simple formula for P(ct). We can easily recover P(t) from P(t,w) because 
P(t)  = P(t,1). Constructing P(t,w) from P(t) is called homogenizat ion,  and recover- 
ing P(t) from P(t,w) is called dehomogenizat ion.  

Now we have two processes that we can apply to polynomials: blossoming and 
homogenization. Can we homogenize the blossom or blossom the homogenization? 
Yes. To homogenize the blossom p(u I ..... Un), we homogenize with respect to each 
variable independently. Thus the homogeneous version of p(ul ..... Un) is another 
polynomial p ( ( u l , v  1) . . . . .  (Un,Vn)) that is homogeneous with respect to each pair of 
variables (Uk,Vk). The original parameters u I ..... u n lie in affine space; the homoge- 
neous parameters (Ul,V 1) . . . . .  (Un,Vn) lie in Grassmann space. In every term of 
p(u 1 ..... Un), each variable Uk appears to at most the first power, so every term of the 

homogeneous polynomial p( (u l ,V l )  . . . . .  (Un,Vn)) has as a factor either u k or v k but not 
both. Since p((u 1,vl) . . . . .  (Un,Vn)) is homogeneous of degree 1 in each pair of variables 
(uk,vk), 

P((Ul, Vl ) ..... C(Uk, V k) . . . . .  (Un, Vn )) = cp((ul, Vl ) ..... (Uk, V k) . . . . .  (Un, Vn )). 

Again we can dehomogenize p((ul ,Vl)  . . . . .  ( U n , V n ) )  by setting v k = 1, k - 1 ..... n. Thus 
p ( ( u  l,1) . . . . .  (Un,1)) = p(u  1 ..... Un). 

We can also blossom the homogenization. We define the blossom of a homoge- 
neous polynomial P(t,w) to be the unique symmetric, multilinear polynomial 
p ( ( u l , v  1) ..... (Un,Vn)) such that p(( t ,w)  ..... (t,w)) = e(t ,w).  Note that for the homoge- 
neous blossom, we have replaced the multiaffine property by the multilinear prop- 
erty. By multi l inear we mean that the polynomial p( (u l ,V l )  ..... (Un,Vn)) is a linear 
function in each pair of variables (u k, v k ), k = 1 ..... n.  That is, 

P ( ( U l ,  Vl ) . . . . .  (U k , Vk ) + (r k ,Sk ) ..... (u n , Vn )) 

- p ( (u l ,v  1) ..... (Uk,V k) ..... (Un,Vn))+ p( (u l ,v  1) ..... (rk,s k) .... ,(Un,Vn) ) (6.2) 

P ( ( U l ,  Vl ) . . . . .  C(Uk, Vk ) . . . . .  (tin, Vn)) = cp((ul, Vl ) . . . . .  (tik, Vk ) ..... (tin, Vn)) 

Thus this multilinear blossom must take on values in a vector space, since we can 
add and multiply by scalars. 

Now we seem to have two notions of multilinear functions: polynomials that are 
homogeneous of degree 1 in each pair of parameters, and functions that satisfy 
Equation (6.2). Fortunately, in analogy with Lemma 6.2, we have the following 
result. 

LEMMA 
6.6 

L e t  p( (u l ,V l )  ..... (Un,Vn)) be a polynomial in which for each k = 1 ..... n either 
u k or v k, but not both, appears in every term to the first power. Then 
p( (u l ,V l )  ..... (Un,Vn)) satisfies Equation (6.2)~that is, p( (u l ,V l )  ..... (Un,Vn)) is 
multilinear. 
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Proof Since the proof of this result is so similar to the proof of Lemma 6.2, we 
leave this result as an exercise (see Exercise 3). 

We constructed the multiaffine blossom by blossoming the de Casteljau algo- 
rithm, and we can do the same for the multilinear blossom. Begin by homogenizing 
the de Casteljau algorithm. This amounts to replacing b - t  ~ b w - t  and 
t - a  --4 t -  aw to ensure that each term has the same total degree (see Figure 6.3). 
To blossom, we now replace the pair (t,w) by the pair (Uk, v k) on the kth level of the 
algorithm (see Figure 6.4). This process generates a symmetric, multilinear function 
that reduces to the homogeneous curve when we replace each pair (Uk, v k) by (t,w). 
This function is multilinear rather than multiaffine because it is linear in (u k, v k) on 
the kth level of the algorithm. Thus u k or v k, but not both, appears in every term to 
the first power, so by Lemma 6.6 this function is multilinear. 

Notice, by the way, that if we blossom first and then homogenize, we get exactly 
the same diagram (see Figure 6.5)! Blossoming first gives us Figure 6.2; homogeniz- 
ing this diagram generates Figure 6.4 once again. Observe that in each of these dia- 
grams, we are applying the multilinear property using the identity 

bw - t t - aw 
( t ,w) = ~ ( a , 1 )  + ~ ( b , 1 ) .  

b - a  b - a  

We built the homogeneous blossom to deal specifically with differentiation. 
Consider now what happens in the homogeneous version of de Casteljau's algorithm 
(Figure 6.3) if we replace (t,w) --4 (1,0) on any level of the algorithm. The effect is to 

t t t  

aaT ab'i bb'i 

aaa aab abb bbb 

Figure 6.3 The homogeneous version of the de Casteljau algorithm for cubic Bezier curves. This dia- 
gram is generated from the de Casteljau algorithm (Figure 6.1) by replacing b -  t --4 b w -  t 

and t -  a ~ t -  aw along the edges of the triangle. We use ~ to denote homogeneous val- 
ues, so t = (t, w) while a = (a, 1). 
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UlU2U 3  v3u,//',Vav  
az~lfi 2 bz~lU 2 

/ \ / 
aafi 1 aba~ bba 1 

a a a  a a b  abb  bbb 

Figure 6.4 The multilinear blossom of a cubic Bezier curve. This diagram is generated from the multi- 
affine blossom (Figure 6.2) by homogenizing the functions along the edges. It can also be 
generated by blossoming the homogeneous version of the de Casteljau algorithm (Figure 
6.3)--that is, by replacing the pair (t, w) with the pair (Uk, Vk) on the kth level of the algorithm. 
Thus blossoming and then homogenizing is equivalent to homogenizing and then blossom- 
ing. As in Figure 6.3, we use ~ to denote homogeneous values, so 0 = (u,v) while a = (a, 1). 

replace b w -  t ~ -1 and t -  a w  --) +1; that is, the effect is to differentiate one level 
of the algorithm. Now if we replace ( t ,w) ~ (t, 1) on the remaining levels of the algo- 
r i t h m - t h a t  is, if we dehomogenize the remaining levelsmthen, up to a constant 
multiple, we get the derivative of the original Bezier curve (see Figure 5.30). In fact, 
if on r levels of the homogeneous de Casteljau algorithm, we replace ( t ,w) -+ (1 ,0)  

and on the remaining n -  r levels we replace ( t ,w) ---) (t,1), then, up to a constant 
multiple, we obtain the rth derivative of the original Bezier curve. 

Thus we can compute derivatives for any polynomial P( t )  using the homoge- 
neous blossom. In fact, let 6 = (1,0) and let t = (t,1). Then we have just proved that 

P ' ( t )  = np( t  .... ,t,(~) 

n-1 

n! 
P(r)  (t)  = ~ p ( t  ..... t, (~ .... , ~)  . 

( n -  r)! ~ 
n - r  r 

These formulas that tell us how to compute the derivative of a polynomial curve in 
terms of its multilinear blossom turn out to be central to our understanding of how to 
differentiate B-splines. We shall apply these formulas in Chapter 7 to differentiate B- 
spline curves. 
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ttt 

b/' a 
att btt Blossom 

b - / ~ N ~ - b / ~ , - a  

aat abt bbt 
b-/~N,~_ba/ ~,,~_ba/~k~ -a 

aaa aab abb bbb 

UlU2U 3 

D, aulu 2 bUlU 2 
b-u?f 

b - <  ,N~2_a// ~ - a  

a a u (  b _ Ul,~r U~u b _ u ] b ~ u ~  
b - u /  "x~,l - ~ /  1-al l  - a 
aaa aab abb bbb 

Homogenize 
I 

Homogenize 

t t t  

aT "f b'f "~ 
b w - / ~ _ b W w / ~ ~ Q  -am 

aa'~ ab? bbF 
b w - / ~ b w ~ ~ b w < ~ , Q  -am 

aaa aab abb bbb 

UlU2U 3 

b v 3 - u / ~ - a v 3  
Blossom 

a u l u  2 �9 b U l U  2 
b y  2 - u 2 

b v 2 - u / ~ - a v 2 ~ ~ - a v 2  

aaff, , abff~ , bbff, 
�9 t'~' ~ "~ ~ "~ 

b v ] - u /  ~ - a v ) ~  K ~ _  a / ~ - a v ]  

aaa aab abb bbb 

Figure 6.5 Blossoming and homogenizing commute. We illustrate this phenomenon with four versions of 
the de Casteljau algorithm for cubic Bezier curves: the standard version (upper left), the homogeneous ver- 
sion (lower left), the blossomed version (upper right), and the homogeneous blossom (lower right). Again we 
use - to denote homogeneous values, so t = (t, w) and a = (a, 1). 

Exercises 

1. Let P(t,w) and Q(t,w) be two homogeneous polynomials of degree n. Show 
that 

P(ct, cw) P(t,w) 
Q(ct, cw) Q(t,w) 

b. P(t, w) = wnp(t / w,1) 

2. Let P(t) be a polynomial of degree m and let Q(t) be a polynomial of degree 
n. Show that 

a. R(t) - P(t) + Q(t) ~ R(t, w) = P(t, w) + Q(t, w) if and only if m = n 

b. S(t) - P(t)Q(t) =~ S(t,w) - P(t,w)Q(t,w). 
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3. Prove Lemma 6.6. That is, prove that i fp((ul ,v 1) ..... (Un,Vn)) is a polynomial 
in which for each k = 1 .... ,n either u k or v k, but not both, appears in every 
term to the first power, then p ( ( u l , V l )  ..... (Un,Vn)) is multilinear. (Hint: Use 
the same techniques as in the proof of Lemma 6.2.) 

4. Prove the converse of Lemma 6.6. That is, prove that if the function 
p ( ( u l , v  1) ..... (Un,Vn)) is a multilinear polynomial, then for each k = 1 ..... n 
either u k or v k, but not both, appears in every term to the first power. 

5. Suppose that P(t)  is a polynomial of degree n. Let p '  denote the blossom of 
P'( t )  and let p(r) denote the blossom of P(r)(t). Show that 

a. p ' (u  1 ..... Un_ 1) = np(u 1 ..... Un_l,~) 

b. p(r) (u 1 ..... Un-r ) n! = ~ p ( u  1 ..... Un_r,~ ..... S) 
( n - r ) !  

r 

6. Using the bracket operator defined in Section 6.2, Exercise 8, show that 

n! d r 
~ p ( x  ..... x,t~,., t~) = [ P ( t ) , ~ ( x -  t)n]n �9 P(r ) (x )  = ( n - r ) !  ~ ~ dx r 

n - r  r 
7. Let mj denote the multiplicity of the parameter uj in the sequence u 1 ..... u n. 

Prove that 

a. ~P(Ul ..... Un) 
~uj 

= m j p ( u  1 ..... Uj_ l ,~ ,u j+ 1 ..... u n) 

b. Op( ul ..... Un ) mj  
- p ' (u  1 ..... u j_  1,uj+l ..... u n) 

auj  n 

Compare this result to Section 4.3, Exercise 3(a). (Hint: Consider the basis 
P~ (t) = (t - a k )n, k = 0 . . . . .  n.) 

8. Prove that the multilinear blossom of a homogeneous polynomial P(t ,w)  is 
unique. 

9. Let P(t)  be a polynomial of degree n with homogenization P(t ,w)  and blos- 
som p(u  1 . . . . .  Un). Suppose that q( (u l ,V l )  ..... (Un,Vn)) is a symmetric, multi- 
linear function satisfying the dehomogenization property 

q((ul,1) ..... (Un,1)) = p(u  1 ..... Un). 

a. Show that q((t, w) ..... (t, w)) = P(t,  w) .  

b. Conclude that in the axioms for the multilinear blossom the diagonal 
property can be replaced by the dehomogenization property. 

10. Let L0(t),L 1 (t) be arbitrary polynomials of degree 1 in t, and suppose that 

(Fo(t) . . . . .  Fn(t)) = !Lo ( t ) ,L I ( t ) }  | 1 7 4  {Lo( t ) ,L I ( t ) ! "  
Y 

n-factors 
Show that 

(Fo( t ,w)  . . . . .  Fn( t ,w)  ) = ( L o ( t , w ) , L l ( t , w ) }  | 1 7 4  { L o ( t , w ) , L l ( t , w ) } .  
~. ..... �9 

n-factors 
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11. Let Q(t) = ~,jQjt j be a polynomial curve of degree /7. 

a. Use Taylor's Theorem to show that 

Qj : ( ~ ) q ( ~ , & . ~ ) "  
n - j  j 

b. Apply the result of part (a) to develop an algorithm to convert from Bez- 
ier to monomial form. 

12. Let M~c(t,w) = (n) tkwn-kk and consider the function 

n 
m k  ((Ul, Vl) ..... ( U n , V n ) )  - 2o. uo.(1)""ucr(k)Vty(k+l)""vet(n)' 

where the sum is taken over all permutations ty of {1 ..... n}. 

a. Show that 

m~((Ul,Vl) ..... (Un,Vn)) 

is a symmetric multilinear function that reduces to M~(t,w) along the 
diagonal. 

b. Use the result in part (a) to establish the existence of the multilinear 
blossom. 

c. Verify that Figure 6.6 commutes. 

ZkCk(nk)t k Blossom 
Z k C k Z U i ]  . . . u i  k 

Homogenize Homogenize 

/'/ 

X k C k ( k ) t k w  n - k  
Blossom 

~.,kCk ]gU il . . . U ikV i k+ l . . . Vin 

Figure 6.6 Blossoming and homogenizing commute. 

6.5 Blossoming Bezier Patches 

Blossoming can be extended to polynomials in several variables. Since we are mostly 
concerned with surfaces, we shall confine our attention here to polynomials in two 
variables, but the same constructions work quite generally for polynomials in an arbi- 
trary number of parameters. We have encountered two distinct kinds of Bezier 
patchesmtriangular and rectangular--and these two surface types are associated with 
different variants of the blossom, so we shall deal here with each one separately. 
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6.5.1 Blossoming Triangular Bezier Patches 

Consider first de Casteljau's tetrahedral algorithm for triangular Bezier patches. 
Recall that for curves we labeled the nodes of the de Casteljau algorithm with the 
end points of the parameter interval; for surfaces we shall label the nodes with the 
comer points of the triangular domain. Let Aabc be the domain triangle, where 
a = (al,a2), b - (bl,b2), c = (Cl,C2), and let t = (tl,t2) denote an arbitrary point in 
the parameter domain. 

The de Casteljau pyramid algorithm for a degree n triangular Bezier patch is 
represented by a tetrahedral array with edges pointing into the nodes from three 
directions. Suppose we start at the apex of the tetrahedron and want to reach the con- 
trol point Pijk at the base (see Figure 5.44 ). Then we must take i steps along one 
direction, j steps in a second direction, and k steps in the third direction. We can use 
the vertices a,b,c of the domain triangle to encode these three directions. This con- 
vention leads to the notation aibJc k for the position ijk along the base of the triangle. 
Nodes located above the base we shall denote by 

aab f l cT tn -a - f l -7 ,  

since there are still n -  a -  f l -  y levels to consider. The node at the apex of the tetra- 
hedron has the label t n, since no edges have been traversed. This notation tells us 
precisely where we are in the tetrahedron, and it captures as well the labels along the 
edges of the tetrahedron, which are just the barycentric coordinates of the point 
t = (tl,t 2) relative to the domain triangle Aabc. We illustrate this labeling of the 
nodes for the case n = 3 in Figure 6.7. 

As with curves we blossom this bivariate de Casteljau algorithm by replacing 
t = (t 1,t 2) with u k - (Uk~,/,/k2 ) on the kth level of the diagram, and replacing 

C 

a b 

(a) Domain triangle 

Figure 6.7 The labeling for the nodes in de Casteljau's pyramid algorithm for a cubic triangular Bezier 
patch. The vertices of the domain triangle (a) provides the labels for the directions in de 
Casteljau's algorithm (b). 
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aabflc~/ t  n - a - f l - ) "  with aabf lC~Ul . . .Un_a_f l_~ , .  

This procedure generates Figure 6.8, where the labels along the edges on the kth 
level of the tetrahedron are the barycentric coordinates of the points u k - (Uk~ ,Uk2 ) 
relative to Aabc .  

The function that emerges at the apex of this tetrahedron depends on the n vari- 
ables u 1,...,u n. If we place the control points {Pijk} of the triangular Bezier surface 
P ( t l , t  2) at the base of the diagram, then the function that emerges at the apex is 
called the b l o s s o m  of P ( t l , t  2) and, as in the univariate setting, is denoted by 
p ( u  1 .... ,Un). Here, however, the variables u 1 ..... u n are points in the affine plane, so 
each variable has two coordinates. 

The function p ( u  1 ..... Un) is symmetric in the variables u 1 ..... u n, since the coeffi- 
cients of the control points are convolutions and discrete convolution is commutative 
(see Section 5.6.1). Also p(u l  ..... Un) is multiaffine in the variables u 1 ..... u n because 
each coordinate of each variable appears only to the first power in p ( u  1 ..... Un), since 
the barycentric coordinates that label the edges of the diagram are linear functions in 
the parameters. Finally, if we replace each variable u k = (Ukl,Uk2) in p ( u  1 ..... u n) by 
t -  (q,t2), the algorithm reverts back to the de Casteljau algorithm for P( t l , t 2 ) .  
Thus along the diagonal, p ( t  . . . . .  t) = P(t) .  Hence the function p ( u  1 ..... Un) is symmet- 
ric, multiaffine, and reduces to P(t )  along the diagonal~that is, p ( u  1 ..... u n) is the 
blossom of P(t) .  This argument establishes the existence of the bivariate blossom; 
uniqueness follows by a demonstration similar to the one given in Theorem 6.3 (see 
Exercise 2). 

The dual functional property also holds for triangular Bezier patches. That is, 
the control points {Pijk} for a Bezier patch P(t )  over the domain triangle A a b c  are 
given by 

Pijk = p ( a  ..... a ,b  ..... b ,c  ..... c) 
~ _ . . ~ . ~  ~ , . ~ r . _ ~  �9 

j k 

Figure 6.8 The blossom of a cubic triangular Bezier patch. 
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The proof follows from the uniqueness of the Bezier coefficients and is much the 
same as the proof of Theorem 6.1 (see Exercise 1). 

As in the univariate setting, the dual functional property simplifies the derivation 
of various change of basis procedures. For example, suppose we want to split a trian- 
gular patch into the three patches formed by joining the vertices of A a b c  to some 
point t - (t 1,t 2) in the parameter domain. By the dual functional property, the con- 
trol points for these three patches are given by 

Qijk = p ( a  ... . .  a , b  ... . .  b , t  . . . . .  t )  

l j k 

Rij k = p ( b  ... . .  b , c  .. . . .  c , t  . . . . .  t )  

t j k 

Sij k - p ( a  ... . .  a , c  .. . . .  c , t  . . . . .  t)  . 

t j k 

Therefore, it follows immediately from Figure 6.7 that we can subdivide a triangular 
Bezier patch into three patches by taking the values off the three lateral faces of the 
de Casteljau tetrahedron. This algorithm is the generalization to triangular patches of 
the de Casteljau subdivision algorithm for Bezier curves. 

We can also homogenize bivariate polynomials in much the same way that we 
homogenize univariate polynomials. Let 

i j  
P ( t l , t 2  ) - ~ i j c ( j t l t  2 

be a polynomial of degree n. To homogenize P ( t l , t 2 ) ,  we multiply each term t i t  J2 by 
wn- i -J  t o  obtain 

P ( t l , t 2 ,  w ) = ~ i j c i j t ~ t ~ w  n - l - J  . 

To homogenize de Casteljau's tetrahedral algorithm, we simply homogenize the lin- 
ear barycentric coordinate functions along the edges of the tetrahedron. As in the 
univariate setting, we can homogenize the blossom or blossom the homogenization 
by first blossoming and then homogenizing or first homogenizing and then blossom- 
ing de Casteljau's tetrahedral algorithm. Again blossoming and homogenization 
commute (see Exercise 3). Notice too that in the bivariate setting, the homogeneous 
blossom is once again multilinear rather than multiaffine--that is, both the domain 
and the range are lifted from affine space to Grassmann space. 

The homogeneous blossom can be used to compute the partial derivatives of a 
triangular Bezier patch. Let t~ 1 = (1,0,0), t~ 2 = (0,1,0), and t = (t 1,t2,1 ) . Consider 
now what happens in the homogeneous version of de Casteljau's algorithm if we 
replace t ~ &l on any level of the algorithm. Since the labels are barycentric coordi- 
nates and since barycentric coordinates are linear functions, the effect is to replace 
each barycentric coordinate function with the coefficient of tl; that is, the effect is to 
differentiate one level of the algorithm with respect to t 1. If now we replace 
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( t l , t 2 , w )  ~ (tl,t2,1) on the remaining levels of the algorithmmthat is, if we deho- 
mogenize the remaining levelsmthen, up to a constant multiple, we get the partial 
derivative with respect to t 1 of the original Bezier surface. Similarly, if we replace 
t ~ t52 on any level of the algorithm and dehomogenize the remaining levels, then, 
up to a constant multiple, we obtain the partial derivative with respect to t 2. There- 
fore, it follows that 

~P 
= n p ( ~ , 6 1 )  

Otl n-1  

bP 
= np( t , .~ ,  t52). 

~)t2 n-1 

More generally by an analogous argument, 

Exercises 

oi+jp n! 

~t[~tJ2 (n - i _ j)t. P(tn_;_;,_.,,...,, jt,61, . . . . .  ~" 6 1 ' 6 2 '  ' . . . . .  ":" t ~ 2 ) "  
l J 

1. Prove the dual functional property of the bivariate blossom for triangular 
Bezier patches. That is, prove that if P(t 1 ,t 2) is a Bezier surface with control 
points {Pijk} over the domain triangle Aabc,  then 

Pqk - p(a, . . . ,a ,b ..... b,c ..... c). 
t j k 

2. Using Exercise 1, prove that the blossom of a bivariate polynomial P(t 1,t 2) 
is unique. 

3. Prove that for bivariate polynomials, blossoming and homogenizing com- 
mute. 

4. Let P~jk (s,t) = (s + t - aij k ) n .  Show that 

Pqk( (Ul ,V l )  ..... (Un,Vn))  = ( u  1 + v 1 - a i j k ) " ' ( u  n + v n - a i j k ) .  

5. Consider the monomial Mijn~(s,t) - (~.k)sit j .  
, u r  

a. Show that 

mgk( (Ul ,V l  ) ..... (Un,Vn))  - ~,Ual .. .uaivfl~ . . . v f l j  , 

where the sum is taken over all subsets { a  1 . . . . .  a i ,  fll ..... flj} of the inte- 
gers {1 ..... n}. 

b. Show that 

1 
. . . . .  ", v, I (1 vn) | 1 7 4  

0 U n 0 
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c. Using the result in part (a), show that 

n n-p (" ij~ )si d ~ E : X q - )Bpqr(S,t) i+ j + k = n. 
p=i q= j 

d. Using the result in part (c), develop a formula for converting from bivari- 
ate monomial to bivariate Bezier form. 

6. Let bijnk((Ul,Vl) ..... (Un,Vn)) denote the blossom of the degree n Bernstein 
basis function B~k(t 1,t2). Prove that 

a. bijnk((Ul,Vl) ..... (Un,Vn)) = 

B 1 B 1 ~,il+..'+in=i~jl+...+jn=j ilJlk 1 (Ul,Vl)"" inJnkn(Un,Vn) 

ilUlVl Vl I Ilunvn vn) 
b. (Ul'Vl) ..... (Un'Vn) - u 1 0 | 1 7 4  u n 0 

7. Let Lloo(S,t),Lolo(s,t),Loo l(s,t) be arbitrary linear functions in s,t, and sup- 
pose that 

(Fijk(S't)) - ( LOOl (S't)LlOO(s,t ) 

Show that 

a. (Fijk(S,t,w))= 

Lool (s,t,w) 
Lloo(s,t,w) 

Lo lo ( s ' t ) ) | 174  L O O l ( s ' t ) O  Lloo(s,t) 

Y 

n linear factors 

LOIO (s, t, w ) / | 1 7 4  (L001 (s,t, w) 
0 ~Lloo(s,t,w) 

Y 

n linear factors 

b. (fijk((Ul,V,) ..... (Un,Vn))) 

LloO(Ul,Vl) 0 ~,LloO(Un,Vn) 

,O Oo(S,, / 

Lolo(s't' w) I 0  

LolO(Un'Vn) I 0  

8. Let P(s) be a univariate polynomial of degree n. Then P(s,t) = P(s) is also a 
bivariate polynomial of degree n. Prove that 

P((Ul,Vl ) ..... (Un,Vn)) - P(Ul,...,Un). 

9. Using the result of Exercise 8, prove that 

a. Bn(s ) -  y_.j+k=n_iBijnk(s,t) 

b. B] (t) - ~,i+k=n-j Bijnk (s,t) 
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10. Use blossoming to derive the following identities: 

a. y~i+j+k=nBisk(S, t)-  1 

b. s  i+j B~k(S,t  ) - (1 - 2s - 2t) n 

c. Z i+ j=n-k  B~k (s,t)  = B;  (1 - s - t) 

n n-i  
d. E Z (x  + 11 i (y  + 11 j Bijk(S,t ) - (sx + ty + 1) n 

i=0 j=0 

n n-p  
e. Bijnk(su, lv) - X X B f  (u)Bq(v)B~qr(S, t) 

p=i q=j 

11. Let P(s,t) be a bivariate polynomial of total degree n, and let p(i,J)(u 1 ..... Un_i_j) 
denote the blossom of P(i,J)(s, O. Prove that 

n! p(!s , t )  ..... (s,t),fi 1 ..... a l , a  2 ..... a2) P(i 'J)(s ' t)  - ( n -  i -  j)! .:. " �9 ~ " .:. " a. 

n - l - j  I j 

p( i,j) n! fi 
b. (Ul ..... U n - i - j ) -  ( n _ i _ j ) v P ( U l .  ..... Un-i- j ,  1 ..... ~. ~1,~2�9 ..... -:. ~2)�9 

l j 

12. Let bijnk((Ul,Vl) ..... (Un,Vn)) denote the blossom of the degree n Bemstein 
basis function Bi~k(s,t ). Prove that 

bij ((0 r k ,0) ..... (0,0),(1,0) ..... (1,0),(0,1) ..... (0,1)) = (~kr" 

13. Let Q(s, t )  = ~,jQijs ' t  J be a polynomial surface of total degree n. 

a. Use Taylor's Theorem in two variables to prove that 

Qij -(~jk)P(51 ..... 51,~2 ..... 52,(s , t )  ..... (s,t)),  i+  j + k = n. 
Y t j "k 

b. Apply the result of part (a) to show that 

H - -  H 

Bqk(S, t )= Z n~(-1) i+j+P+q(P)(q) (pqr)S  ptq 
p=i q=j 

c. Apply the result of part (b) to develop a formula to convert from bivariate 
Bezier to bivariate monomial form. 

14. Consider the degree elevation formula in Proposition 6.5. 

a. Show that if we let u j -  (uj~ ,U j2 ), then this identity is valid for the 
bivariate blossom. 

b. Use this bivariate degree elevation formula to derive the degree elevation 
formula for triangular Bezier surfaces given in Section 5.8.2, Exercise 
10(e). 
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15. Consider the subdivision algorithm for triangular Bezier patches described 
in the text. 

a. Explain why the control polyhedra generated by iterating this subdivi- 
sion algorithm will not, in general, converge to the original triangular 
patch. (Hint: Consider the boundaries of the patch.) 

b. Use blossoming to subdivide a Bezier patch into four subpatches as in 
Figure 6.9. 

c. Verify experimentally that iterating the algorithm in part (b) generates 
control polyhedra that converge to the original triangular patch. 

a 

b f c 

Figure 6.9 Subdivision of a Bezier patch into four subpatches. 

16. Recall from Section 5.6.3 that we can speed up recursive subdivision for 
Bezier curves by applying Wang's formula. 

a. Develop an analogue of Wang's formula for triangular Bezier surfaces 
for the subdivision algorithm in Exercise 15(b). 

b. Implement the recursive subdivision algorithm for rendering a triangular 
Bezier surface with and without Wang's formula. 

c. How much does Wang's formula speed up this algorithm? 

17. Let P(r,s,t) and Q(r,s,t) be homogeneous polynomials of total degree n, and 
define 

[P(r , s , t ) ,Q(r , s , t ) ]  n = 

Show that 

1 
Z 

i+j+k=n 

p(  i,j,k ) (p,  r "c)Q ( i'j'k ) (p,  (7, "c) 

i!j!k! 

a. [P(r , s , t ) ,Q(r , s , t ) ]  n is a bilinear operator. 

b. [P(r , s , t ) ,Q(r , s , t ) ]  n is a constant independent of the choice of (p, cr,'t'). 

c. P(x ,  y , z )  - [P(r , s , t ) , ( rx  + sy + tz)n]n . 
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d. p ( ( u l , V l , W l )  . . . . .  (Un,Vn,Wn))  - 

[ P ( r , s , t ) , ( r u  1 + sv 1 + tw 1 ) . . . ( ru  n + sv n + tWn)] n. 

(Compare to Section 6.2, Exercise 8.) 

18. What formula do you get for the homogeneous blossom when you homoge- 
nize and then blossom the bivariate form of Taylor's Theorem? 

Blossoming Tensor Product Bezier Patches 

Look at Figure 5.40, the de Casteljau algorithm for a tensor product Bezier patch. 
Unlike the tetrahedral algorithm for a triangular Bezier patch, here the s and t param- 
eters always appear on separate levels of the diagram, never on the same level. The 
trick for blossoming and homogenizing a tensor product surface is to treat each vari- 
able independently. 

To blossom the de Casteljau algorithm for a tensor product surface P(s , t )  of 
bidegree (m,n) ,  we blossom the t levels exactly as we blossom Bezier curves, and 
then we do the same for the s levels. To keep track of the fact that s and t are distinct 
variables, we use different blossom parameters to replace s and t: u 1 ..... u m for s and 
Vl ..... Vn for t. Thus, we shall denote the blossom of P(s , t )  by p ( u l  ..... Um;Vl ..... Vn), 

where the semicolon separates the s and t blossom parameters. Algorithmically we 
can generate the blossom of P(s , t )  by replacing t with vj on the jth level of the de 
Casteljau algorithm in t and then replacing s with u k on the kth level of the de Castel- 
jau algorithm in s (see Figure 6.10). 

This blossom p ( u  1 . . . .  , U m ; V  1 . . . . .  V n )  is bisymmetricmthat is, it is symmetric in 
the u and v parameters independently. This means that we can exchange any two u 
parameters or any two v parameters, but we cannot exchange a u parameter with a v 
parameter. B isymmetry follows directly from the commutativity of discrete convolu- 
tion. This blossom is also multiaffine in the u and v parameters, since these parame- 
ters appear only to the first power. Finally, by construction, p ( u  1 . . . . .  U m ; V  1 . . . . .  V n )  

reduces to P(s , t )  along the diagonalmthat is, p ( s  ..... s; t  ..... t) = P ( s , t ) m b e c a u s e  if we 
replace each u parameter by s and each v parameter by t, then the algorithm reverts 
back to the original de Casteljau evaluation algorithm for P(s , t ) .  Thus the blossom 
p ( u  1 . . . . .  Um; V 1 . . . . .  Vn)  satisfies the following properties: 

i. B i s y m m e t r y  

p (  ul ..... Um ; V 1 . . . . .  v n) = p(ucy(1 ) . . . . .  ucy( m ) ; V,c(1) , . . . ,  Vr(  n ) ) . 

ii. M u l t i a f f i n e  

p ( u  1 . . . . .  U m ; V l , . . . , V n )  is multiaffine in each variable. 

iii. D i a g o n a l  

p ( s  ..... s;t  ..... t) = P ( s , t ) .  

m n 

The argument in the previous paragraph establishes the existence of the blossom 
of bidegree (m,n); uniqueness can be proved by invoking the linear independence of 
the bivariate tensor product Bemstein basis functions (see Exercise 2). 
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P(Ul,U2;Vl,V2) 

, _u , /  ",...u, 

/ <. 
PO(Vl,V2) Pl (Vl,V2) P2(Vl,V2) 

PO0 POI P02 Pl 0 P11 P12 P20 P21 P22 

Figure 6.10 The blossom p(ul,u2;vl,v 2) of the biquadratic tensor product Bezier patch P(s, t) = 
2 2 

~, ~, B 2 (s)B2(t)Pij. Notice the internal nodes labeled with the blossoms Pi(Vl,V2)of the 
i=0 j=0 

2 
2 

Bezier curves Pi( t) = ~_~ Bk( t)Pik. 
k--O 

The dual functional property also holds for tensor product patches. Suppose that 
the domain of P(s,t) is [a,b] • [c,d]. Then 

Pij = p(a ..... a,b ..... b;c ..... c,d ..... d). 
m - i  l n - j  j 

As usual the proof follows by the uniqueness of the Bezier coefficients of a tensor 
product Bezier patch and is much the same as the proof for Bezier curves (see Exer- 
cise 1). 

To homogenize a polynomial P(s,t) of bidegree (m,n), we homogenize in each 
variable independently. Thus every term of the homogenization P(s,w;t, oo) is of 
exact bidegree (m,n). In particular, to homogenize, we multiply the term sitJ by 
w m-i(_On-j. Hence 

m l'l 

P(s,t)= Z Zcijs ~tJ 
i=0j=0 

m n 
P(s,w;t,(o) = ~, ~CijS twm-ttJ(_O n-J" 

i=0j=0 

As with blossoming we can homogenize the de Casteljau algorithm by homogeniz- 
ing each level of the algorithm with respect to the appropriate variable. 
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Blossoming and homogenizat ion commute just as in the univariate setting (see 
Exercise 3). To homogenize the bidegree blossom, we again homogenize with 
respect to each variable independently. Hence we write 

P((Ul, Wl) ..... (U m , Wm ); (Vl, CO1) ..... (v n , (-O n )) 

for the homogeneous  blossom of p(u  1 ..... Um;Vl,... ,Vn). Partial derivatives are calcu- 
lated in the usual way by substituting s ~ ~1 - (1,0) or t ~ ~2 - (0,1) on any level 
of the de Casteljau algorithm. Thus 

OP 
Os = m P ( ~  '~l  ; t ' ' ~ )  , 

m-1 n 

OP 
= np(s  ..... s;t ..... t, fi2) , 

~t ~ m n-1 

and, more generally, 

~ i + j p  m! n! 
= _ _  

~si~t  j (m i)?(n j )  I p ( ~ '  1 ..... ~ ; 1 , ~ ,  2 ..... '~2)" 
- - " ~ n - j  ~" �9 m-i  l j 

Finally, to clarify the distinction between the different variants of bivariate 
homogenizat ion and blossoming, let's consider a simple concrete example. We can 
think of the polynomial  P(s, t )  - s 2 + st + t either as a bivariate polynomial  of total 
degree 2 or as a bivariate polynomial  of bidegree (2,2). Thus we have the following 
formulas: 

�9 P o l y n o m i a l  

�9 H o m o g e n i z a t i o n s  

�9 B l o s s o m s  

P( s , t )  - s 2 + st + t 

P(s , t ,  w)  - s 2 + st + tw 

P( s ,w; t ,  co) - $2(.0 2 + swt(o + w2t(o 

P((Ul, Vl ), (U2, V2 )) - UlU 2 + 
UlV2 + u 2vl Vl + v 2 

2 2 

P(Ul, u2; Vl, v2 ) - u 1 u2 + 
(u 1 + u2)(v 1 + v 2) Vl + v 2 + ~  

4 2 

p ( ( U l , V l , W l ) , ( U 2 , V 2 , W 2 ) ) -  UlU 2 + 
Ul V2 + u 2 vl Vl W2 + v 2wl + 

2 2 

P((Ul, Wl ), (U2, w2 ); (Vl, CO 1 ), (V2, (0 2 )) 

= UlU2(.Ol(_02 + 
(UlW 2 + u2w 1 )(Vl(-02 + v2a) 1 ) Wl W2VlC02 + w 1 w2 v2(.o 1 + 

4 2 
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Exercises 

1. Prove the dual functional property of the bivariate blossom for rectangular 
Bezier patches. That is, prove that if P(s,t) is a tensor product Bezier surface 
of bidegree (m,n) with control points {P/j} over the domain [a,b] x [c,d], 
then 

Pij - p(a ..... a,b ..... b;c ..... c,d ..... d). 
m - i  t n - j  j 

2. Prove that the blossom of a polynomial P(s,t) of bidegree (m,n) is unique. 

3. Prove that for polynomials of bidegree (m,n) homogenization and blossom- 
ing commute. 

4. Here we provide an alternative construction for the blossom of a tensor 
product Bezier patch based on the pyramid algorithm. Consider the pyramid 
algorithm for a tensor product Bezier patch P(s,t) of bidegree (n,n). Let 

/3((Ul,V 1) .... ,(Un,Vn) ) 

denote the function generated by replacing the parameters (s,t) by a differ- 
ent parameter pair (u k, v k) on each level of the pyramid. 

a. Show that the function /5((Ul,Vl) ..... (Un,Vn)) is bisymmetric, multiaffine 
in the u and v parameters, and that 

. . . . .  (Un,V.)) 
reduces to P(s,t) along the diagonal. 

b. Conclude tha t  ib((Ul,Vl) ..... (Un,Vn)) is equal to the blossom 
p(u 1 ..... Un;V 1 ..... Vn) of P(s,t). 

c. Let [P~v } be the control points and let Qij = (i,J), i,j = 0,1, be the vertices 
of the domain rectangle of P(s,t). Show that P~v is equal to 

/ "x 

/~[Qoo,. ~., Qoo, Qlo ..... Qlo, Qol ..... QOl, Q11 ..... Q l l /  ,tt = i +  k , v - j +  k. 

k. d - i - j - k  "i j k ) 

5. Let P(s,t) = s 3 + st 2 + st + s. Compute the following blossom values: 

a. p((ul, v 1 ), (u 2 , v 2 ), (u3, v 3)) 

b. p(u 1 , u 2 , u 3; v 1 , v 2 , v 3 ) 

C. p((Ul, Vl, w 1 ), (U2, v2, W 2 ), (u3, V3, W 3)) 

d. p((ul,Wl ),(u2,w2),(u3,w3);(Vl,(.Ol ),(v2,002),(v3,(.03) ) 

6. Let Pij(s,t) = sit j, where i < m and j < n. Then Pij(s,t) is both a polynomial 
of total degree m + n and a polynomial of bidegree (m,n). Show that 
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a. p((ul,Vl) ..... (Um+n'Vm+n)) __ ~_ blal " " l g a i V f l l  " " V f l j  , 
(m+r l  
i j k )  

where the sum is taken over all sets of distinct indices 

{ al  ..... ai, fll .... , ~ j  }" 

b.  p(u 1 . . . . .  Um;  Vl . . . . .  V n )  = Z 
blal " " " blai V fll "" " V f l j  

(m)(7) 

where the sum is taken over all indices {a 1 ..... a i} and {ill ..... flj} such 
that {a 1 ..... a i } are distinct and {ill ..... flj} are distinct. 

7. Let P(s) be a univariate polynomial of degree n. Then P ( s , t ) -  P(s)  is both 
a bivariate polynomial of total degree n and a bivariate polynomial of bi- 
degree (n,n). Prove that 

a. p((u 1, v 1 ) ..... (Un, v n )) = p(u 1 ..... u n) 

b. p(ul,...,Un;Vl ..... V n ) -  p(u 1 ..... Un) 

c. Using parts (a) and (b), conclude that if P(s, t)  - s i, i _< m, or P(s,t) = tJ, 

j < m, then p(u 1 ..... Un;V 1 ..... Vn) - p((ul ,Vl)  ..... (Un,Vn)). 
�9 . 

8. Let Q(s,t)  = ~,jQijstt  J be a bivariate polynomial of bidegree (m,n). 

a. Use Taylor's Theorem in two variables to prove that 

Qij = ( m ) ( j ) P ( ~ , 5 1 , . " ~ ; t , ' ~ , ~ 2 ,  ..... 52) .  
m - i  l n - j  j ~" 

b. Apply the result of part (a) to develop an algorithm to convert from 
bivariate Bezier to bivariate monomial  form. 

9. Let b~jn((ul ..... Um;V 1 ..... Vn) ) denote the blossom of the bidegree (m,n) Bern- 
stein basis function Bm(s)Bj(t).  Prove that 

a .  . . . . .  urn;v1 . . . . .  Vn)) 

�9 B 1. .B 1. (Vn)). 

f _ ~ . .  \ l  
b. 

i. U m - | 1 7 4  
u 1 t tm 

ii. V n - ( 1 - v  1 V l ) | 1 7 4  n Vn) 
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6.6 Summary 

Blossoming is easy. Blossoming is slick. Blossoming is fun. Blossoming is power- 
ful. But there is a lot of material in this chapter on blossoming to try to absorb all at 
once. Here then is a short summary of the main points that you need to remember: 

Pr imary  Proper t ies  

i. Symmetry 

p(ul , . . . ,u  n) - p(ucr(1) ..... Ua(n)) for any permutation cr of { 1 ..... n }. 

ii. Multiaffine p(u  1 .... , (1-  a ) u  k + aw  k ..... u n) = 

(1 - a)p(u 1 ..... u k . . . . .  U n )  + ap(u  1 ..... w k ,.. . ,u n) 

iii. Diagonal 

iv. Dual functional 

= n ( t )  

n 

Pk = p (a  ..... a ,b  .... b) Pijk - p (a  ..... a,b, . ,  b ,c  . . . . .  c) 

n - k  k z j k 

v. Existence 

vi. Uniqueness 

Pij - p (a  ..... a,b  ..... b;c ..... c ,d  .... ,d) 
m - i  i n - j  j 

The first three properties are the blossoming axioms--the three properties 
that uniquely characterize the blossom. Property (iv) is the key connection 
between blossoming and Bezier curves and surfaces. It leads to all the appli- 
cations listed below. Property (iv) is so strong that it can replace the diago- 
nal property as one of the blossoming axioms. Property (v), existence, is 
essential; otherwise there is nothing to talk about. But uniqueness, Property 
(vi), is also critical. It is uniqueness that allows us to identify formulas that 
represent the blossom simply by verifying the axioms. Many proofs of blos- 
soming identities are based on uniqueness. 

Key de Caste l jau Cons truc t ions  

1. Blossoming the de Casteljau algorithm 

�9 Blossom each level of the de Casteljau algorithm independently. 

�9 Replace t ~ u k on the kth level of the de Casteljau algorithm. 
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2. Homogenizing the de Casteljau algorithm 

�9 Homogenize each level of the de Casteljau algorithm independently. 

�9 Replace t - a ~ t - a w  and b - t ~ b w -  t on every level. 

�9 C e n t r a l  I d e a s  

1. Blossoming <--a powerful tool for generating change of basis algo- 
rithms. 

2. Homogenization ~ differentiation. 

3. Blossoming and homogenization commute. 

�9 P r i n c i p a l  A p p l i c a t i o n s  = C h a n g e  o f  B a s i s  A l g o r i t h m s  

1. Subdivision 

2. Differentiation 

3. Degree elevation 

4. Conversion between Bezier and Monomial form 

�9 E s s e n t i a l  Too l s  f o r  A n a l y z i n g  the  B l o s s o m  

1. Blossoming axioms 

�9 Uniqueness 

2. de Casteljau algorithm 

�9 Recursion 

3. Marsden identity 

�9 Power basis 

4. Elementary symmetric functions 

�9 Monomial basis 

5. Convolution 

�9 Bernstein basis 

Finally, it is difficult to remember all the interesting identities for the blossom 
that we have encountered in the text and in the exercises. For quick recall, we have 
collected these formulas below in the following section on blossoming identities. 

6.6.1 Blossoming Identities 

1. S y m m e t r y  

p(u  1 . . . . .  U i . . . . .  Uj,...,Un) = p (u  1 . . . . .  U j  . . . . .  U i . . . . .  U n )  

2. M u l t i a f f i n e  

p ( u l  ..... ( 1 -  a ) u  k + t ~  k ..... Un) - 

(1 - a)p(u 1 ..... u k ..... u n ) + a p ( u  1 ..... w k ..... u n ) 
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3. Diagonal  

p(t ..... t ) -  P(t) 

n 

4. Dual  functionals 

a. B e z i e r  coe f f i c i en t s  

Pk - p(a ..... a,b ..... b) 
,...._~...~ ~.....,e....~ 

n - k  k 

Po'k - p(a ..... a,b ..... b,c ..... c) 

t j k 

Pij - p(a ..... a,b ..... b;c ..... c,d ..... d )  

m - i  t n - j  j 

b. M o n o m i a l  coe f f i c i en t s  

Pk = p(a ..... a ,S  ..... (3) 

n - k  k 

Pijk - p( a ..... a, ~ 1 ..... S I , ~  2 ..... ~2)  

t j k 

P/j - P ( ~ , ~ l , . . - ~ ; ~ , ~ 2  . . . . .  ~ 2 )  

m - i  l n - j  J 

c. P o w e r  coe f f i c i en t s  

Pk = P(to ..... tk-l,tk+l ..... tn) 

Pi j  = P(SO . . . . .  S i - l , S i + l  . . . . .  Sm;tO ..... t j - l , t j+l  ..... tn) 

5. Linearity 

(p  + q ) ( u  1 . . . . .  u n) - p(u 1 ..... Un) + q(ul . . . . .  u n)  

( c p ) ( u  1 .... .  Un) = c p ( u  1 ..... u n)  

6. Products 

(pq)(ul ..... Um+ n)  = 

7. Composites 

(p  o q) (u  1 . . . . .  Umn) = 

8. Degree elevation 

~]e  P(Ue(1) . . . . .  U~(m))q(U~(m+l)  ..... U~(m+n))  

(m+n) !  

~,~ P(q(ua(1) ..... Ua(n) ) ..... q(Ua(mn-n+l) ..... Ua(mn) )) 

(mn)! 

n+l 

~, Pn (Ul . . . . .  ui-1 ,Ui+l ..... Un+l ) 

Pn+l (Ul . . . . .  Un+l ) _ i=1 
n + l  

Pn+k(Ul ..... Un+ k )  = 
Pn (ui 1 ..... ui n ) 

( n + k ~  

k ) 
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9. Der iva t ives  

P ' ( t )  = np(t  ..... t,(~) 

p (r ) ( t  ) - n! 

(n-r)! 
p( t  ..... t ,8  ..... 8) 

r 

~)P 
= np(t  ..... t,81) 

~t 1 n-1 
~P 

= n p ( ~ ,  a2) 
~ n-1 

8 i+jp  n! 

at{atJ 2 (n - i -  j)! 
p ( t  ..... t,81 ..... ~1,~2 ..... ~2) 

n - i - j  ~" ~" t j 

~P 
- -  = mp(s  ..... s,81 ;t ..... t) 
~S ~ m-1 n 

~P 
Ot - np( s~.~___~ t ..... t,82) 

m n-1 

o i+jp  m! n! 

OsiOt j (m - i) v (n _ j)v p ( s ~  ,s,~l ..... ~1; ~ ,  ~2 ,..., 82) 
�9 " m-i  ~" n - j  ~" �9 t j 

10. Convolu t ions  

(F~ (t) . . . . .  f n (t)) -- !Lo( t ) ,L  1 (t)) (~ .. . (~ (Lo( t ) ,L  1 (t)) 

n linear factors 

(fort (Ul ..... u n) . . . . .  f n ( u  1 ..... Un)) - (Lo(Ul ) ,L I (Ul ) ) |174  

(Fi~k (s, t)) - 
Lool(s,t) 
Lloo(S, t )  

~lO(S,t) I | | (Lool(~,O 
0 ~Lloo(s , t  ) 

- v  

n linear factors 

 lOo S,') / 

.... 

LIO0 (Ul, Vl ) 
LOIO (Ul' Vl )/(~... @ ( LO01 (un' vn) 

0 ) ~LloO(Un,Vn) 
LolO(Un'Vn) I 0  
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11. Special  univariate  bases  

a. B j  (t) = ( j  )t j (1 - t) n - j  

b j ( U l . . , U n ) -  y__,il+" . in=j B1 B 1 (Un) , .  . /1 ( U l ) " "  I n 

b. M)' (t) - (7 )d  
/'/ 

m j  (u 1 .... , t /n)  - ~Ui l  . . .u l j  

c. p j  (t) - (t - aj  )n 

p ; ( u  1 ..... Un) - (u  1 - a j ) . . . ( u  n - a j )  

12.  Special  bivariate  bases  

a. Bijnk(t) - (g .k)s i tJ ( l_  s -  t )n - i - J  

. . . . .  ( U n , V n ) )  - 

1 B 1 
Zil+...+in=iZjl+...+jn=jBilJlkl ( U l , V l ) " "  inJnk n (Un,Vn) 

b. Mij (t) - (' .k)sid 

m~k  ((Ul,  Vl ) . . . . .  (Un, Vn )) = E a i  c:fl j Uot 1 . . . uai  v fll . . . v flj 

c. Pijnk(t) - (s + t - a(i k)n 

Pqk((Ul,Vl) ..... (Un,Vn)) - ( u  1 + v 1 - a i j k ) " ' ( u  n + v n - a i j k )  

13.  Specia l  tensor produc t  bases  

a. BiTn(t) - (m) ( j ) s i t J  

b~n((ul  ..... Um;V 1 . . . . .  Vn) ) 

_ B 1 B 1 )) 
- (~ i l+ ' "+ im=iB] l (U l ) ' "B l ' lm  ( U m ) ) ( ~ J l + ' " + J n = J  J1 (Vl ) ' ' "  Jn (Vn 

mn m n b. Mi j (t) - (i )( j  ) s i t j  

mn . 
mij ( (u  1 . . . . .  Um,V 1 . . . . .  Vn) ) - ~, ual . . .uaivfll  ..vflj 

c. p q n ( t )  - ( s - a i ) m ( t - b j )  n 

mn 
Pij ((Ul . . . . .  Um, v 1 . . . . .  v n)) - (u  1 - ai ) . . . (u  m - a i)(v 1 - b j ) . . . ( v  n - b j )  
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14. D e  B o o r - F i x  represen ta t ion  

a. Univar iate  

n (_1) n-k 
p(u  1 ..... U n ) -  Y__, P(k)('g)llt(n-k)(~" ) 

k=0 n! 

gt(t) = (u 1 - t ) . . . ( u  n - t) 

b. Bivariate (homogeneous)  

1 
P((Ul' Vl' Wl ) . . . . .  (Un' Vn' Wn )) - ~ Z 

i+j+k=n 

p(i , j ,k)  (p ,  Or, "g)l[I (i'j'k) (p,  or, r )  

i!j!k! 

I l t (r ,s , t  ) = (ru 1 + sv 1 + tw 1) . . . ( ru  n + sv n + tw n) 

15. B l o s s o m  o f  the der iva t ives  

p ' ( u  1 ..... Un_ 1) = np(u  1 ..... Un_l,~) 

n~ 
p(r) (u 1 ..... Un_r ) _ ~ P(Ul ..... Un_r ' (~ ..... (~) 

( n - r ) !  ?- 

16. Part ia l  der iva t ives  o f  the b lo s som 

Op(u 1 ..... u n ) 
Ouj = m j p ( u l  ..... U j - l '~ 'U j+l  ..... Un) 

Op(u 1 ..... Un) m j  
= p ' (u  1 ..... u j -  1,uj+l ..... u n) 

~uj  n 

mj = mult ipl ici ty o f  uj 
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B-Spline Approximation 
and the de Boor Algorithm 

B-splines are generalizations of Bernstein polynomials and share many of their ana- 
lytic and geometric properties. A spline is a piecewise polynomial whose pieces fit 
together smoothly at the joins. B-spline curves and surfaces have two advantages 
over polynomial curves and surfaces. For a large collection of control points, a Bez- 
ier curve or surface approximates the control polygon or polyhedron with a single 
polynomial of high degree. But high-degree polynomials take a long time to com- 
pute and are numerically unstable. Splines provide low-degree approximations, 
which are faster to compute and numerically more tractable. We could, of course, 
manufacture splines by forming piecewise Bezier curves and surfaces. To do so, 
however, we would need to constrain the location of the control points so that the 
Bezier segments would meet smoothly at their joins. B-splines provide an approxi- 
mation scheme where such constraints on the location of the control points are not 
necessary; B-spline curves and surfaces meet smoothly at their joins for completely 
arbitrary collections of control points. Thus B-splines provide a simpler, numerically 
more stable approach to approximating large amounts of data. For these reasons B- 
splines have become extremely popular in large-scale industrial applications. 

7.1 The de Boor Algorithm 

We are going to introduce B-spline curves by invoking blossoming to generalize the 
de Casteljau algorithm for Bezier curves. Consider again the de Casteljau algorithm 
depicted as a blossoming recurrence in Figure 6.1 (see page 309). 

Examining Figure 6.1 from the bottom up, we see that what makes this recur- 
rence work is that the blossom variables in adjacent nodes on the same level differ by 
only a single parameter. This juxtaposition allows us to invoke the multiaffine and 
symmetry properties to compute new blossom values from old blossom values as we 
proceed up the de Casteljau triangle. Thus to generalize the de Casteljau construc- 
tion all we need to do is to ensure that this adjacency property holds throughout the 
triangle. The basic step is illustrated in Figure 7.1. 

347 
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t2t3t 

tlt2t 3 t2t3t4 

Figure 7.1 The basic step in the blossoming recurrence for a cubic polynomial: computing t2t3t from 
t l t2t  3 and t2t3t4 using linear interpolation together with the multiaffine and symmetry prop- 
erties of the blossom. As usual each triple uvw stands for the blossom evaluated at (u, v, w). 

The computation in Figure 7.1 is valid because from linear interpolation, we 
have 

t 4 - t t - t 1 
t -  ~ t  1 + t 4 �9 (7.1) 

t 4 - t  1 t 4 - t  1 

Therefore, for any symmetric multiaffine function p, 

( t4 - t t -  tl l t4 - t t - t 1  ), 
P(t2,t3,t ) = p t2,t3, tl + t 4 - ~ P ( t l , t 2 , t 3 ) +  P(t2,ta,t 4 

t 4 - t  1 t4 - t  1 t4 - t  1 t4 - t  1 

which is precisely the identity depicted in Figure 7.1. 
Now to generalize the de Casteljau algorithm, we start at the base of the triangle 

not with the parameters an-kb k, k = 0 ..... n, but with some arbitrary parameters 
tj+l...tj+ n, j = 0 ..... n. Since adjacent nodes on the same level still differ by only a sin- 
gle parameter, this approach leads to the recurrence depicted in Figure 7.2. This 
recurrence is the de Boor algorithm for a single segment of a B-spline curve. 

The computation illustrated in Figure 7.2 is just the computation depicted in 
Figure 7.1 repeated again and again as we proceed up the triangle. Notice that by 
Equation (7.1) this computation also makes sense if we treat each triple uvw as a 
product of real numbers, instead of as a sequence of blossom parameters. This obser- 
vation provides a simple mnemonic for remembering the de Boor algorithm. 
Another simple mnemonic that emerges from the diagram is that if you follow along 
in the direction of any arrow, the labels you encounter along the edges do not 
change. Of course, this observation is true only for the numerators; the denomina- 
tors, which are suppressed in the diagram, change from level to level. The label exit- 
ing t j+l. . . t j+ n to the left is t -  tj, and the label exiting to the fight is tj+n+ 1 -t.  
Knowing these labels allows us to label the numerators for the entire diagram. The 
denominators can be retrieved easily from the numerators, since the labels entering 
each node must sum to one. 

The de Boor algorithm evaluates points along any degree n polynomial curve 
P(t) by starting with n + 1 blossom values p(t 1 ..... tn) ..... P(tn+ 1 ..... t2n ) and running a 
recurrence to compute p(t ..... t). The parameters t 1 ..... t2n are called knots. The only 
restriction on the knots is that the denominators in the de Boor algorithm must not 
vanish. This requirement is equivalent to the constraint tj+ n r t i whenever 
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ttt 

t3tt t4tt 

t2t3t t3t4t t4t5t 

tl t2t3 t2t3t4 t3t4t5 t4t5t6 

Figure 7.2 The de Boor algorithm for a single segment of a cubic B-spline curve. Again each triple u v w  

stands for the blossom evaluated at (u, v, w). 

1 < j < i < n. Any knot sequence that satisfies this constraint is called a progressive 
sequence.  For reasons that will become clear in Section 7.3, we shall generally 
assume that t i < t i+l and shall restrict our attention only to the segment of the curve 
for which t n < t < tn+ 1. 

Now consider the functions 

b~ (t) - the sum of the products along all paths from the kth position at the base 
to the apex of the de Boor algorithm. 

Since the labels along the edges of the de Boor algorithm are linear functions that 
depend on the knots, the functions b~(t) ..... bn(t) are polynomials of degree n that 
also depend on the knots, but once the knots are fixed these functions are also fixed. 
Moreover, for any polynomial of degree n, it follows from the de Boor algorithm that 

n 

P(t) = ~, b f  (t)p(tk+ 1 ..... tk+ n) . 
k=O 

(7.2) 

Thus the polynomials b~ (t) ..... b n (t) span the space of polynomials of degree n. But 
any set of n + 1 polynomials of degree n that span the space of polynomials of 
degree n must form a basis for the space of polynomials of degree n. Hence the func- 
tions b~ (t) ..... b n (t) are a basis for the polynomials of degree n. We call a polynomial 
basis that corresponds to a progressive knot sequence a progressive basis. If the knot 
sequence is increasing, then locally these polynomials represent the B-spline basis 
functions about which we will have a good deal more to say later in this chapter. For 
now, the important fact to observe is that if Po ..... Pn are the control points of P(t) rel- 
ative to the progressive basis b~(t) ..... bn(t), then by Equation (7.2) 
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Pk = P(tk+l ..... tk+ n) (7.3) 

because the control points relative to a fixed polynomial basis are unique. Equation 
(7.3) is the dual functional property for the B-splines; this equation is the basic fact 
connecting blossoming to B-splines and is the generalization to B-splines of the dual 
functional property for Bezier curves. Again we shall have a good deal more to say 
about this result in subsequent sections. 

The de Boor algorithm for a B-spline segment has an elegant geometric interpre- 
tation, similar to the geometric interpretation of the de Casteljau algorithm for Bez- 
ier curves. Each step of the de Boor algorithm represents a linear interpolation. 
Labeling the points with their blossom values and joining the nodes with straight 
lines generates the trellis in Figure 7.3. Observe that just like the de Casteljau algo- 
rithm, the de Boor algorithm represents a corner-cutting procedure. Notice, however, 
that unlike Bezier curves, the curves generated by the de Boor algorithm do not nec- 
essarily interpolate their first and last control points. 

The de Boor algorithm is easy to blossom. Since adjacent nodes differ by only a 
single parameter, we can introduce a new parameter at each level of the de Boor 
algorithm by replacing t with u k on the kth level above the base of the triangle. Thus, 
we can compute an arbitrary blossom value p(u 1 ..... Un) for any degree n polynomial 
P(t) by starting with n + 1 blossom values p(t 1 ..... t n) ..... p(tn+ 1 ..... t2n), running the 
de Boor algorithm, and replacing t by u k on the kth level of the algorithm. This blos- 
soming algorithm is illustrated in Figure 7.4. Notice that this ploy is the same 
maneuver we applied to blossom the de Casteljau algorithm. 

In order to verify that B-splines generate smooth piecewise polynomial curves, 
we shall need to understand how to differentiate a segment of a B-spline curve. In 
Section 6.4 we showed that for any degree n polynomial P(t), 

P'(t)  = np(t ..... t ,8) 
n-1 

n~ 
P(k)(t) = ~ p ( t  ..... t ,8 ..... 8). 

( n -  k)V ~ 
�9 n - k  k 

t2t3t4 t3t4t t3t4t5 
A A A 

tlt2t 3 t4tst6 

Figure 7.3 Geometric construction algorithm for a point on a segment of a cubic B-spline curve. All the 
points are labeled with blossom values. Compare to the geometric interpretation of the de 
Casteljau algorithm in Figure 5.4. 



7.1 The de Boor Algorithm 351 

U l U 2 U 3  

- 

t3UlU2 t4UlU 2 

t 4 / - u 2 /  -~t2 t5-u2// -~ t3 

t2t3U l t3t4u 1 t4 t5u 1 

t4-u,// -~t, tS-Ul// -~t 2 t6-Ul// -~t 3 

t l t2 t3 tz t3 t 4 t3 t 4 t 5 t 4 ts t 6 
Figure 7.4 Blossoming the de Boor algorithm for a single segment of a cubic B-spline curve. This dia- 

gram is derived from Figure 7.2 by replacing t with u k on the kth level of the algorithm. 
Again each triple u v w  stands for the blossom evaluated at (u, v, w). 

Thus to differentiate one segment of a B-spline curve, we must blossom and 
homogenize the de Boor algorithm and then evaluate at t's and 6's. We already 
know how to blossom the de Boor algorithm (see Figure 7.4). To homogenize, we 
simply homogenize each level of the algorithm; that is, we replace 

tj- u k --4 (iv k - u k and Uk - ti ~ u k - tiv k 
on the kth level of the algorithm. Setting (uk,vk) = (t,1) gives us back our original 
labels, and setting (u k, v k) = d; = (1, 0) replaces 

t j v  k - u k ---> - 1  -- 

u k - t i v  k ---> + 1  = 

d(tj - t)  
d t  

d(t-t i) 
dt 

on the kth level of the algorithm. Thus the net effect on the de Boor algorithm of 
evaluating 

p( t ..... t, S ..... tS) 
n - k  k 

is to differentiate k levels of the algorithm and leave n -  k levels unchanged. We 
illustrate this differentiation algorithm in Figure 7.5. Notice again that this approach 
is akin to the procedure we used to differentiate the de Casteljau algorithm for Bez- 
ier curves. We shall use this observation in Section 7.3 to prove that two adjacent B- 
spline segments meet smoothly at their join. 
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t t6  

t3t6 

t2t36 

qt2% tz%t4 

tt46 

t3q6 t4ts6 

t3t4t 5 t4t5t6 

Figure 7.5 Differentiating the de Boor algorithm for a single segment of a cubic B-spline curve. This dia- 
gram is derived from Figure 7.2 by differentiating one level of the algorithm. To get the 
actual derivative, we need to multiply the output at the apex by n = 3. As usual, each triple 
uvw stands for the blossom evaluated at (u, v,w), t k = (tk,1), t = (t,1), and 6= (1,0). 

Another way to understand the computation in Figure 7.5 is to observe that 

1 1 
= (1,0) = ~ ( t k , 1 ) -  (tj,1) . (7.4) 

tk -tj  -tj  

Thus the differentiation algorithm is simply a consequence of Equations (7.1) and 
(7.4) coupled with the symmetry and multilinearity properties of the homogeneous 
blossom. Notice that the denominators t k - tj are suppressed in Figure 7.5. 

Exercises 

1. Show that the de Boor algorithm and its variants (Figures 7.2, 7.4, and 7.5) 
remain valid if we interpret the nodes as univariate polynomials whose roots 
are the specified parameter values. That is, let tj+ 1 . . . t j+  n denote the poly- 
nomial with roots tj+ 1 ..... tj+ n, j - 0 ..... n. 

a. Show that the de Boor algorithm (Figure 7.2) can be used to compute the 
polynomial ( t -  x)  n from the polynomials 

{ (tj+ 1 - x ) . . . ( t j +  n - x )  }, j = 0 ..... n. 

b. Show that the blossomed de Boor algorithm (Figure 7.4) can be used to 
compute the polynomial ( U l - X ) . . . ( U n - X )  from the polynomials 

{ (tj+ 1 - x ) . . . ( t j +  n - x )  }, j = 0 ..... n. 

c. Show that the differentiated de Boor algorithm (Figure 7.5) can be used 
to compute the polynomial ( t -  x)  n-k from the polynomials 



7.1 The de Boor Algorithm 353 

{ (tj+ 1 - x ) . . . ( t j+  n - x)  }, j = 0 ..... n. 

d. Apply the Third Principle of Duality from Section 5.5 to find the coeffi- 
cients {Q j} of a polynomial P(t)  relative to the basis 

Dj ( t )  = {(tj+ 1 - x ) . . . ( t j+  n - x ) } ,  j = 0 ..... n 

given the coefficients {Pk} relative to the basis 

Bk( t )  = {(Uk+ 1 - x) . . . (Uk+ n - x ) } ,  k = 0 ..... n. 

(Hint: You will need two triangles.) 

e. Use the result of part (d) to develop an O(n 2) algorithm to find the Bezier 
control points of a degree n polynomial curve given n + 1 points on the 
curve along with their associated parameter values. (Hint: Convert from 
Lagrange to Bezier form using part (d).) 

2. Let bd( t  l tj+l . . . . .  t j+2d) . . . . .  b J ( t  l tj+a . . . . .  t j+2d) denote the progressive 
basis of degree d for the progressive knot sequence tj+ 1 . . . . .  tj+2d. 

a. Show that Figure 7.6 represents the down recurrence for the progressive 
basis functions. 

b. Conclude that the progressive basis functions { b f ( t l t  1 . . . . .  tZn)} satisfy 
the recurrence 

b~c(t l tl . . . . .  t2n)= 

tk+n+l t 
b~c,-l(tl t2 . . . . .  tZn-2) + - -  

tk+n+l - t k + l  

t - t k  n-1 
bk_l (ti t2 ..... t2n-2) 

tk+ n - t  k 

1 

b l ( t l t 3 ,  t 4) b ] ( t l t 3 ,  t4) 

b~(t l t2 , . . . , t  5) b~(t l t2, . . . , t5)  b~(t l t2, . . . , t5)  

b~(t l t ] , . . . , t  6) b~(t l t] , . . . , t6)  b3?(t l t] , . . . , t6)  b~(t l t ] , . . . , t  6) 

Figure 7.6 The down recurrence for the cubic progressive basis functions. 
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3. The Bemstein polynomials can be represented by an um model employing 
sampling with replacement. Here we develop an urn model for a progressive 
basis with uniform knots. 

Consider an um containing w white balls and b black balls. One ball at a 
time is drawn at random from the urn, its color inspected, then returned to 
the urn, and w + b balls of the opposite color are added to the urn. Let 
t = w / ( w  + b) be the probability of selecting a white ball on the first trial, 
and define 

fk n-1 (t) = probability of selecting a black ball after selecting exactly k white 
balls in the first n -  1 trials 

n-l(t)  probability of selecting a white ball after selecting exactly k white s k = 
balls in the first n -  1 trials 

b~ (t) = probability of selecting exactly k white balls in the first n trials 

Using probabilistic arguments, show that 

f ~ - I  k + l - t  a.  ( t )  = 
n 

t + n - l - k  n-l(t  ) - b. s k 
n 

n-lYt~t.n-l(t ) C. b~ (t) = fk n-1 (t)b~ -1 (t) + Sk_ 1 ~ )Uk_ 1 

By matching the recurrence in part (c) to the recurrence in Exercise 2(b), 
conclude that 

d. bdo(t) ..... bd(t) is the progressive basis over the interval (0,1) for the 
knots t  k = k - d , k = l  ..... 2d. 

(Compare to Polya's urn model in Section 5.5.4.2, Exercise 12.) 

4. Here we extend the urn model in the previous exercise to progressive bases 
corresponding to arbitrary progressive knot sequences t 1 ..... t2n. Again we 
study urn models where we add balls only of the opposite color. 

Consider an urn containing w white balls and b black balls. One ball at a 
time is drawn at random from the urn, its color inspected, and then returned 
to the urn. If the ball was the jth black ball chosen, then cj additional white 
balls are added to the urn; if the ball was the kth white ball chosen, then d A 
additional black balls are added to the urn. Thus in each case only balls of 
the opposite color to the color of the chosen ball are added to the urn, and in 
every case the number of balls added to the urn depends only on the number 
of balls of the same color that have previously been selected. Let 
t -  w / (w+ b) be the probability of selecting a white ball on the first trial, 
and let 

tn+l-J - tn-j  (w + b) c j =  
tn+ 1 - t  n 
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d k = tn+k+l  - tn+k ( w  + b)  

tn+l - tn 

n-1  
f k  (t) = probability of selecting a black ball after selecting exactly k white 

balls in the first n -  1 trials 

n-1 (t) probability of selecting a white ball after selecting exactly k white S k 

balls in the first n -  1 trials 

b~ (t) = probability of selecting exactly k white balls in the first n trials 

Using probabilistic arguments, show that 

n - l (  t - t n .  I t - t k + l  

a. s k ~.tn+l - tn = tn+k+l  _ tk+l  

b. ~n-l( t -  t n I tk+n+ 1-  t 
Jk  k tn+ 1 _ tn = t k+n+l  _ tk+l  

c.  ~ / ' - ' n  / 
t~+- 1 - t n 

~ 1  / ~ , t n / ~ l /  ~ ,  tn / n 1 / + S~l ~ ' 'n / n 1 / ~1  ~ '~n / 
tn+ 1 - t n tn+l - t n tn+l - t n tn+l - t n 

By matching the recurrence in part (c) to the recurrence in Exercise 2(b), 
conclude that 

d ~/~ 'n+ ~ 1 - 'n / ..... b~/~ 'n+ ~ 1 - 'n / is the progressive basis for the knots 
t 1 ,'--,t2n" 

(Compare to the generalized Polya um model in Section 5.5.4.2, Exercise 
13.) 

7.2 Progressive Polynomial Bases Generated by Progressive 
Knot Sequences 

Every progressive knot sequence determines a progressive polynomial basis. Each 
such basis has an evaluation algorithm that is a special case of the de Boor algo- 
rithm. Here we look at three important examples of progressive polynomial bases" 
the Bernstein basis, the monomial basis, and the Newton dual basis. The power basis 
is yet another example of a progressive polynomial basis; this basis is examined 
briefly in Exercise 1. 

The de Casteljau algorithm is the special case of the de Boor algorithm where 
t 1 = . . . .  t n = a and tn+ 1 = . . . .  t2n = b (compare Figures 6.1 and 7.2). Thus Bezier 
curves are special types of B-spline segments. 
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If we homogenize the de Casteljau algorithm with respect to the knots and then 
replace b by ~ = (1,0), we get an evaluation algorithm for the monomial basis 

M~ (t) = (~)(t - a) k 

at t = a (see Figure 7.7). 
Since, up to constant multiples, the monomial coefficients at t = a are the deriv- 

atives of the polynomial at t = a, the monomial coefficients are the values of the 
blossom at an-kr k, k = 0 ..... n. Therefore, the knot sequence for the monomial basis at 
t - a is t 1 . . . .  = t n = a and tn+ 1 . . . . .  t2n - r Here the monomial basis functions 
are ( n ) , ( t -  a) k instead of the standard Taylor basis functions ( t -  a) k / k !  because k 
there are (n k) paths from the kth position at the base to the apex of the triangle. 
Notice that in Figure 7.7 we have used the homogeneous version of the blossom. 
The computation now follows from the identity 

t = (t,1) = (t - a)(1,0) + (a,1) = (t - a ) 5  + a (7.5) 

and the multilinear property of the homogeneous blossom. 
We close with one final example that is less familiar, but nevertheless plays an 

important role in algorithms for B-spline curves. Consider a sequence of knots 
tl ..... t2n ' where t 1 ..... t n are not multiples of ~ and tn+ 1 . . . .  = t2n = ~. The corre- 
sponding polynomial basis is called the N e w t o n  d u a l  bas i s  because, in a way we 
shall make precise in Section 7.7.2, Exercise 5, his basis is dual to the Newton basis 
we studied in Chapter 4. The Newton dual basis appears in differentiation and knot 
insertion algorithms, which we will discuss in Section 7.6.4.2. Notice that the mono- 

ttt 

at t  &t 

a a t  aS t  &St 

a a a  a a 5  ar 858  

Figure 7.7 An evaluation algorithm for the cubic monomial basis at t = a. Here we use the homoge- 
neous version of the blossom. As usual, each triple uvw stands for the blossom evaluated at 
(u,v,w), t = (t, 1), a = (a, 1), and 5= (1,0). Notice that by Equation (7.5), there is no normaliza- 
tion in the labels along the edges. 
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t t t  

t3t t  & t  

/ / 
t2t3t  t3oet ~ &  

t 1 t2t  3 t2 t38  t 3 6 6  6 6 6  

Figure 7.8 An evaluation algorithm for the cubic Newton dual basis. Again we use the homogeneous 
version of the blossom. As usual, each triple uvw stands for the blossom evaluated at (u, v, w), 
t k = ( t  k, 1), t = (t, 1), and 5 = (1,0). As in the evaluation algorithm for the monomial basis, no 
normalization is required in the labels along the edges. 

mial basis at t = a is just a special case of the Newton dual basis where 
q = . . .  = t n = a. The computation in Figure 7.8 follows from Equation (7.5) with the 

parameter a replaced by t k. 

Exercises 

1. a. Prove by induction on n that the progressive basis corresponding to the 
knot sequence t 1 ..... tn , t  0 ..... tn_ 1 is the power basis 

ply ( t )  (t - tk )n = , k = O , . . . , n .  
l-I (t k - t j  ) 

j ~ k  

(Compare to Section 6.3, Exercise 6.) 

b. What is the urn model corresponding to the power basis? How are the 
{c j}  and {d  k} parameters related? (See Section 7.1, Exercise 4.) 

2. Let Dff(t), k = 0 ..... n, denote the Newton dual basis of degree n relative to 
the knots q ..... t n . Show that 

a. D~(t) = 1. 

b. D ~ ( t )  = n t -  ~ , k t k  . 

c. D n ( t )  = ( t -  tn)  n. 

d. Df (t) is a polynomial of degree k that depends only on the knots t k ..... t n . 
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3. Let E~(t), k = 0 ..... n, be the progressive basis corresponding to the knot 
sequence 

0 ..... 0,t 1 ..... t n , 
/1 

and let E(t) - ~,k E~ (t)P k. 

a. Construct the de Boor algorithm for E(t). 

b. Show that E(0)=  P0. 

7.3 B-Spline Curves 

So far we have shown how to apply the de Boor algorithm to compute points only 
along a single polynomial segment, but our goal is to produce smooth piecewise 
polynomial curves. To achieve this end, we must somehow string together B-spline 
segments. 

A B-spline segment of degree n is defined by 2n knots and n + 1 control points. 
Given knots t I .... ,t2n and control points PO ..... In, we place the control points at the 
base of the de Boor algorithm (Figure 7.2) and the knots in the linear functions along 
the edges. Now suppose we are given some additional knots t2n+l,t2n+2 .... and 
some additional control points Pn+l,Pn+2,.... Then we can define some additional 
polynomial segments simply by shifting all the indices in the de Boor algorithm by a 
constant. For example, if we are given one additional knot and one additional control 
point, then we can form the polynomial segment illustrated in Figure 7.9. 

ttt 

t4tt 

/ 
t3t4t 

/ 
t2t3t4 t3t4t5 

tstt 

/ 
t4t5t t5t6 t 

/ / 
t4t5t6 tst6t7 

Figure 7.9 A cubic B-spline segment for the knots t 2 ..... t 7. This diagram is generated from Figure 7.2 by 
shifting all the indices by one. 
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tit ttt 

t4 ~ t3 - 
/ / \ 

t3tt t4tt t5tt 

/ t 6 ~  - ~ t 4  t4 / ~ t -  t 2 / 

t2t3t t3t4t t4t5t t5t6t //" 
/ / / \ 

tl t2t 3 t2t3t4 t3t4t 5 t4t5t6 t5t6t7 

Figure 7.10 The de Boor algorithm for two segments of a cubic B-spline curve. Notice that the symbols t t t  
at the two apexes represent the values of two distinct polynomial curves over two distinct knot intervals. 

How is this new segment related to the original segment? By construction, the 
two diagrams for the two de Boor algorithms fit together as in Figure 7.10; that is, 
they share common control points as well as nodes and edges with common labels. 

This overlapping of the two diagrams is very suggestive. Notice, however, that 
we have overloaded our notation here. The two overlapping triangles represent two 
distinct polynomial curves P1 (t) and P2(t). The symbols ttt at the two apexes are not 
identical; rather they r e p r e s e n t p l ( t , t , t ) =  P l ( t )  and p z ( t , t , t ) -  Pz(t). Similarly, the nota- 
tion tk+ltk+Ztk+3 is overloaded; here tk+ltk+Ztk+ 3 represents both Pl(tk+l,tk+Z,tk+3) and 
P2(tk+l,tk+2,tk+3). To construct B-spline curves, we start with a fixed collection of con- 
trol points {Pk }" It is these control points that we actually place at the base of the dia- 
gram for the de Boor algorithm and use to compute the polynomials P1 (t) and P2 (t). 
It then follows from Equation (7.3) that 

Pl(tk+l,tk+2,tk+3) = Pk = P2(tk+l,tk+2,tk+3); 

it is this equality that permits us to overload our notation. 
We shall now show that the curve segments that these overlapping diagrams rep- 

resent also fit together smoothly. By convention, the first apex represents the curve 
segment for t 3 < t < t4; shifting indices by one, we see that the second apex must rep- 
resent the curve segment for t 4 < t <_ t 5 . The question then is this: How smoothly do 
these two curve segments meet at t = t4? 

To begin, we must show that these curves meet continuously at t - t 4. Consider 
the first segment in Figure 7.10. At t = t 4, the label t 4 - t  = 0; therefore, since the 
labels entering any node sum to one, the nodes labeled ttt and t4tt have the same 
value at t = t 4. But by the same argument the nodes labeled ttt and t4tt have the same 
value at t - t 4 for the second segment. Since ttt represents the value of the polyno- 
mial in each segment, it follows that these two polynomials agree at t = t 4. 

An identical argument works for derivatives. Recall from Section 7.1 that to dif- 
ferentiate a B-spline segment, we simply differentiate the labels on any level. If we 
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differentiate the labels on the first level above the control points in Figure 7.10, then 
exactly the same argument we used to show that the two polynomials agree at t - t 4 
shows that their derivatives match at t = t 4. Differentiating the second level as well 
shows that second derivatives also match at t - t 4. The third derivatives, however, 
need not agree since differentiating the third level destroys the label t 4 - t ,  so we 
cannot conclude that the node at the apex now labeled 666 has the same value at 
t = t 4 as the interior node labeled t466. 

Exactly the same arguments work for B-spline segments of degree n, except 
now n -  1 derivatives agree at the knots. Stringing together B-spline segments of 
degree n in this manner generates smooth curves that join at the knots with n -  1 
continuous derivatives. Notice that this construction is completely independent of 
either the location of the control points or the values of the knots. We have assumed 
only that the knots are strictly increasing, that is, that tj < tj+ 1 , so that adjacent 
knots define nonempty intervals. 

What happens if for some knots t j -  tj+l? Consider again Figure 7.10. If 
t 4 - t  5, then in the second segment the denominators of the labels on the arrows 

pointing into the apex vanish. That is, there is a singularity in the algorithm. Fortu- 
nately, however, if t 4 - t 5, then the segment this algorithm represents is essentially 
null so we can ignore this part of the diagram. Proceeding directly to the next seg- 
men t~ the  segment for the interval [ t s , t f ] ~ w e  see that the diagram for this seg- 
ment still overlaps the diagram for the segment [t3,t 4 ], but there are fewer common 
nodes and edges. In fact, there are no common nodes on the second level and the 
only common node on the first level is t4tst (see Figure 7.11). Now exactly the same 
arguments that we used before show that the segment ove r  [ t3, t4 ] meets the segment 
over [t5,t 6] with one continuous derivative at t = t 4 = t 5 , since they share the value 
at the node t4tst. 

In general, increasing the multiplicity of a knot shifts the diagram for the next 
segment to the fight and decreases the differentiability of the B-spline curve at the 
knot. Thus we have the following result; the proof is just an elaboration of the argu- 
ments in the preceding paragraph. 

ttt tit 

t3tt t4tt ts~ tort 
- 

t2 t3 t t3 t 4 t t 4 ts t ts t6t t6t7 t 

- - - t 8 - t ~  

t I t2t 3 t2t3t 4 t3t4t 5 t4tst 6 t5t6t 7 t6t7t 8 

Figure 7.11 The de Boor algorithm for two adjacent segments of a cubic B-spline curve when t 4 = t 5. 
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THEOREM 
7.1 

At a knot of multiplicity p, a B-spline curve of degree n has n - / . t  continu- 
ous derivatives. 

Exercises 

1. Prove Theorem 7.1. 

2. Extend Figure 7.10 to three B-spline segments. 

3. Draw the de Boor algorithm for two adjacent segments of a cubic B-spline 
curve when t 4 -- t 5 = t 6. 

7.4 Elementary Properties of B-Spline Curves 

A B-spline curve is a piecewise polynomial curve specified by an arbitrary collec- 
tion of control points {Pj} and a nondecreasing sequence of knots {t k ], where each 
individual polynomial segment is defined by the de Boor algorithm. By construc- 
tion, the kth segment of a degree n B-spline curve 

�9 lies over the parameter interval [tk,tk+ 1 ], 

�9 has n + 1 control poin ts - -Pk_  n ..... Pk, 

�9 depends on 2n knots - - tk_n+ 1 .... ,tk+ n. 

The labels on the de Boor algorithm are specified as follows: t -  t k labels the 
edge exiting Pk to the left and tk+n+ 1 - t  labels the edge exiting Pk to the right (see 
Figure 7.12). The remainder of the edges can be labeled by observing that if you fol- 
low along in the direction of any arrow, the labels you encounter along the edges (in 
the numerator) do not change (see Figure 7.2). 

Here is a list of the elementary properties of B-spline curves: 

1. Piecewise polynomial 

2. Continuity of order C n-p  at knots of multiplicity p on curves of degree n 

3. Local control 

Pk 

Figure 7.12 The (unnormalized)labels in the de Boor algorithm on the arrows exiting from the node con- 
taining the control point Pk. The entire de Boor algorithm can be recovered from this dia- 
gram because in the direction of any arrow, the labels encountered along the edges (in the 
numerator) do not change (see Figure 7.2). 
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4. Affine invariance 

5. Local convex hull 

6. Locally nondegenerate 

7. Interpolation of control points at knots where the multiplicity ju is equal to 
the degree n 

Many of these features are analogous to the elementary properties of Bezier curves. 
We shall derive each of these properties directly from the de Boor algorithm: 

�9 Piecewise  polynomial .  Between any two adjacent knots, the de Boor algo- 
rithm computes a polynomial curve. Therefore, B-spline curves are piece- 
wise polynomials with break points at the knots. 

�9 Continuity  o f  order C n -~  at knots o f  multiplici ty ~t. This property is just 
Theorem 7.1. 

�9 Local  control. Since the polynomial segment over the parameter interval 
[tk,tk+ 1] is defined by the control points Pk-n ..... Pk, the control point Pk 

influences only the n + 1 curve segments over the parameter interval 
[ tk , tk+n+ 1 ] .  Hence moving a single control point has only a local effect on 

the B-spline curve, in contrast to Bezier curves where each control point 
influences the entire curve. Similarly, since the curve segment over the 
parameter interval [tk,tk+ 1] depends only on the 2n knots tk_n+ 1 .... .  tk+n,  

the knot t k influences solely the 2n curve segments over the parameter inter- 
val [tk_n,tk+ n ], so altering the location of a knot also has only a local influ- 
ence on the curve. 

�9 Affine invariance. Since the nodes in the de Boor algorithm are computed 
from affine combinations of lower-level nodes, it follows by induction on 
the level of the node that each node in the de Boor algorithm represents a 
point in affine space. Therefore, the B-spline curve at the apex of the de 
Boor algorithm is a collection of points in affine space. 

�9 Local  convex hull. Each segment of a B-spline curve lies in the convex hull 
of its control points because the functions along the edges of the de Boor 
algorithm sum to one and are nonnegative in the parameter domain. To see 
that this is so, consider the segment of a B-spline curve of degree n over the 
knot interval [tn,tn+ 1 ]. For this segment the labels along the edges depend 
only on the knots t 1 < . . .  < t2n. Hence here all the denominators of the func- 
tions along the edges are of the form tn+ j - t i, 1 < i, j < n, so the denomina- 
tors are certainly positive. Moreover, the numerators are all of the form 
tn+ i - t  or t -  t i , i = 1 .... ,n .  Since t n < t < tn+l, it follows that the numera- 
tors too are nonnegative. Because the labels along the edges are nonnega- 
tive and sum to one, it follows by induction on the level of the node that 
each node in the local de Boor algorithm lies in the convex hull of the local 
control points. Hence B-spline curves have the local convex hull property. 

[] Local ly  nondegenerate.  Suppose that locally the B-spline curve collapses to 
a single point P. Then locally the B-spline curve is given by the constant 
polynomial P(t) = P. Therefore, by the dual functional property for B-spline 
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curve segments (Equation (7.3)), the control points of P(t)  are given by 
Pk = P(tk+l ..... tk+n) = P" Hence if the B-spline curve collapses locally to a 
single point, all the control points of the curve segment must lie at that 
point. 

�9 In te rpo la t ion  o f  control  po in t s  at  knots  where  the mul t ip l ic i ty /u  is equal  to 

the degree  n. Suppose that tk+ 1 = ... = tk+ n, and consider the B-spline seg- 
ment Pk+n(t) over the knot interval [tk+n,tk+n+l]. By the dual functional 
property, the initial control point of this segment is 

Pk = Pk+n(tk+l ..... tk+n) = Pk+n(tk+n," ' , tk+n)  = Pk+n(tk+n) ' 

SO the B-spline curve interpolates its kth control point when tk+ 1 = ... = tk+ n. 

Unlike Bezier curves, B-spline curves do not generally interpolate their first or 
last control points. This property makes it difficult to connect two arbitrary B-spline 
curves. To overcome this problem, n-fold knots are often placed at the start and the 
end of the knot vector to force interpolation of the initial and final control points. 

There is another way to force interpolation of control points. If we set 
Pk = . . . .  Pk+n, then by the local convex hull property the B-spline segment over the 
knot interval [tk+n,tk+n+l ] will collapse to the point Pk because all its control points 
are located at Pk" Thus the B-spline curve will certainly interpolate Pk" But introduc- 
ing multiple control points is not as benign as introducing multiple knots. If 

Pk = "'" = Pk+n, 

then the segment o v e r  [tk+n+l,tk+n+ 2] collapses to a line, since all but one of the 
control points for this segment are identical. Additional nearby segments will exhibit 
similar degeneracies because many of their control points will be identical. Multiple 
knots reduce the differentiability of the curve at the knot, but knot multiplicities do 
not introduce additional degeneracies in nearby segments. Therefore, to force inter- 
polation it is more desirable to introduce multiple knots than multiple control points. 

Exercises 

1. Show that translating each control point of a B-spline curve by a vector v 
translates the entire B-spline curve by v. 

2. Let S(t)  be a B-spline curve with control points {Pk} and knots {t k}. Form a 
new B-spline curve R(t)  by replacing each knot t k by the knot r k = at k + b 
for some fixed constants a > 0 and b. Show that changing all the knots in 
this way has no effect on the shape of the B-spline curve. In particular, using 
the de Boor algorithm, show that R ( a t  + b ) =  S(t) .  What happens if we 
choose a < 0? (Compare to Section 2.2, Exercise 4.) 

3. Construct B-spline curves that interpolate a fixed control point Pk by intro- 
ducing 

a. multiple knots 

b. repeated control points 

Compare your results. Which curves do you prefer? Why? 
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4. Use the de Boor algorithm to prove directly, without appealing to the dual 
functional property, that a degree n B-spline curve with tk+ 1 . . . .  = tk+ n 
interpolates its kth control point Pk. 

5. Use the de Boor algorithm to construct a B-spline curve. Experiment with 
how moving the control points or altering the location of the knots changes 
the shape of the curve. 

7 .5  All Splines Are B-Splines 

The de Boor algorithm constructs a spline from a knot sequence and a control poly- 
gon. But suppose we are given a spl ine~that  is, a piecewise polynomial curve 
where the pieces meet smoothly at the joins. Is there a B-spline curve that matches 
this spline? Is every spline curve a B-spline curve? Remarkably the answer is yes. 
Thus by investigating B-spline curves we study all spline curves. 

To prove this result, we begin with a lemma showing how the blossom values of 
two polynomials are related when their derivatives agree at a point. 

LEMMA 
7.2 

Let P( t )  and Q(t)  be two polynomials of degree n. Then the following state- 
ments are equivalent: 

1. P(J ) (T)  = Q(J) (~) ,  0 <_ j < k. 

2. p ( ~ , u  1 ..... u j )  = q ( ~ , u  1 ..... uj ) 

n- j  n- j  
for any parameters u 1,-..,uj, 0 < j <_ k. 

P r o o f  1 ~ 2. Suppose that P ( J ) ( z )  = Q(J)( 'c) ,  0 < j < k. In Section 6.4 we showed 
that 

n~ 
P(J) ('c) -- ~ p ( v  ..... T, (~ ..... fi) 

(n - j)v ~ 
�9 n - j  j 

n~ 
Q(J) ('c) - ~ q ( v  ..... "c, (~ ..... 8 ) .  

( n -  j)' ~ 
�9 n - j  j 

Therefore, 

P(J)( 'c)  - Q(J)(7:) r p ( T  ..... T,g,...,~) - q(T .... ,T,g,...,8). (7.6) 

n- j  j n - j  j 

Now starting with the k + 1 blossom values 

p ( r  ..... r ) , p ( ~  ..... ~ ,~)  ..... p (~  ..... ~ , 6  ..... ~)  

n-k k 

along the base of a triangle and running the blossomed version of the homo- 
geneous de Boor algorithm, we see that the k + 1 blossom values 
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p ( r  ..... r), p ( T  .. . . .  T,U 1) ..... p ( r  ..... z',u 1 ..... u k) 
n-k  

emerge along the left edge of the triangle (see Figure 7.13). But the same 
algorithm (Figure 7.13) starting with the k + 1 blossom values 

q(z ..... z) ,q(z ..... z,~) ..... q(z ..... z',~,..., ~) 
,_.....,,....~ ,..._~,.....~ 

n-k  k 
generates the k + 1 blossom values 

q(r  .... ,z ) ,q(r  ..... r, Ul) ..... q(r  ..... r ,u  1 ..... u k ) .  
n-k  

Since by assumption the input to these two algorithms is the same, the out- 
put must also be the same. Therefore, 

p ( Z , _ ~ , u  1 ..... uj ) - q ( ~ , u  1 ..... uj ) 
n - j  n - j  

for any parameters u 1 ..... u j ,  0 < j < k .  

2 ~ 1. Conversely suppose that 

p(  r , ~ ,  u 1 ..... uj  ) - q(r,._L2f, u 1 ..... uj ) 
n - j  n - j  

for any parameters u 1 ..... u j ,  0 < j <_ k. Then setting u i = 8 for i = 1 ..... k, 
we obtain 

p ( r  ..... r , 8  ..... 8 ) = q ( r  ..... r , 8  ..... 8 ) .  

n - j  j n - j  j 

Hence by Equation (7.6), P(J) ( r )  - Q(J)(r ) ,  0 < j < k. 

THEOREM 
7.3 

Every spline curve is a B-spline curve. 

P r o o f  Let S(t) be a spline curve defined over the knot intervals [tk,tk+ 1] by the 
degree n polynomials Sk(t) ,  k - n  . . . . .  m. Suppose further that for each 
index k, 

= ~'(J) S(kJ)(tk+l) ~'k+l(tk+l), j - 0 . . . . .  n - 1 .  

Our goal is to find a collection of points {Pk} such that the B-spline curve of 
degree n for the control points {Pk} and the knot sequence {t k} exactly 
reproduces the spline S(t). Consider the polynomial Sn(t ) for the first inter- 
val [tn, tn+l].  Let Pj - Sn( t j+ 1 . . . . .  t j+n) ,  j -  0 . . . . .  n. Then by Equation 7.3, 
the de Boor algorithm for the knots t 1 . . . . .  t2n and the control points 
PO . . . . .  Pn generates the polynomial Sn(t ). Similarly, if we set 

Q j -  Sn+ 1 ( t j + 2  . . . . .  tj+n+l) j = 0 . . . . .  n, 
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then the de Boor algorithm for the knots t 2 ..... t2n+l and the control points 
Qo .. . . .  Qn generates the polynomial Sn+ l(t). To show that these two polyno- 
mials generate a B-spline curve, we need to show that Qj - Pj+I or equiva- 
lently that 

Sn+ 1 (tj+ 2 ..... tj+n+ 1) = s n (tj+ 2 ..... tj+n+ 1), j = 0 . . . . .  n - 1; 

that is, we need to show that the two algorithms share n control points. But 
by assumption, 

'~(J) ~t , ., S(n j)( tn+l) = Jn+l~ n+l) J = 0,.. n - 1. 

Therefore, by Lemma 7.2, 

Sn+l(tj+ 2 . . . . .  tj+n+l) = Sn(tj+ 2 . . . . .  tj+n+l), j = 0 . . . . .  n -  1, 

since tn+ 1 is always one of the blossom parameters. Thus these two seg- 
ments form a B-spline curve. Now in the same manner using the de Boor 
algorithm, we can generate more and more polynomial segments that match 
the segments of the given spline S(t). By the same argument, these segments 
will share common control points; therefore, these segments form a B- 
spline curve. Since the entire spline can be generated in this manner from 
the de Boor algorithm, it follows that every spline curve is a B-spline curve. 

T'm 1 

/ 
TT~" 

UlU2U 3 

"gt~lU 2 C~UlU 2 

r&l 5& 1 

rra raa aa8 

Figure 7.13 Computing the blossom values ~'tT,'c'CUl,'CUlU2,UlU2U 3 from the blossom values ~T~,~tS, 
~SS,555. Notice that the first k blossom values in the first set depend only on the first k 
blossom values in the second set. Here we use the homogeneous blossom and the identity 
Uk = (Uk- ~)5 + 7, so no normalization is necessary in the labels along the edges. 
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Theorem 7.3 can be generalized to splines S(t) where the spline segments meet 
with arbitrary smoothness. That is, we need only suppose that 

(J) c(J) Sk (tk+l) - ~'k+l (tk+l)' J - 0 ..... n - Pk+l " 

In this case, we use a knot sequence where each knot t k has multiplicity Pk. The 
remainder of the argument is much the same; the details are left as an exercise. 

Exercises 

1. Prove that Theorem 7.3 remains valid if the segments Sk(t) of the spline S(t) 
satisfy 

(J) c(J) Sk (tk+l) = ~'k+l (tk+l)' J = 0 ..... n - Pk+l" 

2. Prove that every polynomial curve is a B-spline curve for any arbitrary 
choice of knots. 

7.6 Knot Insertion Algorithms 

Knot insertion is one of the main innovations of CAGD in the study of B-spline 
curves and surfaces. Knot insertion is to B-spline curves what subdivision is to Bez- 
ier curves. Given a knot sequence and a control polygon, the idea behind knot inser- 
tion is to construct a new knot sequence and a new control polygon that generates the 
same B-spline curve as the original knot sequence and original control polygon. The 
motivation is to create a control polygon with additional control points that more 
closely approximates the curve than the original control polygon. This new control 
polygon could then be used for rendering and intersection algorithms, as well as for 
providing additional control over the shape of the curve. 

To make the notion of knot insertion more precise, consider a degree n B-spline 
curve S(t) defined by a knot sequence {t j} and a collection of control points {Pk }. A 
knot sequence { u i } is said to be a refinement of { tj } if {ui} ~ {tj }. Given a refinement 
{u i} of {t j}, the knot insertion problem is to find a collection of control points {Qh} 
such that the degree n B-spline curve generated by the knot sequence {u i} and the 
control points {Qh} is identical to the original degree n B-spline curve S(t) generated 
by the knot sequence {t j} and control points {Pk }. This problem is called knot inser- 
tion because additional knots have been inserted into the knot sequence {t j} to form 
the refined knot sequence {u i }. 

The knot insertion problem always has a solution. To understand why, we need 
to recall precisely what it means for S(t) to be a spline of degree n over the knot 
sequence {t j}. A spline S(t) of degree n over the knot sequence {t j} is a piecewise 
polynomial curve whose pieces are degree n polynomials in the knot intervals 
[tj,tj+l]. Moreover, adjacent segments must fit together at the knot tj with at least 

n - p j  continuous derivatives, where pj is the multiplicity of the knot tj in the knot 
sequence. If { u i } is a refinement of { tj }, then S(t) is also a spline curve over the knot 
sequence { ui}. Indeed if u i is not one of the original knots tj, then S(t) is represented 
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by a single polynomial on both sides of u i, therefore, adjacent segments fit together 
with infinitely many continuous derivatives at u i. Now by Theorem 7.3, since every 
spline is a B-spline, there must exist control points {Qh} that represent S(t) as a B- 
spline curve over the knot sequence {ui}. 

The problem then is to develop an algorithm to generate the new control points 
{Qh} from the original control points {Pk}, the original knots tj, and the new knots 
{ui}. We will present three such algorithms: Boehm's algorithm, the Oslo algorithm, 
and a factored knot insertion algorithm. All three of these algorithms are based on 
blossoming and the de Boor algorithm, and all make use of the fundamental dual 
functional property for B-splines that if the spline S(t) is represented in a subinterval 
of [Uh,Uh+ n] by the polynomial P(t), then by Equation (7.3), Qh = P(Uh+l ..... Uh+n)" 

Exercise 

1. Let S n {tj} denote the collection of all splines of degree n with knots at {tj }. 
Show that 

a. S n{tj ] is a vector space 

b. {ui} ~ {tj} =:~ Snlui} ~Sn l t j }  
Conclude that if { tj} and { u i } are nested knot sequences, then S n {tj } and 
S n {u i } are nested vector spaces. 

Boehm's Knot Insertion Algorithm 

Boehm's knot insertion algorithm inserts one knot at a time. Consider a cubic B- 
spline curve S(t) defined over a knot sequence {t j}. Suppose that we want to insert 
the knot u between t k a n d  tk+l;  that is, we want to replace the old knot sequence 
.... t k _ l , t k , t k + l , t k +  2 .... with the new knot sequence .... t k_ l , t k ,U ,  tk+l , tk+ 2 ..... By 

Equation (7.3) the control points of S(t) can be computed by evaluating the (local) 
blossom of S(t) at consecutive knots. Thus if S(t)=P(t) in the knot interval [tk,tk+l], 
then we have 

�9 Old controlpoints 

P(tk-Z,tk-l , tk  ), P(tk-l,tk,tk+l ), P(tk,tk+l,tk+2 ), P(tk+l,tk+2,tk+3 ) 

�9 New controlpoints 

P(tk-2, tk- l , tk  ), P(tk-l , tk,u),  P(tk,U, tk+l ), P(U, tk+l,tk+2 ), P(tk+l,tk+2,tk+3 ) 

Moreover, all the other control points with respect to the two knot sequences are 
identical because the new knot u does not appear in any other sequence of three con- 
secutive knots. Thus to find the new control points, we need to replace 

P(tk_l,tk,tk+l ),P(tk,tk+l,tk+2) ---> P(tk_l,tk,u),P(tk,U, tk+l ),P(U, tk+l,tk+2) . 
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That is, two of the original control points must be replaced by three new control 
points. Notice that we need to increase the number of control points by one because 
by inserting a new knot we have increased the number of knot intervals by one. 

Boehm's algorithm uses the de Boor algorithm to compute the new control 
points from the original control points. If we replace t by u in the de Boor algorithm 
(Figure 7.2), then the new control points emerge on the first level of the de Boor 
algorithm (see Figure 7.14). 

If we wish to insert the knot u as a multiple knot, we could run Boehm's algo- 
rithm several t imes~once  for each time we wish to insert umbut  it is more efficient 
instead to run the de Boor algorithm for several levels. For cubic curves, if we want 
to insert u as a double knot between t k and tk+ 1, then the old knot sequence is 
.... tk_l,tk,tk+l,tk+ 2 .... and the new knot sequence is .... tk_l,tk,U,U, tk+l,tk+2 ..... 

Taking three consecutive knots at a time, we have 

�9 Old control points 

P( tk-2 , tk- l , tk  ), P(tk-l , tk,tk+l ), P(tk,tk+l,tk+2 ), P(tk+l,tk+2,tk+3 ) 

�9 New controlpoints 

P(tk_ 2 ,tk_ 1 ,t k ), P(tk_l,tk,U ), p(t k ,u,u), p(u,u, tk+ 1 ), 

p(u, tk+ 1 ,tk+2 ), P(tk+l ,tk+2 , tk+3) 

Thus two of the original control points must be replaced by four new control 
pointsm that is, 

P(tk_l,tk,tk+l ), P(tk,tk+l,tk+2 ) -9 P(tk_l,tk,u),  P(tk,U,u), p(u,u, tk+l ), P(U, tk+l,tk+2 ). 

If we replace t by u in the de Boor algorithm, the new control points we seek now 
emerge along the lateral edges and on the second level of the de Boor algorithm (see 
Figure 7.15). 

New control points 

t2t3u t3t4u 

qt2t3 t2t3t4 

t4t5u 

t3t4t5 t4t5t6 

Original control points 

Figure 7.14 Boehm's knot insertion algorithm for a cubic B-spline curve. This algorithm computes just 
one level of the de Boor algorithm (compare to Figure 7.2). 
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New control points 

t3uu t4uu 
New New 

control points t 4 - u / ~  t s ~ ~ N ~  control points 

/ 
t2t3u t3t4u t4tsU 

tl t2t3 t2t3 t4 t3 t4 t5 t4 t5 t6 

Original control points 

Figure 7.15 Boehm's knot insertion algorithm for inserting a double knot into a cubic B-spline curve. Note 
that this algorithm computes two levels of the de Boor algorithm (compare to Figure 7.2). 

Finally, for cubic curves, if we wish to insert u as a triple knot between t k and 
tk+ 1, then 

�9 Old controlpoints 

P(tk_2,tk-l,tk ), P(tk-l,tk,tk+l ), P(tk,tk+l,tk+2 ), P(tk+l,tk+2,tk+3 ) 

�9 New controlpoints 

P(tk_ 2,tk_l,t k ), p(tk_l,t k,u), p(tk,u,u), p(u,u,u), 

P(U,U, tk+l ), P(U, tk+l ,tk+2 ), P(tk+l ,tk+2,tk+3 ) 

Thus two of the original controlpoints must be replaced by five new control points: 

P(tk-l,tk,tk+l ), P(tk,tk+l,tk+2 ) ----) 

P(tk_ 1,t k,u), p(t k,u,u), p(u,u,u), p(u,u,tk+ 1), p(u,tk+ 1,tk+ 2). 

Now if we replace t by u in the de Boor algorithm, the control points we seek emerge 
along the two lateral edges of the complete de Boor algorithm (see Figure 7.16). 

Analogous results hold for B-spline curves of arbitrary degree. We can summa- 
rize Boehm's approach to knot insertion as follows: 

Boehm's Knot Insertion Algorithm 
To insert a knot u a total of p times between the knots t k and tk+l: 

1. Run the de Boor algorithm for the kth B-spline segment to the pth level and 
take the new control points consecutively off the left lateral edge, the pth 
level, and the right lateral edge of the triangle. 

2. Discard the old control points of the kth segment. 

3. Keep all of the other original control points. 
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U U U  

New t 4 7  / "~ ,xuq3 New 

control points t3uu t4uu control points 

u / 

t2t3u t3t4u t4t5u 

tl t2t 3 t2t3t 4 t3t4t 5 t4t5t 6 

Original control points 

Figure 7.16 Boehm's knot insertion algorithm for inserting a triple knot into a cubic B-spline curve. Note 
that this algorithm computes the complete de Boor evaluation algorithm (compare to Figure 
7.2). 

7.6.2 The Oslo Algorithm 

In Boehm's knot insertion algorithm the basic step is inserting one new knot; in the 
Oslo algorithm the fundamental step is computing one new control point. Boehm's 
knot insertion algorithm inserts one knot at a time; the Oslo algorithm inserts many 
knots simultaneously. 

To insert new knots, we need to compute new control points. By Equation (7.3) 
these new control points are the (local) blossom of the spline evaluated at the new 
knots. Thus we need a method to evaluate the (local) blossom of the spline at arbi- 
trary parameter values. But the blossom evaluated at arbitrary parameter values is 
precisely the output of the blossomed version of the de Boor algorithm (Figure 7.4). 
The Oslo algorithm simply applies the blossomed version of the de Boor algorithm 
to compute each of the required new control points. 

The blossomed version of the de Boor algorithm is the original version of the 
Oslo algorithm. But this version of the Oslo algorithm is much less efficient than 
Boehm's knot insertion algorithm. Consider, for example, inserting four distinct 
knots Ul,U2,U3,U 4 into a single segment [tk,tk+l] of a cubic B-spline curve. This 
operation requires the computation of six new control points, corresponding to the 
six blossom values 

p(tk-••tk•u• )• p(tk•u••u2 )• p(u••u2•u3 )• p(u2•u3•u4 )• p(u3•u4•tk+• )• p(u4•tk+••tk+2 ). 

To find these new control points, we can run either Boehm's algorithm four times or 
the Oslo algorithm six times. Each time we run Boehm's algorithm we must 
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compute 3 affine combinations. So to insert 4 new knots with Boehm's algorithm 
requires a total of 4 x 3 = 12 affine combinations. On the other hand, to compute a 
single new control point using the Oslo algorithm, we need to run the blossomed 
version of the de Boor algorithm, which requires us to perform 6 affine combina- 
tions. So to compute 6 new control points using the Oslo algorithm, we would need 
to compute a total of 6 x 6 - 36 affine combinations. Clearly, then, Boehm's algo- 
rithm is more efficient than this version of the Oslo algorithm. 

There is, however, a more efficient version of the Oslo algorithm. Consider 
again a cubic B-spline curve S(t) defined over a knot sequence {tj }. Suppose that we 
want to insert four knots Ul,U2,U3,U 4 between the knots t k and tk+l; that is, we want 
to replace the old knot sequence .... tk_l,tk,tk+l,tk+2 .... with the new knot sequence 
.... tk_l,tk,Ul,U2,U3,U4,tk+l,tk+2 .... If S(t) = P(t) in the knot interval [tk,tk+l], then 

by Equation (7.3), we have 

�9 Old controlpoints 

P(tk-Z,tk-l , tk ), P(tk-l,tk,tk+l ), P(tk,tk+l,tk+Z ), P(tk+l,tk+2,tk+3 ) 

�9 New control points 

P(tk-2 ,tk-l ,tk ), P(tk-l ,tk,Ul ), P(tk,Ul ,UZ ), P(Ul ,UZ,U3 ), 

P(U2 ,U3,U4 ), P(U3,U4 ,tk+l ), P(U4,tk+l ,tk+Z ), P(tk+l ,tk+2,tk+3 ) 

We can find all the new control points by running the blossomed version of the de 
Boor algorithm just twice---once to compute p(ul,u2,u3) and once to compute 
p(u2,u3,u 4). The other new control points emerge off the left and fight lateral edges 
of the two triangles (see Figure 7.17). Notice that in the second triangle the knots 
must be introduced in reverse order; that is, the knot u 4 appears on the lowest level, 
the knot u 3 on the second level, and the knot u 2 on the top level. 

UlU2U 3 

New t 4 - u / ~ ' N ~ - t 3  
control 
points t3ul u2 t4Ul u2 

- u 2 t4-U/~2tstU~-t3 
t2t3u 1 t3t4Ul t4t5u 1 

t4 _ u /  K ts - Ul,4 ~., t6 - ul .. ; 

tl t2t 3 t2t3t4 t3t4t5 t4t5t 6 

Original control points 

u2u3u 4 

t 4 - u / ~ - t 3  New 
control 

t3u3u4 t4u3u4 _ u3 points 
, _  

t2t3u 4 t3t4u4 t4t5u 4 
t 4 _ u /  ~ t s - U 4,~t' ~x t 6 - u 4 ,,4' 

X4-W 
tl t2t 3 t2t3t4 t3t4t 5 t4t5t 6 

Original control points 

Figure 7.17 An efficient version of the Oslo algorithm for knot insertion in cubic B-spline curves. Two blos- 
soming variants of the de Boor algorithm are invoked. Notice that in the second triangle the knots are intro- 
duced in reverse order. The new control points emerge off the lateral edges of the triangles (compare to 
Figure 7.4). 



7.6 Knot Insertion Algorithms 373 

This version of the Oslo algorithm for cubic curves is just as efficient as 
Boehm's algorithm. To evaluate each triangle, we must perform a total of 6 affine 
combinations. Thus to evaluate both triangles requires 2 • 6 = 12 affine combina- 
tions, which is exactly the same count as for Boehm's knot insertion algorithm. 

To insert n + 1 knots u 1 . . . . .  Un+ 1 in a single interval of a degree n B-spline curve, 
the Oslo algorithm again employs two triangles: the first triangle computes the blos- 
som p(u 1 ..... Un), and the second triangle computes the blossom p(u 2 ..... Un+ 1) from 
the original control points using the blossomed version of the de Boor algorithm. As 
in the cubic case, the other control points emerge off the left and fight lateral edges 
of the two triangles, and in the second triangle the knots u2 ..... Un+l must be intro- 
duced in reverse order. For degree n B-spline curves, both Boehm's algorithm and 
the efficient version of the Oslo algorithm require n(n + 1) affine combinations to 
insert n + 1 knots in a single interval. Boehm's algorithm proceeds by inserting one 
knot at a time; the Oslo algorithm by inserting n + 1 knots all at once. 

Exercises 

1. Prove that for degree n B-spline curves, both Boehm's algorithm and the 
efficient version of the Oslo algorithm require n(n + 1) affine combinations 
to insert n + 1 knots in a single interval. 

2. Explain how the Oslo algorithm can be formulated to insert fewer than n + 1 
knots in a single interval of a degree n B-spline curve just as efficiently as 
Boehm's algorithm. 

3. Implement both Boehm's knot insertion algorithm and the Oslo algorithm. 
Which algorithm do you prefer? Why? 

4. Consider what happens to the control polygon of a B-spline curve with 
knots {t k } as the knot spacing gets arbitrarily small. Let h = max(tk+ 1 - t  k). 

a. Use the Oslo algorithm to show that the control points get closer together 
as h decreases. 

b. Use part (a) and the fact that a B-spline curve lies in the local convex hull 
of its control points to conclude that the control polygon converges to the 
B-spline curve as the knot spacing h ~ 0. 

5. Use the result of Exercise 4 and the fact that knot insertion is a comer- 
cutting procedure to prove that B-spline curves are variation diminishing. 
(Compare to Theorem 7.4 in Section 7.6.3.) 

6. Based on knot insertion and Exercise 4: 

a. implement a rendering algorithm for B-spline curves 

b. implement an intersection algorithm for B-spline curves 

7. Sablonniere's Tetrahedral Algorithm 

Suppose we want to convert a cubic polynomial P(t) from the progressive 
basis with respect to the knots t 1 . . . . .  t 6 to the progressive basis with respect to 
the knots ul ..... u6. That is, given the coefficients p(q, t2, t  3) ..... p(t4,t5,t6), 
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we want to find the coefficients p(ul,u2,u3) ..... p(u4,u5,u6). We could pro- 
ceed by applying the blossomed version of the de Boor algorithm (Figure 
7.4), which is essentially identical to the original, inefficient version of the 
Oslo algorithm, to find each one of these new coefficients. If we were to stack 
these four triangles one atop the other, the triangles would form a triangular 
prism. Sablonniere's algorithm reduces the amount of computation by col- 
lapsing this prism into a tetrahedron. 

a. Show how to arrange the four triangles in Figure 7.18 into a tetrahedral 
computation for a change of basis algorithm. 

b. Explain how to generalize the tetrahedral computation in part (a) to poly- 
nomials of arbitrary degree. 

c. Apply the Oslo algorithm~the blossomed version of the de Boor algo- 
r i thm~to perform the same change of basis with only two triangles. 
(Hint: Use the output along one of the lateral edges of the first trangle as 
the input to the second triangle.) 

d. Prove that Sablonniere's tetrahedral algorithm is less efficient than the 
Oslo algorithm. In particular, show that Sablonniere's tetrahedral algo- 
rithm is O(n3), whereas the Oslo algorithm is O(n2). 

e. Explain why Sablonniere's algorithm might be more stable numerically 
than the Oslo algorithm. 

UlU2U 3 

t3UlU2 t4UlU2 
~, t5 - u 2 j  

t2t3u 1 t3t4u 1 t4t5Ul 
~x t5 - U l l  t6-  ul 

tl t2t 3 t2t3t4 t3t4t 5 t4t5t 6 

u4u5u 6 

t 4 - u / ~ 6 - t 3  

t3u4u 5 t4u4u 5 
~K. t5 - uS # t4-u/ N~5-t V ~-t3 

t2t3u 4 t3t4u 4 t4t5u 4 
~K ts - u4 ~r t 6 - u4 t4-U/ N~-tl/ ~-t'2~~4-t3 

tl t2t 3 t2t3t4 t3t4t 5 t4tst 6 

u4u3u2 

t3u4u3 t4u4u 3 
t 4 - u / ~ x , ~  tS -u3  - ,, 

t2t3u 4 t3t4u 4 t4t5u 4 

u5u4u 3 

t3u4u 5 t4u4u 5 

Figure 7.18 The four triangles used in Sablonniere's tetrahedral algorithm to convert between two cubic 
progressive polynomial bases. 
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7.6.3 Change of Basis Algorithms via Knot Insertion 

Knot insertion algorithms are change of basis procedures for B-spline curves. Given 
the B-spline coefficients of a spline curve with respect to a knot vector {tk}, a knot 
insertion procedure finds the B-spline coefficients of the same spline curve with 
respect to another knot vector {u j} D {t k }. We shall exhibit several applications of 
knot insertion here, including conversion to piecewise Bezier form, conversion 
between the monomial and Bezier form, Bezier subdivision, and algorithms for dif- 
ferentiating B-spline curves. 

7.6.3.1 Conversion to Piecewise Bezier Form 

Bezier curves are special types of B-spline segments. In Chapter 5 we developed fast 
algorithms for analyzing Bezier segments, including simple procedures for render- 
ing and intersecting Bezier curves. One of the simplest ways to analyze B-spline 
curves is to convert them to piecewise Bezier form and then to perform the analysis 
on the Bezier segments, using the Bezier algorithms we have already developed. We 
shall also see that this approach leads to a straightforward proof of the variation 
diminishing property for B-spline curves. 

We can apply knot insertion to convert from B-spline to piecewise Bezier form. 
Consider a cubic B-spline segment P(t) defined over a knot sequence t 1 ..... t 6. Rela- 
tive to this knot sequence, we are interested only in the segment of P(t) for which 
t 3 < t < t4,  and we want to convert from this B-spline representation of P(t) to a 
Bezier representation of P(t). For the interval t 3 < t < t 4, the Bezier knots are simply 
t3,t3,t3,t4,t4,t 4. By Equation (7.3) the control points of P(t) can be computed by 
evaluating the blossom of P(t) at consecutive knots. Thus we have 

�9 B-spline controlpoints 

p(tl, t2, t3 ), p(t2, t3, t4 ), P(t3, t4, t5 ), p(t4, t5, t6 ) 

�9 Bezier control points 

P(t3,t3,t3 ), P(t3,t3,t4 ), P(t3,t4,t4 ), p(t4,t4,t4 ) 

To get from the B-spline control points to the Bezier control points, we need to 
incorporate t 3 and t 4 as triple knots. Thus, we need to insert the knots t3,t3,t4,t4 
between the knots t 3 and t 4. To do so, we can apply Boehm's knot insertion algo- 
rithm (see Figure 7.19). Notice that in this case we only proceed up two levels in the 
triangle because even though we require t 3 and t 4 to be triple knots, we only need to 
insert each of these knots twice. 
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t3t3t3 tatat4 

t 4 - / ~ - t 2  t 5 - t / ~ - t 3  

tzt3t 3 t3t3t4 t3t4t 4 t4t4t 5 
t 5 t 6 

t 4 - / ~ 3 - t l  -~~-t2 t5-t/~4-t 3 -y~-t3 
tl t2t3 t2t3t 4 t3t4t 5 t3t3t4 t3t4t 5 t4t5t 6 

(a) Inserting t 3 twice (lo) Inserting t 4 twice 

Figure 7.19 Boehm's knot insertion algorithm for converting one segment of a cubic B-spline curve to 
Bezier form. In (a) we insert t 3 twice and in (b) we insert t 4 twice. Some of the output from 
(a) is used as input to (b). Since some computations are redundant, we can omit t4tst 6 from 
the input to (a) and t3t3t 3 from the input to (b). Notice that in (a) the Bezier control points 
emerge along the right edge, but in (b) they emerge along the left edge of the triangle. 

THEOREM 
7.4 

B-spline curves are variation diminishing. 

Proo f  The de Boor algorithm is a comer-cutting procedure (see Figure 7.3). Since 
knot insertion is the blossomed version of the de Boor algorithm, knot 
insertion is also a comer-cutting procedure. Therefore, the piecewise Bez- 
ier control polygon is variation diminishing with respect to the original B- 
spline control polygon. But by Corollary 5.4 each Bezier segment is varia- 
tion diminishing with respect to its Bezier control polygon. Hence the 
entire B-spline curve must be variation diminishing with respect to the 
original B-spline control polygon. 

7.6 .3 .2  

Exercises 

1. Implement the knot insertion algorithm to convert from B-spline to piece- 
wise Bezier form. 

a. Draw both the B-spline and the Bezier control polygons for each B- 
spline curve. 

b. Use this conversion algorithm to render B-spline curves. 

c. Apply this conversion procedure to intersect pairs of B-spline curves. 

2. Prove that the arc length of a B-spline curve is never greater than the perim- 
eter of its control polygon. (Hint: Convert to piecewise Bezier form.) 

Bezier Subdivision and Conversion between Bezier and Monomial Form 

Several standard algorithms for Bezier curves can be derived from and interpreted as 
knot insertion procedures. For example, the standard subdivision algorithm for 



7.6 Knot Insertion Algorithms 377 

degree n Bezier curves at t = r can be viewed as a procedure that converts from the 
knot sequence 

to the knot sequence 

0 ..... 0,1 ..... 1 
, _ . . . ~ _ ~  ~ . . , , - . - ,  

n n 

0 ..... 0,r  ..... r,1 ..... 1 
,.......,r_..~ ~ . _ . , ~ . ~  ~-, , . . . . .o 

n n n 

Thus, the standard Bezier subdivision algorithm is simply n-fold knot insertion at 
t - r. For example, for a cubic Bezier curve P(t), we have 

�9 Original Bezier controlpoints 

p(0, 0, 0), p(0, 0,1), p(0,1,1), p(1,1,1) 

Bezier control points after subdivision at t - r 

Left segmentm p(0, 0, 0), p(0, 0,r), p(O,r,r), p(r ,r ,r)  

Right segmentmp(r ,r ,r) ,p(r ,r ,1) ,p(r , l ,1) ,p(1,1,1)  

We illustrate subdivision as knot insertion for cubic Bezier curves in Figure 7.20. 
Conversion between degree n Bezier and degree n monomial form can also be 

viewed as n-fold knot insertion. To convert from Bezier to monomial form, we must 

Y / T  

Left segment Orr I rr Right segment 

/ 
OOr Olr  1 l r  

000 O01 011 111 

Original control points 

Figure 7.20 Bezier subdivision as knot insertion at t = r. The new control points emerge along the left and 
right lateral edges of the triangle (compare to Figure 5.23). 
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perform a change of basis from the progressive basis represented by the knot 
sequence 

0 ..... 0,1 ..... 1 
n n 

to the progressive basis represented by the knot sequence 

0 ..... 0,6 ..... ~. 

n // 

(Here, as usual, to avoid normalization problems, we use the monomial basis { (/~)tk}, 
k - 0 ..... n, rather than the monomial basis {t~}, k = 0 ..... n.) We can interpret this 
change of basis as n-fold knot insertion at ~ -  (1,0). Conversely, to convert from 
monomial to Bezier form, we must convert from the progressive basis represented 
by the knot sequence 

0 . . . . .  0 , 6 , . . . , 6  

n n 

to the progressive basis represented by the knot sequence 

0 . . . . .  0 ,1  . . . . .  1 .  

n n 

We can do this conversion by performing n-fold knot insertion at t = 1. We illustrate 
these two procedures for cubic curves in Figure 7.21. 

Notice that the right edge of both triangles in Figure 7.21 contains the coeffi- 
cients with respect to the monomial basis centered at t = 1. Thus as a bonus the 
change of basis algorithm that converts from monomial to Bezier form can also be 
used to convert from one monomial basis to another monomial basis. In fact, this 

88~ l 11 

M o n o m i a l - 1 / / / ~  Bezier / ~  
coefficients coefficients 

088 188 011 118 

008 Ol 8 l 16 OOl Ol 8 

000 O01 011 l 11 000 008 

Bezier coefficients 

(a) Bezier to monomial form 

088 888 

Monomial coefficients 

(b) Monomial to Bezier form 

Figure 7.21 Conversion between cubic Bezier and cubic monomial form. (a) To convert from Bezier to 
monomial form, we perform triple knot insertion at 8 = (1,0). (b) To convert from monomial to Bezier form, 
we perform triple knot insertion at t = 1. Notice that the labels along the edges in these diagrams do not 
need to be normalized because 1 = (1,1) = (0,1) + (1,0) = 0 + 8. (Compare to Figures 5.18 and 5.19.) 
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algorithm is the standard synthetic division algorithm for converting from the mono- 
mial basis centered at t = 0 to the monomial basis centered at t = 1. If we think of 

= (1,0) as a knot at infinity, then the monomial form is simply a special case of the 
Bezier form. From this perspective, Bezier subdivision, conversion from Bezier to 
monomial form, conversion from monomial to Bezier form, and synthetic division 
are all one and the same algorithm. 

Exercise 

1. Use knot insertion to develop change of basis algorithms between the power 
basis and 

a. the Bernstein basis 

b. the monomial basis 

(Hint: See Section 7.2, Exercise 1.) 

7.6.4 

7.6.4.1 

Differentiation and Knot Insertion 

Evaluation, blossoming, and knot insertion algorithms for B-spline curves are inti- 
mately related; each of these procedures is just a variant of the de Boor algorithm. 
Differentiation too is another simple variant of the de Boor algorithm (see Figure 
7.5), so differentiation and knot insertion are also closely connected. Here we will 
show how to interpret standard differentiation algorithms for B-spline curves as knot 
insertion procedures. We will then go on to show how to use these differentiation 
algorithms to generate another fast knot insertion procedure. 

Differentiation as Knot Insertion 

Let's first revisit differentiation for B-spline curves from the perspective of knot 
insertion. Figure 7.5 depicts the differentiation algorithm for one segment of a cubic 
B-spline curve. If we isolate the lowest level of this diagram, what we see is exactly 
Boehm's knot insertion algorithm at u = ~ (see Figure 7.22). 

Thus the degree n - 1 B-spline coefficients for the first derivative of a B-spline 
curve of degree n can be computed by knot insertion at u - ~. Similarly, if we want to 
differentiate a degree n B-spline curve r times, the degree n - r B-spline coefficients 

t2t38 t3t48 t4t58 

l/  l/  l/  
tl t2 t3 t2 t3 t 4 t3 t4 t 5 t4 t5 t 6 

Figure 7.22 The first level of the differentiation algorithm for a cubic B-spline curve (see Figure 7.5). 
Compare to Boehm's knot insertion algorithm (Figure 7.14). 
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7.6.4.2 

are given by inserting an r-fold knot at 6 and taking the coefficients off the top (rth) 
level of the diagram. 

Boehm's Derivative Algorithm 

The standard derivative algorithm finds the rth derivative of a B-spline curve at an 
arbitrary value of t by differentiating r levels of the de Boor algorithm. Boehm's 
derivative algorithm computes all the derivatives of a B-spline curve at a single 
parameter t = a simultaneously by converting a B-spline segment to monomial form. 

In Section 6.4 we showed that for any degree n polynomial P(t),  

n! 
P(k)(a)  = ~ p ( a  ..... a ,6  ..... 6) .  

( n - k ) ~  ~ 
�9 n - k  k 

But the values 

p(a  ..... a ,6  ..... 6), k=  0 ..... n, 
n-k  k 

are just the monomial coefficients of P(t)  at t = a. This identity between derivatives 
and monomial coefficients is a simple consequence of Taylor's Theorem. Thus, up 
to constant multiples, to find the derivatives of a B-spline segment at a fixed param- 
eter value, we need only convert from B-spline to monomial form. We can do this 
conversion by performing n-fold knot insertion at 6 followed by n-fold knot inser- 
tion at a. Computing the derivatives of a B-spline curve at a single point in this 
manner is Boehm's derivative algorithm. We illustrate this algorithm for cubic 
curves in Figure 7.23. 

666 aaa 

Newton d u a l - / ~  / ~ - t  3 Monomial 
coefficients coefficients 

t366 t466 t3aa ~aa 

t2 t3 6 t3 t 4 6 t 4 t5 6 t2 t3a t3 6a 66a 

t 1 t2t 3 t2t3t 4 t3t4t 5 t4t5t 6 t 1 t2t 3 t2t36 t366 666 

B-spline coefficients 

(a) B-spline to Newton dual form 

Newton dual coefficients 

(b) Newton dual to monomial form 

Figure 7.23 Boehm's derivative algorithm for cubic curves. In (a) we perform triple knot insertion at 6, con- 
verting from B-spline to Newton dual form. In (b) we perform triple knot insertion at a, converting from 
Newton dual to monomial form. Up to constant multiples, the derivatives at t = a are the monomial coeffi- 
cients, which emerge along the right lateral edge of the second triangle. Observe that the labels along the 
edges in (a) must be normalized by the same denominators that appear in the de Boor algorithm, but the 
labels along the edges in (b) do not need to be normalized. 
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Notice that the first step of Boehm's derivative algorithm converts a B-spline 
segment into Newton dual form. This step depends only on the choice of segment 
and not on the parameter within the segment. Thus, we can reuse this part of the 
computation to find the derivatives at another parameter t = b within the same B- 
spline segment. 

Exercise 

1. We could compute all the derivatives of a B-spline curve at t = a by first 
performing n-fold knot insertion at a and then performing n-fold knot inser- 
tion at ~. Give two reasons why it is more efficient to insert an n-fold knot at 

first, before inserting an n-fold knot at a. 

Knot Insertion from Differentiation 

Both Boehm's knot insertion algorithm and the Oslo algorithm are based on the de 
Boor evaluation algorithm. Here we shall show how to perform fast knot insertion 
based on the differentiation algorithm. 

Let's begin by differentiating a degree n B-spline curve n times. Figure 7.23(a) 
illustrates this differentiation algorithm for cubic curves. Notice that the values along 
the left edge of this diagram are the coefficients of the spline segment P(t) with 
respect to the Newton dual basis. Thus starting with the B-spline coefficients, we can 
compute the Newton dual coefficients by applying the differentiation algorithm. We 
can also turn this around. Starting with the Newton dual coefficients, we can retrieve 
the B-spline coefficients essentially by running the diagram in reverse with new 
labels along the edges. If we run only one level in reverse, we obtain the algorithm 
illustrated in Figure 7.24. 

Now notice two things" First, we have computed one new blossom value 
p(u2,u3,u4) from the original Newton dual coefficients. Second, starting with the 

Newton dual coefficients relative to the knot sequence Ul,U2,U3,~,(~,(3, we have 
computed the Newton dual coefficients relative to the new knot sequence 
u2,u3,u4,(~,(~,(~. We can now replace the knot sequence Ul,U2,U3,(~,(~,~ by 
u2,u3,u4,(5,(5,~ and iterate the same algorithm. At every step we compute one new 
blossom value as well as a new set of Newton dual coefficients. The structure of this 
algorithm resembles Boehm's knot insertion algorithm, but with two significant dif- 

u2u3u 4 u3u4(~ 

UlU2U 3 u2u3~ u3~ 

u 4 ~  

Figure 7.24 Running the differentiation algorithm in reversemthe cubic case. Here again it is not neces- 
sary to normalize the labels along the edges. 
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ferences. Unlike Boehm's algorithm, we compute only a single new coefficient 
rather than many new coefficients at a time. Computationally, however, each stage of 
this algorithm is more efficient than Boehm's algorithm because this algorithm uses 
only multiplication and no division. We call this algorithm factored knot insertion, 
since we have factored knot insertion through the Newton dual basis. 

The benefits of this factored approach are heightened when the knots we wish to 
insert are evenly spaced. Let A = Uk+ 1 - u  k denote the knot spacing. By introducing 
appropriate multiples of the knot spacing, we can now insert knots without any mul- 
tiplication whatsoever. We illustrate this algorithm for cubic curves in Figure 7.25. 

This algorithm should remind you of computing new, evenly spaced values 
along a polynomial curve via forward differencing (see Section 4.5) because there 
too only addition is involved; no multiplication is required after the initial start-up 
step. Thus like fast forward differencing, we can accomplish fast knot insertion by 
performing an initial start-up step followed by a fast marching algorithm. Notice too 
the similarity between the start-up step in Figure 7.23(a) and computation of divided 
differences in Figure 4.2. Moreover, a slight modification to the structure of the 
marching algorithm for factored knot insertion makes it identical in structure to the 
marching algorithm for forward differencing. We illustrate this marching algorithm 
for inserting knots into cubic B-spline curves in Figure 7.26. 

Exercises 

1. Implement the factored knot insertion algorithm for cubic B-spline curves 
for 

a. arbitrary knots 

b. evenly spaced knots 

In each case, compare the speed of this algorithm to the speed of your 
implementation of Boehm's knot insertion procedure. 

2. Derive the factored knot insertion algorithm for degree n B-spline curves 
with evenly spaced knots. By what factors of the knot spacing must you 
multiply each of the coefficients of the Newton dual basis so that no multi- 
plication is needed in the marching step? 

u2u3u 4 3Au3u 4 ~ 6A2u 4 SS 

UlU2U 3 3Au2u38 6A2u388 6A3888 

Figure 7.25 Inserting new knots without any multiplication--the cubic case. Since the knots are evenly 
spaced, uj+ k = uj + kA, so all the arrows represent addition; no normalization is required. 
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Figure 7.26 Knot insertion for evenly spaced knots via forward differencing for a cubic B-spline segment. 
The value at each node is computed by adding the values at the nodes that point into it. The 
values in the leftmost column are all identical, and the values in the rightmost column are the 
new blossom values for equally spaced knots. (Compare to the forward differencing algo- 
rithm in Figure 4.5.) 

7.7 The B-Spline Basis Functions 

Just like Bezier curves, B-spline curves can be represented in terms of basis func- 
tions. Let S(t) be a B-spline curve of degree n with control points {Pk} and knot 
sequence {tk }. It follows from the de Boor algorithm that there exist piecewise poly- 
nomials {Nk, n(t)} such that 

S(t) = ]~k Nk,n(t)Pk �9 (7.7) 

The functions {Nk,n(t)} are called the B-spline basis functions or simply the B- 
splines. Just as the Bernstein basis functions can be used to analyze Bezier curves 
and surfaces, the B-splines can be used to elucidate the properties of B-spline curves 
and surfaces, so it is to these basis functions that we now turn our attention. 

We can compute the B-splines {Nk,n(t)} from the de Boor algorithm in two 
ways. If we set Pj = 0, j ,  k, Pk = 1, and run the de Boor algorithm, then by Equation 
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1 

Nz, I(0 

N1,2(t) 

N0,3(t) N1,3(t) 

N2,2(t) 
t s - t ~  N ~  2 

1 1 

tsy  
m3,1(0 ma, l(t) 

N3,2(t) N4,2(t) 

t6- / N~ 3 t 7 ~  N~ 4 
N2,3(0 N3,3(0 

ts/ 
N4,3(0 

Figure 7.27 The down recurrence for the B-splines. 

(7.7) S(t) = Nk,n(t). This algorithm is the up recurrence for the B-spline basis func- 
tions. From the up recurrence it follows that the piecewise polynomial Nk, n(t ) repre- 
sents the sum over all paths from P k at the base to the various apexes of the de Boor 
triangles, where the apex we select depends on the knot interval of the parameter t. 
Therefore, if we place a 1 at each apex and reverse all the arrows in the de Boor algo- 
rithm, then the B-splines {Nk,n(t ) } emerge at the base of the diagram. This algorithm 
is the down recurrence for the B-splines (see Figure 7.27). Again the apex at which 
we begin the computation depends on the knot interval of the parameter t. 

To ensure the validity of Equation (7.7), we must index the B-splines so that the 
basis function Nk,n(t ) resides in the same node where the control point Pk would 
reside in the up recurrence. This indexing scheme makes the down recurrence in Fig- 
ure 7.27 particularly easy to remember. Lower-degree B-splines emerge at interior 
nodes of the diagram. The arrow entering the node Nk, n(t ) from the left has numera- 
tor t -  tk, and the arrow entering from the right has numerator tk+n+ 1 - t; denomina- 
tors are recovered in the usual fashion by ensuring that the labels on the two arrows 
that exit each node in the down recurrence sum to one. In addition, if you follow 
along in the direction of any arrow, then 

1. the labels (in the numerators) you encounter along the edges do not change 

2. the first index of the B-splines you encounter does not change for right- 
pointing arrows and decreases by one for left-pointing arrows; the second 
index, the degree, decreases as you ascend the diagram 

The last step of the down recurrence is summarized in Figure 7.28; all of Figure 
7.27rathe entire down recurrence--can be recovered from this diagram, using the 
two simple rules listed above. 

It follows from Figure 7.28 that the B-splines satisfy the recurrence 

Nk,o(t  ) = 1 t k < t < tk+ 1 

t - t  k tk+n+ 1 - t  
Nk, n (t) = ~ Nk,n_ 1 (t) + Nk+l,n_ 1 (t). (7.8) 

tk+ n - t  k tk+n+l - t k + l  
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Exercise 

1. Draw the shapes of all the different B-splines of degrees 1,2,3 with multiple 
knots at the integers. 

Elementary Properties of the B-Spline Basis Functions 

In this section we shall study the elementary properties of the B-spline basis functions. 
These characteristics of the B-splines {Nk,n(t)} both mirror and are mirrored in the 
elementary features of B-spline curves derived in Section 7.4. Below we list these 
features and then derive each of these properties from the corresponding properties 
of B-spline curves. 

1. Piecewise polynomial 

2. Continuity of order C n-t't at  knots of multiplicity kt 

3. Compact support 

4. Partition of unity 

5. Nonnegativity 

6. Spline basis 

7. Unimodality 

Piecewise polynomial. From the up recurrence we know that the B-spline 
basis functions are B-spline curves. Therefore, the B-splines must be piece- 
wise polynomials. 

Continuity. Again since by construction the B-spline basis functions are B- 
spline curves, the B-splines must have continuity of order n - k t  at knots of 
multiplicity/~. 

Compact support. By the de Boor algorithm, the only B-splines that are non- 
zero over the parameter interval [tk,tk+ 1] are  Nk_n,n(t)  ..... Nk,n(t).  Hence 
the B-spline Nk,n(t) is nonzero only for values of t in the parameter interval 
[tk,tk+n+l]--that is, support{Nk,n(t) } = [tk,tk+n+l]. Therefore, from now 
on, whenever we want to make explicit the knots on which Nk,n(t ) depends, 
we shall write Nk,n(tlt k ..... tk+n+l). By Equation (7.7), the compact support of 
the B-splines is equivalent to the local control property for the control points 
of B-spline curves. 

Partition of unity. The B-splines form a partition of unity. This result can be 
proved from the down recurrence (Equation (7.8)) by induction on n. This 
property can also be derived from the de Boor algorithm by setting Pk = 1 
for all k and observing that since at every stage of the algorithm we are tak- 
ing affine combinations of the nodes the value at every interior node is also 
equal to one. Hence the value at any apex must be one. Therefore, 

1 = S(t) = ~,k Nk,n (t)Pk = ~,k Nk,n (t). 
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The partition of unity property of the B-spline basis functions is equivalent 
to the affine invariance of B-spline curves. 

�9 Nonnegativity. Recall that for any parameter interval the labels along the 
edges of the de Boor algorithm are nonnegative. Since the B-spline Nk,n(t ) 
represents the sum over all paths from the kth position at the base to the var- 
ious apexes of the de Boor triangles, it follows that the B-splines too are 
nonnegative. The partition of unity and nonnegativity of the B-spline basis 
functions are equivalent to the affine invariance and the convex hull proper- 
ties of B-spline curves. 

�9 Spline basis. To prove that the B-splines {Nk,n(t)} with knots {t j} form a 
basis for the space of all splines S(t) with knots {t j}, we need to show that 
the B-splines span this space and are linearly independent. But by Theorem 
7.3, every spline is a B-spline curve; that is, every spline S(t) with knots { tj } 
can be generated from the de Boor algorithm for some set of control points 
{Pk}. Therefore, by Equation (7.7), S(t)= ~,kNk,n(t)Pk, SO the B-splines 
{Nk,n(t)} do indeed span the space of all splines with knots {t j}. To prove 
that the B-splines are linearly independent, we must show that if 
~kCkNk ,n ( t ) -  O, then c k = 0 for all k. Let's restrict our attention to the 

parameter interval [ti,ti+l]. Over this interval Ni_n,n(t ) ..... Ni,n(t) are the 
only nonzero B-splines, so over this interval 

n 

ZkCkUk,n(t) = ZCi-n+hNi-n+h,n(t). 
h=0 

Moreover, over the interval [ti,ti+l], the B-splines Ni_n,n(t ) ..... Ni,n(t ) are 
polynomials, and by Section 7.1 these polynomials are just the progressive 
basis functions b~ (t) ..... b n (t), which form a polynomial basis. Therefore, if 

n n 

0 = ECi_n+hNi_n+h,n(t)- ECi-n+hb~(t), 
h=0 h=0 

then Ci_n+ h = 0 for all h. Hence the B-splines are indeed linearly indepen- 
dent. The linear independence of the B-splines is equivalent to the nonde- 
generacy of B-spline curves. 

�9 Unimodality. Recall that a function is said to be unimodal if it has only one 
local maximum. The B-splines {Nk, n(t)} are unimodal in t. To understand 
why, consider the graph of the function Nk,n(t)~that is, the curve 
S(t) - (t,Nk,n(t)). The function F(t) - t is a polynomial and hence certainly 
a spline (see Section 7.5, Exercise 2). Since the B-splines form a basis for 
the space of all splines, there must be constants {c j} such that 
t = ~jcjNj,n(t). (We shall derive explicit expressions for the constants {c j} 
in Section 7.7.2, but for now all we need to know is that such constants 
exist.) Therefore, S(t)= ~,j(cj,~j,k)Nj, n(t). Thus the control points for the 
graph of Nk, n(t ) all lie along the t-axis except for the point at (Ck,1). There- 
fore, the control polygon for the graph of Nk,n(t ) has only one local maxi- 
mum (see Figure 7.31). But the graph of Nk,n(t ) is a B-spline curve, and by 



388 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm 

0.8 

0.6 

0.4 

0.2 

I I I I I 

- ]  

_ 

I I I I I I I I I I I I I I 

1 2 3 4 5 

Figure 7.31 Graph of the cubic B-spline N0,3(t) (light) together with its control polygon (dark). 

Theorem 7.4, B-spline curves are variation diminishing. Therefore, the 
graph of Nk,n(t  ) c a n  oscillate no more than its control polygon. Hence 
Nk, n(t) has only one local maximum. 

Exercises 

1. Let S(t) be a spline of degree n with knots {tk} whose support lies in 

[tn,tk+n+l]. 
a. Prove that there is a constant c such that S(t) = CNk,n(t  ). 

b. Conclude from part (a) that the B-splines {Nk,n(t)} have minimal sup- 
port. That is, show that if S(t) is a spline of degree n with knots {tk} 
whose support lies in a closed subinterval of [tn, tk+n+l],  then S(t) is 
identically zero. 

2. Prove that Sign alternations{~kCkNk,n(t)} < Signalternations{ Ck}. 

3. Let Tk+i = atk+ i + b,  i = 0,...,n + 1, for some fixed constants a > 0 and b. 
Show that 

N~ (at + b I T k .... ,'t'k+n+ 1) = N~(t I tk,...,tk+n+ 1). 

Compare this result to Section 7.4, Exercise 2. 

4. Show, by example, that the B-splines {Nk,n(t  ) } are not necessarily unimodal 
i n k f o r n > 6 .  

5. The B-splines {Nk, n(t)} are called the de Boor normalized B-splines. The 
Schoenberg normalized B-splines { Mk,n(t ) } are defined by setting 
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7.7.2 

N k , n ( t )  N k , n ( t )  
M k , n ( t  ) - = 

tk+n+ 1 - t k S u p p o r t  

a. Prove that M k , n ( t  ) t - t k tk+n+ 1 - t - M k , n _  1 ( t)  + M k + l , n _  1 ( t ) .  
tk+n+ 1 - t  k tk+n+ 1 - t  k 

b. Conclude from part (a) that the Schoenberg normalized B-splines 
{Mk,n( t )}  are unimodal in k. 

Blossoming and Dual Functionals 

For polynomial curves generated by the de Boor algorithm, the control points are 
given by the blossom evaluated at consecutive knots. Thus if P( t )  is a degree n pro- 
gressive polynomial curve specified by control points Po ..... Pn and knots t 1 ..... t2n,  
then by Equation (7.3), 

Pk - P( tk+l  ..... tk+n)  �9 

We would like to extend this result to B-spline curves, but first we must define 
exactly what we mean by the blossom of a spline evaluated at the knots. 

Consider then a B-spline curve S ( t )  = Z k P k N k , n ( t )  with knots {tj}.  Let Sk(t )  be 
the degree n polynomial that represents S( t )  over the knot interval [t k , t k+ 1] mthat is, 
S( t )  = Sk( t )  for t k < t < tk+ 1 . Over the interval [tk, tk+ 1 ], the B-spline curve depends 
only on the n control points Pk-n  ..... Pk and the 2n knots tk_n+ 1 ..... tk+ n. Moreover, 
by Equation (7.3), 

Pi - Sk(t i+l ..... t i+n) k -  n < i < k .  

Therefore, 

s j ( t i+ l  ..... t i + n ) -  Sk(ti+ 1 ..... t i+n) 

provided that j - n  < i < j and k - n  < i <  k .  Now we define the blossom of S( t )  

evaluated at the knots ti+ 1 ..... ti+ n by setting 

s(ti+l ..... t i+n) = Sk(ti+ 1 ..... t i+n) ,  

where k is any index such that k -  n < i < k mthat  is, k is the index of any knot inter- 
val influenced by the control point Pi. It follows that 

Pi = s(t i+l ..... ti+n ) (7.9) 

S ( t )  = Z i s ( t i + l  ..... t i + n ) N i , n ( t  ) 

Equation (7.9) is the dual functional property of the B-splines and is the basic fact 
connecting blossoming to B-spline curves. 

We can apply Equation (7.9) to find the B-spline coefficients for various spline 
functions. For example, in our discussion of the unimodality of the B-splines in Sec- 
tion 7.7.1, we observed that there must be constants {c i} such that 

t -  Z i c i N i , n ( t ) .  
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These constants {c i } are called the nodes  of the B-splines; it is at these values that 
we must place the B-spline coefficients in order to generate the graph of a spline 
curve. Using blossoming, these nodes are easy to locate. Let P(t)  = t. Then by Equa- 
tion (7.9), 

c i - P(ti+ 1 ..... ti+n) = ti+l + . . .  + ti+ n 
11 

What happens if we evaluate the blossom ni,d(Ul ..... Ud) of a B-spline basis func- 
tion Ni,d(t  ) at the knots {t k} ? Since Ni,d(t) is a spline curve, and since the blossom 
evaluated at consecutive knots gives the B-spline coefficients of a spline curve, it fol- 
lows from the linear independence of the B-splines that 

ni,d(tj+ 1 .. . .  t j+d) = 0 i r j 

=1 i = j .  (7.10) 

A linear operator that vanishes on all but one of a fixed set of basis functions and 
yields the value one on a single basis function is called a dual  f u n c t i o n a l  (see Section 
4.2). Since the blossom is a linear operator, Equation (7.10) is just another way of 
saying that the blossom evaluated at consecutive knots represents the dual function- 
als for the B-splines {Ni,d(t) }. 

Exercises 

1. Use Equation (7.9) to prove that ~,k Nk,n( t )  -- 1. 

2. Prove that 

(j)  t j =  ~ i { ~ t i l  ""tij }Ni ,n( t)  , 

where the sum in brackets is taken over all subsets {il ..... i j} of {i + 1 ..... 
i + n } .  

3. a. Apply Equations (7.9) and (7.10) to prove that 

Nk,n( t  l tk ..... tk+n+l ) - 
"C- t  k 

tk+ n - t  k 
~ N k , n ( t  l tk ..... "t: ..... tk+n) 

tk+n+ 1 - "g 

tk+n+l - t k + l  
Nk+l,n(t  l tk+ 1 ..... "C ..... tk+n+l). 

b. Explain why this result is equivalent to Boehm's knot insertion algorithm. 

4. a. Apply blossoming to derive Marsden's identity: 

( x -  t) d - ~,k (tk+l - t ) . . . ( tk+ d - t )Nk ,d(X ) �9 

b. Show that Marsden's identity is equivalent to Equation (7.10). 

5. Two bases {Bk(X)} and {Dk(t)} for polynomials of degree n are said to be 
dual  if they satisfy a local version of Marsden's identity (Exercise 4). That 
is, {Bk(X) } and {Dk(t) }are called dual  bases  if ( x -  t) n = ~,kDk(t)Bk(X). 
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a. Find the dual basis to each of the following progressive bases: 

i. Bernstein basis 

ii. Monomial basis 

iii. Newton dual basis 

iv. Power basis (see Section 7.2, Exercise 1) 

b. Let rkl .... rkn be the roots of Dk(t). Show that 

(-1) n n!ajk . 

bj(rk  .... ) 

6. Show that the B-splines {Nk,n(t)} for the knot sequence {t k} are the unique 
functions satisfying the following axioms: 

a. Nk,n(t ) is a piecewise polynomial with continuity of order cn-# at knots 
of multiplicity p. 

b. {Nk,n(t)} have minimal support. 

c. y~k Nk,n (t) = l. 

(Hint: Use Exercise 1 and Section 7.7.1, Exercise 1.) 

7 . 7 . 3  Differentiating and Integrating the B-Splines 

We know how to differentiate a degree n B-spline curve; we simply differentiate one 
level of the de Boor algorithm and multiply the result by n. A B-spline Nk,n(t ) is just a 
B-spline curve where the control points are given by Pj - ~jk. Therefore, differentiat- 
ing the bottom level of the de Boor algorithm and summing over all paths from the 
kth position at the base to the various apexes yields the derivative of Nk,n(t). But the 
sum over all paths from the kth position on the base to the different apexes is the same 
as the sum over all paths from the different apexes to the kth position on the base. 
That is, we can run the down recurrence instead of the up recurrence, remembering to 
differentiate the bottom level. Since we run the down recurrence for n -  1 levels, the 
functions that emerge on the (n - 1)st level are just the degree n - 1 B-splines. More- 
over, only two arrows point into the kth position on the nth level (see Figure 7.28). 
Hence for differentiating N~ (t) we have Figure 7.32. 

/N]k,n-l(t] Nk+l,n-l(t) 

N'k,n(t) 

Figure 7.32 The down recurrence for differentiating a B-spline. Remember that the final result needs to 
be multiplied by the degree n. 
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Therefore, we conclude that 

dNkdt ' n (t) = n ( Nk tk+n' n-1 _ (t) tk Nk+l'n-l(t) 3. 
tk+n+l -tk+l 

(7.11) 

Since tk+ n - t k  represents the support of Nk,n_ 1 (t) and tk+n+ 1 -tk+l represents the 
support of Nk+l,n_ 1 (t), we shall sometimes write 

dNk,n (t) ( Nk,n-l (t) Nk+l,n-l (t) ) 
dt Support Support 

(7.12) 

What about the antiderivative of a B-spline? Since Nk, n(t ) is a piecewise polyno- 
mial of degree n with continuity of order n - p  at knots of multiplicity p, we would 
naturally expect that the antiderivative of Nk,n(t ) should be a piecewise polynomial 
of degree n + 1 with continuity of order n + 1 - p  at knots of multiplicity p. More- 
over, for values of t > tk+n+l, the antiderivative of Nk, n(t) should be a constant equal 
to the area under the curve Nk,n(t ) because Support{Nk,n(t)} c_ [tk,tk+n+l]. Thus it 
appears that the antiderivative of Nk,n(t ) should be a B-spline of degree n + 1 with the 
same knots as Nk,n(t ) but with one additional knot at infinity. 

To determine if this analysis is correct, let Nk,n(tltk,...,tk+n+l) denote the B- 
spline with knots t k ..... tk+n+ 1 . To avoid calculating with infinities, we shall repre- 
sent a knot at infinity by a homogeneous knot at t5 = (1,0). Then, up to a constant 
multiple, we expect that the antiderivative of Nk,n(tl t  k ..... tk+n+l) is given by 
Nk,n+l(t l t k ..... tk+n+l,r ). Let's see if this works. 

Generally, differentiating the de Boor algorithm leads to a two-term derivative 
formula, but not always. Recall that the de Boor algorithm is derived from a blos- 
soming recurrence, where the input is the blossom evaluated at consecutive knots. If 
we start with the multilinear blossom, then the knots may take on homogeneous val- 
ues. Now suppose, in particular, that (tk+n+2,Wk+n+2)= (1,0)= t~. Then the label 
tk+n+ 2 - t  ---> tk+n+ 2 --tWk+n+ 2 ~ 1, SO one of the coefficients in the down recur- 

rence for Nk,n+ l ( t l t  k ..... tk+n+l,t~ ) is a constant (see Figure 7.33(a)). 

tk+ 1"" tk+nt tk+2" " " tk+n+ 1 t Nk, n(t) Nk+ 1,n(t) 
tk+n+l-/~,Q-tk / ~ ,~-  t k + ,  tk+n+,- /N~-tk  / ~ -  tk+, 

tk"" tk+n tk+l"" tk+n+l r tk+n+l 8 Nk-l,n+l (t) Nk, n+l (t) Nk+l,n+l (t) 

(a) The de Boor algorithm (lo) The down recurrence 

Figure 7.33 One level of (a) the de Boor algorithm and (b) the down recurrence with the knot 
(tk+n+2,Wk+n+2) = ( 1 , 0 )  = ~. Notice the label 1 along one of the edges of the diagram. Since the derivative of 
a constant is zero, differentiating this diagram leads to a one-term derivative formula for Nk, n+l(t). 
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Thus the down recurrence becomes 

Nk,n+l (t l tk ..... tk+n+l,~) 

t - t  k 

tk+n+ 1 - t  k 
Nk,n(t l tk ..... tk+n+l)+ Nk+l,n(t l tk+l ..... tk+n+l,~). 

Now differentiating the last level of the de Boor algorithm and multiplying the result 
by n + 1 leads to the one-term differentiation formula: 

dNk,n+l (t l tk ..... tk+n+l,tS) = (n + 1) Nk'n(tltk ..... tk+n+l) 

dt tk+n+ 1 - t k 

Hence 

f Nk,n(t l tk ..... tk+n+l)dt -tk+n+l - t  k n + 1 Nk,n+ l(tl t k ..... tk+n+l,~ ) 

or equivalently 

N k'n(t) dt Nk'n+l(t l tk ..... tk+n+l't~) 
Support n + 1 

Exercises 

(7.13) 

1. Let S(t) = ~,k Nk,n (t)Pk be a B-spline curve with knots { t k }. Show that 

S ' ( t ) -n~kNk ,n - l ( t ) (Pk- -Pk-11  " t k + n  - t k  

2. Derive the following recurrence between the derivatives of the B-splines: 

3. Using Equation (7.12) prove that 

a. ~s Nk'n-l (t) dt -~s  Nk+l'n-l (t) dt 
upport Support upport Support 

b. f Nk,n_ l (t) 

Js upport Support 

4. Prove that 

dt is independent of k 

~S Nk'n (t) 1 ~ d t  - 
upport Support n + 1 

in two different ways. 

a. Insert knots far from the support of Nk, n(t) to form a local Bernstein 
basis. Then apply Exercise 3(b). 
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b. Show that Nk,n+l(tk+n+ 1 I tic ..... tk+n+l,5)= 1. Then apply Equation 
(7.13). 

5. Let S(t) be a B-spline curve with control points {Pk }" 

a. Using the results of Exercises 1 and 4, show that 

~?ool S'(t) I dt <- Zk I Pk - Pk-1 I . 

b. Conclude that arc length S(t) < perimeter of  its control polygon. 

7.7 .4  B-Splines and Divided Difference 

Two remarkable formulas link B-splines with divided differences" 

Nk, n (t) = { (tk+n+ 1 - t k)(x - t)~ }[tic ..... tk+n+ 1 ] (7.14) 

~ t t k ( +  n + 1 
F[t k ..... tk+n+l ] = 

k 

Nk,n(t) t (F(n+l)( t )}dt  
tk+n+ 1 - t  k n! 

= fSupport{ Nk'n(t) }{F(n+l)(t)} dt n! 

(7.15) 

The first formula constructs the B-splines from the divided difference operator; the 
second builds the divided difference operator by integration with the B-splines. Note 
that in Equation (7.14) the divided difference is with respect to x, so t is treated as a 
constant on the fight-hand side. 

Equation (7.14) is important because it allows us to use the divided difference 
identities derived in Chapter 4 to derive identities for the B-splines. Till now we have 
used blossoming almost exclusively to derive B-spline identities, but the blossoming 
approach works only when the identities involve spline bases~that  is, the knot 
sequences of the B-splines must be compatible--or when the blossom is easy to 
compute. This is not always the case~see Exercises 1-3 and 7-9 for examples. 
Divided differences have no such restrictions. 

Equation (7.15) is important because it allows us to use the properties of the B- 
splines to derive properties of the divided difference operator. In fact, sometimes this 
formula is taken as the definition of the divided difference. 

To understand Equation (7.14), we need to define our notation. Let 

( x -  t)~_ - ( x -  t) n x > t 

= 0  x<_t. 
To derive Equation (7.14), we begin by showing that the function 

{(x - t) +} [t k ..... tk+n+ 1] 

has the same support as the B-spline Nk,n( t l t  k ..... tk+n+ 1). 
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LEMMA 
7.5 

S u p p o r t {  ( x  - t ) ~ [ t  k . . . . .  tk+n+l  ] } c [ t k , t k+n+ 1 ]. 

P r o o f  We consider two cases: t < t k and t > tk+n+ 1. If t < t k,  then the functions 
( x -  t)~_ and ( x -  t) n agree at the nodes tk . . . . .  tk+n+ 1. Hence 

( x  - t )+[ t  k . . . . .  tk+n+ 1 ] - ( x  - t ) n [ t k , . . . , t k + n + l  ] = O, 

since divided difference annihilates polynomials of low degree (see 
Theorem 4.3, 12(a)). On the other hand, if t > t k+n+l ,  then on the nodes 
t k .. . . .  t k+n+l ,  we have ( x -  t)~ = 0, so it follows immediately that 

( x  - t)~_ tk . . . . .  tk+n+l ] = O. 

Next we establish that ( x - t ) ~ _ [ t  k ..... tk+n+ 1] is a piecewise polynomial with 
knots at the nodes t k , . . . , t k + n +  1 . 

LEMMA 
7.6 

The function ( x - t ) ~ [ t  k ..... t k+n+l]  is a piecewise polynomial of degree n 
with knots at t k . . . . .  tk+n+ 1 . 

Proof  Let t i < t < t i+l,  and let P ( x )  - an+l  x n + l  + . . .  + a l x  + a 0 be the unique poly- 
nomial of degree n + 1 that interpolates the same values as ( x -  t)~_ at the 
nodes t k , . . . , t k+n+ 1. Then 

.~ ,n+l 
e ( t k  ) - "n+l'k + " "  + a l t k  + ao = (tk - t)~_ = 0 

�9 , . 

�9 o o 

P ( t  i )  - an+l  tn+l  + . . .  + a l t  i + a 0 = ( t  i - t)~_ - 0 

.~ ,n+l  (7.16) 
P ( t i + l )  = "n+1'i+1 + " "  + al t i+l  + ao - (ti+l - t)~ = (ti+ 1 - t )  n 

�9 o o 

�9 o , 

.~ § 
P ( t k + n + l  ) = " n + l ' k + n + l  + " "  + a l t k+n+l  + ao = ( t k+n+l  - t)~_ - ( tk+n+ 1 - t )  n 

Solving for the unknown coefficients a o .. . . .  an+ 1 , we see that P ( x )  is a poly- 
nomial of degree n + 1 in x with coefficients that are polynomials of degree 
n in t. Since the divided difference is the highest-order coefficient of the 
polynomial interpolant, 

( x  - t )+[ t  k .. . . .  tk+n+l  ] = an+ 1 

is a polynomial of degree n in t for t i < t < ti+ 1 . To show that t i is a knot of 
n 

( x -  t) + [t k ... . .  tk+n+l], let t i_ 1 < t_ < t i and t i < t+ < ti+ 1. In addition, let Q ( x )  

be the unique polynomial of degree n + 1 that interpolates the same values 
as the function 
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at the nodes t k , . . . , t k+n+ 1. Now observe that the functions ( x - t _ ) ~ _  and 
(x-t+)~_ agree~tha t  is, are the same polynomial in the variables t_ and 
t + ~ a t  all the nodes except t i;  therefore, the n + 1 nodes t k ..... ti_ 1, 

t i+  1 .. . . .  tk+n+ 1 are the n + 1 roots of Q ( x ) .  Moreover, 

Q ( t  i)  - (t  i - t_)~_ - ( t  i - t+)+ - (t  i - t _ )  n.  

Therefore, 

Q ( x )  - (ti - t - ) n ( x -  t k ) " ' ( x -  t i - 1 ) ( x -  t i + l ) " ' ( x -  t k+n+l )  

( t  i - t k ). . . ( t  i - t i_  1)(ti  - ti+ 1) . .  . ( t  i - tk+n+ 1) 

It follows by the cancellation property of the divided difference (see Theo- 
rem 4.3) that 

( x  - t_)~_[t k ... . .  tk+n+l  ] - ( x  - t+ )~_[t k ... . .  tk+n+l  ] 

= { ( x - t _ ) ~ _ - ( x - t + ) ~ _ } [ t  k ..... tk+n+l]  

= Q[t  k ..... tk+n+l]  

(t  i - t _ )  n ( x  - t k ) . . . ( x  - t i_  1 ) ( x  - ti+ 1). . . ( x  - tk+n+l ) 

(t  i - t k ). . . ( t  i - t i_  1)(ti  - ti+ 1) . .  . ( t  i - tk+n+ 1) 

(t  i - t _ )  n [ti] 

(t  i - t k ) . .  . ( t  i - t i_ 1)(ti  - ti+ 1). .  . ( t  i - tk+n+l ) 

( t  i - t _ )  n 

(t  i - t k ). . . ( t  i - t i_  1)(ti  - ti+ 1). .  . ( t  i - tk+n+ 1) 

[t k ... . .  t k+n+l]  

where the last equality follows because the divided difference is taken with 
respect to x and the expression 

(t  i - t _ )  n 

(t  i - t k ) . . . ( t  i - t i_ 1)(ti  - ti+ 1 ) . . . ( t  i - tk+n+l ) 

is a constant when viewed as a function of x. Thus 

( x -  t_)~_[t k ..... tk+n+l  ] - ( x -  t+)+[t  k .... .  tk+n+ 1 ] = c o n s t a n t ( t  i - t _ )  n, 

so the value and the first n - 1 derivatives of the two functions 

( x -  t_)~.[ t  k .. . . .  t k+n+l]  and ( x -  t+)~_[t k ..... tk+n+ 1] 

agree at t = t i. Thus the piecewise polynomial ( x -  t)~_[t~ ... . .  tk+n+ 1 ] has a 
simple knot at t = t i. 

In the proof of Lemma 7.6 we have implicitly assumed that t i appears only once 
in the sequence t k ... . .  t k + n + l m t h a t  is, t i is a simple knot. If t i is repeated kt times, then 
the same proof applies except that now we must set 
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I-I ( x  - t j  ) 

Q ( x )  = jr 
1-I (t i - t j  ) 

jr 

R ( x )  , 

where R ( x )  is the Taylor expansion of ( x -  t_)~_ of order p - 1 at t_ = t i. The rest of 
the proof remains the same, and in this case we conclude that ( x -  t )~[ t  k ..... tk+n+ 1 ] 
has a knot of multiplicity p at t = t i. In any event, the preceding proof of Lemma 7.6 
is quite abstract; for a somewhat more concrete proof, see Exercise 6. 

With these results in hand, we are finally ready to prove Equation (7.14). 

PROPOSITION 
7.7 N k , n ( t  ) - { (tk+n+ 1 - t k ) ( X -  t )~} [ t  k ..... tk+n+l]" 

Proof To simplify our notation, let 

Gk,n( t )  - { (tk+n+ 1 - t k ) ( x  - t)+ }[tk , . . . , tk+n+ 1 ] . 

Our goal now is to show that GLn( t )  = Nk,n( t  ). By Lemma 7.6, the function 
Gk,n(t  ) is a piecewise polynomial with knots at the nodes t k ..... tk+n+ 1. Since 
the B-splines form a basis for the splines, it follows that we can represent 
the function Gk,n(t)  in terms of the B-splines {Nj ,n( t )} .  Moreover, by 
Lemma 7.5, Gk,n(t)  has the same support as Nk,n(t) .  Therefore, it follows by 
the linear independence of the B-splines that there is a constant c k such that 

Gk, n (t) = CkNk, n (t) �9 

We can compute the constant c k from blossoming. Let gk,n(Ul ..... u n) denote 
the blossom of GLn( t ) .  Then 

gk,n (Ul ..... u n) = { (tk+n+ 1 - t k ) ( x  - t) 0 ( x  - u 1 ) . . . ( x  - u n)  ] [t k ..... tk+n+ 1 ] , 

since the fight-hand side is symmetric, multiaffine, and reduces to Gk,n(t  ) 
along the diagonal. Now let t k < t < tk+n+ 1. By the dual functional property 
of the blossom (Equation (7.9)) and the cancellation property of the divided 
difference (Theorem 4.3), 

c k = gk ,n( tk+l  ..... tk+ n) 

= {(tk+n+ 1 - t k ) ( X -  t ) O ( x  - t k + l ) . . . ( x -  tk+ n) }[tk ..... tk+n+l] 

= { (tk+n+ 1 - t k ) ( x  - t) 0 }[ tk , tk+n+ 1 ] 

(tk+n+ 1 - t k ) ( tk+n+l  - t) 0 - (tk+n+ 1 - t k)(tk - t) 0 

= 1 ,  

tk+n+l - t k  

since t k < t < tk+n+ 1 . Hence Gk,n(t)  - N k , n ( t ) .  
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We had to work fairly hard to establish Equation (7.14); Equation (7.15) is much 
easier to derive. Our main tools here are integration by parts and the two-term differ- 
entiation formula for the B-splines. 

PROPOSITION 
7.8 fS { Nk'n(t) }{F(n+l)(t)tdt F[t k ..... tk+n+l] = 

upport Support n! 

Proof We proceed by induction on n. We can easily verify this result is true for 
n = O, since 

F(tk+ 1) - F(t k) = f tk+l F'(t)dt 
F[tk,tk+l] ! 

tk+ 1 - t k .It k tk+l - t k 

Now assume this result is true for n -  1 and apply integration by parts. Then 

~Support{ Nk'n(t) }{F(n+l)(t)} n! 

n!(tk+n+ 1 - tk) t ~ - tk+n+ 1 - t k ,ltk --~ n! 

Since Nk,n(t ) vanishes on the end points of its support, 

(n) tk+n+l 
Is 

Ln!(tk+n+l - t k )J t  k 
=0.  

Moreover, by Equation (7.12) 

dNk, n (t) = n( Nk'n---1 (t) 
dt ~, tk+ n - t k 

Nk+l,n_ 1 (t) I" 
tk+n+l -tk+l 
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Therefore, 

SS { Nk'n(t)  } {F(n+l ) ( t ) }  dt 
upport Support  n! 

tk+n+ 1 - t k ,ttk dt n! 

tk+n+ 1 - t k . I t  k tk+ n - t k tk+n+ 1 - tk+ 1 n! 

_ 1 f t k + n + l ( g k + l , n _ l ( t )  l f f ( n ) ( l ) } d t  

- -  tk+n+l - tk J t k +  1 /k+n+l  - t k + l  JL (n -- 1)! 

_ 1  f t ~ + ' { N k , n _ l ( t ) l f F ( n ) ( t ) } d t  

tk+n+ 1 - t k ,It k tk+ n - t k J [  (n - 1)! 

F[tk + 1 ... . .  tk + n + 1 ] -  F[tk .. . . .  tk + n ] 

t k + n +  1 - t  k 

= F[t k .. . . .  tk+n+l] �9 

Exercises 

1. Use Equation (7.14) together with the cancellation property of the divided 
difference to prove that 

Nk,n(tk+ j I tic ..... tk+n+ 1) - Nk,n_ 1 (tk+ j I t k ..... tk+j_ 1,tk+j+ 1 ..... tk+n+ 1). 

2. Use Equation (7.14) together with Section 4.3, Exercise 3(a), to prove that 

~N~ (t l t k ..... tj ..... tk+n+l ) 

~tj 

I Nk+ (t I tk+l, . . . , t j , t  j ..... tk+n+ 1) = f l j  . . . . . .  
tk+n+l - t k + l  

_ N ~ ( t l t  ktk+ntj,tj_tk .... ,tk+n) I 

where pj is the multiplicity of tj r tk,tk+n+ 1. 

3. Use Equation (7.14) together with Section 4.3, Exercise 3(b), to prove that 

Nk,n(t  l t k ..... tk+n+l) - ~ , jNk,n+l( t  l tk ..... tk+j, tk+j ..... tk+n+l) . 
n + l  
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4. Use Equation (7.14) together with Leibniz's rule for divided difference to 
give an alternative proof of the divided difference recurrence 

N k , n ( t  ) t - t  k tk+n+ 1 - t  
- - -  N k , n _  1 (t) + N k + l , n _  1 (t). 

tk+ n - t  k tk+n+l - t k + l  

5. Use Equation (7.14) together with the appropriate property of the divided 
difference to prove that 

t j+ 1 . . . .  - t j+ n :=~ N j , n ( t j + l ) -  1. 

6. Here we give an alternative proof of Lemma 7.6. Since, by definition, the 
divided difference is the highest-order coefficient of the polynomial interpo- 
lant, we can find 

( x - t ) ~ _ [ t  k ... . .  tk+n+l] 

by solving system (7.16) for the coefficient an+ 1 . 

a. Using Cramer's rule, show that for t i < t < ti+ 1 

{ (x  - t)+ }[t k ..... tk+n+ 1 ] = an+ 1 = 

? /  

0 t k . . .  1 

o i ~ 

(ti+ 1 - t )  n : : : 

H ~ 

(tk+n+ l - t )  n tk+n+ 1 .. 1 

tn+l n 
k tk "'" 

�9 . . 

�9 , o 

tn+l n 
k+n+l tk+n+l "'" 

b. Similarly show that for ti_ 1 < t < t i , 

{ ( x -  t )+l [ tk  ..... t ~+ .+ l ]  = 

n 

0 t k . . .  
�9 , ~ 

�9 , ~ 

(t i - t )  n i i 

(ti+ 1 - t )  n i i 
�9 , o 

�9 , , 

(tk+n+ 1 t)n n 
- tk+n+ 1 .. .  

tk n+l 

tn+l 
k+n+l 

1 l  

tk 

1 l  

tk+n+l 

~ 1 7 6  

~ 1 7 6  

1 
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c. Let Qi(t) be the difference between the two polynomials in parts (a) and 
(b)--that is, Qi(t)  is the difference between ( x - t )~_[ t  k ..... tk+n+l] to the 
left and to the right of t i. Show that Qi(t) = cons tant ( t  i - t) n. 

d. Conclude from part (c) that the function value and the first n -  1 deriva- 
tives of 

( x - t )+[ tk , . . . , t k+n+l]  

agree to the left and to the right of t i. Hence the function 

( x - t ) ~ [ t  k ..... tk+n+l] 

is a piecewise polynomial of degree n with knots at t k ..... tk+n+ 1. 

e. How would you need to alter this proof if t i is repeated p times in the 
sequence t k ..... tk+n+l? 

7. a. Use Equation (7.14) together with Proposition 4.6 to prove that for any r 

Nk,n( t  l t k ..... tk+n+l) - - - r - t k  Nk,n( t  l tk , . . . , r  .... ,tk+ n) 
tk+ n - t  k 

+ tk+n+ 1 - ~2 Nk+l,n(t  I tk+ 1 ..... • ..... tk+n+l). 
tk+n+l - t k + l  

b. By letting ~" = t in part (a) and invoking Exercise 1, derive the B-spline 
recurrence 

Nk,n( t  ) t - t k  N k , n _ l ( t ) +  t k + n + l - t  = _ _  Nk+l ,n_l ( t  ) . 
tk+ n - t  k tk+n+ 1 - t k + l  

8. Generalize the B-spline recurrence by showing that for any 1 _< i < j ___ n 

Nk,n( t  l t k ..... tk+n+l) = 
t - t k +  i 

tk+j - t k + i  
Nk,n_ 1 (t I t k ..... tk+ j ..... tk+n+ 1 ) 

+ tk+ j - t  Nk,n-l(tlt k ..... tk+i ..... tk+n+l) 
tk+j - t k + i  

where /'a means that t a is omitted from the sequence. (Hint: Use Equation 
(7.14) together with Proposition 4.6 and Exercise 1. Compare to Exercise 7.) 

9. Differentiate Equation (7.14) and then apply the divided difference recur- 
rence to prove that 

a. dNkdt, n (t) = n ( Nk,n_ _ (t)tk Nk+l,n_ 1 (t) I 

tk+n+l - t k + l  
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b. dNk'n(t) 

dt 

n Nk'n- l ( t  I t k .... ,tk+j____2, .... tk+n+l) 

tk+j -tk+i 

N k,n_l ( t l t_k:._::!k+i,--..,t k+n+ l ) 

tk+j- tk+i 

10. Consider the identities for the divided difference listed at the end of Chapter 
4. Using Equation (7.15) and the properties of B-splines, derive as many of 
these identities as you can. 

7.7.5 A Geometric Characterization of the B-Splines 

So far we have seen two distinct ways to construct the B-splines: by the de Boor 
recurrence (Equation (7.8)) and by divided differences (Equation (7.14)). Here we 
shall give an alternative, geometric characterization of the B-splines. 

Let PO ..... Pn be any n + 1 affinely independent points in n dimensions such that 
Pil = ti, and let An(p) denote the n-simplex with vertices PO ..... Pn. We are going to 
show that 

NO,n_l(t l t 0 ..... tn ) = (t n - to)Voln_l( ty  e An(p) I O'1 = t) . (7.17) 
nVoln ( An (e))  

Equation (7.17) has the following geometric interpretation: Form any n-simplex 
such that the first coordinates of its vertices PO ..... Pn lie over the knots t o ..... t n . Then 
the n - 1 dimensional volume of the cross section of this simplex lying over the 
parameter t is, up to a constant multiple, the B-spline NO,n_l( t l t  0 ..... tn) (see Figure 
7.34). 

To derive Equation (7.17), we begin by recalling the Hermite-Genocchi formula 
for the divided difference (see Section 4.3, Exercise 9): 

= f , n  F(n)(to + Vl(tl-  t o ) + ' " +  Vn(tn - t o ) ) d V l ' " d v n '  F[to tn] 
4 l..X" " 

where A n = {(v 1 ..... Vn) lVi > 0 and ]~ i vi < 1} is the standard n-dimensional sim- 
plex. On the other hand, by Equation (7.15), 

~ttn{ gO'n-l(t[  - t  o to ..... t n ) } {F(n ) ( t ) }  dt" ( n -  1)! F[to ..... tn] = - 7  
o tn 

Therefore, it follows that 

~AnF(n)(to + - + . . . +  - to ) )dv l . . . dv  n Vl(/1 to) Vn(tn 

=~t;nIgo'n-l-(-t!tO--o ~ t n - t o .... t n ) } { f ( n ) ( t ) }  - 1)l 
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P1 

P2 

P0 

,w  v f ~  

t o t I t t 2 

Figure 7.34 Geometric characterization of the B-spline No, l( t l  to, tl,t2) as a cross section of a triangle, 
normalized by the area of the triangle and the length of the support. Notice that this cross 
section is a piecewise linear function with support [to,t 2] and a knot at t 1, just like the B- 
spline No, l(t l to, tl,t2). 

or equivalently, replacing F (n) (t)  by G(t), 

~An G(to  + Vl(t 1 - t o ) + . . - +  Vn(t n - t0))dv 1 " " d v  n 

----~t~'nI g O ' n - l ( t l t O 0  (n -- 1)!(t n -- ..... ~0)tn)) G(t )d t"  (7.18) 

We are now going to perform a change of variables to simplify the left-hand 
side of Equation (7.18). Let S be the unique affine transformation that maps the ver- 
tices of A n to the vertices of An(p) by sending the vertex E i to the vertex Pi, where E i 
is the point whose rectangular coordinates (v I ..... v n) have a 1 in the ith position and 
a zero everywhere else. Then 

or equivalently 

S ( V l . . . . .  V n ) - eo + vl(el - e0) + "'" + v n ( en - e0), 

si - Poi § Vl (Pli - eoi ) + " "  § Vn ( P n i -  Poi ) ,  i = 1 ..... n. 

Notice, in particular, that by the choice of Po ..... Pn 

s 1 = t o +v  l(tl - t  O ) + . . . + v  n ( t n - t  O). 
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The Jacobian of this transformation between the variables s = (sl . . . . .  s n) and the 
variables v - (v 1 ..... v n) is given by 

(ell-Pol P21-Pol 
/ 

3(Sl ..... Sn) - det/P12 Po2 P22 - Po2 

3(v 1 ..... v n ) ~ 

kP , Po, P z,-POn 

= det(l:'l - PO ..... Pn - PO ) 

= n, Voln(An(P)). 

Hence by this change of variables 

~AnG(to + - + . . . +  _ t0))dv 1 Vl(tl to) Vn(tn o " " d v  n 

1 
= n!Voln(An) ~An(e) G(sl)dsl ' ' 'dsn 

�9 " "  Pnl-eOl 
"'" Pn2 P02 

�9 .. Pnn-POn 

= ds2. . .ds  n (s 1)ds 1 . (7.19) 
n!Voln(An) o eAn(p)lal=Sl 

Now it follows from Equations (7.18) and (7.19) that 

~ f n { g o , n - l ( t l t o  ..... tn)} l ftrn{~cr 
0 (n-1)!i~n -- toi G(t)dt = n!V~ o EAn(p)I(Yl=S1 

ds2 . . " ds n ~ (  Sl )dSl . 

Replacing Sl by t and comparing the integrands, we find that 

NO,n-l (t l to ..... t n) 

(n -1 ) ! ( t  n - t  O) n!Voln(An) eAn(p)lal=t 
ds2 . . .ds n 

Voln_ l (a  ~ A n(e)  I O" 1 = t) 
, 

n!Voln(An(p)) 

Therefore, 

NO,n_l(t l t 0 ..... tn ) _ (t n - to)Voln_l (G e An(p) l al  = t) 
nVoln ( An (e))  

Although we have not taken this geometric approach to defining the B-splines, 
all the many properties of and procedures for the B-splines, such as knot insertion 
algorithms, can be derived directly from Equation (7.17). Therefore, this formula for 
the univariate B-splines is often taken as the starting point for the extension of the 
theory of B-splines to the multivariate setting, where other approaches do not apply. 
For multivariate B-splines in k dimensions, Voln_ 1 is replaced by Voln_ k. 
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Exercises 

1. Use the triangle with vertices (to,1),(tl,2),(t2,1) to calculate the values of 
the B-spline No, l ( t l to , t l , t2 )  from Equation (7.17). 

2. a. Let S be an affine transformation on affine n-space that preserves the 
value of the first coordinate. Show that the first column of the matrix rep- 
resenting S is (1,0 ..... 0) E 

b. Using part (a), show that the value of 

(t n - to )Voln_  1 (or ~ A n (P) I o- 1 = t) 

nVoln (An (e))  

is independent of the choice of the simplex An(p) provided that 
Pil = ti, i = O ..... n. 

7.8 Uniform B-Splines 

The simplest, most common knot vectors have evenly spaced knots~for  example, 
knot vectors where the knots are located at the integers { .... -2,-1,0,1,2 .... }. When 
the knots are simple knots (knots of multiplicity one) located at the integers, the knot 
sequence is called a uniform knot sequence and the associated B-splines are called 
uniform B-splines. These uniform B-splines have some especially nice properties, 
which we are now going to investigate. 

For uniform B-splines it follows easily from the de Boor algorithm that all the 
B-splines of the same degree are translates of a single B-spline so that 

Nk,n(t) = NO,n( t -  k) (7.20) 

(see Exercise 1). Thus, all uniform B-splines of degree n have a support of size n + 1. 
Since the size of the support appears in several B-spline identities, many of these 
identities simplify for uniform B-splines. For example, for uniform B-splines, it fol- 
lows from Equations (7.8), (7.11), (7.13), and Exercise 4 of Section 7.7.3 that 

t - k  k + n + 2 - t  
Nk,n+l(t) = Nk,n( t )+ Nk+l,n(t) (7.21) 

n + l  n + l  

dNk,n(t) 
dt = Nk,n_ 1 (t) - Nk+l,n_ 1 (t) (7.22) 

Nk, n (t)dt =/Vk,n+l (t) (7.23) 

fS Nk'n(t)dt  (7.24) 1. 
upport 

Notice that in the antiderivative formula (Equation (7.23)) the B-spline Nk,n+l(t ) on 
the fight-hand side is not quite uniform, since its last knot is at ~ = (1,0). 
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Exercises 

1. Using the de Boor algorithm, show that when the knots are located at the 
integers Nk, n (t) = NO, n (t - k ) .  

2. Prove that the uniform B-splines {Nk,n(t) } are unimodal in k. 

3. Prove that for uniform B-splines" 

a. jk[k+n+lNk'n(t)d t _ 1 

[k+n+l Nk,n (t)F(n+l) (t)dt 
b. Jk = F[k ..... k + n + l ] .  

(n + 1)! 

Continuous Convolution and Uniform B-Splines 

Uniform B-splines can be generated from continuous convolutions. The continuous 
convolution of two functions of a continuous variable is an extension of discrete con- 
volution for two functions of a discrete parameter (i.e., sequences), where summa- 
tion is replaced by integration. Letf(t) and g(t) be integrable functions defined for all 
values of t. The continuous convolution ( f  * g)(t) is defined by setting 

( f  * g)(t) - ~_~ f ( t -  x ) g ( x ) d x .  

We shall show shortly that just as the Bemstein basis can be generated from the dis- 
crete n-fold convolution of the sequence {1- t,t}, the uniform B-splines can be built 
up by continuous n-fold convolution of the characteristic function of the unit interval. 

In the following proposition and its corollaries, Nk,n(t ) always denotes a uniform 
B-spline with knots at the integers. 

PROPOSITION 
7.9 

1 
Nk,n(t  ) - ~o N k , n _ l ( t  - x )dx  n > 1. (7.25) 

Proo f  Let 

Lk, n (t) = ~ Nk ,n_  1 (t - x)dx. 

We shall show by induction on n that Lk,n(t ) = Nk,n(t  ). For n = 1, we have 

Lk,l(t) = ~ N k , o ( t -  x )dx  . 

But 

Nk,o(t ) = 1 k < t < k + l 

= 0 otherwise. 



7.8 Uniform B-Splines 407 

Therefore, 

Hence 

N k , o ( t -  x)  - 1 k < t - x  < k + 1 

= 0 otherwise. 

f0N f0-k k ,0( t -  x)dx  = dx = t -  k k < t < k + 1 

- ~ - k - l d X - k + 2 - t  k + l < t < k + 2 _  _ 

= 0 otherwise. 

Moreover, by Equation (7.21) 

Nk, 1 (t) - (t - k)Nk,o( t )  + (k + 2 - t)Nk+l,O(t ) - t - k k < t < k + 1 

= k + 2 - t  k + l < t < k + 2  

= 0 otherwise. 

Hence Lk,l(t  ) = Nk,l( t  ) . For the inductive step, observe that by Equation 
(7.22) and the inductive hypothesis 

dLk,n ( t ) 1 
-fit - fO { dNk'n- l  (t~ x) } dx 

__- f~ Nk,n_2 f l  ( t -  x ) d x -  JO Nk+l'n-2 ( t -  x )dx  

= Nk,n_ 1 (t) - Nk+l,n_ 1 (t) 

dNk,n(t)  

dt 

Therefore, Lk,n(t) and Nk,n(t ) differ by at most a constant. But 

1N Lk, n (k) = ~0 k,n-1 (k - x )dx  = 0 - Nk, n (k), 

since Nk,n_ 1 ( k -  x) - 0 for 0 < x < 1. Hence Lk, n (t) = Nk, n (t). 

Let Z[0,1) denote the characteristic function of [0,1 ]. That is, let 

Z [ 0 , 1 )  - -  1 0 < t < 1 

= 0 otherwise. 
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COROLLARY 
7.10 Nk,n = Nk,n-1 * Z [ 0 , 1 )  �9 

Proof From Propos i t ion  7.9 

Nk, n (t) - ~ Nk,n_ 1 (t - x )dx  

= ~_ N k , n _ l ( t -  x)Z[O,1)(x)dx 

= (Nk,n_ 1 * Zto,1))(t) �9 

(7 .26)  

COROLLARY NO,n = Z[0,1) *"" * Z[0,1) 
7.11 , ," 

n + l  factors 

Proof This result follows immediately from Corollary 7.10 by induction on n. 

Exercises 

1. Prove that 

a. f , g -  g , f  

b. ( f , g ) , h =  f , ( g * h )  

c. f * ( g + h ) -  f * g +  f *h 

2. Let ha(x) - h ( x -  a). Prove that fa * g - f * ga" 

3. Prove that for uniform B-splines 

Nk,n - Z[k,k+l) * 2 ' [0 ,1)  * " '"  * 2 " [0 ,1 ) .  
Y 

n factors 

4. Let P(t) be the control polygon generated by the control points {Pk}~that  
is, P(t) is the piecewise linear curve with P(k+ 1) - P k ~ a n d  let S n (t) be the 
uniform B-spline curve of degree n generated by these same control points. 
Show that 

a. So(t) = e k k < t < k + l 

b. Sl (t) - e ( t )  

C. Sn(t)  = (P * No ,n-2) ( t )  n > 2 

7.8.2 Chaikin's Knot Insertion Algorithm 

Boehm's algorithm and the Oslo algorithm allow us to insert a finite number of new 
knots at arbitrary locations into the knot sequence of a B-spline curve. But suppose 
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we have a B-spline curve with uniform knots and we want to insert new knots but 
still keep the knot spacing uniform. For example, suppose we have knots at the inte- 
gers { .... -2,-1,0,1,2 .... } and we want to insert new knots at the half integers, creat- 
ing the new uniform knot sequence { . . . , -2 ,-1.5,-1,-0.5,  0, 0.5,1,1.5, 2 .... }. How 
should we proceed? 

Knot insertion is, evidently, a special type of change of basis procedure. Let 
{Nk,n(t)} denote the uniform B-splines over the integers, and let {Hj,n(t)} denote the 
uniform B-splines over the half integers. Given a B-spline curve S(t) with control 
points {Pk} relative to the B-splines {Nk,n(t)}, we seek control points {Qj} relative 
to the B-splines {Hj,n(t)} so that 

S(t) - Y~k PkNk,n(t) - ~, iQiHj,n(t) .  

Since the knot sequences for {Nk, n(t)} and {Hj,n(t)} are nested, such control points 
{Q j} must exist; the problem is how to find them. 

Let us begin by considering some simple cases. For n - O, Nk,o(t ) - 1 on the half 
open unit interval [k,k + 1) and is zero everywhere else. Similarly, Hk,o(t) -1 on the 
half-unit interval [k,k+0.5)  and Hk+0.5,0( t ) - i  on the half-unit interval 
[k + 0.5,k + 1). Thus 

Nk,o(t ) - Hk,o(t ) + Hk+o.5,0(t). 

Therefore, if {Pk} are the control points of a spline S(t) relative to the basis {Nk,0(t) }, 
then evidently { .... /~,Pj .... } are the control points of S(t) relative to the basis 
{Hj 0(t)}. That is, when we halve the parameter interval, we must double the control 
points. 

Next let's try the case n - l ~ t h a t  is, linear B-splines. Consider the curve 

S(t) - ~,k PkNk,1 (t). 

Since Nj, 1 (k + l) = 0 for j g: k, it follows that Nk, l(k + 1) - 1. Therefore, the spline S(t) 
is a piecewise linear curve that interpolates the control point Pk at the parameter 
k + 1. That is, the spline S(t) is identical to the control polygon generated by the 
points { Pk }" Similarly, if we write 

S(t) - ~, jQjHj,  1 (t), 

then S(t) will interpolate the control point Qk at the parameter k + 0.5 and the control 
point Qk+0.5 at the parameter k + 1. Hence we must set 

Pk-l + Pk Qk = 
2 

Q +o.5 - Pk , 

where the formula for Qk follows by the linearity of S(t). Thus we can compute the 
points {Q j} from the points {Pk} by doubling and averaging. This algorithm is 
depicted in Figure 7.35. 

Does this pattern persist? Can we find the control points for a quadratic B-spline 
relative to knots at the half integers by first doubling and then twice averaging the 
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Pk _ l + Pk Pk + Pk+ l Pk + l + Pk+ 2 

Pk-1 2 

/ ' , , , / ' , , ,  
Pk-  Pk-  ek 

Pk 2 Pk + l 2 Pk+2 

Pk Pk+l Pk+l Pk+2 Pk+2 

Figure 7.35 Algorithm for inserting knots at the half integers in a degree 1 B-spline curve. The original con- 
trol points {Pk} are doubled and averaged to generate the new control points {Qj}. 

s(1.5,2) s(2,2.5) s(2.5,3) s(3,3.5) s(3.5,4) s(4,4.5) 

s(1,2) s(2,2) s(2,3) s(3,3) s(3,4) s(4,4) s(4,5) / ' , , , / ' , , , / ' , , , / ' , , , / ' , , , / ' , , , / ' , , ,  
s(1,2) s(1,2) s(2,3) s(2,3) s(3,4) s(3,4) s(4,5) s(4,5) 

Figure 7.36 Chaikin's algorithm for inserting knots at the half integers for a uniform quadratic B-spline 
curve. Doubling the control points for the spline S(t) with the knots at the integers and averaging twice yields 
the control points for the same spline with the knots at the half integers. 

control points relative to the knots at the integers? Let's see what blossoming has to 
say about this question. By the dual functional property for a quadratic spline S(t), 

Pk = s(k + 1,k + 2) 

Qk = s(k + 0.5,k + 1) 

Qk+0.5 = s(k + 1,k + 1.5). 

Now let's try doubling and then averaging twice. Sure enough, Figure 7.36 
shows that this technique does indeed generate the points {Q j} from the points {Pk}. 
This algorithm of doubling and averaging twice was first introduced by Chaikin and 
is known as Chaikin's algorithm. 

Exercises 

1. This exercise extends Chaikin's knot insertion algorithm to quadratic B- 
splines with knots in geometric progression. Let {Nk,2(t)} denote the qua- 
dratic B-splines with knots at t2k = fl2k, and let {Hk,2(t)} denote the qua- 
dratic B-splines with knots at t k = ilk. Let {Pk} denote the control points of a 
quadratic B-spline curve S(t) relative to the B-splines {Nk,2(t)}, and let {Qj} 
denote the control points of the same curve S(t) relative to the B-splines 
{Hj,2(t) }. Use blossoming to prove that the following algorithm can be used 
to generate the new points {Q j} from the original points {Pk}. Start by 
doubling the original control points {Pk}. Then take successive weighted 
averages of adjacent points in the following manner: 
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Qo _ Pk j - 2k ,2k  + 1 

Q?  f l m o ? . ~ l + Q ? - I  
= m= 1,2. 

l + fl m 

The points {Q2} that emerge on the second level of the algorithm are the 
control points {Q j} of the quadratic B-spline curve S(t) relative to the B- 
splines {Hj,2(t)} (see Figure 7.37). 

f12 Q2 Q3 Q4 Q5 Q6 Q7 1 

fl * * * * * * * 1 

PO PO P1 P1 P2 P2 P3 1:'3 

Figure 7.37 Algorithm for inserting knots in geometric progression in a quadratic B-spline curve. The algo- 
rithm begins at the base of the diagram where the original control points {Pk} are doubled. Then two succes- 
sive weighted averages are computed to generate the new control points {Qj} at the top of the diagram. All 
right-pointing arrows on the first level are labeled 3/(1 + 3) and on the second level 32/(1 + 32); all left- 
pointing arrows on the first level are labeled 1/(1 + fl) and on the second level 1/(1 + f12). 

2. A knot sequence is said to be in affine progression if there are constants a,b 
such that for all k, tk+ 1 = at k + b. Generalize Exercise 1 to knots in affine 
progression. 

3. Implement a rendering algorithm for uniform quadratic B-spline curves 
based on Chaikin's knot insertion procedure. 

4. Implement an intersection algorithm for uniform quadratic B-spline curves 
based on Chaikin's knot insertion procedure. 

7.8.3 The Lane-Riesenfeld Knot Insertion Algorithm 

Unfortunately, the blossoming approach to deriving knot insertion no longer works 
for cubic splines with uniform knots. (Try itt) But the pattern is still correct. To find 
the control points relative to the half integers for a spline of degree n, we need only 
double the control points relative to the integers and then average n times. Below we 
shall prove this assertion by appealing to the convolution formula for uniform B- 
splines. 

To begin our analysis, recall that since the half integers are a refinement of the 
integers, we can certainly write 

Nk,n(t ) = n . EjMj H ,.(t) 
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Hence, by the First Principle of Duality in Section 5.5, 

Qj - ~,kMj~Pk  . 

Therefore, our knot insertion problem reduces to finding the coefficients [Mjnk} that 
express the B-splines relative to the integers in terms of the B-splines relative to the 
half integers. But recall that by the de Boor algorithm 

Nk,n( t  ) = N O , n ( t -  k) (7.27) 

H j , n ( t  ) = N O , n ( Z t -  j) .  (7.28) 

Therefore, it is enough to represent NO,n(t ) in terms of N o , n ( 2 t - j ) .  We shall 
accomplish this goal by applying Corollary 7.11, but first we need some simple facts 
about continuous convolution. 

LEMMA 
7.12 

Let f, g be arbitrary integrable functions. Then 

( f  �9 g)(2t) 
a. f(2t)  * g(2t) - 

2 

b. f ( t -  i) * g ( t -  j )  - ( f  * g ) ( t -  i -  j )  

c. f (2t  - i) * g (2 t  - j )  - 
( f  * g ) (2 t -  i -  j) 

P r o o f  To prove the first two identities, apply a change of variables: 

a. {f(Zx) * g(Zx ) } ( t )  - f~-oo f ( Z t  - 2 x ) g ( Z x ) d x  

~-oo f (2t  - u )g (u )du  
= ( u  = 2x) 

2 

( f  * g)(2t) 

2 

b. { f ( x  - i) * g ( x  - j)}(t) - ~_~176 f ( t  - x - i )g (x  - j ) d x  

~-oo f (t - i - j - u )g (u )dx  

= ( f  * g ) ( t -  i -  j )  

The last result now follows from the first two, since 

c. {f(2x - i) * g ( 2 x  - j)}(t) - {/(2x) * g ( 2 x ) } ( t  - i / 2 - j / 2) 

( f  * g ) (2 t -  i -  j) 

2 

(u - x -  j )  
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PROPOSITION 
7.13 

n+l (n+l 

No ,n ( t )_  Z , i 2 n )No, n (2t - i ) .  
i=0 

Proof To simplify our notation,  let Z - Z[0,1). Then by Corol lary  7.11, 

NO, n (t) - Z(t)  *.. .  * Z(t)  
�9 J ,  -,r 

n+l factors 

Moreover ,  it is easy to see that Z(t)  - Z(2t)  + Z ( 2 t -  1), since 

Z(2t)  - 1 0 < t < 0.5 

= 0 otherwise  

a n d  

Z ( 2 t -  1) - 1 0.5 < t < 1 

= 0 otherwise . 

Therefore,  by L e m m a  7.12, 

Z(t)  * . . .*  Z(t)  - (z(Zt)  + z (Z t  - 1)) * . . . *  (z (Zt )  + z (Z t  - 1)) 

n+l Cactors n+l factors 

~ (n+l 
~, i 

2 n )No, n (2t - i) . 
i=0 

PROPOSITION 
7.14 

n+2k+l r n+l ) ~j-2k 
Nk'n(t) = Z 2 n Hj,n(t)" 

j=2k 

Proof  By Equat ions  (7.27) and (7.28), 

Nk, n (t) - NO, n (t - k) 

Hj,n(t  ) - NO,n(2 t -  j). 

Therefore, by Proposition 7.13 

Nk, n (t) - NO, n (t - k) - 

n+l (n+l 
i Z 2 n )No, n ( 2 t  - 2 k  - i)  

i=0 

~ ( n + l  n+2k+l ( ;+ lk )  

_ i ( t)--  Z 2 n Hj'n(t)" 2 n )H2k+i,n 
i=0 j=2k 
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From Proposition 7.14 we can derive both an explicit formula and a recursive 
formula for the control points introduced by knot insertion at the half integers. 

COROLLARY 
7.15 

Let {Pk} denote the control points of a B-spline curve of degree n relative to 
the B-splines with knots at the integers. Then the control points {Q]} for the 
same curve relative to the B-splines with knots at the half integers are given 
explicitly by 

Q~ ~ 
I ~ l  (n+l) 

k.j- 2kJ eL,. 

k=[j/2] 

Proof Recall that by the First Principle of Duality in Section 5.5, 

Nk,n(t)  = ~ jMjnkHj ,n ( t )  r = ~kMjnkPk . 

But by Proposition 7.14 we know that 

(n+l) 
M jnk = j -  2____~k . 

2 n 

Therefore, 

Q~j ~ k,j-2k)p,  

k=[j/2] -~  k" 

COROLLARY 
7.16 

Let {Pk }denote the control points of a B-spline curve of degree n relative to 
the B-splines with knots at the integers Then the control points {Qn} for the �9 j 

same curve relative to the B-splines with knots at the half integers are given 
recursively by 

Q20/ 0 
- a 2 i + l  - ei 

O~ 

Proof The case n = 0 is established in Section 7.8.2. For n > 0 we know by Corol- 
lary 7.1 5 that 

(n+l 
n n j - 2 k )  

Qj = Zk MjkPk, where Mjk = 2n " 
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But from Pascal's triangle, 

Therefore, 

, k  "-" 

n-1 n-1 Mj_I, k + Mj,k . 

n-1 n-1 ~k  n-1 n-1 
Q j  m F/ .._ . ~k MjkPk = ~-~k Mj-l'k + Mj'k Qj-1 + Qj 

2 2 

The recursion formula in Corollary 7.16 leads directly to the algorithm we seek 
for inserting knots at the half integers in a degree n B-spline curve. Start by repeat- 
ing each of the original control points {Pk}. Then take successive averages of adja- 
cent points. The points that emerge at the nth level of the diagram are the control 
points of the same B-spline curve with knots at the half integers (see Figure 7.38). 
This generalization of Chaikin's algorithm for quadratic B-splines was first proved 
by Lane and Riesenfeld and is known as the Lane-Riesenfeld algorithm. 

Iterating the Lane-Riesenfeld algorithm generates a sequence of control poly- 
gons that converges to the original B-spline curve. Indeed it is easy to show that the 
maximum distance between adjacent control points is halved after each iteration of 
the algorithm. Since each B-spline segment lies in the convex hull of its control 
points, it follows that these control polygons must converge to the B-spline curve. 
Therefore, we can apply the Lane-Riesenfeld knot insertion procedure to render and 
intersect uniform B-spline curves. 

f12 Q2 Q3 Q4 Q5 Q6 Q7 1 

+ + f l  
PO PO P1 P1 1:'2 1'2 P3 P3 

Figure 7.38 The Lane-Riesenfeld algorithm for inserting knots at the half integers in a uniform cubic B- 
spline curve. The algorithm begins at the base of the diagram where the original control points are doubled. 
Then three successive averages are computed to generate the new control points at the top of the diagram. 
Observe that the algorithms for inserting knots at the half integers for uniform linear and uniform quadratic 
B-splines are also contained in this diagram (compare to Figures 7.35 and 7.36). Notice too the binomial 
coefficients that multiply the control points. 
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Exercises 

1. The Lane-Riesenfeld algorithm can be extended to inserting knots at the 
one-third and two-third integers--{k,k + 1/3,k + 2 /3}- -by  tripling the con- 
trol points and then taking successive averages of three consecutive points. 
Prove that if we start with the control points for a degree n B-spline curve 
with knots at the integers, the points that emerge at the nth level of this algo- 
rithm are the control points of the same B-spline curve with knots at the 
one-third and two-third integers. 

2. This exercise provides an alternative derivation of the Lane-Riesenfeld knot 
insertion algorithm. Let P(t) be the control polygon generated by the control 
points {Pk}, and let Sn(t ) be the uniform B-spline curve of degree n gener- 
ated by these same control points. 

a. Using Proposition 7.13 and Section 7.8.1, Exercise 4, show that 

n-1 n_l 

Sn(t) - Z (2 nt- )2P(t) * NO'n-2(2t- i) . 
i=0 

b. Apply part (a) together with Equation (7.28) and Section 7.8.1, Exercise 
2, to conclude that 

n-1 n-1 
Z ( i ) ( e  i �9 Sn(t)- 2n_ 2 /2 HO,n-2)(t), where P i /2 ( t ) -  e( t - i /2 ) .  
i=0 

c. Let R n i,k denote the kth control point of Pi/2 * HO,n-2" Show that 

i,k = P  " 

d. Use part (c) to derive the Lane-Riesenfeld recurrence for the control 
points Q~ of Sn(t) relative to the B-splines with the knots at the half 
integers. 

3. This exercise provides an alternative proof of the Lane-Riesenfeld knot 
insertion algorithm without resorting to convolution. The proof is based 
solely on the de Boor recurrence for uniform B-splines (Equation (7.21)). 
As in the text, let {Nk,n(t)} denote the uniform B-splines over the integers, 
and let {Hj,n(t)} denote the uniform B-splines over the half integers. Then 
there are constants {Mjnk] such that 

n (t). (*) Nk, n (t) = ~ j  MjkHj ,  n 

We shall develop a recurrence for the constants {Mjnk }. 
a. Substitute (*) into the de Boor recurrence (Equation (7.21)) for Nk,n+l(t ), 

and substitute the de Boor recurrence for Hj,n+l(t ) into (*) for Nk,n+l(t ) to 
obtain two different expressions for Nk,n+l(t ). 
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b. Comparing the coefficients Hj,n(t) in part (a), conclude that 

t - 2 k  2 k + 2 n + 4 - t  
2n + 2 Mjn'k + M n  2n + 2 j-2,k 

_ 2 k + j + n + l - t  _ t - 2 k - J M j n ~ l +  

n + l  n + l  

c. Comparing the coefficients of t in part (b), conclude that 

Mn+l  
j -2 , k  . 

Mjnk - M ; - 2 , k  a,~n+l aArn+l 
2 = 1vl j,k + 1vl j -2 , k  �9 

Notice that this recurrence is independent of k. 

d. Show by induction on j that 

I1 
Mo,k 

M n+l _ 
0,k 2 

m n n 
m n + l  _ j -Z ,k  + m j - l , k  

j - l , k  2 

satisfies the recurrence in part (c). 

e. Use the result in part (d) to derive the Lane-Riesenfeld algorithm. 

4. This exercise extends the Lane-Riesenfeld knot insertion algorithm to B- 
splines with knots in geometric progression (see Section 7.8.2, Exercise 1). 
Again the proof is based solely on the de Boor recurrence, but this time for 
nonuniform B-splines (Equation (7.8)). Let {Nk,n(t)} denote the B-splines 
with knots at tZk- fl2k, and let {Hk,n(t)} denote the B-splines with knots at 
t k= fl k. 

a. Show that there are constants {Mjnk} such that 

Nk,n( t  ) - ~ , jMjnkHj ,n( t ) .  (*) 

b. Using the strategy developed in Exercise 3, show that the constants 
{Mjnk } satisfy the recurrence 

-1 f12n+2 
n ~Arn+l 

-lvl  j,k + P j - l , k  " 1+ fln+l MJ, k + 1+ /~n+l M J-2, k = t~n+lMn+l 

Observe that this recurrence is independent of k. 

c. Show by induction on j that 

f l n+lMn M n aan+l _ j - 2 , k  + j - l , k  
'vlJ-l 'k  1 + fln+l 

satisfies the recurrence in part (b). 
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d. Let {Pk} denote the control points of a degree n B-spline curve relative to 
the B-splines {Nk,n(t ) }, and let {Qjn} denote the control points of the 
same curve relative to the B-splines {Hj,n(t ) }. Use the result in part (c) to 
prove that the following algorithm can be used to generate the new points 
{Qjn} from the original points {Pk }. Start by doubling the original control 
points {Pk}. Then take successive weighted averages of adjacent points 
in the following manner: 

Qo = Pk j = 2k,2k + 1 

flmQj-1 m-1 
Q ~ =  -1 +Qj m = l  ..... n. 

1 + ~  m 

The points {Qjn} that emerge at the nth level of the algorithm are the con- 
trol points of the degree n B-spline curve relative to the B-splines 
{Hj,n(t) }. (See Figure 7.37 for the case n = 2.) 

5. A knot sequence is said to be in affine progression if there are constants a,b 
such that for all k, tk+ 1 = at k + b. Generalize Exercise 4 to knots in affine 
progression. 

6. Implement a rendering algorithm for uniform B-spline curves based on the 
Lane-Riesenfeld knot insertion procedure. 

7. Implement an intersection algorithm for uniform B-spline curves based on 
the Lane-Riesenfeld knot insertion procedure. 

8. Explain how the blossoming proof of Chaikin's algorithm breaks down for 
cubic B-spline curves with uniform knots. 

7.9 Rational B-Splines 

When we studied Lagrange and Bezier curves and surfaces, we observed that there 
are some common curve and surface types, such as conic sections and quadric sur- 
faces, that cannot be represented exactly by polynomials. Since splines are piecewise 
polynomials, the same limitations hold for splines. To overcome this deficiency, we 
shall construct rational splines--that is, functions that are the ratios of two splines. 
These rational functions greatly expand the range of curves and surfaces with exact 
B-spline representations. 

The construction of rational B-spline curves mimics the construction of rational 
Bezier curves. With each control point Pk we associate a scalar weight w k. We then 
define the rational B-spline curve R(t) to be the projection from Grassmann space of 
the B-spline curve 

S(t) = ]~k Nk,n (t)(WkPk, Wk ) . 

The B-spline curve S(t) in Grassmann space projects to the rational B-spline curve 
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R(t) = ~,k Nk,n(t)WkPk (7.29) 
ZkwkNk,~(t) 

in affine space. For Equation (7.29) to make sense we shall always assume that at 
least one weight is nonzero. The curves in Equation (7.29) are often called NURBS, 
which is an abbreviation for nonuniform rational B-spline--a rational B-spline with 
nonuniform knots. 

Just as in the construction of rational Bezier curves, there is associated with each 
point R(t) on a rational B-spline curve a scalar weight 

w(t) = ]~k WkNk,n(t) " 

Thus a rational B-spline curve is more than just a continuous collection of points in 
affine space; there is also a scalar field, a mass distribution, associated with each 
point on a rational B-spline curve. 

If W(to) = 0, then the projection from Grassmann space to affine space is not con- 
tinuous at t = t 0. We can avoid these discontinuities in the usual fashion by projecting 
the curve into projective space rather than into affine space. Thus, as with rational 
Bezier curves, the control structures--the mass-points and vectors--always reside in 
Grassmann space, but the curves themselves may lie in projective space. 

If a weight wj = 0, then, as in the Bezier setting, the mass-point (wjPj,wj) is not 
just discarded but rather is replaced by a vector (vj,O). Thus, in general, 

P ( t ) =  ]~ Nk,n(t)(WkPk,Wk)+ ZNj,n(t)(vj,O ), 
Wkr wj--O 

so first adding in Grassmann space and then projecting into affine space, we arrive at 
the general rational B-spline curve 

~, Uk,n(t)WkPk + ZUj,n(t)v j 
R(t) = wk sO wj=0 . 

Z WkNk,n(t) 
w k 50 

If all the weights are nonzero, then it is natural, as in the rational Lagrange and 
rational Bezier settings, to write 

WkNk,n(t) 
Rk,n(t) = 

~,jwjNj,n(t) (7.30) 

R(t) = Zk Rk,n(t)Pk . 

Thus, for a fixed set of nonzero weights, the functions {Rk,n(t)} are piecewise ratio- 
nal blending functions, and these functions behave much like the standard B-spline 
blending functions. Indeed, since the denominator of Rk, n(t) is the same for all values 
of k, it is easy to show that the piecewise rational functions {Rk,n(t)} incorporate 
many of the features of the B-splines {Nk,n(t ) }. For this reason, rational B-spline 
curves with nonzero weights share many of the geometric properties of integral B- 
spline curves. For example, rational B-spline curves are piecewise rational curves 
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with continuity of order n - ju at knots of multiplicity kt. Moreover, rational B-spline 
curves are affine invariant and lie in the local convex hull of their control points pro- 
vided that the weights are nonnegative (see Exercises 1-5). 

Algorithms for B-spline curves also extend to algorithms for rational B-spline 
curves because generally we can apply these algorithms separately to the numerator 
and denominator. For example, we can evaluate points along a rational B-spline 
curve by applying the de Boor algorithm independently to the numerator and 
denominator. Similarly, knot insertion algorithms can be applied separately to the 
numerator and denominator. Therefore, Boehm's algorithm, the Oslo algorithm, the 
factored knot insertion algorithm, Chaikin's algorithm, and the Lane-Riesenfeld 
algorithm for uniform B-splines can be applied independently to the numerator and 
denominator--simply apply the algorithm in question to the control points 
{(WkPk,Wk)} in Grassmann space and then divide by the weight to get the desired 
result in affine space. The only exception to this rule is the algorithm for differentia- 
tion because the derivative of a rational function is not equal to the derivative of the 
numerator divided by the derivative of the denominator. Differentiation of rational 
B-spline curves is handled in a manner similar to differentiation for rational Bezier 
curves (see Section 5.7.1). 

In Section 7.6.3.1 we observed that one of the simplest ways to analyze an ordi- 
nary B-spline curve is to apply knot insertion to convert the curve to piecewise Bez- 
ier form and then perform the analysis on the Bezier segments. Similarly, since knot 
insertion works as well in the rational setting, rational B-spline curves can be con- 
verted to piecewise rational Bezier form, and we can then apply the analysis algo- 
rithms we have already developed for rational Bezier curves. Just as in the integral 
case, this method is that standard approach to rendering and intersecting rational B- 
spline curves (see Exercise 9). 

The weights of a rational B-spline curve can be used to control shape, and the 
results are again similar to the Bezier setting. As the weight w k increases, the influ- 
ence of the control point Pk increases and the curve passes closer to Pk; as w k 
decreases, the curve is pushed away from Pk" Typically all the weights are chosen to 
be positive to avoid singularities, but as with rational Bezier curves, zero and nega- 
tive weights are permitted and sometimes are even necessary to represent specific 
curves. 

Exercises 

1. Show that if tk+ 1 . . . .  = tk+ n, then the rational B-spline curve of degree n 
interpolates the control point Pk" 

2. a. Show that the rational blending functions defined in Equation (7.30) sat- 
isfy the identity ~,k Rk,n(t) - 1. 

b. Conclude from part (a) that if all the weights are positive, then a rational 
B-spline curve lies in the local convex hull of its control points. 

3. Using Equation (7.30), show that if all the weights are nonzero, then a ratio- 
nal B-spline is nondegenerate provided that there are no indices j ,k  for 
which (WkPk,Wk ) = Cjk(WjPj,wj).  
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4. Prove that for any choice of knots {tk} it is always possible to choose 
weights {wk} so that the rational blending functions {Rk,n(t)} defined in 
Equation (7.30) are unimodal in k. 

5. Prove that rational B-spline curves have continuity of order n - I t  at knots of 
multiplicity It. 

6. Consider the circle: 

2t 1 - t  2 
x - t2 y - t2 �9 1+ 1+ 

Find control points and weights to represent the following segments of the 
circle as rational B-spline curves with knots at the integers: 

a. the quarter circle that lies in the first quadrant 

b. the upper half circle 

7. Find control points and weights to represent the following curves as a ratio- 
nal B-splines with knots at the integers: 

2at b(1 - t 2) 
a. The ellipse" x - y - 

1 + t 2 1 + t 2 

2at b(1 + t 2) 
b. The hyperbola: X - l _ t  2 Y= 1 - t  2 

c. Which segments of these curves are represented by your choice of con- 
trol points and weights? 

8. Implement the following algorithms for rational B-spline curves: 

a. De Boor evaluation algorithm 

b. Boehm's knot insertion algorithm 

c. Factored knot insertion algorithm 

d. Lane-Riesenfeld knot insertion algorithm for uniform B-splines 

9. a. Apply Boehm's knot insertion algorithm to convert rational B-spline 
curves to piecewise rational Bezier form. 

b. Use the algorithm developed in part (a) to intersect two rational B-spline 
C u r v e s .  

10. Consider a rational B-spline curve of degree n with control points {Pk} and 
weights { w k }. 

a. What does the limit curve look like if 

i. one of the weights goes to infinity while the other weights are left 
fixed? 

ii. two or more weights are allowed to approach infinity simulta- 
neously? 

b. What happens in part (a) if one of the knots has multiplicity n? 
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11. Let R(t) be a rational B-spline curve of degree n with control points 
Pc ..... Pm and weights w 0 ..... w m. Define 

so that 

m m 

P( t )=  ]~Nk,n(t)WkPkand w(t)= ~,WkNk,n(t), 
k=0 k=0 

P(t) 
R(t) - 

w(t) 
Prove that for a uniform knot sequence with knots at the integers 

fn+m+lw(t)dt = average of  the weights a. do 

b. ~O+n+l P(t)dt 

~o+ n+ l w( t )dt 
=center of mass of {(woPo,w O) ..... (Wnen,Wn) }. 

(Compare to Section 5.7, Exercise 20.) 

7.10 CatmulI-Rom Splines 

Suppose we have a large number of data points. Lagrange polynomials generate 
smooth interpolations of high degree; B-splines generate smooth approximations of 
low degree. Our goal here is to provide a simple construction for smooth interpolants 
of low degree. Catmull-Rom splines combine Lagrange interpolation with B-spline 
approximation to generate splines of low degree that interpolate the data points. 
Here is how it is done. 

We want to construct a low-degree spline curve C(t) to interpolate a set of data 
points {Pk } at an arbitrary collection of parameter values { t k }~that  is, we want to 
build a smooth, low-degree, piecewise polynomial curve C(t) such that C(t k) = Pk. 
For any arbitrary value of n, let Pk...k+n (t) denote the unique polynomial of degree n 
that interpolates the points Pk ..... Pk+n at the nodes t k ..... tk+n, and let Nk,n_l(t) be 
the B-spline basis function of degree n - 1 for the knots { tj } with support [t k,tk+ n ]. 
The Catmull-Rom spline Cn(t) is defined by setting 

Cn(t ) - ~,k Nk,n_l (t)Pk...k+n(t) . (7.31) 

Since the interpolants Pk...k+n(t) are polynomials of degree n and the B-splines 
Nk,n_ 1 (t) are C n-2 piecewise polynomials of degree n - 1, the Catmull-Rom spline 
Cn(t ) is a C n-2 piecewise polynomial of degree 2n - 1. We are going to show that the 
curve Cn(t ) interpolates the points {Pk} at the knots {tk} and has order of continuity 
n - 1 .  
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PROPOSITION 
7.17 

Given a collection of points {Pj} and nodes {t j}, let 

Cn(t) - ~,k Nk,n-1 (t)Pk...k+n(t). 

Then for all j ,  C n ( t j )  = Pj. That is, the Catmull-Rom spline interpolates the 
data points {Pj} at the knots {t j}. 

Proof At the knot tj the only nonzero B-splines are Nj_n+l ,n_ l ( t  ) ..... Nj ,n_ l ( t  ). 
Therefore, 

Cn(t j )  = ~ k  Nk,n_l  ( t j)Pk. . .k+n(tj)  

n-1 
= ZNj_n+l+i ,n_l ( t j )Pj_n+l+i . . . j+l+i( t j )  

i=0 
n-1 

= ~ N j _ n + l + i , n _ l ( t j ) P  j . 
i=0 

But the B-splines form a partition of unity, so 

n-1 
E N j _ n + l + i , n _ l ( t j )  = 1. 

i=0 

Therefore, for all j ,  C n ( t j )  - Pj. 

Interpolation is easy to prove; continuity of order C n-1 is a bit harder to estab- 
lish. We will derive this property from the following rather remarkable result. 

LEMMA 
7.18 

~Jk Nk,n-1 (t)Pk...k+n(t) - ~,k Nk,n(t)Pk+l.' .k+n(t)" 

Proof We shall apply both Neville's algorithm (Equation (2.7)) 

- t - t  k 
Pk...k+n (t) = tk+n--------~t Pk...k+n-1 (t) + - -  

tk+ n - t  k tk+ n - t  k 
Pk+l...k+~(t) 

and the de Boor recurrence (Equation (7.8)) 

Nk, n (t) t - t k - - -  Nk,n_ 1 (t) + 
tk+ n - t  k 

From these two identities it follows that 

~ k  Nk ,n- l  (t)Pk...k+n (t) 

= ~,k Nk,n-1 ( t ) I  tk+n - t 
L tk+ n - t  k 

= N k + l , n _ l ( t ) + ~  
tk+n+l - t k + l  

tk+n+ 1 - t  

tk+n+l - t k + l  
Nk+l ,n- l ( t ) .  

- -  Pk...k+n-l (t) + - -  t - t k  t 
tk+ n - tk Pk+l'''k+n (t) 

t - t  k 

tk+ n - t  k 
g k , n - l  (t)tPk+l...k+n (t) 

= EkNk,n( t )Pk+l. . .k+n(t) .  
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COROLLARY 
7.19 

The Catmull-Rom spline Cn(t)= ]~kNk,n_l(t)Pk...k+n(t) has continuity of 
order n -  1 at the knots. 

Proof By Lemma 7.18: Cn(t)= ]~kNk,n(t)Pk+l...k+n(t). Since the interpolants 
Pk+l...k+n(t) are polynomials of degree n - 1 and the B-splines Nk,n(t) are 
C n-1 piecewise polynomials of degree n, the Catmull-Rom spline Cn(t ) is a 
C n-1 piecewise polynomial of degree 2 n -  1. 

Neville's algorithm for Lagrange interpolation can be combined with the de 
Boor algorithm for B-spline approximation to generate a recursive evaluation algo- 
rithm for Catmull-Rom splines. Place the control points at the base of a triangle and 
run Neville's algorithm for n levels. Then continue for the next n - 1 levels with the 
de Boor algorithm. The values of points on the Catmull-Rom spline will emerge at 
the apexes because, by construction, the functions Pk...k+n(t) occupy the location of 
the B-spline control points for the de Boor algorithm of degree n - 1 (see Figure 
7.39). Notice that we can also view this algorithm as n -  1 levels from Neville's 
algorithm followed by n levels from the de Boor algorithm. This observation 
accounts for Lemma 7.18. 

Catmull-Rom splines inherit many of the characteristic features of Lagrange 
polynomials and B-spline curves. Here are the most prominent of these properties: 

1. Piecewise polynomial of degree 2n- 1 

2. Interpolates the point Pk at the knot t k 
3. Continuity at the knots of order C n-1 
4. Local control 

5. Affine invariance 

C12(0 C23(0 
t 3 t2-t/~-tl/ - / ~  -t2 

PO12(t) P123(t) P234(t) 
/ t3 t 4 t2-~~-to y~-tl y~ -t2 

POI(t) P12(t) P23(t) P34(t) 

tl - ~  ~,,~- tot2 - ~  ~ -  tlt3 - ~  ~ -  t2 t4 - ~  ~,~x- t3 
Po P1 P2 P3 P4 

Figure 7.39 A recursive evaluation algorithm for cubic CatmulI-Rom splines manufactured from Neville's 
algorithm for Lagrange interpolation and the de Boor algorithm for B-spline approximation. The two lower 
levels are taken from Neville's algorithm, and the upper level is taken from the de Boor algorithm. Notice that 
we can also view this algorithm as one level of Neville's algorithm followed by two levels of the de Boor algo- 
rithm. Here Ci, i+l( t)  denotes the polynomial that represents the cubic CatmulI-Rom spline C3(t) in the interval 
[ti, t i+l ] ;  therefore, Ci, i+l( t)  interpolates the points Pi and Pi+l at the knots t i and ti+ 1 . 
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6. Nondegenerate 

7. Exactly reproduces polynomials of degree n 

The first property is immediate from the definition of Catmull-Rom splines in 
Equation (7.31), and we have already established the second and third properties in 
Proposition 7.17 and Corollary 7.19. Local control is a simple consequence of Equa- 
tion (7.31) together with the compact support of the B-splines. Indeed, by construc- 
tion, the point Pk will affect the Catmull-Rom spline only over the interval 
[ tk_n , tk+n] .  Affine invariance follows directly from the affine invariance of 

Lagrange interpolation and B-spline approximation, and Catmull-Rom splines are 
clearly nondegenerate since they interpolate the data points. Finally, Catmull-Rom 
splines reproduce polynomials of degree n because if the data points {Pk} lie on a 
degree n polynomial P(t) at the nodes { tk}, then by the uniqueness of the polynomial 
interpolant Pk...k+n(t) - P(t) for all k. Therefore, since the B-splines form a partition 
of unity 

Cn(t) = ZkUk,n_l(t)Pk...k+n(t)= ZkNk,n_l(t)P(t)= P(t). 

Thus Catmull-Rom splines have many desirable features. Notice, however, that 
unlike B-spline curves, Catmull-Rom splines do not lie in the convex hull of their 
control points nor are they variation diminishing because Lagrange polynomials fail 
to have these properties. 

Moreover, there is no knot insertion algorithm for Catmull-Rom splines. Sup- 
pose we were to try to insert a new knot at t = u. Since Catmull-Rom splines are 
interpolating splines, we would have to add a new control point at Cn(u). But it is 
easy to construct examples where the Catmull-Rom spline with the new knot u and 
the new control point Cn(u) is not the same curve as the original Catmull-Rom 
spline, even though both the old spline and the new spline interpolate the same data 
points at all the knots including the new knot u (see Figure 7.40). 

Cubic Catmull-Rom splines and piecewise cubic Hermite interpolants both gen- 
erate C 1 piecewise cubic curves that interpolate the data points. These curves, how- 
ever, are generally not the same (see Exercise 6). The Catmull-Rom construction 
does not allow us to choose the tangents at the control points; rather it chooses these 
tangents for us to ensure that the curve has one continuous derivative. By the unique- 
ness of Hermite interpolation, the Hermite interpolant will reproduce the Catmull- 
Rom curve if and only if we choose the Hermite data off the Catmull-Rom spline. 

Exercises 

1. Show how to construct Catmull-Rom splines to interpolate Hermite data. 

2. Explain how to extend the Catmull-Rom construction to rational spline 
curves. 

3. Given a collection of data points {Pk} and nodes {tk}, define a Catmull-Rom 
spline Cp,q(t) of type (p,q) by setting Cp,q(t) = ~kNk,p(t)Pk...k+q(t). Prove 
that ifp < q, then C p , q ( t j )  - Pj for allj. 
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Figure 7.40 Knot insertion fails for CatmulI-Rom splines. The first curve is a cubic CatmulI-Rom spline 
with two polynomial segments. The control points are located at (0,0),(1,2),(2,5),(3,0),(4,5) 
and knots are situated at the parameter values t = 1,3,4. Thus the spline interpolates the 
points (1,2),(2,5),(3,0) at the knots t = 1,3,4. At t - 2 this curve passes through the point 
(3/2,14/3). The second curve has an additional control point at (3/2,14/3) and an additional 
knot at t = 2. Observe that for 0 < t < 2 the two CatmulI-Rom splines are not identical, even 
though they interpolate the same data at the identical knots. 

4. Show that the blending functions for Catmull-Rom splines are given by the 
splines 

n-1 

Ck,2n_l(t)  - Z N k _ j , n _ l ( t  l tk_ j ..... t k_ j+n)Lj ( t  l tk_ j .... , tk_j+n)"  
j=0 

That is, show that the Catmull-Rom spline Cn(t ) for the points {Pk} and 
nodes {t k} is given by 

C n (t) - Z k  Ck,2n-1 ( t)Pk" 

5. Let Cn(t) be a Catmull-Rom spline with control points {Pk} and knots {t k}. 
Form a new Catmull-Rom spline Dn(t ) by replacing each knot t k by the knot 
v k = at k + b for some fixed constants a > 0 and b. Show that changing all 
the knots in this way has no effect on the shape of the Catmull-Rom spline. 
In particular, show that D n (at + b) = C n (t). What happens if we choose a < 
0? (Compare to Section 2.2, Exercise 4, and Section 7.4, Exercise 2.) 

6. Cubic Catmull-Rom splines and piecewise cubic Hermite interpolants both 
generate C 1 piecewise cubic curves that interpolate the data points. Draw 
some curves to illustrate how cubic Catmull-Rom splines generally differ 
from piecewise cubic Hermite interpolants. 
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A rectangular tensor product B-spline patch S(s,t) of bidegree (m,n) is defined by 
setting 

S(s,t) - ~ i  ~ j  Ni,m (s)Nj,n (t)Pij " 

The functions Ni,m(s)Nj,n(t)  are the tensor product B-spline basis functions, and 
the rectangular array of control points {P6} forms the vertices of the control polyhe- 
dron for the tensor product B-spline patch. This construction is much the same as the 
Lagrange and Bezier tensor product constructions. Notice, however, that a knot s i or 
tj of the basis functions becomes a knot line s = s i or t = tj on the tensor product 
patch. Tensor product patches join smoothly along curves defined by knot lines. 

As usual in tensor product constructions, we can let Pi(t) be the B-spline curve 
with control points Pi0 .... ,Pia. Then 

Pl.(t) = ~,j Nj,n (t)Pij 

S(s,t) = EiNi,m(s)Pi(t) .  

Thus we can evaluate a tensor product B-spline surface by first using the de Boor 
algorithm in t to evaluate the curves {Pi(t) } and then applying the de Boor algorithm 
in s with the control points {Pi(t) }. Again this approach is much the same technique 
we used in Sections 2.11 and 5.8.1 to evaluate Lagrange and Bezier tensor product 
surfaces. 

Tensor product B-spline patches inherit many of the characteristic properties of 
B-spline curves. They are piecewise polynomials with continuity of order C n-u  at 
knot lines of multiplicity ju. In addition, they are affine invariant, nondegenerate, and 
lie in the local convex hull of their control points. Typically these surfaces do not 
interpolate any specific curves, but if the knot vectors in s and t have knots of multi- 
plicity n at the start and end, then the boundaries of a tensor product B-spline patch 
are the B-spline curves determined by their boundary control points. 

Tensor product B-spline patches also inherit the standard knot insertion algo- 
rithms of B-spline curves. Thus Boehm's algorithm, the Oslo algorithm, factored 
knot insertion, and the Lane-Riesenfeld algorithm for uniform knots all extend to 
tensor product patches in a straightforward manner. We simply treat the s and t direc- 
tions independently. Thus to insert knot lines in the t direction, we just use the stan- 
dard curve algorithms to insert knots into the curves {Pi(t)}. Symmetric algorithms 
can be applied to insert knot lines in the s direction. 

Similarly, to differentiate a tensor product B-spline patch, we can differentiate 
the de Boor algorithm in the usual manner. To differentiate the de Boor algorithm 
with respect to s a total of p times, simply differentiate any p of the upper m levels 
(the s levels) of the de Boor algorithm and multiply the result by m ! / ( m - p ) ! .  To 
differentiate q times with respect to t, differentiate any q of the n levels (the t levels) 
in each of the lower triangles and multiply the results by n!/(n - q)! .  That this algo- 
rithm works is an immediate consequence of the corresponding differentiation algo- 
rithm for B-spline curves. 



I 4 2 8  
I 

CHAPTER 7 B-Spline Approximation and the de Boor Algorithm 

Rational tensor product B-spline patches can be introduced by associating a sca- 
lar weight wij with each control point Pij. Thus we define a rational tensor product 
Bezier patch by setting 

Ei Ej  Ni,m (s)Nj,n (t)wijPty . 
R(s,t) = 

]~i Ej wijNi,m (s)Nj,n (t) 

This construction allows us to represent surfaces such as the sphere, which have no 
exact polynomial representation, as tensor product B-spline patches. Again, most of 
the properties and algorithms of rational B-spline curves are inherited by rational 
tensor product B-spline surfaces. 

Exercises 

1. a. Prove that ~i~jNi,m(s)Nj,n(t) =- l. 
b. Show that every tensor product B-spline patch lies in the local convex 

hull of its control points. 

2. Consider a tensor product B-spline patch of bidegree (m,n), where m < n. 
Show that 

a. to compute a single point on the surface it is faster to apply the de Boor 
algorithm first in the s direction and then in the t direction. 

b. to compute many points along the surface it may be faster to apply the de 
Boor algorithm first in the t direction and then in the s direction. 

c. Explain this apparent anomaly. (Compare to Section 5.8.1, Exercise 2.) 

3. Implement the de Boor evaluation algorithm for tensor product B-spline 
surfaces, and then use the de Boor algorithm to render points on a tensor 
product B-spline surface. 

4. Implement the following knot insertion algorithms for tensor product B- 
spline surfaces: 

a. Boehm's algorithm 

b. Oslo algorithm 

c. Factored knot insertion 

d. Lane-Riesenfeld algorithm for uniform B-splines 

5. Apply Boehm's knot insertion algorithm to convert a tensor product B- 
spline surface to piecewise tensor product Bezier form. 

6. Apply the algorithm in Exercise 5 to 

a. render tensor product B-spline patches 

b. intersect two tensor product B-spline patches 

7. Explain how to extend Catmull-Rom splines to tensor product surfaces. 
Construct explicit formulas and implement dynamic programming algo- 
rithms for tensor product Catmull-Rom splines. 
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8. What is the effect on a rational B-spline surface if one of the mass-points 
has zero weight? 

9. Experiment with altering the weights in a rational B-spline surface. 

a. What are the local and global effects of altering a single weight? 

b. What is the effect of a negative weight? 

c. What happens if all the weights are changed simultaneously? 

10. Consider the rational biquadratic parametrization of the sphere given by 

2s(1 - t 2) 2t(1 + s 2) (1 - s 2)(1 - t 2) 

x - 2 t 2 y - s2 t2 z - s2 t2 �9 ( l + s ) ( 1 +  ) (1+ )(1+ ) (1+ )(1+ ) 
a. Find control points and weights to represent the following segments of 

the sphere as rational B-spline surfaces with knots at the integers: 

i. The portion of the sphere that lies in the first octant 

ii. The upper half of the sphere 

b. Use the results in part (a) together with the de Boor algorithm to render 
the sphere. 

c. Use the results in part (a) together with Chaikin's algorithm to render the 
sphere. 

11. Recall from Section 2.14, Exercise 5, that the toms with inner radius d -  a 
and outer radius d + a has the biquadratic parametrization 

X - -  

y __ 

Z - -  

d(1 + s 2)(1 - t 2) + a(1 - s 2 )(1 - t 2) 

( l + s 2 ) ( l + t  2) 

2d(1 + s 2)t + 2a(1-  s 2)t 

(1 + s 2 )(1 + t 2) 

2as(1 + t 2) 

( l + s 2 ) ( l + t  2) 

a. Find control points and weights to represent a portion of the torus as a 
rational B-spline surface with knots at the integers. 

b. Use the results in part (a) together with the de Boor algorithm to render 
the toms. 

c. Use the results in part (a) together with the Lane-Riesenfeld algorithm to 
render the toms. 

12. Consider a rational B-spline surface of bidegree (m,n) with control points 
{Pjk} and weights {Wjk }. What does the limit surface look like if 

a. one of the weights goes to infinity while the other weights are left fixed? 

b. two or more weights are allowed to approach infinity simultaneously? 
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7.12 Pyramid Algorithms and Triangular B-Patches 

There is also a pyramid algorithm for tensor product B-spline surfaces, just like for 
tensor product Lagrange and tensor product Bezier patches. Let 

P(s , t )  = Z i  Z j  Ni ,n(s)Nj ,n( t )Pi j  

be a tensor product B-spline surface of bidegree (n,n),  and consider its b lossom 

p(ul  . . . . .  Un;Vl . . . . .  Vn). By the multiaffine property of the blossom 

p(u  1 . . . . .  Un_ 1,s; v 1 ..... Vn_ 1,t) 

]A 2 - s s - ]A 1 V 2 - t t - V 1 
= p(u  1 . . . . .  U n _ l , ~ l A  1 + ~ ] A 2 ; v  1 ..... V n _ l , ~ W  1 + V 2) 

/-t2 - Ill f12 - fll V2 - Vl V2 - Vl 

]A 2 - s V 2 - t 

]A 2 - ]A 1 V2 - V 1 
- -  P(Ul . . . . .  Un-1, fll; Vl .....  Vn-1, Vl ) 

P2 - s t -  V 1 P(Ul . . . . .  Un-l,l'tl;Vl . . . . .  Vn_l,V2) 
f12 - fll v2 - Vl 

s -  Pl V 2 - t 

/12 - ]A 1 V2 - v 1 
P(Ul . . . . .  Un-1, P2 ;Vl .....  Vn-1, Vl ) 

s -  ].t 1 t -  v 1 
+ p(u  1 . . . . .  Un_l,/22 ;v 1 .....  Vn_l, v 2) . (7.32) 

]A 2 - Ill V2 - V 1 

Substituting the knots of the B-splines Ni,n(S ) and Nj,n(t ) for the blossom parameters  
u,v,p,v, leads to a bilinear recurrence for computing the points on the surface P(s, t )  

from the control points Pij. This recurrence can be d iagrammed on a square pyramid,  
with n 2 nodes on the nth level of the diagram. We illustrate this recurrence in Figure 
7.41 for a biquadratic B-spline patch and in Figure 7.42 for a bicubic B-spline patch. 
Notice that like the pyramid algorithm for tensor product Lagrange interpolation, but 
unlike the pyramid algorithm for tensor product Bezier approximation,  the labels 
along the edges change from node to node and level to level. 

To find p derivatives with respect to s and q derivatives with respect to t, differ- 
entiate any p levels of the pyramid algorithm with respect to s and then differentiate 
any q levels (the same or different f rom the previous p levels) with respect to t, and 
multiply the result by (n!)Z/(n  - p ) ! ( n  - q)!. This algorithm works because we know 
from blossoming that 

~P 
~S = n P ( ~ ' 6 1  ; ~ )  ' 

n-1 n 

~P 
- - =  np(s  .... ,s;t  ..... t, S2) . 
~t ~ n n-1 

But substituting the parameters  ~1 = (1,0) or ~2 - (0,1) into the blossom is equiva- 
lent to differentiating one level of the pyramid with respect to s or t. 
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P(Sl,S2;t3,t4) 

' ' , /  
P(s2,s;t3,t) 

/ ' "  

P(s2,s3;t3,t4) P(s3,s4;t 3 t4) 

P(s3,s;t3,t) 

/ ' "  
P(Sl ,S2;t2,t3) 

p(s2,s;t2,t) 

/ ' ' ,  
P(sl ,s2;q ,t2) 

P(s2 ,s3, t2, t3) P(s3,s 4 ; t2, t3) 

p(s3,s;t2,t) / ' , ,  
P(s2,s3;tl ,t2) P(s3,s4;tl,t2) 

Figure 7.41 The base and the first level of the local pyramid algorithm for a biquadratic tensor product B- 
spline patch P(s, t) viewed from above. The nine control points represented by the blossom of 
P(s,t) evaluated at the knots are at the base of the diagram. From these nine control points 
the four blossom values P(S2,S,t2,t),P(S3,S,t2,t),P(S2,S,.t3,t),P(S3,s,.t3,t ) are computed at the 
first stage of the algorithm. At the next stage (not shown) the blossom value p(s,s,t, t) = P(s, t) 
is computed from the four blossom values P(S2,S;t2,t),P(S3,S,t2,t),P(S2,S;t3,t),P(S3,S;t3,t ) using 
the bilinear recurrence in Equation (7.32). 

The local recurrences for tensor product B-spline patches pictured in Figures 
7.41 and 7.42 can be pasted together, much like the local triangular de Boor recur- 
rences for B-spline curve segments. Pyramids for adjacent patches share common 
nodes and common labels along their edges. Therefore, these pyramids can be glued 
together along the horizontal or vertical axes to form a sequence of overlapping pyr- 
amids analogous to the sequence of overlapping triangles that express the de Boor 
recurrence for B-spline curves. These overlapping pyramids are illustrated schemati- 
cally in Figure 7.43. Thus the diagrams we adopted to represent B-spline curves 
extends in a natural way to tensor product B-spline surfaces. For example, surface 
patches represented by adjacent overlapping pyramids fit together smoothly along 
their common knot lines. 

Both the de Boor algorithm and the pyramid algorithm for tensor product B- 
spline surfaces are O(n3). Nevertheless, the de Boor algorithm is generally faster 
than the pyramid algorithm. The comparative analysis of the relative speeds of these 
two algorithms is much the same as the comparison between the de Casteljau algo- 
rithm and the pyramid algorithm for tensor product Bezier patches presented in Sec- 
tion 5.8.1, so we shall not repeat this analysis here. 

Since it is generally slower than the de Boor algorithm, why then have we pre- 
sented the pyramid algorithm for tensor product B-spline surfaces? Both Lagrange 
and Bezier surfaces come in two types: rectangular and triangular. So far we have 
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Figure 7.42 A schematic diagram of the local bilinear evaluation algorithm for a bicubic tensor product B- 
spline patch viewed from above. Each panel represents the computation of a point at its cen- 
ter by multiplying the points at its corners with the coefficients in Equation (7.32) and adding 
the results. The black panel represents the bicubic B-spline patch corresponding to the con- 
trol points at the base of the pyramid; interior control points are obscured by the panels. 
Notice that the light gray panels represent bilinear B-spline patches and the dark gray panels 
represent biquadratic B-spline patches. Compare to Figure 5.42, which is the pyramid algo- 
rithm for bicubic Bezier approximation. The same pyramid is used there, but the algorithm 
here is more complicated, since the labels along the edges vary from node to node and from 
level to level. 

constructed only rectangular tensor product B-spline surfaces. Just as Neville's algo- 
rithm for tensor product Lagrange interpolation does not extend to triangular 
Lagrange interpolation, the de Boor algorithm does not extend to triangular B-spline 
patches. But now that we have a pyramid algorithm for tensor product B-spline sur- 
faces, perhaps, just like in the Lagrange and Bezier settings, we can extend this pyr- 
amid approach to an algorithm for generating triangular B-spline surfaces. Let's try 
and see what happens. 

Consider a polynomial surface P(s,t) of total degree n. This surface has a bivari- 
ate blossom p((ul ,Vl )  ..... (Un,Vn)). Using the multiaffine property, we can write a lin- 
ear recurrence for this blossom by observing that 

p((u 1 , Vl) ..... (Un_ 1 , vn_ 1 ), (s,t)) 

= p((ul,Vl) ... . .  (Un_l,Vn_l),fll(S,t)(]-tl,V 1) + flz(S,t)(].12,V2) + f13(s,t)(]23,V3)) 

= fll (S,t)p((Ul, Vl ) .. . . .  (Un-1, Vn-1 ), (]21, V1 )) 

+ fl2(s, t)p((ul ,Vl)  ... . .  (Un_l,Vn_ 1),(~2, V2)) 

+ fl3(s,t)p((ul,Vl) ... . .  (Un_l,Vn_l),(]./3,73)) , (7.33) 
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Figure 7.43 A schematic diagram of the bilinear evaluation algorithm for four adjacent patches of a bicu- 
bic tensor product B-spline surface viewed from above. Each panel represents the computa- 
tion of a point at its center by multiplying the points at its corners with the appropriate 
bilinear functions and adding the results. The black panels represent the patches of the bicu- 
bic B-spline surface corresponding to the control points at their base; interior control points 
are obscured by the panels. Compare to Figure 7.10, the de Boor algorithm for cubic B-spline 
c u rves. 

where fll,(S,t),fl2,(s,t),fl3,(s,t) are the barycentric coordinates of the point (s,t) with 
respect to the triangle with vertices (/.t 1, v 1),(/.t 2, v2),(/.t 3, v3). Now, as in the local 
tensor product case, we can iterate Equation (7.33) to generate a tetrahedral evalua- 
tion algorithm for the polynomial patch P(s,t) that resembles the tetrahedral pyramid 
algorithms for triangular Lagrange and triangular Bezier patches. 

This recurrence can be diagrammed on a tetrahedron with n(n + 1)/2 nodes on 
the nth level of the diagram. We illustrate this recurrence in Figure 7.44 for a qua- 
dratic surface patch and in Figure 7.45 for a cubic surface patch. Notice that like the 
pyramid algorithm for triangular Lagrange interpolation, but unlike the pyramid 
algorithm for triangular Bezier approximation, the labels along the edges vary from 
node to node and level to level because the barycentric coordinates at different nodes 
are computed with respect to different triangles. Moreover, unlike the de Boor algo- 
rithm for B-spline curves, if you follow along in the direction of any arrow, the 
labels you encounter along the edges (in the numerator) change from level to level. 
What is invariant instead is that if an arrow is labeled with the barycentric coordi- 
nates of a (t,u) pair, then the next arrow in the same direction is labeled with the 
barycentric coordinates of another (t,u) pair, albeit with different subscripts. 

Now what have we got? Certainly we can form one polynomial patch in this 
manner. A patch generated by this tetrahedral algorithm is called a B-patch. Any 
degree n polynomial surface can be generated as a B-patch from three sets of 
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P((Vl,Wl),(V2,W2)) 

(s,t),(Vl,W 1) 

/ P((rl'Sl)'(s't)) ~ 

P((rl,sl),(r2,s2)) P(Crl,sl),Ctl,Ul)) P((q,ul),(t2,u2)) 

Figure 7.44 The tetrahedral algorithm for a quadratic B-patch P(s,t) viewed from above. The six control 
points (light) represented by the blossom of P(s, t) evaluated at different parameter values are 
at the base of the diagram. From these six control points the three blossom values 
p((rl,Sl),(s,t) ), p((tl,Ul),(s,t)), p((vl,Wl),(s,t)) (bold) are computed at the first stage of the 
algorithm. At the next stage the blossom value P(s,t) = p( (s, t), (s, t) ) (bold and underlined)is 
computed from the three blossom values p((rl,Sl),(s,t)), p((tl,Ul),(s,t)), p((vl,Wl),(s,t)) using 
the linear recurrence in Equation (7.33). 

Figure 7.45 Schematic version of the tetrahedral algorithm for a cubic B-patch. Each triangular panel rep- 
resents the computation of a point at its center calculated by multiplying the points at its ver- 
tices by the barycentric coordinates of a different domain triangle and adding the results. The 
light gray triangles represent linear triangular patches, and the dark gray triangles represent 
quadratic triangular patches. Notice that some interior control points are obscured by the 
panels, and down-pointing triangles are ignored. Compare to Figure 5.44 for triangular Bez- 
ier approximation. 
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nodesm(rl,Sl) ..... (rn,Sn), ( t l , U l )  . . . . .  (tn,Un), ( V l , W l )  . . . . .  (Vn,Wn)mprovided that the 
nodes (ri,si),(tj,uj),(Vk,Wk) a r e  affinely independent for all i + j + k < n + 2. A col- 
lection of nodes with this property is called a knot-net. Triangular Bezier patches are 
a special case of B-patches, where the knot-net is given by three affinely independent 
nodes (r,s),(t,u),(v,w), each repeated n times. Algorithms for blossoming, homoge- 
nizing, and differentiating B-patches based on this tetrahedral algorithm are similar 
to the corresponding algorithms for triangular Bezier patches (see Exercise 4). 

But a spline surface is not just a single polynomial patch; a spline surface is a 
collection of polynomial patches joined together smoothly along common edges. In 
the tensor product case, pyramids for adjacent patches share common nodes and 
common labels along their edges. Therefore, these pyramids can be glued together 
along the horizontal or vertical axes to form a sequence of overlapping pyramids. 
Moreover, and this observation is the key point, surface patches represented by adja- 
cent overlapping pyramids fit together smoothly along their common knot lines. 
While we could try to paste together tetrahedra that share common nodes and com- 
mon labels along their edges, the surface patches represented by such adjacent over- 
lapping tetrahedra would not fit together smoothly along common knot lines. In fact, 
it is not even clear what a common knot line would be or over what domains these B- 
patches would fit together. By choosing clouds of knots near the vertices of a single 
domain triangle, Dahmen, Micchelli, and Seidel succeeded in creating an interesting 
kind of multivariate B-spline surface using B-patches, but the details of this 
approach are beyond the scope of this text. The main idea to take away from this dis- 
cussion is that generating triangular B-spline surfaces is much more difficult than 
generating tensor product B-spline surfaces. The triangular Bezier construction gen- 
eralizes readily to triangular B-patches via blossoming, but getting from one B-patch 
to a collection of triangular patches that join together smoothly is not a simple task. 

Exercises 

1. What are the up and down recurrences for 

a. the pyramid algorithm for tensor product B-spline surfaces? 

b. the tetrahedral algorithm for B-patches? 

2. Complete the analysis of the pyramid algorithm for tensor product B-spline 
surfaces by showing how to implement this algorithm when the degree in s 
is different from the degree in t. 

3. Implement both the de Boor algorithm and the pyramid algorithm for tensor 
product B-spline surfaces. Which algorithm do you prefer? Why? Experi- 
ment with tensor product surfaces of different degrees. Determine how 
changing the location of the control points affects the shape of the surface. 

4. Use the tetrahedral algorithm for evaluating B-patches to develop an algo- 
rithm for 

a. blossoming B-patches 

b. homogenizing B-patches 

c. differentiating B-patches 
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d. converting B-patches to Bezier patches 

e. subdividing one B-patch into three B-patches 

5. Consider a knot-net 

(rl,s 1) ..... (rn,Sn), (tl,Ul) ..... (tn,Un), (Vl,Wl) ..... (Vn,Wn). 

Define the corresponding B-patch basis functions {bin ik(S,t)} by setting 
bijk(S,t ) = the sum of all paths from the point Piik at the base of the B-patch 

recurrence to the apex of the tetrahefron. 

a. Show that if P(s,t) is any bivariate polynomial of degree n, then 

P(s,t) = 

~_~ bqk(S,t)p((rl,s1),, ..... (r i , s i ) , ( t l ,U 1) ..... ( t j ,u j ) , (V l ,W 1 ) ..... (Vk,Wk)) �9 
\ 

i+j+k=n 
b. Conclude that the blossom evaluated on the knot-net provides the dual 

functionals for the B-patch basis functions. 

6. Given a homogenized knot-net 

(rl,Sl,t 1) . . . . .  (rn,Sn,tn), (Ul,Vl,Wl) . . . . .  (Un,Vn,Wn), (Xl,Yl,Zl) . . . . .  (Xn,Yn,Zn), 

define the corresponding homogeneous L-patch basis functions {lijnk(p, tY,'C)} 
by setting 

Lli(P, ty,'c) = (rip + Slt7 + t l T ) . . . ( r i p  + sit7 + tiT) 

L2j(P,G,'C ) - (ulP + VlCr + Wl'C)...(ujp + vjt7 + wj'c) 

L3k(P,a, 'c ) = (xlP + yltY + Zl'C)...(XkP + yktY + Zk'C ) 

lijnk(p, cr, v) - Lli(P, Cr, v)L2j(p ,  cr, v)L3k(P, Cr,'c) i + j + k - n. 

a. Using the result of Exercise 5(a), show that 

(SX + ty + ttZ) n = ~_~ lijnk(x, y,z)bqk(S,t ,u).  
i+j+k=n 

b. Using part (a) and the result of Section 6.5.1, Exercise 17, show that 

[lpqr (s,t,u),bijnk (s,t,U)]n - ~ip~jq~kr. 

7. Two homogeneous polynomial bases {Bijnk(s,t,u)} and {Dijnk(x,y,z)} of 
degree n are said to be dual if they satisfy the identity in Exercise 6(a). That 
is, {Bijnk(s,t,u)} and {D~k(x,y,z)  are called dual bases if 

(sx + ty + uz) n = ~ D~k(x,y,z)Bijnk(s,t,u). 
i+j+k=n 

a. Find the dual basis to each of the following homogeneous B-patch bases: 

i. Bernstein basis 

ii. Monomial basis 
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b. Show that the dual to the homogeneous lineal Lagrange basis E~k(x ,y ,z  ) 
with nodes Qijk = (aijk,bijk,Cijk) is the B-patch power basis 

Pijnk ( s , t , u )  - (ai jkS + bijkt  + CijkU) n . 

What is the knot-net for the B-patch power basis? 

c. Show that if {Bi~k(x,y,z)} and {Dijk(S,t,u)} are dual bases, then 

[Opqr  (s,t,u),D~k (S,t,U)]n - r . 

8. Consider the blossoming algorithm for B-patches derived in Exercise 4. 

a. Show that the homogenized version of this B-patch blossoming recur- 
rence remains valid if blossom values are replaced by homogeneous 
polynomials in the following fashion: 

p((xl ,Yl ,Zl)  ..... (Xn,Yn,Zn)) ---> (rx 1 + sy 1 + tZl). . .(rx n + sy n + tZn) . 

b. Recall the bracket operator defined in Section 6.5.1, Exercise 17. What 
do you get if you bracket each polynomial in this algorithm with a fixed 
homogeneous polynomial P(r,s,t)? (Hint: Compare to Section 6.2, Exer- 
cise 10.) 

9. Consider a B-patch P(s,t) of degree n with control points { Pijk } and knot-net 

(rl,Sl) ..... (rn,Sn), (tl,Ul) ..... (tn,Un), (Vl,Wl) ..... (Vn,Wn). 

a. Show that the labels along the edges of the tetrahedral evaluation algo- 
rithm are nonnegative when 

(s,t) e ~ A(ri,si)(tj,uj)(Vk,Wk) 
i+j+k<n+2 

b. Conclude that the point P(s,t) lies in the convex hull of the control points 
{ Pijk } when 

(s,t) e ['7 A ( r i , s i ) ( t j , u j ) ( v  k,  w k ) .  
i+j+k<n+2 

10. a. Consider a quadratic B-patch P(s,t) with control points {Pijk} and knot- 
net (q ,s l ) , (r2,s2) ,  (tl,Ul),(tz,U2), (Vl,Wl),(Vz,W2). Show that the value 
of the surface and its first-order partial derivatives along the line deter- 
mined by the points (t 1,u 1) and (v 1, w 1) is independent of the value of the 
control point Po02 and the node (r 2,s2). 

b. Generalize the result in part (a) to B-patches P(s,t) of arbitrary degree. 

7.13 Summary 

Our primary purpose has been to give you a sound foundation in the fundamentals of 
polynomial and spline interpolation and approximation. This goal, we trust, has now 



438 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm 

been realized. With this background in hand you are well prepared for graduate sem- 
inars on more advanced topics. We hope you enjoyed reading this material as much 
as we enjoyed writing it. This is almost, but not quite, the end of our story. In the 
next chapter we shall discuss pyramid algorithms for multisided surface patches. 

We have covered a lot of material in this chapter. Below we summarize the dif- 
ferent techniques we encountered for analyzing B-splines, collect in one place the 
standard properties of and algorithms for B-spline curves and surfaces, and identify 
a few special progressive and spline bases. Then we list for easy access a collection 
of useful identities for the B-spline basis functions harvested from the text and the 
exercises. 

�9 Tools for Analyzing B-Spline Curves and Surfaces 

1. De Boor algorithm 

�9 Path arguments 

�9 Induction+ recursion 

2. Knot insertion procedures 

�9 Convergence as knot spacing decreases to zero 

�9 Conversion to piecewise Bezier form 

3. Blossoming 

�9 Powerful change of basis method 

�9 Effective tool for analyzing derivative properties 

4. Divided difference 

�9 Identities 

5. Continuous convolution 

�9 Uniform B-splines only 

�9 Properties of B-Spline Curves and Surfaces 

1. Piecewise polynomial 

2. Continuity of order cn-F t at knots of multiplicity kt 

3. Local control 

4. Affine invariance 

5. Local convex hull 

6. Locally nondegenerate 

7. Interpolation at knots where the multiplicity ju is equal to the degree n 

8. Variation diminishing (curves only) 

�9 Algorithms for B-Spline Curves and Surfaces 

1. Evaluation 

2. Differentiation 

3. Integration 

4. Blossoming 
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5. Homogenization 

6. Knot insertion 

�9 Boehm's algorithm 

�9 Oslo algorithm 

�9 Factored knot insertion algorithm 

�9 Lane-Riesenfeld algorithm (uniform knots) 

7. Conversion to piecewise Bezier form 

S p e c i a l  P r o g r e s s i v e  a n d  S p l i n e  B a s e s  

1. Bezier 

, 

t 1 - . . . -  t n - a 

tn+ 1 . . . . .  t2n - b 

( n ) ( t _  ~ ( b - t )  n - k  
B~c ( t )  - k a ,  k 

( b - a )  n 

Monomial 

t 1 . . . . .  t n - a 

tn+ 1 . . . . .  t2n - 

O < k < n  

. 

M ~  (t) - (~ )( t  - a) k 

Power 

t 1 ..... tn , t  0 ..... tn_ 1 

O < k < n  

. 

p~c ( t )  (t  - tk )n 
= , O < k < n  

1-'[ (t  k - t j  ) 
j ~ k  

Uniform 

t k - k 

7.13.1 

N o , n ( t  ) - Z[O,1) (t) * . . . ,  Z[O,1) (t) 
J 

Y 

n+l factors 

Identities for the B-Spline Basis Functions 

1. C o m p a c t  s u p p o r t  

S u p p o r t { N k , n ( t )  } - [ tk , tk+n+l  ] 

2. S m o o t h n e s s  a t  the  k n o t s  

~rhas multiplicity kt in the sequence t k ..... tk+n+ 1 ~ N k , n ( t )  is C n - u  at T 

3. I n t e r p o l a t i o n  a t  the  k n o t s  

t j+ 1 . . . .  = t j+ n ~ N j , n ( t j + l ) -  1 
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4. Evaluation at the knots 

Nk,n(tk+j I tk ..... tk+n+l) - Nk,n_l(tk+ j I tk ..... tk+j-l,tk+j+l ..... tk+n+l) 

5. Invariance under affine transformations of  the knots 

Nk,n(at + b lat k + b ..... atk+n+ 1 + b) = Nk,n(t l t k ..... tk+n+l) 

6. Nonnegativity 

Nk,n(t) > 0 

7. Partition of  unity 

~,k Nk,n (t) - 1 

8. Recursion 

Nk,o(t) = 1 t k < t < tk+ 1 

Nk, n(t) t - t k Nk,n_ l(t) + tk+n+l - t _ ~ Nk+l,n_l(t ) 
tk+ n - t  k tk+n+ 1 - tk+l  

Nk, n (t) = (t - t k) Nk'n-1 (t) 
Support 

9. Nonstandard recursion 

+(tk+n+ 1 - t )  
Nk+l,n-l(t) 

Support 

Nk,n(t l tk ..... tk+n+l ) = 
T - t  k 

tk+ n - t  k 
~ N k , n ( t  l t k ..... "C ..... tk+n) 

tk+n+ 1 - "C 

tk+n+l - tk+l  
Nk+l, n (t I tk+ 1 . . . . .  "g" . . . . .  tk+n+ 1 ) 

Nk ,n( t l tk  ..... tk+n+l) = 
t - t k +  i 

tk+j - tk+i  
Nk,n_ 1 (t I t k ..... tk+j ..... tk+n+l ) 

tk+ j - t  

tk+j - tk+i  
Nk,n_l(t I t k ..... tk+ i ..... tk+n+l ) 

1 0 .  Differentiation 

dNk'ndt (t) _ n I Nk'n-l~--tk+n - ~(t) gk+l,n_ 1 (t) ) 

tk+n+l - tk+l  

dNk, n (t) = nl  Nk'n ' l  (t) 

dt Support 
_Nk+l ,n - l ( t ) )  

Support 
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11. Nonstandard differentiation 

dNk, n ( t) 
dt 

Nk,n_ 1 (t I tk,_...,~k+___~j, - .... tk+n+ 1) 

n tk+ j -tk+ i 

12. Recursion for the derivative 

n tk+n _ tk k,n-1 

Nk+l,n_ 1 (t I t k ..... tk+ i ..... tk+n+l ) 

tk+j -tk+i 

N 
tk+n+ 1 -  t / N  ' (t) 

J k+l,n-1 
tk+n+l -tk+l 

13. Integration 

f Nk,n(tlt  k ..... tk+n+ 1)dt 
Support 

Nk,n+l (t l tk ..... t k + n + l , t ~ )  

n + l  

I s  Nk'n (t) 
upport Support 

~ d t  - 
n + l  

upport S---upp-~rt ][ n[ tk +n+l 

Is  { Nk'n(t) ){F(n+l)(t))dt= Ilx F (n+l) )dVl ..dvn+ 1 
upport Support n! (~J Vjtk+j " 

Support 

_ ( _ l ) m +  1 m!n!  

(m+n)! 

14. Linear independence 

~,kCkNk,n(t) - 0 r c k - 0 for all k 

15. Descartes' Law of Signs 

Sign Alternations{~,kCkNk,n(t) } < Sign Alternations{c k } 

. m + n + l  
~ ( y  - x)+ [tj ..... tj+n+l ]y[ti ..... ti+m+l ]x 

16. Nodes 

E {tk+l+'"+tk+n)Nk,n(t) 
t -  k n 
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17. Representa t ion  o f  the monomia l s  

(~)t j = ~,k{~,crtk+cr(1)'"tk+cr(j)}Nk,n(t) (or= p e r m u t a t i o n  o f { 1  ..... n})  

18. D iv ided  dif ference f o r m u l a  

Nk, n (t) - (tk+n+ 1 - t k )(x - t)+[t k ..... tk+n+ 1 ] 

Nk,n(t)  

Support  
= (x - t)~[t k ..... tk+n+l] 

19. Marsden  identity 

(x - t) n = Zk( tk+l  - t) . . . ( tk+ n - t )Nk,n(X ) 

20. De B o o r - F i x  f o r m u l a  

( - 1 ) n - P  
~ , p ~ N ( .  p) (T)l l t~nP) ('t:) = 1 

n! j ,n , 

= 0  

j=k 

j C k  

IPtk,n('t') = (tk+ 1 - T). . .( tk+ n - T) T �9 (tk+l,tk+n) 

21. Blossoming  as dual  func t iona l s  

nk,n(tj+l . . . . .  t j+n) = t~jk 

S ( t ) -  ~,is(ti+l . . . . .  ti+n)Ni,n(t ) 

22. Kno t  insert ion 

Nk,n( t  l t k ..... tk+n+l) = 
V - t  k 

tk+ n - t  k 
~ N k , n ( t  l t k ..... "C ..... tk+n) 

tk+n+ 1 - T  

tk+n+l - t k + l  
Nk+l, n (t I tk+ 1 ..... "t" ..... tk+n+ 1 ) 

23. Degree  elevation 

Nk,n( t  l t k ..... tk+n+l) - ~ , jNk ,n+l( t  l tk ..... tk+j, tk+j ..... tk+n+l) 
n + l  

24. Partial  derivat ives  with respect  to the knots  

~N~ (t I t k ..... tj ..... tk+n+ 1) 

~tj 

I Nkn+l (t I tk+ 1 ..... t j , t j  ..... tk+n+ 1) 
= 12j . . . . . . . .  

tk+n+l - t k + l  

N ~ ( t  l t k ..... t j , t j  ..... tk+n) 

tk+ n - t  k 

juj = m u l t i p l i c i t y  tj 
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25. Geometr ic  characterizat ion 

NO,n_l(t l t 0 ..... tn ) _ (t n - t o ) V o l n _ l ( t r  e An(p) I O'1 = t) 
nVoln(An(p) )  

PO ..... Pn affinely independent points with Pil = ti , i = O,.. . ,n 

An (P) = n-simplex with vertices PO ..... Pn 

26. Special  identities f o r  uni form B-spl ines  

a. Translation invariance 

Nk, n (t) = NO, n (t - k) 

b. Recurs ion  

t - k  k + n + l - t  
Nk, n (t) = Nk,n_ 1 (t) + nk+l,n_ 1 (t) 

n 11 

c. Dif ferent iat ion 

dNk, n (t) 
dt = Nk,n_ 1 (t) - Nk+l,n_ 1 (t) 

d. Integration 

~Nk,n( t )d t  k +  +1,~) =Nk,n+l (t l k n . . . . .  

SupportNk,n (t)dt - 1 

e. Cont inuous  convolut ion 

Nk, n (t) = ~ Nk,n_ 1 (t - x)dx  

NO,n(t ) - Z[0,1) (t) * . . . ,  Z[0,1) (t) 
- , r  

n+l factors 

f. Subdivis ion 

(n+l 
(t) - ~ '~ i"  i 2 n )No, n (2t - i) NO,n 
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Pyramid Algorithms 
for Multisided Bezier Patches 

In Chapter 5 we studied three-sided and four-sided Bezier patches built using 
dynamic programming procedures based upon three-term and four-term recurrence 
relations. In this chapter we are going to study Bezier patches with an arbitrary num- 
ber of sides. Three-sided and four-sided patches are typically used for free-form 
design; multisided patches are commonly required when it is necessary to fill n- 
sided holes. 

Our approach to multisided patches will be similar to our approach to three- 
sided and four-sided patches: we shall build dynamic programming proceduresm 
pyramid algorithms~based upon special recurrence relations. By now we have a 
good deal of experience with generating useful recurrences. We have seen that such 
recurrences arise quite naturally in three settings: Lagrange interpolation, discrete 
convolution, and blossoming. We shall discover, however, in Section 8.3 that stan- 
dard Lagrange interpolation procedures do not lend themselves to generating multi- 
sided patches. Therefore, discrete convolution and blossoming will be the two 
central motifs of this chapter. We shall see here as well that these two devices are 
necessarily interrelated. 

To construct three-sided and four-sided Bezier patches, we need three-sided and 
four-sided arrays of control points and barycentric coordinate functions for the trian- 
gle and the rectangle. Similarly, to construct multisided Bezier patches we require 
multisided arrays of control points and barycentric coordinate functions for multi- 
sided polygonal domains. But what are multisided arrays of control points and how 
do we construct barycentric coordinates for multisided polygons? There is no single 
answer to either of these questions: different answers lead to different types of multi- 
sided Bezier schemes. Based on three different answers to these questions, we shall 
develop three different types of multisided Bezier patches: S-patches, C-patches, and 
toric Bezier patches. Three common threads tie these three schemes together: dis- 
crete convolution, Minkowski sum (a device we shall introduce in Section 8.2), and 
the general pyramid algorithm. 

445 
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There is no simple answer to the question: which of these multisided schemes is 
best? Although special types of S-patches have been around for some time, their 
properties have yet to be fully explored. Moreover, toric Bezier patches are quite 
new, so it is premature to judge the relative merits of these schemes. We present 
these schemes here to elucidate their constructions, explain their basic properties, 
and clarify their interrelationships; we shall not try to pick a winner. 

A key role in each of these constructions is played by barycentric coordinate 
functions, so we begin with a discussion of a generalization of barycentric coordi- 
nates to arbitrary convex polygons. 

8.1 Barycentric Coordinates for Convex Polygons 

The main properties of the barycentric coordinates fll,fl2,fl3 for a triangle P with ver- 
tices P1,P2,P3 are summarized in Section 1.2.3, Theorem 1.1. We recall these prop- 
erties in Table 8.1 along with the analogous properties we want to hold for the 
barycentric coordinate functions fll ..... fin for a convex polygon Q with ordered ver- 
tices Q1 ..... Qn. 

The first two properties of the barycentric coordinate functions for convex poly- 
gons are required because we want the multisided Bezier surfaces constructed from 
these functions to be affine invariant and to lie in the convex hulls of their control 
points. The third property will guarantee that the boundary curves of these surfaces 
are the Bezier curves determined by their boundary control points, and the fourth 
property ensures that these surfaces will interpolate their comer control points. The 
fourth property is also key later on in ensuring that the S-patch blossom evaluated at 
the vertices of the domain polygon provides the dual functionals for S-patches (see 
Section 8.4.4). The final property asserts that the functions describing these surfaces 
are not too complicated--that these surfaces are defined by rational expressions. 

For triangles we discussed two approaches to barycentric coordinates in Section 
1.2.3: normalized areas and normalized line equations. Consider the triangle in 
Figure 8.1, with vertices P1,P2,P3 and edges defined by the equations L23(u,v ) = 0, 

Table 8.1 Properties of barycentric coordinate functions for triangles and convex polygons. 

Triangles Convex Polygons 

3 
1. X~k ~ 1. 

k=l 
2. flk > 0 in the interior of P. 

3. flk = 0 on the line PiPi+l, k # i, i + 1. 

4. #k(pj)- 0 j , k  

=1 j - k  . 

5. fll,flz,fl3 are linear functions. 

n 

1, Xflk - 1. 
k=l 

2. flk > 0 in the interior of Q. 

3. flk = 0 on the line QiQi+m, k 4: i,i + 1. 

4. o j ,  k 

=1 j = k  . 

5. fll ..... fin are rational functions. 
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Pl 

L12 ( u,v) 

P2 ~ fll " P3 
L23(u,v) 

Figure 8.1 Barycentric coordinates for the triangle APIP2P 3. 

L13(u,v) = 0, L12(u,v)= 0. The barycentric coordinates fll,fl2,fl3 of a point Q with 
respect to the vertices P1,P2,P3 are given by 

area( AQPi Pj ) 
i l k ( Q ) - +  i 4: j ~: k, (8.1) 

area(z~lP2P 3) 

or equivalently by 

Lij(Q) 
ilk(Q) = i 4: j :p k. (8.2) 

Lij(ek) 

We are now going to provide an explicit construction for the barycentric coordi- 
nate functions of a convex polygon by generalizing the construction of the barycen- 
tric coordinates for triangles given in Equation (8.2). An equivalent extension of 
Equation (8.1) from triangles to convex polygons is provided in Exercise 3. 

Consider then a convex n-gon with ordered vertices Q1 ..... Qn, and let 
Li,i+l (U, V), i = 1 ..... n, be the equation of the line joining Qi and Qi+l, where 
Qn+l = Q1. (See, for example, the hexagon in Figure 8.2.) 

Normalize each function Li,i+l (u,v) so that the normal of the line is pointing into 
the polygon. Then we can define barycentric coordinate functions fll ..... fin with 
respect to the vertices Q1 ..... Qn by setting 

ak (Q) = ck I-I Li,i+l (Q) (8.3) 
i,i+l~k 

i l k (Q) -  ak(Q) k -  1 ..... n. (8.4) 
]~jaj(Q) 

Notice that, up to a constant multiple, a k is the product of the edges Li,i+ l(u, v) 
on which the vertex Qk does not lie, and flk is equal to a k normalized by the sum of 
the a's. Hence, in general, flk is a rational function of degree n -  2. The constants 
c k > 0 are arbitrary; one canonical choice for these constants is presented in Exercise 
4. Now in analogy with Theorem 1.1, we have the following results. 
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Q1 L12(u'v) _Q2 

L61 ( (u,v) 

Q 5  (u,v) " Q4 L45 

Figure 8.2 A hexagon with vertices Qi and bounding lines Li, i+l(U,V), i =  1 ..... 6. 

THEOREM 
8.1 

Proof 

Existence of  Barycentric Coordinates for  Convex Polygons 

Let fll ..... fin be the barycentric coordinate functions defined in Equation 
(8.4) relative to the ordered vertices Q1 ..... Qn of a convex polygon. Then 

n 

1. ~ . , f l k -1 .  
k=l 

2. flk > 0 in the interior of the polygon. 

3. flk = 0 on the line QiQi+I, k ~ i,i + 1. 

4. flk (Qj ) = 0 j ,  k 

=1 j - k  . 

5. fll ..... fin are rational functions in the rectangular coordinates u,v. 

1. Property 1 is immediate from Equation (8.4). 

2. Property 2 follows because Li,i+ 1 (u,v) is chosen with its normal vector 
pointing into the polygon. Hence in the interior of the polygon 
Li,i+l(U,V ) > 0, so by Equations (8.3) and (8.4) ak,f lk > 0 in the inte- 
rior of the polygon. 

3. Property 3 is valid because by Equation (8.3) Li,i+l(U,V) is a factor of 
oc k whenever k ~ i,i + 1. Therefore, OCk,flk = 0 on the line QiQi+l, when- 
ever k ~: i,i + 1. 

4. Property 4 is a direct consequence of Property 1 and Property 3. By 
Property 3, flk(Qj) - O, j ,  k. Therefore, by Property 1, flk(Qk) - 1. 

5. Property 5 follows immediately from Equations (8.3) and (8.4). 
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Theorem 8.1 establishes the existence of barycentric coordinate functions for 
convex polygons with the properties listed in Table 8.1. Although typically we shall 
use the functions defined in Equation (8.4), we shall call any set of functions that sat- 
isfies these five properties barycentric coordinate functions for the convex polygon. 

Exercises 

1. Let Q1 ..... Qn be the ordered vertices of a convex polygon, and let fll ..... fin 
be the functions defined by Equation (8.4). Show that fli,fli+l are rational 
linear functions along the line QiQi+l. 

2. Let P = (pl,P2) T, Q = (ql,q2) T, R = (u,v) T be the vertices of a triangle. 
Show that 

a. 2xarea(APQR)=+det  P2 q2 v = + d e t  Q . 
1 

1 1 1 

 et(7 Q1 R) - 0 i s t h e e q u a t i ~ 1 7 6 1 7 6  

3. Let Q1 ..... Qn be the ordered vertices of a convex polygon. Using the results 
of Exercise 2, show that Equation (8.1) for the barycentric coordinate func- 
tions of a triangle can be generalized to barycentric coordinate functions 
fll ..... fin for a convex polygon by setting 

ak(Q) = ck I-Iarea(QiQi+lQ) 
i,i+l~k 

ilk(Q) = ak (Q) ' 
]~jaj(Q) 

where c k > 0 are arbitrary constants. 

4. Choose the constants c k in Exercise 3 by setting c k = area(Qk_lQkQk+ 1). We 
are going to show that for this choice of constants 

n 

L(Q) = Z flk (Q)L(Qk ) 
k=l 

n 

for every linear function L. Define M ( Q ) -  Z ak (Q)(L(Q) - L(Qk)), and let 
P = (1-  ~)Qi + 2,Qi+1. k=l 

a. Show that L(P) = (1 - A)L(Q i) + '~(Qi+I). 

b. Show that M(P) = 

[area(Qi-lQiQi+l )area(Oi+lQi+2e)(L(P) - L(Qi) ) ] 

I-I area(Qj, Qj+l,P)l+area(QiQi+lQi+2 )area(Qi_lQiP)(L(p) _ L(Qi+I ))I" jr 
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c. M(P) = 0. (Hint: Use parts (a) and (b).) 

d. Conclude from Section 2.13, Proposition 2.12, that every edge of the 
domain polygon is a linear factor of M, and hence, since 
degree(M) = n - 1, that M - 0. 

n 

e. Show that M - 0 ~ L(Q) - ~, flk(O)L(Qk). 
k = l  

n 

f. Conclude from part (e) that Q = ~ flk(Q)Qk. (Compare to Section 1.2.3, 
Exercise 4.) k = l  

5. Here we are going to show that barycentric coordinate functions for convex 
polygons with more than four sides cannot be polynomials. Suppose that 
fll .... fin are polynomials, and that Q is a point of intersection between two 
nonadjacent edges of the convex polygon with ordered vertices Q1 . . . . .  Qn. 

a. Show that if fll ..... fin satisfy Property 3 of Theorem 8.1, then 

flj(Q) = O, j = 1 ..... n. 
b. Conclude that ~,kflk ~ 1, and hence that fll ..... fin cannot be barycentric 

coordinate functions for the convex polygon with vertices Q1 . . . . .  Qn. 

c. Why do rational functions not suffer from the same problem? 

d. Explain why barycentric coordinates for rectangles can be polynomials. 

6. Consider a convex polygon with ordered vertices Q1 . . . . .  Qn, and let 
Li,i+ 1 (u, v), i = 1,...,n, be the equation of the line joining Qi and Qi+l, where 
Qn+l = Q1. Normalize each function Li,i+ 1 (u, v) in the usual manner so that 
the normal of the line is pointing into the polygon. Define functions fll ..... fin 
with respect to the vertices Q1 . . . . .  Qn by setting 

n 
f Pi,k 

ak (Q) = ck I-I,-,i,i+l (Q) Ck > 0 
i=1 

flk (Q) = ak (Q) 
~ , ja j (Q)  

k = 1 ..... n 

Show that these functions f l l  . . . . .  f i n  satisfy the five properties of barycentric 
coordinate functions listed in Theorem 8.1 if and only if Pk-l,k - Pk,k = 0 
for k = 1 ..... n, and all the other Pi,k are positive integers. 

8.2 Polygonal Arrays 

To construct a polygonal patch, we must begin with a polygonal array of control 
points. But what exactly is a polygonal array of control points? So far we have seen 
only two examples of polygonal arrays: rectangular arrays and triangular arrays. A 
(d + 1)x(d  + 1) rectangular array of control points is a set of points {Pij}, where 



l @ J = { i + j l i e I  and j e J } ,  

0 < i, j < d; an order d triangular array of control points is a collection of points 
{Pijk}, where i + j + k - d. We are now going to generalize these notions to arbitrary 
polygonal arrays of points. 

The key technique we shall use is the Minkowski sum. Let I and J be two arbi- 
trary sets of p-tuples. The Minkowski  sum of I and J is the set 

then 

where i + j denotes the p-tuple formed by adding the coordinates of i and j. For 
example, if 

(A | B)k(t)  - ~, i+j=kAi(t)Bj(t) .  

I = {(0,0),(1,0),(0,1),(1,1)} 

J -  { (0 ,0) , (1 ,0) , (0 ,1) } ,  

I 0) J - { (0,0),(1,0),(0,1),(1,1),(0,2),(1,2),(2,1),(2,0) } 

(see Figure 8.3). For future reference, we define 

I ~ - (0 ..... 0) 
p 

I d =  I ~ . . . ~ I .  
�9 J 

d summands 

The Minkowski sum facilitates the indexing of discrete convolution. Let 
A(t) = {Ai(t) l i e I} and B(t) - {Bj(t) l j e J}. Then the discrete convolution 
A(t) | B(t) is indexed by the Minkowski sum I ~ J - - t ha t  is, 

A(t) | B(t) - (A | B)(t) - { (A | B)k(t)  I k e I �9 J}--since, by definition, 

(1,2) 

(o,1) (o,]) (1,1) 

, w  w 

(o,o) (1,o) (o,o) (1,o) 

(0,2) 
A 

(o,1) 

(o,o) 

A 

(1,1) 
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w w 

(1,o) (2,0) 

F i g u r e  8.3 The Minkowski sum of a triangular array and a rectangular array is a pentagonal array. 
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Similarly, 

A(t) d = A(t) |  | A(t) 
~. ,J 

d factors 

is indexed by I d. We shall take advantage of this indexing for discrete convolution in 
Section 8.4, when we study S-patches. 

To form an n-sided polygonal array, start by selecting an indexing set I of n dis- 
tinct p-tuples. An n-sided polygonal array of  depth d for  the index set I is any set of  
points indexed by I d. 

For example, let 

I R - {(0,0),(1,0),(1,1),(0,1)} 

I T - {(0,0,1),(1,0,0),(0,1,0)}. 

Then Ig={(j',k) ] 0 < j ,k < d} is the indexing set for a (d + 1) • (d + 1) rectangular 
array {Pjk}, and IT d - {i,j,k) [i + j + k = d} is the indexing set for an order d triangu- 
lar array {Pijk }. 

But there is more to a polygonal array than just the indexing of the points; we 
must also indicate how the points are related topologically in the array--that is, 
which points are adjacent to which points. For example, in the triangular array of 
order 3 in Figure 5.43(b), the point P003 is adjacent to the points P012 and P102, but 
P003 is not adjacent to any of the other points in the array. To establish adjacency, we 
consider the indexing set I not just as a set, but as an ordered sequence of p-tuples 
I = (il ..... in). Points indexed by I inherit their adjacency from I. Thus points indexed 
by a set I with n elements lie, topologically, on the vertices of an n-gon. To close the 
polygon, we consider the first element of I to be adjacent to the last element of I. 

Adjacency in I d is defined recursively. Adding a fixed index in I to each index in 
I translates the polygon, so adjacent indices remain adjacent. Similarly, adjacent 
indices in I d-1 remain adjacent under translation. (For further details and definitions, 
see Exercise 6.) 

An n-sided polygonal array of  depth d is a set of points {P2} in affine space 
indexed by a set I d, where I - (i 1 . . . . .  in) is an ordered set of n distinct p-tuples. The 
points in the array {Pz} inherit their adjacency from the adjacency relation in I d. 
That is, two points P~,Pv in the array {P,~} are adjacent if v is adjacent to ~ in I d. 
When we draw a polygonal array, we shall connect adjacent points with straight 
lines (see Figures 8.4 and 8.5). The rth boundary of the n-sided polygonal array {P)~} 
of depth d consists of the points indexed by ( d - k ) i  r + kir+ 1, k = 0 ..... d, where 
in+ 1 = i 1. Figures 8.4 and 8.5 illustrate two distinct pentagonal arrays of depth 2. 

Exercises 

1. Draw triangular arrays of depths 2 and 3, where 

a. I consists of the vertices of the standard 2-simplex 

b. I =  {0,1,2l 

2. Draw rectangular arrays of depths 2 and 3, where 



8.2 Polygonal Arrays 453 

Po2ooo 

P20000 PO0200 

PIO 0110 

PO0002 PO0011 PO0020 

Figure 8.4 A pentagonal array of depth 2 with 15 points indexed by/2, where / consists of the vertices 
of the standard 4-simplex--that is,/is the set of all 5-tuples with a 1 in one position and a 0 
everywhere else. The outline of one of the five small pentagons indexed by the subset of / 2 
generated by translating / by (0,0,0,0,1) e / i s  darkened. 

Pol 

1'oo- 

/924 

P 

9 
w 

Plo -P2o 

Figure 8.5 A pentagonal array of depth 2 with 14 points indexed by the set/2, where / = {(0,0),(1,0), 
(2,1),(1,2),(0,1)}. The outline of one of the five small pentagons indexed by the subset of / 2 
generated by translating / by (0,0) e / i s  darkened. 

a. I consists of the vertices of the standard 3-simplex 

b. I - 1(0,0),(1,0),(1,1),(0,1)} 

3. Draw a pentagonal array of depth 3, where 

a. I consists of the vertices of the standard 4-simplex 

b. I = {(0,0),(1,0),(2,1),(1,2),(0,1)} 
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4. Draw hexagonal arrays of depths 2 and 3, where 

a. I consists of the vertices of the standard 5-simplex 

b. I = 1(0,0),(1,0),(2,1),(2,2),(1,2),(0,1)} 

5. Show that the number of points in a polygonal array of depth d indexed by 
the set I d, where I consists of the vertices of the standard n-simplex, is 

n+d 
d )" 

6. Show that the following two definitions of adjacency in I d are equivalent: 
Let i, Jl . . . . .  Jd-1 ~ 1, and let/u,v e I d. Then p is adjacent to v if there are indi- 
ces i u , i  v such that 

Definition 1 Definition 2 

i. i~ is adjacent to i v in I. i. i~ is adjacent to i v in I a-1. 

ii. t.t - i~ + Jl + " "  + Jd-1. ii. /.t - i~ + i .  

iii. v = i v + Jl + " "  + Jd- l"  iii. v = i v + i . 

7. Show that if / = {i 1 ..... i n }, then 

a. I d - {kli 1 + .. .  + kn i  n I k 1 + . . .  + k n = d}  

b. I d is isomorphic to the set of equivalence classes {(k 1 ..... k n) I 

kl  + ... + k n = d}, where two n-tuples (k 1 ..... kn) and (h 1 ..... hn) are 
members of the same equivalence class of I d if 

kl  il + . . . + knin = hl il + . . . + hnin 

8. Show that 

a. (11 ~ " "  ~ I m  ) d = i d ~ . . . @ i d . 

d m _ i~1+dl . . . .  b. (I~1 ~ . . . ~  I c m ) ~ ( I d l  ~ ) . . . ~  I m  ) ~ ~ ICm+dm 

8.3 Neville's Pyramid Algorithm and Multisided Grids 

The three main ingredients we needed in Chapter 2 to construct pyramid algorithms 
for three-sided and four-sided interpolating Lagrange patches were barycentric coor- 
dinate functions, arrays of control points, and specialized grids. In Section 8.1 we 
addressed the issue of barycentric coordinates for convex polygons, and in Section 
8.2 we introduced polygonal arrays of control points. In this section we shall con- 
sider general n-sided grids. 

Actually we have already encountered n-sided grids in Section 8.2. A polygonal 
array of points typically lives in three- or higher-dimensional space, but if we con- 
sider a polygonal array in two dimensions, then we have a polygonal grid. Figures 
8.4 and 8.5 represent pentagonal grids in the plane. Straight lines in the grid connect 
points that are adjacent in the array. In general, three points in such an array are col- 
linear only by accident. For example, in the pentagonal grid depicted in Figure 8.5, 
the points P20,P31,P42 need not be collinear. 

Unfortunately, we cannot, in general, build pyramid algorithms to interpolate on 
polygonal grids where the polygons have more than four sides and the depth of the 
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grid is greater than 1 even if many of the grid points are collinear. To see why, let us 
try to apply dynamic programming to the pentagonal grids in Figures 8.4 and 8.5. 

To begin, we must first construct pentagonal interpolants for the subgrids of 
depth 1. This base case is easy. Let flk(U,V) be barycentric coordinates for the penta- 
gon with vertices Qk, k = 1 ..... 5, and let 

B(u,v)  =/~I(U,v)P 1 + ~2(u,v)P2 + ~3(u,v)P3 + ~4(u,v)P4 + ~5(u,v)P5 �9 

Then by Theorem 8.1 

B ( Q k ) =  Pk k = 1 .. . . .  5. 

Now to form the pentagonal interpolants P(u,v) for the grids of depth 2, we try 
to proceed as we did for the three-sided and four-sided interpolants in Chapter 2. Let 
Pl (U, V),. . . ,Ps(u, v) be the five pentagonal interpolants of depth 1 emanating from the 
five comer vertices Q1 ..... Q5 of the depth 2 pentagonal grid. Let flk(U,V) be the bary- 
centric coordinates of the pentagon with vertices Qk, k = 1 ..... 5, and let 

P(u, v) - ~l (U, V)Pl (u, v) + . . . -I- ~5(u, v)P5(u, v) . 

This approach works for the grids of three and four sides in Chapter 2, but it fails for 
pentagonal grids. For grids with three or four sides, every node not on the boundary 
of the grid lies in each of the subgrids of one lower depth (see, for example, Figure 
2.27). Therefore, each of the lower-depth interpolants certainly interpolates at each 
of the interior nodes of the grid. Since barycentric coordinates sum to one, the 
higher-depth surface P(u,v) also interpolates the data at all the interior nodes. But for 
the pentagonal grids in Figures 8.4 and 8.5, the interior nodes do not lie on all the 
grids of depth 1. Therefore, the surface P(u,v) will not interpolate the data at the inte- 
rior nodes. The same problem arises for polygonal grids of arbitrary depth with an 
arbitrary number of sides. 

What then can we do? Recall that triangular Bezier patches are simpler to con- 
struct than triangular Lagrange interpolants because in the triangular Bezier con- 
struction there is only one domain triangle. In the construction of the pyramid 
algorithm for triangular Lagrange interpolants, we change the domain triangle~that 
is, the barycentric coordinates~as we move from node to node and level to level. 
But in the construction of triangular Bezier patches, we use the same domain trian- 
gle and the same barycentric coordinates everywhere in the pyramid algorithm. 
Therefore, once we have a general notion of barycentric coordinates for convex 
polygons, this Bezier construction should work just as well for polygonal arrays of 
control points as it does for triangular arrays. Giving up on interpolation over polyg- 
onal grids, we should still be able to construct the analogues of triangular Bezier 
patches for arbitrary convex polygons. This idea actually does work, and the result- 
ing multisided Bezier surfaces are called S-patches,  so it is to these S-patches that we 
now turn our attention. 
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Exercises 

1. Show that it is not, in general, possible to build a pyramid algorithm to 
interpolate over the quadrilateral grid in Figure 8.6. Explain what goes 
wrong with the standard dynamic programming construction in Chapter 2. 

Qo.a Q13 r~ 0-~-~ 

P03 P13 P23 P33 

,Q32 P02 P12 P22 P32 

31 
P o  ] P] ] P 2  ] P3 ] 

Poo P]o P20 P30 
~ -JU  

�9 c o o  - "" Q2o 

(a) Domain--quadrilateral grid 
J 

(lo) Range--quadrilateral array of points 

Figure 8.6 Data for a quadrilateral interpolant: (a) represents the nodes in the domain, and (b) repre- 
sents the control points in the range. 

2. a. Construct a pyramid algorithm to interpolate data over the quadrilateral 
grid in Figure 8.7, using barycentric coordinates for an arbitrary quadri- 
lateral. 

b. Show that for the barycentric coordinate functions defined in Equation 
(8.4) this interpolant is a rational surface of degree 2n. 

3. Consider again the domain in Figure 8.7. This quadrilateral grid is defined 
by two sets of intersecting lines: Mk(U,V) and Nk(U,V ), k = 0 .... ,n, so that each 
node Qij - Mi n N j ,  i, j - 0 . . . . .  n. Let Qij = (uij,vij) and define 

I Ai j (u ' v )  = M a ( u ' v )  ~ l  N---Tu-- ) 
M a ( u ij , v ij ) j ~ fl ~: j fit ij , v ij 

Lij(u, v ) = Aij  (u' v) 
~.,klAkl(U,V) 

L(u,  v) = 2 i j  Lij(u, v)P/j 
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O N ~  �9 �9 �9 Q~'/Y/ Poll �9 �9 �9 PYtt l  

!0 Poo * ~ ~ Pno 

(a) Domain~quadrilateral grid (b) Range--quadrilateral array of points 

Figure 8.7 Data for a quadrilateral interpolant: (a) represents the nodes in the domain, and (b) repre- 
sents the control points in the range. The nodes must lie on a special quadrilateral grid, but 
the control points may be in arbitrary positions. The surface P(u,v) must interpolate the con- 
trol points PO at the nodes Q/f-that is, P(Qo.) = PO 

a. Show that the functions Lij(u,v)  satisfy the cardinal conditions 

Lij(Qkl ) - Lij(ukl ,  vkl ) - 0 (k , l )  :/: (i, j )  

= 1 (k , l )  = (i, j ) .  

b. Show that the surface L(u ,v )  is a rational surface of degree 2n that inter- 
polates the control points Pij at the nodes Qij. 

c. Compare the interpolating surface L(u ,v )  to the interpolating surface con- 
structed in Exercise 2. 

8.4 S-Patches 

Given a polygonal array of control points, we can apply a pyramid algorithm to con- 
struct a polygonal surface patch just as we did for triangular Bezier patches. The 
only difference is that we must replace the barycentric coordinates for the domain 
triangle by barycentric coordinate functions for the domain polygon. Instead of a tet- 
rahedral algorithm, this procedure generates a pyramid algorithm over a polygon, 
whose boundary at the base is formed by the boundary control points of the polygo- 
nal array. Such a surface is called an S-patch .  Figure 8.8 illustrates the pyramid algo- 
rithm for a pentagonal S-patch for the pentagonal array of depth 2 in Figure 8.4. 
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P2oooo 

;o2ooo 

Poo2oo 

P10q )0110 

J ououz POO011 - uuu L0 

Figure 8.8 Schematic version of the pyramid algorithm of depth 2 for an S-patch over a pentagonal 
domain. Each pentagonal panel represents the computation of a point at its center calcu- 
lated by multiplying the points at its vertices by the barycentric coordinates of the domain 
pentagon and adding the results. The five striped corner pentagons represent pentagonal 
patches of depth 1, and the dark central pentagon represents the pentagonal patch of depth 
2. Interior control points are obscured by the panels. Compare to the pyramid algorithm for a 
triangular Bezier patch in Figure 5.44 . 

By construction, S-patches have the following underlying framework: 

�9 Domain---convex polygon 

�9 Control points~polygonal array 

�9 Blending functions---convolutions of generalized barycentric coordinates 

Moreover, in analogy with triangular and tensor product Bezier patches, S-patches 
also have the associated properties and procedures listed below: 

�9 Properties of S-patches 

�9 Affine invariance 

�9 Convex hull property 

�9 Boundary curves~Bezier curves determined by the boundary control 
points 

�9 Degree--rational parametric degree d(n- 2), where d is the depth of the 
control net and n is the number of sides of the domain polygon 

�9 Special cases~triangular and tensor product Bezier patches 

�9 Procedures for S-patches 

�9 Evaluation algorithm~pyramid algorithm whose edges are labeled 
with generalized barycentric coordinates 

�9 Differentiation algorithm 

�9 Blossoming algorithm 
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8.4.1 

We begin our investigation of S-patches with a formal presentation of the pyra- 
mid algorithm, along with properties and formulas directly related to this algorithm. 
We shall then go on to explore simplicial S-patches and to develop a general theory 
of differentiation and blossoming for arbitrary S-patches. 

The Pyramid Algorithm and the 5-Patch Blending Functions 

To define the pyramid algorithm formally, we need 

1. a convex domain polygon with ordered vertices Q1 ..... Qn and with bary- 
centric coordinate functions t3 l(u, v) ..... fin (u, vl 

2. an n-sided polygonal array {P;t} of points in the range indexed by a set I d, 
where I = (il ..... i n) is an ordered set of n distinct p-tuples 

The n-sided S-patch S(u,v) of depth d for the control points {P~,} is defined recur- 
sively by the following procedure. 

Pyramid Algorithm for S-Patches 

P~ (u, v ) -  P~, A, e I d 

rl 

= vaP l-1 (u, v) I d-! P~ (u, v) Z [3h (u, , P+'h p e 
h=l 

s ( . , , )  - Po d ( u , , )  . 

(8.5) 

Notice that the intermediate functions P~(u, v) that emerge during this computation 
are the S-patches of depth I for the control points {P~, } indexed by p @ I 1 . It is these 
functions {P~(u,v) } that are depicted by polygonal panels in Figure 8.8. 

S-patches over convex polygonal domains are affine invariant and lie in the con- 
vex hull of their control points. These properties hold because generalized barycen- 
tric coordinate functions sum to one and are nonnegative in the interior and on the 
boundary of their domain polygon. Hence, by induction, the functions {P~(u,v)} 
appearing in the nodes at every level of the pyramid algorithm are affine invariant 
and lie in the convex hull of the control points. 

The boundaries of an S-patch are the images of the boundaries of the domain 
polygon. We are now going to show that these boundary curves are actually the Bez- 
ier curves determined by the boundary control points of the control net. Moreover, 
when the domain parameters are restricted to a boundary of the domain polygon, 
restricting the pyramid algorithm to the corresponding lateral triangular face of the 
pyramid generates the de Casteljau algorithm for this bounding Bezier curve. 

Let Q1 ..... Qn be the vertices of the domain polygon, and consider a specific 
bounding edge QhQh+l. All but two of the barycentric coordinate functions vanish 
along this boundary, since fig = 0 on the edge QhQh+l, g r h,h + 1. Therefore, along 
the boundary QhQh+l only the corresponding boundary control points~the control 
points P ( d _ k ) i h + k i h + l  , k = 0 ..... d--contribute to the boundary of the surface. More- 
over, since the barycentric coordinate functions sum to o n e ,  f l h + l  - 1-  flh along the 
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boundary QhQh+l. Hence along this boundary, the pyramid algorithm for the S-patch 
reduces to de Casteljau's triangle along the lateral face of the pyramid for the bound- 
ary control points, with the edges in the algorithm labeled by flh and 1 - flh. It fol- 
lows that the boundary curves of an S-patch of depth d are just the Bezier curves of 
degree d (reparametrized by setting t -- fib) determined by the boundary control 
points. 

S-patches are not, in general, polynomial patches because the barycentric coor- 
dinates of arbitrary polygons are not polynomial functions. Instead, since the bary- 
centric coordinates of an n-gon are rational functions of degree n - 2, S-patches are 
rational surfaces of parametric degree d(n - 2), where n is the number of sides of the 
domain polygon and d is the depth of the control net, or equivalently the number of 
levels in the pyramid algorithm. (Here we use the barycentric coordinate functions 
constructed in Equation (8.4); different barycentric coordinate functions could give 
higher parametric degrees.) Nevertheless, although an S-patch is a rational surface, it 
follows by our preceding analysis that the boundaries of an S-patch are polynomial 
curves. 

The rational blending functions {S~ (u,v) for an S-patch of depth d can be com- 
puted by either the up recurrence or the down recurrence. In the up recurrence, we 
place a 1 in the position indexed by & ~ I d and a 0 everywhere else at the base of the 
pyramid and run the pyramid algorithm. The function that emerges at the apex of the 
pyramid is S~ (u, v). In the down recurrence we place a 1 at the apex of the pyramid, 
reverse all the arrows, and run the recurrence. The functions that emerge at the base 
of the pyramid are the blending functions {S~ (u, v) }. The S-patch with control points 
{P~,} is given by 

S(u, = 2 (u, v Px . 
A~I d 

Another simple and convenient way to construct the bivariate Bemstein basis 
functions is via discrete convolution (see Section 5.8.2). We can apply this convolu- 
tion technique here as well to generate both explicit and recursive formulas for the S- 
patch blending functions. 

A word first about notation. We are, of course, using the same indexing for our 
blending functions that we use for our control points. Let fll (u, v) ..... fin (u, v) be the 
barycentric coordinates of the domain polygon. Since these barycentric coordinate 
functions are the blending functions for an S-patch of depth 1, 

flk (u, V) - fli k (U, V) k -  1 ..... n. 

Thus the index set I indexes the barycentric coordinate functions. 
Adopting this convention, we now can define an array of blending functions 

{ S~ (u,v) }, ~, e I d, using discrete convolution by setting 

ul ] = . . . . .  fl,(u,v  I | 1 7 4  . . . . .  fl (u,u  l . 
- , r  

d factors 

(8.6) 
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Notice that there are exactly as many blending functions {S~t(u,v)} as there are con- 
trol points {Pp} in a polygonal array of depth d, since both sets are indexed by I d. 
Now it follows by induction from Equation (8.6) that the functions {S~(u,v)} satisfy 
the n-term recurrence 

S~ (., - (., + . . +  (",   S -ilo (", . 

d-1 where, by convention, S~_ik (u,v) - 0 if ~,-  i k ~ I d-1 

Equation (8.7) is equivalent to the down recurrence. Hence the functions 
{S~t(u,v)} constructed from discrete convolution are indeed the blending functions 
for an S-patch of depth d whose domain is the convex polygon with ordered vertices 
Q1 ..... Qn and whose indexing set is/d. Moreover, it follows from Equation (8.6) 

and the definition of discrete convolution that the blending functions for an S-patch 
are given explicitly by the formula 

4(u,v - 2; " , 
k li 1 +...+kni n =~, 

Since S-patches are already rational surfaces we may as well introduce scalar 
weights {w~} and define rational S-patches by setting 

~, S~ (u, v )w2e  z 
R(u, v) - 2eld �9 (8.9) 

E wpS (u,v) 
p e I  d 

There is also a pyramid algorithm for rational S-patches: simply replace the input 
P~(u,v) = PZ at the base of the pyramid by P~(u,v) = (wiP1,w I )  and divide the out- 
put of the algorithm by the weight. One advantage of rational S-patches is that we 
can ignore the common denominator in the barycentric coordinate functions 
fll(S,t) ..... fln(S,t), since this denominator cancels in Equation (8.9). The numera- 

tors al(S,t) . . . . .  Otn(S,t) of the barycentric coordinate functions are polynomials, so 
the pyramid algorithm performs a polynomial computation in Grassmann space and 
then divides by the weight to get the rational surface R(u,v) in affine space. 

Exercises 

1. Give three proofs that ~] S~(u,v) - 1. 
~ I  d 

2. Give an example to show that the blending functions of an S-patch are not 
necessarily linearly independent. 

3. Show that both triangular and tensor product Bezier patches are special 
cases of S-patches. 

4. Let I = {0,1}. Show that 

a. I d - { 0  ..... d}. 
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b. The pyramid algorithm for the points {P i}, i ~ I d, is the de Casteljau 
algorithm for the Bezier curve with control points {P i}. 

5. Let I = {0,1,2}. 

a. Show that 

i. I d - { 0  ..... 2d}. 

ii. The S-patch for the points {Pz} indexed by I d is a polynomial patch 
of degree d. 

b. Implement the pyramid algorithm for points {P Z} indexed by I d. 

6. Implement the pyramid algorithm for points {P Z} indexed by I d, where 

a. I consists of the vertices of the standard 4-simplex 

b. I = {(0,0),(1,0),(2,1),(1,2),(0,1)} 

Compare the pentagonal surfaces generated by these two indexing sets. 

7. For k -- 1 ..... d, let Qk denote a convex polygon with ordered vertices 
Qik 1 . . . . .  Qik m and barycentric coordinate f u n c t i o n s  flikl (U, v) .. . . .  flikm (U, V) 
indexed by a set of p-tuples Ik. Generalize the pyramid algorithm for S- 
patches by replacing I d-l with I 1 (9... ~ Id_ l . 

a. What is the domain of this patch? 

b. How must Equation (8.5) be modified to make the pyramid algorithm 
valid? 

c. Describe the blending functions for this patch. 

8. Let I = {i 1 ..... in} be the vertices of a planar polygon. Show that if we use the 
barycentric coordinate functions in Section 8.1, Exercise 4, then the corre- 
sponding S-patch of depth d with domain I and control points indexed by I d 
reproduces linear functions on I d. 

9. Show that the boundaries of a rational S-patch are the rational Bezier curves 
determined by the mass-points along the boundary of the control net. 

10. Let {S~(h,v)} be a collection of S-patch blending functions, and let {wz} be 
a collection of nonzero scalar weights. Define 

R~ (u, v) = wAS ~ (u, v) , A ~ I d. 
Z w~S~(u,v) 

l.t~I d 

Show that these functions behave like rational S-patch basis functions. In 
particular, show that 

a. ~,ZeI d R~ (u, v) - 1 

b. R(u, v) = ~.,~i  d R~ (u, v)P A 
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8.4.2 Simplicial S-Patches 

A simplicial S-patch is an n-sided S-patch whose index set is (A n-1)d, where An-1 
consists of the n vertices {(1,0 ..... 0) ..... (0 ..... 0,1)} of the standard ( n -  1)-simplex. 
Simplicial S-patches have the following two rather special properties: 

i. Every n-sided S-patch of depth d can be represented as an n-sided simplicial 
S-patch of depth d. 

ii. Every polynomial surface of degree d can be represented as an n-sided sim- 
plicial S-patch of depth d, where the barycentric coordinate functions are 
chosen as in Section 8.1, Exercise 3, and normalized as in Section 8.1, Exer- 
cise 4. 

To establish the first property, observe that 

(An-1)d  _ {(kl . . . . .  kn) l ~.,kj = d}. 
j= l  

Therefore, by Equation (8.8), the blending functions for a simplicial S-patch of 
depth d are given by 

T~ d (H,V) -- ( d )]~k 1 (bl, V) . . .~kn  (lg, V) (8.10) 
kl . . .k n k 1 .... k n 

Let {S~ (u,v)} denote the blending functions for an arbitrary n-sided S-patch of 
depth d with the same domain polygon, but with index set I d, where I = {il ..... in}. 
Then by Equations (8.8) and (8.10), 

S~ (u, v) "- Z (kl'd'kn)/~kl (u, V) ' "  ~ kn (u, v) = Z Zk d'' "kn (U, V). 

kli 1 +'"+kni n =~ kli 1 +'"+knin=A, 

Now suppose that S(u,v) is an arbitrary n-sided S-patch of depth d with control 
points {P2}" Let T(u,v) be the simplicial S-patch of depth d with control points 
{Qkl...kn }, where 

Okl.. .k n = eklil +...+kni n �9 

Then 

T(u,v) = d (u,v)}eZ T, d (l.t, V)Qkl .kn - Z { Z Tk 1" "kn kl . . .k n .. - 
k l+' ' '+kn=d A, eI  d kli l+'''+knin=& 

2e I  d 

Hence the S-patch of depth d with control points {P Z} is equivalent to the simplicial 
S-patch of depth d with control points {Qkl""kn }" Thus by equating specific control 
points in the control net, we can represent any arbitrary S-patch by a simplicial S- 
patch of the same depth. 



464 C H A P T E R 8 Pyramid  Algor i thms  fo r  Mul t i s ided  Bezier  Patches 

Moreover, every polynomial surface P(u,v)  of degree d can be represented as an 
n-sided simplicial S-patch of depth d. To understand how, let Q1 ..... Qn be the verti- 
ces of a convex polygon Q with the barycentric coordinate functions 131 ..... fin 
defined in Section 8.1, Exercise 3, and normalized as in Section 8.1, Exercise 4. By 
Section 8.1, Exercise 4, these barycentric coordinate functions reproduce linear 
functions, so, in particular, 

Let 

(U, V) - fll (U, v)Q 1 +. . .  + fin (u, v)Q n . 

n 

1 -'n - {(u 1 ..... un) lu 1 .. . . .  u n > 0 and ~.,u k = 1}, 
k=l 

and define the affine map /r:l -'n + Q by setting n'(u 1 ..... u n) = UlQ1 + ' " +  unQn. Then 

P(u, v) - P(fll  (u, v)Q 1 +. . .  + fin (u, v)Q n) - (P o/r)(fll (u, v) . . . . .  fin (u, v)) . 

But (P o zr)(u 1 ..... Un) is a polynomial map of degree d in n variables, and, just as in 
the bivariate setting, the Bernstein polynomials 

B d k k n 
k l . . . k  n (//1 . . . . .  blrl ) - -  ( k l d . k n ) l g  l " . I g r t  , k 1 + "" + k n = d ,  

form a basis for these polynomials over F n (see Exercise 2). Hence there are points 

Pk~'"kn such that 

(p o ~)(u 1 . . , U n )  = ~ B d , .  k l . . . k  n (Ul .. . . .  u n  ) P k l . . . k  n . (8.11) 
k 1 +...+k n =d 

It follows that P(u,v)  

= (p o ~)(fll (u, v) ..... fin (u, v)) 

- y_ ,  B d 
--  k l . . . k  n (ill (U, V) .. . . .  fin (u, v))Pkl...kn --  E rkd...kn ( l l ,  V ) P k l . . . k n  " 

k 1 + . . . + k  n = d  k l + . . . + k  n = d  

Therefore, P(u,v)  can be represented as an S-patch of depth d with control points 

P k l  . . .k  n . 

We can exploit Equation (8.11) to find the S-patch control points Pkl...kn of the 
polynomial surface P(u,v)  by evaluating the blossom of P at the vertices of the 
domain polygon. Since Jr is degree 1, the blossom of P o Jr is 

p o/~d _ p o (ff x . . .  x g).  
Y 

d factors 

Let E 1,.. . ,E n be the vertices of A n-1 . Then by the dual functional property of the d- 
variate blossom 

Pk,...k,, - (P ~ Jrd)(E1 ..... E1 ..... En ..... En) = P(n'(E1) ..... /r(E1) ..... Ir(En) .. . . .  ~ ( E n ) ) .  

k; kn ~ #n 
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But zc(E k) = Qk, k - 1 . . . .  , n .  Hence 

Pkl . . .k n - P(Q1 . . . . .  Q1 . . . . .  On . . . . .  a n ) .  (8.12) 

Exercises 

1. Show that the blending functions {Tkd...k~ (u,v)} of a simplicial S-patch are 
composites of the multivariate Bernstein basis functions defined by 

{Bk a, .., - . . . . . .  �9 . .kn(Ul ,  �9 Un)} {Ul,. , U n I | 1 7 4  u n} 
1 

~ r  

d factors 

where uj has the index (0 ..... 0,1,0 ..... 0), and the functions uj - f l j (u ,v ) .  

J 
2. Prove that the Bernstein polynomials 

Bk  d .. d k n ...kn (Ul,. ,U n )  - ( k l . . . kn )U kl ""U n , k 1 + . . .  + k n - d ,  

form a basis for the polynomials of degree d in n variables over F n . (Hint: 
Mimic the trick in Section 5.4 for converting the Bernstein basis into the 
monomial basis.) 

3. Consider a tensor product Bezier surface of bidegree d with control points 
{Plm }- Show that the control points {Qk~ ""k4 } of the equivalent simplicial S- 

patch are given by Qkl...k4 - Pk2 +k4,k3 +k4, k 1 + k 2 + k 3 + k 4 = d. 

4. Let P(u,  v) - (u, v) be the identity map, and let Q1 ..... Qn be the vertices of a 
convex polygon. Using Equation (8.12), show that the S-patch control 
points for P(u,v)  are given by 

klQ 1 + ... + knQ n . 
Pkl " "kn = d 

5. Here we develop a depth elevation algorithm for simplicial S-patches. 

a. Show that 

+ 1 
i. k.  =  d+l 

d + 1 *kl...kj +1...k n 

+ 1 
ii. T~dl...kn (U, v)  - X j  ,rd+l (u, v) d + 1 ~kl" .kj +1...k n 

b. Let {Pkd...k,, } be the control points for a simplicial S-patch T(u,v)  of 
depth d, and let R(u ,v )  be the simplicial S-patch of depth d + 1 with con- 
trol points 

R d + l  ~ h j  d 
hl...hn = P h l . . . h j _ l . . . h n .  

j = l d + l  

Show that R(u ,v )  - S(u,v) .  

(Compare to Section 5.8.2, Exercise 9.) 
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6. In this exercise you will use the generating function for the blending func- 
tions of a simplicial S-patch to derive identities for these S-patch blending 
functions. Define 

Td (u,v, xl ..... x n) - (fll(U,V)Xl + ' " +  fln(U,V)Xn) d. 

a. Show that 

Td(u,v,  Xl ..... X n ) -  ~_, T~(u,v)Xl~l'"x~nn. 
~t,e(An-1) d 

b. Using part (a), derive the following identities: 

~, Tff (u, v) =- I 
Ze(An-l) d 

ii. ~., A k T~ (u, v) = d flk (u, v) k = 1 . . . . .  n 
Ze(An-1) d 

iii. Z ~kl " " ~kj T~ (u, v) = d! /],E(An-1)d (d - j)! flkl (u' v)" " flkJ (u,v) 

iv. 
~_~ '~k 1 ! '" '~'kj ! 

~l,E(An-1)d (/],kl - il )!. . .(Akj - ij )! T~ (u, v) = 

d! il ' 
(d - i 1 . . . . .  ij )! flkl (u 'v) '" f lkJ ~J 

(u,v) 

(Hint: Differentiate the generating function and evaluate at X 1 = . . .  = X n = 1.) 

8.4.3 Differentiating S-Patches 

It is easy to find the first-order partial derivatives of an S-patch. Recall from Equa- 
tion (8.6) that the S-patch blending functions S~t(u,v) can be expressed in terms of 
discrete convolutions of the barycentric coordinate functions: 

{S~(u,v)} = { ~ l ( U , V )  . . . . .  ~n(U,V)}| { ~ l ( U , V )  . . . . .  ~n(U,V)} 
�9 , i  �9 

d factors 

Hence, by Equation (5.21), 

~)/~n (u, v) } @ !/~1 (u, v) ..... fin (u, v) } @..-t~ {/~1 (u, v) ..... /~n (u, v) } ~)u 
d-1 factors 

c}/~n (u, v) } @ {/~1 (u, v) ..... fin (u, v) } @... (~ {/~1 (u, v) ..... /~n (u, v) } 
d-1 factors 



8.4 S-Patches 467 

or equivalently, 

Ofln (u, v) sd_ 1 ) aS~ (u, v) = d 0131(u' v) sd_ 1 (u, v) + " .  + (u, v) 
[aOU 30U Z-il b--s Z-in 

OSff, (u, v) = d( ~ (u, v) sd_ 1 (u, v) Ov ~ ~v Z-il 
+...  + O[J n (u, v) sd_ 1 (u, v)) 

~v 2"-in ) " 

Therefore, the first-order partial derivatives of the S-patch 

S(u, v) = ~., S~ (u, v)P~. 
~ I  d 

are given by 

as u'" =d :c aei u''  
OU peld-1 �9 OU 

 ep+i) 
3S(u'v) = d y~ s#-l(u,v)( ~, O[~i(u'V) pp+il. 

~v pdd-1 kieI ~v 

Algorithmically, these formulas say that to find a first-order partial derivative of 
an S-patch of depth d, we need only take the first-order partial derivative of the bot- 
tom level of the pyramid algorithm, then run the algorithm, and multiply the result 
by d. In fact, it follows by our convolution formulas that we could, if we choose, take 
the first-order partial derivative of any level of the pyramid algorithm, then run the 
algorithm, and multiply the result by d (see Exercise 2). 

of an S-patch most of the functions {Sdo-i(u,v)} vanish Along any boundary 
because most of the barycentric coordinate functions are zero along the boundary. 

r "  

In fact, along the boundary corresponding to the edge QhQh+l of the domain poly- 
gon, [~g = O, g ~ h,h + 1. Let 01ff -1 denote the indices ( d -  1 - k)i h + kih+ 1, k = 0 ..... 
d -  l ~ t h a t  is, the indices corresponding to a boundary of an S-patch of depth d -  1. 
Then, by Equation (8.6), along the boundary corresponding to the edge QhQh+l 

- 1 ( . ,  - 0, p 

Therefore, along this boundary 

3S(u'v) = d ~, S#-'(u,v)( ~, 3fli(u'V) pp+i) 
OU p~Old-1 kiwi ~U 

O[~i(U'V) Pp+i). 
OV peOld-1 i 

It follows then that only the control points indexed by the elements of 3Id-l@ I 
affect the first-order partial derivatives along, or the directional derivatives across, 
this boundary. 
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Higher-order partial derivatives are not much more difficult to compute. To sim- 
plify our notation, let 

/31(u, v) = 1/31(u, v) . . . . .  /3n (u, v) I 

~l(U'V)={ ~l(u'v)~u ~u . . . . .  ~n(U'V)}~u 
and so on for higher-order derivatives. Then since 

~S~(u,v)} _ dO~i(u,v) | ~l(U,V)|174 ~i(u,v), 
OU OU ' d-1 factors �9 

it follows by Equation (5.21) that 

{~2S~(u,v) t _ d~2fll(U, v) | ~l(U,V)|174 ~i(u,v) 
~u2 Ou2 " d-1 factors 

+ d(d - l) ~i~I(U'V~) | ~i~I(U'V) 
bu ~u (~ !ill ( u, V) ..... fin ( tt, v)} (~)... (~) {ill ( t2, V) ..... fin ( tt, v)!, 

d-2 factors 

and similar results hold for the other second-order partial derivatives of the blending 
functions. 

Again this formula has an interesting algorithmic interpretation for differentiat- 
ing S-patches. To find a second-order partial derivative of an S-patch of depth d, we 
can proceed in the following fashion: 

1. Take the second-order partial derivative of one level of the pyramid algo- 
rithm, then run the algorithm, and multiply the result by d. 

2. Take the first-order partial derivative of two different levels of the pyramid 
algorithm, then run the algorithm, and multiply the result by d(d-  1). 

3. Add the results of (1) and (2). 

For higher-order partial derivatives, there are similar formulas and similar algo- 
rithms, involving higher-order derivatives as well as derivatives of more and more 
levels of the pyramid algorithm (see Exercise 4). Since such formulas are rarely nec- 
essary in practice, and since, in any event, these formulas can be derived from the 
product rule, we shall not pursue this topic further here. 

Exercises 

1. Show that the normal of an S-patch of depth d along the boundary corre- 
sponding to the edge QhQh+l of the domain polygon depends only on the 
control points indexed by Old-l+ I. 
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2. Show that to find the first-order partial derivatives of an S-patch of depth d, 
we could, if we choose, take the first-order partial derivative of any level of 
the pyramid algorithm, then run the algorithm, and multiply the result by d. 
Explain why in some cases it might be better to take the derivative of the 
last level of the algorithm, instead of the first level. 

3. Consider an S-patch whose domain polygon has ordered vertices Q1 ..... Qn. 

a. Show that only the control points indexed by the elements of ~I d-2 �9 12 
affect the second-order partial derivatives of the S-patch along the bound- 

ary QhQh+l. 
b. Generalize the result in part (a) to higher-order partial derivatives. 

4. Develop an algorithm for finding the third-order partial derivatives of an S- 
patch. How many different pyramids must you compute? What are the nor- 
malizations for each of these pyramids? 

Blossoming S-Patches 

We know how to define the blossom for a polynomial surface, but an arbitrary S-patch 
is not a polynomial surface. How then should we define the blossom of an S-patch? 
Since S-patches are generalizations of triangular Bezier patches, we will take our cue 
from blossoming for bivariate Bernstein polynomials. 

One way to blossom a triangular Bezier patch is to start with de Casteljau's tet- 
rahedral algorithm and replace the parameters (u,v) by a different parameter pair 
(uk,vk) on each level of the algorithm. Let's try the same device with S-patches of 
depth d. On the kth level of the pyramid algorithm for an S-patch S(u,v), replace the 
parameters (u,v) by the parameter pair (uk,vk). The effect is to replace the values of 
the barycentric coordinate functions fll (u, v) ..... fin (u, v) on the kth level of the algo- 
rithm by the values fll (uk,vk) ..... fln(Uk,Vk). The function that emerges at the apex 
of the pyramid we shall call the blossom of the S-patch S(u,v), and we shall denote 
this blossom by s((ul,Vl) ..... (Ud,Vd))." 

The blossom s((ul,Vl) ..... (Ud,Vd)) of an S-patch S(u,v) of depth d with domain 
polygon Q1 ..... Qn and index set I = (il ..... i n) has the following properties: 

i. Symmetry 

ii. Diagonal 

s ( ( u , v )  . . . . .  ( u , v ) )  = S ( u , v )  

iii. Dual functional 

sIQ1 ..... Ol ..... .....  lil+ + nin 
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Notice that the multiaffine property no longer holds, in general, for the blossom 
of an S-patch because the functions fll (Uk, Vk) ..... fin (Uk, Vk) are not linear functions 
for arbitrary S-patches. The multiaffine property will hold only when n - 3, or when 
n = 4 and the domain is a rectangle with sides parallel to the coordinate axes. We 
can, however, prove the validity of the other properties of the blossom of an S-patch. 

The diagonal property is easiest to establish. Since we blossom the pyramid 
algorithm by replacing the pair (u,v) by the pairs (Uk,Vk), reversing the process and 
replacing the pairs (Uk,V k) by the pair (u,v) certainly retrieves the original surface. 

The dual functional property can be established by the following argument. At 
the jth vertex of the domain polygon, all the barycentric coordinates except the jth 
one vanish~that is, 

f l h (Q j ) -  0 h r j 

=1 h - j .  

Hence if we evaluate the pyramid algorithm for the blossom at 

Q1 . . . . .  Q1 . . . . .  . . . . .  On' 

then on the first k 1 levels fll = 1 and the remaining flh = 0; on the next k 2 levels 
f12 - 1 and the remaining flh - 0 ...; until on the last k n levels fin = 1 and the remain- 
ing flh - 0. Thus tracing through the pyramid algorithm, only the control point with 
index kli 1 +... + kni n survives to the apex of the pyramid. 

The symmetry property requires a bit more work. To establish this property, we 
shall take a different, alternative approach to blossoming for S-patches by develop- 
ing formulas for the blossoms of the blending functions. 

We can easily blossom the blending functions {S~(u,v)}. Recall from Equation 
(8.6) that 

{S~ (u, v) } = {ill (u, v) ..... fin (u, v) } |  | {ill (u, v) ..... fin (u, v) }. 
v -  

d factors 

To blossom the blending functions, we need only replace the pair (u,v) by a different 
pair (Uk,V k) in each factor of the convolution. Thus 

. . . . .  

= {ill (Ul,Vl) ..... f ln(Ul,Vl)}|174 ..... fln(Ud,Vd)}. (S.13) 

d factors 

This substitution is equivalent to replacing the parameters (u,v) by the parameter pair 
(Uk,Vk) on the kth level of the down recurrence for {S~(u,v)}, since, by induction, 
Equation (8.13) is equivalent to 

((Ul. Vl) ..... (u,.  vd)) -  l(Ud. vd s -i  ((Ul. v.) ..... (Ud_l. Vd_l))+ 
d-1 

"'" + fin (Ud, Vd )S•-i n ((Ul, Vl) ..... (Ud-1, Vd-1 ))' 
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d- !  (u, v) - 0 if ~ - i  k e~ I d-1 with the usual convention that sz_i~ 
We can now establish all the properties of the blossom of an S-patch directly 

from Equation (8.13) for the blossom of the blending functions. As before the diago- 
nal property is easy to prove. Moreover, since convolution is commutative, it follows 
immediately from Equation (8.13) that blossoming is symmetric in the parameter 
pairs (Ul, v 1) ..... (Ud, v d). 

To establish the dual functional property for the blending functions, substitute 

Q1 ..... Q1 . . . . .  Qn . . . . .  Qn 

for the parameters (U l ,V l )  . . . . .  (Ud,Vd) in Equation (8.13). Then 

f s~(O~ . . . . .  o t  . . . . .  9~ . . . . .  o~ t-  !~1~o1> . . . . .  ~ O l > } k '  |174 ..... ~.(o.~}k~ 
J 

lq k n d factors 

where the power kj means repeat the corresponding factor kj times. But 

f l k ( Q j ) - O  k r j 

=1 k - j ,  

SO 

s~ (Q1 ..... Q1 ..... Qn . . . . .  Qn ) = 0 k l i 1 + . . .  + kni n r )~ 
,,. . i  �9 j 

kl kn 

= 1 kli 1 + . . .  + kni n - ~ .  

Since 

s(~, v) - y~ s~t (~, v)Pz, 
/],,~I d 

it follows by linearity that 

Is this approach to blossoming useful? Computations with the standard blossom 
are made simple by the multiaffine property. This property is not available for the 
blossom of an S-patch, so actual computations are difficult to perform. Even though 
we have a dual functional property for S-patches, it is unclear how to exploit this 
property to generate change of basis algorithms for S-patches as we did for Bezier 
patches using blossoming. 
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One way to look at the problem is that there are too many terms in the factors of 
the convolution in Equation (8.13); n functions cannot be both linear and indepen- 
dent. But if each of these factors were itself to factor into products of simpler convo- 
lutions, then the computations would simplify. This serendipity is exactly what 
happens for tensor product surfaces, where there are four bilinear barycentric coordi- 
nate functions, but these four functions factor into the convolution of two sets of lin- 
ear functions. So it is such blending functions, generated by convolutions that factor 
into linear factors, that we would like to study. The corresponding surfaces are called 
C-patches. But before we can investigate C-patches, we first need to generalize the 
pyramid algorithm so that it is valid for surfaces other than S-patches. 

Exercises 

1. Consider a tensor product Bezier surface S(u,v) of bidegree d with control 
points {Plm}" Show that for any integer r satisfying 0 < r < min(k,/) 

 m-S / + r ,-r m-r 
2. Show that for an arbitrary S-patch, different choices of k 1 ..... k n in the 

expression 

S/ l ..... . . . . .  Qn  . . . . .  On / 

can generate the same control point {Px}, but that for simplicial S-patches 
the choice of k 1 ..... k n is unique for each control point {P,~}. 

3. Let I = {0,1,2}. 

a. Show that the blossom for a three-sided S-patch with indexing set I d is 
multiaffine. 

b. Conclude that the blossom for a three-sided S-patch with indexing set I d 
is the standard blossom for bivariate polynomials of degree d. 

c. Use the result in part (b) to develop an algorithm to convert three-sided 
S-patches with indexing set I d to triangular Bezier form. 

4. Consider the S-patch in Section 8.4.1, Exercise 7, generated by replacing 
I d-I with/1 ~ " "  @ Id- l ,  where /1 ..... I d are d sets ofp-tuples. 

a. What is the blossom of this S-patch? 

b. What is the dual functional property for this S-patch? 

5. a. Explain how to blossom a rational S-patch. 

b. What is the dual functional property for rational S-patches? 

6. Suppose that S(u,v) is an n-sided S-patch of depth d with blending functions 

{S~ (u, v) } - {~il (u, v) . . . . .  ~i n (u, v) } ( ~ ) . . .  ~ )  {~il (u, v) . . . . .  ~i n (u, v) } 
d factors 
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Let S(uil . . . . .  uin ) be the polynomial generated by replacing the barycentric 
coordinate functions fli 1 (u, v) . . . . .  fli n (u, v) with the parameters Uil . . . . .  ui, ' in 
the pyramid algorithm for S(u ,v ) ,  and let 

{S~ (ui 1 . . . . .  ui n ) } - {Uil . . . . .  ui n } |  | {Uil . . . . .  ui n }. 

d factors 

Then S(Hil . . . . .  blin ) and S~(ui l  . . . . .  ui, ~ ) are polynomials of degree d in n 
variables with polynomial blossoms 

~((Ull ..... Uln) . . . .  ,(Udl . . . . .  Udn) ) and ~J((Ull ..... Uln) . . . . .  (Udl . . . . .  Udn)). 

Show that 

a. 8~((Ul,Vl) ..... (Ud,Vd)) - 

S~ ((flil (ul' vl ) ..... flirt (ul' vl )) ..... (flil (ud' vd ) . . . . .  flin (ud' vd ))) 

b. s ( (u l ,V l )  . . . . .  (Ud,Vd))  - 

S((flil (ul' vl) ..... ~in (ul' vl )) ..... (flil (ud' vd ) . . . . .  ~in (ud' vd ))) 

7. Let S(u ,v )  be a simplicial n-sided S-patch of depth d with domain polygon 
Q1 . . . . .  Qn and control points { Pkd...kn }. 

a  howth t sl , ..... Q1 ..... ..... 

b. Let R ( u , v )  be the simplicial S-patch of depth d + 1 with control points 

Rd+l n hj d 
hl...h n -- ?.1 d + l  PCtl'"hj-l'"hn" 

Using part (a), Exercise 6(b), and the multivariate version of Proposition 
6.5, show that R ( u , v )  = S(u ,v ) .  (Compare to Section 6.5.1, Exercise 14.) 

8.5 Pyramid Patches and the General Pyramid Algorithm 

Consider again the pyramid algorithm in Equation (8.5), where we use the set I to 
index the barycentric coordinate functions. 
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The General Pyramid Algorithm 

1. P~ ( u, v ) = P3. /l ~ I d 

2. P~(u,v) : Zfl i ( . .v)P~+~(. .v)  p E I d-` 
i~I 

3. P(u, v) = p d  (u, v) . (8.14) 

The key step is clearly the recursion in step 2. What do we really need to make 
this step a valid recurrence? 

If we want to guarantee that the surface patch P(u,v) is affine invariant and lies 
in the convex hull of the control points {P~}, then the functions { f l i ( u , v ) } i ~ i  mus t  
sum to one and be nonnegative inside the domain polygon. This constraint is all we 
require. For S-patches, the number of elements in I is required to match the number 
of vertices in the domain polygon. But the recurrence in Equation (8.14) will work 
even without this constraint. 

A pyramid patch, then, or more simply a P-patch, is a surface P(u,v) defined by 
the general pyramid algorithm in Equation (8.14), where the functions {fli(u,v)}i~I 
sum to one and are nonnegative inside some domain polygon. In analogy with S- 
patches, we shall call the functions {fli(u,v)}i~I the barycentric coordinate functions 
for the P-patch. Clearly every S-patch is a P-patch, but P-patches represent other 
surfaces as well. Since the barycentric coordinate functions fli~ (u, v) ..... fli, (u, v) for 
the P-patch need no longer be barycentric coordinates for the domain polygon 
Q1 ..... Qm---in fact, in general, n > m--we may give up the conditions 

flik - 0 on the line QiQi+l, k r i,i + 1. 

flik (Q j)  - 0 j r k 

=1 j = k .  

Eliminating these constraints will cause us to lose some control over the boundaries 
of the P-patch, but this loss is the price we pay for generality. Nevertheless, when the 
barycentric coordinate functions {fli(u,v)}i~I a r e  well chosen, P-patches have other 
compensating features. In Section 8.6, we shall see that if we select the functions 
{fli(U, v) }i~I in an appropriate fashion, there are more efficient recursive evaluation 
algorithms for P-patches than for S-patches. In this case there is also a novel blos- 
soming procedure that provides the dual functionals for P-patches. In Section 8.7, 
we shall show how to define the barycentric coordinate functions { f l i (U,V)} i~ l  tO 

regain control over the boundaries of the patch. 
Most of the formulas we developed for S-patches extend readily to P-patches. 

The blending functions {P~ (u,v) } for a P-patch of depth d can be computed either by 
the up recurrence or by the down recurrence. The P-patch with control points {P~} is 
given by 

P(u, v) - 2 P~ (u, v)P2 . 
~,~I d 
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By introducing scalar weights {w/~ }, we can define rational P-patches by setting 

2 
R(u, v) - / ~ l d  

~, wpP~ (u, v) 
peI d 

There is also a pyramid algorithm for rational P-patches" simply replace the input 
P~(u,v) = PZ at the base of the pyramid by P2(u,v) = (wzPz ,wA)  and divide the out- 
put of the algorithm by the weight. Notice that for rational P-patches the barycentric 
coordinate functions need not even sum to one, since the blending in Equation (8.14) 
occurs in Grassmann space, not in affine space. 

We can compute the blending functions {P~(u,v)} by discrete convolution. Let 
I = {i 1 ..... i n }. Then 

{e~  (u, v) } - ,{flil (u, v) . . . . .  fli n (u, v)} |  | {flil (u, v) . . . . .  fli n (u, v) },. (8.15) 
, r  

d factors 

It follows by induction from Equation (8.15) that the functions {P~(u,v)} satisfy the 
n-term recurrence 

(8.16) 

with the usual convention that pal--) (u, v) = 0 if A . - i  k ~ I d-1. 
i t ,  t u r k  

Equation (8.16) is equivalent to the down recurrence for P-patches. Hence the 
functions {P~(u,v)} constructed from discrete convolution are indeed the blending 
functions for the P-patch of depth d whose indexing set is/d. Moreover, it follows 
from the definition of discrete convolution that the blending functions for a P-patch 
are given explicitly by the formula 

d k 1 k n 
P~(tt, v) - 2 (kl .... kn)flil ( u , v ) " ' f l i  n (u,v)" (8.17) 

kli 1 +" .+knin=A, 

All of the preceding formulas for P-patches are already familiar to us from S- 
patches, but there are other properties of S-patches that do not extend so readily to P- 
patches. 

The boundaries of a P-patch are the images of the boundaries of its domain 
polygon. However, unlike an S-patch, the boundaries of a P-patch are not, in general, 
the Bezier curves generated by the control points indexed by ( d -  k)i r + kir+l, 
k = 0 ..... d. In fact, since the number of elements in I need no longer match the num- 
ber of vertices in the domain polygon, we should no longer expect points indexed in 
this fashion to have any special relation to a boundary of the patch. This lack of con- 
trol over the boundary curves is one thing we lose when we generalize from S- 
patches to P-patches. We shall see how to overcome this problem in Section 8.7, 
where we discuss toric Bezier patches. 

What about blossoming for P-patches? We can certainly try to blossom a P-patch 
just like we blossom an S-patch, by replacing the parameters (u,v) by a different 
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parameter pair (Uk, Vk) on each level of the pyramid algorithm. This function would be 
symmetric and satisfy the diagonal property just like the blossom of an S-patch, but, 
in general, the dual functional property would no longer hold because the dual func- 
tional property is a consequence of the identity 

fli k (Q j)  - 0 j :/: k 

=1 j = k ,  

which is no longer valid for arbitrary P-patches. We shall see, however, in the next sec- 
tion that if we choose the functions flil (u,v) ..... flin (u,v) carefully, then there is an 
alternative blossoming procedure that does provide the dual functionals for P-patches, 
and this blossoming for P-patches is simpler than the blossoming for S-patches with 
the same domain and depth. 

Exercises 

1. For k -  1 ..... d, let Qk denote a convex polygon and let #ikl(bl,V),...,#ikm (U,V) 
be a collection of barycentric coordinate functions for Qk indexed by a set 
of p-tuples I k. Generalize the pyramid algorithm for P-patches by replacing 
I d-t with I 1 @... @ ld_ 1 . 

a. What is the domain of this patch? 

b. How must Equation (8.14) be modified to make the pyramid algorithm 
valid? 

c. Describe the blending functions for this patch. 

(Compare to Section 8.4.1, Exercise 7.) 

2. Show that the partial derivative with respect to u or v of a pyramid patch of 
depth d can be computed by differentiating any one level of the pyramid 
algorithm and multiplying the result by d. Explain how to extend this result 
to second-order partial derivatives. 

8.6 C-Patches 

C-patches are convolutions of S-patches--or more accurately a C-patch is a P- 
patch whose barycentric coordinate functions are generated by convolution from 
the barycentric coordinate functions of several S-patches. The C in C-patch stands 
for convolution. 

Since we are going to use several S-patches at the same time, we will indicate 
the kth S-patch by the subscript k. To fix our notation, let (Qkl ..... Qknk ) be the 
ordered vertices of the domain polygon Qk with barycentric coordinate functions 

"sdk(u,v flkl(U,V) .... .  flknk (u,v), and let ! ~,/:, )} be the corresponding S-patch blending 
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functions indexed by the set of p-tuples 14 ,  where I k = (ikl ..... ikn k ). Recall that 
fl. kj(U, V) - flikj(U,V), and let  fllk(U,V) = (flik 1 (U,V) . . . . .  flikn k (U, V)). Then with this nota- 
tion 

, 4 .  i 1 .  

(u,v) l - & (u,v) | . | & (u,v) - (u, v) .  
- - K  

v 

d k factors 

To construct C-patch barycentric coordinate functions from S-patch barycentric 
coordinate functions, let I - I 1 @...  @ I m and define 

flI(U,V) -- fli 1 (U,V) | 1 7 4  flIm (U,V). (8.18) 

Since the functions fllk (u,v) are barycentric coordinates, these functions sum to 
one; therefore, the functions fli(u, v) also sum to one (see Exercise 1). Moreover, the 
functions fll(U,V) are nonnegative over the domain polygon Q = Q1 ~ ' " n Q m .  
Now let d = (d 1 ..... dm).  Then the C-patch blending functions of depth d are defined 
by 

( u , v )  - ( u , v )  - ' ( " , v )  | . . . | m ( u , v )  - ( u ' v )  | " " | ( " ' v )  

d m where ~ ~ I d =  I dl ~) . . . (~)I  m . Notice that if d 1 = . . . -  d m, then the C-patch of 
depth d is a P-patch of depth d 1 with barycentric coordinate functions fli(u, v). 

The preceding construction is rather abstract, so before proceeding any further 
let us take a look at some concrete examples. 

EXAMPLE 
8.1 

Tensor Product Bezier Patches 

Recall that the blending functions for a tensor product Bezier surface can be 
generated by convolving the blending functions for Bezier curves. Thus for 
a tensor product Bezier patch, the analogue of Equation (8.18) is 

{ (1 -  u ) ( 1 -  v), u ( 1 -  v),(1 - u)v, uv} = { ( 1 -  u),u} | { ( 1 -  v),v} 
{ (0 ,0) ,  (1,0), (0,1), (1,1) } - { ( 0 , 0 ) , ( 1 , 0 ) } @ {  ( 0 , 0 ) , ( 0 , 1 ) } ,  

where beneath each term we have indicated the indexing assigned to each 
d2 (u,v) factor. The S-patch blending functions S]~ 0 (u,v),So& 

are univariate Bernstein basis functions, since 

{S~LIo(U,V)}- ! ( 1 - u ) , u } | 1 7 4  : {B~I (u)} 
dl 

d2 {S0;t2 (u, v) } = ! (1 - v), v} |  | { (1 - v), v! = {B (v) }, 
Y 

d2 
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and the C-patch blending functions C~122 (u, v) are the tensor product Bern- 
stein basis functions 

J - l 

If d 1 = d 2, then the C-patch corresponding to the blending functions 

{C~1/],2 (u, v) } 

is also an S-patch because the functions { ( I - u ) ( 1 - v ) , u ( 1 - v ) , ( 1 - u ) v ,  uv} 
are barycentric coordinates for the unit square (see Figure 8.9). 

EXAMPLE 
8.2 

A Pentagonal C-Patch 

Consider the barycentric coordinate functions 

([3ij(u,v)) = ((2 - u)/2,u/2) |  ((2 - v) /2 ,v /2) |  ( (3 -  u -  v)/3,u/3,v/3) 

I = ((0,0),(1,0)) ~ ((0,0),(0,1)) ~ ((0,0),(1,0),(0,1))(8.19) 

where beneath each term on the fight-hand side we have indicated the 
indexing assigned to the factor. By construction 

I -  I 
Y 

dl 

{sd,22~ (u,v)} = ! ( 2 - v ) / 2 , v / 2 } | 1 7 4  = {Bd,2& (v/2)} 
Y 

d2 
are univariate Bernstein basis functions, and 

{sd3,A 4 ~  (u,v)} = ! (3-  u -  v)/3,u/3,v/3} |174 { (3-  u -  v)/3,u/3,v/3! 
J3 

= {B~,/~4 (u/3,v/3)} 

are bivariate Bernstein basis functions. Hence 

{C~ (u,v) } - {n~l,o (U / 2) } l~ {nd?/~2 (v / 2) } (~ {n~,~,4 (u / 3,v / 3) } . 

The indexing set I for the functions {flij(u,v)} is the Minkowski sum of the 
indexing sets of the three factors (Figure 8.10), and the domain polygon for 
the C-patch is the intersection of the domains of the three S-patches (Figure 
8.11). Notice that, even if d 1 = d 2 = d 3, since there are eight functions 
{flij(u,v) }, the corresponding C-patches are not S-patches for the domain 
pentagon, which has only five barycentric coordinate functions. 
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(o,1) (],1) (o,1) 

= = = (D 
(o,o) (;,o) 

(o,o) (],o) (o,o) 

Figure 8.9 The unit square is the Minkowski sum of a horizontal line and a vertical line. Therefore, a ten- 
sor product Bezier patch is a C-patch generated by convolving the univariate Bernstein basis 
functions for the two lines. 

( 0 , 2 )  

(0,1) 

,qw 

(o,o) 

(1,2) 
A 

(o,]) 

(1,1) = (~0)  

(070) (1.0) 

w w 

(1,0) (2,0) 

(0,1) 

(],o) 

(o,o) 

Figure 8.10 The indexing set / for the functions (j~o{u,v)) in Example 8.2 is the set of lattice points in the 
pentagon on the left, which is the Minkowski sum of the lattice points of the triangle and 
the two lines on the right. 

EXAMPLE 
8.3 

A Hexagonal C-Patch 

Consider the functions 

(flij(u,v)) - ((2 - u)/2,u/2)|  ((2 - v)/2,v/2)|  ((1 + u - v ) / 2 , ( 1 -  u + v)/2)  

I = ((0,0),(1,0)) (~ ((0,0),(0,I)) ~ ((0,0),(i,i)) (8.20) 

where beneath each term on the right-hand side we have indicated the 
indexing assigned to the factor. Here the C-patch blending functions are 
given by 
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The indexing set I for the barycentric coordinate functions along with the 
domain hexagon for the C-patch are illustrated in Figure 8.12. Again even if 
d I = d 2 = d 3, since there are seven functions {flij(u,v)}, the corresponding 
C-patches are not S-patches for the domain hexagon, which has only six 
barycentric coordinate functions. 

(0,2) (1,2) 

2 - v = O  

3 - u - v = O  

u=O 

- u = O  1 
u 0 

(0,0) (2,0) 

(0,3) 

(0,2) 

I.=ofl' u- =o 
/ 2 u ~  

(0,0) (2,0) (3,0) 

Figure 8.11 The domain for the C-patch in Example 8.2 is the pentagon on the left, which is the intersec- 
tion of the triangle and the square bounded by the four lines on the right. 

(1,2)_ 2 - u = O  _(2,2) 

l + u  2 - u =  

(O,1) I ( 1 , 1 ) .  ~ - 

u=O 1 l - u +  U 
, q w  

(0, O) u = 0 (1, O) 

(0,1) 

�9 : �9 �9 

(0,0) (1,0) 

(0,0) 
,; (o,o) 

Figure 8.12 The indexing set / for the barycentric coordinate functions (rio{u,v)) in Example 8.3 is the set 
of lattice points in the hexagon on the left, which is the Minkowski sum of the lattice points 
of the three lines on the right. The domain for the C-patch is the hexagon on the left, which 
is bounded by the three pairs of lines that bound the domains for the barycentric coordinate 
functions of the three S-patches (unbounded rectangles) that generate the C-patch. 
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The domains of the S-patches in the preceding three examples were carefully 
chosen so that their intersection would produce interesting domains for the corre- 
sponding C-patches. The indexing on their barycentric coordinate functions, how- 
ever, is somewhat arbitrary and was chosen so that the index sets for the C-patches 
would coincide with lattice points inside their domains. Nevertheless, this indexing 
will be important in Section 8.7, when we study toric Bezier patches. 

C-patches are special kinds of P-patches when d 1 . . . . .  d m, so the general pyr- 
amid algorithm in Equation (8.14) is a recursive evaluation algorithm for these C- 
patches. Recall, however, that tensor product Bezier patches have two recursive eval- 
uation algorithms: a bilinear pyramid algorithm (Figures 5.41 and 5.42) and a two- 
tier de Casteljau algorithm (Figure 5.40). The bilinear pyramid algorithm is the S- 
patch evaluation algorithm for tensor product control nets. But where does the two- 
tier evaluation algorithm come from? 

The two-tier de Casteljau algorithm arises because the bilinear barycentric coor- 
dinates for the square factor into linear factors via discrete convolution: 

{ (1 - u)(1 - v), u(1 - v),(1 - u)v, uv} = {(1 - u),u} | { (1 - v),v}. 

Hence the tensor product blending functions also factor in a similar fashion: 

{Bd}'d2 (u,v)} - { (1- u),u} dl | { (1- v),v}d2 - {Bd' (u)} | {BJ2 (v)}, 

where powers denote repeated convolution. Therefore, we can replace bilinear 
blends in (u,v) by linear blends in u followed by linear blends in v. This procedure is 
exactly the two-tier de Casteljau evaluation algorithm for tensor product Bezier 
patches. Since the barycentric coordinate functions for a C-patch factor via discrete 
convolution, C-patches also have a multitier recursive evaluation algorithm. 

Multitier Evaluation Algorithm for C-Patches 

Initialize PA, (u, v ) -  PA, for ~ s I d - I dl (~... (~ I dm. 

For k = 1 ..... m 

ldk+l (~. (~ dm For each ~ ~ "k+l "" I m  " 

dk ~ , ( u , v ) -  Pr 0 ~ Ik 

nk 
P~+p(U,V) - ~ ~ikh (U, l -1  dk-l v)P~+P+ik h (U,V) p E I k (8.21) 

h=l 

v) - P~ dk (u, v) e (u, 

Set C(u,v) - pgm (tt, v). 

The input to this algorithm is a collection of control points {P~,} indexed by 

dm I d = I d l ( ~ . . . ~ I  m �9 
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The output is a point on the C-patch with blending functions {C~ (u,v)}. Each inner 
loop of this algorithm is the S-patch pyramid algorithm for the points {P~+rl(u,v)}, 
where ~ is a fixed value in 

Idk+l ~). ~ dm 
k+l "" Im 

I dk, so the out ut P (u, v) of each inner loop is the S-patch for the and 7/varies over, k P 
points {P~+o(u,v)}. Since, by assumption, the C-patch basis functions are convolu- 
tions of the S-patch basis functions, this algorithm generates the C-patch for the con- 
trol points {Pz}. 

The formal proof that the multitier evaluation algorithm generates the C-patch 
proceeds by induction on m. Suppose that m - 2. On the first pass, the algorithm 
computes the values 

Zl ~idl v)eAl +2~2 ~2 E �9 

On the second pass, the algorithm computes the surface 

C(u,v) = Z S~2(u, (u,v) ~2~1d2 v)P~2 

= Z S~(u,v) Z 
,;t,2 eI d2 ,;t,1 eI dl 

S~  ( u, v )P/],I +~2 

Z 
/]'1 +/]'2 ell dl ~ ld2 

C~ +z2 (u, v)Pz~ +z2 , 

which is indeed the C-patch for the points {P~,}, A, e I d = I dl ~) I2 d2. It follows then 
by induction on m that the multitier algorithm is an evaluation algorithm for C- 
patches (Exercise 8). 

We observed in Section 5.8.1 that the two-tier de Casteljau evaluation algorithm 
for tensor product Bezier patches is a good deal more efficient than the bilinear pyr- 
amid algorithm. Similarly, for C-patches the multitier evaluation algorithm is much 
more efficient than the general P-patch pyramid algorithm. For example, consider 
the pentagonal C-patch of Example 8.2 for d 1 = d 2 = d 3. The standard P-patch pyra- 
mid algorithm for this pentagonal patch is an eight-term recurrence over a five-sided 
domain. We can now replace this eight-term recurrence by two sets of two-term 
Bemstein recurrences and one set of three-term Bemstein recurrences because 

= ((2 - u) / 2,u / 2) dl | ((2 - v) / 2, v / 2) dl | ((3 - u - v) / 3,u / 3, v / 3) dl, 

where powers denote repeated convolution. So this pentagonal C-patch has an alter- 
native evaluation algorithm consisting sequentially of two tiers of univariate de 
Casteljau algorithms and one tier of the bivariate tetrahedral algorithm. 
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Blossoming also works quite nicely for C-patches. Recall that simply replacing 
the parameters (u,v) by a different parameter pair (uk,vk) on each level of the P-patch 
pyramid algorithm does not, in general, give rise to the dual functionals for P- 
patches. But for C-patches, something wonderful happens: there is a new way to 
blossom. 

We can blossom a tensor product patch from the two-tier de Casteljau evaluation 
algorithm by blossoming the lower tiers in the u parameter and the upper tier in the v 
parameter. Let's try an analogous tactic with the multitier evaluation algorithm for 
C-patches. That is, blossom the multitier algorithm for C-patches by blossoming the 
S-patch pyramid algorithms for the different tiers independently. The effect would be 
to replace the values of the barycentric coordinate functions flkl (u,v) .... ,flknk (u,v) 
on the jth level where they appear in the corresponding S-patch algorithm by the val- 
ues flkl (Ukj,Vkj) ..... flkn~ (Ukj,Vkj). We call the function generated in this fashion the 
blossom of the C-patch C(u,v) and denote this blossom by 

C((Ul 1, VII) ..... (Uldl, Vld 1 ) ..... (Uml, Vml ) . . . . .  (Umdm , Vmdm ))" 

Equivalently, we can blossom the basis functions of the C-patch 

by replacing flkl(U,V) ..... flkn~ (u,v) by flkl(Ukj,Vkj) ..... flknk (Ukj,Vkj) injth factor of 
fl~k(u,v). Evidently then 

{C~((Ull,Vll) ..... (Uldl,Vldl) ..... (Uml,Vml) ..... (Umdm,Vmdm))} 

{ dl((Ull,Vll) .... (Uldl Vldl))}|174 (Umdm,Vmdm))}" -- S~l , , ., 

Thus we blossom the C-patch blending functions by blossoming, independently, the 
S-patch blending functions that define them. 

The blossom c((Ull, vii) ..... (Uldl, Vld 1 ) . . . . .  (Uml ,  Vml )  . . . . .  (Umd m , Vmd m )) of a C- 
patch C(u,v) of depth d has the following properties: 

i. Multisymmetry 

ii. Diagonal 

C((Ull, Vll) ..... (Uldl, Vldl) .... ,(Uml, Vml ) . . . . .  (Umdm , Vmdm )) 

= C((Ulo.1 (1), Vlo.1 (1)) ..... (Ult71(dl),Vl~l(d1)) ..... 

(UmGm (1), Vmcrm (1)) ..... (Um~ m (dm ), Vmcrm (dm ) )) 

c((u, v) . . . . .  (u, v)) = C(u, v) 
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iii. Dual functional 

c 011 . . . . .  O i l  . . . . .  ,Oln 1 . . . . .  Oln 1 . . . . .  Oml . . . . .  Oml  . . . . .  Omnm"'~"Omnm [I - P2' 

~11 )t;n 1 )tml )tmn m J 

where /1, =/1,1 +"" +/I'm and A, k = 7klikl +"" + 7knk in~" 

The diagonal property is immediate from the definition of the blossom, and the 
multisymmetry property follows from the symmetry of the blossom for S-patches. 
The dual functional property is also a consequence of the dual functional property 
for S-patches because 

"x) 

Q l l  . . . . .  O l l  . . . . .  Qln  . . . . .  0 1 n l  . . . . .  Qml . . . . .  Oml  . . . . .  Qmnm ..... Om mlt 
~1 r?n, rml rLm JJ 

Qlnl 01n  Qml Qmnm . . . . .  Omnm]t - SA, 1 9 1 1  ..... Qll . . . . . . . . . . . . . . . . . .  
~11 ~/ln 1 sd~m ~"ml ~'mn m JJ  

SO 

c~ 91 . . . . .  ' / 1 Qll ..... Qlnl ..... Qlnl, . , O m l  . . . . .  Qml . . . .  Q m n m  . . . . .  Qmnm = 1 
~11 ~ ~t;n 1 )tml " ~tmn m ) 

if and only if /1, = ~1 +"" + Am where A, k = ~/klikl +"" + ~"kn k ink. 
In general, the blossom of a C-patch, like the blossom of an S-patch, is not mul- 

tiaffine, but if any factor flIk (u, v) consists entirely of linear functions, then the blos- 
som of the C-patch will be multiaffine in the corresponding blossom parameters 
because each of these parameters in the blossom will appear only to the first power. 
Thus if the C-patch is the convolution of S-patches that represent Bezier curves or 
triangular Bezier patches, the blossom of the C-patch will be multiaffine in every 
parameter pair. For example, the blossom of the pentagonal patch in Example 8.2 is 
multiaffine in all its parameters and so too is the blossom of the hexagonal patch in 
Example 8.3. 

To summarize: two good things happen for C-patches: there is a multitier evalua- 
tion algorithm, and the dual functionals can be constructed by blossoming this algo- 
rithm. Moreover, if all the S-patches in the convolution for the C-patch are standard 
Bezier patches (or Bezier curves), then the blossom is multiaffine in all its parameters. 

In fact, even if the S-patch barycentric coordinate functions are not normalized 
to sum to one, as long as the blending functions for the C-patch sum to one, all the 
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results in this section including the multitier evaluation algorithm remain valid. 
Blossoming the multitier evaluation algorithm still provides the dual functionals for 
the C-patch. The proofs are exactly the same (see Exercise 11). We shall make use of 
these observations in Section 8.7.11, when we blossom toric Bezier C-patches. 

As usual, we can construct rational C-patches by introducing scalar weights 
{wz} and setting 

~, CJ (u, v)wzP Z 
R(u, v) = h e l d  

Z wpC~(u,v) 
p e l  d 

There is also a multitier evaluation algorithm for rational C-patches: simply replace 
the input P~(u,v) - PZ at the base of the algorithm by P~(u,v) -(wzPz,w ~) and 
divide the output of the algorithm by the weight. Since the blending in Equation 
(8.21) now occurs in Grassmann space, the blending functions for a rational C-patch 
need not even sum to one. Therefore, we can generate the barycentric coordinate 
functions for a rational C-patch by convolving the unnormalized barycentric coordi- 
nate functions of rational S-patches. Blossoming still provides the dual functionals 
for rational C-patches constructed in this fashion (see Exercise 10). 

To get a better feel for the relative advantages and disadvantages of S-patches 
and C-patches, we close with a comparison (Table 8.2) of the hexagonal S-patch and 
hexagonal C-patch, where d I = d 2 = d 3, for the domain in Example 8.3. 

From this comparison we see that while C-patches have many fine properties, 
they have one embarrassing deficiency: the boundary of a C-patch is not easy to deter- 
mine. This lack of control over the boundary makes it hard to use arbitrary C-patches 
in practice to fill n-sided holes. Toric Bezier patches overcome this difficulty, so it is 
to these patches that we next turn our attention. Nevertheless, in the study of toric 
Bezier patches we shall need the technology of C-patches, since the methods applied 
here are required to effectively blossom toric Bezier schemes (see Section 8.7.11). 

Table 8.2 Comparison of hexagonal S-patches and hexagonal C-patches. 

Property Hexagonal S-Patch Hexagonal C-Patch 

Type rational 

Parametric degree 4 x depth 
Number of barycentric 
coordinate functions 6 

Evaluation pyramid algorithm 

Blossom symmetric, not multiaffine 

Boundaries Bezier curves determined by 
boundary control points 

polynomial 

3 x depth 

7 

multitier algorithm 

multisymmetric, 
multiaffine 

unknown 
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Exercises 

1. Let A(u,v)  = {Ai(u,v) l i e I},  B(u,v)  - {Bj(u,v)  l j e J}, and 
C(u,v) = A(u,v)  | B(u, v). Show that 

a. ZCk(u,v)  = { za i (u ,v ) }  { ZBj(u,v)}  
k~I(~J i~l j~J  

b. Z A i ( u , v  ) - Z B j ( u , v ) -  1 :=~ ~,Ck(U,V ) =- 1 
i~l j~J  k~I(~J 

2. Implement both the pyramid algorithm and the multitier evaluation algo- 
rithm for the pentagonal C-patch in Example 8.2 with d 1 = d 2 = d 3. Which 
algorithm do you prefer? Why? Experiment with pentagonal C-patches of 
different depths. Determine how changing the location of the control points 
affects the shape of the surface. 

3. Show that a surface whose barycentric coordinate functions are generated 
by convolution from the barycentric coordinate functions of several C- 
patches is a C-patch. 

4. Compute the blossom of the basis functions for the C-patches constructed in 
Examples 8.2 and 8.3 with d 1 = d 2 -- d 3 = 2. 

5. Consider the functions defined by 

(~ij(u, v)) - ((1 + u - v) / 2,(1 - u + v) / 2) | ((3 - u - v) / 3,u / 3, v ] 3) 

I = ((0, 0), (1,1)) �9 ((0, 0), (1, 0), (0,1)) 

where beneath each term on the right-hand side we have indicated the 
indexing assigned to the factor. 

a. How many functions are in the set {~ij(u,v)}? What is their degree? 

b. Compute explicit expressions for the functions {f l6(u,v)} .  

c. Show that the functions {fl(i(u, v) } generate a pentagonal C-patch. 

d. Compute the blossom of the basis functions for this C-patch of depth 
d = (2,2). 

e. How does this pentagonal patch differ from the pentagonal patch in 
Example 8.2? 

6. Consider the functions defined by 

(~ij(u, v)) - ((1 + u - v) / 3,(2 - u)/3 ,  v /3 )  | ((1- u + v ) / 3 , u / 3 , ( 2  - v)/3) 

I - ((0, 0), (1, 0), (0,1)) @ ((0, 0), (0,1), (1,1)) 

where beneath each term on the right-hand side we have indicated the 
indexing assigned to the factor. 

a. How many functions are in the set {,6ij(u,v)}? What is their degree? 

b. Compute explicit expressions for the functions {~ij(u, v) }. 
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c. Show that the functions {flij(u, v) } generate a hexagonal C-patch. 

d. Compute the blossom of the basis functions for this C-patch of depth 
d = (2,2). 

e. How does this hexagonal patch differ from the hexagonal patch in Exam- 
ple 8.3? 

7. Consider the hexagonal domain in Figure 8.12. Which algorithm is more 
efficient: 

a. the pyramid algorithm for the S-patch with this hexagonal domain or 

b. the multitier algorithm for the C-patch with this hexagonal domain? 

Justify your answer. 

8. Complete the proof of the validity of the multitier evaluation algorithm for 
C-patches by completing the inductive argument. 

9. Prove that the multitier evaluation algorithm is valid for rational C-patches. 

10. Prove that blossoming the multitier evaluation algorithm provides the dual 
functionals for rational C-patches. 

11. Let ill(U, v) - fill (u, v) |  | ~I m (U, V) be the barycentric coordinate func- 
tions for a C-patch. Suppose that the functions in the set {C~(u,v)}sum to 
one, and that the functions in the sets flI~ (u, v) satisfy 

flkj(Qkl) = 0 j ~1 

=1 j - 1  
but are not normalized to sum to one. Show that 

a. The multitier evaluation algorithm is still valid. 

b. Blossoming the multitier evaluation algorithm still provides the dual 
functionals for the C-patch. 

12. Suppose that I = 11 ~ 12 and that ill(U, V) = fill (U, V) @ fli  2 (U, V) . Let 
d = (d 1,d2) with d 2 > dl. Consider the C-patch with control points 
{P&}, /~ ~ I d :  Idl ~ Id2. 

a. Show that this C-patch has the following evaluation algorithm" 

i. For each ~ s ldo 2-dl, run the standard pyramid algorithm with the 
A , ,  

initial data 

g&01 (u, v) - PA, 1 +~, /]'1 E I dl 

and barycentric coordinate functions {fli(u,v)}. The output is a col- 
lection of values 

P~(u,v), r E I d2-dl. 
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ii. Run the standard pyramid algorithm with the initial data 

P~(u,v)- P~(u,v), ~ E I d2-dl 

computed in step (i) and barycentric coordinate functions [ill2 (u, v) }. 

b. Generalize the result in part (a) to 1 - 11 G ... (91 m and d = (d 1 ..... din). 

13. Show that the first-order partial derivative with respect to u or v of a C-patch 
of depth d = (d 1 ..... din) can be computed by summing the following m terms. 
For each k = 1 ..... m, take the first-order partial derivative with respect to u or 
v of any one level in the kth tier of the multitier evaluation algorithm, then 
run the entire evaluation algorithm, and multiply the result by d k. Explain 
how to apply similar techniques to calculate the second-order partial deriva- 
tives of a C-patch. 

8.7 Toric Bezier Patches 

Toric Bezier patches are pyramid patches defined by special indexing sets and spe- 
cial barycentric coordinate functions. These indexing sets and barycentric coordinate 
functions are chosen to overcome some of the deficiencies we have observed in arbi- 
trary P-patches and in general C-patches. 

Blossoming the pyramid algorithm does not provide the dual functionals for 
arbitrary pyramid patches. C-patches overcome this deficiency by blossoming the 
multitier evaluation algorithm, but C-patches have two other serious shortcomings. 
First, as we observed in the previous section, the boundary of a C-patch is not easy 
to determine. More serious, but perhaps more subtle, we do not even know what the 
boundary control points are for a C-patch. 

Consider again the C-patches in Examples 8.2 and 8.3. In both cases, the points 
in the indexing set lie inside or on the boundary of the domain polygon. We have 
carefully chosen the indexing sets for the S-patches that generate these C-patches to 
force this concurrence. This juxtaposition creates the illusion that the boundary con- 
trol points of the C-patch are the points whose indices lie on the boundaries of the 
domain polygon. But, in general, there is no relationship at all between the domain 
polygon of a C-patch and its indexing set. We could easily have chosen a different 
indexing for the S-patches, without altering the domain polygon of the C-patch. In 
fact, the domain of a C-patch need not have the same shape as the convex hull of its 
indexing set. So what exactly are the boundary control points of a C-patch? 

When the index set of a C-patch consists of points in the plane, there are gener- 
ally two distinct polygons associated with the C-patch: the domain polygon and the 
convex hull of the index set. The domain polygon specifies the geometry of the 
patch; the index set describes the topology of the control structure. If these two sets 
were to coincide, we might be better able to control the boundary of the patch. 

For toric Bezier patches these two sets do coincide. So we can talk about the 
boundary control points of a toric Bezier patch. Toric Bezier patches overcome both 
of the problems we encountered with C-patches: their domain coincides with the 
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convex hull of their indexing set, and their boundaries are the Bezier curves deter- 
mined by their boundary control points. 

Moreover, unlike general pyramid patches, blossoming the pyramid algorithm 
provides the dual functionals for most of the blending functions of a toric Bezier 
patch. In addition, many toric Bezier patches are also C-patches, so these patches 
inherit the multitier evaluation algorithm and the blossoming procedure genetic to 
C-patches. 

To define toric Bezier patches, we need to go back to where we began this chap- 
ter and to reexamine what we mean both by polygonal arrays of control points and 
by barycentric coordinate functions. We begin, then, with a discussion of lattice 
polygons and barycentric coordinates for lattice polygons. We will then apply these 
new kinds of indexing sets and new types of barycentric coordinate functions to 
build multisided toric Bezier patches based on techniques already familiar to us from 
S-patches and C-patches. 

Exercise 

1. Give an example to show that the domain of a C-patch indexed by an array 
of 2-tuples need not have the same shape as the convex hull of its indexing 
set. 

8.7.1 Lattice Polygons 

What is a polygonal array of points? We have asked this question once before, in 
Section 8.2. There our answer was that a polygonal array of points is any collection 
of points indexed by a set of the form I d, where I is an ordered set of n distinct p- 
tuples. This definition was certainly useful from the perspective of S-patches. But 
look again at Figures 8.10 and 8.12. The points in these figures surely look like they 
form pentagonal and hexagonal arrays. Yet these configurations do not conform with 
the definition of pentagonal and hexagonal arrays in Section 8.2. 

These arrangements of points appear polygonal because their convex hulls are 
polygons. So evidently there is another possible definition of a polygonal array: An 
array is polygonal if it is indexed by a finite set of points in the plane. The shape of 
the array is the shape of the convex hull of the indexing set. A boundary of the array 
consists of the points in the array corresponding to the indices on a boundary of the 
convex hull of the index set. If we adopt these alternative definitions, then the control 
points for the C-patches in Examples 8.2 and 8.3 form pentagonal and hexagonal 
arrays. 

To construct barycentric coordinates for these indexing sets, we cannot, as it 
happens, choose just any finite collection of points in the plane for our indexing set. 
Instead we must restrict ourselves to lattice polygons. A lattice polygon is the inter- 
section of the convex hull of a set of points having integer coordinates with the lat- 
tice Z x Z. Equivalently, a lattice polygon consists of all the points with integer 
coordinates inside or on the boundary of a convex polygon whose vertices have inte- 
ger coordinates. The convex hull of a lattice polygon I is often called the Newton 
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po l ygon  of I. We shall see in Section 8.7.2 that the elements of the index set are used 
as exponents to construct barycentric coordinate functions. So we choose a lattice 
polygon as our index set to ensure that these exponents are always integers. 

The arrays of points in Figures 8.10 and 8.12 are lattice polygons, and their 
Newton polygons are the domains for the corresponding C-patches in Examples 8.2 
and 8.3. Other important examples are easy to construct. Let i,j,d denote nonnegative 
integers. Then 

I d - {(i,j) 10 < i,j < d} 

is a lattice rectangle and is the indexing set for a (d + 1) x (d + 1) rectangular array 
{Pij }--that is, for the control points of a tensor product surface. Similarly, 

I d = {(i,j) 10 < i + j  < d} 

is a lattice triangle and is the indexing set for an order d triangular array {Pij }--that 
is, for the control points of a triangular patch. 

An array of control points for a toric Bezier patch of depth d is a collection of 
points {P Z} indexed by a set I d, where I is a lattice polygon. The boundary points of 
the array {P Z} are the points in the array indexed by the points of I d lying on the 
boundary of the Newton polygon of 1 d. We shall see in Section 8.7.3 that for toric 
Bezier patches the Newton polygon of I is the domain polygon, so for toric Bezier 
patches the domain polygon and the indexing set--the geometry of the patch and the 
combinatorial structure of the control ne t I a r e  intimately related. It turns out as well 
that the boundary curves of a toric Bezier patch are the Bezier curves determined by 
the boundary control points. But before we can define precisely what we mean by a 
toric Bezier patch, we need to introduce barycentric coordinate functions for lattice 
polygons. 

Exercises 

1. Show that the only polygonal arrays of depth d that are also lattice polygons 
are I d and 1T d. 

2. Let E and F be two sets of points in the lattice Z x Z lying on distinct line 
segments in the xy-plane. Show that E @ F consists of the points in the lat- 
tice Z x Z lying in a parallelogram with sides equal and parallel to the line 
segments containing E and F. 

3. Let L(u,  v) - au + bv + c - 0 be a boundary of the Newton polygon of a lat- 
tice polygon I. Show that Ld(u,v) - au + bv + dc - 0 is a boundary of the 
Newton polygon of I d. 

4. Let Q1 . . . . .  Qn be the vertices of the Newton polygon of the lattice polygon I. 
Show that 

a. The points 

Q1 ~ " " @ Q1,. . ., Qn @ ' "  ~) Qn 
~, ,i �9 x 

Y -v- 

d summands d summands 

are the vertices of the Newton polygon of I d. 
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b. The boundaries of the Newton polygon of I d are the d-fold Minkowski 
sums of the corresponding boundaries of the Newton polygon of I. 

c. The boundaries of the Newton polygon of I d are parallel to the corre- 
sponding boundaries of the Newton polygon of I. 

d. Area(Newton polygon of I d) = d 2 • Area(Newton polygon of I). 

Barycentric Coordinates for Lattice Polygons 

To build toric Bezier patches, we are going to construct barycentric coordinate func- 
tions {flij }(i,j)eI for lattice polygons I that have properties similar to the barycentric 
coordinates {ill ..... fin} associated with the vertices of convex polygons Q. The main 
properties of the barycentric coordinate functions {ill ..... fin } for a convex polygon Q 
with ordered vertices Q1 ..... Qn are described in Table 8.1. We reproduce these prop- 
erties in Table 8.3; alongside we list the analogous properties we want to hold for the 
barycentric coordinate functions {flij }(i,j)eI of a lattice polygon I whose Newton 
polygon has vertices Q1 ..... Qn. 

The first two properties of the barycentric coordinate functions for lattice poly- 
gons are required because we want the toric Bezier surfaces defined by these func- 
tions to be affine invariant and to lie in the convex hulls of their control points. The 
third property guarantees that the boundary curves of these surfaces are determined 
only by their boundary control points, and the fourth property ensures that these sur- 
faces interpolate their comer control points. The fourth property is also key in ensur- 
ing that the blossom of a toric Bezier patch evaluated at the vertices of the domain 
polygon provides at least some of the dual functionals for toric Bezier patches (see 
Section 8.7.10). This property is crucial as well for the construction of toric S- 
patches (see Section 8.7.6). The final property asserts that the functions describing 
these surfaces are not too complicatedmthat toric Bezier surfaces are defined by 
rational expressions. 

Table 8.3 Properties of barycentric coordinates for convex polygons and lattice polygons. 

Convex Polygons Lattice Polygons 

/ 7  

1. X flk - 1 .  1. X ~ij =1. 
k=l (i,j)~I 

2. flk > 0 in the interior of Q. 

3. flk = 0 on the line QiQi+l, k r i, i + 1. 

4. f lk(Qj) - O j ~: k 

=1 j = k  . 

5. fll ..... fin are rational functions. 

2. flij > 0 in the interior of Convex Hull (/) 

3. flij = 0 on the line QkQk+l, if and only 
if (i, j )  ~ QkQk+l" 

4. flij(Qk) - 0 (i , j)  :/: Qk 

= 1 (i , j)  - Qk �9 

5. {flij} are rational functions. 
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Just as we gave an explicit construction for the barycentric coordinate functions 
of a convex polygon Q, we can provide an explicit construction for the barycentric 
coordinate functions of a lattice polygon I. Let Q1 ..... Qn be the vertices of the New- 
ton polygon of I, and let L k (u, v) - aku + bkV + c k = O, k = 1 ..... n, be the equation of 
the kth boundary line QkQk+l. Normalize these equations so that the normal vector 
(ak,b k) of the line Lk(U,V ) satisfies the following two constraints: 

i. (ak,bk) points into the Newton polygon of I. 

ii. (ak,bk) is the shortest vector in this direction with integer coordinates. 

The first condition will guarantee that our barycentric coordinate functions are posi- 
tive inside the domain polygon; the second condition will ensure that below we deal 
only with integer exponents and that these exponents are of the lowest possible size. 
Notice that we can always enforce the second condition because the vertices of the 
Newton polygon of I have integer coordinates. 

By the third property in Table 8.3, a barycentric coordinate function must vanish 
on each boundary to which its index does not belong. The easiest way to construct a 
rational function fl(u,v) that vanishes on the kth boundary QkQk+l of the Newton 
polygon of I is to make Lk(U,V ) a factor of the numerator of fl(u,v). We took advan- 
tage of precisely this observation in Section 8.1 to construct barycentric coordinates 
for convex polygons. Thus the numerators of the barycentric coordinate functions 
{flij }(i,j)~l for a lattice polygon I are all going to be products of powers of the func- 
tions Lk(u,v). In particular, define 

ai j (u ,v )  = cij{Ll(U,V ) }Ll( i , j ) . . . {Ln(u,v  ) }Ln(i,j) (8.22) 

flij(U, V) _ aiJ (u' v) . (8.23) 
Zakt(u,v) 

(k,l)~I 

The constants c 6 > 0 are arbitrary normalizing constants that will be chosen later 
(see Sections 8.7.4, 8.7.5, 8.7.6, and 8.7.10 and Examples 8.4 and 8.5) to guarantee 
that certain desirable formulas are satisfied. 

THEOREM 
8.2 

Properties o f  Barycentric Coordinates for  Lattice Polygons 

Let {flij(u,v)} be the functions defined by Equation (8.23) for the lattice 
polygon I whose Newton polygon has vertices Q1 ..... Qn. Then: 

1. ~/3i j=l .  
(i,j)~I 

2. flij > 0 in the interior of the Newton polygon of I. 

3. flij - 0 on the boundary QkQk+l , if and only if (i, j )  ~ QkQk+l" 

4. flij(Qk) = 0 (i, j )  r Qk 

= 1 (i , j)  - Qk �9 

5. { flij } are rational functions. 
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Proof Property 1 is immediate from Equation (8.23). 

Property 2 follows because Lk(u,v) is chosen with its normal pointing into 
the Newton polygon of I. Hence in the interior of the Newton polygon 
Lk(u,v) > 0, so by Equations (8.22) and (8.23) aij(u,v), flij(u,v) in the interior 
of the Newton polygon of I. 

Property 3 is valid for the following reason. If (i,j) does not lie on the kth 
boundary QkQI~+I, then the exponent Lk(i, j) r O, so Lk(u,v) is a factor of 
aij(u,v). Hence aij(u,v) and flij(u,v) vanish on QkQk+l. If, however, (i,j) 
does lie on the kth boundary QkQk+l, then the exponent Lk(i,j) = 0, so the 
factor Lk(u,v) disappears from Equation (8.22) and aij(u,v) does not vanish 
on QkQk+l. Hence flij(u,v) does not vanish on QlcQk+l. 
Property 4 is immediate from Properties 1 and 3. In fact, notice that at a 
vertex (i,j) of the Newton polygon of I, the function aij(u,v) is just the 
product of powers of the edges of the polygon not passing through the ver- 
tex (i,j). Thus the numerator aij(u,v) of flij(u,v) is very similar to the numer- 
ator ak(u,v) for the corresponding barycentric coordinate function flk(u,v) 
at the vertex (i,j) defined in Equation (8.3). (For further comparisons 
between the barycentric coordinate functions at the vertices of a lattice 
polygon and the barycentric coordinate functions of the corresponding 
convex polygon, see Section 8.7.6.) 

Property 5 follows immediately from Equations (8.22) and (8.23) because 
we have chosen the coefficients (ak,bk) to be integers. 

EXAMPLE 
8.4 

Lattice Squares 

Consider the lattice square 

I d - {(i,j) 10 < i,j < d}. 

The equations of the boundaries of the Newton polygon of IR a are the four 
l i n e s ' u = 0 ,  v = 0 ,  d - u = 0 ,  d - v - 0 .  Let 

_ ( d , ( d  cij i ) j)" 

Then 

f l i j (u , v )  - 

(d )(J ).i  (d _ . )d- i  (d _ v) d- j   )d-j 

which are the standard tensor product Bemstein basis functions for the 
square with side d. 

d v)d_ l d2d 
E ( d  -  1(d - 

k,l=0 
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EXAMPLE 
8.5 

Lattice Triangles 

Consider the lattice triangle 

I d - {(i,j) 10 < i + j  < d}. 

The equations of the boundaries of the Newton polygon of I d are the lines 
u = 0 ,  v = 0 ,  d - u - v = O .  Let 

d 
Ci j -  (i j d- i- j )"  

Then 

flij(u,v) = 

d (i j d - i - j )  ui v j  (d - u - v) d - i - j  

d )ukv I (d - u - v) d-k-I  
2(k t d-k-1 

O<k+l<d 

d (i j d - i - j )  ui vj (d - u - v) d - i - j  

d d 

which are the standard bivariate Bernstein basis functions for the isosceles 
fight triangle with side d. 

Thus barycentric coordinates for lattice polygons are generalizations of the 
bivariate Bernstein basis functions. We shall see shortly that surfaces defined using 
barycentric coordinate functions for lattice polygons are multisided generalizations 
of standard Bezier patches. 

Exercises 

1. Let I be the lattice polygon in Figure 8.10 or Figure 8.12. For each (i,j) e I, 
define 

aij(u,v) = product of the boundary lines on which (i,j) does not lie 

flij(U, V) = aij (u' v) . 
Za~l(u,v) 

(k,l)el 

a. Show that these functions {flij(u, v) } satisfy all the conditions of Theorem 
8.2. 

b. Show that these functions are not the same as the functions defined by 
Equations (8.22) and (8.23). 

2. Let I be a lattice polygon, and let Lk(U,V) be a boundary of the Newton poly- 
gon of I. Show that there exist integers (ak,b k) such that (ak,b k) is normal to 
Lk(U,V). 

3. Compute the barycentric coordinate functions for the lattice polygons in 
Figures 8.10 and 8.12. 
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4. Suppose that the number of lattice points is the same along each edge of a 
lattice polygon I. Let Lk(U,V) - aku + bkV + c k - O, k = 1 ..... n, be the equa- 
tion of the kth boundary of the Newton polygon of I, normalized so that 
(ak,bk) is the shortest normal vector of the line Lk(U,V) = 0 with integer coor- 
dinates pointing into the convex hull of I. Show that 

17 17 

a. Z a  k =  Z b  k = O. 
k=l k=l 

b. The numerators of the barycentric coordinate functions all have the same 
total degree. 

5. Let Q1 ..... Qn be the vertices of the Newton polygon of a lattice polygon I, 
and let L k (u, v) = aku + bkV + c k = 0, k = 1,...,n, be the equation of the kth 
boundary line QkQk+l, where the normal (ak,bk) points into the Newton 
polygon of I and (ak,b k) is the shortest vector in this direction with integer 
coordinates. Let R k be the lattice point on the line QkQk+l closest to Qk, and 
let T e I. Show that 

a. L k(P) - Det 1 

b. a~(P)= 
2 n 2 Area( AQ1R 1T) } 2 Area( AQnRnT ) cij{Area(AQ1R1P) } . . .{Area(AQnRnP ) 

(Compare to Section 8.1, Exercise 3.) 

6. Here we are going to show that barycentric coordinate functions for a lattice 
polygon I whose Newton polygon has more than four sides cannot be poly- 
nomials. Suppose that  {~ij}(i,j)eI are polynomials, and that P is a point of 
intersection between two nonadjacent edges of the Newton polygon of I. 

a. Show that if {flij}(i,j)et satisfy Property 3 of Theorem 8.2, then flij(P) = 0 
for all (i,j) e I. 

b. Conclude that Zijflij ~ 1, and hence that {flij}(i,j)eI cannot be barycen- 
tric coordinate functions for the lattice polygon I. 

c. Why do rational functions not suffer from the same problem? 

d. Explain why barycentric coordinates for lattice rectangles can be polyno- 
mials. (Compare to Section 8.1, Exercise 5.) 

8.7.3 The Pyramid Algorithm for Toric Bezier Patches 

A toric Bezier patch o f  depth d is a pyramid patch of depth d, whose indexing array I 
is a lattice polygon and whose barycentric coordinate functions are the barycentric 
coordinates of I (see Figure 8.13). 

Let us unwind what this definition really means. We start with a set of control 
points {P~} indexed by a set I a, where I is a lattice polygon. To compute points on 
the corresponding toric Bezier patch of depth d, we run the pyramid algorithm, 
where the barycentric coordinate functions {flij(u,v)} are the barycentric coordinates 
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Figure 8.13 The pyramid algorithm for a pentagonal toric Bezier patch of depth 2. The eight overlapping 
striped pentagons at the base represent pentagonal toric Bezier patches of depth 1--one of 
these patches is completely hidden by the dark pentagon--and the dark central pentagon 
represents the pentagonal toric Bezier patch of depth 2. Each pentagonal panel represents 
the result of multiplying the points in the corresponding pentagonal array by the barycentric 
coordinates of the lattice pentagon in Figure 8.10 and adding the results. Interior control 
points are obscured by the dark panel. Compare to the pyramid algorithm for a pentagonal 
S-patch in Figure 8.8. 

for the lattice polygon I. Notice that the domain of a toric Bezier patch of depth d is 
the Newton polygon of I, not the Newton polygon of I d. 

The Pyramid Algorithm for Toric Bezier Patches 

1. P~ ( u, v ) -- P)c 

1': (u, v) 2 /3p (u, l-I 2. : v ) e r + p ( u , v )  
peI 

3. B(u, v) - pd (u, v) . 

/~ ~ I d 

7, ~. I d- l  (8.24) 

By Equation (8.15) the blending functions {B~(u,v)}2eld for a toric Bezier 
patch of depth d can be computed by convolving the barycentric coordinate func- 
tions. That is, 

{B~(u,v)  } = [3i(u,v ) | " " |  [3i(u,v) , (8.25) 
v -  

d factors 

where ~l(U,V) = {~ii(u,v) }(i,j)eI. Moreover, by Equation (8.17), if 
I = { il,Jl ) ...... (in,Jn) }, then we also have an explicit formula for the blending 
functions: 

kl kn 
B~ (u, v) - ~.km (i,,jl )+...+kn (i,,,jn)=,~ (k,d.kn )[3ilJl (U, V)" " [3inJn (U, V) �9 (8.26) 
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EXAMPLE 
8.6 

Tensor Product  Bez ier  Patches 

Consider the lattice rectangle I R = {(0,0),(1,0),(1,1),(0,1)}. The equations 
of the boundaries of the Newton polygon of I R are the four lines 
u = 0 ,  v = 0, 1 - u = 0, 1 -  v = 0. Hence the barycentric coordinate func- 
tions of I R are just the barycentric coordinates of the unit square: 
( 1 - u ) ( 1 - v ) ,  u ( 1 - v ) ,  ( 1 -u )v ,  u v .  Therefore, by Equation (8.25), the 

blending functions for the corresponding toric Bezier patch of depth d are 
the functions 

/B~(u,O/= 
{(1 - u ) (1 -  v), u ( 1 -  v ) , (1 -  u)v, uv} | ... | - u ) (1 -  v), u ( 1 -  v ) , (1 -  u)v, uv}, 

d fc~tors 

which are the blending functions for a tensor product Bezier patch of bide- 
greed .  

EXAMPLE 
8.7 

Triangular  Bez ier  Patches 

Consider the lattice triangle I T = {(0,0),(1,0),(0,1)}. The equations of the 
boundaries of the Newton polygon of I T are the three lines 

1 - u - v = 0, u = 0, v = 0. Hence the barycentric coordinate functions of I T 
are just the barycentric coordinates of the standard triangle: (1 - u - v), u, v. 
Therefore, by Equation (8.26), the blending functions for the corresponding 
toric Bezier patch of depth d are the functions 

d d Bij (u, v) - (i j d - i - j )  u iv j  (1 - u - v) d - i - J  , 0 < i + j < n, 

which are the blending functions for a triangular Bezier patch of degree d. 

EXAMPLE 
8.8 

Pentagonal  Toric Bez ier  Patches 

Consider the lattice pentagon in Figure 8.10. The equations of the bound- 
aries of the Newton polygon are the five lines u = 0, v = 0, 2 - u = 0, 
2 - v  = O, 3 - u - v  = 0. Thus, by Equation (8.22), the numerators of the 
eight barycentric coordinate functions are 

aoo(U,V) = ( 2 -  u ) 2 ( 2  - v ) 2 ( 3 -  u - v)  3 

a 0 1  (u,  v)  = v ( 2  - u)  2 (2  - v ) (3  - u - v)  2 

a 2 0  (U, V) - U 2 (2  - v)  2 (3 - u - v) 

a 1 2  (u,  v)  = uv 2 (2  - u)  

a l l  (u, v) = uv(2 - u)(2 - v)(3 - u - v) 

alO(U,V ) = u ( 2 -  u ) ( 2 -  V)2(3-  u - V) 2 

a02 (u, V) = V 2 (2 - u) 2 (3 - u - v) 

O~21(u,v ) = uZv(2 - V) 
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Figure 8.14 A pentagonal toric Bezier patch of depth d = 1 

Figure 8.14 shows an example of a pentagonal toric Bezier patch of depth 
d = 1 generated using these eight barycentric coordinate functions. 

Toric Bezier patches of depth d have the following underlying structure: 

�9 DomainmNewton polygon of a lattice polygon I 

�9 Control points--indexed by a power I d of the lattice polygon I 

�9 Blending functions---convolutions of barycentric coordinates for the lattice 
polygon I 

We shall show in subsequent sections that, in common with triangular and ten- 
sor product Bezier patches, toric Bezier patches also share the following associated 
properties and procedures. Notice that affine invariance and the convex hull property 
follow immediately from the first two properties of barycentric coordinates for lat- 
tice polygons listed in Theorem 8.2. 

Properties of toric Bezier patches 

�9 Affine invariance 

�9 Convex hull property 

�9 Nondegenerate 

�9 Boundary curves~Bezier curves determined by the boundary control 
points 

�9 Implicit Degree--d 2 x 2Area(Newton polygon of/) 

�9 Special cases~Triangular and tensor product Bezier patches 

Procedures for toric Bezier patches 

�9 Evaluation algorithmmpyramid algorithm whose edges are labeled 
with the barycentric coordinate functions for the lattice polygon I 

�9 Differentiation algorithm 
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�9 Blossoming algorithm 

�9 Subdivision algorithm 

�9 Depth elevation algorithm 

Toric Bezier patches are, in general, rational surfaces because the barycentric 
coordinate functions for a lattice polygon are, in general, rational functions. Since 
toric Bezier patches are already rational surfaces, we may as well introduce scalar 
weights {w~} and define rational toric Bezier patches using mass-points in Grass- 
mann space instead of affine points in affine space. 

A rational toric Bezier patch of depth d is a rational pyramid patch of depth d, 
whose indexing array I is a lattice polygon and whose barycentric coordinate func- 
tions are the barycentric coordinates of I. Thus, for a rational toric Bezier patch, the 
input to the pyramid algorithm is a collection of mass-points P~(u,v) = (wzPz,w2), 
/l ~ I d, and the output of the algorithm must be divided by the weight. In terms of the 
blending functions {B~(u,v)l a rational toric Bezier patch R(u,v) is given by 

~_, B~ (u, v)w2PA, 
R(u, v) - / ~ E I d  �9 (8.27) 

Z wyB~,(u,v) 
7~I d 

Notice that for a rational toric Bezier patch the denominator 

Zau(u,v) 
(k,l)EI 

of the barycentric coordinate functions flij(u,v) appears to the same power in the 
numerator and denominator of R(u,v). Therefore, we can cancel these factors. Thus 
for rational toric Bezier patches, we can use the numerators aij(u,v) in place of the 
barycentric coordinate functions flij(u,v)--that is, we do not need to normalize the 
barycentric coordinate functions to sum to one, since the division in Equation (8.27) 
performs the necessary normalization automatically. Hence, we can replace the 
barycentric coordinate functions flij(u,v) by the numerators aij(u,v) in the pyramid 
algorithm for a rational toric Bezier patch. 

Exercises 

1. Consider the lattice line I = {(0,0),(1,0)}. Describe the toric Bezier patches 
of depth d corresponding to this lattice line. 

2. Consider the lattice rectangle I~ - {(i, j) 10 < i, j < n}. 

a. Describe the toric Bezier patches of depth 1 corresponding to this lattice 
rectangle. 

b. Describe the toric Bezier patches of depth d corresponding to this lattice 
rectangle. 

3. Consider the lattice triangle I~ = {(i,j) 10 < i + j < n}. 

a. Describe the toric Bezier patches of depth 1 corresponding to this lattice 
triangle. 
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8.7.4 

b. Describe the toric Bezier patches of depth d corresponding to this lattice 
triangle. 

4. Compute the blending functions for the pentagonal and hexagonal toric 
Bezier patches of depth 2 defined by the lattice polygons in Figures 8.10 
and 8.12. 

5. Implement the pyramid algorithm for the pentagonal toric Bezier patches 
defined by the lattice pentagon in Figure 8.10. Experiment with pentagonal 
patches of different depths. Determine how changing the location of the 
control points affects the shape of the surface. 

6. Implement the pyramid algorithm for the hexagonal toric Bezier patches 
defined by the lattice hexagon in Figure 8.12. Experiment with hexagonal 
patches of different depths. Determine how changing the location of the 
control points affects the shape of the surface. 

7. Generalize the pyramid algorithm for toric Bezier patches by replacing I d-l 
with I 1 @... @ Id_ l , where I 1 ..... I d are lattice polygons. 

a. What is the domain of the patch? 

b. How must Equation (8.24) be altered to make the pyramid algorithm 
valid? 

c. Describe the blending functions for this patch. (Compare to Section 8.5, 
Exercise 1.) 

8. Show that the only toric Bezier patches that are also S-patches are 

a. Bezier curves of degree 1 

b. triangular Bezier patches of degree 1 

c. tensor product patches of bidegree 1 

The Boundaries of a Toric Bezier Patch 

The boundaries of a toric Bezier patch are the Bezier curves determined by their 
boundary control points. This result holds provided only that the constant coeffi- 
cients c ij for the barycentric coordinate functions corresponding to lattice points 
along the boundary of the Newton polygon of the lattice polygon are properly cho- 
sen. We are going to prove this assertion shortly below. Thus, unlike general pyramid 
patches, in toric Bezier patches we maintain control over the boundary of the patch. 
This control is one of the main advantages of toric Bezier patches over arbitrary pyr- 
amid patches. 

To analyze the boundaries, consider a toric Bezier patch B(u,v) with control 
points {P,~} indexed by a lattice polygon I with barycentric coordinate functions 
{~ijJ(i,j)el. Let Q1 . . . . .  Qm be the vertices of the Newton polygon of I. Then by Theo- 
rem 8.2, 

flij - 0 on the boundary QkQk+l, if (i, j )  ~ QkQk+l. 
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Thus the kth boundary of B(u,v)  is completely determined by the points of {PA.} 
indexed by the values of I along the boundary QkQk+l, since the coefficients 
flij(u, v) of all the other control points vanish along this boundary. Hence the bound- 
ary curves of a toric Bezier patch of depth d = 1 are completely determined by the 
boundary control points of the patch. 

To show that these boundary curves are actually Bezier curves, let us focus on a 
specific boundary QlQl+l. Suppose that R 0 ... . .  R n are the points in the lattice poly- 
gon I along the boundary QIQI+I, and denote by flo .... .  fin the barycentric coordi- 
nate functions of I corresponding to the points R o . . . . .  R n. We are going to apply a 
reparametrization to show that when restricted to the boundary QlQl+l, these bary- 
centric coordinate functions are univariate Bernstein polynomials. 

Let Lk(U,V ) -  a k U + b k v + c  k = 0 be the equation of the kth boundary line 
QkQk+l, k = 1 . . . . .  m ,  of the Newton polygon of I. Then by Equations (8.22) and 
(8.23), when (u,v) are restricted to the boundary QlQl+l 

ah(U,V ) = c h {Ll(U,V) } LI(Rh) ...{Lm(u,v) }Lm(Rh) (8.28) 

flh (u, v) - ah (u, v) h - 0 ..... n. (8.29) 
n 
~,ag(U,V) 

g=0 

But since R o .. . . .  R n lie along the edge of a lattice polygon, there are integers p,q,r,s 
such that 

R h = (p + rh, q + sh) h = 0 . . . . .  n .  

Therefore, on the boundary QIQI+I 

ah(U,V ) - c h {Ll(U,V) }al(p+rh)+bl(q+sh)+Cl . . . {Lm(u,v)  }am(p+rh)+bm(q+sh)+cm 

We can now split a h (u, v) into two factors: 

1. C - { L I ( U , v  ) } alp+blq+cl . . . {Lm(u,v)  } amp+bmq+cm 

2. Oh = Ch{{Ll(tt, v) }alr+blS...{Zm(u,v) }amr+bms} h. 

The first factor is independent of h, and hence is common to ah(u,v) for all 
h = 0 ..... n. Therefore, this factor cancels in the expression for flh(u,v) in Equation 
(8.29). We are free to choose c h in any manner we like, so let c h = (~). Now apply the 
reparametrization 

.t: - {Ll (U,V ) }alr+blS.. .{Lm(u,v ) } amr+bms. 

Then along the boundary QlQl+l 

flh (u, v) = 
(~,) rh  . (8.3o) 
n :~(g)rg 

g=0 
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Substituting T = t / ( 1 - t )  into Equation (8.30) and multiplying the numerator and 
denominator by (1 - t) n yields 

f lh(U,V) - ( ~ ) t h ( l - t )  n-h  n = (~)t h (1 - t) n-h - B~ (t). 

~ , (g ) tg (1 - t )  n-g 
g=0 

Thus, when restricted to the boundary QIQI+I, the barycentric coordinate func- 
tions of the lattice polygon I corresponding to the lattice points R o ..... R n along this 
boundary reduce to the univariate Bernstein basis functions. Therefore, the corre- 
sponding boundary curve of B(u,v) is the Bezier curve determined by the control 
points of {P;t} indexed by the points of I lying along the boundary QIQI+I. Notice 
that the boundary curve is polynomial even though the surface is rational. 

All that work was just for the base case of a toric Bezier patch~that is, for a 
toric Bezier patch of depth d = 1. What about the boundaries of a toric Bezier patch 
of depth d > 1? Here we can reason as follows. By Equation (8.25) the blending 
functions {B~(u,v)} can be computed from the barycentric coordinate functions 
ill(tt ,v) = {flij}(i,j)~I by the discrete convolution formula 

{ B ~ ( u , v ) }  - f l I ( U , V ) | 1 7 4  f lI(U,V) 
�9 , J o  

d factors 

But the boundaries of the Newton polygon of I d are just the d-fold Minkowski sums 
of the corresponding boundaries of the Newton polygon of I (see Section 8.7.1, 
Exercise 4). Therefore, when restricted to the kth boundary of I, the blending func- 
tions {B~(u,v) l where ~ lies along the kth boundary of the Newton polygon of I d, are 
just d-fold convolutions of the barycentric coordinate functions corresponding to the 
lattice points along the kth boundary of the Newton polygon of I. But we have just 
proved that under a reparametrization when restricted to the kth boundary of the 
Newton polygon of I, these barycentric coordinate functions are univariate Bernstein 
basis functions. Since the convolution of Bernstein bases are Bernstein bases of 
higher degree, the blending functions of {B~(u,v)l where ~ lies along the kth bound- 
ary of the Newton polygon of I d, when restricted to the kth boundary of the Newton 
polygon of I, are univariate Bernstein basis functions. Hence the boundary curves of 
a toric Bezier patch of depth d > 1 are the Bezier curves determined by their bound- 
ary control points. 

Exercises 

1. Show that the boundaries of a rational toric Bezier patch are the rational 
Bezier curves determined by the mass-points along their boundaries. 

2. Consider a boundary of a toric Bezier patch. 

a. Show that along a patch boundary, the pyramid algorithm reduces to the 
triangular computation along the lateral face of the pyramid whose base 
consists of the corresponding boundary control points. 

b. Explain how this triangular computation is related to the de Casteljau 
algorithm for a Bezier curve with the same control points. 
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8.7.5 The Monomial and Bernstein Representations of a Toric Bezier Patch 

What is the parametric degree of a toric Bezier patch? Since a toric Bezier patch is a 
pyramid patch, the degree of the patch depends on the degree of the barycentric 
coordinate functions of the patch. By Equation (8.23), the degree of the barycentric 
coordinate funct ions  {flq}(i,j)eI depends, in turn, on the degree of the functions 
{aij}(i,j)el. Let Lk(u,v)  - aku + bkv + c k - O, k - 1 .... ,p, be the equations of the 
boundaries of the Newton polygon of I. Then by Equation (8.22) 

degree{ aij(u,v) } = ~ Lk (i, j ) .  
k=l 

Therefore, naively, for a toric Bezier patch of depth d -  1, 

p 
parametr ic  degree  = max(i,j)e I { Z Lk (i, j)}, 

k=l 

and for patches of depth d this degree must be multiplied by d. 
The preceding analysis drastically overestimates the parametric degree of a toric 

Bezier patch. The functions {aij}(i,j)eI actually have many common factors, and 
these factors cancel in the expression in Equation (8.23) for the barycentric coordi- 
nate functions {flij}(i,j)e1. The truth is that after this cancellation and a simple change 
of variables the only powers of the parameters that appear in the barycentric coordi- 
nate functions are the values (i, j ) e  Imthat  is, the powers indexed by the lattice 
polygon of the patch. 

The techniques used in the previous section to analyze the boundaries of a toric 
Bezier patch can be employed here as well to find simple monomial and Bernstein 
representations for the barycentric coordinate functions of a toric Bezier patch. 
Recall that by Equation (8.22) 

aij(u,v) _ cij{Ll(U,V ) }Ll(i,j)...{Lp(u,v ) }Lp(i,j) 

= cij{L 1 (u,v)} ali+blj+cl ""{Lp(u,v)}api+bpj+Cp. (8.31) 

Thus we can split oc/j(u, v) into three factors: 

1. C -  {LI(U,V)} q ""{Lp(u,v)} cp 

�9 }' 
2. O i - {{Ll(ll, v )} al }ap 

3. Ej - {{LI(U,V)} bl ""{Lp(u,v)'bP} j. 

The first factor is independent of i,j, and hence is common to aiy(u,v) for all 
(i, j ) e  I .  Therefore, this factor cancels in the expression for ~ij(u,v) in Equation 
(8.23). Now let 
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tY = {LI(U,V ) } a l  " ' { L p ( u , v )  }ap 

z " -  {LI(U,V)} bl . . ' {Lp(u ,v ) }  bp 

Substituting these parameters into Equation (8.31) yields 

ctij(u, v) - cijtY ~'c J (i, j )  e I .  (8.32) 

Hence the barycentric coordinate functions of a toric Bezier patch with lattice poly- 
gon I can be represented in rational form by monomials indexed by the set I. The 
control points and weights of the patch are unchanged. To find the blending func- 
tions for a patch of depth d, we just convolve the barycentric coordinate functions. 
Thus, the blending functions of a toric Bezier patch of depth d with lattice polygon I 
can be represented in rational form by monomials indexed by the set I d. 

With just a bit more work, we can also use Equation (8.32) to find both tensor 
product and triangular Bezier representations for a toric Bezier patch. We will illus- 
trate the technique for the tensor product basis and leave the triangular case as an 
exercise (see Exercise 2). Let m = max{i} and n = max{j} for all (i,j) e I. Substitute 
cr = s / (1-  s) and T = t / (1-  t) into Equation (8.32), and multiply the numerator and 
denominator by (1 - s) m (1-  t) n t o  obtain 

CijS i (1 - s) m-i  t j ( 1  - t) n - j  B m (s)Bj  (t) 

a/j (u, v) - (1 - s) m (1 - t) n - (1 - s) m (1 - t) n 

where we have chosen cij - (m)(j). Again the denominators (1 - s) m (1 - t) n are 
common to aij(u,v) for all (i,j) e I. Therefore, this factor cancels in the expression 
for flij(u,v) in Equation (8.23). Hence, the barycentric coordinate functions for a toric 
Bezier patch with lattice polygon I can be represented in rational form by bivariate 
Bernstein basis functions of bidegree (m,n) indexed by the set I. Consequently, the 
blending functions of a toric Bezier patch with lattice polygon I of depth d can be 
represented in rational form by bivariate Bemstein basis functions of bidegree 
(md,nd) indexed by the set I d. 

The implicit degree of a rational surface whose exponents lie in a lattice polygon 
I is known to be 2 x Area(Newton polygon of/). But by Section 8.7.1, Exercise 4(d), 

Area(Newton polygon of I d) = d 2 x Area(Newton polygon of I). 

Therefore, it follows from the preceding analysis that the implicit degree of a toric 
Bezier patch of depth d with lattice polygon I is d 2 x 2Area(Newton polygon of I). 

Exercises 

1. Show that the blending functions of a toric Bezier patch are linearly inde- 
pendent. Conclude that toric Bezier patches are nondegenerate~that is, that 
these surfaces never collapse to a single point unless all their control points 
are located at that point. 
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2. Show that the barycentric coordinate functions of a toric Bezier patch with 
lattice polygon I can be represented in rational form by triangular Bernstein 
basis functions of total degree n = max{ i + j }, (i, j) e I, indexed by the set I. 
Conclude that the blending functions of a toric Bezier patch of depth d with 
lattice polygon I can be represented in rational form by triangular Bemstein 
basis functions of total degree nd indexed by the set I d. (Hint: Consider the 
change of variables cy = s/(1 - s - t) and ~" = t/(1 - s - t).) 

3. Consider the barycentric coordinate functions of a rational toric Bezier 
patch with lattice polygon I. Show that these functions can be represented in 
rational form by 

a. the monomials indexed by the set I 

b. the bivariate Bemstein basis functions of bidegree (m,n) indexed by the 
set/ ,  where m = max{i} and n = max{j} for all (i , j)  e I 

c. the bivariate Bemstein basis functions of total degree n indexed by the 
set I, where n = max{i  + j} for all (i, j)  e I 

4. Suppose that J is a lattice polygon generated by rotating and translating 
another lattice polygon I. Show that the toric Bezier patches built using the 
lattice polygon J are identical to the toric Bezier patches built using the lat- 
tice polygon I. 

5. Let I be a lattice polygon. Show that 

2 x Area(convex hull I) = 2 x (number of interior points/)  
+ (number of boundary points I ) -  2. 

(Hint: Split I into two lattice polygons and apply induction.) 

6. Let I be a lattice polygon, and let L k (u, v) = 0, k = 1 ..... p ,  be the equations 
of the boundaries of the Newton polygon of I. For all (i, j) e I, define 

a 6 ( X  1 . . . . .  Yp) = C~jxlLI(i 'J)".XpLp (i'j) 

~ij(Xl . . . . .  Xp ) - 
a i j (X 1 . . . . .  Xp ) 

Z a k l ( X l  . . . . .  Xp) 
(k,l)eI 

Show that if we replace the barycentric coordinate functions ~ij(u, v) for the 
lattice polygon I with the functions flij(Xl ..... Xp), we generate the same 
toric Bezier patch for x 1 ..... Xp >_ O. (Hint: Consider a change of variables.) 

8.7.6 Toric S-Patches 

If we use the barycentric coordinate functions for a convex polygon constructed in 
Section 8.1, then the parametric degree of an n-sided S-patch of depth d is d(n - 2). 
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But what is the implicit degree? In general, the implicit degree of a rational surface 
is given by the formula 

implicit degree = (parametric degree) 2 - number of base points (with multiplicity), 

where a base po in t  is a parameter value where the blending functions evaluate to 
0/0. 

The blending functions for S-patches have base points wherever nonadjacent 
sides of the domain polygon intersect because by Equations (8.3) and (8.4) the 
numerators and denominators of all the barycentric coordinate functions vanish at 
these points. For an n-sided S-patch there are ( ~ ) - n  - n ( n - 3 ) / 2  such base points, 
and for an S-patch of depth d these base points each have multiplicity d 2. Therefore, 
for a generic n-sided S-patch of depth d, 

implicit degree - d2(n  - 2) 2 - d Z n ( n  - 3)/2 - d2(n  2 - 5n + 8)/2. 

For example, for a three-sided S-patch of depth d (i.e., a Bezier patch of degree d), the 
implicit degree is d2; for a four-sided S-patch of depth d (e.g, a tensor product Bezier 
patch of bidegree d), the implicit degree is 2d 2. For a five-sided S-patch of depth d, 
the implicit degree is 4d 2, and for a six-sided S-patch of depth d, the implicit degree is 
7d 2. 

By contrast, we observed in Section 8.7.5 that the implicit degree of a toric Bez- 
ier patch of depth d with lattice polygon I is d 2 x 2Area (Newton  polygon of I). For 
three-sided and four-sided toric schemes, we get the same degrees as for three-sided 
and four-sided S-patches, since three-sided and four-sided toric Bezier patches are 
equivalent to triangular and tensor product Bezier patches. But consider the lattice 
pentagon I - {(0,0),(1,0),(2,1),(1,2),(0,1),(1,1)} depicted in Figure 8.5. For this lat- 
tice pentagon 2 x A r e a ( N e w t o n  polygon of I) - 5. Hence for the corresponding toric 
Bezier patches of depth d, the implicit degree is 5d 2, which is clearly larger than 
4d 2, the implicit degree of a five-sided S-patch of depth d. On the other hand, con- 
sider the lattice hexagon in Figure 8.12. Here 2 x A r e a ( N e w t o n  polygon of I) - 6. 
Hence the corresponding toric Bezier patches of depth d have implicit degree 6d 2, 
which is clearly smaller than 7d 2, the implicit degree of a six-sided S-patch of depth 
d. So sometimes S-patches have lower implicit degree, sometimes toric Bezier 
patches have lower implicit degree, and sometimes both schemes have the same 
implicit degree. 

We can, however, always generate n-sided S-patches of depth d with the same 
implicit degree as an n-sided toric Bezier patch of depth d by choosing a different set 
of barycentric coordinate functions. Suppose that the vertices Q1 .. . . .  Qn of a convex 
polygon Q have integer coordinates in the plane. Let /31 . . . . .  fin be the barycentric 
coordinate functions at Q1 .. . . .  Qn for the lattice polygon I whose vertices are at 
Q1 ..... Qn, and set the constant coefficients of the aij(u,v ) in Equation (8.22) to zero 
for all indices (i, j ) e  I not at the vertices of I. By Theorem 8.2 these functions 
/~1 . . . . .  /~n satisfy all the properties of barycentric coordinate functions for the convex 
polygon Q. Explicitly if Lk(U,V ) =- aku + bkV + c k - O, k = 1 ..... n, is the equation of the 
kth boundary line QkQk+l, normalized in the usual fashion (see Section 8.7.2), then 

ak(U, v) - e k {L 1 (u, v) } L1 (Qk ) . . .{Ln(u, v) } Ln(Q~ ) (8.33) 
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flk (u, v) - ak  (u, v) k - 1 .... .  n. (8.34) 
n 

Zal(u,v) 
/=1 

Contrast this construction with the standard construction of barycentric coordinates 
for the convex polygon Q given in Equations (8.3) and (8.4): 

Ctk(U,V)- ekLl (U 'V) ' "Ln(u 'v )  (8.35) 
Lk_l(U,V)Lk(U,V) 

~k (u, v) - ak (u, v) n k -  1 ..... n. (8.36) 
Zal(u,v) 
/=1 

Notice that in both sets of equationsmEquations (8.33) and (8.35)rathe lines 
Lk_l (U, v) ,Lk (u, v) are suppressed in a f ( u , v ) .  In Equation (8.33), these lines disap- 
pear because their exponents Lk_ 1 (Qk) = Lk(Qk)  = 0; in Equation (8.35), these lines 
are canceled by the denominator. 

At first glance Equations (8.33) and (8.34) look more complicated and of higher 
parametric degree than Equations (8.35) and (8.36). But proceeding as in Section 
8.7.5, we can simplify the expressions for fll ..... fin in Equation (8.34). First remove 
the common factor 

C - {Ll(U,V)} cl . . . {Ln(u,v)}  cn 

from the functions ak (u, v) and then apply the change of variables 

ty = {Ll(U,V) } al . . . {Ln(u,v)  } an 

"c - {Ll(U,V ) } bl . . . {Ln(u,v  ) } bn . 

After performing these operations, we are left with 

ctk(u,v) = ek tykl 1~k2 Qk = (kl,k2), 

so the only powers that appear in the barycentric coordinate functions are the coordi- 
nates of the vertices of the polygon Q. Hence the implicit degree of the correspond- 
ing S-patch of depth d is d 2 x 2Area(Q),  the same degree as the toric Bezier patch of 
depth d whose lattice polygon consists of all the points with integer coordinates 
inside or on the boundary of Q. 

We can use the barycentric coordinate functions in Equation (8.34) to construct 
an n-sided S-patch, without necessarily using the polygon Q to index the polygonal 
array of control points. Any indexing set I of n distinct p-tuples will still work. 
For example, we can use the barycentric coordinate functions generated by the 
lattice hexagon depicted in Figure 8.12 together with the simplicial indexing set 
A g = {k 1 ..... k6) lk  1 +..-+k 6 - d} to generate hexagonal S-patches of depth d. This 
approach keeps the degree of the S-patch low and still allows arbitrary hexagonal 
arrays of control points. We call the barycentric coordinate functions in Equation 
(8.34) toric barycentric  coordinate func t ions  for the convex polygon Q, and we call 
an S-patch that uses toric barycentric coordinate functions a toric S-patch. 
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Exercises 

1. Show that the blending functions of an S-patch generated by the toric barycen- 
tric coordinates are linearly independent. Conclude that S-patches generated by 
the toric barycentric coordinate functions are nondegenerate~that is, that 
these surfaces never collapse to a single point unless all their control points are 
located at that point. Compare this result to Section 8.4.1, Exercise 2. 

2. Consider the pentagon with vertices Q = { (0,0),(1,0),(2,1),(1,2),(0,1) }. 

a. Implement the pyramid algorithm for control points {P Z} indexed by I d, 
where I consists of the vertices of the standard 4-simplex, using 

i. the standard barycentric coordinate functions for the pentagon with 
vertices Q 

ii. the toric barycentric coordinate functions for the pentagon with ver- 
tices Q 

b. What are the implicit degrees of these S-patches of depth d? 

c. Compare the shapes of the pentagonal surfaces generated by these two 
sets of barycentric coordinates. 

3. Consider the hexagon Q depicted in Figure 8.12. 

a. Implement the pyramid algorithm for control points {P,~} indexed by I d, 
where I consists of the vertices of the standard 5-simplex, using 

i. the standard barycentric coordinate functions for the hexagon Q 

ii. the toric barycentric coordinate functions for the hexagon Q 

b. What are the implicit degrees of these S-patches of depth d? 

c. Compare the shapes of the hexagonal surfaces generated by these two 
sets of barycentric coordinates. 

4. What is the implicit degree of 

a. a seven-sided S-patch of depth d? 

b. an eight-sided S-patch of depth d? 

c. the lowest-degree seven-sided toric Bezier patch of depth d? 

d. the lowest-degree eight-sided toric Bezier patch of depth d? 

8.7.7 Subdividing Toric Bezier Patches into Tensor Product Bezier Patches 

In Section 8.7.5 we showed how to extend a lattice polygon to a lattice rectangle and 
then perform a change of variables to convert any toric Bezier patch to rational 
monomial or rational tensor product Bezier form. By applying this technique, we 
could treat an n-sided toric Bezier patch as a rational tensor product Bezier patch and 
apply the subdivision algorithm that we already know for tensor product patches. 
This approach, however, would subdivide an n-sided toric patch into four tensor 
product Bezier patches without regard for the n-sided structure of the patch. Our 
goal here is to develop an alternative subdivision procedure for n-sided patches that 
respects the n-sided structure of the patch. 
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Every n-sided toric Bezier patch can be split into n rational tensor product Bez- 
ier patches. This subdivision can be performed by placing a tensor product patch at 
each comer of the toric patch, so that the tensor product patches all meet at a com- 
mon point and patches at adjacent vertices join along smooth curves on the toric sur- 
face (see Figure 8.15). This subdivision procedure can be applied to reduce the 
analysis of toric Bezier patchesmfor example, rendering and intersection algo- 
rithmsmto the analysis of standard rational tensor product Bezier patches. 

How is this done? Consider first a rational tensor product Bezier patch 

m n 

z Zwijeij8 
P(u , v )  - i=0j=0 0 < u,v  < 1. 

m n 
~., Z wij Bm ( u ) B j  (v) 

i=0j=0 

If we subdivide this patch at u = 1/2 and v = 1/2 by the method in Section 5.8.1, 
then we split the patch into four subpatches as illustrated in Figure 8.16. 

But there is another more direct way to find the control points of each of these 
subpatches. Let us focus for now on the subpatch at the comer P00. To find the 
control points of this subpatch, divide the numerator and denominator of P(u ,v )  by 
(1 - u)m(1 - v) n and then apply the change of variables 

b/ V 
s -  t -  

1 - u  1 - v  

to obtain the reparametrized patch 

P * ( s , t )  - 

m /l 

E Ewi jPi j ( r~) ( j ) s  i t j  
i=0j=0 

m n 

~., E w i j ( m ) ( 7 ) s i t  j 
i=0 j=0 

(a) 

Figure 8.15 Subdivision of a hexagonal toric Bezier patch into six rational tensor product Bezier patches: 
(a) schematic diagram and (b) actual surface patch. 
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Figure 8.16 Schematic diagram of a rational tensor product Bezier patch subdivided into four rational 
tensor product Bezier patches. 

Point for point, P(u,v) and P*(s,t) represent the same surface, but the domain of 
P(u,v) is 0 < u,v < 1 whereas the corresponding domain of P*(s,t) is 0 < s,t < oo. 
Suppose, however, that we restrict the domain of P*(s,t) to 0 < s,t < 1. Within this 
restricted domain, P*(s,t) is precisely the subpatch of P(u,v) at the comer P00, since 
0 < s,t < 1 if and only if 0 < u, v < 1/2. But 0 < s,t < 1 is the standard tensor product 
domain. So to find the Bezier control points of the subpatch at P00, we need only 
convert the expression for P*(s,t) from the monomial basis to the tensor product 
Bernstein basis. We can easily perform this change of basis using any one of the 
standard change of basis algorithms such as blossoming for converting from mono- 
mial to Bezier form. The control points for the subpatches at the other three comers 
can be found in a similar fashion (see Exercise 1). 

To recapitulate what we have just done: At each comer of a tensor product Bez- 
ier patch, we have a rectangular array of control points. To find the subpatches at 
each comer, we perform: 

1. a change of variables from tensor product Bernstein to monomial form 

2. a change of basis from monomial to tensor product Bernstein form 

We would like to proceed in a similar fashion to subdivide an arbitrary toric 
Bezier patch into a collection of rational tensor product Bezier patches. But one 
problem we immediately encounter is that for arbitrary toric Bezier patches we do 
not have a rectangular array of control points at each comer of the patch (see Figure 
8.17). So we shall need to begin by extending the lattice polygon for the toric patch 
to a rectangular tensor product lattice at each comer of the patch. When we extend 
the lattice, we may introduce additional lattice points; the corresponding additional 
control points are simply set to zero. We can then proceed to subdivide the toric Bez- 
ier patch into a collection of rational tensor product Bezier patches just as we were 
able to subdivide rational tensor product Bezier patches. 
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(0,2) o (1,2) j - (2,2) 

(0,1) (2,1) 

(0,0) i -,/(1,0) o (2,0) 

(a) Lattice hexagon 

(1,2). 

(. .5) 

(0' 1) (l~ (2,1) 

(.S,.5) (1.5,.5) 

(1,0) 

(b) Lattice rhombus 

Figure 8.17 Extending the lattice at a corner for (a) a lattice hexagon and (b) a lattice rhombus. Notice 
that for the lattice rhombus we not only need to add points to the lattice polygon, but we 
must also add points to the lattice Z x Z. 

To summarize: the subdivision algorithm for toric Bezier patches has the follow- 
ing four steps: 

1. Extend the lattice polygon at each comer of the patch to a lattice rectangle. 

2. Fill in the additional control points with zeros. 

3. Perform a change of variables to convert to monomial form. 

4. Perform a change of basis from monomial to tensor product Bernstein form. 

Now we shall explain in detail how to execute each of these steps. 
To begin, we need to construct for each vertex of the toric patch a rectangular 

array of control points indexed by a lattice rectangle anchored at the corresponding 
vertex of the domain polygon. These new lattice rectangles must contain the original 
lattice polygon to ensure that we can still represent all the control points of the origi- 
nal patch by indices in the new lattices. Thus to prepare the way for subdivision, we 
are going to construct at each vertex Qk of the lattice polygon I for the toric patch a 
new lattice A k that contains the lattice Z x Z. 

Let R k be the nearest point in I to Qk along the boundary Qk-lQk, and let S k e I 
be the nearest point in I to Qk along the boundary QkQk+l. Define 

D k = 2 • Area(ARkQkS k) 

(ek -Ok) 
Ekl = 

Ek2 = 
Dk 

Then starting from the point Qk and adding integer multiples of Ekl,Ek2 forms a new 
planar lattice A k. We are now going to show that the lattice A k contains the lattice 
Z • Z ~ t h a t  is, A k is a lattice extension of Z • Z. 
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LEMMA 
8.3 

The lattice A k contains the lattice Z x Z. 

Proof To prove that A k contains Z x Z, we shall first show that for every point R in 
the plane 

R = Qk + Lk(R)gkl + Lk-1 (R)Ek2' 

where Lj(u,v), j = 1 ..... p, denote the boundaries of the Newton polygon of 
I. Since Ekl,Ek2 are parallel to different edges of the Newton polygon of I, 
certainly for every point R in the plane there are real numbers A,,/,t such that 

R = Qk + ~Ekl + flEk2" 

But because Qk,Rk,Sk ~ I, there must exist integers hij, i, j = 1,2, such that 

R k - Q k  = (hll,hl2) 

Sk - Qk = (h21,h22)" (8.37) 

Moreover, 

0 ,  det(: 211  12,1 
Applying Lk_ 1 to both sides of the equation R -  Qk + AEkl + flEk2 and 
recalling that Qk + 2Ekl lies on Lk_ 1 yields 

Lk_I(R ) = P(Nk_ 1 �9 Ek2), 

where Nk_ 1 denotes the normal of Lk_ 1. But by Equation (8.37) 

Nk-1 = (-hl2,hl 1). 

Hence 

Nk-1 * (Sk - Qk ) hi lh22 - h12h21 = 1. 
Nk_ 1 �9 Ek2 - = 

Dk Dk 

Therefore, / , t -  Lk_I(R). A similar argument shows that A,- Lk(R). Thus 
for every point R in the plane 

R - Qk + Lk(R)Ekl + Lk-I(R)Ek2" (8.38) 

It follows immediately that A k is a lattice extension of Z • Z, since if R 
Z • Z, then Lk_I(R),Lk(R) are integers. 

To extend the original lattice polygon I to a lattice rectangle I~, we now take all 
lattice points in the new lattice A k with 0 < i <  maxRei{Lk_l(R)} and 0 < j < 
maxRel{Lk(R) }. By Equation (8.38) this lattice rectangle I~ contains the original 
lattice polygon I. Control points corresponding to lattice points in I~ not in the origi- 
nal lattice polygon I are simply set to zero. 
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Next, we need to perform a change of variables to represent the toric Bezier 
patch in monomial form. We proceed exactly as in Section 8.7.5, but we replace the 
original lattice polygon I by the new lattice rectangle I~. Using the expression in 
Equation (8.38) for R, we can rewrite ag(U,V) as 

aR(U,V ) _ CR{LI(U,V) }LI(R)...{Lp(u,v) }Lp(R) 

= C R {L 1 (u, v) ] L1 (Qk)+Lk (R)(N1 "Ekl )+Lk-1 (R)(N1 "Ek2 ) 

�9 ..{Lp (u, v) }Lp (Qk)+Lk (R)(Np,Ekl)+Lk_ 1 (R)(Np,Ek2) 

(8.39) 

Thus, as in Section 8.7.5, we can split aR(U,V ) into three factors: 

1. C -  {Ll(U,v)}Ll(Qk)...{Lp(u,v)} Lp(Qk) 

2. D k = {{L l(u,v) } (NI'Ekl) �9 . .{Lp(u,v)  }(Np'Ekl)} Lk(R) 

3. Ek_ 1 = {{Ll(U,V)} (NI'Ek2) �9 . . { L p ( u , v )  }(Np'Ek2)} Lk-I(R) 

The first factor is independent of R, and hence is common to an(U,V) for all R e I. 
Therefore, this factor cancels in the expression for [3e(U,V) in Equation (8.23). Let 

t = {LI(U,V)}(NI'Ekl)"'{Lp(u,v)} (Np eEkl ) 

S -- {LI(U,V ) } (NI'Ek2) ""{Lp(u,v)}  (Np'Ek2). (8.40) 

Substituting these parameters into Equation (8.39) and discarding C yields 

OCR(U,V) = cRsLk-l(R)t Lk(R) R e I .  (8.41) 

Thus aR(U,V) and hence too flR(U,V) is now represented in monomial form. 
Consider the image on the toric patch of the unit square {(s,t)I 0 < s,t < 1}. 

Along the boundary s = 0, aR(U,V) ~: 0 if and only if R lies on the boundary Lk_ 1. 
Therefore, as in Section 8.7.4, the curve corresponding to s = 0 is the Bezier curve 
whose control points are indexed by the lattice points along the boundary Lk_l--that 
is, the ( k -  1)st boundary of the toric Bezier patch. (If Lk(Rk_ 1) ~e 1, then reparame- 
triZe by setting u = tLk(et-1).) In particular, if PO ..... Pm are the control points corre- 
sponding to the lattice points along Lk_ 1, then in monomial form the boundary curve 
s = 0 i s  

m (r~)th 
e(t)-  Z m ph. 

h=0 Z ( g )  tg 
g=0 
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When s = t = O, aR(U, v) r 0 if and only if R = Qk, so this curve starts at PQk' which 
is the initial point along the ( k -  1)st boundary of the toric Bezier patch. Moreover, 
when s = O, t = 1, we arrive at the point 

m m 

(h) e(1)= ~ - -~Ph '  
h=O 

which is the point corresponding to the parameter value 1/2 for the Bezier curve 
with control points PO ... . .  Pm. Similarly, the curve corresponding to t = 0 is the seg- 
ment of the kth boundary of the toric Bezier patch extending from the initial point to 
the midpoint of the boundary. Finally notice that the boundary s = 1 is generated by 
the functions aR(u,v) = CR tLk(R), so this boundary is identical to the boundary corre- 
sponding to t = 1 for the rectangular patch located at Qk+l. Hence these patches join 
along smooth curves on the toric surface as indicated in Figure 8.15. 

The unit square {(s,t)I 0 _< s,t <_ 1} is the domain of a tensor product patch. 
Since R - Q k  + Lk(R)Ekl  + Lk-I (R)Ek2,  the index R ~ I corresponds to the index 
(Lk-I (R) ,Lk(R))  in the new lattice A k anchored at Qk. Thus the monomial coeffi- 
cients Tij for this tensor product patch are given by 

Tij - PR i = Lk_I(R) and j - Lk(R) 
= 0 otherwise, 

where 0 < i < maxR~I{Lk_l  (R)} and 0 < j < maxRd {Lk(R)}. With this indexing 
the toric Bezier surface defined by the control points {PR} and the tensor product 
patch defined by the monomial coefficients {T i j} are identical by the change of vari- 
ables in Equation (8.40). 

Equation (8.41) represents the barycentric coordinate functions of the tensor 
product surface in monomial form. Thus the control points {T i j} are the monomial 
coefficients for the tensor product patch. To find the corresponding Bezier control 
points, we can simply apply any one of the standard change of basis algorithms such 
as blossoming to convert from monomial to tensor product Bezier form. 

The preceding analysis applies to toric Bezier patches of depth d = 1. But the 
same approach to subdivision works as well for toric Bezier patches of depth d > 1 
because the blending functions for these patches are generated by convolution from 
the blending functions of patches of depth d = 1. Hence we can simply replace the 
boundaries Lk(u,v)  - aku + bkv + c k by Ld(u,v) = aku + bkv + dc k, k - 1 .. . . .  p and 
proceed with the same analysis. Thus the monomial form in Equation (8.40) for the 
numerators of the barycentric coordinate functions extends by convolution to the 
blending functions of toric Bezier patches of arbitrary depth (see Exercise 4). 

Exercises 

1. Consider a rational tensor product Bezier patch P(u,v) of bidegree (m,n) 
with control points (wijPij,wij). Show how to apply a change of variables and 
a change of basis to find the control points for the subpatches induced by 
subdivision at (u,v) - (.5,.5) at the comers PmO,POn,Pmn. 
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2. Implement both the standard subdivision algorithm in Section 5.8.1 and the 
toric subdivision algorithm for rational tensor product Bezier surfaces. 
Which algorithm do you prefer? Why? 

3. Show that in the subdivision of a toric Bezier patch into rational tensor 
product Bezier patches, the tensor product patches all share a common 
point. Find an explicit expression for this common point. 

4. Develop an algorithm for subdividing n-sided toric Bezier patches of arbi- 
trary depth d into n rational tensor product Bezier patches. 

5. Implement the subdivision algorithm for hexagonal toric Bezier patches 
whose lattice hexagon is illustrated in Figure 8.12. That is, implement the 
algorithm to subdivide these hexagonal toric Bezier patches into six rational 
tensor product Bezier patches. Then apply the subdivision algorithm to ren- 
der and to intersect these hexagonal toric Bezier patches. 

6. Consider a rational triangular Bezier patch P(u,v)  of total degree n with con- 
trol points Pijk. 

a. Show that the subdivision technique for toric Bezier patches applied at 
the comer Poon is equivalent to the following procedure: 

i. Divide numerator and denominator by (1 - u - v) n. 

ii. Apply the change of variables: s = u/(1 - u - v), t = v/(1 - u - v). 

iii. Convert from monomial to tensor product Bernstein form. 

b. Use the subdivision technique for toric Bezier patches to subdivide a 
rational Bezier triangle into three rational tensor product Bezier patches. 

7. Consider a rational triangular Bezier patch 

W ijk Pijk Bijnk ( u, v)  

P(u,v)  - i+j+k=n 0 <_ u + v <_ 1. 

~., W ij k B ijnk ( u ) 
i+j+k=n 

Divide the numerator and denominator of P(u,v)  by (2u + 2v - 1) n and then 
apply the change of variables 

u v 
s -  t -  �9 

2 u + 2 v - 1  2 u + 2 v - 1  

a. Show that the reparametrized surface is given by 

E ( - 1 )  n - i - j  WijkPijkBijnk ( s , t )  

P * (s,t) - i+j+k=n 
~., ( - 1 )  n - i - j W ij k B ijnk ( s , t ) 

i+j+k=n 

b. Show that the change of variables (u,v) ~ (s,t) maps the triangle with 
vertices (0,1),(1,0),(1/3,1/3) to the triangle with vertices (0,1),(1,0),(1,1). 
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c. Use parts (a) and (b) to show that P * (s,t) restricted to the domain trian- 
gle with vertices (0,1),(1,0),(1,1) is point for point the same surface as 
P(u,v) restricted to the domain triangle with vertices (0,1),(1,0),(1/3,1/3). 

d. Find the control points of P * (s,t) relative to the Bernstein basis over the 
domain triangle with vertices (0,1),(1,0),(1,1) by performing a change of 
basis. 

e. Using the change of variables cr = 1 -  s, 7: = 1 -  t ,  show that the con- 
trol points in part (d) are the same as the control points relative to the 
Bernstein basis {B/~k(cr, T)} over the standard unit triangle with verti- 
ces at (0,0),(1,0),(0,1) of the subpatch of the original patch restricted 
to the domain triangle with vertices (1/3,1/3),(0,1),(1,1). Conclude that 
the change of basis in part (d) plays the role of a subdivision algorithm 
at the parameter values (u,v)= (1/3,1/3) for a particular subpatch of 
the original triangular patch. 

f. Apply blossoming to show that the standard subdivision algorithm at 
(u, v) = (1/3,1/3) and the change of basis in part (d) are exactly the same 
procedure. 

8. Explain how to modify the subdivision technique for toric Bezier patches pre- 
sented in the text so that the rational tensor product Bezier patches inserted at 
the comers are replaced by rational triangular Bezier patches. Show, however, 
that these triangular Bezier patches do not necessarily cover the original toric 
Bezier patch. 

9. Let P(u,v) be an n-sided toric Bezier patch with control points Pij defined 
over a lattice polygon I whose boundaries are Ll(u,v) . . . . .  L n ( u , v  ) . Define 

Z cijPijXl L1 ( i , j ) . . .  xnLn (i,j) 

p ,  (x 1 ..... Xn ) = (i,j)eI 
~, C6xlL1 (i,j) . . . xnLn (i,j) 

(i ,j)eI 

a. Show that the patches P*  (1 . . . . .  1 , x i , x i + l , 1  . . . . .  1), 0 _< x i , x i +  1 <_ 1, are 
exactly the patches constructed in the text that subdivide the surface 
P(u,v) into n rational tensor product Bezier patches. 

b. Show that these patches all meet at the point P * (1 ..... 1). 

c. Show that adjacent patches share a common edge. 

10. Let P(u,v) be an n-sided toric Bezier patch with control points Pij defined 
over a lattice polygon I whose boundaries are Ll(u,v) ..... Ln(u,v). Define 
P * (x 1 ..... x n) as in Exercise 9. 

a. Show that the patches P * (1 . . . . .  1 , x i , x i +  1,1 ..... 1), xi ,xi+ 1 >_ O, x i + xi+ 1 <_ 1, 
subdivide the surface P(u,v) into n rational triangular Bezier patches. 

b. Show that these patches all meet at the point P * (1 ..... 1). 

c. Show that adjacent patches share a common edge. 
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8.7.8 Depth Elevation for Toric Bezier Patches 

Every toric Bezier patch of depth d can be represented as a toric Bezier patch of 
depth d + 1 with the same lattice polygon. To prove this assertion, we will first show 
how to express the blending functions {B~(u,v)} in terms of the blending functions 
{B~ + l(tt,v) }. 

We begin by deriving another explicit expression for the toric Bezier blending 
functions {Bd(u v) } Suppose that I = {Pl ..... Pm} is a lattice polygon with barycentric ]t ' " 
coordinate functions {flpa ..... flpm}" Let Lj(u,v) - aju + bjv + cj - O, j = 1 ..... n be the 
equation of the jth boundary of the Newton polygon of I. Then 

LJ(u,v) - aju + bjv + d c j -  O, j - 1 ..... n, 

is the equation of the jth boundary of the Newton polygon of I d (see Section 8.7.1, 
Exercise 3). By Equation (8.26) 

d k 1 �9 ~ km (u,  v ) .  
B~ (u, v) - ~'klPl +" "'+kmPm =,~ (kl'" "kin )flPl (u, V)'" Pm 

Moreover, by Equations (8.22) and (8.23), 

cp{Ll(U,V) }LI(P). . .{Ln(u,v) }Ln(P) 
tip (U, v) - D(u, v) p e I 

D(u, v) = Z act (u, v).  
cr ~I  

Substituting these formulas for {flPh } into the expression for {B~(u,v)} yields expo- 
nents of the form 

klLj(Pl  ) +. . .  + kmLj(Pm ) - LJ (~) 

because kip 1 +. . .  + kmP m = A and k 1 +...  + k m = d. Hence 

B J ( u , v )  - 

a k~. km Ldl(;t) 
~klP 1 +...+kmPm=,~ " (kl...km)Cpl "'Cpm {L 1 (u, v) ] �9 . .{Ln(u,v)} L~(x) 

{D(u,v)} d 

Therefore, since the factor {Ll(U,V ) }L~(A')...{Ln(u,v ) } Lan(A) appears in every term, 

B~ (u, v) - c~ {L 1 (u, v)} gd (~) �9 . .{Ln(u,v)} Ldn(x) 

{D(u,v)}  d 
(8.42) 

d k 1 . k m 
C~ - ~_,klPl +.. .+kmPm= ~ (kl...km)Cpl " "Cpm . 

To express the blending functions {B~(u,v)} in terms of the blending functions 
d+l d { B 7  (u,v) }, we shall multiply the expression for B~(u,v) in Equation (8.42) by each 

of the barycentric coordinate functions of I and addthe results. To proceed, observe 
that by Equation (8.42) 
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flp (U, v)B~ (u, v) - 
CpC~ {L 1 (U, V) } Lr (~')+L1 (P)"  "{L n (u, V) } Ld (A)+Ln (p) 

{D(u,v)} d+l 

CpCff~ {L 1 (u, v) } Ld+l (Z+p)...{Ln (tt, v) } Lan+l (&+P) 

{D(u,v)} d+l 

Therefore, 

od+  (,,v) 
d+l ~ CZ+p 

Summing both sides of this equation over all p e I and recalling that the barycentric 
coordinate functions sum to one yields 

4 
CpCA rid+l, v). (8.43) B~(u ,v) -  ~, d+l DA+ptU, 

pel CA+p 

Now consider a toric Bezier patch BCl(u,v) of depth d with control points {P~} 
and let Bd+l(u,v) be the toric Bezier patch of depth d + 1 with control points {P g+l} 
defined by 

d 
"Tpd+l - ~ CpCT-Pd+l P/-P' (8.44) 

peI c 7 

where c d - 0 if 7 -  P ~ Id Then 7-P 

d 
,-,d+l ,, CpCT-p pd = / / d + l ( u , v ) p / + 1  - ]~ t~ 7 ~,u,v)  ]~ Bd+l(u, v) Z "7  - d+l 7 -P  

7eI d+l ?,el d+l peI c 7 

x = ~ d + l  O~+p A, eI d I C&+p &eI d 

= B d (u, v) , 

so the s u r f a c e  Bd+l(u,v) is the depth-elevated form of the surface B d (u,v). There- 
fore, Equation (8.44) is the depth elevation formula for toric Bezier patches. 

Exercise 

1. Show that for triangular Bezier patches, the depth elevation formula in 
Equation (8.44) reduces to the standard three-term degree elevation formula 
given in Section 5.8.2, Exercise 9. 
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8.7.9 Differentiating Toric Bezier Patches 

We can differentiate toric Bezier patches exactly in the same way that we can differ- 
entiate S-patches because the blending functions {B~(u,v)} for a toric Bezier patch 
of depth d can be expressed in terms of discrete d-fold convolutions of the barycen- 
tric coordinate functions fll(u,v)- {flp(U,V)}pel of the lattice polygon 1. That is, by 
Equation (8.25), 

/B,~ (u, ~)1 -/~t (u, v) |  | (u, v) 
~, ~ ,  

- v  

d factors 

Hence, the derivative formulas we derived for S-patches in Section 8.4.3 readily 
extend to toric Bezier patches. 

For example, first-order partial derivatives are easy to compute. Indeed by Equa- 
tion (5.21), 

{~B~(u'v)}- d~)flI-(U'V)}| fli(u,v)|174 fli(u,v) 
au L au " d-1 yaotor, " 

or equivalently, 

d-1 (u, V) = d Z B~_p . 
~U peI ~u 

Therefore, the first-order partial derivative with respect to u of the toric Bezier patch 

is given by 

B(u, v) - Z BJ ( . ,  v)P~ 
~ I  d 

~B(u,v) =d Z 
~tt yeld-1 

BJ-l(u,v)( ~ ~flP(U'V) I 
\pe I  Ou P~+P " 

An analogous formula holds, of course, for the first-order partial derivative with 
respect to v. 

Algorithmically, these formulas say that to find the first-order partial derivative 
of a toric Bezier patch of depth d, we need only take the first-order partial derivative 
of the barycentric coordinate functions on the bottom level of the pyramid algorithm, 
then run the algorithm, and multiply the result by d. As with S-patches, it follows by 
our convolution formulas that we could, if we choose, take the first-order partial 
derivative of the barycentric coordinate functions on any level of the pyramid algo- 
rithm, then run the algorithm, and multiply the result by d. 

Along any boundary of a toric Bezier patch most of the blending functions 
{(B~-l(u,v)} vanish because most of the barycentric coordinate functions are zero 
along the boundary. In fact, let Lk(u,v) denote the kth boundary of the Newton poly- 
gon of I, and let ~I k denote the indices of I lying on Lk(u,v). Then along Lk(u,v) = O, 
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flp(U,V) = 0, p ~ t)l k. Now let ~I d-1 denote the indices along the kth boundary of 
the Newton polygon of 1 d-1. Then, by Equation (8.25), along the boundary Lk(U,V) 

Therefore, along Lk(U,V) 

- l ( u ,  v) - 0, r 

igB(u, v) 
~ = d  Z 

3u r~ald-1 
Bd-l(u'v)l ~'oflp(u'v) ) 

k, peI aU Pr+p �9 

Again an analogous formula holds for the partial derivative with respect to v 
along Lk(U,V). It follows then that only the control points indexed by the elements of 
Ol~-I (9 1 affect the first-order partial derivatives along, or the directional derivatives 
across, the kth boundary of the patch. 

Higher-order partial derivatives are not much more difficult to compute. For 
example, 

{~2B~(u'v)} = d ~2 flI(U'V) | fli(u,v)|174 fli(u,v) 
~u2 ~u2 ' d-1 factors 

+ d(d-  1) aflz(U'V-------~)| aflz(U'V~)| flt(u,v)|174 flt(u,v), 
~u ~u d-2 factors 

and similar results hold for the other second-order partial derivatives of the blending 
functions. Again this formula has the same algorithmic interpretation that we found 
when differentiating S-patches. To find a second-order partial derivative of a toric 
Bezier patch of depth d: 

1. Take the second-order partial derivative of one level of the pyramid algo- 
rithm, then run the algorithm, and multiply the result by d 

2. Take the first-order partial derivative of two different levels of the pyramid 
algorithm, then run the algorithm, and multiply the result by d(d-1) 

3. Add the results of 1 and 2 

Higher-order partial derivatives of toric Bezier patches can be computed with similar 
algorithms. 

Exercises 

1. Show that the normal along the kth boundary of a toric Bezier patch of 
depth d with lattice polygon I depends only on the control points indexed by 
3I d-1 @ I. (Compare to Section 8.4.3, Exercise 1.) 
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2. Show that to find the first-order partial derivatives of a toric Bezier patch of 
depth d, we could, if we choose, take the first-order partial derivative of any 
level of the pyramid algorithm, then run the algorithm, and multiply the 
result by d. Explain why in some cases it might be better to take the deriva- 
tive of the last level of the algorithm instead of the first level. (Compare to 
Section 8.4.3, Exercise 2.) 

3. Consider a toric Bezier patch of depth d with lattice polygon I. 

a. Show that only the control points indexed by the elements of 

~I d-2 G 12 

affect the second-order partial derivatives of the patch along the kth 
boundary. 

b. Generalize the result in part (a) to higher-order partial derivatives. 

(Compare to Section 8.4.3, Exercise 3.) 

4. Develop an algorithm for finding the third-order partial derivatives of a toric 
Bezier patch of depth d. How many different pyramids must you compute? 
What are the normalizations for each of these pyramids? (Compare to Sec- 
tion 8.4.3, Exercise 4.) 

8.7.10 Blossoming Toric Bezier Patches 

We could try to blossom a toric Bezier patch B(u,v) of depth d just as we blossom an 
S-patch of depth d, by replacing the parameters (u,v) by a different parameter pair 
(uk,vk) on each level of the pyramid algorithm. Let us denote this function by 
b((ul ,v 1) ..... (Ud,Vd)). This function would certainly be symmetric and satisfy the 
diagonal property, just like the blossom of an S-patch. But there is a problem with 
the dual functional property. What we would like to have happen is that each control 
point of the toric Bezier patch should be given by the blossom of the patch evaluated 
at some collection of vertices of the patch. Unfortunately, this cannot always occur, 
even for toric Bezier patches of depth d = 1 because there are more control points 
than there are vertices. There are just not enough vertices to go around. 

Nevertheless, we do get a partial dual functional property. Let 
flz(u,v) - {flij(u,v)} be the barycentric coordinate functions for the lattice 
polygon I whose Newton polygon has vertices Q1 ..... Qn. By Equation (8.25) 

and by Theorem 8.2 

IBJ (u, v) I - flz(u, v) |  | fli(u, v) 
~ r  

d factors 

flij(Qk ) - 0 (i, j)  r Qk 

= 1 ( i , j ) - Q k .  
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Hence for k 1 +. . .  + k n - d, 

kl k n 

SO 

b~(Q1 ..... Q1 ..... Qn ..... Qn) = 1 /~ = klQ ! ~ . . . @  knQ n 
�9 j �9 j 

= 0 otherwise. 

Now let {P~} be the control points of  B(u,v). Since 

v) - 2 BJ v)P , 
~,EI d 

it follows by linearity that 

So if we can express the index of a control point as a d-fold Minkowski sum of the 
vertices of I, then we can compute the control point by evaluating the function 
b((Ul,Vl) ..... (Ud,Vd)) at the corresponding vertices of I. Unfortunately, in general, not 
all indices in/d,  and hence not all control points in {P~} can be expressed in this 
manner (see Exercise 1). 

What is to be done? We need either more sets of vertices or more levels in the 
pyramid algorithm. To overcome our predicament, our strategy is going to be to try 
to express a toric Bezier patch as a C-patch~that  is, to write the barycentric coordi- 
nate functions of a toric Bezier patch as convolutions of the barycentric coordinate 
functions of a collection of S-patches. If we are successful, then we can apply the 
blossoming procedure that we already know works for C-patches to compute the 
dual functionals for the toric Bezier patch. Therefore, we turn our attention next to 
toric Bezier C-patches. 

Exercises 

1. Let I denote the lattice pentagon depicted in Figure 8.10. Show that for 
every d > 1 there are indices in I a that cannot be expressed as the d-fold 
Minkowski sum of the vertices of I. Conclude that blossoming the pyramid 
algorithm does not provide all the dual functionals for these pentagonal lat- 
tices for any depth. 

2. Let I denote the lattice hexagon depicted in Figure 8.12. Show that every 
index of I a for d > 2 can be expressed as the d-fold Minkowski sum of verti- 
ces in I. Conclude that blossoming the pyramid algorithm provides the dual 
functionals for these lattice hexagons of depth d > 2. 
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3. Suppose that B(u,v) is a toric Bezier patch of depth d with barycentric coor- 
dinate functions {flPl (u, v) ..... flPm (u, v)} and blending functions 

{BJ(u,v)}- {flPl (u,v) ..... flora (b/'V)} @ "'" @ {/~Pl (b/,V) ..... /~Pm (U,V) } 
~, 

d factors 
^ 

Let B(Upl . . . . .  Upm ) be the polynomial generated by replacing the barycentric 
coordinate functions tiP1 (u, v) ..... flPm (u, v) with the parameters Up1 .... .  Upm 
in the pyramid algorithm for B(u,v), and let 

{[~  (Upl . . . . .  Upm ) } -- {Upl . . . . .  Upm } @""  | {Upl . . . . .  Upm }. 

d factors 

Then [~(upl ..... Upm ) and /}~ (upl ..... Upm ) are polynomials of degree d in m 
variables with polynomial blossoms 

/ ) ( ( U l l  . . . . .  Ulm ) . . . . .  (Udl . . . . .  Udm)) and /~((ull  . . . . .  Ulm ) . . . . .  (Udl . . . . .  Udm)). 

Show that 

a. bJ((Ul,Vl) ..... (Ud,Vd)) - 

/)~ ((flPl (ul '  vl) ..... flPm (ul '  vl )) ..... (flPl (ud' vd ) ..... flPm (ud' vd ))) 

b. b((Ul,Vl) . . . . .  (Ud,Vd))= 

/)((flpl (Ul 'Vl) ..... flPm (ul'vl )) ..... (tiP, (Ud'Vd) ..... flPm (ud'vd))) 
(Compare to Section 8.4.4, Exercise 6.) 

8 . 7 . 1 1  Toric Bezier C-Patches 

A toric Bezier C-patch is a toric Bezier patch that is also a C-patch. To determine if 
the functions al(U,V) = { a i , j ( u , v  ) }(i,j)eI for a lattice polygon I define a C-patch, we 
must seek 

1. a decomposition 

I - 11 @.. .  G I m 

2. a distribution 

gti(U , V) = al l  (U, V) @""  @ aim (U, V). 

A decomposit ion means that I can be expressed as a Minkowski sum of lattice 
polygons 11 ..... I m. For an arbitrary lattice polygon I a decomposition does not always 
exist, but a decomposition of I does exist for many interesting lattice polygons. 
Indeed, for some lattice polygons, there are several different decompositions (see 
Exercise 1). Suppose that a decomposition of I does exist. By Equation (8.22) the 
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functions al(U,V ) are products of powers of the boundaries of the Newton polygon 
of I. Therefore, a distribution means that products of the lines bounding the Newton 
polygon of I can be apportioned to the nodes of the lattice polygons 11 ..... I m in the 
decomposition so that 

�9 the functions at the nodes are the numerators of barycentric coordinate 
functions for convex polygons P1 ..... Pm; 

�9 convolving these products gives exactly the functions ai(u,v) defined in 
Equation (8.22)~the numerators of the barycentric coordinate functions for 
the lattice polygon I. 

Although a decomposition of I need not exist, when there is a decomposition of 
I into lines (two nodes) and triangles (three nodes), there is always an associated dis- 
tribution. 

For example, consider the lattice hexagon in Figure 8.12. Evidently this lattice 
polygon can be decomposed into the Minkowski sum of the three linear lattices. Now 
we want to distribute products of the lines bounding the hexagon to the nodes of these 
linear lattices so that the functions ai(u,v) for the lattice hexagon result from convolv- 
ing these products. Figure 8.18 illustrates such a distribution (see Exercise 1). 

We are still missing the pofygons~the line segments~associated with these 
three linear lattices. (Recall that for S-patches, the polygon is not necessarily the 
convex hull of the indexing set.) So far with each linear array I k in Figure 8.18, there 
are associated two quadratic functions, Fkl,Fk2. We want these functions to repre- 
sent barycentric coordinate functions for a line segment. Thus for each array I k, we 
need to find two points Qkl, Qk2 so that 

Fkl(Qkh ) = 0 1 :/: h 
(8.45) 

=1 1 - h  . 

Actually it is enough to find points Qkl,Qk2 such that 

Fkl(Qkh ) = 0 l r h 

~1  l = h ,  

( 1 - u + v ) ( 2 - u )  u(l+u-v) 

(o,o) (1,o) 
| 

v(1 - u  + v)  u v  

(0,1) 

| 

(o,o) 
( 2 - v ) ( l + u - v )  ( 2 - u ) ( 2 - v )  

(1,1) 

Figure 8.18 A distribution for the lattice hexagon in Figure 8.12. It is straightforward to verify directly 
that the functions a~(u, v) for the lattice hexagon are given by convolving the functions at the 
nodes of these three linear lattices. 
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since we can always multiply Fkl by a constant to force Fkl(Qkl)- 1. We have the 
freedom to multiply by constants because we have the freedom to choose the con- 
stant coefficients in the functions ai(u,v ). In our example we can take the point Qkl 
to be the intersection of the lines that factor Fk2 and the point Qk2 to be the intersec- 
tion of the lines that factor Fkl. Notice that these points are vertices of the Newton 
polygon of the original lattice hexagon. 

With this distribution, we have essentially represented the barycentric coordi- 
nates for the hexagonal patch as a convolution of the barycentric coordinates of three 
linear S-patches. We say essentially because we have represented the functions 
ai(u,v) by convolution instead of the barycentric coordinate functions flt(u,v). This 
problem is easily overcome; since there are three factors in the convolution, simply 
divide the function at each node by the factor 

{ Z akt(u,v)} 1/3. 
(k,/)~l 

(For rational toric Bezier patches, we can ignore this normalization entirely.) Notice, 
by the way, that even with this normalization, the functions labeling the nodes for 
each line do not sum to one. It turns out that this does not matter; we care only that 
the barycentric coordinate functions flI(u,v) for the lattice hexagon sum to one and 
that Equation (8.45) is satisfied so that we know where to evaluate the blossom to 
obtain the dual functionals for the C-patch (see Section 8.6, Exercise 11). 

The domain of a C-patch is the intersection of the domains of the corresponding 
S-patches. For each of the S-patches whose index set is depicted in Figure 8.18, the 
domain is actually bounded by a quadrilateral~by the four lines contained in the 
factors at the two nodes. (The domain is bounded by four lines in uv-space even 
though the polygon itself is a line segment because the barycentric coordinate func- 
tions are nonnegative inside a quadrilateral.) But because we have a distribution, an 
apportioning of the products of the lines bounding the hexagon to the vertices of the 
lines in the decomposition, the intersection of these three quadrilaterals is exactly the 
hexagon. Whenever we have a distribution, the lines in the factors at the vertices of 
the S-patches~that is, the lines that factor the barycentric coordinate functions of 
the S-patches~are exactly the lines that bound the toric Bezier patch. Therefore, the 
intersection of the domains of the S-patches in the decomposition will always be the 
domain of the corresponding toric Bezier patch. 

For the lattice hexagon, I = I 1 @ 12 ~ 13 and 

so the corresponding toric Bezier patches are C-patches. Let d = (dl,d2,d3). Then 
there is a three-tier evaluation algorithm for the hexagonal toric Bezier patches 
indexed by I d = 1 dl @ 1 d2 ~ 1 d3. Moreover, the mechanism for blossoming C-patches 
applies without any modification to these hexagonal patches. Therefore, we can 
blossom the hexagonal toric Bezier patches indexed by I d simply by blossoming 
each tier of the three-tier evaluation algorithm independently. Thus we have suc- 
ceeded in constructing a blossom for these hexagonal toric Bezier patches that is tri- 
symmetric, reduces to the original patch along the diagonal, and satisfies the dual 
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functional property. This blossom, however, is not multiaffine, since the functions in 
the distribution are not linear. 

We have illustrated our approach with a particular example, but the details are 
much the same for all toric Bezier patches with lattice polygons that have a decom- 
position into a Minkowski sum of lines and triangles. The only missing detail is how 
the distribution is accomplished. We shall explain precisely how to perform the dis- 
tribution in Theorem 8.6, but first we need some preparatory lemmas. 

LEMMA 
8.4 

Suppose that I = 11 @... @ I m is a decomposition of I. Let 

L(u,v) =- au + bv + c = 0 

be a bounding line of the Newton polygon of I, and let N = (a,b) be a normal 
vector of L(u,v) pointing into the Newton polygon of I. For each index set lj, 
let Qj be a node of Ij at which N points into the Newton polygon of Ij, and let 
Q = Q1 @"" @ Qm. Then L(Q) = 0mthat  is, Q lies on L. 

Proof Since N is an inward-pointing normal, L(R) > 0 for all R e I. Let Rj r Qj 
be another node of Ij. By assumption, N points into the Newton polygon of 
Ij at Qj, so 

N �9 ( R j -  Qj) > 0 

or equivalently 

N .  Rj > N .  Qj. 

Hence for all R e I 1 G. . .  �9 I m - I ,  we have 

N �9 R > N �9 Q, so L(R) > L(Q) > O. 

Therefore, L(Q) is the minimum value of L on 1. But L is zero on indices of 
I that lie on L, and positive for all other indices in I; hence L(Q) = O. 

LEMMA 
8.5 

Suppose that I = I 1 ~ . . .  ~ I m is a decomposition of I. Let 

L(u,v) - au + bv + c = 0 

be a bounding line of the Newton polygon of I, and let N = (a,b) be a normal 
vector of L(u,v) pointing into the Newton polygon of I. For each index set lj, 
let Qj be a node of Ij at which N points into the Newton polygon of Ij, and let 
Lj(u,v) - au + bv + cj - 0 be the line through Qj parallel to L(u,v). If 

R - R 1 @...@ R m, then L(R) = LI(R1) +.-. + Lm(Rm). 
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Proof Let c* - c 1 + . . .  + c m and let L * (u,v) - au + bv + c *. If R - R1 @. . .  @ Rm, 

then L 1 (R 1 ) +. . .  + L m (R m ) - L * (R ) .  We shall now show that L* - L. Cer- 
tainly the line L * ( u , v ) -  0 is parallel to the line L(u,v)  - O. Let 
Q - Q1 @"" @ Qm. By Lemma 8.4, L(Q)  = 0. But, by assumption, 

Lj (Qj) - 0, 

so L * (Q) - L 1 (Q1) +""  + Lm (Qm) - O. Hence Q must lie on both L* and L. 
But L* is parallel to L. Therefore, L* - L. 

THEOREM 
8.6 

Let I be a lattice polygon, and let Lk(u,v ) = 0, k = 1 ..... n, be the equation of 
the kth boundary line of the Newton polygon of I with normal vector N k 
pointing into the Newton polygon. Suppose that I -  I 1 ~ . . . 0  1 m is a 
decomposition of I. For each index set Ij, let Qkj be the node of Ij at which 
N k points into the Newton polygon of Ij, and let Lkj(u,v) - 0 be the line 
through Qkj parallel to Lk(u,v) - O. Then the distribution associated to each 
node Rj of lj is given by 

OCRj (u,v) - {Ll(U,V) }Ll j (Rj) . . . {Ln(u ,v)  } Lnj(Rj)" 

Proof Let R - R 1 @.. .  @ R m, where Rj ~ I j .  By Lemma 8.5, 

L k l ( R 1 ) + ' " +  Lkm(R m ) - L k ( R  ). 

Therefore, 

aRl(u,v)...aRm(u,v) 
= {Ll(u,v  ) } Lll(R1)+'''+Llm(Rm) ...{Ln(u,v)}Lnl(R1)+'"+Lnm(Rm) 

= {LI(U,V ) } Ll(R) . . . {Ln(u,v  ) ]Ln(R) 

= a R ( u ,  v )  . 

Thus we have successfully apportioned products of the lines bounding the 
Newton polygon of I to the nodes of the lattice polygons I 1 ..... I m in the 
decomposition so that convolving these products gives exactly the functions 
ag(U,V ) defined in Equation (8 .22)~the numerators of the barycentric 
coordinate functions for the lattice polygon I. 

Exercises 

1. Let I be the lattice hexagon in Figure 8.12. 

a. Verify that Figure 8.18 represents a distribution for I. 

b. Show that I = I 1 @ 12, where I 1 = { (0,0),(1,0),(0,1)} and 
12 = { (0,0),(0,1), (1,1) }, is another decomposition for I. 
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c. Find a distribution for the decomposition in part (b). 

2. Consider the lattice pentagon 11 = { (0,0),(1,0),(0,1),(1,1),(1,2),(2,1) }. 

a. Show that I -  I 1 ~)12, where I 1 = {(0,0),(1,0),(0,1)} and 
12 - { (0,0), (1,1) }. 

b. Find a distribution for this decomposition. 

3. Find a distribution for the decomposition of the lattice pentagon in Figure 
8.10. 

4. Explain why it is not necessary to normalize the distribution in Figure 8.18 
for a rational hexagonal Bezier patch. 

5. For the hexagonal toric Bezier patches whose lattice hexagon is illustrated 
in Figure 8.12, there are three evaluation algorithms: 

i. The pyramid algorithm 

ii. A two-tier evaluation algorithm based on the decomposition in Exercise 1 

iii. A three-tier evaluation algorithm based on the decomposition in Figure 
8.18 

Implement all three of these evaluation algorithms. Which algorithm do you 
prefer? Why? Experiment with toric hexagonal Bezier patches of different 
depths. Determine how changing the location of the control points affects 
the shape of the surface. 

6. Here we develop a multidepth elevation formula for toric Bezier C-patches 
whose lattice polygon I has a decomposition I - I 1 0) . . .  O) I m into lines and 
triangles. Let d = (d 1 ..... d m) and suppose that 

0[, I (hi, V) -- adi11 ( H, V) (~ . . . (~ a im dm (hi, 1;) 

is a distribution. Let L k ( u , v ) -  aku + bkv + c k - 0 ,  k = 1,...,n, be the equa- 
tion of the kth boundary line of the Newton polygon of I, and, adopting the 
notation of Theorem 8.6, define 

Lkj(U, v) -- aku + bkV + Ck, j j - 1 ... . .  m , 

L d (u,v) = aku + bkV + Ck,ld 1 +. . .  + Ck,md m k - 1 ... . .  n . 

a. Show that there are constants cg, c~ such that if ~ e lj 

d d 
i. a~ (u , v )  - C~Ll(U,V) E1 (P) . . .Ln(u,v)  En(p) 

ii. a~(u,v)c t~(u ,v)  = c~c~ {LI(U,v) ILdl (Pl+Llj(~I . . . ILn(u,v)  } Edn(pl+Lnj(~) 

b. Now let ej be the m-tuple with a 1 in the jth position and a zero every- 
where else. Using part (a) show that 
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fEa~(u,v)ta~(u,v) _ Z c~c ~ d+ej 
d+ej ap+~ (U,V). 

~I j  ~elj Cp+~ 

. d+ej 
c. Using the fact that {air (u,v) } | {aid (u,v)} - {ald+e J (U,V)}, show that 

d+ej 
Z a (u,v) Z Z aT (u,v). 

~elj ~,~I d ,celd+ej 

d. Dividing the result in part (b) by the result in part (c), conclude that 

- Z c~c~ Bd+e j 
d+ej p+~ (u, v) . 

e. Applying the result of part (d), show that 

d 
p/+ej_  2 c~cy_~ d d i d 

- d + e j  Pg'-~' where c9,_ ~ - 0  if ~ ' -  ~ ~ , 
~I j  Cy 

is the depth elevation formula in the direction ej. That is, using part (d), 
show that the toric Bezier surface of multidepth d with control points 
{PJ} is identical to the toric Bezier surface of multidepth d + ej with 

r~d+ea control points { r/1, ~/. 

8.8 Summary 

Multisided Bezier patches have many different formulations: S-patches, C-patches, 
and toric Bezier patches are the three most important paradigms. Each of these 
schemes is an example of a pyramid patch with a polygonal domain, but with a dif- 
ferent type of indexing set and a different collection of barycentric coordinate func- 
tions. We review these differences in Table 8.4. Below we summarize the properties 
and algorithms that these multisided schemes share with the standard three-sided 
and four-sided Bezier patches. 

Table 8.4 Framework for constructing multisided Bezier patches. 

Patch Index Set Domain Barycentric Coordinates 

S-patch p-tuples convex polygon 

C-patch Minkowski sums 

convex polygon 

intersection polygon convolutions 

Toric Bezier lattice polygon Newton polygon lattice polygon 
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�9 Properties of multisided Bezier patches 

1. Rational 

2. Affine invariant 

3. Lie in the convex hull of their control points 

4. Boundaries are Bezier curves determined by boundary control points 
(toric Bezier patches and S-patches, but not C-patches) 

5. Nondegenerate (toric Bezier patches and toric S-patches) 

�9 Algorithms for multisided Bezier patches 

1. Pyramid evaluation algorithm 

2. Multitier evaluation algorithm (C-patches) 

3. Differentiation 

4. Depth elevation (toric Bezier patches and simplicial S-patches) 

5. Blossoming 

6. Subdivision (toric Bezier patches) 

These pyramid patches do not by any means exhaust the possibilities for multi- 
sided surfaces. Other approaches to multisided patches include multivariate B- 
splines and subdivision surfaces. Each of these schemes could, in itself, be the sub- 
ject for a separate book, so we have not attempted to cover these topics here. Our 
hope is that the tools you have learned throughout this text will give you an entry 
into these and other topics as the need arises. So, for now, we end our choreography 
here. We trust you have enjoyed the dance. 



Index 

A 

adjacent patches 
tensor product Bezier, 

276-277 
tensor product B-spline, 431 
triangular Bezier, 283-284 

affine basis, 7 
affine combinations, 6 

of blossom values, 321 
defined, 5 
divided difference, 181 
in knot insertion algorithm, 

373 
affine coordinates 

defined, 21, 29 
exercises, 30-31 
See also coordinates 

affine independents, 7 
affine invariance, 25 

Bezier curves, 191, 197 
B-spline curves, 362 
defined, 191 
rational Bezier patches, 295 
tensor product Bezier 

patches, 273 
tensor product B-splines, 427 
triangular Bezier patches, 282 

affine lines, 7 
affine plane, 33, 35 

barycentric coordinates in, 
34, 36 

rectangular coordinates in, 34 
affine spaces, 2-10 

barycentric coordinates in, 31 

defined, 6 
division by zero and, 26 
exercises, 8-10 
flaws, 17 
framework, 6 
geometry, 17 
Grassmann space mapping, 

21 
models, 6 
points, 6 
projection in, 22, 25, 72 
projective space mapping, 21 
rational Bezier curves in, 255 
rational Bezier surfaces in, 

293 
rational Hermite interpolation 

in, 140 
rational Lagrange inter- 

polation in, 74 
See also ambient spaces 

affine transformations, 8 
defined, 8 
of knots, 440 
of nodes, 53, 65 
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algorithm, 201-202 
identities, 299-306 
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representation of monomials, 

301 
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256 

See also Bemstein basis 
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Bemstein polynomials. See 
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Bemstein recurrences, 240, 302, 
482 

Bezier approximation, 187-306 
determination, 234, 235 
for proving Weierstrass 

Theorem, 221 
Bezier coefficients, 245 

dual functionals, 342 
of tensor product Bezier 

patches, 336 
uniqueness, 330, 336 
See also control points 

Bezier control polygon, 267 
Bezier curves 

affine invariance, 191, 197 
algorithms for, 299 
analysis tools, 298 
blossoming, 312, 313 
continuity conditions for 

adjacent curves, 246 
control points, 222, 229, 238 
control points, finding, 232 
control points, first/last, 238 
control points, fixed, 260 
convex hull property, 

191-192 
cubic, 189, 225,232, 245, 

247 
de Casteljau's algorithm for, 

189, 232, 233 
defined, 188 
degree elevation for, 

224-228, 319 
derivatives, 245,246, 251 
derivatives, evaluating, 244 
differential properties, 238 
differentiating, 243-250 
elementary properties of, 

190-194 
exercises, 193-194 
integral, 256, 261,266 
integrating, 253-255 
interpolation of end points, 

193-194 
intersection algorithm, 234 
interval, 189 
mass, in Grassmann space, 

260 
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nondegenerate, 201 
oscillation, 206, 208 
polynomial parametrization, 

190 
probability theory and, 229 
properties, 200-212, 298-299 
rational, 255-267 
rendering, 229 
rendering algorithm, 234 
smoothness, 238 
as special B-spline segments, 

355 
subdivision, 229 
splitting, 229 
symmetry, 193 
variation diminishing prop- 

erty, 206-212, 227,234 
Bezier patches 

algorithms for, 299 
analysis tools, 298 
biquadratic, 271 
blossoming, 327-339, 

521-523 
differentiating, 295 
multisided, 445-530 
patch shapes, 267 
properties, 298-299 
rational, 293-297 
shapes, 267 
subdivision for tensor product 

patches, 334 
subdivision for toric patches, 

508-516 
subdivision for triangular 

patches, 283,330 
tensor product, 267-279,477 
three-sided, schematic 

construction, 285 
toric, 446, 488-489 
triangular, 279-292 

Bezier/monomial form 
conversion, 217-220 

algorithm, 217-218 
exercises, 218-220 
knot insertion, 377-379 

Bezout's Theorem, 105 
bicubic Bernstein basis 

function, 268 
bicubic interpolation, 89 
bicubic Lagrange basis function, 

88 

bicubic patches, pyramid 
algorithm, 92 

bicubic tensor product Bezier 
surface 

with control polyhedron, 269 
data, 268 
patch illustration, 270 
schematic construction, 270 
See also tensor product 

Bezier patches 
bidegree blossom 

existence of, 335 
homogenizing, 337 
See also blossoms 

bilinear interpolants, 91 
bilinear recurrence, 269, 271 
binomial distribution, 298 
binomial theorem, 217,229,297, 

298 
biquadratic interpolants, 91 
biquadratic parametrization 

sphere, 108,293, 
torus, 110 

biquadratic patches, Neville's 
algorithm for, 90 

bisymmetric, 335 
bivariate Bernstein basis 

functions, 281,306, 478 
bivariate Hermite basis function, 

144 
bivariate interpolation 

bilinear, 92 
problem, 86, 87 

bivariate Lagrange interpolant 
exercises, 106-107 
explicit formula based on, 

105 
on triangular grid, 105 
uniqueness, 103-107 

bivariate polynomials, 85 
problem, solving, 86 
quadratic interpolation and, 

85, 86 
See also polynomials 

blending functions, 25 
Bernstein, 256 
B-patch, 435-436 
B-spline, 383 
computing, by discrete 

convolution, 475 
convex hull property and, 198 

C-patch, 477-478,482 
discrete distributions and, 198 
Hermite, 130-135 
Lagrange, 58-65 
L-patch, 436 
P-patch, 474, 475 
rational, 256 
simplicial S-patch, 463 
S-patch, 459-462, 506 
at tetrahedron base, 282 
toric Bezier patch, 489,496, 

519 
toric S-patches, 506 

blossoming, 307-345 
applications, 341 
axioms, 311 
Bezier curves, 312, 313 
Bezier patches, 327-339 
B-splines, 389-391 
central ideas, 341 
change of basis algorithms, 

317-321 
C-patches, 483-484 
cubic polynomials, 311 
curves, 317 
de Boor algorithm, 350 
de Casteljau algorithm, 

307-310 
defined, 307 
degree elevation with, 

318-319 
dual functionals and, 

389-391 
homogenization and, 322 
homogenizing commute and, 

325,327 
idea behind, 311 
key de Casteljau construc- 

tions, 340-341 
monomial basis, 315 
for monomial to Bezier form 

conversion, 319 
power basis, 315 
P-patches, 475-476 
recurrence of cubic 

polynomials, 348 
relation to divided difference, 

182 
S-patches, 469-473 
special bivariate bases, 344 
special tensor product bases, 

344 
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blossoming (continued) 
special univariate bases, 344 
subdivision with, 317-318 
summary, 340-345 
tensor product Bezier 

patches, 335-339 
toric Bezier C-patches, 525 
toric Bezier patches, 521-523 
triangular Bezier patches, 

328-335,469 
use of, 307 

blossoming identities, 341-345 
bisymmetry, 335 
blossom of the derivatives, 

345 
composites, 342 
convolutions, 343 
de Boor-Fix representation, 

345 
degree elevation, 342 
derivatives, 343 
diagonal, 342 
dual functionals, 342 
linearity, 342 
multiaffine, 341 
partial derivatives of the 

blossom, 345 
products, 342 
symmetry, 341 

blossoms 
analysis tools, 341 
of bidegree, 335,337 
biquadratic tensor product 

Bezier patch, 336 
bisymmetric, 335 
B-spline, 389 
cubic triangular Bezier patch, 

329 
defined, 310, 311,329 
diagonal, 310, 311,340 
dual functional property, 317, 

319, 340, 390 
examples, 308, 337 
evaluating, at end points, 317 
existence of, 310-317, 340 
formula, derivation of, 314 
homogeneous, 321-327, 330 
linearity, 319 
multiaffine, 310, 311,323, 

335,340 
multilinear, 322, 323-324 

parameters, 335 
properties, 310 
symmetry, 310, 311,340 
uniqueness of, 310-317,329, 

335,340 
values, 314 
values, affine combinations 

of, 321 
values, computing, 366 
variables, replacing, 310 

Boehm's derivative algorithm, 
380-381 

for cubic curves, 380 
defined, 380 
exercises, 381 
first step, 381 
illustrated, 380 

Boehm's knot insertion 
algorithm, 368-371 

control points and, 368-369 
for converting B-spline seg- 

ment to Bezier form, 376 
for cubic B-spline curves, 369 
de Boor algorithm use, 369 
defined, 368 
exercises, 373-374 
illustrated, 369, 370, 371 
for inserting double knot, 370 
for inserting triple knot, 371 
steps, 370 
See also knot insertion 

Boolean sum Hermite surfaces, 
150-154 

compatibility conditions, 
150-151 

construction, 150 
cross-boundary derivatives, 

150 
data, 151 
defined, 151 
exercises, 152-154 
filling four-sided hole with, 

153 
interpolation properties, 152 
mesh of curves intersection, 

151 
See also Hermite surfaces 

Boolean sum surfaces, 114-115 
defined, 114 
exercises, 115-116 
Hermite, 150-154 
illustrated, 114 

mesh of curves and, 114-115 
boundaries 

Newton polygon, 502, 512 
polygonal array, 489 
P-patch, 474, 475 
S-patch, 467 
tensor product Bezier patch, 

273 
tensor product Lagrange 

patch, 87 
toric Bezier patch, 488-489, 

500-502, 513-514 
triangular Bezier patch, 282 
triangular Lagrange patch, 97 
values, 300 

B-patches, 433-437 
cubic, 434 
defined, 433 
exercises, 435--437 
knot-net, 435 
multivariate B-spline surface 

with, 435 
quadratic, 434 
triangular, 435 

B-spline basis functions. See 
B-splines 

B-spline coefficients, 389 
B-spline curves, 347, 358-364 

affine invariance, 362 
algorithms, 356, 438-439 
analysis tools, 438 
compact support, 386, 439 
constructing, 359 
continuity at multiple knots, 

362 
conversion to piecewise 

Bezier form, 375-376 
cubic, 349, 350 
de Boor algorithm for, 348, 

349 
derivatives, computing, 380 
differentiating de Boor 

algorithm for, 352 
differentiating segment on, 

350 
exercises, 361 
first/last control points and, 

363 
generation of all splines, 366 
geometric construction 

algorithm, 350 
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interpolation of control 
points, 363 

joins, 347 
knot insertion algorithms for, 

367-383 
local control, 362 
local convex hull, 362 
locally nondegenerate, 

362-363 
piecewise polynomial, 361, 

362 
properties, 361-364, 438 
quadratic, 411 
rational, 418 
variation diminishing 

property, 376 
verifying smoothness, 350 

B-spline identities, 439-443 
blossoming as dual func- 

tions, 442 
de-Boor-Fix formula, 442 
degree elevation, 442 
Descartes' Law of Signs, 441 
differentiation, 440 
divided difference formula, 

442 
evaluation at knots, 440 
geometric characterization, 

443 
integration, 441 
interpolation at knots, 439 
invariance under affine trans- 

formations at knots, 440 
knot insertion, 442 
linear independence, 441 
Marsden identity, 442 
nodes, 441 
nonnegativity, 440 
nonstandard differentiation, 

441 
nonstandard recursion, 440 
partial derivatives, knots, 442 
partition of unity, 440 
recursion, 440 
recursion for derivative, 441 
representation of monomials, 

442 
smoothness at knots, 439 
for uniform B-splines, 443 

B-spline segments 
adjacent, de Boor algorithm 

for, 360 

cubic, 358 
de Boor algorithm for, 350, 

359 
defined, 358 
of degree n, 360 
differentiating, 359 
Newton dual form 

conversion, 381 
See also progressive 

polynomial curves 
B-spline surfaces, 347 

algorithms, 438-439 
analysis tools, 438 
joins, 347 
multivariate, 435 
properties, 438 
tensor product, 427-429 

B-splines, 383-405 
antiderivative of, 392 
blossoming and dual 

functionals, 389-391 
compact support, 386 
computing, 383 
constructing from divided dif- 

ference operator, 394 
continuity, 386 
from de Boor algorithm, 

383-384 
defined, 347, 383 
of degree 0 and 1,385 
of degree 2 and 3,385 
differentiating, 391-394 
divided difference and, 182, 

394-402 
down recurrence, 384-385 
down recurrence for 

differentiating, 391 
dual functional property, 350 
geometric characterization of, 

402-405 
indexing, 384 
integration, 183, 391-394, 

441 
in large-scale industrial 

applications, 347 
multivariate, 404 
nodes, 390 
nonnegativity, 387 
partition of unity, 386-387 
piecewise polynomial, 386 
properties of, 386-389 

rational, 418-422 
spline basis, 387 
two-term differentiation 

formula, 398-399 
uniform, 405-418 
unimodality, 387 
univariate, 404 
up recurrence, 384 
uses, 383 

r 

cancellation 
divided difference, 166, 181, 

396, 397 
divided difference axiom, 171 

canonical triangle, 282 
cardinal basis functions, 83 
cardinal conditions, 63, 87 
Catmull-Rom splines, 422-426 

construction, 425 
continuity, 424 
cubic, 425 
defined, 422 
exercises, 425-426 
interpolation, 423 
knot insertion and, 425,426 
local control, 425 
nondegenerate, 425 
piecewise polynomial, 422 
properties, 424-425 
recursive evaluation 

algorithm, 424 
value of points on, 424 

Cauchy's Integral Formula, 172 
Ceva's Theorem, 16 
Chaikin's knot insertion 

algorithm, 408-4 11 
defined, 410 
exercises, 410-411 
generalization of, 415 
illustrated, 410 

change of basis algorithms 
between Bezier and 

monomial form, 217-220, 
319, 377-379 

blossoming for, 317-321 
fast forward differencing and, 

177 
with knot insertion, 375-379 
principles of duality, 212-216 
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circles 
approximation by Lagrange 

interpolation, 71 
as rational Bezier curves, 257 
rational parametrization, 71 

Clenshaw's algorithm, 199 
compact support, 386, 439 
Complex Contour Integration 

Formula for the Divided 
Difference, 173, 183 

composites, blossom, 342 
cone, 112 
constant interpolants, 54 
continuity at multiple knots, 362 

Bezier curves, 246 
Bezier surfaces, 284 

continuity conditions 
Bezier curves, 246 
Bezier surfaces, 284 

continuous convolution 
defining, 406 
n-fold, 406 
of two functions, 406 
uniform B-splines and, 

406-408,443 
control points 

arrays of, 100 
Bezier curve, 222, 229, 232, 

238,260, 265 
boundary, 88, 97,273,282, 

295,452, 490 
B-spline, 358-359, 361 
convex hull of, 192 
C-patch, 482 
cubic triangular Bezier 

patches, 284 
defined, 53 
first/last, 238 
interpolation of, 363 
joining, 234 
lattice point correspondence, 

512 
overlapping arrays of, 96 
polygonal array of, 450 
P-patch, 474 
rational Bezier curves, 257 
rational Bezier patches, 294 
rational Hermite curves, 

135-143 
rational Lagrange curves, 74 
rectangular array of, 267, 510 
set to one, 64 

simplicial S-patch, 463 
S-patch, 460 
spline, 409 
subpatches, 510 
in three dimensions, 92 
toric Bezier patch, 521 
triangular array of, 97, 279, 

284 
triangular Bezier patch, 282, 

283 
unimodality and, 204 
uniqueness of, 313-314 

convex hulls 
Bezier curves, 225 
blending functions and, 198 
of control points, 192 
defined, 192 
finding, 235 
intersecting, 235 
in intersection algorithm, 235 
local, 362 
property, 191-192 
of two points, 192 

convex polygons 
barycentric coordinates for, 

446-450, 491 
S-patches, 459 

convex set, 191, 192 
convolutions 

Bemstein basis, 239-243, 
304, 502 

blossom, 343 
continuous, 406-408,443 
discrete, 239-243,298, 302, 

451-452 
uniform B-splines, 406-408 

coordinate-free style, 27 
coordinates, 27-38 

affine, 21, 29 
barycentric, 27, 31-38, 

446-450, 491-495 
Grassmann, 11, 29 
homogeneous, 19, 29 
rectangular, 27, 28 

comer cutting, 225,227 
de Boor algorithm, 376 
de Casteljau algorithm, 233 
defined, 227 
degree elevation, 225 
knot insertion, 375-376 
oscillation and, 227 
subdivision, 233 

comer values, 300 
C-patch blossom, 483-484 

diagonal, 483,484 
dual functional, 484 
multiaffine and, 484 
multisymmetry, 483 
See also blossoming; 

blossoms 
C-patches, 476-488 

advantages/disadvantages, 
485 

barycentric coordinate 
functions, 477,529 

blending functions, 477-478, 
482 

blossoming, 483-484 
control points, 482 
defined, 472, 476 
domains for, 480, 481,525, 

529 
exercises, 486-488 
hexagonal, 479, 485 
indexing sets, 488,529 
multitier evaluation algorithm 

for, 481 
pentagonal, 478,482 
S-patch comparison, 485 
as special P-patches, 481 
summary, 484 
toric Bezier, 523-529 
See also multisided Bezier 

patches 
cubic Bezier curves 

control points, algorithm for 
finding, 247 

de Casteljau's algorithm for, 
189,233 

first derivative of, 245 
multilinear blossom of, 324 
nodes, labeling, 309 
subdivision algorithm for, 

232 
See also Bezier curves 

cubic B-patch, 434 
See also B-patches 

cubic B-spline curves 
Boehm's knot insertion 

algorithm for, 369 
converting one segment to 

Bezier form, 376 
de Boor algorithm for, 349 
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differentiating de Boor 
algorithm for, 352 

differentiation algorithm for, 
379 

double knot insertion into, 
370 

geometric construction 
algorithm, 350 

Oslo algorithm, 372 
triple knot insertion into, 371 
See also B-spline curves 

cubic Catmull-Rom splines, 425 
See also Catmull-Rom 

splines 
cubic curves, 123 

Boehm's derivative algorithm 
for, 380 

degree elevation algorithm 
for, 225 

dynamic programming algo- 
rithm for, 218,219 

See also cubic Bezier curves; 
cubic B-spline curves 

cubic Hermite basis functions, 
122-123, 133 

Neville's algorithm for, 122 
properties, 137 

cubic Hermite interpolation, 
119-124 

applications, 123 
exercises, 123-124 
Neville's algorithm for, 122, 

127 
cubic interpolants, 54, 97 
cubic interpolation 

Hermite, 119-124 
Neville's algorithm for, 52 
Neville's pyramid algorithm 

for, 98 
surface, 98 

cubic Lagrange basis functions, 
61-62 

computation of, 216 
defined, 61 
down recurrence, 67 
illustrated, 61 
See also Lagrange basis 

functions 
cubic polynomials, 311 

blossoming, 311 
blossoming recurrence, 348 
evaluation algorithm, 241 

fast forward differencing 
algorithm for, 177 

Homer evaluation algorithm 
for, 156 

Homer's method for, 82 
overlapping difference 

triangles for, 176 
See also polynomials 

cubic triangular Bezier patches 
blossom, 329 
control points, 284 
with control polyhedron, 281 
data, 280 
See also triangular Bezier 

patches 
curves 

affine invariant, 25 
approximating, 221 
Bezier, 188-194 
blossoming, 317 
B-spline, 347, 358-364 
collection of, 112 
cubic, 123, 218, 219 
exercises, 26-27 
graphical representation, 51 
Hermite, 135-143, 146 
implicit representation for, 39 
interpolating, 53, 88 
Lagrange, 69-77, 88 
oscillation measurement, 206 
parametric representation of, 

40 
piecewise linear, 49 
polynomial, 24 
progressive, 389 
rail, 112 
rational, 25, 69-77, 135-143 
representations, 38-43 
smooth, 49 
space, 88 
translation invariant, 24-25 

cylinder, 112 

D 

de Boor algorithm, 347-355 
for adjacent B-spline 

segments, 360 
arrow reversal in, 384 
blossoming, 350, 351 
Boehm's knot insertion 

algorithm and, 369 

B-spline computation, 
383-384 

for B-spline segment, 350, 
359 

as corner-cutting procedure, 
376 

defined, 348 
denominators, 348 
differentiating, 352, 392 
exercises, 352-355 
homogenizing, 351 
knots, 348,366 
labels, 349, 361 
linear interpolations, 350 
Neville's algorithm with, 424 
Oslo algorithm and, 371 
point evaluation, 348 
polynomial segment 

generation, 366 
for single segment of cubic 

B-spline curve, 349 
for tensor product B-spline 

surfaces, 431 
de Boor-Fix formulas, 305 

blossom, 345 
B-splines, 442 

de Casteljau triangle, 196, 232 
de Casteljau's algorithm, 

188-190, 269, 298 
bivariate, 328 
blossoming, 307-310 
as corner-cutting procedure, 

233 
for cubic Bezier curves, 189, 

233 
defined, 188-189 
as dynamic programming 

algorithm, 194 
evaluation, 271 
generalizing, 348 
geometric interpretation, 189 
homogenizing, 323,324, 336, 

356 
illustrated, 193 
interior nodes, 307 
key blossoming construc- 

tions, 340-341 
labeling, 307, 308 
number of multiplications, 

272 
pyramid, 328 
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de Casteljau's algorithm 
(continued) 

pyramid algorithm vs., 272, 
273 

subdivision, 232, 318,330 
for tensor product surfaces, 

273,335 
tetrahedral, 283,285, 328 
triangular, 286, 287 
triangular Bezier patch 

generated by, 286 
two-tier, 481,482 
univariate, 286 

decomposition, 523,526, 527 
defined, 523 
distribution and, 524 
into Minkowski sum of lines 

and triangles, 526 
lattice polygon, 524 

degree elevation, 224-228, 305 
for Bezier curves, 224-228, 

319 
blossoming for, 318-319, 342 
B-splines, 442 
convergence of, 234 
as corner-cutting procedure, 

225 
for cubic curves, 225 
defined, 224 
exercises, 227-228 
formula, 225,298 
See also Bezier curves 

dehomogenization, 322 
depth elevation 

exercise, 518 
formula, 518 
for simplicial S-patches, 465 
for toric Bezier patches, 

517-518,528-529 
derivatives 

Bernstein basis functions, 
303-304 

Bezier curves, 244, 245-246, 
251 

blossom, 343,345 
Boehm's algorithm, 380-381 
B-spline curve, 380 
cross-boundary, 150 
directional, 304 
divided differences as, 165 
partial, 303,345,442, 

466-468, 519-520 

toric Bezier patches, 519-520 
Descartes' Law of Signs, 

206-212, 301 
for Bernstein basis, 211 
in bivariate setting, 274 
for B-splines, 441 
definition, 208,209 
for monomial basis, 210 
variation diminishing prop- 

erty proof with, 211-212 
diagonal, 311,315,318, 335 

blossom, 310, 311,340, 342 
C-patch blossom, 483,484 
formula, 340, 342 
S-patch blossom, 469, 470 
toric blossom, 521 

differentiation 
Bernstein polynomials and 

Bezier curves, 243-250 
Bezier surface, 295 
B-spline curve segment, 350, 

359 
B-splines, 440 
de Boor algorithm, 352, 392 
de Casteljau algorithm, 245 
discrete convolution, 243 
divided difference axiom, 171 
divided differences and, 165, 

181 
integration and, 238-255 
as knot insertion, 379-380 
knot insertion from, 381-383 
nonstandard algorithm, 441 
pyramid algorithm, 274 
rational Bezier curves, 

264-267 
S-patches, 466-469 
tensor product Bezier patch, 

274 
tensor product B-spline patch, 

427 
tetrahedral de Casteljau 

algorithm, 283 
toric Bezier patches, 519-521 
triangular de Casteljau's algo- 

rithm, 287 
two-term formula for Bern- 

stein basis, 298 
two-term formula for 

B-splines, 398-399 
uniform B-splines, 443 

directional derivatives, 304 
discrete convolution, 239-243, 

298, 302 
associativity, 239 
in blending function compu- 

tation, 475 
commutativity, 239, 243,274 
differentiating, 243 
down recurrence, 240 
indexing of, 451,452 
sequence definition, 239 
See also Bernstein basis 

functions 
discrete distributions, 198 
Discrete Fourier Transform 

(DFT) 
defined, 79 
for matrix multiplication, 80 
monomial to Lagrange basis 

conversion, 79 
distribution, 523,524, 525,527 

decomposition and, 524 
defined, 524 
performing, 526-527 

divided differences, 157-165 
affine combinations, 181 
alternative definition, 160 
antidifferentiation, 182 
axiomatic approach, 170-173 
axioms, 170-171 
B-spline integration, 183 
B-splines and, 182, 394-402, 

442 
cancellation, 166, 181,396 
connection to Newton bases, 

161 
complex contour integration, 

183 
computation, for four distinct 

nodes, 159 
defined, 158 
definitions, 159, 160, 161 
as derivative, 165 
determinant formula, 182 
differentiation and, 165, 181 
as discrete version of 

derivative, 165 
distinct nodes and, 165 
dual functionals of Newton 

basis, 167, 182 
equality conditions, 167, 181 
exercises, 163-165 
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Hermite-Genocchi Formula, 
183 

highest-order coefficient of 
Newton interpolant, 166 

highest-order coefficient of 
polynomial interpolant, 
166, 180 

identical nodes and, 165 
identities for, 180-183 
Lagrange coefficients, 182 
Leibniz's rule, 166, 168, 181 
as linear operator, 163 
linearity, 166, 181 
Newton coefficients of poly- 

nomial interpolant, 167, 
182 

operator, 171 
partial derivatives with 

respect to nodes, 182 
properties of, 165-170 
recurrence, 162, 168 
recursion, 166, 180 
recursive definition, 159 
relation to blossoming, 182 
symmetry, 166, 181 
triangular computation, 159 
value on low-order 

polynomials, 167, 181 
values on monomials, 181 

domain triangles, 280, 281 
down recurrence, 130 

for Bernstein basis functions, 
195-196, 240 

for B-splines, 384-385 
for cubic progressive basis 

functions, 353 
defined, 66 
for differentiating B-splines, 

391 
for discrete convolution 

functions, 240 
illustrated, 67 
for Lagrange basis functions, 

66 
for P-patch basis functions, 

475 
for S-patch basis functions, 

461 
See also up recurrence 

dual functionals, 163,298 
for Bezier coefficients, 342 
from blossom, 317, 319, 342 

blossoming and, 389-391 
for B-splines, 350 
C-patch blossom, 484 
defined, 163, 317, 390 
divided differences and, 163 
importance of, 163 
for Lagrange bases, 163 
for monomial coefficients, 

342 
for Newton basis, 163, 167, 

182 
for power coefficients, 342 
S-patch blossom, 469, 470, 

471 
tensor product Bezier 

patches, 336 
toric blossom, 521-523 
triangular Bezier patches, 329 

dynamic programming, 54 
in building Hermite interpo- 

lant, 127 
for Taylor polynomial 

computation, 128-129 
dynamic programming 

algorithm, 54-55, 66 
for cubic curves, 218, 219 
de Boor algorithm, 347-355 
de Casteljau algorithm as, 

194 
Neville's algorithm, 49-53 
pyramid algorithm, 473-474 
for tensor product surfaces, 

89 

E 

end points, interpolation, 
193-194 

equality conditions, divided dif- 
ference, 167, 181 

evaluation algorithms 
bilinear, 272 
for B-patches, 433-435 
for C-patches, 481 
for cubic monomial basis, 

356 
cubic polynomial, 241 
de Boor's, 347-355,358-361 
de Casteljau's, 271 
Homer's, 156, 157,201-202 
for L-patches, 436 
multitier, 481 

Neville's, 155 
for S-patches, 459 
for tensor product Bezier 

patches, 269 
for toric Bezier C-patches, 

525 
See also pyramid algorithms 

exercises 
affine spaces, 8-10 
affine/Gras smann/homoge- 

neous coordinates, 30-31 
all splines are B-splines, 367 
ambient space mappings, 

22-24 
axiomatic approach (divided 

differences), 172-173 
barycentric coordinates, 

36-38 
barycentric coordinates for 

convex polygons, 449-450 
barycentric coordinates for 

lattice polygons, 494-495 
Bernstein basis functions, 

198-199 
Bernstein polynomials/ 

Bezier curves, 255 
Bernstein polynomials/ 

Bezier curves differentia- 
tion, 247-250 

Bezier curves, 193-194 
Bezier/monomial form 

conversion, 218-220 
bivariate Lagrange interpo- 

lant, 106-107 
blossom uniqueness, 315-317 
blossoming S-patches, 

472-473 
blossoming tensor product 

Bezier patches, 338-339 
blossoming toric Bezier 

patches, 521-523 
blossoming triangular Bezier 

patches, 331-335 
Boehm's derivative 

algorithm, 381 
Boehm's knot insertion 

algorithm, 373-374 
Boolean sum Hermite 

surfaces, 152-154 
Boolean sum surfaces, 

115-116 
B-patches, 435-437 
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exercises (continued) 
B-spline curve properties, 

363-364 
B-spline curves, 361 
B-spline properties, 388-389 
B-splines and divided 

difference, 399-402 
Catmull-Rom splines, 

425-426 
Chaikin's knot insertion 

algorithm, 410-411 
change of basis algorithms, 

320-321 
change of basis algorithms 

via knot insertion, 379 
continuous convolution and 

uniform B-splines, 408 
C-patches, 486-488 
cubic Hermite interpolation, 

123-124 
curves/surfaces, 26-27 
curve/surface representations, 

43 
de Boor algorithm, 352-355 
degree elevation, 227-228 
depth elevation, 518 
differentiating rational Bezier 

curves, 266-267 
differentiating S-patches, 

468-469 
differentiating/integrating 

B-splines, 393-394 
divided difference properties, 

169-170 
divided differences, 163-165 
extended Neville's algorithm, 

129-130 
Fast Fourier Transform 

(FFT), 81-83 
forward differencing, 179 
geometric characterization of 

B-splines, 405 
Grassmann spaces, 16-17 
Hermite basis functions, 

133-135 
homogenization, 325-327 
Homer evaluation algorithm, 

202 
knot insertion from differenti- 

ation, 382 
Lagrange basis functions, 

64-65 

Lagrange interpolation 
computational techniques, 
68-69 

lattice polygons, 490-491 
linear interpolation, 49 
lofted Hermite surfaces, 

149-150 
lofted surfaces, 115-116 
monomial/Bernstein repre- 

sentations of toric Bezier 
patches, 504-505 

multisided grids, 456-457 
Neville's algorithm, 53, 

55-56 
Newton basis, 157 
Oslo algorithm, 373-374 
Pascal's triangle, 198-199 
piecewise Bezier form 

conversion, 376 
polygonal arrays, 452-454 
polynomial interpolants, 

57-58 
P-patches, 476 
progressive bases, 357-358 
projective spaces, 20-21 
rational Bezier curves, 

261-264, 295-297 
rational B-spline curves, 

420-422 
rational Hermite curves, 

140-143 
rational Lagrange curves, 

75-77 
rational Lagrange surfaces, 

109-111 
rectangular tensor product 

Lagrange surfaces, 93 
simplicial S-patches, 465-466 
S-patch blending functions, 

461-462 
surface interpolation, 86 
tensor product Bezier 

patches, 274-279 
tensor product B-spline 

surfaces, 428-429 
tensor product Hermite 

surfaces, 146-148 
toric Bezier C-patches, 

527-529 
toric Bezier patch boundaries, 

502 

toric Bezier patch differentia- 
tion, 520-521 

toric Bezier patch pyramid 
algorithm, 499-500 

toric Bezier patch sub- 
division, 508-516 

toric S-patches, 508 
triangular Bezier patches, 

287-292 
triangular Lagrange patches, 

100-103 
uniform B-splines, 406 
unimodality, 205-206 
variation diminishing 

property, 212 
Wang's formula, 252 
Weierstrass Approximation 

Theorem, 223-224 
explicit representations, 38 
extended Neville algorithm, 

125-127 

F 

factored knot insertion, 382 
fast forward differencing, 

173-174 
change of basis algorithms 

and, 177 
for cubic polynomials, 177 
defined, 173, 177 
function of, 178 
numerical instability, 177 
point evaluation, 174 

Fast Fourier Transform (FFT), 
77-83 

exercises, 81-83 
for polynomial multiplica- 

tion, 81 
purpose, 77 

First Principle of Duality, 213, 
217, 218,225,412 

forward differencing, 173-179, 
218 

applications, 178 
as divided differences, 175 
exercises, 179 
for exponential sequence, 179 
fast, 173-174 
knot insertion via, 383 
recursive definition, 174 
triangular computation, 174 
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G 

general pyramid algorithm, 474 
generating functions, 302 

defined, 218 
exercises, 220 
for monomial to Bezier form 

conversion, 320 
Grassmann coordinates 

adapting, 29 
defined, 11, 29 
exercises, 30-31 
of vectors, 29 
See also coordinates 

Grassmann spaces, 10-17 
addition in, 14 
affine space mapping, 21 
Bezier curve mass in, 260 
cubic Hermite representation 

in, 135 
defined, 13 
dimension of, 13 
exercises, 16-17 
geometric model, 13, 14, 15 
Lagrange curve in, 73 
mass-points, 11-13 
models, 11 
polynomial curves in, 72 
polynomial surfaces in, 108 
projections from, 22, 26 
projective space and, 19, 21 
rational Bezier curve control 

points, 260 
rational Bezier curves, 257 
rational B-spline curves, 418 
rational Lagrange curves, 

69-77 
rational Hermite curves, 

130-135 
reparametrized circle in, 258 
vectors, 12-13 
zero vector, 16 
See also ambient spaces 

H 

half integers 
algorithm for inserting knots 

at, 410 
B-splines with knots at, 414 
Chaikin's algorithm for 

inserting knots at, 410 

control points relative to, 411 
Lane-Riesenfeld algorithm 

for inserting knots at, 415 
Hermite basis functions, 

130-135 
applying, 149 
bivariate, 144 
cubic, 122-123, 133 
exercises, 133-135 
explicit expressions for, 122, 

130 
finding, 131 
properties, 144, 152 
rational, 143 
univariate, 144 

Hermite curves 
polynomial, 146 
rational, 135-143 

Hermite interpolation, 119-154 
building, with dynamic pro- 

gramming, 127 
collection of points/vectors, 

130 
cubic, 119-124, 136 
free-form surface using, 145 
Lagrange interpolation vs., 

140 
masses, 138 
Neville's algorithm for, 121, 

124-130 
one derivative at each point, 

131 
rational, 138 
tensor product, 143 
triangular, 148 
at two points, 131, 138 
See also interpolation 

Hermite polynomials, 119 
Hermite surfaces, 143-154 

Boolean sum, 150-154 
lofted, 148-150 
tensor product, 143-148 
See also surfaces 

Hermite-Genocchi formula, 183, 
402 

hexagonal C-patch, 479 
homogeneous blossom, 

321-327,330 
homogeneous coordinates 

defined, 19, 29 
exercises, 30-31 

rectangular coordinates 
recovery from, 29-30 

See also coordinates 
homogeneous de Casteljau 

algorithm, 323,324 
homogeneous polynomials, 322 
homogenization, 321-327 

bidegree blossom, 337 
bivariate, 337 
blossoming and, 322-327 
de Boor algorithm, 351 
de Casteljau's algorithm, 336, 

356 
de Casteljau's tetrahedral 

algorithm, 330 
defined, 321,322 
dehomogenization and, 322 
exercises, 325-327 
formula, 337 
in univariate setting, 337 

Homer evaluation algorithm, 
201-202 

applying, 162, 202 
for cubic polynomials, 82 
defined, 156 
exercises, 202 
illustrated, 157 
ladder algorithm vs., 155 
method, 78, 82, 173, 177 
for polynomial evaluation, 

156 

I 

identities, 
Bemstein, 299-306 
blossoming, 341-345 
B-spline, 439-443 
divided difference, 180-183 

implicit representations 
for closed curves/surfaces, 39 
defined, 39 
drawbacks, 39-40 
See also representations 

indexing sets 
for barycentric coordinate 

functions, 479-480 
C-patch, 488,529 
lattice polygons as, 490 
S-patch, 488,529 
toric Bezier patch, 488,529 
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integral Bezier curves, 266 
algorithms, 261 
defined, 256 
standard properties, 256 
See also Bezier curves 

integrals, 304 
integration 

Bernstein polynomials/ 
Bezier curves, 253-255 

B-splines, 183, 391-394, 441 
differentiation and, 238-255 
uniform B-splines, 443 
See also antidifferentiation 

interpolants 
bicubic, 87 
bilinear, 91 
biquadratic, 91 
bivariate Lagrange, 103-107 
Catmull-Rom, 422-426 
constant, 54 
cubic, 54, 97 
Hermite, 121, 127 
Lagrange, 49-53, 58-65 
linear, 54 
lower-order, 96 
Newton, 166 
pentagonal, 455 
polynomial, 56-58, 63, 162, 

166, 167 
quadratic, 54, 96, 97, 120 
quadrilateral, 456-457 
rational, 69-77 
rectangular, 90, 91 
tensor product, 86-94 
triangular, 96-103 

interpolation 
bicubic, 89 
bivariate, 85, 92 
by recursive calls, 54 
Catmull-Rom, 422-426 
control points, 53,363 
cubic, 52 
curves, 88 
dynamic programming 

approach, 54-55 
of end points, 193-194 
Hermite, 119-154 
Lagrange, 47-117 
linear, 47-49 
Newton, 155-183 
nodes, 53 
quadratic, 85 

rational Bezier curves, 256, 
26O 

spline, 187 
surface, 84-86 
transfinite, 111 

intersection algorithm 
Bezier curves, 234 
convex hulls in, 235 

K 

knot insertion, 367-383 
algorithm types, 368 
for Bezier subdivision, 

376-379 
Boehm's algorithm, 368-371 
B-splines, 442 
Catmull-Rom splines and, 

425,426 
Chaikin's algorithm, 408-411 
change of basis algorithms 

via, 375-379 
as change of basis procedure, 

409 
defined, 367 
from differentiation, 381-383 
differentiation as, 379-380 
factored, 382 
fast, 381 
with forward differencing, 

383 
in geometric progression, 411 
at half integers, 410, 414 
idea behind, 367 
Lane-Riesenfeld algorithm, 

411-418 
for monomial to Bezier form 

conversion, 376-379 
n-fold, 377, 380 
Oslo algorithm, 371-374 
piecewise Bezier form 

conversion via, 375-376 
precision, 367 
problem, 367-368 
refinement and, 367 
tensor product B-spline patch, 

427 
for uniform B-splines, 

408-418 
without multiplication, 382 

knot sequences, 349 
progressive, 349, 355-358 

uniform, 405 
knot-net, 435 
knots 

consecutive, 368,389 
in de Boor algorithm, 358 
defined, 348 
evaluation at, 440 
interpolation, 439 
interval, 368, 389 
multiplicity of, 360-361,363, 

367, 397 
piecewise polynomial, 395 
progressive basis, 349 
smoothness at, 439 

I. 

labeling 
de Boor algorithm, 347-355, 

358-361 
de Casteljau pyramid 

algorithm, 328 
de Casteljau's algorithm, 307, 

308 
interior nodes, 307 
Neville's algorithm, 307 
nodes, 309 
scheme illustration, 309 

ladder algorithm, 67-68, 155 
3n+l multiplications, 68 
defined, 67 
Homer's method vs., 155 
illustrated, 68 

Lagrange basis functions, 58-65 
arrays of, 100 
bicubic, 88 
cardinal conditions, 63 
conversion to monomial 

form, 80 
cubic, 61-62, 216 
defined, 62 
denominator, 132 
exercises, 64-65 
explicit expressions for, 98 
explicit formula for, 65, 132 
monomial conversion to, 78, 

79 
nodes, 53, 87 
properties, 62-63 
rational, 77 
with special nodes, 78 
tensor product, 87 
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triangular, 97 
univariate, 87 

Lagrange blending functions, 
108 

See also Lagrange basis 
functions 

Lagrange coefficients, 79 
defined, 182 
transformation algorithm to 

Newton coefficients, 215 
Lagrange curves 

approximation, 70 
cubic, 52 
defined, 52 
in Grassmann space, 73 
ladder algorithm for, 155 
mass, in Grassmann space, 74 
Neville's algorithm, 49-53 
rational, 69-77 
semicircle as, 72 
on surfaces, 88 

Lagrange interpolation, 47-117 
computational techniques, 

65-69 
drawbacks, 206 
Hermite interpolation vs., 140 
illustrated, 187 
polynomial curve generation, 

69 
quadratic interpolant, 120 
rational surface representa- 

tion with, 108 
tensor product, 86, 94 
triangular, 279-280 
univariate, 77 
See also interpolation; 

Lagrange curves 
Lagrange surfaces, 

tensor product, 86-94 
triangular, 94-103 

Lane-Riesenfeld knot insertion 
algorithm, 411-418 

defined, 415 
exercises, 416-418 
illustrated, 415 
iterating, 415 
See also knot insertion 

lattice extension, 511 
lattice polygons, 489-495 

barycentric coordinates for, 
491-495 

decomposition, 524 
defined, 489 
exercises, 490-491 
extending, 508, 512 
hexagons, 524 
as indexing sets, 490 
pentagons, 497-498 
rectangles, 508, 511 
squares, 493 
triangles, 494 

leaf nodes, 129, 130 
Leibniz's rule, 126, 264 

defined, 166 
divided difference, 166, 181 
proof, 168 

lifting, 71 
linear independence 

Bernstein basis, 301 
B-splines, 441 
Lagrange basis, 63 
Newton basis, 157 

linear interpolants, 54, 121 
linear interpolation, 47-49 

bilinear generalization, 90 
de Boor algorithm, 350 
de fined, 47 
exercises, 49 
formula, 47 
graphical representation, 48 
on linear interpolants, 121 
on lower-order interpolants, 

96 
problems, 48 
univariate, 92 
See also interpolation 

linear operator, 163 
linear recurrences, 269 
linear transformations, 7-8 
linearity 

blossom, 319, 342 
divided difference, 166, 181 
divided difference axiom, 170 

local control 
B-spline curves, 362 
Catmull-Rom splines, 425 

local convex hull, 362 
locally nondegenerate, 362-363 
lofted Hermite surfaces, 

148-150 
with common boundary 

curve, 149 

data, 149 
defined, 148-149 
exercises, 150 
interpolation properties, 149 
piecing surfaces together and, 

149-150 
See also Hermite surfaces 

lofted surfaces, 112-113 
computing points on, 113 
defined, 112 
exercises, 115-116 
illustrated, 113 
See also surfaces 

L-patches, 436 

M 

marching algorithm, 382 
Marsden identities 

Bernstein basis functions, 305 
B-splines, 442 

masses 
rational Bezier curves, 

255-267 
rational B-splines, 418-422 
rational cubic Hermite 

curves, 138 
rational Hermite interpola- 

tion, 138 
rational Lagrange curves, 74 

mass-points, 8, 10-17 
adding vectors to, 12 
addition of, 12 
algebra, 11-12 
complete arithmetic for, 12 
defined, 11 
geometric model, 15 
natural representation of, 16 
notation, 15 
physical model, 14-15 
scalar multiplication of, 11 
See also Grassmann spaces 

mesh 
of curves in range, 114 
specifying, by two sets of 

curves, 113 
Minkowski sum, 451 

defined, 451 
d-fold, 502, 522 
of triangular array and 

rectangular array, 451 
of two lines, 479 
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monomial basis 
blossoming, 315 
B-spline representation, 442, 

390 
conversion to, 298 
conversion to Bezier form, 

218, 376-379 
cubic, evaluation algorithm, 

356 
Descartes' Law of Signs for, 

210 
Fast Fourier Transform, 

77-83 
representation of Bernstein 

basis, 218, 301 
representation of toric Bezier 

patch, 503-505, 513 
values of divided difference 

on, 181 
monomial coefficients, 356 

dual functionals, 342 
values, 356 

monomial to Bezier form 
conversion 

blossoming for, 319 
generating functions for, 218 
knot insertion for, 376-379 

multiaffine, 311, 315, 318 
alternative characterization, 

312-313 
blossom, 310, 311,335,340, 

341 
C-patch and, 484 
formula, 340, 341 
polynomials, 312 
S-patches and, 470 
symmetric, 348 

multilinear blossom, 322 
constructing, 323-324 
illustrated, 324 
See also blossoms 

multisided Bezier patches, 
445 

algorithms for, 530 
alternative approaches, 530 
construction framework, 529 
formulations, 529 
properties, 530 
pyramid algorithms for, 

459-460, 474, 495-496 
See also specific patches 

multisided grids, 454-457 
multisymmetry, C-patch, 483 
multivariate B-splines, 404 
multivariate polynomial, 311 

Neville's algorithm, 49-53, 155 
for biquadratic patches, 90 
bivariate version, 88-89 
control points set to one, 64 
for cubic Hermite 

interpolation, 122 
for cubic polynomial 

interpolation, 188 
de Boor algorithm with, 424 
defined, 52, 54 
diagram, 55 
efficiency, 93 
exercises, 53, 55-56 
extended, 124-130 
for Hermite interpolation, 

121,124-130 
illustrated, 52 
labeling scheme, 307 
multisided grids and, 

454-457 
number of nodes in, 91 
parallel property, 55, 129 
pyramid algorithms vs., 93 
structure, 54-56 
for tensor product surfaces, 

93 
tetrahedral, 279 
total cost of, 92 
for triangular surface patches, 

95 
Neville's pyramid algorithm, 

97-98 
arrows, 98 
schematic diagram, 98 
triangular Lagrange basis 

functions and, 97 
Newton basis functions, 

155-157 
coefficients, 156 
defined, 156 
dual functionals for, 163, 167, 

182 
exercises, 157 
features, 156 

Homer's method and, 156 
interpolating polynomial 

relative to, 155-156 
nodes, 156 
normalized, 215 
properties, 156 
Taylor basis and, 156 

Newton coefficients, 157 
finding, 158 
higher-order, 158 
normalized, 215 
for polynomial interpolant, 

160, 161,162, 167, 182 
rescaled, 179 
See also divided differences 

Newton dual basis, 356-357 
B-spline segment conversion, 

381 
defined, 356 

Newton dual coefficients, 381 
Newton interpolant, 166 
Newton interpolation, 157-162 
Newton polygons 

boundaries, 502, 512 
bounding line, 526, 527 
defined, 489-490 
pointing into, 526 
for toric Bezier patches, 490, 

496 
vertices, 491,500, 521 

nodes 
B-spline, 390, 441 
defined, 53 
distinct, 165 
identical, 165 
interior, 54, 308 
labeling, 309, 328 
leaf, 129, 130 
Newton basis for, 156 
number, in Neville's 

algorithm, 91 
number, in pyramid 

algorithm, 92 
sequence of, 85 
special, 78 
tensor product surfaces, 86 

nonnegativity, B-splines, 387, 
440 

nonuniform rational B-splines, 
419 

n-simplex, 402 
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O 

Oslo algorithm, 371-374 
control points, 372 
for cubic B-spline curves, 372 
de Boor algorithm and, 371 
defined, 371 
efficient version of, 372 
exercises, 373-374 
for n+ 1 knots, 373 
running, 371-372 
See also knot insertion 

overlapping pyramids, 431,433 

P 

parametric functions, 41-42 
parametric polynomials, 70 
parametric representations, 

40-4 1 
of curves, 40-41 
defined, 40 
of surfaces, 40 
See also representations 

partial derivatives, 303 
Bernstein polynomials, 277, 

303 
Bezier patches, 275-278,290 
of blossom, 345 
B-splines with respect to 

knots, 442 
divided difference, 169, 182 
S-patches, 466, 467, 468 
toric Bezier patches, 519, 520 

partitions of unity 
Bernstein basis functions, 300 
B-splines, 386-387,440 

Pascal's triangle, 196, 415 
binomial coefficients, 197 
exercises, 198-199 
illustrated, 197 
monomial coefficients at base 

of, 218,219 
paths triangle, 196-197 
recurrence in, 196 

patches 
adjacent, 431 
bicubic, 92 
biquadratic, 90 
B-patch, 433-437 
C-patch, 476-488 
L-patch, 436 

procedures, 458 
properties, 458 
pyramid (P-patch), 473-476 
rational Bezier, 293-297 
rational B-spline, 428 
rational Lagrange, 107-111 
rectangular, 94 
S-patch, 457-473 
tensor product Bezier, 

267-279 
tensor product B-spline, 

427-429 
tensor product Lagrange, 

86-94 
toric Bezier, 488-489 
triangular Bezier, 279-292 
triangular Lagrange, 94-103 
See also surfaces 

paths triangle, 197 
See also Pascal's triangle 

pentagonal arrays, 451,453 
pentagonal C-patch, 478,482 
pentagonal interpolants, 455 
pentagonal toric Bezier patch, 

496, 497 
illustrated example, 498 
pyramid algorithm for, 496 
See also toric Bezier patches 

piecewise Bezier form 
continuity conditions, 246 
conversion to, 375-376 

piecewise polynomial, 347 
B-spline curves, 362 
B-splines, 386 
Catmull-Rom spline, 422 
cubic Hermite, 119-124 
knots, 395 
See also splines 

points 
addition of, 4 
anne combination of, 4-5, 5 
affine space, 6 
algebra for, 3 
dots, 4 
equivalence classes of, 19 
at infinity, 17-21 
interpolation of, 49-53 
mass-points, 8, 10-17 
in projective space, 18, 29 
rectangular array of, 87 
representation, 4 
scalar multiplication and, 5 

sequence of, 85 
sharp, 49 
subtraction of, 4 
translation and, 3 
vectors vs., 3 
See also control points; 

polygonal arrays 
Poisson basis functions, 243 
Polya's urn model, 238 
polygonal arrays, 450-454 

adjacency, 452 
boundaries, 452, 489 
defined, 450-451,489 
exercises, 452-454 
hexagonal, 479-480 
lattice polygon, 489-491 
n-sided, 452 
pentagonal, 451,453 
rectangular, 87,450-451 
shape, 489 
triangular, 95,450-451 

polynomial patches, 295 
Bezier, 275-276, 289-290 
B-patch, 430-437 
defining, 24 
in Grassmann space, 108 
Hermite, 143-154 
Lagrange, 86-103 
L-patch, 436 
tensor product. See tensor 

product surfaces 
triangular. See triangular 

patches 
See also surfaces 

polynomial curves 
defining, 24 
in Grassmann space, 72 
projection, 71 
See also curves 

polynomial interpolants 
computing, 162 
highest-order coefficient of, 

166, 180 
Newton coefficients of, 160, 

167, 182 
uniqueness, 56-58, 63 
See also Hermite inter- 

polation; Lagrange inter- 
polation; Newton 
interpolation 

polynomial parametrization, 
107, 190 
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polynomial segments, 358 
polynomials, 42 

approximating, 70, 221,222 
Bernstein, 201,239, 347 
Bezier, 244, 245 
bivariate, 85 
cubic, 82, 156, 311 
fast multiplication of, 77, 81 
Hermite, 119 
homogeneous, 322 
interpolating, 49-53 
Lagrange, 52 
linearly independent, 213 
multiaffine, 312 
multivariate, 311 
Newton, 156-157 
parametric, 70 
piecewise, 347, 362, 386 
symmetric, 312 
Taylor, 125, 127, 221 
univariate, 85, 155 

power coefficients, dual 
functionals, 342 

principles of duality, 212-216 
exercises, 215-216 
First Principle of Duality, 

213,217,218,225,412 
first two, combining, 215 
schematic depiction, 214 
Second Principle of Duality, 

214 
Third Principle of Duality, 

215 
triangular computations and, 

214 
probability theory, 297 

Bezier curves and, 229 
for deriving subdivision, 320 
random walks, 308 
urn models, 229-231, 

237-238 
progressive bases 

defined, 349 
examples, 355 
exercises, 357-358 
generated by progressive knot 

sequences, 355-358 
represented by knot 

sequences, 378 
progressive basis functions, 353 
progressive polynomial curves, 

389 

progressive sequences 
defined, 349 
progressive bases generated 

by, 355-358 
projective spaces, 17-21 

addition in, 20 
affine points, 20 
affine space mapping, 21 
algebra, 19 
defined, 18 
exercises, 20-21 
Grassmann space and, 19, 21 
homogeneous coordinates, 19 
illustrated, 18 
points at infinity, 20 
points in, 18, 29 
See also ambient spaces 

pyramid algorithms 
for bicubic patches, 92 
for biquadratic Bernstein 

basis functions, 271 
de Casteljau algorithm vs., 

272,273 
differentiating, 274, 283, 

466-469, 519-521 
general, 473 
local, 431 
for multisided Bezier patches, 

459-460, 474, 495496 
Neville's algorithm vs., 93 
number of multiplications in, 

273 
number of nodes in, 92 
for pentagonal toric Bezier 

patch, 496 
for S-patches, 459, 460 
for tensor product Bezier 

patches, 271-272 
for tensor product Lagrange 

patches, 91-94 
for toric Bezier patches, 

495-496 
total cost, 93 
for triangular Bezier patches, 

279-280 
triangular B-patches and, 

430-437 
triangular de Casteljau's 

algorithm vs., 287 
for triangular Lagrange 

patches, 94-103 

pyramid patch (P-patch), 
473-476 

blending functions, 474, 475 
blossoming, 475-476 
boundaries, 474, 475 
control points, 474 
C-patches as, 481 
defined, 474 
down recurrence, 475 
exercises, 476 
for pentagonal patch, 482 
rational, 475 
recursive evaluation 

algorithms, 474 
surface representation, 474 
toric patches as, 488, 

495-496 
pyramids 

for adjacent patches, 431 
overlapping, 431,433 

Pythagorean theorem, 234 

O 
quadratic B-patch, 434 
quadratic interpolants, 54, 97, 

120 
triangular, 96 

quadratic interpolation, 85 
quadratic parametrization, 108, 

293 
quadrilateral interpolant, 

456-457 
quotient rule, 136 

R 

rail curves, 112 
random walk, 308 
rational Bezier curves, 255-267 

affine invariant, 255 
in affine space, 255 
algorithms, 261 
circles as, 257 
continuous, 260 
control points, 257,265 
control points in Grassmann 

space, 260 
defined, 255-256 
denominator, 264 
derivative continuity, 

265-266 
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derivatives, 264 
differentiating, 264-267 
exercises, 261-264, 295-297 
in Grassmann space, 257 
interpolation, 256, 260 
limits of, 260 
mass distribution, 256 
with nonzero weights, 256 
numerator, 264 
points, evaluation, 261 
quarter circle as, 258 
reduction to ordinary Bezier 

curve, 256 
reparametrizing, 258 
rth derivative, 266 
scalar field, 256 
semicircle as, 259 
weights, 259 
See also Bezier curves 

rational Bezier patches, 293-297 
affine invariant, 295 
in affine space, 293 
control points, 294 
defined, 293 
explicit formula for, 293 
introduction, 293 
with negative weights, 295 
points, evaluating, 295 
with positive weights, 295 
tensor product representation, 

293 
triangular representation, 293 
weights, 293-294 
weights, increasing, 295 
See also Bezier surfaces 

rational blending functions, 256 
Bezier, 256 
B-spline, 491 
Hermite, 143 
Lagrange, 76-77 
S-patch, 462 

rational B-spline curves, 
418-422 

affine invariant, 420 
algorithms, 420 
conversion to piecewise 

rational Bezier form, 420 
defined, 418 
exercises, 420-422 
general, 419 
intersecting, 420 

nonuniform, 419 
with nonzero weights, 419 
projection to, 418-419 
properties, 419-421 
rendering, 420 
weights, 419 
See also B-spline curves 

rational curves 
Bezier, 255-267 
B-spline, 418-422 
cubic, 135 
defining, 25 
Hermite, 135-143 
Lagrange, 69-77 

rational Hermite curves, 
135-143 

computing values along, 140 
cubic, 137 
defined, 135-136 
exercises, 140-143 
general, 137 
mass, 140 
quadratic, 139 
See also Hermite curves 

rational Lagrange curves, 69-77 
behavior, 74 
as continuous curve, 74 
control points, 74 
defined, 72 
exercises, 75-77 
mass effect on, 73 
masses set to zero, 74 
point computation, 74 
See also Lagrange curves 

rational Lagrange surfaces, 
107-111 

control point interpolation, 
108 

denominator, 109 
exercises, 109-111 
singularity, 109 
tensor product, 109 
triangular, 109 

rational parametrization, 107 
rational P-patches, 475 
rational surfaces, 

Bezier, 293-297 
B-spline, 428 
Hermite, 147, 150, 153-154 
Lagrange, 107-111 
S-patches, 457-473 
toric Bezier patches, 488-489 

rational quadratic 
parametrization, 138 

rational S-patches, 462 
rational tensor product Bezier 

patches, 293, 510 
rational tensor product Lagrange 

parametrization, 108 
rational toric Bezier patches, 499 
rational triangular Lagrange 

parametrization, 108 
rectangular arrays, 267, 451, 510 
rectangular coordinates, 27 

in affine plane, 34 
along affine line, 33 
defined, 28 
illustrated, 34 
introducing, 28 

rectangular grid, 94 
rectangular interpolants, 90, 91 
rectangular patches, 94 

tensor product Bezier, 267 
tensor product B-spline, 

427-429 
tensor product Hermite, 

143-148 
tensor product Lagrange, 

86-94 
See also tensor product 

surfaces 
recursion, 83 

Bernstein basis functions, 
196, 302 

B-splines, 440 
for the B-spline derivative, 

441 
divided difference, 166, 180 
nonstandard, 440 
uniform B-splines, 443 

recursive subdivision 
applying, 233 
binary tree generated by, 236 
control polygons generated 

by, 233 
convergence, 234 
as powerful tool, 250 
See also subdivision; subdivi- 

sion algorithm 
rendering algorithm, 234 
representations, 38-43 

exercises, 43 
explicit, 38 
implicit, 39 
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representations (continued) 
parametric, 40-4 1 
procedural, 42 

Rolle's Theorem, 250 
ruled surfaces, 112 

$ 

Sablonniere's tetrahedral 
algorithm, 373-374 

sampling with replacement, 
229-231 

binomial distribution for, 230 
modeling, 230 

Second Principle of Duality, 214 
simplicial S-patches, 463-466 

blending function, 463 
control points, 463 
defined, 463 
depth elevation, 465 
exercises, 465-466 
n-sided, 464 
properties, 463 
See also S-patches 

space curves, mesh interpolation, 
88 

spaces 
affine, 2-10 
ambient, 1-27 
Grassmann, 10-17 
projective, 17-21 
vector, 1-2 

S-patch blossom, 469-473 
blending functions, 470 
diagonal, 469,470 
dual functional, 469, 470 
exercises, 472-473 
properties, 469 
symmetry, 469,470 
See also blossoming; 

blossoms 
S-patches, 446, 457-473 

advantages/disadvantages, 
485 

barycentric coordinates, 529 
blending functions, 459-462, 

506 
blossoming, 469-473 
boundaries, 467 
control points, 460 
C-patch comparison, 485 
defined, 455,457 

differentiating, 466-469 
domain, 529 
dual functionals, 471 
five-sided, 506 
framework, 458 
hexagonal, 485 
indexing sets for, 488 
n-sided, 506, 507 
over convex polygonal 

domains, 459 
partial derivatives, 466, 467, 

468 
polynomial patches and, 460 
pyramid algorithm for, 458, 

459, 460 
rational, 460 
simplicial, 463--466 
toric, 505-508 
See also multisided Bezier 

patches 
spheres 

biquadratic parametrization, 
293 

quadratic parametrization, 
293 

splines 
as B-spline curves, 366-367 
Catmull-Rom, 422-426 
construction, 364 
control points, 409 
defined, 347 
interpolation, 187 
limitations, 418 
See also B-splines 

subdivision, 229-238,297,298, 
303 

with blossoming, 317-318 
control polygons generated 

by, 233 
as corner-cutting procedure, 

233 
defined, 229 
deriving, with probability 

theory, 320 
exercises, 235-238 
from knot insertion, 376-379 
recursive, 233,234, 250 
See also Bezier curves 

subdivision algorithm, 231-238 
for Bezier curves, 232 
convergence, 235 

de Casteljau algorithm, 232, 
318,330 

geometric interpretation of, 
232 

for hexagonal toric Bezier 
patch, 509 

for tensor product Bezier 
patches, 274 

for toric Bezier patches, 
508-516 

for triangular Bezier patches, 
282, 330, 344 

uniform B-splines, 443 
surface interpolation, 84-86 

bivariate interpolation prob- 
lem and, 86 

Boolean sum, 114 
construction, 96 
exercises, 86 
Hermite, 143-154, 
lofted surfaces, 112 
tensor product Lagrange, 

86-94 
triangular Lagrange, 94-103 

surfaces 
affine invariant, 25 
Bezier, 267-297 
Boolean sum, 114-115 
B-patch, 430-437 
B-spline, 347, 427-429, 

438-439 
C-patch, 476-488 
exercises, 26-27 
Hermite, 143-154 
implicit representations for, 

39 
Lagrange, 86-103 
lofted, 112-113 
L-patch, 436 
polynomial, 24, 108 
representations, 38-43 
ruled, 112 
S-patch, 457-473 
tensor product, 86-94, 

267-274, 427-429 
toric, 488-489 
translation invariant, 24-25 
triangular, 98,279-287, 

430-437 
See also patches 

symmetric algorithms, 274 
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symmetry, 311, 315, 318 
Bernstein basis functions, 299 
Bezier curves, 193 
bisymmetric, 335 
blossom, 310, 311,340, 341 
divided difference, 166, 181 
divided difference axiom, 170 
polynomials, 312 
S-patch blossom, 469, 470 

T 

Taylor basis, 156 
Taylor coefficients, 155 
Taylor expansion, 126 
Taylor polynomials, 125, 127 

for approximating curves, 
221 

computation with dynamic 
programming, 128-129 

See also polynomials 
Taylor's Theorem, 56-57,250 
tensor product 

bicubic interpolant, 87 
construction, 87 

tensor product Bezier patches, 
267-279, 477, 497 

bicubic, 268,269, 270 
biquadratic, 336 
blending functions, 267 
blossoming, 335-339 
boundaries, 273 
with control polyhedron, 269 
differentiating, 274 
dual functional property, 336 
evaluation algorithm, 269 
exercises, 274-279 
properties, 273 
pyramid algorithm, 271-272, 

473-474, 495-496 
rational, 293, 510 
rectangular, 267 
schematic construction, 270 
standard algorithm inherit- 

ance, 274 
uniqueness of Bezier 

coefficients of, 336 
See also Bezier surfaces 

tensor product B-spline 
surfaces, 427-429 

bilinear evaluation algorithm, 
433 

biquadratic, 431 
de Boor algorithm for, 431 
differentiating, 427 
evaluating, 427 
exercises, 428-429 
knot insertion, 427 
local bilinear evaluation 

algorithm, 432 
local recurrences, 431 
properties, 427 
pyramid algorithm, 430-437 
rational, 428 
rectangular, 432 
See also B-spline surfaces 

tensor product Hermite surfaces, 
143-148 

construction, 144 
data for, 145 
exercises, 146-148 
interpolation illustration, 146 
See also Hermite surfaces 

tensor product Lagrange 
surfaces, 86-94 

defined, 87 
exercises, 93-94 
See also Lagrange surfaces 

tensor product surfaces 
Bezier, 267-279 
B-spline, 427-429 
construction, 86 
de Casteljau's algorithm for, 

273,335 
dynamic programming 

algorithm for, 89 
Hermite, 143-148 
Lagrange, 86-94 
Neville's algorithm for, 93 
nodes, 86 
See also surfaces 

tetrahedral de Casteljau's 
algorithm, 283,328 

homogenizing, 330 
number of multiplications in, 

287 
triangular Bezier patches 

generated by, 285 
Third Principle of Duality, 215 
toric Bezier C-patches, 523-529 

blossoming, 525 
defined, 523 
domain, 525 

evaluation algorithm, 525 
exercises, 527-529 
tri-symmetric blossom, 

525-526 
See also toric Bezier patches 

toric Bezier patches, 446, 
488-489 

array of control points for, 
490 

barycentric coordinate 
functions of, 504, 529 

Bernstein representation, 
503-505 

blending functions, 489, 496, 
519 

blossoming, 521-523 
boundaries, 488-489, 

500-502, 513-514 
boundary control points, 488, 

500, 501 
boundary curves, 501,502 
building, 491 
control points, 521 
C-patches, 523-527 
defined, 488 
of depth d, 495 
depth elevation for, 517-518 
differentiating, 519-521 
domains, 496, 529 
hexagonal, 509, 523-529 
lattice polygons, 489-495 
monomial representation, 

503-505, 513 
Newton polygon, 490 
n-sided, 509 
partial derivatives, 519-520 
pentagonal, 496, 497 
procedures, 498-499 
properties, 498 
pyramid algorithm for, 

495-500 
rational, 499 
S-patches, 505-507 
subdividing, 508-516 
subdivision algorithm, 511 
triangular Bezier representa- 

tions for, 504 
underlying structure, 498 
See also multisided Bezier 

patches 
transfinite interpolation, 111 
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transformations 
anne, 8, 25,440 
linear, 7-8, 25 

translation invariance, 24-25 
defined, 24-25 
uniform B-splines, 443 

triangles 
barycentric coordinates for, 

446-447 
de Boor, 384 
de Casteljau, 286 
lattice, 494 
overlapping, 359 
Pascal's, 196-199, 415 
paths, 196-197 

triangular arrays, 451 
triangular Bezier patches, 

279-292, 455,497 
affine invariance, 282 
basis functions, 281 
blossoming, 328-335,469 
boundary curves, 282 
characteristic properties, 282 
computing points along, 286 
constructing, 279-280 
control points, 282, 283 
with control polyhedron, 281 
cubic, 280 
data for, 280 
degree n, 282 
differentiating, 283,287 
dual functional property, 329 
exercises, 287-292 
generated by de Casteljau's 

tetrahedral algorithm, 286 
higher-order smoothness and, 

283 
quadratic, 286 
rational, 293 
standard algorithms and, 

282-283 
subdivision, 282, 330, 334 
tetrahedral de Casteljau 

algorithm for, 283 
variation diminishing 

property and, 282 
See also Bezier surfaces 

triangular B-patches, 430-437 
triangular de Casteljau's 

algorithm, 286, 287 
differentiating, 287 

number of multiplications in, 
287 

pyramid algorithm vs., 287 
speed, 287 

triangular grid, 95,279 
illustrated, 95 
Lagrange interpolant on, 105 
for parametrizations, 108 
triangular interpolants over, 

97 
triangular interpolants, 96 
triangular Lagrange patches, 

94-103 
array of basis functions, 100 
array of control points, 100 
boundaries, 97 
exercises, 100-103 
Neville's algorithm for, 95 

triangular patches 
Bezier, 279-292 
B-patch, 430-437 
Lagrange, 94-103 

twists, 145 

tl 

undetermined coefficients, 83 
uniform B-splines, 405-418 

Chaikin's knot insertion 
algorithm, 408-4 11 

continuous convolution and, 
406-408,443 

curve intersection, 415 
defined, 405 
of degree n, 405 
differentiation, 443 
exercises, 406 
generation of, 406 
identities, 443 
integration, 443 
with knots at integers, 406 
Lane-Riesenfeld knot inser- 

tion algorithm, 411-418 
subdivision, 443 
translation invariance, 443 
See also B-splines 

uniform knot sequence, 405 
unimodality, 202-206, 302 

Bernstein basis, 202-206 
B-splines, 387 
control point effects and, 204 
defined, 202 

exercises, 205-206 
forms, 202-203 
See also Bernstein basis 

functions 
uniqueness 

Bezier control points, 312 
B-spline coefficients, 387 
blossom, 313 
polynomial interpolant, 

56-58 
univariate Bernstein basis 

functions, 306, 478 
univariate B-splines, 404 
univariate Hermite basis 

functions, 144 
univariate Lagrange basis 

functions, 58-65 
up recurrence, 130 

Bernstein basis functions, 195 
B-splines, 384 
defined, 66 
Hermite, 119-130 
illustrated, 66 
Lagrange, 65 
See also down recurrence 

V 

variation diminishing property, 
206-212, 227, 234 

Bezier curves, 206-212, 227, 
234 

B-spline curves, 376 
corner cutting and, 227 
defined, 207 
definition/analysis of, 

211-212 
exercises, 212 
illustrated, 207 
proving, 208, 211 
triangular Bezier patches and, 

282 
vector spaces, 1-2 

defined, 1 
formation, 2 
in science and mathematics, 2 
See also ambient spaces 

vectors, 1 
adding to mass-points, 12 
addition of, 2, 4 
addition triangle rule, 4 
affine coordinates, 28-29 



arrows, 3, 4 
basis, 7 
examples, 2 
Grassmann coordinates of, 29 
linearly independent, 7 
points vs., 3 
representation, 4 
scalar multiplication of, 2, 4 
translation and, 3 

1111-7. 

Wang's formula, 250-252 
deriving, 250 
exercises, 252 
purpose, 250 

Weierstrass Approximation 
Theorem, 220-224 

applying, 226 
approximating polynomials, 

221 
bivariate version, 293 
defined, 220-221 
exercises, 223-224 
proving with Bezier 

approximation, 221 
weights 

Bernstein basis function, 257 
negative, 259, 294, 295 
positive, 259, 294, 295 
rational Bezier curves, 256, 

259 
rational Bezier patches, 294, 

295 
rational B-spline curves, 419 
rational Hermite curves, 

130-135 
rational Lagrange curves, 

69-77 
scalar, 259, 293 
zero, 259, 294 
See also masses 
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