
Foreword

About forty years ago, the development of computer-aided design and manufactur-
ing created the strong need for new ways to mathematically represent curves and
surfaces" the new representations should possess enough flexibility to describe
almost arbitrary geometric shapes; be compatible with efficient algorithms; and be
readily accessible to designers who could manipulate them simply and intuitively.
Although these new requirements presented a difficult challenge, the search for
appropriate mathematical tools has been very successful within a relatively short
period of time. Curves and surfaces with a piecewise polynomial or rational para-
metric representation have become the favorites, in particular if they are represented
in so-called B6zier or B-spline form. A new field, called computer-aided geometric
design (CAGD) emerged. Deeply rooted in approximation theory and numerical
analysis, CAGD greatly benefited from results in the classical geometric disciplines
such as differential, projective, and algebraic geometry.

Today, CAGD is a mature field that branches into various areas of mathematics,
computer science, and engineering. Its boundaries have become less defined, but its
kernel still consists of algorithms for interpolation and approximation with piece-
wise polynomial or rational curves and surfaces.

Pyramid Algorithms presents this kernel in a unique way. A few celebrated
examples of pyramid algorithms are known to many people: I think of the de Castel-
jau algorithm and de Boor's algorithm for evaluation and subdividing a B6zier or Bo
spline curve, respectively. However, as Ron Goldman tells us in this fascinating
book, pyramid algorithms occur almost everywhere in CAGD: they are used for
polynomial interpolation, approximation, and change of basis procedures; they are
even dualizable. Dr. Goldman discusses pyramid algorithms for polynomial curves,
piecewise polynomial curves, tensor product surfaces, and triangular and multisided
surface patches.

Though the book focuses mainly on topics well known in CAGD, there are
many parts with unconventional approaches, interesting new views, and new
insights. Surprises already appear in Chapter 1 on foundations: I had always thought
that projective geometry was the ideal framework for a deeper study of rational
curves and surfaces, but I must admit that Ron Goldman's preference of Grassmann
space over projective space has its distinct advantages for the topics discussed in this

xiii

XiV Foreword

book. Surprises continue to occur throughout the book and culminate in the last
chapter on multisided patches. Here we find a brand new exposition of very recent
results, which eloquently connects the well-established theory of CAGD to ongoing
research in the field.

I am convinced that reading this book will be a pleasure for everyone interested
in the mathematical and algorithmic aspects of CAGD. Ron Goldman is a leading
expert who knows the fundamental concepts and their interconnectedness as well as
the small details. He skillfully guides the reader through subtle subjects without get-
ting lost in pure formalism. The elegance of the writing and of the methods used to
present the material allows us to get a deep understanding of the central concepts of
CAGD. The presentation is clear and precise but never stiff or too abstract. This is a
mathematically substantial book that lets the reader enjoy the beauty of the subject.
It achieves its goal even without illustrating the creative shape potential of free-form
curves and surfaces and without espousing the many important applications this field
has in numerous branches of science and technology. In its simplicity and pure
beauty, the theory indeed resembles the pyramids.

Helmut Pottmann
Vienna University of Technology, Austria

Preface

Every mature technical subject has its own distinct point of view~favorite methods,
cherished formulas, standard examples, preferred algorithms, characteristic projects,
common folklore, pet principles and paradigms. Initially, computer-aided geometric
design (CAGD) grew out of approximation theory and numerical analysis, adapting
the tools of these disciplines for its own devices. Differential, algebraic, and projec-
tive geometry also contributed to the development of CAGD, which borrowed
heavily from each of these fields.

Outside of mathematics, CAGD was strongly influenced by computer science
and mechanical engineering. Indeed, it was the ability to solve computational prob-
lems in mechanical design and manufacture that gave CAGD its initial impetus, its
original reason to exist. It is no accident that many of the founders of the field~Bez-
ier, de Casteljau, Coons, and Gordoniworked in some capacity for automotive
companies.

Today CAGD is a distinct science with its own unique criteria and prerequisites,
themes and leitmotifs, tactics and strategies, goals and aspirations, models and repre-
sentations, problems and procedures, challenges and requirements. The purpose of
this book is to present this fresh point of view by reinvestigating polynomial, ratio-
nal, and piecewise polynomial interpolation and approximation from this contempo-
rary computational perspective.

There is a unity to CAGDIdynamic programming procedures, pyramid algo-
rithms, up and down recurrences, basis functions, dual functionals, rational schemes,
tensor product and triangular patches~these themes recur again and again in differ-
ent guises throughout the subject. One deliberate goal of this book is to capture this
unity by presenting different topics exercising these same basic techniques.

To achieve this goal, this book begins with an introductory chapter, followed by
two main parts: Part I covers Interpolation (Chapters 2-4) and Part II, Approxima-
tion (Chapters 5-8).

Foundations are presented in Chapter 1. These root topics are the underlying
geometric ideas~the essential, often unwritten, fundamentals of the field.

Geometry is the bedrock of CAGD. Numerical analysis and approximation the-
ory investigate functions defined over the fields of real or complex numbers; classi-
cal algebraic geometry focuses on polynomials defined on real or complex projective

XV

• Preface

spaces. In contrast, the natural geometric domains for CAGD are affine spaces and
Grassmann spaces. Polynomial curves and surfaces, along with their control points,
control polygons, and control polyhedra, typically lie in affine spaces; rational
curves and surfaces are projections of polynomial curves and surfaces from Grass-
mann spaces to affine or projective spaces. Thus the control structures of rational
curves and surfaces consist of mass-points in Grassmann space, not of ordinary
points in affine space or homogeneous points in projective space. Blossoming too
requires the formalisms of affine spaces and Grassmann spaces. The domain of the
standard blossom is affine space; the domain of the homogeneous blossom is Grass-
mann space.

Although affine spaces and Grassmann spaces are known in classical mathemat-
ics, they are somewhat obscure and rarely treated in standard texts. Students are
almost never familiar with these geometric spaces. We begin, then, with an overview
of different ambient spaces~vector spaces, affine spaces, Grassmann spaces, and
projective spaces~the spaces that support the geometry of CAGD. Definitions,
examples, distinguishing features, embeddings, projections, and other relationships
between these four distinct spaces are discussed in considerable detail to clarify the
underlying algebraic structures of these geometric spaces.

We stress as well in Chapter 1 a coordinate-free approach to geometry. This
style has at least two distinct advantages over coordinate methods: First, this tech-
nique allows us to distinguish clearly between points and vectors in affine space, as
well as between mass-points in Grassmann space and homogeneous points in projec-
tive space. Coordinates obscure these distinctions, confusing rather than clarifying
these issues for the student. Second, this coordinate-free notation is very concise; it
is a great deal more convenient to write one formula for points or for vectors rather
than two or three formulas for their coordinates. Algorithms, identities, and compu-
tations are much cleaner to express and a good deal easier to understand in this nota-
tion.

The main objects of study in CAGD are smooth curves and surfaces. Many rep-
resentations for curves and surfaces are available; smooth shapes can be defined by
functions that are explicit, implicit, parametric, or procedural. In Chapter 1 we fix
our attention once and for all on parametric curves and surfaces. Differential geome-
try also studies smooth parametric curves and surfaces, but with this difference: in
differential geometry the parametrizations are typically implicit; in CAGD they are
always explicit. In differential geometry it is enough to know that a smooth parame-
trization exists--one often works implicitly with the arc length parametrization of a
differentiable curve; in CAGD the parametrization must be explicit--typically a
polynomial or rational function~for computational considerations.

Last, but not least, in Chapter 1 we also discuss barycentric coordinates. These
coordinates provide the natural domain parameters for the triangular patches that
occur in various guises throughout the text, including triangular Lagrange interpola-
tion, triangular Bezier approximation, and triangular B-patches. Generalized bary-
centric coordinates are also central to the construction in Chapter 8 of a general
theory of multisided Bezier patches.

Preface xvii

Part I of this text focuses on polynomial and rational interpolation. This investi-
gation of interpolation is divided into three chapters: Lagrange (Chapter 2), Hermite
(Chapter 3), and Newton (Chapter 4).

We introduce Lagrange and Hermite interpolation via Neville's algorithm. This
approach allows us to discuss many of the classical themes of CAGD~dynamic
programming procedures, pyramid algorithms, up and down recurrences, tensor
product and triangular patches, existence and uniqueness theorems~in the context
of interpolation, which many beginning students find more intuitive than approxima-
tion. One innovation here is that we often derive properties and formulas for
Lagrange and Hermite interpolation directly from the dynamic programming dia-
gram for Neville's algorithm, an approach that students typically find more appeal-
ing than manipulating formulas in which many distracting indices may be present.
This method of reasoning from the structure of the diagram for a dynamic program-
ming procedure will be pursued throughout the text; several of the basic properties,
fundamental formulas, and principal algorithms for Bezier and B-spline curves and
surfaces are also derived in this manner.

Our choice of topics in interpolation is not always standard. For example, our
interest in triangular grids for bivariate Lagrange interpolation is a bit unconven-
tional but not at all whimsical; we intentionally emphasize this topic here to pave the
way later on for the study of triangular Bezier patches. We also examine rational
Lagrange and rational Hermite interpolation~topics not typically covered in texts
on CAGD~as a prelude to the investigation of rational Bezier and rational B-spline
curves and surfaces. Finally, we present one additional innovation: as an application
of Lagrange interpolation, we examine the Fast Fourier Transform. Strictly speak-
ing, Fast Fourier Transform is not a concern of CAGD, but this topic provides an
excellent application of Lagrange interpolation in computational science outside of
strict data interpolation, so we include a short discussion of this subject here as well,
to broaden the outlook of the student.

Newton interpolation and the divided difference round out our discussion of
polynomial interpolation. Although these subjects are classical topics in approxima-
tion theory and numerical analysis, they are not as well known as they should be to
the CAGD community. Therefore we take the time to provide a thorough presenta-
tion of these topics in Chapter 4.

The divided difference provides the Newton coefficients of the polynomial inter-
polant. This observation allows us to introduce the notion of dual functionals, antici-
pating our investigation of blossoming in Chapter 6. To prepare the way for
blossoming, we provide, in addition to the classical definitions, an axiomatic charac-
terization of the divided difference. These divided difference axioms are akin to the
blossoming axioms, so some of the analysis techniques developed here can be
reprised in Chapter 6 when blossoming is investigated.

Numerous identities for the divided difference are developed in the text and in
the exercises. Since there are so many divided difference identities, we list these for-
mulas for easy reference at the end of Chapter 4. These identities can be applied in
several areas: for example, B-splines are often presented from the perspective of
divided differences. Therefore we shall have occasion to return to several of these

xviii Preface

identities when we study B-splines in Chapter 7. Also, because the blossoming axi-
oms are so similar to the divided difference axioms, some blossoming identities have
analogues in divided difference identities. We shall follow up some of these connec-
tions to divided difference when we come to study blossoming in Chapter 6.

Part II of this text is devoted to polynomial, rational, and piecewise polynomial
approximation. Bezier curves and surfaces, blossoming, and B-splines are the most
successful areas of CAGD, and in Part II of this text a chapter is devoted to each of
these topics.

We begin our investigation of polynomial approximation with the study of Bez-
ier curves and surfaces. Free-form curves and surfaces are shapes with no n a m e ~
hard to describe in precise words or explicit formulas but conspicuous in aesthetic
and practical design. The key geometric feature of Bezier curves and surfaces from
the perspective of CAGD is that they approximate~in a way that is intuitively natu-
ral and can be made mathematically precise~the contour described by their control
points. Thus they lend themselves readily to the design of free-form shapes.

What makes Bezier curves and surfaces so attractive analytically is that they
possess straightforward algorithms for evaluation, subdivision, differentiation, and
degree elevation. This suite of algorithms is what permits exhaustive computer anal-
ysis of free-form shapes represented in Bezier form. For example, recursive subdivi-
sion leads to simple divide-and-conquer procedures for rendering and intersecting
Bezier curves and surfaces.

Bernstein/Bezier approximation is an extremely rich theory, and we purposely
approach this topic from as many different analytic perspectives as possible, includ-
ing dynamic programming procedures, Bernstein polynomials, generating functions,
the binomial theorem, the binomial distribution, and discrete convolution. Although
any one of these techniques may be powerful enough to develop the entire Bernstein/
Bezier canon, we have intentionally avoided consistently adopting any one particular
method in order not to impoverish the theory. At first, this very richness of the theory
may seem daunting to the novice, but the student should keep in mind when faced
with new problems that a variety of approaches are possible. There are many weap-
ons in the Bernstein/Bezier arsenal.

In contrast to standard texts that treat Bezier curves and surfaces, we have incor-
porated the following innovations in our approach to this subject:

Reasoning directly from the dynamic programming diagram for the de
Casteljau algorithm to provide easy derivations for some elementary proper-
ties of Bezier curves and surfaces.

�9 Developing algorithms for differentiating and blossoming Bezier curves and
surfaces by differentiating and blossoming the diagram for the de Casteljau
algorithm.

�9 Introducing general principles of duality to simplify the study of change of
basis procedures.

�9 Providing an elementary proof of the Weierstrass Approximation Theorem,
which is then applied to establish the convergence of the degree-elevation
algorithm for Bezier curves.

Preface •215

�9 Presenting Wang's formula to avoid flatness testing and speed up algorithms
for rendering and intersection based on recursive subdivision.

�9 Using discrete convolution to derive differentiation formulas for the Bern-
stein polynomials. This approach not only simplifies the study of derivative
algorithms for Bezier curves and surfaces, but also prepares the way for
understanding the symmetry property when in Chapter 6 we study how to
blossom the de Casteljau algorithm. It also anticipates the central role that
discrete convolution plays in Chapter 8, where we study multisided Bezier
schemes.

�9 Treating the subject of integration for the Bernstein polynomials. Definite
integrals provide the most direct way to prove that the arc length of a Bezier
curve is bounded by the perimeter of its control polygon. In addition, inte-
gration formulas for the Bernstein basis functions prepare the way for
developing integration formulas for the B-splines.

�9 Comparing and contrasting pyramid algorithms with the de Casteljau
approach to evaluation and differentiation for tensor product and triangular
Bezier surfaces.

In addition, at the end of the chapter, we provide a comprehensive list of identities
for the univariate and bivariate Bernstein basis functions for easy reference.

Blossoming is an elegant and potent tool for analyzing Bezier and B-spline
curves and surfaces. Nevertheless, we resolutely postpone blossoming till Chapter 6,
even though blossoming could effectively be applied in Chapter 5 to derive algo-
rithms for subdivision, degree elevation, differentiation, and change of basis for Bez-
ier curves and surfaces.

There are two problems with introducing blossoming too early in the text. First,
blossoming is too powerful. If students come to believe that they can do everything
with blossoming, why should they learn any other approach? We delay blossoming
so that students are forced to learn a variety of techniques that they may then use in
extensions of the Bezier setting where blossoming no longer applies. Second, stu-
dents do not appreciate the real power of blossoming unless they get to see how
many disparate techniques blossoming can be used to replace. In Chapter 5 we
derive subdivision from the binomial distribution, degree elevation from polynomial
identities, differentiation from discrete convolution, and change of basis from mono-
mial to Bezier form by invoking the binomial theorem and generating functions.
Each of these approaches is quite elegant when viewed in isolation, but altogether
this variety of approaches can be quite overwhelming. For Bezier curves and sur-
faces, blossoming can be used to replace all of these methods. By deferring blossom-
ing till after our initial investigation of Bezier curves and surfaces and then
reinvestigating topics such as subdivision, differentiation, degree elevation, and
.~hange of basis in light of this new tool, students come to appreciate the full power
~f blossoming.

We highlight both the affine and the homogeneous blossom. The affine blossom
is appropriate for studying points, function values, and change of basis procedures;
the homogeneous blossom is the natural way to investigate derivatives. The study of

xx Preface

derivatives via blossoming is applied in Chapter 7 in our investigation of splines
since blossoming can be used to determine when two polynomials meet smoothly at
their join.

Blossoming prepares the way for B-splines. Some authors begin the study of B-
splines by writing down the de Boor recurrence without any motivation. Students
may then follow the development of the theory, but they are unable to fathom the
inspiration for this recurrence. Blossoming provides the motivation for the de Boor
algorithm since the de Boor recurrence is identical with the blossoming recurrence
for computing values along the diagonal, and this blossoming recurrence is, in turn,
a straightforward generalization of the de Casteljau algorithm.

B-spline curves and surfaces have two advantages over Bezier curves and sur-
faces. For a large collection of control points, a Bezier curve or surface approximates
the data with a single polynomial of high degree. But high-degree polynomials take
a long time to compute and are numerically unstable. B-splines provide low-degree
approximations, which are faster to compute and numerically more secure. For these
reasons B-splines have become extremely popular in large-scale industrial applica-
tions.

We begin the study of B-splines by analyzing the dynamic programming dia-
gram for the de Boor algorithm. Reasoning from the diagram, we can derive many of
the elementary properties of B-spline curves such as the local convex hull property.
By overlapping these dynamic programming diagrams for adjacent polynomial seg-
ments and then using blossoming to differentiate these diagrams, we provide a sim-
ple proof that adjacent polynomial segments meet smoothly at their join. This proof
from overlapping de Boor diagrams is much more natural and easier for students to
grasp than proofs by induction or by divided difference. We also develop algorithms
for differentiating and blossoming B-spline curves and surfaces by showing how to
differentiate and blossom the diagram for the de Boor algorithm.

Knot insertion is one of the main innovations of CAGD. Nested knot vectors
generate nested spline spaces. Given a knot sequence and a control polygon, knot
insertion algorithms construct a new control polygon that generates the same B-
spline curve as the original control polygon by inserting control points correspond-
ing to the new knots. The motivation is to create a control polygon with additional
control points that more closely approximates the curve than the original control
polygon.

Knot insertion is to B-splines what subdivision is to Bezier schemes. The new
control polygons generated by knot insertion can be used for rendering and intersect-
ing B-spline curves and surfaces, as well as for providing additional control over the
shape of a B-spline curve or surface. Differentiation, too, can be viewed as a knot
insertion procedure. Both the standard derivative algorithm and Boehm's derivative
algorithm can be understood in terms of knot insertion. The variation diminishing
property for B-spline curves also follows from knot insertion, an insight unique to
the geometric spirit of CAGD.

Many knot insertion algorithms are now available: Boehm's algorithm, the Oslo
algorithm, factored knot insertion, Sablonniere's algorithm, and the Lane-Riesenfeld
algorithm for uniform B-splines. Blossoming provides a unified approach to knot

Preface xxi

insertion as well as insight into the connections between different knot insertion pro-
cedures, so we use blossoming to derive most of these algorithms. We study each of
these knot insertion algorithms in turn, and we compare and contrast their relative
benefits and limitations.

Midway through Chapter 7, we shift the focus to the B-spline basis functions,
and we explain the links between B-splines and divided differences. Divided differ-
ence is the classical way to introduce B-splines, so students need to learn this
approach if only to be able to understand many of the standard tracts on B-splines. In
addition, divided differences allow us to derive those properties of B-splines that do
not follow readily from blossoming. For example, we use the connection between B-
splines and divided differences together to develop a geometric characterization of
the univariate B-splines. This geometric approach is often taken as the starting point
for the development of the theory of multivariate B-splines, so it is important for stu-
dents to see this formula first in the univariate setting.

The Bernstein basis functions can be generated from discrete convolution; uni-
form B-splines can be constructed from continuous convolution. We derive this con-
volution formula and then use this convolution technique to derive the Lane-
Riesenfeld knot insertion algorithm for uniform B-spline curves.

NURBS is an acronym for non-uniform rational B-splines. At this late stage in
the text, students are well prepared for the study of rational B-splines since they have
already encountered rational schemes in the Lagrange and Bezier settings. NURBS
are the projection from Grassmann space to affine or projective space of integral B-
spline curves and surfaces. Therefore NURBS inherit most of the standard properties
and algorithms of ordinary B-spline curves and surfaces. Thus once we have
explained B-splines thoroughly, NURBS are quite easy to understand.

Catmull-Rom splines are interpolating splines constructed by combining
Lagrange interpolation with B-spline approximation, fusing Neville's algorithm
together with the de Boor algorithm. Studying Catmull-Rom splines near the end of
Chapter 7 allows us to reprise some of the high points of interpolation and approxi-
mation in the context of interpolating spline curves.

We close Chapter 7 with the study of B-spline surfaces. Tensor product surfaces
are introduced in the standard way by repeated application of the univariate de Boor
algorithm. But there is another approach to tensor product B-spline surfaces, less
well known than the de Boor algorithm, but highly in keeping with one of the major
themes of this book, pyramid algorithms. We derive the pyramid algorithm for tensor
product B-spline surfaces from blossoming and then show that this algorithm can be
extended to a kind of local triangular B-spline surface~the B-patch. Unlike the pyr-
amid construction for the tensor product B-spline surface, there is no easy way to
piece together polynomial B-patches to form a spline surface over a triangular grid.
There is, however, a construction of multivariate B-splines from B-patches, but,
unfortunately, this construction is a bit beyond the scope of this text.

At the end of Chapter 7~as we did at the end of Chapter 4 for the divided dif-
ference, at the end of Chapter 5 for the Bernstein polynomials, and at the end of
Chapter 6 for blossoming~we gather, for easy reference, a comprehensive list of
identities for the B-spline basis functions.

xxii Preface

Chapter 8 is devoted to multisided Bezier patches, including S-patches, C-
patches, and toric Bezier patches. Each of these schemes has a pyramid evaluation
algorithm that generalizes the de Casteljau evaluation algorithm for triangular and
tensor product Bezier patches. These pyramid algorithms can also be blossomed to
provide the dual functionals for these multisided Bezier schemes. Three key ideas
link together and unify these different constructions of multisided Bezier patches:
discrete convolution, Minkowski sum, and the general pyramid algorithm. A vital
role is also played by different approaches to indexing multisided arrays and differ-
ent ways to construct generalized barycentric coordinate functions. These concepts
and techniques extend many of the salient ideas and insights encountered in earlier
chapters, so this topic, which is still ongoing research, makes a fitting final chapter
for this book.

Unlike the rest of this book, much of the material in Chapter 8 is new and is pre-
sented here in a coherent and unified fashion for the first time. Although for the most
part I have based this chapter on what has come before it in the text, a higher level of
mathematical sophistication is required here on the part of the reader. In contrast to
the other chapters, this chapter is written for experts rather than for neophytes.

My goal has been to write a book that can serve both as a reference and as a text.
As a text for a one-semester 15-week course, I envision that the class could cover the
first seven chapters, devoting the first week to Chapter 1 and roughly two weeks
apiece to Chapters 2-7. Obviously, there is far too much material to read everything
in each of these chapters, so instructors must pick and choose according to their
tastes. The remaining material can serve either as a future reference or as material
for a second semester course.

Many exercises are included at the end of each section, and many should be
assigned; it is not possible to learn this material to any depth without working
through many, many exercises. The exercises are intended both to complement and
to illuminate the text. Alternative approaches, as well as additional examples, algo-
rithms, identities, theorems, and proofs, are included in the exercises. The relative
difficulty of these exercises varies widely, ranging from simple illustrative examples
to straightforward algorithms to complicated proofs. I have provided hints for some
of the more challenging and more interesting problems.

This book is intended for engineers and computer scientists, as well as for
applied mathematicians. To accommodate the engineers, I have tried to include
enough detail to make the subject fully intelligible while not drowning in rigor. I
have also tried to keep notation to a minimum, erring if necessary on the side of
naivete rather than pedantry. I trust that applied mathematicians will also benefit
from this presentation. "

Prerequisites include only a standard freshman calculus course along with a lim-
ited amount of linear algebra. Students should have at least a passing acquaintance,
for example, with vector spaces and linear transformations. To provide some familiar
models of affine spaces for engineers, Chapter 1 refers briefly to matrix algebra and
to ordinary differential equations. Readers not versed in matrices or differential
equations can simply skip these examples with little loss of content. The remainder
of the book is self-contained.

Preface xxiii

A word about some of the choices in this book: Inevitably I have had to leave
out subjects that others would consider vital to the field. I have not included material
on rates of convergence, algebraic curves and surfaces, Coons patches and Gordon
surfaces, Pythagorean hodographs, or geometric continuity. Partly these omissions
reflect my own unconscious biases and interests, and partly they reflect a conscious
decision on my part to stick to certain major themes and not to stray too far or too
often from this path. Others I am sure would make different choices, just as valid,
equally compelling.

Finally, this point is the place in the preface where I get to thank all those people
who inspired me and helped me to write this book. Unfortunately, this list is way too
long for publication. Family and friends, teachers and students, colleagues and confi-
dants, collaborators and competitors, predecessors and contemporaries, Americans,
Europeans, Asians, Africans, and Australians have all contributed to this effort. I
have borrowed ideas from almost everyone I know who works in the field--scien-
tists in academia, engineers in industry, and even aspiring undergraduate and gradu-
ate students in colleges and universities. Conspicuously, this book was written on
three different continents, where I was hosted by various genial colleagues and sup-
ported by several generous grants. CAGD, like most large-scale human endeavors, is
a collaborative effort. This book is the work of many, many people. I am only their
conduit. Do not confuse the dancer with the dance.

C H A P T E R

Introduction: Foundations

We begin with some background material that will be assumed throughout the
remainder of this book. Although we shall discuss several generic types of curve and
surface representations, our main focus here is on the ambient mathematical spaces
in which these shapes reside. We will also review barycentric coordinates, a topic
that is central to the construction of conventional triangular surface patches.

1.1

1.1 .I

Ambient Spaces

Four different kinds of mathematical spaces support the representation and analysis
of free-form curves and surfaces: vector spaces, affine spaces, Grassmann spaces,
and projective spaces. When first reading this chapter, you should focus your atten-
tion on vector spaces and affine spaces. Not only are these spaces more familiar, but
they are fundamental both for the construction of polynomial curves and surfaces and
for the development of the more complicated Grassmann spaces and projective
spaces. Grassmann spaces and projective spaces are discussed here as well, but you
can defer reading about these mathematical spaces till later in the book when we shall
need these tools to clarify some of the properties of rational curves and surfaces. We
adopt a coordinate-free approach to geometry. Try to get used to coordinate-free
methods now because we plan to employ this approach throughout the text.

Vector Spaces

You should already be familiar with vector spaces from linear algebra. Informally a
vector space is a collection of objects called vectors that can be added and subtracted
as well as multiplied by constants. Vectors are often represented geometrically by
arrows. These arrows are added and subtracted by the familiar triangle rules; multi-
plication by constants is represented by stretching or shrinking the arrows, reversing
the orientation when the constant is negative (Figure 1.1).

CHAPTER 1 Introduct ion'Foundations

v + w /

v

(a) Vector addition

/
(b) Scalar multiplication

Figure 1.1 Addition and scalar multiplication of vectors.

Examples of vectors include the standard elements of mechanics~velocity,
acceleration, and force. However, there are many other important models of abstract
vector spaces. For example, the space of all polynomials of degree less than or equal
to n is a vector space because addition, subtraction, and scalar multiplication are all
well-defined operations for polynomials of degree less than or equal to n.

Solutions to systems of homogeneous linear equations also form a vector space.
Consider the system of m linear equations in n unknowns:

al 1Xl + al 2 x2 + " " + a lnXn - 0 (1.1)

a m l X 1 + a m 2 X 2 + ' " + amnX n - 0 .

Collecting the coefficients {aij } into a matrix A and the variables {x k } into a column
array X, we can rewrite (1.1) in matrix notation as

A X = 0 . (1.2)

Now if S 1 and S 2 are solutions of (1.2), then by the linearity of matrix multiplication
so are S 1 + $2 and cS1, so the arrays S that represent solutions of (1.2) form a vector
space.

Similarly, solutions to linear homogeneous ordinary differential equations form
a vector space. Consider the ordinary differential equation

an(x)y (n) + an_l(x)y (n-l) + ' " + al (x)y ' + aO(x)y - O. (1.3)

If y - j~ (x) and y = f2(x) are solutions of (1.3), then by the linearity of differentia-
tion so are y = j~ (x)+ f2 (x) and y - cJi (x), so the functions y - f (x) that represent
solutions of (1.3) also form a vector space.

Thus vector spaces are ubiquitous in science and mathematics. It is for this rea-
son that you have encountered vectors and vector spaces before and studied them
formally in courses on linear algebra.

1.1.2 Affine Spaces

Despite their familiarity, vector spaces are not the appropriate mathematical setting
for studying the geometry of curves and surfaces. Curves and surfaces are collec-

1.1 Ambient Spaces 3

tions of points, and points are not vectors. Vectors add and scale; points do not. Vec-
tors have size; points do not. Vectors are represented geometrically by arrows; points
by dots. Arrows have direction and length, but no fixed position; dots have a fixed
position, but no direction or length. Points are moved by translation; vectors are
unaffected by translation. To emphasize these distinctions, we shall typically use
lowercase letters u ,v ,w from the end of the alphabet to represent vectors and
uppercase letters P, Q,R from the middle of the alphabet to represent points. Sca-
lars will typically be represented either by lowercase letters a, b, c from the begin-
ning of the alphabet or by lowercase Greek letters a, fl, y

Although points do not add, we would still like to have an algebra for points. If
we were to introduce a rectangular coordinate system, then we could add two points
P and Q by adding their coordinates. Unfortunately, the resulting point would
depend on our choice of coordinate system (see Figure 1.2). In disciplines such as
computer graphics, robotics, and geometric design, there may be several local coor-
dinate systems in any particular model. It would be extremely confusing if our
notion of addition were to depend on our choice of coordinate system. Notice that
the definition of vector addition in Figure 1.1 is independent of any coordinate sys-
tem. We seek a similar coordinate-free algebra for points.

Consider the expression (P + Q) / 2 . Even though the term P + Q is indetermi-
nate, the full expression (P + Q) / 2 does have a clear coordinate-free meaning: it
denotes the midpoint of the line segment joining P and Q. Are there any other unam-
biguous expressions involving points?

If Vo,...,v n is a collection of vectors and Co,...,c n is a collection of constants,
then we can form the linear combination

11

v - ~ c k v k,
k = 0

o'(-1,o)
A

l w

P(1,o)
b(o,o)

Q(2,1) R(3,1) S(4,1) T(5,1)

Figure 1.2 Where is P + Q? lf the origin is at O, then P - (1,0) a n d Q - (2 , 1) s o P + Q = (3 , 1) = R . But if
the origin is moved to 0 ' = (-1,0), then the coordinates of P and Q change. Now P - (2,0)
and Q = (3,1), so P + Q = (5,1) and this point is located at S = (4,1) in the original coordinate
system. Confused? You should be. Adding points by adding their coordinates is a bad idea
and leads both to general bewilderment and incorrect programs.

C H A P T E R 1 Introduction" Foundations

and since addition and scalar multiplication are defined for vectors, v is a well-
defined vector. Similarly if PO Pn is a collection of points, then we would like to
form the combination

n

P - 2CkP k �9
k=0

Unfortunately, this expression generally has no fixed, coordinate-free meaning, so P
is not really a point. What is to be done?

Let us begin again by thinking geometrically about points and vectors. Points
are represented by dots, vectors by arrows. Two points P,Q determine a vector v ~ t h e
arrow joining the dots P and Q. We shall denote this vector by Q - P. Subtraction is
then defined for points. Similarly, a point P and a vector v determine another point Q
by placing the tail of the vector v at the point P and letting Q be the point at which
the head of v rests. We shall denote this point Q at the head of v by the sum P + v
(see Figure 1.3).

To summarize: so far we have defined Q - P to be a vector and P + v to be a
point. Moreover, these definitions are consistent with the usual cancellation rules for
addition and subtraction. For example, it follows from our geometric interpretation
that

i. P + (Q - P) = Q

ii. (R - Q) + (Q - P) - R - P .

The first rule is just the definition of subtraction for points; the second rule is the
triangle rule of vector addition (redraw Figure 1.1(a) with P,Q,R at the vertices of
the triangle).

Now we are ready to define the notion of an affine combination of points. Earlier
we saw that we could not take arbitrary linear combinations of points, but some
combinations like (P + Q) / 2 do make sense. This particular expression can be
rewritten using the formal identity

(P + Q) (Q - P)
= P + ~

2 2

Q - P

P

P + v

P

P

Figure 1.3 Subtraction of points and addition of points and vectors.

1.1 Ambient Spaces 5

The right-hand side of this equation defines the left-hand side. Moreover, the right-
hand side now has a clear meaning, since it is the sum of a point P and a vector
(Q - P) / 2 . We make this definition because formally it obeys the usual rules of
arithmetic; that is, if we want the standard rules of addition, subtraction, and scalar
multiplication to apply, then this identity must hold.

Taking our cue from this example, we see that we want to define

n n n

ZckPk - (2ck~P0 + Zc~(Pk - P0~
k=0 k=0 k=l

(1.4)

since formally all the terms involving P0 on the fight-hand side cancel except coP o.
The second summation on the right-hand side makes good sense since
~,kck(Pk - PO) is a linear combination of vectors, but what meaning can we assign to
(~kck)P0? In general, we cannot multiply a point by a scalar in a coordinate-free
manner, but there are two exceptions. We can define

l o P - P

O ~

cP - undefined c , 0,1.

By the way, notice that in the second equation the zero on the left-hand side is the
zero scalar, but the zero on the fight-hand side denotes the zero vector.

Now Equation (1.4) suggests that

/'/ n n

Z ckPk - PO + ~, ck (Pk - PO) provided that Z ck - 1
k=0 k=l k=0

n
n

= ~, Ck (Pk - PO) provided that Z ck - 0
k=l k=O

= undefined otherwise.

We shall adopt these definitions because formally they obey the usual rules of arith-
metic.

Combinations of the form ~,kckPk where ~kck = 1 are called affine combina-
tions. Each difference P k - P 0 is a vector, so the affine combination ~,kckPk is the
sum of a point P0 and a vector v = Y~kck(Pk- P0); thus an affine combination of a
collection of points generates a new point. For example,

P + Q (1 - c) P + c Q P + 2 Q + R
2 4

are affine combinations of points and thus are well-defined points, but

P Q P + Q 2 P + 5 Q + 2 R
_ _ . 3 1 _ ~

2 3 3 10

6 C H A P T E R 1 Introduction: Foundations

are meaningless expressions. Notice, in particular, that the points on the line deter-
mined by P and Q can be represented by taking the affine combinations (1 - t)P + tQ
for all values of t.

There are other combinations of points that have meaning, even though the coef-
ficients do not sum to one. For example, Q - P is a meaningful expression, but the
sum of the coefficients is zero. In general, ~,kckPk is a vector, not a point, when
~kCk = 0. Again this definition is consistent with the usual rules of arithmetic as
well as with the geometry we have constructed for points and vectors.

An affine space is a collection of elements called points for which affine combi-
nations are defined. Associated with every affine space is a vector space whose vec-
tors are generated by differencing the points. Vectors can be added to the points in
the affine space, and the sum of a point and a vector is a point. The usual rules of
addition, subtraction, and scalar multiplication apply, but the only combinations of
points allowed are those where the scalar coefficients sum to either zero or one.

Since we can subtract points to produce vectors, for every pair of points P and
Q, there is a unique vector v such that Q = P + v; indeed v = Q - P. Thus most of the
information contained in an affine space is stored in the vectors; you really need to
know only one point. In geometry you often simply pick an origin and then represent
the points as vectors emanating from the origin. It is for this reason that vector
spaces are studied so intensely and affine spaces may seem so unfamiliar.

Nevertheless, in this book we shall insist on the framework of affine spaces. One
reason is that to avoid confusion we need to do all our work independent of the
choice of any coordinate system. We want to study the intrinsic properties of curves
and surfaces, not their relationships to coordinate systems. Moreover, it is actually
often simpler to work directly with the curves and surfaces without referring to any
specific coordinates. For this purpose, affine spaces are often the most appropriate
setting.

There are many important models of affine spaces. In computer graphics, the
points on the graphics screen form an affine space, not a vector space. Points can be
translated by adding vectors, but only the points, not the vectors, are actually visible
on the graphics terminal.

As with vector spaces, there are also abstract, nongeometric models of affine
spaces. The space of all monic polynomials of degree nmthat is, all polynomials of
degree n with leading coefficient l ~ i s an affine space. Affine combinations of
monic polynomials generate monic polynomials. The difference of two monic poly-
nomials of degree n is a polynomial of degree at most n - 1. Thus the associated vec-
tor space is the space of all polynomials of degree less than or equal to n - 1. The
sum of a monic polynomial of degree n and an arbitrary polynomial of degree at
most n - 1 is again a monic polynomial of degree n. Thus, the sum of a point and a
vector is a point as it should be.

Solutions to systems of nonhomogeneous linear equations also form an affine
space. Consider the system of m linear equations in n unknowns:

al lXl + al 2x2 + " " + alnXn = bl (1.5)

amlX 1 + am2X 2 + . . . + amnX n - - b m

1.1 Ambient Spaces 7

As before, we can rewrite (1.5) in matrix notation as

AX = B. (1.6)

If S O Sp are solutions of (1.6), then by the linearity of matrix multiplication so is
2kcl~Sk provided that 2kck = 1, so the arrays S that represent solutions of (1.6)
form an affine space. The difference of two solutions of (1.6) is a solution of the
associated homogeneous system (1.2). Thus the associated vector space consists of
the solutions to the associated system of homogeneous linear equations. Again by
the linearity of matrix multiplication, if S is a solution of (1.6) and v is a solution of
(1.2), then S + v is a solution of (1.6)~that is, the sum of a point and a vector is a
point as required.

Similarly, solutions to nonhomogeneous linear ordinary differential equations
form an affine space. Consider the ordinary differential equation

an(x)y (n) + an_l(x)y (n-l) + ' " + al(x)y' + ao(x)y - b(x). (1.7)

If F, (x), ,F (x) are solutions of (1.7), then by the linearitv of differentiation so is
1 "'" p

~kckFk(x) provided that ~kck = 1, so the functions y - / ~ (x) that are solutions of
(1.7) form an affine space. The difference of two solutions of (1.7) is a solution of
the associated homogeneous ordinary differential equation (1.3). Thus the associated
vector space consists of the solutions to the associated homogeneous ordinary differ-
ential equation. Again by the linearity of differentiation, if F(x) is a solution of (1.7)
and v(x) is a solution of (1.3), then F(x)+ v(x) is a solution of (1.7)~that is, the
sum of a point and a vector is a point.

Thus, like vector spaces, affine spaces are really omnipresent in computational
science and engineering.

When we study geometry, we often need to know the dimension of the ambient
space. For vector spaces and affine spaces the notion of dimension is tied to the con-
cept of independence. Recall that a collection of vectors v 1 v n is said to be lin-
early independent if we cannot write any vector in the set as a linear combination of
the remaining vectors. A maximal linearly independent set of vectors is called a
basis. The dimension of a vector space is the maximum number of linearly indepen-
dent vectors in the space--that is, the number of vectors in a basis.

Similarly, a collection of points Po Pn is said to be affinely independent if we
cannot write any point in the set as an affine combination of the remaining points. A
maximal affinely independent set of points is said to be an affine basis for the affine
space. The dimension of an affine space is one less than the maximum number of
affinely independent points in the space.

For example, the dimension of a single point is zero, the dimension of the affine
line is one, and the dimension of the affine plane is two. Thus our notion of dimen-
sion is consistent with the standard dimensions in geometry. Moreover, it is not hard
to show that the dimension of an affine space is the same as the dimension of its
associated vector space (see Exercise 6).

The natural transformations on vector spaces are the transformations that pre-
serve linear combinations. We say then that a transformation L is a linear transfor-
mation if

C HAPTE R 1 Introduction: Foundations

L(EkCkVk) = ZkCkL(Vk) .

Similarly, the natural transformations on affine spaces are the transformations that
preserve affine combinations. Thus we say that a transformation A is an affine trans-

format ion if

A (~ k C k P k) = ~kCkA(Pk) whenever ~kCk = 1.

Many familiar transformations of space such as translation, rotation, scaling, and
shearing are affine transformations. To learn more about affine transformations, see
Exercises 15-17.

We mentioned at the start of this chapter that there are two other kinds of spaces
that arise in the study of free-form curves and surfaces: projective spaces and Grass-
mann spaces. Projective spaces introduce points at infinity that are convenient for
investigating intersections and poles. Projective spaces are also related to the homo-
geneous coordinates that you may already have encountered in computer graphics.
In Grassmann spaces, points have mass as well as location. Assigning mass to points
is a venerable technique for studying geometry by applying mechanical principles,
an idea first introduced by Archimedes and later refined by Grassmann. Mass-points
permit us to complete the definition of ~kCkPk by allowing us to define combina-
tions where ~kCk ~ 0,1. Projective spaces and Grassmann spaces both come into
play during the construction of rational curves and surfaces. We shall discuss these
spaces in the next two sections, but if you like you can postpone reading these sec-
tions for now and come back to them later when we introduce rational curves and
surfaces in subsequent chapters.

Exercises

1. Prove that if ~kCk = 1, then for any two points R,S

R + ~kCk(Pk - R) = S +ZkCk(ek -- S).

Interpret this result geometrically.

2. Archimedes' law of the lever asserts that the center of mass P of two masses
ml and m 2 situated respectively at the points P1 and P2 is located at the point
along the line segment P1P2 characterized by the property that the first
moment of m 1 around P balances the first moment of m 2 around P. Thus

m I l P 1 - P I = m 2 1 P 2 - P I .

a. Use Archimedes' law of the lever to verify that the center of mass of two
masses m I and m 2 situated respectively at the affine points P1 and P2 is
located at the affine point e = (mlP 1 + m2P2)/ (m 1 + m2).

b. Suppose that the masses m k are located at the affine points Pk, k = 1 n.
Use induction to show that the center of mass of the masses m k,
k = 1 ,n, is located at the affine point

n n

P = ~,mkP k / Z m k .
k=l k=l

1.1 Ambient Spaces 9

c. Show that the center of mass of three mass-points (mlP 1,ml),(m2P2,m2),
(m3P3,m3) can be computed by first computing the center of mass
(m12Plz,m12) of (mlPl,m 1) and (m2P2,m 2) and then computing the cen-
ter of mass of (mlZPlZ,m12) and (m3P3,m3).

3. Prove that the affine dimension of the affine line is one and that the affine
dimension of the affine plane is two.

4. Prove that every vector can be written in a unique way as a linear combina-
tion of a fixed basis.

5. Prove that every point can be written in a unique way as an affine combina-
tion of a fixed affine basis.

6. Prove that the dimension of an affine space is the same as the dimension of
its associated vector space.

7. What is the dimension of the affine space of monic polynomials of degree
n? Justify your answer.

8. Consider the collection of all arrays of real numbers (a 0 a n) for which

Zkak = 1.

a. Show that these arrays form an affine space under coordinate addition
and scalar multiplication.

b. What is the dimension of this affine space?

c. Describe the associated vector space.

9. Consider the collection of all arrays of real numbers (a 0 a n) for which

a 0 =1.

a. Show that these arrays form an affine space under coordinate addition
and scalar multiplication.

b. What is the dimension of this affine space?

c. Describe the associated vector space.

(When n = 3, these affine coordinates correspond to the standard affine
coordinates used in computer graphics and robotics.)

10. Suppose that A,B,C ~ O. Show that the points (x,y) on the line Ax + By + C = 0
form an affine space. What is the associated vector space?

11. Show that under the usual operations of addition and scalar multiplication
on functions the collection of all real-valued functions on a set S such that
f (a) = 1 for all a ~ A, where A c S, forms an affine space. Describe the
associated vector space.

12. Consider the collection of all sequences {a n } that satisfy the linear recur-
rence relation

a n = Clan_ 1 + C2an_ 2 + ... + Ckan_ k + d ,

where c 1 Ck, d are fixed nonzero constants.

q 0 c H A P T E R 1 In troduct ion: Foundat ions

1.1.3

a. Show that these sequences form an affine space under the usual opera-
tions of addition and scalar multiplication for sequences.

b. What is the dimension of this affine space?

c. Describe the associated vector space.

13. Let v 1 v n be a basis for a vector space V.

Show that a - { Z k C k V k l Z k C k = 1} is an affine a. space.

b. What is the associated vector space?

c. How is the dimension of A related to the dimension of V?

14. In the text we showed that with every affine space there is associated a cor-
responding vector space. Here we show that the converse is also true--that
with every vector space there is associated a corresponding affine space. Let
V be a vector space and let A = {(v, 1) I v e V }.

a. Show that A is an affine space under coordinate addition and scalar multi-
plication.

b. Show that the vector space associated with A is isomorphic to V.

15. Prove that the translation map T (P) = P + v is an affine transformation.

16. Prove that an affine transformation is completely defined by its action on an
affine basis.

17. Let A be an affine transformation.

a. Show that if Q - P = T - R, then A (Q) - A (P) = A (T) - A (R) .

b. Let v = Q - P, and define A(v) = A (Q) - A(P) . Using part (a), show that
A induces a well-defined map on vectors. That is, A(v) is independent of
the choice of P and Q.

c. Show that A (P + v) = A(P) + A(v).

d. Show that A induces a linear transformation on vectors~that is,

A (u + v) = A (u) + A (v)

A(cu) = cA(u).

e. Conclude from parts (c) and (d) that every affine transformation A is
determined by a linear transformation L together with the value of A at a
single point.

f. Prove that an affine transformation maps each line in an affine space to
either a point or a line.

Grassmann Spaces and Mass-Points

The algebra of points in affine space is incomplete. For example, scalar multiplica-
tion of points is defined only for the scalars 0,1; that is,

1.1 Ambient Spaces 111
c P - P c - 1

= 0 c - 0

= undefined c ~: 0,1 .

More generally, we cannot take arbitrary linear combinations of points; only affine
combinations---combinations where the scalars sum to one--yield new points.
Grassmann spaces extend affine spaces so that all the usual operations of arithmetic
are valid.

How is this done? Since Grassmann spaces are not so familiar as vector spaces
or even affine spaces, we shall provide three distinct models for Grassmann space"
physical, algebraic, and geometric. We shall then combine all three models into a
single diagram (Figure 1.6).

We take our initial inspiration from physics. In classical mechanics there are
points (locations) and vectors (forces), but in addition there are also objects (masses)
on which the forces act. The masses reside at points, so it is natural to combine a
mass and a point into a single entity called simply a mass-point. In this framework
masses are allowed to be negative, so perhaps we should call them charges instead of
masses, but the term mass-point is fairly standard so we shall stick to it here. Vectors
are incorporated into this scheme as entities with zero mass.

To develop an algebra for mass-points, we need suitable notation. It might seem
reasonable, at first, to denote mass-points by pairs (P,m), where P is a point in affine
space and m is a nonzero scalar mass. Unfortunately, the algebra of mass-points is
not at all natural in this notation. For example, the sum of two mass-points is not
simply the sum of the points juxtaposed with the sum of the masses. Indeed, the sum
of two points in affine space is not even well defined.

By introducing a slight abuse of notation, however, we can generate a simple
algebraic formalism for mass-points consistent both with the mathematics of affine
spaces and with the physics of classical mechanics. We shall denote the mass-point
with the nonzero mass m located at the affine point P by the pair (mP, m). Of course,
strictly speaking, the expression mP by itself is meaningless, since mP is not a well-
defined, coordinate-free expression in affine space. (If we were to introduce rectan-
gular coordinates, however, then the expression mP would represent the first
moment of the mass m around each of the coordinate planes. The pair (mP, m) is then
called the Grassmann coordinates of the mass-point--see Section 1.2.2.) Neverthe-
less, if we adopt the convention of writing our mass-points in this way, we can cer-
tainly recover the affine point P by formally dividing the expression mP by the mass
m. Since, by convention, vectors have zero mass, vectors v are written as (v,0).

Scalar multiplication of mass-points is defined by multiplying the mass by the
scalar and leaving the point unchanged. If the scalar is zero, then its product with the
mass would be zero, so we set the result to the zero vector. Thus, we define

c(mP, m) - (cmP, cm) c 4= 0 (1.8)

= (0, O) c - 0 .

12 CHAPTER 1 Introduction: Foundations

dl ~ d2
,Ih , a l l

' I F 'qW

(mlP l ,ml) (mlP1 + m2P2,m 1 + m 2) (m2P2,m2)

Figure 1.4 The sum of two mass-points (mlPl,m 1) and (m2P2,rn2)--represented here by dots at the
corresponding points of sizes proportional to their masses is located at their center of mass,
where mid 1 = m2d2.

To add two mass-points, we need to specify both the position and the mass of
the sum. We define the position to be the center of mass (see Exercise 2 of Section
1.1.2) of the two mass-points and the mass to be the sum of the two masses (see Fig-
ure 1.4). Formally this means that

(mlPl,ml) + (m2P2,m2) - (mlP 1 + m2P2,m 1 + m2) m 1 + m 2 :r 0. (1.9)

Our inspiration for this definition comes from classical mechanics, where typi-
cally we can replace the physical effects of two masses by a single mass that is the
sum of the two masses located at their center of mass. Since in this framework
masses can be negative, we also need to worry about what happens when
m 1 + m 2 = 0. In this case we define the sum to be the vector from P1 to P2 scaled by

the mass at P2. That is,

(-mP1,-m) + (mP2,m) - (m(P2 - P1), 0) . (1.10)

Notice that with these definitions addition of mass-points is associative and
commutative. Moreover, scalar multiplication distributes through addition, since

c((mlPl,m 1) + (m2P2,m2)} - c(mlP 1 + m2P2,m 1 + m2)

= (CmlP 1 + cm2P2,C(ml + m2))

= c(mlPl,m 1) + c(m2P2,m 2) .

Equations (1.8), (1.9), and (1.10) define a complete arithmetic for mass-points.
But what about vectors? Addition and scalar multiplication are already defined for
vectors, so we can just carry over these definitions in the obvious manner. That is,
we set

(v , O) + (w , O) - (v + w , O) (1.11)

c (v , O) - (c v , O) .

To complete our algebra of mass-points and vectors, we need to define how to
add a vector to a mass-point. Again we take our inspiration from mechanics. Think
of the vectors as forces acting on the masses. The forces try to pull the masses in the
directions of the force vectors. But mass has inertia. The more mass there is at a
point, the harder it is to move the mass. A convenient convention is that a force v
relocates a mass-point (mP, m) to the new position P + v / m . Thus, the larger the
mass m, the smaller the net effect of the force v. Therefore we define

1.1 Ambient Spaces 13

(raP, m) + (v, O) - (rap + v,m) . (1.12)

Notice that if a unit mass is located at P, then the vector v moves the mass-point (P, 1)
to the location P + v, which is the location of the standard sum of a point and a vector
in affine space. Multiplication distributes through addition for mass-points and vec-
tors, since

c{(mP, m) + (v, 0)} - c(mP + v,m)

= (croP + cv, cm)

= c(mP, m) + c(v,O) .

Thus we have a complete algebra for mass-points and vectors that extends the
limited algebra of points and vectors in affine space. Indeed we see now that the
algebra of points and vectors in affine space is the algebra of mass-points and vec-
tors, where the point masses are restricted to unit masses.

We have a complete algebra of mass-points and vectors because addition, sub-
traction, and scalar multiplication are well-defined operations that satisfy the usual
rules of arithmetic. But whenever these operations satisfy the standard rules, we
have a vector space. So the mass-points and vectors form a vector space that incor-
porates both the original affine space and its associated vector space. This new vec-
tor space is called Grassmann space. The dimension of the Grassmann space of
mass-points and vectors is one higher than the dimension of the original affine space.
This new dimension arises from the masses, which at any location form a one-
dimensional subspace.

Adopting the convention of writing mass-points in the form (raP, m) makes addi-
tion and scalar multiplication quite natural computationally; it also allows us to
avoid, or at least to postpone, division by storing denominators as masses. Equations
(1.8)-(1.12) provide as well a purely formal algebraic model for Grassmann space.
This algebraic model also guarantees that Grassmann space is a vector space, since
the arithmetic operations are performed independently on the coordinates pairs.

There is also a simple geometric model for Grassmann space. Affine space actu-
ally consists of two disjoint components represented by the points (mass = 1) and the
vectors (mass = 0)--see Figure 1.5. We can embed these two distinct models of n-
dimensional space as two isolated components inside a vector space of dimension
n + 1. This higher-dimensional vector space is the geometric model of Grassmann
space.

In this geometric model for Grassmann space, the notation (mP, m), m r O, repre-
sents the point on the line L(t)= (1 - t) (0 , 0) + t (P ,1)~ the line from the zero vector
through the affine point Pmlocated at the parameter t - m. Equivalently, (mP, m) is
equal to the vector (arrow) from the zero vector (0,0) to the affine point (P, 1) scaled
by the mass m. Thus, geometrically, Grassmann space is the vector space consisting
of all affine vectors, together with the points on the lines connecting the zero vector
with the points in affine space (see Figure 1.5). In this purely geometric model, mass
encodes distance rather than an inertial property of matter.

We can tie together our physical, algebraic, and geometric models of Grassmann
space within a single diagram (see Figure 1.6). In the physical model, we start with

1 4 C H A P T E R 1 Introduction: Foundations

(mP, m)
. i ,

Affine points (m ~ , l / / = 1

Affine vectors m = 0
(0,0) = zero vector

Figure 1.5 A geometric model for Grassmann space as the space of all affine vectors, together with the
points on the lines connecting the zero vector with the points in affine space.

(mlPl ,ml)+ (m2P2,m2)= (mlP1 + m2P2,ml+ m 2) - (m] +m2)J ml-P-1 (+ m2P2,1j ~ J
k ml +m2

(mlPl,ml) - ml(Pl,1)

Affine points
(P1,1) / ~ - ~ (P2,1)

/

Affine vectors
(0,0) = zero vector

Figure 1.6 Two characterizations for addition in Grassmann space: physical and geometric. Addition is
represented by adding mass-points (dots of different sizes)in an affine space or by adding
vectors (arrows of different lengths)in a higher-dimensional vector space.

two points P1,P2 in affine space with which we associate the scalar masses m 1,m 2.
As mass-points, their sum is given by the point (mlP 1 + m2P2)/(m 1 + m2) in affine
space associated with the mass m I + m 2. In this physical model, mass-points (raP, m)
are represented by dots of different sizes in affine space (see Figure 1.4). Alterna-

1.1 Ambient Spaces 1 5

tively, in the geometric model, we encode a mass-point (mP, m) by the arrow from the
zero vector (0,0) to the affine point (P, 1) scaled by the mass m; that is,

(mP, m) - m((P,1)- (0,0)) - m(P,1).

Now the sum (mlPl,ml)+(mzP2,m2) is given by adding the corresponding arrows
ml(Pl,1) + mz(P2,1) using the standard triangle rule for vector addition (see Figure
1.1).

To demonstrate that our physical and geometric models are consistent, we need
to show that

ml(Pl,1) + m2 (P2,1) - (m 1 + m2)((mlP 1 + mzP2)/(m 1 + m2),l).

We proceed in the following manner. Let P be the projection into the affine space
m = 1 along the line to the origin of the sum ml(Pl,1)+ m2(P2,1). Then there are con-
stants a , ~ such that

ml (PI,1) + m2 (P2,1)- ~(P, 1)

(1 - a) (P l , 1) + a (P 2 , 1) - (P , 1) .

The first equation holds from the definition of P as a projection, and the second
equation must hold because (P, 1) lies on the line in affine space joining the points
(PI,1) and (P2,13. Multiplying the second equation by ~ and subtracting it from the
first equation yields

(m 1 - (1 - a)2)(Pl,1) + (m 2 - a2)(P2,1) = 0 .

Since P1 and P2 are distinct points in affine space, the vectors (PI,1) and (P2,1) in
Grassmann space are linearly independent, so

(1 - a) 2 , - m 1

a ~ = m 2 .

Adding these equations and solving first for 2 and then for a yields

- m 1 + m 2

a - m 2 /(m l + m2) .

It follows that the sum of the arrows generates the vector (P,1) =
((mlP 1 + mzP2)/(m 1 + m2),l) scaled by the mass 2 - m 1 + m 2. Thus the projection of
the arrow ml(Pl,1)+ m2(P2,1) back into affine space gives the point in affine space
corresponding to the addition of the original mass-points (center of mass), and the
scale factor is the sum of the original masses. So in the geometric model of Grass-
mann space, affine points encode direction, mass encodes scale, and these encodings
are consistent with the standard addition of mass-points from classical mechanics.

One final observation about our notation for mass-points in Grassmann space:
consider what happens in the limit to a mass-point (mP, m) as m --> 0. From the geo-
metric interpretation of Grassmann space (Figures 1.5 and 1.6), we observe that

16 C H A P T E R 1 In t roduc t ion: Founda t ions

l i m m ~ o (m P , m) = (0,0) = zero vector. This limit is the same for all affine points P, so
in Grassmann space the zero vector is arbitrarily close to every point When the mass
is small. This phenomenon occurs because the mass-points (mP, m), P fixed, m g: 0,
all lie on the line through (0,0) and (P, 1), rather than on the vertical line over (P, 1).
Thus, from the geometric perspective as well as from the algebraic point of view, the
natural representation for mass-points in Grassmann space is indeed (mP, m) and not
(P,m) (see also Section 1.2.2 on Grassmann coordinates).

Exercises

1. (Ceva's Theorem) Let P1,P2,P3 be the vertices of a triangle, and let M i be a
point on side PjPk, i ~ j , k . Define

IPj-Mil i - 1,2,3.
ri - Iek - Mi[

Prove that the lines P1M1, P2M2, P3M3 are concurrent if and only if rlr2 r3 = 1.

(Hint: Place appropriate masses at the vertices of the triangle.)

2. The space of all monic polynomials of degree n ~ a l l polynomials of degree
n with leading coefficient l ~ i s an affine space.

a. What is the associated Grassmann space?

b. Where are the masses stored?

c. What are the elements of this Grassmann space with zero mass?

d. Describe addition and scalar multiplication on this space.

3. Show that a Grassmann space can always be embedded in an affine space of
the same dimension. (Hint: See Exercise 14 of Section 1.1.2.)

4. Consider a system of homogenized linear equations:

allX 1 + al2x 2 + ... + alnX n = blw

amlxl + am2X 2 + ... + amnX n = bmw .

We can rewrite these equations in matrix notation as AX = B w .

a. Show that the solutions (X , w) of this homogenized system of linear
equations form a Grassmann space.

b. What are the points with unit mass?

c. What are the vectors?

5. Define the product of two elements of Grassmann space by setting

(m l P l , m l) ~ = mlm2(P2 - P1) mlm2 :/: 0

(raP, m) �9 (v, O) = mv m :/: 0

(v, O) �9 (mP, m) = - m v m r 0

(v, O) �9 (w, O) = 0 .

11 4

1.1 Ambient Spaces 1 7

Show that this product

a. is not associative:

{(mlPl,ml) o (m2P2,m2)} o (m3P3,m3) :/: (mlPl,ml) o {(m2P2,mz) o (m3P3,m3)}.

b. is anti-commutative:

(mlP1, m 1)~ (m2P2,m 2) = - (m2P2 ,m 2)o (mlP1, m 1).

c. commutes with scalar multiplication:

c{(mlPl ,ml) ~ (m2P2,m2)} - {c(mlPl ,ml)} " (m2P2,m2) - (mlPl,ml) ~ {c(m2P2,m2)}.

d. distributes through addition:

(wQ, w) o {(mlP1, m 1) + (m2P2,m2) } = (wQ, w) o (mlP1, m 1) + (wQ, w) . (m2P2,m2)"

Projective Spaces and Points at Infinity

Affine space is flawed in two ways: both its algebra and its geometry are incomplete.
Grassmann space completes the algebra; projective space completes the geometry.

The geometry of affine space is incomplete because there are no points at infin-
ity. Typically two lines in the affine plane intersect at a point. But where do two par-
allel lines intersect? We need points at infinity to complete the geometry of the affine
plane.

Points at infinity are needed as well to complete the definition of perspective
projection. Given an eye point E and an affine plane S not containing E, we can map
points P in affine 3-space onto S by perspective projection~that is, by taking the
intersection of the line EP with the plane S (see Figure 1.7). For most points P, we
get a well-defined intersection point, but what does perspective projection do to the
points P' on the plane through E parallel to S? Where do lines parallel to the plane S
intersect S? Again we need points at infinity to complete our geometry.

E(eye) P"

Figure 1.7 Perspective projection from the eye point E to the affine plane S The points P,Q,R have well-
defined images P*,Q*,R* in the plane S But what is the image of the point P'?

[v, 0] = [cv, 0] c ~ 0,

C H A P T E R 1 In t roduc t ion : F o u n d a t i o n s

Projective space is, by definition, the collection of the points in affine space
together with the points at infinity. The points at infinity are constructed by asserting
that in each direction there lies a unique point at infinity (see Figure 1.8). By conven-
tion, directions that are 180 ~ apart define the same point at infinity; otherwise paral-
lel lines would intersect at two points instead of just one.

A point at infinity can be represented by a direction, and a direction can be
described by a vector. So we shall use vectors to represent points at infinity. But
there is a slight problem with this approach because the vectors incorporate length as
well as direction. That is, the point at infinity represented by the vector v is the same
as the point at infinity represented by the vector cv, c ~ O. To overcome this difficulty,
we shall simply identify v and cv as the same point at infinity; that is, we shall ignore
nonzero scalar multiples. Notice too that the zero vector does not represent a point at
infinity, since the zero vector does not correspond to a fixed direction.

We can adapt the notation of mass-points to represent points in projective space.
For vectors we ignore length; for points we ignore mass. That is, we simply identify
two mass-points with different masses if they are located at the same affine point.
Thus in projective space,

[P,1] = [cP, c] c ~a 0 �9

Points at infinity

Points at infinity

18

Points at infinity

Figure 1.8 Projective space consists of affine points and points at infinity. Intuitively, the vectors are
pasted onto the affine points as points at infinity, so projective space consists of a single
connected component.

1.1 Ambient Spaces 1 9

The pairs [cP, c], where c ~: 0, represent affine points; the pairs [v,0] represent points
at infinity. Now every pair IX, w] ~ [0,0] has a well-defined meaning in projective
space, either as a point in affine space or as a point at infinity. The parameter w is
called a homogeneous coordinate; these are the standard homogeneous coordinates
used in computer graphics in order to represent projective transformations such as
perspective projection by 4 • 4 matrices. Points at infinity have homogeneous coor-
dinate zero, reminding us that they are often introduced to account for division by
zero.

The homogeneous coordinates w in this representation for projective space are
sometimes confounded with the masses m of Grassmann space, and the points [X,w]
of projective space are sometimes confused with the mass-points (X,w) of Grass-
mann space. These identifications are not correct. In Grassmann space
(mP, m) ~ (P,1) because even though these mass-points are located at the same affine
point P they have different masses. On the other hand, in projective space there is no
distinction whatsoever between the affine points [P,1] and [cP, c]; mass is not a con-
stituent of projective space. Notice too that (0,0) is a well-defined object in Grass-
mann space, namely, the zero vector, but the pair [0,0] is meaningless in projective
space.

Nevertheless, Grassmann space and projective space are intimately related. The
points in projective space are made up of equivalence classes of points in Grass-
mann space. Indeed each line through the origin in Grassmann space corresponds to
a distinct point in projective space (see Figure 1.5). But the topology of Grassmann
space and the topology of projective space are quite different. Grassmann space con-
nects the two disjoint components (points and vectors) of affine space by embedding
them in a vector space of one higher dimension. Projective space connects these two
components by pasting the vectors onto the affine points at infinity. As a conse-
quence there are no longer any affine vectors in projective space, so there are no
notions of direction or length in projective space. Also, there is no concept of orien-
tation in projective space, since v and-v are identified.

The algebra of projective space is also quite different from the algebra of Grass-
mann space. We have already seen that in projective space scalar multiplication has
no effect. What about addition? We cannot simply define

[ClPl,Cl] + [c2P2,c2] = [ClP 1 + c2P2,c 1 + c2] (1.13)

as we did for mass-points in Grassmann space because the projective point on the
right-hand side of (1.13) would depend on our choices for the representatives of the
projective points [ClPl,C 1] and [c2P2,c2]. Indeed evidently

[P1,1] + [P2,1] = [P1 + P2, 2] g: [ClP1 + c2P2,Cl + c2] = [ClPI,Cl] + [c2P, c2]"

What works instead is to define the sum of [clPI,C 1] and [c2P2,c 2] to be the projec-
tive line joining these two projective points. Then the fight-hand side of Equation
(1.13) represents one point on this line, the affine point (ClP 1 +czP2)/(q + c2). By
taking all the representatives of [ClPl,Cl] and [c2P2,c2] and adding their coordi-
nates, we can generate all the points along the projective line joining these two pro-
jective points. This convention works equally well for two affine points, for one

20 C H A P T E R 1 Introduction: Foundations

affine point and one point at infinity, or for two points at infinity. Thus we add two
projective points by taking the projective line determined by these two points; we
sum three projective points by taking the projective plane determined by the three
points; and so on for more and more points. With this definition, addition of projec-
tive points is associative and commutative. But projective space is not a vector space
because the sum of two projective points is not a projective point. Moreover, there is
no nontrivial notion of scalar multiplication in projective space.

Thus the Grassmann space of mass-points and vectors is a vector space, but the
projective space of affine points and points at infinity is not a vector space. The vec-
tor space algebra of Grassmann space is much more powerful than the limited alge-
bra of projective space. Consequently, to construct free-form curves and surfaces
algebraically, we shall prefer to work primarily in Grassmann space. Only when we
need to complete our geometry with points at infinity shall we appeal to projective
space.

Exercises

1. Consider ordered pairs of integers (p,q). We shall say that two such pairs
(p,q) and (r,s) are equivalent if (mp,mq) = (nr, ns) for some nonzero integers
m,n. Denote by [p,q] the equivalence class of the pair (p,q). We can identify
an ordered pair (p,q) with the fraction p/q and the equivalence class [p,q]
with the rational number p/q (or with oo if q = 0).

a. Show that the operations of addition, subtraction, and scalar multiplica-
tion defined by

p+r_p+r_

q s q+s

nxP=P__+...+P__- nP
q q q nq

Y

n

are well defined on fractions (ordered pairs), but not on rational numbers
(equivalence classes of ordered pairs).

b. What is the identity for this addition operation?

c. Which set is more like a projective space: the set of fractions or the set of
rational numbers? Which set is more like a Grassmann space?

2. The projective plane is not oriented because the vectors v and-v are identi-
fied with the same point at infinity. We can, however, define an oriented
version of the projective plane by setting

[cv, 0] = [dv, 0] cd > 0,

[cP, c] = [dP, d] cd > O.

a. Explain the geometric relationship between Grassmann space and the
oriented projective plane.

1.1 Ambient Spaces 21

b. How should Figure 1.8 be changed to model the oriented projective
plane?

3. Show that by choosing different representatives for the points [ClPl,c l] and
[c2P2,c2] Equation (1.13) can be used to generate all the points on the pro-

jective line joining [ClPI,Cl] and [c2P2,c2].
4. What is the analogue to Equation (1.13) for generating points along the line

joining two points at infinity? Show that by choosing different representa-
tives for the same two points at infinity this formula generates all the points
along the projective line joining these two projective points.

1.1.5 Mappings between Ambient Spaces

We have constructed four kinds of ambient spaces: vector spaces, affine spaces,
Grassmann spaces, and projective spaces. These four spaces are intimately related:
the affine points live inside of Grassmann space as the points with unit mass and the
vectors reside there as well as objects with zero mass, while in projective space all
mass-points located at the same affine point but with different mass are identified to
the same projective point and vectors are replaced by points at infinity. These obser-
vations lead to the following four natural maps between these ambient spaces:

affine space --4 Grassmann space affine space --4 project ive space

P --4 (P,1) P --4 [P,1]

v ~ (v, 0) v ~ [v, 0]

Grassmann space --9 affine space Grassmann space ~ project ive space

mP
(mP, m) --4 ~ = P

(v, O) --4 v

m

(mP, m) ~ [raP, m] - [P,1]

(v,0) ~ [v,0] - ,0

Notice that the projections from Grassmann space and affine space onto projective
space are well defined everywhere, except at the zero vector.

The coordinates (P, 1) for affine points and (v,0) for affine vectors introduced by
the embedding of affine space into Grassmann space are called affine coordinates
and are familiar both in computer graphics and in robotics, where the additional
coordinate is used to distinguish between points and vectors in affine space (see
Section 1.2.2). The embedding from affine space to Grassmann space via affine
coordinates captures the algebraic structure of affine space by preserving affine com-
binations. Indeed, if ~,kCk = 0,1, then

n n

ZCkP k ~ ~,Ck(Pk,1).
k=0 k=0

The natural projection from Grassmann space onto affine space is the left-sided
inverse of the natural embedding of affine space into Grassmann space. Notice,

22 c H A P T E R 1 Introduction: Foundations

however, that this projection is not a continuous map because Grassmann space is
connected whereas the space of affine points and affine vectors consists of two dis-
joint components.

The projections from affine space and Grassmann space onto projective space
are continuous maps. But these projections do not preserve the algebraic structures
on their domain spaces because, as we have seen in Section 1.1.4, projective space is
not a vector space--addition and scalar multiplication are not well-defined opera-
tions in projective space.

Exercises

1. Show that the following diagram commutes:

Grassmann space
Projection

..-~ Affine space

Projection

Projective space

Conclude that the projection from Grassmann space onto projective space
factors through the projection from Grassmann space onto affine space,
even though the projection onto projective space is continuous while the
projection onto affine space is discontinuous.

2. Show that the affine points Po Pn form an affine basis on an affine space if
and only if the mass-points (P0,1) (Pn, 1) form a vector space basis for the
associated Grassmann space.

3. A transformation A on Grassmann space is said to be mass preserving if the
mass of a transformed mass-point is the same as the mass of the correspond-
ing untransformed mass-point. Let A be an affine transformation on affine
space. Define a transformation A* on Grassmann space by setting:
A* (mP, m) = (mA(P),m) and A* (v,0) = (A(v),O).

a. Show that A* is a mass-preserving linear transformation on Grassmann
space.

Conversely, let A* be a mass-preserving linear transformation on Grass-
mann space. Define a transformation A on affine space by setting A(P) = A*
(P,1).

b. Show that A is an affine transformation on affine space.

c. Show that the following diagram commutes:

1.1 Ambient Spaces 23

Affine space

Embedding

Grassmann space

A

A*

"- Affine space

Embedding

Grass ann space

d. Conclude that the affine transformations on affine space are equivalent to
the mass-preserving linear transformation on Grassmann space.

4. Let L be a linear transformation on Grassmann space.

a. Show that if L is nonsingular, then L induces a unique, well-defined
transformation L* on projective space so that the following diagram
commutes:

Grassmann space

Projection

Projective space

L

L*

---"- Grassmann space

Projection

Projective space

b. Show that if L is singular, then L still induces a unique, well-defined
transformation

L*: Projective s p a c e - [ker(L)] ~ Projective space,

where ker(L) - {P]L(P) = 0}, so that the following diagram commutes:

Grassmann space - ker(L)

Projection

Projective s p a c e - [ker(L)]
L*

---"- Grassmann space

Projection

"--..- Projective space

A transformation L* on projective space induced in this fashion by a lin-
ear transformation L on Grassmann space is called a projective transfor-
mation.

5. Let L" Grassmann space ~ R be a linear map between vector spaces. Then
H = {PIL(P) - 0} is called the hyperplane defined by L, and H* = {[P]]
L(P) = 0} is called the projective hyperplane induced by L. Fix a point E in
Grassmann space such that E is not an element of H, and define the map

Perps: Grassmann space ~ Hyperplane H

24 C H A P T E R 1 Introduction: Foundations

1.1.6

by setting

Persp(P) = L(P)E - L(E)P.

Show that

a. Persp(P) lies on the hyperplane H.

b. Persp(P) = 0 if and only if P = cE.

c. Persp induces a unique projective transformation

Persp*: Projective space- [E] ~ Projective hyperplane H*

such that Persp*[P] = [Persp(P)]. (Hint: See Exercise 4.)

d. if P and E are points in affine space, then

i. Persp*[P] lies on the intersection of the line [EP] and the hyperplane
H*;

ii. Persp*[P] is a point at infinity in projective space if and only if the
vector P - E lies in the hyperplane H.

In three dimensions, the map Persp* is the standard perspective projection
from an eye point [E} onto a projective plane H*.

Polynomial and Rational Curves and Surfaces

For the study of polynomial curves and surfaces, affine spaces usually suffice. Typi-
cally we define a polynomial curve P(t) by choosing a sequence of affine control
points PO Pn and a collection of polynomial blending functions Bo(t) Bn(t),
and setting P(t) to be the set of points in affine space determined by the equation

n

P (t) - ~,Bk(t)P k �9 (1.14)
k=O

Similarly, we define a polynomial surface by choosing an array of affine control
points {P/j] and a collection of bivariate polynomial blending functions {Bij(s,t)},
and setting P(s,t) to be the set of points in affine space determined by the equation

P(s,t) = Zij Bij(s,t)Pij . (1.15)

For this to work in affine space, the blending functions {Bk(t) for curves and
{Bij(s,t) } for surfaces must form a partition of unity; that is, we must have

(1.16) n

~,Bk(t) ~ 1
k=0

~ijBij(s , t) - 1 .

We shall see in subsequent chapters that Lagrange polynomials, as well as B6zier
and B-spline curves and surfaces, are defined in precisely this fashion.

Curves and surfaces generated by Equations (1.14) and (1.15) are said to be
translation invariant. Translation invariance means that to translate the curve or sur-

1.1 Ambient Spaces 2 5

face by a vector v, we need only translate each control point by v. This result follows
from the fact that the blending functions form a partition of unity, since for such
blending functions

n n n

P(t) + v = ~,Bk(t)P k + EBk(t)v - ~,Bk(t)(P k + v)
k=O k=O k=O

f (s , t) + v - EijBij(s,t)Pij + EijBij(s,t)v - E, ijBij(s,t)(Pij + v) .

More generally, these curves and surfaces are affine invariant. That is, if A is any
affine transformation, then since A preserves affine combinations

n

A (P (t)) - EBk(t)A(Pk)
k=O

A (P (s , t)) - EijBij(s,t)A(Pij) .

Thus to perform an affine transformation such as rotation or scaling on such a curve
or surface, we need only apply the affine transformation to each control point.

The Grassmann space of mass-points is used for the construction of rational
curves and surfaces. To define a rational curve R(t), we start with a sequence of
mass-points and vectors (moPo,mo) (mnPn,mn). (If m k - 0, we replace the mass-
point (mkPk,m k) by a vector (v k, 0), and we do not insist that rnkP k - 0 .) Now given
an arbitrary collection of polynomial blending functions Bo(t) Bn(t), we define
R(t) to be the set of points in affine space determined by the curve P(t) in Grassmann
space given by the equation

/ n /
P(t)= ~ B k (t) (m k P k , m k) - ~ Bk(t)mkP k, Y~Bk(t)m k �9

k=0 k=0 k-0
(1.17)

To project P(t) into affine space, we divide by the mass to generate the curve

n

~.,mjPjBj(t)
R (t) - j=O _ ~ ? j B j (t) PJ

EmkBk(t) j=O ~,mkBk(t)
k=0 k=0

(1.18)

which is indeed a rational curve in affine space. Rational surfaces are defined in an
analogous fashion. Observe that to define P(t), we need to work in a vector space so
that we can perform both addition and scalar multiplication. Thus P(t) must be con-
structed in Grassmann space, not in projective space. Notice too that changing the
mass of one of the mass-points (mkP k,m k) alters both P(t) and R(t), so again the con-
trol points we are dealing with here are mass-points, not points in projective space.

Projective space comes into the picture when the denominator of R(t) vanishesm
that is, when

17

Z, m k B k (t o) - O
k=O

26 C H A P T E R 1 Introduction: Foundations

for some parameter t - t 0. Division by zero is not well defined in affine space, and
therefore in affine space the rational curve R(t) would have a discontinuity. More-
over, the natural projection from Grassmann space to affine space would send

/ n
(to)mkPk,O ~]~Bk(tO)mkP k , k=0

which is a vector, not a point, in affine space. But curves and surfaces are collections
of points, not points and vectors. To avoid these problems, we typically map P(t)
from Grassmann space, not to affine space, but to projective space using the canoni-
cal projection. That is, we simply set

I n 1 I n n 1 R(t) - ~_~ Bk(t)(mkPk,m k) = ~ Bk(t)mkP k, ~ Bk(t)m k . (1.19)
k =0 k =0 k-0

Notice that the affine points on this curve are the same as in Equation (1.18), but now
R(to) is a point at infinity in projective space rather than a vector in affine space.
Moreover, the curve R(t) is a continuous curve in projective space. Thus for rational
curves, the control points lie in Grassmann space, but the curves reside in projective
space!

Exercises

1. Let P(t) be a curve in affine space.

a. Using the definition of P'(t) as the limit of a difference quotient, show
that P'(t) is a vector fieldmthat is, a one-parameter family of vectors--in
affine space. Interpret this vector field geometrically.

b. Suppose that P(t) = ~,k Bk (t)Pk is a polynomial curve, where ZkBk(t) = 1.
Without appealing to part (a), show that the derivative P'(t) = ZkBk'(t)Pk
is a vector field.

2. Show that for curves in Grassmann space differentiation and projection do
not commute. That is, show that the following diagram does not commute"

Grassmann space

Projection

Projective space

Differentiation

Differentiation

~-- Grassmann space

Projection

~-- Projective space

3. Recall that when we project a mass-point from Grassmann space to projec-
tive space, the result is a point in affine space---only the vectors project to
points at infinity.

1.2 Coordinates 27

a. Show that for mass-points translation and projection to affine space do
not commute. That is, for mass-points the following diagram does not
commute:

Grassmann space

Projection

Affine space

Translation

Translation

---"- Grassmann space

Projection

Affi space

b. What operation does translation of mass-points in Grassmann space cor-
respond to in affine space?

c. Consider a polynomial curve in Grassmann space that projects to a ratio-
nal curve in affine space. Show that we generate two different curves in
affine space, depending on whether we apply translation before or after
projection.

4. Show that rational curves are invariant under projective transformations (see
Exercise 4 of Section 1.1.5). That is, show that if L* is a projective transfor-
mation induced by the transformation L on Grassmann space and if

E] R(t)= 2Bk(t) (mkPk,m k)
k=O

is a rational curve in projective space, then

= (t)L(mkPk,mk) �9

1.2 Coordinates

In most of this book, we shall adopt a coordinate-free approach to geometry. We
have already illustrated this technique in the preceding section in our discussion of
ambient spaces. This coordinate-free style works well for the range space where our
curves and surfaces reside, but we are going to study parametric curves and surfaces,
so we need as well a way to represent the parametric domain. In Section 1.1.6 we
implicitly resorted to rectangular coordinates for our parameters. For certain types of
surfaces, however, in particular for triangular patches, rectangular coordinates are
not the most convenient way to represent the parameter domain. Here we shall intro-
duce another kind of coordinates, called barycentric coordinates, which are more
suitable for representing the domain of a triangular surface patch.

We begin with a brief review of rectangular coordinates and go on to provide a
short sketch of affine, Grassmann, and homogeneous coordinates--that is, rectangu-
lar coordinates adapted to affine, Grassmann, and projective spaces. We then present

28 c H A P T E R 1 In t roduc t ion: F o u n d a t i o n s

a more thorough exposition of barycentric coordinates for affine spaces. You can
skip this section for now if you like and return to it later when we study triangular
patches in subsequent chapters.

1.2.1 Rectangular Coordinates

In Euclidian space it is often convenient to introduce rectangular (Cartesian) coordi-
nates. This can be done by selecting an orthonormal basis v 1 v n - - a basis whose
vectors are mutually orthogonal unit vectorsmand representing any vector v by a
unique linear combination of these basis vectors. If

f/

v = ~, CkV k ,
k = l

then we say that (c 1 Cn) are the rec tangu lar coord ina tes of v. When the basis is
fixed, often we abuse notation and write v = (c I Cn).

We can proceed in a similar fashion in affine space. Here we need a fixed point
O in the affine space as well as an orthonormal basis v 1 v n for the associated vec-
tor space. Now any point P in the affine space can be written uniquely as

n

P = 0 + ~,CkV k �9
k = l

Again we say that (c I Cn) are the rec tangu lar coord ina tes of P. The point O plays
the role of the origin, and the vectors v 1 v n are parallel to the coordinate axes (see
Figure 1.10(a) in Section 1.2.3). Once more when the origin and axes are fixed, we
often abuse notation and write P = (c I Cn).

1.2.2 Affine Coordinates, Grassmann Coordinates, and Homogeneous
Coordinates

Rectangular coordinates do not permit us to distinguish between points and vectors.
In an n-dimensional affine space both points and vectors are represented by n rectan-
gular coordinates. But points and vectors convey different information, and the rules
of linear algebra are different for points and for vectors. Therefore it is important for
us to differentiate somehow between coordinates that represent points and coordi-
nates that represent vectors.

The natural embedding from affine space to Grassmann space presented in Sec-
tion 1.1.5 provides a simple way to discriminate the points from the vectors. This
embedding assigns an additional mass coordinate to both points and vectors: points
are assigned a mass equal to one, vectors a mass equal to zero. Thus we write

P = (C 1 Cn,1)

V ' - (C 1 cn,O) .

1.2 Coordinates 29

These rectangular coordinates followed by a zero or a one are called affine coordi-
nates, and they are the coordinates most commonly adopted for affine space.

Grassmann space extends affine space by incorporating mass-points with arbi-
trary masses. The mass-points are combinations of affine points P and scalar masses
m. If we were to use rectangular coordinates (c 1 c n) to represent the affine point
P and one additional coordinate to represent the scalar mass m, then a mass-point
would be written in terms of coordinates as

(P , m) = (c 1 Cn,m).

But we observed in Section 1.1.3 that with this representation the rules for addition
and scalar multiplication for mass-points would not correspond to the natural rules
of addition and scalar multiplication on coordinates. To adapt our coordinates to the
algebra of mass-points, we instead represent a mass-point with the notation

(raP, m) = (mc 1 m c n , m).

We call these coordinates the Grassmann coordinates of a mass-point. Note that we
can recover the rectangular coordinates (c 1 c n) of the affine point from the Grass-
mann coordinates (m q m c n , m) of the corresponding mass-point by dividing the
first n coordinates (mc 1 mc n) by the (n + 1)st coordinate m. For points with unit
mass, Grassmann coordinates coincide with affine coordinates.

Thus the first n coordinates of a mass-point are the rectangular coordinates of
the affine point P scaled by the mass m. For vectors, however, the mass is zero, so it
would not be prudent to scale the rectangular coordinates (Cl cn) of a vector v by
its mass. Instead, the Grassmann coordinates of a vector are just its rectangular coor-
dinates followed by a zero mass, just like in affine space--that is, for vectors we
write the Grassmann coordinates as

(v,0) = (q c.,0).

Points in projective space are equivalence classes of points in Grassmann space.
Thus we can adapt Grassmann coordinates to represent points in projective space by

writing ImP, m] - [mc 1 m c n , m]

[V, 0] = [C 1 C n,O] .

These coordinates for points in projective space are called h o m o g e n e o u s coordi-
nates. Note that, unlike in Grassmann space, in projective space

[mc 1 mcn,m] = [c 1 cn,1]

[~tcl j2c~,0] = [q , . . . , c~ ,0] ,

since in projective space we are dealing with equivalence classes of points in Grass-
mann space. A point in projective space that corresponds to a point in affine space
has a nonzero final coordinate. Thus, just as in Grassmann space, we can recover
the rectangular coordinates (c 1 Cn) of an affine point from the homogeneous
coordinates [mc 1 m c n , m] ot the corresponding projective point by dividing the

1 30 C H A P T E R 1 In t roduc t ion: F o u n d a t i o n s

first n homogeneous coordinates (mc 1 mc n) by the (n + 1)st homogeneous coor-
dinate m.

Exercises

1. Let L be a linear transformation on an n-dimensional vector space with a
fixed basis v 1 v n and let v = (c 1 c n) be an arbitrary vector. Suppose
that

L (v k) = (Ckl Ckn), k = 1 n.

Show that

fL Vl I IC!l
L(v) = (c 1 Cn) " = (6' 1 Cn) �9 :

~L(vn)) \Cnl ...

Cln I
Cnn

Thus linear transformations on vectors can be computed by matrix multipli-
cation on their coordinates.

2. Let A be an affine transformation on an n-dimensional affine space. Let
v 1 v n be a fixed orthonormal basis of the associated vector space, and let
O be a fixed point in the affine space. With respect to this origin and axes,
suppose that

A (v k) = (Ckl Ckn,O), k = 1 n

A (O) = (d 1 dn,1) .

Suppose further that P is an arbitrary affine point, that v is an arbitrary
affine vector, and that, with respect to the same origin and axes

P = (P l Pn, 1)

v = (c 1 cn,O) .

Show that the affine coordinates of A (P) , A (v) are given by

A(Vl) 0 /Cl.1 "'" Cln 0

. . . ' ' i cnn i Icn A (P) = (Pl P n , 1) l A (v n) = (Pl Pn, 1)

I
A(O) ~ d 1 "" d n

A (V l)

A(v) = (c 1 cn,O)lA(vn)

~ A (O)

0 rCl.1 "'" Cln 0
/ �9 �9 ! ! " " = (e l Cn, O)

C 1 "'" Cnn

~ d 1 ... d n

1.2 Coordinates 31

1.2.3

Thus affine transformations on points and vectors can be computed by
matrix multiplication on their affine coordinates.

3. Show that in Grassmann space, linear transformations can be computed by
matrix multiplication on Grassmann coordinates. Given a fixed origin O and
axis vectors v 1 v n for the naturally embedded affine space, what are the
entries of the matrix M associated to the linear transformation T?

4. Show that in projective space, projective transformations (see Exercise 4 of
Section 1.1.5) can be computed by matrix multiplication on homogeneous
coordinates. Given a fixed origin O and axis vectors v 1 v n for the natu-
rally embedded affine space, what are the entries of the matrix M* associ-
ated to the projective transformation T*?

Barycentric Coordinates

Rectangular coordinates and affine coordinates are not always the most convenient
way to represent points in affine space. We introduced affine spaces because we plan
to work directly with points rather than vectors, so rectangular or affine coordinates
are often unnatural for our purposes. Therefore, especially when representing trian-
gular surfaces, we shall routinely replace rectangular coordinates for the domain
parameters with another type of coordinates called barycen t r ic coordinates .

Let Po Pn be an affine basis. Then any point P can be represented by a unique
affine combination of the points PO Pn. Thus we can write

/7 /7

P -]~ ~kPk where Z flk - 1.
k=0 k=0

We call (/3 o fin) the barycen t r ic coordinates of P with respect to the affine basis
Po Pn. Just like rectangular coordinates, barycentric coordinates depend on the
choice of basis: the same point P will have different barycentric coordinates with
respect to different affine bases. Notice, however, that in an affine space of n dimen-
sions each point has n+ 1 barycentric coordinates but only n rectangular coordinates,
since an affine basis has n+l elements whereas a basis for the associated vector
space has only n elements. Still, barycentric coordinates represent only n degrees of
freedom because, unlike rectangular coordinates, barycentric coordinates satisfy a
re la t ion~they sum to one.

Barycentric coordinates in affine space are related to masses in Grassmann
space. If Po Pn is an affine basis, then for any affine point P and any mass m ~ 0
there is a collection of masses m o m n such that (mP, m) is the center of mass of
the mass-points (moPo,m O) (mnPn,m n) (see Exercise 2 of Section 1.1.5); that is,

n

Z m k P k
p = k = O

n

~.,mj
j=O

1 32 C H A P T E R 1 Introduction: Foundations

The barycentric coordinates of P are given by

It is easy to check that indeed

mk
i l k= n

Z m j
j=0

/7

P = ~,~kPk.
k=0

Notice, however, that the barycentric coordinates ~k are unique, but the masses mk
are defined only up to constant multiples.

We shall most often apply barycentric coordinates in one and two dimensions,
so let us now get a feel for these new coordinates by computing explicit formulas for
them in low dimensions.

The one-dimensional case is easy. An affine basis for the affine line is given by
two distinct points T O and T 1 . To compute the barycentric coordinates (rio, 3]) of an
arbitrary point T in terms of T O and T1, we write

T=/~0T0 +/~IT1 �9

Since flo +]31 = 1,

T = (1- ill)To + tilT1 = T o + ill(T1 - To). (1.20)

Let IT 1 -To l denote the distance between T O and T 1. Then subtracting T O from
both sides of (1.20) and solving for ,61, we get

I T - T O I (1.21) t = - - .
I rl-Tb I

Similarly, we also find that

I/30 I= IT1 - T I. (1.22)
i r l - r 0 I

The signs of /30 and 13] depend upon the relative ordering of To,T1,T along the
affine line: by Equation (1.20) t31 is positive if and only if T is on the same side of
T O as T1 ; a similar analysis shows that [30 is positive if and only if T is on the same
side of T 1 as T o, Thus [30 and /31 are both positive along the line segment ToT 1 .
Moreover,

3o-1 T=To 31-0 T=To
= 0 T=T1 and =1 T = T 1 .

Equations (1.21) and (1.22) represent the barycentric coordinates of T in terms
of distances between T and the affine basis TO, T 1. We can also apply these equations
to convert from rectangular to barycentric coordinates. Let t o and t 1 be the rectan-

1.2 Coordinates 33

gular coordinates of T O and T 1 , and let t be the rectangular coordinate of T along the
affine line. Then by (1.21) and (1.22)

t31= t - t o and fl0 = t l - t .
t 1 - t 0 tl - t 0

(See Figure 1.9.) Notice that in these two equations the signs of the barycentric coor-
dinates are generated automatically from the signs of the rectangular coordinates.

Let us look now at the affine plane. Given any three noncollinear points P1, P2, P3,
we can represent any other point Q in the affine plane as an affine combination

Q = fliP1 + f12P2 + f13P3 where /J1 + f12 + f13 = 1. (1.23)

We can solve for the barycentric coordinates fll,fl2,fl3 explicitly using determi-
nants. Substituting fll = 1-/32 -]33 and rearranging the terms in (1.23), we find that

Q - P 1 =/~2(P2 - P1) + f13(P3 - P1) �9

Taking the determinant of both sides with P2 -P1 and recalling that the determinant
is multilinear and that det(v, v) - 0, we obtain

de t (Q- P1, P2 - P1) -/33 det(P3 - P1,/~ - P1).

So, solving for 13 3 , we arrive at

f13 =
de t (Q- P1,/~ - P1)

det(P3 - P1,P2 -P1)
(1.24)

Similarly, we find that

f12 =
det(Q -/~ P1 - P3) (1.25)

det(P2 -/~ P1 -/~)

fll - det(Q - P2,/~ -/~ . (1.26)

det(P1 -/~ P3 -/~)

When we want to specify that flk is the barycentric coordinate of a point Q, we
shall write ilk(Q). Notice, in particular, from Equations (1.24)-(1.26) we can con-
clude that

t o t - t o t t] - t t]

t - t o T t 1 - t T]
TO i l l - riO-

t 1 - t o t l - t o

Figure 1.9 Rectangular and barycentric coordinates along the aff ine line.

34 c H A P T E R 1 Introduction" Foundations

f ik(Pj)-O j ~: k

=1 j - k .

(1.27)

More generally, if Q is any point on the line joining Pi and Pj, then Q = Pi + t(Pj -
Pi); hence again from Equations (1.24)-(1.26) and the multilinearity of the determi-
nant function, flk (Q) = O.

Since, up to sign, determinants represent areas (see Exercise 1), barycentric
coordinates in the plane have a geometric interpretation. Equations (1.24)-(1.26)
yield

fl3(Q) - + area(AQP1P2)
area(AP1P2P 3)

fl2(Q) - + area(AQP1P3)
area(AP1P2 P 3)

fll (Q) - +- area(AQP 2 P3)
area(AP1P2P 3)

where the sign of fli(Q) is positive if Q lies inside AP1P2P 3 and negative when Q
crosses the line PjPk, j,k r i. These area formulas are illustrated in Figure 1.10(b).

v2

Q(s,t)

Po �9 s ' -~ vl

(a) Rectangular coordinates

Pl

C 3 (s, t) t) = o

P2 ~ fll " P3
L l (S,t) = 0

(b) Barycentric coordinates

Figure 1.10 Rectangular and barycentric coordinates in the affine plane. Rectangular coordinates are
represented by signed ratios of lengths; barycentric coordinates, by signed ratios of areas.
The rectangular coordinate of Q relative to the axis v k is given by the projection of Q on the
v k axis (divided by the unit length). The barycentric coordinate of Q relative to the point Pk is
represented by the area of the triangle opposite to Pk divided by the area of AP 1P2P3 . Since Q
splits AP1P2P 3 into three subtriangles, it follows immediately from this normalization that the
barycentric coordinates of Q sum to one. The barycentric coordinate of Q relative to Pk can
also be represented by the value at Q of the linear expression Lk(S,t) for the line PiPj when
properly normalized.

1.2 Coordinates 35

Just as on the affine line, Equations (1.24)-(1.26) can be used to convert from
rectangular coordinates to barycentric coordinates in the affine plane. By writing
P1,P2,P3, Q in terms of rectangular coordinates and expanding the determinants on
the right-hand side of these equations, it is easy to see that the barycentric coordi-
nates fll(Q),fl2(Q),fl3(Q) are linear functions in the rectangular coordinates s,t of Q.
This observation leads to another interesting way to generate barycentric coordi-
nates, which we will have occasion to use in subsequent chapters.

Consider the lines joining the points P1,Pz,P3. Let lk(S,t) = 0 denote the equa-
tion in rectangular coordinates of the line in the st-plane determined by Pi and Pj,
i, j ~: k. We are going to show that the barycentric coordinates relative to the affine
basis P1,P2,P3 are given by the functions lk(s,t) when properly normalized.

First observe that 1 k and flk agree on tlae lane determined by Pi and Pj, i, j , k.
In particular, by construction, lk(Pa) = 0, and by Equation (1.27), flk(Pa) = O, a r k,
so we are off to a good start. However, we still need to be sure that lk(Pk) = flk(Pk). In
fact, this need not be the case. In rectangular coordinates

l k (s,t) = aks + bkt + c k

for some constant coefficients ak,bk,c k, but the coefficients ak,bk,c k are uniquely
determined only up to constant multiples because multiplying lk(S,t) by a constant
does not alter the line lk(s , t)= 0. Thus, without some normalization, we cannot
know the value of lk(s,t) off the line. Let (sk,tk) be the rectangular coordinates of Pk"
Since the points P1,P2,P3 form an affine basis, the point Pk cannot lie on the line lk;
hence lk(Sk,t k) ~ O. Therefore we can normalize the coetticients ak,bk,Ck by setting

/~(s,t) = lk (s , t)

After this normalization, we can be sure by Equation (1.27) that L k (Pk) = flk (Pk) = 1.
Since L k and flk are both linear functions of the rectangular coordinates s,t and since
they also agree at the points Pi,Pj, i, j ;e k, it follows that i lk(Q)= Lk(Q) for all Q,
since linear functions in the plane that agree at three noncollinear points are identical
(see part (a) of Exercise 4).

The area formula and the line formula for barycentric coordinates in the affine
plane can both be extended to higher-dimensional affine spaces. However, our focus
here is on the affine line and the affine plane because these spaces serve as the
parameter spaces for curves and surfaces. Hence we shall leave the extension of
these formulas for barycentric coordinates in higher dimensions to the exercises (see
Exercises 6 and 7). Their derivations are much the same as in the planar case.

We close this section with a theorem summarizing for future reference the main
properties we have just derived of barycentric coordinates in the affine plane.

36 C Pl A P T E P, 1 Introduction: Foundations

THEOREM
1.1

Properties o f Barycentric Coordinates in the Affine Plane

Let /31, f12, f13 be barycentric coordinates relative to an affine basis P1,P2,P3.
Then

3
1. E f l ~ = l .

k=l

2. flk > 0 in the interior of z ~ f 2 P 3 .

3. flk - 0 on the line PiP j , k ~: i, j .

4. flk(Pj) - O j ~: k

=1 j - k .

5. ill, f12, f13 are linear functions in the rectangular coordinates s,t.

Exercises

1. Let P0, P1, P2 be the vertices of a triangle. Show that the following are equiv-
alent:

a. 2 x area(AP 1 P2 1'3)

b. I P2-P1 II P3-P1 Isin0, where 0 is the angle between P2-P1 and

e 3 - e l

c.](e2 - P1) • (e3 -

d.]det(P 2 - P1,P3 - P1)

2. Let ill, f12,f13 be barycentric coordinates for the affine plane relative to the
affine basis P1,P2,P3, and let ~., yj be the barycentric coordinates for the af-
fine line PiPj relative to the points Pi ,Pj Suppose that Q is a point on the line
PiPj. Show that f l i (e) - Yi(Q) and f l j (e) = ?'j(Q).

3. Let flo,fll be barycentric coordinates for the affine line relative to the affine
basis To,T 1, and let L,L 1,L 2 be linear functions on the affine line. Show that

a. If L 1 (t) and L 2 (t) agree at two distinct values of t, then L l(t) - L 2 (t) for
all t.

b. L(T) - L(To)f lo(T)+ L(T1)fll(T) for all points T on the affine line.

4. Let ill, f12, f13 be barycentric coordinates for the affine plane relative to the
affine basis P1,P2,P3, and let L,L 1,L 2 be linear functions on the affine plane.
Show that

a. If L l(s,t) and L2(s,t) agree at three noncollinear points, then L l(S,t)
= L2(s,t) for all (s,t).

3
b. L(Q) - ~, flk(Q)L(Pk) for all points Q in the affine plane.

k=l

1.2 Coordinates 3 7

3
c. Q - Z flk (Q)Pk for all points Q in the affine plane.

k=l

5. Prove that the barycentric coordinate functions 131,132,133 are the only func-
tions satisfying the five properties listed in Theorem 1.1. (Hint: Use part (a)
of Exercise 4).

6. Let flo (Q) fin (Q) be the barycentric coordinates of Q relative to an affine

basis Po Pn.

a. Prove that

i lk(Q) - d e t (Q - Pj , Po - Pj Pn - Pj) j :I: k

det(Pk - Pj , Po - Pj Pn - Pj)

where the terms P k - P j , P j - P j are omitted from the sequences
Po - Pj Pn - Pj in m e numerator and denominator .

b. Conclude that

flk(Pj)-O j ~ k

=1 j - k .

c. Interpret the result in part (a) geometrically when n = 3.

7. Let flo (Q) fin (Q) be the barycentric coordinates of Q relative to an affine
basis Po Pn. Introduce rectangular coordinates (t 1 tnl and call a func-
tion L(Q) linear if it is linear in (t 1 tn). Prove that

a. If L 1 (P) and L 2 (P) are two linear functions that agree at the n + 1 points
Po Pn, then they agree everywhere.

b. For each k there is a linear equation Lk(P) = 0 satisfied by all the points
in the affine basis except for Pk"

c. If the function Lk(P) in part (b) is normalized so that Lk(P k) - 1, then

/~k (Q) =/~k (Q).
/7

d. If L is a linear function, then L(Q) = ~, f lk(Q)L(Pk) for all points Q in
affine n space, k=0

/7

e. Q - Z,6k (Q)Pk for all points Q in affine n space.
k=0

8. Consider the rectangle in Figure 1.11.

a. Show that the functions

fll (s,t) = (1 - s)(1 - t)

~ 2 (s , t) = (1 - s) t

/33(s,t) = s(1 - t)

~ 4 (s , t) = st

behave like barycentric coordinates for the rectangle P1P2P3P4 .

1 38 CHAPTER 1 Introduction: Foundations

In particular, show that these functions satisfy all five conditions of The-
orem 1.1, except for condition 5, which must be replaced by 5*.

ill, f12, f13, f14 are bilinear functions.

b. Give a geometric interpretation for these barycentric coordinates.

c. Generalize the results in parts (a) and (b) to arbitrary rectangles with
sides parallel to the coordinate axes.

1.3 Curve and Surface Representations

This is a book about curves and surfaces. So far, however, we have discussed mostly
ambient spaces and coordinate systems. Be patient. We still must address one more
preliminary issue before we can proceed to our main theme. We need to decide how
we shall represent curves and surfaces inside our ambient spaces.

Four types of representations for curves and surfaces are common in computer
graphics and geometric design: explicit, implicit, parametric, and procedural. Here
we shall look briefly at each of these alternatives and then settle on one particular
form to use throughout this text.

When you first studied analytic geometry, you used rectangular coordinates and
considered equations of the form y = f(x). The graphs (x, f(x)) of these functions
are curves in the plane. For example, y = 3x + 1 represents a straight line, and y = x 2
represents a parabola (see Figure 1.11). Similarly, you could generate surfaces by
considering equations of the form z = f(x,y): the equation z = 2x + 5 y - 7 represents
a plane in 3-space, and z = x 2 - y 2 represents a hyperbolic paraboloid. Expressions of
the form y = f(x) or z = f(x,y) are called explicit representations because they
express one variable explicitly in terms of the other variables.

Not all curves and surfaces can be captured readily by a single explicit expres-
sion. For example, the unit circle centered at the origin is represented implicitly by
all solutions to the equation x 2 + y2 _ 1 = 0. If we try to solve explicitly for y in terms
of x, we obtain

y = / 1 - x 2 ,

4

I I I I I I I I I I

-2 -]
I I I I I I I I I I I

1 2

Figure 1.11 Graph of the parabola given by the explicit function y = x 2.

1.3 Curve and Surface Representations 39

which represents only the upper half circle. We must use two explicit formulas

y = _+~/1- x 2

to capture the entire circle. Often it is easier just to stick with the original implicit
equation rather than to solve explicitly for one of the variables. Thus x 2 + y2_ 1 = 0
represents a circle, and x 2 + y 2 + z 2 _ 1 = 0 represents a sphere. Equations of the form
f(x, y) = 0 or f(x, y,z) = 0 are called implicit representations because they represent
the curve or surface implicitly without explicitly solving for one of the variables.

Implicit representations are more general than explicit representations. The
explicit curve y = f(x) is the same as the implicit curve y - f(x) = 0, but as we have
seen it is not always a simple matter to convert an implicit curve into a single explicit
formula. Moreover, implicit equations can be used to define closed curves and sur-
faces or curves and surfaces that self-intersect, shapes that are impossible to repre-
sent with explicit functions (see Figure 1.12).

For closed curves and surfaces, the implicit equation can also be used to distin-
guish the inside from the outside by looking at the sign of the implicit expression.
For example, for points inside the unit circle x 2 + y2 _ 1 < 0, and for points outside
the unit circle x 2 + y 2 _ 1 > 0. This ability to distinguish easily between the inside
and the outside of a closed curve or surface is often important in solid modeling
applications.

Nevertheless, implicit representations also have their drawbacks. Given an
explicit representation y = f(x), we can easily find lots of points on the curve
(x,f(x)) by selecting values for x and computing f(x). If our functions f(x) are
restricted to elementary functions like polynomials, then for each x there is a unique,

1

0.5

-1

-0.5

-1

Figure 1.12 The lemniscate of Bernoulli: (x 2 +]/2)2_ (x 2 _]/2)= O. Notice that unlike explicit functions, the
graphs of implicit equations can self-intersect.

40 C H A P T E R 1 Introduct ion'Foundations

easily computable y. Thus it is a simple matter to graph the curve y = f (x) . On the
other hand, it may not be so easy to find points on the curve f (x ,y) = 0. For many val-
ues of x there may be no y at all, or there may be several values of y, even if we
restrict our functions f (x ,y) to polynomials in x and y. Finding points on implicit sur-
faces f(x,y,z) = 0 can be even more formidable. Thus it can be difficult to render
implicitly defined curves and surfaces.

There is another standard way to represent curves and surfaces that is more gen-
eral than the explicit form and yet is still easy to render. We can express curves and
surfaces parametrically by representing each coordinate with an explicit equation in
a new set of parameters. For planar curves we set x = x(t) and y = y(t); for surfaces
in 3-space we set x = x(s, t) , y = y(s,t) , and z = z(s,t). For example, the parametric
equations

2t 1 - t 2

x(t) - 1+ t 2 y(t) - 1+ t 2

represent the unit circle centered at the origin because by simple substitution we can
readily verify that x2(t) + y2(t) - 1 - 0. Similarly, the parametric equations

2s 2t 1 - s 2 - t 2
x (s , t) - l + s 2 +t2 y(s , t)= l + s 2 + t2 z (s , t) - l + s 2 + t 2

represent a unit sphere, since x 2 (s,t) + y2 (s,t) + z 2 (s,t) - 1 - 0. Often we shall
restrict the parameter domain. Thus a parametric curve is typically the image of a
line segment; a parametric surface, the image of a region--usual ly rectangular or tri-
angularmof the plane.

The parametric representation has several advantages. Like the explicit repre-
sentation, the parametric representation is easy to render: simply evaluate the coordi-
nate functions at various values of the parameters. Like implicit equations,
parametric equations can also be used to represent closed curves and surfaces as well
as curves and surfaces that self-intersect. In addition, the parametric representation
has another advantage: it is easy to extend to higher dimensions. To illustrate: if we
want to represent a curve in 3-space, all we need do is introduce an additional equa-
tion z = z(t). Thus the parametric equations

x(t) - 2 t - 5 y(t) - 3t + 7 z(t) - 4t + 1

represent a line in 3-space. Figure 1.13 illustrates a more complicated parametric
curve in 3-space.

The parametric representation has its own idiosyncrasies. The explicit repre-
sentation of a curve is unique: the graph of y = g(x) is the same curve as the graph
of y - f (x) if and only if g(x) = f(x). Similarly, if we restrict to polynomial func-
tions, then the implicit representation f(x,y) = 0 is essentially unique. Indeed if
f(x,y) and g(x,y) are polynomials, then g(x,y) = 0 represents the same curve as f ix ,y)
- 0 over the complex numbers if and only if g(x,y) is a constant times a power of
f(x,y). However, the parametric representation of a curve is not unique. For exam-
ple, the equations

1.3 Curve and Surface Representations 41

Figure 1.13 The helix: x = cos(t), y = sin(t), z = t / 5 .

2t 1 - t 2
x(t) - 1 + t 2 y(t) - 1+ t 2

x(t) - sin(t) y(t) - cos(t)

are two very different parametric representations for the unit circle x 2 + y2 = 1.
Moreover, if we restrict our attention, as we shall in most of this text, to polynomial
or rational parametrizations, then it is known that every such parametric curve or
surface lies on an implicit polynomial curve or surface. The converse, however, is
not true. There exist implicit polynomial curves and surfaces that have no polyno-
mial or rational parametrization. Thus, the implicit polynomial form is more general
than the rational parametric form.

Nevertheless, because of their power, simplicity, and ease of use, we shall choose
to represent all the curves and surfaces in this book using parametric representations.
Moreover, our curves and surfaces will lie in an unspecified number of dimensions,
since the parametric representation works equally well in an arbitrary number of
dimensions. Note that in the one-dimensional case the parametric representation is
the same as the explicit representation, so we cover explicit representations automati-
cally as a special case. Sometimes it will be helpful to think about the special case of
explicit representations, but more often than not this can confuse the issue because
parametric curves exhibit geometric properties such as self-intersection that can never
occur in explicit representations. Planar parametric curves (x(t), y(t)) are much more
flexible than the planar graphs (t,x(t)) of explicit functions.

It remains to say what kinds of functions we shall allow in our parametric repre-
sentations. Most of the remainder of this book is about how to choose the parametric
functions in order to generate suitable curves and surfaces. Generally our functions
shall be variants of polynomials: either simple polynomials or rational functions

42 c H A P T E R 1 Introduction: Foundations

(ratios of polynomials) or piecewise polynomials (splines) or piecewise rational
functions.

Polynomials have many advantages, especially when used in conjunction with a
computer. Polynomials are easy to evaluate. Furthermore, more complicated func-
tions are generally evaluated by computing some polynomial approximation, so
nothing is really lost by restricting to polynomials in the first place. In addition, there
is a well-developed theory of polynomials in numerical analysis and approximation
theory; computer graphics and geometric modeling borrow extensively from this
theory.

We have yet to mention procedurally defined curves or surfaces. In geometric
design, offsets, blends, and fillets are often specified by procedures rather than by
formulas. In solid modeling, geometry is often constructed procedurally using Bool-
ean operations such as union, intersection, and difference. Most fractal surfaces and
space-filling curves are defined by recursive algorithms rather than with explicit for-
mulas. We shall not discuss any of these kinds of procedures in this text. Sculpting or
subdivision is another paradigm for defining curves and surfaces by exploiting recur-
sive procedures. Since certain subdivision techniques are closely related to paramet-
ric curves and surfaces, we will have a good deal more to say about these methods
later in this book.

One final point. Although we are going to resort to parametric representations,
we want to get away almost entirely from using coordinate systems and coordinate
functions. In Section 1.1 we spoke extensively about ambient spaces and coordinate-
free operations, and we want to take advantage of these notions. How then shall we
proceed?

We will write P(t) to represent a parametric curve and P(s,t) to represent a para-
metric surface. Applying the algebra of affine space or Grassmann space, we will
provide explicit formulas or recursive procedures for computing P(t) and P(s,t)
directly without resorting to coordinates in the range. We have already encountered
such formulas in Section 1.1.6, where we wrote

n

P(t) = E Bk (t)Pk
k=O

P (s , t) - ~,ijBij(s,t)Pij .

In terms of rectangular coordinates Pk - (Xk, Yk,Zk), Pij - (xij, Yij,zij), P(t) =
(x(t) ,y(t) ,z(t)) , and P (s , t) - (x(s , t) ,y(s , t) , z (s , t)) , but we shall almost never write
such explicit coordinate formulas in this text. There are several reasons for adopting
a coordinate-independent approach. First, we do not want to carry around coordi-
nates all the time; it is simpler and cleaner to deal with one equation for P rather than
with three equations for x,y,z. Also, as we stressed in Section 1.1, all our algebraic
operations are going to be coordinate free. Thus not only do we not need coordi-
nates, they would actually get in our way by obscuring the geometric meaning of our
algorithms. Coordinate techniques are for computation; coordinate-free methods are
for comprehension. It may take a little getting used to, but in the end we expect the

1.4 Summary 43

coordinate-free approach to pay off in much better geometric understanding and far
more comprehensible programming.

Exercises

1. Let P,Q,R be the vertices of an isosceles right triangle with P opposite to the
hypotenuse. Show that the parametric equation

2t 1 - t 2
P(t) - P + 1+ t 2 (Q - P) + 1+ t2 (R - P)

represents a circle centered at P.

2. Let a,b be fixed constants.

a. How is the graph of y --- f (ax + b) related to the graph of y = f(x)?

b. How is the implicit curve f (ax + b,y)= 0 related to the implicit curve
f (x , y) = 07

c. How is the parametric curve P(at + b)related to the parametric curve
P(t)?

1.4 Summary

In this chapter, we have discussed ambient spaces (vector spaces, affine spaces,
Grassmann spaces, and projective spaces), coordinate systems (rectangular, affine,
Grassmann, homogeneous, and barycentric), and curve and surface representations
(explicit, implicit, parametric, and procedural). We fixed on the parametric represen-
tation for curves and surfaces, and settled upon affine spaces for modeling such
polynomial schemes. A coordinate-free approach was adopted for the range, but
barycentric coordinates were chosen for representing the domain. Grassmann spaces
and projective spaces were studied in order to prepare the way for investigating
rational curves and surfaces.

If you have understood all the tools in this chapter, you will have a solid founda-
tion for reading the rest of this book. If not, you may want to return to this chapter from
time to time to refresh your understanding of this material. But you should not proceed
any further until you have a firm grasp at least of affine spaces and coordinate-free
methods. These techniques are assumed almost everywhere throughout the text, so you
need to be comfortable with them before you proceed to subsequent chapters where we
begin in earnest the study of free-form curves and surfaces.

C H A P T E R 2

Lagrange Interpolation
and Neville's Algorithm

Perhaps the easiest way to describe a shape is to select some points on the shape.
Given enough data points, the eye has a natural tendency to interpolate smoothly
between the data. Here we are going to study this problem mathematically. Given a
finite collection of points in affine space, we shall investigate methods for generating
polynomial curves and surfaces to go through the points. We begin with schemes for
curves and later extend these techniques to surfaces.

2.1 Linear Interpolation

Two points determine a line. Suppose we want the equation of the line P(t) passing
through the two points P and Q in affine space. Then we can write

e(t) = P + t (Q - e). (2.1)

The curve P(t) passes through P at t = 0 and Q at t = 1. Moreover, as t varies, the
points on P(t) extend in the direction along the vector from P to Q; thus, these points
lie along the line in affine space generated by P and Q. Rearranging terms, we can
rewrite (2.1) as

P(t) = (1 - t)e + tQ. (2.2)

Equation (2.2) is called linear interpolation; this equation is the foundation of all we
plan to accomplish in this chapter.

Notice that the formula for linear interpolation is given by an affine combina-
tion, so the fight-hand side of (2.2) represents a well-defined collection of points in
affine space.

One subtle issue. We saw that in (2.2) P(t) passes through P at t = 0 and through
Q at t = 1. We did not specify this requirement in the original problem. All we
wanted was a line passing through the two points P and Q; the parameters t at which
the line was to pass through these points were not mentioned. Suppose, however,

47

48 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

that we do wish to specify these parameters as well. That is, now we require a line
Pol(t) to pass through Po at t = t o and through P1 at t = q. Mimicking (2.2), we
expect to write an equation of the form

P01 (t) = (1- f (t))P 0 + f (t)P 1. (2.3)

Moreover, still emulating (2.2), we wantf(t) to be linear and to satisfy

f(to) = 0 and f (t 1) = 1.

These equations for u = f(t)represent another linear interpolation problem; this
time in the tu-plane. That is, now we need to find the line in the coordinate plane
interpolating the data (to,0) and (q,1). Of course you learned long ago, when you
first studied analytic geometry, how to solve such problems. This line is given by the
equation

f(t) -
(t - t 0) , (2.4)

(t 1 - t o)

as you can readily verify by evaluatingf(t) at t - t O and t - t 1. Substituting (2.4) into
(2.3), we obtain

- t - t o PO1 (t) - tl------~t PO + PI' (2.5)
t 1 - t O tl - t o

where we have used the identity 1 - f(t) = (t 1 -t)/(t I -to). Notice, by the way, that
the coefficients of P0 and/'1 are precisely the barycentric coordinates (see Section
1.2.3) of the point P01 (t) with respect to the points P0 and P1, so linear interpolation
is just another way of deriving barycentric coordinates along a line.

Equation (2.5) is so fundamental that we are going to represent it graphically
with a simple diagram. In Figure 2.1(a) the value at the apex of the triangle is com-
puted by multiplying the points at the base by the values along the arrows and then
adding the results. The end product is just Equation (2.5). Figure 2.1(b) represents
exactly the same computation as Figure 2.1(a). Here, however, we have removed the
normalization in the denominator to simplify the diagram. The denominator can be
retrieved by summing the numerators, since in affine space the functions multiplying
the points must sum to one. The advantage of Figure 2.1(b) is that it is much less

Po (t)
t l - t / ~x,,,. t - to

t 1 - t o / " " Q , - to

Po Pl

(a) Normalized

Po P~

(b) Unnormalized

Figure 2.1 Graphical representations of Equation (2.5).

2.2 Neville's Algorithm 4 9

cluttered than Figure 2.1(a), so in the future we shall usually draw these graphs in
this unnormalized form. You should get used to this simple diagram now because
you are going to see many more like it throughout this book.

Exercises

1. Describe the curve represented by the equation P01 (t) = (1- f (t))P 0 + f (t)P 1
when f(t) = t 2, t 3, cos(t), e t.

2. A table of sines states that sin(24 ~ = 0.40674 and sin(25 ~ = 0.42262. Use
linear interpolation to estimate sin(24.3~

3. Let fll,fl2,fl3 be barycentric coordinate functions relative to AP1P2P 3. Let Q
be an arbitrary point in AP1P2P 3 and let R k -P iP j n PkQ. Suppose that
a k (Q) is the coefficient of Pk computed by first performing linear interpola-
tion along PiPj to find R k, and then performing linear interpolation along
PkRk to find Q. Show that ilk(Q) = ak(Q), k = 1,2,3.

2.2 Neville's Algorithm

Let's try a slightly harder problem. Suppose we now have three points Po,P1,P2 in af-
fine space that we wish to interpolate at the parameters to,t 1,t 2. How shall we proceed?

We already have a way to interpolate Po,P1 at to,tl; we can join these points with
the straight line

- t - t o P01 (t) - tl------~t P0 + PI"
t 1 - t o tl - t o

Similarly, by reindexing, we can interpolate P1,P2 at tl,t 2 with the straight line

- t - t 1
P12 (t) - t 2-----~t P1 + P2 "

t 2 - t 1 t2 - t 1

The piecewise linear curve given by

P (t) - P01 (t) t ~ t 1

= P12(t) t > t 1

certainly interpolates the points P0,P1,P2 at the parameters to,tl,t 2. However, this
curve is not smooth; it has a sharp point at P1. Sharp points are potentially dangerous
and hence undesirable in objects designed for human consumption. We seek a
smooth curve that does the job.

To generate a smooth curve, apply linear interpolation to the two curves Pol(t)
and P12 (t):

- t - t o
P o 1 2 (t) - t 2 - - - ~ t p o l (t) + P 1 2 (t) .

t 2 - t o t2 - t o
(2.6)

50 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

By substitution it is easy to verify that Pol2(t) interpolates P0 and P2 at t o and t 2,
since by (2.6)

Pol2(to) = Pol(to)= Po

P012(t2) = P12(t2)= P2"

To verify that Pol2(t) also interpolates P1 at t 1, observe that P01(t) and P12(t) both
interpolate P1 at t 1. Therefore

- t 1 - t o
P01z(t l)- t2 tl P01(tl)+ PlZ(tl)

t 2 - t o t2 - t o

- t 1 - t o t2 tl P1 + P1
t 2 - t o t2 - t o

If we were to expand the fight-hand side of (2.6), we would find that P012(t) is a
quadratic polynomial in t, since Pol(t) and P12(t) are both linear in t. Thus we have
constructed a smooth curve that interpolates the given points at the specified param-
eter values (see Figure 2.2). Figure 2.3 is a graphical representation of Equation
(2.6).

What if we want to interpolate four points Po,P1,P2,P3 at parameter values
to,tl,t2,t3? We already know how to build quadratic curves to interpolate portions of
this data. We can construct P01z(t)to interpolate Po,P1,P2 at to,tl,t 2 and Plz3(t)to
interpolate P1,P2,P3 at tl,t2,t 3. Diagramming P123(t) yields Figure 2.4.

Figures 2.3 and 2.4 share the little subtriangle with vertex P12(t). Overlapping
these two figures and joining Po12(t) and P123(t) by yet another linear interpolation
step

- t - t o
P0123(t) - t3------f-tpolz(t)+ Plz3(t),

t 3 - t o t3 - t o

we arrive at Figure 2.5.

Po

Po (O
P]

P12(t)

Po12(t)

P2

Figure 2.2 The two lines Pol(t) and P12(t), and the quadratic interpolant Po12(t).

2.2 Neville's Algorithm 51

Po12(t)

POI(t) P12(t)

/ /
Po P] P2

Figure 2.3 A graphical representation of Equation (2.6). The first level is just two juxtaposed copies of
Figure 2.1, one for P01(t) and one for P12(t). The second level represents the linear interpola-
tion step joining P01(t) and P12(t). Here we have adopted our convention of leaving off the
denominators to avoid cluttering the diagram.

P123(t)

P12(O P23(0

/ /
P1 P2 P3

Figure 2.4 A graphical representation for the curve P123(t).

Now it is easy to verify directly from the figure that Po123(t) interpolates the
given data at the specified parameter values. By substitution, we see that

P0123(t0) = P012(t0)= PO

P0123(t3) = P123(t3)= P3 �9

Moreover we already know that

Po12(tk) = P123(tk)= Pk k = 1,2

and since the labels onthe arrows exiting Pol2(t) and P123(t) sum to one (remember
the normalization), it follows that

Po123(tk) = Pk k = 1,2.

1 52 CHAPTER 2 Lagrange Interpolation and Neville's Algorithm

P0123(t)

P012(t) P123(t)

t 2 - / ~ t 3 - t / ~
/ /

POI(t) P12(t) P23(t)

t l - / ~ t 2 - t / ~ t 3 - /
/ / /

PO P1 P2 /:'3

Figure 2.5 Neville's algorithm for cubic interpolation.

-4 / \ :1 2 4

-4

Figure 2.6 Figure 2.6 The cubic Lagrange polynomial for the control points Po = (-4,4), P1 = (4,-5),
P2 = (4,5), P3 = (-4,-5)(dots), interpolated at the nodes t k = k, k = 0 3.

The algorithm for computing Po123(t) represented by Figure 2.5 is called Neville's
algorithm. We shall have a lot more to say about this algorithm shortly. The curves
generated by Neville's algorithm are called Lagrange interpolating polynomials. We
illustrate an example of a Lagrange interpolating polynomial in Figure 2.6.

We could go on introducing more and more data points and constructing higher-
and higher-order curves, but by now it should be clear how to proceed. Instead, let's
summarize what we expect to be true in the following theorem.

2.2 Neville's Algorithm 53

THEOREM
2.1

Given affine points P0 Pn and distinct parameters t o t n, there is a poly-
nomial curve Po...n(t) of degree n that interpolates the given points at the
specified parameters. That is, Po...n(tk) = Pk, k = 0 n.

Proof The proof is by induction on n. We have already established this result by
construction for n = 0,1,2,3. Suppose this result is true for n - 1. Then by the
inductive hypothesis, there are polynomial curves Po.. .n_l(t) and P1.. .n(t)of
degree n - 1 that interpolate the points PO Pn-1 at the parameters
t O tn_ 1 and the points P1 Pn at the parameters t 1 t n. Define

- t - t o . (t) ~2 .7) Po...n(t) - tn-----f-t Po. . .n- l(t) + P1..n �9
t n - t o t n - t o

Then applying the same arguments we used in the quadratic and cubic
cases, you can easily verify that

Po...n(tk) = Pk k = 0 n.

Moreover since Po...n-1 (t) and P1...n(t) are polynomials of degree n - 1, it
follows from (2.7) that Po...n (t) is a polynomial of degree n.

The parameter values t o t n at which the interpolation occurs are called nodes,
and the points PO Pn that are interpolated are called control po in t s (see Figure 2.6).
In general, if we change the nodes, then the interpolating curve Po...n (t) changes
even if we leave the control points fixed (see Exercise 3).

Exercises

1. Complete the proof of Theorem 2.1 by showing that PO...n (tk) = Pk.

2. Let Po...p,m(t) denote a polynomial curve of degree p + 1 that interpolates
the points Po Pp,Pm at the parameters t o tp,t m. Prove that Po...p,m(t) can
be generated from the recurrence

- t - t p
Po...p,m(t) = tm______~t po. . .p(t) + Po. . .p_l ,m(t) .

t m - t p t m - t p

3. Give an example to show that changing the nodes alters the interpolating
curve Po...n (t) even if we leave the control points fixed.

4. Let P(t) be the Lagrange interpolating polynomial for the control points
PO Pn and nodes t o t n. Form a new Lagrange interpolating curve Q(t)
by replacing each node tk by the node rk = ark + b for some fixed con-
stants a > 0 and b. Show that changing all the nodes in this way has no affect
on the shape of the interpolating curve. In particular, using Neville's algo-
rithm, show that Q(at + b) = P(t) . What happens if we choose a < 0?

i $4 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

2.3 The Structure of Neville's Algorithm

Equation (2.7) is a recursive formula for Po...n(t). It asserts that we can compute
Po...n(t) by calculating Po...n_l(t) and P1...n(t) and then taking a specific affine
combination of the results. Continuing in this manner, we can also compute
Po...n-l(t) and P1...n(t) recursively. This recursion bottoms out at the constant func-
tions Pk(t) - Pk.

It we proceed in this manner, we arrive at an algorithm with the structure of a
binary tree as illustrated in Figure 2.7. This algorithm is very inefficient because it
requires an exponential number of procedure calls. Moreover, all the interior
nodes~that is, all the nodes not lying along the periphery of the diagram~are com-
puted twice; for example, P12 (t) is computed once during the computation of Po12 (t)
and once again during the computation of Plz3(t). Thus, implementing (2.7) recur-
sively is not a good idea.

There is a better way: apply dynamic programming. In dynamic programming,
we first compute all the constant interpolants, then all the linear interpolants, then all
the quadratic interpolants, continuing to build higher- and higher-order interpolants
as we go. In this fashion, each interpolant is computed only once. This approach
leads to an O(n 2) algorithm~there are n linear interpolants, n - 1 quadratic interpo-
lants, n - 2 cubic interpolants, and so on, so altogether there are n + (n - 1) + ... + 1
= n(n + 1)/2 = O(n 2) interpolants~rather than an exponential algorithm. It is pre-
cisely this technique that is illustrated for cubic curves in Figure 2.5.

Moreover, while the time complexity of this dynamic programming algorithm is
O(n2), the space complexity is only O(n). Indeed once we have computed the inter-
polants of order k + 1, we can discard the interpolants of order k, since they are no
longer needed to compute the higher-order interpolants. This space efficiency is
another advantage of dynamic programming.

This dynamic programming approach to interpolation is called Neville's algo-
rithm. This algorithm and algorithms like it are at the heart of what we plan to study
throughout this text. Get accustomed to it now because it will be fundamental to all
our work later on. In particular, be sure you understand the difference between the

%123(0 / /
PO12(O P123(0

POl(O P12(O P12(O P23(0

Po P]P] P2 P] P2 P2 P3

Figure 2.7 Performing interpolation by recursive calls: the cubic case.

2.3 The Structure of Neville's Algorithm 5 5

dynamic programming algorithm illustrated in Figure 2.5 and the recursive proce-
dure illustrated in Figure 2.7.

Neville's algorithm has an interesting structure. Call the base of the diagram the
zeroth level and the apex the nth level. Then the kth level of the algorithm represents
kth-order interpolants because, by construction, Pj Pj+k(t) interpolates the control
points Pj Pj+k at the nodes tj tj+ k. Notice that in the figure the points Pj Pj+k
lie in the span of the curve Pj...j+k(t); that is, the points Pj Pj+k form the base of the
triangle with apex Pj..j+k(t). Thus each subtriangle reproduces in the small the struc-
ture of the entire triangle in the large.

The diagram for Neville's algorithm is easy to remember. Start with Po...n(t) at
the apex. Strip off the index n and place Po...n-1 (t) below it to the left; strip off the
index 0 and place P1 . . . n (t) below it to the right. Since the index n was removed to the
left, label the left arrow with t n - t; since the index 0 was removed to the right, label
the right arrow with t - t o. Now proceed recursively stripping off labels from
P o . . . n _ l (t) and P 1 . . . n (t) and labeling the arrows accordingly. Remember to join
P1...n_l(t) to both Po...n_l(t) and P1...n(t) to generate a dynamic programming algo-
rithm instead of a recursive procedure. Refer to Figure 2.5 for an illustration of the
cubic case.

There is another important structural property of Neville's algorithm that is an arti-
fact of this construction. Look at Figure 2.5. Pick any direction and consider the labels
along parallel arrows as you ascend the triangle in that direction. Notice that these
labels appear to be identical; this observation holds for any degree. In fact, these labels
are not really identical because we have suppressed the denominators. Only the numer-
ators match; the denominators differ from level to level. Nevertheless, this parallel
property of matching numerators along parallel arrows is fairly important, and we shall
return to it again in subsequent sections.

Neville's algorithm has one additional significant property. Suppose we have
already interpolated the control points Po Pn at the nodes t O t n and later we dis-
cover that we need to interpolate one additional point Pn+l at the parameter tn+ 1. We
need not restart our computations from the beginning. If we have saved the original
triangular computation for P o . . . n (t) , then we need only add the edge computing
Pn,n+l(t) Po...n+l(t). That is, in the dynamic programming algorithm for
Po...n+l (t), we need only add the computation of one curve of each degree. Thus, at
the cost of increasing our storage from O(n) to O(n2), to complete our calculation, we
need only add a computation of O(n) instead of redoing work of O(n2). This savings
is yet another advantage of the dynamic programming approach to interpolation.

Exercises

1. Aitken's algorithm is very similar to Neville's algorithm except that it is
based on the recurrence

P o . . . p , m (t) - tm - t
t - t p

- - P o . . . p (t) -t- P O . . . p - l , m (t) for all m > p.
t m - tp t m - tp

a. Use this recurrence to give an alternative proof of Theorem 2.1.

56 C H A P Y E R 2 L a g r a n g e I n t e r p o l a t i o n a n d N e v i l l e ' s A l g o r i t h m

b. Explain how to generate a dynamic programming algorithm for interpo-
lation based on Aitken's recurrence.

c. Illustrate Aitken's algorithm with a diagram for the cubic case.

2. Implement Neville's algorithm. Experiment with curves of different degrees.

a. How does changing the order of the control points without altering the
order of the nodes affect the shape of the curve?

b. How does changing the values of the nodes affect the shape of the curve?

c. Place the nodes at the integers 0,1 n, and graph the curves with control
points at Pk - (k,0), k ~ j, and Pj - (j,1).

2.4 Uniqueness of Polynomial Interpolants and Taylor's
Theorem

Theorem 2.1 asserts that given any arbitrary sequence of points P0 Pn and any
collection of distinct parameters t o t n , there ex is t s a polynomial c u r v e Po...n(t) of
degree n that interpolates the given points at the specified parameters. Here we are
going to show that this polynomial curve is u n i q u e , extending the result that two
points determine a unique line. Notice, however, that uniqueness requires us to spec-
ify the nodes as well as the control points. We begin by recalling some simple facts
about polynomials.

THEOREM
2.2

T a y l o r ' s T h e o r e m

Let P(t) be a polynomial of degree n, and let r be a real number. Then

P (t) - P (r) + P ' (r) (t - r) + P " (r) (t - r) 2 +. . . + p(n) (r) (t - r) ~ .
2! n!

Proof Since P(t) is a polynomial of degree n, there must be constants Co r

such that

P (t) = c o + clt + . . . + Cn tn �9

Let Q(t) = P (t + r). Then

Q(t) = c o +Cl(t + r) + . . . + C n (t + r) n .

Expanding the powers of (t + r) and collecting the coefficients of the powers
of t, we see that Q(t) is also a polynomial of degree n in t, so there must be
constants d o d n such that

Q (t) = d o + d l t + . . . + dn tn .

But P (t) = Q (t - r), so by substitution

P (t) = d o + d 1 (t - r) + . . . + d n (t - r) n .

Differentiating both sides k times and evaluating at t = r yields d k = P(k)(r) / k ! .

2.4 Uniqueness of Polynomial Interpolants and Taylor's Theorem 57

COROLLARY
2.3

Let P(t) be a polynomial of degree n. Then r is a root of P(t) if and only if
t - r is a factor of P(t).

Proof Let P(t) be a polynomial of degree n. Then by Taylor's Theorem

P(t) - P(r) + P ' (r) (t - r) + P" (r) (t - r) 2" + . . . + p (n) (r) ~'r)~(t -
2! n!

Therefore, by inspection, P(r) - 0 if and only if t - r is a factor of P(t).

COROLLARY
2.4

Every nonzero polynomial of degree n has at most n roots.

Proof This result is an immediate consequence of Corollary 2.3, since a polyno-
mial of degree n can have at most n linear factors.

COROLLARY
2.5

Let P(t) and Q(t) be two polynomials of degree n that agree at n + 1 param-
eter values. Then P(t) - Q(t).

Proof Let R(t) = Q(t) - P(t). Then R(t) is a polynomial of degree n. Moreover, since
P(t) and Q(t) agree at n + 1 parameter values, R(t) has n + 1 roots. Therefore,
by Corollary 2.4, R(t) must be the zero polynomial, so P(t) - Q(t).

THEOREM
2.6

Given affine points P0 Pn and distinct parameters t o t n, there exists a
unique polynomial curve of degree n that interpolates the given points at the
specified parameters.

Proof Existence has already been established in Theorem 2.1; it remains to dem-
onstrate uniqueness. Suppose that P(t) and Q(t) are two polynomial curves
of degree n that interpolate the given control points at the specified nodes.
Then P(t) and Q(t) are polynomials of degree n that agree at the n + 1
parameter values t o t n. Hence by Corollary 2.5, Q(t) = P(t), so the inter-
polating polynomial is unique.

Exercises

1. Prove that the polynomials 1 , (t - r) (t - r) n are linearly independent.
Conclude that the polynomials 1 , (t - r) , . . . , (t - r) n form a basis for the poly-
nomials of degree n and use this fact to provide an alternative proof of Tay-
lor's Theorem.

1 58 C H A P T E R 2 L a g r a n g e I n t e r p o l a t i o n a n d N e v i l l e ' s A l g o r i t h m

2. A polynomial P(t) is said to have a root of multiplicity m at the parameter r
if P(k)(r) - O, k - 0 m - 1.

a. Show that a polynomial P(t) has a root of multiplicity m at r if and only if
(t - r) m is a factor of P(t) .

b. Show that every nonzero polynomial of degree n can have no more than n
roots counting multiplicities.

3. Let P(t) be a polynomial of degree n, and let Po...n (t) be the polynomial that
interpolates the control points P(t o) P (t n) at the nodes t o t n. Prove
that Po.. .n(t) = P(t) .

4. Letf(t) be a polynomial of degree n and let r be an arbitrary constant.

a. Using long division of polynomials, show that there is a polynomial g(t)

of degree n - 1 such that f (t) - (t - r) g (t) + f (r).

b. Using part (a), conclude that f (r) - 0 r t - r is a factor off(t).

5. Let P (t) - an tn + . . . + al t + a O. Then P(t) interpolates the control points
PO Pn at parameters t o t n if and only if

anto n + " " + alto + ao = Po
�9 o

�9 ~

antn n + " " + altn + ao = Pn �9

a. Prove that this system of linear equations in the unknowns a o a n has a
unique solution by showing that the determinant of the coefficients

�9 ~ i ~ 0 .

Itn ~ ' tn

(Hint: Replace t n by t. Show that this determinant is a polynomial of
degree n in t by proving that the coefficient of t n is not zero. Then using
the properties of determinants, show that t o tn_ 1 are n roots of this
polynomial. It follows by Corollary 2.4 that t n cannot also be a root of
this polynomial, so the determinant cannot be zero.)

b. Conclude that P o . . . n (t) e x i s t s and is unique.

2.5 Lagrange Basis Functions

So far we have developed a recursive formula and a dynamic programming algo-
rithm for computing the polynomial interpolant Po...n(t). Here we shall develop an
explicit formula for this interpolant.

2.5 Lagrange Basis Functions 59

We begin by observing that there must exist polynomials
/_~(t I t 0 t n) Lnn(t l to tn)mpolynomials of degree n in the variable t whose
coefficients depend on the nodes t o tn ~ s u c h that

n

po. . .n(t) - E L ~ (t l t 0 tn)Plr .
k=0

This is clearly true for n = 1; in fact (2.5) gives explicit formulas for l_}o(t l to , t l) and
L~ (t l t o , t 1). Now we proceed by induction on n. Suppose that

n-1
eo. . .n-1 (t) - Z tnk -1 (t It 0 tn-1)Pk

k=0

n- l Lnk-1
P1...n(t) - ~, (t l t l tn)Pk+l �9

k=0

Then by (2.7)

- t - t o
Po...n (t) = tn-------L Po...n-1 (t) + P1...n (t) ,

t n - t O tn - t o

so substituting the preceding formulas for Po...n-1 (t) and P1...n(t) we obtain

n tn t %
--LT~ -1 (t I to t~_l) l~ + ~L~r l to tn)Pk _ . /_1

k=0 tn - to k=0

t - to

tn - to k=0

Equating the coefficients of Pk on both sides of this equation yields the recurrence

L~(t l t 0 tn) = t n - t Lnk_l(t l to tn_l)+
t n - t o

t to
L;'--lk-l(tltl tn) k - 0 n , (2.8)

t n - t o

where Lnk(t l to t n) is defined to be zero whenever k < 0 or k > n. Since by the
inductive hypothesis L ~ - l (t l to t n_ l) and Lnk-~(t l tl t n) are both polynomials
of degree n - 1 in t, it follows from (2.8) that L ~ (t l t 0 t n) must be a polynomial of
degree n in t. Our goal is to find explicit formulas for these polynomials and to study
their properties.

Let's begin with the cubic case. Consider Figure 2.5, and let's try to calculate, for

example, L ~ (t l t 0 t3). The contribution of P1 to Po123(t) is the sum over all paths
from P1 to Po123(t), where a path is the product of the labels along the arrows. But
notice that because of the parallel property all paths from P1 to P0123(t) produce the
same product. In fact, disregarding signs, this product is just (t - t o) (t - t2) (t - t3).
Since we have omitted the normalization in the denominator, it follows that
L 3 (t l t o t3) is actually some constant multiple of this productmthat is,

L3(t l to t3) - C l (t - t o) (t - t 2) (t _ t3) .

60 CHAPTER 2 Lagrange Interpolat ion and Nevi l le 's Algor i thm

Simi la r ly , w e f ind tha t

L~(t I t 0 t 3) - Co(t - t l) (t - t2) (t - t 3)

/_~(t I t 0 t3) - c 2 (t - t o) (t - t l) (t - t 3)

/ ~ (t I t 0 t 3) - c 3 (t - t o) (t - t l) (t - t2).

T h e r e is an o b v i o u s p a t t e r n here . E a c h p o l y n o m i a l L3(t l t o t3) c o n t a i n s th ree o f

the fou r fac to rs (t - t o) , (t - t l) , (t - t 2) , (t - t3), and the m i s s i n g f ac to r is (t - tk).
It r e m a i n s to d e t e r m i n e the va lues o f the c o n s t a n t coe f f i c i en t s cj. Thi s is e a s y to

do b e c a u s e

3
Pj - Po123(tj) - ~ ,L3(t j l to t3)P k.

k=0

B u t w e have s een tha t i f j ~ k , t hen L3(t l t o t 3) c o n t a i n s the f ac to r (t - tj); h e n c e

L 3 (t j l t o t 3) - 0 j g: k.

Th i s l eaves us w i th

so w e m u s t have

Pj - L~.(tj l t 0 t3)Pj,

L~.(tj I t 0 t3) 1.

N o w w e have o n e e q u a t i o n w i th o n e u n k n o w n , so w e can ea s i l y so lve for cj. F o r

e x a m p l e , i f j = 1 w e h a v e

c 1 (t 1 - t 0) (t 1 - t 2)(t 1 - t 3) - 1,

so w e o b t a i n

T h u s

c 1 =
(t 1 - t0)(t 1 - t2)(t 1 - t3)

L~(t l t 0 t 3) -
(t - t 0) (t - t 2) (t - t 3)

(t 1 - t0) (t 1 - t2) (t 1 - t3)

N o t i c e tha t the d e n o m i n a t o r is j u s t the n u m e r a t o r e v a l u a t e d at t = t 1. U s i n g this

t r i ck o f e v a l u a t i n g the n u m e r a t o r at t - t k to f ind the d e n o m i n a t o r a n d r e c a l l i n g tha t

the n u m e r a t o r is m i s s i n g the f ac to r (t - t k) , w e o b t a i n the g e n e r a l f o r m u l a

L3 (t l to t3) =
1-Ij~k (t - tj)

I-Ijr (tk - tj)

2.5 Lagrange Basis Functions 61

1

0.8

0.6

0.4

0.2

-0.2

Figure 2.8 The four cubic Lagrange basis functions for the nodes t k = k, k = 0 3.

These functions are called the cubic Lagrange basis functions. We illustrate the
cubic Lagrange basis functions for the nodes t k = k, k = 0 3, in Figure 2.8.

We shall now show that this same analysis and a similar formula are valid for
any degree, not just for n = 3. Let's generalize what we have discovered so far. We
begin with two important observations connecting the polynomials Lnk(tlto t n)
with the structure of the triangle diagram for Neville's algorithm.

1. Lnk(tlto tn) = the sum over all paths from Pk to Po...n(t), where a path is
the product of the labels along the arrows.

2. All paths from Pk to Po...n (t) are identical, up to constant multiples.

Statement 1 is just the observation that the contribution of Pk to Po...n(t) is the sum
of all paths from Pk to Po...n(t), and since Lnk(tlto t n) is the coefficient of Pk in
Po...n(t), it must represent the sum of all these paths. Statement 2 is a simple conse-
quence of the parallel property of Neville's algorithm, which was discussed in Sec-
tion 2.3.

Any path from Pk to Po...n (t) must take exactly k left turns and n - k right turns.
By the parallel property the labels on the k left turns are identical to the first k
labelsmcounting down from Po.. .n(t)--on the right edge of Neville's triangle, and
by construction these labels are (t - t o) , (t - t l) (t - t k _ l) . Similarly, the labels on
the n - k right turns are identical to the first n - k labels----counting down from
Po.. .n(t)mon the left edge of Neville's triangle, and by construction these labels are
(t - t n) , (t - t n _ l) (t - tk+l). Multiplying all these labels to~ether, we find that any

path from Pk to Po...n(t) is a constant multiple o f I - I j~:k(t - t j) . Thus

Lnk(t l to t n) - C k I - I j , k (t - t j) k = 0 n.

It remains to find the constants c k.
We proceed again exactly as in the cubic case. We know that

/,/

Pk - Po...n(tk) - ~,L~(tk Ito tn)Pj.
j=O

/-/
But by (2.9) if j ~ k, t h e n Isj(t k It 0 tn) contains the factor (t - t k); hence

(2 .9)

(2 .10)

62 C H A P T E R 2 Lagrange In terpola t ion and Nev i l l e ' s A lgor i t hm

L~(t k It 0 t n) = 0 j ~ k,

so by (2.10) we must have

Lnk(tk It 0 tn) = 1.

Thus from (2.9) we obtain

Therefore, as in the cubic case,

c k =
I-Ij~k (tk - tj)

Lnk(t l to tn) = l " I j ~ k (t - t j) k = 0 n.
I-Ijr (tk - tj)

Notice again that the denominator is simply the numerator evaluated at t = t k.
The polynomials

L ~ (t l t 0 t n) Ln(t l to t n)

are called the L a g r a n g e basis f u n c t i o n s for the nodes t o t n. These functions play a
fundamental role in the theory of polynomial interpolation. The following theorem
and corollary summarize their principal properties.

THEOREM
2.7

Proper t ies o f L a g r a n g e Bas is Func t ions

1. L~(t l t 0 tn) = I - I j ~ k (t - t j)
I-Ij~:k (tk - tj)

k = 0 n . (2.11)

2. L~ (t i t 0 t n) is a polynomial of degree n.

3. Lnk(tj It 0 t n) = 0 j 4: k

= 1 j = k .

4. If P(t) is a polynomial of degree n, then

n
e (t) = z e (t k) L n k (t l to tn)"

k=0

n

5. Po...n(t) = ZLnk(t l to tn)P k .
k=0

e

n

~,Lnk(t l to tn) = l.
k=O

(2.12)

(2.13)

(2.14)

(2.15)

2.5 Lagrange Basis Functions 63

Proof Property 1 is the definition of L ~ (t l t o t n) , and Property 2 is immediate
from this definition since the numerator has n linear factors. Property 3 fol-
lows by substituting t - tj into the definition of Lnk(tlto t n) and observ-
ing that

i. the numerator of Lnk(tlto t n) has a factor of (t - t j) if j ;~ k

ii. the denominator of L j (t l t 0 tn) is its numerator evaluated at
t - t j

To prove Property 4, let P(t) be an arbitrary polynomial of degree n and
define

n

Q(t) = ~,P(tk)Lnk(t l to tn).
k=0

Then by Property 3, Q (t j) = P(t j) , j = 0 n. Hence by the uniqueness of
the polynomial interpolant (Theorem 2.6), P (t) = Q(t). Property 5 is an
immediate consequence of Property 4, since by Property 4

n n

P o . . . n (t) = ~,L~(t l t 0 tn)PO...n(t k) = ~,Lnk(t l to tn)P k.
k = 0 k = 0

Finally, Property 6 is the special case of Property 4 where P(t) - 1.

COROLLARY
2.8

The polynomials /_~(t I t 0 t n) Ln(t l t o t n) form a basis for all poly-
nomials of degree n.

Proof We need to show that the polynomials / _ ~ (t I t 0 t n) L n (t l t 0 tn) are
linearly independent and that they span the space of all polynomials of
degree n. By (2.13) they span the space of polynomials of degree n, so it
remains only to verify that these functions are linearly independent. Sup-
pose then that

n

~ , C k L ~ (t l t 0 t n) = O.
k = 0

Substituting t = tj on the left-hand side and applying (2.12) yields cj - O.
Hence the polynomials /_~(t I t 0 t n) Ln(t l t o tn) are linearly inde-
pendent.

Several parts of Theorem 2.7 stand out as exceptionally important. Equations
(2.11) and (2.14) assert that we have indeed succeeded in finding an explicit formula
for the polynomial interpolant. Equation (2.15) is critical because otherwise Equa-
tion (2.14) would not make sense in affine space. Finally, notice that the proof of
Corollary 2.8 relies heavily upon (2.12). The conditions in Equation (2.12) are called
the cardinal conditions. These equations are fundamental to many interpolation
schemes (see Exercise 4).

64 C H A P T E R 2 L a g r a n g e In t e rpo la t ion a n d Nev i l l e ' s A l g o r i t h m

Exercises
/1

1. Prove the identity (x - t) n = ~,Lnk(t l to t n) (X - t k) n.
k=0

2. Prove that
/1

~,L~(t l t 0 , tn) = l
k=0

by choosing Pk - 1, k = 0 ,n, as the control points in Neville's algorithm.
(Hint: By (2.14),

n

p o . . . n (t) - ELnk(t l to t n) ,
k=O

so it is enough to prove that Po...n (t) -= 1. Now observe by induction from
the bottom level up that when all the control points are set to one, the value
in each node of Neville's algorithm is identically one (see Figure 2.9).
Hence the value at the apex must be one.)

1

1 1

/ /
1 1 1

/ / /
1 1 1 1

Figure 2.9 Neville's algorithm when all the control points are set to one.

3. Prove that

/1

E L ~ (t l t 0 tn) = 1
k=0

by using the cardinal conditions (Equation (2.12)) and invoking Corollary
2.5.

4. Suppose that D~(t) Dnn(t) are a collection of functions, not necessarily
polynomials, that satisfy the cardinal conditions at t o t n~ tha t is,

2.6 Computational Techniques for Lagrange Interpolation 65

D ~ (t j) - 0 j r k

=1 j = k .

Let
n

Q(t) = Z o~(t)ek.
k=0

Show that Q(t) interpolates the points Po Pn at the parameters t o t n.

5. Give necessary and sufficient conditions on the control points for the curve
Po...n (t) to collapse to a single point. Justify your answer.

6. Give necessary and sufficient conditions on the control points for the curve
Po...n (t) to collapse to a straight line. Justify your answer.

7. Consider the curve P (t) - ~ k L n k (t l t o t n) P k . What are the control points
of this curve relative to

a. the degree n + 1 Lagrange basis with respect to the nodes t o tn,tn+l;

b. the degree n Lagrange basis with respect to the nodes s o ,s n.

8. Let Vk - a t k + b, k - 0 n, for some fixed constants a > 0 and b. Show
that

Lnk(at + b l'c 0 "c n) - L~ (t l t 0 tn).

Compare this result to Exercise 4 of Section 2.2.

9. Prove that

a. t - Zk tkEnk(t l to tn)

p n
b. t p - Z k t k L~(t l t 0 tn) , p - O n .

10. Let P(t) be a polynomial curve. Define G r a p h (P) = (t , P (t)) . Show that if
Po Pn are the control points for P(t) relative to the Lagrange basis
L~)(t l t 0 tn) Ln (t [to tn), then (t o , P O) (t n , P n) are the control
points for G r a p h (P) relative to the same Lagrange basis.

2.6 Computational Techniques for Lagrange Interpolation

Equation (2.11) is an explicit formula for the Lagrange basis functions, but these
basis functions can also be computed by a dynamic programming algorithm. Since
by (2.14)

n

po. . .n(t) - ~,Lnk(t l to t n) P k,
k=0

if we choose the control points

P k = O k g : j
=1 k = j

66 C H A P T E R 2 Lagrange Interpolat ion and Nevil le 's Algor i thm

then we get

Po...n(t) = L j (t l t 0 tn).

Thus the dynamic programming algorithm for Po...n(t) becomes a dynamic pro-
gramming algorithm for L j (t l t 0 tn) when the jth control point is one and all the
remaining control points are zero. We illustrate this up recurrence for/_~2(t I to t 3)
in Figure 2.10. This up recurrence is yet another manifestation of the observation we
made in the previous section that Lnk(tlto tn) is the sum over all paths from Pk at
the base of the triangle to Po...n (t) at the apex.

This insight about paths leads to yet another recurrence for the polynomials
/_~ (t i t 0 t n) L n (t i t 0 tn). Paths from the base to the apex of the triangle are
identical to paths from the apex to the base. Thus we can compute all the Lagrange
basis functions simultaneously by starting with a one at the apex, reversing all the
arrows in Neville's algorithm, and collecting the results at the base of the triangle.
The Lagrange basis functions emerge at the base because the functions at the base
represent all paths from the apex to the base. We illustrate this down recurrence for
the cubic Lagrange basis functions in Figure 2.11. Notice that although the Lagrange
basis functions of degree n lie at the base of the triangle, the functions at nodes in
intermediate levels are not Lagrange basis functions of lower degree.

Both the up recurrence and the down recurrence are O(n 2) algorithms. However,
we need to run the up recurrence once for each basis function, so naively the up
recurrence is O(n 3) if we use it to compute all the basis functions. If we trim away

L32(t l to,...,t3)

PO12(t) P123(t)

t 2 - / ~ t 3 - / ~
/ /

PO1 (t) P12(t) P23(t)

tl_t / ~ t2_/ ~~N t3-t/
/ / /

0 0 1 0

Figure 2.10 The up recurrence for L](tlt0 t3) . Arrows emerging from a zero may be trimmed away to
simplify the algorithm.

2.6 Computational Techniques for Lagrange Interpolation 67

1

/ \
L~(t) L~(0

,/ /
L2(t) L2(t) L2(t)

/ ,/
L3o(t l to,...,t9 Q(t l to,...,t9 L (t l to,...,t9 L (t l to,...,t9

Figure 2.11 The down recurrence for the cubic Lagrange basis functions. Notice, for example, that the
intermediate function L 2 (t)is not a degree 2 Lagrange basis function.

the zeros, the up recurrence is O(n) for each basis function and hence only O(n 2) for
all the basis functions. Nevertheless, the up recurrence is still less efficient than the
down recurrence (see Exercise 4).

If the control points lie in an affine space of dimension greater than one, Nev-
ille's algorithm for Po...n(t) is somewhat inefficient because it must be applied once
for each coordinate function. It is often faster to use the down recurrence once to
compute all the Lagrange basis functions and then to multiply L~c(tlt 0 tn) and Pk
directly to compute

n

Po...n(t) = EL~(t l t 0 tn)P k"
k=O

This approach uses a single O(n 2) algorithm to calculate the basis functions and O(n)
multiplications to generate each coordinate, rather than O(n 2) computations for each
coordinate.

Utilizing the down recurrence in this fashion still generates an O(n 2) evaluation
algorithm for Po...n(t). There is, however, an O(n) evaluation algorithm due to Joe
Warren that takes advantage of the special structure of the Lagrange basis functions.
Whereas Neville's algorithm lies on a triangle, Warren's algorithm lies on a ladder,
so we shall call it the ladder algorithm.

Label the arrows on the left side of the ladder with the functions
t - t O t - tn_l, and on the fight side with the functions t - t 1, t - t n. Label the
rungs with the constant values

Pk
Qk = i - i (t k_ t j)

j~k

k - 0 n,

68 c H A P T E R 2 L a g r a n g e I n t e r p o l a t i o n a n d N e v i l l e ' s A l g o r i t h m

t

)r Q] / t -

,ZQ2

Poa23(t)
Figure 2.12 The ladder algorithm for Po123(t).

and place a one at the top of the ladder. Values at any node in the ladder are com-
puted in the usual way by multiplying the arrows that enter the node by the values at
the nodes from which they emerge and adding the results. Tracing through the paths
in the ladder, it is easy to see that

n

po. . .n(t) - ELnk(t l to tn)Pk
k=O

indeed emerges at the bottom of the ladder (see Figure 2.12). This ladder algorithm
uses only 3n + 1 multiplications for each coordinate function--n along each side of
the ladder and n + 1 along the rungs.

Exercises

1. Give an example to show that the functions at intermediate levels of the
down recurrence are not Lagrange basis functions.

2. a. Show that the functions on every level of the down recurrence sum to
one.

n

b. Conclude that ~Lnk(t l to tn) - 1.
k=O

3. Define the polynomials pl(t) Pn(t) and qo(t) q n _ l (t) recursively by

Pn(t) - t - t n

Pk (t) = (t - t k)pk+l (t) l < k < n - 1

qo(t) - t - t o

qk (t) - (t - t k)qk_ l (t) l < k < n - 1 .

2.7 Rational Lagrange Curves 69

a. Show that the numerators of the Lagrange basis functions L~ (t i t 0 t n)

are given by

Ank (t I t o tn) = Pk+l (t) qk -1 (t) k m 0 ~ . . o ~] " ~ o

b. As in the ladder algorithm, let

Qk = k - O n.
1-I (t k - t j)

j ~ k

Show that

n

p o . . . n (t) - ZA~(t I t 0 t n) Q k .
k=0

c. Explain why the preceding evaluation algorithm for Po. . .n(t) is O (n) .

d. Under what circumstances is this evaluation algorithm faster than the
ladder algorithm?

4. Show that if we trim away zeros, the up recurrence is identical to the ladder
recurrence for L ~ (t l t o tn). Conclude that the up recurrence is O (n) for
one basis function and O(n 2) for all the basis functions. Explain why the up
recurrence is still less efficient than the down recurrence.

5. Generate the dynamic programming algorithm for the recurrence for
Lnk(t l t o tn) given in (2.8). Is this algorithm the same as either the up
recurrence or the down recurrence or is it yet another recurrence?

6. Implement the ladder algorithm. Run test cases comparing the speed of the
ladder algorithm to the speed of Neville's algorithm.

7. Let t 1 t2n be fixed parameters, and define functions qJ/~ (t) by setting

�9 ~ (t) = (t - tk+ 1) . . . (t - tk+ n) k - 0 n.

Develop a ladder algorithm for evaluating expressions of the form

n

E(t)=
k=0

8. Develop an algorithm for differentiating

a. the ladder algorithm

b. Neville's algorithm

2.7 Rational Lagrange Curves

Lagrange interpolation generates polynomial curves. But many simple curves in
computer graphics and computer-aided geometric design cannot be represented

70 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

exactly by parametric polynomials. Indeed, even the circle has no polynomial
parametrization. We can, however, try to approximate a circle with polynomials by
interpolating points along the circle. Figure 2.13 shows polynomial approximations
of degree 2 and degree 4 to a semicircle, and Figure 2.14 shows a polynomial
approximation of degree 6.

So one way to proceed for a curve that is not a polynomial is to approximate the
curve with a polynomial by interpolating more and more points along the curve. In
many, but not all, cases this strategy works well, but the degree of the approximating
polynomial may need to be quite high. For example, we see from Figures 2.13 and
2.14 that we need to use a degree 6 polynomial to achieve a really good Lagrange

-1 -0.5 0.5 1

(a) Degree 2 approximation

0.6

0.4

0.2

-I -0.5 0.5 1

(b) Degree 4 approximation

Figure 2.13 Polynomial approximations to the semicircle: (a) a degree 2 approximation interpolating three
evenly spaced points, and (b) a degree 4 approximation interpolating five evenly spaced points. The degree 2
approximation is a parabola, which undershoots the semicircle, while the degree 4 approximation over-
shoots the semicircle near the end points.

1 N

0 . 8 -

0.6

0.4

-1 -0.5 0.5 1

Figure 2.14 A degree 6 approximation to the semicircle using a Lagrange polynomial that interpolates
seven evenly spaced points. Here it is difficult to see any difference between the semicircle and the approxi-
mating polynomial.

2.7 Rational Lagrange Curves 7]

approximation for the semicircle. If we should want to approximate more than half
the circle, we would have to use an even higher-degree polynomial. But high-degree
polynomials are unwieldy to compute. Worse yet, in many cases high-degree inter-
polatory polynomials introduce unwanted oscillations (see, for example, Exercise 1).

For the circle and for many other curves, there is a better solution. Although the
circle does not possess a polynomial parametrization, the circle does have a rational
parametrization

2t 1 - t 2
x(t) = y(t) =

1 + t 2 1 + t 2

since it is easy to verify that x2(t) + y2(t) = 1. Thus if we want to represent the circle
exactly, we can resort to rational functions.

To use Lagrange interpolation to represent the circle exactly, lift the circle from
affine space to Grassmann space by treating the denominator in affine space as a
mass in Grassmann space. (Now would be a good time to review Section 1.1.3 on
Grassmann space.) Lifting replaces rational curves in affine space by polynomial
curves in Grassmann space. The circle lifts to the polynomial curve

P(t)-(2t, l - t2,1+t 2)

in Grassmann space, and this polynomial curve projects to the rational curve

12t l I
l + t 2 ' l + t 2

in affine space. So all we need to do to apply Lagrange interpolation is to find the
mass-points (mkPk,m k) in Grassmann space that are the control points for the poly-
nomial curve P(t) and then project onto affine space to retrieve the circle R(t).

To carry out this computation explicitly, observe that P(t) is a curve of degree 2,
so we can use Lagrange polynomials of degree 2 to represent P(t). We still need to
choose our nodes. Any nodes will do, but since R(t) sweeps out the upper half circle
for -1 < t < 1, we shall use the nodes (-1, 0,1). Now we need to find the mass-points
(mkPk, mk), k = 0,1, 2, so that

2
Po12(t)- ~(mkPk,mk)L2(t I - 1 , 0 , 1) - (2 t ,1- t2 ,1 + t 2) : P(t).

k=0

By (2.13) we must choose

(moPo,mo) = P (- 1) = (-2,0,2)

(mlPl,ml) = P(0) = (0,1,1)

(m2P2,m 2) = P(1) = (2, 0,2) .

(2.16)

72 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

Thus we can read off the masses and the control points from (2.16):

m 0 - 2 , m 1 - 1 , m 2 - 2

PO - (-1,0), P1 - (0,1), P2 - (1,0) .

In Grassmann space, we obtain the polynomial curve

2
P(t) -]~ (mkPk,mk)L~ (t i -1, 0,1);

k=O

projecting into affine space generates the circle

2
EmkPkL2 (t l -l,O,1)

R (t) - k=O
2
]~mkL2 (t l -l,O,1)

k=0

Figure 2.15 illustrates the semicircle with its three control points using rational
Lagrange interpolation.

In general, we define a rational Lagrange curve in affine space to be the projec-
tion of a Lagrange polynomial curve

n

P(t) -]~(mkPk,mk)L~(t l to t n)
k=O

in Grassmann space. In affine space P(t) projects to the rational curve

] \

0.8:

0.6 i

0.4:

0 2 -

I I I I ~ I

-1 5 . ' ' ' ' o ' . s ' ' ' ' Y

Figure 2.15 The semicircle as a degree 2 rational Lagrange curve. The three mass-points that serve as the
control points are shown. The size of the dots indicates the relative masses of the points: the
mass is two at (-1,0) and (1,0), while the mass is one at (0,1).

2.7 Rational Lagrange Curves 73

/7

~,mkPkL~(t l to , . . . , tn)
Ro..., ,(t)- ~=o

/7

Y_.mkL~(t l t o tn)
k=O

Thus Ro...n(t) is called a rational Lagrange curve. Just like Lagrange interpolating
polynomials, we have the following interpolation result for rational Lagrange
curves.

THEOREM
2.9

Ro.. .n(t j) - Pj, j - 0 n.

Proof This result follows because the Lagrange curve

/7

P(t) - ~ , (mkPk ,mk)L~(t l t 0 t n)
k=O

in Grassmann space interpolates the mass-point (mjPj ,mj) at the parameter
t jMtha t is, P(tj) - (mjPj ,mj) . Projecting into affine space, we get
Ro...n(t j) - Pj. We can also obtain this result directly by observing that

/7

~'mkPkL~(tJ I to tn) mjPj

R0.. (tj) =k=~
n mj

Z m k L k (t j It0 t n)
k=0

Mass does not affect interpolation at the control points, but mass does alter the
shape of the interpolating curve. Thus the masses in the rational Lagrange formula-
tion serve as shape parameters (see, for example, Figure 2.16). These shape parame-
ters are not always benign; even moderate changes to a single mass can produce

-1 -0.5 0.5 1

Figure 2.16 The effect of mass on the shape of a rational Lagrange curve. The semicircle has a unit mass
at (0,1). Here we enlarge this mass to the values 1.5,3,10. The effect on the curve is to tense
it towards the lines joining its control points and to increase the curvature at (0,1).

i TM C HAPTE R 2 L a g r a n g e I n t e r p o l a t i o n a n d N e v i l l e ' s A l g o r i t h m

extreme changes in the shape of a curve and may even introduce singularities. Large
changes to a single mass may create cusps and higher-order irregularities (see Exer-
cise 8). Thus care must be taken when altering the masses of a rational Lagrange
c u r v e .

Indeed, although a rational Lagrange curve is continuous everywhere except at
the parameter values where the denominator vanishes, the limit curve as any single
mass m j approaches infinity is not a continuous curve. In fact, the limit curve col-
lapses to the control points, since

l i m m j ~ o o R o . . . n (t k) = Pk' k - 0 n

limmj ~ ooRo...n(t) = Pj for all t ~ t k, k = 0 n .

The first limit is valid because Ro. . .n(t k) = Pk independent of the value of the mass
m j ; the second limit holds because

n mk
limmj ~oo Z Pk L~ (t I t o t n)

l immj~ooRo . . . n (t) _ k=0 m j = P j L j (t l t 0 t n) = PJ"
n mk limmj ~oo ~, Lnk (t I t o tn) L j (t I t o t n)

k=0 m j

Thus we should expect a rational Lagrange curve to behave very strangely as we
continue to increase the values of the masses (see Exercises 2, 3, 8, and 9).

In a rational Lagrange curve some masses m k may be set to zero (see Exercise
6). When m k = 0, the mass-point (m k P k , m k) is replaced by a vector (Vk,O) in
Grassmann space. Thus m k = 0 does not necessarily imply that v k = 0. Typically,
when m k = 0, the rational Lagrange curve Ro. . .n(t) has a singularity at t = t k
because when m k = 0 all the Lagrange basis functions in the denominator vanish at
t = t k. If, however, both m k = 0 and v k = 0, then there is no longer a singularity at
t = t k because the factor t - t k appears in every term in both the numerator and
denominator and therefore can be canceled. The resulting rational curve still interpo-
lates the control points Pj, j ~ k.

Computing points on a rational Lagrange curve is no different from computing
points on a Lagrange interpolating polynomial. Although our analysis of interpolat-
ing polynomials was carried out entirely in affine space, the same analysis holds as
well in any vector space because all we require are affine combinations, and vector
spaces permit arbitrary linear combinations. Thus to compute values on a rational
Lagrange curve, we can apply Neville's algorithm or the ladder algorithm in Grass-
mann space and then simply divide by the mass to project to the corresponding point
in affine space.

However, if the mass of a Lagrange curve in Grassmann space is ever zero, then
the projection of the curve into affine space is not continuous. If the corresponding
vector in Grassmann space is not zero, we can avoid these discontinuities by project-
ing the curve instead into projective space. Therefore, for a rational Lagrange curve,
the control points reside in Grassmann space, but the curve itself may lie in projec-
tive space.

2.7 Rational Lagrange Curves 7 5

Exercises

1. Consider the Gaussian curve G (t) (t,e -t2 - -).

a. Plot G(t) on the interval [-1,1].

b. Approximate G(t) on the interval [-1,1] using polynomial Lagrange
interpolation with 5, 7, 9, and 11 evenly spaced points, and compare your
results to the original curve.

c. Observe that Lagrange interpolation introduces oscillations that are not
present in the curve G(t).

2. Consider the rational quadratic parametrization of the semicircle given by
the masses and control points in (2.16).

a. Plot the point with t - .99 for larger and larger values of the mass at
(0,~).

b. What do you observe? Explain what is happening.

3. Consider the rational quadratic parametrization of the semicircle given by
the masses and control points in (2.16).

a. Plot some curves where the mass at (-1, 0) is increased and the masses at
(0,1) and (1,0) are left unchanged.

b. Plot some curves where the masses at (-1,0) and (1,0) are increased and
the mass at (0,1) is left unchanged.

c. Explain why these two effects are different.

4. Experiment with altering the masses in a rational Lagrange curve.

a. What are the local and global effects of altering a single mass?

b. What is the effect of a negative mass?

c. What happens if all the masses are changed simultaneously?

5. Consider the ellipse with the implicit equation x 2 / a 2 + y2 / b 2 = 1.

a. Verify that this ellipse has the rational parametrization

2at b(1 + t 2)/
R(t) = 1 + t 2' 1 + t 2 "

b. Find the control points and weights of this ellipse for the nodes (-1,0,1).

c. Use Neville's algorithm to draw this ellipse for a = 1 and b = 3.

6. Consider the hyperbola with the implicit equation x 2 / a 2 - y2 / b 2 = 1.

a. Verify that this hyperbola has the rational parametrization

a(l + t 2) 2bt)

b. Find the control points and weights of this hyperbola for the nodes

i. (-0.5,0,0.5)

76 CHAPTER 2 L a g r a n g e I n t e r p o l a t i o n a n d N e v i l l e ' s A l g o r i t h m

ii. (-4 , -3 , -2)

iii. (- 1 , 0 , 1)

c. Use Neville's algorithm to draw different parts of this hyperbola for a = 1
and b = 3.

7. Consider a rational Lagrange curve with nodes t o t n and control points
(m o P o , m O) (mnPn ,mn) . What does the limit curve look like if two or
more masses are allowed to increase simultaneously?

8. Let R(t) be a rational Lagrange curve with nodes t O t n and control points
(m o P o , m O) (m n P n , m n). Define

n

P(t) - E m k P k L ~ (t l t 0 tn)
k=O

n

w(t) - ~,mkLnk(t l to tn) .
k=O

Then R(t) - P (t) / w (t) or equivalently w (t) R (t) - P(t) .

a. Show that R ' (t j) - P ' (t j) - w ' (t j) P j .
m j

b. Conclude that l i m m j ~ o o R ' (t j) - O.

k
c. Prove that ~ (k) w (i) (t) R (k - i) (t) - P(k) (t) .

i=0

d. Using induction and part (c), show that l i m m j _ ~ o o R (k) (t j) - 0 for all
k > 0 .

e. Conclude that as the mass m j gets large while the other masses are held
fixed, the point at R (t j) = Pj becomes highly irregular.

9. Let R(t) be a rational Lagrange curve with nodes t o t n and control points

(moPo , m O) (mnPn , mn) .

a. Using arguments similar to those in Exercise 8 show that

l i m m j ~ o o R (k) (t) - 0 for all k > 0, whenever t ~: t k, k r j .

b. Explain how this result is consistent with the results in the text and in
Exercise 8.

c. Explore what happens to the derivative if two or more masses are
allowed to increase simultaneously.

10. Given a collection of nodes t o t n and masses m o , m n, define

R k (t l t 0 tn) -
mkLnk(t l to t n)
n

E m j L j (t l t 0 t n)
j=O

, k - O n .

2.8

2.8 Fast Fourier Transform 77

Show that these functions behave like rational Lagrange basis functions. In
particular,

11

Z R k (t l t 0 tn) - 1
k=0

b. Rk(t i l t 0 t n) - 0

=1

i ~ k

i - k

n

c. Ro. . .n(t) - ~ , R k (t l t 0 tn)P k.
k=O

Fast Fourier Transform

Before we move on to study the interpolation problem for surfaces, we pause briefly
to consider another important application of univariate Lagrange interpolation: Fast
Fourier Transform (FFT). One purpose of FFT is to perform fast multiplication of
polynomials written in terms of the standard monomial basis 1,t t n . We shall now
examine how this is done.

Consider two polynomials of degree n

F/ /7

f (t) = ~ a k tk and g(t)= Z b k tk .
k=O k=O

Multiplying these polynomials in the usual fashion,

f (t)g (t) = ~, Z a i b j ,
k=Ok.i+j=k

would require computing O(n 2) products, since we would need to compute every
product aib j , i , j = 0 n. Suppose, however, that we had expressed these two
polynomials with respect to a Lagrange basis of degree 2n:

L2n(t l to t2n),...,I~2nn(t l to t2n).

Then by (2.13)

2n 2n 2n
f (t) - ~ , f (t k) L 2 k n (t l t o t2n) , g(t) - ~ ,g (t k)L k (t i t 0 t2n),

k=0 k=0

and

211

f (t) g (t) - ~ , f (t k) g (t k) L 2 n (t l to t2n).
k=0

78 C H A P T E R 2 Lagrange Interpolation and Nevil le 's Algori thm

Thus when polynomials are written in terms of the Lagrange basis, the product
requires only O(n) multiplications, since we need only compute the 2n + 1 products

f (t k)g(t k), k = O, 2n.
There are two subtleties here. First, although the original polynomials f (t) and

g(t) are of degree n, we need to express them in terms of a Lagrange basis of
degree 2n, since their product is of degree 2n. We can certainly do so, since every
polynomial of degree n is also a polynomial of degree 2n. Second, even though we
have writtenf(t) and g(t) in terms of a Lagrange basis of degree 2n, their product is
still a polynomial of degree 2n, so the product can be expressed in terms of the
same Lagrange basis as the original polynomials. In fact, it is for this reason that
we initially choose a Lagrange basis of degree 2n instead of a Lagrange basis of
degree n. These same observations hold if we use any Lagrange basis of degree
m > 2n. It will actually be more convenient to employ a basis whose degree is
almost a power of two. Thus we shall use a Lagrange basis of degree m = 2 P - 1,
where 2P -1 - 1 < 2n < 2P-1 .

Now our strategy for multiplying two polynomials is as follows.

1. Convert from the monomial basis of degree n to a Lagrange basis of degree
m, where m + 1 = 2 p > 2n.

2. Perform fast multiplication in the Lagrange basis.

3. Convert back from the Lagrange basis to the monomial basis.

Step 2 can be performed with O(n) multiplies, so if we could perform steps 1 and 3
with fewer than O(n 2) multiplies, we would have a fast way to perform polynomial
multiplication starting and ending with a monomial representation.

To convert from the monomial to the Lagrange basis, we need to perform poly-
nomial evaluation. The standard way to evaluate a polynomial written in terms of the
monomial basis is to apply Homer's method (see Exercise 3), which employs O(n)
multiplies to evaluate a polynomial of degree n at a single parameter value. To con-
vert from monomial to Lagrange form, we need to evaluate a polynomial of degree n
at m + 1 > 2n nodes, so using Homer's method would require O(n 2) multiplies. We
need to do better.

The trick is to choose a special Lagrange basis~that is, a Lagrange basis with
special nodes t o t m. In this book we deal mostly with real variables, but every-
thing we have done so far in this chapter with polynomials is valid as well for com-
plex variables. So our Lagrange basis functions can have complex nodes. We shall
choose our nodes to be complex roots of unity and show that with this choice of
nodes we can convert back and forth between the monomial and Lagrange represen-
tation of a polynomial of degree n in O(n log(n)) time.

Let t o t m denote the m + 1 distinct complex roots of un i ty~the complex
numbers that satisfy the equation t m+l = 1. Recall from complex analysis that

e it = cos(t) + i sin(t).

Therefore, e 2n/= cos(27r) = 1, so

tk = e2k i rc / (m+l) , k = 0,..., m.

2.8 Fast Fourier Transform

k Define (.0m+ 1 = e 2 ire / (m+l) . , then t k = (_Om+ 1 , k = 0,..., m. Moreover,

7 9

(2.17) 2 k)2 = (.0~m+l) / tk = ((-Om+l 2"

Now comes the key observation on how to convert from the monomial coeffi-
cients a 0 a n of a polynomial f(t) to its Lagrange coefficients f (to),. . ., f (t m) in
O(nlog(n)) time. Define

... t (m - 1) / 2
feven(t) = a 0 + a 2 t + a 4 t2 + + a m _ 1

fo~id(t) al + a3t + a5 t2 am t(m-1)/2 - - + . . . + .

Then it is easy to verify that

f (t) - feven (t2) -I- t f o d d (t 2) . (2.18)

So evaluating one polynomial f(t) of degree m at the m + 1 values t o t m is equiv-
alent to evaluating two polynomialsfeven(t) andfodd(t) of degree (m - 1)/2 at the val-

2 . But by (2.17), the m + 1 values ues t~ t m
2 k)2

t k - (w m + 1 , k - 0 m

are the same as the (m + 1)/2 values

~-j J
- (. 0 (m + l) / 2 , j - 0 (m - 1) / 2 .

Therefore, we have reduced one problem of size m + 1 to two equivalent problems of
size (m + 1)/2. Proceeding recursively in this manner, after p = log(m + 1) steps we
are reduced to solving 2P = m + 1 problems of size one. To solve the original prob-
lem, we must then combine these solutions using (2.18). Since there are p recursive
steps, the work required to recombine each solution is p = log(m + 1). Hence the
total amount of work to convert from monomial to Lagrange fo rm~tha t is, to evalu-
ate the polynomial at the nodes t o t m ~ i S p2P = O(mlog(m)) = O(nlog(n)) . This
recursive algorithm to convert from the standard monomial to the special Lagrange
form is called the Discrete Fourier Transform (DFT).

We can use the DFT to convert from the monomial to the Lagrange basis in
O(nlog(n)) time. We can then multiply the two polynomials in the Lagrange basis in
O(n) time. But after multiplying the two polynomials in the Lagrange basis, we still
need to convert back from Lagrange to monomial form. It turns out that we can use
the DFT to perform this operation as well. Here is how. Observe that the matrix that
converts from monomial to Lagrange form is

m

1 1 . . . 1 1 1 . . . 1

! m
(.Om+ 1 --- (_Om+ 1 _ to tl . . . t m .

i i " " i i "
m . m 2 m

0)m+ 1 .. (_Om+ 1 t t~ n . . . t m

That is, if we were to multiply the monomial coefficients by M on the right, we
would obtain the Lagrange coefficients because multiplication by M on the right is

80 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

equivalent to evaluation at t o t m . Discrete Fourier Transform is just a fast way to
perform this matrix multiplication. To convert from Lagrange form back to mono-
mial form, we need to apply M -1.

LEMMA
2.10

(m + 1)M -1

1 1 . . . 1

__ ! (.oral 1 -m �9 .. (.0m+ 1
�9 . ~

�9 , ~

- m - m 2

(.0m+ 1 ... 0)m+ 1

Proof We can verify this result by multiplying the ith row of M by the jth column
of (m+ 1)M -1

m ~, ,.,ik ,.,-jk _ rn(i-j)k
tUm+ltUm+l '*'m+l "

k=0 k=0

If i - j , then

m ,.,ik , . , - j k m
~Wm+ltUm+ 1 - ,~, l = m + l .

k=0 k=0

If i * j , then setting h = i - j yields

h)m+l [m+l\h
~,.,ik ~.,-jk ~ hk ('0m+l - 1 [OJm+l) -1

- - C O m + 1 - = tUm+ltUm+l h h
k=0 k=0 (-0m+l - 1 09m+l - 1

Hence M * (m + 1)M -1 - (m + 1)I as required.

=0"

We get from the matrix M to the matrix (m + 1)M -1 by replacing O)m+ 1 by
coml+l . Thus to convert from Lagrange to monomial form, we can simply replace

corn+ 1 by cOml l in the Discrete Fourier Transform (DFT -1) and divide the final result
by m + 1. That is, we can proceed in the following fashion. Suppose that we have
computed

m

f (t)g(t) = ~,f(tk)g(tk)Erff (t l to tm).
k=O

Let

m

h(t) - E f (tk)g(tk)t k.
k=0

Applying DFT to h(t) with O)m+ 1 replaced by a~mll and then dividing the result by
m + 1 will yield a polynomial h * (t) in Lagrange form whose Lagrange coefficients
are identical to the monomial coefficients of f(t)g(t). Again this algorithm has a
speed of O(n log(n)).

2.8 Fast Fourier Transform 81

Monomial form

DFT O(n log(n))

Multiplication
Monomial form

O(n log(n))

O(n 2)

DFT q

Multiplication
Lagrange form ~ Lagrange form

O(n)

Figure 2.17 The Fast Fourier Transform (FFT) for polynomial multiplication.

Figure 2.17 summarizes our results. In the exercises we shall show how to
extend these results on fast polynomial multiplication from the univariate to the
bivariate setting (see Exercises 4 and 5).

Exercises

1. The convolution of two sequences A = (a o a n) and B = (b 0 bn) is
given by the sequence C = (c o Czn), where c k = Z i + j = k a i b j .

a. Show that convolution of sequences is equivalent to multiplication of
polynomials.

b. Conclude that two sequences of size n + 1 can be convolved in time
O (n l o g (n)) .

2. The elementary symmetric functions a k (u 1 Un) , k = 0 n are defined
by setting ak(U 1 u n) = ~,uil . . .uie where the sum is taken over all subsets
of {1 n} of order k.

a. Let f (t) be a polynomial of degree n with roots u 1 u n. Show that the
coefficients of f (t) in the monomial basis are given by CYk(U 1 Un),
k = 0 n.

b. Given n arbitrary values u 1 u n, show how to use FFT to compute

ak(Ul Un), k = 0 n , in time O (n l o g Z (n)) .

3. Let f (t) - an tn + an_l tn-1 + . . . + al t + a o be a polynomial of degree n.
Define

f k (t) - an tk + an_l tk -1 + " ' + an_k+l t + an_ k k = 0 n.

Show that

a. f k+l (t) = tfk (t) + a n _ k _ 1

b. f n (t) - f (t)

Computing f (t) in this fashion by starting with f o (t) - a n and recursively
computing f k (t) , k - 1 n , is called Homer 's method.

82 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

c. Conclude from Homer's method that every polynomial of degree n can
be evaluated with at most n multiplications and n additions.

d. Verify that Homer's method for cubic polynomials can be diagrammed
as in Figure 2.18, and provide an analogous diagram of Homer's method
for polynomials of arbitrary degree.

aO

f3(t)

a 1

fz(0

fl(t)

a2 a 3

Figure 2.18 Horner's method for cubic polynomials.

4. Let f(s,t) and g (s,t) be two polynomials of bidegree n. That is,

n n . . n n

f (s , t)= ~, ~,aijs't J and g(s,t)= ~, ~bijsit j.
i=0 j=0 i=0 j=0

a. Show that the naive algorithm for multiplying f(s,t) and g(s,t) would
have a speed of O(n4).

b. Now rewrite f(s,t) and g (s,t) as polynomials of degree n in t with coeffi-
cients that are polynomials of degree n in s. Show that using this
approach f(s,t) and g(s,t) can be multiplied using FFT in time
O(n31og(n)).

5. Let
2n 2n

h(s,t) = Z Zci j sttJ
i=0j=0

be a bivariate polynomial of bidegree 2n. Define a univariate polynomial
h * (u) by setting

h * (u) - Zi,.jcijuJ(2n+l)+i.

2.9 Recapitulation 83

a. Show that the map h ~ h * sends a bivariate polynomial of bidegree 2n
to a univariate polynomial of total degree 4n 2 + 4n.

b. Show that the map h ~ h * is 1:1 and onto.

c. Show that (h 1 + h2)* - h~ + h 2

d. Let f (s , t) and g(s , t) be two polynomials of bidegree n, show that

(f g) * = f * g *.
e. Use parts (b) and (d) to develop an algorithm for multiplying two polyno-

mials of bidegree n in time O (n Z l o g (n)) .

2.9 Recapitulation

We have encountered three strategies for solving the interpolation problem for
curves" undetermined coefficients, recursion, and cardinal basis functions.

1. U n d e t e r m i n e d Coe f f i c i en t s (Section 2.4, Exercise 5)

Solve the system of linear equations

anto n + " " + alto + ao - Po

�9 o

antn n + " " + altn + ao - Pn

for the unknown coefficients a o a n . This method is effective for demon-
strating the existence and uniqueness of the polynomial interpolant, but it is
not computationally stable.

2. R e c u r s i o n (Section 2.2, Theorem 2.1)

Apply the recurrence

- t - t o
P o . . . n (t) - t n ~ t p o . . . n _ l (t) + P1...n(t)

t n - t o tn - t o

Pk(t) - Pk �9

This recurrence leads directly to Neville's dynamic programming algorithm
for polynomial interpolation.

3. C a r d i n a l B a s i s F u n c t i o n s (Section 2.5, Theorem 2.7)

Employ the basis functions

L~(t l to t n) _ 1 - [j , k (t - t j)

I-Ijc:k (tk - t j)

n

po. . .n(t) - ELnk(t l to tn)Pk
k=O

k - 0 n

84 C H A P T E R 2 Lagrange Interpolation and Neville's Algori thm

These formulas provide an explicit expression for the polynomial interpolant.
Each approach provides a different insight into the interpolation problem for

curves, and each method leads to an alternative computational technique. We have
focused mostly on recursion because this technique generates the most elegant com-
putational scheme. Interpolation for surfaces is much harder than for curves, but
these same fundamental approaches still apply. We shall consider each of these three
basic strategies in our study of surface interpolation.

Exercises

1. Let Fo(t) Fn(t) be a collection of blending functions. Show that there is a
function

n

F (t) = ~,CkFk(t)
k=0

such that F(t k) = Pk, k - 0 n, for any choice of P0 Pn if and only if

I
Fo(to) "'" F~(to))l

�9 i " ~ 0 .

Fo(tn) ... Fn(t n

2. Let Fo(t) Fn(t) be a collection of blending functions. Show that there is a
function

n

F (t) = ECkFk(t)
k=O

such that F(t k) - P k , k - 0 n for any choice of distinct nodes t o t n
and any choice of control points P0 Pn if and only if there are functions

such that

n

Aj(t l t o t n) -]~ajkFk(t), j - 0 n ,
k=O

Aj(tk l to tn) = 0 j ~ k

=1 j = k .

2.10 Surface Interpolation

Given n + I points P0 Pn and n + 1 distinct nodes t O t n, we showed in Theorem
2.6 that there exists a unique polynomial curve Po...n(t) of degree n that interpolates
the given points at the specified parameters. That is,

Po...n(tk) = Pk k = 0 n.

2.10 Surface Interpolation 85

Now we would like to study the equivalent problem for surfaces.
Instead of a sequence of points and a sequence of nodes, we start with an array

{~j } of control points and an array { (sij,tij) } of parameter values. We seek a polyno-
mial surface P(s,t) that interpolates the given array of control points at the specified
array of parameter values.

How many control points could we hope to interpolate with a bivariate polyno-
mial of degree n? A univariate polynomial of degree n has n + 1 coefficients, and we
can interpolate n + 1 arbitrary control points. Similarly, a bivariate polynomial of
degree n has

(n+22) - (n + 2)(n + l) / 2

coefficients (see Exercise 1); therefore applying the method of undetermined coeffi-
cients, we might hope to interpolate (n~2) arbitrary control points. Unlike for
curves, however, it is not always possible to solve the general bivariate interpolation
problem for surfaces.

Consider quadratic interpolation. Here we have a bivariate polynomial

P(s,t) - A20 s2 + a 11st + A02 t2 + alOS + Aolt + AO0

with six undetermined coefficients A20 A00, and we wish to interpolate six arbi-
trary points P1,..., P6 at six arbitrary, distinct parameter pairs (s 1, t 1) (s 6, t 6). Thus
we need to solve a system of six linear equations:

A20Sl 2 + A1 lSltl + Ao2tl 2 + A10Sl + A01tl + Aoo - P1

�9 .

A20s62 + A1 lS6t6 + A02t62 + A10s6 + A01t6 + A00 - P6

for the six unknown coefficients A20 AO0. Rewriting these equations in matrix
form, we have

IS! Slt 1 t! S 1 t! 1.l/A?0 / _/ele6 /
~s~ s6t 6 t~ s 6 t 6 1)~A00

We can solve for the six unknowns A20 A00 if and only if the 6 x 6 matrix of coef-
ficients is invertible. But if the six parameter pairs lie on a conic

Q20 s2 + Q11 st + Q02 t2 + Qlo s + Qol t + Qoo - 0

~ t h a t is, a second-degree curve in the st-parameter p lane~then

Is? Sl,l: ,?: Sl: ,1: l!
2 s6r 6 t 2 8 6 r6 1) Qoo

86 C H A P T E R 2 Lagrange Interpolat ion and Nevi l le ' s A lgor i thm

In this case the columns of the coefficient matrix are linearly dependent, so this
matrix is not invertible. Thus we cannot solve the general quadratic bivariate interpo-
lation problem when the parameters are aligned in certain positions. The same diffi-
culty arises for arbitrary degree.

Since it is hopeless to solve the general bivariate interpolation problem using
polynomials of minimal degree, we shall examine instead some important special
cases, where the nodes lie in special configurations.

Exercises

1. Show that the number of terms in a bivariate polynomial of degree n is

2

2. What conditions must be placed on the nodes in a plane in order to be able
to interpolate three arbitrary control points with a linear function in two
variables?

3. Show that it is always possible to interpolate n + 1 control points at n + 1
distinct parameter values with a bivariate polynomial of degree n.

4. Consider a triangular array {P i j} of (n~2) control points in 3-space and an-
other triangular array {(sij,tij)} of (n~2) nodes in the parameter plane. Sup-
pose that there are n + 1 lines L1 Ln+l in the parameter plane such that k
nodes lie on line L k, k = 1 n + 1, and no node lies on two lines L i, L j .

a. Prove that there exists a bivariate polynomial of degree n that interpolates
the given array of control points at the specified parameter values. (Hint:
Use induction on n and Exercise 3.)

b. Bezout's Theorem states that if a polynomial curve f (s , t) = 0 of degree m
intersects another polynomial curve g (s,t) = 0 of degree n in more than
mn points, then f (s , t) and g(s, t) must have a common factor. Use
Bezout's Theorem to prove that the interpolant in part (a) is unique.

2.11 Rectangular Tensor Product Lagrange Surfaces

Tensor product surfaces are some of the simplest surfaces to construct, but they are
also some of the most important surfaces in computer graphics and computer-aided
design. In the tensor product construction, we start with two rectangular arrays of
size (m + 1) • (n + 1)" one for the control points {P/j } and one for the nodes { (sij,tij) },
where 0 < i < m and 0 < j < n (see Figure 2.19).

The nodes are in special positions because they lie on a rectangular grid in the
parameter plane; that is, they lie along the parameter lines s = s i and t - t j . We shall
assume further that s O < ... < s m and t O < ... < t n. We seek a bivarlate polynomial
P(s,t) of degree m in s and degree n in t that interpolates the given control points at
the specified parameter values. That is, we seek a bivariate polynomial P(s,t) of bide-
gree (re,n) such that P(s i , t j) = PO"

2.1 1 Rectangular Tensor Product Lagrange Surfaces 87

t - t 3
P03 P13 P23 P33

s - s o s - s 3

~L , L - L ,

t = t 0

(a) Domain--rectangular grid

P02 P12 P22 P32

POl Pll P21 P31

Poo P10 P20 P30

(b) Rangemrectangular array of points

Figure 2.19 Data for a tensor product bicubic interpolant: (a) represents the nodes in the domain and (b)
represents the control points in the range. The nodes lie on a rectangular grid, but the con-
trol points may be in arbitrary positions. The surface P(s,t) must interpolate the control points
PO at the nodes (s i, tj)mthat is, P(s i, tj) = PO"

This bivariate interpolation problem is easy to solve using univariate methods.
In fact, we can simply set

m n
P (s , t) - E ZL~'(sls0 Sm)ET(t l t 0 tn)Pkl ' (2.19)

k=0 I=0

where E~ (s i s 0 Sm) and L T (t l t o , . . . , t n) represent the Lagrange basis functions for
the nodes s o Sm and t o t n (see Section 2.5). By the cardinal conditions (2.12) it
follows immediately that

P (s i , t j) - Pij '

so we have indeed solved this interpolation problem. The surface defined by (2.19)
is called a t e n s o r p r o d u c t L a g r a n g e s u r f a c e because the basis functions
E~(s ls 0 s m) L ~ (t l t 0 t n) that multiply the control points Pkl are formed from
products of univariate Lagrange basis functions (see Figure 2.20).

The tensor product construction is a standard technique in geometric modeling.
Become familiar with it now because you will see lots of other tensor product sur-
faces later in this text.

We can rewrite (2.19) in the following manner:

Let

m

P (s , t) = ~,Lrff (s l so Sm) (t i t 0 tn)Pkl �9
k=0 1

(2.20)

n

Pk(t) - E L T (t l t 0 tn)Pkl k - 0 m .
1=0

(2.21)

8 8 C H A P T E R 2 L a g r a n g e I n t e r p o l a t i o n a n d N e v i l l e ' s A l g o r i t h m

Figure 2.20 The bicubic Lagrange basis function L 3 (s l s o s 3) L 3 (t l t o t3). Here the nodes are at the
integersmthat is, s k = t k = k, k = 0 3.

Then
m

P (s , t) - EErff (s l so sm)Pk(t).
k=0

(2.22)

If we fix the value of t = t *, then P (s , t *) is simply the univariate polynomial of
degree m that interpolates the points Po(t*) Pm(t*) at the parameter values
s O s m. Similarly, each degree n univariate polynomial Pk(t) interpolates the con-
trol points Pko P~n at the nodes t o t n . Thus the interpolation surface P(s , t)

interpolates the interpolation curves Po(t) Pm(t) (see Figure 2.21). An analogous
argument shows that the surface P(s , t) also interpolates the curves

since

m

Ql(S) - E E ~ (s l s 0 sm)Pkl I - 0 n,
k=0

n

P (s , t) - E L ~ (t l t 0 tn)Ql(s) .
1=0

Thus the surface P (s , t) actually interpolates the mesh of space curves {Pk(t) ,Ql (S)}

(see Figure 2.22).
Notice that if we restrict to the domain s o < s < s m and t o < t < t n, then we get a

four-sided surface patch. Moreover, it is easy to see that the boundary curves of this
rectangular patch are the Lagrange polynomial curves that interpolate the boundary
control points.

Equations (2.21) and (2.22) lead to a bivariate version of Neville's algorithm.
First apply Neville's algorithm m + 1 times to calculate points on each of the curves
Po(t) Pm(t); then apply Neville's algorithm one more time with Po(t) Pm(t) as

2.1 1 Rectangular Tensor Product Lagrange Surfaces 89 1

P03

fo(O P3(O

POI~_ P l l ~ P21~ ~2tU tP31

Poo _ - -
Plo P2o P3o

Figure 2.21 Schematic view of bicubic interpolation. The curve Pk(t)interpolates the control points
Pko Pk3, and the surface P(s,t)interpolates the control curves Po(t) P3(t). The boundary curves are the
interpolating curves of the boundary control points.

(a) Mesh of cubic space curves

Figure 2.22 Bicubic interpolation.

control points to compute P(s,t) (see Figure 2.23). Similarly, we could apply Nev-
ille's algorithm n + 1 times to compute points along the curves Qo(s) Qn(s) and
then apply Neville's algorithm one more time to interpolate points on these curves
(see Exercise 3).

There is another dynamic programming algorithm for tensor product surfaces
similar in spirit to Neville's algorithm but with a somewhat different structure. Let's
assume for the sake of simplicity that the degree in s is the same as the degree in t

90 CHAPTER 2 Lagrange Interpolation and Neville's Algorithm

P(s,t)

so

POI(s) P12(s)

s,_s
/ \ J \

no(t) P~(O n2(o

PO1 (t) P12 (t) PO1 (t) P12(t) PO1 (t) P12(t)

,,>,.. , y ,;>. ..<,o ,, ;., ,).
PO0 PO1 P02 P10 P11 P12 P20 P2] P22

Figure 2.23 Neville's algorithm for a biquadratic patch. The three lower triangles in the two bottom tiers
represent univariate interpolation in the t direction. The triangle at the top interpolates these results in the s
direction.

(i.e., m = n). Instead of constructing the interpolating surface from a sequence of lin-
ear interpolations, we can construct the interpolating surface from a sequence of
bilinear interpolations. This algorithm is based on the following bilinear generaliza-
tion of linear interpolation. Let

B(s,t) = (sl - s)(tl - t) (s - so)(t 1 - t)
(s 1 s0)(tl to) P00 + P10 _ _ (s 1 - s O) (t l - t O)

(s 1 - s) (t - t O)
+ P01 +

(S 1 - S O) (t l - t O)

Then it is easy to check that

(s - So)(t - t O) Pll �9
(s 1 - s 0)(tl - t 0)

B(si,tj) - Pij i , j - O,1.

Now let Poo(S,t),POn(S,t),PnO(S,t),Pnn(S,t) be the rectangular interpolants for the
four overlapping rectangular grids of size n x n with vertices at (So,to),(So,tn),(Sn,tO),
(Sn,tn), and corresponding overlapping n x n arrays of control points with comers at
Poo,Pon,PnO,Pnn. That is, each surface Pij(s,t) has the same index as the unique cor-
ner point interpolated by the surface (see Figure 2.24).

By construction

Pij (sk , t t) - Pk t
i < k < i J J - - + n - 1 and- - _ < l _ _ _ - + n - 1 for i , j - O , n .
n n n n

2.11 Rectangular Tensor Product Lagrange Surfaces 91

PO3

/'02

Pol

Poo

P]3 /:'23

PI2 P22

P]! P2]

P]O P2O

P33

t'32

P31

P30

(b) Overlapping control points

Figure 2.24 Overlapping data for four biquadratic rectangular interpolants: (a) represents the four over-
lapping domains. Each domain contains a 3 x 3 array of nodes; interior nodes (the black
square) belong to all four domains; nodes along the edges (dark gray squares) belong to two
overlapping domains; and nodes at the corners belong to a single domain. (b) represents the
four overlapping arrays of control points corresponding to these four overlapping domains.
Interior control points belong to all four arrays; control points along the edges belong to two
arrays; and control points at the corners belong to a single array.

Therefore it is easy to verify that the surface defined recursively by

P (s , t) (Sn - s) (t n - t) (s - s O) (t n - t)
- e o o (s , t) + enO(S,t)

(Sn - s o) (t n - t o) (Sn - s o) (t n - t o) (2.23)

_ _ (S - S o) (t - t o) s)(t to) Po (s,t) +
+ (s n - s o) (tn - t O) (Sn - s o) (tn - t O)

satisfies

P (S k , t l) = Pk! 0 < k , l < n .

To apply dynamic programming to (2.23), we must first construct all the bilinear
interpolants, then all the biquadratic interpolants, then all the bicubic interpolants,
and so on, until after n stages we arrive at the bidegree n surface P (s , t) . This algo-
rithm has the shape of a square pyramid, so we shall call it the pyramid algorithm
(see Figure 2.25).

Both Neville's algorithm and the pyramid algorithm are O(n3), but Neville's
algorithm is more efficient. When n = m, Neville's algorithm uses n + 1 triangles in
the t direction to compute the points P o (t) P n (t) , and then one additional triangle
in the s direction to interpolate these n + 1 points. Each triangle has n (n + 1)/2
nodes, and there are n + 2 triangles so

number of nodes in Neville's algorithm - n (n + 1)(n + 2)
2

92 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

Figure 2.25 A schematic diagram of the pyramid algorithm for a bicubic patch, viewed from above. Each
rectangular panel represents the computation of a point at its center by bilinear interpolation
of the points at its corners; the darker the rectangle the higher the degree of the interpolant.
Thus the light gray rectangles represent bilinear patches built directly from the control points,
the darker gray rectangles represent biquadratic patches built from overlapping 3 x 3 arrays
of control points, and the black rectangle represents the bicubic interpolant. The interior
control points are obscured by the panels.

On the other hand, the pyramid algorithm has one node at the top of the pyramid,
four at the next level, then nine at the next level, and so on. Thus

nk2 n(n+l)(2n+l) number of nodes in pyramid algorithm - ~ =
k-1 6

Since (2n + 1)/3 < n + 2, there are actually fewer nodes in the pyramid algo-
rithm than in Neville's algorithm. However, each node in the pyramid algorithm rep-
resents a bivariate bilinear interpolation, while each node in Neville's algorithm
represents only a univariate linear interpolation. Counting just multiplies and
divides, we find that each linear interpolation costs two multiplies and one divide,
while each bilinear interpolation costs eight mult ipl ies~four for the four arrows
entering a node and four more to compute the labels on each a r row~and one divide
(since the labels on all the arrows entering a node have the same denominator, we
can perform this divide just once at each node; however if the control points lie in
three dimensions, the real cost is actually three divides instead of one). Thus

cost per node in Neville's algorithm = 3

cost per node in pyramid algorithm = 9.

Multiplying the cost per node by the total number of nodes, we find

total cost of Neville's algorithm - 3n(n + 1)(n + 2)
2

2.11 Rectangular Tensor Product Lagrange Surfaces 93 1

total cost of pyramid algorithm - 3n(n + 1)(2n + 1)
2

Since n + 2 < 2n + 1, Neville's algorithm is somewhat more efficient than the
pyramid algorithm. It may also be easier to program, since it uses only univariate
interpolation and this code is often already in place to generate curves.

Neville's algorithm has another advantage over the pyramid algorithm that is
even more substantial. Typically surfaces are rendered by generating points on the
surface along isoparameter lines~that is, along lines of constant s or t. If we fix
t = t* and vary only s, then we can reuse the computation of the points
Po (t*) Pm (t*). Thus along isoparameter lines, Neville' s algorithm for tensor prod-
uct surfaces reduces to the univariate version of Neville's algorithm, which is only
O(n2). No such reduction occurs for the pyramid algorithm along isoparameter lines.
Nevertheless, it is worth taking the time to understand the structure of the pyramid
algorithm because in the next section we shall develop a similar algorithm for trian-
gular Lagrange patches where the univariate version of Neville's algorithm is not
readily available.

Finally, note that there is an even faster evaluation algorithm for tensor product
Lagrange interpolation because the O(n 2) algorithm for the univariate Lagrange
basis functions based on the univariate down recurrences leads to a simple O(n 2)
algorithm for tensor product Lagrange interpolation (see Exercise 6).

Exercises

1. Prove that the boundary curves of an interpolating tensor product patch are
the Lagrange polynomials that interpolate the boundary control points.

2. Complete the analysis of the pyramid algorithm by showing how to imple-
ment it when the degree in s is different from the degree in t.

3. Consider an interpolating tensor product patch of bidegree (m,n), where
m < n .

a. Show that to compute a single point on the surface it is faster to apply
Neville's algorithm first in the s direction and then in the t direction.

b. Show that to compute many points along the surface it may be faster to
apply Neville's algorithm first in the t direction and then in the s direction.

c. Explain this apparent anomaly.

4. Implement both Neville's algorithm and the pyramid algorithm for tensor
product surfaces. Which algorithm do you prefer? Why? Experiment with
tensor product surfaces of different degrees.

a. How does altering the arrangement of the control points affect the shape
of the surface?

b. How does changing the values of the nodes affect the shape of the
surface?

94 C H A P T E R 2 Lagrange Interpolat ion and Nevi l le 's A lgor i thm

5. In Section 2.5 we discussed the up and down recurrences for the univariate
Lagrange basis functions. What are the up and down recurrences in the case
of tensor products for

a. Neville's algorithm?

b. the pyramid algorithm?

6. Use the down recurrence for the univariate Lagrange basis functions to
develop an O(n 2) evaluation algorithm for tensor product Lagrange interpo-
lation.

7. Prove that
m n

~, ~,Lrff (s l so sm)L~(t l t 0 tn) = 1.
k=0l=0

8. Give necessary and sufficient conditions on the control points for the inter-
polating tensor product surface to collapse to

a. a single point

b. a line

c. a plane

Justify your answer.

9. Complete the proof that the surface P(s , t) defined by (2.23) satisfies
P(Sk,t l) = Pkl for 0 < k,l < n.

10. The surface generated by Neville's algorithm and the surface generated by
the pyramid algorithm both interpolate the control points at the nodesmthat
is, they both satisfy P(sk , t l) = Pkl. But how do we know that these surfaces
are actually identical at every point? Prove that the surface generated by the
pyramid algorithm is identical to the surface generated by Neville's algo-
rithm by using (2.23) and induction to show that the coefficient of Pkl in the
pyramid algorithm is

Lrff (s l so sm)L~ (t l to tn).

(See also Exercise 1 of Section 2.13.)

2.12 Triangular Lagrange Patches

To define rectangular interpolating surface patches, we need to choose our parame-
ters to lie on a rectangular grid. Similarly, to construct triangular interpolating sur-
face patches, we must select our parameters to lie on a triangular grid. We can build
a triangular grid of size n by selecting three sets of lines (R 0 Rn; S O Sn; and
T O T n) in the parameter plane, and insisting that the three lines R i,Sj, T k intersect
at a common point whenever i + j + k = n. Let

Ri n S j n T k = Qijk i + j + k = n

=dp i + j + k < n ;

2.12 Triangular Lagrange Patches 9 S

Q3oo P3oo

P201 P210

P102 Pi l l P120

Qoo3 Qo3o
Qo12 Q021 Po03 P o 1 2 P 0 2 1 P030

(a) Domain~tr iangular grid (b) Rangentriangular array of points

Figure 2.26 Data for a cubic triangular interpolant: (a) represents the nodes in the domain and (b) repre-
sents the control points in the range. The nodes lie on a triangular grid, but the control points may be in arbi-
trary positions. The surface A(s,t) must interpolate the control points Pijk at the nodes Qdkmthat is, A(Qij k) =
Pijk. Compare to Figure 2.19 for a tensor product surface.

then the points Qijk are said to form a triangular grid (see Figure 2.26). Notice that
a triangular grid of size n consists of one point at the apex of the triangle, two points
at the next level, three points at the next level, and so on until the final level with
n + 1 points. Thus the number of points in a triangular array of size n is

n+l
]~ k (n + 1)(n + 2) / 2 - (n+2), = 2

k=l

which is exactly the same as the number of coefficients in a bivariate polynomial of
degree n (see Exercise 1 of Section 2.10).

Neville's algorithm for triangular surface patches is a dynamic programming
procedure for generating a bivariate polynomial of degree n that interpolates a trian-
gular array of control points ~jk at parameter values Qijk lying on a triangular grid
of size n.

To develop Neville's algorithm, we shall use barycentric coordinates in the
parameter plane. (To review barycentric coordinates, see Section 1.2.3.) Given three
control points P1,P2,P3 and three noncollinear parameter values Q1 = (sl,tl),
Q2 = (s2, t2), Q3 = (s3, t3), we can apply bivariate linear interpolation to interpolate
the control points at the specified parameter values. Simply set

P(s,t) = fll(S,t)P1 + fl2(s,t)P2 + fl3(s,t)P3, (2.24)

where fll(s,t),fl2(s,t),fl3(s,t) are the barycentric coordinates with respect to the
points Q1, Q2, Q3 of the point Q in the parameter plane with rectangular coordinates
(s,t). Equation (2.24) is the analogue in the parameter plane of Equation (2.5) along

96 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

the parameter line. By the standard properties of barycentric coordinates (Theorem
1.1, Properties 4 and 5), the function P(s,t) is linear in s and t, and

P(Sk,tk) = Pk k = 1,2,3.

Now just like in Neville's algorithm for curves, the trick for constructing inter-
polating surfaces is to build higher-order interpolants by performing linear interpola-
tion on lower-order interpolants. Suppose we can construct degree n - 1 polynomials
that interpolate triangular data on a triangular grid of size n - 1. Let Anoo,Aono,Ao0 n
be the triangular interpolants for the overlapping triangular grids of size n - 1 with
vertices at Qnoo,Qono,Qoon and corresponding overlapping arrays of control points
with comers at PnOO,POnO,POOn. That is, each surface has the same index as the
unique comer point interpolated by the surface (see Figure 2.27).

Then by construction

AnOO(Qijk)- Pijk i r 0

Aono(Qijk) = Pijk J r 0

AOOn (Qijk) = Pijk k :/: 0 .

To build the degree n triangular interpolant A on the triangular grid of size n, set

A(s,t) = flnOO(S,t)AnOO(S,t) + flOnO(S,t)Aono(S,t) + flOOn(S,t)Aoon(S,t) (2.25)

where ~nOO,flOnO,flOOn are the barycentric coordinates relative to the points Qnoo,
Qono,Qoon.

(b) Overlapping control points

Figure 2.27 Overlapping data for three quadratic triangular interpolants: (a) represents the three overlap-
ping domains. Each domain contains a triangular grid of size two. The interior node Qll l belongs to all three
domains; nodes along the edges (dark triangles) belong to two overlapping domains; and nodes at the cor-
ners belong to a single domain. (b) represents the three overlapping arrays of control points corresponding
to these three domains. The interior control point Plll belongs to all three arrays; control points along the
edges belong to two arrays; and control points at the corners belong to a single array. Compare to Figure
2.24 for tensor product surfaces.

2.12 Triangular Lagrange Patches 9 7

It is easy to check that A(s,t) interpolates the triangular array of control points
{Pijk } on the triangular grid of parameter values {Q6k } when i + j + k - n. Certainly

A(Qijk) = Pijk i f i, j , k :/: 0

because, by assumption,

A;~pv (Qijk) - Pijk i f i, j , k :/: O,

and the barycentric coordinates sum to one. It remains to verify interpolation along
the boundaries of the grid. Let's check along the boundary defined by i = O. If i = 0
and j , k :/: O, then Qoj k lies on the line joining Qono, Qoon, so

and by construction

/ ~ . o o (P i j ~) - o

Aono (Qojk) - AOOn (Qojk) - Pojk"

Again since the barycentric coordinates sum to one,

A(Qojk) - Pojk"

Finally, if i - j = 0, then

so again

flZ/~v (Qoo,) - 0 v - 0

=1 v - n

A(Q00n) = A00n (Qoon) =POOn.

Similar arguments apply along the other two boundaries of the triangular grid.
The three boundaries of the triangular patch are the images of the lines

Ro,So,To. Along each of these lines, A(s,t) is a degree n univariate polynomial that
interpolates the corresponding boundary control points. Thus each boundary of an
interpolating triangular patch is the Lagrange polynomial curve that interpolates the
corresponding boundary control points.

Equation (2.25) can be converted into a dynamic programming algorithm for
A(s,t) in the usual way by first computing the linear interpolants over triangular
grids of size one, then computing the quadratic interpolants over triangular grids of
size two, then the cubic interpolants over triangular grids of size three, and so on
until finally the degree n interpolant over the triangular grid of size n is generated.
This procedure constructs a triangular pyramid of points. Figure 2.28 illustrates this
algorithm schematically for cubic interpolants.

Neville's pyramid algorithm guarantees the existence of triangular Lagrange
basis functions. That is, there are bivariate polynomials L(ik(s,t) of degree n depend-
ing on the grid {Qijl~} such that

A(s,t) - Zijk Lijk (S,t)Pijk .

98 CHAPTER 2 Lagrange Interpolation and Neville's Algorithm

/903 0

Figure 2.28 A schematic diagram of Neville's pyramid algorithm for cubic surface interpolation. Each tri-
angular panel represents the computation of a point at its center by linear interpolation of
the points at its corners. Thus the light gray triangles represent linear patches built directly
from the control points, the darker gray triangles represent quadratic patches built from
overlapping arrays of control points, and the black triangle represents the cubic interpolant.
Notice that interior control points are obscured by the panels, and down-pointing (white) tri-
angles are ignored. Compare to Figure 2.25 for tensor product surfaces.

As in the univariate setting, the basis function Lijk(s,t) is given by the sum over all
paths from the point Pijk at the base of the pyramid to the point A(s,t) at the apex.
Thus the basis function Lijk(S,t) can be computed using the up recurrence by setting
Pijk = 1 and all the other control points to zero, or from the down recurrence by plac-
ing a one at the apex of the pyramid, reversing all the arrows, and collecting the
functions Lijk(S,t) at the base of the pyramid.

As in the case of curves, it is also possible to derive simple explicit formulas for
the basis functions Lijk(s,t). In the univariate setting, we observed that, due to the
parallel property, all paths from any fixed point at the base to the apex of the recur-
rence are identical up to constant multiples, and we used this observation to derive
explicit expressions for the Lagrange basis functions. Similar observations apply to
Neville's pyramid algorithm for interpolating triangular surfaces, although the paral-
lel property may be a bit more difficult to visualize. Therefore, here we shall take a
more direct approach to deriving explicit formulas for the Lagrange basis functions.

In Neville's pyramid algorithm all the arrows are labeled with barycentric coor-
dinates, so the basis functions are products of barycentric coordinates. But recall
from Section 1.2.3 that barycentric coordinates for a triangle can be constructed
from the equations of the lines joining the vertices of the triangle. To construct a tri-
angular grid, we start by selecting three sets of lines R o ,Rn; SO,...,Sn; and T O T n
in the parameter plane, and the points {Qijk} in the grid lie on the intersections of
these lines (see Figure 2.26). Thus we can use the equations of these lines, properly
normalized, to represent all our barycentric coordinates. Define Aijk(S,t) to consist
of the product of n lines that pass through all the points in the triangular grid except
for Qijk by setting

2.12 Triangular Lagrange Patches 99

Aijk(S,t) = Ro(s,t). . .Ri_l (S,t)So(s,t).. .Sj_l (S,t)To(s,t)...Tk_l (S,t)

(see Figure 2.29). We claim that

Lijk (S,t) = Aijk (s't) . , ,

A6k (Sijk,tijk)

where (s/j k,t6k) are the rectangular coordinates of Qijk �9
Let's check that this really works. First observe that Aijk(s,t) is a polynomial of

degree n, since i + j + k = n. Thus L6k(s,t) has the correct degree. Next notice that
Aijk(s6k,tij k) ~: 0 since Qijk = Ri ~ Sj ~ T k, so Qok does not lie on any of the lines

in the product for A0k. Finally, we have the carchnal conditions

Lijk(Qafl r) = 0 (i , j ,k) r (a, fl, T)

= 1 (i, j , k) = (a , r , T).
(2.26)

The first equality follows because if (i , j ,k) :/: (a, fl, T), then since a + fl + "f = n =
i + j + k, either a < i or fl < j or 7 < k. Hence Aij k (Qafl),) = O. The second equal-
ity follows by our normalization, since

Therefore,

A/j~(OUk)
Lijk (Qijk) = = 1.

a i jk(a i j~ ,)

a(s,t) = Eij Lij (s,t)eij

Qnoo

SO . . TO

Rijl

Qoon QOnO
Ro

Figure 2.29 The function Aijk(S , t) consists of the product of n lines that pass through all the points in the
triangular grid except for Qijk.

100 CHAPTER 2 Lagrange Interpolation and Neville's Algorithm

is indeed an interpolant because by (2.26)

a(Oa#r) = Paflr "

In Exercise 9 you will show that this interpolant is exactly the same as the interpo-
lant generated by the pyramid algorithm. Figure 2.30 illustrates the control points
and the corresponding basis functions for the cubic triangular interpolant.

P300 RoR1R2

P201 P210 RoR 1 TO RoR 1 So

P102 P 1 1 1 P120 RoToT1 R o S o T o RoSoS1

P003 /9012 /9021 /9030 ToT1T2 SoToT1 S o S 1 T o SOSlS2

(a) Array of control points (19) Array of basis functions

Figure 2.30 Arrays of (a) the control points and (b) (unnormalized) Lagrange basis functions for triangular
cubic Lagrange surface patches. Here Ri, S j, T k are linear functions representing the lines that
define the triangular grid in parameter space (see Figure 2.26).

Exercises

1. Use the explicit formula for the triangular Lagrange basis functions to
develop a ladder evaluation algorithm for triangular Lagrange surface
patches.

2. Suppose that the control points for a triangular surface are taken from the
triangular array generated by Neville's algorithm for an interpolating curve.
What will the surface look like?

3. Suppose that the control points for a triangular surface are taken from one of
the triangular faces of the pyramid generated by Neville's algorithm for a
tensor product surface. What will the surface look like?

4. Give necessary and sufficient conditions on the control points for the trian-
gular Lagrange surface patch to collapse to

a. a single point

b. a line

c. a plane

Justify your answer.

2.12 Triangular Lagrange Patches 101

5. Implement Neville's algorithm for triangular surface patches. Experiment
with triangular surfaces of different degrees.

a. How does altering the arrangement of the control points affect the shape
of the surface?

b. How does changing the triangular grid affect the shape of the surface?

6. a. What is the down recurrence for Neville's pyramid algorithm for triangu-
lar surface patches?

b. Explain why this down recurrence is faster for evaluation than the up
recurrence.

7. Consider an array {Pij} of (n~2) control points in 3-space and another array
{Qij} of (n~2) nodes in the parameter plane. Suppose that the nodes are
generated by the intersection of n+ 2 lines L 1 Ln+ 2 in the parameter
plane (see Figure 2.31).

a. Prove that there exists a bivariate polynomial of degree n that interpolates
the given array of control points at the specified parameter values.

b. What are the Lagrange basis functions for this interpolant?

Q3

Q1 d / / ~ Q6
L1 Q5

Figure 2.31 Six points generated by the intersection of four lines.

8. Let Pijk be a triangular array of (n~2) control points. Suppose we wish to
interpolate these points with a surface at the parameter values (si,t j). For
each j, define Pj(s) to be the curve that interpolates the control points
Po,j,n-j Pn-j,j,O at the nodes s o S n _ j . Now define a point on the sur-
face P(s,t) to be the value of the curve P(t) that interpolates the points
Po(s) Pn(s) at the nodes t o t n (see Figure 2.32).

a. Show that the surface P(s,t) interpolates the points Pijk at the nodes
(si,tj).

b. Describe the curves s = s o and t =t 0.

c. Show that this surface has a singularity at (so,t n).

102 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

d. Suppose that s i = i and tj = j for all i, j . Then the points (si,t j) = (i, j)
lie on a triangular grid.

i. Describe the image of the curve s + t = n on the surface P(s,t). In
particular, which control points are interpolated by this curve?

ii. Show that this surface is not the same as the triangular Lagrange
interpolant for the same nodes and control points.

iii. Describe a dynamic programming algorithm for generating this sur-
face. Draw the diagram for n = 3.

iv. Show how to express this surface as a tensor product surface. In par-
ticular, describe the nodes and the control points.

P21o
/:'300 ~ o

P201; P l l l ~ ~
\ \ ~Pz(s).., . ' / "

" ~ P021
P102 Po12

PO03

P030 = P3(s)

Figure 2.32 The construction of a three-sided surface that interpolates a triangular array of points.

9. Prove that the triangular surface generated by Neville's pyramid algorithm
is identical to the triangular surface generated from the explicit basis func-
tions {Lijk(S,t) by using (2.25) and induction to show that the coefficient of
Pijk in the pyramid algorithm is Lijk(s,t).

10. Consider a collection of nodes Qijk, i + j + k = n, in the parameter domain
such that any three nodes Qijk, Opqr, Ouvw are affinely independent provided
that neither (i,p,u) nor (j ,q,v) nor (k,r,w) are identical.

a. Given a triangular collection of control points Pijk, i+ j + k = n, show
that the same tetrahedral algorithm that defines the Lagrange interpolant
over a triangular grid generates a well-defined surface Q(s,t) relative to
the nodes {Qijk} even if the nodes {Qijk} do not form a triangular grid.

b. Explain why the surface Q(s,t) need not interpolate the points {Pijk} at
the nodes {Qijk }"

2.13 Uniqueness of the Bivariate Lagrange Interpolant 103

11. L-patches are surfaces defined in the following manner. Consider three sets of
l ines--R 0 Rn_l ; S O Sn_l; and To,. . . ,Tn_l--Such that R a ~ Sfl ~ T?,= ~),

a + f l + 7 " < n .

a. Show that if a +/3 + 7 < n, then there exist constants ra&,,saflT,ta&,
such that

raflrR a + saflTS fl + taflyT ? - 1.

Given a triangular collection of control points P/tic, i + j + k - n, the L-patch
L(s , t) is defined recursively by the tetrahedral algorithm

eij ~ - eij

Pgfl7 d-1 d-1 d-1 - raflyRaPa+l,fl?, + saflySflPa,fl+l 7 + taflyTTPa,fl,7+ 1

L (s, t) - P(~O0 a + 16 + Y= n - d

Show that

b. There are constants cij k such that

Lijk(S,t) = CijkRo(s,t). . .Ri_l (S , t)So(s , t) . . .S j_l (s , t)To(s, t) . . .Tk_l (S,t)

i + j + k = n ,
L(s , t) - ~,Lijk (S,t)Pij k �9

i+j+k=n

c. If R i n Sj n T k = Qijk, i + j + k = n, then L(s,t) is the triangular Lagrange
interpolant for the control points {Pijk } with nodes {Qijk }.

12. A basis {L~j k (s,t)}, i+ j + k = n, is called a lineal basis if there are three
sets of linear funct ions~R0 Rn-1; SO Sn-1; and To Tn_l~SUch that

Lqk(S,t) = CijkRo(s,t). . .Ri_l (S , t)So(s , t) . . .S j_l (S, t)To(s, t) . . .Tk_l (S,t)

i + j + k = n .

Show that the following bases are lineal bases:

a. Mijnk(s,t) = (ij~)sitJ (monomial basis)

b. Bijnk(s,t) - (ijnk)sitJ (1 - s - t) k (Bernstein basis)

2.13 Uniqueness of the Bivariate Lagrange Interpolant

In the preceding section we provided two distinct constructions for the triangular
Lagrange interpolant: a dynamic programming algorithm based on a bivariate ver-
sion of Neville's algorithm and an explicit formula using bivariate Lagrange basis
functions. In Exercise 9 of the preceding section you showed that these two con-
structions generate identical surfaces. But perhaps there are yet other constructions

104 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

that lead to different interpolating surfaces of the same degree. Here we shall show
that just like in the univariate setting, the bivariate interpolant of fixed degree is
unique. We shall concentrate on triangular patches; the rectangular tensor product
case is similar so we leave it as an exercise (see Exercise 1). We begin with some
simple observations about bivariate polynomials.

LEMMA
2.11

Let l(s,t) = as + bt + c, a r 0, be a linear function and let f(s,t) be a bivariate
polynomial of degree n. Then there is a bivariate polynomial g(s,t) of
degree n - 1 and a univariate polynomial h(t) of degree n such that
f (s,t) = l(s,t)g(s,t) + h(t).

Proof Treating f(s,t) and l(s,t) as polynomials in s with coefficients in t, we can
write

f (s , t) = f o (t) s n + " ' + fn_ l (t) s + fn(t)

l (s , t) = 10(t)s + l l (t) ,

where fk(t) and lk(t) are polynomials of degree k in t. Since loft) is a non-
zero constant, the standard long division algorithm for polynomials in s
yields

f (s,t) = l(s,t)g(s,t) + h(t),

where g(s,t) is a polynomial of degree n - 1 and h(t) is a polynomial of
degree n.

PROPOSITION
2.12

Let l(s,t) be a linear function and let f(s,t) be a polynomial of degree n. If
the two curves l(s,t) = 0 and f (s , t) = 0 have n + 1 points in common, then
there is a polynomial g(s,t) of degree n - 1 such that f(s,t) = l(s,t)g(s,t).

Proof By Lemma 2.11, if l(s,t) = as + bt + c, a ~: 0, then

f (s,t) = l(s,t)g(s,t) + h(t)

where g(s,t) is a polynomial of degree n - 1 and h(t) is a polynomial of
degree n. Suppose that l (s , t)= 0 and f (s , t) = 0 have n + 1 points (Sl,tl),
.... (Sn+l,tn+l) in common. Then

h(t k)=O, k = l n + l .

Thus h(t) is a polynomial of degree n with n + 1 distinct roots. Hence by
Corollary 2.4 h(t) is identically zero, so f (s , t) = l(s, t)g(s,t) . On the other
hand, if a = 0, then the result is still valid because we can just reverse the
roles of s and t.

2.13 Uniqueness of the B ivariate Lagrange Interpolant 105

Proposition 2.12 is actually a special case of Bezout's Theorem, which is a fun-
damental result in algebraic geometry. Bezout's Theorem asserts that if f(s,t) is a
polynomial of degree m and g(s,t) is a polynomial of degree n and the curves
f(s,t) = 0 and g(s,t) = 0 agree at more than mn points, thenf(s,t) and g(s,t) have a non-
constant common factor. Here, however, we need only use our special case of
Bezout's Theorem to establish the uniqueness of the triangular Lagrange interpolant.

THEOREM
2.13

The degree n Lagrange interpolant on a triangular grid of size n is unique.

Proof Consider a triangular grid of size n defined by three sets of lines R 0 Rn;
S O Sn; and T O T n. Suppose that F(s,t) and G(s,t) are two degree n

polynomials that interpolate the same data on this grid, and let H(s,t) =
F(s , t) -G(s , t) . We shall prove that H(s,t) is identically zero by showing

that To(s,t) Tn(s,t) are all factors of H(s,t). To proceed, observe that by
construction, H(s,t) vanishes at all the points on the grid; hence the degree n

curve H(s,t) = 0 and the line To(s,t) = 0 agree at n + 1 points. Therefore, by
Proposition 2.12, there is a polynomial Hl(s,t) of degree n - 1 such that

H(s , t)= To(s,t)Hl(S,t). Now suppose that we have already shown that
H(s , t)= To(s,t)...Tp(s,t)Hp+l(S,t), where Hp+l(s , t) i s a polynomial of
degree n - p - 1. Then since H(s,t) vanishes at all points on the grid and the
lines T O Tp do not pass through any of the grid points on the line Tp+ 1,
Hp+l(S,t) - 0 and Tp+l(S,t) - 0 agree at n - p points. Hence Hp+l(s,t) is
divisible by Tp+l(s,t). Therefore it follows by induction on p that H(s,t) =
Hn+l(s,t)To(s,t)...Tn(s,t), where Hn+ 1 is a constant. But this is impossible
unless Hn+ 1 = 0, since, by construction, H(s,t) is a polynomial of degree n,
so H(s,t) cannot factor into n + 1 linear factors. Hence H(s,t) - O. We con-
clude that F(s, t)= G(s,t), and therefore that the triangular interpolant is
unique.

It follows immediately from Theorem 2.13 that the bivariate version of Neville's
algorithm and the explicit formula based on the bivariate Lagrange basis functions
generate the same interpolating surface.

COROLLARY
2.14

Let {Qijk} be the grid points on a triangular grid of size n. If P(s,t) is a
polynomial of degree n, then P (s , t) - Zijk Lijk(S,t)P(Qijk).

Proof The polynomials P(s,t) and Zijk Lijk(S,t)P(Qijk) both interpolate the values

{P(Qijk)} at the nodes {Qijk }. Hence by the uniqueness of the polynomial

interpolant P(s,t) - Zijk Lijk (s,t)P(Qijk).

106 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

Exercises

1. Let f (s , t) be a bivariate polynomial of bidegree (m,n), and let a be a fixed
constant.

a. Show that there is a bivariate polynomial g(s,t) of bidegree (m - 1,n) and
a univariate polynomial h(t) of degree n such that f(s,t) = (s - a)g(s,t) +
h(t).

b. Show that if f (a , t) = 0 has n + 1 roots, then there is a polynomial g(s,t)
of bidegree (m - 1,n) such that f (s , t) = (s - a)g(s,t).

c. Show that the tensor product Lagrange interpolant on a rectangular grid
of size (m + 1) • (n + 1) is unique.

d. Conclude that Neville's algorithm based on successive univariate inter-
polation in s and t and the pyramid algorithm based on bilinear interpola-
tion generate the same interpolating surface.

2. a. Prove that the functions {Lr~(slso sm)L~(slto tn)} form a basis for
the bivariate polynomials of bidegree (m,n) by using (2.12) to show that
these functions form a maximal linearly independent collection of poly-
nomials of bidegree (m,n).

b. Using part (a), prove that the tensor product Lagrange interpolant on a
rectangular grid of size (m + 1) • (n + 1) is unique.

3. a. Without appealing to Corollary 2.14, prove that the functions {Lijk(S,t)}
form a basis for the bivariate polynomials of degree n by using (2.26) to
show that {Lijk(S,t)} is a maximal linearly independent collection of
polynomials of degree n.

b. Using part (a), prove Theorem 2.13.

4. Prove that ~.,ijk Lijk (s,t) - 1.
5. Show that the nodes of a triangular grid of size n cannot lie on a polynomial

curve f(s,t) = 0 of degree n.

6. Let {Qijk} be a triangular grid of size n. What coefficients should we put at
the base of Neville's algorithm to generate the polynomials s,t,sPtq,
O < p + q < n ?

7. Suppose that {Qijk} is a triangular grid of size n. Let P(s,t) be a polynomial
of degree n, and let A(s,t) be the polynomial generated by Neville's algo-
rithm that interpolates the control points P(Qijk). Prove that A(s,t) - P(s,t).

8. Without appealing to Proposition 2.12, give an elementary proof that if a line
L(s,t) - as + bt + c = 0 intersects a degree n polynomial curve P(s,t) = 0 in
more than n points, then every point on the line lies on the polynomial curve.

9. We say that two surfaces P(s,t) and Q(s,t) are equivalent if P(s,t) = Q(s,t)
for all (s,t).

a. Show that every (m + 1) x (n + 1) rectangular grid is embedded in a trian-
gular grid of size m + n.

2.14 Rational Lagrange Surfaces 107

b. Show that the triangular grid T n = { (i , j) l i, j > O, i + j < n} of size n is
embedded in an (n + 1) x (n + 1) rectangular grid.

c. Show that every tensor product Lagrange interpolant P(s,t) of bidegree
(m,n) is equivalent to a unique triangular Lagrange interpolant A(s,t) of
degree m + n.

d. Show that every triangular Lagrange interpolant A(s,t) of degree n on the
grid T n is equivalent to a unique tensor product Lagrange interpolant
P(s, t) of bidegree (n,n).

10. Suppose that {Fij(s,t)} is a collection of blending functions and that
{(sij,tij)} is a collection of nodes for some fixed finite set of indices
{(i, j) e II.

a. Show that for each collection of points {P/j }, there is a function

F(s, t) - ~,(i,j)elCijFij(s,t) such that F(s~i,tij) - Pij for all (i , j) e I ,

if and only if detlFpq(Skl,tkl)] ~: O.

b. Show that if det[Fpq(Skl,tkl) I r O, then the interpolant

F (s , t) - Z(i,j)ezcijFij(s,t)

that satisfies F(s(i,tij) - Pij for all (i, j) e I is unique.

c. Deduce that if an interpolant

F(s, t) = Z(i,j)ezc(iFij(s,t)

exists for every collection of points {~j}, (i, j) e I, then the interpolant
must be unique.

d. Conclude that

i. The degree n Lagrange interpolant on a triangular grid of size n is
unique.

ii. The bidegree (m,n) Lagrange interpolant on a rectangular grid of size
(m + 1) x (n + 1) is unique.

2.14 Rational Lagrange Surfaces

Many common surfaces such as the sphere and the torus cannot be represented
exactly by polynomial parametrizations. As with nonpolynomial curves, we could
try to approximate these surfaces with polynomials by interpolating lots of points
along the surface. Unfortunately, often we would need to use polynomials of quite
high degree to generate a good approximation.

The sphere, however, like the circle, has a rational parametrization; in fact, the
sphere has several different rational parametrizations. Below we give a rational qua-
dratic and a rational biquadratic parametrization for the unit sphere.

108 (H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

�9 Quadratic parametrization of the sphere

2s 2t 1 - s 2 - t 2

x - 1+ s 2 + t 2 Y - 1+ s2 + t2 z - 1+ s2 + t2 (2.27)

�9 Biquadratic parametrization of the sphere

2s(1 - t 2) 2t(1 + s 2) (1 - s2)(1 - t2). (2.28)
- - z - s2 x (l + s 2) (l + t 2) Y (l + s 2) (l + t 2) (1+) (l + t 2)

For both of these parametrizations, you can easily check that x 2 + y2 + z 2 = 1, so
both parametrizations do indeed represent the same unit sphere.

To represent a rational surface using Lagrange interpolation, we proceed just as in
the case of a rational curve: we lift the surface from a rational parametrization in affine
space to a polynomial parametrization in Grassmann space by treating the denomina-
tor as mass. For example, for the sphere we can consider the four-dimensional surfaces

x - 2s y - 2t z - 1 - s 2 - t 2 w - l + s 2 + t 2

x - 2s(1 - t 2) y - 2t(1 + s 2) z - (1 - s 2)(1 - t 2) w - (1 + s 2)(1 + t 2) .

To find the mass-points that are the control points of a polynomial surface in Grass-
mann space, we first select a g r idma triangular grid for parametrizations of total
degree n or a rectangular grid for parametrizations of bidegree (m , n) ~ a n d then eval-
uate the polynomial parametrization at the points of the grid. Dividing by the mass
yields the control points along the original rational surface.

We can also use the Lagrange blending functions to write explicit formulas for a
rational surface. If (mijkPijk,mijk) or (mjkl~k,mjk) represent the control points of the
corresponding polynomial surface in Grassmann space, then projecting from Grass-
mann space to affine space, we obtain

�9 Rational triangular Lagrange parametrization

R (s , t) - ~'ijk mijkPijkLijk (S't)

~,ijk mijk Lijk (S, t)
(2.29)

�9 Rational tensor product Lagrange parametrization

m n

~,]~mklPklldn~(s l so sm)L~(t l t 0 tn)
R(s,t) = k=0/=0

m ?'/

~., ~,mklErff (s Is 0 sm)L~(t l t 0 tn)
k=0 l=O

(2.30)

Rational Lagrange surfaces defined by (2.29) and (2.30) interpolate their control
points Pijk or Pjk, since the corresponding polynomial surfaces in Grassmann space
interpolate the mass-points (mijkPijk,mij k) or (mjkPjk,mjk). Thus the masses serve as

2.14 Rational Lagrange Surfaces 109

shape parameters: they do not affect interpolation, but they do affect the shape of the
surface. But just as in the case of rational Lagrange curves, modest changes to a sin-
gle mass can produce drastic changes in the shape of a surface. Thus care must be
taken when modifying the masses of a rational Lagrange surface.

In a rational tensor product Lagrange surface some masses mkl may be set to
zero. When mkl = 0 , the mass-point (mklPkl,mkl) is replaced by a vector (Vkl,O) in
Grassmann space. Typically when mkl = 0 , the rational Lagrange surface R(s,t) has
a singularity at (Sk,t !) because when mkl = 0 all the Lagrange basis functions in the
denominator vanish a t (Sk,tl). If, however, both mkl = 0 and Vkl = 0, the numerator
also vanishes and the singularity is replaced by a base point, a parameter pair (Sk,tl)
where both the numerator and the denominator vanish. Although, unlike curves,
there may be no common factor in the numerator and denominator, base points lower
the implicit degree of the parametric surface. Nevertheless, the resulting rational sur-
face still interpolates the control points Pij, (i, j) r (k,1). Analogous results hold for
triangular surfaces.

If the denominator of a rational Lagrange surface in (2.29) or (2.30) is ever zero
and the numerator is nonzero, then we cannot project the surface continuously into
affine space. Rather we must project the surface into projective space. Notice, there-
fore, that for a rational triangular Lagrange surface, the parameter space is an affine
space, the control points reside in a Grassmann space, and the surface itself lies in a
projective space.

Exercises

1. What is the effect on a rational tensor product Lagrange surface if mkl = 0
for all 1 = 0 n ?

2. Experiment with altering the masses in a rational Lagrange surface.

a. What are the local and global effects of altering a single mass?

b. What is the effect of a negative mass?

c. What happens if all the masses are changed simultaneously?

3. a. Find the control points and the masses for the sphere given by the
quadratic parametrization (2.27) relative to the triangular grid

T2 = { (i , j) l i, j > O, i + j < 2 } .

b. Use the results of part (a) together with Neville's pyramid algorithm to
render the sphere.

4. a. Find the control points and the masses for the sphere given by the bi-
quadratic parametrization (2.28) relative to the rectangular grid
R2, 2 = {(i,j) I 0 _< i , j < 2}.

b. Use the results of part (a) together with Neville's algorithm to render the
sphere.

110 C H A P T E R 2 L a g r a n g e In t e rpo la t ion a n d Nev i l l e ' s A l g o r i t h m

5. The torus with inner radius d - a and outer radius d + a is the locus of points
that satisfy the degree 4 algebraic equation

a. Verify that

x y2 z 2 d 2 a2)2 - + 4d2z 2 - 4a2d 2 - 0. + + 1

d(1 + s 2)(1 - t 2) + a(1 - s 2)(1 - t 2)
x -

(l + s Z) (l + t 2)

2d (1 + s 2)t + 2a(1 - s 2)t
y =

(1 + s2)(1 + t 2)

2as(1 + t 2)
2'--

(l + s 2) (l + t 2)

is a rational biquadratic parametrization of the toms.

b. Find the control points and the masses for the toms given by the bi-
quadratic parametrization in part (a) relative to the rectangular grid
R2, 2 = {(i,j) I 0 < i , j < 2}.

c. Use the results of part (b) together with Neville's algorithm to render the
toms with d = 5 and a = 2.

6. Let x = f (s) , z = g(s) be a curve in the xz-plane.

a. Verify that the surface of revolution generated by rotating this curve
around the z-axis can be represented by the parametric equations

2 t f (s) (1 - t 2) g (s) x = (1 - t 2) f (s) Y - z = �9
2 ' 2 ' 2

l + t l + t l + t

b. Conclude that if the original curve x = f (s) , z = g(s) is a rational curve
of degree m, then the corresponding surface of revolution is a rational
surface of bidegree (m,2).

c. Use the result of part (a) to generate rational parametrizations for the
right circular cylinder and right circular cone by rotating a line about the
z-axis.

i. Find the control points and the masses for the cylinder and cone
given by these parametrizations relative to the rectangular grid

R1, 2 = {(i,j) I 0 < i < 1,0 < j < 2}.

ii. Use the results of part (i) together with Neville's algorithm to render
the fight circular cylinder and fight circular cone.

d. Use the result of part (a) to generate rational parametrizations for the
sphere and the torus by rotating a circle about the z-axis.

i. Find the control points and the masses for the sphere and the toms
given by these parametrizations relative to the rectangular grid

R2, 2 = {(i,j) I 0 < i , j < 2}.

2.15 Ruled, Lofted, and Boolean Sum Surfaces 111

ii. Use the results of part (i) together with Neville's algorithm to render
the sphere and the torus.

7. a. Show that

2s(1 - t 2) 4st (1 + s 2)(1 + t 2)
m

z - t2 x (1 - s 2)(1 + t 2) Y (1 - s 2)(1 + t 2) (1 - s 2)(1 +)

is a parametrization for the hyperboloid z 2 - x 2 - y2 _ 1.

b. Find the control points and the masses for this hyperboloid relative to the
rectangular grid R2, 2 = {(i, j) I 0 _< i , j <_ 2}.

c. Use the results of part (b) together with Neville's algorithm to render this
hyperboloid.

8. Let R(s,t) be a rational Lagrange surface over a grid G (triangular or rectan-
gular) with control points (mgPg,mg), g e G. Let m h increase and hold mg
fixed for g ~: h.

a. Show that limmh~ooR(g) - Pg.

b. limmh~ooR(s,t) - Ph for all (s,t) ~ G.

c. Conclude that the limit surface is a disconnected collection of points.

d. What does the limit surface look like if several masses are allowed to
increase simultaneously?

9. Given a grid G (triangular or rectangular) and masses {mg }, g e G, define

Rg (s,t) - mgLg (s,t)
~. mhL h (s , t) ' g e G.

h~G

Show that these functions behave like rational Lagrange basis functions. In
particular,

a. EgeGRg(s,t) - 1.

b. Rg(h) = 0 h g: g
=1 h - g .

c. R(s,t) - Zg~G Rg(s,t)Pg ~ R(h) - Ph for all h e G.

2.15 Ruled, Lofted, and Boolean Sum Surfaces

So far we have performed only discrete interpolation; that is, we have developed
curve and surface techniques to interpolate finite collections of control points. But if
we replace the control points by curves, then essentially the same techniques can be
applied to accomplish transfinite interpolation--that is, interpolation of an infinite
collection of points on a finite collection of curves.

112 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

Suppose, for example, that we are given two curves Uo(s) and Ul(S) and we
require a surface to pass through these curves. We can perform linear interpolation
on the curves to generate the surface

R(s,t) = (1- t)Uo(s) + tUl(S).

This expression is the same linear interpolation formula we first used to interpolate
two points, only now the two points have been replaced by two curves. If we fix the
value of s = s*, then R(s*,t) is the line connecting the two points Uo(s*) and
U 1 (s*). Thus a line passes through each point on this surface. For this reason R(s,t)

is called a ruled surface (see Figure 2.33).
When U 1 (s) is a translate of U0(s)~that is, when U 1 (s) = Uo(s)+ v~ then

R(s,t) = Uo(s) + tv

is called a cylinder over Uo(s). When U 1 (s) collapses to a single point V, then

R(s,t) = (1 - t)Uo(s) + tV

is called the cone over Uo(s) with vertex V (see Figure 2.34).
Lofting generalizes ruled surfaces by applying Lagrange interpolation to an

arbitrary finite number of curves. Given a collection of curves Uo(s),...,Un(s), we
can construct a surface that interpolates all these curves by setting

n

Lu(S,t) = y~Lnk(t l to tn)Uk(s).
k=O

The surface Lu(s,t) is called the lofted surface generated by the rail curves
Uo(s) Un(s) (see Figure 2.35). It follows immediately from the cardinal condi-
tions (2.12) that

Lu(s, tj)= Ui(s).

Ul(s)

Uots) ,,

Figure 2.33 A ruled surface interpolating the curves Uo(s) and Ul(s).

2.15 Ruled, Lofted, and Boolean Sum Surfaces 113

V

Uo(S)

Figure 2.34 The cone over Uo(s) with vertex V.

Lu(s,t]

U3(s)

U1 (s) ~

__j
Figure 2.35 A lofted surface Lu(s,t)interpolating the curves Uo(s) U3(S).

Provided we have some procedure for computing points along the rails
Uo(s) Un(s), we can compute points on this lofted surface using any of our evalu-
ation algorithms for interpolating curves; we simply replace the control points
PO Pn by the rails Uo(s) Un(s) and apply the method. Thus Neville's algorithm,
the ladder algorithm, or the down recurrence can all be used to calculate points along
Lu(s,t).

Designers often prefer to specify a surface by a mesh of curves rather than a
sequence of curves because a mesh gives them finer control over the shape of their
surface. A mesh of curves is the image of a grid of lines in the parameter plane. Thus
a mesh can be specified by two sets of curves Uo(s) Um(s) and Vo(t) Vn(t),
where each U-curve intersects each V-curve at

-- (s j) = vj(t).

A surface is then required to interpolate all the curves in the mesh or equivalently to
fill in the spaces between the grid lines in the parameter plane (see Figure 2.36).

114 C H A P T E R 2 Lagrange Interpolation and Neville's Algorithm

t = t 3

S=So I I I I s = s 3
n m

�9 A A A
�9 w w �9

t = t 0

(a) Grid of lines in the domain

eo3 U3(s)

~ P33

Vo O k. k k I

~ P 3 U o (s) o

(b) Mesh of curves in the range

Figure 2.36 A Boolean sum surface interpolates a mesh of curves in the range that is the image of a grid
of lines in the parameter domain.

How do we construct such a surface? We already have a surface that interpolates
all the U-curves~the lofted surface Lu(s, t) . Similarly, the lofted surface Lv(s , t)
interpolates all the V-curves. One idea we might try is to add these surfaces together
to generate a surface that interpolates the entire mesh. But this approach cannot be
quite right for two reasons. First, surfaces are collections of points in an affine space,
and you cannot add points in an affine space. Second, the intersection points Pjk
would be counted twice, once for the U-curves and once for the V-curves. Thus we
need somehow to subtract out one copy of the intersection points Pjk" The solution
to both problems is to add the lofted surfaces, but then to subtract out the tensor
product surface generated by the intersection points. This approach yields the Bool-
ean sum surface defined by setting

B(s,t) = Lu(s, t) + L v (s , t) - Tp(s,t), (2.31)

where Lu(s, t) is the lofted surface for the U-curves in the s direction, Lv(s , t) is the
lofted surface for the V-curves in the t direction, and Te(s,t) is the interpolating ten-
sor product surface for the control points Pjk.

Let's check that the Boolean sum surface actually does interpolate all the curves
in the mesh. We can expand (2.31) by substituting in the definitions of the lofted and
tensor product surfaces to obtain

m n

B(s,t) = ~,L~(t l t 0 tm)Uk(s)+ ~,L~(s l s 0 sn)Vj(t)
k=0 j=0

m n

- ~, ~,L~(s Is 0 Sn)L~(t l t 0 ,tm)Pjk .
k=0j=0

Now let's evaluate along s = s i . By the cardinal conditions (2.12)

2.15 Ruled, Lofted, and Boolean Sum Surfaces 115

m m
m B(si , t) - E L k (t i t0 tm)Uk(Si)+ Vi(t) - ~,Erff (t l to tm)Pik �9

k=0 k=0

But Uk(S i) = Pik, SO the first and last sums cancel. Therefore,

B(si , t) = Vi(t) .

Similarly, evaluating along t - t i, we obtain

B(s, t i) = U i (s) ,

so the Boolean sum surface B(s,t) does indeed interpolate the entire mesh of curves.

Exercises

1. Complete the proof that the Boolean sum surface interpolates a mesh of
curves by showing that it interpolates the U-curves as well as the V-curves.

2. Show that a lofted surface is equivalent to a tensor product surface if all the
rails are polynomial curves.

3. Show that a Boolean sum surface is equivalent to a tensor product surface if
all the curves in the mesh are polynomial curves.

4. Using the parametrization of the circle

2t 1 - t 2
x(t) - 1+ t 2 y(t) 1+ t 2

a. Generate a rational parametrization for a right circular cylinder as a ruled
surface.

b. Generate a rational parametrization for a right circular cone as a ruled
surface.

5. Consider three curves U 1,U2,U 3 defined over the edges of a triangle with
vertices QI,Q2,Q3 such that Ui(Qk) - U j (Q k) - P k , i r j :/: kmsee Figure
2.37. Let f l l , f l2, f13 be the barycentrlc coormnates on AQ1Q2Q3, and let

Tp(fl l , fl2, fl3) = fliP1 + f12P2 + f13P3

be the plane specified by the three points P1,P2,P3- Define three cones

Cui(f l l , f l2 , f l 3) (1 - f l i)U i (f l JQ~ '+ flkQk I - +fliPi, i v e j v e k
- f l i

and the surface

B(fl l , f12, f13) = Cu 1 (ill, f12, f13) + CO 2 (ill, f12, f13) + CU 3 (ill, f12, f13)

- 2 Tp (fll , fl2 , fl3) "

116 CHAPTER 2 Lagrange Interpolat ion and Nevi l le 's Algor i thm

Q1

b .
v

Q2 " " Q3 P2

P1

P3

Figure 2.37 Three curves U1,U2,U 3 defined over the edges of triangle AQ1Q2Q 3.

Show that

a. Cui (~ 1 , ~ , / ~ 3) -- Ui ' w h e n f l i = O , i - 1,2,3.
b. B(fll , [32, [33) = Ui, when fli = 0, i = 1,2,3.

Thus the surface B(fl l , f l2, f l3) is an analogue for triangles of the Boolean
sum surface for rectangles.

6. Suppose that D~(s) Dn(s) and E ~ (t) Em(t) are collections of func-
tions, not necessarily polynomials, that satisfy the cardinal conditions at
s o s n and t O t m, that is,

D~(s i) = 0 i r k and E ~ (t j) - 0 j r k

=1 i = k =1 j - k .

Consider a mesh of curves Uo(s) Um(s) and Vo(t) Vn(t), where each
U-curve intersects each V-curve at

Pjk - Uk(s~)= vj(tk).

Define

11 m
oee(s, t)= ~. X&(s)eT(t)e i j

i=0 j=0

m 11
eu(s,t)= XE~(t)Uk(s) Ov(s,t)= XO~(s)Vk(t)

k=0 k=0

O E u v (S , t) - Eu (s , t) + D v (s , t) - O E e (s , t)

Show that

a. DEp(si , t j) = Pij

b. Eu(s, t j) = Uj(s) and Dv(si , t) - Vi(t)

c. DEuv(S i , t) = Vi(t) and DEuv(S, t j) = Uj (s)

2.16 Summary 117

2.16 Summary

In this chapter you have encountered most of the central ideas of this discipline:
existence and uniqueness theorems; dynamic programming procedures; pyramid
algorithms; up and down recurrences; basis functions; blends of overlapping data;
rational schemes; tensor product, triangular, lofted, and Boolean sum surfaces; along
with the use of barycentric coordinates to represent points in the domain of triangu-
lar surface patches. These themes will recur in various guises throughout this book.
If you have understood everything in this chapter, the rest will be easy!

One core tenet of approximation theory and numerical analysis is that all poly-
nomial bases are not equal. To solve problems in interpolation and approximation,
we must use the basis most appropriate to the problem at hand. In this chapter we
have seen that the Lagrange basis, and not the standard monomial basis, is most
suited both for point interpolation and for polynomial multiplication. We continue
with this theme in the next chapter, where we shall study Hermite interpolation--
interpolation of both point and derivative datamby invoking special Hermite basis
functions.

C H A P T E R 3

Hermite Interpolation
and the Extended
Neville Algorithm

Lagrange polynomials interpolate positions; Hermite polynomials interpolate posi-
tions and directions~points and vectors, function values and derivatives. Hermite
interpolation is important for several reasons. Frequently in computational science
and engineering we have information about tangents, curvatures, or other higher-
order derivatives at various locations, and we need to generate curves and surfaces
that fit this data. In geometric design, interpolating derivative data gives us more
control over the shape of the curve or surface. Moreover, often we want to connect
two or more curves or surfaces; to join them smoothly, we require the ability to inter-
polate derivatives across common boundaries.

As we did with Lagrange interpolation, we will begin with curve schemes and
then extend our techniques to surfaces. Many of the methods developed for
Lagrange interpolation, including Neville's algorithm, extend readily to Hermite
interpolation.

3.1 Cubic Hermite Interpolation

Two points determine a line, but a point and a direction vector also determine a line.
Suppose we want the equation of the line P(t) passing through the affine point P0 in
the direction v 0. Then we can write

POO(t) = PO + tVo" (3.1)

Notice that P00(0)= P0 and P~0(0)= v 0, so Poo(t) does indeed interpolate position
and derivative data at t = 0. We denote the line that interpolates the points P0 at t = 0
and P1 at t = 1 by P01(t); similarly we shall denote the line that interpolates the point
P0 and the direction vector v 0 at the parameter t = 0 (or any other parameter t = t o)
by Poo(t). The double-zero subscript in Poo(t) indicates that two pieces of informa-
tion, position and direction vector~function value and derivative~are interpolated
a t t = 0 .

119

1 2 0 C H A P T E R 3 Hermite Interpolation and the Extended Neville Algorithm

Let's try a slightly harder problem. Suppose we have a pair of points and tangent
vectors (Po,vo) and (Pl,Vl) that we wish to interpolate with a smooth curve at the
parameters t = 0 and t = 1. How shall we proceed?

We have a way to interpolate (Po,vo) at t = 0; we can use the straight line Poo(t).
Similarly, we can interpolate (Pl,Vl) at t = 1 with the straight line

P11(t) - P1 + (t - 1)v 1 .

Somehow we need to blend these lines together to form a smooth interpolating
curve. From Chapter 2 we know that with a quadratic curve, we can interpolate three
data points. Here, however, we have four pieces of da ta - - (Po, Vo) and (P1, Vl)~SO it
is unlikely that we could succeed with just a quadratic curve. Perhaps we should first
attack a simpler problem that does have a quadratic solution, interpolating only three
pieces of data. Let's try then to find a smooth curve that interpolates the data (P o, vo)
at t = 0 and the point P1 at t = 1.

The line Poo(t) interpolates the data (Po,vo) at t = 0, and the line Pol(t) interpo-
lates the points Po,P1 at t = 0,1. In Lagrange interpolation the trick for building the
quadratic interpolant Pol2(t) is to perform linear interpolation on the linear interpo-
lants Pol(t) and P12(t). Let 's try the same tactic here.

Applying linear interpolation to the two curves Poo(t) and P01(t) generates the
c u r v e

POOl(t) = (1 - t)Poo(t) + tPo1 (t) (3.2)

(see Figures 3.1 and 3.2). By substitution it is easy to verify that Pool(t) interpolates
P0 at t = 0 and P1 at t = 1, since by (3.2)

POOl(O) = eo0(O) = PO

Pool (1) = Po1 (1) = P1 �9

PO - Vo .. Poo(t)
r -

P]

Figure 3.1 The two lines Poo(t) and Pol(t), and the quadratic interpolant Pool(t) generated by linear
interpolation on the two lines.

3.1 Cubic Hermite Interpolation 121

Poo~(O

/
Poo(t) POl(t)

1 - t /

Vo Po Pa

Figure 3.2 A graphical representation of Equation (3.2).

To verify that the derivative of P001 (t) also interpolates the vector v 0 at t = 0, observe
that Poo(t) and P01 (t) both interpolate the point P0 at t - 0. Therefore,

POOl (0) : Pd0 (0) - P00 (0) + P01 (0) = v 0 �9

Thus our trick of performing linear interpolation on the linear interpolants actually
works. Similarly, if we set

Poll(t) = (1 - t)Pol(t) + tP1 l(t),

then it is easy to verify that PO11 (0) = P0, Poll (1) = P1, P(~I 1 (0) = v 1 .
By construction both Pool(t) and POll(t) are quadratic curves. If Neville's algo-

rithm really works for Hermite interpolation, then we should be able to form the
cubic interpolant for the data (P0, vo) and (P1, Vl) by linear interpolation on the qua-
dratic interpolants Po01 (t) and P011 (t).

Let's try this ploy one more time. Set

P0011 (t) = (1 - t)Po01 (t) + tPo11 (t).

Using the properties already established for P001 (t) and P011(t), we find that

P0011(0) = P001 (0) = P0

P0011(1) = P011(i) = P1

P(~011 (0) = P(~01 (0) - P001 (0) + P011 (0) = v 0

P(~011 (1) = Pt~l 1 (1) - P001 (1) + P011(i) = v 1

SO POOl 1 (t) really is the desired cubic Hermite interpolant. The repeated subscripts on
P0011 (t) indicate that this function interpolates both the position and the tangent vec-
tor at t - 0,1. We diagram our algorithm for building P0011 (t) from the data (P0,v0),
(P 1,v 1) in our usual triangular fashion in Figure 3.3.

We can also express the cubic Hermite interpolant explicitly in the form

Pool 1 (t) - H o (t) p 0 + H 1 (t)P1 + ho(t)v 0 + h 1 (t)v 1"

122 CHAPTER 3 Hermite Interpolation and the Extended Neville Algorithm

Pooll(t)

/
POOl(t) POll(t)

/ /
t'oo(0 Po (O PI (O

Vo PO P1 vl

Figure 3.3 Neville's algorithm for cubic Hermite interpolation at t = 0,1. Notice that the labels entering a
node sum to one only if both arrows emerge from a point or a curve. Labels on arrows
emerging from vectors do not need to be normalized, since for vectors we are not required
to take affine combinations.

As in Lagrange interpolation, the cubic Hermite basis functions Hj(t),hj(t), j = 0,1,
are the sums over all paths from their coefficient at the base of the Neville triangle to
P001 l(t) at the apex. Thus we can use either the up recurrence--replacing Pj or vj by
1 and setting all the remaining data to 0 - - o r the down recurrence~placing a 1 at the
apex, reversing all the arrows, and collecting the basis functions at the base of the tri-
a n g l e - t o find explicit expressions for these Hermite basis functions. Performing
these calculations yields

no(t) - (1 - t) 2 (1 + 2t) ho(t) = t (1 - t) 2

H 1 (t) = t 2 (3 - 2t) h 1 (t) - t 2 (t - 1) .

The formulas for the functions ho(t) and h 1 (t) are easy to derive: simply take
the products of the labels along the left and right lateral edges of the triangle. The
formulas for the functions Ho(t) and H 1 (t) are only slightly more difficult to deduce.
Since every path from Po to the apex of the triangle contains two factors of (1- t),
we can factor out (1 - t) 2 and sum over the remaining paths. By inspection, this
yields Ho(t) = (1 - t)2(1 + 2t). Similarly, every path from P1 to the apex of the trian-
gle contains two factors of t, so here we can factor out t 2 and sum over the remaining
paths. Again by inspection, this yields H l(t) = t2(3 - 2t). Now it is easy to verify that
Ho(t) + H i (t) - 1. This constraint is necessary, since these basis functions multiply
points; there is no similar constraint on h0(t) and h l(t), since these functions multi-
ply vectors.

3.1 Cubic Hermite Interpolation 123

The Lagrange basis functions are themselves Lagrange interpolants because
they satisfy the cardinal conditions (2.12). Similarly, the cubic Hermite basis func-
tions are individually cubic Hermite interpolants because by the up recurrence they
satisfy

Ho(0) = 1 Ho(1) = 0 H0(0) = 0 //6(1) = 0

H 1 (0) = 0 H 1 (1) = 1 H~(0) = 0 HI(l) = 0

ho(0) = 0 ho(1) = 0 h6(0) = 1 h6(1) = 0

h 1 (0) - 0 h 1 (1) - 0 hi(O) - 0 hi(l) = 1

One important application of cubic Hermite interpolation is to generate piece-
wise cubic curves that join together smoothly. Given point and tangent vector data
(Po,vo) (Pn,vn), let Pj(t) be the cubic Hermite interpolant generated by the data
(ej,vj),(ej+l,Vj+l). T h e n the piecewise cubic curve

P(t) - P j (t - j) j <_ t <_ j + 1

has a continuous derivative at every point and interpolates all the data. This construc-
tion is one of the most common interpolation techniques in computer graphics and
computer-aided design (see Figure 3.4).

Po

P2(t)

v 2

PI(
l w , - - -

P1 vl

A
w

v 3

Figure 3.4 A smooth piecewise cubic curve that interpolates points and tangent vectors.

Exercises

1. Using Figure 3.2 for quadratic Hermite interpolation, compute the quadratic
Hermite basis functions for the nodes 0,1.

2. Implement cubic Hermite interpolation and use this technique to construct
smooth piecewise cubic curves.

3. Draw the diagram of Neville's algorithm for cubic Hermite interpolation at
arbitrary nodes. What are the corresponding cubic Hermite basis functions?

124 r H A P Y E R 3 Hermi te In terpola t ion and the Ex t ended Nevi l le A lgor i thm

4. a. Show that

H 0 (1 - t) - H 1 (t)

U ~ (1 - t) - U 0 (t)

ho(1 - t) = -h i (t)

h 1 (1 - t) - -ho(t).

b. Let P(t) be the cubic Hermite curve that interpolates the data (P0,v0),
(Pl,Vl) and let Q(t) be the cubic Hermite curve that interpolates the data
(P1,-Vl), (P0,-v0) at t = 0,1. Conclude from part (a) that Q(t) - P (1 - t).

3.2 Neville's Algorithm for General Hermite Interpolation

Now that we understand cubic Hermite interpolation, let's consider a much more
general Hermite interpolation problem. Given a collection of points and vectors

(Po, VO1 VO,flO -1) (Pn, Vnl Vn,~n-1) '

we want to construct a polynomial curve Plao...l, tn(t) that interpolates all this data at
the parameter values t o ,t n. By interpolating all the data we mean that

P m u . (tj)- Pj

P(~!..~n(tj) = Vjk l < k < f l j - 1 .

Thus the vector vjk represents the kth derivative of the interpolant at the point Pj. In
the notation Pluo...l.tn(t) the integer n tells us there are n + 1 points to interpolate, and
the integer ktj tells us we must interpolate ktj pieces of da ta - - Pj, v j l v j , # j_ l__a t the
parameter tj. We expect that

n
degree {P~to...#n(t) } - ~, la k - 1 ,

k=0

since there are a total of ~k,t/k pieces of data to interpolate. Note that the subscript
ktj is really shorthand for repeating the subscript tj a total of juj t imes~ tha t is,

P m . . . ~ (t) - Pro to t t . (t) .

/a0 /-in

(3.3)

Thus, when the nodes are at t = 0,1 and both nodes have multiplicity two, we write
P0011(t), not P22 (t).

To take a more generic example, given the data

(P0, v01, v02, v03), (P1, Vl 1), (P2, v21, v22)

at the integer nodes t o - 0 , t 1 - 1 , t 2 - 2 , we seek a polynomial Pooool1222 (t) of
degree 8 such that

3.2 Neville's Algorithm for General Hermite Interpolation 125

P000011222(t0) = P0

P(~00011222(t0) = v01

P(~)0011222(t0) = v02

P(~0011222 (t0) = v03

Poooo11222 (tl) = P1

P(~OOOl 1222 (tl) = v11

Poooo11222 (t2) = P2

P(~ooo 11222 (t2) - v21

P(~)OO 11222 (t2) = v22

As in cubic Hermite interpolation, we are going to proceed by extending Nev-
ille's algorithm to general Hermite interpolation. First, however, we need to review
the Taylor expansion because the Taylor polynomial will now appear as the base
case in Neville's algorithm.

When n = 0, Hermite interpolation requires a curve to fit the data P, v 1 Vu_l at
the parameter t o. The Taylor expansion at t = t o of a polynomial P(t) of degree/.t - 1 is

P(t) = P(t O) + P ' (t O)(t - t 0) +. . . +
p(~t-1) (t0)

(p t - 1)!
(t - to)t t-1

(see Section 2.4). By matching constraints to coefficients we see that to construct a
polynomial curve P#(t) that interpolates the data P, Vl, . . . ,v#_ 1 at the parameter to,
we must set

P~ (t) - P + Vl(t - t0) + . . . + v~_] (t - t 0) ~ - i
(# - 1)!

We shall see shortly that this polynomial is the base case of a recurrence for
P~0 ..u (t).

Now to develop Neville's algorithm for Hermite interpolation, we proceed
almost exactly as we did for Lagrange interpolation. We need to be aware, however,
of two subtleties. In the notation Ptto...ttn(t) if some ttj = O, then we simply ignore
the parameter tj because there is no data to fit at tj. For example, if tt 0 - O , then

Plio. . . lUn(t)- Plul...lUn(t). Also, as we have already mentioned, the base cases for the
Hermite version of Neville's algorithm are the Taylor expansions P~j (t), not the
constants Pj . After we derive Neville's algorithm, we shall describe a method for
efficiently calculating all the Taylor polynomials that appear in Neville's algorithm

from the original data.

THEOREM
3.1

Given data (P0,v01 v0,/.t0_l) (Pn,Vnl Vn,lUn_l) and distinct parame-
.... . (t) of degree ters to, tn, there exists a unique polynomial curve P#0 "'#n

]~k ~tk - 1 that interpolates the given data at the specified parameters. That
is,

Pluo . . .kt n (t j) - Pj

p(k)
l.to...Un(tj) - Vjk l < k < t ~ j - 1 .

! 126 CHAPTER 3 H e r m i t e I n t e r p o l a t i o n a n d the E x t e n d e d N e v i l l e A l g o r i t h m

Proof We shall leave uniqueness as an exercise (see Exercise 3); here we will con-
centrate on proving existence. If Pk = 0 for all k ~ j , then we can apply the
Taylor expansion at t - t j to construct the polynomial interpolant P~j(t).

Otherwise the proof proceeds by induction on ~k t . t k. Suppose then that
there are at least two indices i, j such that l.t i,].tj g: O. Reindexing if neces-
sary, we can assume, without loss of generality, that these indices are /.to
and Pn. Moreover, we can also assume, without loss of generality, that
Pk > 0 for all k; if not, simply remove the indices where/.t k = 0 and rein-
dex. Now by the inductive hypothesis, there are polynomial curves
el.to...l.tn_l(t) and el.to_l...l.tn(t) of degree ~,kl.t k - 2 that, respectively,
interpolate the data

(Po, Vol vo,po -1) (Pn, Vnl Vn,t.tn-2)

(P0, v01 v0,p0-2) (Pn, Vnl, Vn,lAn-1)

at the parameters to , . . . , t n. Define

ppo . . . pn (t) = t n - t
t n - t----~ PPo'" "Pn -1 (t) +

t - to (t)
t n - t o Ppo- I ' "Pn �9

(3.4)

Then by the inductive hypothesis

PUo...Pn-1 (tk) - Ppo-1. . .pn (tk) - Pk

so by (3.4)

PU o . . . I.t n (t k) = Pk

Moreover, again by the inductive hypothesis and (3.4)

k = l n - 1

k = l n - 1 .

P12o...llA n (to) = PI.IO...]A n -1 (to) = PO

PIAO'"IA n (tn) = PIAO-1. . . IA n (tn) = Pn

so P~o...~n(t) certainly interpolates all the data points at the specified param-
eter values. It remains to check the derivatives. By Leibniz's rule, differenti-
ating (3.4) k times yields

Pla k) (t) = tn - t p(k) (t) k o(k_l) l(t)
o '"Pn t n - t o P~ - t n - t-----o" PO" 'Pn-

t - t o p (k) k p(k-1)
+ (t)

t n - t o Po -l''']'l n tn - t o /A0-1""lAn

(see Exercise 2). Evaluating the fight-hand side at t = j , j r O,n, and applying
the inductive hypothesis, we find that both kth derivatives are Vjk and both
(k-1)st derivatives are Vj,k_ 1. Since the coefficients of the (k-1)st deriva-
tives are negatives of each other and the coefficients of the kth derivatives
sum to one, we conclude that

3.2 Neville's Algorithm for General Hermite Interpolation 127

p(k)
~lO.. .~l n (tj) = Vjk 1 < k <]Aj -1 j ve 0,n.

Similarly, evaluating at t = to,t n , we obtain

p(k) (k)
UO"'/Lln (to) = Pl.to'" . p , - 1 (to) - vOk

p(k) (tn) = p(k) (tn) = Vn k
IAO "" "~n IAO - l" "lAn

l _ < k _ < P 0 - 1

l < k < P n - 1 .

Thus Ppo...pn(t) does indeed interpolate all the data at the specified para-
meter values. Finally, by the inductive hypothesis, epo...pn-l(t) and
Ppo-1.. .p(t) are polynomials of degree s - 2, so it follows from (3.4)
that PPo'"Pn (t) is a polynomial of degree]~k Pk - 1

Starting with the Taylor polynomials P~j(t), j = 0 n, we can apply dynamic
programming to build the Hermite interpolant Ppo...#n(t) in the usual way, con-
structing higher-order interpolants from lower-order ones using (3.4). If]Aj = 1, then
the Taylor interpolant Ppj (t) - Pj. We illustrate Neville's algorithm for P0112(t) in
Figure 3.5.

Recall from (3.3) that in our notation the subscript pj in Pt~o...l~(t) is shorthand
for repeating the node tj as a subscript a total of pj times. When the nodes and mul-
tiplicities are known, instead of using pj as a subscript, we simply repeat tj a total of
pj times. Thus P0112(t) means the Hermite interpolant for the nodes t = 0,1,2, where
t = 0 has multiplicity one, t = 1 has multiplicity two, and t = 2 has multiplicity one.

PO112(t)

Pol l (t) Pl12(t)

/ /
POI(t) Pll(O P12(O

l-t/ ~N N E-t/ / /
PO P1 P1 P2

Figure 3.5 Neville's algorithm for the cubic Hermite interpolant P 0 1 1 2 (t) �9 Here the nodes are at the inte-
gers: t o = O,t 1 = 1,t 2 = 2. Notice that the Taylor polynomial P11(t) is one of the leaf nodes m
that is, one of the base cases of the algorithm.

128 C H A P T E R 3 Hermi te Interpolat ion and the Ex tended Nevil le A lgor i thm

Since the dynamic programming algorithm bottoms out at the Taylor polynomi-
als, we may need to compute several Taylor polynomials of different degrees for the
same node tj. If the node tj has multiplicity/~j, then the Taylor polynomials

ela j (t), elt j - l (t) e j

will all appear in Neville's triangle. It is wasteful to calculate all these polynomials
independently, since

(t _ tj)t'tJ -1
Pltj (t) - Plt j- l (t) + . (3.5) (]2j - 1)! vj'luj-1

Using (3.5), we can apply dynamic programming to bootstrap ourselves up from
the original data, calculating only one new term for each Taylor polynomial (see
Figure 3.6).

Neville's algorithm for Hermite interpolation now has the same general struc-
ture as Neville's algorithm for Lagrange interpolation. Start with Pluo...l.tn(t) at the
apex. Strip off the last index and place P~0...~-i (t) below it to the left; strip off the
first index and place Pl.to_l...lUn(t) below it to the right. Since the index t n was
removed to the left, label the left arrow with t n - t ; since the index t o was removed
to the right, label the right arrow with t - t O . Now proceed recursively stripping off

labels from Plao...lUn_l(t) and P~to_l...~n(t) and labeling the arrows accordingly.
Remember to join P/.t0_l.../%_ 1 (t) to both P~to...~t,_ 1 (t) and P~0-1...z~(t) to generate a
dynamic programming algorithm instead of a recursive procedure. When you arrive

Poooo(t) / ,,q
3!
/

 'o3 Pooo(t)

v02 Poo(t)

/,/"-q
Vo1 Po

Figure 3.6 Applying dynamic programming to compute higher-order Taylor polynomials efficiently from
lower-order Taylor polynomials at the node t = 0. Only one new term is computed for each
successive Taylor polynomial. Here we illustrate the cubic case.

3.2 Neville's Algorithm for General Hermite Interpolation 129

at P/xk (t) you are at a Taylor polynomial, so you should apply the dynamic program-
ming algorithm for computing Taylor polynomials depicted in Figure 3.6.

We illustrate this version of Neville's algorithm for P000112(t) in Figure 3.7; you
should also look at Figure 3.3, where we have already adopted this strategy for
P0011 (t). All the leaf nodes in Figure 3.7 now contain point or vector data rather than
Taylor polynomials. We shall see shortly that this convention makes it easy to com-
pute the Hermite basis functions from the up or down recurrence. Notice too that the
parallel property (see Section 2.3) of Neville's algorithm remains valid for Hermite
interpolation.

000112

22 ~ , J ~ 2

00011 O0112

I/~ 2 2 / '~,~2

0001 0011 O112

1 - / ~ 1 - / ~ 2 2 / ~ 2

000 O01 011 112

1)02 O0 O1 1 1 12

/~xl x 1 - / ~ t-/~ 2-/~- 1
%1 PO P1 Vll P1 Q

Figure 3.7 Neville's algorithm for P000112(t) �9 The interpolants are represented by their subscripts, and
the Taylor polynomials are computed efficiently from lower-order Taylor polynomials. Here
we have explicitly normalized the labels along the arrows to sum to one. The labels on ar-
rows emerging from nodes that contain vectors do not need to be normalized. Notice that
due to the presence of the Taylor polynomial P1 l(t), the point P1 now appears at two differ-
ent leaf nodes.

Exercises

1. Draw Neville's triangle for POll 12 (t).

2. Prove by induction on k that if L(t) is linear in t, then

{L(t)P(t) }(k) _ L(t)p(k) (t) + kL'(t)P (k-l) (t).

3. Prove that the Hermite interpolant P#o...#n(t) is uniquemthat is, there is no
other polynomial of the same degree that interpolates the same data at the
same nodes. (Hint: Use Exercise 2 in Section 2.4.)

4. Implement Neville's algorithm for Hermite interpolation. Experiment with
how changing the nodes or the data affects the shape of the curve.

130 C H A P T E R 3 Hermite Interpolation and the Extended Neville Algorithm

5. Let P(t) be the Hermite interpolating polynomial for the nodes t o t n and
the data

(e0,v01 v0,/~0-1) , (en,Vnl Vn,t.tn-1)"

Form a new Hermite interpolating curve Q(t) by replacing each node t k by
the node 7r k = t k + b, k = 0,.. . ,n, for some fixed constant b.

a. Show that changing all the nodes in this way has no affect on the shape of
the interpolating curve. In particular, using Neville's algorithm, show
that Q(t + b) = e(t) .

b. Form a new Hermite interpolating curve R(t) by replacing each node t k
by the node T k = at k + b for some fixed constants a > 0 and b. Show that
R(t) is not a reparametrized version of P(t). What goes wrong in Neville's
algorithm?

c. Compare these results for Hermite interpolation to similar results for
Lagrange interpolation in Section 2.2, Exercise 4.

3.3 The Hermite Basis Functions

In Hermite interpolation, we are given a collection of points and vectors

(e0 , v01 v0,u0 -1) (en, Vnl," ' , Vn,ktn-1)'

and we construct a polynomial c u r v e eluo...l~n(t) of degree]~k/lk - 1 that interpolates
this data at the parameter values to,...,t n. For general Hermite interpolation, we can
always write P~to...~(t) explicitly by setting

n n / ~ j - 1

P~o.. . lan(t) = ~ , H j (t l t 0 tn)Pj + ~, ~ , h j k (t l to , tn)Vjk"
j=0 j=0 k=0

As with Lagrange interpolation, the polynomials H j (t l t 0 tn) and hjk(t l t 0 tn)
can be found by Neville's algorithm from either the up recurrence or the down recur-
rence. Notice, however, that in the Hermite version of Neville's algorithm, a control
point Pj can appear at more than one leaf node (see Figure 3.7). Therefore in calcu-
lating Hj(t l to tn) using the up recurrence, we must take care to place a one at each
of the leaf nodes where Pj appears. Similarly, when applying the down recurrence,
we must sum all the values at the leaf nodes where Pj would appear in order to calcu-
late the value of n j (t l t 0 tn).

Although it is difficult to compute simple explicit expressions for the general
Hermite basis functions, there are four particularly important special cases of Her-
mite interpolation where fairly elementary explicit formulas are available:

i. Lagrange interpolationm~tj = 1, j = 0 n

ii. Taylor interpolation~n = 0

3.3 The Hermite Basis Functions 1 31

iii. Hermite interpolation, one derivative at each point~/2j = 2, j - 0 n

iv. Hermite interpolation at two points~n = 1, /~0 = ~tl

We have already studied Lagrange interpolation extensively in Chapter 2, and by
now you should be familiar as well with the Taylor polynomial. The last two cases of
Hermite interpolation are straightforward generalizations of the cubic Hermite inter-
polant discussed in Section 3.1. Here we focus our attention on case iii, which we
shall apply in Section 3.5 to construct tensor product, lofted, and Boolean sum Her-
mite surfaces. You will analyze case iv in Exercise 2.

The problem in case iii is to interpolate the data (Po,vo) (en , vn) at the param-
eter values to t n . Since there are 2n + 2 pieces of data, the interpolant

n n

etoto...tntn (t) = ~ , H k (t l to , t 0 t n , t n)P k + ~ ,hk(t l to , t 0 tn, tn)V k
k=0 k=0

(3.6)

is of degree 2n + 1. To find the Hermite basis functions H k (t l t o , t 0 tn, t n) and
hk(t I to , t O tn , tn) , we must compute all paths from Pk or v k at the leaf nodes to the
interpolant at the apex of the Neville triangle. Recall, however, that in general Her-
mite interpolation a point Pk may appear at more than one leaf of the triangle (see
Figure 3.7).

To get from the apex etoto...tntn (t) of the triangle to any leaf node containing Pk,

we must strip off each index j ~ k exactly twice (see Figure 3.8). Each time we
remove the index j, we introduce a factor of t - t j along an arrow. Thus any path

001122

00112 01122

0011 0112 1122

1 - / ~ , ~ , , 2 - / ~ , ~ x 2 - / ~ N ~ x - 1

001 011 112 122

1 - / ~ , 1 - / ' K N ~ 2 - / ~ x , ~ _ l Z ~ ' K N ~ - I

00 01 11 12 22

/ ' K N ~ " 1 - / ' K , , ~ t - 1 ~ ~ , , 2 - / ' K N ~ - 1 y ~ - 2

Vo ~ P1 Vl P1 ~ v2

Figure 3.8 Neville's algorithm for the interpolant P001122(t) �9 As in Figure 3.7, the interpolants are repre-
sented by their subscripts, and higher-order Taylor polynomials are computed efficiently from
lower-order Taylor polynomials. Unlike Figure 3.7, the functions along the arrows have not
been normalized.

132 C H A P T E R 3 Hermi te In terpolat ion and the Ex t ended Nevi l le A lgor i thm

from the apex to a leaf containing P k must contain two factors of t - t j for each

j ~: k. Therefore,

Hk(t l to,t 0 tn,tn) - Ak(t) [I (t - t j) 2,
jg:k

where 2,k(t) must be linear in t, since degree {Hk(t I to,t 0 tn,tn) } = 2n + 1. Recall-
ing the explicit formula (2.11) for the Lagrange basis functions, we can rewrite this
equation as

Hk(t l to,to tn,tn) _ 2,k(t){Lnk(t l to tn) }2,

where we have absorbed the constant in the denominator of the Lagrange basis func-
tion into the function /1, k (t). Similarly, we can argue that

hk(t l to,to,. . . , tn,tn) _ COk(t){Lnk(t l to tn) }2,

where OOk(t) is linear in t. It remains only to find A,k(t) and COk(t).
It is easy to find co k (t) because each vector v k appears at only one leaf node and

the arrow emerging from this node is labeled t - t k. Thus we must have

COk(t) = C k (t - tk)

for some constant Ok" Moreover, since

h~(t k I t0,t 0 tn,tn) = 1,

it follows that

CO'k(tk){Lnk(tk I t0,..., tn)} 2 + 2COk(tk)Lnk(tk I t0,..., tn)--~dLnk It=tk - 1.

Therefore, since COk(t k) = 0 and Lnk(tk It 0 t n) = 1,

c k - co~ (t k) - 1.

To find Ak(t), we proceed in a similar fashion. Since Ak(t) is linear, we can
write

Ak (t) = dl (t - tk) + do �9

But we know that

Hk(t k I t0,t 0 tn,tn) = Lnk(tk It 0 tn) = 1,

so certainly

do = &k(tk)= l.

Similarly since

H~:(t k I to,t 0 tn,tn) = 0 ,

3.3 The Hermite Basis Functions] 3 3

we must have

" dZTc It_tk 0 ~k(tk){Lnk(tk l to tn)} 2 + 2 ~ k (t k) L ~ (t k l t 0 tn)--- ~ - _ - .

Thus, since Lnk(tk It 0 tn) - 1 and 2,k(tk) - 1,

d 1 - ~ c (t k) - - 2 dLnk It__tk.
dt

From the preceding analysis we conclude that

H k (t l t o ' t o ' " " t n ' t n) - { 1 - 2 dLnkdt It=tk (t - t k) } {Lnk(t l tO tn)}2

hk(t l to , t 0 tn, t n) - (t - t k){Lnk(t l tO tn) }2 .

(3.7)

Notice how these formulas generalize the formulas for the cubic Hermite basis func-
tions derived in Section 3.1.

Exercises

1. Prove the identity

t /

(x - t) 2n+l - ~ , H k (t I to, t 0 tn , tn)(X _ tk)2n+l
k=0

n

+ (2n + 1) ~,hk(t I to, t o tn , tn)(X _ tk)2n .
k=0

(Compare to Section 2.5, Exercise 1.)

2. Consider the special case of two-point Hermite interpolation, where we
interpolate the data (P0, v01 Vo,~-l), (P1, vl 1 Vl,~_ 1) at the parameter
values t - t o, t 1 .

a. Show that this interpolant can be written as

P/,t~(t) - H o (t l t 0 t l)P 0 + Hl (t l t 0 tl)P1

+ Z h o k (t l t o tl)VOk + ~ , h l k (t l t o tl)Vlk �9
k=l k=l

b. Explain why each control point and each vector appear at only a single
node in Nevil le 's triangle.

c. Find explicit formulas for the basis functions H o (t l t o tl) and

Hl (t l t 0 tl).

d. Using the formulas from part (c), verify that

H 0 (t I t 0 t 1) + H l (t l t 0 t 1) - 1.

134 C H A P T E R 3 H e r m i t e I n t e r p o l a t i o n a n d the E x t e n d e d N e v i l l e A l g o r i t h m

e. Find explicit formulas for the basis functions h o k (t l t 0 tl) and

h lk (t l to , . . . , t l) .

3. Suppose we are given the data (P0,v01 v0,p0_ 1) (Pn,Vnl Vn,jAn_l) to

interpolate at the parameters to t n . Then the general Hermite interpolant

can be written as

n n /.t j - 1
Ppo . . . pn (t) =] ~ H j (t l t 0 tn)Pj + ~,]~h jk (t l to tn)Vjk"

j=0 j=0 k=l

Use Neville's triangle to show that

a. H j (t l t 0 tn) = A j (t) [- I (t - t i) P i
i~ j

b. h j k (t l t 0 , tn) = 0 9 j k (t) (t - t j) k r i (t - t i) p i ,
i~ j

where A j (t) is a polynomial of degree at most]2j - 1, and O)jk(t) is a poly-
nomial of degree at most]2j - k - 1.

n
4. Prove that ~, H k (t I t o, t o tn, t n) = 1.

k=0

5. Let P(t) = a2n+l t2n+l + . . . + al t + a o. Then P(t) interpolates the data (Po,vo),

. . . , (Pn,vn) at the parameters t o t n if and only if

a2n+ltO 2n+l + " " + alto + ao = PO

(2n + 1)a2n+ltO 2n + . . . + 2a2t 0 + a 1 = v 0

a2n+ltn 2n+l + "'" + altn + ao = Pn

(2n + 1)a2n+ltn 2n + " " + 2a2t n + a 1 = v n .

Prove that this system of linear equations in the unknowns a 0 a2n+l has
a unique solution by showing that the determinant of the coefficients

t 2n+l . . . t 2 t o

(2 n + l) t 2n .. . 2t 0 1

t2n+l 2
n "'" tn tn

(2 n + l) t 2n .. . 2t n 1

1

0

" s 0 .

1

0

Conclude that etoto...tntn(t) exists and is unique. (Compare to Section 2.4,
Exercise 5.)

3.4 Rational Hermite Curves 1 3 5

6. Develop an O(n) ladder evaluation algorithm to compute

/7 n
Ptoto...tntn (t) = ~,Hk(t l to,t 0 tn,tn)P k + ~,hk(t l to,t 0 tn,tn)V k"

k=0 k=0

7. Consider the special case of two-point Hermite interpolation, where we

interpolate the data (P0, v01 v0,p-1), (P1, Vll Vl,p_ 1) at the parameter
values t = 0,1. Show that

f] xl~- 1 (1 - x) !~- 1 dx
Ho(t [0 0 , 1 1) =

~ fl0xP- 1)p-1 p p (1 - x dx

ftoX].l- 1(1 - - x) ~ - l dx
Hi(t[0 0 , 1 1) - ~ f~X,U- 1 1 p p (l - x) tJ- dx .

3 . 4 Rational Hermite Curves

When we studied Lagrange interpolation, we observed that many common curves
are not polynomial curves, but rather are rational curves. Therefore, we resorted to
rational Lagrange interpolation to represent these curves in Lagrange form. Now that
we are investigating Hermite interpolation, we would like to develop a similar
approach to represent rational curves in Hermite form.

To simplify the discussion, let's first consider cubic Hermite interpolation. Sup-
pose that we have a rational cubic curve R(t) = P(t) /Q(t) that we wish to represent
in rational Hermite form. As usual we lift this curve from a rational curve
R(t) = P(t) /Q(t) in affine space to a polynomial curve S(t)= (P(t) ,Q(t)) in Grass-
mann space by treating the denominator Q(t) as mass. To find the cubic Hermite rep-
resentation of S(t) in Grassmann space, we compute

(moPo,m O) = (P(0),Q(0)) (/~0v0,X0) = (P '(0) ,Q'(0))

(mlPl,ml) = (P(1),Q(1)) (~lVl,~l) = (P'(1),Q'(1)) .

Then in Grassmann space, we have the cubic Hermite representation

S(t) = (moPo,mo)Ho(t) + (mlPl,ml)Hl (t) + (20v0,/~0)h0(t) + (2lVl,/~l)hl (t),

and by construction

S(O) = (moPo,mo) S'(0) = (2ovo,2 O)

S(1) = (mlPl,ml) S'(1) = (/~lVl,X1) .

Now let's project this curve back into affine space. Then we get the rational rep-
resentation

136 C H A P T E R 3 Hermite Interpolation and the Extended Neville Algori thm

R(t) - moPoHo(t) + mlP1Hl(t) + Aov~176 + AlVlhl(t)

moHo(t) + mlH 1 (t) + Aoho(t) + ~lhl(t)
(3.8)

Is this formula really a Hermite representation for the original rational cubic curve
R(t)? It is easy to check that indeed R (0) - P 0 and R(1) - P1. What about deriva-
tives? We hope to get R'(0) - v 0 and R'(1) - Vl, but, in fact, after a bit of algebra, we
find that

R'(0) = A0v0 - 20P0 and R'(1) = /~ lv l - ~ I P 1

m0 ml

Not the answers we expected. What did we do wrong?
In Grassmann space we found that S'(0) = (2ov0,2 0) and S'(1) = (A, lVl,21), and

these derivatives do indeed project to the values v 0 and v I in affine space. The prob-
lem is that differentiation and projection do not commute (see Section 1.1.6, Exer-
cise 2)~ the derivative of the quotient is not equal to the quotient of the
derivatives~so this approach to rational Hermite interpolation cannot hope to
succeed.

Worse yet, the fight-hand sides of R'(0) and R'(1) are not well-defined expres-
sions in affine space. In fact, looking back, we see that the expression for R(t) on the
right-hand side of (3.8) is also not a well-defined expression in affine space, since the
coefficients of P0 and P1 do not sum to one. So this approach is doomed to failure
from the very beginning. We need a fresh start.

In cubic Hermite interpolation, the coefficients of Ho(t) and Hi(t) are points;
the coefficients of h0(t) and hi(t) are vectors. To maintain these constraints in
Grassmann space, we must write

S(t) = (moPo,mo)Ho(t) + (mlPl ,ml)Hl(t) + (Aov0,0)h0(t) + (XlVl,O)hl(t) .

Projecting this formula into affine space yields

R(t) = moPoHo(t) + mlP1Hl(t) + Aov~176 + AlVlhl(t) . (3.9)

moHo(t) + mlH 1 (t)

Let's see if this works.
Certainly the expression for R(t) is now well defined, since the coefficients of Po

and P1 sum to one. Also it is easy to verify that R(0) = PO and R(1) = P1, so we still
interpolate the point data. What about derivatives? To simplify our computation, let

P(t) = moPoHo(t) + mlP1Hl(t) + Aovoho(t) + AlVlhl(t)

w(t) = moHo(t) + mlH 1 (t) .

Then R(t) = P(t) /w(t) so by the quotient rule

R'(t) -
w (t) P ' (t) - w'(t)P(t) P ' (t) - w ' (t) R (t)

W2(t) w(t)
(3.10)

3.4 Rational Hermite Curves 1 3 7

Using the properties of the cubic Hermite basis functions provided in Section 3.1, it
is simple to check that

w(0) = m 0, w'(0) = 0, P ' (0) = 2ovo,

w(1) -- m 1, w'(1) -- 0, P'(1) = ~lVl .

Substituting t = 0,1 into (3.10), we get

R'(O) = 2oVo / m 0

R'(1) = ~lVl / ml �9

Thus if we want R ' (0) = v 0 and R ' (1)= Vl, we need to choose A,o = mo and

~1 = ml.
These observations lead us to define a rational cubic Hermite curve by setting

R(t) - m o P o H o (t) + mlP1Hl (t) + movoho(t) + mlVlh l (t)

m o H o (t) + m l m 1 (t)
(3.11)

With this definition, the function R(t) interpolates the data (P0, v0) and (P1, v]) at the
parameters t = 0 and t = 1 independent of the choice of the masses m 0 and ml.

For general Hermite interpolation, we have basis functions

H j (t l t 0 tn), j - 0 n and h jk (t l t 0 tn), k - 0 ~ j - l '

so we define the general rational Hermite curve by setting

n n btj -1
Z H j (t l t 0 t n) m j P j + 2~ Z h j k (t l to t n) m j v j k

R (t) = j -0 j=0 k=0 . (3.12)
n

Z m j H j (t l t 0 t n)
j=0

THEOREM
3.2

Let R(t) be defined as by Equation (3.12). Then

R (t i) = P i O < i < n

R (k) (t i) - Vik 1 < k <],t i - 1 .

Proof To simplify the computation, let

n n /.t j-1
P(t) = ~ , H j (t l t 0 t n) m j P j + ~, ~ , h j k (t l t 0 , t n) m j v j k

j - 0 j=0 k=0

n

w(t) = ~ m j H j (t l t 0 tn) .
j=0

Then R(t) = P (t) / w (t) . Now by the defining properties of the Hermite basis

functions, P(t i) = m i P i and w(t i) - m i , so certainly R(t i) = Pi, 0 <_ i < n .
Moreover, for 1 < k <]-/i - 1,

138 CHAPTER 3 Hermi t e In terpolat ion and the E x t e n d e d Nevi l le A lgor i t hm

n

w(k)(t i) = 2 m j H (t i l t 0 ,tn) - O
j=O

n /2j -1
p(k)(t i) =]~n Hj(k)(ti l t 0 , t n)mjP j + ~ ~ h~f)(ti l to tn)mjv j l = mivik �9

j=0 j=0 /=0

In particular, since w(k)(t i) = 0, 1 < k <].t i - 1, it follows by induction (see
Exercise 12) that

(w(t)R(t)) (k)(t i) = w(t i)R(k)(t i) 1 < k < 11i- 1.

But w(t)R(t) = P(t) , so

w(t i)R(k)(t i) - P(k)(t i) 1 < k <]2 i - 1 ,

or equivalently

P(k)(t i)
R(k)(t i) = 1 < k < P i - 1.

w(t i)

Now P(k)(t i) = mivik and w(t i) = m i , so R(k)(t i) - Vik , 1 < k <]2 i - 1.

Thus, as in rational Lagrange interpolation, the masses in rational Hermite inter-
polation serve as shape parameters. That is, the masses do not affect interpolation at
the nodes, but the masses do alter the shape of the interpolating curve. Again as with
rational Lagrange interpolation, these shape parameters can be hard to control, so we
must handle them with care (see Exercises 1 and 6). Nevertheless, for two-point Her-
mite interpolation, the effect of the masses is fairly well behaved. In Figure 3.9 we
illustrate the effect of the masses on the rational quadratic Hermite representation of
the quarter circle. The effect of the masses on rational cubic Hermite curves as well
as the effect of the masses on other examples of two-point rational Hermite interpo-
lation is investigated in Exercises 8 and 9.

To provide a concrete example, let's now represent the quarter circle in rational
quadratic Hermite form. Recall from Section 2.7 that the unit circle has the rational
quadratic parametrization

2, 1-,_A
R (t) = l + t 2 ' l + t 2 "

From Section 3.1, Exercise 1, the quadratic Hermite basis functions for the nodes 0,1
a r e

Ho(t) - 1 - t 2 Hl(t) - t 2 ho(t) - t (1 - t) .

3.4 Rational Hermite Curves 139

1

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1

Figure 3.9 The quarter circle (dashed) as a rational quadratic Hermite curve with masses m o = 1,m 1 = 2
at the control points Po = (0,1),(P 1 = (1,0) with control vector v 0 = (2,0). (The control vector is
not drawn to scale in order not to dwarf the rest of the figure.) The outer curve represents
the case where mo/m 1 = 20 and the inner curve where mo/m 1 = 1/40.

Now we must find the points P0,P1, the masses mo ,m 1 and the vector v o so that

R(t) - moPoH~ + mlP1nl (t) + m~176176 "

moHo(t)+mlHl(t)

By Theorem 3.2 we need to choose

Po = R(0) = (0,1) P1 - R(1) = (1,0) v 0 = R'(0) = (2,0) .

Moreover, moHo(t) + mlH 1 (t) = 1 + t 2, so

m o = l m 1 = 2 .

What happens if we alter the masses? Dividing the numera tor and denominator

by m 0 or m 1, we can rewrite R(t) as

R (t) -

ml mo
eono(t) + P1H1 (t) + voho(t) mo eono(t) + elnl (t) + voho(t)

mo ml ml
,

ml m0
Ho(t) + H l (t) Ho(t) + Hl (t)

mo ml

Thus we find that

m 0 - 4 0 ~ R(t) --4 P1 and R(0) = Po,

140 C H A P T E R 3 Hermite Interpolation and the Extended Neville Algori thm

so the curve collapses to two points;

m 0 ---),,~ ~ R (t) ~ PO + hO(t) vo'
Ho(t)

which is the line through PO in the direction v O, and

R(1) =P1,

so the curve splits into a point and a line.
Notice that only the ratios m 1 / m 0 and m 0 / m 1 matter, and not the particular val-

ues of the individual masses. Thus we get similar, but reciprocal, behavior as m 1
approaches zero or infinity. We illustrate this behavior in Figure 3.9.

Despite all the similarities between Lagrange and Hermite interpolation, there is
one very important difference between the rational Lagrange and rational Hermite
representations. In rational Lagrange interpolation all the basis functions appear in
the denominator, so we can represent any rational function using the rational
Lagrange representation. But in rational Hermite interpolation, only the basis func-
tions H j (t [t o t n) j = 0 n appear in the denominator. Since the functions
n j (t l t o tn) by themselves do not form a polynomial basis, it is not possible to rep-
resent arbitrary denominators of degree]~k/~k - 1 with a rational Hermite represen-
tation. Thus there are many rational curves that have no rational Hermite form. For
example, the circle has no rational cubic Hermite representation (see Exercise 3).

Nevertheless, we can still apply Neville's algorithm for Hermite interpolation
to compute values along a rational Hermite curve. As usual, we perform the compu-
tation in Grassmann space and then divide by the mass to get values along the curve
in affine space. The only restriction is that the vectors representing the derivatives
in Grassmann space must really be vectors in affine space, not arbitrary vectors in
Grassmann space--that is, their mass coordinate must be set to zero-- to ensure that
the vector components of the Hermite function appearing in the denominator of the
rational function are all zero.

If the mass of a Hermite curve in Grassmann space is ever zero, then the projec-
tion of the curve into affine space is not continuous. As with rational Lagrange inter-
polation, we can avoid these discontinuities by projecting the curve instead into
projective space.

Exercises

1. Implement Neville's algorithm for rational Hermite interpolation, and
experiment with altering the masses in a rational Hermite curve.

a. What are the local and global effects of altering a single mass?

b. What happens when one of the masses is set to zero?

c. What is the effect of a negative mass?

d. What happens if all the masses are changed simultaneously?

3.4 Rational Hermite Curves 1 41

2. Consider the rational quadratic Hermite representation of the quarter circle
given by the masses and control points in the text.

a. Plot the point with t = .99 for larger and larger values of m 0.

b. Plot the point with t = .99 for larger and larger values of ml.

c. What do you observe?

d. Explain what is happening.

3. Show that it is not possible to represent the circle parametrized by

R(t) - l + t 2 ' l + t 2

in rational cubic Hermite form.

4. Find the rational quadratic Hermite representation for the ellipse parame-
trized by

R(t) = (2at b (l + t 2))
l + t 2 ' l + t 2

with respect to the nodes t = 0,1, and use Neville's algorithm to draw this
segment of the ellipse for a = 2, b = 5.

5. Find the rational quadratic Hermite representation for the hyperbola param-
etrized by

R(t) - I a(l + t2) 2bt I
l _ t 2 ' l _ t 2

with respect to the nodes t =-0.5,0.5; t = -4,-2; t = -1 ,1 ; and use Neville's
algorithm to draw different parts of this hyperbola for a = 2, b = 5.

6. Let R(t) be a rational Hermite curve with nodes t o t n, control points
(moPo,m O) (mnPn,mn), and control vectors {Vik}. Let mj increase and
hold m i fixed for i ~ j . Show that

a. l i m m j ~ (t i) - Pi, i - 0 n .

b. l immj_~j~(t) lies in the space spanned by Pj and {vjl} for all

t : /: t i, i = 0 n.

c. l immj~j~(k) (t i) - Vik, 1 < k < kti - 1, i - 0 11.

d. l i m m j ~ R (k) (t) lies in the space spanned by {Vjl } for all t ~ t i, i - 0 n.

(Hint: See Section 2.7, Exercises 8 and 9.)

7. Let R(t) be a rational Hermite curve with nodes to , . . . , t n, control points
(moPo,mo) (mnPn,mn), and control vectors {Vik}. What does the limit
curve look like if

142 CHAPTER 3 Hermite Interpolation and the Extended Neville Algorithm

a. two masses are allowed to increase simultaneously while the other
masses are held fixed?

b. three or more masses are allowed to increase simultaneously while the
other masses are held fixed?

8. Experiment with rational cubic Hermite interpolation at the nodes 0,1.

a. What happens to the shape of the curve as you increase m 0 and leave m 1
fixed?

b. Show that limm0~ooR(t) lies on the line through P0 in the direction v 0 for
all t ~ 1.

c. Explain how it is possible for l i m m 0 ~ R (t) to lie on the line through PO
in the direction v 0 for all t ~ 1, even though the curve still interpolates
the data (P1, Vl) at t = 1.

9. Generalize the results in Exercise 8 to arbitrary two-point rational Hermite
interpolation.

10. Implement Neville's algorithm for rational cubic Hermite interpolation at
the nodes t = 0,1 and explore the different geometric effects of changing

a. control points

b. control vectors

c. masses

11. Experiment with rational quintic Hermite interpolation, where one point
and one derivative is interpolated at each of the three nodes t o < t 1 < t 2 .

a. What happens to the shape of the curve as you increase m 1 and leave m 0
and m 2 fixed?

b. What happens to the shape of the curve as you increase m 0 and leave ml
and m 2 fixed?

c. Show that in both cases l immj~~(t) lies on the line through Pj in the

direction vj for all t ~: t k, k ~: j.

d. Explain in each case how it is possible for l immj~~(t) to lie on the line
through Pj in the direction vj for all t ~ t k, k ~ j, even though the curve
still interpolates the data (Pk, Vk) at the nodes t = t k, k ~ j.

e. Does your explanation account for the difference in the behavior of the
curve that you observe when you increase the masses m 0 and ml ?

12. Let

n

w(t) = ~ mjHj(t l t o t~)
j=O

Prove by induction on k that for any function R(t)

(w(t)R(t))(k)(ti) = w(ti)R(k)(ti)- miR(k)(ti) O < k <] ~ i - 1 .

3.5 Hermite Surfaces 143

13. Given a collection of nodes to t n and masses m 0 m n , define

m j H j (t l to tn)
R j (t) = k=O, n

n ~ " * ' ~

~ m i H i (t l t 0 t n)
i=0

rjk(t) = mjhjk(t l to tn) 1 < k < l l j - 1
n ~ - - - - "

~ m i H i (t l t 0 t n)
i=0

Show that these functions behave like rational Hermite basis functions. In
particular,

n

Z R j (t) =-- 1
j=O

b. R j (t i) - 0 i r j

=1 i - j

c. rjk(P)(ti)= 0 i r j 0 < p < ~l i - 1

= 0 i - j , p : / : k O < k < p j - 1

=1 i - j , p = k l < k < p j - 1

n n ~ t j -1

d. R(t) - Z R j (t l t 0 tn)Pj + Z Zr jk (t l to tn)Vjk
j=0 j=0 k=0

interpolates the data (P0,v01 v0,p0_ 1) (P n , V n l Vn,Pn_ 1) at the
nodes to t n .

(Compare to Section 2.7, Exercise 10.)

3.5

3.5.1

Hermi te Surfaces

Tensor product, lofted, and Boolean sum surfaces can all be generalized from
Lagrange to Hermite interpolation. Here we shall briefly examine each of these sur-
face schemes, beginning with the tensor product construction. Triangular and ratio-
nal Hermite surfaces can also be developed, but since these Hermite surfaces are less
common in practice they are relegated to the exercises.

Tensor Product Hermite Surfaces

In tensor product Hermite interpolation, we start with a rectangular grid of parameter
values (si,t j) in the domain and a rectangular array of control points {~j} in the
range 0 < i < m, 0 < j < n. Associated with each control point P/j is a set of vectors

144 C H A P T E R 3 Hermi t e In terpolat ion and the E x t e n d e d Nevi l le A lgor i thm

{v~ l }, 0 < k < t - t - 1, 0 < l < v - 1, (k , l) ~ (0,0), that represent mixed partial deriva-
tives of the surface at P/j. For the construction given below to work, we require the
same amount of derivative data to be associated with each control point. The general
problem is to construct a surface that interpolates this data at the grid points; that is,
to build a surface P(s,t) such that

P(s i , t j) = Pij

p(k,l) (s i , t j) _ vkl 0 <_ k <_ 12-1, 0 _< 1 _< v - 1, (k,1) :/: (0,0) .

This generic problem is difficult to visualize and not very important in practice, so
we shall not attempt to study it in such generality here (see Exercise 2). Rather we
shall concentrate our attention on a simple, but important, special case that illustrates
the general procedure. We will then apply this special case to construct lofted and
Boolean sum Hermite surfaces.

Suppose then that at each point P/j we have only three vectors (uij ,vij , t i j) , and
we seek a surface that interpolates this data (see Figure 3.10). That is, we seek a sur-
face P(s,t) such that

P(s i , t j) = Pij, P(l '~ - uij, P(O'l)(si , t j) - vij, P(l ' l) (s i , t j) = tij �9

To solve this problem, we can apply the Hermite basis functions

Hi(s l sO,s 0 ,Sm,Sm), hi(s l so ,so, . . . ,Sm,Sm)

H j (t l to,t 0 tn,tn), h j (t l to,to tn,t n)

developed in Section 3.3 for interpolating one derivative at each point.
In the Hermite tensor product construction we form the bivariate Hermite basis

functions by taking the product of each univariate Hermite basis function in s with
each univariate Hermite basis function in t. Thus the tensor product Hermite surface
is defined by setting

m ?/

P(s , t) = ~ ~ H i (s l so,s 0 Sm ,Sm)Hj (t l to,t 0 tn,tn)Pij
i=0j=0

m ?/

+ ~ ~ h i (s l s o , s o S m , S m) H j (t l t o , t 0 tn,tn)Uij
i=0j=0

m t/

+ ~ ~ H i (s l s o , s o S m , S m) h j (t l t o , t 0 tn,tn)Vi j
i=0j=0

m n

+ ~ ~ h i (s l s o , s o Sm ,Sm)h j (t l t o , t o tn,tn)tij �9
i=0j=0

(3.13)

It follows easily from the properties of the Hermite basis functions that the surface
P(s,t) does indeed interpolate the given data at the specified parameter values (see
Exercise 1).

3.5 Hermite Surfaces 145

Vo2L <'O2 V 2I ' 2 V22L/7'22
P02" ~02 P12" "~12 P22- "u22 P32- "u32

Vo1 kjtO1 Vll L j t l l v21 L i t 2 1 VB1LJtB1
POl" ~01 Pl l " ~11 P21" ~21 P31" ~31

voo .7,00 v.ob..7 V20L.." '20 V 0L..'7
PO0 Uo0 P10" U l 0 P20" u20 P 3 0 h30

Figure 3.10 Data for a Hermite tensor product surface control points Pij; first-order partial derivatives
uij, vij, and twists tij.

The vectors t(i are called twists. The twists represent mixed partials of the sur-
face. If the data (Pi j ,u i j ,v i j , t i j) is taken off a surface we are trying to approximate
with a polynomial, then the twists can be computed directly from the surface equa-
tion. If, however, we are simply designing a free-form surface using Hermite inter-
polation, then often it is unclear what values these twists should take. Nevertheless,
simply setting them to zero~omit t ing the last summation in the definition of the ten-
sor product surface~is not a good strategy, since zeros can cause flat spots to appear
on the surface (see Exercise 3(b)). The problem of how to set the twists in general is
a difficult one; we shall not attempt to deal with it here.

We can rewrite (3.13) in the following manner:

m n
P(s , t) - Z H i (s I so,so Sm,Sm) Z { H j (t l to,to tn,tn)Pij + h j (t l to,to tn,tn)Vij}

i=0 j=0

m n
+ ~, h i (s l s o , s 0 Sm,S m) Z { H j (t l t o , t 0 tn,tn)Uij + h j (t l t o , t 0 tn,tn)tij}.

i=0 j=0

For i - 0 m, let

/7
Pi(t) -]~ { H j (t l to,to tn,tn)Pij + h j (t l to,to tn,tn)Vij }

j=O

n
vi(t) - Z { H j (t l to , t 0 tn,tn)Uij + h j (t l to , t 0 tn, tn)ti j} �9

j=O

146 C H A P T E R 3 Hermite Interpolat ion and the Ex tended Neville Algor i thm

Then

m m

P(s, t) = E H i (s l so,s 0 Sm,Sm)Pi(t)+ Eh i (s l so,s 0 Sm,Sm)Vi(t) .
i=0 i=0

If we fix the value of t = t *, then P(s, t*) is simply the univariate Hermite poly-
nomial that interpolates the Hermite data {(Po(t*),vo(t*)) (Pm(t*),Vm(t*))iat the
parameter values s o s m. Similarly, each curve Pi(t) interpolates the Hermite data
{(Pi0,vi0) (Pin,Vin)} at the nodes t o tn, and each vector field vi(t) interpolates
the Hermite data {(Uio,tio) (Uin,tin)} at the nodes t o t n (see Figure 3.11).
Notice that if we restrict to the domain s o < s < s m and t o < t < t n, then we get a
four-sided surface patch. Moreover, it is easy to see that the boundary curves of this
rectangular patch are the Hermite polynomial curves that interpolate the Hermite
data along the boundaries.

Po3 P13 P23

P22

P33

P02 ~ ~, P12 P(s,t) P~ft) ~

P3(O
Po(O Pl(tl 0 ~ i ~(0

, ~ 3P21
PO1 ~ - ~ Pll

Plo - P20 P30

Figure 3.11 Tensor product Hermite interpolation. The curve Pi(t) interpolates the Hermite data {(Pio,Vio),
(Pil,Vil), (Pi2,vi2), (Pi3,vi3)}, and the vector field vi(t) interpolates the Hermite data {(Uio,tio),
(Uil,ti l), (Ui2,ti2), (Ui3,ti3)} at the nodes t0,t 1 t 2 t 3. The surface P(s, t) interpolates the Hermite
data {(Po(t),Vo(t)), (Pl(t),Vl(t)), (P2(t),v2(t)),' (fi3(t),v3(t))} at the parameters So,Sl,S2,S 3. The
boundary curves are interpolating curves for the boundary data.

Exercises

1. Consider the tensor product Hermite surface P(s,t) defined in (3.13).

a. Show that this surface P(s,t) interpolates the data (Pij,uij,vij,tij) at the
parameter values (s i , t j).

b. Explain how to use Neville's algorithm for univariate Hermite interpola-
tion to evaluate points on this tensor product Hermite surface.

c. What data lies at the leaves of the graph constructed in part (b)?

3.5 Hermite Surfaces] 47

2. Use the general tensor product construction to define a surface that interpo-
lates an array of control points {Pi } and a set of vectors { v.k. / }, 0 < k < p - 1, ,7 q
0 < l < v - 1, that represent the mixed partial derivatives of the surface at
P0" That is, construct a surface P(s, t) such that

P (s i , t j) - Pij
P(k ' l) (s i , t j) - v kl (k,1) :/: (0,0) .

3. Implement the tensor product Hermite surface for the data (Pij,uij, v6 , t i j) .

a. Experiment with how changing the data affects the shape of the surface.

b. What is the effect on the shape of the surface when all the twists tij are
set to zero?

4. Define a tensor product rational Hermite surface R(s , t) by setting

m /7

P(s , t) - ~, ~ , H i (s l sO,s 0 S m , S m) H j (t l to, t 0 tn,t/7)mijPij
i=Oj=O

m n

+ ~ E h i (s l s o , s o S m , S m) H j (t l t o , t 0 tn, tn)mijuij
i=Oj=O

m n

+ ~ ~ H i (s l s O , s O S m , S m) h j (t l t o , t 0 tn , tn)mijvi j
i=0 j=0

m n
+ Z Z h i (s l s o , s o S m , S m) h j (t l t o , t o tn, tn)mijt i j

i=0j=0

m n
w(s , t) = Z Z H i (s l so,so S m , S m) H j (t l to,to tn , tn)mij

i=0 j=0

P(s , t)
R(s , t) = ~ "

w(s,t)

Show that

R (s i , t j) - Pij, R(l 'O)(s i , t j) = u~i, R(O' l) (s i , t j) - v~i, R (l ' l) (s i , t j) - tij �9

5. Let {~j] be a rectangular array of control points, and let {v ~l ~j } be a set of vec-
tors that represent the mixed partial derivatives of a surface at P... up to order

~j

Pij, i, j = 0 n. We would like to construct a surface that interpolates this
data at the parameters (si , t j) . That is, we seek a surface Pp(s , t) such that

Pp (s i , t j) - Pij i, j - 0 n

p(k, l) (s i , t j) = vkl 0 <_ k + l <_ Pij (k , l) r (0, O) .

] 4 8 C H A P T E R 3 Hermite Interpolation and the Extended Neville Algori thm

3.5.2

Let P~'J(s,t) denote a surface that interpolates the same data, except that
along the lines s = s i and t = tj we replace].til by llil - 1 and Phj by Phj - 1,
i , j = 0 , n .

a. Show that Pp (s,t) satisfies the recurrence

- (s - s 0) (t ~ - t) , , 0 (s Sn)(t - tn) p~,O (s,t) + Pp (s,t)
Pp (s,t) - (Sn _ So)(tn _ to) (Sn _ So)(tn _ to)

(S n - s) (t - to) O,n (S - S o) (t - to) n,n
+ (Sn _ so)(tn _ to) Pp (s,t) + (Sn _ So)(tn _ to) Pp (s,t) .

b. What are the base cases for the recurrence in part (a)?

c. Use the recurrence in part (a) to develop a rectangular pyramid algorithm
for the interpolant Pp(s,t).

6. Let {P/jk }, i + j + k - n, be a triangular array of control points, and let { vP~ }
be a set of vectors that represent the mixed partial derivatives of a surface at
P/jk up to order Pijk. We would like to construct a surface that interpolates
this data at the points of a triangular grid {Qijk }. That is, we seek a surface
Pp (s, t) such that

P (Qijk) = P/jk

P (P ' q) (Q ij k) - v

i + j + k = n

O < p + q < Pijk (p ,q) r (0,0) .

Let P~(s,t) denote a surface that interpolates the same data, except that at the
2 3 points aOjk w e replace /-tojk by P07k - 1 . Let the surfaces P~ (s,t) and P~ (s,t)

be similarly defined. Finally, let 13 l(s,t),fl2(s,t),fl3(s,t), denote the barycentric
coordinate functions of AQnooQonoQoo n.

a. Show that Pp(s,t) satisfies the recurrence

Pp (s,t) = fll (S,t)P~ (s,t) + fl2 (s,t)P~ (s,t) + fl3(s,t)P~ (s,t) .

b. What are the base cases for the recurrence in part (a)?

c. Use the recurrence in part (a) to develop a triangular pyramid algorithm
for the interpolant Pp(s,t).

Lofted Hermite Surfaces

In the basic Hermite lofting problem, we are given a sequence of curves
Uo(s) Un(s) and a sequence of vector fields uo(s) Un(S) representing cross-
boundary derivatives along these curves (see Figure 3.12). We seek a surface
Hu(s , t) to interpolate this data. That is, we want to construct a surface Hu(s , t)
such that for k = 0 n

"x U~(s) t t i

" Uo(~)

3.5 Hermite Surfaces 149

Figure 3.12 Data for a lofted Hermite surface: curves Uk(S) and vector fields Uk(S), k = 0 3.

Hv(s, tk) = U~(s)

H(U 0'1) (s,t k) - u k (s) .

Again we can apply the Hermite basis functions H k (t l t o , t o t m , t m) ,

h k (t l t o , t o t m , t m) developed in Section 3.3 to construct this surface by setting

m m

H u (s , t) = E H k (t l to,t 0 tm,tm)Uk(S) + ~,hk(t l to,t 0 tm,tm)Uk(S).
k=0 k=0

(3.14)

Here we have simply replaced the points Pk with the curves Uk(s) and the vec-
tors v~ with the vector fields uk(s) in (3.6). Hence it follows immediately from the
properties of the Hermite basis functions that this lofted surface has the desired
interpolation properties (see Exercise 1).

One nice feature of this lofting procedure is that it allows us to piece surfaces
together with smooth partial derivatives across common boundaries. Two lofted sur-
faces with a common boundary curve and a common boundary vector field will, by
construction, join continuously, and their partial derivative will also be continuous
across the common boundary. More significantly, suppose we have two disjoint sur-
face patches P1 (s,t) and P2(s,t) that we wish to connect smoothly by joining them
with a third surface Q(s,t). Then we can construct Q(s,t) as a lofted surface with one
boundary curve given by Pl(1,t) with the corresponding vector field ~P1 /bs, and the
other boundary curve given by P2(0,t) with the corresponding vector field ~P2 / ~ .
By the interpolation properties of lofted surfaces, Q(s,t) and Pj(s, t) , j - 1,2, will
join smoothly across their common boundary (see Figure 3.13).

150 CHAPTER 3 Hermite Interpolation and the Extended Neville Algor i thm

P1 (s,t)

P (O,O P (1,0

3P 1
~- Os

Q(s,t)
_..J

OP 2
Os

P2(O,t)

Figure 3.13 Joining the two surfaces Pl(s,t) and P2(s,t) with a third surface Q(s,t) so that derivatives are
continuous across the common boundaries.

3.5.3

Exercises

1. Show that the lofted Hermite surface defined in (3.14) interpolates the
curves U k (s) and the vector fields u k (s), k = 0 n.

2. Given a collection of curves U k(s) and vector fields u k(s), k = 0 n, use
the lofted surface construction to define a surface P(s,t) that is piecewise
cubic in t and interpolates the given curves and vector fields.

3. Define a lofted rational Hermite surface R u (s , t) by setting

m m

Z H k (t l to,t 0 tm, tm)mkUk(s) + Z h k (t l to,t 0 tm,tm)mkUk(S)
nU ~ Z s, t ~ = k=0 k=0

Show that

a. Ru(s , tk) = Uk(s)

b. R(U 0,1) (s,t k) = u k (s)

m

]~mkHk(t l to,t 0 tm,t m)
k=O

Boolean Sum Hermite Surfaces

We can also construct Boolean sum Hermite surfaces. Here we are given a mesh of
curves Uo(s) Um(s) and Vo(t) Vn(t) together with a collection of vector fields
Uo(S) Um(S) and vo(t) Vn(t) representing cross-boundary derivatives along

these curves. We are also provided with an array of control points P0 and an array of
twists t.. The problem is to interpolate all of this data: curves, cross-boundary q.
derivatives, control points, and twists along a grid with prespecified nodes (see Fig-
ure 3.14).

Even in the Boolean sum Lagrange construction, we could not solve the interpo-
lation problem without some compatibility conditions (see Section 2.15). For
Lagrange interpolation, we need to assume that

P Jl "J(P

3.5 Hermite Surfaces

vj(0

151

Figure 3.14 Data for a Boolean sum Hermite surface: a mesh of curves {Ui(s),Vj(t)}, a band of vector fields
{ui(s),vj(t)}, an array of control points {Pij}, and an array of twists {tij}.

Pij = Uj (s i) = Vi(tj);

that is, we require that the mesh of curves actually intersect. Here we need compati-
bility conditions as well between the cross-boundary derivatives. Indeed we require
the following compatibility conditions:

1. Pij = Uj (s i) = Vi(t j) (3.15a)

2. U~.(s i) - v i (t j) (3.15b)

3. Vi'(t j) = u j (s i) (3.15c)

4. tij - u j (s i) - v~(tj) (3.15d)

The first condition requires that the mesh of curves intersect at the nodes. The
second and third conditions assert that the cross-boundary derivatives agree with the
curve tangents at the grid points, and the last condition says that the mixed partials
agree at the nodes.

Now the Boolean sum Hermite surface is defined in a manner analogous to the
Boolean sum Lagrange surface by setting

B(s, t) = H u (s , t) + H v (s , t) - Tp(s,t) ,

where the Hermite tensor product surface Tp(s,t) is defined by (3.13) with respect to
the points Pij , the derivative vectors uij - U~.(si) and vij - Vi'(tj), and the twists tij.
Expanding this formula by substituting in the definitions of the lofted and tensor
product surfaces, we find that

152 CHAPTER 3 H e r m i t e I n t e r p o l a t i o n a n d the E x t e n d e d Nev i l l e A l g o r i t h m

m m

B (s , t) - ~ H j (t l to , t 0 t m , t m) U j (s) + ~ h j (t l to , t 0 tm , tm)Uj (S)
j=0 j=0

n n

+ ~ H i (s l s o , s 0 Sn ,Sn)V i (t)+ ~ h i (s l s o , s 0 Sn,Sn)Vi(t)
i=0 j=0

n m
- ~ ~ H i (s l s O , s O S n , S n) H j (t l t o , t 0 tm, tm)Pi j

i=0j=0
(3.16)

n m
- ~ ~ h i (s l s o , s o S n , S n) H j (t l t o , t 0 t m , t m) U j (s i)

i=0 j=0

n m
- ~ ~ H i (s l s O , s O S n , S n) h j (t l t o , t 0 tm, tm)Vi ' (t j)

i=0j=0

n m
- ~ ~ h i (s l s o , s o S n , S n) h j (t l t o , t 0 tm, tm)t i j �9

i=0 j=0

By applying the properties of the Hermite basis functions together with the compati-
bility conditions, you can check that this Boolean sum surface indeed has the desired
interpolation properties (see Exercise 1).

Using this Boolean sum construction, we can fill a four-sided hole so that the
surface patches join with smooth cross-boundary derivatives, provided that the data
from the bounding surfaces is compatible at the four comer points. We illustrate this
construction in Figure 3.15.

Exercises

1. Show that when the compatibility conditions (3.15a-d) are satisfied, the
Boolean sum Hermite surface defined in (3.16) interpolates all of the data-
curves, cross-boundary derivatives, control points, and twis ts~along the
parameter lines s = s i and t = tj.

2. Let f l l , f le, f l3 be the barycentric coordinate functions for the triangle

AQ1Q2Q3. Define three functions r i (f l l , f l2 , f l3) , i = 1,2,3, by setting

2 2
fl j f l k i :/: j :/: k .

Show that

a. ri(fl l , f l2, /33) = 0 i f f l j - 0 or flk - 0 , i ~ j ~ k

b. ri (fll , fl2 , fl 3) = 1 if fli = 0

~ri
c. ~)flJ - 0, if t ip = O, p - 1,2,3

3.5 Hermite Surfaces 153

Q2(s, t)

OQ2

,~___~ 3p 1 i
as B(s,t) !

OQI~ '

- - 4
Ql(S,

aP2

as

P2(s,t)

Figure 3.15 Filling the four-sided hole surrounded by the surface patches Pl(S,t), P2(s,t), Ql(S,t), Q2(s,t)
with a Boolean sum Hermite surface B(s, t) so that derivatives are continuous across common
boundaries. This construction only succeeds when the data from the patches surrounding
the hole satisfy the compatibility conditions (3.15a-d) at the four corners.

3
d. 2ri(fll,fl2,fl3) ~ 1

i=1

3. Consider three curves U 1,U2,U 3 and three vector fields v 1,v2, v 3 defined
over the edges of a triangle with vertices Q1, Q2, Q3 satisfying the compati-
bility conditions

ui(Qj) - u k (Q j) - Pj, and vi(Qj) - Vk(Qj) - w j, i =it= j =it= k.

Let fll,fl2,fl3 be the barycentric coordinate functions of AQ1Q2Q3, and let
Ho(t),Hl(t),ho(t) be the quadratic Hermite basis functions for the nodes
0,0,1 (see Section 3.1, Exercise 1). Construct three quadratic cones

Cui (fll,fl2,fl 3) Ho(fli)Ui(fljQj + flkQk) - + H1 (fl i)Pi
1- fli

+ ho(fli)vi(flJQJ + flkQk fli i :/: j ~ k

and the surface

3
B(fll, f12, f13) - 2 ri (ill, f12, f13)Cu i (ill, f12, f13)'

i=l

154 C H A P T E R 3 Hermi te Interpolat ion and the Ex tended Nevil le A lgor i thm

where the functions ri(J~l,J~2,fl3), i - 1 ,2 ,3 , are defined in Exercise 2.
Using the properties of the quadratic Hermite basis functions and the func-
tions ri(/31,fl2,fl3), i - 1,2,3, developed in Exercise 2, show that

a. Cui (/31,132,133) - U i , when/3 i = 0, i = 1,2,3

b. ~CUi = V i, when fli = 0, i = 1,2,3

c. B(f l l , f l2, f13) - Ui, when fli = O, i - 1,2,3

d~
OB

- v i along fli - 0, i = 1, 2, 3

e. B(fl l , [32,,63) is well defined at fli = 1, i = 1,2,3

Thus the surface B(fl l , f12, f13) interpolates the same data over triangles that
the Boolean sum Hermite surface interpolates over rectangles.

4. Develop an analogue of the construction in Exercise 3, where the three
cones are replaced by three surfaces interpolating pairs of edges and corre-
sponding vector fields, and the quadratic Hermite basis functions are
replaced by cubic Hermite basis functions.

3.6 Summary

In this chapter we have extended the ideas and techniques from Chapter 2 on
Lagrange interpolation of control points to Hermite interpolation of control points
and derivatives. Most of the result on Lagrange interpolation including existence and
uniqueness theorems, Neville's algorithm, dynamic programming procedures, up
and down recurrences, basis functions, rational schemes, and tensor product, lofted,
and Boolean sum surfaces extend readily to the Hermite setting. If you understood
Chapter 2 well, this chapter will have been mostly a review with some modest exten-
sions.

We mentioned at the end of Chapter 2 that to solve problems in interpolation and
approximation, we must use the basis most appropriate to the prob lem at hand.
While the Lagrange and Hermite bases are improvements over the standard mono-
mial basis for performing Lagrange and Hermite interpolation, they are not as effi-
cient computationally as the monomial scheme. In the next chapter we introduce the
Newton basis, a basis that is quite suitable for performing interpolation and as effi-
cient computationally as the monomial basis.

C H A P T E R 4

Newton Interpolation
and Difference Triangles

We are going to revisit polynomial interpolation one more time. So far we have
encountered several important polynomial bases, including

�9 M o n o m i a l basis: 1,t t n

�9 Tay lor basis: 1,(t - to) (t - to) n

�9 L a g r a n g e basis: /_~(tlt 0 tn) L n (t l t o tn)

�9 H e r m i t e basis: H o (t l t o , t 0 tn , t n) H n (t l t o , t 0 tn , tn) ,

ho(t l to , t 0 tn , t n) hn(t l to , t 0 tn , tn) .

Here we plan to study yet another polynomial basis: the N e w t o n bas is .

Each of these bases has some good features and some bad features. Univariate
polynomials written in terms of the monomial or Taylor bases can be evaluated
quickly using Homer's method (see Section 2.8, Exercise 3), but computing the
monomial or Taylor coefficients from Lagrange or Hermite data requires inverting a
matrix, a slow and numerically unstable procedure. On the other hand, given
Lagrange or Hermite data, we do not need to perform any computation to find the
Lagrange or Hermite coefficients, since these coefficients are precisely the data we
want to interpolate. This fact is one of the reasons we introduced these two bases in
the first place. But Neville's evaluation algorithm for polynomials of degree n writ-
ten in terms of the Lagrange or Hermite bases is O(n2), whereas Homer's method for
polynomials written in terms of the monomial or Taylor bases is O(n) . Thus polyno-
mial evaluation is relatively slow for polynomials expressed in terms of the
Lagrange or Hermite bases. Even the ladder algorithm for Lagrange polynomials
(Section 2.6, Figure 2.12), which is O(n) , is slower than Homer's method because
the ladder algorithm requires 3n multiplications compared to only n multiplications
for Homer's approach.

The Newton basis combines the best of both worlds. Given Lagrange or Hermite
data, the coefficients of the interpolating polynomial relative to the Newton basis are

155

156 C H A P Z E R 4 N e w t o n I n t e r p o l a t i o n a n d D i f f e r e n c e T r i a n g l e s

easy to find using a simple recursive procedure. Moreover, we shall see that Homer's
method for polynomial evaluation extends readily to the Newton basis. Thus the
Newton basis combines some of the best features of the Lagrange and monomial
bases: easy-to-compute coefficients and a fast evaluation algorithm.

4.1 The Newton Basis

To construct the Newton basis, we begin by fixing a set of nodes t o < t 1 <_... <_ t n.

The Newton basis for these nodes is then defined by

N o (t) - 1

m I (t) - t - t o

N n (t) - (t - t O).. .(t - tn_ 1) .

The nodes t o t n need not be distinct. When all the nodes are identical, the Newton
basis reduces to the Taylor basis at t - t o . Thus the Taylor basis is a special case of
the Newton basis.

The Newton bas'is has several rather obvious but important properties:

1. N k (t) - (t - t o) . . . (t - tk_ 1) is a polynomial of exact degree k.

2. N ~) (t j) = lO, O < j < k, O < p < Pjk,

where Jljk is the number of times tj appears in t o tk_ 1.

3. N o (t) N n (t) 'form a basis for the polynomials of degree n.

H

4. ~ , C k N k (t) has an O (n) Homer evaluation algorithm.
k=0

The first two properties are immediate from the definition of the Newton basis, and
the third property follows easily from the first (see Exercises 2 and 3). The fourth
property is what currently interests us here.

We illustrate the O (n) Homer evaluation algorithm for cubic polynomials writ-
ten in terms of a Newton basis in Figure 4.1. Notice that the labels along edges enter-
ing each node do not sum to one. This phenomenon is related to the fact that the
Newton basis functions themselves do not sum to one. Thus, except for the coeffi-
cient of N o (t) , the coefficients of the Newton basis functions are vectors, not points,
so we need not take affine combinations of these coefficients for our results to make
sense in affine space.

4.2 Divided Differences 157

P(O

Po

v 1

#=

1/ /

v2 v 3

Figure 4.1 Horner's O(n) evaluation algorithm for cubic polynomials (P(t) = PoNo(t) + VlNl(t) + v2N2(t) +
v3N3(t) written in Newton form. The labels along the edges are not normalized, since the
Newton coefficients are vectors, not points. Multiplication is performed only along the lateral
right edge. Edges labeled with a 1 represent additions, not multiplications. Compare to Fig-
ure 2.18, which is Horner's method for the monomial basis.

Exercises

1. What is the Newton basis when t k = 0, k = 0 n ?

2. Prove that

N~)(t j) - O, 0 < j < k, 0 < P < jk,

where ~tjk is the number of times t j appears in t o tk_ 1.

3. Prove that the Newton polynomials form a basis for the polynomials of
degree n.

4. Diagram Homer's method for polynomials written in terms of the Taylor
basis.

4.2 Divided Differences

Although we can quickly evaluate polynomials expressed in Newton form, it still
remains to compute the Newton coefficients of the polynomial interpolant in an effi-
cient manner. Let's begin then by trying a few simple calculations.

Given an arbitrary curve F(t) , suppose we want to interpolate the points
F(to) F (tn) with a degree n polynomial curve Po...n(t). We know how to compute

158 CHAPTER 4 Newton Interpolat ion and Difference Triangles

Po...n(t) using Neville's algorithm, but now, for fast evaluation, we want to find the
Newton coefficients of Po...n (t). If n = 0, then

Po(t) = F (t o) - F(to)No(t) ,

so this case is easy. If n = 1, then we have

P01 (t) = coNo(t) + ClN 1 (t).

Since N 1 (t 0) = 0, it follows once again that

co = POl (to) = F(to).

(4.1)

T o find c 1 , substitute t 1 into (4 . 1) to obtain

F(t l) = P01 (tl) = coNo(t l) + ClNl(t 1) = F(to) + Cl(t 1 - to).

Solving for c 1 , we find that

F(tl) - F(to) (4.2)
c I ---

t 1 - t o

What if tl = to? Then instead of Pol (t), we must consider the interpolating poly-
nomial Poo(t). But Poo(t) is the Taylor polynomial

Poo(t) - F(to) + F'(to)(t - to).

Thus we can simply read off the Newton coefficients c o = F(t o) and c I = F'(to).
Notice that this result is consistent with our previous formulas, since

F (t l) - F (t o)
F ' (to) = lim t

1 ~ to t 1 - t O

We could go on to consider higher-order Newton coefficients, but although these
computations are straightforward, they would not be very enlightening. Instead we
shall soon take a less direct, but more revealing, approach. One thing you should
notice now, however, is that

eo...n (t) = eo...n-1 (t) + cnN n (t)

because Nn(t ~) = 0, k = 0 n - 1 . Therefore, once we know the Newton coeffi-
cients for the nodes t o tn_l, we need not recalculate them for the nodes t o tn;
all we need to do is to calculate the last coefficient c n . This observation remains
valid even if some nodes tj have multiplicities].tj > 1 because

N (p) (t j) = O, 0 <_ p < ,Uj.

The Newton coefficient in (4.2) is a ratio of two differences. The general nth-
order Newton coefficients are called divided differences. We begin with a recursive
definition of the divided difference, and then argue from Neville 's algorithm that
these divided differences do indeed represent the Newton coefficients of the polyno-
mial interpolant.

4.2 Divided Differences 159

DEFINITION D i v i d e d D i f f e r e n c e s I

F [t 0] - F (t o)

F(tl) - F (t O)
F[t o , t 1] = t 1 ~: t o

t 1 - t o

= F ' (t 0) tl = to
�9 o

F[t 0 t n] = F[tl t n] - F[to tn-1] t n 4: t o
t n - t o

F (n) (t o)
= ~ t n = t o .

n!

In this notation we do not assume that the nodes t o , t n are distinct, and we
repeat a node inside the bracket of F[t o t n] as often as its multiplicity.

When the nodes are distinct, this definition of divided difference looks a lot like
a discrete version of differentiation. We shall have more to say about the connection
between divided differences and derivatives in Section 4.3. We illustrate the compu-
tation of the divided difference for four distinct nodes in Figure 4.2. Notice the
familiar triangular structure of this computation. In fact, if we look just at the indices

F[to, t l , t2, t3]

/ / ' ' , ,
F[to, t],t2] F[t],t2,t3] / / ' , , , //',,,,

F[to, tl] F[t l , t2] F[t2,t3]

F(to) F(tl) F(t 2) F(t 3)

Figure 4.2 The triangular computation of the divided difference. Arrows entering the node F[tj t k] are
labeled _+ 1/(t k - w These labels have been suppressed here to avoid cluttering the diagram.
Notice that the indices in the nodes are identical to the indices in the nodes for Neville's algo-
rithm; compare this diagram to Figure 2.5.

160 C H A P Y E R 4 N e w t o n I n t e r p o l a t i o n a n d D i f f e r e n c e Tr iang l e s

in the nodes and ignore the labels on the arrows, the structure of this algorithm is
identical to the structure of Neville's algorithm. This connection between these two
algorithms is not a coincidence; we shall investigate the link between the divided
difference recurrence and Neville's algorithm shortly.

Although this definition of divided difference is easy to understand and simple
to compute, it does not, at first glance, seem to have much to do with polynomial
interpolation. There are, however, two subtle clues that this construction might actu-
ally generate the Newton coefficients of the polynomial interpolant. First, we have
seen that F[t 0] and F [t o , t 1] are the coefficients of No(t) and Nl(t), so the recursion
starts out in the right way. Second, the structure of the divided difference computa-
tion exactly mirrors the structure of Neville's algorithm.

There is another definition of the divided difference that, although somewhat
more abstract, is much more closely tied to interpolation. It also turns out that this
more abstract definition is often much easier to apply in deriving additional mathe-
matical properties of the divided difference. We shall now give this alternative defi-
nition and then prove that our two definitions are equivalent.

DEFINITION D i v i d e d D i f f e r e n c e s I I

Let F(t) be an arbitrary curve, and let t o < t 1 <_ .. . <_ t n be a set of n + 1
nodes, not necessarily distinct. Denote by/ . t k the multiplicity of t k in the
sequence t o < t 1 < .. . < t n. Let Po.. .n(t) be the unique degree n polynomial
that interpolates the data

F(to) F(~t0 -1) (t o) F (t n) F(~tn -1) (t n) .

Then

F[to , . . . , t n] = coefficient of t n in the monomial representation of the
interpolant Po.. .n(t) . (4.3)

In this notation, we repeat the node t k a total of flk times inside the brackets of

F[t 0 tn].
For example, suppose that

F (t) - 3t 4 - 5t 3 + 2t 2 - 2t + 3,

and let t O = 0, t 1 = 0, t 2 = 1, t 3 = 1. Then in the cubic Hermite basis (see Section
3.1)

P0011 (t) - F(0)(1 - t) 2 (1 + 2t) + F(1)t 2 (3 - 2t) + F'(0)t(1 - t) 2 + F'(1)t 2 (t - 1).

Substituting F(0) = 3, F ' (0) = -2 , F(1) = 1, F'(1) = -1 and expanding in the mono-
mial basis yields

POOl l (t) - t 3 - t 2 - 2t + 3 .

Therefore, F[0,0,1,1] - coefficient of t 3 - 1.

4.2 Divided Differences 161

THEOREM
4.1

Let F i t 0 tn] be the divided difference as defined by (4.3). Then
F [t 0 tn] satisfies the recurrence

F [t 0 t n] = F [t l t n] - F [t 0 t n _ 1] tn ~ t o

t n - t o

F (n) (t o)
- t n - t o �9

n!

Thus Definition I and Definition II for the divided difference are equivalent.

P r o o f If t n r t 0 , then by Neville's algorithm (3.4)

- t n - t
Po. . .n (t) - t t________O_ 0 P1.. .n (t) + P o . . . n - 1 (t) .

t n - t o tn - t O

Comparing the coefficients of t n on both sides of this equation yields

F [t 0 , t n] - F [t l t n] - F [t 0 , t n _ 1] tn g: t O �9

t n - t o

If, on the other hand, t n - t 0, then P o . . . n (t) - P o . . . o (t) is the Taylor polyno-
mial of degree n at t - t 0. Thus ~n+l

n F (k) (t o) k
Po. . .n (t) - E (t - t O)

k=0 k!

Comparing the coefficients of t n on both sides of this equation yields

F [t 0 to] =

n+l

F (n) (t o) .

Although we now see a direct connection between divided differences, recur-
sion, and interpolation, we have yet to link the divided difference to the Newton
basis. Our next result states that divided differences are indeed the Newton coeffi-
cients of the polynomial interpolant.

162 C HAPTER 4 N e w t o n I n t e r p o l a t i o n a n d D i f f e r e n c e T r i a n g l e s

COROLLARY
4.2

Let F (t) be an arbitrary curve, and let t O < t 1 < . . . < t n be a set of n + 1
nodes, not necessarily distinct. Denote by ~t k the multiplicity of t k in the
sequence t o < t 1 < . . . < t n. Let Po. . .n(t) be the unique degree n polynomial
that interpolates the data

F (t o) ,F(#0-1) (t 0), F (t n) F(~tn-1) (t n)

at the parameter values t o t n. Then
n

eo. . .n (t) = Z F[to t k]U k (t).
k=0

That is, the Newton coefficients of the polynomial interpolant are divided
differences.

P r o o f This result follows by induction on n. If n = 0, then by definition
Po(t) = F (t o) , so the result is certainly true. Now suppose the result is valid
for all natural numbers less than n. Since the polynomials N o (t) N n (t)

form a basis,
n-1

Po. . .n(t) =] ~ C k N k (t) + c n N n (t) .
k=0

Moreover, since

N(n pk) (t k) = O, Pk = 0 l.t k - 1, k = 0 n - 1, Pn = 0]1 n - 2,

it follows that

n-1
eo . . .n-1 (t) - ~ C k N k (t)

k=0

because both sides are polynomials of degree n - 1 that interpolate the data

F (t o) F(/~o -1) (t o) F (t n _ 1) F(/ln- 1-1) (tn_ 1) , F (t n) F(~tn -2) (t n) �9

Hence by the inductive hypothesis

c k = F [t 0 t k] , k = O n - 1 .

Finally, observe that since d e g r e e { N k (t) } = k, c n is the coefficient of t n in the
monomial basis of the polynomial interpolant Po.. .n(t); hence by (4.3),

C n = F[t 0 tn].

Theorem 4.1 and Corollary 4.2 provide us with a fast way to compute the poly-
nomial interpolant: first use the divided difference recurrence to find the Newton
coefficients of the interpolant; then apply Homer's method to evaluate the interpo-
lant in the Newton basis. The divided difference recurrence is O(n2) , but we need to
apply this recurrence only once to find the Newton coefficients. We can then apply
Homer's method, which is only O (n) , to evaluate the interpolant at as many parame-
ter values as we like.

4.2 Divided Differences 163

For fixed parameters t o t n we can think of the divided difference as an opera-
tor that assigns to each function F(t) the constant F[t o tn]. The divided difference
is a linear operator, since it is easy to show either by induction from Definition I or
more directly from Definition II that

(F +G)[t 0 tn] = F[t 0 t n] + G [t 0 tn]

(cF)[t 0 t n] = c (F[t 0 t n]) �9

A linear operator that vanishes on all but one of a fixed set of basis functions and
yields the value one on a single basis function is called a d u a l f u n c t i o n a l . For exam-
ple, polynomial evaluation is the linear operator that provides the dual functionals
with respect to the Lagrange basis {Lnk(t I t o tn) } because by (2.12)

L ~ (t j l t 0 t n) - 0 j 4: k

=1 j = k .

Similarly, divided difference is the linear operator that provides the dual functionals
for the Newton basis. Indeed, if we set F (t) = N k (t) in Corollary 4.2, then it follows
from the uniqueness of the polynomial interpolant that P o . . . n (t) = N k (t) (see Section
2.4, Exercise 3), so

N j [t o tk] = 0 j r k

=1 j = k .

Dual functionals are convenient because if we know the dual functionals for a
particular basis, then we can compute the coefficients of an arbitrary element with
respect to this basis (see Exercise 11). For example, if P(t) is a polynomial of degree
n, then by Theorem 2.7 and Corollary 4.2

n

P (t) - Z P (t k) L ~ (t l t 0 tn)
k=O

n

P (t) - ~, P[t 0 t k]N k (t) .
k = 0

Dual functionals are important tools in interpolation and approximation. We
shall return to this theme again in Chapter 6, where we discuss blossoming, which
provides the dual functionals for the Bemstein and B-spline bases.

Exercises

1. Draw the diagram of the divided difference recurrence for F[0,1,1, 2]. Com-
pare this diagram to Figure 3.5.

2. Draw the diagram of the divided difference recurrence for F[0, 0, 0,1,1, 2]
and F[0,0,1,1,2,2]. Compare your diagrams to Figures 3.7 and 3.8. Why do
these figures differ from your diagram?

164 CHAPTER 4 N e w t o n I n t e r p o l a t i o n a n d D i f f e r e n c e T r i a n g l e s

3. Use the mean value theorem to prove that if F(t) is a differentiable function,
then

a. F[to , t 1] = F ' (c) for some constant c such that t o < c _< t 1.

F (n) (c)
b. F[t 0 t n] - for some constant c such that t o < c < t n .

n!
4. Prove that (F o G) [t o , t 1] = F [G (t 0) , G (t 1)]G[tO,t 1].

5. Prove that if all the nodes are distinct, then

n F (t k)
F[t o tn] =

k = 0 1-I (t k - t j)
j ~ k

(Hint: Consider Lagrange interpolation.)

6. Let G (t) = F (t + b). Prove that G[t 0 t n] = F[t 0 + b t n + b].

7. Let P(t) be the Newton interpolating polynomial for F(t) relative to the
nodes t o t n. Form a new Newton interpolating polynomial Q(t) by
replacing each node tlc by the node TIc = t k + b , k = 0 n, for some fixed
constant b.

a. Show that changing all the nodes in this way has no effect on the shape of
the Newton interpolating curve. In particular, show that Q(t + b) = P (t) .

b. Form a new Newton interpolating polynomial R(t) by replacing each
node t k by the node ~'k = a t k + b for some fixed constants a > 0 and b.
Show that R(t) is not, in general, a reparametrized version of P(t) .

c. Compare these results for Newton interpolation to similar results for
Hermite interpolation in Section 3.2, Exercise 5, and Lagrange interpola-
tion in Section 2.2, Exercise 4. Why do these results for Newton interpo-
lation resemble the corresponding results for Hermite interpolation rather
than the corresponding results for Lagrange interpolation?

8. Prove that if all the nodes are distinct, then

F[t 0 t n] =

F (t o) t~ -1 .. . t o

F (t n) t n-1 . . . t n

-1. to
�9 ~ o ~

n-1

(Hint: Consider interpolation using the monomial basis.)

9. Let to < ... < t n be distinct nodes with multiplicities/.t o /.t n. Generalize
the result in Exercise 8 by replacing the row

4.3 Properties of Divided Differences 165

n-1 R (t j) - {F(t j) tj ... tj 1}

by the rows R(t j) .,R (~/j-1) ,.. (t j) , and the row

n-1 r (t j) - { t j tj ... tj 1]

r(l~; -1) by the rows r(t j) (tj) for j = 0 n.

10. What are the dual functionals for the following bases?

a. Taylor basis

b. Hermite basis

11. Let D~ (t) D n (t) be a basis for the polynomials of degree n. Suppose that
k,~ ~n are linear functionals that assign a real number to each polyno-

mial P(t) of degree n. Show that the following two properties are equivalent:

f/ /7
~ j (D k) - 0 j :/: k

=1 j - k .

n

ii. P(t) y_, n n = /~j(P)Dj (t) .
j=O

(Compare to Section 2.5, Exercise 4.)

4.3 Properties of Divided Differences

Divided differences have many interesting properties. When the nodes are distinct,
the divided difference is a discrete version of the derivative, and when the nodes are
identical, the divided difference is a derivative. Thus divided difference shares many
of the familiar properties of differentiation. But divided differences are also the coef-
ficients of a polynomial interpolant; thus they also possess properties related to inter-
polation. We collect a dozen of the most important properties of divided differences
and list them in the next theorem. Additional intriguing formulas can be found in the
exercises. For easy reference many of these divided difference identities, and others
as well, are listed together at the end of this chapter.

166 C H A P T E R 4 N e w t o n I n t e r p o l a t i o n a n d D i f f e r e n c e T r i a n g l e s

THEOREM
4.3

P r o p e r t i e s o f the D i v i d e d D i f f e r e n c e

Let F(t) be an arbitrary curve, and let t o < t 1 < ... < t n be a set of n + 1
nodes, not necessarily distinct. Denote by /t k the multiplicity of t k in the
sequence t o < t 1 < ... < t n. Let Po.. .n(t) be the unique degree n polynomial
that interpolates the data

F(to) F(/Z0 -1)(t O) F (t n) , . . . , F (l t " - l) (t n)

at the parameter values t O t n. Then the divided difference Fi t 0 tn],

where each distinct node t j is r epea ted / / j times, satisfies the following
properties:

1. R e c u r s i o n

F[t 0 t n] = F[tl t n] - F[t 0 tn_l] tn :/: t o

t n - t o

F (n) (t o)
= ~ t n = t o .

n!

2. S y m m e t r y

F[t 0 t n] = F[tcr(O),...,tcr(n)], where cy is any permutation of {0 n}.

3. R e c u r s i o n R e v i s i t e d

F[t 0 ti_ 1,ti+l t n] - F[t 0 t j _ l , t j + l t n]
F[t 0 t n] = t j f: t i .

t j - t i

4. L i n e a r i t y

(F + G)[t 0 t n] - F[t 0 t n] + G[t 0 t n]

(cF)[t 0 tn] - c (F[t 0 t n]) �9

5. C a n c e l l a t i o n

F[t 0 t n] = { (t - t n + l) F (t) }[t o tn, tn+l].

6. L e i b n i z ' s R u l e

n

(F G) [t 0 t n] = Y~F[t 0 , tk]G[t k tn].
k=O

7. H i g h e s t - O r d e r C o e f f i c i e n t o f the P o l y n o m i a l I n t e r p o l a n t

F[t 0 t n] - coefficient of t n in the monomial representation
of the interpolant Po.. .n(t) .

8. H i g h e s t - O r d e r C o e f f i c i e n t o f the N e w t o n I n t e r p o l a n t

F i t 0 t n] - coefficient of N n (t) in the Newton representa-
tion of the interpolant Po.. .n(t) .

4.3 Properties of Divided Differences 167

9. Newton Coefficients o f Polynomial ln terpolant

n

Po. . .n (t) - ~,F[to,. t k]Nk(t) .
k=0

10. Dua l Funct ionals f o r the Newton Basis

Nj[t 0 tk]= 0 j ~ k

=1 j - k .

11. Equali ty Condit ions

F (p) (t j) = G (p) (t j) O< p < l t j - 1 , j - O n

F[t 0 ,tn] - G[t o ,tn].

12. Value on Low-Order Polynomials
a. If F(t) is a polynomial of degree n - 1, then F[t 0 t n] = O.
b. If F(t) is a polynomial of degree n, then F[to,. . . , t n] is the coeffi-

cient of t n in the monomial representation for F(t). Thus, in this
case, Fit o t n] is a constant independent of to,...,t n.

Proo f We are already familiar with some of these properties, and most of the remain-
der are fairly simple to derive. We shall take Property 7 as the definition of the
divided difference and deduce the other properties as a consequence.

1. Follows from 7 by Theorem 4.1.

2. Also follows immediately from 7 because the interpolant Po...n(t) is
independent of the order of the nodes t o t n .

3. Follows immediately from Properties 1 and 2.

4. Follows easily by induction from Property 1 or more directly from
Property 7 by the linearity of the polynomial interpolant.

5. Follows from Property 7 because if Po...n(t) is the polynomial interpo-
lant for F(t), then (t - tn+l)Po. . .n(t) is the polynomial interpolant for
(t - t n + l) F (t) .

6. This result is the analogue of Leibniz's rule for the nth derivative of the
product of two functions. We shall prove this result separately below in
Proposition 4.4.

7. This property is the definition of the divided difference.

8. Follows directly from Corollary 4.2.

9. This result is Corollary 4.2.

10. Follows easily from Property 9 with F(t) = Nj (t) .

11. Again this result follows easily by induction from Property 1 or more
directly from Property 7 by the uniqueness of the polynomial interpolant.

168 C H A P T E R 4 N e w t o n I n t e r p o l a t i o n a n d D i f f e r e n c e T r i a n g l e s

12. Part (a) is a consequence of Property 7 because if F(t) is a polynomial
of degree n - 1, then F(t) is the polynomial interpolant to the data gen-
erated by F(t) . But since F(t) is a polynomial of degree n - 1, the coeffi-
cient of t n in the monomial representation of F(t) is zero, so
F[t 0 t n] = 0. Part (b) is also a consequence of Property 7 because
again F(t) is the polynomial interpolant to the data generated by F(t) .

Thus by Property 7, F[t 0 t n] is the coefficient of t n in the monomial
representation of F(t) . It follows that F[t o t n] is independent of the
nodes t o t n .

Properties 1-3 and 7-11 are directly related to interpolation. For example, we
have seen that the structure of the divided difference recurrence in Property 1 is
identical to the structure of Neville' s algorithm for polynomial interpolation. Proper-
ties 4, 6, and 12 are reminiscent of similar properties for differentiation. Here Prop-
erty 6 reminds us of the product rule for higher-order derivatives (see Exercise 1),
and Property 12 recalls the fact that the nth derivative of a degree n - 1 polynomial is
zero while the nth derivative of a degree n polynomial is a constant. It remains then
only to prove Leibniz's rule.

PROPOSITION
4.4

L e i b n i z ' s R u l e

n

(F G) [t 0 t n] = E F [t 0 tk]G[t k t n]
k=O

Proof This result can be proved directly from the recurrence by a hard induction.
Here we shall adopt a much simpler proof due to E. T. Y. Lee. To shorten
our notation, let P(t) - Po.. .n(t) be the polynomial interpolant for F(t) . Then
by Property 9 of Theorem 4.3,

n

P(t) - ~ ,F[t 0 tk](t - t o) . . . (t - tk_l) . (4.4)
k=0

Now since F G and P G agree at the nodes, it follows from Property 11 of
Theorem 4.3 that

(F G) [t 0 tn] - (p G) [t 0 , t n] .

Therefore, by Equation (4.4) and Properties 4 and 5 of Theorem 4.3,

n

(F G) [t 0 t n] - ~ ,F[t 0 tk]{ (t - t o) . . . (t - t k _ l) G (t) }[t o t n]
k=0

n

= ~ ,F[t o tk]G[t k t n] .
k=0

4.3 Properties of Divided Differences 169

Exercises

1. Using Leibniz's rule for divided differences, prove Leibniz's rule for differ-
entiation:

n) F (k) G (n _ k) . (F G) (n) = ~ . (~

k=O

2. Show that Property 5 (cancellation) in Theorem 4.3 is a special case of
Leibniz's rule.

3. Prove that

a.
~F[t 0 t k t n]

~t k
= # k F [t o t k , t k tn],

where Pk is the multiplicity of t k

n

b. F ' [t 0 t n] = Z F [t 0 t k , t k tn]
k=O

n 0F[t0,.. tk tn] if all the nodes are distinct c. F ' [t o t n] =]~ "' '
k=0 ~tk

4. Prove that the divided difference of a polynomial is a polynomial. That is,
prove that if P (t) is a polynomial in t, then P[t o tn] is a polynomial in
the variables t o , . . . , t n.

5. Prove that {t n } [v 1 Vn_ k] - ~ i l <i2 <...<ik+l vii vi2 "" "vik+l , 0 <_ k < n - 1.

6. Provethat ~ 1 ~[t0 f] t n] = 1 .
[t (X - t o) . . . (X - tn)

Here x is treated as a constant and the divided difference is taken with
respect to t.

7. Generalize the result in Exercise 6 by showing that if P (t) is a polynomial
with degree(P) < n, then

P (t) P(x)
_ [to tn] -

{ x - t (X - t o) ' " (x - t n)

(Hint: Observe that r - t = (r - x) + (x - t) and apply Theorem 4.3, Property
12a.)

f } n 8. Prove that 1 [t0 ,tn] = ~_~ 1

(x - t) 2 k=0(x - t o) . . . (x - t k)2 . . . (x - tn)

(Hint: See Exercise 3(b) and Exercise 6.)

170 C H A P T E R 4 N e w t o n In te rpo la t ion and Di f ference Tr iangles

4.4

9. Use the recurrence for the divided difference to derive the Hermite-Genocchi
formula:

G[x 0 x n] = ~A n G(n) (xo + Vl(X 1 - x0) +. . . + Vn (X n - Xo))dVl . . . dv n ,

where A n = {(Vl,. . . ,Vn) l V j >__ 0 and ~ j v j <_ 1}.

10. Use the recurrence for the divided difference to prove that

F[t ,t,t+h]=
h n

n

n

F[t + h] - ~, h k - l F [t t]

k=l k

An Axiomatic Approach to Divided Difference

The divided difference has a bewildering array of remarkable properties. In Theorem
4.3 we list a dozen such properties, and additional formulas and identities are pro-
vided in the exercises at the end of Sections 4.2 and 4.3. It seems natural to ask,
Which of these properties are most important? That is, which properties are primary
and which are derived? Of course, the two definitions~the recursion formula and
the highest-order coefficient of the polynomial interpolant~are fundamental. But
there is another powerful mathematical paradigm for selecting basic properties: axi-
omatic systems. Below we provide an axiomatic approach to divided differences.

We have another, ulterior motive for introducing these axioms here. We observed
at the end of Section 4.2 that the divided difference provides the dual functionals for
the Newton basis. In Chapter 6, we are going to encounter another important linear
operator called the blossom, which furnishes the dual functionals for the Bernstein
and B-spline bases. The blossom of a polynomial is typically introduced by a set of
elementary axioms. Here we provide a simple axiomatic characterization of the
divided difference to prepare the way for blossoming and to emphasize the close con-
nection between the blossom and the divided difference.

AXIOMS A x i o m s f o r the D i v i d e d Di f ference

1. S y m m e t r y

F[to tn] = F[ta(o) ta(n)] , where ~ is any permutation of {0,...,n}

2. L inear i t y

(F + G)[t 0 t n] = F[t 0 tn] + G[t 0 tn]

(cF)[t 0 t n] = r 0 t n])

4.4 An Axiomatic Approach to Divided Difference

3. C a n c e l l a t i o n

F[t 0 tn] = { (t - t n + l) F (t) }[t o tn, tn+ 1]

4. D i f f e r e n t i a t i o n

F[t 0 ,t 0] = F (n) (t o)
n!

n+l

171

The last axiom is a diagonal property that specifies how the divided difference
behaves when all the nodes are the same. We shall see in Theorem 4.5 that the first
three axioms completely characterize the divided difference when some of the nodes
are distinct. Thus we can take these four axioms as the primary properties of the
divided difference; all the other formulas and identities can be derived from these
four axioms.

THEOREM
4.5

The divided difference is the unique operator satisfying the four axioms of
symmetry, linearity, cancellation, and differentiation.

P r o o f By Theorem 4.3, the divided difference operator certainly satisfies these
four axioms. To prove that the divided difference is the only operator that
satisfies these axioms, we shall derive the divided difference recurrence
from these axioms. This derivation is straightforward, since by linearity,
symmetry, and the cancellation axiom:

(t n - t o)F[to , . . . , t n] = { (t - t o) - (t - t n) F (t) }[t o tn]

= {(t - t o) F (t) }[t o t n] - { (t - t n) F (t) }[t o tn]

= F[t 1 t n] - F[t o t n - 1] �9

Dividing both sides by t n - t o yields the recurrence.

Notice that in the proof of Theorem 4.5 the cancellation axiom does most of the
vital work. Often the cancellation axiom is easier to apply than the divided differ-
ence recurrence; see, for example, the proof of Leibniz's rule in Proposition 4.4. To
further exhibit the power of these axioms, especially the cancellation axiom, we
prove the following result, which can be used to derive a generalization of the de
Boor recurrence as well as Boehm's knot insertion formula for B-spline curves (see
Section 7.7.4, Exercises 7 and 8).

172 CHAPTER 4 Newton Interpolation and Difference Triangles

PROPOSITION
4.6

Let �9 =]~k ~'ktk, where]~k 2k = 1. Then

n

F[to , . . . , tn]=]~AkF[to tk_l ,r , tk+l tn].
k=0

Proof If t 0 = t l = . . . = t n, then v = t k, k = O n, and both sides reduce to
F[t o to]. Otherwise using only cancellation, linearity, and symmetry, we
have

F[t 0 t n] = { (t - T)F(t) }[t o t n, ~]

= k (t - t k)F(t t o ,t n,~:]

n

= 2 { ~ , k (t - t k) F (t) } [t o tk tn,~]
k=O

n

= 2XkF[to tk_l,~,tk+l t n] .
k=O

Exercises

1. In this exercise you will need the following two results from complex analy-
sis. Let C be a simple closed curve, and let t be any point in the complex
plane that lies inside of C. Suppose that F(z) is analytic inside C. Then the
following results are classical:

THEOREMS Cauchy 's Integral Formula

1 ~c F(z)dz
F(t) = - - ~ z - t

Cauchy 's Integral Formula fo r Derivatives

F (n-l) (t) = ~ f F(z)dz

(n - 1)! 2~i ~r (z - t) n

In this exercise you are going to generalize these results from complex
analysis to develop the following complex contour integration formula for
the divided difference.

4.5 Forward Differencing 173

THEOREM C o m p l e x C o n t o u r I n t e g r a t i o n F o r m u l a f o r the D i v i d e d D i f f e r e n c e

1 f,~ F (z) d z
F[to tn] - - ~ , j c (z - t o) . . . (z - tn)

(4.5)

where C is any simple closed curve containing t o t n and F is analytic
inside C.

a. Use the axioms for the divided difference to prove (4.5). What is the
diagonal property?

b. Use the divided difference recurrence to prove (4.5). What is the base
case?

2. Use Equation (4.5) to prove that

~F[t 0 t k tn]

~t k
of t k

= PkF[to t k , t k tn], where Pk is the multiplicity

n

b. F ' [t o tn] - ~ ,F[t o t k , t k tn]
k = 0

3. Prove that the linearity axiom for divided difference can be replaced by the
following affinity axiom"

{ (x - (1 - a) u - ~zv)F(x) }[t o t n]

= (1 - a){ (x - u) F (x) }[t o t n] + a{ (x - v) F (x) }[t o tn] .

4. Prove that the affinity axiom for divided difference in Exercise 3 can be
replaced by the identity in Proposition 4.6.

5. Prove that the differentiation axiom can be replaced by the following pair of
axioms:

i. E v a l u a t i o n F[t O] = F (t O)

ii. C o n t i n u i t y l i m t i ~ z F [t o t i t n] = F [t 0 "c tn].

(Hint: Use the result of Section 4.3, Exercise 10.)

4.5 Forward Differencing

The fastest way to evaluate a polynomial at a single point is to apply Homer's
method. But remarkably, if we wish to evaluate a polynomial at a great many points,
then there are faster ways to compute these values. The fastest method is a technique
called f a s t f o r w a r d d i f f e renc ing , which is closely related to the divided difference
and the Newton basis. This method computes points along a polynomial curve at

174 C H A P T E R 4 Newton Interpolation and Difference Triangles

equally spaced parameter values. After an initial start-up step, fast forward differenc-
ing requires only n additions and zero multiplications to evaluate each new point on
a degree n polynomial curve.

The recursive definition of the forward difference AnF(to tn) is similar to the
recursive definition of the divided difference Fit o t n], but without the bothersome
denominator:

A~ = F(t 0)

M~(to,q) = F(q) - F(t O) (4.6)

�9 ,

AnF(to tn) = An-lF(tl tn) - An-IF(to tn-1) �9

We illustrate the recursive computation of A3F(t0 t3) in Figure 4.3. Taking
sums or differences in this way is closely related to Pascal's triangle (see Chapter 5).
Not surprisingly, then, if we write out the first few differences explicitly, binomial
coefficients begin to appear:

AOF(to) = F(to)

AF(t0,tl) = F (t l) - F(t O)

A2F(to,tl ,t2) = F(t2) - 2F(tl) + F(t O)

A3F(to,q,t2,t3) = F(t3) - 3F(t2) + 3F(t l) - F(t O) .

A3F(to, tl,t2,t 3)

A2 f(to, tl ,t2) A2F(tl ,t2,t 3)

AF(to, t 1) AF(tl,t2)

,7,, 7/,,x,,
F(t O) F(tl) F(t2)

AF(t2,t 3)

F(t3)

Figure 4.3 The triangular computation of the forward difference. Notice once again that the indices in
the nodes are identical to the indices in the nodes for Neville's algorithm; compare this dia-
gram to Figures 2.5 and 4.2.

4.5 Forward Differencing 175

Proceeding by induction (see Exercise 1), we can express the nth forward difference
explicitly in terms of the function values F (t O) F (t n) by the formula

n l ~ n - k i n
AnF(to t n) -] ~ (- ~ j t k) F (t k) .

k=0
(4.7)

What is most important to us here is how the forward difference behaves when
the values t o t n are evenly spaced along the parameter line. In this case it turns
out that there is a simple relationship between the forward difference and the divided
difference.

PROPOSITION
4.7

Suppose that the values t o t n are evenly spaced along the parameter
line--that is, t k - t o + kAt , k - 0 n. Then

A n F (t o tn) = n ! (A t) n F[t 0 tn]. (4.8)

Proof We proceed by induction on n. Clearly the result is valid for n = 0,1, since

AOF(to) = E f t O) - F[t0]

A F (t o ' t l) = F (t l) - F (t o) - { F (t l) - F (t o) } (tl - tO) - F[tO' t l]At - t o

Suppose the result is valid for all natural numbers less than n. Then by (4.6)
and the inductive hypothesis

A n F (t o tn) - A n - l F (t l tn) - A n - I F (t o tn_l)

= (n - 1) ! (A t) n - l F [t l t n] - (n - 1) ! (A t) n - I F [t o tn_l]

=(n-1)! (At)n-a{ f [t l tn] - _ to tn-1]) (t n - tO)

= (n - 1)!(At) n-1F[t 0 t n] (nA t)

= n ! (A t) n F [t 0 t n] .

Now recall that if F(t) is a degree n polynomial, then F[t 0 tn] is a constant
independent of the parameters t o t n (Theorem 4.3, Property 12b). Consequently,
by Proposition 4.7, when the parameter values t o t n are evenly spaced along the
parameter line--that is, when At is fixed~then AnF(to t n) is also a constant
independent of t o t n. We shall now apply this observation to develop a fast eval-
uation algorithm for polynomial curves.

176 C H A P T E R 4 Newton Interpolation and Difference Triangles

Consider a degree n polynomial F(t) and a sequence to tp of equally spaced
parameter values. Suppose that somehow, by whatever means, we have already cal-
culated the values

AnF(to tn), An-a F(tl t n) AF(tn_l,tn),F(tn).

Then we can calculate the new values

AnF(tl tn+l),An-lF(t2 tn+l) AF(tn,tn+ 1),F(tn+l)

using only addition in the following manner:

AnF(tl tn+l) = AnF(to t n)

An-lF(t2 tn+l) = An-lF(tl t n) + AnF(tl tn+l)

~ (t n , t n + l) = z~(tn_l , tn) + A2F(tn_l,tn,tn+l)

F(tn+l) = F(tn) + AF(tn,tn+ 1) �9

The final equation gives us the value of F(tn+ 1) (see Figure 4.4). Iterating this proce-
dure, we can calculate additional values F(tn+ 2),F(tn+3) F(tp) of the polynomial
F(t) still using only addition.

To obtain the initial sequence AnF(to tn),An-lF(tl tn) F(tn), we sim-
ply compute the difference triangle for AnF(to t n) (Figure 4.3). In order to per-
form this computation, we must calculate the initial values F(t O) F(t n) at the base

A3F(to, tl,t2,t3) = A3F(tl,t2,t3,t4)

A2F(to, tl,t 2) A2F(tl,t2,t 3) A2F(t2,t3,t 4)

AF(to, t 1) AF(tl,t 2) AF(t2,t 3) AF(t3,t 4)

F(t o) F(tl) F(t2) F(t3) F(t4)

Figure 4.4 Two overlapping difference triangles for a cubic polynomial curve. The values at the apexes
of the two triangles are identical by Proposition 4.7. Each value along the far right lateral
edge can be computed by adding the values above it and to the left. Thus moving up the
first triangle and then down the right lateral edge of the second triangle, we eventually cal-
culate F(t4) from F(t o) F(t 3) using only addition and subtraction. Iterating the second part
of this procedure for more and more points is the fast forward differencing algorithm for
polynomial evaluation. The triangle on the left represents the start-up step (see also Figure
4.3), and the right lateral edge represents the fast forward differencing action (see also Fig-
ure 4.5).

4.5 Forward Differencing 177

of the triangle, and for these calculations we can use Homer's method. Therefore,
the start-up for the algorithm requires n(n+ 1) multiplications--n multiplications for
each of the n + 1 values F(t k), k = 0 n- -but once the algorithm gets going no
further multiplications are required to compute additional points. Thus from
F(t O) F(tn), we can calculate arbitrarily many points along the curve using only
addition. This evaluation algorithm is called fast forward differencing. While for-
ward differencing is very fast, care must be taken when using this evaluation tech-
nique because fast forward differencing is numerically unstable. We illustrate this
fast forward differencing algorithm for cubic polynomials in Figures 4.4 and 4.5.

There is an interesting way to think about fast forward differencing that involves
change of basis algorithms. Since by Corollary 4.2 the divided differences represent
the coefficients of the polynomial interpolant relative to the Newton basis, it follows
by Proposition 4.7 that when the parameter values are evenly spaced, the forward
differences represent the coefficients of the polynomial interpolant relative to the
rescaled Newton basis

A3F(to, t 1 ,t2,t 3)

1
A? F(t 1 ,t2,t3,t 4)

1
ABF(t2,tB,t4,t 5)

1
A3F(t3,t4,t5,t 6)

1

A2F(t 1 ,t2,t 3)

.~ A2F(t2,t3,t4)

A2F(t3,t4,ts)

A2F(t4,t5,t6)

AF(t2,t3) F(t3)

1 1
AF(t3,t4) ~ F(t4)

1 1
AF(t4,t5) ~ F(t5)

1 .1
~ AF(t5,t6) .~ F(t6)

1 1
Figure 4.5 The fast forward differencing algorithm for a cubic polynomial curve F(t). The top row is

computed from a difference triangle (Figure 4.3). Each value in subsequent rows is computed
by adding the values at the nodes from the arrows that point into the node (the two values
directly above it and to the left). The values in the leftmost column are all identical, and the
values in the rightmost column are points on the curve at equally spaced parameter values.

178 C HAPTER 4 N e w t o n I n t e r p o l a t i o n a n d D i f f e r e n c e Tr iang le s

N0(t) = 1

N l (t) =

N n (t) =

t - t o

At

(t - t O). . .(t - tn_ 1)

n ! (A t) n

Thus what fast forward differencing really does is to convert from the coefficients of
one rescaled Newton basis to another closely related rescaled Newton basis.

Forward differencing has another widespread application: IQ tests. In many
mathematical IQ tests, the student is given a short sequence of numbers and asked to
find the next value. Assuming the sequence is generated from a polynomial, we can
find the next number using differencing. We illustrate with an example.

Consider the sequence: 4, 13, 28, 49, 76. To find the next value, take differences.
This generates the sequences

A2F: 6 6 6

AF: 9 15 21 27

F: 4 13 28 49 76 .

It is trivial to find the next value of A2F: this value must be 6 because evidently
A2F is the constant sequence. To find the next value of z~ , just add the last value of
the second difference to the last value of the first difference, giving 27 + 6 = 33.
Finally, to find the next value of the original sequence, add the newly calculated
value of the first difference to the last value of the original sequence; this yields
76 + 33 = 109. Here is this computation, where the values added to the old
sequences are underlined:

A2F:

AF:

F:

6 6 6 6

9 15 21 27 33

4 13 28 49 76 109 .

Notice that the procedure we just used to find the next value of the sequence F is
identical to the fast forward differencing algorithm we presented for computing new
values of a polynomial F at evenly spaced parameter values.

The validity of this process is based on the simple assumption that the original
sequence represents the values of a polynomial F at the integers 1,2 Of course,
even if this assumption is true, we may need to take more than two differences
before we arrive at a constant sequence. How many differences we must take
depends on the degree of the polynomial from which the initial sequence is gener-
ated; a degree n polynomial will generate a constant sequence after n differences.
The polynomial in our problem is of degree 2, since the second difference is a con-

4.5 Forward Differencing 179

stant. Moreover, we can easily retrieve an expression for this polynomial in Newton
form because the differences represent the rescaled Newton coefficients. Since such
a sequence represents values at the integers, At - 1, so

6 (t - 1)(t- 2)
F (t) = + 9 (t - 1) + 4.

2

The reader should check that this polynomial does indeed generate the original
sequence for t = 1 5.

If the original sequence does not represent the values of a polynomial of degree
n at the integers, then, of course, this technique for generating new values will fail.
For example, given the sequence 1 2 4 8 16 32 ..., we find that

A2F: 1 2 4 8 ...

AF: 1 2 4 8 16 ...

F: 1 2 4 8 16 32

For an exponential sequence, we never reach a constant difference, and other tricks
must be employed to generate the next value.

Exercises
n

1. Prove that AnF(to tn) - ~ , (- 1) n - k (] c) F (t k) .
k=0

2. Prove that

A j {AkF(to t j+k)} = AJ+kF(t 0 t j+k) = A k {AJF(to t j+k)}"

3. Prove that forward difference is a linear operator. That is, prove that

a. A n (F + G) (t o tn) = AnF(to t n) + AnG(to tn)

b. An (cF) (to tn) = cAnE(to tn)

4. If the parameter values are evenly spaced, then the differencing triangle can
be used to convert between the coefficients of which two bases?

5. Consider the infinite Fibonacci sequence: 1 1 2 3 5 8 13 ... defined
by the recurrence

a 1 = a 0 = l

an+ l = a n + an_ 1 .

Prove that there is no polynomial F(t) such that a n = F (n) for all n.

180 C H A P T E R 4 N e w t o n In terpo la t ion and Di f ference Triangles

4.6 Summary

The principal focus of this chapter is the divided difference, which provides the dual
functionals for the Newton basis. The Newton basis allows us to use Homer's
method for fast polynomial evaluation, and the divided difference generates the coef-
ficients for the polynomial interpolant relative to the Newton basis. We developed
three approaches to the divided difference:

�9 Computational: a recurrence based on difference quotients

�9 Theoretical: the highest-order coefficient of the polynomial interpolant

�9 Axiomatic: a system of four properties (symmetry, linearity, cancellation,
and differentiation) that completely characterize the divided difference

We used these different approaches to derive properties, formulas, and identities for
the divided difference. We also considered fast forward differencing, a technique for
fast polynomial evaluation at equally spaced parameter values.

This chapter concludes our study of interpolation. Although interpolation is a
classical topic in approximation theory and numerical analysis, computer graphics
and computer-aided design often deal with approximation as well as with interpola-
tion, so it is to approximation schemes that we shall turn our attention in subsequent
chapters. Many of the topics encountered in interpolation, including dynamic pro-
gramming procedures, up and down recurrence, basis functions, dual functionals,
divided differences, rational schemes, and tensor product, triangular, lofted, and
Boolean sum surfaces will reappear in approximation theory. A good grounding in
the principles of polynomial interpolation will serve you well when you go on to the
study of polynomial approximation.

4.6.1 Identities for the Divided Difference

It is difficult to remember all the interesting identities for the divided difference that
we have encountered in the text and in the exercises. For quick recall, we have col-
lected the most important of these formulas here in one place. A few of these identi-
ties will not be proved till later in the book, when we encounter blossoming and B-
splines, but we list them here anyway for the sake of completeness.

1. H i g h e s t - O r d e r Coef f ic ient o f the Po lynomia l In terpo lan t

F[t 0 t n] = coefficient of t n in the monomial representation of the poly-
nomial interpolant Po...n (t)

2. Recurs ion

F[t 0 t n] - F[tl tn] - F[t 0 tn_l]

t~ - t o
t n ~: t O

4.6 Summary 181

3. S y m m e t r y

F[t 0 t n] = F[ta(o) ta(n)], where (~ is any permutation of {O,...,n}

4. L i n e a r i t y

(F + G)[t 0 t n] = F[t 0 t n] + G[t 0 t n]

(cF)[t o tn] = c (F[t o tn])

5. C a n c e l l a t i o n

F[t 0 tn] = { (t - t n+l)F(t) }[t o tn,tn+ 1]

6. D i f f e r en t i a t i on

7. L e i b n i z ' s R u l e

F[t t] =
n!

n+l

F(n) (t)

n

(F G) [t 0 t n] - ~ ,F[t 0 tk]G[tk tn]
k=O

8. E q u a l i t y C o n d i t i o n s

F (p) (t j) = G (p) (t j) 0 < p < IAj - 1, j - 0 n

F[t o t n] = G[t O t n]

9. Value on L o w - O r d e r P o l y n o m i a l s

a. If F(t) is a polynomial of degree n - 1, then F i t 0 t n] - O.

b. If F(t) is a polynomial of degree n, then F[t 0 tn] is the coefficient of t n

in the monomial representation for F(t) . Thus, in this case, F[t o tn] is
a constant independent of t o t n.

10. Af-fine C o m b i n a t i o n s

n

F[t 0 t n] = ~ L k F [t o tk_l , 'C, tk+ 1 t n]
k=O

r = ~,k Aktk and 2 k Ak = 1

11. Values on M o n o m i a l s

{t n } [Vl Vn_ k] = ~ i l <i 2 <...<ik+ 1VilVi 2 .. "Vik+l

12. Value on (x - 0 -1

{ 1 } [t O t n] _ 1
x - t (x - t o) ' " (x - t n)

182 CHAPTER 4 Newton Interpolation and Difference Triangles

13. Newton Coefficients o f Polynomial Interpolant

n
Po...n (t) =]~ F[t 0 t k]N k (t)

k=O

14. Dual Functionals for Newton Basis

Nj[to tk]=O

=1

15. DeterminantFormula

j ~ k

j = k

F(to)

,

F(tn)
F[t 0 t n] =

16. Lagrange Coefficients

t~-I n-1 " "'" " to " !

t n ... t n

t~ -1 ... t o
~ . .

�9 , .

n-1
t n ... t n

to,..., t n distinct

n F(tk)
F[to" ' " tn]= Z

k=O l I (t k - t j)
jr

17. Partial Derivatives with Respect to the Nodes

to,..., t n distinct

OF[t O t k tn]

atk

where/1 k is the multiplicity of tk

18. Antidifferentiation

n
F'[t 0 tn]= ~,F[t 0 tk,t k t n]

k=O

19. Relation to Blossoming

= l.tkF[t 0 tk,tk tn],

e[v 1 Vk] -
(n - k + l) !

n!
p(k-1) (V j l , Vjn_k+ 1)

20. B-splines as Divided Differences

Nk,n(t) = { (tk+n+ 1 - t k) (X - t)~}[tk tk+n+l]

4.6 S u m m a r y

21. B-spline Integration

F[tk tk+n+l]= fS upport { Nk'n(t) n?

22. Complex Contour Integration

1 f c F(z)dz
F[to 'tn] = - ~ (z - t o) . . . (z - tn)

�9 C is any s imple c losed curve con ta in ing {t o tn}

�9 F is ana ly t ic ins ide C

23. Hermite-Genocchi Formula

F[t 0 ,t n] - fA n F(n) (to + Vl(t 1 - to) + ... + Vn (t n - t0))dv 1 " " dv n

w h e r e A n = { (v i ,v n) I Vj >>_ 0 and ~_,jvj <_ 1 }

183

C H A P T E R 5

Bezier Approximation
and Pascal's Triangle

In previous chapters, we used interpolation to specify shape. But interpolation is not
always a good way to describe the contour of a curve or surface. To accurately repro-
duce complicated shapes, we may need to interpolate lots of data. Polynomial inter-
polation for many points is impractical because the degree of the interpolant can get
extremely high, leading to slow and numerically unstable computations. Also poly-
nomial interpolants may oscillate unnecessarily and fail to reproduce the desired
shapes (see Figure 5.1). Thus, even if we were to specify more and more points,
there is no guarantee that the polynomial interpolants would converge to the curves
or surfaces we wish to represent.

Spline interpolation~that is, interpolation by piecewise polynomial funct ions~
is better computationally because splines allow us to keep the degree low. But inter-
polating splines may still oscillate unnecessarily and fail to reproduce the desired
shapes. Our approach from here on will be to abandon interpolation altogether and
to take a very different approach to describing the shape of a curve or surface.

Given a relatively small collection of points in affine space, we are going to
investigate methods for generating polynomial and rational curves and surfaces that

1

0.8
0.6
0.4
0.2

_0.2I k / k /
--0.4

Figure 5.1 Lagrange interpolation. Notice the oscillations in the interpolating polynomial curve, even
though there is no oscillation in the original data points.

187

188 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

approximate the shape described by these points. We shall not insist that our curves
and surfaces go through these points, but we shall insist that these curves and sur-
faces capture in some mathematically precise way the shape defined by these
points. As usual we begin with schemes for curves and later extend our techniques
to surfaces.

5.1 De Casteljau's Algorithm

Let's return for a moment to where we began our investigation of polynomial curves
and surfaces: Lagrange interpolation and Neville's algorithm. Recall that Neville's
algorithm (Figure 5.2) is a dynamic programming procedure for computing points
along a polynomial interpolant. We are going to start our investigation of approxima-
tion schemes by using the same basic triangular structure but simplifying the compu-
tations along the edges.

The simplest thing--you might almost say the only thing--we know how to do
is linear interpolation. All our interpolation procedures, and especially Neville's
algorithm, are based on this simple idea or some variant thereof. What makes Nev-
ille's algorithm the least bit complicated is that we perform a different linear interpo-
lation at each node of the diagram. To take the same triangular structure and make
the evaluation algorithm as easy as possible, we will perform the same linear inter-
polation at each node. This idea generates the algorithm represented in Figure 5.3.

The algorithm represented in Figure 5.3 is called de Casteljau's evaluation algo-
rithm, and the curves that emerge at the apex of this diagram are called Bezier
curves. Intermediate nodes marked (> and , also represent Bezier curves, but of
lower degree. Thus the de Casteljau algorithm is a dynamic programming algorithm

P0123(t)

PO12(t) P123(t)

t277 ~NtO t~t/ ~~%~N 1
POI(t) P12(O ,p,/'X,o

PO P1 P2

P23(0

t 3 ~ t / ~ 2

1"3

Figure 5.2 Neville's algorithm (unnormalized) for cubic polynomial interpolation.

5.1 De Casteljau's Algorithm 189

B(t)

Po P1 P2 P3

Figure 5.3 The de Casteljau algorithm for a cubic Bezier curve B(t)in the interval [a,b]. The label on
every edge must be normalized by dividing by b - a, so that the labels along arrows entering
each node sum to one.

P1- t-a 0 b- t ..P2
t-a

b- t b ~ ~ t - a

- t
t

P3
Figure 5.4 Geometric construction algorithm for a point on a cubic Bezier curve based on a geometric

interpretation of the de Casteljau evaluation algorithm. At the parameter t, each line seg-
ment in the trellis is split in the ratio (t - a)/(b - t).

for computing points on a Bezier curve. Typically, for reasons that will become clear
in the next section, Bezier curves are restricted to the interval [a,b]. Usually, for sim-
plicity, we take a = 0 and b = 1, but there are cases, as we shall see later on, where it
is useful to allow a and b to be arbitrary as long as b > a. Notice that when a = 0 and
b = l, no normalization is required.

The de Casteljau algorithm has the following elegant geometric interpretation.
Since each node represents a linear interpolation, each node symbolizes a point on
the line segment joining the two points whose arrows point into the node. Drawing
all these line segments generates the trellis in Figure 5.4.

190 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

We are going to study the geometric characteristics of curves generated by de
Casteljau's algorithm. We begin with some simple features before going on to derive
the basis functions associated with Bezier curves. We shall then use these basis func-
tions to develop the more advanced mathematical properties of this approximation
scheme.

Exercise

1. Implement the de Casteljau algorithm for Bezier curves. Experiment with
how moving control points affects the shape of the curve.

5.2 Elementary Properties of Bezier Curves

Bezier curves have the following elementary properties:

1. Polynomial parametrization

2. Affine invariance

3. Convex hull

4. Symmetry

5. Interpolation of end points

Below we briefly discuss and derive each of these properties in turn, and we explain
as well why these features are important for geometric design.

Most of these properties can be proved by direct observation or by easy induc-
tive arguments using the de Casteljau algorithm. To set up these inductive argu-
ments, let B[P 0 Pn](t) denote the Bezier curve over the interval [a,b] with affine
control points PO Pn. Then the last stage of the de Casteljau algorithm can be writ-
ten as

t - a
B[Po pn](t) - b - t B[Po Pn_l](t) + B[P 1 Pn](t). (5.1)

b - a b - a

We are now ready to proceed with our derivations:

1. Polynomial Parametrization

In the de Casteljau algorithm, the only operations we perform involving the
functions along the edges are addition and multiplication (see Figure 5.3).
Since the functions along the edges are linear polynomials, it follows that a
Bezier curve with n + 1 control points is a polynomial curve of degree n
because there are n levels from the control points at the base to the curve at
the apex of the triangle. (This result also follows by an easy induction from
(5.1).) Since Bezier curves are polynomial curves, all the tools we know for
polynomials apply.

5.2 Elementary Properties of Bezier Curves 191

2. Affine Invariance

A curve is said to be affinely invariant if it consists of a collection of points
in affine space. We can prove by induction on the number of control points
that all Bezier curves are affinely invariant. Clearly a Bezier curve with only
two control points is affinely invariant, since this Bezier curve is just the line
segment joining the two affine control points. Suppose that all Bezier curves
with n control points are affinely invariant. Since by the inductive hypothe-
sis B[Po,...,Pn_I](t) and B[P 1 Pn](t) are affinely invariant, it follows by
(5.1) that B[P 0 Pn](t) is also affinely invariant, since it is formed by tak-
ing an affine combination of affinely invariant curves. Thus Bezier curves
make sense in affine space.

Affine invariance is a crucial feature for any curve scheme because it asserts
that the curve is independent of the choice of the coordinate system. This
property is essential for a good approximation scheme, since in a typical
geometric model many different coordinate systems are available. Affine
invariance guarantees that the curve will be the same no matter which coor-
dinate system is invoked.

3. Convex Hull Property

A set S of points in affine space is said to be convex if, whenever P and Q
are points in S, the entire line segment from P to Q lies in S (see Figure 5.5).
The intersection S of a collection of convex sets { S i } is a convex set because
if P and Q are points in S, they must also be points in each of the sets S i.
Since, by assumption, the sets S i are convex, the entire line segment from P
to Q lies in each set S i. Hence the entire line segment from P to Q lies in the
intersection S, so S too is convex.

(a) Convex set (b) Nonconvex set

Figure 5.5 (a) In a convex set, the line segment joining any two points in the set lies entirely within the
set. (b)In a nonconvex set, part of the line segment joining two points in the set may lie out-
side the set.

192 C H A P T E R 5 Bez ier Approx imat ion and Pascal 's Triangle

The convex hull of a collection of points in affine space is the intersection of
all the convex sets containing the points. Since the intersection of convex
sets is a convex set, the convex hull is the smallest convex set containing the
points. For two points, the convex hull is the line segment joining the points.
For three noncollinear points, the convex hull is the triangle whose vertices
are the three points. The convex hull of a finite collection of points in the
plane can be found mechanically by placing a nail at each point, stretching a
rubber band so that its interior contains all the nails, and then releasing the
rubber band. When the rubber band comes to rest on the nails, the interior of
the rubber band is the convex hull of the points.

Since the convex hull of two points is the line segment joining the two
points,

ConvexHull{Po,P 1 } - {c0P 0 + ClP 1 I c o + c 1 = 1 a n d Co,C 1 >_ 0}.

More generally it follows by a simple inductive argument (see Exercise 3)
that

n n

C~ Pn} = { Z ckPk l ~,c~ = 1 and c k >0}.
k=0 k=0

Bezier curves always lie in the convex hull of their control points. That is,

B[P 0 Pn](t) c_ ConvexHul l{P 0 Pn }"

Again we can prove this assertion by a simple inductive argument. First
recall that, by convention, we always restrict the Bezier curve B[P 0 Pn](t)
in (5.1) to the parameter interval a < t < b. With this restriction, the convex
hull property is certainly true for a Bezier curve with only two control
points since, by construction, this curve is the line segment joining the two
control points. More generally suppose that this result is valid for Bezier
curves with n control points. By (5.1), B[P 0 Pn](t) lies on the line seg-
ment joining the points B[P 0 Pn_l](t) and B[P 1 Pn](t), and by the
inductive hypothesis B[P 0 Pn-1](t) and B[P 1 ,Pn](t) both lie in the con-
vex hull of the points PO Pn. But if two points lie in a convex set, the
entire line segment joining them also lies in the set; thus the entire Bezier
curve B[P 0 Pn](t), a < t < b, must lie in ConvexHul l{P 0 Pn}.

The convex hull property is important because it constrains Bezier curves to
lie in the proximity of their control points. This property is a vital feature for
an approximation scheme. Designers not only require curves that approxi-
mate the shape defined by their control points, they also demand curves that
lie in the same region of space as their control points. To be useful in design,
the curves must be visible to the designer. The convex hull property guaran-
tees that if all the control points are visible on the graphics terminal, then
the entire curve is visible as well. The restriction a < t < b on the parameter
t is there precisely to guarantee the convex hull property.

5.2 Elementary Properties of Bezier Curves 193

4. Symmetry

Replacing t by a + b - t reverses the order of the parameter domain. As the
parameter t varies from a to b, the curve B[Po,...,P n](a + b - t) traverses the
same points as B[P 0 Pn](t) but in the direction from b to a rather than
from a to b. Thus B[P 0 Pn](a + b - t) is essentially the same curve as
B[Po Pn](t) but with opposite orientation. Similarly, reversing the order
of the control points of a Bezier curve generates the same Bezier curve but
with opposite orientation. Analytically this means that

B[P n Po](t) = B[Po Pn](a + b - t) a <_ t <_ b. (5.2)

This symmetry property is what professional designers and most naive users
would naturally expect of a simple approximation scheme, so it is gratifying
to see that it holds for all Bezier curves.

To prove (5.2), simply replace t by a + b - t in the de Casteljau diagram and
observe that the new diagram is the mirror image of the de Casteljau dia-
gram for B[P n P0](t) (see Figure 5.6).

5. Interpolation o f End Points

Unlike Lagrange polynomials, Bezier curves generally do not interpolate all
their control points. But Bezier curves always interpolate their first and last
control points. In fact,

B[Po Pn](a) = PO and B[P 0 Pn](b) - Pn"

The first result follows easily from setting t = a in de Casteljau's algorithm
and observing that all the labels on left-pointing arrows become zero while

B(t)

t - a ~ ~ x ~ t / /

' , ; , / , , , , t , ,
0 0 0

P0 P1 P2 P3

Figure 5.6 The de Casteljau algorithm for B[P o Pn](a + b - t). Compare to Figure 5.3 with the control
points in reverse order.

194 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

all the labels on right-pointing arrows become one. If k ~ 0, then any path
from P k to the apex of the triangle must traverse at least one left-pointing
arrow, so there is no contribution from Pk to the value of the curve at t = a.
On the other hand, when t = a all the labels on the single path from P0 to the
apex of the triangle are one. Hence B[P 0 Pn](a) = P0. A similar argument
for t = b shows that B[P 0 Pn](b) = Pn. Again an easy inductive argument
based on (5.1) yields the same results.

Interpolating end points is important because we often want to connect two
curves. To assure that two Bezier curves join at their end points, all we need
to do is to make sure that the first control point of the second curve is the
same as the last control point of the first curve. This device ensures continu-
ity. Later on, in Section 5.6.2, we shall develop techniques for guaranteeing
higher-order smoothness between adjacent Bezier curves.

Exercises

1. Let P0 Pn be a collection of points. Prove that for every vector v

B[P 0 + v ,Pn + v] (t) = B[Po,. . . ,Pn](t) + v .

That is, translating the control points by a vector v translates every point on
the Bezier curve by the same vector v.

2. Show that every affine space is convex.

3. Let Po Pn be a collection of points in an affine space. Prove that

n n

C~ Pn} = {]~ CkPk I ~,ck = 1 and c k > 0}.
k=O k=O

4. Prove that B[Po , Pn](b) = Pn"

5. Give an example to show that a degree n Lagrange interpolating polynomial
with nodes to < tl < .-. < t n does not necessarily satisfy the convex hull
property on the interval [tO,tn].

5.3 The Bernstein Basis Functions and Pascal's Triangle

The de Casteljau algorithm is a dynamic programming algorithm for computing
points on a Bezier curve from points on Bezier curves of lower degree. Here we shall
also develop an explicit formula for evaluating points on a Bezier curve.

We begin by observing that there must exist polynomials B~(t) Bn(t) of
degree n such that the Bezier curve B(t) = B[P 0 Pn](t) is given by

n

B(t)= EB~(t)P~.
k=O

(5.3)

5.3 The Bernstein Basis Functions and Pascal's Triangle 195

This result is just a restatement of the polynomial property we proved in the previous
section. The functions B~(t),...,Bn(t) are called the Bernstein basis functions of
degree n.

There are many ways to compute the Bernstein basis functions. In the de Castel-
jau algorithm if we set

Pj -O jC:k

=1 j - k ,

then by (5.3) B(t)= B~(t). This algorithm is called the up recurrence for B~(t).
Observe that by the up recurrence, the Bernstein basis function Bff (t) is simply the
sum of all paths from Pk at the base to B(t) at the apex of the de Casteljau triangle.
Recall that in Chapter 2 we had a similar up recurrence for the Lagrange basis
functions.

We can apply this insight about paths to compute all the Bernstein basis func-
tions up to degree n simultaneously. Paths from a node to the apex of the triangle are
identical to paths from the apex to the node. Thus if we place a one at the apex and
reverse all the arrows, then the Bernstein basis functions emerge at the nodes of the
triangle. In particular, the Bernstein basis functions of degree n emerge at the base of
a de Casteljau triangle with n levels (see Figure 5.7). This algorithm is called the
down recurrence for the Bernstein basis functions and is similar to the down recur-
rence for the Lagrange basis functions we encountered in Section 2.6. But there is
one very important difference between the down recurrence for the Bernstein basis
functions and the down recurrence for the Lagrange basis functions. In the down
recurrence for the Lagrange basis functions, the intermediate nodes do not contain

nO(t) =

/
U (O

//
Bg(o

/
B3o(O B?(O

B (O

/
B (O B (O

/ ,/
B (O B (O

Figure 5.7 The down recurrence for the cubic Bernstein basis functions.

196 CHAPTER 5 B e z i e r A p p r o x i m a t i o n a n d P a s c a l ' s T r i a n g l e

Lagrange basis functions of lower degree; in the down recurrence for the Bemstein
basis functions the intermediate nodes are precisely the Bernstein basis functions of
lower degree.

Since the intermediate nodes in the down recurrence contain the Bernstein basis
functions of lower degree, the down recurrence yields the following standard recur-
sion formula for the Bernstein basis functions:

B ~ (t) - 1
(5.4)

B~ (t) b - t n-1 t - a B n _ l (t) .
- B k (t) + k -1

b - a b - a

This recursion formula is just a restatement of the down recurrence. We shall see
later that many results about Bemstein basis functions follow easily by induction
from this recursion formula.

Finally, as promised, we can also use path arguments to find explicit expressions
for the Bemstein basis functions Bf (t), k = 0 n. Observe that all paths between
the apex and Bf (t) are identical. Indeed to get to Bf (t) from the apex of the triangle,
we must make exactly k right turns and n - k left turns (see Figure 5.7). Now every
left-pointing arrow carries the label (b - t) / (b - a) , and every right-pointing arrow
carries the label (t - a) / (b - a) . Thus we discover that

(t - a) k (b - t) ~ - ~ '
B/~ (t) P (n , k)

(b - a) n

where P (n , k) denotes the number of paths from the apex of the triangle to the kth
position on the nth level.

We can find P (n , k) from Pascal's triangle. From the structure of the de Casteljau
triangle we observe that the only way to arrive at the kth position on the nth level is
to arrive first at either the (k - 1)st or kth position on the (n - 1)st level. This obser-
vation yields the recurrence

P(0,0) = 1

P (n , k) = P (n - 1,k - 1) + P (n - 1,k).

But this is exactly the recurrence in Pascal's triangle (Figure 5.8(a)):

(0)= 1
(n (n-1 n-1
k) = k - l) + (k) �9

Thus the elements (n 's k) in Pascal triangle compute the number of paths P (n , k) from
the apex to the node at which the entry (~) appears. Therefore,

P (n , k) - (n k) -
n!

k ! (n - k) !

5.3 The Bernstein Basis Functions and Pascal's Triangle 197

1

"'" ~'~ n f . . .

(a) Pascal's triangle

%o

P(o,o)

p(1, p(1,1)
, / \ , / \

P~3,0) P(3,1) . P(3,2) P(3,3)
, , ; %,

p(n -1 ,0) . . . p (n - 1 ,k- 1) P(n- 1,k)... P(n- 1 ~ - 1)

... \ / . . .
P(n,O) P(n,k) P(n,n)

(b) Paths triangle

Figure 5.8 (a) Pascal's triangle and (b) the paths triangle represent the same recurrence. Therefore, the val-
ues in Pascal's triangle represent the number of paths from the apex to the node in which the value appears.

It follows immediately that

B k (t) - (n (t - a) k (b - t) n-k n k) " (5.5)
(b - a) n

Another way to see that (5.5) is correct is to observe that in traversing the paths
from the apex to the node containing B~ (t), you must select exactly k right turns out
of n possible choices. Thus there are exactly n choose k paths from the apex to
B~:(t), which again accounts for the coefficient (~) in the explicit expression for

B ~ (t) .

The explicit formula for the Bernstein basis functions given by (5.5) should look
familiar, since it comes up in many other areas of mathematics. For example, by the
binomial theorem

t - a
Setting x - and y -

b - a

/7
(x + y)n = Z (~) x k y n-k

k=O
b - t

yields
b - a

_ _ _ + - _ (~)
1) -a b a k=O

(t - a) k (b - t) n-k

(b - a) ~

Thus the binomial theorem gives us a quick proof that the Bernstein basis functions
sum to one, and hence that Bezier curves are affinely invariant. (For an alternative,
recursive proof, see Exercise 1.)

Another place the Bernstein basis functions appear in mathematics is in proba-
bility theory. If a = 0 and b = 1, then

B f (t) - (~) t ~ (1 - t) ~ - k , k - 0 , . . . , n,

198 C H A P T E R 5 B e z i e r A p p r o x i m a t i o n a n d Pasca l ' s Tr iangle

is the familiar binomial distribution. Discrete distributions are important in approxi-
mation theory and computer-aided design because the convex hull property requires
that the blending functions must be positive and sum to one (see Section 5.2, Exer-
cise 3). Thus discrete distributions are natural candidates for blending functions, so it
is no accident that one of the most common distributions has been chosen to repre-
sent one of the most common approximation schemes. We shall have occasion to
take advantage of this connection to probability theory in Section 5.5.4, where we
discuss Bezier subdivision, and again in Chapter 6, when we introduce blossoming
via random walks.

Exercises

1. Use the down recurrence to prove that

n

EBb(t) - 1
k = 0

by showing that the functions on each level of the recurrence sum to one.
Conclude that Bezier curves are affinely invariant.

2. Prove that B~ (t) _> 0 for a _< t _< b, and use this result together with the
results of Exercise 1 and Section 5.2, Exercise 3, to conclude that Bezier
curves lie in the convex hull of their control points.

n 3. Prove that B ~ (a + b - t) - B n _ k (t) , and use this identity to conclude that
Bezier curves have the symmetry property described in Section 5.2.

4. Prove that B~ (a)= S0k and B~ (b)= r and use this identity to conclude
that Bezier curves interpolate their first and last control points.

5. Let c o c n be a collection of arbitrary constants. By reversing the arrows
in Pascal's triangle, show how to compute

n

E(n k)ck
k = 0

without any multiplication.

6. Let {Ckm}, k = 0 m, m = 0 n, be a collection of arbitrary constants.
Show how to use Pascal's triangle to compute

n m

m = 0 k = 0

without any multiplications and with only O(n 2) additions.

7. Let {Ckm}, k = 0 m, m = 0 n , be a collection of arbitrary constants.
Show how to use de Casteljau's algorithm to compute

n m

~, ~,CkmB~(t)
m = 0 k = 0

with a minimal amount of multiplication.

5.3 The Bernstein Basis Functions and Pascal's Triangle 199

/'i/ 31
O' ---2 ~4 ~6

�9 �9 O

Figure 5.9 A graph with the structure of Clenshaw's algorithm for the evaluation of orthogonal poly-
nomials.

8. Consider Figure 5.9, which arises in Clenshaw's algorithm for the evalua-
tion of orthogonal polynomials.

a. Find a recursive formula for the number of paths p(k) from the node con-
taining 0 to the node containing an arbitrary integer k in Figure 5.9.

b. Let c O c n be a collection of arbitrary constants. Show how to compute

n

ZP(k)Ck
k=0

without any multiplication.

9. Prove by induction from the recurrence (5.4) that

B~ (t) - (~)
(t - a) k (b - t) n -k

(b - a) n

10. Prove that n f +a2t tn Z (- 1) k B ~ (t) -
k=O (b - a)

11. Define the Bernstein basis functions of negative degree by setting

B~n(t) = (- ~) t k (1 - t) -(n+k) k = 0,1

(-n (- n) (- n - 1)..-(-n - k + 1) _ (1) k (n+k-1 �9
k) - - - k)

k!

a. Using the binomial theorem for negative integer exponents, prove that

cx~

Z B ~ - ~ (t) = 1.
k=O

b. For what values of t does this series converge?

(x _ ~) n n) - l Bn (x)B~ (t).
- E (- 1) ~ (~ ~ - k 12. Provethat b - k=O

(Hint: Use the identity (b - a) (x - t) = (x - a)(b - t) - (b - x)(t - a).)

200 C H A P T E R 5 Bez i e r A p p r o x i m a t i o n a n d Pasca l ' s Tr iangle

5.4

5.4.1

More Properties of BernsteinlBezier Curves

There is a natural correlation between geometric properties of Bezier curves and
algebraic properties of Bernstein basis functions. Thus one way to study the geome-
try of Bezier curves is to investigate the algebra of Bemstein basis functions. This
we now proceed to do (see also Section 5.3, Exercises 1-4). To simplify our notation
from here on out, we shall let a = 0 and b = 1, although the proofs do not change
much for arbitrary values of a and b.

We begin with a simple trick that is worth remembering because we shall use it
several times. Observe that

B~ (t) _ (~)t k (1 - t) n -k n tk

(1 - t) n - (1 - t) n = (k) (1 - t) k "

Making the substitution u = t / (1 - t), we obtain

B~(t) = (~)u k _ M ~ (u) .

(l - t) n
(5.6)

Thus the Bernstein basis functions are readily transformed into the monomial basis
functions. We shall use this simple device to show that many of the properties of the
monomial basis carry over to the Bernstein basis. Conversely, many properties of the
Bernstein basis are inherited by this scaled monomial basis, simply by replacing
each factor of 1 - t by the 1.

Exercise

1 Let M ; (t) = (n) tk k = O, n �9 k , . . . , �9

a. Show that these functions satisfy the recurrence

t M n - l (t) M ~ (t) - M ~ -1 (t) + k-1 "

b. Describe the analogue of the de Casteljau algorithm for polynomials
P(t) = ~,kCkM~ (t).

Linear Independence and Nondegeneracy

Let's now prove that the Bernstein basis functions of degree n do indeed form a basis
for the polynomials of degree n. To show that they are linearly independent, suppose
that there are constants c k, k = 0 n, such that

n

E c~n~ (t) = O ;
k=O

we must show that c k = O, k = 0 n. Dividing this equation by (1- t) n and apply-
ing (5.6), we obtain

5.4.2

5.4 More Properties of Bernstein/Bezier Curves 201

n

~, CkM ~ (u) - O .
k=O

Since the monomials M ~ (u) M n (u) are linearly independent, it follows that

c k = O, k = 0 n. Thus the polynomials B~(t) Bn(t) are indeed linearly indepen-

dent. Therefore, these polynomials must form a basis for the polynomials of degree

n, since the space of polynomials of degree n has dimension n + 1 and there are n + 1

Bernstein basis functions of degree n.

A curve scheme is said to be nondegenerate if the curve never collapses to a sin-
gle point unless all the control points are located at that point. Bezier curves are non-
degenerate because the Bemstein basis functions are linearly independent. Indeed
suppose that some Bezier curve B(t) collapses to a single point Q. Then

n

B(t) - E B f (t)P k - Q.
k=O

Since the Bernstein polynomials sum to one, it follows that

n

E B f (t) (P k - Q) - O.
k=O

Dotting both sides with any vector v yields

n

EBf(t){ (Pk - e) ~ v] - O.
k=O

Since the functions B~ (t) B n (t) are linearly independent, we can conclude that

(Pk - Q) o v - O k - O n

for every vector v. But this can happen only if Pk - Q for k = 0 n, which estab-
lishes that Bezier curves are indeed nondegenerate.

Horner's Evaluation Algorithm for Bezier Curves

The de Casteljau evaluation algorithm for Bezier curves is O(n2). But Homer's eval-
uation algorithm for polynomials written in terms of the monomial basis is O(n). We
would like to have an O(n) algorithm to evaluate polynomials written in Bernstein/
Bezier form. We can achieve this goal by applying (5.6) to transform the Bernstein
basis into the monomial basis.

n

Let B(t) - Z B~ (t)Pk be a Bezier curve. Using (5.6), we find that
k=0

rl

X B f (t)Pk
n

B(t___2_~ = ~-o = E Q ~ . ~

(1 - t) ~ (1 - t) '~ k = o

202 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

where u = t / (1 - t) and Qk - (~)Pk, k - 0 n. Now we can apply Homer's method
to evaluate

B(t) n
= ZO~u k,

(l - t) n k=0

and this computation costs only O(n) multiplications. Notice that Qk, k = 0 n,
needs to be computed only once per curve, and setting u = t / (1 - t) costs just one
division. Finally, (l - t) n can be calculated in O(lgn) time and multiplying
B(t) / (1 - t) n by (1 - t) n costs only one more multiplication. Putting this all together,
we can compute B(t) using only O(n) multiplications.

There is one slight difficulty with this algorithm. If t is close to 1, then
u = t / (1 - t) gets very large and the computation is numerically unstable. To correct
this problem, use the identities

B~ (t~ = (~)u k
(l - t) n

t
u = ~ 0 < t < 0 . 5

1 - t

B~ ~t) _ ~ ~v k
t n

1 - t
v = 0 . 5 < t < l .

Now proceed as before applying Homer's method to compute

B(t) n = EQku ~,
(l - t) n k=0

B(t) n

= ~Qn_k vk,
t n k=0

0 < t < 0 . 5

0 . 5 < t < l .

This procedure is numerically stable and yields an O(n) evaluation algorithm for
Bezier curves.

Exercises

1. Implement both de Casteljau's algorithm and Homer's method for evaluat-
ing points on a Bezier curve.

2. Derive an O(n) ladder evaluation algorithm for Bezier curves (see Section
2.6). Which approach is faster, the ladder algorithm or Homer's method?

5.4.3 Unimodality
A function is said to be unimodal if it has only one local maximum. The Bemstein
basis functions B; (t) are unimodal in the parameters k and t. That is, if we fix k,
then each polynomial B; (t) is unimodal in t over the interval [0,1]. Furthermore, if
we fix t ~ [0,1] and let B(k , t)= B;(t) , then B(k,t) takes on the discrete values
B~(t) Bn(t) and these values are unimodal in k. Here we shall explore each of

5.4 More Properties of Bemstein/Bezier Curves 203

these forms of unimodality for the Bernstein basis functions and examine their
consequences for Bezier curves.

The Bemstein basis functions B(~ (t) = (1 - t) n and B n (t) = t n are monotonic on
the interval [0,1] because the function (1 - t) n decreases monotonically from 1 to 0
while the function t n increases monotonically from 0 to 1. Hence the Bemstein basis
functions B(~ (t) and B n (t) are certainly unimodal in t on the interval [0,1].

To prove that each basis function B~ (t), k = 1 n - 1, is also unimodal in t, we
need to differentiate B~ (t) to find its local maxima. This computation is straightfor-
ward, since we have a simple explicit formula for B~ (t). Recall that by (5.5)

B~ (t) - (nk) tk (1 - t) n-k"

Differentiating this formula yields

d B f (t)

dt
= k (~) t k - l (1 - t) n -k - (n - k) (~) tk(1 - t) n -k -1

_ (n) tk-1 (1 - t) n -k -1 - k { k (1 - t) - (n - k)t} .

Since k (1 - t) - (n - k) t = k - n t , we find that t = k / n is the only solution of the
equation

dB; (= 0
dt

for 0 < t < 1. Since the Bemstein basis functions B~ (t), k = 1 , n - 1, are positive in
the open interval (0,1) and zero at the end points of the interval, it follows that each
Bemstein basis function B~(t) has a single maximum in [0,1]; hence the Bemstein
basis functions are unimodal in t (see Figure 5.10).

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1

Figure 5.10 The four Bernstein basis functions of degree 3. Each basis function is unimodal in t on the
interval [0,1].

204 CHAPTER 5 Bezier Approximation and Pascal's Triangle

This unimodality of the basis functions localizes the effect of the control points
on the shape of a Bezier curve. As t increases from 0 to k /n , the value of the basis
function B~(t) increases and the control point Pk has more and more influence on the
position of the curve. This influence peaks at t = k /n and recedes thereafter. Thus
even though, in general, a Bezier curve does not interpolate its control points, we
usually associate the control point Pk with the parameter value k /n (see also Sec-
tion 5.5.1, Exercise 2).

The Bernstein basis functions are also unimodal in the discrete parameter k. This
means that if we fix a parameter t* e [0,1], then there is an index k depending on t *
such that

B(~ (t*) <_ ... <_ B~_ 1 (t*)_< B~ (t*)>_ B~+ 1 (t*)_> ... >_ B n (t*).

This result is easy to prove by induction on n. Certainly the result is true for n = 0,1.
Suppose that it is true up to degree n - 1. Recall that by (5.4)

Bj(t) : (1 - ,)Bj- l (t) + ,B~_-11(t).

Thus Bn(t *) is a convex combination of Bn-J(t *) and B~'-~l(t*). Hence Bn(t *) lies
betweeJ on-lit ,) " * ~ J ~" l ~ ~ - - and Bin-1 (t*). Together with the inductive hypothesis, this observa-
tion is enough to conclude that the sequence B~ (t*) B n (t*) is unimodal, since we
now have

B~ (t*) _< B~-I (t *) _ ... _< B~c~(t*) <_ B~c (t*) <_ Bff-1 (t *)

> n --n-l- . _ n-1 n
_ Bk+ 1 (t*) > B~+ 1 (t) > . . . > Bn_ 1 (t*) > B n (t*) .

We illustrate these inequalities in Figure 5.11.
This unimodality property tells us something important about how the control

points influence a Bezier curve at a fixed parameter value t*. For each parameter t*
there is some basis function B~ (t) such that

B~ (t*) ~_ By (t*)

for all j. (See Exercise 1 for how to determine k from t*.) Thus at t* the control point
Pk has the most influence on the curve. Moreover, by unimodality, the influence of
the other control points recedes as their index recedes from k because the values of
the basis functions Bjn(t *) get smaller as j recedes from k. Thus if we want to change
the position of the curve at t* by moving the control points as little as possible, we
should first move the control point Pk, then the adjacent control points Pk-1 and
Pk+l, continuing in this manner until we have adjusted the curve to the desired loca-
tion.

5.4 More Properties of Bemstein/Bezier Curves 205

Figure 5.11 The Bernstein basis functions of degree n - 1 are indicated schematically by thin vertical
lines, and the Bernstein basis functions of degree n by thick vertical lines. The height of a line
represents the value of the corresponding basis function. Because each basis function of
degree n is a convex combination of two adjacent basis functions of degree n - 1, the height
of any thick line must lie between the heights of the two surrounding thin lines. Thus the
unimodality of the Bernstein basis functions of degree n - 1 implies the unimodality of the
Bernstein basis functions of degree n.

Exercises

1. Prove that B~ (t) > Bj (t) for all j r k / (n + 1) < t < (k + 1)/(n + 1).

2. Prove that the cubic Ball basis functions

bo(t) - (l _ t) 2 bl(t) = 2 t (1- t) 2 b2(t) = 2 t2(1- t) b3(t) - t 2

are unimodal in both t and k for 0 < t < 1.

3. Prove that the Taylor basis functions {t k / k!] are unimodal in both t and k for
0 < t < o o .

4. Define the Poisson basis functions {bk(t) } by setting

e - t t k
b k (t) - ~ , k - 0,1,....

k!

Prove that the Poisson basis functions {bk(t) } are unimodal in both t and k
for 0 < t < ~ .

5. Consider again the Bernstein functions of negative degree from Section 5.3,
Exercise 11.

a. Graph a few of the Bernstein basis functions of negative degree for

t < 0 .

b. Prove that the Bernstein basis functions of negative degree are unimodal
in both t and k for t < 0.

206 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

6. Let Lnk(t), k = 0 n, denote the Lagrange basis functions of degree n for
the nodes t k = k/n , k = 0,...,n. Show by example that these functions are
not unimodal over the interval [0,1] in either k or t for n > 2.

5.4.4 Descartes' Law of Signs and the Variation Diminishing Property

One of the drawbacks of Lagrange interpolation is that the interpolating polynomial
may oscillate too much and fail to capture the shape defined by its control points (see
Figure 5.1). We have abandoned Lagrange interpolation in favor of Bezier approxi-
mation because, unlike the Lagrange interpolant, a Bezier curve never oscillates
more than its control polygon. We shall now provide a precise mathematical defini-
tion of this oscillation property and prove that it holds for all Bezier curves.

We can measure the oscillations of a continuous curve in the plane with respect
to a straight line by counting the number of intersections of the curve with the line
(Figure 5.12).

Of course a curve may intersect some lines more often than others, so we shall
want to measure the oscillations of a curve with respect to every line. We say that a
curve C1 oscillates no more than a curve C 2 if for every line L

number of intersections of C1 and L _< number of intersections of C 2 and L.

Let P(t) denote the polygon defined by the control points PO,...,Pn. Then P(t)
can be parametrized as a continuous piecewise linear function over the interval [0,1]
by setting

P(t) - (k + 1 - nt)P k + (n t - k)Pk+ 1 0 < _k < t < k + 1 < 1.
tl 12

Figure 5.12 The curve C oscillates up, then down, then up again. These oscillations can be detected by
observing that the curve C intersects the line L three times: once on the way up, then again
on the way down, and yet again one more time on the way up.

5.4 More Properties of Bernstein/Bezier Curves 207

We say that a curve scheme D(t) = ~,k Dk(t)Pk, 0 < t < 1, has the variation dimin-
ishing property if the curve D(t) oscillates no more than the control polygon P(t) for
every choice of control points Po Pn (see Figure 5.13). Thus the curve scheme is
variation diminishing if for every control polygon P(t) and every line L

number of intersections of D(t) and L < number of intersections of P(t) and L.

We are now going to show that Bezier curves have this variation diminishing prop-
erty.

It is easy to measure the number of intersections of a control polygon with a
straight line. Let L be the line defined by the point Q and the normal vector v. Then a
point P lies on the line L if v �9 (P - Q) - 0. Moreover, as we can see from Figure
5.14, two points R and S lie on opposite sides of L if and only if

sign{v. (R - Q) } - - s i gn{v . (S - Q) }.

If the line L intersects the control polygon P(t) along the edge joining Pk and
Pk+l, then Pk and Pk+l must lie on opposite sides of the line L. Hence for every sign
change in the sequence {v " (P o - Q) v . (P n -Q)} , there must be an intersection
between the line and the control polygon. Therefore,

number of sign alternations of {v o (Po - Q) v �9 (Pn - Q) }
< number of intersections of P(t) and L.

We have inequality here rather than equality because the line may intersect the con-
trol polygon at a vertex Pk or along an edge PkPk+l.

To simplify the rest of this discussion, we shall adopt the following notation:

Zeros(a,b)(B(t)) = the number of roots of the function B(t) in the interval (a,b)

SA(c 0 c n) = the number of sign alternations of the sequence (co,...,Cn).

P1 P2 P1 P2

(a) Variation diminishing (b) Not variation diminishing

Figure 5.13 (a) The curve C is variation diminishing with respect to its control polygon, since C intersects
any line L no more often than its control polygon intersects L. (b) On the other hand, the
curve D is not variation diminishing with respect to its control polygon, since D intersects the
line L three times while its control polygon intersects L only twice.

208 C H A P T E R 5 Bezier Approx imat ion and Pascal 's Triangle

/.2

- R

v * (R - Q) > 0

�9 (P - Q) = 0
L

v.(S_Q)<O Q

--S

~ . P

Figure 5.14 Two points R and S lie on opposite sides of the line v �9 (P - Q) = 0 if and only if
s ign{v �9 (R - Q) } = - s i g n { v ~ R - O} = - s ign {v �9 (S - Q) } .

Here roots are counted with multiplicity, and zeros are ignored in sign alternations.
To prove that the Bezier curve

B(t) - E k B~ (t)P k

oscillates no more than its control polygon P(t), we shall show that

number of intersections of B(t) and L <_ SA{v ~ (Po - Q) v~ (Pn - Q)}"

It will then follow immediately from our previous discussion that

number of intersections of B(t) and L _< number of intersections of P(t) and L.

But

number of intersections of B(t) and L - Zeros(o,1) {(B(t) - Q) ~ v}

= Z e r o s (o , 1) { ~ , k B ~ (t) (P k - Q) ~ �9

Thus to prove the variation diminishing property for Bezier curves, we need to relate
the number of zeros of a polynomial to the number of sign alternations of its Bern-
stein coefficients. That is, we need to show that

Zeros(o,1) {~,k B~ (t)(Pk - Q) o v} < SA{v o (P 0 - Q) v o (P n -Q)} .

To establish this result, we introduce Descartes ' Law o f Signs.
A sequence of functions Do(t) Dn(t) is said to satisfy Descartes' Law of

Signs in the interval (a,b) if for every sequence of constants c o c n

Zeros(a,b) kDk(t) < SA(c 0 On) .

5.4 More Properties of Bernstein/Bezier Curves 209

For example, the monomial basis 1,t t n is known to satisfy Descartes' Law of
Signs in the interval (0,~). Therefore, the polynomial 7t 3 + 3t 2 - 3t + 11 can have
at most two positive roots. Similarly, the Bernstein basis B~ (t) B n (t) is known to
satisfy Descartes' Law of Signs in the interval (0,1). Therefore, the polynomial
7 (1 - t) 3 + 3 t (1 - t) 2 - 3 t2(1- t) + 11t 3 can have at most two roots in the interval
(0,1).

We are going to prove that the monomial basis 1, t , . . . , t n satisfies Descartes' Law
of Signs in the interval (0,~,,) and that the Bernstein basis B ~ (t) B n (t) satisfies
Descartes' Law of Signs in the interval (0,1). We shall then apply Descartes' Law of
Signs for the Bernstein basis functions to conclude that Bezier curves are variation
diminishing. We begin with the following lemma.

LEMMA
5.1

n n+l
Let f (t) - ~ c j t j and g(t) - ~ bk tk . If g(t) - (t - r) f (t) and r > 0, then

j=O k=O

Sa(b,,+l %) > S a (c , Co).

Proof If g(t) = (t - r) f (t) , then

i . b n + 1 - c n

ii. b k = Ck_l - rc k

i i i . b o = - r c 0

Consider the two sequences c n c o and bn+ 1 b o. By (i) the sequences
start out with the same sign. Moreover, from (ii) and the assumption that
r > 0, it follows that

iv. s ign (c k) ~ s i gn (ck_ 1) ~ s i gn (b k) = s i g n (c k _ 1).

Therefore, between any two indices where the c's change sign exactly once,
the b's must change sign at least once. That is, the two sequences look like

c's: + + , - - ,+ + , -

b's: + ,-, ... ,+, . . . , - , . . .

Now let c k , c k _ l , k _ 1, be the last sign change in the c's. Then

SA(bn+ 1 b k) > SA(c n Ck_ 1) = S A (c n Co)"

But since r > O, it follows by (iii) and (iv) that

s i g n (b k) = s i gn (ck_ 1) s ign (co) ~ s i g n (b o) .

Hence there is at least one sign change between b k and b 0 . Therefore,

SA(bn+l bo) > S A (b n , ' " , b k + 1) + 1 > S A (c n Co) + 1.

210 CHAPTER 5 Bezier Approximat ion and Pascal 's Triangle

PROPOSITION
5.2

Proof

Descartes ' L a w o f Signs fo r the Monomia l Basis

Zeros(o,oo) k t < SA{a n a 0 }.

n

Let g(t) = ~ a k tk and let rl,...,r m be the positive roots of g(t). Then
k=O

g(t) - (t - rm). . . (t - r 1)gO(t).

Define the polynomials gl(t) gm(t) by setting

gk(t) = (t - r k) . . . (t - q)go(t)

Then by construction

k = 1 m.

gk (t) = (t - r k)gk_l (t)

gm(t) = g(t) .

We are going to show by induction on k that

sign alternations { coefficients gk (t) } > k.

By Lemma 5.1

sign alternations { coefficients gl (t) } > sign alternations { coefficients go(t) }.

Therefore,

sign alternations {coefficients gl(t) } > 1.

Moreover, again by Lemma 5.1

sign alternations { coefficients gk (t) }
> sign alternations { coefficients gk-1 (t) }.

Therefore, it follows by induction on k that

sign alternations {coefficients gk(t) } > k.

Hence

sign alternations { coefficients g(t) }
= sign alternations {coefficients gm(t) } > m.

But m is the number of positive roots of g(t). Therefore, we have proved that

{ ktk} SA{a n a0 } > Zeros(o,oo)

5.4 More Properties of Bemstein/Bezier Curves 211

COROLLARY
5.3

Descar tes ' L a w o f Signs f o r the Bernste in Basis

{# } Zeros(o,1) kB~: (t) < SA{a n a 0 }.

Proo f Once again we shall use Equation (5.6) to convert from the Bemstein basis
to the monomial basis. Let u - t / (1- t). Then by Equation (5.6) and Propo-
sition 5.2

t l

Zer~ 1) kB~ (t) - Zeros(o,1) k=O
' = (l - t) n

= Zeros(o,~))akuk < SA{a n ao}.

COROLLARY
5.4

Bez ier curves are variation diminishing.

Proo f Consider a Bezier B(t) = Z k B~ (t)P k with control polygon P(t). Let L be the
line defined by the point Q and the normal vector v. If L intersects the con-
trol polygon P(t) along the edge between Pk and Pk+l, then Pk and Pk+l
must lie on opposite sides of the line L. Hence

SA{v ~ (Po - Q) v ~ (Pn - Q) } < number of intersections of P(t) and L.

On the other hand,

number of intersections of B(t) and L = Zeros(o,1) {]~k B~ (t)(P k - Q) o v}.

Therefore, by Corollary 5.3

number of intersections of B(t) and L <_ SA{v ~ (Po - Q) v ~ (Pn - Q) }

< number of intersections of P(t) and L.

This proof of the variation diminishing property based on Descartes' Law of
Signs is highly algebraic. We shall give two geometric proofs of the variation dimin-
ishing property for Bezier curves in Section 5.5 when we study subdivision and
degree elevation.

Finally, notice that the definition and analysis of the variation diminishing prop-
erty for Bezier curves was carried out here only for planar Bezier curves. But much
the same analysis applies to Bezier curves in three dimensions. The only change is

21 2 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

that the lines with respect to which oscillations are measured must be replaced by
planes. The remaining details are unchanged (see Exercise 6).

Exercises

1. Consider the Bemstein basis functions

B~ (t) (k) (t - a) k (b - t) n-k
_ n k - O n .

(b - a) n

a. Prove that these basis functions satisfy Descartes' Law of Signs in the
interval (a,b).

b. Conclude that Bezier curves defined over the interval [a,b] are variation
diminishing.

2. Prove that the cubic Ball basis functions

b o (t) - (1 - t) 2 bl(t) = 2t(1- t) 2 b2(t) = 2t2(1- t) b3(t) - t 2

satisfy Descartes' Law of Signs in the interval (0,1).

3. Show that the Taylor basis 1 , (t - t 0) (t - t o) n/n! satisfies Descartes' Law
of Signs in the interval (to,~176

4. Show that the Newton basis for the nodes t o < t 1 < ... < t n satisfies Des-
cartes' Law of Signs in the interval (to,~176

5. Show by example that the Lagrange basis for the nodes t o < t 1 < - . -< t n
does not satisfy Descartes' Law of Signs in the interval (tO,tn).

6. Replace lines by planes in the definition of the variation diminishing prop-
erty. That is, say that a curve scheme D(t) = Zk Dk(t)Pk in three dimensions
is variation diminishing if for every control polygon P(t) and every plane L

number of intersections of D(t) and L
< number of intersections of P(t) and L.

Prove that the variation diminishing property holds for Bezier curves in 3-
space.

5.5 Change of Basis Procedures and Principles of Duality

Consider two polynomial bases~a basis for polynomials of degree n:

B(t) = (Bo(t) Bn(t))

and a basis for polynomials of degree m > n:

O(t) = (Do(t) Dm(t))

Let P(t) = ~,k Bk(t)Pk be a polynomial curve. Since m > n, there must be coefficients
{Qj} such that P(t) = ~,jDj(t)Qj. The general problem we shall address here is how to

5.5 Change of Basis Procedures and Principles of Duality 213

find the D-coefficients {Q j} given the B-coefficients {Pk }. We shall see in subsequent
sections that the solution to this generic problem has substantial applications in the
theory of Bezier curves, including conversion between Bezier and monomial form
(Section 5.5.1), degree elevation (Section 5.5.3), and subdivision (Section 5.5.4).

To simplify our notation, let P - (Po Pn) and Q - (Qo Qm). Then

P (t) - D(t)~ QT _ B(t)o pT,

where the superscript T denotes transpose and �9 denotes matrix multiplication. Since
D(t) is a polynomial basis and m > n, there must be a matrix M - (Mjk) such that
M: D(t) ~ B(t); that is,

m
Bk(t) - ~ , M j k D j (t) k - 0 n

j=0

B(t) - D(t)~ M .

Therefore,

D (t) . QT _ B (t) . p T _ (D(t) o M) o p T _ D(t) o (M o p T) .

Since the polynomials D(t) are linearly independent, we conclude that

QT _ M �9 p T

or equivalently taking the transpose of both sides:

Q - P o M r

= MkjP k - ~ , M j k P k j - 0 m.
k=0 k=0

Thus MT: P --~ Q. Therefore, we have established that

M: D(t) ~ B(t) r M T" P ---) Q.

These observations can be summarized by the following rule.

RULE First Principle o f Dual i ty

M : D - b a s i s --~ B - b a s i s r M T ' B - c o e f f i c i e n t s ~ D - c o e f f i c i e n t s

m v/

Bk(t) = ~ , M j k D j (t) k - O n r Qj - ~ , M j k P k j - O m
j=0 k=0

Hence, the same change of basis matrix M used for representing the basis B(t) in
terms of the basis D(t) can be used to convert from the B control points P to the D
control points Q. In Section 5.5.1 we shall employ this strategy to convert between

214 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

the Bernstein and monomial bases and in Section 5.5.3 we shall use it as well to con-
struct a degree elevation algorithm for Bezier curves.

This principle of duality has an interesting interpretation in terms of triangular
computations. We shall see shortly that many change of basis algorithms can be rep-
resented by diagrams such as the one in Figure 5.15(a). The input P is placed at the
base of the triangle, and the output Q emerges along the left lateral edge. Let M
denote the matrix that represents this transformation from P to Q. Then there is a
closely related diagram that represents the transformation matrix M T" just reverse the
orientation of all the arrows in the diagram that represents the transformation M,
leaving the labels along the arrows unchanged, and place the input at the nodes along
the left lateral edge of the triangle. Now the output emerges at the base of the trian-
gle, and the matrix representing this new transformation is M T (see Figure 5.15(b)).
These observations can be condensed into the following rule.

RULE Second Principle of Duality

Reversing the arrows in a triangle that represents a transformation M yields
a triangle that represents the transformation M T

Notice that in Figure 5.15(b) values already exist at the nodes Ro,R1,R 2 where
we are computing new values. When this occurs, we perform the usual computation
and then add the value residing at the node as in Figure 5.16.

Why does this work? Since M represents the transformation from P to Q,

04 - k~= M j k Pk .

Therefore, it follows from the diagram that

Mjk - the sum of the products along all paths from Pk to Qj.

Q3 R3

Q2 * R2 *

Q1 * * R1 * *

Qo = Po P1 P2 P3 To * Ro T1 T2 T3

(a) M: P ~ Q (b) Mr: R --9 T

Figure 5.15 Schematic depiction of the Second Principle of Duality. If (a) represents the transformation M,
then (b) represents the transformation M T.

5.5 Change of Basis Procedures and Principles of Duality 215

R S

T

Figure 5.16 The value computed at the node labeled T is o~R + flS + T.

Now let N denote the transformation from R to T depicted in Figure 5.15(b). Then

1/

T k - ~,NkjR j ,
k=O

and from the diagram we have

Nkj - the sum of the products along all paths from Rj to T k.

But Rj and Qj occupy the same node in these diagrams, and so too do P k and T k.
Therefore, the paths between Rj and T k are identical to the paths between Pk and Qj.
Thus

Ukj - Mjk

N - M T .

Combining our first two principles of duality produces the following rule.

RULE Third Principle of Duality

Reversing the arrows in a triangle that represents a transformation from a
D-basis to a B-basis yields the transformation from the B-coefficients to the
D-coefficients and vice versa.

For example, recall from Section 4.5 that the forward differences of a polyno-
mial represent the coefficients of the polynomial with respect to a normalized New-
ton basis. Thus Figure 4.3 is a transformation algorithm from the Lagrange
coefficients (evaluation at the nodes) to the normalized Newton coefficients (differ-
ences). By the Third Principle of Duality, reversing the arrows and placing the nor-
malized Newton basis functions along the left lateral edge of the triangle generates
the transformation from the normalized Newton basis to the Lagrange basis with the
same nodes (see Figure 5.17 and Exercise 2).

In the next few sections we shall apply only the First Principle of Duality. We
will have occasion to apply the other two duality principles in Chapter 7 when we
study change of basis algorithms for B-splines.

Exercises

1. Suppose that Z j D j (t) =ZkBk(t) =1 and B(t) - D(t)o M.

216 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

t (t - 1) (t - 2)/3!

2/'-,<,
t (t - 1)/2

, / /
t ~

1 ~ L~(t) L3~(t) L32(t) L~(t)

Figure 5.17 Computation of the cubic Lagrange basis functions with nodes 0,1,2,3 from the normalized
cubic Newton basis functions with the same nodes by the Third Principle of Duality. The New-
ton basis functions are placed along the left lateral edge, the arrows of the difference triangle
are reversed, and the Lagrange basis functions emerge along the base of the triangle.

a. Prove that ~ M j ~ = 1 for every j. That is, prove that when the curve
schemes are affine invariant, every row of the change of basis matrix
sums to one.

b. When the rows of a matrix are nonnegative and sum to one, then the
matrix is called a Markov chain. Markov chains play a prominent role in
probability theory. Prove that if the change of basis matrix M is a Markov
chain, then the D control points lie inside the convex hull of the B control
points.

2. Verify by direct calculation that in Figure 5.17 the cubic Lagrange basis
functions with nodes at 0,1,2,3 emerge at the base of the diagram.

3. Let M denote the matrix that represents the transformation where the input
is placed at the base of the triangle, and the output emerges along the right
lateral edge. What diagram represents the transformation MT?

4. Show that

a. If M represents the transformation in Figure 5.15(a), then M is lower tri-
angular.

b. If N represents the transformation in Figure 5.15(b), then N is upper tri-
angular.

5.5.1

5.5 Change of Basis Procedures and Principles of Duality 217

Conversion between Bezier and Monomial Form

To convert between the Bezier and monomial forms of a curve, we must represent
the Bemstein basis functions in terms of the monomial basis and represent the
monomial basis functions in terms of the Bemstein basis. Then we can apply the
techniques from Section 5.5. Here we shall derive both types of identities.

To represent the Bemstein basis in terms of the monomial basis, start with the
explicit formula (5.5):

B~(t) - (n) tk(1 t) n -k
k ~ "

Expanding the term (1- t) n - k by the binomial theorem yields

n-k
B k (t) - Z (-1) j(n n k)(n-)k)tJ+k

j=O

To represent Bf (t) in terms of powers of t j rather than powers of t j+k, reindex by
replacing j by j - k to obtain

Next observe that

17

Bf (t) - E (-1) j-k (nk)(j_kn-k)t j .
j=k

SO

Bff (t) - ~ (- 1) J - k (J k) (j) t J " (5.7)
j=k

Because the factor (j) appears repeatedly in these conversion formulas, it is more
convenient to consider the scaled monomial basis Mn(t) = (n)tj rather than the stan-
dard monomial basis t J, j = 0 n. Now by the First Principle of Duality from Sec-

J , /

tion 5.5,

n n
~ , Q j M j (t) - ~ , B f (t) P k r Qj - (-1)J -k (Jk)P k . (5.8)

j=0 k=0 k=0

Thus (5.8) converts polynomials from Bezier to monomial form.
Conversely, to convert from monomial to Bezier form, we must represent the

monomial basis in terms of the Bemstein basis. To do so, observe that by the bino-
mial theorem

n n

((1--t)+tz) n - E (j) t J z J (1 - t) n - j - ~,B~(t)z j"
j=0 j=0

218 CHAPTER 5 Bezier Approximation and Pascal's Triangle

n

(The expression ~ B j (t)z j is called the generating funct ion for the Bemstein basis
functions.) j=0

Differentiating both sides of this equation with respect to z a total of k times, we
obtain

= n j!
n! t k ((1 - t) + tz) n-k ~, ~ B] (t)z j - k �9

(n - k) ! j = k (j - k) !

Dividing by k! and setting z = 1, we arrive at the identity

n
J M k (t) E n _ (k) B j (t) " n

j=k

Hence again from the First Principle of Duality,

(5.9)

n

~ B ; (t) e j = ~ n = QkMk (t) r Pj (Jk)Qk "
j=O k=O k=O

(5.10)

Thus the n + 1 rows of the change of basis matrix are the first n + 1 rows of Pascal's
triangle.

Formulas (5.8) and (5.10) are inverses. It turns out that these two formulas both
have interesting interpretations in terms of triangular computations.

Formula (5.8) is the expression for forward differencing (compare to Equation
(4.7)). Thus if we place the Bezier control points at the base of a triangle and run the
forward differencing computation (subtraction), the monomial coefficients emerge
along the left edge of the triangle. This dynamic programming algorithm is illus-
trated for cubic curves in Figure 5.18.

The coefficients (~) in (5.10) are the entries in Pascal's triangle. Thus if we place
the monomial coefficients at the base of Pascal's triangle and reverse all the arrows
(addition), then the Bezier coefficients emerge along the left edge of the triangle (see
Section 5.3, Exercise 5). This dynamic programming algorithm is illustrated for
cubic curves in Figure 5.19.

Exercises

1. Suppose that the control points of a Bezier curve are evenly spaced along a
straight line. That is, suppose that the control points are given by Pk =

Po + (k / n)v, k = 0 n. Show that the Bezier curve e (t) = ~,k B~ (t)P k is a
straight line with a linear parametrization.

2. Let B(t) be a polynomial with Bezier coefficients Pk, k = 0 n.

a. Show that the graph of B(t)mthat is, the curve (t ,B (t))mhas control
points (k/n,Pk), k = 0 ,n.

5.5 Change of Basis Procedures and Principles of Duality 219

Q3

Q2 *

/ /
Q1 * *

Qo = PO P1 P2

Figure 5,18 Differencing can be used to convert from Bezier to monomial form. Place the Bezier coeffi-
cients {Pk} at the base of the triangle and take differences. Then the coefficients {Qj} with
respect to the monomial basis Mr](t) = (~)tJ emerge along the left edge of the triangle. Here
the algorithm is illustrated for n = 3. Compare to Figure 4.3 for forward differencing.

P2 *

P1 * *

Po = Qo Q2 Q3
Figure 5.19 Pascal's triangle can be used to convert from monomial to Bezier form. Place the coefficients

{Qk} with respect to the monomial basis Mnk(t) = (nk)tk at the base of the triangle and add up.
Then the Bezier coefficients {Pj} emerge along the left edge of the triangle. Here the algo-
rithm is illustrated for n = 3. This algorithm is the inverse of the algorithm illustrated in Figure
5.18.

2 2 0 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

(Note that this is another reason that the control point Pk is usually associ-
ated with the parameter value k/n .)

b. Where are the control points for the graph of the basis function B~ (t)?

3. Consider the generating function G(z) - ~ k B~ (t)e kz . Prove that

/7

a. ~ , B ~ (t) e k z - ((1 - t) + t e Z) n
k=0

n j n _ n!
b. ~ k B k (t) ~ t j + lower-order terms

k=O (n - j)!

4. Suppose that the control points of a Bezier curve of degree n are evenly
spaced points in parameter space on a polynomial curve of degree m < n.
That is, suppose that Pk = P (k / n) where P(t) is a polynomial curve of
degree m. Using the result of Exercise 3(b), show that the Bezier curve
P(t) = Z k B~ (t)P k is a polynomial curve of degree m.

5. Develop change of basis algorithms to convert between the Taylor basis

(j)(t - a) j , j - 0 n,

and the Bemstein basis

(t - a) k (b - t) n-k
B~ (t) - (n k) , k - O n.

(b - a) n

6. Explain why the same algorithm that converts curves from Bezier to mono-
mial form also converts polynomials from Lagrange to Newton form when
the nodes are at the integers and the Newton basis function N k (t) is normal-
ized by dividing by k!. (Hint: Compare Figures 4.3 and 5.18.)

7. Consider the functions {By n (t) } defined in Section 5.3, Exercise 11. Prove
that

o o

(-n) tk ~,(Jk)B-jn (t) �9
j=k

8. Using the Third Principle of Duality from Section 5.5, show how to use Fig-

ure 5.18 to compute the Bernstein basis functions {B~c (t)} from the mono-

mial basis functions {M~ (t)}.

5.5.2 The Weierstrass Approximation Theorem

Every continuous curve on a closed interval can be approximated to within any
desired tolerance by some polynomial curve. This statement is the Weierstrass
Approximation Theorem. The Weierstrass Theorem justifies our preoccupation with
polynomial curves because it asserts that to within any arbitrary tolerance all contin-

5.5 Change of Basis Procedures and Principles of Duality 221

uous curves are essentially polynomials. The approximating polynomials in the
Weierstrass Theorem need not be interpolating; indeed, a sequence of polynomials
that interpolate more and more points on a fixed curve does not necessarily converge
to the curve that is interpolated.

For analytic functions we can resort to Taylor polynomials to approximate the
curve to any desired tolerance, but for arbitrary continuous functions we need to
invoke other techniques. Here we are going to use Bezier approximation to prove the
Weierstrass Theorem. Our main technical tool will be the change of basis formula
(5.9) that represents the monomial basis in terms of the Bernstein basis. We begin
with a simple identity that comes up in the main body of the proof.

.EMMA
5.5

n

~, (k - n t) 2 B~ (t) - nt(1 - t)
k=O

Proof Begin by recalling (5.9):

/7
n(t)]~ k n M j - (j)Bk (t).

k=j

When j - 0,1,2, this formula specializes to

ii.
/7

E B b (t) = 1
k=O

iii.
/ /

E k B f (t) - nt
k=0

iv.
n

E k (k - 1)Bff (t) = n(n - 1)t 2 .
k=0

Adding (iii) and (iv), we obtain

v. ~ 2 n k B k (t) = n (n - 1)t 2 + nt .
k=0

Therefore, by (ii), (iii), and (v),

(k - nt) 2 Bf (t) - ~ (k 2 - 2knt + n 2t2)Bf (t)
k=0 k=0

n 2 n n n2t2 n
= ~, k B k (t) - 2n t Z kB~ (t) + Z B~ (t)

k=0 k=0 k=0

= n (n - 1)t 2 + n t - 2n2t 2 + n2t 2

= n t (1 - t) .

222 C H A Pf E R 5 Bezier Approximation and Pascal's Triangle

Let F(t) be a continuous curve on the interval [0,1]. Define the nth Bernstein
approximation to F(t) by setting

n

Bn[F](t) - ~,F(k / n)B~ (t) .
k=O

(5.11)

The graph of the polynomial Bn[F](t) is the Bezier curve with control points at
equally spaced parameter values along the continuous curve F(t). In general, the
functions Bn[F](t) interpolate only the values F(0),F(1); nevertheless, we shall now
show that as the degree n increases, these approximating polynomials Bn[F](t) actu-
ally converge uniformly to the continuous function F(t).

THEOREM
5.6

l imn~Bn[F](t) = F(t) { uniform convergence }

Proof Consider the difference between F(t) and Bn[F](t) . Since the Bernstein
basis functions sum to 1,

n

F(t) - Bn[F](t) = Z {F(t) - F(k / n)}B~ (t).
k=O

(5.12)

Thus to analyze the difference between F(t) and Bn[F](t), we need to ana-
lyze the difference between F(t) and F(k /n) . To begin, notice that since
F(t) is continuous on the closed interval [0,1], F(t) is bounded on this inter-
val. Therefore, there is a constant M > 0 such that IF(t) I< M, so for all

O< x , t < l

I F (x) - F(t) I< 2M.

Now choose any e > 0. Again since F(t) is continuous on the closed interval
[0,1], there is some t~ > 0 such that for all 0 < x,t <_ 1

I x - t l < t ~ ~ I F (x) - F (t) l < e .

Let us fix the value of t. Then for each k = 0 n, either I k / n - t I< t5 or
I k / n - t I> t~. Therefore, we can split the sum on the fight-hand side of

(5.12) into two sums: the first containing those terms where I k / n - t I< t~
and the second containing those terms where I k / n - t I> 8. Hence by (5.12),

I (F(t) -nn[F](t) l

lY~lk / n_tl<t~{F(t) - F(k / n) }B~ (t) + ~lk / n_tl>t~{F(t) - F(k / n) }B~ (,~]

< ~lk / n-tl<•lF(t) - F(k / n)lB ~ (t) + ~,lk / n-tl>_6lF(t) - F(k / n)lB ~ (t)

< ~lk / n-tl<t~ EB~ (t) + ~lk / n-tl>6 2MB~ (t)

< 6~lk / n-tl<t~ B~ (t) + 2M]~lk / n-tl>_~ B~ (t)

< e + 2M]~lk / n-tl>S B~ (t) . (5.13)

5.5 Change of Basis Procedures and Principles of Duality 223

It remains only to bound the sum ~,lk/n_tl>6B~(t). But if I k / n - t I~ ~, then

(k - nt) 2 > n2t~ 2 ,

so

Therefore,

(k - nt) 2

n2(~ 2
>1.

~,lk / n-tl>t~ n~ (t) < ~,lk / n-tl>t~

Hence by Lemma 5.5

(k - nt) 2 1
nZt~ 2 B~ (t) ___ nZt~ 2 ~,k (k - nt) 2 B~c (t).

~,lk / n-tl>r B~ (t) <
n t (1 - t)

n2S 2

But the product t(1 - t) takes its maximum value at t = 1/2, so t(1 - t) < 1/4.
Therefore, for all t

Elk / n-tl>t~ n~ (t) <
4nt~ 2

Substituting this bound back into (5.13), we find that

IF(t)- Bn[F](t) I = e +

M
Now choose n > ; then

2d;2e

M

2nt~ 2

IF(t)- Bn[F](t) I < 2e,

so for n sufficiently large Bn[F](t) is arbitrarily close to F(t).

COROLLARY
5.7

Weierstrass Approximation Theorem

Let F(t) be a continuous function on the interval [0,1]. Then F(t) can be
approximated to within any desired tolerance by some polynomial curve.

Exercises

1. Prove that if F(t) is a continuous function on the interval [a,b], then F(t) can
be approximated by a polynomial to any desired tolerance.

2. Prove that B n is a linear operatormthat is,

Bn[aF + bG](t) = aBn[F](t) + bBn[G](t) .

224 C H A P T E R 5 Bezier Approximat ion and Pascal 's Triangle

3. Prove that if F(t) is a polynomial of degree m, then the Bernstein approxi-
mation Bn[F](t) is always a polynomial of degree m for n > m. (Hint: See
Section 5.5.1, Exercise 4.)

4. Plot the Taylor and Bernstein polynomial approximations to the functions
cos(at), sin(m) for different degrees n. Use these results to generate poly-

nomial approximations to the semicircle (cos(m), sin(m)) for 0 <_ t _< 1.
Which approximation scheme converges faster over the interval [0,1] ?

5. Show that

a. dB; (t) = n (B ~ z l (t) _ B/n_ 1 (t)] k = 0 n
dt i

b. limn~Bn[F](t)~'- - - F'(t) .

(Hint: Apply part (a) and the mean value theorem together with Theorem
5.6.)

5.5.3 Degree Elevation for Bezier Curves

Degree elevation is another change of basis algorithm that is important in the study
of Bezier curves. Because the Bemstein polynomials form a basis, every degree n
Bezier curve is also a Bezier curve of degree n + 1. Since higher-degree curves have
more control points, we can degree elevate a curve to attain additional control over
the shape of the curve. Given the control points {P0 Pn} for a Bezier curve of
degree n, we would like an algorithm to find the control points {Q0 Qn+l} for the
same curve represented now as a Bezier curve of degree n + 1.

In Section 5.5 we showed that to find this change of basis algorithm, we need to
represent the Bemstein basis functions of degree n in terms of the Bemstein basis
functions of degree n + 1. There is a simple trick for doing this. Observe from (5.5)

n + l n that tB~(t) has the same powers of t and 1 - t as Bk+ 1 (t), and (1 - t)Bk(t) has the same
n + l n powers of t and 1 - t as B k (t) Thus, up to constant multiples, tBk(t) is the same as

n n + l n R n + l ~'k+l (t) and (1 - t)Bk(t) is the same as B k (t). Adding these results will give us Bk(t)
n + l as a linear combination of B;+~(t) and Bk+ 1 (t).

Working through this algebra, we find that

t~Rn,--'K (t) -- n + 1 - k on+l (1 ~ ' - ' k (t) (5.14)
n + l

tB; (t) - k + 1 Bn+lk+l (t). (5.15)
n + l

Adding these equations yields

n + l - k
B f (t) =

k +1 v n + l
~ (t) (5 .16) ~ o k Ok+ 1 �9

n + l n + l

5.5 Change of Basis Procedures and Principles of Duality 225

Thus the change of basis matrix M - (Mjk) is given by

n + l - j
Mjk = n + l j - k

J = j = k + l
n + l

= 0 jc=k,k+l .

Hence by the First Principle of Duality in Section 5.5,

n R n+l (t) =~k PkB~ (t) <=:> Qj = Zjw~,j
j n + l - j

n + l Pj-I + ~ P j + I (5.17)

Equation (5.17) is the degree elevation formula for Bezier curves. It expresses
the degree n + 1 control points in terms of the degree n control points. Notice that the
point Qj lies on the line joining Pj-1 and Pj. We illustrate this degree elevation algo-
rithm for cubic curves in Figure 5.20.

Degree elevation is a corner-cutting procedure. Notice in Figure 5.20 that the
degree elevated control polygon Q = (Qo, Q1, Q2, Q3, Q4) is obtained from the origi-
nal control polygon P = (Po,P1,P2,P3) by cutting off the comers at P1 and P2. Since
every Bezier curve lies in the convex hull of its control points, the degree elevated
control polygon is closer to the Bezier curve than the original control polygon. Thus
if we continue to degree elevate a Bezier curve, the control polygon gets closer and

P 1 Q2 P2

Q1

Qo = Po Q4 = P3

:igure 5.20 Degree elevation algorithm for a cubic Bezier curve. The points {Po,P1,P2,P 3} are the control
points for the cubic Bezier curve B(t), and the points {Qo,Q1,Q2,Q3,Q4} represent the same
curve B(t) as a quartic Bezier curve.

226 s H A P T E R 5 Bezier Approximation and Pascal's Triangle

closer to the original curve. Moreover, in the limit, these control polygons converge
uniformly to some continuous curve. We shall now apply the Weierstrass Approxi-
mation Theorem to show that this limit curve is, in fact, the original Bezier curve.

THEOREM
5.8

Let B(t) be a Bezier curve of degree n and let am(t) denote the control poly-
gon that represents B(t) as a Bezier curve of degree m > n. Then
limm~=Qm(t) = B(t). That is, the control polygons generated by degree ele-
vation converge uniformly to the original Bezier curve.

Proof By construction am(t) is a piecewise linear curve over the interval [0,1] and
Qm(k/m) is the kth vertex of am(t). Since Qm(t) is the control polygon that
represents B(t) as a Bezier curve of degree m, Qm(k/m) is the kth control
point of B(t) considered as a polynomial curve of degree m. Let Bm[F](t)
denote the mth Bemstein approximation to F(t) (see (5.11)). Then

m

Bm[Qml(t) = ~_,Qm(k/m)B~(t)= B(t).
k=0

Let Q(t) = l imm~Qm(t) . To show that Q(t) = B(t), we need to examine the
difference between B(t) and Q(t). By Theorem 5.6,

B(t) - a(t) = l i m m ~ , Bm[B - a](t)

= limm~ ~ {Bm[B](t)- Bm[a](t)}

= l i m m ~ {Bm[B](t)- Bm[Qm](t) + Bm[Qm] (t) - Bm[a](t) }

= l i m m ~ {Bm[B](t)- B(t)} + l imm~,Bm[Q m - a] (t) .

But again by Theorem 5.6,

l i m m ~ {Bm[B](t) - B(t)} = 0,

and the convergence is uniform. Moreover, since Q(t) = l imm~Qm(t) ,
given any e > 0 for m sufficiently large

]am(t)-a(t) I < e.

Therefore,

SO

m

IBm[am -a] (t) I _< ~lam(k/m)-a(k/m)ln~(t) < e,
k=0

limm~J3m[Qm - Q](t) = 0.

Hence B(t) - Q(t) = 0, so B(t) = l imm~Qm(t) and the convergence is uni-
form on the interval [0,1].

5.5 Change of Basis Procedures and Principles of Duality 2 2 7

B

E

A

Figure 5.21 Polygon ADEC is formed from polygon ABC by cutting off the corner at B. The line L inter-
sects the edge DE and therefore must also intersect either edge DB or edge BE in the polygon
ABC because if a line intersects one side of a triangle, then it must intersect one of the other
two sides.

Comer cutting reduces the oscillation of a polygon. If Q(t) is the piecewise lin-
ear curve obtained by cutting comers off of another piecewise linear curve P(t), then
any line L intersects P(t) at least as often as it intersects Q(t) because if a line inter-
sects one side of a triangle, then it must intersect one of the other two sides (see Fig-
ure 5.21). Thus corner cutting is a variation diminishing process. Since degree
elevation is a comer-cutting procedure (see Figure 5.20), we can use this observation
along with Theorem 5.8 to give a simple geometric proof that Bezier curves satisfy
the variation diminishing property.

COROLLARY
5.9

Bezier curves are variation diminishing.

Proof Since comer cutting reduces oscillation, the limit curve of a corner-cutting
procedure must be variation diminishing with respect to the original control
polygon. But by Theorem 5.8, each Bezier curve is the limit curve of a
degree elevation process, which is a comer-cutting procedure. Hence Bezier
curves are variation diminishing.

Exercises

1. Prove that

a. Br~ (t)B; (t) - (7)(~)
cm+n
~j+k)

Dm+n ~ o j + k (t)

m (m n
j)(k) om+n

b. B;(t) - ~ m+n~ ~ +k (t)
j=O (j+k)

228 C H A P T E R 5 B e z i e r A p p r o x i m a t i o n a n d P a s c a l ' s Tr iang le

2. Let B(t) be a Bezier curve of degree n with control points {Pk }. Use the
results in Exercise 1 to find the control points {Q j} that represent B(t) as a
Bezier curve of degree m + n.

3. Consider the negative binomial distribution defined in Section 5.3, Exercise
11. Prove that for n > 1

B k n (t) _ ~n + k - 1 B k n + 1 (t) _ k + 1 o - n + l (t)
n - 1 n - 1 ~ "

4. Prove that the arc length of a Bezier curve is always less than or equal to the
perimeter of its control polygon.

5. Use the degree elevation formula to derive Descartes' Law of Signs for the
Bernstein basis. (Hint: First use degree elevation to prove an analogue of
Lemma 5.1 for the Bernstein basis.)

6. Show that

()AArn+l (
M; (t) = k + 1 ~,, k+l (t) n + 1 - k'] ,,n+l

:) ~ , , k (t) .
n + l t n + l

7. Let t o < t 1 < ... < t2n+l and define

~ ; (t) - (-1) n-k(tk+ 1 - t). . .(tk+ n - t) k - 0 ,n

I/t~ +1 (t) - (-1) n+l-k (t k - t) . . . (t k+ n - t) k - 0 n + 1.

a. Show that

�9 n + l (t) (t k - t) ~ (t) = - V k

(tk+n+ 1 - t)l/t~ (t) ='~'k+ln+l (t).

b. Use the degree elevation formulas in part (a) to show that the functions

~(t),k-0 n ,

satisfy Descartes' Law of Signs in the interval (tn,tn+ 1).

8. Suppose that {P0 Pn} are the control points for a degree n Bezier curve,
and that {Q0 Qn+l } are the control points for the degree-elevated version
of the same curve. Let Smax(P) be the largest side of the control polygon
generated by the control points {P0 Pn}, and let Smax(Q) be the largest
side of the control polygon generated by the control points {Q0 Qn+l }.

n
a. Prove that Sma x (Q) < Sma x (P)-

n + l

b. Conclude that as we continue to degree elevate a Bezier curve, the
lengths of the sides of the control polygons approach zero.

5.5 Change of Basis Procedures and Principles of Duality 2 2 9

5 . 5 . 4 Subdivision

The control points of a Bezier curve describe the curve with respect to the parameter
interval [0,1]. Sometimes, however, we are interested only in the part of the curve in
some subinterval [a,b]. For example, when rendering a Bezier curve we may need to
clip the curve to a window. Since any segment of a Bezier curve is a polynomial
curve, we should be able to represent such a segment as a complete Bezier curve
with a new set of control points. Splitting a Bezier curve into smaller pieces is also
useful as a divide and conquer strategy for intersection algorithms (see below). The
process of splitting a Bezier curve into two or more Bezier curves that represent the
exact same curve is called subdivision.

We begin with an important special case. Consider a Bezier curve B(t) =
~ ,kBf (t)Pk , where t �9 [0,1]. The curve B(rt) - 2 k B f (r t) P k , where t e [0,1], repre-
sents the segment of B(t) for which t e [0,r] because as t varies from 0 to 1, B(rt)
varies from B(0) to B(r). Thus by the results in Section 5.5, to subdivide a Bezier
curve at t = r, we must represent the basis functions B~ (rt) B n (rt) in terms of the
standard basis B~ (t) Bnn(t). A subdivision algorithm, then, is nothing more than a
change of basis algorithm from the Bemstein basis B~(rt) Bn(rt) to the standard
Bemstein basis B~ (t) B n (t).

Using the binomial theorem, we could derive such a change of basis formula by
purely formal algebraic methods (see Exercise 1). It happens, however, that this
change of basis formula has a simple probabilistic interpretation that provides fur-
ther insight into its meaning. Since probability also simplifies the derivation of this
identity, we shall adopt a probabilistic approach. Later on we shall see that many
other identities involving the Bemstein polynomials also have simple probabilistic
interpretations that simplify their derivation (see Exercises 2 and 3).

Bezier curves are related to probability theory because the Bemstein basis func-
tions represent the binomial distribution. There are many ways to model this distri-
bution: coin tossings, random walks, or urn models. For our purposes we shall adopt
an um model based on sampling with replacement.

5.5.4.1 Sampling with Replacement

Consider an um containing w white balls and b black balls. One ball at a time is
drawn at random from this urn, its color inspected, and then returned to the urn.
Since we are performing sampling with replacement, the probability of choosing a
white ball on any trial is t = w / (w + b), and the probability of choosing a black ball
on any trial is 1 - t. Now there are (n k) ways of selecting exactly k white balls in n
trials, so the probability of choosing exactly k white balls in n trials is given by the
binomial distribution

Bt~ (t) - (~)t k (1 - t) n-k.

230 CHAPTER 5 Bezier Approximation and Pascal's Triangle

LEMMA
5.10

n j n
B;(rt) - ~,Bk (r)B j (t) (5.18)

j=k

Proof Consider two urns: one with red and blue balls and another with white and
black balls. Let

r = probability of selecting a red ball from urn #1

t = probability of selecting a white ball from urn #2.

Applying the binomial distribution for sampling with replacement, we know
that

B i(r) = probability of choosing exactly k red balls in j trials from urn
#1

Bj (t) = probability of choosing exactly j white balls in n trials from urn

#2.

Place these two urns into a super urn (see Figure 5.22). A selection from the
super urn consists of selecting one ball at random from each regular urn,
inspecting their colors, and returning the balls to their respective urns.

The super urn also models sampling with replacement, where

rt = probability of selecting a red-white combination

B; (rt) = probability of selecting exactly k red-white combinations in n
trials.

To select a red-white combination from the super urn on any trial, we must
certainly select a white ball from um #2 on this trial; if we select a black
ball from um #2, we need not even inspect the color of the ball selected
from urn #1. Suppose that we choose exactly j white balls in n trials from
urn #2. Then to select exactly k red-white combinations in n trials from the
super urn, we must select exactly k red balls from um #1 during the j trials
that we selected a white ball from um #2. Thus

B~ (rt) - probability of selecting exactly k red-white combinations in n
trials

=]~j>k(probability of selecting exactly j white balls in n trials
from um #2)

• (probability of selecting exactly k red balls from urn #1 during
the j trials in which white balls were selected from urn #2)

j=k

5.5 Change of Basis Procedures and Principles of Duality 231

0

o Redo
0

0 0

�9 Blue �9

0 0

o Whi te
0

0

Black

Urn #1 Urn #2

Figure 5.22 The super urn contains two ordinary urns. A selection from the super urn consists of select-
ing one ball at random from each regular urn, inspecting their colors, and returning the balls
to their respective urns.

5.5.4.2

Equation (5.18) represents the scaled Bernstein basis B~(rt) Bn(rt) in terms
of the standard Bernstein basis B(~ (t) Bn n (t). Hence by the First Principle of Dual-
ity in Section 5.5,

Z j O j B ; (t) = ZkekB~(rt) r Qj - ~BJk(r)Pk. (5.19)
k=0

This formula leads to the following subdivision algorithm for Bezier curves.

Subdivision Algorithm

Let B(t) be a Bezier curve with control points P0 Pn. To subdivide B(t) at t = r, run
the de Casteljau algorithm at t = r. The points (20 Qn that emerge along the left
lateral edge of the triangle are the Bezier control points of the segment of the curve
from t = 0 to t = r, and the points R o R n that emerge along the right lateral edge of
the triangle are the Bezier control points of the segment of the curve from t = r to
t = 1 (see Figure 5.23).

This construction works because the point Qj that emerges along the left lateral
edge of the triangle at level j is the point at parameter t = r along the Bezier curve
with control points PO Pj. These points are given by Equation (5.19), so they rep-
resent the Bezier curve B(t) between t = 0 to t = r. To find the points that represent
the Bezier curve B(t) from t = r to t = 1, consider the curve B (1 - t) from t = 0 to
t = 1 - r. We know by symmetry (Section 5.2, Property 4) that the curve B(1 - t) can
be represented as a Bezier curve with control points Pn PO" To subdivide this
curve from t = 0 to t = 1 - r, we can use our previous algorithm; that is, simply run
the de Casteljau algorithm at t = 1 - r and read off the results from the left lateral

232 c H A P T E R 5 Bezier Approximation and Pascal's Triangle

Q3 = Ro

Q2 R1

1 - r / ~ x N 1 - 2 / ~ /
Q1 S R 2

Qo = P0 P1 P2 P3 = R3

Figure 5.23 The de Casteljau subdivision algorithm for a cubic Bezier curve with control points
Po,P1,P2,P3. The points Qo,Q1,Q2,Q3 that emerge along the left edge of the triangle are the
Bezier control points of the segment of the original curve from t - 0 to t - r, and the points
Ro,R 1,R2,R 3 that emerge along the right edge of the triangle are the Bezier control points of
the segment of the original curve from t = r to t = 1.

S P1 ~ P 2

Q3 = Ro

Q1 ~ / ' / " ~ ' x ~ R 2

P0 = Qo P3 = R3

Figure 5.24 Geometric interpretation of the de Casteljau subdivision algorithm for a cubic Bezier curve
with control points Po,P1,P2,P3. The points Qo,Q1,Q2,Q3 are the Bezier control points of the
segment of the original curve from t --- 0 to t = r, and the points Ro,R 1,R2,R 3 are the Bezier
control points of the segment of the original curve from t = r to t = 1.

edge of the diagram. But by symmetry, these points are precisely the points on the
right lateral edge of the de Casteljau triangle for the original curve evaluated at t -- r.

To find the control points of the segment of a Bezier curve between t = r and
t = s, subdivide the original Bezier curve at t = s and then subdivide the first segment
of the subdivided curve at t = r / s (see Exercise 9).

5.5 Change of Basis Procedures and Principles of Duality 233

The de Casteljau algorithm is a corner-cutting procedure (see Figure 5.24).
Therefore, subdivision, like degree elevation, is also a corner-cutting procedure. If
we continue recursively subdividing a Bezier curve, the control polygons get closer
and closer to the original curve. Moreover, in the limit, these control polygons con-
verge to a continuous curve. We shall now show that this limit curve is, in fact, the
original Bezier curve. For convenience, we restrict our attention to recursive subdivi-
sion at r = 1/2, though the results are much the same for any value of r between 0
and 1 (see too Exercise 4).

THEOREM
5.11

The control polygons generated by recursive subdivision converge to the
original Bezier curve.

Proof Suppose that the maximum distance between any two adjacent control
points is d. By construction, the points on any level of the de Casteljau algo-
rithm for t = 1 / 2 lie at the midpoints of the edges of the polygons generated
by the previous level. Therefore, it follows easily by induction that adjacent
points on any level of the de Casteljau diagram for t = 1/2 are no further
than d apart (see Figure 5.25).

By the same midpoint argument, as we proceed up the diagram adjacent
points along the left (right) lateral edge of the triangle can be no further than
d /2 apart. Hence as we apply recursive subdivision, the distance between
the control points of any single control polygon must converge to zero.
Since the first and last control points of a Bezier control polygon always lie
on the curve, these control polygons must converge to points along the orig-
inal curve.

<d/2 S <d/2 P1 - - P2

<d/2 / / ~ ~ \ <d/2

Q1
U(t)

R2

~_d/2 / / N~ ~_d/2

Po P3

Figure 5.25 One level of the de Casteljau algorithm for a cubic Bezier curve. If adjacent control points
Po,P1,P2,P3 are no further than d units apart, then adjacent points Q1,S, R2 on the second
level of the de Casteljau algorithm can be no further than d units apart.

234 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

The convergence of recursive subdivision gives us yet another proof that Bezier
curves are variation diminishing.

COROLLARY
5.12

Bezier curves are variation diminishing.

Proof Since recursive subdivision is a corner-cutting procedure, the limit curve
must be variation diminishing with respect to the original control polygon.
But by Theorem 5.11, the Bezier curve is the limit curve generated from the
original control polygon by recursive subdivision, so Bezier curves are vari-
ation diminishing.

The convergence of recursive subdivision is much faster than the convergence of
degree elevation. Degree elevation converges at a rate of O(1/n), where n is degree;
recursive subdivision converges at a rate of O(h2), where h is the length of the
parameter interval. This rapid convergence of recursive subdivision leads to the fol-
lowing important recursive algorithms for rendering and intersecting Bezier curves.

Rendering Algorithm

1. If the Bezier curve can be approximated to within tolerance by the straight
line joining its first and last control points, then draw this straight line.

2. Otherwise subdivide the curve and render the segments recursively.

Intersection Algorithm

1. If the convex hulls of two Bezier curves fail to intersect, then the curves
themselves do not intersect.

2. Otherwise if each Bezier curve can be approximated within tolerance by the
straight line joining its first and last control points, then intersect these
straight lines.

3. Otherwise subdivide the two curves and intersect the segments recursively.

To determine whether a Bezier curve can be approximated to within tolerance
by the straight line joining its first and last control points, it is sufficient, by the con-
vex hull property, to test whether all the interior control points lie within tolerance of
this straight line. By the Pythagorean theorem (see Figure 5.26), the distance
between a point P and a line L determined by a point Q and a unit direction vector v
is given by

dist 2 (P,L) =l P - Q 12 -((P - Q) o v) 2.

It may happen that a control point Pk is close to the line L determined by the first
and last control points PO, Pn even though the projection of P k does not lie inside the
line segment PoPn; that is, P k may be close to the line L even though it is not close to
the line segment PoPn . To be sure that this is not the case, we need only check that

o <_ (e~ -Po) �9 (P~ -Po) -< P~ - e o I 2.

5.5 Change of Basis Procedures and Principles of Duality 235

P

w

Q (P - Q) . v

dist(P,L)

Figure 5.26 A line L determined by a point Q and a unit direction vector v, and a point P not on L. By the
Pythagorean theorem dist2(p,L) = I P - O [2 _((p_ Q). v)2.

Thus it is relatively easy to test whether or not a Bezier curve can be approxi-
mated to within some tolerance by a straight line segment. On the other hand, find-
ing and intersecting the convex hulls of two Bezier curves can be quite difficult and
time consuming. In practice, the convex hulls in the intersection algorithm are
replaced by bounding boxes, which are much easier to compute and intersect than
the actual convex hulls. Since the subdivision algorithm converges rapidly, not much
time is lost by replacing convex hulls with bounding boxes.

Exercises

1. Use the identity 1 - rt = (1 - r)t + (1 - t) together with the explicit formula
for the Bernstein basis functions to give a direct derivation of Equation
(5.18) without appealing to probability theory.

2. Give a probabilistic interpretation for each of the following identities:

n

a. ~ , B ~ (t) - 1.
k=O

b. 8;(t)_> o.

c. B ; (O) - 0 k ~ 0

=1 k - 0 .

d. 8 ; (1) - 0 k ~ n

=1 k = n .

e. B n (1 - t) = B ~ (t) n-k

n _ Bn-1 f. B~ (t) - (1 t)B~ -1 (t) + t k-1 (t).

236 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

go
n
E k B f (t) = nt.

k=O

3. a. Give a probabilistic proof of the identity

k
n n-J(r)B~(t)" B k ((1 - t)r + t) - ~ Bk_ j

j=O

b. Use the result of part (a) to show that the points that emerge along the
fight lateral edge of the de Casteljau triangle are the Bezier control points
of the segment of the curve from t = r to t = 1.

4. Bezier subdivision at t = 1/2 generates the following binary tree, whose
nodes are control polygons. Denote the original control polygon by P, and
let this polygon be the root of the tree. Let P0--the left child of P---denote
the control polygon for the left segment of the Bezier curve (from t = 0 to
t = 1/2), and let P l ~ t h e fight child of P---denote the control polygon for
the fight portion of the curve (from t = 1/2 to t = 1). Continue to build the
binary tree recursively in this fashion. Thus if Pb is a node in the tree, then
Pb represents the control polygon for a portion of the curve, and Pb0~the
left child of Pb~represents the control polygon for the left half of the Bez-
ier segment represented by Pb, while Pbl - - the right child of Pb--represents
the control polygon for the right half of the Bezier segment represented by
Pb (see Figure 5.27).

a. Prove that Pb~...b, is the control polygon for the curve from t = b to
t = b + 2 -n , where b is the binary fraction represented by 0.bl... b n .

b. Prove that the sequence of control polygons Phi ,Pb~b2 Pbl""bn , con-
verges to the point on the Bezier curve at parameter value b =
limn~ooO.bl...b n.

s P]

PO0 PO1 Plo Pll

P000 Pool Po10 Poll PIOO PIO1 Pl]o Plll

Figure 5.27 The binary tree generated by recursive subdivision of a Bezier curve at t = 1/2.

5.5 Change of Basis Procedures and Principles of Duality 237

5. Let P(t) be a degree n Bezier curve with control points P = (P0 Pn)"
Define

L(r) =

(B3(r) O 0 0 0 r) B~(r) "" Bn (r)~

I " " B~_ 1 Bn_I(r)[" Bl (r) Bl (r) 0 and M(r) - (r) ... n-1

" Bni(r) ~B~ (r) B~ (r) ... 0 0 B 3 (r))

Show that the points generated by the de Casteljau subdivision algorithm
for Bezier curves are given by Q - L(r) * pT and R - M(r) * pT where the
superscript T denotes transpose and * denotes matrix multiplication.

6. Implement the recursive subdivision algorithm for rendering a Bezier curve.

7. Implement the recursive subdivision algorithm for intersecting two Bezier
curves.

8. Prove the identity

B~((1- t) r + t s) - ~ (Zp+q=kBp-J(r)BJ(s)~;(t) ,
j=O

and use this identity to derive an explicit formula for the control points that

represent the Bezier curve ~k B~ (t)P k from t = r to t - s.

9. Show that to find the control points of the segment of a Bezier curve
between t = r and t = s, we can subdivide the original Bezier curve at t = s
and then subdivide the first segment of the subdivided curve at t = r / s .

10. Consider the negative binomial distribution {Bk n (t)} defined in Section 5.3,
Exercise 11. Prove the identity

c ~

B~ n (rt) - Y= BJ k (r)B-j -n (t).
j=k

11. Consider the Poisson distribution {b k (t) } defined in Section 5.4.3, Exercise
4. Prove the identity

o o

bk(rt) - ~,BJk (r)bj(t).
j=k

12. The following urn model is due to Polya: consider an urn containing w
white balls and b black balls. One ball at a time is drawn at random from the
urn and its color inspected. It is then returned to the urn and a constant num-
ber c of balls of the same color are added to the urn. Let t = w/(w + b) and
let a = c/(w + b). If we hold a constant and allow t to vary, we obtain a dis-
crete probability distribution

D~ (t) = probability of selecting exactly k white balls in n trials.

238 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

Given a collection of control points P0 Pn, we can define Polya curves by
setting D(t) = Zk D~ (t)P k.

a. Find explicit and recursion formulas for D;(t) , k = 0 n .

b. Show that most of the geometric properties of Bezier curves carry over to
Polya curves. Describe as many geometric properties of Polya curves as
you can.

c. Develop rendering and intersection algorithms for Polya curves.

d. Experiment with the free parameter a. What is the geometric effect of
increasing or decreasing the value of a?

13. Generalize Polya's urn model in Exercise 12 by adding a different number
of balls of the same color after every trial.

a. Find explicit and recursion formulas for these new distributions.

b. Use these new distributions to define generalized Polya curves, and show
that most of the geometric properties of Bezier curves still carry over to
these generalized Polya curves.

c. Develop rendering and intersection algorithms for these generalized
Polya curves.

d. Experiment with the new free parameters in this generalized urn
model. What are the geometric effects of increasing or decreasing
these parameters?

e. Show that the Lagrange basis functions can be generated from the gener-
alized Polya um model by subtracting instead of adding balls of the same
color to the um.

14. Experiment with other um models or with more general stochastic models
to develop new curve schemes. Determine the analytic and geometric prop-
erties of these new schemes.

5.6 Differentiation and Integration

Given any number of control points, we can construct a smooth approximation to the
shape of the control polygon using a single Bezier curve. But if there are a large
number of control points, this Bezier curve will be a polynomial of high degree,
leading to slow and numerically unstable computations. Rather than using a single
polynomial of high degree, it would be better numerically to construct a sequence of
low-degree curves that join together smoothly. Thus we need a way to ensure that
two Bezier curves meet smoothly at their join.

Bezier curves interpolate their first and last control points. Thus it is easy to con-
nect two Bezier curves; all we need to do is to make sure that the first control point
of the second curve is the same as the last control point of the first curve. This device
ensures continuity, but what about smoothness? Smoothness depends on the differ-
ential properties of Bezier curves, so it is to these properties that we now turn our
attention.

5.6.1

5.6 Differentiation and Integration

Discrete Convolution and the Bernstein Basis Functions

239

To simplify our investigation of differentiation, we are going to introduce another
technique for studying Bemstein polynomials and Bezier curves: discrete con-
volution. Let A(t) = {Ai(t)} , i = 0 m, and Let B(t) = {Bj (t) } , j = O,...,n, be
two sequences of functions. Define the discrete convo lu t ion sequence
(A | B) (t) = { (A | B)k (t) }, k = 0 m + n, by setting

(A | B) k (t) -]~ i+j=kAi (t)B j (t) , k - 0 m + n. (5.20)

The following two properties of discrete convolution follow easily from (5.20):

i. A (t) | B(t) = B(t) | A (t) (Commutativity)

ii. A(t) | (B(t) | C(t)) = (A(t) | B(t)) | C(t) (Associativity)

What does discrete convolution have to do with Bemstein polynomials and Bez-
ier curves? Consider the following example:

{ (1 - t) , t} | { (1 - t) , t} - { (1 - t)2,2t(1 - t) , t 2 }.

Thus if we convolve the degree 1 Bemstein basis functions with themselves, we get
the degree 2 Bemstein basis functions. Moreover, it is easy to verify that

{ (1 - t) , t} | { (1 - t)2,2t(1 - t) , t 2 } = { (1 - t)3,3t(1 - t)2,3t 2 (1 - t),t3};

so convolving the degree 1 Bernstein basis functions with the degree 2 Bernstein
basis functions yields the degree 3 Bemstein basis functions. More generally, let
B n (t) - (B~(t) Bn (t)) denote the sequence of degree n Bemstein basis functions.
Then we have the following results.

PROPOSITION
5.13

B n+l (t) = B 1 (t) | B n (t).

Proof Let C(t) = B 1 (t) | B n (t). Then by construction

ck (t) = (1 - t)8~ (t) + t s~ '_ l (t) .

But by Equation (5.4)

Bk n+l (t) - (1 - t) B ; (t) + tBff l(t) ,

Hence C k (t) - on+l o k (t) .

COROLLARY
5.14

(B~ (t) Bn(t))= { (1 - t),t} | . . . | { (1 - t) , t}
Y

n factors

Proof This result follows by induction from Proposition 5.13 and the associativity
of discrete convolution.

240 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

Corollary 5.14 asserts that the Bemstein basis functions of degree n can be con-
structed by convolving the sequence {(1- t),t} with itself n times. As the proof of
Proposition 5.13 shows, this result is just a restatement of the two-term recursion
formula (5.4) for the Bernstein basis functions, which is itself just a reformulation of
the down recurrence for the Bernstein basis functions (Figure 5.7).

Before we can show how to apply convolution to differentiate Bezier curves, we
first need to generalize the down recurrence for the Bemstein basis functions to dis-
crete convolutions of arbitrary pairs. Consider the sequences

cn+l(t) - { L o (t) , R o (t) } | 1 7 4 {Ln(t),Rn(t) l
Y

n+l factors

Then by the definition of discrete convolution

c~+l(t) - Ln(t)C~: (t) + Rn(t)Ckn-l (t),

which is a two-term recurrence for the functions

pn+l on+l(t) - (C~+I(t) '~+1 (t)).

Iterating this recurrence for the sequences C n (t),C n-1 (t) C 1 (t) generates a
down recurrence for the functions cn+l(t). We illustrate this recurrence for n = 2 in
Figure 5.28.

Since discrete convolution is commutative, the order of the pairs {Lk(t),Rk(t)}
in the convolution, and hence too in Figure 5.28, does not matter. Thus {Lo(t),Ro(t) }
could appear on the third level and {L2(t),R2(t)} on the first level of the diagram,
and the functions

1

LI(O/

Figure 5.28 A down recurrence for discrete convolution functions of degree 3.

5.6 Differentiation and Integration 241

c ~ ~,~ - ~C~o ~,~, c? ~,~, c~ ~,~, c~ ~o~

emerging at the base would not change.
~n+l As in any down recurrence, the function Wk (t) is simply the sum of all paths

from the apex to the kth position at the base of the diagram. Thus to evaluate an
expression of the form

c'n+l (t)p k C(t) -~ , k , - . k

we simply place the values {Pk } at the base and reverse all the arrows in the diagram.
This generates the evaluation algorithm in Figure 5.29. Notice that here we have not
assumed that the functions L k (t) and R k (t) necessarily sum to one for all values of k.

c(o

/

L 2 (t) /

Po P1

/
L 2 (t) / (t)

P2 P3
Figure 5.29 Evaluation algorithm for cubic polynomials represented with a convolution basis.

Exercises

(t - a) k (b - t) n-k
1. Let B~(t) - (~) , k - 0,...,n,

(b - a) n

denote the Bernstein basis functions over the interval [a,b]. Show that

(B~ (t) Bn n (t)) - b - a ' b - a b - a ' b - a

n factors

2. Let B P (t) - (B~(t) , . . . ,BP(t)) .Prove that

a. B m+n (t) - B m (t) | B n (t)

om+n (t) - E B m (t)B~ (t) b. o k i+j=k

242 C H A P T E R 5 Bezier Approximat ion and Pascal 's Triangle

3. Let B -n (t) = (no n (t) ,B1 n (t)) (see Section 5.3, Exercise 11.) Prove that

a. B -n (t) = B -1 (t) | | B -1 (t)
x.-

n factors

b. B n (t) | B -n (t) = {1, O, 0 }

c. B +m (t) | B +n (t) - B +m+n (t)

4. Let M n (t) - (M~ (t) M n (t)),

where M~ (t) - (~)t k, k - 0, . . . , n . Prove that

a. M n(t) - {1,t} | | {1,t} - M 1 (t) | | M 1 (t)
�9 �9 ~, F

n factors n factors

b. M m+n (t) - M m (t) | M n (t)

c. (m ~ n) _ Z i+j=k(m) (j)

5. Let M - n (t) - (M f f n (t) , M l n (t) ) , where M k n (t) - (~) t k k = 0,1,. , . .

Prove that

a. M -n (t) - M -1 (t) | | M -1 (t)

n factors

b. M n (t) | M -n(t) = {1,O }

M+m M+n M+m+n c. - (t) | - (t)= - (t)

r+m+n (+m)(+n
d. ~. k) = ~ i + j = k , i j)

6. Let cn+l(t) - { L o (t) , R o (t) } | 1 7 4 Show that

cn+l(t) =]~Lio (t).. (t)Rjo (t) . . . (t) k "Zin_ k e j k_ 1 '

where the sum is taken over all sets I = {i0 in_k} and J - {J0 Jk-1}
such that I u J = {0 n} and I ~ J = q~.

7. Define the generating function of a sequence A(t) = {A k (t)} by setting

n

GA(X)=]~Ak(t)x k .
k=O

a. Prove that GA| - G A (X)GB(X).

b. Using part (a), prove the following results:

i. B+n(t) = (B~n(t) ,B~n(t) ) = , GB+n(X) - ((l - t) + tx) +n.

5.6 Differentiation and Integration 243

ii. M+n(,) - (M~n(t) ,Mfn(,) ) ~ GM+_,(x) - (1 +tx) +n.

iii. cn+] (t) - {Lo(t) ,Ro(t)}|174

acn+l (X) - (go (t)+ R o (t) x) ' " (t r l (t) + erl(g)X) .

8. Let bk(t), k = 0,1... denote the Poisson basis functions defined in Section
5.4.3, Exercise 4, and let b(t) = (bo(t),b l(t)). Show that

a. b(t) | b(t) = b(2t)

b. Gb(X) - e -t(1-x).

9. Show that discrete convolution distributes through addition. That is, show
that

A(t) | (B(t) + C(t)) = A(t) | B(t) + A(t) | C(t)

5.6.2 Differentiating Bernstein Polynomials and Bezier Curves

By Corollary 5.14 the Bernstein basis functions of degree n + 1 can be constructed
by convolving the sequence {(1-t),t} with itself n times. Thus to differentiate the
Bemstein basis functions, all we need to know is how to differentiate discrete convo-
lutions. But it follows easily from (5.20) that

(A(t) | B(t))" = A'(t) | B(t) + A(t) | B'(t)

where Z ' (t) - (A~(t) A~n(t)). Thus the rule for differentiating a discrete convolu-
tion is identical to the rule for differentiating an ordinary product. More generally, it
follows by induction on n that

n

(Ai(t) | | An(t)),= ~ A l (t) | | Ak ' (t) | | An(t). (5.21)
k=l

Now we can use Corollary 5.14 together with our differentiation formula (5.21)
to differentiate all the Bemstein basis functions simultaneously.

COROLLARY
5.15

dt
dBn I - n { - 1 , 1 } | {(1 - t) , t} | | { (1 - t) , t} .

dt ' n-1 factors J

Proof This result is an immediate consequence of Corollary 5.14, Equation (5.21),
and the commutativity of discrete convolution.

By repeated differentiation we can generalize Corollary 5.15 to an arbitrary
number of derivatives. Let

A r - A | 1 7 4
�9 J o

~ f

r factors

244 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

Then we have the following generalization of Corollary 5.15.

COROLLARY
5.16 I drB~ drBn l = n!

dt r dt r (n - r)!
~ { - 1 , 1 } r | { (1 - t,t} n-r.

Proof This result follows from Corollary 5.15 by induction on r.

We can interpret Corollaries 5.15 and 5.16 in several ways. First since

- (t) , 8 �9 ", n-1 ,

Corollary 5.15 gives us the explicit formula

dB~ (t) [Bn_ 1 n-1)
dt = n~ k-1 (t) - B k (t) k - 0 n.

More generally, since

- t) , t) n-r - (B~ -r (t) Bnn~_ r (t)] (o
\ /

(-1 ,1) r - - ((- 1) r (- 1) r - j (J) 1)

(see Exercise 7), it follows from Corollary 5.15 that

(5.22)

dr B~ (t) n! r r n-r
= Z (- 1) r - j (j) B k _ j (t) .

dt r (n - r) ! j = 0

We can also apply Corollaries 5.15 and 5.16 to generate recurrences to evaluate
the derivatives of a Bezier curve. Exploiting the interpretation of discrete convolu-
tion given in Figure 5.28, we observe that by Corollary 5.15 the derivatives of the
Bernstein basis functions can be computed from the down recurrence for the Bern-
stein basis if we replace { (1 - t),t} on one level of the algorithm by {-1,1} and multi-
ply the result by n. So the same argument we used to generate Figure 5.29--
reversing the arrows in this down recurrence--gives us an evaluation algorithm for
the derivative of a Bezier curve (see Figure 5.30).

There are several things to notice about Figure 5.30. First, by running only the
lowest level of the algorithm, we see that, up to a constant multiple, we can think of
the derivative of a cubic Bezier curve with control points {Pk} as a quadratic Bezier
polynomial with coefficients {Pk+l - Pk }. In general, by the same argument

n n-1
B(t) = ~ B ~ (t) P k :=~ B ' (t)= n ~ B~c-l(t)(Pk+l-Pk)"

k=O k=O
(5.23)

5.6 Differentiation and Integration 2 4 5

F(0

/

/ /

P0 P1 P2 P3

Figure 5.30 The first derivative of a cubic Bezier curve with control points Po,P1,P2,P3. To get the correct
derivative, we must multiply the output P'(t) of this algorithm by n = 3.

Thus, up to a constant multiple, the derivative of a Bezier curve with control points
{Pk } is a Bezier polynomial of one lower degree with coefficients {Pk+l - Pk }.

Because convolution is commutative, we can place {-1,1} on any level of the
algorithm. If we place {-1,1} at the top level and let B[P o Pn](t) denote the Bezier
curve with control points Po Pn, then we find that

B'[Po ,Pn](t) - n(B[P1,. . . ,P n](t) - B[Po,.. . ,Pn_ 1](t)) ;

that is, we can compute the derivative of a Bezier curve by subtracting Bezier curves
of one lower degree.

We can generate Figure 5.30 from Figure 5.3 (with a = 0 and b = 1) by differen-
tiating one level of the algorithm. To find the rth derivative of a Bezier curve, we see
from Corollary 5.16 that we can simply replace {(1-t) , t} by {-1,1} on r levels of
the de Casteljau algorithm; in other words, we simply differentiate r levels of the de
Casteljau algorithm. Moreover, because convolution is commutative, it does not
matter which r levels we differentiate; any r levels will do the job. If we differentiate
the r lowest levels, then, up to a constant multiple, we can express the rth derivative
of a degree n Bezier curve with control points PO Pn as a Bezier polynomial of
degree n - r. Since

{_1,1} r - { (-1) r - j (j) },

the Bezier coefficients are given by

r

Vk - ~, (-1) r - j (j)Pj+k"
j=O

246 CHAPTER 5 Bezier Approximation and Pascal's Triangle

That is,

n
B(t) = ~,B~(t)P k ~ B(r) (t) -

k=O

z B# -r (0 -1) r-j �9

(n - r)! k=O
(5.24)

We began our discussion of differentiation by saying that we wanted to be able
to join two Bezier curves together smoothly. To do so, we need to calculate deriva-
tives at their end points. From Equation (5.24), we have

r
B (r) (0) = v 0 = 2 (-1) r - j (j)/~

j=O

(5.25)

r
B(r) (1) - Vn_ r - 2 (-1) r -J (j)p j+n_ r.

j=O
(5.26)

It follows that the rth derivative of a Bezier curve at t = 0 depends only on the first
r + 1 control points Po Pr and the rth derivative at t = 1 depends only on the last
r + 1 control points Pn-r Pn"

Suppose then that we are given a Bezier curve B(t) = ~,k B~ (t)P k and we want to
construct another Bezier curve C(t)= Y~kB~(t)Qk that meets B(t) and matches its
first r derivatives at its end point. Then from Equations (5.25) and (5.26) we get

r = 0 : QO=Pn

r = 1: Q 1 - O o = en - en-1 ==~ Ol = en + (en - en -1)

r = 2: Q2 - 2Q1 + Qo = Pn - 2Pn-1 + Pn-2 ==~ 02 = Pn-2 + 4(Pn - Pn-1)

and so on. Each additional derivative allows us to solve for one additional control
point. We could go on in this manner solving for one point at a time, but there is a
better way that avoids all this tedious computation.

Since B(t) is a polynomial curve, we can extend B(t) past the interval [0,1].
Now certainly at t = 1 the derivatives of the segment of the curve B(t) for t e [1,2]
must exactly match the derivatives of the curve B(t) for t e [0,1] because these two
curves are the same polynomial. But we can use subdivision to find the Bezier con-
trol points of B(t) for the interval [1,2]; in fact, by the subdivision algorithm all we
need to do is run the de Casteljau algorithm at t = 2 and read the control points off
the fight lateral edge of the triangle (see Figure 5.31).

Explicitly these control points are given by

k
Qk -]~By(2)Pn-k+j, k = 0 n.

j=o
(5.27)

By Equation (5.25) the rth derivative of a Bezier curve at t = 0 is uniquely deter-
mined by its first r + 1 control points. Thus the first r derivatives of a Bezier curve
C(t) at t = 0 can match the first r derivatives of the Bezier curve B(t) at t = 1 if and
only if the first r + 1 control points of C(t) are given by Equation (5.27).

5.6 Differentiation and Integration 247

Q3

/
* Q2 // 'L

* * Q1

eo P1 P2 P3 = Qo

Figure 5.31 Algorithm for finding the first r + 1 control points Qk, k = 0 r, for a cubic Bezier curve
whose first r derivatives at t = 0 match the first r derivatives at t = 1 of the cubic Bezier curve
with control points Pj, j = 0 3. Notice that because of the labels-1 appearing along the
edges, the points Qk do not lie in the convex hull of the points Pj.

Exercises

1. By differentiating the explicit formula B~(t) = (n)tkk (1- t) n-k, show directly
that

dB~(t)

dt
_ n - l (t)) .

r n b. d B k (t) n! r r = ~ Z (-1) r - j (j)Bff-ff (t)-
dt r (n - r)! j=o

c. Using parts (a) and (b), derive Formulas (5.23) and (5.24).

2. Let B(t) be a Bezier curve with control points {P0 Pn}, and let P(t) be the
control polygon of B(t)~that is, P(t) is the piecewise linear function with
P(k / n) - Pk" Show that

., r 1 - - ~ . . . ~ a. B(r)(o) - (n - r)! n

B(r)(1) _ n! An_r p (n - r n)
b. (n - r) ! n

7 0 B ~ - r (t)Ar P , c. B(r)(t) - (n - r)! = n

248 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

3. Let B-n(t) = (B-on(t), Bln(t)) (see Section 5.3, Exercise 11). Prove that

dBk n (t) = n(Bk(n+l) (t) - Bk(7+l)(t)).
dt

4. Let M n (t) - (M~ (t) M n (t)), where M ; (t) = (~)t k, k = 0 n. Show that

a. (dM~

dt
dMnn) }n-1

-n{0 ,1} | {1,t .
dt

d M n I - n! b. drM~ r n

dt r dt r (n - r)!
{0,1 }r | { 1,t}n-r.

c. Develop de Casteljau-like algorithms to compute

(M~(t) Mnn (t)) (r) and (~,kM~(t)Pk) (r).

(Hint: See Section 5.6.1, Exercise 4.)

5. Let

cn+l(t) = (Co(t) Cn+l(t)) - {Lo(t),Ro(t) } | . . . | {Ln(t),Rn(t) },

where Lk(t) and Rk(t) are linear functions in t for k = 0 n. Develop de
Casteljau-like algorithms to compute (Co(t) Cn+ l (t))(r) and (ZkCk(t)Pk) (r).

(t - a) k (b - t) n-k
B~ (t) - (~ k) , k = 0 n,

(b - a) n

6. Let

be the Bernstein basis functions over the interval [a,b], and let

a. Prove the identity n,{1 1}r{ ,,a)nr
B(r)(t) = , | , �9

(n - r) ! b - a b - a b - a b - a
b. Find a de Casteljau-like algorithm for computing the derivatives of a

Bezier curve defined over the interval [a,b] instead of over the interval
[0,11.

7. Prove by induction on r that (-1,1) r = "((-1) r (- 1) r - J (j) 1)."

8. Let

A(t) - (A 1 (t) Ap(t))

A ' (t) - (Af (t) Ap(t))

5.6 Differentiation and Integration 249

Show that

A n(t) - A (t) | | A (t ! .

n factors

A n (t))" - n A n-1 (t) | A'(t).

9. Use Taylor's Theorem and Equation (5.25) to derive a change of basis for-
mula from Bezier to Taylor form. Compare your result to Equation (5.8).

10. Let P(t) be a Bezier curve with control points Po Pn.

a. Find a necessary and sufficient condition on the control points Po ,Pn
so that P(t) degenerates to a polynomial curve of degree n - 1.

b. Develop an algorithm to determine whether or not P(t) represents a poly-
nomial curve of degree n - 1.

(Hint: A Bezier curve P(t) represents a polynomial curve of degree n - 1, if
and only if the nth derivative of P(t) is zero.)

c. If P(t) degenerates to a polynomial curve of degree n - 1, develop an
algorithm to find the control points Qo Qn-1 that represent P(t) as a
Bezier curve of degree n - 1 from the control points Po Pn that repre-
sent P(t) as a Bezier curve of degree n.

11. Given point and derivative data (Po,vo) (Pn,vn), explain how to place
Bezier control points to generate a piecewise cubic Hermite interpolant for
this data.

12. The formulas for the unit tangent U(t), the curvature K(t), and the torsion
T(t) of a parametric curve P(t) are given by

�9 u (t) =
P'(t)

I P'(t) I

�9 K (t) =

�9 T (t) =

IP ' (t) xP"(t) l
I P'(t)13

P ' (t) . (P " (t) x P " (t))

[P ' (t)xP"(t) [2

a. Compute the unit tangent, curvature, and torsion of a Bezier curve at
t= 0,1.

b. Find conditions on the control points of a Bezier curve C(t) so that it
matches a given Bezier curve B(t) with continuous unit tangent, curva-
ture, and torsion.

13. Let P(t) be a Bezier curve of degree d.

a. Show that the Bezier control points of P'(t) generated by first degree ele-
vating and then differentiating P(t) are identical to the Bezier control
points of P'(t) generated by first differentiating P(t) and then degree ele-
vating P'(t).

2 5 0 C !-I A P T E R 5 Bezier Approx imat ion and Pascal ' s Triangle

5.6.3

b. Let P~ pn denote the degree n Bezier control points of P(t)--that is,
the control points of P(t) generated by degree elevating the curve n - d
times. Using part (a) and Theorem 5.8 on the convergence of degree ele-
vation, show that the slopes of the degree-elevated control polygons con-
verge to the tangents of the original Bezier curve. That is, prove that

if k / n ~ t, then limn+oo
n n

Pk+l - P k

1 / n
= n ' (t)

Wang's Formula

Recursive subdivision is a powerful tool for rendering and intersecting Bezier
curves. Since subdivision at t = 0.5 involves only averaging, subdivision itself is very
fast. Thus in the rendering and intersection algorithms presented in Section 5.5.4.2
most of the time is spent in testing whether or not each curve segment can be
approximated to within some tolerance by a straight line. The purpose of Wang's for-
mula is to avoid all these tests by computing in advance how many levels of subdivi-
sion are required to assure that every segment will be approximated to within some
prespecified tolerance by the straight line joining its end points. Wang's formula is
based on bounds on the second derivative of a Bezier curve. To derive Wang's for-
mula, we begin with a technical result from numerical analysis.

PROPOSITION
5.17

Let P(t) be any twice-differentiable parametric curve on the interval [a,b],
and let L(t) = ((b - t) / (b - a))P(a) + ((t - a) / (b - a))P(b) be a parametriza-
tion of the straight line through the points P(a) and P(b). Then

max I P (t) - L(t) I<
(b - a) 2

max I P"(t) I.

Proof To simplify our notation, we introduce the vector-valued function
E(t) - P (t) - L(t) . By construction,

E(a) = E(b) = 0 ~ E(a) o E(a) - E (b) ~ E(b) - O.

Thus by Rolle's Theorem applied to the real-valued function E(t)o E(t),
there is a parameter v e [a,b] where E (T) � 9 E(T) is maximal; hence
(E(~:) �9 (E(7:))' - 0. Therefore, E (v) o E ' (v) = O.

Now by the integral version of Taylor's Theorem with remainder

E(t) - E('c) + E ' (' c) (t - v) + St (t - x) E " (x) d x .

Dotting both sides with E(T) and recalling that E(I:)~ E ' (v) = O, we get

E (v) . E(t) - E (v) . E (z) + E (z) o ~; (t - x) E " (x) d x .

5.6 Differentiation and Integration 251

Without loss of generality, we can assume that a < ~: < (a + b) / 2 (the proof
is symmetric if (a + b)/2 < "c < b). Now substituting t = a, recalling that
E(a) = 0, and noting that E"(x) = P ' (x) because L(x) is linear, we obtain

- E (r) . E(r) - E (r) . ~r(a- x)e"(x)dx .

Hence, since l a �9 b I<1 a II b I,

[E (T) [2 _< IE(r)I IIg(a-x)P"(x)d*l.
Thus either E(r) = 0 and there is nothing to prove, or since r _< (a + b) / 2 ,

I E(~')I < I ~ (a - x) P " (x) d x [

< ~ i (a - x)lP"(x)idx

-< maxlP"(x)l ~ (a - x)dx

_< maxle,,(x)l (r - a) 2
2

_< max[P"(x)[(b - a) 2 .
8

To apply Proposition 5.17 to Bezier curves, we need to bound the second deriva-
tive of a Bezier curve.

LEMMA
5.18

Let B(t) be a Bezier curve with control points P0 Pn. Then

Max I B"(t) I < n(n- 1)Maxo<_k<_~-2 l ek+2 - 2Pk+~ + e~].

P r o o f By Equation (5.24) and the triangular inequality,

n-2 [
I B"(t) I < n(n - 1)]~ B/~ -2 (t)lPk+ 2 - 2Pk+ 1 + Pk}

k=0

n-2 n-2
<_ n(n- 1) E B~ (t)lek+2 - 2 P k + l + Pkl

k=0
n-2

< n (n - 1)Max]rk+ 2 - 2ek+ 1 + rkl Z B~ -2 (t)
k=0

< n (n - 1)MaxlPk+ 2 - 2Pk+ 1 + Pkl �9

252 CHAPTER 5 Bezier Approximation and Pascal's Triangle

THEOREM
5.19

Let B(t) be a Bezier curve with control points P0 ,Pn" Given any e > 0 define

m - MaxO<k<n_ 2 Pk+2 - 2 P k + l + Pkl

1> Log4|n(n-1)m]./'~ (Wang's formula)
t,) 8e

Let C(t) be any segment of B(t) after at least l levels of subdivision at
t - 1/2, and let L(t) be the straight line joining the end points of C(t). Then

Dist(C(t)J~(t)) < e. Thus after I levels of subdivision, the straight lines join-
ing the subdivision points approximate the Bezier curve B(t) to within a tol-
erance of e.

Proof Consider the curve segment C(t) between any two subdivision parameters t 1
and t 2 after I levels of subdivision. By Proposition 5.17 and Lemma 5.18,

Dist(C(t),L(t)) < Max C"(t) (t2 - tl)2
8

< n(n_l)m((0"5)l) 2
8

4-1
< n(n- 1) m ~

8
___E .

We can apply Theorem 5.19 to speed up substantially the algorithms for render-
ing and intersecting Bezier curves based on recursive subdivision. The theorem
asserts that if we subdivide down to a prespecified level 1, then we are guaranteed
that the curve segments we generate will be approximated to within • by the
straight line segments joining their end points. Thus by subdividing to 1 levels, we
can avoid all testing. Although the value of 1 given in Theorem 5.19 is necessarily
conservative~some curve segments may require fewer levels of subdivision than
others~nevertheless, avoiding all testing substantially speeds up standard algo-
rithms based on recursive subdivision.

Exercises

1. Implement the recursive subdivision algorithm for rendering a Bezier curve
given in Section 5.5.4.2 with and without Wang's formula. How much does
Wang's formula speed up this algorithm?

2. Implement the recursive subdivision algorithm for intersecting two Bezier
curves given in Section 5.5.4.2 with and without Wang's formula. How
much does Wang's formula speed up this algorithm?

5.6 Differentiation and Integration 253

5.6.4 Integrating Bernstein Polynomials and Bezier Curves

Many important geometric properties of curves such as arc length and total curvature
are integral properties. Here we shall use the differentiation formulas derived in Sec-
tion 5.6.2 to develop integration formulas for Bernstein polynomials and Bezier
curves.

We begin by computing the antiderivative of a Bernstein basis function. From
Equation (5.22),

dBn+l k+l(t) (n + l){Bff (t) n = - Bk+ 1 (t)}
dt

clS k ~ +1 (t) +2 = (n+l) n n {Bk+l (t) - Bk+ 2 (t)}
dt

dsg+ l (t)

dt

dBn+l(t) n+l
dt

_ B n n - (n + 1){ n-1 (t) - B n (t) }

(n + l) { B n (t) n = - B n + l (t) } .

The terms on the right-hand side form a telescoping series. Summing and observing
n that Bn+ 1 (t) is identically zero, we obtain

(n "+- 1)B/~ (t) _ n_~..+l~ dB n___J +1 (t)

dt j=k+l

Integrating both sides, dividing by n + 1, and dropping the constant of integration
yields

~B~:(t)dtn _ 1 n+lRn+l(t).~_,oj
n + 1 j=k+l

dB~ +1
A similar argument starting the summation from shows that

dt

S B~ (t)dt - -1 ~ nn+l (t)
n + l j = o j �9

Definite integrals are also easy to compute. Integrating Equation (5.22) yields

.4on+l (t) }d
(n-l-1)~{Bff(t)-Bff+l(t)}dt- Is U~ t

dt

on+l(1)_ on+l
= "k+l "k+l (0)
- - 0 .

254 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

Therefore,

~ n(t)d t ~ n B k = Bk+ l(t)dt k - 0 n - 1.

Thus these definite integrals of the Bernstein basis functions are all the same; we can
compute them all by computing any one. Since B n (t) - t n, we have

Hence

~ B n (t)dt - ~ tndt -
n + l

~; B; (t)dt = ~1 k - 0,..., n. (5.28)
n + l

Equation (5.28) has some interesting consequences. For example, we can use
this formula to prove that the arc length of a Bezier curve is bounded above by the
perimeter of its control polygon. For a smooth curve B(t) defined on the interval

[a,b],

arc length {B(t) = ~abl B'(t) ldt.

Therefore, for Bezier curves we have the following result.

THEOREM
5.20

Let B(t) be a Bezier curve on [0,1] with control points P0 In" Then

n-1
~1B'(t) l dt <_ El Pk+l - Pk I.

k=0

Proof By Equation (5.23) if B(t) = ~,k B~ (t)Pk, then

n-1
B'(t) - n E B~ -l (t)(Pk+l - Pk)"

k=O

Therefore, by the triangular inequality and Equation (5.28),

n-k~l 0 n-1 [~11B'(t) l dt < I~ n B k (t)(Pk+ 1 - Pk) dt

n-1
<_ Sin ~ Bff-l(t)lPk+l- Pkldt

k=O
n-1

-- n ~]Pk+l - Pk]I 1 B~ -1 (t)dt
k=O

n-1

k=0

5.7 Rational Bezier Curves 255

COROLLARY
5.21

Let B(t) be a Bezier curve on [0,1] with control points P0 Pn. Then
length of chord POPn < arc length B(t) < perimeter of the control polygon.

Proof Since a Bezier curve interpolates its first and last control points, the lower
bound follows because a straight line is the shortest distance between two
points. The upper bound is just a restatement of Theorem 5.20.

5.7

Exercises

1. Let B(t) be a Bezier curve on [0,1] with control points P0 Pn. Prove that

~lB(t)dt = center of mass of {P0 Pn}.

2. Prove that ~ B~ (t)dt = -1 kBn+l(t) .
n + l j~o J

3. Prove that

1 n+l
a. ~0 B~ (z')dr - x;' Bn. +1 (t)

n+ l j-_~+l J

rlBn 1 ~oBJ +l(t)
b. .It k ('C)d'c - n + l j

4. Let P(t) be a Bezier curve with control points P0 Pn. Show that

n-2
fl[p"(t)ldt < n]~1Pk.2 - 2Pk-1 + Pk I.

k=0

Rat iona l Bezier Curves

Although the Weierstrass Approximation Theorem (Section 5.5.2) guarantees that
every continuous curve on a closed interval can be approximated to within any
desired tolerance by a polynomial curve, these approximating polynomials may have
arbitrarily high degree. Moreover, there are some simple curves like circles that we
would rather not approximate, but which cannot be represented exactly by polyno-
mial parametrizations. As we have already seen in Chapters 2 and 3 in the context of
Lagrange and Hermite interpolation, by resorting to rational functions we can
greatly expand the range of curves with exact representations. Here we shall intro-
duce rational Bezier curves in much the same way that we constructed rational
Lagrange curves in Chapter 2, as projections of polynomial curves from a higher-
dimensional Grassmann space.

Indeed, by definition, a rational Bezier curve in affine space is the projection of
a polynomial Bezier curve

256 CHAPTER 5 Bezier Approximation and Pascal's Triangle

n

P(t) n = Z B k (t)(WkPk,Wk)
k=0

0 < t < l

in Grassmann space. The polynomial curve P(t) projects to the rational curve

/2

~,B; (t)WkPk
R(t) - k=0 0 < t < 1. (5.29)

n

EWkB~(t)
k=0

Thus to represent a rational curve R(t) in Bezier form, we associate with each control
point Pk a scalar mass or weight w k. Notice that we have also associated to each
point R(t) on a rational Bezier curve the scalar weight w(t) defined by

/1

w(t) = E WkB~ (t).
k=0

Thus a rational Bezier curve is more than just a continuous collection of points in
affine space; there is also a scalar field, a mass distribution, associated with each
rational Bezier curve.

If all the weights are equal and nonzero, then the rational Bezier curve R(t)
reduces to an ordinary Bezier curve. To distinguish these polynomial Bezier curves
from rational Bezier curves, we call such polynomial curves integral Bezier curves.

Most of the standard properties of integral Bezier curves carry over readily to
rational Bezier curves, although sometimes there are some minor restrictions on the
weights. For example, it follows easily from Equation (5.29) that if w 0 ~: 0, then
R(0) - P0; similarly, if w n ~ O, then R(1) - Pn. Thus rational Bezier curves interpo-
late their first and last control points just like ordinary Bezier curves.

If the weights are all nonzero, then it is natural to write

WkB ~ (t) , k = O, ,n (t) = . . .

~,wjB~(t)
j=O

/7

R(t) - ~, R f (t)P k .
k=0 (5.30)

Thus for a fixed set of nonzero weights, the functions Rf (t), k - 0 n, are rational
blending functions, and these functions behave much like the standard Bernstein
blending functions. Indeed, since the denominator is the same for all values of k, it is
easy to show that the rational functions {Rf (t)} incorporate many of the features of
the Bernstein polynomials {Bf (t)}. For this reason rational Bezier curves with non-
zero weights share many of the geometric properties of integral Bezier curves (see
Exercises 1-5).

If a weight wj - O, then the mass-point (wjPj,wj) is not just discarded but rather
is replaced by a vector (v j , 0). Thus, in general,

5.7 Rational Bezier Curves 2 5 7

P(t) - ~, Bf (t)(wkP k, w k) + ~, B~ (t)(vj, 0),
Wk r/:O wj=O

so first adding in Grassmann space and then projecting into affine space, we arrive at
the rational Bezier curve

E + Esf(t) j
Wkr wj=O

R (t) =
E wk f(t)

wk r

Examples abound in which it is necessary to set some weights to zero in order to rep-
resent a rational curve segment exactly in rational Bezier form (see Figure 5.33 dis-
cussed later in this section and also Exercises 8-10).

To see how the rational Bezier representation works in practice, let's consider
the circle as a rational Bezier curve. Recall that the circle x 2 + y2 = 1 has the rational
quadratic parametrization

2t 1 - t 2

x(t) - 1+ t 2 y(t) = 1+ t 2 "

This parametrization lifts into Grassmann space to the polynomial curve

P(t) - (2t, l - t2,1+ t2).

To find a rational quadratic Bezier representation for the circle, we need to find its
control points Po,P1,P2 and scalar weights Wo,Wl,W 2.

We begin by representing the mass distribution 1 + t2--the denominator of the
rational curve-- in terms of the Bernstein basis functions. Since the Bernstein poly-
nomials form a polynomial basis, certainly there are constants w 0, w 1, w 2 such that

1 + t 2 - Wo B2 (t)+ WlB ? (t)+ W2 B2 (t).

Moreover, it is easy to show either directly or from Equation (5.9) (with k = 0,2 and
n = 2) that

1 + t 2 - B~ (t) + B 2 (t) + 2B 2 (t).

Thus, we can just read off the weights from the coefficients of the Bernstein basis
functions:

w 0 = 1 w 1 = 1 w 2 = 2.

To find the control points is also quite easy. Once more, since the Bemstein
polynomials form a polynomial basis, we can certainly write

(2 t , 1 - t 2) - woPo B2 (t) + WlP1B ? (t) + w2P2 B2 (t) .

258 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

But again either directly or using Equation (5.9), we can represent the numerators of
x(t) and y(t) in terms of the Bemstein basis functions:

2t = B 2 (t) + 2B 2 (t)

1 - t 2 = B0 2 (t) + B12 (t) . [0,1]

From these identities we can read off the xy-coordinates of WkP k"

woP 0 = (0,1) w1P 1 = (1,1) w2P 2 = (2,0).

Since we already know the weights, we can now solve for the control points:

Po = (0,1) P1 = (1,1) P2 = (1,0).

This representation of the unit circle in terms of control points and weights is
not unique. Clearly we can multiply all the weights by the same nonzero scalar with-
out affecting the curve. Moreover, we could reparametrize the curve by a rational
linear change of parameter t = (au + b)/(cu + d), and this change of variables would
affect both the control points and the weights but not the underlying curve. If we
adopt our usual convention of restricting the parameter t to the interval [0,1], then
the rational Bezier curve we have just constructed represents the portion of the circle
in the first quadrant (see Figure 5.32).

Other segments of the circle would require a different set of control points and a
different set of scalar weights. For example, if we want to represent the semicircle in
rational Bezier form over the interval [0,1], we must map [0,1] ~ [-1,1] by sending
t ~ 2 t - 1. This linear change of parameter generates the reparametrized circle

2 (2 t - 1) 4t(1 - t)
x(t) = y(t) = ,

4t 2 - 4 t + 2 4t 2 - 4 t + 2

which lifts in Grassmann space to the polynomial curve

e(t) = (2 (2 t - 1), 4t(1 - t), 4t 2 - 4t + 21.
\ /

(o,1,1) " (1,1,1)

(2,0,2)

Figure 5.32 A quarter circle as a rational Bezier curve. The control points are represented with three coor-
dinates denoting (WkP k, Wk).

5.7 Rational Bezier Curves 259j

Solving as before for the scalar weights, we now find that

4t 2 - 4t + 2 - 2B~ (t) + 2B 2 (t),

SO

w 0 = 2, w 1 = 0, w 2 = 2.

Moreover, it is easy to verify that

2(2t - 1) = - 2 B 2 (t) + 2B 2 (t)

4t(1 - t) = 2B 2 (t) .

Therefore,

woP o = (-2, O, 2) v 1 = (0,2, 0) w2P 2 = (2,0,2).

We illustrate this rational Bezier representation for the semicircle in Figure 5.33.
The weights of a rational Bezier curve can be used to control its shape. As the

weight w k increases, the influence ofthe control point Pk increases and the curve
passes closer to Pk; as w k decreases, the curve is pushed away from Pk" Thus the
weights behave like tension parameters (see Figure 5.34).

Typically all the weights are chosen to be positive to avoid singularities, but zero
and negative weights are permitted and sometimes, as we have just seen, are even
necessary to represent certain curves exactly. Unlike rational Lagrange or rational
Hermite interpolation, the effect of increasing the weights on a rational Bezier curve
is rather benign because rational Bezier curves are not constrained to interpolate
their control points. Negative weights, however, may introduce singularities even if

(-2,0,2) (2,0,2)

(0,2,0)

Figure 5.33 A semicircle as a rational Bezier curve. The two control points are represented with three
coordinates denoting (WkP k, Wk). Notice here the control vector (0,2,0).

CHAPTER 5

0.8

0.6

0.4

0.2

Bezier Approximation and Pascal's Triangle

0.5 1 1.5 2 2.5 3

Figure 5.34 Bezier curves with fixed control points, but with different values for the weights. The dark
curve is an integral cubic Bezier curve with control points at P0 = (0,0). P1 = (1,1), P2 = (2,1).
P3 = (3,0). The upper and lower curves have the same control points, but in the upper curve
the weight at P1 is increased to 3, while in the lower curve the weight at P1 is decreased to
-0.05.

we restrict the parameter domain to [0,1], so negative weights are generally avoided
(see Exercise 12(b)).

Nevertheless, even though a rational Bezier curve is continuous everywhere
except at parameter values where the denominator vanishes, and even though the
effect on the shape of the curve of increasing the weights is generally benign, in the
limit as a single weight approaches infinity a rational Bezier curve collapses to a dis-
joint collection of points. We already know that when w O, w n ~ 0 a rational Bezier
curve interpolates its first and last control point, so for t = 0,1

l i m w j - - > , , f l (O) - Po

limwj___>~R (1) = Pn.

But for any other value of t,

n n Wk
~, B f (t)WkP k Y~ B f (t) Pk

l imwj~ j~ (t) = limwj~ ~ k=0 = limwj~ ~ k=0 wj
n n Wk n
E w~8'~ (t) Z 8k (t)

k=O k=O wj

260

Thus the limit curve consists of only three points.
If the mass of a Bezier curve in Grassmann space is ever zero, then the projec-

tion of the curve into affine space is not continuous. We can avoid these discontinui-
ties by projecting the curve instead into projective space. Therefore, for a rational
Bezier curve, just as for a rational Lagrange curve, the control points reside in Grass-
mann space, but the curve itself may lie in projective space.

5.7 Rational Bezier Curves 2 61

Typically, algorithms for integral Bezier curves carry over directly to algorithms
for rational Bezier curves because generally we can apply these algorithms sepa-
rately to the numerator and denominator. For example, we can evaluate points along
a rational Bezier curve by applying the de Casteljau algorithm independently to the
numerator and denominator. Similarly, change of basis algorithms can be applied
separately to the numerator and denominator. Therefore, the algorithms for degree
elevation and subdivision can be applied independently to the numerator and denom-
inator. In essence there is nothing new here; we simply apply the algorithm in ques-
tion to the control points (woPo,wo) (wnPn,wn) in Grassmann space and then
divide by the weight to get the desired result in affine space.

Exercises

1. Show that for rational Bezier curves reversing both the order of the control
points and the order of the weights generates the same rational curve but
with the opposite orientation.

2. Show that the rational blending functions defined in Equation (5.30) satisfy
the identity

n

ERa(t)--- 1.
k=O

3. Using Equation (5.30) and Exercise 2, show that if all the weights are posi-
tive, then a rational Bezier curve lies in the convex hull of its control points.

4. Using Equation (5.30), show that if all the weights are nonzero, then a ratio-
nal Bezier is nondegenerate provided that there are no indices j,k for which
(w~f ~, wk) = cj~ (w fl'j, wj).

5. Suppose that all the weights of a rational Bezier curve are positive.

a. Show that the rational functions in Equation (5.30) satisfy Descartes'
Law of Signs in the interval (0,1).

b. Conclude that rational Bezier curves with positive weights satisfy the
variation diminishing property.

6. Show that for some choices of positive weights the rational blending func-
tions in Equation (5.30) are not unimodal in k.

7. Find control points and weights to represent the quarter circles in the sec-
ond, third, and fourth quadrants as rational Bezier curves.

8. Find control points and weights to represent the lower half circle as a ratio-
nal Bezier curve.

9. Apply the subdivision algorithm for rational Bezier curves to the quarter
circle given in the text to derive the Bezier control points and weights for
the upper half circle.

10. Find Bezier control points and scalar weights for

2at b(1 - t 2)
a. the ellipse: x = 1+ t 2 Y - 1+ t 2

262 C H A P Y E R 5 B e z i e r A p p r o x i m a t i o n a n d Pasca l ' s Tr iangle

2a t b(1 + t 2)
b. the hyperbola: X - l _ t 2 Y - 1 - t 2

Which segments of these curves are represented by your choice of control
points and weights?

11. Consider a rational Bezier curve with control points PO Pn and nonzero
weights w 0 w n. What does the limit curve look like if two or more
weights are allowed to approach infinity simultaneously?

12. Consider the rational cubic curves in Figure 5.34.

a. Plot the point with t = .99 for larger and larger values of the weight at
P1 = (1,1).

i. What do you observe?

ii. Explain what is happening.

b. Plot the curve for different negative values of the weight at P1 = (1,1).

i. What do you observe?

ii. Explain what is happening.

13. Consider the conic section R(t) = P(t) / w(t) , where

2 2
P (t) = E B 2 (t) w k P k and w(t)= ~ ,WkB2(t) .

k=O k=O

a. Show that degree (w(t)) < 2 r w 0 - 2w 1 + w 2 = 0 .

b. Conclude that if w 0 - 2w 1 + w 2 = 0, then

R(t) is a parabola r w(t) does not divide P(t).

c. Prove that if wo -2Wl + w2 * 0, then

i. w(t) has 2 real roots r w 2 - wow 2 > 0

ii. w(t) has 1 real root r w 2 - WoW 2 = 0

iii. w(t) has 0 real roots r w 2 - wow 2 < 0

(Hint: Divide w(t) by (1 - t)2 .)

d. Conclude that if w 0 - 2 w 1 + w 2 ~ 0 and P (t) , w (t) have no nontrivial
common factor, then

i. R(t) is a hyperbola r w 2 - wow 2 > 0

ii. R(t) is a parabola r w 2 - wow 2 = 0

iii. R(t) is an ellipse r w 2 - w o w 2 < 0

Therefore, in general, the type of a rational quadratic Bezier curve
depends only on the weights and not on the location of the control points.

e. What is the curve R(t) if P(t) and w(t) have a nontrivial common factor?

5.7 Rational Bezier Curves 2 63

14. Suppose that R(t), 0 < t < 1, is a rational Bezier curve with control points

Po Pn and weights w 0 w n. Let /~(t), 0 < t < 1, be the rational Bezier

curve with control points PO Pn and weights v~ k = (-1) k w k, k = 0 n.

a. Show that/~(t) = R (t) / (2 t - 1).

b. Conclude that the curve /~(t), t ~ [0,1], is the same as the curve R(t),

t ~ { (-oo, oo)- (0,1)}. That is,/~(t) is the complement of R(t).

c. Find the control points and weights for the complement of the quarter
circle depicted in Figure 5.32.

15. Consider a rational Bezier curve R(t), 0 < t < 1, with weights wo, . . . ,w n.
Suppose that w o ,w n = 0, Wl, Wn_l ~ 0 and that the control vectors v0, Vn
are the zero vector. Show that

a. limt_~0R(0) = P1

b. limt_ ~ 1R(1) - Pn -1

16. Given a rational Bezier curve with control points Po Pn and weights
w 0 w n, use the known formulas for integral Bezier curves to derive

explicit formulas for the control points and weights of

a. the degree elevated rational curve

b. the subdivided rational curve

17. Implement the following algorithms for rational Bezier curves:

a. de Casteljau evaluation algorithm

b. degree elevation algorithm

c. subdivision algorithm

18. Implement the recursive subdivision algorithm for

a. rendering a rational Bezier curve

b. intersecting two rational Bezier curves

19. Let R(t) be a rational Bezier curve with control points P0,--., Pn and positive
weights w0,..., w n. Show that the arc length of R(t) is bounded below by the
length of the chord joining P0 and Pn and above by the perimeter of its con-
trol polygon.

(Hint: Use the result for integral Bezier curves and the fact that recursive
subdivision commutes with projection.)

20. Let R(t) be a rational Bezier curve with control points P0 Pn and weights
w 0 w n . Define

n n

P(t) - ~_, B~ (t)WkP k and w(t) = ~ WkB~c (t),
k=0 k=0

so that R(t) = P(t). Prove that
w(t)

a. SO w(t)dt = average of the weights

264 CHAPTER 5 Bezier Approximation and Pascal's Triangle

5.7.1

b. ~P(t)dt

~lw(t)dt
= center of mass of {(woPo,wo) (wnPn,wn) }

Differentiating Rational Bezier Curves

One algorithm that cannot be applied independently to the numerator and denomina-
tor of a rational Bezier curve is the algorithm for differentiating of Bezier curves
because the derivative of a quotient is not equal to the quotient of the derivatives. To
find the derivatives of a rational Bezier curve, we proceed in the following manner.
Let

r/

ZB; (t)w P
R(t) = k=0

/,/

2; " wkBk(t)
k=O

be a rational Bezier curve. Then the numerator and denominator of R(t) behave like
ordinary Bezier curves, which we already know how to differentiate. Let

n

P(t) - ~.Bf (t)WkP k
k=0

n

w(t) - ~. wkB ~ (t) .
k=0

Then R(t) - P(t) /w(t) , so multiplying both sides by w(t) we obtain

w(t)R(t) - P(t).

To find the derivatives of R(t), we proceed recursively using Leibniz's rule:

F
E (f) w(i) (t) R(r-i) (t) = p(r)(t).

i=0

By Equation (5.24), we have

p(r)(t) n! n-r r
= E B~c -r (t) E (-1) r - j (~)Wj+kPj+k

(n-r)!k=O j=0

(5.31)

n! n-i i i
- Z B; -i (t) Z (-1) i - j (j)Wj+k"

w(i)(t) (n-i)!k=O j=0

Hence if we know R (p) (t) for 0 < p < r, then we can apply Equation (5.31) to com-
pute R(r)(t). Indeed, we can find R(r)(t) by using Equation (5.31) with r = 1 to find
R'(t), then with r = 2 to find R"(t), and so on, till finally we can apply this equation
to compute R(r)(t). Notice too that P(i)(t),w(i)(t) can be computed algorithmically by
differentiating i rows of the de Casteljau algorithm for the control points
(woPo, w 0) (wnPn, wn) .

5.7 Rational Bezier Curves 2 6 5

Suppose now that we are given a rational Bezier curve R(t) with control points
(woPo,wo) (wnPn,wn) and we want to construct another rational Bezier curve
C(t) with control points (voQo,vo) (vnQn,v n) that meets R(t) and matches its first
r derivatives at its end point. For arbitrary r this problem is difficult, so let's consider
only the cases r = 0,1. If the weights are nonzero, then by Equation (5.29) C(0) = Q0
and R(1) = Pn, so continuity requires that Q0 = Pn just as for integral Bezier curves.
Moreover, by Equation (5.31)

w'(1)R(1) + w(1)R'(1) = P'(1),

so substituting for the values of w and P we have

n(Wn - Wn-1)Pn + wnR'(1) = n(wnPn - Wn-lPn-1).

Solving for R'(1), we obtain

R'(1) - n Wn-1 (Pn - Pn-1)"
w n

Similarly, applying Equation (5.31) to C(t), we get

v'(0)C(0) + v(0)C'(0) = Q'(0).

Substituting for the values of v and Q yields

n(vl - vo)Qo + voC'(O) - n(VlQ1 - voQo),

and solving for C'(0) gives

Vl
C'(O) - n - - (Q 1 - Qo)"

vo

Therefore, R(t) and C(t) will meet with one continuous derivative if and only if

C(O)- R(1) ~ Qo - Pn

Vl Wn-1 (en - Pn-1)" C ' (0) - R' (1) ~ n - - (Q 1 - Q o) - n
vo Wn

Substituting Qo - Pn and solving for Q1, we find that the second condition reduces
to

Q1 - Pn + VOWn-1 (Pn - Pn-1)"
VlW n

There are three free parameters in this equation: Ql,V0,Vl. Continuity of first
derivatives does not specify the values of these parameters; rather it specifies only
that these parameters must be in some specific relationship. Thus unlike the polyno-
mial case, the location of Q1 is not fixed by insisting on continuity of first deriva-
tives. Notice, however, that just as in the polynomial case, Q1 must still lie
somewhere along the line joining Pn-1 and Pn"

2 66 c H A P T E R 5 B e z i e r A p p r o x i m a t i o n a n d P a s c a l ' s Tr iang le

Necessary and sufficient conditions for continuity of the first r derivatives for
arbitrary values of r are difficult to obtain because we do not have a simple explicit
formula for the rth derivative of a rational Bezier curve. However, sufficient condi-
tions are easy to derive. The rth derivative of a quotient depends only on the first r
derivatives of the numerator and denominator. Thus if R (t) = P (t) / w (t) and
C(t) = Q (t) / v (t) , then sufficient conditions for R(i) (1) = c (i) (o) , i = 0 n, are

p(i) (1) = Q(i) (0) i = 0 n

w (i) (1) = v (i) (0) i - 0 n.

Since P (t) , Q (t) , w (t) , v (t) can be thought of as integral Bezier curves, we can use the
methods of Section 5.6.2 (e.g., Equation (5.27)) to find values for Qk and v k that
guarantee these continuity conditions are satisfied.

Exercises

1. Let R(t) be a rational Bezier curve with control points P0 Pn and positive
weights w o w n.

a. Find a bound on R"(t).

b. Find an analogue of Wang's formula for the number of levels of subdivi-
sion required so that the control polygon approximates the rational curve
within a fixed tolerance e .

c. Develop an algorithm for intersecting two rational Bezier curves with
positive weights based on recursive subdivision and Wang's formula.

2. Let R(t) be a rational Bezier curve with control points PO Pn and nonzero
weights w 0 w n .

a. Compute explicit formulas for R " (t) , R " (O) , R ' (1) .

b. Find necessary and sufficient conditions on the control points and the
weights for two rational Bezier curves to meet with two continuous
derivatives at their end points.

3. Let R(t) be a rational Bezier curve with control points (woPo,wo) ,

(wnPn, wn)"

a. Using the formulas for the first derivative derived in the text, show that

limw0~ooR'(0) - 0 and limw,~ooR'(1) = 0.

b. More generally, show that

limw0~ooR(k)(0) = 0 and limw,~ooR(k)(1) = 0, k > 1.

c. Show that if t ~ 0,1, then l imwj~ooR(k)(t) = 0 for all k > 1.

4. The formulas for the unit tangent U(t) , the curvature K(t) , and the torsion
T(t) of a parametric curve P(t) are given in Section 5.6.2, Exercise 12.

5.8 Bezier Surfaces 267

a. Compute the unit tangent, curvature, and torsion of a rational Bezier
curve at t = 0,1.

b. Find conditions on the control points and weights of a rational Bezier
curve C(t) so that it matches a given rational Bezier curve B(t) with con-
tinuous unit tangent, curvature, and torsion.

5.8

5.8.1

Bezier Surfaces

Bezier surface patches come in two standard shapes: rectangular and triangular. We
have already encountered both rectangular and triangular patches in the context of
Lagrange interpolation in Chapter 2; here we explore the corresponding construc-
tions for Bezier approximation. Just as de Casteljau's algorithm for Bezier curves is
simpler than Neville's algorithm for Lagrange polynomials, so too are Bezier sur-
faces simpler to define and analyze than the corresponding Lagrange surfaces
because the absence of nodes in Bezier approximation simplifies the domains of
these surfaces as well as many of their associated algorithms.

We begin our study of Bezier surfaces with tensor product Bezier patches and
then go on to explore the corresponding triangular patches. We also examine briefly
rational Bezier patches, both rectangular and triangular. Rational Bezier patches
with more than four sides are investigated in Chapter 8.

Tensor Product Bezier Patches

A rectangular tensor product Bezier patch B(s,t) of bidegree (m,n) is defined by setting
m //

8 (s , t) - z z 8 m (oe i j
i=0j=0

0 < s,t < 1. (5.32)

The functions B m (s)B~(t) - -where B re(s) and B~ (t) are the standard Bernstein
basis functions of degree m and n in the parameters s and t~are the tensor product
Bernstein basis functions (see Figure 5.35).

The rectangular array of control points {P/j} generates a control polyhedron for
the tensor product Bezier patch that controls the shape of the Bezier patch in much
the same way that the Bezier control polygon controls the shape of a Bezier curve
(see Figures 5.36 and 5.37). In particular, dragging a control point pulls the surface
patch in the same general direction as the control point.

Let Pi(t) be the Bezier curve with control points Pi0 Pin-Then

1/

n(t)Pij i - O, . m Pi(t) = EBj ..,
j=O

(5.33)

m

B(s , t)= EBm(s)Pi(t)
i=0

(5.34)

268 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

Figure S.]S The bicubic Bernstein basis function B3(s)B3(t). Compare to the bicubic Lagrange basis func-
tion L 3 (s)L 3 (t) in Figure 2.20.

t = l

s=O s = l

t=O

(a) Domain--unit square

P03 P13 P23 P33

P02 P12 P22 P32

PO1 Pll P21 P31

Poo P~o t'2o P3o

(b) Range~rectangular array of points

Figure 5.36 Data for a bicubic tensor product Bezier patch. Notice that the domain is simply the unit
square and that, unlike Lagrange interpolation, the domain has no nodes and no grid. Com-
pare to Figure 2.19.

5.8 Bezier Surfaces 2 6 9

Figure 5.37 A bicubic tensor product Bezier surface with its control polyhedron, formed by connecting
control points with adjacent indices. The control points are the same as those for the
Lagrange surface in Figure 2.22.

Thus if we fix t, t henB(s , t) is the Bezier curve with contro oints Po(t) Pm(t) (see
Figures 5.38 and 5.39).

Equations (5.33) and (5.34) suggest the following evaluation algorithm for ten-
sor product Bezier patches: first use de Casteljau's algorithm m + 1 times to compute
the points at parameter t along the degree n Bezier curves Po(t) Pm(t); then use de
Casteljau's algorithm one more time to compute the point at parameter s along the
degree m Bezier curve with control points Po(t) Pm(t) (see Figure 5.40).

Just as in Lagrange tensor product interpolation, there is also an alternative eval-
uation algorithm for tensor product Bezier patches based on a bilinear recurrence.
For simplicity, let us assume that m = n. Multiplying together the linear recurrences

B[' (s) - (1 - s)B['-1 (s) + s S ~ 1 (s)

B; (t) - (1 - t)U; -1 (t) + tUjnl 1 (t) ,

generates the bilinear recurrence

- -)B n-1 (s)Bj -1 (t) B n (s) S j (t) - (1 - s)(1 t)S n-1 (s)B; -1 (t) + s(1 t i-1

+ (1 - s)tB n-1 (s)B; -1 (t) + stBin__l 1 (s)B; -1 (t) .

This recurrence can be diagrammed on a square pyramid, with (n + 1)2 nodes on
the nth level of the pyramid, by placing a 1 at the apex of the pyramid and the four
functions (1 - s)(1 - t), s(1 - t), (1 - s)t, st along the edges connecting the node
labeled (i, j) on the nth level respectively to the nodes labeled (i, j) , (i - l , j) ,

270 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

Po2

P13

P03 / ~ P23

 oC01 I r I

Poo /
o l

ho

P33

P32

P~.~ P31

P3o

Figure 5.38 A schematic construction for points on a bicubic tensor product Bezier surface B(s, t). First the
Bezier curves Pi(t), i = 0 3 are constructed from the control points Pio,Pil,Pi2,Pi3. Then for
a fixed value of t, the Bezier curve B(s,t)is constructed using the points Po(t),Pl(t),P2(t),P3(t)
as control points. In general, the Bezier surface B(s,t) does not interpolate its control points.
Compare to Figure 2.21 for bicubic Lagrange interpolation.

Figure 5.39 The bicubic Bezier patch in Figure 5.37 along with its cubic Bezier control curves. Notice that
only the boundary control curves are interpolated by the surface. Compare to the tensor
product Lagrange surface in Figure 2.22.

5.8 Bezier Surfaces 2 7]

B(s,t)
'-sl
J

Po(t) P2(t) P~(t)

Poo Po 1 P02 P10 P1 ~ P12 P20 P21 P22

Figure 5.40 De Casteljau's evaluation algorithm for a biquadratic Bezier patch. The three lower triangles
represent Bezier curves in the t direction, and the upper triangle blends these curves in the s direction. Com-
pare to Figure 2.23--Neville's algorithm for a biquadratic interpolating patch.

(1 - s) t ~ /
Blo(s)Bl(t)

(a - s) (~ - t) / /
B s)B CO

B 2 2 1 (s)B2(t) B2(s)B2(t)

BI(s)BI()

1

(1 - s) (a - t)

/

(1 - s)(1 - t) / t) ~
/ / s(1 -

B 2 (s) B 2 (t)

/ i

-s)(1 - t) ~
B2(s)B2(t) B2(s)B2(t)

Figure 5.41 The pyramid algorithm for the biquadratic Bernstein basis functions viewed from above. The
function B2(s) B2(t) on the base is not shown, since it is obscured by the upper portions of the pyramid.

(i, j - 1), (i - 1, j - 1) on the (n - 1)st level. It follows by the bilinear recurrence and
induction on n that the functions {B n (s)B ~] (t)} emerge on the nth level of the pyra-
mid (see Figure 5.41).

272 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

Thus the function Bn(s)Bj(t) is the sum over all paths between the node (i, j)
on the nth level and the 1 at the apex of the pyramid. Therefore, if we place the con-
trol points P ij at the base of the pyramid and reverse all the arrows in the diagram,
the tensor product patch

B(s,t) - Ei E j Bm (s)Bj (t)Pij

will emerge at the apex of the pyramid. This is the bilinear evaluation algorithm for
tensor product Bezier patches (see Figure 5.42).

Both the de Casteljau algorithm and the pyramid algorithm are O(n3). Neverthe-
less, the de Casteljau algorithm is generally faster than the pyramid algorithm. The
analysis here is much the same as the comparison between Neville's algorithm and
the pyramid algorithm for tensor product Lagrange interpolation given in Section
2.11. When m = n, the de Casteljau algorithm employs n + 2 triangles: n + 1 trian-
gles in the t direction and one additional triangle in the s direction. Each triangle has
n(n + 1)/2 nodes, and each node requires two multiplications. Therefore,

number of multiplications in the de Casteljau algorithm = n(n + 1)(n + 2).

Figure 5.42 A schematic diagram of the bilinear evaluation algorithm for a bicubic tensor product Bezier
patch viewed from above. Each panel represents the computation of a point at its center by
multiplying the points at its corners with the functions (1-s)(1-t), s(1-t), (1-s)t, st and
adding the results. The black panel represents the bicubic Bezier patch for the control points
at the base of the pyramid; interior control points are obscured by the panels. Notice that the
light gray panels represent bilinear Bezier patches and the dark gray panels represent biqua-
dratic Bezier patches. Compare to Figure 2.25, which is the pyramid algorithm for bicubic
Lagrange interpolation. The same pyramid is used there, but the algorithm here is much sim-
pler. In the pyramid algorithm for bicubic Lagrange interpolation, the rectangular domain for
the interpolation algorithm varies from node to node and level to level, so the labels along
the edges also vary from node to node and level to level. For bicubic Bezier patches the same
rectangular domain is used at every node and every level, so the labels along the edges are
the same from node to node and level to level.

5.8 Bezier Surfaces 2 7 3

On the other hand, the pyramid algorithm has

n

~,k 2 - n(n + 1)(2n + 1)/6
k=l

nodes, and each node requires four multiplications. Therefore,

number of multiplications in the pyramid algorithm - 2n(n + 1)(2n + 1).
3

Since n + 2 < (4n + 2)/3 for n > 4, the de Casteljau algorithm is generally faster
than the pyramid algorithm, though for the most common surfaces, namely, bicubic
patches, n = 3 and the pyramid algorithm is slightly more efficient.

As in tensor product Lagrange interpolation, the de Casteljau algorithm has
another advantage over the pyramid algorithm that is even more substantial. Recall
that surfaces are typically rendered by generating points on the surface along isopa-
rameter l inesuthat is, along lines of constant s or t. If we fix t = t * and vary only s,
then we can reuse the computation of the points Po(t*) Pm(t*). Thus along isopa-
rameter lines, de Casteljau's algorithm for tensor product surfaces reduces to the
univariate version of de Casteljau's algorithm, which is only O(n2). No such reduc-
tion occurs for the pyramid algorithm along isoparameter lines.

Tensor product Bezier patches inherit many of the characteristic properties of
Bezier curves; they are affine invariant, nondegenerate, and lie in the convex hull of
their control points (see Exercises 1 and 5). These properties follow easily from
Equations (5.33) and (5.34) and the corresponding properties of Bezier curves.
Moreover, the boundaries of a tensor product Bezier patch are the Bezier curves
determined by their boundary control points, since by Equation (5.34)

n

~(o,t~ - eo(t) - E B j (Oeoj
j=0

n

B(1,t)- fm(0- E S j (O e m j ,
j=0

and symmetric results hold for the boundaries t = 0 and t = 1. It follows that although
tensor product Bezier patches do not generally interpolate their control points, they
always interpolate the four comer points P00, PmO, POn, Pmn"

One property, however, that does not carry over from curves to surfaces is the
variation diminishing property. There is no known analogue of the variation dimin-
ishing property for tensor product Bezier patches. For example, it is not true that the
number of intersections of a Bezier patch with a straight line is always less than or
equal to the number of intersections of the same line and the Bezier control polyhe-
dron (see Exercise 22). Nor is it true that a plane always splits a Bezier surface into
fewer connected components than it splits the corresponding control polyhedron (see
Exercise 23). Geometrically it is difficult to discover an analogue of the variation
diminishing property for surfaces because subdivision and degree elevation for sur-
faces (see below) are not simply vertex slicing procedures for polyhedra. Moreover,

274 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

algebraically there is no simple analogue of Descartes' Law of Signs in the bivariate
setting.

Tensor product Bezier patches do inherit many of the standard algorithms of
Bezier curves. Degree elevation and subdivision can be performed independently in
each variable. To degree elevate the surface B(s,t) in t, simply degree elevate each of
the curves Po(t) Pm(t). Similarly, to subdivide B(s,t) at t = r, subdivide each of the
curves Po(t) ,Pm(t) at t = r. Symmetric algorithms can be used to degree elevate
and subdivide with respect to s instead of t.

To differentiate a tensor product Bezier patch, we can differentiate either de
Casteljau's algorithm or the pyramid algorithm. To differentiate the de Casteljau
algorithm with respect to s a total of p times, simply differentiate any p of the upper
m levels (the s levels) of the de Casteljau algorithm and multiply the result by
m ! / (m - p)!. To differentiate q times with respect to t, differentiate any q of the n
levels (the t levels) in each of the m lower triangles (see Figure 5.40) and multiply
the results by n ! / (n - q)!. That this algorithm works is an immediate consequence of
the corresponding differentiation algorithm for Bezier curves discussed in Section
5.6.2. Explicit formulas for these derivatives can be generated as well from Equation
(5.24) by substituting this explicit formula for the derivatives of a Bezier curve into
Equation (5.34).

Differentiation of the pyramid algorithm works in a similar fashion. To find p
derivatives with respect to s and q derivatives with respect to t, differentiate any p
levels of the algorithm with respect to s~tha t is, replace (1 - s)(1 - t) ~ -(1 - t),
(1- s)t ~ - t , s(1- t) ~ (1- t), st ~ t on p levels of the algorithm~then differenti-
ate any q levels (the same or different from the previous p levels) with respect to t,
and multiply the result by (n!) 2/(n - p)!(n - q)!. This algorithm works because

/
s(1- t) st) s(1- t) st)

n f a c t o r s

ii-sl (1-sl = |174 | t) | 1 7 4 t)
S S ~ y ,

�9 ~ n f a c t o r s
n f a c t o r s

(see Exercise 15), so we can apply Equation (5.21) and the commutativity of discrete
convolution to differentiate the basis functions Bn(s)Bj(t).

Exercises

m n

1. a. Prove that X X B m (s) B j (t) - 1.
/ = 0 j = 0

b. Show that every tensor product Bezier patch lies in the convex hull of its
control points.

2. Consider a tensor product Bezier patch of bidegree (m,n), where m < n.
Show that

5.8 Bezier Surfaces 2 7 5

a. To compute a single point on the surface it is faster to apply de Castel-
jau's algorithm first in the s direction and then in the t direction.

b. To compute many points along the surface it may be faster to apply de
Casteljau's algorithm first in the t direction and then in the s direction.

c. Explain this apparent anomaly.

(Hint: Compare to Section 2.11, Exercise 3.)

3. Complete the analysis of the pyramid algorithm by showing how to imple-
ment this algorithm when the degree in s is different from the degree in t.

4. What are the up and down recurrences in the case of tensor product Bezier
patches for de Casteljau's algorithm and for the pyramid algorithm?

5. Give necessary and sufficient conditions on the control points for the tensor
product Bezier surface to collapse to

a. a single point

b. a line

c. a plane

Justify your answer. (Compare to Section 2.11, Exercise 8.)

6. Let B[p~.n](s,t) denote the tensor product Bezier patch of bidegree (m,n)
with control points {P/j]. Show that tensor product Bezier patches have the
following symmetry properties:

a. B[p jm](t , s) - B[p~n](s,t).

b . mrl mFl B[Pi,n_j](s,t) - B[P ij](s,1 - t).

m n c. B[Pm_i, j](s,t) = B[Pij n](1 - s,t).

7. Let B(s,t) - ~.i Z j Bm (s)B; (t)Pij be a tensor product Bezier patch, and let

~P+qB
B(P'q)(s,t) = ~ .

~sP~t q

a. Show that B(I'~ (0, 0) - m(P10 - P00) and B(~ (0, 0) - n(P01 - PO0).
b. Conclude that the normal vector at B(0, 0) is parallel to

(PIo - PO0) • (Po1 - PO0)"
c. Find the normal vectors at B(O,1),B(1,O),B(1,1).

8. Let B (s , t) - Zi ZjBm(s)Bj(t)Pij be a tensor product Bezier patch, and let

B(P,q)(s,t) denote the partial derivatives of B(s,t) as in Exercise 7. Compute

explicit expressions for the partial derivatives B(1,~ B(r'O)(s,t).

9. Suppose we have a tensor product Bezier patch

B(s,t) - Ei E j B m (s)Bj (t)Pij

and we want to construct another tensor product Bezier patch

276 CHAPTER 5 Bezier Approximat ion and Pascal 's Triangle

C(s, t) = ~ i 2 j Bm (s)B; (t)Qij

to meet B(s,t) along the boundary B(1,t) and match its first p cross-boundary
derivatives. That is, we want to construct a tensor product Bezier patch
C(s,t) such that

orc (o , t) OrB(1,t)
m

~s r ~s r
r - 0 p.

a. Show that

i. p = 0 =r Q o k = P m k , k = 0 n

ii. p = 1 ==> Qlk = Pmk + (Pmk - em-l ,k), k - 0 n

b. Derive formulas for the location of the control points Qij that guarantee

~rc(o't-------~) = ~rB(l't-------~) r - 0 p .

OS r OS r '

10. Implement both de Casteljau's algorithm and the pyramid algorithm for ten-
sor product Bezier surfaces. Which algorithm do you prefer? Why? Experi-
ment with tensor product surfaces of different degrees. Determine how
changing the location of the control points affects the shape of the surface.

11. Implement the recursive subdivision algorithm for tensor product Bezier
patches. Apply this algorithm to

a. render a tensor product Bezier patch

b. intersect two tensor product Bezier patches

12. Recall from Section 5.6.3 that we can speed up recursive subdivision for
Bezier curves by applying Wang's formula.

a. Develop an analogue of Wang's formula for tensor product Bezier
surfaces.

b. Implement the recursive subdivision algorithm for rendering a tensor
product Bezier surface with and without Wang's formula.

c. How much does Wang's formula speed up this algorithm?

13. Prove that the control polyhedra generated by recursive subdivision con-
verge to the tensor product Bezier patch.

14. Prove that the control polyhedra generated by degree elevation converge to
the tensor product Bezier patch.

15. Define the convolution of two doubly indexed arrays of functions
A (s , t) - {Aij(s,t) } and B (s , t) = {Bkl(S,t) } by setting

(A | B)pq(S, t) =]~i+k=pZj+l=qAij(s, t)Bkl(S,t) .

5.8 Bezier Surfaces 277

Now introduce the following indexing scheme"

Function Index

1 - s (0 , 0)

1 - t (0,0)

s (1,0)
t (0,1)

Bin(s) (i,O)

B](t) (O,j)

Bm (s)B] (t) (i,j)

Show that with this indexing scheme

- |
a. s(1 - t) st ,) s

t);

b.
B~(s) /

' | �9 . . 8 # (t)) ;

()ll-s I ii-sl c. B m (s)BJ (t) - | | | (1- t
S S ,

Y

n factors

t) | 1 7 4 t)
J

n factors

I (1- s)t/st J | 1 7 4 / (1- s)(1- t) s (1 - t) (1- s)t/st J

J
Y

n factors

e. Use the preceding results to derive the differentiation procedure for the
pyramid algorithm described in the text. In particular, show that to com-
pute p derivatives with respect to s and q derivatives with respect to t, we
can differentiate any p levels of the pyramid algorithm with respect to s,
then differentiate any q levels (the same or different from the previous p
levels) with respect to t, and multiply the result by

(n!) 2

(n - p) ! (n - q) !

16. Describe the properties of the surface you would generate if you replace the
Lagrange basis with the Bernstein basis in the Boolean sum construction
given in Section 2.15.

278 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

17. Let Pj (s) - EiBm(s)Pij, j = 0 n, be a sequence of Bezier curves. Show
how to combine Neville's algorithm and the de Casteljau algorithm to gen-
erate a surface C(s,t) that interpolates the curves Po(s) Pn(s) at the
parameter values t o t n.

18. Let

B(s,t) - E i E j B n (s)B; (t)Pij

be a tensor product Bezier patch of bidegree (n,n), and let

BSO 1 (s,t),B~o 1 (s,t),B~l 1 (s,t),B~l 1 (s,t)

denote the four values computed by the pyramid algorithm on the penulti-
mate level just below the apex of the pyramid. Show that

a. B(s,t) - (1- s)(1 - t)BSo 1 (s,t)

+ s(1 -t)B~ol(s,t) + (1 -s)tB~)ll(s,t) + stBn-l(s,t) 11

b~
8B

0s

8B
C.

- n(1- t)(B~o 1 (s , t) - B~O 1 (s,t))+ nt(B~l 1 (s , t) - B~I 1 (s,t))

Ot
- n(1- s)(B(~l 1 (s , t) - B(~O 1 (s,t))+ ns(B~l 1 (s , t) - B~O 1 (s,t))

d. Conclude that to compute point values and normal vectors at any point
on a tensor product Bezier surface of bidegree (n,n) by the pyramid algo-
rithm costs

2n(n+l) (2n+l)

3
multiplications and one cross product.

19. Let

+6

n-l (s,t),B~-l (s,t) be a tensor product Bezier patch of bidegree (n,n), and let B 0
denote the two values computed by the de Casteljau algorithm on the penul-
timate level just below the apex of the algorithm. Show that

a. B(s,t) - (1- s)B8 -1 (s,t) 4- sB~ -1 (S,t)

b~ = (s , ,) - (s , ,))
Os

Let Poo(t),Pol(t) Pno(t),Pnl(t) denote the values computed by the de
Casteljau algorithm on the penultimate level for the curves

F/

j=O

5.8.2

5.8 Bezier Surfaces 279

c. Show that ~B/~t can be computed from these values using only an addi-
tional n(n + 1) multiplications.

d. Conclude that to compute point values and normal vectors at any point
on a bidegree (n,n) tensor product Bezier surface by the de Casteljau
algorithm costs a total of n(n + 1)(n + 3) + 1 multiplications and one cross
product, but that along isoparameter lines de Casteljau's algorithm for
computing points and normals is only O(n2).

20. Show that

a. The pyramid algorithm is more efficient than the de Casteljau algorithm
for computing point values and normal vectors at a single point when
2 < n < 6 .

b. The de Casteljau algorithm is more efficient than the pyramid algorithm
for computing point values and normal vectors at a single point when
n > 6 .

c. Along isoparameter lines, the de Casteljau algorithm for computing point
values and normal vectors is more efficient than the pyramid algorithm
for all values of n.

(Hint: Compare the results of Exercises 18(d) and 19(d).)

21. a. Show that any level of bilinear interpolation in the pyramid algorithm
can be replaced by one level of linear interpolation in s followed by one
level of linear interpolation in t.

b. Draw the diagram of the evaluation algorithm for bicubic Bezier patches
where the second level of the pyramid algorithm is replaced by one level
of linear interpolation in s followed by one level of linear interpolation in t.

c. What would the evaluation algorithm look like for tensor product Bezier
patches if each level of bilinear interpolation in the pyramid algorithm is
replaced by two successive levels of linear interpolation?

d. Which algorithm is more efficient: the pyramid algorithm or the algo-
rithm where each level of bilinear interpolation is replaced by two suc-
cessive levels of linear interpolation?

22. Give an example to show that the number of intersections of a tensor product
Bezier patch with a straight line may be greater than the number of intersec-
tions of the same line and the corresponding Bezier control polyhedron.

23. Give an example to show that a plane may split a tensor product Bezier sur-
face into more connected components than it splits the corresponding con-
trol polyhedron.

Triangular Bezier Patches

We can also define Bezier patches over triangular domains. To construct these trian-
gular surfaces, we proceed by simplifying Neville's tetrahedral algorithm for inter-
polation of a triangular array of control points over a triangular grid (Section 2.12).
In Neville's algorithm, for triangular Lagrange interpolation we apply barycentric

2 8 0 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

coordinates at each node of the algorithm to build higher-order interpolants from
lower-order interpolants. The domain triangles, and hence too the barycentric coordi-
nates, vary from node to node and depend on the position of the node in the tetrahe-
dron. In de Casteljau's tetrahedral algorithm for triangular Bezier patches, the domain
is simplified from a triangular grid to a single triangle (see Figure 5.43), so we apply
the same barycentric coordinates at each node of the algorithm (see Figure 5.44).

Q1

Q2 " " Q3

(a) Domain triangle

PBoo

P201 P21o

PlO2 Pil l P12o

Po03 Po12 P021 P030

(b) Triangular array of control points

Figure 5.43 Data for a cubic triangular Bezier patch. The domain is an arbitrary triangle. Compare to Figure
2.26 for triangular Lagrange interpolation.

Figure 5.44 Schematic version of de Casteljau's tetrahedral algorithm for a cubic Bezier patch over a trian-
gular domain. Each triangular panel represents the computation of a point at its center calculated by multi-
plying the points at its vertices by the barycentric coordinates of the domain triangle (Figure 5.43(a)) and
adding the results. The light gray triangles represent linear triangular Bezier patches, and the dark gray trian-
gles represent quadratic triangular Bezier patches. Notice that the control point Plll is obscured by the pan-
els, and down-pointing triangles are ignored. Compare to Figure 2.28 for triangular Lagrange interpolation.

5.8 Bezier Surfaces 2 81

Just as we did for Bezier curves, we can develop explicit formulas for the basis

functions of triangular Bezier patches. One way to do so is to observe that all paths

between the apex of the tetrahedron and the control point Pij~ at the base of the pyra-
i j k mid are identical to fllflzfl3, i + j + k - n, where t31,/~2,/~3 are the barycentric coor-

dinate functions with respect to the domain triangle AQ1Q2Q3. Every path has this
form because there are n levels in the tetrahedron and to travel between the apex and

the point Pijk we must choose the 131 direction i times, the 13 2 direction j times, and
the 133 direction k times. Moreover, there are (~jk) = n! / i! j! k! paths between the apex
and the point Pijk on the nth level of the triangle (see Exercise 1). Thus the basis
functions for a degree n triangular Bezier patch are given by

Bijnk(s,t) - (~.k)fl[(s,t)flJ2(s,t)flk(s,t) i+ j + k - n,

n! (5.35) (~
ijk) - i!j!k!

Notice that the functions B~n~(s,t) are exactly those functions that appear in the
trinomial expansion of (fll(s,t) -~fl2(s,t) + fl3(s,t)) n. An example of a triangular patch
constructed using these basis functions is provided in Figure 5.45.

The functions Bijnk(s,t), i+ j + k - n, are called the bivariate Bernstein basis
functions of degree n. Notice that by the down recurrence~placing a one at the apex,

Figure 5.45 A cubic triangular Bezier patch with its control polyhedron. Here the control points lie on a
regular triangular mesh in the xy-plane, with the corner points raised to height z = 4.

282 C H A P T E R 5 Bezier Approximat ion and Pascal 's Triangle

reversing all the arrows, and collecting the blending functions at the base of the tetra-
hedron--these bivariate Bernstein basis functions satisfy the recurrence

Bijn+ l B n B n . k (s , t) - f l l (S , t)Bn - l , j , k (S , t)+ f l2 (s , t) i , j - l , k (S , t)+ f l 3 (s , t) i , j , k - l (S , t) (5.36)

The degree n triangular Bezier patch T(s,t) with control points {Pijk},
i + j + k = n, and domain triangle AQ1Q2Q3 can be written as

T(s , t) = ~i+j+k=nBijk(S,t)Pijk . (5.37)

Typically we shall use the canonical triangle A = {(s,t) ls, t > 0 and s + t < 1} as
our domain. For this triangle the barycentric coordinate functions are 131 = s, 132 = t,
133 = 1 - s - t, so the basis functions are given explicitly by

Bijnk(s,t) = (g.k)sitJ(1 - s - t) k i + j + k - n,

n! (5.38)

itjtkt

To simplify our notation in the remainder of this section, we shall adopt this canoni-
cal triangle as our domain and use these canonical basis functions as our blending
functions. The proofs, however, do not change much for arbitrary domain triangles
and arbitrary barycentric coordinates. Additional identities involving these bivariate
Bernstein basis functions can be found at the end of this chapter.

Many of the characteristic properties of Bezier curves extend to triangular Bez-
ier patches. Triangular Bezier patches are affine invariant, nondegenerate, lie in the
convex hull of their control points, and interpolate their comer points. These proper-
ties follow easily from Equations (5.37) and (5.38) or more directly from de Castel-
jau's tetrahedral algorithm. Moreover, the boundary curves of triangular Bezier
patches are the Bezier curves determined by their boundary control points. For
example, along the boundary s = 0,

Bijnk(O,t) = 0 i ~ 0

= (j) t j (1 - t) n - j i = O.

Substituting into Equation (5.37), we find that

n
T(O,t) - ~,i+j+k=nBijnk(O,t)Pijk = ~ , B j (t)Po,j,n_ j ,

j=0

which is the Bezier curve for the boundary control points Poon P0n0--that is, the
control points for which i = 0. Similar results hold along the boundaries t = 0 (j" = 0)
and s + t = 1 (k = 0) (see Exercise 20). One property that does not extend from
curves to triangular surfaces is the variation diminishing property. Just as with tensor
product Bezier patches--and for much the same reasons- - there is no known ana-
logue o f the variation diminishing property f o r triangular Bezier patches.

Standard algorithms for Bezier curves also extend readily to triangular Bezier
patches. For example, the triangular arrays along the three lateral faces of the tetra-

5.8 Bezier Surfaces 283

hedral de Casteljau algorithm are the control points for the three surface patches that
subdivide the triangular surface at the point T(s,t) (Exercise 12~see also Section
6.5.1 for a simpler derivation). Moreover, the two-term degree-elevation formula for
Bezier curves (Equation (5.17) extends to a three-term degree-elevation formula for
triangular Bezier patches (Exercise 10)).

Differentiating of the tetrahedral de Casteljau algorithm for triangular Bezier
patches is very similar to differentiating of the pyramid algorithm for tensor product
Bezier patches. To find p derivatives with respect to s and q derivatives with respect
to t, differentiate any p levels of the algorithm with respect to smthat is, replace
(1 - s - t) ~ -1, s ~ 1, t ~ 0 on p levels of the algorithmmthen differentiate any q

levels (different from the previous p levels) with respect to t, and multiply the result
by n!/(n - p - q)!. This algorithm works because it follows by induction from Equa-
tion (5.36) that

;) / l-s-, '0) k(S,t) - | 1 7 4
s s

- v -

n f ac to r s

(see Exercise 18). Therefore, we can apply Equation (5.21) and the commutativity of
discrete convolution to differentiate the basis functions {B. n (s,t)} ~jk

Suppose now that we are given a triangular Bezier surface "P(s,t) with control
points {Pijk }, i + j + k - n, and domain triangle AQ1Q2Q 3 and we want to construct
another triangular Bezier surface R(s,t) with control points {Rijk}, i + j + k = n, and
domain triangle AQ1Q2~)3 that meets P(s,t) continuously and matches its first r
derivatives along the boundary parametrized by Q1Q2 (see Figure 5.46). For the sur-
faces to meet continuously, the boundary curves must certainly be identical, so the
control points along the common boundary, say, i = 0, must match. Thus we must

have Pojk = Rojk.
What about higher-order smoothness? We could try to compute cross-boundary

derivatives to derive formulas for the location of the control points Rij k , i r O, but
since, in general, the domain triangles need not line up with the coordinate axes, this
computation is not so simple as the tensor product case. There is, however, a more
straightforward way to proceed based on subdivision. If we apply de Casteljau's tet-
rahedral algorithm to the patch P(s,t) at the point Q3, then, since this algorithm is
also a subdivision procedure, one of the triangular faces of the tetrahedron gives the
control points for the surface P(s,t) on the domain AQ1Q2Q3. Now this triangular
patch certainly matches the original patch P(s,t) smoothly, since it is the identical
polynomial extended to the domain AQ1Q2Q3. But it is easy to show using our
derivative algorithm that the first r partial derivatives and hence too the first r cross-
boundary derivatives along the boundary i = 0 depend only on the control points Rij k,

0 < i _< r (see Exercise 22). Thus we need only choose these control points to match
the control points derived from the subdivision algorithm, and we will generate a
surface that meets the original surface smoothly with r common derivatives across
the common boundary; no derivative computations are ever required. This trick is

2 8 4 CHAPTER 5 Bezier Approximation and Pascal's Triangle

= R030

Figure 5.46 Control points for two triangular cubic Bezier patches meeting across their common bound-
ary with continuity of the first cross-boundary derivative: the domain is depicted on the left
and the range is on the right. Shaded triangles sharing a common edge must be coplanar. In
fact, Rio 2 = B1Poo 3 + B2P012 + B3Plo 2, where B1,B2,B 3 are the barycentric coordinates of Q3
with respect to the domain triangle AQ1Q2Q 3. Similar identities must hold for the control
points R111 and R120.

essentially the same device we employed to match two Bezier curves smoothly at a

common boundary point (see Section 5.6.2). We illustrate this result for continuity

of the first cross-boundary derivative in Figure 5.46.

There is another way to construct triangular Bezier patches that is quite similar
in design to the de Casteljau algorithm for tensor product Bezier patches. Let {~jk}
be a triangular array of control points. For i - 0 n, define Pi(t) to be the Bezier
curve of degree n - i for the control points ei ,o ,n- i Pi,n-i,O. That is, set

n-i
Pi(t) = ~ B~ -i (t)ei k n k i

k=0

Now define a point on the surface P(s,t) to be the value of the degree n Bezier curve
P(s) for the control points Po(t) Pn(t) (see Figure 5.47). That is, set

12
e (s , t) - ~_~ B n (s)Pi(t) 0 < s,t < 1.

i=0

It is easy to verify that along the parameter lines s = 0, t = 0, t = 1 this surface
interpolates the Bezier curves defined by the boundary control points. Indeed

12 12

P(O,t) - ~_~ B n (O)Pi (t) - Po(t) - Z B~ (t)Po,k,n_ k
i=O k=O

n t2

P(s,O) = ZBn(s)Pi (O)= ZBn(s)ei ,o,n_i
i=0 i=o

(i - O)

(j - 0)

n n

P(s,1) - Z Bn (s)Pi(1) - Z Bn (s)Pi,n-i,O �9
i=0 i=0

(k-O).

5.8 Bezier Surfaces 2 8 5

P300 = P3(t)

p 2 (t) ~
P201 ~ f / ~-P210

l I p(s't) .P120

PlO2

Poo3 ~ - - - _ ~ Po3o

Po(t) /

PO12 1" P021

Figure 5.47 A schematic construction for a three-sided Bezier patch P(s,t).

Moreover, along the boundary s = 1, the surface collapses to the point Pn(t) = PnO0"
Thus we have constructed a three-sided patch with the same boundaries as the trian-
gular Bezier patch generated by de Casteljau's tetrahedral algorithm. But is this new
triangular surface really the same as our original triangular Bezier patch?

Yes and no! Point for point it is the same surface, but not parameter for parame-
ter. That is, this construction generates the same triangular surface, but with a differ-
ent parametrization. By the way, the analogous construction fails for triangular
Lagrange patches; see Section 2.12, Exercise 8.

The original triangular patch is parametrized by

/ ' /

T(s,t) = Ei+j+k=n(~.k)sitJ(1 - s - t) k Pijk = E (n)siEj+k=n-i(n-ft)tJ(1- s - t) k Pijk"
i=0

Multiplying and dividing the ith term by (1 - s) n - i , we can rewrite this parametriza-
tion as

n (l_~s lJ (l_s_ t)n - i - J T(s,t) - E (n) si (1 - s)n-iEj+k=n_i(n-fi) Pij'k"
i=0 1- s

Now if we let u = t/(1 - s), then 1 - u - (1 - s - t)/(1 - s) and

n

T(s,t) - E (7) Si (1 - S) n-i Ej+k=n_i(n-f i)u j (1 - u) n-i-j Pijk"
i=0

286 C H A P T E R 5 Bezier Approximation and Pascal's Triangle

Setting Pi(u) = Zj+k=n_i(n-f i)u j (1 - u) n-i-j Pijk, we arrive at

n

T(s,t)= EBn(s)Pi(u).
i=0

(5.39)

By construction, the curve Pi(u) is the Bezier curve with control points
ei,o,n-i ei,n-i,O. Thus the triangular patch T(s,t) generated by de Casteljau's tetra-
hedral algorithm is point for point the same as the patch depicted schematically in
Figure 5.47. But the parametrization is different, since in the surface P(s,t), we set
u = t rather than u = t/(1 - s). In fact, our new construction for the triangular patch
P(s,t) is really a tensor product construction, since the domain is not the triangle, but
the unit square. The transformation s = s, u = t / (1 - s) maps the canonical triangle
into the unit square, although there is a singularity along the edge s = 1. This singu-
larity shows up on the surface as a singularity at the point PnO0. This surface singu-
larity is not essential; it is an artifact of our artificial tensor product parametrization.

Algorithmically, we can apply Equation (5.39) to compute points along a trian-
gular Bezier surface using only the univariate version of de Casteljau's algorithm
(see Figure 5.48). Notice how similar this algorithm is to the algorithm for comput-
ing points along a tensor product surface (see Figure 5.40). Indeed, we could make
this algorithm look exactly the same as the de Casteljau algorithm for tensor product
Bezier surfaces by degree raising the curves Pi(u).

Both the de Casteljau algorithm and the pyramid algorithm are O(n3). Neverthe-
less, the triangular version of the de Casteljau algorithm is generally faster than the
pyramid algorithm. The triangular de Casteljau algorithm has

n(n + 1)/2 + ~,kk(k + 1)/2

T(s,t)

,_s,J l_s,J
J J

Po(~) Pl(u)

* * PIO1 PllO

/ N / N
Poo2 Po~l Po2o

P 2 (") = e2oo

Figure 5.48 A tensor product algorithm for computing points along a quadratic triangular Bezier patch.
Here u = t / (1 - s). If u = t, this triangular version of the de Casteljau algorithm generates the same surface as
the pyramid algorithm, but with a different parametrization. Compare to Figure 5.40.

5.8 Bezier Surfaces 2 87

nodes, and each node requires two multiplications. Therefore, this de Casteljau algo-
rithm requires a total of n(n + 1) + ~kk(k + 1) multiplies. But by Exercise 9

nrk+l n (n+l) (n+2)
Z ~ , 2) =

k=l 6

Therefore,

number of multiplications in the triangular de Casteljau algorithm = n(n + 1)(n + 5).
3

tk+l On the other hand, the tetrahedral algorithm has ~k ~, 2) nodes, and each node
requires three multiplications. Therefore,

number of multiplications in the tetrahedral algorithm = n(n + 1)(n + 2).
2

Since (n + 5)/3 < (n + 2)/2 for n > 4, the triangular de Casteljau algorithm is
generally faster than the tetrahedral algorithm, although for the most common trian-
gular surfaces, namely, cubic patches, n = 3 and the tetrahedral algorithm is slightly
faster. Near s = 1 the triangular de Casteljau algorithm is unstable, but we can over-
come this problem by reversing the roles of s and t near s = 1.

Moreover, just like the tensor product de Casteljau algorithm for rectangular
patches, the triangular de Casteljau algorithm for triangular patches has another
advantage over the pyramid algorithm that is even more substantial. If we render the
surfaces by generating points on the surface along isoparameter l ines~that is, along
lines of constant u~ then we can reuse the computation of the points Po(u) Pn (u).
Thus along isoparameter lines, de Casteljau's algorithm for triangular Bezier sur-
faces reduces to the univariate version of de Casteljau's algorithm, which is only
O(n2). No such reduction occurs for the pyramid algorithm for triangular patches
along isoparameter lines.

Finally, notice that we can differentiate the triangular de Casteljau algorithm q
times in t by differentiating any q levels (the u levels) in each of the n lower triangles
(see Figure 5.48) and multiplying the result by n! / (n -q) ! . That this algorithm
works is an immediate consequence of the corresponding differentiation algorithm
for Bezier curves discussed in Section 5.6.2. We cannot, however, differentiate this
algorithm p times with respect to s by differentiating p levels of the upper triangle
because u = t / (1- s), so s appears as well in the lower triangles. To get around this
problem, we can, if we like, simply reverse the roles of s and t.

Exercises

1. Prove that there are (gk) = n!/i!ilk! paths between the apex and the point
Pijk at the base of a tetrahedron with n levels.

2. Prove that

a. Zi+j+k=nBijnk(s,t)= 1.

b. Zi+j+k=n(-1)i+J Bijk(S,t) = (1 - 2 s - s t) n.

288 C H A P Y E R 5 Bezier Approximation and Pascal's Triangle

c. Every triangular Bezier patch lies in the convex hull of its control points.
(Hint: Use part (a).)

3. What are the up and down recurrences for the bivariate Bernstein basis
functions?

4. a. Prove that the bivariate Bernstein basis functions {B~k(S,t)} form a basis
for the bivariate polynomials of degree n.

b. Conclude that triangular Bezier patches are nondegenerate.

(Hint: Consider Bijnk (s,t) /(1 - s - t) n .)

5. Give necessary and sufficient conditions on the control points for a triangu-
lar Bezier surface to collapse to

a. a single point

b. a line

c. a plane

Justify your answer.

6. Let P(s,t) be a triangular Bezier patch with control points{Pijk},
i+j+k=n.

a. Develop an algorithm to determine whether or not P(s,t) represents a
polynomial patch of degree n - 1.

b. If P(s,t) degenerates to a polynomial surface of degree n - 1, develop an
algorithm to find the control points { Qa/3~,}, a +/3 + ~'= n - 1, that repre-
sent P(s,t) as a Bezier surface of degree n - 1 from the control points
{P/jk}, i + j + k = n, that represent P(s,t) as a Bezier surface of degree n.
(Hint: Compare to Section 5.6.2, Exercise 10.)

7. Let {Pijk} be the triangular array of points generated from the de Casteljau
algorithm for Bezier curves applied to the control points Qh, h = 0 n, at
some fixed parameter t. What is the triangular Bezier patch generated by
the tetrahedral de Casteljau algorithm applied to the control points {Pijk}?

8. Let B[Pij k](s,t) denote the triangular Bezier patch with control points {Pijk }"
Show that triangular Bezier patches have the following symmetry properties:

a. B[Pji k] (s , t) - B[Pij k] (t , s)

b. B[Pikj](s,t) - B[Pijk](S,l- s - t)

c. B[Pkj i](s,t) - B[Pij k](1 - s - t,t)

9. Prove by induction that

a. n~k+l n (n + l) (n + 2)
Z~,2) -

k=l 6

b~ ~ tp+k ~n+p+l
k=l~P+l) - ~ p+2)

5.8 Bezier Surfaces 289

10. Show that

a. sBi jk (S , t) - i + 1 Bn+l
n + 1 i+l,j,kl, S,t)

b. tB~k(S , t) - j + 1 o n + l (s , t)
n + 1 ~

k + 1
c. (1 - s - t) B ~ k (S , t) - Dn+l

n + 1Di'j'k+l (s,t)

d. Bijnk(S,t) - i + 1 Bn+l j + 1 o n + l k + 1 o n + l
n + l i+l'j'k(S't)+ ~ ~

n + l n + l

e. Conclude that for triangular Bezier patches the degree-elevation formula
is

i j k
Qijk - ~ P i - l , j , k + P i , j - l , k + ~ P i , j , k - l "

n + l n + l n + l

11. Prove that the control polyhedron generated by the degree-elevation for-
mula in Exercise 10 converges to the original triangular Bezier patch.

12. Use a three-color urn model and sampling with replacement to derive the
following identities using probabitistic arguments:

j k
a. Bijk(SU, S v + t) - E E Bi,j_q,k_r(u,P v)Bpqr(S,t)

q=0r=0

i k
b. Bijnk(tU + s, tv) = ~ ~ Bi_p,j,k_r(U v)Bpqr(S,t)

p=0 r=0

j i
c. Bijnk((1- s - t)u + s,(1- s - t)v + t) - E E Bri-p,j-q,k (u,v)Bpqr(S,t)

q=0 p=0

d. Use these identities to prove that the triangular arrays along the three lat-
eral faces of the tetrahedral de Casteljau algorithm are the control points
for the three surface patches that subdivide the triangular Bezier surface
at T(s , t) .

13. Implement the de Casteljau subdivision algorithm for triangular Bezier
patches described in Exercise 12.

a. Explain why this subdivision algorithm is not an effective tool for ren-
dering triangular Bezier patches. (For a more effective tetrahedral subdi-
vision algorithm, see Section 6.5.1, Exercise 15.)

b. Does this subdivision algorithm converge to the original triangular Bez-
ier patch?

14. Describe how to use the tensor product construction for a triangular Bezier
patch to subdivide the patch. Explain why this subdivision procedure is
superior to the subdivision procedure generated from the pyramid algo-
rithm.

290 CHAPTER 5 Bezier Approximation and Pascal's Triangle

15. Implement the recursive subdivision algorithm for triangular Bezier patches
described in Exercise 14. Apply this algorithm to

a. render a triangular Bezier patch

b. intersect two triangular Bezier patches

~9P+qT
16. Let T(s,t)= Zi+j+k=nBijnk(s,t)Pijk, and let T(P'q)(s,t)-

~sP~t q

a. Show that

T(I'0)(0, 0) = n(P1,0,n-1 - POOn) and T(0'I)(0, 0) - n(Po,l,n-1 -POOn)"

b. Conclude that the normal vector at T(0,0) is parallel to the vector

(e0,1,n-1 - eoon) x (el,0,n-1 - eoon)"

c. Find the normal vectors at T(0,1) and T(1,0).

17. Define the convolution of two triply indexed arrays of functions
A(s,t) = {Aijk(S,t) } and B(s,t)= {Bpqr(S,t) } by setting

(A | B)aflT(s,t) = ~i+p=a]~j+q=fl~k+r=?,Aijk(S,t)Bpqr(S,t).

Now introduce the following indexing scheme:

Function Index

s (1,0,0)

t (0,1,0)

1 - s - t (0 , 0 , 1)

B~k (s, t) (i,j,k)

a. Show that with this indexing scheme

lls' ;lO (is, ;I
J

Y

n factors
b. Use part (a) to derive the differentiation procedure for the pyramid algo-

rithm presented in the text.

18. Implement both de Casteljau's algorithm and the pyramid algorithm for tri-
angular Bezier surfaces. Which algorithm do you prefer? Why? Experiment
with triangular Bezier surfaces of different degrees. Determine how chang-
ing the location of the control points affects the shape of the surface.

19. Develop an O(n 2) ladder evaluation algorithm for triangular Bezier patches.

20. Consider a degree n triangular Bezier patch T(s,t) with control points {Pijk },
i + j + k = n .

5.8 Bezier Surfaces 2 9]

a. Show that the curve corresponding to the boundary t = 0 is given by the
degree n Bezier curve for the boundary control points {P/jk } with j - O.

b. Show that the curve corresponding to the boundary s + t = 1 is given by
the degree n Bezier curve for the boundary control points {P,ik} with
k=O.

21. Show directly from de Casteljau's tetrahedral algorithm that the boundaries
of a triangular Bezier patch are the Bezier curves determined by the bound-
ary control points.

22. Let P(s , t) be a triangular Bezier patch with control points {Pijk }. Show that
the first r partial derivatives across the boundary i = 0 depend only on the
control points Pijk , 0 < i < r .

23. Show that

a. = n~ i _ l , j , k (S , t) - i , j ,k-1
as

b. ~Bij k f Bn -1 n-1
- Bi , j ,k_ 1 t)} ~t - n~ i , j _ l , k (S , t) - (s,

c. Conclude that the function Bi jk (s , t) is unimodal in (s,t) and takes on its
maximum value at (i / n, j / n).

d. Prove the recurrence

Bijk (S,t) _ n-1 Bn -1 n-1 n sBi_l , j , k (t) + t i , j - l , k (t) + (1 - s - t)B i , j , k_ 1 (t) .

e. Conclude that the functions {Bi jk(s , t) } are unimodal in (i , j ,k).

24. Let A 2 = {(s,t) I 0 _ s , t and s + t _< 1}. Using the results in Exercise 23(a)
and (b), show that

1 D . n. (or, T) d crd r
o~J~ (n + 1)(n + 2)"

25. Let

T (s , t) - Y_.i+j+k=nBijk(S,t)Pij.k

be a triangular Bezier patch of degree n, and let

Tlno01 (s, t), T(~{-O 1 (s, t), T(~6-11 (s, t)

denote the three values computed by the pyramid algorithm on the penulti-
mate level just below the apex of the pyramid. Show that

a. T (s , t) - STlno01 (s , t) + tT(~lO 1 (s , t) + (1 - s - t) T (~ 1 (s , t)

~ T
b.

bs

bT
C.

bt

292 CHAPTER 5 Bezier Approximation and Pascal's Triangle

d. Conclude that to compute point values and normal vectors at any point
on a triangular Bezier patch of degree n by the pyramid algorithm costs

n(n+l)(n+2)
+2

2

multiplications and one cross product.

e. How does the result in part (d) compare to computing point values and
normal vectors at any point using the triangular version of the de Castel-
jau algorithm?

26. Show that
n-i

- B n . �9 . (s , t) a. Bn(s) Z l,J,n-l-J
j=0

n- j
b. B j (t)= 2 n Bi, j ,n-i- j (s , t)

i = 0

m+n m+i-j (P)(q](m+n-p-q
, 'm- i+j-q) tlm+n (S,t) m n

C. B i (s)Bj (t) = Z ~ (m+n "-'pqr
p=i q=j , n)

d. Conclude that every tensor product surface of bidegree (m,n) can be rep-
resented as a triangular Bezier patch of degree m + n.

27. Show that

a. ~i+j+k=nBijnk(s,t)xi y j = { (1 - s - t) + sx + ty) } n

b. ~,i+j+k=nBijk(S,t)eiXe jy = { (1 - s - t) + se x + te y) }n

28. Show that
n

a. Bijk(S,t)= ~ n~(-1)i+j+P+q(P)(q)(pqr)sPtq
p=i q=j

n n-p
b. (g.k)sit j = ~., ~., (P)(~)Bpqr(S,t)

p=iq=j

29. Show that

O < i + j < n

n n-i
(sx +ty+ l)n = Z 2 (x + l) i (y+ l)JBijk (s't)"

i=0 j=0

30. Show by example that the number of intersections of a line with a triangular
Bezier patch can be greater than the number of intersections of the line with
its control polyhedron. Conclude that triangular Bezier patches do not sat-
isfy this version of the variation diminishing property.

5.8.3 Rational Bezier Patches

5.8 Bezier Surfaces 2 9 3

When we studied Lagrange interpolation, we observed that many common surfaces
such as the sphere and the torus cannot be represented exactly by polynomial param-
etrizations. As with nonpolynomial curves, we could approximate these surfaces
with polynomials using a bivariate version of the Weierstrass Approximation Theo-
rem. Unfortunately, as with curves, often we would need to use polynomials of quite
high degree to generate a good approximation.

The sphere, however, like the circle, has a rational parametrization; in fact, we
observed in Chapter 2 that the sphere has different rational parametrizations, and we
explicitly provided two distinct parametrizations.

�9 Quadratic parametrization of the sphere

2s 2t 1 - s 2 - t 2
x - 1 + s 2 + t 2 Y - 1 + s2 + t2 z - 1 + s2 + t2 (2 .27)

Biquadratic parametrization of the sphere

2s(1 - t 2) 2t(1 + s 2) (1 - s 2)(1 - t 2) (2.28)
x - y - z -

(1 + s 2)(1 + t 2) (1 + s 2)(1 + t 2) (1 + s 2)(1 + t 2)

Thus we need to introduce the notion of a rational Bezier surface to represent the
sphere exactly.

A rational Bezier surface in affine space, like a rational Bezier curve, is the pro-
jection of a polynomial Bezier surface from Grassmann space. Thus rational Bezier
patches can be introduced by associating a scalar weight wij (or wijk) with each con-
trol point P6 (or P6k)" This approach leads to the following explicit formulas for
rational triangular and rational tensor product Bezier patches.

�9 Rational triangular Bezier representation

Z WijkPijkBijnk (s't)

R(s,t) - i+j+k=n 0 < s,t and s + t < 1 (5.4o)
Z WijkBijnk (s't)

i+j+k=n

Rational tensor product Bezier representation

m /7

Z w fktB ' (s)Bf (t)
R(s,t) = k=01=0

m /7

wktB ' (s)Bp (t)
k=01=0

0 < s,t < 1 (5.41)

For example, we can represent the sphere in rational tensor product Bezier form
by considering the biquadratic parametrization given in Equation (2.28). To find the
weights, we express the denominator (the mass) in terms of the Bernstein basis by
observing that

294 CHAPTER 5 Bezier Approximation and Pascal's Triangle

(1 + s2)(1 + t 2) = (B~(s)+ B?(s)+ 2B~(s))(B~)(t)+ B?(t)+ 2B2 (t))

2 2
: z zw,j~?(s>~J(,> .

i=o j=0

Comparing coefficients, we can read off the weights

/i 1 i/ wij= 1 "
2

Similarly, to find the control points, we must express the numerators of x,y,z in
terms of the bivariate Bemstein basis. To find the x-coordinates of the control points,
observe that

2s(1- t 2) - (B2(s)+ 2B2(s))(B2(t)+ B2(t))
SO

/i ~ ~ (w ~ i e i i) ~ = 1

2

Similarly,

2t(1 +s 2) - (B? (t)+ 2B2(t))(B~(s)+ B?(s)+ 2B2(s))

SO

Finally,

0 1 2

(wijPij)Y- 0 1 2
0 2 4

~ - s ~ o - , ~ - (.~ ~s~ + .~ ~s~)(.~ ~,~ + .~ ~,~)
SO

/110 ~ (w ~ i P i j) z - 1 .

0

Now using the weights computed above, we can easily solve for the coordinates of
the control points.

As with rational Bezier curves, typically all the weights are chosen to be positive to
avoid singularities, but zero and negative weights are permitted and sometimes, as we

5.8 Bezier Surfaces 295

have seen with curves, are even necessary to represent certain surface patches exactly.
Like rational Bezier curves, the effect of increasing the weights on a rational Bezier sur-
face is rather benign. Negative weights, however, may introduce singularities even if we
restrict the parameter domain, so negative weights are generally avoided.

Rational Bezier surfaces with positive weights share many of the geometric
properties of standard Bezier surfaces. They are affine invariant, nondegenerate, lie
in the convex hull of their control points, and interpolate the rational boundary
curves determined by their boundary control points. These results follow easily from
Equations (5.40) and (5.41).

Typically algorithms for polynomial Bezier patches carry over directly to algo-
rithms for rational Bezier patches because generally we can apply these algorithms
separately to the numerator and denominator. For example, we can evaluate points
along a rational Bezier patch by applying the pyramid algorithm independently to
the numerator and denominator. Similarly, change of basis algorithms can be applied
separately to the numerator and denominator. Therefore, the algorithms for degree
elevation and subdivision can be computed by applying these algorithms on the
mass-points (wijPij,wij) {(WijkPijk,Wijk)} and then dividing the results by the masses.
One algorithm that cannot be applied in this way is the algorithm for differentiating a
Bezier surface because the derivative of a quotient is not equal to the quotient of the
derivatives, so here we must proceed recursively in a manner similar to our approach
in Section 5.7.1 for differentiating rational Bezier curves.

Exercises

1. What is the effect on a rational Bezier surface if one of the mass-points has
zero weight?

2. Experiment with altering the weights in a rational Bezier surface.

a. What are the local and global effects of altering a single weight?

b. What is the effect of a negative weight?

c. What happens if all the weights are changed simultaneously?

3. a. Which part of the sphere does the Bezier representation given in the text
represent?

b. Use the results in the text together with de Casteljau's algorithm to render
the sphere.

4. a. Find the Bezier control points and the Bezier weights for the sphere
given by the quadratic parametrization in Equation (2.27).

b. Which part of the sphere does this Bezier patch represent?

c. Use the results of part (a) together with the pyramid algorithm to render
the sphere.

5. Recall from Section 2.14, Exercise 5, that the torus with inner radius d - a
and outer radius d + a has the biquadratic parametrization

296 CHAPTER 5 Bezier Approximation and Pascal's Triangle

d(1 + s 2)(1 - t 2) + a(1 - s 2)(1 - t 2)
X - -

(l + s 2) (l + t 2)

2d(1 + s 2)t + 2a(1- s 2)t
y -

(l + s 2) (l + t 2)

2as(1 + t 2)
Z - -

(l + s 2) (l + t 2)

a. Find the Bezier control points and the Bezier weights for the torus given
by this biquadratic parametrization.

b. Use the results of part (a) together with de Casteljau's algorithm to render
the torus.

6. Let x - f (s) , z - g(s) be a curve in the xz-plane. Recall from Section 2.14,
Exercise 6, that the surface of revolution generated by rotating this curve
around the z-axis can be represented by the parametric equations

(1- t z) f (s) 2tf(s) (1 + t2)g(s)
x - t2 , y = t2 z = 2 " 1+ 1+ l + t

a. Use this parametrization for a surface of revolution to generate rational
s

parametrizations for the right circular cylinder and right circular cone by
rotating a line about the z-axis.

i. Find the triangular Bezier control points and the Bezier weights for
the cylinder and cone given by these parametrizations.

ii. Use the results of part (i) together with the pyramid algorithm for tri-
angular Bezier patches to render the right circular cylinder and right
circular cone.

b. Use this parametrization for a surface of revolution to generate rational
parametrizations for the sphere and the torus by rotating a circle about
the z-axis.

i. Find the triangular Bezier control points and the Bezier weights for
the sphere and the torus given by these parametrizations.

ii. Use the results of part (i) together with the pyramid algorithm for tri-
angular Bezier patches to render the sphere and the torus.

7. Let R(s,t) be a rational Bezier surface (triangular or rectangular) with con-
trol points (whPh,wh). Let Wg increase and hold w h fixed for h ~ g.

a. Show that l i m w g ~ R (s , t) = R(s,t) if (s,t) is a comer point of the domain.

b. Show that l imwg~,R(s , t) = Pg if (s,t) is not a comer point of the domain.

c. Conclude that the limit surface is a disconnected collection of points.

d. What does the limit surface look like if several weights are allowed to
increase simultaneously?

5.9 Summary 297

5.9

8. Let Bg(s,t), g ~ G, be a collection of Bernstein basis functions, either trian-
gular or rectangular, and let {Wg }, g ~ G, be a collection of nonzero scalar
weights. Define

wgBg(s,t)
Rg(s,t)- EWhBh(S,t)

h~G

, g ~ G .

Show that these functions behave like rational Bernstein basis functions. In
particular, show that

a. EgeGRg(s,t)= l

b. R(s, t)- Eg~GRg(s,t)Pg

9. Let R(s,t) be a rational Bezier surface (triangular or rectangular) with con-
trol points (WhPh, Wh). What is the effect on the surface if the weight woo
(Woo n) is zero and the corresponding control vector is also the zero vector?
(Hint: Compare to Section 5.7, Exercise 15.)

10. Let R(s,t) be a rational Bezier surface with control points (WhPh,Wh).
Define

P(s,t) - ~-~h Bf (s,t)WhP h and w(s,t) - ~-~h B~ (s,t)Wh, so that R(s,t) =

Prove that

• f P(s,t)dsdt
domain

~ w(s, t)dsdt
domain

= center mass of { (WhPh,W h) }.

P(s,t)
w(s,t)

Summary

Bernstein/Bezier approximation is an extremely rich theory, which can be approached
from many different analytic perspectives: dynamic programming procedures (the de
Casteljau algorithm), Bernstein basis functions (explicit expressions and recursive
formulas), the binomial theorem (generating functions), probability theory (the bino-
mial distribution), conversion to monomial form (division by (1 - t)n), and discrete
convolution. Geometric constructions like subdivision also lead to rich and often
unexpected results, including the variation diminishing property (comer cutting), ren-
dering and intersection algorithms (divide and conquer), and methods for smoothly
joining together Bezier curves and surfaces (extrapolation).

Although any one of these techniques may be powerful enough to develop the
entire Bernstein/Bezier canon, we have purposely avoided consistently adopting any
one particular method in order not to impoverish the theory. Rather, in each instance
we have tried to select the specific approach most suitable to the problem at hand.
Each of these techniques may be a jumping-off point for a new class of curves and
surfaces and a new line of investigation. Certain formulas~such as the two-term

298 s H A P T E R 5 Bezier Approximation and Pascal's Triangle

degree elevation formula (Polya polynomials, Section 5.5.4.2, Exercise 12) and the
two-term differentiation formula (B-splines, Chapter 7)--can also be taken as the
starting points for the constructions of new approximation schemes.

In the next chapter we shall introduce yet another powerful approach to the anal-
ysis of Bernstein/Bezier curves and surfaces: dual functionals, embodied by blos-
soming or polar forms. At first, this very richness of the theory may seem
overwhelming, but it is well to keep in mind when approaching new problems that a
variety of attacks are possible and there are many weapons in our arsenal. Below we
summarize these analysis techniques, collect in one place the standard properties of
and algorithms for Bezier curves and surfaces, and then list as well a collection of
useful identities for the univariate and bivariate Bernstein basis functions.

�9 Tools for Analyzing Bezier Curves and Surfaces

1. De Casteljau algorithm

�9 Pascal's triangle and paths arguments

�9 Induction + recursion

2. Bernstein basis functions

�9 Properties of Bemstein polynomials ~ properties of Bezier curves
and surfaces

3. Binomial theorem

�9 Generating functions

4. Binomial distribution

�9 Probability theory

5. Conversion to monomial basis

�9 Divide by (l - t) n

6. Subdivision

�9 Divide and conquer

�9 Rendering and intersection algorithms

7. Discrete convolution

�9 Commutativity

�9 Differentiation

8. Dual Functionals

�9 Blossoming (Chapter 6)

Properties of Bezier Curves and Surfaces

1. Polynomial

2. Affine invariant

3. Convex hull

4. Symmetry

5. Interpolation at boundaries

5.9 Summary 299

6. Nondegenerate

7. Variation diminishing (curves only)

Algori thms for Bezier Curves and Surfaces

1. Evaluation

2. Subdivision

3. Differentiation

4. Conversion to and from monomial form

5. Degree elevation

6. Blossoming (Chapter 6)

5.9.1 Identities for the Bernstein Basis Functions

1. Definitions

a. Bf (t) - (~)t k (1 - t) n-k

n!
-

k!(n-k)!

b. Bij~(s, t) - (g k) ~ i t J (1 - s - t) ~

n!
(gk) - i! j! k---~.

2. Nonnegativity

a. B~ (t) > O O < t < l

b. Bijnk(s,t) > 0

3. Symmetries

a. B~ (t) = Bnn_k (1 - t)

b. Bijnk (s,t) - Bjn.k (t,s)

c. Bijnk(s,t) - B ~ j (s , 1 - s - t)

d. Bijnk(s,t) = B~.i(1- s - t,t)

O < k < n

i + j + k = n

O < s , t and s + t < l

1 300 C H A P T E R 5 Bezier Approximat ion and Pascal 's Triangle

4. C o m e r values

a. B (0)=0 k

= 1 k - 0

b. B ~ (1) = 0 k e n

= 1 k - n

C. Bijnk (O, O) = 0 k g: n

= 1 k = n

d. Bijnk (1, O) - 0 i :/: n

= 1 i - n

e. B/~k(0,1) - 0 j r n

= 1 j = n

5. Bounda ry values

a. Bijnk (S, O) = 0 j :/: 0

= Bn(s) j = 0

b. t) - 0 i r

= B](t) i = 0

n c. Bi jk(S,1- s) = 0 k :/: 0

8n (s) k - 0

6. M a x i m u m values

a. Max{B~r (t) } occurs at t = k / n

b. Max{B/~ k (s, t) } occurs at s = i / n, t - j / n

7. Parti t ions of uni ty

n

a. ~ , B ~ (t) = 1
k=0

b. ~,i+j+k=n Bijnk(s,t) = 1

8. Al ternat ing sums

n k
a. E (- 1) B~(t) - (1 - 2t) n

k=0

b. ~,i+j+k=n(-1) i+j Bijnk(s,t) = (1 - 2 s - st) n

5.9 Summary 3 0 1

9. Representation of monomials

n k n
a. (~)t j = Z (j)Bk (t)

k=j

n n - p n
b. (q k) S i t j = ~. ~. (P) (q) B p q r (S , t)

p=i q = j

10. Representation in terms of monomials
n

a. B~.(t) = E(-1)J-k(J~)(j)t j
j=k

n n-p
b. Bijk(S,t) Z Z (-1)i+j+p+q(p q n n _)(j)(pqr)sPt q

p=i q=j

11. Conversion to monomial form

O < j < n

O < i + j < n

?l

a. Bk(t) =(~)uk

(l - t) n

b. B f (t) _ (n)un_ k
- k t n

c. B i~(s , t) _ (n
(l _ s _ t)n iJ k)ui vj

d. Bijk(S't)
s ~ = (~k) u~vJ

e. B~ k(s ' t) _ (n
tn - ijk)uiv k

12. Linear independence

n

U - -

U - -

1 - t

1 - t

1 - s - t 1 - s - t

U --

s
U - -

t

1 - s - t t

s s

, V - -

1 - s - t

a. Z CkB ~(t) = O r c k = O for all k
k = 0

b. ~,i+j+k=nCijkBqk(S,t) = 0 r C6k - 0 for all i , j , k

13. Descartes' Law of Signs

a. Zeros in (0,1) kB~(t) < sign alternations Ic 0 Cn}

b. No known analogous formula exists for bivariate Bemstein bases.

302 CHAPTER 5 Bezier Approx imat ion and Pascal ' s Triangle

14. G e n e r a t i n g f u n c t i o n s

/7

a. ~_~ B~ (t)x k = {(1 - t) + tx) }n

k=O

n

b. ~_~ B~ (t)e ky - { (1 - t) + te y) }n
k=O

C. Z i + j + k = n Bij nk (s ' t)x i y j = { (1 - s - t) + sx + ty) }n

d. ~_~i+j+k=nBijnk(s,t)eiXe jy - { (1 - s - t) + se x + te y) }n

15. R e c u r s i o n

a. B~ (t) = tB~-~ (t) + (1 - t)B~ -1 (t)

b. Bijk(S,t) - n-1 tBn-1 t~Bn-1 n sBi_l,j, k (s,t) + , i , j - l ,k (s,t) + (1 - s -) i,j,k-1 (s,t)

16. D i sc r e t e c o n v o l u t i o n

a. {B n (t) B n (t) } = { (1 - t),t} | | { (1 - t),t}

1 - s - t

S

17. U n i m o d a l i t y

n factors

�9 . (1 - s - t

;I
n factors

a. B(k , t) = B~ (t) is u n i m o d a l in k

b. B (i , j , k , t) = Bijnk(s,t) is u n i m o d a l in i,j,k

5.9 Summary 303

18. Subdivision

n

a. B n (rt) - 2 Bi k (r)B~ (t)
k=i

i
- Bn-k (r)B~(t) b. B n ((1- t)r + t) ~. i -k

k=O n{ }
c. B n ((1 - t)r + ts) - ~, ~-,p+q=i Bp -k (r)Bkq (s) B~ (t)

k=O
j k

d. Bijnk(su, sv + t) = ~, ~., BiPj_q,k_r(.,U)Bpqr(S,t)
q=O r=O

i k
e. Bijk(tU + s, tv) - 2 ~, Bq_p,j,k_r(U,V)Bpqr(S,t)

p=O r=O

j i
f. B i j n k ((1 - s - t) u + s , (1 - s t) v + t) - ~, ~, r - Bi_p,j_q, k (u, v)Bpq r (s,t)

q=O p=O

g. Bijk((1 - s - t)u 1 + sv 1 + tWl,(1- s - t)u 2 + sv 2 + tw2)

Ep+q+r:n A(Ul,U2, Vl, v2, Wl, w2)Bpqr (s,t)

A(Ul,U2,Vl,V2,Wl,W2)

- ~,a+b+e=i ~,b+d+f=j Babc (Ul, u2)Bffef (Vl, v2)Bqhl(Wl, w2)

19. Partial derivatives

a -

dt
p n b. d Bk n! P

- Z (- 1) p - j (p ~ - P -)Bk_ j (t)
dt p (n - p)! j=o

asg~ nr, Bn_ 1 ~-1 c. - (s , t) (s , t)s - [i-l , j ,k - Bi,j,k_ 1 t)}

d. OBij k nIBn-li n-1
= Bi,j,k_ 1 (s, t)} Ot [i '~ - l ' k (S ' t) -

e. ~P+q Bqk

OsPOt q

n! P q
= Z Z (-1) p+q+a+fl(paatq a ~ n - p - q (S,t)

�9 J~flJL'i-ot,j-fl,k+a+fl-p-q (n - p - q)' a=Ofl=O

1304 CHAPTER 5 Bezier Approximation and Pascal's Triangle

20. Directional derivatives

a. Du{B~k(s,t)}

_ _ + B n - 1 . _ + n - 1 n{ulBn_-llj,k(S,t) u 2 i,j-l,kl, S,t) (u 1 u 2)Bi,j,k_ 1 (s,t)~ 1

b . D m ~ (s , t) =
k (n - m) !

{~a=Ofl=O~(-1)m-a-~(~y)uFufl2(Ul+U2)m-a-~Bin-a'J'-~'k-y(s't)}

D u denotes the mth directional derivative in the direction u = (u 1,u2).

21. Integrals
is 1 n+l

a. Bff ('c)dT - E R n + l (t) --j
n + 1 j=k+l

1 1
b. It B; (r)dT = ~ E'-'JRn+l (t)

n + l j=0

Bk (r)d~: = n + 1

i+k+l
Bn+l d. Bijk (~ ' t) d ~ = ~ E h,j,i +k+l-h(s't)

n + 1 h=i+l

f" Io- t B ijnk (cr' t) d cr = ~n +1 1 o jR n + l (t)

j+k+l
t n 1 Bn+l

g" IoBijk (s ' ' g) d ' C - ~ E i,h,j+k +l-h(s't)
n + l h=j+l

J
h. I~-SBijnk(s,T)dT : 1 ~ ' on+l

hJ~O~ -h (s't) n + l =

i. Io -s n Bijk(S,,c)d.c= 1 Bn+l(s)
n + l

1
J. IIA2 Bqk ((y,'c)d(ydT =

(n + 1)(n + 2)

i
1 ~ , B n + l

n + 1 hZ~ 0 h,j,i+k+l-h (s,t) ~ --t n
e. Bijk (cr, t)dcr -

5.9 Summary 305

22. Degree elevation

a. (1 - t)B~ (t) - n + l - k n+l
B k (t)

n + l

b. tB~ (t) - k + 1Dn+l (t)
~

n + l

on n + 1 - k on+l c. (t) (t) Ok + D k
n + l

k + l n+l
Bk+l (t)

n + l

d. SBgk(S,t) - i+ 1 Bn+l
n + 1 i+l,j,k(S,t)

e. tB; (s,t) - j + 1 on+l
n + 1 ~ (s,t)

f. (1 - s - t)Bijk(s,t) - k + 1 on+l
n + 1 "-'i,j,k+l (s,t)

g. Bijnk(S,t) _ i + 1 on+l J + 1Bn+l k + 1Bn+l
n + 1 ~ i ' j+l 'k(S' t)+ i'j 'k+l(S't)

n + l n + l

23. Products and higher-order degree elevation

a. B j (t)B~ (t) - (;)+(!----~) B m+n
j+k) j+k (t)

m n
m (j) (k) o m + n

b. B ~ (t) - E (m + n) ~ +k (t)
j=O j+k

C. Bijmk(s,t)Bpqr(S,t) - (ijmk)(pqr) B m+n m+n i+P,J+q,k+r (s't)
(i+p j+q k+r)

d. Bpqr(S,t) - Ei+j+k=m
(~jk)(pnqr)

(i+p m+n j+q k+r)

Rmwn
~

24. Marsden identities

a. (x - O n - ~ (-1)k (x)B~(t)
k=O (~) Bnn-k

n n-i
b. (sx + ty + 1) n - E E (x + 1) i (y + 1) j Bij k (s,t)

i=0 j=0
25. De Boor-Fix formulas

n (_ I) J + P (t)(p)
a. ~, .B n Bn_j(t) (n-P) - 6i j

p=O n!(n)

i n -p (i) (j) (n q)! :~p+qon ,p _ - P - u Oklm (O, O) b. E E
p=0 q=0 n! OsP~t q

- ik jt

13o6 CHAPTER 5 Bezier Approximation and Pascal's Triangle

26. Relationships between univariate and bivariate basis functions

a. Bn(s)= ~j+k=n_iBijnk(s,t)

b. B j (t)= ~i+k=n_jBijnk(s,t)

c. Bff (1 - s - t) = ~i+j=n-k Bijnk (s,t)

n n-p n)B p(s)B q d. Bijnk(s,t) = Z Z (-1)n-p-q(p q n-p-q (t)
p=i q=j

n n-p
e. B~k(su, tv) - ~ ~ B#(s)B](t)Bpqr(S,t)

p=i q=j
27. Conversion between bivariate and tensor product bases

m+n m+i-j (p)(q~(m+n-.p-q
, ,m-l+j-q) tim+n (s,t) a. B m (s)BJ (t) - 2 2 (m+n "-'pqr

p=i q=j , n)

I n)(h-i)(7 - q) b. Bgk(S,t)= ~ ~+i n~+j(-1)r (~r) (P)(q n-p

h=i l=j [p=i q=j (~)(~)
~S~(s)SF(t)

C H A P T E R 6

Blossoming

A good labeling scheme can provide a lot of information about an algorithm, but till
now we have avoided labeling the interior nodes in de Casteljau's algorithm. Here
we shall introduce a labeling scheme for these nodes suggested by a probabilistic
interpretation of the de Casteljau diagram. This labeling scheme will lead us to the
notion of blossoming, an extremely powerful technique for analyzing the properties
of Bezier curves and surfaces. Blossoming is a particularly effective tool for deriving
change of basis algorithms. In Sections 6.3 and 6.5 we will see that formulas for
degree elevation, subdivision, and conversion from monomial to Bezier form are
easily derived from blossoming. We shall also apply blossoming in Chapter 7 to
extend the de Casteljau algorithm to a more general evaluation procedure called the
de Boor algorithm and in this manner introduce B-spline curves and surfaces.

6.1 Blossoming the de Casteljau Algorithm

In Neville's algorithm for Lagrange interpolation there is a natural labeling scheme
for the nodes: the jth node on the kth level above the base is denoted by Pj...j+k(t),
since this polynomial interpolates the points Pj Pj+k at the nodes tj tj+ k (see Fig-
ure 2.5). Similarly in de Casteljau's algorithm for Bemstein approximation the poly-
nomial in the jth node on the kth level is the Bezier curve for the control points
Pj Pj+k (see Figure 5.3). Therefore, you might be inclined to label this curve as
Bj...j+k(t); that is, you might be inclined to use much the same indices as in Neville's
algorithm for the nodes in de Casteljau's algorithm.

But this notation for the nodes would not capture the functions along the edges
of the de Casteljau diagram. The labeling scheme for Neville's algorithm is compel-
ling because it captures both the control points and their associated parameter val-
ues; it tells us how to label the functions along the edges, and it tells us as well
exactly where we are in the diagram. We would like to introduce a labeling scheme
for the de Casteljau algorithm that captures these same properties.

307

3 0 8 C H APT E R 6 Blossoming

When we began our investigation of Bezier curves, we saw that de Casteljau's
algorithm is much simpler than Neville's algorithm because the functions along the
edges are all the same: (b - t) / (b - a) along all the left edges and (t - a) / (b - a)
along all the fight edges. One possible paradigm for labeling de Casteljau's algo-
rithm is a random walk: at each node you can proceed with some probability either
to the left (a) or to the fight (b). Remember that the Bemstein basis functions repre-
sent the binomial distribution, so there is a probabilistic flavor already inherent in
Bezier curves.

Let us consider then the de Casteljau diagram for a degree n Bezier curve from
this probabilistic point of view. Starting at the apex of the triangle, to arrive at the kth
position at the base you must make exactly n - k left turns and k fight turns. If we
think of the label along each arrow as the probability of proceeding left or fight, then
when t = a the probability of turning left is one and when t = b the probability of turn-
ing fight is one. Following this line of reasoning, we shall adopt the notation an-kb k to
denote n - k left turns and k fight turns or equivalently the kth position along the base
of the triangle.

What about nodes above the base? Suppose we arrive at some internal node by
making exactly j left turns and k fight turns; then we still have n - j - k choices to
make before arriving at the base of the triangle. At a left turn we set t = a and at a
fight turn we set t = b, but there are still n - j - k values of t that need to be decided.
Thus we shall denote this node by aJbktn-j-k; that is, for an internal node at the kth
position on the (n - j - k)th level above the base, we adopt the notation aJbktn-J -k. The
node at the apex of the triangle has the label t n, since no turns have yet occurred. This
notation tells us precisely where we are in the diagram, and it captures as well the
labels along the edges. We illustrate this labeling of the nodes for the case n = 3 in
Figure 6.1.

Notice that Figure 6.1 makes perfect sense if we interpret the values at the nodes
as real numbers. Indeed multiplying the linear interpolation identity

b - t t - a
t = a + ~ b

b - a b - a

by a ib j t k-1 yields the identity

- t - a aibJ+ltk_ 1 aibJtk = b t ai+lbJtk_ 1 + ~
b - a b - a

which is precisely the computation diagrammed in Figure 6.1.
But does it really make sense to adopt the notation aJbktn-J -k for a node at the

kth position on the (n - j - k) t h level? We argued above that at each turn we must set
t = a or t = b, so at the (n - j -k)th level above the base we still need to set t a total of
n - j - k more times. But how can t keep changing value? If we are serious about set-
ting some parameter to the value a or b depending on whether we turn fight or left in
the diagram, then shouldn't we be setting the value of a new parameter each time?
Let's then introduce n new variables u 1 u n, where u k appears in place of t on the
kth level of the diagram, and let's adopt the notation

aJbkul . . .Un_j_ k

6.1 Blossoming the de Casteljau Algorithm 3 0 9

m

att btt

/ /
aat abt bbt

/ / /
aaa aab abb bbb

Figure 6.1 The labeling of the nodes for a cubic Bezier curve suggested by a random walk in de Castel-
jau's diagram. Here we have written aaa for a 3, bbb for b 3, and so on for reasons that will
become clear in the next section.

UlU2U3
_ a

au 1 u 2 bu 1 u 2
b - u 2 / ~ N ~ b - u 2 / ~

aau 1 abu 1
b - u l / / -~a b - u , / / -~a

aaa aab

bbu 1

abb bbb
Figure 6.2 The labeling scheme introduced by replacing t with u k on the kth level of the de Casteljau

algorithm. The function that emerges at the apex of the triangle is the blossom of the Bezier
curve depicted in Figure 6.1. Observe the close connection to discrete convolution--compare
to Figure 5.29.

for a node at the kth position on the (n - j - k) t h level of this diagram. This conven-
tion generates the labeling scheme depicted in Figure 6.2.

Notice again that Figure 6.2 makes perfect sense if we interpret the values at the
nodes as multiplication of real numbers because

i 310 CHAPTER 6 Blossoming

b - u k u k - a aibJul...Uk - ~ a i + l b J u l . . . U k _ l + aibJ+lul...Uk_l
b - a b - a

which is precisely the computation diagrammed in Figure 6.2.
The function that emerges at the apex of this triangle is no longer a polynomial

in t; rather it is a function of n variables u 1 u n. If we place the control points
PO Pn of a Bezier curve P(t) at the base of the diagram, then the function of
u 1 u n that emerges at the apex is called the blossom of P(t) and is denoted by

p(u 1 Un).
The function p(u 1 u n) is symmetric in the variables u I u n, since the algo-

rithm represents discrete convolution and discrete convolution is commutative (see
Section 5.6.1). Indeed, let P = (P0 Pn); then

P(Ul u n) {(b - u l u l - a) | . . | U n - a) } = , . , �9 pT ,

b - a b - a b - a b - a

where the functions

Ul Un a /
b - a ' b - a b - a ' b - a

are the convolution basis functions, pT denotes the transpose of P, and �9 signifies
matrix multiplication. Also p(u 1 Un) is multiaffine in the variables u 1 Unmthat
is, p preserves affine combinations in each parameter--because each variable
appears only to the first power, since variables on the same level of the de Casteljau
algorithm never multiply one another. Finally, notice that to blossom the de Castel-
jau algorithm, we simply replace the parameter t on each level of the algorithm by a
different variable u k. Thus if we replace each variable u k in the blossom by the
parameter t, then we retrieve the original polynomial P(t) because the algorithm
reverts back to the de Casteljau algorithm for P(t). Thus along the diagonal,
p(t t) = P(t) . It turns out that these three propertiesmsymmetry, multiaffine,
diagonal--completely characterize the blossom. In the next section we shall define
the blossom abstractly in terms of these three properties and then relate this defini-
tion back to our concrete construction of the blossom using the de Casteljau
algorithm.

6.2 Existence and Uniqueness of the Blossom

Polynomial functions are complicated, but linear functions are simple. For example,
if L(t) = at, then L(t.ts + At) = pL(s) + AL(t). More generally, if L(t) = at + b, then it
is easy to verify that L((1 - Z)s + At) = (1 - &)L(s) + 2L(t) , so L(t) is an affine trans-
formation since L(t) preserves affine combinations. On the other hand, if
P(t) = an tn +. . -+ a 0, n > 1, then

e(t.ts + At) ~ p e (s) + AP(t)

P((1 - &)s + Zt) ~: (1 - 2)P(s) + XP(t) .

6.2 Existence and Uniqueness of the Blossom 311

The main idea behind blossoming is to replace a complicated function P(t) in one
variable by a simple function p (u 1,.. . ,u n) of many variables.

The b l o s s o m of a degree n polynomial P(t) is the unique symmetric multiaffine
function p(u l , . . . , u n) that reduces to P(t) along the diagonal. That is, p(u 1 u n) is
the unique multivariate polynomial with the following three properties:

i. S y m m e t r y

p (u 1 Un) = p(ucr(1) ucr(n)) for any permutation cy of {1 n}.

ii. Mul t ia f f ine

p (u 1 (1 - ct)u k + a w k Un) = (1 - a)p(u 1 u k u n) + ctp(u 1 w k u n)

iii. D i a g o n a l

p (~) = P(t)

n

The second property says that p (u 1 Un) is degree 1 in each variable (see Lemma
6.2); the third property connects the blossom back to the original polynomial.

Of course, it remains to establish the existence and uniqueness of a function sat-
isfying these three properties. Shortly, we shall use the constructions in Section 6.1
to establish both existence and uniqueness. But before we proceed, let's compute a
few simple examples.

Consider the functions 1,t,t2,t 3 as cubic polynomials. It is easy to blossom these
monomials, since in each case it is easy to verify that the associated function
p (u l , u 2 , u 3) is symmetric, multiaffine, and reduces to the required monomial along
the diagonal:

P(t) = 1 ~ p (u l , u 2 , u 3) = 1

P(t) = t ~ p (u l , u 2 , u 3) = ul + u2 + u3
3

P(t) = t 2 ~ p (u l , u 2 , u 3) - UlU2 + u2u3 + u3ul
3

P (t) - t 3 ~ P(Ul,U2,U 3) - UlU2U3 �9

Now we can blossom any cubic polynomial, since

P(t) = a3 t3 + a2 t2 + alt + a 0

p (u l , u 2 , u 3) = a3ulu2u 3 + a 2
UlU 2 + u2u 3 + u3u 1 Ul + u 2 + u 3

+ a 1 + a o.
3 3

Similar techniques can be used to blossom polynomials of arbitrary degree by
first blossoming t k, k = 0 n, (Exercise 1) and then applying linearity (Proposition
6.4). Nevertheless, instead of proceeding in this manner, it is easier to apply the

1 312 C H A P T E R 6 B los soming

Bezier constructions given in Section 6.1 to prove both existence and uniqueness.
We begin by establishing a crucial connection between symmetric, multiaffine func-
tions and the control points of Bezier curves.

THEOREM
6.1

Let P(t) be a Bezier curve defined over the interval [a,b] with control
points PO Pn, and let p(u 1 Un) be a symmetric, multiaffine polynomial
satisfying

p(t t) - P(t) .

n

Then Pk - p (a a ,b b) .

n - k k

P r o o f Consider Figure 6.1. We can now interpret this diagram in the following
fashion:

i. a n - k b k denotes p(a a,b b),

n - k k

ii. t n denotes p (~) - P(t) ,

n

iii. aJbkt n - j - k denotes p (~ , b , . ~ , ~) .

J k n - j - k

Then Figure 6.1 shows how to compute P(t) from

p(a a ,b b), k = 0 n ,

n-k k

recursively by applying the multiaffine and symmetry properties at each
node of the triangle. But Figure 6.1 is also the de Casteljau algorithm for
computing P(t) from the control points Pk, k = 0 n. Since the Bernstein
polynomials B~(t) Bn(t) form a polynomial basis, the control points of
a Bezier curve are unique. It follows then that the values represented by
an-kb k, k = O,...,n, must be the control points of P(t); that is,

Pk = p (a a ,b , . . . ,b) .

n-k k

Theorem 6.1 is the central property relating the blossom to Bezier curves. This
property is an extremely powerful result--in fact, it is equivalent to the diagonal
property (see Section 6.3, Exercise 7)--and we shall have a good deal more to say
about it in the next section. However, before we can proceed, we still need to estab-
lish the existence and uniqueness of the blossom. For this purpose, we provide an
alternative characterization of the multiaffine property.

6.2 Existence and Uniqueness of the Blossom 31 3

LEMMA
6.2

Let p(u l Un) be a polynomial in which each variable appears to at most
the first power. Then p (u 1 u n) is multiaffine.

Proof We must show that

p(u l (1 - a)u k + m y k Un) - (1 - a) p (u 1 u k Un) + a p (u 1 w k Un) �9

Since each variable appears to at most the first power in p(u l Un), we can
write

P (U l u k u n) - q (u 1 u n) + u k r (u 1 U n) ,

where q(u 1 u n) and r(u 1 u n) are polynomials in which u k does not
appear. Therefore,

p (u l (1 - a)u k + r k u n)

= { (1 - a) + a}q(u 1 Un) + { (1 - a) u k + m v k }r(u 1 Un)

= (1 - a){q(u 1 u n) + ukr (u 1 u n)} + a{q(u 1 u n) + w k r (u 1 u n)}

= (1 - a) p (u 1 u k Un) + a p (u 1 w k Un) .

THEOREM
6.3

Let P(t) be a polynomial of degree n. Then its blossom p (u 1 Un) exists
and is unique.

P roof E x i s t e n c e . In Figure 6.2 we showed how to blossom any Bezier curve

P(t)mtha t is, how to generate a symmetric, multiaffine polynomial that

reduces to P(t) along the d i a g o n a l n b y replacing t with u k on the kth level of

the de Casteljau algorithm. (The multiaffine property follows from Lemma

6.2 because in this construction each parameter u k appears only to the first

power.) Since the Bernstein polynomials B ~ (t) B n (t) form a basis for

polynomials of degree n, every polynomial can be written in Bezier form.

Therefore, every polynomial has a blossom.

U n i q u e n e s s . Again consider Figure 6.2. We can now interpret this diagram
in the following fashion:

i. an-kb k denotes p(a a, b b),
v.......,,,....~ ~

n - k k

ii. Ul . . . u n denotes p (u 1 Un),

iii. aJbku l . . .Un_ j_ k denotes p (a a ,b b,u 1 Un_j_ k) .

j k

314 C H A P T E R 6 B l o s s o m i n g

Then Figure 6.2 shows how to compute the blossom value Ul...u n from the
blossom values an-kb k, k = 0 n, recursively by applying the multiaffine
and symmetry properties at each node of the triangle. Thus the blossom of
P(t) is completely determined by the blossom values an-kb k, k = 0 n. But
by Theorem 6.1 the blossom values an-kb k are the Bezier control points of
P(t) . Now suppose that the polynomial P(t) has two blossoms p (u 1 ,u n)

and q(u 1 Un). Then by Theorem 6.1

p (a a ,b b) = q(a a ,b b),

n - k k n - k k

since both sides must represent the Bezier control points of P(t) and these
control points are unique. But we have seen (Figure 6.2) that any arbitrary
blossom value can be computed from the blossom values an-kb k, k = 0 n.

Therefore,

p (u 1 u n) = q (u 1 Un),

so the blossom of P(t) is unique.

Why does this approach to blossoming work? Figures 6.1 and 6.2 were origi-
nally derived for ordinary multiplication of real numbers. But the only properties of
the real numbers that we need are that multiplication is commutative (symmetry) and
distributes through addition (multiaffinity). Thus any function with these two fea-
tures will satisfy these diagrams (see Exercise 10). This observation is the key to
understanding the properties of the blossom.

The uniqueness of the blossom plays an important role in the derivations of for-
mulas for the blossom. If we want to establish that some polynomial p (u 1 Un)

represents the blossom of P(t) , all we need to prove is that the expression
p(u 1 u n) is symmetric, multiaffine, and reduces to P(t) along the diagonal. It then
follows by the uniqueness of the blossom that the polynomial p(u 1 Un) must be
the blossom of P(t) . We have seen this trick once before, in Section 4.4, where we
introduced axioms for the divided difference. To verify that an expression repre-
sented a divided difference, we simply verified that it satisfied the axioms character-
izing the divided difference. We can now do the same for the blossom. We illustrate
this proof technique in the following proposition. Additional examples are provided
in the exercises.

PROPOSITION
6.4

Let P(t) and Q(t) be polynomials of degree n.

a. If R(t) = P(t) + Q(t), then r(u 1 Un) = p (u 1 Un) + q(u 1 ,Un).

b. If S(t) = cP(t) , then s(u 1 u n) = cp(u 1 Un).

Thus blossoming is a linear operator.

6.2 Existence and Uniqueness of the Blossom 315

Proof Since both p and q are symmetric functions in the parameters Ul Un, so
too are the functions p + q and cp. Similarly since both p and q are multi-
affine functions in the parameters Ul Un, the functions p + q and cp are
also multiaffine functions in the parameters u 1 u n (see Exercise 11).
Moreover, along the diagonal

p (t t) + q (t t) = e (t) + O (t) = e (t)

c p (t , . . . , t) = c P (t) = S (t) .

Thus p (u 1 U n) + q (u 1 Un) is a symmetric, multiaffine function that
reduces to R (t) along the diagonal. Hence by the uniqueness of the blossom,

r (u 1 Un) = p (u 1 Un) + q (u 1 u ,) .

Similarly, c p (u 1 Un) is a symmetric, multiaffine function that reduces to
S(t) along the diagonal. Hence again by the uniqueness of the blossom,

s (u 1 u n) - c p (u 1 u n).

Exercises

1. Let M~ (t) = (~)t k, and consider the function

H
m k (Ul u n) - ~Ui l . . .Uik,

where the sum is taken over all subsets {il ik] of {1 n}. Show that
n n

a. m k (u 1 u n) is a symmetric multiaffine function that reduces to M k (t)

along the diagonal.

(.) b. m~(u 1 Un) m n (u 1 Un) = (1,u 1) | | (1,Un).

Use the result in part (a) to establish the existence of the blossom.

2. Let P~ (t) = (t - a k)n and let p~ (u 1 u n) - (u 1 - a k) . . . (u n - a k) , k = 0 n.

a. Show that p ~ (u 1 Un) is a symmetric multiaffine function that reduces
to Pk n (t) along the diagonal.

b. Use the result in part (a) to establish the existence of the blossom.

3. Let bn(Ul Un) denote the blossom of the Bemstein basis function B n (t) .

Prove that

�9 ., - . B 1 B 1 (u n) a. bn(Ul , . Un) 2il+.. .+in=l l l (Ul). . . in

b. (b(~(u 1 Un) bn(Ul Un)) = ((1 - U l) , U l) | 1 7 4

4. Let Lo(t),L 1 (t) be arbitrary linear functions in t, and suppose that

(Fo (t) Fn (t)) - (L o (t) , L l (t)) | . . . | (L o (t) , L l (t)) "
v

n- fac tors

31 6 C H A P T E R 6 B l o s s o m i n g

Show that

(f0(ul u n) fn(Ul Un)) = (Lo(Ul) ,L l (Ul)) (~ ... (~ (LO(Un) ,Ll (Un)) �9

5. Prove the converse of Lemma 6.2. That is, prove that if p (u 1 u n) is a multi-
affine polynomial, then each variable appears to at most the first power. (Hint:
Observe that u k = (1 - u k) �9 0 + u k �9 1.)

6. Let P(t) be a polynomial of degree n. Then P(t) is also a polynomial of
degree n + 1, so the blossoms p (u I u n) and p (u 1 Un,Un+l) both exist.
Show that, in general, p (u 1 Un,0) ~ p (u 1 Un).

7. Let P(t) be a polynomial of degree n, and let qt(t) = (u 1 - t) . . . (u n - t) . Prove
that

n (_ l) n - k p (k)
P(Ul U n) = Z ('C)qt(n-k)('t:) �9

k=0 n!

The fight-hand side of this expression is called the de Boor-Fix form of the
blossom. (Hint: Show that the right-hand side satisfies the three defining
properties of the blossom and apply uniqueness.)

8. Let P(t) and Q(t) be polynomials of degree n, and define

[p (t) , Q (t)] n - ~ (- 1) n - k p (k) (' c) Q (n - k) (' C) .

k=0 n!

Show that

a. [P (t) ,Q(t)] n is a bilinear operator.

b. [P(r) (t) ,Q(t)]n = (- 1) r [p (t) , Q (r) (t)] n .

c. [P (t) ,Q(t)] n is a constant independent of the choice of ~'.

d. P (x) = [P (t) , (x - t)n]n .

n!
e. p (r) (x) - ~ [P(t), (x - t) n - r]n"

(n - r) !

f. p (u 1 Un) = [P (t) , (u 1 - t) . . . (u n - t)] n.

g. Compare part (f) to Exercise 7.

9. Use the de Boor-Fix representation of the blossom given in Exercise 7 to
show that the formulas for differentiating and degree elevating the Bemstein
polynomials are equivalent~that is, show that either formula implies the
other.

10. Let u 1...Un denote the polynomial (Ul - x) '" (Un - x).

a. Show that with this interpretation the algorithms represented by Figures
6.1 and 6.2 remain valid.

6.3 Change of Basis Algorithms 317

6.3

b. Recall the bracket operator defined in Exercise 8. What do you get if you
bracket each polynomial in the algorithms represented by Figures 6.1
and 6.2 with a fixed polynomial P(x)?

11. Prove that if both p(u 1 u n) and q(u 1 u n) are symmetric multiaffine
functions in the parameters u 1 u n, so too are the functions p + q and cp.

12. Let P(t) be a polynomial of degree m, and let Q(t) be a polynomial of degree
n. Derive the following blossoming identities:

a. Products: If R (t) = P(t)Q(t) , then

~ o p(uo(1) ucr(m))q(ucr(m+ l) ucr(m+n))
r(ul Um+n) - (m + n)!

b. Composites: If S(t) = (P o Q)(t) , then

] ~ P(q(ucr(1) ucr(n)) q(ucr(mn-n+l) Ua(mn))) .
S(Ul Umn) - (mn)!

(Hint: Check first that the right-hand side satisfies the blossoming axioms
and then invoke uniqueness.)

13. Let A(t) = (Ao(t) Am(t)) be a sequence of m + 1 polynomials of degree
m with blossoms a(u 1 u m) - (a0(u 1 Um) am(U 1 Um)), and let B(t) =
(Bo(t) Bn(t)) be a sequence of n + 1 polynomials of degree n with blos-
soms b(u 1 u n) - (b0(u 1 u n) bn(u 1 Un)). If C(t) = A(t) | B(t) , show
that

c (u 1 Um+ n) --
~cr a(Uo-(1) ucr(m)) | b (ucr(m+l) Ucr(m+n))

(m + n) !

Change of Basis Algorithms

Blossoming is a powerful machine for deriving change of basis formulas. Theorem
6.1 is sometimes called the dual f unc t i ona l proper ty of the blossom because it shows
how to use the blossom to compute the Bezier control points of any polynomial
curve. Indeed, just as the divided difference evaluated at the nodes provides the dual
functionals for the Newton basis (see Section 4.2), the blossom evaluated at the end
points of the parameter domain represents the dual basis for the Bernstein basis.
Applying Theorem 6.1, we can convert any polynomial curve to Bezier form by
blossoming the curve and evaluating the blossom at the end points of the parameter
domain. Here we shall show how to apply blossoming to derive three important
results from Chapter 5: subdivision, degree elevation, and conversion from mono-
mial to Bezier form.

Subdivision is very easy using blossoming. Let P(t) be a Bezier curve over the
interval [a,b] with control points Po Pn. By the dual functional property,

Pk = p (a a ,b b).

n - k k

318 c H A P T E R 6 Blossoming

To subdivide this Bezier curve at the parameter t, we must find the Bezier control
points for the intervals [a,t] and [t,b]. Again by the dual functional property for Bez-
ier curves, these control points Qo Qn and R 0 R n are

Qk = p(a a,t t)
n-k k

R k = p (~ , ~) .
n-k k

But look at Figure 6.1. If we interpret every triple uvw as the blossom value p(u,v,w),
then the desired control points Qk and R k emerge along the left and fight edges of
the triangle. Generalized to arbitrary degree, this observation is precisely the de
Casteljau subdivision algorithm of Section 5.5.4.2.

Let's try degree elevation. Here we are given the control points for a Bezier
curve of degree n, and we must find the control points that represent the same curve
as a Bezier curve of degree n + 1. Let P(t) be a Bezier curve of degree n over the
interval [0,1] with control points PO Pn, and let Qo Qn+l be the control points
that represent P(t) over the interval [0,1] as a Bezier curve of degree n + 1. If Pn
denotes the blossom of P as a polynomial of degree n and Pn+l denotes the blossom
of P as a polynomial of degree n + 1, then by the dual functional property

Pk = Pn(0 0,1 1)
n-k k

Ok - Pn+l(0 0,1 1).
n+l-k k

Our problem is to find formulas for the control points Q0 On+l in terms of the
control points Po Pn. From the perspective of blossoming, this problem reduces to
finding a formula for the blossom Pn+l in terms of the blossom Pn"

PROPOSITION
6.5

Degree Elevation

n+l
Pn (Ul Ui-l ,Ui+l Un+l)

Pn+l (Ul Un+l) _ i=1
n + l

Proof By the uniqueness of the blossom, it is enough to prove that the fight-hand
side is symmetric, multiaffine, and reduces to P(t) along the diagonal. But
the fight-hand side is certainly symmetric and multiaffine because Pn is
symmetric and multiaffine. Moreover, by the diagonal property ofpn,

P(t) =

n+l
~, Pn(t t)
i=1 n

n + l

Hence the result follows by the uniqueness of the blossom.

6.3 Change of Basis Algorithms 319

We can apply Proposition 6.5 to solve the degree-elevation problem for Bezier
curves. By the dual functional property, we already know that

Ok = P n + l (0 0 ,1 1).

n+l-k k

By Proposition 6.5 omitting a single zero n + 1 - k times and omitting a single one k
times yields

n + l - k k
Qk = ~ P n (0 , ' " , 0 , 1 1) + Pn(O 0,1 1)

n + l '----r "-"-'-~ n + l '----,~-~ ~
n-k k n+l-k k-1

n + l - k k
- ~ Pk + Pk-1 ,

n + l n + l

which is exactly the degree elevation formula derived in Section 5.5.3.
Finally, to convert from monomial to Bezier form, let Mff(t) = (n) t k k . Then the

blossom of the monomial M; (t) is given by the function

n
mk (Ul u n) = ~Uil .. "uik

(6.1)

where the sum is taken over all subsets {il i k} of {1 n}. This result follows by
the uniqueness of the blossom because the fight-hand side is clearly symmetric, mul-
tiaffine, and reduces to M~(t) along the diagonal (see Exercise 1 of Section 6.2).
Now to convert from monomial to Bezier form, consider a polynomial
Q(t) - ~ k QkM~ (t). By the linearity of the blossom (Proposition 6.4),

n

q(u 1 Un)= Z a k m ~ (u l Un).
k=0

Therefore, by the dual functional property of the blossom, the Bezier control points
PO Pn of Q(t) over the interval [0,1] are given by

n
= = Qkmk (0,...,0,1 1). Pj q(O 0,1 1) ~ n

n - j j k=0 n - j J

But whenever we substitute 0 for one of the parameters Uih o n the fight-hand side of
Equation (6.1), the term vanishes. Hence we are concerned only with terms where a
1 is substituted for each parameter Uih. Since there are k u-parameters and 1 is
repeated j times, there are (i) ways to choose k Is. Thus

SO

mk(O 0,1 1) =) ~.....,~.~ ,.....,,,...~
n - j j

J

k=0

which is exactly the change of basis formula derived in Section 5.5.1.

3 2 0 c H A P T E R 6 Blossoming

The derivations of these three change of basis algorithms~subdivision, degree
elevation, and conversion from monomial to Bezier form~are very slick. In Chapter
5 we had to invent a new trick every time we wanted to convert from some new basis
to Bezier form. We applied probability theory (urn models) to derive subdivision,
algebraic identities to achieve degree elevation, and generating functions to convert
from monomial to Bezier form. Here there is only one trick: blossoming. Thus blos-
soming simplifies and unifies the analysis of Bezier curves. It is a very clever idea.

Exercises

1. Use blossoming to derive the following identities:
?/

a. 2 8 ~ ' (t) = 1
k=0

b. ~ (-1) k B~ (t) - (1 - 2t) n
k=0

?/

C. ~ (Jk)B j (t) = (nk) tk
j=k

2. Apply blossoming and Exercise 12(b) of Section 6.2 to derive the following
identities:

n

a. Bn (rt) = ~,Bk (r)B~ (t)
k=i

b. Bn((1 - t)r + t) - ~Bn-k(r)B~(t)i_k
k=0

3. Consider the following Marsden identity for the Bernstein basis:

n (_1) k n
(x t) n ~ (x)B~c . - = B , , _ k (t)

k=0 (n k)
Prove this Marsden identity using

a. the binomial theorem (Hint: x - t = x(1- t) - (1- x)t .)

b. blossoming

4. Using the result in Exercise 3 and the bracket operator defined in Section
6.2, Exercise 8, show that

f (0 0,1,.. 1) - [F (t) , (-1)k B n ~ (~) n-k (t)]n"
n-k k

5. Blossoming polynomial identities yields identities for the blossom.

a. What are the blossom identities corresponding to the identities in Exer-
cises 1-3?

b. What formula for the blossom do you get when you blossom Taylor's
Theorem?

6.4 Differentiation and the Homogeneous Blossom 321

6.4

(t - t k) n
6. Let Pk n (t) = I-ljr (tj - t k)

n

, k - 0 n, and let P(t) = Z P ~ (t) P k.
k=O

Using the result of Section 6.2, Exercise 2, show that

Pk - P(to tk-l,tk+l tn)"

7. Let P(t) be a degree n Bezier curve defined over the interval [a,b] with con-
trol points Po Pn, and let p(u 1 Un) be a symmetric, multiaffine polyno-
mial satisfying the dual functional property

Pk - p(a,. . . ,a,b b) k - 0,... ,n.

n-k k

a. Show that P (t) - p(t t).

b. Conclude that in the axioms for the blossom the diagonal property can be
replaced by the dual functional property.

c. In the axioms for the divided difference (see Section 4.4), which axiom
corresponds to the diagonal property? What is the corresponding dual
functional property?

8. Let b;n(ul, ,Un) denote the blossom of the Bernstein basis function Bj(t) j . . .

over the interval [0,1]. Show that

n b; (0 0,1 1) = ~jk"
J , ~ . . . ~ ~ ~

n-k k
9. Generalize the degree elevation formula in Proposition 6.5 by showing that

~,pn(Uil Ui n)
p ~ + k (u l u~+~) - - ~ k "

(' k)

Differentiation and the Homogeneous Blossom

We know how to represent points along polynomial curves in terms of blossom val-
ues by invoking the diagonal property, but what about derivatives? Curves take on
values that are points in affine space; so too does the blossom. Indeed, only affine
combinations of blossom values are permitted. But derivatives are vectors, not
points. We need a variant of the blossom that takes on values in a vector space, rather
than an affine space. Here we shall construct such a blossom by applying the tech-
nique of homogenization. Homogenization lifts the domain and the range from affine
space to Grassmann space, so that all our computations can be performed in a vector
space.

Consider a degree n polynomial P(t) = Zkak tk. To homogenize P(t), we multi-
ply each term t k by w n-k. This creates a new polynomial in two variables,

P (t , w) - ZkaktkW n-k.

i 322 C H A P T E R 6 Blossoming

The point about P(t,w) is that it is homogeneous of degree n; that is, each term has
the same total degree n. Homogeneous polynomials are sometimes simpler to
manipulate. For example, it is easy to verify that P(ct, cw) = cnp(t ,w) , but there is no
comparable simple formula for P(ct). We can easily recover P(t) from P(t,w) because
P(t) = P(t,1). Constructing P(t,w) from P(t) is called homogenizat ion, and recover-
ing P(t) from P(t,w) is called dehomogenizat ion.

Now we have two processes that we can apply to polynomials: blossoming and
homogenization. Can we homogenize the blossom or blossom the homogenization?
Yes. To homogenize the blossom p(u I Un), we homogenize with respect to each
variable independently. Thus the homogeneous version of p(ul Un) is another
polynomial p ((u l , v 1) (Un,Vn)) that is homogeneous with respect to each pair of
variables (Uk,Vk). The original parameters u I u n lie in affine space; the homoge-
neous parameters (Ul,V 1) (Un,Vn) lie in Grassmann space. In every term of
p(u 1 Un), each variable Uk appears to at most the first power, so every term of the

homogeneous polynomial p((u l ,V l) (Un,Vn)) has as a factor either u k or v k but not
both. Since p((u 1,vl) (Un,Vn)) is homogeneous of degree 1 in each pair of variables
(uk,vk),

P((Ul, Vl) C(Uk, V k) (Un, Vn)) = cp((ul, Vl) (Uk, V k) (Un, Vn)).

Again we can dehomogenize p((ul ,Vl) (U n , V n)) by setting v k = 1, k - 1 n. Thus
p ((u l,1) (Un,1)) = p(u 1 Un).

We can also blossom the homogenization. We define the blossom of a homoge-
neous polynomial P(t,w) to be the unique symmetric, multilinear polynomial
p ((u l , v 1) (Un,Vn)) such that p((t ,w) (t,w)) = e(t ,w). Note that for the homoge-
neous blossom, we have replaced the multiaffine property by the multilinear prop-
erty. By multi l inear we mean that the polynomial p((u l ,V l) (Un,Vn)) is a linear
function in each pair of variables (u k, v k), k = 1 n. That is,

P ((U l , Vl) (U k , Vk) + (r k ,Sk) (u n , Vn))

- p ((u l ,v 1) (Uk,V k) (Un,Vn))+ p((u l ,v 1) (rk,s k) ,(Un,Vn)) (6.2)

P ((U l , Vl) C(Uk, Vk) (tin, Vn)) = cp((ul, Vl) (tik, Vk) (tin, Vn))

Thus this multilinear blossom must take on values in a vector space, since we can
add and multiply by scalars.

Now we seem to have two notions of multilinear functions: polynomials that are
homogeneous of degree 1 in each pair of parameters, and functions that satisfy
Equation (6.2). Fortunately, in analogy with Lemma 6.2, we have the following
result.

LEMMA
6.6

L e t p((u l ,V l) (Un,Vn)) be a polynomial in which for each k = 1 n either
u k or v k, but not both, appears in every term to the first power. Then
p((u l ,V l) (Un,Vn)) satisfies Equation (6.2)~that is, p((u l ,V l) (Un,Vn)) is
multilinear.

6.4 Differentiation and the Homogeneous Blossom 323

Proof Since the proof of this result is so similar to the proof of Lemma 6.2, we
leave this result as an exercise (see Exercise 3).

We constructed the multiaffine blossom by blossoming the de Casteljau algo-
rithm, and we can do the same for the multilinear blossom. Begin by homogenizing
the de Casteljau algorithm. This amounts to replacing b - t ~ b w - t and
t - a --4 t - aw to ensure that each term has the same total degree (see Figure 6.3).
To blossom, we now replace the pair (t,w) by the pair (Uk, v k) on the kth level of the
algorithm (see Figure 6.4). This process generates a symmetric, multilinear function
that reduces to the homogeneous curve when we replace each pair (Uk, v k) by (t,w).
This function is multilinear rather than multiaffine because it is linear in (u k, v k) on
the kth level of the algorithm. Thus u k or v k, but not both, appears in every term to
the first power, so by Lemma 6.6 this function is multilinear.

Notice, by the way, that if we blossom first and then homogenize, we get exactly
the same diagram (see Figure 6.5)! Blossoming first gives us Figure 6.2; homogeniz-
ing this diagram generates Figure 6.4 once again. Observe that in each of these dia-
grams, we are applying the multilinear property using the identity

bw - t t - aw
(t ,w) = ~ (a , 1) + ~ (b , 1) .

b - a b - a

We built the homogeneous blossom to deal specifically with differentiation.
Consider now what happens in the homogeneous version of de Casteljau's algorithm
(Figure 6.3) if we replace (t,w) --4 (1,0) on any level of the algorithm. The effect is to

t t t

aaT ab'i bb'i

aaa aab abb bbb

Figure 6.3 The homogeneous version of the de Casteljau algorithm for cubic Bezier curves. This dia-
gram is generated from the de Casteljau algorithm (Figure 6.1) by replacing b - t --4 b w - t

and t - a ~ t - aw along the edges of the triangle. We use ~ to denote homogeneous val-
ues, so t = (t, w) while a = (a, 1).

324 C H A P T E R 6 B l o s s o m i n g

UlU2U 3 v3u,//',Vav
az~lfi 2 bz~lU 2

/ \ /
aafi 1 aba~ bba 1

a a a a a b abb bbb

Figure 6.4 The multilinear blossom of a cubic Bezier curve. This diagram is generated from the multi-
affine blossom (Figure 6.2) by homogenizing the functions along the edges. It can also be
generated by blossoming the homogeneous version of the de Casteljau algorithm (Figure
6.3)--that is, by replacing the pair (t, w) with the pair (Uk, Vk) on the kth level of the algorithm.
Thus blossoming and then homogenizing is equivalent to homogenizing and then blossom-
ing. As in Figure 6.3, we use ~ to denote homogeneous values, so 0 = (u,v) while a = (a, 1).

replace b w - t ~ -1 and t - a w --) +1; that is, the effect is to differentiate one level
of the algorithm. Now if we replace (t ,w) ~ (t, 1) on the remaining levels of the algo-
r i t h m - t h a t is, if we dehomogenize the remaining levelsmthen, up to a constant
multiple, we get the derivative of the original Bezier curve (see Figure 5.30). In fact,
if on r levels of the homogeneous de Casteljau algorithm, we replace (t ,w) -+ (1 ,0)

and on the remaining n - r levels we replace (t ,w) ---) (t,1), then, up to a constant
multiple, we obtain the rth derivative of the original Bezier curve.

Thus we can compute derivatives for any polynomial P(t) using the homoge-
neous blossom. In fact, let 6 = (1,0) and let t = (t,1). Then we have just proved that

P ' (t) = np(t ,t,(~)

n-1

n!
P(r) (t) = ~ p (t t, (~ , ~) .

(n - r)! ~
n - r r

These formulas that tell us how to compute the derivative of a polynomial curve in
terms of its multilinear blossom turn out to be central to our understanding of how to
differentiate B-splines. We shall apply these formulas in Chapter 7 to differentiate B-
spline curves.

6.4 Differentiation and the Homogeneous Blossom 325

ttt

b/' a
att btt Blossom

b - / ~ N ~ - b / ~ , - a

aat abt bbt
b-/~N,~_ba/ ~,,~_ba/~k~ -a

aaa aab abb bbb

UlU2U 3

D, aulu 2 bUlU 2
b-u?f

b - < ,N~2_a// ~ - a

a a u (b _ Ul,~r U~u b _ u] b ~ u ~
b - u / "x~,l - ~ / 1-al l - a
aaa aab abb bbb

Homogenize
I

Homogenize

t t t

aT "f b'f "~
b w - / ~ _ b W w / ~ ~ Q -am

aa'~ ab? bbF
b w - / ~ b w ~ ~ b w < ~ , Q -am

aaa aab abb bbb

UlU2U 3

b v 3 - u / ~ - a v 3
Blossom

a u l u 2 �9 b U l U 2
b y 2 - u 2

b v 2 - u / ~ - a v 2 ~ ~ - a v 2

aaff, , abff~ , bbff,
�9 t'~' ~ "~ ~ "~

b v] - u / ~ - a v) ~ K ~ _ a / ~ - a v]

aaa aab abb bbb

Figure 6.5 Blossoming and homogenizing commute. We illustrate this phenomenon with four versions of
the de Casteljau algorithm for cubic Bezier curves: the standard version (upper left), the homogeneous ver-
sion (lower left), the blossomed version (upper right), and the homogeneous blossom (lower right). Again we
use - to denote homogeneous values, so t = (t, w) and a = (a, 1).

Exercises

1. Let P(t,w) and Q(t,w) be two homogeneous polynomials of degree n. Show
that

P(ct, cw) P(t,w)
Q(ct, cw) Q(t,w)

b. P(t, w) = wnp(t / w,1)

2. Let P(t) be a polynomial of degree m and let Q(t) be a polynomial of degree
n. Show that

a. R(t) - P(t) + Q(t) ~ R(t, w) = P(t, w) + Q(t, w) if and only if m = n

b. S(t) - P(t)Q(t) =~ S(t,w) - P(t,w)Q(t,w).

t 326 CHAPTER 6 B l o s s o m i n g

3. Prove Lemma 6.6. That is, prove that i fp((ul ,v 1) (Un,Vn)) is a polynomial
in which for each k = 1 ,n either u k or v k, but not both, appears in every
term to the first power, then p ((u l , V l) (Un,Vn)) is multilinear. (Hint: Use
the same techniques as in the proof of Lemma 6.2.)

4. Prove the converse of Lemma 6.6. That is, prove that if the function
p ((u l , v 1) (Un,Vn)) is a multilinear polynomial, then for each k = 1 n
either u k or v k, but not both, appears in every term to the first power.

5. Suppose that P(t) is a polynomial of degree n. Let p ' denote the blossom of
P'(t) and let p(r) denote the blossom of P(r)(t). Show that

a. p ' (u 1 Un_ 1) = np(u 1 Un_l,~)

b. p(r) (u 1 Un-r) n! = ~ p (u 1 Un_r,~ S)
(n - r) !

r

6. Using the bracket operator defined in Section 6.2, Exercise 8, show that

n! d r
~ p (x x,t~,., t~) = [P (t) , ~ (x - t)n]n �9 P(r) (x) = (n - r) ! ~ ~ dx r

n - r r
7. Let mj denote the multiplicity of the parameter uj in the sequence u 1 u n.

Prove that

a. ~P(Ul Un)
~uj

= m j p (u 1 Uj_ l ,~ ,u j+ 1 u n)

b. Op(ul Un) mj
- p ' (u 1 u j_ 1,uj+l u n)

auj n

Compare this result to Section 4.3, Exercise 3(a). (Hint: Consider the basis
P~ (t) = (t - a k)n, k = 0 n.)

8. Prove that the multilinear blossom of a homogeneous polynomial P(t ,w) is
unique.

9. Let P(t) be a polynomial of degree n with homogenization P(t ,w) and blos-
som p(u 1 Un). Suppose that q((u l ,V l) (Un,Vn)) is a symmetric, multi-
linear function satisfying the dehomogenization property

q((ul,1) (Un,1)) = p(u 1 Un).

a. Show that q((t, w) (t, w)) = P(t, w) .

b. Conclude that in the axioms for the multilinear blossom the diagonal
property can be replaced by the dehomogenization property.

10. Let L0(t),L 1 (t) be arbitrary polynomials of degree 1 in t, and suppose that

(Fo(t) Fn(t)) = !Lo (t) ,L I (t) } | 1 7 4 {Lo(t) ,L I (t) ! "
Y

n-factors
Show that

(Fo(t ,w) Fn(t ,w)) = (L o (t , w) , L l (t , w) } | 1 7 4 { L o (t , w) , L l (t , w) } .
~. �9

n-factors

6.5 Blossoming Bezier Patches 327

11. Let Q(t) = ~,jQjt j be a polynomial curve of degree /7.

a. Use Taylor's Theorem to show that

Qj : (~) q (~ , & . ~) "
n - j j

b. Apply the result of part (a) to develop an algorithm to convert from Bez-
ier to monomial form.

12. Let M~c(t,w) = (n) tkwn-kk and consider the function

n
m k ((Ul, Vl) (U n , V n)) - 2o. uo.(1)""ucr(k)Vty(k+l)""vet(n)'

where the sum is taken over all permutations ty of {1 n}.

a. Show that

m~((Ul,Vl) (Un,Vn))

is a symmetric multilinear function that reduces to M~(t,w) along the
diagonal.

b. Use the result in part (a) to establish the existence of the multilinear
blossom.

c. Verify that Figure 6.6 commutes.

ZkCk(nk)t k Blossom
Z k C k Z U i] . . . u i k

Homogenize Homogenize

/'/

X k C k (k) t k w n - k
Blossom

~.,kCk]gU il . . . U ikV i k+ l . . . Vin

Figure 6.6 Blossoming and homogenizing commute.

6.5 Blossoming Bezier Patches

Blossoming can be extended to polynomials in several variables. Since we are mostly
concerned with surfaces, we shall confine our attention here to polynomials in two
variables, but the same constructions work quite generally for polynomials in an arbi-
trary number of parameters. We have encountered two distinct kinds of Bezier
patchesmtriangular and rectangular--and these two surface types are associated with
different variants of the blossom, so we shall deal here with each one separately.

3 2 8 c H A P T E R 6 Blossoming

6.5.1 Blossoming Triangular Bezier Patches

Consider first de Casteljau's tetrahedral algorithm for triangular Bezier patches.
Recall that for curves we labeled the nodes of the de Casteljau algorithm with the
end points of the parameter interval; for surfaces we shall label the nodes with the
comer points of the triangular domain. Let Aabc be the domain triangle, where
a = (al,a2), b - (bl,b2), c = (Cl,C2), and let t = (tl,t2) denote an arbitrary point in
the parameter domain.

The de Casteljau pyramid algorithm for a degree n triangular Bezier patch is
represented by a tetrahedral array with edges pointing into the nodes from three
directions. Suppose we start at the apex of the tetrahedron and want to reach the con-
trol point Pijk at the base (see Figure 5.44). Then we must take i steps along one
direction, j steps in a second direction, and k steps in the third direction. We can use
the vertices a,b,c of the domain triangle to encode these three directions. This con-
vention leads to the notation aibJc k for the position ijk along the base of the triangle.
Nodes located above the base we shall denote by

aab f l cT tn -a - f l -7 ,

since there are still n - a - f l - y levels to consider. The node at the apex of the tetra-
hedron has the label t n, since no edges have been traversed. This notation tells us
precisely where we are in the tetrahedron, and it captures as well the labels along the
edges of the tetrahedron, which are just the barycentric coordinates of the point
t = (tl,t 2) relative to the domain triangle Aabc. We illustrate this labeling of the
nodes for the case n = 3 in Figure 6.7.

As with curves we blossom this bivariate de Casteljau algorithm by replacing
t = (t 1,t 2) with u k - (Uk~,/,/k2) on the kth level of the diagram, and replacing

C

a b

(a) Domain triangle

Figure 6.7 The labeling for the nodes in de Casteljau's pyramid algorithm for a cubic triangular Bezier
patch. The vertices of the domain triangle (a) provides the labels for the directions in de
Casteljau's algorithm (b).

6.5 Blossoming Bezier Patches 3 2 9

aabflc~/ t n - a - f l -) " with aabf lC~Ul . . .Un_a_f l_~ , .

This procedure generates Figure 6.8, where the labels along the edges on the kth
level of the tetrahedron are the barycentric coordinates of the points u k - (Uk~ ,Uk2)
relative to Aabc .

The function that emerges at the apex of this tetrahedron depends on the n vari-
ables u 1,...,u n. If we place the control points {Pijk} of the triangular Bezier surface
P (t l , t 2) at the base of the diagram, then the function that emerges at the apex is
called the b l o s s o m of P (t l , t 2) and, as in the univariate setting, is denoted by
p (u 1 ,Un). Here, however, the variables u 1 u n are points in the affine plane, so
each variable has two coordinates.

The function p (u 1 Un) is symmetric in the variables u 1 u n, since the coeffi-
cients of the control points are convolutions and discrete convolution is commutative
(see Section 5.6.1). Also p(u l Un) is multiaffine in the variables u 1 u n because
each coordinate of each variable appears only to the first power in p (u 1 Un), since
the barycentric coordinates that label the edges of the diagram are linear functions in
the parameters. Finally, if we replace each variable u k = (Ukl,Uk2) in p (u 1 u n) by
t - (q,t2), the algorithm reverts back to the de Casteljau algorithm for P(t l , t 2) .
Thus along the diagonal, p (t t) = P(t) . Hence the function p (u 1 Un) is symmet-
ric, multiaffine, and reduces to P(t) along the diagonal~that is, p (u 1 u n) is the
blossom of P(t) . This argument establishes the existence of the bivariate blossom;
uniqueness follows by a demonstration similar to the one given in Theorem 6.3 (see
Exercise 2).

The dual functional property also holds for triangular Bezier patches. That is,
the control points {Pijk} for a Bezier patch P(t) over the domain triangle A a b c are
given by

Pijk = p (a a ,b b ,c c)
~ _ . . ~ . ~ ~ , . ~ r . _ ~ �9

j k

Figure 6.8 The blossom of a cubic triangular Bezier patch.

i 330 C H A P T E R 6 B l o s s o m i n g

The proof follows from the uniqueness of the Bezier coefficients and is much the
same as the proof of Theorem 6.1 (see Exercise 1).

As in the univariate setting, the dual functional property simplifies the derivation
of various change of basis procedures. For example, suppose we want to split a trian-
gular patch into the three patches formed by joining the vertices of A a b c to some
point t - (t 1,t 2) in the parameter domain. By the dual functional property, the con-
trol points for these three patches are given by

Qijk = p (a a , b b , t t)

l j k

Rij k = p (b b , c c , t t)

t j k

Sij k - p (a a , c c , t t) .

t j k

Therefore, it follows immediately from Figure 6.7 that we can subdivide a triangular
Bezier patch into three patches by taking the values off the three lateral faces of the
de Casteljau tetrahedron. This algorithm is the generalization to triangular patches of
the de Casteljau subdivision algorithm for Bezier curves.

We can also homogenize bivariate polynomials in much the same way that we
homogenize univariate polynomials. Let

i j
P (t l , t 2) - ~ i j c (j t l t 2

be a polynomial of degree n. To homogenize P (t l , t 2) , we multiply each term t i t J2 by
wn- i -J t o obtain

P (t l , t 2 , w) = ~ i j c i j t ~ t ~ w n - l - J .

To homogenize de Casteljau's tetrahedral algorithm, we simply homogenize the lin-
ear barycentric coordinate functions along the edges of the tetrahedron. As in the
univariate setting, we can homogenize the blossom or blossom the homogenization
by first blossoming and then homogenizing or first homogenizing and then blossom-
ing de Casteljau's tetrahedral algorithm. Again blossoming and homogenization
commute (see Exercise 3). Notice too that in the bivariate setting, the homogeneous
blossom is once again multilinear rather than multiaffine--that is, both the domain
and the range are lifted from affine space to Grassmann space.

The homogeneous blossom can be used to compute the partial derivatives of a
triangular Bezier patch. Let t~ 1 = (1,0,0), t~ 2 = (0,1,0), and t = (t 1,t2,1) . Consider
now what happens in the homogeneous version of de Casteljau's algorithm if we
replace t ~ &l on any level of the algorithm. Since the labels are barycentric coordi-
nates and since barycentric coordinates are linear functions, the effect is to replace
each barycentric coordinate function with the coefficient of tl; that is, the effect is to
differentiate one level of the algorithm with respect to t 1. If now we replace

6.5 Blossoming Bezier Patches 331

(t l , t 2 , w) ~ (tl,t2,1) on the remaining levels of the algorithmmthat is, if we deho-
mogenize the remaining levelsmthen, up to a constant multiple, we get the partial
derivative with respect to t 1 of the original Bezier surface. Similarly, if we replace
t ~ t52 on any level of the algorithm and dehomogenize the remaining levels, then,
up to a constant multiple, we obtain the partial derivative with respect to t 2. There-
fore, it follows that

~P
= n p (~ , 6 1)

Otl n-1

bP
= np(t , .~ , t52).

~)t2 n-1

More generally by an analogous argument,

Exercises

oi+jp n!

~t[~tJ2 (n - i _ j)t. P(tn_;_;,_.,,...,, jt,61, ~" 6 1 ' 6 2 ' ' ":" t ~ 2) "
l J

1. Prove the dual functional property of the bivariate blossom for triangular
Bezier patches. That is, prove that if P(t 1 ,t 2) is a Bezier surface with control
points {Pijk} over the domain triangle Aabc, then

Pqk - p(a, . . . ,a ,b b,c c).
t j k

2. Using Exercise 1, prove that the blossom of a bivariate polynomial P(t 1,t 2)
is unique.

3. Prove that for bivariate polynomials, blossoming and homogenizing com-
mute.

4. Let P~jk (s,t) = (s + t - aij k) n . Show that

Pqk((Ul ,V l) (Un,Vn)) = (u 1 + v 1 - a i j k) " ' (u n + v n - a i j k) .

5. Consider the monomial Mijn~(s,t) - (~.k)sit j .
, u r

a. Show that

mgk((Ul ,V l) (Un,Vn)) - ~,Ual .. .uaivfl~ . . . v f l j ,

where the sum is taken over all subsets { a 1 a i , fll flj} of the inte-
gers {1 n}.

b. Show that

1
. ", v, I (1 vn) | 1 7 4

0 U n 0

i 332 CHAPTER 6 Blossoming

c. Using the result in part (a), show that

n n-p (" ij~)si d ~ E : X q -)Bpqr(S,t) i+ j + k = n.
p=i q= j

d. Using the result in part (c), develop a formula for converting from bivari-
ate monomial to bivariate Bezier form.

6. Let bijnk((Ul,Vl) (Un,Vn)) denote the blossom of the degree n Bernstein
basis function B~k(t 1,t2). Prove that

a. bijnk((Ul,Vl) (Un,Vn)) =

B 1 B 1 ~,il+..'+in=i~jl+...+jn=j ilJlk 1 (Ul,Vl)"" inJnkn(Un,Vn)

ilUlVl Vl I Ilunvn vn)
b. (Ul'Vl) (Un'Vn) - u 1 0 | 1 7 4 u n 0

7. Let Lloo(S,t),Lolo(s,t),Loo l(s,t) be arbitrary linear functions in s,t, and sup-
pose that

(Fijk(S't)) - (LOOl (S't)LlOO(s,t)

Show that

a. (Fijk(S,t,w))=

Lool (s,t,w)
Lloo(s,t,w)

Lo lo (s ' t)) | 174 L O O l (s ' t) O Lloo(s,t)

Y

n linear factors

LOIO (s, t, w) / | 1 7 4 (L001 (s,t, w)
0 ~Lloo(s,t,w)

Y

n linear factors

b. (fijk((Ul,V,) (Un,Vn)))

LloO(Ul,Vl) 0 ~,LloO(Un,Vn)

,O Oo(S,, /

Lolo(s't' w) I 0

LolO(Un'Vn) I 0

8. Let P(s) be a univariate polynomial of degree n. Then P(s,t) = P(s) is also a
bivariate polynomial of degree n. Prove that

P((Ul,Vl) (Un,Vn)) - P(Ul,...,Un).

9. Using the result of Exercise 8, prove that

a. Bn(s) - y_.j+k=n_iBijnk(s,t)

b. B] (t) - ~,i+k=n-j Bijnk (s,t)

6.5 Blossoming Bezier Patches 333

10. Use blossoming to derive the following identities:

a. y~i+j+k=nBisk(S, t)- 1

b. s i+j B~k(S,t) - (1 - 2s - 2t) n

c. Z i+ j=n-k B~k (s,t) = B; (1 - s - t)

n n-i
d. E Z (x + 11 i (y + 11 j Bijk(S,t) - (sx + ty + 1) n

i=0 j=0

n n-p
e. Bijnk(su, lv) - X X B f (u)Bq(v)B~qr(S, t)

p=i q=j

11. Let P(s,t) be a bivariate polynomial of total degree n, and let p(i,J)(u 1 Un_i_j)
denote the blossom of P(i,J)(s, O. Prove that

n! p(!s , t) (s,t),fi 1 a l , a 2 a2) P(i 'J)(s ' t) - (n - i - j)! .:. " �9 ~ " .:. " a.

n - l - j I j

p(i,j) n! fi
b. (Ul U n - i - j) - (n _ i _ j) v P (U l Un-i- j , 1 ~. ~1,~2�9 -:. ~2)�9

l j

12. Let bijnk((Ul,Vl) (Un,Vn)) denote the blossom of the degree n Bemstein
basis function Bi~k(s,t). Prove that

bij ((0 r k ,0) (0,0),(1,0) (1,0),(0,1) (0,1)) = (~kr"

13. Let Q(s, t) = ~,jQijs ' t J be a polynomial surface of total degree n.

a. Use Taylor's Theorem in two variables to prove that

Qij -(~jk)P(51 51,~2 52,(s , t) (s,t)), i+ j + k = n.
Y t j "k

b. Apply the result of part (a) to show that

H - - H

Bqk(S, t)= Z n~(-1) i+j+P+q(P)(q) (pqr)S ptq
p=i q=j

c. Apply the result of part (b) to develop a formula to convert from bivariate
Bezier to bivariate monomial form.

14. Consider the degree elevation formula in Proposition 6.5.

a. Show that if we let u j - (uj~ ,U j2), then this identity is valid for the
bivariate blossom.

b. Use this bivariate degree elevation formula to derive the degree elevation
formula for triangular Bezier surfaces given in Section 5.8.2, Exercise
10(e).

334 C H A P T E R 6 B l o s s o m i n g

15. Consider the subdivision algorithm for triangular Bezier patches described
in the text.

a. Explain why the control polyhedra generated by iterating this subdivi-
sion algorithm will not, in general, converge to the original triangular
patch. (Hint: Consider the boundaries of the patch.)

b. Use blossoming to subdivide a Bezier patch into four subpatches as in
Figure 6.9.

c. Verify experimentally that iterating the algorithm in part (b) generates
control polyhedra that converge to the original triangular patch.

a

b f c

Figure 6.9 Subdivision of a Bezier patch into four subpatches.

16. Recall from Section 5.6.3 that we can speed up recursive subdivision for
Bezier curves by applying Wang's formula.

a. Develop an analogue of Wang's formula for triangular Bezier surfaces
for the subdivision algorithm in Exercise 15(b).

b. Implement the recursive subdivision algorithm for rendering a triangular
Bezier surface with and without Wang's formula.

c. How much does Wang's formula speed up this algorithm?

17. Let P(r,s,t) and Q(r,s,t) be homogeneous polynomials of total degree n, and
define

[P(r , s , t) ,Q(r , s , t)] n =

Show that

1
Z

i+j+k=n

p(i,j,k) (p, r "c)Q (i'j'k) (p, (7, "c)

i!j!k!

a. [P(r , s , t) ,Q(r , s , t)] n is a bilinear operator.

b. [P(r , s , t) ,Q(r , s , t)] n is a constant independent of the choice of (p, cr,'t').

c. P(x , y , z) - [P(r , s , t) , (rx + sy + tz)n]n .

6.5.2

6.5 Blossoming Bezier Patches 335

d. p ((u l , V l , W l) (Un,Vn,Wn)) -

[P (r , s , t) , (r u 1 + sv 1 + tw 1) . . . (ru n + sv n + tWn)] n.

(Compare to Section 6.2, Exercise 8.)

18. What formula do you get for the homogeneous blossom when you homoge-
nize and then blossom the bivariate form of Taylor's Theorem?

Blossoming Tensor Product Bezier Patches

Look at Figure 5.40, the de Casteljau algorithm for a tensor product Bezier patch.
Unlike the tetrahedral algorithm for a triangular Bezier patch, here the s and t param-
eters always appear on separate levels of the diagram, never on the same level. The
trick for blossoming and homogenizing a tensor product surface is to treat each vari-
able independently.

To blossom the de Casteljau algorithm for a tensor product surface P(s , t) of
bidegree (m,n) , we blossom the t levels exactly as we blossom Bezier curves, and
then we do the same for the s levels. To keep track of the fact that s and t are distinct
variables, we use different blossom parameters to replace s and t: u 1 u m for s and
Vl Vn for t. Thus, we shall denote the blossom of P(s , t) by p (u l Um;Vl Vn),

where the semicolon separates the s and t blossom parameters. Algorithmically we
can generate the blossom of P(s , t) by replacing t with vj on the jth level of the de
Casteljau algorithm in t and then replacing s with u k on the kth level of the de Castel-
jau algorithm in s (see Figure 6.10).

This blossom p (u 1 , U m ; V 1 V n) is bisymmetricmthat is, it is symmetric in
the u and v parameters independently. This means that we can exchange any two u
parameters or any two v parameters, but we cannot exchange a u parameter with a v
parameter. B isymmetry follows directly from the commutativity of discrete convolu-
tion. This blossom is also multiaffine in the u and v parameters, since these parame-
ters appear only to the first power. Finally, by construction, p (u 1 U m ; V 1 V n)

reduces to P(s , t) along the diagonalmthat is, p (s s; t t) = P (s , t) m b e c a u s e if we
replace each u parameter by s and each v parameter by t, then the algorithm reverts
back to the original de Casteljau evaluation algorithm for P(s , t) . Thus the blossom
p (u 1 Um; V 1 Vn) satisfies the following properties:

i. B i s y m m e t r y

p (ul Um ; V 1 v n) = p(ucy(1) ucy(m) ; V,c(1) , . . . , Vr(n)) .

ii. M u l t i a f f i n e

p (u 1 U m ; V l , . . . , V n) is multiaffine in each variable.

iii. D i a g o n a l

p (s s;t t) = P (s , t) .

m n

The argument in the previous paragraph establishes the existence of the blossom
of bidegree (m,n); uniqueness can be proved by invoking the linear independence of
the bivariate tensor product Bemstein basis functions (see Exercise 2).

336 c H A P T E R 6 Blossoming

P(Ul,U2;Vl,V2)

, _u , / ",...u,

/ <.
PO(Vl,V2) Pl (Vl,V2) P2(Vl,V2)

PO0 POI P02 Pl 0 P11 P12 P20 P21 P22

Figure 6.10 The blossom p(ul,u2;vl,v 2) of the biquadratic tensor product Bezier patch P(s, t) =
2 2

~, ~, B 2 (s)B2(t)Pij. Notice the internal nodes labeled with the blossoms Pi(Vl,V2)of the
i=0 j=0

2
2

Bezier curves Pi(t) = ~_~ Bk(t)Pik.
k--O

The dual functional property also holds for tensor product patches. Suppose that
the domain of P(s,t) is [a,b] • [c,d]. Then

Pij = p(a a,b b;c c,d d).
m - i l n - j j

As usual the proof follows by the uniqueness of the Bezier coefficients of a tensor
product Bezier patch and is much the same as the proof for Bezier curves (see Exer-
cise 1).

To homogenize a polynomial P(s,t) of bidegree (m,n), we homogenize in each
variable independently. Thus every term of the homogenization P(s,w;t, oo) is of
exact bidegree (m,n). In particular, to homogenize, we multiply the term sitJ by
w m-i(_On-j. Hence

m l'l

P(s,t)= Z Zcijs ~tJ
i=0j=0

m n
P(s,w;t,(o) = ~, ~CijS twm-ttJ(_O n-J"

i=0j=0

As with blossoming we can homogenize the de Casteljau algorithm by homogeniz-
ing each level of the algorithm with respect to the appropriate variable.

6.5 Blossoming Bezier Patches B 3 7

Blossoming and homogenizat ion commute just as in the univariate setting (see
Exercise 3). To homogenize the bidegree blossom, we again homogenize with
respect to each variable independently. Hence we write

P((Ul, Wl) (U m , Wm); (Vl, CO1) (v n , (-O n))

for the homogeneous blossom of p(u 1 Um;Vl,... ,Vn). Partial derivatives are calcu-
lated in the usual way by substituting s ~ ~1 - (1,0) or t ~ ~2 - (0,1) on any level
of the de Casteljau algorithm. Thus

OP
Os = m P (~ '~l ; t ' ' ~) ,

m-1 n

OP
= np(s s;t t, fi2) ,

~t ~ m n-1

and, more generally,

~ i + j p m! n!
= _ _

~si~t j (m i)?(n j) I p (~ ' 1 ~ ; 1 , ~ , 2 '~2)"
- - " ~ n - j ~" �9 m-i l j

Finally, to clarify the distinction between the different variants of bivariate
homogenizat ion and blossoming, let's consider a simple concrete example. We can
think of the polynomial P(s, t) - s 2 + st + t either as a bivariate polynomial of total
degree 2 or as a bivariate polynomial of bidegree (2,2). Thus we have the following
formulas:

�9 P o l y n o m i a l

�9 H o m o g e n i z a t i o n s

�9 B l o s s o m s

P(s , t) - s 2 + st + t

P(s , t , w) - s 2 + st + tw

P(s ,w; t , co) - $2(.0 2 + swt(o + w2t(o

P((Ul, Vl), (U2, V2)) - UlU 2 +
UlV2 + u 2vl Vl + v 2

2 2

P(Ul, u2; Vl, v2) - u 1 u2 +
(u 1 + u2)(v 1 + v 2) Vl + v 2 + ~

4 2

p ((U l , V l , W l) , (U 2 , V 2 , W 2)) - UlU 2 +
Ul V2 + u 2 vl Vl W2 + v 2wl +

2 2

P((Ul, Wl), (U2, w2); (Vl, CO 1), (V2, (0 2))

= UlU2(.Ol(_02 +
(UlW 2 + u2w 1)(Vl(-02 + v2a) 1) Wl W2VlC02 + w 1 w2 v2(.o 1 +

4 2

338 C HAPTE R 6 Blossoming

Exercises

1. Prove the dual functional property of the bivariate blossom for rectangular
Bezier patches. That is, prove that if P(s,t) is a tensor product Bezier surface
of bidegree (m,n) with control points {P/j} over the domain [a,b] x [c,d],
then

Pij - p(a a,b b;c c,d d).
m - i t n - j j

2. Prove that the blossom of a polynomial P(s,t) of bidegree (m,n) is unique.

3. Prove that for polynomials of bidegree (m,n) homogenization and blossom-
ing commute.

4. Here we provide an alternative construction for the blossom of a tensor
product Bezier patch based on the pyramid algorithm. Consider the pyramid
algorithm for a tensor product Bezier patch P(s,t) of bidegree (n,n). Let

/3((Ul,V 1) ,(Un,Vn))

denote the function generated by replacing the parameters (s,t) by a differ-
ent parameter pair (u k, v k) on each level of the pyramid.

a. Show that the function /5((Ul,Vl) (Un,Vn)) is bisymmetric, multiaffine
in the u and v parameters, and that

. (Un,V.))
reduces to P(s,t) along the diagonal.

b. Conclude tha t ib((Ul,Vl) (Un,Vn)) is equal to the blossom
p(u 1 Un;V 1 Vn) of P(s,t).

c. Let [P~v } be the control points and let Qij = (i,J), i,j = 0,1, be the vertices
of the domain rectangle of P(s,t). Show that P~v is equal to

/ "x

/~[Qoo,. ~., Qoo, Qlo Qlo, Qol QOl, Q11 Q l l / ,tt = i + k , v - j + k.

k. d - i - j - k "i j k)

5. Let P(s,t) = s 3 + st 2 + st + s. Compute the following blossom values:

a. p((ul, v 1), (u 2 , v 2), (u3, v 3))

b. p(u 1 , u 2 , u 3; v 1 , v 2 , v 3)

C. p((Ul, Vl, w 1), (U2, v2, W 2), (u3, V3, W 3))

d. p((ul,Wl),(u2,w2),(u3,w3);(Vl,(.Ol),(v2,002),(v3,(.03))

6. Let Pij(s,t) = sit j, where i < m and j < n. Then Pij(s,t) is both a polynomial
of total degree m + n and a polynomial of bidegree (m,n). Show that

6.5 Blossoming Bezier Patches 339

a. p((ul,Vl) (Um+n'Vm+n)) __ ~_ blal " " l g a i V f l l " " V f l j ,
(m+r l
i j k)

where the sum is taken over all sets of distinct indices

{ al ai, fll , ~ j }"

b. p(u 1 Um; Vl V n) = Z
blal " " " blai V fll "" " V f l j

(m)(7)

where the sum is taken over all indices {a 1 a i} and {ill flj} such
that {a 1 a i } are distinct and {ill flj} are distinct.

7. Let P(s) be a univariate polynomial of degree n. Then P (s , t) - P(s) is both
a bivariate polynomial of total degree n and a bivariate polynomial of bi-
degree (n,n). Prove that

a. p((u 1, v 1) (Un, v n)) = p(u 1 u n)

b. p(ul,...,Un;Vl V n) - p(u 1 Un)

c. Using parts (a) and (b), conclude that if P(s, t) - s i, i _< m, or P(s,t) = tJ,

j < m, then p(u 1 Un;V 1 Vn) - p((ul ,Vl) (Un,Vn)).
�9 .

8. Let Q(s,t) = ~,jQijstt J be a bivariate polynomial of bidegree (m,n).

a. Use Taylor's Theorem in two variables to prove that

Qij = (m) (j) P (~ , 5 1 , . " ~ ; t , ' ~ , ~ 2 , 52) .
m - i l n - j j ~"

b. Apply the result of part (a) to develop an algorithm to convert from
bivariate Bezier to bivariate monomial form.

9. Let b~jn((ul Um;V 1 Vn)) denote the blossom of the bidegree (m,n) Bern-
stein basis function Bm(s)Bj(t). Prove that

a urn;v1 Vn))

�9 B 1. .B 1. (Vn)).

f _ ~ . . \ l
b.

i. U m - | 1 7 4
u 1 t tm

ii. V n - (1 - v 1 V l) | 1 7 4 n Vn)

1 340 C H A P T E R 6 B los soming

6.6 Summary

Blossoming is easy. Blossoming is slick. Blossoming is fun. Blossoming is power-
ful. But there is a lot of material in this chapter on blossoming to try to absorb all at
once. Here then is a short summary of the main points that you need to remember:

Pr imary Proper t ies

i. Symmetry

p(ul , . . . ,u n) - p(ucr(1) Ua(n)) for any permutation cr of { 1 n }.

ii. Multiaffine p(u 1 , (1- a) u k + aw k u n) =

(1 - a)p(u 1 u k U n) + ap(u 1 w k ,.. . ,u n)

iii. Diagonal

iv. Dual functional

= n (t)

n

Pk = p (a a ,b b) Pijk - p (a a,b, . , b ,c c)

n - k k z j k

v. Existence

vi. Uniqueness

Pij - p (a a,b b;c c ,d ,d)
m - i i n - j j

The first three properties are the blossoming axioms--the three properties
that uniquely characterize the blossom. Property (iv) is the key connection
between blossoming and Bezier curves and surfaces. It leads to all the appli-
cations listed below. Property (iv) is so strong that it can replace the diago-
nal property as one of the blossoming axioms. Property (v), existence, is
essential; otherwise there is nothing to talk about. But uniqueness, Property
(vi), is also critical. It is uniqueness that allows us to identify formulas that
represent the blossom simply by verifying the axioms. Many proofs of blos-
soming identities are based on uniqueness.

Key de Caste l jau Cons truc t ions

1. Blossoming the de Casteljau algorithm

�9 Blossom each level of the de Casteljau algorithm independently.

�9 Replace t ~ u k on the kth level of the de Casteljau algorithm.

6.6 Summary 341

2. Homogenizing the de Casteljau algorithm

�9 Homogenize each level of the de Casteljau algorithm independently.

�9 Replace t - a ~ t - a w and b - t ~ b w - t on every level.

�9 C e n t r a l I d e a s

1. Blossoming <--a powerful tool for generating change of basis algo-
rithms.

2. Homogenization ~ differentiation.

3. Blossoming and homogenization commute.

�9 P r i n c i p a l A p p l i c a t i o n s = C h a n g e o f B a s i s A l g o r i t h m s

1. Subdivision

2. Differentiation

3. Degree elevation

4. Conversion between Bezier and Monomial form

�9 E s s e n t i a l Too l s f o r A n a l y z i n g the B l o s s o m

1. Blossoming axioms

�9 Uniqueness

2. de Casteljau algorithm

�9 Recursion

3. Marsden identity

�9 Power basis

4. Elementary symmetric functions

�9 Monomial basis

5. Convolution

�9 Bernstein basis

Finally, it is difficult to remember all the interesting identities for the blossom
that we have encountered in the text and in the exercises. For quick recall, we have
collected these formulas below in the following section on blossoming identities.

6.6.1 Blossoming Identities

1. S y m m e t r y

p(u 1 U i Uj,...,Un) = p (u 1 U j U i U n)

2. M u l t i a f f i n e

p (u l (1 - a) u k + t ~ k Un) -

(1 - a)p(u 1 u k u n) + a p (u 1 w k u n)

342 CHAPTER 6 Blossoming

3. Diagonal

p(t t) - P(t)

n

4. Dual functionals

a. B e z i e r coe f f i c i en t s

Pk - p(a a,b b)
,...._~...~ ~.....,e....~

n - k k

Po'k - p(a a,b b,c c)

t j k

Pij - p(a a,b b;c c,d d)

m - i t n - j j

b. M o n o m i a l coe f f i c i en t s

Pk = p(a a ,S (3)

n - k k

Pijk - p(a a, ~ 1 S I , ~ 2 ~2)

t j k

P/j - P (~ , ~ l , . . - ~ ; ~ , ~ 2 ~ 2)

m - i l n - j J

c. P o w e r coe f f i c i en t s

Pk = P(to tk-l,tk+l tn)

Pi j = P(SO S i - l , S i + l Sm;tO t j - l , t j+l tn)

5. Linearity

(p + q) (u 1 u n) - p(u 1 Un) + q(ul u n)

(c p) (u 1 Un) = c p (u 1 u n)

6. Products

(pq)(ul Um+ n) =

7. Composites

(p o q) (u 1 Umn) =

8. Degree elevation

~]e P(Ue(1) U~(m))q(U~(m+l) U~(m+n))

(m+n) !

~,~ P(q(ua(1) Ua(n)) q(Ua(mn-n+l) Ua(mn)))

(mn)!

n+l

~, Pn (Ul ui-1 ,Ui+l Un+l)

Pn+l (Ul Un+l) _ i=1
n + l

Pn+k(Ul Un+ k) =
Pn (ui 1 ui n)

(n + k ~

k)

6.6 Summary 343

9. Der iva t ives

P ' (t) = np(t t,(~)

p (r) (t) - n!

(n-r)!
p(t t ,8 8)

r

~)P
= np(t t,81)

~t 1 n-1
~P

= n p (~ , a2)
~ n-1

8 i+jp n!

at{atJ 2 (n - i - j)!
p (t t,81 ~1,~2 ~2)

n - i - j ~" ~" t j

~P
- - = mp(s s,81 ;t t)
~S ~ m-1 n

~P
Ot - np(s~.~___~ t t,82)

m n-1

o i+jp m! n!

OsiOt j (m - i) v (n _ j)v p (s ~ ,s,~l ~1; ~ , ~2 ,..., 82)
�9 " m-i ~" n - j ~" �9 t j

10. Convolu t ions

(F~ (t) f n (t)) -- !Lo(t) ,L 1 (t)) (~ .. . (~ (Lo(t) ,L 1 (t))

n linear factors

(fort (Ul u n) f n (u 1 Un)) - (Lo(Ul) ,L I (Ul)) |174

(Fi~k (s, t)) -
Lool(s,t)
Lloo(S, t)

~lO(S,t) I | | (Lool(~,O
0 ~Lloo(s , t)

- v

n linear factors

 lOo S,') /

....

LIO0 (Ul, Vl)
LOIO (Ul' Vl)/(~... @ (LO01 (un' vn)

0) ~LloO(Un,Vn)
LolO(Un'Vn) I 0

344 c H A P T E R 6 Blos soming

11. Special univariate bases

a. B j (t) = (j)t j (1 - t) n - j

b j (U l . . , U n) - y__,il+" . in=j B1 B 1 (Un) , . . /1 (U l) " " I n

b. M)' (t) - (7)d
/'/

m j (u 1 , t /n) - ~Ui l . . .u l j

c. p j (t) - (t - aj)n

p ; (u 1 Un) - (u 1 - a j) . . . (u n - a j)

12. Special bivariate bases

a. Bijnk(t) - (g .k)s i tJ (l_ s - t)n - i - J

. (U n , V n)) -

1 B 1
Zil+...+in=iZjl+...+jn=jBilJlkl (U l , V l) " " inJnk n (Un,Vn)

b. Mij (t) - (' .k)sid

m~k ((Ul, Vl) (Un, Vn)) = E a i c:fl j Uot 1 . . . uai v fll . . . v flj

c. Pijnk(t) - (s + t - a(i k)n

Pqk((Ul,Vl) (Un,Vn)) - (u 1 + v 1 - a i j k) " ' (u n + v n - a i j k)

13. Specia l tensor produc t bases

a. BiTn(t) - (m) (j) s i t J

b~n((ul Um;V 1 Vn))

_ B 1 B 1))
- (~ i l+ ' "+ im=iB] l (U l) ' "B l ' lm (U m)) (~ J l + ' " + J n = J J1 (Vl) ' ' " Jn (Vn

mn m n b. Mi j (t) - (i)(j) s i t j

mn .
mij ((u 1 Um,V 1 Vn)) - ~, ual . . .uaivfll ..vflj

c. p q n (t) - (s - a i) m (t - b j) n

mn
Pij ((Ul Um, v 1 v n)) - (u 1 - ai) . . . (u m - a i)(v 1 - b j) . . . (v n - b j)

6.6 S u m m a r y 345

14. D e B o o r - F i x represen ta t ion

a. Univar iate

n (_1) n-k
p(u 1 U n) - Y__, P(k)('g)llt(n-k)(~")

k=0 n!

gt(t) = (u 1 - t) . . . (u n - t)

b. Bivariate (homogeneous)

1
P((Ul' Vl' Wl) (Un' Vn' Wn)) - ~ Z

i+j+k=n

p(i , j ,k) (p , Or, "g)l[I (i'j'k) (p, or, r)

i!j!k!

I l t (r ,s , t) = (ru 1 + sv 1 + tw 1) . . . (ru n + sv n + tw n)

15. B l o s s o m o f the der iva t ives

p ' (u 1 Un_ 1) = np(u 1 Un_l,~)

n~
p(r) (u 1 Un_r) _ ~ P(Ul Un_r ' (~ (~)

(n - r) ! ?-

16. Part ia l der iva t ives o f the b lo s som

Op(u 1 u n)
Ouj = m j p (u l U j - l '~ 'U j+l Un)

Op(u 1 Un) m j
= p ' (u 1 u j - 1,uj+l u n)

~uj n

mj = mult ipl ici ty o f uj

C H A P T E R 7

B-Spline Approximation
and the de Boor Algorithm

B-splines are generalizations of Bernstein polynomials and share many of their ana-
lytic and geometric properties. A spline is a piecewise polynomial whose pieces fit
together smoothly at the joins. B-spline curves and surfaces have two advantages
over polynomial curves and surfaces. For a large collection of control points, a Bez-
ier curve or surface approximates the control polygon or polyhedron with a single
polynomial of high degree. But high-degree polynomials take a long time to com-
pute and are numerically unstable. Splines provide low-degree approximations,
which are faster to compute and numerically more tractable. We could, of course,
manufacture splines by forming piecewise Bezier curves and surfaces. To do so,
however, we would need to constrain the location of the control points so that the
Bezier segments would meet smoothly at their joins. B-splines provide an approxi-
mation scheme where such constraints on the location of the control points are not
necessary; B-spline curves and surfaces meet smoothly at their joins for completely
arbitrary collections of control points. Thus B-splines provide a simpler, numerically
more stable approach to approximating large amounts of data. For these reasons B-
splines have become extremely popular in large-scale industrial applications.

7.1 The de Boor Algorithm

We are going to introduce B-spline curves by invoking blossoming to generalize the
de Casteljau algorithm for Bezier curves. Consider again the de Casteljau algorithm
depicted as a blossoming recurrence in Figure 6.1 (see page 309).

Examining Figure 6.1 from the bottom up, we see that what makes this recur-
rence work is that the blossom variables in adjacent nodes on the same level differ by
only a single parameter. This juxtaposition allows us to invoke the multiaffine and
symmetry properties to compute new blossom values from old blossom values as we
proceed up the de Casteljau triangle. Thus to generalize the de Casteljau construc-
tion all we need to do is to ensure that this adjacency property holds throughout the
triangle. The basic step is illustrated in Figure 7.1.

347

348 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

t2t3t

tlt2t 3 t2t3t4

Figure 7.1 The basic step in the blossoming recurrence for a cubic polynomial: computing t2t3t from
t l t2t 3 and t2t3t4 using linear interpolation together with the multiaffine and symmetry prop-
erties of the blossom. As usual each triple uvw stands for the blossom evaluated at (u, v, w).

The computation in Figure 7.1 is valid because from linear interpolation, we
have

t 4 - t t - t 1
t - ~ t 1 + t 4 �9 (7.1)

t 4 - t 1 t 4 - t 1

Therefore, for any symmetric multiaffine function p,

(t4 - t t - tl l t4 - t t - t 1),
P(t2,t3,t) = p t2,t3, tl + t 4 - ~ P (t l , t 2 , t 3) + P(t2,ta,t 4

t 4 - t 1 t4 - t 1 t4 - t 1 t4 - t 1

which is precisely the identity depicted in Figure 7.1.
Now to generalize the de Casteljau algorithm, we start at the base of the triangle

not with the parameters an-kb k, k = 0 n, but with some arbitrary parameters
tj+l...tj+ n, j = 0 n. Since adjacent nodes on the same level still differ by only a sin-
gle parameter, this approach leads to the recurrence depicted in Figure 7.2. This
recurrence is the de Boor algorithm for a single segment of a B-spline curve.

The computation illustrated in Figure 7.2 is just the computation depicted in
Figure 7.1 repeated again and again as we proceed up the triangle. Notice that by
Equation (7.1) this computation also makes sense if we treat each triple uvw as a
product of real numbers, instead of as a sequence of blossom parameters. This obser-
vation provides a simple mnemonic for remembering the de Boor algorithm.
Another simple mnemonic that emerges from the diagram is that if you follow along
in the direction of any arrow, the labels you encounter along the edges do not
change. Of course, this observation is true only for the numerators; the denomina-
tors, which are suppressed in the diagram, change from level to level. The label exit-
ing t j+l. . . t j+ n to the left is t - tj, and the label exiting to the fight is tj+n+ 1 -t.
Knowing these labels allows us to label the numerators for the entire diagram. The
denominators can be retrieved easily from the numerators, since the labels entering
each node must sum to one.

The de Boor algorithm evaluates points along any degree n polynomial curve
P(t) by starting with n + 1 blossom values p(t 1 tn) P(tn+ 1 t2n) and running a
recurrence to compute p(t t). The parameters t 1 t2n are called knots. The only
restriction on the knots is that the denominators in the de Boor algorithm must not
vanish. This requirement is equivalent to the constraint tj+ n r t i whenever

7.1 The de Boor Algorithm 349

ttt

t3tt t4tt

t2t3t t3t4t t4t5t

tl t2t3 t2t3t4 t3t4t5 t4t5t6

Figure 7.2 The de Boor algorithm for a single segment of a cubic B-spline curve. Again each triple u v w

stands for the blossom evaluated at (u, v, w).

1 < j < i < n. Any knot sequence that satisfies this constraint is called a progressive
sequence. For reasons that will become clear in Section 7.3, we shall generally
assume that t i < t i+l and shall restrict our attention only to the segment of the curve
for which t n < t < tn+ 1.

Now consider the functions

b~ (t) - the sum of the products along all paths from the kth position at the base
to the apex of the de Boor algorithm.

Since the labels along the edges of the de Boor algorithm are linear functions that
depend on the knots, the functions b~(t) bn(t) are polynomials of degree n that
also depend on the knots, but once the knots are fixed these functions are also fixed.
Moreover, for any polynomial of degree n, it follows from the de Boor algorithm that

n

P(t) = ~, b f (t)p(tk+ 1 tk+ n) .
k=O

(7.2)

Thus the polynomials b~ (t) b n (t) span the space of polynomials of degree n. But
any set of n + 1 polynomials of degree n that span the space of polynomials of
degree n must form a basis for the space of polynomials of degree n. Hence the func-
tions b~ (t) b n (t) are a basis for the polynomials of degree n. We call a polynomial
basis that corresponds to a progressive knot sequence a progressive basis. If the knot
sequence is increasing, then locally these polynomials represent the B-spline basis
functions about which we will have a good deal more to say later in this chapter. For
now, the important fact to observe is that if Po Pn are the control points of P(t) rel-
ative to the progressive basis b~(t) bn(t), then by Equation (7.2)

i 350 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

Pk = P(tk+l tk+ n) (7.3)

because the control points relative to a fixed polynomial basis are unique. Equation
(7.3) is the dual functional property for the B-splines; this equation is the basic fact
connecting blossoming to B-splines and is the generalization to B-splines of the dual
functional property for Bezier curves. Again we shall have a good deal more to say
about this result in subsequent sections.

The de Boor algorithm for a B-spline segment has an elegant geometric interpre-
tation, similar to the geometric interpretation of the de Casteljau algorithm for Bez-
ier curves. Each step of the de Boor algorithm represents a linear interpolation.
Labeling the points with their blossom values and joining the nodes with straight
lines generates the trellis in Figure 7.3. Observe that just like the de Casteljau algo-
rithm, the de Boor algorithm represents a corner-cutting procedure. Notice, however,
that unlike Bezier curves, the curves generated by the de Boor algorithm do not nec-
essarily interpolate their first and last control points.

The de Boor algorithm is easy to blossom. Since adjacent nodes differ by only a
single parameter, we can introduce a new parameter at each level of the de Boor
algorithm by replacing t with u k on the kth level above the base of the triangle. Thus,
we can compute an arbitrary blossom value p(u 1 Un) for any degree n polynomial
P(t) by starting with n + 1 blossom values p(t 1 t n) p(tn+ 1 t2n), running the
de Boor algorithm, and replacing t by u k on the kth level of the algorithm. This blos-
soming algorithm is illustrated in Figure 7.4. Notice that this ploy is the same
maneuver we applied to blossom the de Casteljau algorithm.

In order to verify that B-splines generate smooth piecewise polynomial curves,
we shall need to understand how to differentiate a segment of a B-spline curve. In
Section 6.4 we showed that for any degree n polynomial P(t),

P'(t) = np(t t ,8)
n-1

n~
P(k)(t) = ~ p (t t ,8 8).

(n - k)V ~
�9 n - k k

t2t3t4 t3t4t t3t4t5
A A A

tlt2t 3 t4tst6

Figure 7.3 Geometric construction algorithm for a point on a segment of a cubic B-spline curve. All the
points are labeled with blossom values. Compare to the geometric interpretation of the de
Casteljau algorithm in Figure 5.4.

7.1 The de Boor Algorithm 351

U l U 2 U 3

-

t3UlU2 t4UlU 2

t 4 / - u 2 / -~t2 t5-u2// -~ t3

t2t3U l t3t4u 1 t4 t5u 1

t4-u,// -~t, tS-Ul// -~t 2 t6-Ul// -~t 3

t l t2 t3 tz t3 t 4 t3 t 4 t 5 t 4 ts t 6
Figure 7.4 Blossoming the de Boor algorithm for a single segment of a cubic B-spline curve. This dia-

gram is derived from Figure 7.2 by replacing t with u k on the kth level of the algorithm.
Again each triple u v w stands for the blossom evaluated at (u, v, w).

Thus to differentiate one segment of a B-spline curve, we must blossom and
homogenize the de Boor algorithm and then evaluate at t's and 6's. We already
know how to blossom the de Boor algorithm (see Figure 7.4). To homogenize, we
simply homogenize each level of the algorithm; that is, we replace

tj- u k --4 (iv k - u k and Uk - ti ~ u k - tiv k
on the kth level of the algorithm. Setting (uk,vk) = (t,1) gives us back our original
labels, and setting (u k, v k) = d; = (1, 0) replaces

t j v k - u k ---> - 1 --

u k - t i v k ---> + 1 =

d(tj - t)
d t

d(t-t i)
dt

on the kth level of the algorithm. Thus the net effect on the de Boor algorithm of
evaluating

p(t t, S tS)
n - k k

is to differentiate k levels of the algorithm and leave n - k levels unchanged. We
illustrate this differentiation algorithm in Figure 7.5. Notice again that this approach
is akin to the procedure we used to differentiate the de Casteljau algorithm for Bez-
ier curves. We shall use this observation in Section 7.3 to prove that two adjacent B-
spline segments meet smoothly at their join.

i 352 CHAPTER 7 B - S p l i n e A p p r o x i m a t i o n a n d the de B o o r A l g o r i t h m

t t6

t3t6

t2t36

qt2% tz%t4

tt46

t3q6 t4ts6

t3t4t 5 t4t5t6

Figure 7.5 Differentiating the de Boor algorithm for a single segment of a cubic B-spline curve. This dia-
gram is derived from Figure 7.2 by differentiating one level of the algorithm. To get the
actual derivative, we need to multiply the output at the apex by n = 3. As usual, each triple
uvw stands for the blossom evaluated at (u, v,w), t k = (tk,1), t = (t,1), and 6= (1,0).

Another way to understand the computation in Figure 7.5 is to observe that

1 1
= (1,0) = ~ (t k , 1) - (tj,1) . (7.4)

tk -tj -tj

Thus the differentiation algorithm is simply a consequence of Equations (7.1) and
(7.4) coupled with the symmetry and multilinearity properties of the homogeneous
blossom. Notice that the denominators t k - tj are suppressed in Figure 7.5.

Exercises

1. Show that the de Boor algorithm and its variants (Figures 7.2, 7.4, and 7.5)
remain valid if we interpret the nodes as univariate polynomials whose roots
are the specified parameter values. That is, let tj+ 1 . . . t j+ n denote the poly-
nomial with roots tj+ 1 tj+ n, j - 0 n.

a. Show that the de Boor algorithm (Figure 7.2) can be used to compute the
polynomial (t - x) n from the polynomials

{ (tj+ 1 - x) . . . (t j + n - x) }, j = 0 n.

b. Show that the blossomed de Boor algorithm (Figure 7.4) can be used to
compute the polynomial (U l - X) . . . (U n - X) from the polynomials

{ (tj+ 1 - x) . . . (t j + n - x) }, j = 0 n.

c. Show that the differentiated de Boor algorithm (Figure 7.5) can be used
to compute the polynomial (t - x) n-k from the polynomials

7.1 The de Boor Algorithm 353

{ (tj+ 1 - x) . . . (t j+ n - x) }, j = 0 n.

d. Apply the Third Principle of Duality from Section 5.5 to find the coeffi-
cients {Q j} of a polynomial P(t) relative to the basis

Dj (t) = {(tj+ 1 - x) . . . (t j+ n - x) } , j = 0 n

given the coefficients {Pk} relative to the basis

Bk(t) = {(Uk+ 1 - x) . . . (Uk+ n - x) } , k = 0 n.

(Hint: You will need two triangles.)

e. Use the result of part (d) to develop an O(n 2) algorithm to find the Bezier
control points of a degree n polynomial curve given n + 1 points on the
curve along with their associated parameter values. (Hint: Convert from
Lagrange to Bezier form using part (d).)

2. Let bd(t l tj+l t j+2d) b J (t l tj+a t j+2d) denote the progressive
basis of degree d for the progressive knot sequence tj+ 1 tj+2d.

a. Show that Figure 7.6 represents the down recurrence for the progressive
basis functions.

b. Conclude that the progressive basis functions { b f (t l t 1 tZn)} satisfy
the recurrence

b~c(t l tl t2n)=

tk+n+l t
b~c,-l(tl t2 tZn-2) + - -

tk+n+l - t k + l

t - t k n-1
bk_l (ti t2 t2n-2)

tk+ n - t k

1

b l (t l t 3 , t 4) b] (t l t 3 , t4)

b~(t l t2 , . . . , t 5) b~(t l t2, . . . , t5) b~(t l t2, . . . , t5)

b~(t l t] , . . . , t 6) b~(t l t] , . . . , t6) b3?(t l t] , . . . , t6) b~(t l t] , . . . , t 6)

Figure 7.6 The down recurrence for the cubic progressive basis functions.

354 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

3. The Bemstein polynomials can be represented by an um model employing
sampling with replacement. Here we develop an urn model for a progressive
basis with uniform knots.

Consider an um containing w white balls and b black balls. One ball at a
time is drawn at random from the urn, its color inspected, then returned to
the urn, and w + b balls of the opposite color are added to the urn. Let
t = w / (w + b) be the probability of selecting a white ball on the first trial,
and define

fk n-1 (t) = probability of selecting a black ball after selecting exactly k white
balls in the first n - 1 trials

n-l(t) probability of selecting a white ball after selecting exactly k white s k =
balls in the first n - 1 trials

b~ (t) = probability of selecting exactly k white balls in the first n trials

Using probabilistic arguments, show that

f ~ - I k + l - t a. (t) =
n

t + n - l - k n-l(t) - b. s k
n

n-lYt~t.n-l(t) C. b~ (t) = fk n-1 (t)b~ -1 (t) + Sk_ 1 ~)Uk_ 1

By matching the recurrence in part (c) to the recurrence in Exercise 2(b),
conclude that

d. bdo(t) bd(t) is the progressive basis over the interval (0,1) for the
knots t k = k - d , k = l 2d.

(Compare to Polya's urn model in Section 5.5.4.2, Exercise 12.)

4. Here we extend the urn model in the previous exercise to progressive bases
corresponding to arbitrary progressive knot sequences t 1 t2n. Again we
study urn models where we add balls only of the opposite color.

Consider an urn containing w white balls and b black balls. One ball at a
time is drawn at random from the urn, its color inspected, and then returned
to the urn. If the ball was the jth black ball chosen, then cj additional white
balls are added to the urn; if the ball was the kth white ball chosen, then d A
additional black balls are added to the urn. Thus in each case only balls of
the opposite color to the color of the chosen ball are added to the urn, and in
every case the number of balls added to the urn depends only on the number
of balls of the same color that have previously been selected. Let
t - w / (w+ b) be the probability of selecting a white ball on the first trial,
and let

tn+l-J - tn-j (w + b) c j =
tn+ 1 - t n

7.2 Progressive Polynomial Bases Generated by Progressive Knot Sequences 355~
I

d k = tn+k+l - tn+k (w + b)

tn+l - tn

n-1
f k (t) = probability of selecting a black ball after selecting exactly k white

balls in the first n - 1 trials

n-1 (t) probability of selecting a white ball after selecting exactly k white S k

balls in the first n - 1 trials

b~ (t) = probability of selecting exactly k white balls in the first n trials

Using probabilistic arguments, show that

n - l (t - t n . I t - t k + l

a. s k ~.tn+l - tn = tn+k+l _ tk+l

b. ~n-l(t - t n I tk+n+ 1- t
Jk k tn+ 1 _ tn = t k+n+l _ tk+l

c. ~ / ' - ' n /
t~+- 1 - t n

~ 1 / ~ , t n / ~ l / ~ , tn / n 1 / + S~l ~ ' 'n / n 1 / ~1 ~ '~n /
tn+ 1 - t n tn+l - t n tn+l - t n tn+l - t n

By matching the recurrence in part (c) to the recurrence in Exercise 2(b),
conclude that

d ~/~ 'n+ ~ 1 - 'n / b~/~ 'n+ ~ 1 - 'n / is the progressive basis for the knots
t 1 ,'--,t2n"

(Compare to the generalized Polya um model in Section 5.5.4.2, Exercise
13.)

7.2 Progressive Polynomial Bases Generated by Progressive
Knot Sequences

Every progressive knot sequence determines a progressive polynomial basis. Each
such basis has an evaluation algorithm that is a special case of the de Boor algo-
rithm. Here we look at three important examples of progressive polynomial bases"
the Bernstein basis, the monomial basis, and the Newton dual basis. The power basis
is yet another example of a progressive polynomial basis; this basis is examined
briefly in Exercise 1.

The de Casteljau algorithm is the special case of the de Boor algorithm where
t 1 = t n = a and tn+ 1 = t2n = b (compare Figures 6.1 and 7.2). Thus Bezier
curves are special types of B-spline segments.

3 5 6 C H A P T E R 7 B - S p l i n e A p p r o x i m a t i o n a n d the de B o o r A l g o r i t h m

If we homogenize the de Casteljau algorithm with respect to the knots and then
replace b by ~ = (1,0), we get an evaluation algorithm for the monomial basis

M~ (t) = (~)(t - a) k

at t = a (see Figure 7.7).
Since, up to constant multiples, the monomial coefficients at t = a are the deriv-

atives of the polynomial at t = a, the monomial coefficients are the values of the
blossom at an-kr k, k = 0 n. Therefore, the knot sequence for the monomial basis at
t - a is t 1 = t n = a and tn+ 1 t2n - r Here the monomial basis functions
are (n) , (t - a) k instead of the standard Taylor basis functions (t - a) k / k ! because k
there are (n k) paths from the kth position at the base to the apex of the triangle.
Notice that in Figure 7.7 we have used the homogeneous version of the blossom.
The computation now follows from the identity

t = (t,1) = (t - a)(1,0) + (a,1) = (t - a) 5 + a (7.5)

and the multilinear property of the homogeneous blossom.
We close with one final example that is less familiar, but nevertheless plays an

important role in algorithms for B-spline curves. Consider a sequence of knots
tl t2n ' where t 1 t n are not multiples of ~ and tn+ 1 = t2n = ~. The corre-
sponding polynomial basis is called the N e w t o n d u a l bas i s because, in a way we
shall make precise in Section 7.7.2, Exercise 5, his basis is dual to the Newton basis
we studied in Chapter 4. The Newton dual basis appears in differentiation and knot
insertion algorithms, which we will discuss in Section 7.6.4.2. Notice that the mono-

ttt

at t &t

a a t aS t &St

a a a a a 5 ar 858

Figure 7.7 An evaluation algorithm for the cubic monomial basis at t = a. Here we use the homoge-
neous version of the blossom. As usual, each triple uvw stands for the blossom evaluated at
(u,v,w), t = (t, 1), a = (a, 1), and 5= (1,0). Notice that by Equation (7.5), there is no normaliza-
tion in the labels along the edges.

7.2 Progressive Polynomial Bases Generated by Progressive Knot Sequences 3 5 7

t t t

t3t t & t

/ /
t2t3t t3oet ~ &

t 1 t2t 3 t2 t38 t 3 6 6 6 6 6

Figure 7.8 An evaluation algorithm for the cubic Newton dual basis. Again we use the homogeneous
version of the blossom. As usual, each triple uvw stands for the blossom evaluated at (u, v, w),
t k = (t k, 1), t = (t, 1), and 5 = (1,0). As in the evaluation algorithm for the monomial basis, no
normalization is required in the labels along the edges.

mial basis at t = a is just a special case of the Newton dual basis where
q = . . . = t n = a. The computation in Figure 7.8 follows from Equation (7.5) with the

parameter a replaced by t k.

Exercises

1. a. Prove by induction on n that the progressive basis corresponding to the
knot sequence t 1 tn , t 0 tn_ 1 is the power basis

ply (t) (t - tk)n = , k = O , . . . , n .
l-I (t k - t j)

j ~ k

(Compare to Section 6.3, Exercise 6.)

b. What is the urn model corresponding to the power basis? How are the
{c j} and {d k} parameters related? (See Section 7.1, Exercise 4.)

2. Let Dff(t), k = 0 n, denote the Newton dual basis of degree n relative to
the knots q t n . Show that

a. D~(t) = 1.

b. D ~ (t) = n t - ~ , k t k .

c. D n (t) = (t - tn) n.

d. Df (t) is a polynomial of degree k that depends only on the knots t k t n .

,] 358 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

3. Let E~(t), k = 0 n, be the progressive basis corresponding to the knot
sequence

0 0,t 1 t n ,
/1

and let E(t) - ~,k E~ (t)P k.

a. Construct the de Boor algorithm for E(t).

b. Show that E(0)= P0.

7.3 B-Spline Curves

So far we have shown how to apply the de Boor algorithm to compute points only
along a single polynomial segment, but our goal is to produce smooth piecewise
polynomial curves. To achieve this end, we must somehow string together B-spline
segments.

A B-spline segment of degree n is defined by 2n knots and n + 1 control points.
Given knots t I ,t2n and control points PO In, we place the control points at the
base of the de Boor algorithm (Figure 7.2) and the knots in the linear functions along
the edges. Now suppose we are given some additional knots t2n+l,t2n+2 and
some additional control points Pn+l,Pn+2,.... Then we can define some additional
polynomial segments simply by shifting all the indices in the de Boor algorithm by a
constant. For example, if we are given one additional knot and one additional control
point, then we can form the polynomial segment illustrated in Figure 7.9.

ttt

t4tt

/
t3t4t

/
t2t3t4 t3t4t5

tstt

/
t4t5t t5t6 t

/ /
t4t5t6 tst6t7

Figure 7.9 A cubic B-spline segment for the knots t 2 t 7. This diagram is generated from Figure 7.2 by
shifting all the indices by one.

7.3 B-Spline Curves 3 5 9

tit ttt

t4 ~ t3 -
/ / \

t3tt t4tt t5tt

/ t 6 ~ - ~ t 4 t4 / ~ t - t 2 /

t2t3t t3t4t t4t5t t5t6t //"
/ / / \

tl t2t 3 t2t3t4 t3t4t 5 t4t5t6 t5t6t7

Figure 7.10 The de Boor algorithm for two segments of a cubic B-spline curve. Notice that the symbols t t t
at the two apexes represent the values of two distinct polynomial curves over two distinct knot intervals.

How is this new segment related to the original segment? By construction, the
two diagrams for the two de Boor algorithms fit together as in Figure 7.10; that is,
they share common control points as well as nodes and edges with common labels.

This overlapping of the two diagrams is very suggestive. Notice, however, that
we have overloaded our notation here. The two overlapping triangles represent two
distinct polynomial curves P1 (t) and P2(t). The symbols ttt at the two apexes are not
identical; rather they r e p r e s e n t p l (t , t , t) = P l (t) and p z (t , t , t) - Pz(t). Similarly, the nota-
tion tk+ltk+Ztk+3 is overloaded; here tk+ltk+Ztk+ 3 represents both Pl(tk+l,tk+Z,tk+3) and
P2(tk+l,tk+2,tk+3). To construct B-spline curves, we start with a fixed collection of con-
trol points {Pk }" It is these control points that we actually place at the base of the dia-
gram for the de Boor algorithm and use to compute the polynomials P1 (t) and P2 (t).
It then follows from Equation (7.3) that

Pl(tk+l,tk+2,tk+3) = Pk = P2(tk+l,tk+2,tk+3);

it is this equality that permits us to overload our notation.
We shall now show that the curve segments that these overlapping diagrams rep-

resent also fit together smoothly. By convention, the first apex represents the curve
segment for t 3 < t < t4; shifting indices by one, we see that the second apex must rep-
resent the curve segment for t 4 < t <_ t 5 . The question then is this: How smoothly do
these two curve segments meet at t = t4?

To begin, we must show that these curves meet continuously at t - t 4. Consider
the first segment in Figure 7.10. At t = t 4, the label t 4 - t = 0; therefore, since the
labels entering any node sum to one, the nodes labeled ttt and t4tt have the same
value at t = t 4. But by the same argument the nodes labeled ttt and t4tt have the same
value at t - t 4 for the second segment. Since ttt represents the value of the polyno-
mial in each segment, it follows that these two polynomials agree at t = t 4.

An identical argument works for derivatives. Recall from Section 7.1 that to dif-
ferentiate a B-spline segment, we simply differentiate the labels on any level. If we

I , , 3 6 0 C H A P T E R 7 B-Spline Approximation and the de Boor Algori thm

differentiate the labels on the first level above the control points in Figure 7.10, then
exactly the same argument we used to show that the two polynomials agree at t - t 4
shows that their derivatives match at t = t 4. Differentiating the second level as well
shows that second derivatives also match at t - t 4. The third derivatives, however,
need not agree since differentiating the third level destroys the label t 4 - t , so we
cannot conclude that the node at the apex now labeled 666 has the same value at
t = t 4 as the interior node labeled t466.

Exactly the same arguments work for B-spline segments of degree n, except
now n - 1 derivatives agree at the knots. Stringing together B-spline segments of
degree n in this manner generates smooth curves that join at the knots with n - 1
continuous derivatives. Notice that this construction is completely independent of
either the location of the control points or the values of the knots. We have assumed
only that the knots are strictly increasing, that is, that tj < tj+ 1 , so that adjacent
knots define nonempty intervals.

What happens if for some knots t j - tj+l? Consider again Figure 7.10. If
t 4 - t 5, then in the second segment the denominators of the labels on the arrows

pointing into the apex vanish. That is, there is a singularity in the algorithm. Fortu-
nately, however, if t 4 - t 5, then the segment this algorithm represents is essentially
null so we can ignore this part of the diagram. Proceeding directly to the next seg-
men t~ the segment for the interval [t s , t f] ~ w e see that the diagram for this seg-
ment still overlaps the diagram for the segment [t3,t 4], but there are fewer common
nodes and edges. In fact, there are no common nodes on the second level and the
only common node on the first level is t4tst (see Figure 7.11). Now exactly the same
arguments that we used before show that the segment ove r [t3, t4] meets the segment
over [t5,t 6] with one continuous derivative at t = t 4 = t 5 , since they share the value
at the node t4tst.

In general, increasing the multiplicity of a knot shifts the diagram for the next
segment to the fight and decreases the differentiability of the B-spline curve at the
knot. Thus we have the following result; the proof is just an elaboration of the argu-
ments in the preceding paragraph.

ttt tit

t3tt t4tt ts~ tort
-

t2 t3 t t3 t 4 t t 4 ts t ts t6t t6t7 t

- - - t 8 - t ~

t I t2t 3 t2t3t 4 t3t4t 5 t4tst 6 t5t6t 7 t6t7t 8

Figure 7.11 The de Boor algorithm for two adjacent segments of a cubic B-spline curve when t 4 = t 5.

7.4 Elementary Properties of B-Spline Curves 361

THEOREM
7.1

At a knot of multiplicity p, a B-spline curve of degree n has n - / . t continu-
ous derivatives.

Exercises

1. Prove Theorem 7.1.

2. Extend Figure 7.10 to three B-spline segments.

3. Draw the de Boor algorithm for two adjacent segments of a cubic B-spline
curve when t 4 -- t 5 = t 6.

7.4 Elementary Properties of B-Spline Curves

A B-spline curve is a piecewise polynomial curve specified by an arbitrary collec-
tion of control points {Pj} and a nondecreasing sequence of knots {t k], where each
individual polynomial segment is defined by the de Boor algorithm. By construc-
tion, the kth segment of a degree n B-spline curve

�9 lies over the parameter interval [tk,tk+ 1],

�9 has n + 1 control poin ts - -Pk_ n Pk,

�9 depends on 2n knots - - tk_n+ 1 ,tk+ n.

The labels on the de Boor algorithm are specified as follows: t - t k labels the
edge exiting Pk to the left and tk+n+ 1 - t labels the edge exiting Pk to the right (see
Figure 7.12). The remainder of the edges can be labeled by observing that if you fol-
low along in the direction of any arrow, the labels you encounter along the edges (in
the numerator) do not change (see Figure 7.2).

Here is a list of the elementary properties of B-spline curves:

1. Piecewise polynomial

2. Continuity of order C n-p at knots of multiplicity p on curves of degree n

3. Local control

Pk

Figure 7.12 The (unnormalized)labels in the de Boor algorithm on the arrows exiting from the node con-
taining the control point Pk. The entire de Boor algorithm can be recovered from this dia-
gram because in the direction of any arrow, the labels encountered along the edges (in the
numerator) do not change (see Figure 7.2).

i 362 s H A P T E R 7 B-Spl ine Approx imat ion and the de Boor Algor i thm

4. Affine invariance

5. Local convex hull

6. Locally nondegenerate

7. Interpolation of control points at knots where the multiplicity ju is equal to
the degree n

Many of these features are analogous to the elementary properties of Bezier curves.
We shall derive each of these properties directly from the de Boor algorithm:

�9 Piecewise polynomial . Between any two adjacent knots, the de Boor algo-
rithm computes a polynomial curve. Therefore, B-spline curves are piece-
wise polynomials with break points at the knots.

�9 Continuity o f order C n -~ at knots o f multiplici ty ~t. This property is just
Theorem 7.1.

�9 Local control. Since the polynomial segment over the parameter interval
[tk,tk+ 1] is defined by the control points Pk-n Pk, the control point Pk

influences only the n + 1 curve segments over the parameter interval
[tk , tk+n+ 1] . Hence moving a single control point has only a local effect on

the B-spline curve, in contrast to Bezier curves where each control point
influences the entire curve. Similarly, since the curve segment over the
parameter interval [tk,tk+ 1] depends only on the 2n knots tk_n+ 1 tk+n,

the knot t k influences solely the 2n curve segments over the parameter inter-
val [tk_n,tk+ n], so altering the location of a knot also has only a local influ-
ence on the curve.

�9 Affine invariance. Since the nodes in the de Boor algorithm are computed
from affine combinations of lower-level nodes, it follows by induction on
the level of the node that each node in the de Boor algorithm represents a
point in affine space. Therefore, the B-spline curve at the apex of the de
Boor algorithm is a collection of points in affine space.

�9 Local convex hull. Each segment of a B-spline curve lies in the convex hull
of its control points because the functions along the edges of the de Boor
algorithm sum to one and are nonnegative in the parameter domain. To see
that this is so, consider the segment of a B-spline curve of degree n over the
knot interval [tn,tn+ 1]. For this segment the labels along the edges depend
only on the knots t 1 < . . . < t2n. Hence here all the denominators of the func-
tions along the edges are of the form tn+ j - t i, 1 < i, j < n, so the denomina-
tors are certainly positive. Moreover, the numerators are all of the form
tn+ i - t or t - t i , i = 1 ,n . Since t n < t < tn+l, it follows that the numera-
tors too are nonnegative. Because the labels along the edges are nonnega-
tive and sum to one, it follows by induction on the level of the node that
each node in the local de Boor algorithm lies in the convex hull of the local
control points. Hence B-spline curves have the local convex hull property.

[] Local ly nondegenerate. Suppose that locally the B-spline curve collapses to
a single point P. Then locally the B-spline curve is given by the constant
polynomial P(t) = P. Therefore, by the dual functional property for B-spline

7.4 Elementary Properties of B-Spline Curves 363

curve segments (Equation (7.3)), the control points of P(t) are given by
Pk = P(tk+l tk+n) = P" Hence if the B-spline curve collapses locally to a
single point, all the control points of the curve segment must lie at that
point.

�9 In te rpo la t ion o f control po in t s at knots where the mul t ip l ic i ty /u is equal to

the degree n. Suppose that tk+ 1 = ... = tk+ n, and consider the B-spline seg-
ment Pk+n(t) over the knot interval [tk+n,tk+n+l]. By the dual functional
property, the initial control point of this segment is

Pk = Pk+n(tk+l tk+n) = Pk+n(tk+n," ' , tk+n) = Pk+n(tk+n) '

SO the B-spline curve interpolates its kth control point when tk+ 1 = ... = tk+ n.

Unlike Bezier curves, B-spline curves do not generally interpolate their first or
last control points. This property makes it difficult to connect two arbitrary B-spline
curves. To overcome this problem, n-fold knots are often placed at the start and the
end of the knot vector to force interpolation of the initial and final control points.

There is another way to force interpolation of control points. If we set
Pk = Pk+n, then by the local convex hull property the B-spline segment over the
knot interval [tk+n,tk+n+l] will collapse to the point Pk because all its control points
are located at Pk" Thus the B-spline curve will certainly interpolate Pk" But introduc-
ing multiple control points is not as benign as introducing multiple knots. If

Pk = "'" = Pk+n,

then the segment o v e r [tk+n+l,tk+n+ 2] collapses to a line, since all but one of the
control points for this segment are identical. Additional nearby segments will exhibit
similar degeneracies because many of their control points will be identical. Multiple
knots reduce the differentiability of the curve at the knot, but knot multiplicities do
not introduce additional degeneracies in nearby segments. Therefore, to force inter-
polation it is more desirable to introduce multiple knots than multiple control points.

Exercises

1. Show that translating each control point of a B-spline curve by a vector v
translates the entire B-spline curve by v.

2. Let S(t) be a B-spline curve with control points {Pk} and knots {t k}. Form a
new B-spline curve R(t) by replacing each knot t k by the knot r k = at k + b
for some fixed constants a > 0 and b. Show that changing all the knots in
this way has no effect on the shape of the B-spline curve. In particular, using
the de Boor algorithm, show that R (a t + b) = S(t) . What happens if we
choose a < 0? (Compare to Section 2.2, Exercise 4.)

3. Construct B-spline curves that interpolate a fixed control point Pk by intro-
ducing

a. multiple knots

b. repeated control points

Compare your results. Which curves do you prefer? Why?

i 364
I

C H A P T E R 7 B - S p l i n e A p p r o x i m a t i o n a n d the de B o o r A l g o r i t h m

4. Use the de Boor algorithm to prove directly, without appealing to the dual
functional property, that a degree n B-spline curve with tk+ 1 = tk+ n
interpolates its kth control point Pk.

5. Use the de Boor algorithm to construct a B-spline curve. Experiment with
how moving the control points or altering the location of the knots changes
the shape of the curve.

7 .5 All Splines Are B-Splines

The de Boor algorithm constructs a spline from a knot sequence and a control poly-
gon. But suppose we are given a spl ine~that is, a piecewise polynomial curve
where the pieces meet smoothly at the joins. Is there a B-spline curve that matches
this spline? Is every spline curve a B-spline curve? Remarkably the answer is yes.
Thus by investigating B-spline curves we study all spline curves.

To prove this result, we begin with a lemma showing how the blossom values of
two polynomials are related when their derivatives agree at a point.

LEMMA
7.2

Let P(t) and Q(t) be two polynomials of degree n. Then the following state-
ments are equivalent:

1. P(J) (T) = Q(J) (~) , 0 <_ j < k.

2. p (~ , u 1 u j) = q (~ , u 1 uj)

n- j n- j
for any parameters u 1,-..,uj, 0 < j <_ k.

P r o o f 1 ~ 2. Suppose that P (J) (z) = Q(J)('c) , 0 < j < k. In Section 6.4 we showed
that

n~
P(J) ('c) -- ~ p (v T, (~ fi)

(n - j)v ~
�9 n - j j

n~
Q(J) ('c) - ~ q (v "c, (~ 8) .

(n - j)' ~
�9 n - j j

Therefore,

P(J)('c) - Q(J)(7:) r p (T T,g,...,~) - q(T ,T,g,...,8). (7.6)

n- j j n - j j

Now starting with the k + 1 blossom values

p (r r) , p (~ ~ ,~) p (~ ~ , 6 ~)

n-k k

along the base of a triangle and running the blossomed version of the homo-
geneous de Boor algorithm, we see that the k + 1 blossom values

7.5 All Splines Are B-Splines 3 6 5

p (r r), p (T T,U 1) p (r z',u 1 u k)
n-k

emerge along the left edge of the triangle (see Figure 7.13). But the same
algorithm (Figure 7.13) starting with the k + 1 blossom values

q(z z) ,q(z z,~) q(z z',~,..., ~)
,_.....,,....~ ,..._~,.....~

n-k k
generates the k + 1 blossom values

q(r ,z) ,q(r r, Ul) q(r r ,u 1 u k) .
n-k

Since by assumption the input to these two algorithms is the same, the out-
put must also be the same. Therefore,

p (Z , _ ~ , u 1 uj) - q (~ , u 1 uj)
n - j n - j

for any parameters u 1 u j , 0 < j < k .

2 ~ 1. Conversely suppose that

p(r , ~ , u 1 uj) - q(r,._L2f, u 1 uj)
n - j n - j

for any parameters u 1 u j , 0 < j <_ k. Then setting u i = 8 for i = 1 k,
we obtain

p (r r , 8 8) = q (r r , 8 8) .

n - j j n - j j

Hence by Equation (7.6), P(J) (r) - Q(J)(r) , 0 < j < k.

THEOREM
7.3

Every spline curve is a B-spline curve.

P r o o f Let S(t) be a spline curve defined over the knot intervals [tk,tk+ 1] by the
degree n polynomials Sk(t) , k - n m. Suppose further that for each
index k,

= ~'(J) S(kJ)(tk+l) ~'k+l(tk+l), j - 0 n - 1 .

Our goal is to find a collection of points {Pk} such that the B-spline curve of
degree n for the control points {Pk} and the knot sequence {t k} exactly
reproduces the spline S(t). Consider the polynomial Sn(t) for the first inter-
val [tn, tn+l]. Let Pj - Sn(t j+ 1 t j+n) , j - 0 n. Then by Equation 7.3,
the de Boor algorithm for the knots t 1 t2n and the control points
PO Pn generates the polynomial Sn(t). Similarly, if we set

Q j - Sn+ 1 (t j + 2 tj+n+l) j = 0 n,

i 3 6 6
I

C H A P T E R 7 B-Spl ine Approx imat ion and the de Boor Algor i thm

then the de Boor algorithm for the knots t 2 t2n+l and the control points
Qo Qn generates the polynomial Sn+ l(t). To show that these two polyno-
mials generate a B-spline curve, we need to show that Qj - Pj+I or equiva-
lently that

Sn+ 1 (tj+ 2 tj+n+ 1) = s n (tj+ 2 tj+n+ 1), j = 0 n - 1;

that is, we need to show that the two algorithms share n control points. But
by assumption,

'~(J) ~t , ., S(n j)(tn+l) = Jn+l~ n+l) J = 0,.. n - 1.

Therefore, by Lemma 7.2,

Sn+l(tj+ 2 tj+n+l) = Sn(tj+ 2 tj+n+l), j = 0 n - 1,

since tn+ 1 is always one of the blossom parameters. Thus these two seg-
ments form a B-spline curve. Now in the same manner using the de Boor
algorithm, we can generate more and more polynomial segments that match
the segments of the given spline S(t). By the same argument, these segments
will share common control points; therefore, these segments form a B-
spline curve. Since the entire spline can be generated in this manner from
the de Boor algorithm, it follows that every spline curve is a B-spline curve.

T'm 1

/
TT~"

UlU2U 3

"gt~lU 2 C~UlU 2

r&l 5& 1

rra raa aa8

Figure 7.13 Computing the blossom values ~'tT,'c'CUl,'CUlU2,UlU2U 3 from the blossom values ~T~,~tS,
~SS,555. Notice that the first k blossom values in the first set depend only on the first k
blossom values in the second set. Here we use the homogeneous blossom and the identity
Uk = (Uk- ~)5 + 7, so no normalization is necessary in the labels along the edges.

7.6 Knot Insertion Algorithms 367

Theorem 7.3 can be generalized to splines S(t) where the spline segments meet
with arbitrary smoothness. That is, we need only suppose that

(J) c(J) Sk (tk+l) - ~'k+l (tk+l)' J - 0 n - Pk+l "

In this case, we use a knot sequence where each knot t k has multiplicity Pk. The
remainder of the argument is much the same; the details are left as an exercise.

Exercises

1. Prove that Theorem 7.3 remains valid if the segments Sk(t) of the spline S(t)
satisfy

(J) c(J) Sk (tk+l) = ~'k+l (tk+l)' J = 0 n - Pk+l"

2. Prove that every polynomial curve is a B-spline curve for any arbitrary
choice of knots.

7.6 Knot Insertion Algorithms

Knot insertion is one of the main innovations of CAGD in the study of B-spline
curves and surfaces. Knot insertion is to B-spline curves what subdivision is to Bez-
ier curves. Given a knot sequence and a control polygon, the idea behind knot inser-
tion is to construct a new knot sequence and a new control polygon that generates the
same B-spline curve as the original knot sequence and original control polygon. The
motivation is to create a control polygon with additional control points that more
closely approximates the curve than the original control polygon. This new control
polygon could then be used for rendering and intersection algorithms, as well as for
providing additional control over the shape of the curve.

To make the notion of knot insertion more precise, consider a degree n B-spline
curve S(t) defined by a knot sequence {t j} and a collection of control points {Pk }. A
knot sequence { u i } is said to be a refinement of { tj } if {ui} ~ {tj }. Given a refinement
{u i} of {t j}, the knot insertion problem is to find a collection of control points {Qh}
such that the degree n B-spline curve generated by the knot sequence {u i} and the
control points {Qh} is identical to the original degree n B-spline curve S(t) generated
by the knot sequence {t j} and control points {Pk }. This problem is called knot inser-
tion because additional knots have been inserted into the knot sequence {t j} to form
the refined knot sequence {u i }.

The knot insertion problem always has a solution. To understand why, we need
to recall precisely what it means for S(t) to be a spline of degree n over the knot
sequence {t j}. A spline S(t) of degree n over the knot sequence {t j} is a piecewise
polynomial curve whose pieces are degree n polynomials in the knot intervals
[tj,tj+l]. Moreover, adjacent segments must fit together at the knot tj with at least

n - p j continuous derivatives, where pj is the multiplicity of the knot tj in the knot
sequence. If { u i } is a refinement of { tj }, then S(t) is also a spline curve over the knot
sequence { ui}. Indeed if u i is not one of the original knots tj, then S(t) is represented

t 368

7.6.1

C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

by a single polynomial on both sides of u i, therefore, adjacent segments fit together
with infinitely many continuous derivatives at u i. Now by Theorem 7.3, since every
spline is a B-spline, there must exist control points {Qh} that represent S(t) as a B-
spline curve over the knot sequence {ui}.

The problem then is to develop an algorithm to generate the new control points
{Qh} from the original control points {Pk}, the original knots tj, and the new knots
{ui}. We will present three such algorithms: Boehm's algorithm, the Oslo algorithm,
and a factored knot insertion algorithm. All three of these algorithms are based on
blossoming and the de Boor algorithm, and all make use of the fundamental dual
functional property for B-splines that if the spline S(t) is represented in a subinterval
of [Uh,Uh+ n] by the polynomial P(t), then by Equation (7.3), Qh = P(Uh+l Uh+n)"

Exercise

1. Let S n {tj} denote the collection of all splines of degree n with knots at {tj }.
Show that

a. S n{tj] is a vector space

b. {ui} ~ {tj} =:~ Snlui} ~Sn l t j }
Conclude that if { tj} and { u i } are nested knot sequences, then S n {tj } and
S n {u i } are nested vector spaces.

Boehm's Knot Insertion Algorithm

Boehm's knot insertion algorithm inserts one knot at a time. Consider a cubic B-
spline curve S(t) defined over a knot sequence {t j}. Suppose that we want to insert
the knot u between t k a n d tk+l; that is, we want to replace the old knot sequence
.... t k _ l , t k , t k + l , t k + 2 with the new knot sequence t k_ l , t k ,U , tk+l , tk+ 2 By

Equation (7.3) the control points of S(t) can be computed by evaluating the (local)
blossom of S(t) at consecutive knots. Thus if S(t)=P(t) in the knot interval [tk,tk+l],
then we have

�9 Old controlpoints

P(tk-Z,tk-l , tk), P(tk-l,tk,tk+l), P(tk,tk+l,tk+2), P(tk+l,tk+2,tk+3)

�9 New controlpoints

P(tk-2, tk- l , tk), P(tk-l , tk,u), P(tk,U, tk+l), P(U, tk+l,tk+2), P(tk+l,tk+2,tk+3)

Moreover, all the other control points with respect to the two knot sequences are
identical because the new knot u does not appear in any other sequence of three con-
secutive knots. Thus to find the new control points, we need to replace

P(tk_l,tk,tk+l),P(tk,tk+l,tk+2) ---> P(tk_l,tk,u),P(tk,U, tk+l),P(U, tk+l,tk+2) .

7.6 Knot Insertion Algorithms 369

That is, two of the original control points must be replaced by three new control
points. Notice that we need to increase the number of control points by one because
by inserting a new knot we have increased the number of knot intervals by one.

Boehm's algorithm uses the de Boor algorithm to compute the new control
points from the original control points. If we replace t by u in the de Boor algorithm
(Figure 7.2), then the new control points emerge on the first level of the de Boor
algorithm (see Figure 7.14).

If we wish to insert the knot u as a multiple knot, we could run Boehm's algo-
rithm several t imes~once for each time we wish to insert umbut it is more efficient
instead to run the de Boor algorithm for several levels. For cubic curves, if we want
to insert u as a double knot between t k and tk+ 1, then the old knot sequence is
.... tk_l,tk,tk+l,tk+ 2 and the new knot sequence is tk_l,tk,U,U, tk+l,tk+2

Taking three consecutive knots at a time, we have

�9 Old control points

P(tk-2 , tk- l , tk), P(tk-l , tk,tk+l), P(tk,tk+l,tk+2), P(tk+l,tk+2,tk+3)

�9 New controlpoints

P(tk_ 2 ,tk_ 1 ,t k), P(tk_l,tk,U), p(t k ,u,u), p(u,u, tk+ 1),

p(u, tk+ 1 ,tk+2), P(tk+l ,tk+2 , tk+3)

Thus two of the original control points must be replaced by four new control
pointsm that is,

P(tk_l,tk,tk+l), P(tk,tk+l,tk+2) -9 P(tk_l,tk,u), P(tk,U,u), p(u,u, tk+l), P(U, tk+l,tk+2).

If we replace t by u in the de Boor algorithm, the new control points we seek now
emerge along the lateral edges and on the second level of the de Boor algorithm (see
Figure 7.15).

New control points

t2t3u t3t4u

qt2t3 t2t3t4

t4t5u

t3t4t5 t4t5t6

Original control points

Figure 7.14 Boehm's knot insertion algorithm for a cubic B-spline curve. This algorithm computes just
one level of the de Boor algorithm (compare to Figure 7.2).

370 C H A P T E FI 7 B-Spline Approximation and the de Boor Algorithm

New control points

t3uu t4uu
New New

control points t 4 - u / ~ t s ~ ~ N ~ control points

/
t2t3u t3t4u t4tsU

tl t2t3 t2t3 t4 t3 t4 t5 t4 t5 t6

Original control points

Figure 7.15 Boehm's knot insertion algorithm for inserting a double knot into a cubic B-spline curve. Note
that this algorithm computes two levels of the de Boor algorithm (compare to Figure 7.2).

Finally, for cubic curves, if we wish to insert u as a triple knot between t k and
tk+ 1, then

�9 Old controlpoints

P(tk_2,tk-l,tk), P(tk-l,tk,tk+l), P(tk,tk+l,tk+2), P(tk+l,tk+2,tk+3)

�9 New controlpoints

P(tk_ 2,tk_l,t k), p(tk_l,t k,u), p(tk,u,u), p(u,u,u),

P(U,U, tk+l), P(U, tk+l ,tk+2), P(tk+l ,tk+2,tk+3)

Thus two of the original controlpoints must be replaced by five new control points:

P(tk-l,tk,tk+l), P(tk,tk+l,tk+2) ----)

P(tk_ 1,t k,u), p(t k,u,u), p(u,u,u), p(u,u,tk+ 1), p(u,tk+ 1,tk+ 2).

Now if we replace t by u in the de Boor algorithm, the control points we seek emerge
along the two lateral edges of the complete de Boor algorithm (see Figure 7.16).

Analogous results hold for B-spline curves of arbitrary degree. We can summa-
rize Boehm's approach to knot insertion as follows:

Boehm's Knot Insertion Algorithm
To insert a knot u a total of p times between the knots t k and tk+l:

1. Run the de Boor algorithm for the kth B-spline segment to the pth level and
take the new control points consecutively off the left lateral edge, the pth
level, and the right lateral edge of the triangle.

2. Discard the old control points of the kth segment.

3. Keep all of the other original control points.

7.6 Knot Insertion Algorithms 371

U U U

New t 4 7 / "~ ,xuq3 New

control points t3uu t4uu control points

u /

t2t3u t3t4u t4t5u

tl t2t 3 t2t3t 4 t3t4t 5 t4t5t 6

Original control points

Figure 7.16 Boehm's knot insertion algorithm for inserting a triple knot into a cubic B-spline curve. Note
that this algorithm computes the complete de Boor evaluation algorithm (compare to Figure
7.2).

7.6.2 The Oslo Algorithm

In Boehm's knot insertion algorithm the basic step is inserting one new knot; in the
Oslo algorithm the fundamental step is computing one new control point. Boehm's
knot insertion algorithm inserts one knot at a time; the Oslo algorithm inserts many
knots simultaneously.

To insert new knots, we need to compute new control points. By Equation (7.3)
these new control points are the (local) blossom of the spline evaluated at the new
knots. Thus we need a method to evaluate the (local) blossom of the spline at arbi-
trary parameter values. But the blossom evaluated at arbitrary parameter values is
precisely the output of the blossomed version of the de Boor algorithm (Figure 7.4).
The Oslo algorithm simply applies the blossomed version of the de Boor algorithm
to compute each of the required new control points.

The blossomed version of the de Boor algorithm is the original version of the
Oslo algorithm. But this version of the Oslo algorithm is much less efficient than
Boehm's knot insertion algorithm. Consider, for example, inserting four distinct
knots Ul,U2,U3,U 4 into a single segment [tk,tk+l] of a cubic B-spline curve. This
operation requires the computation of six new control points, corresponding to the
six blossom values

p(tk-••tk•u•)• p(tk•u••u2)• p(u••u2•u3)• p(u2•u3•u4)• p(u3•u4•tk+•)• p(u4•tk+••tk+2).

To find these new control points, we can run either Boehm's algorithm four times or
the Oslo algorithm six times. Each time we run Boehm's algorithm we must

i 372 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

compute 3 affine combinations. So to insert 4 new knots with Boehm's algorithm
requires a total of 4 x 3 = 12 affine combinations. On the other hand, to compute a
single new control point using the Oslo algorithm, we need to run the blossomed
version of the de Boor algorithm, which requires us to perform 6 affine combina-
tions. So to compute 6 new control points using the Oslo algorithm, we would need
to compute a total of 6 x 6 - 36 affine combinations. Clearly, then, Boehm's algo-
rithm is more efficient than this version of the Oslo algorithm.

There is, however, a more efficient version of the Oslo algorithm. Consider
again a cubic B-spline curve S(t) defined over a knot sequence {tj }. Suppose that we
want to insert four knots Ul,U2,U3,U 4 between the knots t k and tk+l; that is, we want
to replace the old knot sequence tk_l,tk,tk+l,tk+2 with the new knot sequence
.... tk_l,tk,Ul,U2,U3,U4,tk+l,tk+2 If S(t) = P(t) in the knot interval [tk,tk+l], then

by Equation (7.3), we have

�9 Old controlpoints

P(tk-Z,tk-l , tk), P(tk-l,tk,tk+l), P(tk,tk+l,tk+Z), P(tk+l,tk+2,tk+3)

�9 New control points

P(tk-2 ,tk-l ,tk), P(tk-l ,tk,Ul), P(tk,Ul ,UZ), P(Ul ,UZ,U3),

P(U2 ,U3,U4), P(U3,U4 ,tk+l), P(U4,tk+l ,tk+Z), P(tk+l ,tk+2,tk+3)

We can find all the new control points by running the blossomed version of the de
Boor algorithm just twice---once to compute p(ul,u2,u3) and once to compute
p(u2,u3,u 4). The other new control points emerge off the left and fight lateral edges
of the two triangles (see Figure 7.17). Notice that in the second triangle the knots
must be introduced in reverse order; that is, the knot u 4 appears on the lowest level,
the knot u 3 on the second level, and the knot u 2 on the top level.

UlU2U 3

New t 4 - u / ~ ' N ~ - t 3
control
points t3ul u2 t4Ul u2

- u 2 t4-U/~2tstU~-t3
t2t3u 1 t3t4Ul t4t5u 1

t4 _ u / K ts - Ul,4 ~., t6 - ul .. ;

tl t2t 3 t2t3t4 t3t4t5 t4t5t 6

Original control points

u2u3u 4

t 4 - u / ~ - t 3 New
control

t3u3u4 t4u3u4 _ u3 points
, _

t2t3u 4 t3t4u4 t4t5u 4
t 4 _ u / ~ t s - U 4,~t' ~x t 6 - u 4 ,,4'

X4-W
tl t2t 3 t2t3t4 t3t4t 5 t4t5t 6

Original control points

Figure 7.17 An efficient version of the Oslo algorithm for knot insertion in cubic B-spline curves. Two blos-
soming variants of the de Boor algorithm are invoked. Notice that in the second triangle the knots are intro-
duced in reverse order. The new control points emerge off the lateral edges of the triangles (compare to
Figure 7.4).

7.6 Knot Insertion Algorithms 373

This version of the Oslo algorithm for cubic curves is just as efficient as
Boehm's algorithm. To evaluate each triangle, we must perform a total of 6 affine
combinations. Thus to evaluate both triangles requires 2 • 6 = 12 affine combina-
tions, which is exactly the same count as for Boehm's knot insertion algorithm.

To insert n + 1 knots u 1 Un+ 1 in a single interval of a degree n B-spline curve,
the Oslo algorithm again employs two triangles: the first triangle computes the blos-
som p(u 1 Un), and the second triangle computes the blossom p(u 2 Un+ 1) from
the original control points using the blossomed version of the de Boor algorithm. As
in the cubic case, the other control points emerge off the left and fight lateral edges
of the two triangles, and in the second triangle the knots u2 Un+l must be intro-
duced in reverse order. For degree n B-spline curves, both Boehm's algorithm and
the efficient version of the Oslo algorithm require n(n + 1) affine combinations to
insert n + 1 knots in a single interval. Boehm's algorithm proceeds by inserting one
knot at a time; the Oslo algorithm by inserting n + 1 knots all at once.

Exercises

1. Prove that for degree n B-spline curves, both Boehm's algorithm and the
efficient version of the Oslo algorithm require n(n + 1) affine combinations
to insert n + 1 knots in a single interval.

2. Explain how the Oslo algorithm can be formulated to insert fewer than n + 1
knots in a single interval of a degree n B-spline curve just as efficiently as
Boehm's algorithm.

3. Implement both Boehm's knot insertion algorithm and the Oslo algorithm.
Which algorithm do you prefer? Why?

4. Consider what happens to the control polygon of a B-spline curve with
knots {t k } as the knot spacing gets arbitrarily small. Let h = max(tk+ 1 - t k).

a. Use the Oslo algorithm to show that the control points get closer together
as h decreases.

b. Use part (a) and the fact that a B-spline curve lies in the local convex hull
of its control points to conclude that the control polygon converges to the
B-spline curve as the knot spacing h ~ 0.

5. Use the result of Exercise 4 and the fact that knot insertion is a comer-
cutting procedure to prove that B-spline curves are variation diminishing.
(Compare to Theorem 7.4 in Section 7.6.3.)

6. Based on knot insertion and Exercise 4:

a. implement a rendering algorithm for B-spline curves

b. implement an intersection algorithm for B-spline curves

7. Sablonniere's Tetrahedral Algorithm

Suppose we want to convert a cubic polynomial P(t) from the progressive
basis with respect to the knots t 1 t 6 to the progressive basis with respect to
the knots ul u6. That is, given the coefficients p(q, t2, t 3) p(t4,t5,t6),

374 c H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

we want to find the coefficients p(ul,u2,u3) p(u4,u5,u6). We could pro-
ceed by applying the blossomed version of the de Boor algorithm (Figure
7.4), which is essentially identical to the original, inefficient version of the
Oslo algorithm, to find each one of these new coefficients. If we were to stack
these four triangles one atop the other, the triangles would form a triangular
prism. Sablonniere's algorithm reduces the amount of computation by col-
lapsing this prism into a tetrahedron.

a. Show how to arrange the four triangles in Figure 7.18 into a tetrahedral
computation for a change of basis algorithm.

b. Explain how to generalize the tetrahedral computation in part (a) to poly-
nomials of arbitrary degree.

c. Apply the Oslo algorithm~the blossomed version of the de Boor algo-
r i thm~to perform the same change of basis with only two triangles.
(Hint: Use the output along one of the lateral edges of the first trangle as
the input to the second triangle.)

d. Prove that Sablonniere's tetrahedral algorithm is less efficient than the
Oslo algorithm. In particular, show that Sablonniere's tetrahedral algo-
rithm is O(n3), whereas the Oslo algorithm is O(n2).

e. Explain why Sablonniere's algorithm might be more stable numerically
than the Oslo algorithm.

UlU2U 3

t3UlU2 t4UlU2
~, t5 - u 2 j

t2t3u 1 t3t4u 1 t4t5Ul
~x t5 - U l l t6- ul

tl t2t 3 t2t3t4 t3t4t 5 t4t5t 6

u4u5u 6

t 4 - u / ~ 6 - t 3

t3u4u 5 t4u4u 5
~K. t5 - uS # t4-u/ N~5-t V ~-t3

t2t3u 4 t3t4u 4 t4t5u 4
~K ts - u4 ~r t 6 - u4 t4-U/ N~-tl/ ~-t'2~~4-t3

tl t2t 3 t2t3t4 t3t4t 5 t4tst 6

u4u3u2

t3u4u3 t4u4u 3
t 4 - u / ~ x , ~ tS -u3 - ,,

t2t3u 4 t3t4u 4 t4t5u 4

u5u4u 3

t3u4u 5 t4u4u 5

Figure 7.18 The four triangles used in Sablonniere's tetrahedral algorithm to convert between two cubic
progressive polynomial bases.

7.6 Knot Insertion Algorithms 375

7.6.3 Change of Basis Algorithms via Knot Insertion

Knot insertion algorithms are change of basis procedures for B-spline curves. Given
the B-spline coefficients of a spline curve with respect to a knot vector {tk}, a knot
insertion procedure finds the B-spline coefficients of the same spline curve with
respect to another knot vector {u j} D {t k }. We shall exhibit several applications of
knot insertion here, including conversion to piecewise Bezier form, conversion
between the monomial and Bezier form, Bezier subdivision, and algorithms for dif-
ferentiating B-spline curves.

7.6.3.1 Conversion to Piecewise Bezier Form

Bezier curves are special types of B-spline segments. In Chapter 5 we developed fast
algorithms for analyzing Bezier segments, including simple procedures for render-
ing and intersecting Bezier curves. One of the simplest ways to analyze B-spline
curves is to convert them to piecewise Bezier form and then to perform the analysis
on the Bezier segments, using the Bezier algorithms we have already developed. We
shall also see that this approach leads to a straightforward proof of the variation
diminishing property for B-spline curves.

We can apply knot insertion to convert from B-spline to piecewise Bezier form.
Consider a cubic B-spline segment P(t) defined over a knot sequence t 1 t 6. Rela-
tive to this knot sequence, we are interested only in the segment of P(t) for which
t 3 < t < t4, and we want to convert from this B-spline representation of P(t) to a
Bezier representation of P(t). For the interval t 3 < t < t 4, the Bezier knots are simply
t3,t3,t3,t4,t4,t 4. By Equation (7.3) the control points of P(t) can be computed by
evaluating the blossom of P(t) at consecutive knots. Thus we have

�9 B-spline controlpoints

p(tl, t2, t3), p(t2, t3, t4), P(t3, t4, t5), p(t4, t5, t6)

�9 Bezier control points

P(t3,t3,t3), P(t3,t3,t4), P(t3,t4,t4), p(t4,t4,t4)

To get from the B-spline control points to the Bezier control points, we need to
incorporate t 3 and t 4 as triple knots. Thus, we need to insert the knots t3,t3,t4,t4
between the knots t 3 and t 4. To do so, we can apply Boehm's knot insertion algo-
rithm (see Figure 7.19). Notice that in this case we only proceed up two levels in the
triangle because even though we require t 3 and t 4 to be triple knots, we only need to
insert each of these knots twice.

376 c H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

t3t3t3 tatat4

t 4 - / ~ - t 2 t 5 - t / ~ - t 3

tzt3t 3 t3t3t4 t3t4t 4 t4t4t 5
t 5 t 6

t 4 - / ~ 3 - t l -~~-t2 t5-t/~4-t 3 -y~-t3
tl t2t3 t2t3t 4 t3t4t 5 t3t3t4 t3t4t 5 t4t5t 6

(a) Inserting t 3 twice (lo) Inserting t 4 twice

Figure 7.19 Boehm's knot insertion algorithm for converting one segment of a cubic B-spline curve to
Bezier form. In (a) we insert t 3 twice and in (b) we insert t 4 twice. Some of the output from
(a) is used as input to (b). Since some computations are redundant, we can omit t4tst 6 from
the input to (a) and t3t3t 3 from the input to (b). Notice that in (a) the Bezier control points
emerge along the right edge, but in (b) they emerge along the left edge of the triangle.

THEOREM
7.4

B-spline curves are variation diminishing.

Proo f The de Boor algorithm is a comer-cutting procedure (see Figure 7.3). Since
knot insertion is the blossomed version of the de Boor algorithm, knot
insertion is also a comer-cutting procedure. Therefore, the piecewise Bez-
ier control polygon is variation diminishing with respect to the original B-
spline control polygon. But by Corollary 5.4 each Bezier segment is varia-
tion diminishing with respect to its Bezier control polygon. Hence the
entire B-spline curve must be variation diminishing with respect to the
original B-spline control polygon.

7.6 .3 .2

Exercises

1. Implement the knot insertion algorithm to convert from B-spline to piece-
wise Bezier form.

a. Draw both the B-spline and the Bezier control polygons for each B-
spline curve.

b. Use this conversion algorithm to render B-spline curves.

c. Apply this conversion procedure to intersect pairs of B-spline curves.

2. Prove that the arc length of a B-spline curve is never greater than the perim-
eter of its control polygon. (Hint: Convert to piecewise Bezier form.)

Bezier Subdivision and Conversion between Bezier and Monomial Form

Several standard algorithms for Bezier curves can be derived from and interpreted as
knot insertion procedures. For example, the standard subdivision algorithm for

7.6 Knot Insertion Algorithms 377

degree n Bezier curves at t = r can be viewed as a procedure that converts from the
knot sequence

to the knot sequence

0 0,1 1
, _ . . . ~ _ ~ ~ . . , , - . - ,

n n

0 0,r r,1 1
,.......,r_..~ ~ . _ . , ~ . ~ ~-, ,o

n n n

Thus, the standard Bezier subdivision algorithm is simply n-fold knot insertion at
t - r. For example, for a cubic Bezier curve P(t), we have

�9 Original Bezier controlpoints

p(0, 0, 0), p(0, 0,1), p(0,1,1), p(1,1,1)

Bezier control points after subdivision at t - r

Left segmentm p(0, 0, 0), p(0, 0,r), p(O,r,r), p(r ,r ,r)

Right segmentmp(r ,r ,r) ,p(r ,r ,1) ,p(r , l ,1) ,p(1,1,1)

We illustrate subdivision as knot insertion for cubic Bezier curves in Figure 7.20.
Conversion between degree n Bezier and degree n monomial form can also be

viewed as n-fold knot insertion. To convert from Bezier to monomial form, we must

Y / T

Left segment Orr I rr Right segment

/
OOr Olr 1 l r

000 O01 011 111

Original control points

Figure 7.20 Bezier subdivision as knot insertion at t = r. The new control points emerge along the left and
right lateral edges of the triangle (compare to Figure 5.23).

t 378 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

perform a change of basis from the progressive basis represented by the knot
sequence

0 0,1 1
n n

to the progressive basis represented by the knot sequence

0 0,6 ~.

n //

(Here, as usual, to avoid normalization problems, we use the monomial basis { (/~)tk},
k - 0 n, rather than the monomial basis {t~}, k = 0 n.) We can interpret this
change of basis as n-fold knot insertion at ~ - (1,0). Conversely, to convert from
monomial to Bezier form, we must convert from the progressive basis represented
by the knot sequence

0 0 , 6 , . . . , 6

n n

to the progressive basis represented by the knot sequence

0 0 ,1 1 .

n n

We can do this conversion by performing n-fold knot insertion at t = 1. We illustrate
these two procedures for cubic curves in Figure 7.21.

Notice that the right edge of both triangles in Figure 7.21 contains the coeffi-
cients with respect to the monomial basis centered at t = 1. Thus as a bonus the
change of basis algorithm that converts from monomial to Bezier form can also be
used to convert from one monomial basis to another monomial basis. In fact, this

88~ l 11

M o n o m i a l - 1 / / / ~ Bezier / ~
coefficients coefficients

088 188 011 118

008 Ol 8 l 16 OOl Ol 8

000 O01 011 l 11 000 008

Bezier coefficients

(a) Bezier to monomial form

088 888

Monomial coefficients

(b) Monomial to Bezier form

Figure 7.21 Conversion between cubic Bezier and cubic monomial form. (a) To convert from Bezier to
monomial form, we perform triple knot insertion at 8 = (1,0). (b) To convert from monomial to Bezier form,
we perform triple knot insertion at t = 1. Notice that the labels along the edges in these diagrams do not
need to be normalized because 1 = (1,1) = (0,1) + (1,0) = 0 + 8. (Compare to Figures 5.18 and 5.19.)

7.6 Knot Insertion Algorithms 379

algorithm is the standard synthetic division algorithm for converting from the mono-
mial basis centered at t = 0 to the monomial basis centered at t = 1. If we think of

= (1,0) as a knot at infinity, then the monomial form is simply a special case of the
Bezier form. From this perspective, Bezier subdivision, conversion from Bezier to
monomial form, conversion from monomial to Bezier form, and synthetic division
are all one and the same algorithm.

Exercise

1. Use knot insertion to develop change of basis algorithms between the power
basis and

a. the Bernstein basis

b. the monomial basis

(Hint: See Section 7.2, Exercise 1.)

7.6.4

7.6.4.1

Differentiation and Knot Insertion

Evaluation, blossoming, and knot insertion algorithms for B-spline curves are inti-
mately related; each of these procedures is just a variant of the de Boor algorithm.
Differentiation too is another simple variant of the de Boor algorithm (see Figure
7.5), so differentiation and knot insertion are also closely connected. Here we will
show how to interpret standard differentiation algorithms for B-spline curves as knot
insertion procedures. We will then go on to show how to use these differentiation
algorithms to generate another fast knot insertion procedure.

Differentiation as Knot Insertion

Let's first revisit differentiation for B-spline curves from the perspective of knot
insertion. Figure 7.5 depicts the differentiation algorithm for one segment of a cubic
B-spline curve. If we isolate the lowest level of this diagram, what we see is exactly
Boehm's knot insertion algorithm at u = ~ (see Figure 7.22).

Thus the degree n - 1 B-spline coefficients for the first derivative of a B-spline
curve of degree n can be computed by knot insertion at u - ~. Similarly, if we want to
differentiate a degree n B-spline curve r times, the degree n - r B-spline coefficients

t2t38 t3t48 t4t58

l/ l/ l/
tl t2 t3 t2 t3 t 4 t3 t4 t 5 t4 t5 t 6

Figure 7.22 The first level of the differentiation algorithm for a cubic B-spline curve (see Figure 7.5).
Compare to Boehm's knot insertion algorithm (Figure 7.14).

1 380 C H A P T E R 7 B-Spl ine Approx imat ion and the de B o o r A lgor i thm

7.6.4.2

are given by inserting an r-fold knot at 6 and taking the coefficients off the top (rth)
level of the diagram.

Boehm's Derivative Algorithm

The standard derivative algorithm finds the rth derivative of a B-spline curve at an
arbitrary value of t by differentiating r levels of the de Boor algorithm. Boehm's
derivative algorithm computes all the derivatives of a B-spline curve at a single
parameter t = a simultaneously by converting a B-spline segment to monomial form.

In Section 6.4 we showed that for any degree n polynomial P(t),

n!
P(k)(a) = ~ p (a a ,6 6) .

(n - k) ~ ~
�9 n - k k

But the values

p(a a ,6 6), k= 0 n,
n-k k

are just the monomial coefficients of P(t) at t = a. This identity between derivatives
and monomial coefficients is a simple consequence of Taylor's Theorem. Thus, up
to constant multiples, to find the derivatives of a B-spline segment at a fixed param-
eter value, we need only convert from B-spline to monomial form. We can do this
conversion by performing n-fold knot insertion at 6 followed by n-fold knot inser-
tion at a. Computing the derivatives of a B-spline curve at a single point in this
manner is Boehm's derivative algorithm. We illustrate this algorithm for cubic
curves in Figure 7.23.

666 aaa

Newton d u a l - / ~ / ~ - t 3 Monomial
coefficients coefficients

t366 t466 t3aa ~aa

t2 t3 6 t3 t 4 6 t 4 t5 6 t2 t3a t3 6a 66a

t 1 t2t 3 t2t3t 4 t3t4t 5 t4t5t 6 t 1 t2t 3 t2t36 t366 666

B-spline coefficients

(a) B-spline to Newton dual form

Newton dual coefficients

(b) Newton dual to monomial form

Figure 7.23 Boehm's derivative algorithm for cubic curves. In (a) we perform triple knot insertion at 6, con-
verting from B-spline to Newton dual form. In (b) we perform triple knot insertion at a, converting from
Newton dual to monomial form. Up to constant multiples, the derivatives at t = a are the monomial coeffi-
cients, which emerge along the right lateral edge of the second triangle. Observe that the labels along the
edges in (a) must be normalized by the same denominators that appear in the de Boor algorithm, but the
labels along the edges in (b) do not need to be normalized.

7.6.4.3

7.6 Knot Insertion Algorithms 381

Notice that the first step of Boehm's derivative algorithm converts a B-spline
segment into Newton dual form. This step depends only on the choice of segment
and not on the parameter within the segment. Thus, we can reuse this part of the
computation to find the derivatives at another parameter t = b within the same B-
spline segment.

Exercise

1. We could compute all the derivatives of a B-spline curve at t = a by first
performing n-fold knot insertion at a and then performing n-fold knot inser-
tion at ~. Give two reasons why it is more efficient to insert an n-fold knot at

first, before inserting an n-fold knot at a.

Knot Insertion from Differentiation

Both Boehm's knot insertion algorithm and the Oslo algorithm are based on the de
Boor evaluation algorithm. Here we shall show how to perform fast knot insertion
based on the differentiation algorithm.

Let's begin by differentiating a degree n B-spline curve n times. Figure 7.23(a)
illustrates this differentiation algorithm for cubic curves. Notice that the values along
the left edge of this diagram are the coefficients of the spline segment P(t) with
respect to the Newton dual basis. Thus starting with the B-spline coefficients, we can
compute the Newton dual coefficients by applying the differentiation algorithm. We
can also turn this around. Starting with the Newton dual coefficients, we can retrieve
the B-spline coefficients essentially by running the diagram in reverse with new
labels along the edges. If we run only one level in reverse, we obtain the algorithm
illustrated in Figure 7.24.

Now notice two things" First, we have computed one new blossom value
p(u2,u3,u4) from the original Newton dual coefficients. Second, starting with the

Newton dual coefficients relative to the knot sequence Ul,U2,U3,~,(~,(3, we have
computed the Newton dual coefficients relative to the new knot sequence
u2,u3,u4,(~,(~,(~. We can now replace the knot sequence Ul,U2,U3,(~,(~,~ by
u2,u3,u4,(5,(5,~ and iterate the same algorithm. At every step we compute one new
blossom value as well as a new set of Newton dual coefficients. The structure of this
algorithm resembles Boehm's knot insertion algorithm, but with two significant dif-

u2u3u 4 u3u4(~

UlU2U 3 u2u3~ u3~

u 4 ~

Figure 7.24 Running the differentiation algorithm in reversemthe cubic case. Here again it is not neces-
sary to normalize the labels along the edges.

i 382 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

ferences. Unlike Boehm's algorithm, we compute only a single new coefficient
rather than many new coefficients at a time. Computationally, however, each stage of
this algorithm is more efficient than Boehm's algorithm because this algorithm uses
only multiplication and no division. We call this algorithm factored knot insertion,
since we have factored knot insertion through the Newton dual basis.

The benefits of this factored approach are heightened when the knots we wish to
insert are evenly spaced. Let A = Uk+ 1 - u k denote the knot spacing. By introducing
appropriate multiples of the knot spacing, we can now insert knots without any mul-
tiplication whatsoever. We illustrate this algorithm for cubic curves in Figure 7.25.

This algorithm should remind you of computing new, evenly spaced values
along a polynomial curve via forward differencing (see Section 4.5) because there
too only addition is involved; no multiplication is required after the initial start-up
step. Thus like fast forward differencing, we can accomplish fast knot insertion by
performing an initial start-up step followed by a fast marching algorithm. Notice too
the similarity between the start-up step in Figure 7.23(a) and computation of divided
differences in Figure 4.2. Moreover, a slight modification to the structure of the
marching algorithm for factored knot insertion makes it identical in structure to the
marching algorithm for forward differencing. We illustrate this marching algorithm
for inserting knots into cubic B-spline curves in Figure 7.26.

Exercises

1. Implement the factored knot insertion algorithm for cubic B-spline curves
for

a. arbitrary knots

b. evenly spaced knots

In each case, compare the speed of this algorithm to the speed of your
implementation of Boehm's knot insertion procedure.

2. Derive the factored knot insertion algorithm for degree n B-spline curves
with evenly spaced knots. By what factors of the knot spacing must you
multiply each of the coefficients of the Newton dual basis so that no multi-
plication is needed in the marching step?

u2u3u 4 3Au3u 4 ~ 6A2u 4 SS

UlU2U 3 3Au2u38 6A2u388 6A3888

Figure 7.25 Inserting new knots without any multiplication--the cubic case. Since the knots are evenly
spaced, uj+ k = uj + kA, so all the arrows represent addition; no normalization is required.

l
6A3~5~

l
6A3~8

l
6A 3 3~3

l
6A 3 883

l
6A2u 4 ~

7.7 The B-Spline Basis Functions

3Au4u5a

,~ 6A2u3~ ~ 3Au3u4~

l l
6A2u2~ ~ 3Au2u3~

l l
~ 6A2Ul ~ .~ 3Au lu2S

l l

l
u4u5u 6

l
~ u3u4u 5

l
~ u2u3u 4

u lu2u 3

l

383

Figure 7.26 Knot insertion for evenly spaced knots via forward differencing for a cubic B-spline segment.
The value at each node is computed by adding the values at the nodes that point into it. The
values in the leftmost column are all identical, and the values in the rightmost column are the
new blossom values for equally spaced knots. (Compare to the forward differencing algo-
rithm in Figure 4.5.)

7.7 The B-Spline Basis Functions

Just like Bezier curves, B-spline curves can be represented in terms of basis func-
tions. Let S(t) be a B-spline curve of degree n with control points {Pk} and knot
sequence {tk }. It follows from the de Boor algorithm that there exist piecewise poly-
nomials {Nk, n(t)} such that

S(t) =]~k Nk,n(t)Pk �9 (7.7)

The functions {Nk,n(t)} are called the B-spline basis functions or simply the B-
splines. Just as the Bernstein basis functions can be used to analyze Bezier curves
and surfaces, the B-splines can be used to elucidate the properties of B-spline curves
and surfaces, so it is to these basis functions that we now turn our attention.

We can compute the B-splines {Nk,n(t)} from the de Boor algorithm in two
ways. If we set Pj = 0, j , k, Pk = 1, and run the de Boor algorithm, then by Equation

]384 CHAPTER 7 B-Spl ine Approx imat ion and the de B o o r A lgor i thm

1

Nz, I(0

N1,2(t)

N0,3(t) N1,3(t)

N2,2(t)
t s - t ~ N ~ 2

1 1

tsy
m3,1(0 ma, l(t)

N3,2(t) N4,2(t)

t6- / N~ 3 t 7 ~ N~ 4
N2,3(0 N3,3(0

ts/
N4,3(0

Figure 7.27 The down recurrence for the B-splines.

(7.7) S(t) = Nk,n(t). This algorithm is the up recurrence for the B-spline basis func-
tions. From the up recurrence it follows that the piecewise polynomial Nk, n(t) repre-
sents the sum over all paths from P k at the base to the various apexes of the de Boor
triangles, where the apex we select depends on the knot interval of the parameter t.
Therefore, if we place a 1 at each apex and reverse all the arrows in the de Boor algo-
rithm, then the B-splines {Nk,n(t) } emerge at the base of the diagram. This algorithm
is the down recurrence for the B-splines (see Figure 7.27). Again the apex at which
we begin the computation depends on the knot interval of the parameter t.

To ensure the validity of Equation (7.7), we must index the B-splines so that the
basis function Nk,n(t) resides in the same node where the control point Pk would
reside in the up recurrence. This indexing scheme makes the down recurrence in Fig-
ure 7.27 particularly easy to remember. Lower-degree B-splines emerge at interior
nodes of the diagram. The arrow entering the node Nk, n(t) from the left has numera-
tor t - tk, and the arrow entering from the right has numerator tk+n+ 1 - t; denomina-
tors are recovered in the usual fashion by ensuring that the labels on the two arrows
that exit each node in the down recurrence sum to one. In addition, if you follow
along in the direction of any arrow, then

1. the labels (in the numerators) you encounter along the edges do not change

2. the first index of the B-splines you encounter does not change for right-
pointing arrows and decreases by one for left-pointing arrows; the second
index, the degree, decreases as you ascend the diagram

The last step of the down recurrence is summarized in Figure 7.28; all of Figure
7.27rathe entire down recurrence--can be recovered from this diagram, using the
two simple rules listed above.

It follows from Figure 7.28 that the B-splines satisfy the recurrence

Nk,o(t) = 1 t k < t < tk+ 1

t - t k tk+n+ 1 - t
Nk, n (t) = ~ Nk,n_ 1 (t) + Nk+l,n_ 1 (t). (7.8)

tk+ n - t k tk+n+l - t k + l

e-

',,
,d

d,

12
J"

o
-

N

,..
~-

.

0 o ~D

O
_

~
D

Z
3-

3 "3

0 r e"
l"

r-

"l
"

e"
+

rD

I'O

.~
x

0
0

0
0

0
0

0

I
_ -

0
0

0
0

0
0

I
I

I
I

I
I

_ _ _

--
t,

~
-

_ _ _ _ _ _ _ _ _

e,
,

",
,,1

d~

"0

_
.

.-
~

N

~
-.

0 o 0
._

0 O
_

k
O

e-
+

2D

-

_~
.

3 �9

r e-
-t

-
e-

-t
-

r rD

'o 0

0
0

0
0

'
'

'
'

'
'

'
'

'
'

'
I

I
I

I
I

I
I

I

0
0

0
0

i

'=
rl

.=

.

~=

m
l

o0

--
-I

:D
-

,..
-i-

,--
I-

~D

"0

0 ,-
+

0 c
-

O

,-
i..

C
~a

"0
 0 "0

,-M
-

0 ~
D

c

- -,
J

v

+
~

-t-

~.

..
]

~.
=.

L.

0 ,_
.~

0

~=
.i.

--
..I

~-
.,.

0
li

O
0

i 386

7.7.1

C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

Exercise

1. Draw the shapes of all the different B-splines of degrees 1,2,3 with multiple
knots at the integers.

Elementary Properties of the B-Spline Basis Functions

In this section we shall study the elementary properties of the B-spline basis functions.
These characteristics of the B-splines {Nk,n(t)} both mirror and are mirrored in the
elementary features of B-spline curves derived in Section 7.4. Below we list these
features and then derive each of these properties from the corresponding properties
of B-spline curves.

1. Piecewise polynomial

2. Continuity of order C n-t't at knots of multiplicity kt

3. Compact support

4. Partition of unity

5. Nonnegativity

6. Spline basis

7. Unimodality

Piecewise polynomial. From the up recurrence we know that the B-spline
basis functions are B-spline curves. Therefore, the B-splines must be piece-
wise polynomials.

Continuity. Again since by construction the B-spline basis functions are B-
spline curves, the B-splines must have continuity of order n - k t at knots of
multiplicity/~.

Compact support. By the de Boor algorithm, the only B-splines that are non-
zero over the parameter interval [tk,tk+ 1] are Nk_n,n(t) Nk,n(t). Hence
the B-spline Nk,n(t) is nonzero only for values of t in the parameter interval
[tk,tk+n+l]--that is, support{Nk,n(t) } = [tk,tk+n+l]. Therefore, from now
on, whenever we want to make explicit the knots on which Nk,n(t) depends,
we shall write Nk,n(tlt k tk+n+l). By Equation (7.7), the compact support of
the B-splines is equivalent to the local control property for the control points
of B-spline curves.

Partition of unity. The B-splines form a partition of unity. This result can be
proved from the down recurrence (Equation (7.8)) by induction on n. This
property can also be derived from the de Boor algorithm by setting Pk = 1
for all k and observing that since at every stage of the algorithm we are tak-
ing affine combinations of the nodes the value at every interior node is also
equal to one. Hence the value at any apex must be one. Therefore,

1 = S(t) = ~,k Nk,n (t)Pk = ~,k Nk,n (t).

7.7 The B-Spline Basis Functions 387

The partition of unity property of the B-spline basis functions is equivalent
to the affine invariance of B-spline curves.

�9 Nonnegativity. Recall that for any parameter interval the labels along the
edges of the de Boor algorithm are nonnegative. Since the B-spline Nk,n(t)
represents the sum over all paths from the kth position at the base to the var-
ious apexes of the de Boor triangles, it follows that the B-splines too are
nonnegative. The partition of unity and nonnegativity of the B-spline basis
functions are equivalent to the affine invariance and the convex hull proper-
ties of B-spline curves.

�9 Spline basis. To prove that the B-splines {Nk,n(t)} with knots {t j} form a
basis for the space of all splines S(t) with knots {t j}, we need to show that
the B-splines span this space and are linearly independent. But by Theorem
7.3, every spline is a B-spline curve; that is, every spline S(t) with knots { tj }
can be generated from the de Boor algorithm for some set of control points
{Pk}. Therefore, by Equation (7.7), S(t)= ~,kNk,n(t)Pk, SO the B-splines
{Nk,n(t)} do indeed span the space of all splines with knots {t j}. To prove
that the B-splines are linearly independent, we must show that if
~kCkNk ,n (t) - O, then c k = 0 for all k. Let's restrict our attention to the

parameter interval [ti,ti+l]. Over this interval Ni_n,n(t) Ni,n(t) are the
only nonzero B-splines, so over this interval

n

ZkCkUk,n(t) = ZCi-n+hNi-n+h,n(t).
h=0

Moreover, over the interval [ti,ti+l], the B-splines Ni_n,n(t) Ni,n(t) are
polynomials, and by Section 7.1 these polynomials are just the progressive
basis functions b~ (t) b n (t), which form a polynomial basis. Therefore, if

n n

0 = ECi_n+hNi_n+h,n(t)- ECi-n+hb~(t),
h=0 h=0

then Ci_n+ h = 0 for all h. Hence the B-splines are indeed linearly indepen-
dent. The linear independence of the B-splines is equivalent to the nonde-
generacy of B-spline curves.

�9 Unimodality. Recall that a function is said to be unimodal if it has only one
local maximum. The B-splines {Nk, n(t)} are unimodal in t. To understand
why, consider the graph of the function Nk,n(t)~that is, the curve
S(t) - (t,Nk,n(t)). The function F(t) - t is a polynomial and hence certainly
a spline (see Section 7.5, Exercise 2). Since the B-splines form a basis for
the space of all splines, there must be constants {c j} such that
t = ~jcjNj,n(t). (We shall derive explicit expressions for the constants {c j}
in Section 7.7.2, but for now all we need to know is that such constants
exist.) Therefore, S(t)= ~,j(cj,~j,k)Nj, n(t). Thus the control points for the
graph of Nk, n(t) all lie along the t-axis except for the point at (Ck,1). There-
fore, the control polygon for the graph of Nk,n(t) has only one local maxi-
mum (see Figure 7.31). But the graph of Nk,n(t) is a B-spline curve, and by

388 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

0.8

0.6

0.4

0.2

I I I I I

-]

_

I I I I I I I I I I I I I I

1 2 3 4 5

Figure 7.31 Graph of the cubic B-spline N0,3(t) (light) together with its control polygon (dark).

Theorem 7.4, B-spline curves are variation diminishing. Therefore, the
graph of Nk,n(t) c a n oscillate no more than its control polygon. Hence
Nk, n(t) has only one local maximum.

Exercises

1. Let S(t) be a spline of degree n with knots {tk} whose support lies in

[tn,tk+n+l].
a. Prove that there is a constant c such that S(t) = CNk,n(t).

b. Conclude from part (a) that the B-splines {Nk,n(t)} have minimal sup-
port. That is, show that if S(t) is a spline of degree n with knots {tk}
whose support lies in a closed subinterval of [tn, tk+n+l], then S(t) is
identically zero.

2. Prove that Sign alternations{~kCkNk,n(t)} < Signalternations{ Ck}.

3. Let Tk+i = atk+ i + b, i = 0,...,n + 1, for some fixed constants a > 0 and b.
Show that

N~ (at + b I T k ,'t'k+n+ 1) = N~(t I tk,...,tk+n+ 1).

Compare this result to Section 7.4, Exercise 2.

4. Show, by example, that the B-splines {Nk,n(t) } are not necessarily unimodal
i n k f o r n > 6 .

5. The B-splines {Nk, n(t)} are called the de Boor normalized B-splines. The
Schoenberg normalized B-splines { Mk,n(t) } are defined by setting

7.7 The B-Spline Basis Functions 3 8 9

7.7.2

N k , n (t) N k , n (t)
M k , n (t) - =

tk+n+ 1 - t k S u p p o r t

a. Prove that M k , n (t) t - t k tk+n+ 1 - t - M k , n _ 1 (t) + M k + l , n _ 1 (t) .
tk+n+ 1 - t k tk+n+ 1 - t k

b. Conclude from part (a) that the Schoenberg normalized B-splines
{Mk,n(t)} are unimodal in k.

Blossoming and Dual Functionals

For polynomial curves generated by the de Boor algorithm, the control points are
given by the blossom evaluated at consecutive knots. Thus if P(t) is a degree n pro-
gressive polynomial curve specified by control points Po Pn and knots t 1 t2n,
then by Equation (7.3),

Pk - P(tk+l tk+n) �9

We would like to extend this result to B-spline curves, but first we must define
exactly what we mean by the blossom of a spline evaluated at the knots.

Consider then a B-spline curve S (t) = Z k P k N k , n (t) with knots {tj}. Let Sk(t) be
the degree n polynomial that represents S(t) over the knot interval [t k , t k+ 1] mthat is,
S(t) = Sk(t) for t k < t < tk+ 1 . Over the interval [tk, tk+ 1], the B-spline curve depends
only on the n control points Pk-n Pk and the 2n knots tk_n+ 1 tk+ n. Moreover,
by Equation (7.3),

Pi - Sk(t i+l t i+n) k - n < i < k .

Therefore,

s j (t i+ l t i + n) - Sk(ti+ 1 t i+n)

provided that j - n < i < j and k - n < i < k . Now we define the blossom of S(t)

evaluated at the knots ti+ 1 ti+ n by setting

s(ti+l t i+n) = Sk(ti+ 1 t i+n) ,

where k is any index such that k - n < i < k mthat is, k is the index of any knot inter-
val influenced by the control point Pi. It follows that

Pi = s(t i+l ti+n) (7.9)

S (t) = Z i s (t i + l t i + n) N i , n (t)

Equation (7.9) is the dual functional property of the B-splines and is the basic fact
connecting blossoming to B-spline curves.

We can apply Equation (7.9) to find the B-spline coefficients for various spline
functions. For example, in our discussion of the unimodality of the B-splines in Sec-
tion 7.7.1, we observed that there must be constants {c i} such that

t - Z i c i N i , n (t) .

[390 C H A P T E R 7 B-Sp l ine Approx ima t ion and the de B o o r A lgor i thm

These constants {c i } are called the nodes of the B-splines; it is at these values that
we must place the B-spline coefficients in order to generate the graph of a spline
curve. Using blossoming, these nodes are easy to locate. Let P(t) = t. Then by Equa-
tion (7.9),

c i - P(ti+ 1 ti+n) = ti+l + . . . + ti+ n
11

What happens if we evaluate the blossom ni,d(Ul Ud) of a B-spline basis func-
tion Ni,d(t) at the knots {t k} ? Since Ni,d(t) is a spline curve, and since the blossom
evaluated at consecutive knots gives the B-spline coefficients of a spline curve, it fol-
lows from the linear independence of the B-splines that

ni,d(tj+ 1 t j+d) = 0 i r j

=1 i = j . (7.10)

A linear operator that vanishes on all but one of a fixed set of basis functions and
yields the value one on a single basis function is called a dual f u n c t i o n a l (see Section
4.2). Since the blossom is a linear operator, Equation (7.10) is just another way of
saying that the blossom evaluated at consecutive knots represents the dual function-
als for the B-splines {Ni,d(t) }.

Exercises

1. Use Equation (7.9) to prove that ~,k Nk,n(t) -- 1.

2. Prove that

(j) t j = ~ i { ~ t i l ""tij }Ni ,n(t) ,

where the sum in brackets is taken over all subsets {il i j} of {i + 1
i + n } .

3. a. Apply Equations (7.9) and (7.10) to prove that

Nk,n(t l tk tk+n+l) -
"C- t k

tk+ n - t k
~ N k , n (t l tk "t: tk+n)

tk+n+ 1 - "g

tk+n+l - t k + l
Nk+l,n(t l tk+ 1 "C tk+n+l).

b. Explain why this result is equivalent to Boehm's knot insertion algorithm.

4. a. Apply blossoming to derive Marsden's identity:

(x - t) d - ~,k (tk+l - t) . . . (tk+ d - t)Nk ,d(X) �9

b. Show that Marsden's identity is equivalent to Equation (7.10).

5. Two bases {Bk(X)} and {Dk(t)} for polynomials of degree n are said to be
dual if they satisfy a local version of Marsden's identity (Exercise 4). That
is, {Bk(X) } and {Dk(t) }are called dual bases if (x - t) n = ~,kDk(t)Bk(X).

7.7 The B-Spline Basis Functions 391

a. Find the dual basis to each of the following progressive bases:

i. Bernstein basis

ii. Monomial basis

iii. Newton dual basis

iv. Power basis (see Section 7.2, Exercise 1)

b. Let rkl rkn be the roots of Dk(t). Show that

(-1) n n!ajk .

bj(rk )

6. Show that the B-splines {Nk,n(t)} for the knot sequence {t k} are the unique
functions satisfying the following axioms:

a. Nk,n(t) is a piecewise polynomial with continuity of order cn-# at knots
of multiplicity p.

b. {Nk,n(t)} have minimal support.

c. y~k Nk,n (t) = l.

(Hint: Use Exercise 1 and Section 7.7.1, Exercise 1.)

7 . 7 . 3 Differentiating and Integrating the B-Splines

We know how to differentiate a degree n B-spline curve; we simply differentiate one
level of the de Boor algorithm and multiply the result by n. A B-spline Nk,n(t) is just a
B-spline curve where the control points are given by Pj - ~jk. Therefore, differentiat-
ing the bottom level of the de Boor algorithm and summing over all paths from the
kth position at the base to the various apexes yields the derivative of Nk,n(t). But the
sum over all paths from the kth position on the base to the different apexes is the same
as the sum over all paths from the different apexes to the kth position on the base.
That is, we can run the down recurrence instead of the up recurrence, remembering to
differentiate the bottom level. Since we run the down recurrence for n - 1 levels, the
functions that emerge on the (n - 1)st level are just the degree n - 1 B-splines. More-
over, only two arrows point into the kth position on the nth level (see Figure 7.28).
Hence for differentiating N~ (t) we have Figure 7.32.

/N]k,n-l(t] Nk+l,n-l(t)

N'k,n(t)

Figure 7.32 The down recurrence for differentiating a B-spline. Remember that the final result needs to
be multiplied by the degree n.

392 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

Therefore, we conclude that

dNkdt ' n (t) = n (Nk tk+n' n-1 _ (t) tk Nk+l'n-l(t) 3.
tk+n+l -tk+l

(7.11)

Since tk+ n - t k represents the support of Nk,n_ 1 (t) and tk+n+ 1 -tk+l represents the
support of Nk+l,n_ 1 (t), we shall sometimes write

dNk,n (t) (Nk,n-l (t) Nk+l,n-l (t))
dt Support Support

(7.12)

What about the antiderivative of a B-spline? Since Nk, n(t) is a piecewise polyno-
mial of degree n with continuity of order n - p at knots of multiplicity p, we would
naturally expect that the antiderivative of Nk,n(t) should be a piecewise polynomial
of degree n + 1 with continuity of order n + 1 - p at knots of multiplicity p. More-
over, for values of t > tk+n+l, the antiderivative of Nk, n(t) should be a constant equal
to the area under the curve Nk,n(t) because Support{Nk,n(t)} c_ [tk,tk+n+l]. Thus it
appears that the antiderivative of Nk,n(t) should be a B-spline of degree n + 1 with the
same knots as Nk,n(t) but with one additional knot at infinity.

To determine if this analysis is correct, let Nk,n(tltk,...,tk+n+l) denote the B-
spline with knots t k tk+n+ 1 . To avoid calculating with infinities, we shall repre-
sent a knot at infinity by a homogeneous knot at t5 = (1,0). Then, up to a constant
multiple, we expect that the antiderivative of Nk,n(tl t k tk+n+l) is given by
Nk,n+l(t l t k tk+n+l,r). Let's see if this works.

Generally, differentiating the de Boor algorithm leads to a two-term derivative
formula, but not always. Recall that the de Boor algorithm is derived from a blos-
soming recurrence, where the input is the blossom evaluated at consecutive knots. If
we start with the multilinear blossom, then the knots may take on homogeneous val-
ues. Now suppose, in particular, that (tk+n+2,Wk+n+2)= (1,0)= t~. Then the label
tk+n+ 2 - t ---> tk+n+ 2 --tWk+n+ 2 ~ 1, SO one of the coefficients in the down recur-

rence for Nk,n+ l (t l t k tk+n+l,t~) is a constant (see Figure 7.33(a)).

tk+ 1"" tk+nt tk+2" " " tk+n+ 1 t Nk, n(t) Nk+ 1,n(t)
tk+n+l-/~,Q-tk / ~ ,~- t k + , tk+n+,- /N~-tk / ~ - tk+,

tk"" tk+n tk+l"" tk+n+l r tk+n+l 8 Nk-l,n+l (t) Nk, n+l (t) Nk+l,n+l (t)

(a) The de Boor algorithm (lo) The down recurrence

Figure 7.33 One level of (a) the de Boor algorithm and (b) the down recurrence with the knot
(tk+n+2,Wk+n+2) = (1 , 0) = ~. Notice the label 1 along one of the edges of the diagram. Since the derivative of
a constant is zero, differentiating this diagram leads to a one-term derivative formula for Nk, n+l(t).

7.7 The B-Spline Basis Functions 393

Thus the down recurrence becomes

Nk,n+l (t l tk tk+n+l,~)

t - t k

tk+n+ 1 - t k
Nk,n(t l tk tk+n+l)+ Nk+l,n(t l tk+l tk+n+l,~).

Now differentiating the last level of the de Boor algorithm and multiplying the result
by n + 1 leads to the one-term differentiation formula:

dNk,n+l (t l tk tk+n+l,tS) = (n + 1) Nk'n(tltk tk+n+l)

dt tk+n+ 1 - t k

Hence

f Nk,n(t l tk tk+n+l)dt -tk+n+l - t k n + 1 Nk,n+ l(tl t k tk+n+l,~)

or equivalently

N k'n(t) dt Nk'n+l(t l tk tk+n+l't~)
Support n + 1

Exercises

(7.13)

1. Let S(t) = ~,k Nk,n (t)Pk be a B-spline curve with knots { t k }. Show that

S ' (t) -n~kNk ,n - l (t) (Pk- -Pk-11 " t k + n - t k

2. Derive the following recurrence between the derivatives of the B-splines:

3. Using Equation (7.12) prove that

a. ~s Nk'n-l (t) dt -~s Nk+l'n-l (t) dt
upport Support upport Support

b. f Nk,n_ l (t)

Js upport Support

4. Prove that

dt is independent of k

~S Nk'n (t) 1 ~ d t -
upport Support n + 1

in two different ways.

a. Insert knots far from the support of Nk, n(t) to form a local Bernstein
basis. Then apply Exercise 3(b).

i 394
I

C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

b. Show that Nk,n+l(tk+n+ 1 I tic tk+n+l,5)= 1. Then apply Equation
(7.13).

5. Let S(t) be a B-spline curve with control points {Pk }"

a. Using the results of Exercises 1 and 4, show that

~?ool S'(t) I dt <- Zk I Pk - Pk-1 I .

b. Conclude that arc length S(t) < perimeter of its control polygon.

7.7 .4 B-Splines and Divided Difference

Two remarkable formulas link B-splines with divided differences"

Nk, n (t) = { (tk+n+ 1 - t k)(x - t)~ }[tic tk+n+ 1] (7.14)

~ t t k (+ n + 1
F[t k tk+n+l] =

k

Nk,n(t) t (F(n+l)(t)}dt
tk+n+ 1 - t k n!

= fSupport{ Nk'n(t) }{F(n+l)(t)} dt n!

(7.15)

The first formula constructs the B-splines from the divided difference operator; the
second builds the divided difference operator by integration with the B-splines. Note
that in Equation (7.14) the divided difference is with respect to x, so t is treated as a
constant on the fight-hand side.

Equation (7.14) is important because it allows us to use the divided difference
identities derived in Chapter 4 to derive identities for the B-splines. Till now we have
used blossoming almost exclusively to derive B-spline identities, but the blossoming
approach works only when the identities involve spline bases~that is, the knot
sequences of the B-splines must be compatible--or when the blossom is easy to
compute. This is not always the case~see Exercises 1-3 and 7-9 for examples.
Divided differences have no such restrictions.

Equation (7.15) is important because it allows us to use the properties of the B-
splines to derive properties of the divided difference operator. In fact, sometimes this
formula is taken as the definition of the divided difference.

To understand Equation (7.14), we need to define our notation. Let

(x - t)~_ - (x - t) n x > t

= 0 x<_t.
To derive Equation (7.14), we begin by showing that the function

{(x - t) +} [t k tk+n+ 1]

has the same support as the B-spline Nk,n(t l t k tk+n+ 1).

7.7 The B-Spline Basis Functions 395

LEMMA
7.5

S u p p o r t { (x - t) ~ [t k tk+n+l] } c [t k , t k+n+ 1].

P r o o f We consider two cases: t < t k and t > tk+n+ 1. If t < t k, then the functions
(x - t)~_ and (x - t) n agree at the nodes tk tk+n+ 1. Hence

(x - t)+[t k tk+n+ 1] - (x - t) n [t k , . . . , t k + n + l] = O,

since divided difference annihilates polynomials of low degree (see
Theorem 4.3, 12(a)). On the other hand, if t > t k+n+l , then on the nodes
t k t k+n+l , we have (x - t)~ = 0, so it follows immediately that

(x - t)~_ tk tk+n+l] = O.

Next we establish that (x - t) ~ _ [t k tk+n+ 1] is a piecewise polynomial with
knots at the nodes t k , . . . , t k + n + 1 .

LEMMA
7.6

The function (x - t) ~ [t k t k+n+l] is a piecewise polynomial of degree n
with knots at t k tk+n+ 1 .

Proof Let t i < t < t i+l, and let P (x) - an+l x n + l + . . . + a l x + a 0 be the unique poly-
nomial of degree n + 1 that interpolates the same values as (x - t)~_ at the
nodes t k , . . . , t k+n+ 1. Then

.~ ,n+l
e (t k) - "n+l'k + " " + a l t k + ao = (tk - t)~_ = 0

�9 , .

�9 o o

P (t i) - an+l tn+l + . . . + a l t i + a 0 = (t i - t)~_ - 0

.~ ,n+l (7.16)
P (t i + l) = "n+1'i+1 + " " + al t i+l + ao - (ti+l - t)~ = (ti+ 1 - t) n

�9 o o

�9 o ,

.~ §
P (t k + n + l) = " n + l ' k + n + l + " " + a l t k+n+l + ao = (t k+n+l - t)~_ - (tk+n+ 1 - t) n

Solving for the unknown coefficients a o an+ 1 , we see that P (x) is a poly-
nomial of degree n + 1 in x with coefficients that are polynomials of degree
n in t. Since the divided difference is the highest-order coefficient of the
polynomial interpolant,

(x - t)+[t k tk+n+l] = an+ 1

is a polynomial of degree n in t for t i < t < ti+ 1 . To show that t i is a knot of
n

(x - t) + [t k tk+n+l], let t i_ 1 < t_ < t i and t i < t+ < ti+ 1. In addition, let Q (x)

be the unique polynomial of degree n + 1 that interpolates the same values
as the function

396 C H A P T E R 7 B - S p l i n e A p p r o x i m a t i o n a n d the d e B o o r A l g o r i t h m

at the nodes t k , . . . , t k+n+ 1. Now observe that the functions (x - t _) ~ _ and
(x-t+)~_ agree~tha t is, are the same polynomial in the variables t_ and
t + ~ a t all the nodes except t i; therefore, the n + 1 nodes t k ti_ 1,

t i+ 1 tk+n+ 1 are the n + 1 roots of Q (x) . Moreover,

Q (t i) - (t i - t_)~_ - (t i - t+)+ - (t i - t _) n.

Therefore,

Q (x) - (ti - t -) n (x - t k) " ' (x - t i - 1) (x - t i + l) " ' (x - t k+n+l)

(t i - t k). . . (t i - t i_ 1)(ti - ti+ 1) . . . (t i - tk+n+ 1)

It follows by the cancellation property of the divided difference (see Theo-
rem 4.3) that

(x - t_)~_[t k tk+n+l] - (x - t+)~_[t k tk+n+l]

= { (x - t _) ~ _ - (x - t +) ~ _ } [t k tk+n+l]

= Q[t k tk+n+l]

(t i - t _) n (x - t k) . . . (x - t i_ 1) (x - ti+ 1). . . (x - tk+n+l)

(t i - t k). . . (t i - t i_ 1)(ti - ti+ 1) . . . (t i - tk+n+ 1)

(t i - t _) n [ti]

(t i - t k) . . . (t i - t i_ 1)(ti - ti+ 1). . . (t i - tk+n+l)

(t i - t _) n

(t i - t k). . . (t i - t i_ 1)(ti - ti+ 1). . . (t i - tk+n+ 1)

[t k t k+n+l]

where the last equality follows because the divided difference is taken with
respect to x and the expression

(t i - t _) n

(t i - t k) . . . (t i - t i_ 1)(ti - ti+ 1) . . . (t i - tk+n+l)

is a constant when viewed as a function of x. Thus

(x - t_)~_[t k tk+n+l] - (x - t+)+[t k tk+n+ 1] = c o n s t a n t (t i - t _) n,

so the value and the first n - 1 derivatives of the two functions

(x - t_)~.[t k t k+n+l] and (x - t+)~_[t k tk+n+ 1]

agree at t = t i. Thus the piecewise polynomial (x - t)~_[t~ tk+n+ 1] has a
simple knot at t = t i.

In the proof of Lemma 7.6 we have implicitly assumed that t i appears only once
in the sequence t k t k + n + l m t h a t is, t i is a simple knot. If t i is repeated kt times, then
the same proof applies except that now we must set

7.7 The B-Spline Basis Functions 397

I-I (x - t j)

Q (x) = jr
1-I (t i - t j)

jr

R (x) ,

where R (x) is the Taylor expansion of (x - t_)~_ of order p - 1 at t_ = t i. The rest of
the proof remains the same, and in this case we conclude that (x - t)~[t k tk+n+ 1]
has a knot of multiplicity p at t = t i. In any event, the preceding proof of Lemma 7.6
is quite abstract; for a somewhat more concrete proof, see Exercise 6.

With these results in hand, we are finally ready to prove Equation (7.14).

PROPOSITION
7.7 N k , n (t) - { (tk+n+ 1 - t k) (X - t)~} [t k tk+n+l]"

Proof To simplify our notation, let

Gk,n(t) - { (tk+n+ 1 - t k) (x - t)+ }[tk , . . . , tk+n+ 1] .

Our goal now is to show that GLn(t) = Nk,n(t). By Lemma 7.6, the function
Gk,n(t) is a piecewise polynomial with knots at the nodes t k tk+n+ 1. Since
the B-splines form a basis for the splines, it follows that we can represent
the function Gk,n(t) in terms of the B-splines {Nj ,n(t)} . Moreover, by
Lemma 7.5, Gk,n(t) has the same support as Nk,n(t) . Therefore, it follows by
the linear independence of the B-splines that there is a constant c k such that

Gk, n (t) = CkNk, n (t) �9

We can compute the constant c k from blossoming. Let gk,n(Ul u n) denote
the blossom of GLn(t) . Then

gk,n (Ul u n) = { (tk+n+ 1 - t k) (x - t) 0 (x - u 1) . . . (x - u n)] [t k tk+n+ 1] ,

since the fight-hand side is symmetric, multiaffine, and reduces to Gk,n(t)
along the diagonal. Now let t k < t < tk+n+ 1. By the dual functional property
of the blossom (Equation (7.9)) and the cancellation property of the divided
difference (Theorem 4.3),

c k = gk ,n(tk+l tk+ n)

= {(tk+n+ 1 - t k) (X - t) O (x - t k + l) . . . (x - tk+ n) }[tk tk+n+l]

= { (tk+n+ 1 - t k) (x - t) 0 }[tk , tk+n+ 1]

(tk+n+ 1 - t k) (tk+n+l - t) 0 - (tk+n+ 1 - t k)(tk - t) 0

= 1 ,

tk+n+l - t k

since t k < t < tk+n+ 1 . Hence Gk,n(t) - N k , n (t) .

t 398 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

We had to work fairly hard to establish Equation (7.14); Equation (7.15) is much
easier to derive. Our main tools here are integration by parts and the two-term differ-
entiation formula for the B-splines.

PROPOSITION
7.8 fS { Nk'n(t) }{F(n+l)(t)tdt F[t k tk+n+l] =

upport Support n!

Proof We proceed by induction on n. We can easily verify this result is true for
n = O, since

F(tk+ 1) - F(t k) = f tk+l F'(t)dt
F[tk,tk+l] !

tk+ 1 - t k .It k tk+l - t k

Now assume this result is true for n - 1 and apply integration by parts. Then

~Support{ Nk'n(t) }{F(n+l)(t)} n!

n!(tk+n+ 1 - tk) t ~ - tk+n+ 1 - t k ,ltk --~ n!

Since Nk,n(t) vanishes on the end points of its support,

(n) tk+n+l
Is

Ln!(tk+n+l - t k)J t k
=0.

Moreover, by Equation (7.12)

dNk, n (t) = n(Nk'n---1 (t)
dt ~, tk+ n - t k

Nk+l,n_ 1 (t) I"
tk+n+l -tk+l

7.7 The B-Spline Basis Functions 399

Therefore,

SS { Nk'n(t) } {F(n+l) (t) } dt
upport Support n!

tk+n+ 1 - t k ,ttk dt n!

tk+n+ 1 - t k . I t k tk+ n - t k tk+n+ 1 - tk+ 1 n!

_ 1 f t k + n + l (g k + l , n _ l (t) l f f (n) (l) } d t

- - tk+n+l - tk J t k + 1 /k+n+l - t k + l JL (n -- 1)!

_ 1 f t ~ + ' { N k , n _ l (t) l f F (n) (t) } d t

tk+n+ 1 - t k ,It k tk+ n - t k J [(n - 1)!

F[tk + 1 tk + n + 1] - F[tk tk + n]

t k + n + 1 - t k

= F[t k tk+n+l] �9

Exercises

1. Use Equation (7.14) together with the cancellation property of the divided
difference to prove that

Nk,n(tk+ j I tic tk+n+ 1) - Nk,n_ 1 (tk+ j I t k tk+j_ 1,tk+j+ 1 tk+n+ 1).

2. Use Equation (7.14) together with Section 4.3, Exercise 3(a), to prove that

~N~ (t l t k tj tk+n+l)

~tj

I Nk+ (t I tk+l, . . . , t j , t j tk+n+ 1) = f l j
tk+n+l - t k + l

_ N ~ (t l t ktk+ntj,tj_tk ,tk+n) I

where pj is the multiplicity of tj r tk,tk+n+ 1.

3. Use Equation (7.14) together with Section 4.3, Exercise 3(b), to prove that

Nk,n(t l t k tk+n+l) - ~ , jNk,n+l(t l tk tk+j, tk+j tk+n+l) .
n + l

400 CHAPTER 7 B - S p l i n e A p p r o x i m a t i o n a n d the de B o o r A l g o r i t h m

4. Use Equation (7.14) together with Leibniz's rule for divided difference to
give an alternative proof of the divided difference recurrence

N k , n (t) t - t k tk+n+ 1 - t
- - - N k , n _ 1 (t) + N k + l , n _ 1 (t).

tk+ n - t k tk+n+l - t k + l

5. Use Equation (7.14) together with the appropriate property of the divided
difference to prove that

t j+ 1 - t j+ n :=~ N j , n (t j + l) - 1.

6. Here we give an alternative proof of Lemma 7.6. Since, by definition, the
divided difference is the highest-order coefficient of the polynomial interpo-
lant, we can find

(x - t) ~ _ [t k tk+n+l]

by solving system (7.16) for the coefficient an+ 1 .

a. Using Cramer's rule, show that for t i < t < ti+ 1

{ (x - t)+ }[t k tk+n+ 1] = an+ 1 =

? /

0 t k . . . 1

o i ~

(ti+ 1 - t) n : : :

H ~

(tk+n+ l - t) n tk+n+ 1 .. 1

tn+l n
k tk "'"

�9 . .

�9 , o

tn+l n
k+n+l tk+n+l "'"

b. Similarly show that for ti_ 1 < t < t i ,

{ (x - t)+l [tk t ~+ .+ l] =

n

0 t k . . .
�9 , ~

�9 , ~

(t i - t) n i i

(ti+ 1 - t) n i i
�9 , o

�9 , ,

(tk+n+ 1 t)n n
- tk+n+ 1 .. .

tk n+l

tn+l
k+n+l

1 l

tk

1 l

tk+n+l

~ 1 7 6

~ 1 7 6

1

7.7 The B-Spline Basis Functions 401

c. Let Qi(t) be the difference between the two polynomials in parts (a) and
(b)--that is, Qi(t) is the difference between (x - t)~_[t k tk+n+l] to the
left and to the right of t i. Show that Qi(t) = cons tant (t i - t) n.

d. Conclude from part (c) that the function value and the first n - 1 deriva-
tives of

(x - t)+[tk , . . . , t k+n+l]

agree to the left and to the right of t i. Hence the function

(x - t) ~ [t k tk+n+l]

is a piecewise polynomial of degree n with knots at t k tk+n+ 1.

e. How would you need to alter this proof if t i is repeated p times in the
sequence t k tk+n+l?

7. a. Use Equation (7.14) together with Proposition 4.6 to prove that for any r

Nk,n(t l t k tk+n+l) - - - r - t k Nk,n(t l tk , . . . , r ,tk+ n)
tk+ n - t k

+ tk+n+ 1 - ~2 Nk+l,n(t I tk+ 1 • tk+n+l).
tk+n+l - t k + l

b. By letting ~" = t in part (a) and invoking Exercise 1, derive the B-spline
recurrence

Nk,n(t) t - t k N k , n _ l (t) + t k + n + l - t = _ _ Nk+l ,n_l (t) .
tk+ n - t k tk+n+ 1 - t k + l

8. Generalize the B-spline recurrence by showing that for any 1 _< i < j ___ n

Nk,n(t l t k tk+n+l) =
t - t k + i

tk+j - t k + i
Nk,n_ 1 (t I t k tk+ j tk+n+ 1)

+ tk+ j - t Nk,n-l(tlt k tk+i tk+n+l)
tk+j - t k + i

where /'a means that t a is omitted from the sequence. (Hint: Use Equation
(7.14) together with Proposition 4.6 and Exercise 1. Compare to Exercise 7.)

9. Differentiate Equation (7.14) and then apply the divided difference recur-
rence to prove that

a. dNkdt, n (t) = n (Nk,n_ _ (t)tk Nk+l,n_ 1 (t) I

tk+n+l - t k + l

402 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

b. dNk'n(t)

dt

n Nk'n- l (t I t k ,tk+j____2, tk+n+l)

tk+j -tk+i

N k,n_l (t l t_k:._::!k+i,--..,t k+n+ l)

tk+j- tk+i

10. Consider the identities for the divided difference listed at the end of Chapter
4. Using Equation (7.15) and the properties of B-splines, derive as many of
these identities as you can.

7.7.5 A Geometric Characterization of the B-Splines

So far we have seen two distinct ways to construct the B-splines: by the de Boor
recurrence (Equation (7.8)) and by divided differences (Equation (7.14)). Here we
shall give an alternative, geometric characterization of the B-splines.

Let PO Pn be any n + 1 affinely independent points in n dimensions such that
Pil = ti, and let An(p) denote the n-simplex with vertices PO Pn. We are going to
show that

NO,n_l(t l t 0 tn) = (t n - to)Voln_l(ty e An(p) I O'1 = t) . (7.17)
nVoln (An (e))

Equation (7.17) has the following geometric interpretation: Form any n-simplex
such that the first coordinates of its vertices PO Pn lie over the knots t o t n . Then
the n - 1 dimensional volume of the cross section of this simplex lying over the
parameter t is, up to a constant multiple, the B-spline NO,n_l(t l t 0 tn) (see Figure
7.34).

To derive Equation (7.17), we begin by recalling the Hermite-Genocchi formula
for the divided difference (see Section 4.3, Exercise 9):

= f , n F(n)(to + Vl(tl- t o) + ' " + Vn(tn - t o)) d V l ' " d v n ' F[to tn]
4 l..X" "

where A n = {(v 1 Vn) lVi > 0 and]~ i vi < 1} is the standard n-dimensional sim-
plex. On the other hand, by Equation (7.15),

~ttn{ gO'n-l(t[- t o to t n) } {F(n) (t) } dt" (n - 1)! F[to tn] = - 7
o tn

Therefore, it follows that

~AnF(n)(to + - + . . . + - to))dv l . . . dv n Vl(/1 to) Vn(tn

=~t;nIgo'n-l-(-t!tO--o ~ t n - t o t n) } { f (n) (t) } - 1)l

7.7 The B-Spline Basis Functions 403

P1

P2

P0

,w v f ~

t o t I t t 2

Figure 7.34 Geometric characterization of the B-spline No, l(t l to, tl,t2) as a cross section of a triangle,
normalized by the area of the triangle and the length of the support. Notice that this cross
section is a piecewise linear function with support [to,t 2] and a knot at t 1, just like the B-
spline No, l(t l to, tl,t2).

or equivalently, replacing F (n) (t) by G(t),

~An G(to + Vl(t 1 - t o) + . . - + Vn(t n - t0))dv 1 " " d v n

----~t~'nI g O ' n - l (t l t O 0 (n -- 1)!(t n -- ~0)tn)) G(t)d t" (7.18)

We are now going to perform a change of variables to simplify the left-hand
side of Equation (7.18). Let S be the unique affine transformation that maps the ver-
tices of A n to the vertices of An(p) by sending the vertex E i to the vertex Pi, where E i
is the point whose rectangular coordinates (v I v n) have a 1 in the ith position and
a zero everywhere else. Then

or equivalently

S (V l V n) - eo + vl(el - e0) + "'" + v n (en - e0),

si - Poi § Vl (Pli - eoi) + " " § Vn (P n i - Poi) , i = 1 n.

Notice, in particular, that by the choice of Po Pn

s 1 = t o +v l(tl - t O) + . . . + v n (t n - t O).

404 CHAPTER 7 B-Spline Approximation and the de Boor Algorithm

The Jacobian of this transformation between the variables s = (sl s n) and the
variables v - (v 1 v n) is given by

(ell-Pol P21-Pol
/

3(Sl Sn) - det/P12 Po2 P22 - Po2

3(v 1 v n) ~

kP , Po, P z,-POn

= det(l:'l - PO Pn - PO)

= n, Voln(An(P)).

Hence by this change of variables

~AnG(to + - + . . . + _ t0))dv 1 Vl(tl to) Vn(tn o " " d v n

1
= n!Voln(An) ~An(e) G(sl)dsl ' ' 'dsn

�9 " " Pnl-eOl
"'" Pn2 P02

�9 .. Pnn-POn

= ds2. . .ds n (s 1)ds 1 . (7.19)
n!Voln(An) o eAn(p)lal=Sl

Now it follows from Equations (7.18) and (7.19) that

~ f n { g o , n - l (t l t o tn)} l ftrn{~cr
0 (n-1)!i~n -- toi G(t)dt = n!V~ o EAn(p)I(Yl=S1

ds2 . . " ds n ~ (Sl)dSl .

Replacing Sl by t and comparing the integrands, we find that

NO,n-l (t l to t n)

(n -1) ! (t n - t O) n!Voln(An) eAn(p)lal=t
ds2 . . .ds n

Voln_ l (a ~ A n(e) I O" 1 = t)
,

n!Voln(An(p))

Therefore,

NO,n_l(t l t 0 tn) _ (t n - to)Voln_l (G e An(p) l al = t)
nVoln (An (e))

Although we have not taken this geometric approach to defining the B-splines,
all the many properties of and procedures for the B-splines, such as knot insertion
algorithms, can be derived directly from Equation (7.17). Therefore, this formula for
the univariate B-splines is often taken as the starting point for the extension of the
theory of B-splines to the multivariate setting, where other approaches do not apply.
For multivariate B-splines in k dimensions, Voln_ 1 is replaced by Voln_ k.

7.8 Uniform B-Splines 4 0 5

Exercises

1. Use the triangle with vertices (to,1),(tl,2),(t2,1) to calculate the values of
the B-spline No, l (t l to , t l , t2) from Equation (7.17).

2. a. Let S be an affine transformation on affine n-space that preserves the
value of the first coordinate. Show that the first column of the matrix rep-
resenting S is (1,0 0) E

b. Using part (a), show that the value of

(t n - to)Voln_ 1 (or ~ A n (P) I o- 1 = t)

nVoln (An (e))

is independent of the choice of the simplex An(p) provided that
Pil = ti, i = O n.

7.8 Uniform B-Splines

The simplest, most common knot vectors have evenly spaced knots~for example,
knot vectors where the knots are located at the integers { -2,-1,0,1,2 }. When
the knots are simple knots (knots of multiplicity one) located at the integers, the knot
sequence is called a uniform knot sequence and the associated B-splines are called
uniform B-splines. These uniform B-splines have some especially nice properties,
which we are now going to investigate.

For uniform B-splines it follows easily from the de Boor algorithm that all the
B-splines of the same degree are translates of a single B-spline so that

Nk,n(t) = NO,n(t - k) (7.20)

(see Exercise 1). Thus, all uniform B-splines of degree n have a support of size n + 1.
Since the size of the support appears in several B-spline identities, many of these
identities simplify for uniform B-splines. For example, for uniform B-splines, it fol-
lows from Equations (7.8), (7.11), (7.13), and Exercise 4 of Section 7.7.3 that

t - k k + n + 2 - t
Nk,n+l(t) = Nk,n(t)+ Nk+l,n(t) (7.21)

n + l n + l

dNk,n(t)
dt = Nk,n_ 1 (t) - Nk+l,n_ 1 (t) (7.22)

Nk, n (t)dt =/Vk,n+l (t) (7.23)

fS Nk'n(t)dt (7.24) 1.
upport

Notice that in the antiderivative formula (Equation (7.23)) the B-spline Nk,n+l(t) on
the fight-hand side is not quite uniform, since its last knot is at ~ = (1,0).

406

7.8.1

C H A P T E R 7 B-Spline Approximat ion and the de Boor Algori thm

Exercises

1. Using the de Boor algorithm, show that when the knots are located at the
integers Nk, n (t) = NO, n (t - k) .

2. Prove that the uniform B-splines {Nk,n(t) } are unimodal in k.

3. Prove that for uniform B-splines"

a. jk[k+n+lNk'n(t)d t _ 1

[k+n+l Nk,n (t)F(n+l) (t)dt
b. Jk = F[k k + n + l] .

(n + 1)!

Continuous Convolution and Uniform B-Splines

Uniform B-splines can be generated from continuous convolutions. The continuous
convolution of two functions of a continuous variable is an extension of discrete con-
volution for two functions of a discrete parameter (i.e., sequences), where summa-
tion is replaced by integration. Letf(t) and g(t) be integrable functions defined for all
values of t. The continuous convolution (f * g)(t) is defined by setting

(f * g)(t) - ~_~ f (t - x) g (x) d x .

We shall show shortly that just as the Bemstein basis can be generated from the dis-
crete n-fold convolution of the sequence {1- t,t}, the uniform B-splines can be built
up by continuous n-fold convolution of the characteristic function of the unit interval.

In the following proposition and its corollaries, Nk,n(t) always denotes a uniform
B-spline with knots at the integers.

PROPOSITION
7.9

1
Nk,n(t) - ~o N k , n _ l (t - x)dx n > 1. (7.25)

Proo f Let

Lk, n (t) = ~ Nk ,n_ 1 (t - x)dx.

We shall show by induction on n that Lk,n(t) = Nk,n(t). For n = 1, we have

Lk,l(t) = ~ N k , o (t - x)dx .

But

Nk,o(t) = 1 k < t < k + l

= 0 otherwise.

7.8 Uniform B-Splines 407

Therefore,

Hence

N k , o (t - x) - 1 k < t - x < k + 1

= 0 otherwise.

f0N f0-k k ,0(t - x)dx = dx = t - k k < t < k + 1

- ~ - k - l d X - k + 2 - t k + l < t < k + 2 _ _

= 0 otherwise.

Moreover, by Equation (7.21)

Nk, 1 (t) - (t - k)Nk,o(t) + (k + 2 - t)Nk+l,O(t) - t - k k < t < k + 1

= k + 2 - t k + l < t < k + 2

= 0 otherwise.

Hence Lk,l(t) = Nk,l(t) . For the inductive step, observe that by Equation
(7.22) and the inductive hypothesis

dLk,n (t) 1
-fit - fO { dNk'n- l (t~ x) } dx

__- f~ Nk,n_2 f l (t - x) d x - JO Nk+l'n-2 (t - x)dx

= Nk,n_ 1 (t) - Nk+l,n_ 1 (t)

dNk,n(t)

dt

Therefore, Lk,n(t) and Nk,n(t) differ by at most a constant. But

1N Lk, n (k) = ~0 k,n-1 (k - x)dx = 0 - Nk, n (k),

since Nk,n_ 1 (k - x) - 0 for 0 < x < 1. Hence Lk, n (t) = Nk, n (t).

Let Z[0,1) denote the characteristic function of [0,1]. That is, let

Z [0 , 1) - - 1 0 < t < 1

= 0 otherwise.

408 C HAPTE R 7 B-Spline Approximation and the de Boor Algorithm

COROLLARY
7.10 Nk,n = Nk,n-1 * Z [0 , 1) �9

Proof From Propos i t ion 7.9

Nk, n (t) - ~ Nk,n_ 1 (t - x)dx

= ~_ N k , n _ l (t - x)Z[O,1)(x)dx

= (Nk,n_ 1 * Zto,1))(t) �9

(7 .26)

COROLLARY NO,n = Z[0,1) *"" * Z[0,1)
7.11 , ,"

n + l factors

Proof This result follows immediately from Corollary 7.10 by induction on n.

Exercises

1. Prove that

a. f , g - g , f

b. (f , g) , h = f , (g * h)

c. f * (g + h) - f * g + f *h

2. Let ha(x) - h (x - a). Prove that fa * g - f * ga"

3. Prove that for uniform B-splines

Nk,n - Z[k,k+l) * 2 ' [0 ,1) * " '" * 2 " [0 ,1) .
Y

n factors

4. Let P(t) be the control polygon generated by the control points {Pk}~that
is, P(t) is the piecewise linear curve with P(k+ 1) - P k ~ a n d let S n (t) be the
uniform B-spline curve of degree n generated by these same control points.
Show that

a. So(t) = e k k < t < k + l

b. Sl (t) - e (t)

C. Sn(t) = (P * No ,n-2) (t) n > 2

7.8.2 Chaikin's Knot Insertion Algorithm

Boehm's algorithm and the Oslo algorithm allow us to insert a finite number of new
knots at arbitrary locations into the knot sequence of a B-spline curve. But suppose

7.8 Uniform B-Splines 409

we have a B-spline curve with uniform knots and we want to insert new knots but
still keep the knot spacing uniform. For example, suppose we have knots at the inte-
gers { -2,-1,0,1,2 } and we want to insert new knots at the half integers, creat-
ing the new uniform knot sequence { . . . , -2 ,-1.5,-1,-0.5, 0, 0.5,1,1.5, 2 }. How
should we proceed?

Knot insertion is, evidently, a special type of change of basis procedure. Let
{Nk,n(t)} denote the uniform B-splines over the integers, and let {Hj,n(t)} denote the
uniform B-splines over the half integers. Given a B-spline curve S(t) with control
points {Pk} relative to the B-splines {Nk,n(t)}, we seek control points {Qj} relative
to the B-splines {Hj,n(t)} so that

S(t) - Y~k PkNk,n(t) - ~, iQiHj,n(t) .

Since the knot sequences for {Nk, n(t)} and {Hj,n(t)} are nested, such control points
{Q j} must exist; the problem is how to find them.

Let us begin by considering some simple cases. For n - O, Nk,o(t) - 1 on the half
open unit interval [k,k + 1) and is zero everywhere else. Similarly, Hk,o(t) -1 on the
half-unit interval [k,k+0.5) and Hk+0.5,0(t) - i on the half-unit interval
[k + 0.5,k + 1). Thus

Nk,o(t) - Hk,o(t) + Hk+o.5,0(t).

Therefore, if {Pk} are the control points of a spline S(t) relative to the basis {Nk,0(t) },
then evidently { /~,Pj } are the control points of S(t) relative to the basis
{Hj 0(t)}. That is, when we halve the parameter interval, we must double the control
points.

Next let's try the case n - l ~ t h a t is, linear B-splines. Consider the curve

S(t) - ~,k PkNk,1 (t).

Since Nj, 1 (k + l) = 0 for j g: k, it follows that Nk, l(k + 1) - 1. Therefore, the spline S(t)
is a piecewise linear curve that interpolates the control point Pk at the parameter
k + 1. That is, the spline S(t) is identical to the control polygon generated by the
points { Pk }" Similarly, if we write

S(t) - ~, jQjHj, 1 (t),

then S(t) will interpolate the control point Qk at the parameter k + 0.5 and the control
point Qk+0.5 at the parameter k + 1. Hence we must set

Pk-l + Pk Qk =
2

Q +o.5 - Pk ,

where the formula for Qk follows by the linearity of S(t). Thus we can compute the
points {Q j} from the points {Pk} by doubling and averaging. This algorithm is
depicted in Figure 7.35.

Does this pattern persist? Can we find the control points for a quadratic B-spline
relative to knots at the half integers by first doubling and then twice averaging the

4 1 0 CHAPTER 7 B-Spline Approximation and the de Boor Algorithm

Pk _ l + Pk Pk + Pk+ l Pk + l + Pk+ 2

Pk-1 2

/ ' , , , / ' , , ,
Pk- Pk- ek

Pk 2 Pk + l 2 Pk+2

Pk Pk+l Pk+l Pk+2 Pk+2

Figure 7.35 Algorithm for inserting knots at the half integers in a degree 1 B-spline curve. The original con-
trol points {Pk} are doubled and averaged to generate the new control points {Qj}.

s(1.5,2) s(2,2.5) s(2.5,3) s(3,3.5) s(3.5,4) s(4,4.5)

s(1,2) s(2,2) s(2,3) s(3,3) s(3,4) s(4,4) s(4,5) / ' , , , / ' , , , / ' , , , / ' , , , / ' , , , / ' , , , / ' , , ,
s(1,2) s(1,2) s(2,3) s(2,3) s(3,4) s(3,4) s(4,5) s(4,5)

Figure 7.36 Chaikin's algorithm for inserting knots at the half integers for a uniform quadratic B-spline
curve. Doubling the control points for the spline S(t) with the knots at the integers and averaging twice yields
the control points for the same spline with the knots at the half integers.

control points relative to the knots at the integers? Let's see what blossoming has to
say about this question. By the dual functional property for a quadratic spline S(t),

Pk = s(k + 1,k + 2)

Qk = s(k + 0.5,k + 1)

Qk+0.5 = s(k + 1,k + 1.5).

Now let's try doubling and then averaging twice. Sure enough, Figure 7.36
shows that this technique does indeed generate the points {Q j} from the points {Pk}.
This algorithm of doubling and averaging twice was first introduced by Chaikin and
is known as Chaikin's algorithm.

Exercises

1. This exercise extends Chaikin's knot insertion algorithm to quadratic B-
splines with knots in geometric progression. Let {Nk,2(t)} denote the qua-
dratic B-splines with knots at t2k = fl2k, and let {Hk,2(t)} denote the qua-
dratic B-splines with knots at t k = ilk. Let {Pk} denote the control points of a
quadratic B-spline curve S(t) relative to the B-splines {Nk,2(t)}, and let {Qj}
denote the control points of the same curve S(t) relative to the B-splines
{Hj,2(t) }. Use blossoming to prove that the following algorithm can be used
to generate the new points {Q j} from the original points {Pk}. Start by
doubling the original control points {Pk}. Then take successive weighted
averages of adjacent points in the following manner:

7.8 Uniform B-Splines 411

Qo _ Pk j - 2k ,2k + 1

Q? f l m o ? . ~ l + Q ? - I
= m= 1,2.

l + fl m

The points {Q2} that emerge on the second level of the algorithm are the
control points {Q j} of the quadratic B-spline curve S(t) relative to the B-
splines {Hj,2(t)} (see Figure 7.37).

f12 Q2 Q3 Q4 Q5 Q6 Q7 1

fl * * * * * * * 1

PO PO P1 P1 P2 P2 P3 1:'3

Figure 7.37 Algorithm for inserting knots in geometric progression in a quadratic B-spline curve. The algo-
rithm begins at the base of the diagram where the original control points {Pk} are doubled. Then two succes-
sive weighted averages are computed to generate the new control points {Qj} at the top of the diagram. All
right-pointing arrows on the first level are labeled 3/(1 + 3) and on the second level 32/(1 + 32); all left-
pointing arrows on the first level are labeled 1/(1 + fl) and on the second level 1/(1 + f12).

2. A knot sequence is said to be in affine progression if there are constants a,b
such that for all k, tk+ 1 = at k + b. Generalize Exercise 1 to knots in affine
progression.

3. Implement a rendering algorithm for uniform quadratic B-spline curves
based on Chaikin's knot insertion procedure.

4. Implement an intersection algorithm for uniform quadratic B-spline curves
based on Chaikin's knot insertion procedure.

7.8.3 The Lane-Riesenfeld Knot Insertion Algorithm

Unfortunately, the blossoming approach to deriving knot insertion no longer works
for cubic splines with uniform knots. (Try itt) But the pattern is still correct. To find
the control points relative to the half integers for a spline of degree n, we need only
double the control points relative to the integers and then average n times. Below we
shall prove this assertion by appealing to the convolution formula for uniform B-
splines.

To begin our analysis, recall that since the half integers are a refinement of the
integers, we can certainly write

Nk,n(t) = n . EjMj H ,.(t)

412 r H A P Y E R 7 B-Sp l ine A p p r o x i m a t i o n a n d the de B o o r A l g o r i t h m

Hence, by the First Principle of Duality in Section 5.5,

Qj - ~,kMj~Pk .

Therefore, our knot insertion problem reduces to finding the coefficients [Mjnk} that
express the B-splines relative to the integers in terms of the B-splines relative to the
half integers. But recall that by the de Boor algorithm

Nk,n(t) = N O , n (t - k) (7.27)

H j , n (t) = N O , n (Z t - j) . (7.28)

Therefore, it is enough to represent NO,n(t) in terms of N o , n (2 t - j) . We shall
accomplish this goal by applying Corollary 7.11, but first we need some simple facts
about continuous convolution.

LEMMA
7.12

Let f, g be arbitrary integrable functions. Then

(f �9 g)(2t)
a. f(2t) * g(2t) -

2

b. f (t - i) * g (t - j) - (f * g) (t - i - j)

c. f (2t - i) * g (2 t - j) -
(f * g) (2 t - i - j)

P r o o f To prove the first two identities, apply a change of variables:

a. {f(Zx) * g(Zx) } (t) - f~-oo f (Z t - 2 x) g (Z x) d x

~-oo f (2t - u)g (u)du
= (u = 2x)

2

(f * g)(2t)

2

b. { f (x - i) * g (x - j)}(t) - ~_~176 f (t - x - i)g (x - j) d x

~-oo f (t - i - j - u)g (u)dx

= (f * g) (t - i - j)

The last result now follows from the first two, since

c. {f(2x - i) * g (2 x - j)}(t) - {/(2x) * g (2 x) } (t - i / 2 - j / 2)

(f * g) (2 t - i - j)

2

(u - x - j)

7.8 Uni form B-Spl ines 413

PROPOSITION
7.13

n+l (n+l

No ,n (t)_ Z , i 2 n)No, n (2t - i) .
i=0

Proof To simplify our notation, let Z - Z[0,1). Then by Corol lary 7.11,

NO, n (t) - Z(t) *.. . * Z(t)
�9 J , -,r

n+l factors

Moreover , it is easy to see that Z(t) - Z(2t) + Z (2 t - 1), since

Z(2t) - 1 0 < t < 0.5

= 0 otherwise

a n d

Z (2 t - 1) - 1 0.5 < t < 1

= 0 otherwise .

Therefore, by L e m m a 7.12,

Z(t) * . . .* Z(t) - (z(Zt) + z (Z t - 1)) * . . . * (z (Zt) + z (Z t - 1))

n+l Cactors n+l factors

~ (n+l
~, i

2 n)No, n (2t - i) .
i=0

PROPOSITION
7.14

n+2k+l r n+l) ~j-2k
Nk'n(t) = Z 2 n Hj,n(t)"

j=2k

Proof By Equat ions (7.27) and (7.28),

Nk, n (t) - NO, n (t - k)

Hj,n(t) - NO,n(2 t - j).

Therefore, by Proposition 7.13

Nk, n (t) - NO, n (t - k) -

n+l (n+l
i Z 2 n)No, n (2 t - 2 k - i)

i=0

~ (n + l n+2k+l (;+ lk)

_ i (t)-- Z 2 n Hj'n(t)" 2 n)H2k+i,n
i=0 j=2k

414 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

From Proposition 7.14 we can derive both an explicit formula and a recursive
formula for the control points introduced by knot insertion at the half integers.

COROLLARY
7.15

Let {Pk} denote the control points of a B-spline curve of degree n relative to
the B-splines with knots at the integers. Then the control points {Q]} for the
same curve relative to the B-splines with knots at the half integers are given
explicitly by

Q~ ~
I ~ l (n+l)

k.j- 2kJ eL,.

k=[j/2]

Proof Recall that by the First Principle of Duality in Section 5.5,

Nk,n(t) = ~ jMjnkHj ,n (t) r = ~kMjnkPk .

But by Proposition 7.14 we know that

(n+l)
M jnk = j - 2____~k .

2 n

Therefore,

Q~j ~ k,j-2k)p,

k=[j/2] -~ k"

COROLLARY
7.16

Let {Pk }denote the control points of a B-spline curve of degree n relative to
the B-splines with knots at the integers Then the control points {Qn} for the �9 j

same curve relative to the B-splines with knots at the half integers are given
recursively by

Q20/ 0
- a 2 i + l - ei

O~

Proof The case n = 0 is established in Section 7.8.2. For n > 0 we know by Corol-
lary 7.1 5 that

(n+l
n n j - 2 k)

Qj = Zk MjkPk, where Mjk = 2n "

7.8 Uniform B-Splines 415

But from Pascal's triangle,

Therefore,

, k "-"

n-1 n-1 Mj_I, k + Mj,k .

n-1 n-1 ~k n-1 n-1
Q j m F/ .._ . ~k MjkPk = ~-~k Mj-l'k + Mj'k Qj-1 + Qj

2 2

The recursion formula in Corollary 7.16 leads directly to the algorithm we seek
for inserting knots at the half integers in a degree n B-spline curve. Start by repeat-
ing each of the original control points {Pk}. Then take successive averages of adja-
cent points. The points that emerge at the nth level of the diagram are the control
points of the same B-spline curve with knots at the half integers (see Figure 7.38).
This generalization of Chaikin's algorithm for quadratic B-splines was first proved
by Lane and Riesenfeld and is known as the Lane-Riesenfeld algorithm.

Iterating the Lane-Riesenfeld algorithm generates a sequence of control poly-
gons that converges to the original B-spline curve. Indeed it is easy to show that the
maximum distance between adjacent control points is halved after each iteration of
the algorithm. Since each B-spline segment lies in the convex hull of its control
points, it follows that these control polygons must converge to the B-spline curve.
Therefore, we can apply the Lane-Riesenfeld knot insertion procedure to render and
intersect uniform B-spline curves.

f12 Q2 Q3 Q4 Q5 Q6 Q7 1

+ + f l
PO PO P1 P1 1:'2 1'2 P3 P3

Figure 7.38 The Lane-Riesenfeld algorithm for inserting knots at the half integers in a uniform cubic B-
spline curve. The algorithm begins at the base of the diagram where the original control points are doubled.
Then three successive averages are computed to generate the new control points at the top of the diagram.
Observe that the algorithms for inserting knots at the half integers for uniform linear and uniform quadratic
B-splines are also contained in this diagram (compare to Figures 7.35 and 7.36). Notice too the binomial
coefficients that multiply the control points.

416 c H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

Exercises

1. The Lane-Riesenfeld algorithm can be extended to inserting knots at the
one-third and two-third integers--{k,k + 1/3,k + 2 /3}- -by tripling the con-
trol points and then taking successive averages of three consecutive points.
Prove that if we start with the control points for a degree n B-spline curve
with knots at the integers, the points that emerge at the nth level of this algo-
rithm are the control points of the same B-spline curve with knots at the
one-third and two-third integers.

2. This exercise provides an alternative derivation of the Lane-Riesenfeld knot
insertion algorithm. Let P(t) be the control polygon generated by the control
points {Pk}, and let Sn(t) be the uniform B-spline curve of degree n gener-
ated by these same control points.

a. Using Proposition 7.13 and Section 7.8.1, Exercise 4, show that

n-1 n_l

Sn(t) - Z (2 nt-)2P(t) * NO'n-2(2t- i) .
i=0

b. Apply part (a) together with Equation (7.28) and Section 7.8.1, Exercise
2, to conclude that

n-1 n-1
Z (i) (e i �9 Sn(t)- 2n_ 2 /2 HO,n-2)(t), where P i /2 (t) - e(t - i /2) .
i=0

c. Let R n i,k denote the kth control point of Pi/2 * HO,n-2" Show that

i,k = P "

d. Use part (c) to derive the Lane-Riesenfeld recurrence for the control
points Q~ of Sn(t) relative to the B-splines with the knots at the half
integers.

3. This exercise provides an alternative proof of the Lane-Riesenfeld knot
insertion algorithm without resorting to convolution. The proof is based
solely on the de Boor recurrence for uniform B-splines (Equation (7.21)).
As in the text, let {Nk,n(t)} denote the uniform B-splines over the integers,
and let {Hj,n(t)} denote the uniform B-splines over the half integers. Then
there are constants {Mjnk] such that

n (t). (*) Nk, n (t) = ~ j MjkHj , n

We shall develop a recurrence for the constants {Mjnk }.
a. Substitute (*) into the de Boor recurrence (Equation (7.21)) for Nk,n+l(t),

and substitute the de Boor recurrence for Hj,n+l(t) into (*) for Nk,n+l(t) to
obtain two different expressions for Nk,n+l(t).

7.8 Uniform B-Splines 417

b. Comparing the coefficients Hj,n(t) in part (a), conclude that

t - 2 k 2 k + 2 n + 4 - t
2n + 2 Mjn'k + M n 2n + 2 j-2,k

_ 2 k + j + n + l - t _ t - 2 k - J M j n ~ l +

n + l n + l

c. Comparing the coefficients of t in part (b), conclude that

Mn+l
j -2 , k .

Mjnk - M ; - 2 , k a,~n+l aArn+l
2 = 1vl j,k + 1vl j -2 , k �9

Notice that this recurrence is independent of k.

d. Show by induction on j that

I1
Mo,k

M n+l _
0,k 2

m n n
m n + l _ j -Z ,k + m j - l , k

j - l , k 2

satisfies the recurrence in part (c).

e. Use the result in part (d) to derive the Lane-Riesenfeld algorithm.

4. This exercise extends the Lane-Riesenfeld knot insertion algorithm to B-
splines with knots in geometric progression (see Section 7.8.2, Exercise 1).
Again the proof is based solely on the de Boor recurrence, but this time for
nonuniform B-splines (Equation (7.8)). Let {Nk,n(t)} denote the B-splines
with knots at tZk- fl2k, and let {Hk,n(t)} denote the B-splines with knots at
t k= fl k.

a. Show that there are constants {Mjnk} such that

Nk,n(t) - ~ , jMjnkHj ,n(t) . (*)

b. Using the strategy developed in Exercise 3, show that the constants
{Mjnk } satisfy the recurrence

-1 f12n+2
n ~Arn+l

-lvl j,k + P j - l , k " 1+ fln+l MJ, k + 1+ /~n+l M J-2, k = t~n+lMn+l

Observe that this recurrence is independent of k.

c. Show by induction on j that

f l n+lMn M n aan+l _ j - 2 , k + j - l , k
'vlJ-l 'k 1 + fln+l

satisfies the recurrence in part (b).

418 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

d. Let {Pk} denote the control points of a degree n B-spline curve relative to
the B-splines {Nk,n(t) }, and let {Qjn} denote the control points of the
same curve relative to the B-splines {Hj,n(t) }. Use the result in part (c) to
prove that the following algorithm can be used to generate the new points
{Qjn} from the original points {Pk }. Start by doubling the original control
points {Pk}. Then take successive weighted averages of adjacent points
in the following manner:

Qo = Pk j = 2k,2k + 1

flmQj-1 m-1
Q ~ = -1 +Qj m = l n.

1 + ~ m

The points {Qjn} that emerge at the nth level of the algorithm are the con-
trol points of the degree n B-spline curve relative to the B-splines
{Hj,n(t) }. (See Figure 7.37 for the case n = 2.)

5. A knot sequence is said to be in affine progression if there are constants a,b
such that for all k, tk+ 1 = at k + b. Generalize Exercise 4 to knots in affine
progression.

6. Implement a rendering algorithm for uniform B-spline curves based on the
Lane-Riesenfeld knot insertion procedure.

7. Implement an intersection algorithm for uniform B-spline curves based on
the Lane-Riesenfeld knot insertion procedure.

8. Explain how the blossoming proof of Chaikin's algorithm breaks down for
cubic B-spline curves with uniform knots.

7.9 Rational B-Splines

When we studied Lagrange and Bezier curves and surfaces, we observed that there
are some common curve and surface types, such as conic sections and quadric sur-
faces, that cannot be represented exactly by polynomials. Since splines are piecewise
polynomials, the same limitations hold for splines. To overcome this deficiency, we
shall construct rational splines--that is, functions that are the ratios of two splines.
These rational functions greatly expand the range of curves and surfaces with exact
B-spline representations.

The construction of rational B-spline curves mimics the construction of rational
Bezier curves. With each control point Pk we associate a scalar weight w k. We then
define the rational B-spline curve R(t) to be the projection from Grassmann space of
the B-spline curve

S(t) =]~k Nk,n (t)(WkPk, Wk) .

The B-spline curve S(t) in Grassmann space projects to the rational B-spline curve

7.9 Rational B-Splines 419

R(t) = ~,k Nk,n(t)WkPk (7.29)
ZkwkNk,~(t)

in affine space. For Equation (7.29) to make sense we shall always assume that at
least one weight is nonzero. The curves in Equation (7.29) are often called NURBS,
which is an abbreviation for nonuniform rational B-spline--a rational B-spline with
nonuniform knots.

Just as in the construction of rational Bezier curves, there is associated with each
point R(t) on a rational B-spline curve a scalar weight

w(t) =]~k WkNk,n(t) "

Thus a rational B-spline curve is more than just a continuous collection of points in
affine space; there is also a scalar field, a mass distribution, associated with each
point on a rational B-spline curve.

If W(to) = 0, then the projection from Grassmann space to affine space is not con-
tinuous at t = t 0. We can avoid these discontinuities in the usual fashion by projecting
the curve into projective space rather than into affine space. Thus, as with rational
Bezier curves, the control structures--the mass-points and vectors--always reside in
Grassmann space, but the curves themselves may lie in projective space.

If a weight wj = 0, then, as in the Bezier setting, the mass-point (wjPj,wj) is not
just discarded but rather is replaced by a vector (vj,O). Thus, in general,

P (t) =]~ Nk,n(t)(WkPk,Wk)+ ZNj,n(t)(vj,O),
Wkr wj--O

so first adding in Grassmann space and then projecting into affine space, we arrive at
the general rational B-spline curve

~, Uk,n(t)WkPk + ZUj,n(t)v j
R(t) = wk sO wj=0 .

Z WkNk,n(t)
w k 50

If all the weights are nonzero, then it is natural, as in the rational Lagrange and
rational Bezier settings, to write

WkNk,n(t)
Rk,n(t) =

~,jwjNj,n(t) (7.30)

R(t) = Zk Rk,n(t)Pk .

Thus, for a fixed set of nonzero weights, the functions {Rk,n(t)} are piecewise ratio-
nal blending functions, and these functions behave much like the standard B-spline
blending functions. Indeed, since the denominator of Rk, n(t) is the same for all values
of k, it is easy to show that the piecewise rational functions {Rk,n(t)} incorporate
many of the features of the B-splines {Nk,n(t) }. For this reason, rational B-spline
curves with nonzero weights share many of the geometric properties of integral B-
spline curves. For example, rational B-spline curves are piecewise rational curves

420 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

with continuity of order n - ju at knots of multiplicity kt. Moreover, rational B-spline
curves are affine invariant and lie in the local convex hull of their control points pro-
vided that the weights are nonnegative (see Exercises 1-5).

Algorithms for B-spline curves also extend to algorithms for rational B-spline
curves because generally we can apply these algorithms separately to the numerator
and denominator. For example, we can evaluate points along a rational B-spline
curve by applying the de Boor algorithm independently to the numerator and
denominator. Similarly, knot insertion algorithms can be applied separately to the
numerator and denominator. Therefore, Boehm's algorithm, the Oslo algorithm, the
factored knot insertion algorithm, Chaikin's algorithm, and the Lane-Riesenfeld
algorithm for uniform B-splines can be applied independently to the numerator and
denominator--simply apply the algorithm in question to the control points
{(WkPk,Wk)} in Grassmann space and then divide by the weight to get the desired
result in affine space. The only exception to this rule is the algorithm for differentia-
tion because the derivative of a rational function is not equal to the derivative of the
numerator divided by the derivative of the denominator. Differentiation of rational
B-spline curves is handled in a manner similar to differentiation for rational Bezier
curves (see Section 5.7.1).

In Section 7.6.3.1 we observed that one of the simplest ways to analyze an ordi-
nary B-spline curve is to apply knot insertion to convert the curve to piecewise Bez-
ier form and then perform the analysis on the Bezier segments. Similarly, since knot
insertion works as well in the rational setting, rational B-spline curves can be con-
verted to piecewise rational Bezier form, and we can then apply the analysis algo-
rithms we have already developed for rational Bezier curves. Just as in the integral
case, this method is that standard approach to rendering and intersecting rational B-
spline curves (see Exercise 9).

The weights of a rational B-spline curve can be used to control shape, and the
results are again similar to the Bezier setting. As the weight w k increases, the influ-
ence of the control point Pk increases and the curve passes closer to Pk; as w k
decreases, the curve is pushed away from Pk" Typically all the weights are chosen to
be positive to avoid singularities, but as with rational Bezier curves, zero and nega-
tive weights are permitted and sometimes are even necessary to represent specific
curves.

Exercises

1. Show that if tk+ 1 = tk+ n, then the rational B-spline curve of degree n
interpolates the control point Pk"

2. a. Show that the rational blending functions defined in Equation (7.30) sat-
isfy the identity ~,k Rk,n(t) - 1.

b. Conclude from part (a) that if all the weights are positive, then a rational
B-spline curve lies in the local convex hull of its control points.

3. Using Equation (7.30), show that if all the weights are nonzero, then a ratio-
nal B-spline is nondegenerate provided that there are no indices j ,k for
which (WkPk,Wk) = Cjk(WjPj,wj).

7.9 Rational B-Splines 421

4. Prove that for any choice of knots {tk} it is always possible to choose
weights {wk} so that the rational blending functions {Rk,n(t)} defined in
Equation (7.30) are unimodal in k.

5. Prove that rational B-spline curves have continuity of order n - I t at knots of
multiplicity It.

6. Consider the circle:

2t 1 - t 2
x - t2 y - t2 �9 1+ 1+

Find control points and weights to represent the following segments of the
circle as rational B-spline curves with knots at the integers:

a. the quarter circle that lies in the first quadrant

b. the upper half circle

7. Find control points and weights to represent the following curves as a ratio-
nal B-splines with knots at the integers:

2at b(1 - t 2)
a. The ellipse" x - y -

1 + t 2 1 + t 2

2at b(1 + t 2)
b. The hyperbola: X - l _ t 2 Y= 1 - t 2

c. Which segments of these curves are represented by your choice of con-
trol points and weights?

8. Implement the following algorithms for rational B-spline curves:

a. De Boor evaluation algorithm

b. Boehm's knot insertion algorithm

c. Factored knot insertion algorithm

d. Lane-Riesenfeld knot insertion algorithm for uniform B-splines

9. a. Apply Boehm's knot insertion algorithm to convert rational B-spline
curves to piecewise rational Bezier form.

b. Use the algorithm developed in part (a) to intersect two rational B-spline
C u r v e s .

10. Consider a rational B-spline curve of degree n with control points {Pk} and
weights { w k }.

a. What does the limit curve look like if

i. one of the weights goes to infinity while the other weights are left
fixed?

ii. two or more weights are allowed to approach infinity simulta-
neously?

b. What happens in part (a) if one of the knots has multiplicity n?

422 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

11. Let R(t) be a rational B-spline curve of degree n with control points
Pc Pm and weights w 0 w m. Define

so that

m m

P(t)=]~Nk,n(t)WkPkand w(t)= ~,WkNk,n(t),
k=0 k=0

P(t)
R(t) -

w(t)
Prove that for a uniform knot sequence with knots at the integers

fn+m+lw(t)dt = average of the weights a. do

b. ~O+n+l P(t)dt

~o+ n+ l w(t)dt
=center of mass of {(woPo,w O) (Wnen,Wn) }.

(Compare to Section 5.7, Exercise 20.)

7.10 CatmulI-Rom Splines

Suppose we have a large number of data points. Lagrange polynomials generate
smooth interpolations of high degree; B-splines generate smooth approximations of
low degree. Our goal here is to provide a simple construction for smooth interpolants
of low degree. Catmull-Rom splines combine Lagrange interpolation with B-spline
approximation to generate splines of low degree that interpolate the data points.
Here is how it is done.

We want to construct a low-degree spline curve C(t) to interpolate a set of data
points {Pk } at an arbitrary collection of parameter values { t k }~that is, we want to
build a smooth, low-degree, piecewise polynomial curve C(t) such that C(t k) = Pk.
For any arbitrary value of n, let Pk...k+n (t) denote the unique polynomial of degree n
that interpolates the points Pk Pk+n at the nodes t k tk+n, and let Nk,n_l(t) be
the B-spline basis function of degree n - 1 for the knots { tj } with support [t k,tk+ n].
The Catmull-Rom spline Cn(t) is defined by setting

Cn(t) - ~,k Nk,n_l (t)Pk...k+n(t) . (7.31)

Since the interpolants Pk...k+n(t) are polynomials of degree n and the B-splines
Nk,n_ 1 (t) are C n-2 piecewise polynomials of degree n - 1, the Catmull-Rom spline
Cn(t) is a C n-2 piecewise polynomial of degree 2n - 1. We are going to show that the
curve Cn(t) interpolates the points {Pk} at the knots {tk} and has order of continuity
n - 1 .

7.10 Catmull-Rom Splines 423

PROPOSITION
7.17

Given a collection of points {Pj} and nodes {t j}, let

Cn(t) - ~,k Nk,n-1 (t)Pk...k+n(t).

Then for all j , C n (t j) = Pj. That is, the Catmull-Rom spline interpolates the
data points {Pj} at the knots {t j}.

Proof At the knot tj the only nonzero B-splines are Nj_n+l ,n_ l (t) Nj ,n_ l (t).
Therefore,

Cn(t j) = ~ k Nk,n_l (t j)Pk. . .k+n(tj)

n-1
= ZNj_n+l+i ,n_l (t j)Pj_n+l+i . . . j+l+i(t j)

i=0
n-1

= ~ N j _ n + l + i , n _ l (t j) P j .
i=0

But the B-splines form a partition of unity, so

n-1
E N j _ n + l + i , n _ l (t j) = 1.

i=0

Therefore, for all j , C n (t j) - Pj.

Interpolation is easy to prove; continuity of order C n-1 is a bit harder to estab-
lish. We will derive this property from the following rather remarkable result.

LEMMA
7.18

~Jk Nk,n-1 (t)Pk...k+n(t) - ~,k Nk,n(t)Pk+l.' .k+n(t)"

Proof We shall apply both Neville's algorithm (Equation (2.7))

- t - t k
Pk...k+n (t) = tk+n--------~t Pk...k+n-1 (t) + - -

tk+ n - t k tk+ n - t k
Pk+l...k+~(t)

and the de Boor recurrence (Equation (7.8))

Nk, n (t) t - t k - - - Nk,n_ 1 (t) +
tk+ n - t k

From these two identities it follows that

~ k Nk ,n- l (t)Pk...k+n (t)

= ~,k Nk,n-1 (t) I tk+n - t
L tk+ n - t k

= N k + l , n _ l (t) + ~
tk+n+l - t k + l

tk+n+ 1 - t

tk+n+l - t k + l
Nk+l ,n- l (t) .

- - Pk...k+n-l (t) + - - t - t k t
tk+ n - tk Pk+l'''k+n (t)

t - t k

tk+ n - t k
g k , n - l (t)tPk+l...k+n (t)

= EkNk,n(t)Pk+l. . .k+n(t) .

424 CHAPTER 7 B-Spline Approximation and the de Boor Algorithm

COROLLARY
7.19

The Catmull-Rom spline Cn(t)=]~kNk,n_l(t)Pk...k+n(t) has continuity of
order n - 1 at the knots.

Proof By Lemma 7.18: Cn(t)=]~kNk,n(t)Pk+l...k+n(t). Since the interpolants
Pk+l...k+n(t) are polynomials of degree n - 1 and the B-splines Nk,n(t) are
C n-1 piecewise polynomials of degree n, the Catmull-Rom spline Cn(t) is a
C n-1 piecewise polynomial of degree 2 n - 1.

Neville's algorithm for Lagrange interpolation can be combined with the de
Boor algorithm for B-spline approximation to generate a recursive evaluation algo-
rithm for Catmull-Rom splines. Place the control points at the base of a triangle and
run Neville's algorithm for n levels. Then continue for the next n - 1 levels with the
de Boor algorithm. The values of points on the Catmull-Rom spline will emerge at
the apexes because, by construction, the functions Pk...k+n(t) occupy the location of
the B-spline control points for the de Boor algorithm of degree n - 1 (see Figure
7.39). Notice that we can also view this algorithm as n - 1 levels from Neville's
algorithm followed by n levels from the de Boor algorithm. This observation
accounts for Lemma 7.18.

Catmull-Rom splines inherit many of the characteristic features of Lagrange
polynomials and B-spline curves. Here are the most prominent of these properties:

1. Piecewise polynomial of degree 2n- 1

2. Interpolates the point Pk at the knot t k
3. Continuity at the knots of order C n-1
4. Local control

5. Affine invariance

C12(0 C23(0
t 3 t2-t/~-tl/ - / ~ -t2

PO12(t) P123(t) P234(t)
/ t3 t 4 t2-~~-to y~-tl y~ -t2

POI(t) P12(t) P23(t) P34(t)

tl - ~ ~,,~- tot2 - ~ ~ - tlt3 - ~ ~ - t2 t4 - ~ ~,~x- t3
Po P1 P2 P3 P4

Figure 7.39 A recursive evaluation algorithm for cubic CatmulI-Rom splines manufactured from Neville's
algorithm for Lagrange interpolation and the de Boor algorithm for B-spline approximation. The two lower
levels are taken from Neville's algorithm, and the upper level is taken from the de Boor algorithm. Notice that
we can also view this algorithm as one level of Neville's algorithm followed by two levels of the de Boor algo-
rithm. Here Ci, i+l(t) denotes the polynomial that represents the cubic CatmulI-Rom spline C3(t) in the interval
[ti, t i+l] ; therefore, Ci, i+l(t) interpolates the points Pi and Pi+l at the knots t i and ti+ 1 .

7.10 Catmull-Rom Splines 425

6. Nondegenerate

7. Exactly reproduces polynomials of degree n

The first property is immediate from the definition of Catmull-Rom splines in
Equation (7.31), and we have already established the second and third properties in
Proposition 7.17 and Corollary 7.19. Local control is a simple consequence of Equa-
tion (7.31) together with the compact support of the B-splines. Indeed, by construc-
tion, the point Pk will affect the Catmull-Rom spline only over the interval
[tk_n , tk+n] . Affine invariance follows directly from the affine invariance of

Lagrange interpolation and B-spline approximation, and Catmull-Rom splines are
clearly nondegenerate since they interpolate the data points. Finally, Catmull-Rom
splines reproduce polynomials of degree n because if the data points {Pk} lie on a
degree n polynomial P(t) at the nodes { tk}, then by the uniqueness of the polynomial
interpolant Pk...k+n(t) - P(t) for all k. Therefore, since the B-splines form a partition
of unity

Cn(t) = ZkUk,n_l(t)Pk...k+n(t)= ZkNk,n_l(t)P(t)= P(t).

Thus Catmull-Rom splines have many desirable features. Notice, however, that
unlike B-spline curves, Catmull-Rom splines do not lie in the convex hull of their
control points nor are they variation diminishing because Lagrange polynomials fail
to have these properties.

Moreover, there is no knot insertion algorithm for Catmull-Rom splines. Sup-
pose we were to try to insert a new knot at t = u. Since Catmull-Rom splines are
interpolating splines, we would have to add a new control point at Cn(u). But it is
easy to construct examples where the Catmull-Rom spline with the new knot u and
the new control point Cn(u) is not the same curve as the original Catmull-Rom
spline, even though both the old spline and the new spline interpolate the same data
points at all the knots including the new knot u (see Figure 7.40).

Cubic Catmull-Rom splines and piecewise cubic Hermite interpolants both gen-
erate C 1 piecewise cubic curves that interpolate the data points. These curves, how-
ever, are generally not the same (see Exercise 6). The Catmull-Rom construction
does not allow us to choose the tangents at the control points; rather it chooses these
tangents for us to ensure that the curve has one continuous derivative. By the unique-
ness of Hermite interpolation, the Hermite interpolant will reproduce the Catmull-
Rom curve if and only if we choose the Hermite data off the Catmull-Rom spline.

Exercises

1. Show how to construct Catmull-Rom splines to interpolate Hermite data.

2. Explain how to extend the Catmull-Rom construction to rational spline
curves.

3. Given a collection of data points {Pk} and nodes {tk}, define a Catmull-Rom
spline Cp,q(t) of type (p,q) by setting Cp,q(t) = ~kNk,p(t)Pk...k+q(t). Prove
that ifp < q, then C p , q (t j) - Pj for allj.

lJ

CHAPTER 7 B-Spline Approximation and the de Boor Algorithm

| I I I I | | I I I ' | I I I | , i | , w

1.5 2 2.5 3

426

Figure 7.40 Knot insertion fails for CatmulI-Rom splines. The first curve is a cubic CatmulI-Rom spline
with two polynomial segments. The control points are located at (0,0),(1,2),(2,5),(3,0),(4,5)
and knots are situated at the parameter values t = 1,3,4. Thus the spline interpolates the
points (1,2),(2,5),(3,0) at the knots t = 1,3,4. At t - 2 this curve passes through the point
(3/2,14/3). The second curve has an additional control point at (3/2,14/3) and an additional
knot at t = 2. Observe that for 0 < t < 2 the two CatmulI-Rom splines are not identical, even
though they interpolate the same data at the identical knots.

4. Show that the blending functions for Catmull-Rom splines are given by the
splines

n-1

Ck,2n_l(t) - Z N k _ j , n _ l (t l tk_ j t k_ j+n)Lj (t l tk_ j , tk_j+n)"
j=0

That is, show that the Catmull-Rom spline Cn(t) for the points {Pk} and
nodes {t k} is given by

C n (t) - Z k Ck,2n-1 (t)Pk"

5. Let Cn(t) be a Catmull-Rom spline with control points {Pk} and knots {t k}.
Form a new Catmull-Rom spline Dn(t) by replacing each knot t k by the knot
v k = at k + b for some fixed constants a > 0 and b. Show that changing all
the knots in this way has no effect on the shape of the Catmull-Rom spline.
In particular, show that D n (at + b) = C n (t). What happens if we choose a <
0? (Compare to Section 2.2, Exercise 4, and Section 7.4, Exercise 2.)

6. Cubic Catmull-Rom splines and piecewise cubic Hermite interpolants both
generate C 1 piecewise cubic curves that interpolate the data points. Draw
some curves to illustrate how cubic Catmull-Rom splines generally differ
from piecewise cubic Hermite interpolants.

7.11

7.11 Tensor Product B-Spline Surfaces

Tensor Product B-Spline Surfaces

427

A rectangular tensor product B-spline patch S(s,t) of bidegree (m,n) is defined by
setting

S(s,t) - ~ i ~ j Ni,m (s)Nj,n (t)Pij "

The functions Ni,m(s)Nj,n(t) are the tensor product B-spline basis functions, and
the rectangular array of control points {P6} forms the vertices of the control polyhe-
dron for the tensor product B-spline patch. This construction is much the same as the
Lagrange and Bezier tensor product constructions. Notice, however, that a knot s i or
tj of the basis functions becomes a knot line s = s i or t = tj on the tensor product
patch. Tensor product patches join smoothly along curves defined by knot lines.

As usual in tensor product constructions, we can let Pi(t) be the B-spline curve
with control points Pi0 ,Pia. Then

Pl.(t) = ~,j Nj,n (t)Pij

S(s,t) = EiNi,m(s)Pi(t) .

Thus we can evaluate a tensor product B-spline surface by first using the de Boor
algorithm in t to evaluate the curves {Pi(t) } and then applying the de Boor algorithm
in s with the control points {Pi(t) }. Again this approach is much the same technique
we used in Sections 2.11 and 5.8.1 to evaluate Lagrange and Bezier tensor product
surfaces.

Tensor product B-spline patches inherit many of the characteristic properties of
B-spline curves. They are piecewise polynomials with continuity of order C n-u at
knot lines of multiplicity ju. In addition, they are affine invariant, nondegenerate, and
lie in the local convex hull of their control points. Typically these surfaces do not
interpolate any specific curves, but if the knot vectors in s and t have knots of multi-
plicity n at the start and end, then the boundaries of a tensor product B-spline patch
are the B-spline curves determined by their boundary control points.

Tensor product B-spline patches also inherit the standard knot insertion algo-
rithms of B-spline curves. Thus Boehm's algorithm, the Oslo algorithm, factored
knot insertion, and the Lane-Riesenfeld algorithm for uniform knots all extend to
tensor product patches in a straightforward manner. We simply treat the s and t direc-
tions independently. Thus to insert knot lines in the t direction, we just use the stan-
dard curve algorithms to insert knots into the curves {Pi(t)}. Symmetric algorithms
can be applied to insert knot lines in the s direction.

Similarly, to differentiate a tensor product B-spline patch, we can differentiate
the de Boor algorithm in the usual manner. To differentiate the de Boor algorithm
with respect to s a total of p times, simply differentiate any p of the upper m levels
(the s levels) of the de Boor algorithm and multiply the result by m ! / (m - p) ! . To
differentiate q times with respect to t, differentiate any q of the n levels (the t levels)
in each of the lower triangles and multiply the results by n!/(n - q)! . That this algo-
rithm works is an immediate consequence of the corresponding differentiation algo-
rithm for B-spline curves.

I 4 2 8
I

CHAPTER 7 B-Spline Approximation and the de Boor Algorithm

Rational tensor product B-spline patches can be introduced by associating a sca-
lar weight wij with each control point Pij. Thus we define a rational tensor product
Bezier patch by setting

Ei Ej Ni,m (s)Nj,n (t)wijPty .
R(s,t) =

]~i Ej wijNi,m (s)Nj,n (t)

This construction allows us to represent surfaces such as the sphere, which have no
exact polynomial representation, as tensor product B-spline patches. Again, most of
the properties and algorithms of rational B-spline curves are inherited by rational
tensor product B-spline surfaces.

Exercises

1. a. Prove that ~i~jNi,m(s)Nj,n(t) =- l.
b. Show that every tensor product B-spline patch lies in the local convex

hull of its control points.

2. Consider a tensor product B-spline patch of bidegree (m,n), where m < n.
Show that

a. to compute a single point on the surface it is faster to apply the de Boor
algorithm first in the s direction and then in the t direction.

b. to compute many points along the surface it may be faster to apply the de
Boor algorithm first in the t direction and then in the s direction.

c. Explain this apparent anomaly. (Compare to Section 5.8.1, Exercise 2.)

3. Implement the de Boor evaluation algorithm for tensor product B-spline
surfaces, and then use the de Boor algorithm to render points on a tensor
product B-spline surface.

4. Implement the following knot insertion algorithms for tensor product B-
spline surfaces:

a. Boehm's algorithm

b. Oslo algorithm

c. Factored knot insertion

d. Lane-Riesenfeld algorithm for uniform B-splines

5. Apply Boehm's knot insertion algorithm to convert a tensor product B-
spline surface to piecewise tensor product Bezier form.

6. Apply the algorithm in Exercise 5 to

a. render tensor product B-spline patches

b. intersect two tensor product B-spline patches

7. Explain how to extend Catmull-Rom splines to tensor product surfaces.
Construct explicit formulas and implement dynamic programming algo-
rithms for tensor product Catmull-Rom splines.

7.11 Tensor Product B-Spline Surfaces 429

8. What is the effect on a rational B-spline surface if one of the mass-points
has zero weight?

9. Experiment with altering the weights in a rational B-spline surface.

a. What are the local and global effects of altering a single weight?

b. What is the effect of a negative weight?

c. What happens if all the weights are changed simultaneously?

10. Consider the rational biquadratic parametrization of the sphere given by

2s(1 - t 2) 2t(1 + s 2) (1 - s 2)(1 - t 2)

x - 2 t 2 y - s2 t2 z - s2 t2 �9 (l + s) (1 +) (1+)(1+) (1+)(1+)
a. Find control points and weights to represent the following segments of

the sphere as rational B-spline surfaces with knots at the integers:

i. The portion of the sphere that lies in the first octant

ii. The upper half of the sphere

b. Use the results in part (a) together with the de Boor algorithm to render
the sphere.

c. Use the results in part (a) together with Chaikin's algorithm to render the
sphere.

11. Recall from Section 2.14, Exercise 5, that the toms with inner radius d - a
and outer radius d + a has the biquadratic parametrization

X - -

y __

Z - -

d(1 + s 2)(1 - t 2) + a(1 - s 2)(1 - t 2)

(l + s 2) (l + t 2)

2d(1 + s 2)t + 2a(1- s 2)t

(1 + s 2)(1 + t 2)

2as(1 + t 2)

(l + s 2) (l + t 2)

a. Find control points and weights to represent a portion of the torus as a
rational B-spline surface with knots at the integers.

b. Use the results in part (a) together with the de Boor algorithm to render
the toms.

c. Use the results in part (a) together with the Lane-Riesenfeld algorithm to
render the toms.

12. Consider a rational B-spline surface of bidegree (m,n) with control points
{Pjk} and weights {Wjk }. What does the limit surface look like if

a. one of the weights goes to infinity while the other weights are left fixed?

b. two or more weights are allowed to approach infinity simultaneously?

4 3 0 C H A P T E R 7 B-Sp l ine A p p r o x i m a t i o n and the de B o o r A lgor i t hm

7.12 Pyramid Algorithms and Triangular B-Patches

There is also a pyramid algorithm for tensor product B-spline surfaces, just like for
tensor product Lagrange and tensor product Bezier patches. Let

P(s , t) = Z i Z j Ni ,n(s)Nj ,n(t)Pi j

be a tensor product B-spline surface of bidegree (n,n), and consider its b lossom

p(ul Un;Vl Vn). By the multiaffine property of the blossom

p(u 1 Un_ 1,s; v 1 Vn_ 1,t)

]A 2 - s s -]A 1 V 2 - t t - V 1
= p(u 1 U n _ l , ~ l A 1 + ~] A 2 ; v 1 V n _ l , ~ W 1 + V 2)

/-t2 - Ill f12 - fll V2 - Vl V2 - Vl

]A 2 - s V 2 - t

]A 2 -]A 1 V2 - V 1
- - P(Ul Un-1, fll; Vl Vn-1, Vl)

P2 - s t - V 1 P(Ul Un-l,l'tl;Vl Vn_l,V2)
f12 - fll v2 - Vl

s - Pl V 2 - t

/12 -]A 1 V2 - v 1
P(Ul Un-1, P2 ;Vl Vn-1, Vl)

s -].t 1 t - v 1
+ p(u 1 Un_l,/22 ;v 1 Vn_l, v 2) . (7.32)

]A 2 - Ill V2 - V 1

Substituting the knots of the B-splines Ni,n(S) and Nj,n(t) for the blossom parameters
u,v,p,v, leads to a bilinear recurrence for computing the points on the surface P(s, t)

from the control points Pij. This recurrence can be d iagrammed on a square pyramid,
with n 2 nodes on the nth level of the diagram. We illustrate this recurrence in Figure
7.41 for a biquadratic B-spline patch and in Figure 7.42 for a bicubic B-spline patch.
Notice that like the pyramid algorithm for tensor product Lagrange interpolation, but
unlike the pyramid algorithm for tensor product Bezier approximation, the labels
along the edges change from node to node and level to level.

To find p derivatives with respect to s and q derivatives with respect to t, differ-
entiate any p levels of the pyramid algorithm with respect to s and then differentiate
any q levels (the same or different f rom the previous p levels) with respect to t, and
multiply the result by (n!)Z/(n - p) ! (n - q)!. This algorithm works because we know
from blossoming that

~P
~S = n P (~ ' 6 1 ; ~) '

n-1 n

~P
- - = np(s ,s;t t, S2) .
~t ~ n n-1

But substituting the parameters ~1 = (1,0) or ~2 - (0,1) into the blossom is equiva-
lent to differentiating one level of the pyramid with respect to s or t.

7.12 Pyramid Algorithms and Triangular B-Patches 431

P(Sl,S2;t3,t4)

' ' , /
P(s2,s;t3,t)

/ ' "

P(s2,s3;t3,t4) P(s3,s4;t 3 t4)

P(s3,s;t3,t)

/ ' "
P(Sl ,S2;t2,t3)

p(s2,s;t2,t)

/ ' ' ,
P(sl ,s2;q ,t2)

P(s2 ,s3, t2, t3) P(s3,s 4 ; t2, t3)

p(s3,s;t2,t) / ' , ,
P(s2,s3;tl ,t2) P(s3,s4;tl,t2)

Figure 7.41 The base and the first level of the local pyramid algorithm for a biquadratic tensor product B-
spline patch P(s, t) viewed from above. The nine control points represented by the blossom of
P(s,t) evaluated at the knots are at the base of the diagram. From these nine control points
the four blossom values P(S2,S,t2,t),P(S3,S,t2,t),P(S2,S,.t3,t),P(S3,s,.t3,t) are computed at the
first stage of the algorithm. At the next stage (not shown) the blossom value p(s,s,t, t) = P(s, t)
is computed from the four blossom values P(S2,S;t2,t),P(S3,S,t2,t),P(S2,S;t3,t),P(S3,S;t3,t) using
the bilinear recurrence in Equation (7.32).

The local recurrences for tensor product B-spline patches pictured in Figures
7.41 and 7.42 can be pasted together, much like the local triangular de Boor recur-
rences for B-spline curve segments. Pyramids for adjacent patches share common
nodes and common labels along their edges. Therefore, these pyramids can be glued
together along the horizontal or vertical axes to form a sequence of overlapping pyr-
amids analogous to the sequence of overlapping triangles that express the de Boor
recurrence for B-spline curves. These overlapping pyramids are illustrated schemati-
cally in Figure 7.43. Thus the diagrams we adopted to represent B-spline curves
extends in a natural way to tensor product B-spline surfaces. For example, surface
patches represented by adjacent overlapping pyramids fit together smoothly along
their common knot lines.

Both the de Boor algorithm and the pyramid algorithm for tensor product B-
spline surfaces are O(n3). Nevertheless, the de Boor algorithm is generally faster
than the pyramid algorithm. The comparative analysis of the relative speeds of these
two algorithms is much the same as the comparison between the de Casteljau algo-
rithm and the pyramid algorithm for tensor product Bezier patches presented in Sec-
tion 5.8.1, so we shall not repeat this analysis here.

Since it is generally slower than the de Boor algorithm, why then have we pre-
sented the pyramid algorithm for tensor product B-spline surfaces? Both Lagrange
and Bezier surfaces come in two types: rectangular and triangular. So far we have

432 C H A P T E R 7 B-Spline Approximation and the de Boor Algori thm

Figure 7.42 A schematic diagram of the local bilinear evaluation algorithm for a bicubic tensor product B-
spline patch viewed from above. Each panel represents the computation of a point at its cen-
ter by multiplying the points at its corners with the coefficients in Equation (7.32) and adding
the results. The black panel represents the bicubic B-spline patch corresponding to the con-
trol points at the base of the pyramid; interior control points are obscured by the panels.
Notice that the light gray panels represent bilinear B-spline patches and the dark gray panels
represent biquadratic B-spline patches. Compare to Figure 5.42, which is the pyramid algo-
rithm for bicubic Bezier approximation. The same pyramid is used there, but the algorithm
here is more complicated, since the labels along the edges vary from node to node and from
level to level.

constructed only rectangular tensor product B-spline surfaces. Just as Neville's algo-
rithm for tensor product Lagrange interpolation does not extend to triangular
Lagrange interpolation, the de Boor algorithm does not extend to triangular B-spline
patches. But now that we have a pyramid algorithm for tensor product B-spline sur-
faces, perhaps, just like in the Lagrange and Bezier settings, we can extend this pyr-
amid approach to an algorithm for generating triangular B-spline surfaces. Let's try
and see what happens.

Consider a polynomial surface P(s,t) of total degree n. This surface has a bivari-
ate blossom p((ul ,Vl) (Un,Vn)). Using the multiaffine property, we can write a lin-
ear recurrence for this blossom by observing that

p((u 1 , Vl) (Un_ 1 , vn_ 1), (s,t))

= p((ul,Vl) (Un_l,Vn_l),fll(S,t)(]-tl,V 1) + flz(S,t)(].12,V2) + f13(s,t)(]23,V3))

= fll (S,t)p((Ul, Vl) (Un-1, Vn-1), (]21, V1))

+ fl2(s, t)p((ul ,Vl) (Un_l,Vn_ 1),(~2, V2))

+ fl3(s,t)p((ul,Vl) (Un_l,Vn_l),(]./3,73)) , (7.33)

7.12 Pyramid Algorithms and Triangular B-Patches 433

Figure 7.43 A schematic diagram of the bilinear evaluation algorithm for four adjacent patches of a bicu-
bic tensor product B-spline surface viewed from above. Each panel represents the computa-
tion of a point at its center by multiplying the points at its corners with the appropriate
bilinear functions and adding the results. The black panels represent the patches of the bicu-
bic B-spline surface corresponding to the control points at their base; interior control points
are obscured by the panels. Compare to Figure 7.10, the de Boor algorithm for cubic B-spline
c u rves.

where fll,(S,t),fl2,(s,t),fl3,(s,t) are the barycentric coordinates of the point (s,t) with
respect to the triangle with vertices (/.t 1, v 1),(/.t 2, v2),(/.t 3, v3). Now, as in the local
tensor product case, we can iterate Equation (7.33) to generate a tetrahedral evalua-
tion algorithm for the polynomial patch P(s,t) that resembles the tetrahedral pyramid
algorithms for triangular Lagrange and triangular Bezier patches.

This recurrence can be diagrammed on a tetrahedron with n(n + 1)/2 nodes on
the nth level of the diagram. We illustrate this recurrence in Figure 7.44 for a qua-
dratic surface patch and in Figure 7.45 for a cubic surface patch. Notice that like the
pyramid algorithm for triangular Lagrange interpolation, but unlike the pyramid
algorithm for triangular Bezier approximation, the labels along the edges vary from
node to node and level to level because the barycentric coordinates at different nodes
are computed with respect to different triangles. Moreover, unlike the de Boor algo-
rithm for B-spline curves, if you follow along in the direction of any arrow, the
labels you encounter along the edges (in the numerator) change from level to level.
What is invariant instead is that if an arrow is labeled with the barycentric coordi-
nates of a (t,u) pair, then the next arrow in the same direction is labeled with the
barycentric coordinates of another (t,u) pair, albeit with different subscripts.

Now what have we got? Certainly we can form one polynomial patch in this
manner. A patch generated by this tetrahedral algorithm is called a B-patch. Any
degree n polynomial surface can be generated as a B-patch from three sets of

434 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

P((Vl,Wl),(V2,W2))

(s,t),(Vl,W 1)

/ P((rl'Sl)'(s't)) ~

P((rl,sl),(r2,s2)) P(Crl,sl),Ctl,Ul)) P((q,ul),(t2,u2))

Figure 7.44 The tetrahedral algorithm for a quadratic B-patch P(s,t) viewed from above. The six control
points (light) represented by the blossom of P(s, t) evaluated at different parameter values are
at the base of the diagram. From these six control points the three blossom values
p((rl,Sl),(s,t)), p((tl,Ul),(s,t)), p((vl,Wl),(s,t)) (bold) are computed at the first stage of the
algorithm. At the next stage the blossom value P(s,t) = p((s, t), (s, t)) (bold and underlined)is
computed from the three blossom values p((rl,Sl),(s,t)), p((tl,Ul),(s,t)), p((vl,Wl),(s,t)) using
the linear recurrence in Equation (7.33).

Figure 7.45 Schematic version of the tetrahedral algorithm for a cubic B-patch. Each triangular panel rep-
resents the computation of a point at its center calculated by multiplying the points at its ver-
tices by the barycentric coordinates of a different domain triangle and adding the results. The
light gray triangles represent linear triangular patches, and the dark gray triangles represent
quadratic triangular patches. Notice that some interior control points are obscured by the
panels, and down-pointing triangles are ignored. Compare to Figure 5.44 for triangular Bez-
ier approximation.

7.12 Pyramid Algorithms and Triangular B-Patches 435

nodesm(rl,Sl) (rn,Sn), (t l , U l) (tn,Un), (V l , W l) (Vn,Wn)mprovided that the
nodes (ri,si),(tj,uj),(Vk,Wk) a r e affinely independent for all i + j + k < n + 2. A col-
lection of nodes with this property is called a knot-net. Triangular Bezier patches are
a special case of B-patches, where the knot-net is given by three affinely independent
nodes (r,s),(t,u),(v,w), each repeated n times. Algorithms for blossoming, homoge-
nizing, and differentiating B-patches based on this tetrahedral algorithm are similar
to the corresponding algorithms for triangular Bezier patches (see Exercise 4).

But a spline surface is not just a single polynomial patch; a spline surface is a
collection of polynomial patches joined together smoothly along common edges. In
the tensor product case, pyramids for adjacent patches share common nodes and
common labels along their edges. Therefore, these pyramids can be glued together
along the horizontal or vertical axes to form a sequence of overlapping pyramids.
Moreover, and this observation is the key point, surface patches represented by adja-
cent overlapping pyramids fit together smoothly along their common knot lines.
While we could try to paste together tetrahedra that share common nodes and com-
mon labels along their edges, the surface patches represented by such adjacent over-
lapping tetrahedra would not fit together smoothly along common knot lines. In fact,
it is not even clear what a common knot line would be or over what domains these B-
patches would fit together. By choosing clouds of knots near the vertices of a single
domain triangle, Dahmen, Micchelli, and Seidel succeeded in creating an interesting
kind of multivariate B-spline surface using B-patches, but the details of this
approach are beyond the scope of this text. The main idea to take away from this dis-
cussion is that generating triangular B-spline surfaces is much more difficult than
generating tensor product B-spline surfaces. The triangular Bezier construction gen-
eralizes readily to triangular B-patches via blossoming, but getting from one B-patch
to a collection of triangular patches that join together smoothly is not a simple task.

Exercises

1. What are the up and down recurrences for

a. the pyramid algorithm for tensor product B-spline surfaces?

b. the tetrahedral algorithm for B-patches?

2. Complete the analysis of the pyramid algorithm for tensor product B-spline
surfaces by showing how to implement this algorithm when the degree in s
is different from the degree in t.

3. Implement both the de Boor algorithm and the pyramid algorithm for tensor
product B-spline surfaces. Which algorithm do you prefer? Why? Experi-
ment with tensor product surfaces of different degrees. Determine how
changing the location of the control points affects the shape of the surface.

4. Use the tetrahedral algorithm for evaluating B-patches to develop an algo-
rithm for

a. blossoming B-patches

b. homogenizing B-patches

c. differentiating B-patches

436 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

d. converting B-patches to Bezier patches

e. subdividing one B-patch into three B-patches

5. Consider a knot-net

(rl,s 1) (rn,Sn), (tl,Ul) (tn,Un), (Vl,Wl) (Vn,Wn).

Define the corresponding B-patch basis functions {bin ik(S,t)} by setting
bijk(S,t) = the sum of all paths from the point Piik at the base of the B-patch

recurrence to the apex of the tetrahefron.

a. Show that if P(s,t) is any bivariate polynomial of degree n, then

P(s,t) =

~_~ bqk(S,t)p((rl,s1),, (r i , s i) , (t l ,U 1) (t j ,u j) , (V l ,W 1) (Vk,Wk)) �9
\

i+j+k=n
b. Conclude that the blossom evaluated on the knot-net provides the dual

functionals for the B-patch basis functions.

6. Given a homogenized knot-net

(rl,Sl,t 1) (rn,Sn,tn), (Ul,Vl,Wl) (Un,Vn,Wn), (Xl,Yl,Zl) (Xn,Yn,Zn),

define the corresponding homogeneous L-patch basis functions {lijnk(p, tY,'C)}
by setting

Lli(P, ty,'c) = (rip + Slt7 + t l T) . . . (r i p + sit7 + tiT)

L2j(P,G,'C) - (ulP + VlCr + Wl'C)...(ujp + vjt7 + wj'c)

L3k(P,a, 'c) = (xlP + yltY + Zl'C)...(XkP + yktY + Zk'C)

lijnk(p, cr, v) - Lli(P, Cr, v)L2j(p , cr, v)L3k(P, Cr,'c) i + j + k - n.

a. Using the result of Exercise 5(a), show that

(SX + ty + ttZ) n = ~_~ lijnk(x, y,z)bqk(S,t ,u).
i+j+k=n

b. Using part (a) and the result of Section 6.5.1, Exercise 17, show that

[lpqr (s,t,u),bijnk (s,t,U)]n - ~ip~jq~kr.

7. Two homogeneous polynomial bases {Bijnk(s,t,u)} and {Dijnk(x,y,z)} of
degree n are said to be dual if they satisfy the identity in Exercise 6(a). That
is, {Bijnk(s,t,u)} and {D~k(x,y,z) are called dual bases if

(sx + ty + uz) n = ~ D~k(x,y,z)Bijnk(s,t,u).
i+j+k=n

a. Find the dual basis to each of the following homogeneous B-patch bases:

i. Bernstein basis

ii. Monomial basis

7.13 Summary 437

b. Show that the dual to the homogeneous lineal Lagrange basis E~k(x ,y ,z)
with nodes Qijk = (aijk,bijk,Cijk) is the B-patch power basis

Pijnk (s , t , u) - (ai jkS + bijkt + CijkU) n .

What is the knot-net for the B-patch power basis?

c. Show that if {Bi~k(x,y,z)} and {Dijk(S,t,u)} are dual bases, then

[Opqr (s,t,u),D~k (S,t,U)]n - r .

8. Consider the blossoming algorithm for B-patches derived in Exercise 4.

a. Show that the homogenized version of this B-patch blossoming recur-
rence remains valid if blossom values are replaced by homogeneous
polynomials in the following fashion:

p((xl ,Yl ,Zl) (Xn,Yn,Zn)) ---> (rx 1 + sy 1 + tZl). . .(rx n + sy n + tZn) .

b. Recall the bracket operator defined in Section 6.5.1, Exercise 17. What
do you get if you bracket each polynomial in this algorithm with a fixed
homogeneous polynomial P(r,s,t)? (Hint: Compare to Section 6.2, Exer-
cise 10.)

9. Consider a B-patch P(s,t) of degree n with control points { Pijk } and knot-net

(rl,Sl) (rn,Sn), (tl,Ul) (tn,Un), (Vl,Wl) (Vn,Wn).

a. Show that the labels along the edges of the tetrahedral evaluation algo-
rithm are nonnegative when

(s,t) e ~ A(ri,si)(tj,uj)(Vk,Wk)
i+j+k<n+2

b. Conclude that the point P(s,t) lies in the convex hull of the control points
{ Pijk } when

(s,t) e ['7 A (r i , s i) (t j , u j) (v k, w k) .
i+j+k<n+2

10. a. Consider a quadratic B-patch P(s,t) with control points {Pijk} and knot-
net (q ,s l) , (r2,s2) , (tl,Ul),(tz,U2), (Vl,Wl),(Vz,W2). Show that the value
of the surface and its first-order partial derivatives along the line deter-
mined by the points (t 1,u 1) and (v 1, w 1) is independent of the value of the
control point Po02 and the node (r 2,s2).

b. Generalize the result in part (a) to B-patches P(s,t) of arbitrary degree.

7.13 Summary

Our primary purpose has been to give you a sound foundation in the fundamentals of
polynomial and spline interpolation and approximation. This goal, we trust, has now

438 C H A P T E R 7 B-Spline Approximation and the de Boor Algorithm

been realized. With this background in hand you are well prepared for graduate sem-
inars on more advanced topics. We hope you enjoyed reading this material as much
as we enjoyed writing it. This is almost, but not quite, the end of our story. In the
next chapter we shall discuss pyramid algorithms for multisided surface patches.

We have covered a lot of material in this chapter. Below we summarize the dif-
ferent techniques we encountered for analyzing B-splines, collect in one place the
standard properties of and algorithms for B-spline curves and surfaces, and identify
a few special progressive and spline bases. Then we list for easy access a collection
of useful identities for the B-spline basis functions harvested from the text and the
exercises.

�9 Tools for Analyzing B-Spline Curves and Surfaces

1. De Boor algorithm

�9 Path arguments

�9 Induction+ recursion

2. Knot insertion procedures

�9 Convergence as knot spacing decreases to zero

�9 Conversion to piecewise Bezier form

3. Blossoming

�9 Powerful change of basis method

�9 Effective tool for analyzing derivative properties

4. Divided difference

�9 Identities

5. Continuous convolution

�9 Uniform B-splines only

�9 Properties of B-Spline Curves and Surfaces

1. Piecewise polynomial

2. Continuity of order cn-F t at knots of multiplicity kt

3. Local control

4. Affine invariance

5. Local convex hull

6. Locally nondegenerate

7. Interpolation at knots where the multiplicity ju is equal to the degree n

8. Variation diminishing (curves only)

�9 Algorithms for B-Spline Curves and Surfaces

1. Evaluation

2. Differentiation

3. Integration

4. Blossoming

7.13 Summary 439

5. Homogenization

6. Knot insertion

�9 Boehm's algorithm

�9 Oslo algorithm

�9 Factored knot insertion algorithm

�9 Lane-Riesenfeld algorithm (uniform knots)

7. Conversion to piecewise Bezier form

S p e c i a l P r o g r e s s i v e a n d S p l i n e B a s e s

1. Bezier

,

t 1 - . . . - t n - a

tn+ 1 t2n - b

(n) (t _ ~ (b - t) n - k
B~c (t) - k a , k

(b - a) n

Monomial

t 1 t n - a

tn+ 1 t2n -

O < k < n

.

M ~ (t) - (~)(t - a) k

Power

t 1 tn , t 0 tn_ 1

O < k < n

.

p~c (t) (t - tk)n
= , O < k < n

1-'[(t k - t j)
j ~ k

Uniform

t k - k

7.13.1

N o , n (t) - Z[O,1) (t) * . . . , Z[O,1) (t)
J

Y

n+l factors

Identities for the B-Spline Basis Functions

1. C o m p a c t s u p p o r t

S u p p o r t { N k , n (t) } - [tk , tk+n+l]

2. S m o o t h n e s s a t the k n o t s

~rhas multiplicity kt in the sequence t k tk+n+ 1 ~ N k , n (t) is C n - u at T

3. I n t e r p o l a t i o n a t the k n o t s

t j+ 1 = t j+ n ~ N j , n (t j + l) - 1

440 CHAPTER 7 B-Spline Approximation and the de Boor Algorithm

4. Evaluation at the knots

Nk,n(tk+j I tk tk+n+l) - Nk,n_l(tk+ j I tk tk+j-l,tk+j+l tk+n+l)

5. Invariance under affine transformations of the knots

Nk,n(at + b lat k + b atk+n+ 1 + b) = Nk,n(t l t k tk+n+l)

6. Nonnegativity

Nk,n(t) > 0

7. Partition of unity

~,k Nk,n (t) - 1

8. Recursion

Nk,o(t) = 1 t k < t < tk+ 1

Nk, n(t) t - t k Nk,n_ l(t) + tk+n+l - t _ ~ Nk+l,n_l(t)
tk+ n - t k tk+n+ 1 - tk+l

Nk, n (t) = (t - t k) Nk'n-1 (t)
Support

9. Nonstandard recursion

+(tk+n+ 1 - t)
Nk+l,n-l(t)

Support

Nk,n(t l tk tk+n+l) =
T - t k

tk+ n - t k
~ N k , n (t l t k "C tk+n)

tk+n+ 1 - "C

tk+n+l - tk+l
Nk+l, n (t I tk+ 1 "g" tk+n+ 1)

Nk ,n(t l tk tk+n+l) =
t - t k + i

tk+j - tk+i
Nk,n_ 1 (t I t k tk+j tk+n+l)

tk+ j - t

tk+j - tk+i
Nk,n_l(t I t k tk+ i tk+n+l)

1 0 . Differentiation

dNk'ndt (t) _ n I Nk'n-l~--tk+n - ~(t) gk+l,n_ 1 (t))

tk+n+l - tk+l

dNk, n (t) = nl Nk'n ' l (t)

dt Support
_Nk+l ,n - l (t))

Support

7.13 Summary 441

11. Nonstandard differentiation

dNk, n (t)
dt

Nk,n_ 1 (t I tk,_...,~k+___~j, - tk+n+ 1)

n tk+ j -tk+ i

12. Recursion for the derivative

n tk+n _ tk k,n-1

Nk+l,n_ 1 (t I t k tk+ i tk+n+l)

tk+j -tk+i

N
tk+n+ 1 - t / N ' (t)

J k+l,n-1
tk+n+l -tk+l

13. Integration

f Nk,n(tlt k tk+n+ 1)dt
Support

Nk,n+l (t l tk t k + n + l , t ~)

n + l

I s Nk'n (t)
upport Support

~ d t -
n + l

upport S---upp-~rt][n[tk +n+l

Is { Nk'n(t)){F(n+l)(t))dt= Ilx F (n+l))dVl ..dvn+ 1
upport Support n! (~J Vjtk+j "

Support

_ (_ l) m + 1 m!n!

(m+n)!

14. Linear independence

~,kCkNk,n(t) - 0 r c k - 0 for all k

15. Descartes' Law of Signs

Sign Alternations{~,kCkNk,n(t) } < Sign Alternations{c k }

. m + n + l
~ (y - x)+ [tj tj+n+l]y[ti ti+m+l]x

16. Nodes

E {tk+l+'"+tk+n)Nk,n(t)
t - k n

t_ 442 CHAPTER 7 B-Spl ine Approx imat ion and the de B o o r A lgor i thm

17. Representa t ion o f the monomia l s

(~)t j = ~,k{~,crtk+cr(1)'"tk+cr(j)}Nk,n(t) (or= p e r m u t a t i o n o f { 1 n})

18. D iv ided dif ference f o r m u l a

Nk, n (t) - (tk+n+ 1 - t k)(x - t)+[t k tk+n+ 1]

Nk,n(t)

Support
= (x - t)~[t k tk+n+l]

19. Marsden identity

(x - t) n = Zk(tk+l - t) . . . (tk+ n - t)Nk,n(X)

20. De B o o r - F i x f o r m u l a

(- 1) n - P
~ , p ~ N (. p) (T)l l t~nP) ('t:) = 1

n! j ,n ,

= 0

j=k

j C k

IPtk,n('t') = (tk+ 1 - T). . .(tk+ n - T) T �9 (tk+l,tk+n)

21. Blossoming as dual func t iona l s

nk,n(tj+l t j+n) = t~jk

S (t) - ~,is(ti+l ti+n)Ni,n(t)

22. Kno t insert ion

Nk,n(t l t k tk+n+l) =
V - t k

tk+ n - t k
~ N k , n (t l t k "C tk+n)

tk+n+ 1 - T

tk+n+l - t k + l
Nk+l, n (t I tk+ 1 "t" tk+n+ 1)

23. Degree elevation

Nk,n(t l t k tk+n+l) - ~ , jNk ,n+l(t l tk tk+j, tk+j tk+n+l)
n + l

24. Partial derivat ives with respect to the knots

~N~ (t I t k tj tk+n+ 1)

~tj

I Nkn+l (t I tk+ 1 t j , t j tk+n+ 1)
= 12j

tk+n+l - t k + l

N ~ (t l t k t j , t j tk+n)

tk+ n - t k

juj = m u l t i p l i c i t y tj

7.13 Summary 443

25. Geometr ic characterizat ion

NO,n_l(t l t 0 tn) _ (t n - t o) V o l n _ l (t r e An(p) I O'1 = t)
nVoln(An(p))

PO Pn affinely independent points with Pil = ti , i = O,.. . ,n

An (P) = n-simplex with vertices PO Pn

26. Special identities f o r uni form B-spl ines

a. Translation invariance

Nk, n (t) = NO, n (t - k)

b. Recurs ion

t - k k + n + l - t
Nk, n (t) = Nk,n_ 1 (t) + nk+l,n_ 1 (t)

n 11

c. Dif ferent iat ion

dNk, n (t)
dt = Nk,n_ 1 (t) - Nk+l,n_ 1 (t)

d. Integration

~Nk,n(t)d t k + +1,~) =Nk,n+l (t l k n

SupportNk,n (t)dt - 1

e. Cont inuous convolut ion

Nk, n (t) = ~ Nk,n_ 1 (t - x)dx

NO,n(t) - Z[0,1) (t) * . . . , Z[0,1) (t)
- , r

n+l factors

f. Subdivis ion

(n+l
(t) - ~ '~ i" i 2 n)No, n (2t - i) NO,n

C H A P T E R 8

Pyramid Algorithms
for Multisided Bezier Patches

In Chapter 5 we studied three-sided and four-sided Bezier patches built using
dynamic programming procedures based upon three-term and four-term recurrence
relations. In this chapter we are going to study Bezier patches with an arbitrary num-
ber of sides. Three-sided and four-sided patches are typically used for free-form
design; multisided patches are commonly required when it is necessary to fill n-
sided holes.

Our approach to multisided patches will be similar to our approach to three-
sided and four-sided patches: we shall build dynamic programming proceduresm
pyramid algorithms~based upon special recurrence relations. By now we have a
good deal of experience with generating useful recurrences. We have seen that such
recurrences arise quite naturally in three settings: Lagrange interpolation, discrete
convolution, and blossoming. We shall discover, however, in Section 8.3 that stan-
dard Lagrange interpolation procedures do not lend themselves to generating multi-
sided patches. Therefore, discrete convolution and blossoming will be the two
central motifs of this chapter. We shall see here as well that these two devices are
necessarily interrelated.

To construct three-sided and four-sided Bezier patches, we need three-sided and
four-sided arrays of control points and barycentric coordinate functions for the trian-
gle and the rectangle. Similarly, to construct multisided Bezier patches we require
multisided arrays of control points and barycentric coordinate functions for multi-
sided polygonal domains. But what are multisided arrays of control points and how
do we construct barycentric coordinates for multisided polygons? There is no single
answer to either of these questions: different answers lead to different types of multi-
sided Bezier schemes. Based on three different answers to these questions, we shall
develop three different types of multisided Bezier patches: S-patches, C-patches, and
toric Bezier patches. Three common threads tie these three schemes together: dis-
crete convolution, Minkowski sum (a device we shall introduce in Section 8.2), and
the general pyramid algorithm.

445

446 C H A P T E R 8 Pyramid Algorithms for Multisided Bezier Patches

There is no simple answer to the question: which of these multisided schemes is
best? Although special types of S-patches have been around for some time, their
properties have yet to be fully explored. Moreover, toric Bezier patches are quite
new, so it is premature to judge the relative merits of these schemes. We present
these schemes here to elucidate their constructions, explain their basic properties,
and clarify their interrelationships; we shall not try to pick a winner.

A key role in each of these constructions is played by barycentric coordinate
functions, so we begin with a discussion of a generalization of barycentric coordi-
nates to arbitrary convex polygons.

8.1 Barycentric Coordinates for Convex Polygons

The main properties of the barycentric coordinates fll,fl2,fl3 for a triangle P with ver-
tices P1,P2,P3 are summarized in Section 1.2.3, Theorem 1.1. We recall these prop-
erties in Table 8.1 along with the analogous properties we want to hold for the
barycentric coordinate functions fll fin for a convex polygon Q with ordered ver-
tices Q1 Qn.

The first two properties of the barycentric coordinate functions for convex poly-
gons are required because we want the multisided Bezier surfaces constructed from
these functions to be affine invariant and to lie in the convex hulls of their control
points. The third property will guarantee that the boundary curves of these surfaces
are the Bezier curves determined by their boundary control points, and the fourth
property ensures that these surfaces will interpolate their comer control points. The
fourth property is also key later on in ensuring that the S-patch blossom evaluated at
the vertices of the domain polygon provides the dual functionals for S-patches (see
Section 8.4.4). The final property asserts that the functions describing these surfaces
are not too complicated--that these surfaces are defined by rational expressions.

For triangles we discussed two approaches to barycentric coordinates in Section
1.2.3: normalized areas and normalized line equations. Consider the triangle in
Figure 8.1, with vertices P1,P2,P3 and edges defined by the equations L23(u,v) = 0,

Table 8.1 Properties of barycentric coordinate functions for triangles and convex polygons.

Triangles Convex Polygons

3
1. X~k ~ 1.

k=l
2. flk > 0 in the interior of P.

3. flk = 0 on the line PiPi+l, k # i, i + 1.

4. #k(pj)- 0 j , k

=1 j - k .

5. fll,flz,fl3 are linear functions.

n

1, Xflk - 1.
k=l

2. flk > 0 in the interior of Q.

3. flk = 0 on the line QiQi+m, k 4: i,i + 1.

4. o j , k

=1 j = k .

5. fll fin are rational functions.

8.1 Barycentric Coordinates for Convex Polygons 447

Pl

L12 (u,v)

P2 ~ fll " P3
L23(u,v)

Figure 8.1 Barycentric coordinates for the triangle APIP2P 3.

L13(u,v) = 0, L12(u,v)= 0. The barycentric coordinates fll,fl2,fl3 of a point Q with
respect to the vertices P1,P2,P3 are given by

area(AQPi Pj)
i l k (Q) - + i 4: j ~: k, (8.1)

area(z~lP2P 3)

or equivalently by

Lij(Q)
ilk(Q) = i 4: j :p k. (8.2)

Lij(ek)

We are now going to provide an explicit construction for the barycentric coordi-
nate functions of a convex polygon by generalizing the construction of the barycen-
tric coordinates for triangles given in Equation (8.2). An equivalent extension of
Equation (8.1) from triangles to convex polygons is provided in Exercise 3.

Consider then a convex n-gon with ordered vertices Q1 Qn, and let
Li,i+l (U, V), i = 1 n, be the equation of the line joining Qi and Qi+l, where
Qn+l = Q1. (See, for example, the hexagon in Figure 8.2.)

Normalize each function Li,i+l (u,v) so that the normal of the line is pointing into
the polygon. Then we can define barycentric coordinate functions fll fin with
respect to the vertices Q1 Qn by setting

ak (Q) = ck I-I Li,i+l (Q) (8.3)
i,i+l~k

i l k (Q) - ak(Q) k - 1 n. (8.4)
]~jaj(Q)

Notice that, up to a constant multiple, a k is the product of the edges Li,i+ l(u, v)
on which the vertex Qk does not lie, and flk is equal to a k normalized by the sum of
the a's. Hence, in general, flk is a rational function of degree n - 2. The constants
c k > 0 are arbitrary; one canonical choice for these constants is presented in Exercise
4. Now in analogy with Theorem 1.1, we have the following results.

448 CHAPTER 8 Pyramid Algorithms for Multisided Bezier Patches

Q1 L12(u'v) _Q2

L61 ((u,v)

Q 5 (u,v) " Q4 L45

Figure 8.2 A hexagon with vertices Qi and bounding lines Li, i+l(U,V), i = 1 6.

THEOREM
8.1

Proof

Existence of Barycentric Coordinates for Convex Polygons

Let fll fin be the barycentric coordinate functions defined in Equation
(8.4) relative to the ordered vertices Q1 Qn of a convex polygon. Then

n

1. ~ . , f l k -1 .
k=l

2. flk > 0 in the interior of the polygon.

3. flk = 0 on the line QiQi+I, k ~ i,i + 1.

4. flk (Qj) = 0 j , k

=1 j - k .

5. fll fin are rational functions in the rectangular coordinates u,v.

1. Property 1 is immediate from Equation (8.4).

2. Property 2 follows because Li,i+ 1 (u,v) is chosen with its normal vector
pointing into the polygon. Hence in the interior of the polygon
Li,i+l(U,V) > 0, so by Equations (8.3) and (8.4) ak,f lk > 0 in the inte-
rior of the polygon.

3. Property 3 is valid because by Equation (8.3) Li,i+l(U,V) is a factor of
oc k whenever k ~ i,i + 1. Therefore, OCk,flk = 0 on the line QiQi+l, when-
ever k ~: i,i + 1.

4. Property 4 is a direct consequence of Property 1 and Property 3. By
Property 3, flk(Qj) - O, j , k. Therefore, by Property 1, flk(Qk) - 1.

5. Property 5 follows immediately from Equations (8.3) and (8.4).

8.1 Barycentric Coordinates for Convex Polygons 449

Theorem 8.1 establishes the existence of barycentric coordinate functions for
convex polygons with the properties listed in Table 8.1. Although typically we shall
use the functions defined in Equation (8.4), we shall call any set of functions that sat-
isfies these five properties barycentric coordinate functions for the convex polygon.

Exercises

1. Let Q1 Qn be the ordered vertices of a convex polygon, and let fll fin
be the functions defined by Equation (8.4). Show that fli,fli+l are rational
linear functions along the line QiQi+l.

2. Let P = (pl,P2) T, Q = (ql,q2) T, R = (u,v) T be the vertices of a triangle.
Show that

a. 2xarea(APQR)=+det P2 q2 v = + d e t Q .
1

1 1 1

 et(7 Q1 R) - 0 i s t h e e q u a t i ~ 1 7 6 1 7 6

3. Let Q1 Qn be the ordered vertices of a convex polygon. Using the results
of Exercise 2, show that Equation (8.1) for the barycentric coordinate func-
tions of a triangle can be generalized to barycentric coordinate functions
fll fin for a convex polygon by setting

ak(Q) = ck I-Iarea(QiQi+lQ)
i,i+l~k

ilk(Q) = ak (Q) '
]~jaj(Q)

where c k > 0 are arbitrary constants.

4. Choose the constants c k in Exercise 3 by setting c k = area(Qk_lQkQk+ 1). We
are going to show that for this choice of constants

n

L(Q) = Z flk (Q)L(Qk)
k=l

n

for every linear function L. Define M (Q) - Z ak (Q)(L(Q) - L(Qk)), and let
P = (1- ~)Qi + 2,Qi+1. k=l

a. Show that L(P) = (1 - A)L(Q i) + '~(Qi+I).

b. Show that M(P) =

[area(Qi-lQiQi+l)area(Oi+lQi+2e)(L(P) - L(Qi))]

I-I area(Qj, Qj+l,P)l+area(QiQi+lQi+2)area(Qi_lQiP)(L(p) _ L(Qi+I))I" jr

450 C H A P Y E R 8 Pyramid Algorithms for Multisided Bezier Patches

c. M(P) = 0. (Hint: Use parts (a) and (b).)

d. Conclude from Section 2.13, Proposition 2.12, that every edge of the
domain polygon is a linear factor of M, and hence, since
degree(M) = n - 1, that M - 0.

n

e. Show that M - 0 ~ L(Q) - ~, flk(O)L(Qk).
k = l

n

f. Conclude from part (e) that Q = ~ flk(Q)Qk. (Compare to Section 1.2.3,
Exercise 4.) k = l

5. Here we are going to show that barycentric coordinate functions for convex
polygons with more than four sides cannot be polynomials. Suppose that
fll fin are polynomials, and that Q is a point of intersection between two
nonadjacent edges of the convex polygon with ordered vertices Q1 Qn.

a. Show that if fll fin satisfy Property 3 of Theorem 8.1, then

flj(Q) = O, j = 1 n.
b. Conclude that ~,kflk ~ 1, and hence that fll fin cannot be barycentric

coordinate functions for the convex polygon with vertices Q1 Qn.

c. Why do rational functions not suffer from the same problem?

d. Explain why barycentric coordinates for rectangles can be polynomials.

6. Consider a convex polygon with ordered vertices Q1 Qn, and let
Li,i+ 1 (u, v), i = 1,...,n, be the equation of the line joining Qi and Qi+l, where
Qn+l = Q1. Normalize each function Li,i+ 1 (u, v) in the usual manner so that
the normal of the line is pointing into the polygon. Define functions fll fin
with respect to the vertices Q1 Qn by setting

n
f Pi,k

ak (Q) = ck I-I,-,i,i+l (Q) Ck > 0
i=1

flk (Q) = ak (Q)
~ , ja j (Q)

k = 1 n

Show that these functions f l l f i n satisfy the five properties of barycentric
coordinate functions listed in Theorem 8.1 if and only if Pk-l,k - Pk,k = 0
for k = 1 n, and all the other Pi,k are positive integers.

8.2 Polygonal Arrays

To construct a polygonal patch, we must begin with a polygonal array of control
points. But what exactly is a polygonal array of control points? So far we have seen
only two examples of polygonal arrays: rectangular arrays and triangular arrays. A
(d + 1)x(d + 1) rectangular array of control points is a set of points {Pij}, where

l @ J = { i + j l i e I and j e J } ,

0 < i, j < d; an order d triangular array of control points is a collection of points
{Pijk}, where i + j + k - d. We are now going to generalize these notions to arbitrary
polygonal arrays of points.

The key technique we shall use is the Minkowski sum. Let I and J be two arbi-
trary sets of p-tuples. The Minkowski sum of I and J is the set

then

where i + j denotes the p-tuple formed by adding the coordinates of i and j. For
example, if

(A | B)k(t) - ~, i+j=kAi(t)Bj(t) .

I = {(0,0),(1,0),(0,1),(1,1)}

J - { (0 ,0) , (1 ,0) , (0 ,1) } ,

I 0) J - { (0,0),(1,0),(0,1),(1,1),(0,2),(1,2),(2,1),(2,0) }

(see Figure 8.3). For future reference, we define

I ~ - (0 0)
p

I d = I ~ . . . ~ I .
�9 J

d summands

The Minkowski sum facilitates the indexing of discrete convolution. Let
A(t) = {Ai(t) l i e I} and B(t) - {Bj(t) l j e J}. Then the discrete convolution
A(t) | B(t) is indexed by the Minkowski sum I ~ J - - t ha t is,

A(t) | B(t) - (A | B)(t) - { (A | B)k(t) I k e I �9 J}--since, by definition,

(1,2)

(o,1) (o,]) (1,1)

, w w

(o,o) (1,o) (o,o) (1,o)

(0,2)
A

(o,1)

(o,o)

A

(1,1)

8.2 Polygonal Arrays 451

w w

(1,o) (2,0)

F i g u r e 8.3 The Minkowski sum of a triangular array and a rectangular array is a pentagonal array.

452 CHAPTER 8 Pyramid Algorithms for Multisided Bezier Patches

Similarly,

A(t) d = A(t) | | A(t)
~. ,J

d factors

is indexed by I d. We shall take advantage of this indexing for discrete convolution in
Section 8.4, when we study S-patches.

To form an n-sided polygonal array, start by selecting an indexing set I of n dis-
tinct p-tuples. An n-sided polygonal array of depth d for the index set I is any set of
points indexed by I d.

For example, let

I R - {(0,0),(1,0),(1,1),(0,1)}

I T - {(0,0,1),(1,0,0),(0,1,0)}.

Then Ig={(j',k)] 0 < j ,k < d} is the indexing set for a (d + 1) • (d + 1) rectangular
array {Pjk}, and IT d - {i,j,k) [i + j + k = d} is the indexing set for an order d triangu-
lar array {Pijk }.

But there is more to a polygonal array than just the indexing of the points; we
must also indicate how the points are related topologically in the array--that is,
which points are adjacent to which points. For example, in the triangular array of
order 3 in Figure 5.43(b), the point P003 is adjacent to the points P012 and P102, but
P003 is not adjacent to any of the other points in the array. To establish adjacency, we
consider the indexing set I not just as a set, but as an ordered sequence of p-tuples
I = (il in). Points indexed by I inherit their adjacency from I. Thus points indexed
by a set I with n elements lie, topologically, on the vertices of an n-gon. To close the
polygon, we consider the first element of I to be adjacent to the last element of I.

Adjacency in I d is defined recursively. Adding a fixed index in I to each index in
I translates the polygon, so adjacent indices remain adjacent. Similarly, adjacent
indices in I d-1 remain adjacent under translation. (For further details and definitions,
see Exercise 6.)

An n-sided polygonal array of depth d is a set of points {P2} in affine space
indexed by a set I d, where I - (i 1 in) is an ordered set of n distinct p-tuples. The
points in the array {Pz} inherit their adjacency from the adjacency relation in I d.
That is, two points P~,Pv in the array {P,~} are adjacent if v is adjacent to ~ in I d.
When we draw a polygonal array, we shall connect adjacent points with straight
lines (see Figures 8.4 and 8.5). The rth boundary of the n-sided polygonal array {P)~}
of depth d consists of the points indexed by (d - k) i r + kir+ 1, k = 0 d, where
in+ 1 = i 1. Figures 8.4 and 8.5 illustrate two distinct pentagonal arrays of depth 2.

Exercises

1. Draw triangular arrays of depths 2 and 3, where

a. I consists of the vertices of the standard 2-simplex

b. I = {0,1,2l

2. Draw rectangular arrays of depths 2 and 3, where

8.2 Polygonal Arrays 453

Po2ooo

P20000 PO0200

PIO 0110

PO0002 PO0011 PO0020

Figure 8.4 A pentagonal array of depth 2 with 15 points indexed by/2, where / consists of the vertices
of the standard 4-simplex--that is,/is the set of all 5-tuples with a 1 in one position and a 0
everywhere else. The outline of one of the five small pentagons indexed by the subset of / 2
generated by translating / by (0,0,0,0,1) e / i s darkened.

Pol

1'oo-

/924

P

9
w

Plo -P2o

Figure 8.5 A pentagonal array of depth 2 with 14 points indexed by the set/2, where / = {(0,0),(1,0),
(2,1),(1,2),(0,1)}. The outline of one of the five small pentagons indexed by the subset of / 2
generated by translating / by (0,0) e / i s darkened.

a. I consists of the vertices of the standard 3-simplex

b. I - 1(0,0),(1,0),(1,1),(0,1)}

3. Draw a pentagonal array of depth 3, where

a. I consists of the vertices of the standard 4-simplex

b. I = {(0,0),(1,0),(2,1),(1,2),(0,1)}

454 C H A P T E R 8 P y r a m i d A l g o r i t h m s f o r M u l t i s i d e d B e z i e r Pa t ches

4. Draw hexagonal arrays of depths 2 and 3, where

a. I consists of the vertices of the standard 5-simplex

b. I = 1(0,0),(1,0),(2,1),(2,2),(1,2),(0,1)}

5. Show that the number of points in a polygonal array of depth d indexed by
the set I d, where I consists of the vertices of the standard n-simplex, is

n+d
d)"

6. Show that the following two definitions of adjacency in I d are equivalent:
Let i, Jl Jd-1 ~ 1, and let/u,v e I d. Then p is adjacent to v if there are indi-
ces i u , i v such that

Definition 1 Definition 2

i. i~ is adjacent to i v in I. i. i~ is adjacent to i v in I a-1.

ii. t.t - i~ + Jl + " " + Jd-1. ii. /.t - i~ + i .

iii. v = i v + Jl + " " + Jd- l" iii. v = i v + i .

7. Show that if / = {i 1 i n }, then

a. I d - {kli 1 + .. . + kn i n I k 1 + . . . + k n = d}

b. I d is isomorphic to the set of equivalence classes {(k 1 k n) I

kl + ... + k n = d}, where two n-tuples (k 1 kn) and (h 1 hn) are
members of the same equivalence class of I d if

kl il + . . . + knin = hl il + . . . + hnin

8. Show that

a. (11 ~ " " ~ I m) d = i d ~ . . . @ i d .

d m _ i~1+dl b. (I~1 ~ . . . ~ I c m) ~ (I d l ~) . . . ~ I m) ~ ~ ICm+dm

8.3 Neville's Pyramid Algorithm and Multisided Grids

The three main ingredients we needed in Chapter 2 to construct pyramid algorithms
for three-sided and four-sided interpolating Lagrange patches were barycentric coor-
dinate functions, arrays of control points, and specialized grids. In Section 8.1 we
addressed the issue of barycentric coordinates for convex polygons, and in Section
8.2 we introduced polygonal arrays of control points. In this section we shall con-
sider general n-sided grids.

Actually we have already encountered n-sided grids in Section 8.2. A polygonal
array of points typically lives in three- or higher-dimensional space, but if we con-
sider a polygonal array in two dimensions, then we have a polygonal grid. Figures
8.4 and 8.5 represent pentagonal grids in the plane. Straight lines in the grid connect
points that are adjacent in the array. In general, three points in such an array are col-
linear only by accident. For example, in the pentagonal grid depicted in Figure 8.5,
the points P20,P31,P42 need not be collinear.

Unfortunately, we cannot, in general, build pyramid algorithms to interpolate on
polygonal grids where the polygons have more than four sides and the depth of the

8.3 Neville's Pyramid Algorithm and Multisided Grids 4 5 5
_

I

grid is greater than 1 even if many of the grid points are collinear. To see why, let us
try to apply dynamic programming to the pentagonal grids in Figures 8.4 and 8.5.

To begin, we must first construct pentagonal interpolants for the subgrids of
depth 1. This base case is easy. Let flk(U,V) be barycentric coordinates for the penta-
gon with vertices Qk, k = 1 5, and let

B(u,v) =/~I(U,v)P 1 + ~2(u,v)P2 + ~3(u,v)P3 + ~4(u,v)P4 + ~5(u,v)P5 �9

Then by Theorem 8.1

B (Q k) = Pk k = 1 5.

Now to form the pentagonal interpolants P(u,v) for the grids of depth 2, we try
to proceed as we did for the three-sided and four-sided interpolants in Chapter 2. Let
Pl (U, V),. . . ,Ps(u, v) be the five pentagonal interpolants of depth 1 emanating from the
five comer vertices Q1 Q5 of the depth 2 pentagonal grid. Let flk(U,V) be the bary-
centric coordinates of the pentagon with vertices Qk, k = 1 5, and let

P(u, v) - ~l (U, V)Pl (u, v) + . . . -I- ~5(u, v)P5(u, v) .

This approach works for the grids of three and four sides in Chapter 2, but it fails for
pentagonal grids. For grids with three or four sides, every node not on the boundary
of the grid lies in each of the subgrids of one lower depth (see, for example, Figure
2.27). Therefore, each of the lower-depth interpolants certainly interpolates at each
of the interior nodes of the grid. Since barycentric coordinates sum to one, the
higher-depth surface P(u,v) also interpolates the data at all the interior nodes. But for
the pentagonal grids in Figures 8.4 and 8.5, the interior nodes do not lie on all the
grids of depth 1. Therefore, the surface P(u,v) will not interpolate the data at the inte-
rior nodes. The same problem arises for polygonal grids of arbitrary depth with an
arbitrary number of sides.

What then can we do? Recall that triangular Bezier patches are simpler to con-
struct than triangular Lagrange interpolants because in the triangular Bezier con-
struction there is only one domain triangle. In the construction of the pyramid
algorithm for triangular Lagrange interpolants, we change the domain triangle~that
is, the barycentric coordinates~as we move from node to node and level to level.
But in the construction of triangular Bezier patches, we use the same domain trian-
gle and the same barycentric coordinates everywhere in the pyramid algorithm.
Therefore, once we have a general notion of barycentric coordinates for convex
polygons, this Bezier construction should work just as well for polygonal arrays of
control points as it does for triangular arrays. Giving up on interpolation over polyg-
onal grids, we should still be able to construct the analogues of triangular Bezier
patches for arbitrary convex polygons. This idea actually does work, and the result-
ing multisided Bezier surfaces are called S-patches, so it is to these S-patches that we
now turn our attention.

456 C H A P T E R 8 P y r a m i d A lgor i thms f o r Mul t i s ided Bez ier Patches

Exercises

1. Show that it is not, in general, possible to build a pyramid algorithm to
interpolate over the quadrilateral grid in Figure 8.6. Explain what goes
wrong with the standard dynamic programming construction in Chapter 2.

Qo.a Q13 r~ 0-~-~

P03 P13 P23 P33

,Q32 P02 P12 P22 P32

31
P o] P]] P 2] P3]

Poo P]o P20 P30
~ -JU

�9 c o o - "" Q2o

(a) Domain--quadrilateral grid
J

(lo) Range--quadrilateral array of points

Figure 8.6 Data for a quadrilateral interpolant: (a) represents the nodes in the domain, and (b) repre-
sents the control points in the range.

2. a. Construct a pyramid algorithm to interpolate data over the quadrilateral
grid in Figure 8.7, using barycentric coordinates for an arbitrary quadri-
lateral.

b. Show that for the barycentric coordinate functions defined in Equation
(8.4) this interpolant is a rational surface of degree 2n.

3. Consider again the domain in Figure 8.7. This quadrilateral grid is defined
by two sets of intersecting lines: Mk(U,V) and Nk(U,V), k = 0 ,n, so that each
node Qij - Mi n N j , i, j - 0 n. Let Qij = (uij,vij) and define

I Ai j (u ' v) = M a (u ' v) ~ l N---Tu--)
M a (u ij , v ij) j ~ fl ~: j fit ij , v ij

Lij(u, v) = Aij (u' v)
~.,klAkl(U,V)

L(u, v) = 2 i j Lij(u, v)P/j

8.4 S-Patches 4 5 7

O N ~ �9 �9 �9 Q~'/Y/ Poll �9 �9 �9 PYtt l

!0 Poo * ~ ~ Pno

(a) Domain~quadrilateral grid (b) Range--quadrilateral array of points

Figure 8.7 Data for a quadrilateral interpolant: (a) represents the nodes in the domain, and (b) repre-
sents the control points in the range. The nodes must lie on a special quadrilateral grid, but
the control points may be in arbitrary positions. The surface P(u,v) must interpolate the con-
trol points PO at the nodes Q/f-that is, P(Qo.) = PO

a. Show that the functions Lij(u,v) satisfy the cardinal conditions

Lij(Qkl) - Lij(ukl , vkl) - 0 (k , l) :/: (i, j)

= 1 (k , l) = (i, j) .

b. Show that the surface L(u ,v) is a rational surface of degree 2n that inter-
polates the control points Pij at the nodes Qij.

c. Compare the interpolating surface L(u ,v) to the interpolating surface con-
structed in Exercise 2.

8.4 S-Patches

Given a polygonal array of control points, we can apply a pyramid algorithm to con-
struct a polygonal surface patch just as we did for triangular Bezier patches. The
only difference is that we must replace the barycentric coordinates for the domain
triangle by barycentric coordinate functions for the domain polygon. Instead of a tet-
rahedral algorithm, this procedure generates a pyramid algorithm over a polygon,
whose boundary at the base is formed by the boundary control points of the polygo-
nal array. Such a surface is called an S-patch . Figure 8.8 illustrates the pyramid algo-
rithm for a pentagonal S-patch for the pentagonal array of depth 2 in Figure 8.4.

458 CHAPTER 8 Pyramid Algorithms for Multisided Bezier Patches

P2oooo

;o2ooo

Poo2oo

P10q)0110

J ououz POO011 - uuu L0

Figure 8.8 Schematic version of the pyramid algorithm of depth 2 for an S-patch over a pentagonal
domain. Each pentagonal panel represents the computation of a point at its center calcu-
lated by multiplying the points at its vertices by the barycentric coordinates of the domain
pentagon and adding the results. The five striped corner pentagons represent pentagonal
patches of depth 1, and the dark central pentagon represents the pentagonal patch of depth
2. Interior control points are obscured by the panels. Compare to the pyramid algorithm for a
triangular Bezier patch in Figure 5.44 .

By construction, S-patches have the following underlying framework:

�9 Domain---convex polygon

�9 Control points~polygonal array

�9 Blending functions---convolutions of generalized barycentric coordinates

Moreover, in analogy with triangular and tensor product Bezier patches, S-patches
also have the associated properties and procedures listed below:

�9 Properties of S-patches

�9 Affine invariance

�9 Convex hull property

�9 Boundary curves~Bezier curves determined by the boundary control
points

�9 Degree--rational parametric degree d(n- 2), where d is the depth of the
control net and n is the number of sides of the domain polygon

�9 Special cases~triangular and tensor product Bezier patches

�9 Procedures for S-patches

�9 Evaluation algorithm~pyramid algorithm whose edges are labeled
with generalized barycentric coordinates

�9 Differentiation algorithm

�9 Blossoming algorithm

8.4 S-Patches 4 5 9

8.4.1

We begin our investigation of S-patches with a formal presentation of the pyra-
mid algorithm, along with properties and formulas directly related to this algorithm.
We shall then go on to explore simplicial S-patches and to develop a general theory
of differentiation and blossoming for arbitrary S-patches.

The Pyramid Algorithm and the 5-Patch Blending Functions

To define the pyramid algorithm formally, we need

1. a convex domain polygon with ordered vertices Q1 Qn and with bary-
centric coordinate functions t3 l(u, v) fin (u, vl

2. an n-sided polygonal array {P;t} of points in the range indexed by a set I d,
where I = (il i n) is an ordered set of n distinct p-tuples

The n-sided S-patch S(u,v) of depth d for the control points {P~,} is defined recur-
sively by the following procedure.

Pyramid Algorithm for S-Patches

P~ (u, v) - P~, A, e I d

rl

= vaP l-1 (u, v) I d-! P~ (u, v) Z [3h (u, , P+'h p e
h=l

s (. , ,) - Po d (u , ,) .

(8.5)

Notice that the intermediate functions P~(u, v) that emerge during this computation
are the S-patches of depth I for the control points {P~, } indexed by p @ I 1 . It is these
functions {P~(u,v) } that are depicted by polygonal panels in Figure 8.8.

S-patches over convex polygonal domains are affine invariant and lie in the con-
vex hull of their control points. These properties hold because generalized barycen-
tric coordinate functions sum to one and are nonnegative in the interior and on the
boundary of their domain polygon. Hence, by induction, the functions {P~(u,v)}
appearing in the nodes at every level of the pyramid algorithm are affine invariant
and lie in the convex hull of the control points.

The boundaries of an S-patch are the images of the boundaries of the domain
polygon. We are now going to show that these boundary curves are actually the Bez-
ier curves determined by the boundary control points of the control net. Moreover,
when the domain parameters are restricted to a boundary of the domain polygon,
restricting the pyramid algorithm to the corresponding lateral triangular face of the
pyramid generates the de Casteljau algorithm for this bounding Bezier curve.

Let Q1 Qn be the vertices of the domain polygon, and consider a specific
bounding edge QhQh+l. All but two of the barycentric coordinate functions vanish
along this boundary, since fig = 0 on the edge QhQh+l, g r h,h + 1. Therefore, along
the boundary QhQh+l only the corresponding boundary control points~the control
points P (d _ k) i h + k i h + l , k = 0 d--contribute to the boundary of the surface. More-
over, since the barycentric coordinate functions sum to o n e , f l h + l - 1- flh along the

4 6 0 C H A P T E R 8 Pyramid Algorithms for Multisided Bezier Patches

boundary QhQh+l. Hence along this boundary, the pyramid algorithm for the S-patch
reduces to de Casteljau's triangle along the lateral face of the pyramid for the bound-
ary control points, with the edges in the algorithm labeled by flh and 1 - flh. It fol-
lows that the boundary curves of an S-patch of depth d are just the Bezier curves of
degree d (reparametrized by setting t -- fib) determined by the boundary control
points.

S-patches are not, in general, polynomial patches because the barycentric coor-
dinates of arbitrary polygons are not polynomial functions. Instead, since the bary-
centric coordinates of an n-gon are rational functions of degree n - 2, S-patches are
rational surfaces of parametric degree d(n - 2), where n is the number of sides of the
domain polygon and d is the depth of the control net, or equivalently the number of
levels in the pyramid algorithm. (Here we use the barycentric coordinate functions
constructed in Equation (8.4); different barycentric coordinate functions could give
higher parametric degrees.) Nevertheless, although an S-patch is a rational surface, it
follows by our preceding analysis that the boundaries of an S-patch are polynomial
curves.

The rational blending functions {S~ (u,v) for an S-patch of depth d can be com-
puted by either the up recurrence or the down recurrence. In the up recurrence, we
place a 1 in the position indexed by & ~ I d and a 0 everywhere else at the base of the
pyramid and run the pyramid algorithm. The function that emerges at the apex of the
pyramid is S~ (u, v). In the down recurrence we place a 1 at the apex of the pyramid,
reverse all the arrows, and run the recurrence. The functions that emerge at the base
of the pyramid are the blending functions {S~ (u, v) }. The S-patch with control points
{P~,} is given by

S(u, = 2 (u, v Px .
A~I d

Another simple and convenient way to construct the bivariate Bemstein basis
functions is via discrete convolution (see Section 5.8.2). We can apply this convolu-
tion technique here as well to generate both explicit and recursive formulas for the S-
patch blending functions.

A word first about notation. We are, of course, using the same indexing for our
blending functions that we use for our control points. Let fll (u, v) fin (u, v) be the
barycentric coordinates of the domain polygon. Since these barycentric coordinate
functions are the blending functions for an S-patch of depth 1,

flk (u, V) - fli k (U, V) k - 1 n.

Thus the index set I indexes the barycentric coordinate functions.
Adopting this convention, we now can define an array of blending functions

{ S~ (u,v) }, ~, e I d, using discrete convolution by setting

ul] = fl,(u,v I | 1 7 4 fl (u,u l .
- , r

d factors

(8.6)

8.4 S-Patches 461

Notice that there are exactly as many blending functions {S~t(u,v)} as there are con-
trol points {Pp} in a polygonal array of depth d, since both sets are indexed by I d.
Now it follows by induction from Equation (8.6) that the functions {S~(u,v)} satisfy
the n-term recurrence

S~ (., - (., + . . + (", S -ilo (", .

d-1 where, by convention, S~_ik (u,v) - 0 if ~,- i k ~ I d-1

Equation (8.7) is equivalent to the down recurrence. Hence the functions
{S~t(u,v)} constructed from discrete convolution are indeed the blending functions
for an S-patch of depth d whose domain is the convex polygon with ordered vertices
Q1 Qn and whose indexing set is/d. Moreover, it follows from Equation (8.6)

and the definition of discrete convolution that the blending functions for an S-patch
are given explicitly by the formula

4(u,v - 2; " ,
k li 1 +...+kni n =~,

Since S-patches are already rational surfaces we may as well introduce scalar
weights {w~} and define rational S-patches by setting

~, S~ (u, v)w2e z
R(u, v) - 2eld �9 (8.9)

E wpS (u,v)
p e I d

There is also a pyramid algorithm for rational S-patches: simply replace the input
P~(u,v) = PZ at the base of the pyramid by P~(u,v) = (wiP1,w I) and divide the out-
put of the algorithm by the weight. One advantage of rational S-patches is that we
can ignore the common denominator in the barycentric coordinate functions
fll(S,t) fln(S,t), since this denominator cancels in Equation (8.9). The numera-

tors al(S,t) Otn(S,t) of the barycentric coordinate functions are polynomials, so
the pyramid algorithm performs a polynomial computation in Grassmann space and
then divides by the weight to get the rational surface R(u,v) in affine space.

Exercises

1. Give three proofs that ~] S~(u,v) - 1.
~ I d

2. Give an example to show that the blending functions of an S-patch are not
necessarily linearly independent.

3. Show that both triangular and tensor product Bezier patches are special
cases of S-patches.

4. Let I = {0,1}. Show that

a. I d - { 0 d}.

462 C H A P T E R 8 Pyramid Algorithms for Multisided Bezier Patches

b. The pyramid algorithm for the points {P i}, i ~ I d, is the de Casteljau
algorithm for the Bezier curve with control points {P i}.

5. Let I = {0,1,2}.

a. Show that

i. I d - { 0 2d}.

ii. The S-patch for the points {Pz} indexed by I d is a polynomial patch
of degree d.

b. Implement the pyramid algorithm for points {P Z} indexed by I d.

6. Implement the pyramid algorithm for points {P Z} indexed by I d, where

a. I consists of the vertices of the standard 4-simplex

b. I = {(0,0),(1,0),(2,1),(1,2),(0,1)}

Compare the pentagonal surfaces generated by these two indexing sets.

7. For k -- 1 d, let Qk denote a convex polygon with ordered vertices
Qik 1 Qik m and barycentric coordinate f u n c t i o n s flikl (U, v) flikm (U, V)
indexed by a set of p-tuples Ik. Generalize the pyramid algorithm for S-
patches by replacing I d-l with I 1 (9... ~ Id_ l .

a. What is the domain of this patch?

b. How must Equation (8.5) be modified to make the pyramid algorithm
valid?

c. Describe the blending functions for this patch.

8. Let I = {i 1 in} be the vertices of a planar polygon. Show that if we use the
barycentric coordinate functions in Section 8.1, Exercise 4, then the corre-
sponding S-patch of depth d with domain I and control points indexed by I d
reproduces linear functions on I d.

9. Show that the boundaries of a rational S-patch are the rational Bezier curves
determined by the mass-points along the boundary of the control net.

10. Let {S~(h,v)} be a collection of S-patch blending functions, and let {wz} be
a collection of nonzero scalar weights. Define

R~ (u, v) = wAS ~ (u, v) , A ~ I d.
Z w~S~(u,v)

l.t~I d

Show that these functions behave like rational S-patch basis functions. In
particular, show that

a. ~,ZeI d R~ (u, v) - 1

b. R(u, v) = ~.,~i d R~ (u, v)P A

8.4 S-Patches 463

8.4.2 Simplicial S-Patches

A simplicial S-patch is an n-sided S-patch whose index set is (A n-1)d, where An-1
consists of the n vertices {(1,0 0) (0 0,1)} of the standard (n - 1)-simplex.
Simplicial S-patches have the following two rather special properties:

i. Every n-sided S-patch of depth d can be represented as an n-sided simplicial
S-patch of depth d.

ii. Every polynomial surface of degree d can be represented as an n-sided sim-
plicial S-patch of depth d, where the barycentric coordinate functions are
chosen as in Section 8.1, Exercise 3, and normalized as in Section 8.1, Exer-
cise 4.

To establish the first property, observe that

(An-1)d _ {(kl kn) l ~.,kj = d}.
j= l

Therefore, by Equation (8.8), the blending functions for a simplicial S-patch of
depth d are given by

T~ d (H,V) -- (d)]~k 1 (bl, V) . . .~kn (lg, V) (8.10)
kl . . .k n k 1 k n

Let {S~ (u,v)} denote the blending functions for an arbitrary n-sided S-patch of
depth d with the same domain polygon, but with index set I d, where I = {il in}.
Then by Equations (8.8) and (8.10),

S~ (u, v) "- Z (kl'd'kn)/~kl (u, V) ' " ~ kn (u, v) = Z Zk d'' "kn (U, V).

kli 1 +'"+kni n =~ kli 1 +'"+knin=A,

Now suppose that S(u,v) is an arbitrary n-sided S-patch of depth d with control
points {P2}" Let T(u,v) be the simplicial S-patch of depth d with control points
{Qkl...kn }, where

Okl.. .k n = eklil +...+kni n �9

Then

T(u,v) = d (u,v)}eZ T, d (l.t, V)Qkl .kn - Z { Z Tk 1" "kn kl . . .k n .. -
k l+' ' '+kn=d A, eI d kli l+'''+knin=&

2e I d

Hence the S-patch of depth d with control points {P Z} is equivalent to the simplicial
S-patch of depth d with control points {Qkl""kn }" Thus by equating specific control
points in the control net, we can represent any arbitrary S-patch by a simplicial S-
patch of the same depth.

464 C H A P T E R 8 Pyramid Algor i thms fo r Mul t i s ided Bezier Patches

Moreover, every polynomial surface P(u,v) of degree d can be represented as an
n-sided simplicial S-patch of depth d. To understand how, let Q1 Qn be the verti-
ces of a convex polygon Q with the barycentric coordinate functions 131 fin
defined in Section 8.1, Exercise 3, and normalized as in Section 8.1, Exercise 4. By
Section 8.1, Exercise 4, these barycentric coordinate functions reproduce linear
functions, so, in particular,

Let

(U, V) - fll (U, v)Q 1 +. . . + fin (u, v)Q n .

n

1 -'n - {(u 1 un) lu 1 u n > 0 and ~.,u k = 1},
k=l

and define the affine map /r:l -'n + Q by setting n'(u 1 u n) = UlQ1 + ' " + unQn. Then

P(u, v) - P(fll (u, v)Q 1 +. . . + fin (u, v)Q n) - (P o/r)(fll (u, v) fin (u, v)) .

But (P o zr)(u 1 Un) is a polynomial map of degree d in n variables, and, just as in
the bivariate setting, the Bernstein polynomials

B d k k n
k l . . . k n (//1 blrl) - - (k l d . k n) l g l " . I g r t , k 1 + "" + k n = d ,

form a basis for these polynomials over F n (see Exercise 2). Hence there are points

Pk~'"kn such that

(p o ~)(u 1 . . , U n) = ~ B d , . k l . . . k n (Ul u n) P k l . . . k n . (8.11)
k 1 +...+k n =d

It follows that P(u,v)

= (p o ~)(fll (u, v) fin (u, v))

- y_ , B d
-- k l . . . k n (ill (U, V) fin (u, v))Pkl...kn -- E rkd...kn (l l , V) P k l . . . k n "

k 1 + . . . + k n = d k l + . . . + k n = d

Therefore, P(u,v) can be represented as an S-patch of depth d with control points

P k l . . .k n .

We can exploit Equation (8.11) to find the S-patch control points Pkl...kn of the
polynomial surface P(u,v) by evaluating the blossom of P at the vertices of the
domain polygon. Since Jr is degree 1, the blossom of P o Jr is

p o/~d _ p o (ff x . . . x g).
Y

d factors

Let E 1,.. . ,E n be the vertices of A n-1 . Then by the dual functional property of the d-
variate blossom

Pk,...k,, - (P ~ Jrd)(E1 E1 En En) = P(n'(E1) /r(E1) Ir(En) ~ (E n)) .

k; kn ~ #n

8.4 S-Patches 465

But zc(E k) = Qk, k - 1 , n . Hence

Pkl . . .k n - P(Q1 Q1 On a n) . (8.12)

Exercises

1. Show that the blending functions {Tkd...k~ (u,v)} of a simplicial S-patch are
composites of the multivariate Bernstein basis functions defined by

{Bk a, .., - �9 . .kn(Ul , �9 Un)} {Ul,. , U n I | 1 7 4 u n}
1

~ r

d factors

where uj has the index (0 0,1,0 0), and the functions uj - f l j (u ,v) .

J
2. Prove that the Bernstein polynomials

Bk d .. d k n ...kn (Ul,. ,U n) - (k l . . . kn)U kl ""U n , k 1 + . . . + k n - d ,

form a basis for the polynomials of degree d in n variables over F n . (Hint:
Mimic the trick in Section 5.4 for converting the Bernstein basis into the
monomial basis.)

3. Consider a tensor product Bezier surface of bidegree d with control points
{Plm }- Show that the control points {Qk~ ""k4 } of the equivalent simplicial S-

patch are given by Qkl...k4 - Pk2 +k4,k3 +k4, k 1 + k 2 + k 3 + k 4 = d.

4. Let P(u, v) - (u, v) be the identity map, and let Q1 Qn be the vertices of a
convex polygon. Using Equation (8.12), show that the S-patch control
points for P(u,v) are given by

klQ 1 + ... + knQ n .
Pkl " "kn = d

5. Here we develop a depth elevation algorithm for simplicial S-patches.

a. Show that

+ 1
i. k. = d+l

d + 1 *kl...kj +1...k n

+ 1
ii. T~dl...kn (U, v) - X j ,rd+l (u, v) d + 1 ~kl" .kj +1...k n

b. Let {Pkd...k,, } be the control points for a simplicial S-patch T(u,v) of
depth d, and let R(u ,v) be the simplicial S-patch of depth d + 1 with con-
trol points

R d + l ~ h j d
hl...hn = P h l . . . h j _ l . . . h n .

j = l d + l

Show that R(u ,v) - S(u,v) .

(Compare to Section 5.8.2, Exercise 9.)

466 C H A P T E R 8 Pyramid Algori thms for Mult is ided Bezier Patches

6. In this exercise you will use the generating function for the blending func-
tions of a simplicial S-patch to derive identities for these S-patch blending
functions. Define

Td (u,v, xl x n) - (fll(U,V)Xl + ' " + fln(U,V)Xn) d.

a. Show that

Td(u,v, Xl X n) - ~_, T~(u,v)Xl~l'"x~nn.
~t,e(An-1) d

b. Using part (a), derive the following identities:

~, Tff (u, v) =- I
Ze(An-l) d

ii. ~., A k T~ (u, v) = d flk (u, v) k = 1 n
Ze(An-1) d

iii. Z ~kl " " ~kj T~ (u, v) = d! /],E(An-1)d (d - j)! flkl (u' v)" " flkJ (u,v)

iv.
~_~ '~k 1 ! '" '~'kj !

~l,E(An-1)d (/],kl - il)!. . .(Akj - ij)! T~ (u, v) =

d! il '
(d - i 1 ij)! flkl (u 'v) '" f lkJ ~J

(u,v)

(Hint: Differentiate the generating function and evaluate at X 1 = . . . = X n = 1.)

8.4.3 Differentiating S-Patches

It is easy to find the first-order partial derivatives of an S-patch. Recall from Equa-
tion (8.6) that the S-patch blending functions S~t(u,v) can be expressed in terms of
discrete convolutions of the barycentric coordinate functions:

{S~(u,v)} = { ~ l (U , V) ~n(U,V)}| { ~ l (U , V) ~n(U,V)}
�9 , i �9

d factors

Hence, by Equation (5.21),

~)/~n (u, v) } @ !/~1 (u, v) fin (u, v) } @..-t~ {/~1 (u, v) /~n (u, v) } ~)u
d-1 factors

c}/~n (u, v) } @ {/~1 (u, v) fin (u, v) } @... (~ {/~1 (u, v) /~n (u, v) }
d-1 factors

8.4 S-Patches 467

or equivalently,

Ofln (u, v) sd_ 1) aS~ (u, v) = d 0131(u' v) sd_ 1 (u, v) + " . + (u, v)
[aOU 30U Z-il b--s Z-in

OSff, (u, v) = d(~ (u, v) sd_ 1 (u, v) Ov ~ ~v Z-il
+... + O[J n (u, v) sd_ 1 (u, v))

~v 2"-in) "

Therefore, the first-order partial derivatives of the S-patch

S(u, v) = ~., S~ (u, v)P~.
~ I d

are given by

as u'" =d :c aei u''
OU peld-1 �9 OU

 ep+i)
3S(u'v) = d y~ s#-l(u,v)(~, O[~i(u'V) pp+il.

~v pdd-1 kieI ~v

Algorithmically, these formulas say that to find a first-order partial derivative of
an S-patch of depth d, we need only take the first-order partial derivative of the bot-
tom level of the pyramid algorithm, then run the algorithm, and multiply the result
by d. In fact, it follows by our convolution formulas that we could, if we choose, take
the first-order partial derivative of any level of the pyramid algorithm, then run the
algorithm, and multiply the result by d (see Exercise 2).

of an S-patch most of the functions {Sdo-i(u,v)} vanish Along any boundary
because most of the barycentric coordinate functions are zero along the boundary.

r "

In fact, along the boundary corresponding to the edge QhQh+l of the domain poly-
gon, [~g = O, g ~ h,h + 1. Let 01ff -1 denote the indices (d - 1 - k)i h + kih+ 1, k = 0
d - l ~ t h a t is, the indices corresponding to a boundary of an S-patch of depth d - 1.
Then, by Equation (8.6), along the boundary corresponding to the edge QhQh+l

- 1 (. , - 0, p

Therefore, along this boundary

3S(u'v) = d ~, S#-'(u,v)(~, 3fli(u'V) pp+i)
OU p~Old-1 kiwi ~U

O[~i(U'V) Pp+i).
OV peOld-1 i

It follows then that only the control points indexed by the elements of 3Id-l@ I
affect the first-order partial derivatives along, or the directional derivatives across,
this boundary.

468 C H A P r E R 8 Pyramid Algorithms for Multisided Bezier Patches

Higher-order partial derivatives are not much more difficult to compute. To sim-
plify our notation, let

/31(u, v) = 1/31(u, v) /3n (u, v) I

~l(U'V)={ ~l(u'v)~u ~u ~n(U'V)}~u
and so on for higher-order derivatives. Then since

~S~(u,v)} _ dO~i(u,v) | ~l(U,V)|174 ~i(u,v),
OU OU ' d-1 factors �9

it follows by Equation (5.21) that

{~2S~(u,v) t _ d~2fll(U, v) | ~l(U,V)|174 ~i(u,v)
~u2 Ou2 " d-1 factors

+ d(d - l) ~i~I(U'V~) | ~i~I(U'V)
bu ~u (~ !ill (u, V) fin (tt, v)} (~)... (~) {ill (t2, V) fin (tt, v)!,

d-2 factors

and similar results hold for the other second-order partial derivatives of the blending
functions.

Again this formula has an interesting algorithmic interpretation for differentiat-
ing S-patches. To find a second-order partial derivative of an S-patch of depth d, we
can proceed in the following fashion:

1. Take the second-order partial derivative of one level of the pyramid algo-
rithm, then run the algorithm, and multiply the result by d.

2. Take the first-order partial derivative of two different levels of the pyramid
algorithm, then run the algorithm, and multiply the result by d(d- 1).

3. Add the results of (1) and (2).

For higher-order partial derivatives, there are similar formulas and similar algo-
rithms, involving higher-order derivatives as well as derivatives of more and more
levels of the pyramid algorithm (see Exercise 4). Since such formulas are rarely nec-
essary in practice, and since, in any event, these formulas can be derived from the
product rule, we shall not pursue this topic further here.

Exercises

1. Show that the normal of an S-patch of depth d along the boundary corre-
sponding to the edge QhQh+l of the domain polygon depends only on the
control points indexed by Old-l+ I.

8.4.4

8.4 S-Patches 4 6 9

2. Show that to find the first-order partial derivatives of an S-patch of depth d,
we could, if we choose, take the first-order partial derivative of any level of
the pyramid algorithm, then run the algorithm, and multiply the result by d.
Explain why in some cases it might be better to take the derivative of the
last level of the algorithm, instead of the first level.

3. Consider an S-patch whose domain polygon has ordered vertices Q1 Qn.

a. Show that only the control points indexed by the elements of ~I d-2 �9 12
affect the second-order partial derivatives of the S-patch along the bound-

ary QhQh+l.
b. Generalize the result in part (a) to higher-order partial derivatives.

4. Develop an algorithm for finding the third-order partial derivatives of an S-
patch. How many different pyramids must you compute? What are the nor-
malizations for each of these pyramids?

Blossoming S-Patches

We know how to define the blossom for a polynomial surface, but an arbitrary S-patch
is not a polynomial surface. How then should we define the blossom of an S-patch?
Since S-patches are generalizations of triangular Bezier patches, we will take our cue
from blossoming for bivariate Bernstein polynomials.

One way to blossom a triangular Bezier patch is to start with de Casteljau's tet-
rahedral algorithm and replace the parameters (u,v) by a different parameter pair
(uk,vk) on each level of the algorithm. Let's try the same device with S-patches of
depth d. On the kth level of the pyramid algorithm for an S-patch S(u,v), replace the
parameters (u,v) by the parameter pair (uk,vk). The effect is to replace the values of
the barycentric coordinate functions fll (u, v) fin (u, v) on the kth level of the algo-
rithm by the values fll (uk,vk) fln(Uk,Vk). The function that emerges at the apex
of the pyramid we shall call the blossom of the S-patch S(u,v), and we shall denote
this blossom by s((ul,Vl) (Ud,Vd))."

The blossom s((ul,Vl) (Ud,Vd)) of an S-patch S(u,v) of depth d with domain
polygon Q1 Qn and index set I = (il i n) has the following properties:

i. Symmetry

ii. Diagonal

s ((u , v) (u , v)) = S (u , v)

iii. Dual functional

sIQ1 Ol lil+ + nin

470 r H A P Y E R 8 Pyramid Algorithms for Multisided Bezier Patches

Notice that the multiaffine property no longer holds, in general, for the blossom
of an S-patch because the functions fll (Uk, Vk) fin (Uk, Vk) are not linear functions
for arbitrary S-patches. The multiaffine property will hold only when n - 3, or when
n = 4 and the domain is a rectangle with sides parallel to the coordinate axes. We
can, however, prove the validity of the other properties of the blossom of an S-patch.

The diagonal property is easiest to establish. Since we blossom the pyramid
algorithm by replacing the pair (u,v) by the pairs (Uk,Vk), reversing the process and
replacing the pairs (Uk,V k) by the pair (u,v) certainly retrieves the original surface.

The dual functional property can be established by the following argument. At
the jth vertex of the domain polygon, all the barycentric coordinates except the jth
one vanish~that is,

f l h (Q j) - 0 h r j

=1 h - j .

Hence if we evaluate the pyramid algorithm for the blossom at

Q1 Q1 On'

then on the first k 1 levels fll = 1 and the remaining flh = 0; on the next k 2 levels
f12 - 1 and the remaining flh - 0 ...; until on the last k n levels fin = 1 and the remain-
ing flh - 0. Thus tracing through the pyramid algorithm, only the control point with
index kli 1 +... + kni n survives to the apex of the pyramid.

The symmetry property requires a bit more work. To establish this property, we
shall take a different, alternative approach to blossoming for S-patches by develop-
ing formulas for the blossoms of the blending functions.

We can easily blossom the blending functions {S~(u,v)}. Recall from Equation
(8.6) that

{S~ (u, v) } = {ill (u, v) fin (u, v) } | | {ill (u, v) fin (u, v) }.
v -

d factors

To blossom the blending functions, we need only replace the pair (u,v) by a different
pair (Uk,V k) in each factor of the convolution. Thus

.

= {ill (Ul,Vl) f ln(Ul,Vl)}|174 fln(Ud,Vd)}. (S.13)

d factors

This substitution is equivalent to replacing the parameters (u,v) by the parameter pair
(Uk,Vk) on the kth level of the down recurrence for {S~(u,v)}, since, by induction,
Equation (8.13) is equivalent to

((Ul. Vl) (u,. vd)) - l(Ud. vd s -i ((Ul. v.) (Ud_l. Vd_l))+
d-1

"'" + fin (Ud, Vd)S•-i n ((Ul, Vl) (Ud-1, Vd-1))'

8.4 S-Patches 471

d- ! (u, v) - 0 if ~ - i k e~ I d-1 with the usual convention that sz_i~
We can now establish all the properties of the blossom of an S-patch directly

from Equation (8.13) for the blossom of the blending functions. As before the diago-
nal property is easy to prove. Moreover, since convolution is commutative, it follows
immediately from Equation (8.13) that blossoming is symmetric in the parameter
pairs (Ul, v 1) (Ud, v d).

To establish the dual functional property for the blending functions, substitute

Q1 Q1 Qn Qn

for the parameters (U l ,V l) (Ud,Vd) in Equation (8.13). Then

f s~(O~ o t 9~ o~ t- !~1~o1> ~ O l > } k ' |174 ~.(o.~}k~
J

lq k n d factors

where the power kj means repeat the corresponding factor kj times. But

f l k (Q j) - O k r j

=1 k - j ,

SO

s~ (Q1 Q1 Qn Qn) = 0 k l i 1 + . . . + kni n r)~
,,. . i �9 j

kl kn

= 1 kli 1 + . . . + kni n - ~ .

Since

s(~, v) - y~ s~t (~, v)Pz,
/],,~I d

it follows by linearity that

Is this approach to blossoming useful? Computations with the standard blossom
are made simple by the multiaffine property. This property is not available for the
blossom of an S-patch, so actual computations are difficult to perform. Even though
we have a dual functional property for S-patches, it is unclear how to exploit this
property to generate change of basis algorithms for S-patches as we did for Bezier
patches using blossoming.

472 CHAPTER 8 Pyramid Algorithms for Multisided Bezier Patches

One way to look at the problem is that there are too many terms in the factors of
the convolution in Equation (8.13); n functions cannot be both linear and indepen-
dent. But if each of these factors were itself to factor into products of simpler convo-
lutions, then the computations would simplify. This serendipity is exactly what
happens for tensor product surfaces, where there are four bilinear barycentric coordi-
nate functions, but these four functions factor into the convolution of two sets of lin-
ear functions. So it is such blending functions, generated by convolutions that factor
into linear factors, that we would like to study. The corresponding surfaces are called
C-patches. But before we can investigate C-patches, we first need to generalize the
pyramid algorithm so that it is valid for surfaces other than S-patches.

Exercises

1. Consider a tensor product Bezier surface S(u,v) of bidegree d with control
points {Plm}" Show that for any integer r satisfying 0 < r < min(k,/)

 m-S / + r ,-r m-r
2. Show that for an arbitrary S-patch, different choices of k 1 k n in the

expression

S/ l Qn On /

can generate the same control point {Px}, but that for simplicial S-patches
the choice of k 1 k n is unique for each control point {P,~}.

3. Let I = {0,1,2}.

a. Show that the blossom for a three-sided S-patch with indexing set I d is
multiaffine.

b. Conclude that the blossom for a three-sided S-patch with indexing set I d
is the standard blossom for bivariate polynomials of degree d.

c. Use the result in part (b) to develop an algorithm to convert three-sided
S-patches with indexing set I d to triangular Bezier form.

4. Consider the S-patch in Section 8.4.1, Exercise 7, generated by replacing
I d-I with/1 ~ " " @ Id- l , where /1 I d are d sets ofp-tuples.

a. What is the blossom of this S-patch?

b. What is the dual functional property for this S-patch?

5. a. Explain how to blossom a rational S-patch.

b. What is the dual functional property for rational S-patches?

6. Suppose that S(u,v) is an n-sided S-patch of depth d with blending functions

{S~ (u, v) } - {~il (u, v) ~i n (u, v) } (~) . . . ~) {~il (u, v) ~i n (u, v) }
d factors

8.5 Pyramid Patches and the General Pyramid Algorithm 473

Let S(uil uin) be the polynomial generated by replacing the barycentric
coordinate functions fli 1 (u, v) fli n (u, v) with the parameters Uil ui, ' in
the pyramid algorithm for S(u ,v) , and let

{S~ (ui 1 ui n) } - {Uil ui n } | | {Uil ui n }.

d factors

Then S(Hil blin) and S~(ui l ui, ~) are polynomials of degree d in n
variables with polynomial blossoms

~((Ull Uln) ,(Udl Udn)) and ~J((Ull Uln) (Udl Udn)).

Show that

a. 8~((Ul,Vl) (Ud,Vd)) -

S~ ((flil (ul' vl) flirt (ul' vl)) (flil (ud' vd) flin (ud' vd)))

b. s ((u l ,V l) (Ud,Vd)) -

S((flil (ul' vl) ~in (ul' vl)) (flil (ud' vd) ~in (ud' vd)))

7. Let S(u ,v) be a simplicial n-sided S-patch of depth d with domain polygon
Q1 Qn and control points { Pkd...kn }.

a howth t sl , Q1

b. Let R (u , v) be the simplicial S-patch of depth d + 1 with control points

Rd+l n hj d
hl...h n -- ?.1 d + l PCtl'"hj-l'"hn"

Using part (a), Exercise 6(b), and the multivariate version of Proposition
6.5, show that R (u , v) = S(u ,v) . (Compare to Section 6.5.1, Exercise 14.)

8.5 Pyramid Patches and the General Pyramid Algorithm

Consider again the pyramid algorithm in Equation (8.5), where we use the set I to
index the barycentric coordinate functions.

474 C H A P T E R 8 Pyramid Algorithms for Multisided Bezier Patches

The General Pyramid Algorithm

1. P~ (u, v) = P3. /l ~ I d

2. P~(u,v) : Zfl i (. .v)P~+~(. .v) p E I d-`
i~I

3. P(u, v) = p d (u, v) . (8.14)

The key step is clearly the recursion in step 2. What do we really need to make
this step a valid recurrence?

If we want to guarantee that the surface patch P(u,v) is affine invariant and lies
in the convex hull of the control points {P~}, then the functions { f l i (u , v) } i ~ i mus t
sum to one and be nonnegative inside the domain polygon. This constraint is all we
require. For S-patches, the number of elements in I is required to match the number
of vertices in the domain polygon. But the recurrence in Equation (8.14) will work
even without this constraint.

A pyramid patch, then, or more simply a P-patch, is a surface P(u,v) defined by
the general pyramid algorithm in Equation (8.14), where the functions {fli(u,v)}i~I
sum to one and are nonnegative inside some domain polygon. In analogy with S-
patches, we shall call the functions {fli(u,v)}i~I the barycentric coordinate functions
for the P-patch. Clearly every S-patch is a P-patch, but P-patches represent other
surfaces as well. Since the barycentric coordinate functions fli~ (u, v) fli, (u, v) for
the P-patch need no longer be barycentric coordinates for the domain polygon
Q1 Qm---in fact, in general, n > m--we may give up the conditions

flik - 0 on the line QiQi+l, k r i,i + 1.

flik (Q j) - 0 j r k

=1 j = k .

Eliminating these constraints will cause us to lose some control over the boundaries
of the P-patch, but this loss is the price we pay for generality. Nevertheless, when the
barycentric coordinate functions {fli(u,v)}i~I a r e well chosen, P-patches have other
compensating features. In Section 8.6, we shall see that if we select the functions
{fli(U, v) }i~I in an appropriate fashion, there are more efficient recursive evaluation
algorithms for P-patches than for S-patches. In this case there is also a novel blos-
soming procedure that provides the dual functionals for P-patches. In Section 8.7,
we shall show how to define the barycentric coordinate functions { f l i (U,V)} i~ l tO

regain control over the boundaries of the patch.
Most of the formulas we developed for S-patches extend readily to P-patches.

The blending functions {P~ (u,v) } for a P-patch of depth d can be computed either by
the up recurrence or by the down recurrence. The P-patch with control points {P~} is
given by

P(u, v) - 2 P~ (u, v)P2 .
~,~I d

8.5 Pyramid Patches and the General Pyramid Algorithm 475

By introducing scalar weights {w/~ }, we can define rational P-patches by setting

2
R(u, v) - / ~ l d

~, wpP~ (u, v)
peI d

There is also a pyramid algorithm for rational P-patches" simply replace the input
P~(u,v) = PZ at the base of the pyramid by P2(u,v) = (wzPz ,wA) and divide the out-
put of the algorithm by the weight. Notice that for rational P-patches the barycentric
coordinate functions need not even sum to one, since the blending in Equation (8.14)
occurs in Grassmann space, not in affine space.

We can compute the blending functions {P~(u,v)} by discrete convolution. Let
I = {i 1 i n }. Then

{e~ (u, v) } - ,{flil (u, v) fli n (u, v)} | | {flil (u, v) fli n (u, v) },. (8.15)
, r

d factors

It follows by induction from Equation (8.15) that the functions {P~(u,v)} satisfy the
n-term recurrence

(8.16)

with the usual convention that pal--) (u, v) = 0 if A . - i k ~ I d-1.
i t , t u r k

Equation (8.16) is equivalent to the down recurrence for P-patches. Hence the
functions {P~(u,v)} constructed from discrete convolution are indeed the blending
functions for the P-patch of depth d whose indexing set is/d. Moreover, it follows
from the definition of discrete convolution that the blending functions for a P-patch
are given explicitly by the formula

d k 1 k n
P~(tt, v) - 2 (kl kn)flil (u , v) " ' f l i n (u,v)" (8.17)

kli 1 +" .+knin=A,

All of the preceding formulas for P-patches are already familiar to us from S-
patches, but there are other properties of S-patches that do not extend so readily to P-
patches.

The boundaries of a P-patch are the images of the boundaries of its domain
polygon. However, unlike an S-patch, the boundaries of a P-patch are not, in general,
the Bezier curves generated by the control points indexed by (d - k)i r + kir+l,
k = 0 d. In fact, since the number of elements in I need no longer match the num-
ber of vertices in the domain polygon, we should no longer expect points indexed in
this fashion to have any special relation to a boundary of the patch. This lack of con-
trol over the boundary curves is one thing we lose when we generalize from S-
patches to P-patches. We shall see how to overcome this problem in Section 8.7,
where we discuss toric Bezier patches.

What about blossoming for P-patches? We can certainly try to blossom a P-patch
just like we blossom an S-patch, by replacing the parameters (u,v) by a different

476 C H A P T E R 8 Pyramid Algorithms for Multisided Bezier Patches

parameter pair (Uk, Vk) on each level of the pyramid algorithm. This function would be
symmetric and satisfy the diagonal property just like the blossom of an S-patch, but,
in general, the dual functional property would no longer hold because the dual func-
tional property is a consequence of the identity

fli k (Q j) - 0 j :/: k

=1 j = k ,

which is no longer valid for arbitrary P-patches. We shall see, however, in the next sec-
tion that if we choose the functions flil (u,v) flin (u,v) carefully, then there is an
alternative blossoming procedure that does provide the dual functionals for P-patches,
and this blossoming for P-patches is simpler than the blossoming for S-patches with
the same domain and depth.

Exercises

1. For k - 1 d, let Qk denote a convex polygon and let #ikl(bl,V),...,#ikm (U,V)
be a collection of barycentric coordinate functions for Qk indexed by a set
of p-tuples I k. Generalize the pyramid algorithm for P-patches by replacing
I d-t with I 1 @... @ ld_ 1 .

a. What is the domain of this patch?

b. How must Equation (8.14) be modified to make the pyramid algorithm
valid?

c. Describe the blending functions for this patch.

(Compare to Section 8.4.1, Exercise 7.)

2. Show that the partial derivative with respect to u or v of a pyramid patch of
depth d can be computed by differentiating any one level of the pyramid
algorithm and multiplying the result by d. Explain how to extend this result
to second-order partial derivatives.

8.6 C-Patches

C-patches are convolutions of S-patches--or more accurately a C-patch is a P-
patch whose barycentric coordinate functions are generated by convolution from
the barycentric coordinate functions of several S-patches. The C in C-patch stands
for convolution.

Since we are going to use several S-patches at the same time, we will indicate
the kth S-patch by the subscript k. To fix our notation, let (Qkl Qknk) be the
ordered vertices of the domain polygon Qk with barycentric coordinate functions

"sdk(u,v flkl(U,V) flknk (u,v), and let ! ~,/:,)} be the corresponding S-patch blending

8.6 C-Patches 477

functions indexed by the set of p-tuples 14 , where I k = (ikl ikn k). Recall that
fl. kj(U, V) - flikj(U,V), and let fllk(U,V) = (flik 1 (U,V) flikn k (U, V)). Then with this nota-
tion

, 4 . i 1 .

(u,v) l - & (u,v) | . | & (u,v) - (u, v) .
- - K

v

d k factors

To construct C-patch barycentric coordinate functions from S-patch barycentric
coordinate functions, let I - I 1 @... @ I m and define

flI(U,V) -- fli 1 (U,V) | 1 7 4 flIm (U,V). (8.18)

Since the functions fllk (u,v) are barycentric coordinates, these functions sum to
one; therefore, the functions fli(u, v) also sum to one (see Exercise 1). Moreover, the
functions fll(U,V) are nonnegative over the domain polygon Q = Q1 ~ ' " n Q m .
Now let d = (d 1 dm). Then the C-patch blending functions of depth d are defined
by

(u , v) - (u , v) - ' (" , v) | . . . | m (u , v) - (u ' v) | " " | (" ' v)

d m where ~ ~ I d = I dl ~) . . . (~)I m . Notice that if d 1 = . . . - d m, then the C-patch of
depth d is a P-patch of depth d 1 with barycentric coordinate functions fli(u, v).

The preceding construction is rather abstract, so before proceeding any further
let us take a look at some concrete examples.

EXAMPLE
8.1

Tensor Product Bezier Patches

Recall that the blending functions for a tensor product Bezier surface can be
generated by convolving the blending functions for Bezier curves. Thus for
a tensor product Bezier patch, the analogue of Equation (8.18) is

{ (1 - u) (1 - v), u (1 - v),(1 - u)v, uv} = { (1 - u),u} | { (1 - v),v}
{ (0 ,0) , (1,0), (0,1), (1,1) } - { (0 , 0) , (1 , 0) } @ { (0 , 0) , (0 , 1) } ,

where beneath each term we have indicated the indexing assigned to each
d2 (u,v) factor. The S-patch blending functions S]~ 0 (u,v),So&

are univariate Bernstein basis functions, since

{S~LIo(U,V)}- ! (1 - u) , u } | 1 7 4 : {B~I (u)}
dl

d2 {S0;t2 (u, v) } = ! (1 - v), v} | | { (1 - v), v! = {B (v) },
Y

d2

478 C H A P T E R 8 Pyramid Algorithms for Multisided Bezier Patches

and the C-patch blending functions C~122 (u, v) are the tensor product Bern-
stein basis functions

J - l

If d 1 = d 2, then the C-patch corresponding to the blending functions

{C~1/],2 (u, v) }

is also an S-patch because the functions { (I - u) (1 - v) , u (1 - v) , (1 - u) v , uv}
are barycentric coordinates for the unit square (see Figure 8.9).

EXAMPLE
8.2

A Pentagonal C-Patch

Consider the barycentric coordinate functions

([3ij(u,v)) = ((2 - u)/2,u/2) | ((2 - v) /2 ,v /2) | ((3 - u - v)/3,u/3,v/3)

I = ((0,0),(1,0)) ~ ((0,0),(0,1)) ~ ((0,0),(1,0),(0,1))(8.19)

where beneath each term on the fight-hand side we have indicated the
indexing assigned to the factor. By construction

I - I
Y

dl

{sd,22~ (u,v)} = ! (2 - v) / 2 , v / 2 } | 1 7 4 = {Bd,2& (v/2)}
Y

d2
are univariate Bernstein basis functions, and

{sd3,A 4 ~ (u,v)} = ! (3- u - v)/3,u/3,v/3} |174 { (3- u - v)/3,u/3,v/3!
J3

= {B~,/~4 (u/3,v/3)}

are bivariate Bernstein basis functions. Hence

{C~ (u,v) } - {n~l,o (U / 2) } l~ {nd?/~2 (v / 2) } (~ {n~,~,4 (u / 3,v / 3) } .

The indexing set I for the functions {flij(u,v)} is the Minkowski sum of the
indexing sets of the three factors (Figure 8.10), and the domain polygon for
the C-patch is the intersection of the domains of the three S-patches (Figure
8.11). Notice that, even if d 1 = d 2 = d 3, since there are eight functions
{flij(u,v) }, the corresponding C-patches are not S-patches for the domain
pentagon, which has only five barycentric coordinate functions.

8.6 C-Patches 479

(o,1) (],1) (o,1)

= = = (D
(o,o) (;,o)

(o,o) (],o) (o,o)

Figure 8.9 The unit square is the Minkowski sum of a horizontal line and a vertical line. Therefore, a ten-
sor product Bezier patch is a C-patch generated by convolving the univariate Bernstein basis
functions for the two lines.

(0 , 2)

(0,1)

,qw

(o,o)

(1,2)
A

(o,])

(1,1) = (~0)

(070) (1.0)

w w

(1,0) (2,0)

(0,1)

(],o)

(o,o)

Figure 8.10 The indexing set / for the functions (j~o{u,v)) in Example 8.2 is the set of lattice points in the
pentagon on the left, which is the Minkowski sum of the lattice points of the triangle and
the two lines on the right.

EXAMPLE
8.3

A Hexagonal C-Patch

Consider the functions

(flij(u,v)) - ((2 - u)/2,u/2)| ((2 - v)/2,v/2)| ((1 + u - v) / 2 , (1 - u + v)/2)

I = ((0,0),(1,0)) (~ ((0,0),(0,I)) ~ ((0,0),(i,i)) (8.20)

where beneath each term on the right-hand side we have indicated the
indexing assigned to the factor. Here the C-patch blending functions are
given by

480 CHAPTER 8 Pyramid Algorithms for Multisided Bezier Patches

The indexing set I for the barycentric coordinate functions along with the
domain hexagon for the C-patch are illustrated in Figure 8.12. Again even if
d I = d 2 = d 3, since there are seven functions {flij(u,v)}, the corresponding
C-patches are not S-patches for the domain hexagon, which has only six
barycentric coordinate functions.

(0,2) (1,2)

2 - v = O

3 - u - v = O

u=O

- u = O 1
u 0

(0,0) (2,0)

(0,3)

(0,2)

I.=ofl' u- =o
/ 2 u ~

(0,0) (2,0) (3,0)

Figure 8.11 The domain for the C-patch in Example 8.2 is the pentagon on the left, which is the intersec-
tion of the triangle and the square bounded by the four lines on the right.

(1,2)_ 2 - u = O _(2,2)

l + u 2 - u =

(O,1) I (1 , 1) . ~ -

u=O 1 l - u + U
, q w

(0, O) u = 0 (1, O)

(0,1)

�9 : �9 �9

(0,0) (1,0)

(0,0)
,; (o,o)

Figure 8.12 The indexing set / for the barycentric coordinate functions (rio{u,v)) in Example 8.3 is the set
of lattice points in the hexagon on the left, which is the Minkowski sum of the lattice points
of the three lines on the right. The domain for the C-patch is the hexagon on the left, which
is bounded by the three pairs of lines that bound the domains for the barycentric coordinate
functions of the three S-patches (unbounded rectangles) that generate the C-patch.

8.6 C-Patches 4 8]

The domains of the S-patches in the preceding three examples were carefully
chosen so that their intersection would produce interesting domains for the corre-
sponding C-patches. The indexing on their barycentric coordinate functions, how-
ever, is somewhat arbitrary and was chosen so that the index sets for the C-patches
would coincide with lattice points inside their domains. Nevertheless, this indexing
will be important in Section 8.7, when we study toric Bezier patches.

C-patches are special kinds of P-patches when d 1 d m, so the general pyr-
amid algorithm in Equation (8.14) is a recursive evaluation algorithm for these C-
patches. Recall, however, that tensor product Bezier patches have two recursive eval-
uation algorithms: a bilinear pyramid algorithm (Figures 5.41 and 5.42) and a two-
tier de Casteljau algorithm (Figure 5.40). The bilinear pyramid algorithm is the S-
patch evaluation algorithm for tensor product control nets. But where does the two-
tier evaluation algorithm come from?

The two-tier de Casteljau algorithm arises because the bilinear barycentric coor-
dinates for the square factor into linear factors via discrete convolution:

{ (1 - u)(1 - v), u(1 - v),(1 - u)v, uv} = {(1 - u),u} | { (1 - v),v}.

Hence the tensor product blending functions also factor in a similar fashion:

{Bd}'d2 (u,v)} - { (1- u),u} dl | { (1- v),v}d2 - {Bd' (u)} | {BJ2 (v)},

where powers denote repeated convolution. Therefore, we can replace bilinear
blends in (u,v) by linear blends in u followed by linear blends in v. This procedure is
exactly the two-tier de Casteljau evaluation algorithm for tensor product Bezier
patches. Since the barycentric coordinate functions for a C-patch factor via discrete
convolution, C-patches also have a multitier recursive evaluation algorithm.

Multitier Evaluation Algorithm for C-Patches

Initialize PA, (u, v) - PA, for ~ s I d - I dl (~... (~ I dm.

For k = 1 m

ldk+l (~. (~ dm For each ~ ~ "k+l "" I m "

dk ~ , (u , v) - Pr 0 ~ Ik

nk
P~+p(U,V) - ~ ~ikh (U, l -1 dk-l v)P~+P+ik h (U,V) p E I k (8.21)

h=l

v) - P~ dk (u, v) e (u,

Set C(u,v) - pgm (tt, v).

The input to this algorithm is a collection of control points {P~,} indexed by

dm I d = I d l (~ . . . ~ I m �9

482 C H A P T E R 8 Pyramid Algorithms for Multisided Bezier Patches

The output is a point on the C-patch with blending functions {C~ (u,v)}. Each inner
loop of this algorithm is the S-patch pyramid algorithm for the points {P~+rl(u,v)},
where ~ is a fixed value in

Idk+l ~). ~ dm
k+l "" Im

I dk, so the out ut P (u, v) of each inner loop is the S-patch for the and 7/varies over, k P
points {P~+o(u,v)}. Since, by assumption, the C-patch basis functions are convolu-
tions of the S-patch basis functions, this algorithm generates the C-patch for the con-
trol points {Pz}.

The formal proof that the multitier evaluation algorithm generates the C-patch
proceeds by induction on m. Suppose that m - 2. On the first pass, the algorithm
computes the values

Zl ~idl v)eAl +2~2 ~2 E �9

On the second pass, the algorithm computes the surface

C(u,v) = Z S~2(u, (u,v) ~2~1d2 v)P~2

= Z S~(u,v) Z
,;t,2 eI d2 ,;t,1 eI dl

S~ (u, v)P/],I +~2

Z
/]'1 +/]'2 ell dl ~ ld2

C~ +z2 (u, v)Pz~ +z2 ,

which is indeed the C-patch for the points {P~,}, A, e I d = I dl ~) I2 d2. It follows then
by induction on m that the multitier algorithm is an evaluation algorithm for C-
patches (Exercise 8).

We observed in Section 5.8.1 that the two-tier de Casteljau evaluation algorithm
for tensor product Bezier patches is a good deal more efficient than the bilinear pyr-
amid algorithm. Similarly, for C-patches the multitier evaluation algorithm is much
more efficient than the general P-patch pyramid algorithm. For example, consider
the pentagonal C-patch of Example 8.2 for d 1 = d 2 = d 3. The standard P-patch pyra-
mid algorithm for this pentagonal patch is an eight-term recurrence over a five-sided
domain. We can now replace this eight-term recurrence by two sets of two-term
Bemstein recurrences and one set of three-term Bemstein recurrences because

= ((2 - u) / 2,u / 2) dl | ((2 - v) / 2, v / 2) dl | ((3 - u - v) / 3,u / 3, v / 3) dl,

where powers denote repeated convolution. So this pentagonal C-patch has an alter-
native evaluation algorithm consisting sequentially of two tiers of univariate de
Casteljau algorithms and one tier of the bivariate tetrahedral algorithm.

8.6 C-Patches 48. 3]

Blossoming also works quite nicely for C-patches. Recall that simply replacing
the parameters (u,v) by a different parameter pair (uk,vk) on each level of the P-patch
pyramid algorithm does not, in general, give rise to the dual functionals for P-
patches. But for C-patches, something wonderful happens: there is a new way to
blossom.

We can blossom a tensor product patch from the two-tier de Casteljau evaluation
algorithm by blossoming the lower tiers in the u parameter and the upper tier in the v
parameter. Let's try an analogous tactic with the multitier evaluation algorithm for
C-patches. That is, blossom the multitier algorithm for C-patches by blossoming the
S-patch pyramid algorithms for the different tiers independently. The effect would be
to replace the values of the barycentric coordinate functions flkl (u,v) ,flknk (u,v)
on the jth level where they appear in the corresponding S-patch algorithm by the val-
ues flkl (Ukj,Vkj) flkn~ (Ukj,Vkj). We call the function generated in this fashion the
blossom of the C-patch C(u,v) and denote this blossom by

C((Ul 1, VII) (Uldl, Vld 1) (Uml, Vml) (Umdm , Vmdm))"

Equivalently, we can blossom the basis functions of the C-patch

by replacing flkl(U,V) flkn~ (u,v) by flkl(Ukj,Vkj) flknk (Ukj,Vkj) injth factor of
fl~k(u,v). Evidently then

{C~((Ull,Vll) (Uldl,Vldl) (Uml,Vml) (Umdm,Vmdm))}

{ dl((Ull,Vll) (Uldl Vldl))}|174 (Umdm,Vmdm))}" -- S~l , , .,

Thus we blossom the C-patch blending functions by blossoming, independently, the
S-patch blending functions that define them.

The blossom c((Ull, vii) (Uldl, Vld 1) (Uml , Vml) (Umd m , Vmd m)) of a C-
patch C(u,v) of depth d has the following properties:

i. Multisymmetry

ii. Diagonal

C((Ull, Vll) (Uldl, Vldl) ,(Uml, Vml) (Umdm , Vmdm))

= C((Ulo.1 (1), Vlo.1 (1)) (Ult71(dl),Vl~l(d1))

(UmGm (1), Vmcrm (1)) (Um~ m (dm), Vmcrm (dm)))

c((u, v) (u, v)) = C(u, v)

484 CHAPTER 8 Pyramid Algorithms for Multisided Bezier Patches

iii. Dual functional

c 011 O i l ,Oln 1 Oln 1 Oml Oml Omnm"'~"Omnm [I - P2'

~11)t;n 1)tml)tmn m J

where /1, =/1,1 +"" +/I'm and A, k = 7klikl +"" + 7knk in~"

The diagonal property is immediate from the definition of the blossom, and the
multisymmetry property follows from the symmetry of the blossom for S-patches.
The dual functional property is also a consequence of the dual functional property
for S-patches because

"x)

Q l l O l l Qln 0 1 n l Qml Oml Qmnm Om mlt
~1 r?n, rml rLm JJ

Qlnl 01n Qml Qmnm Omnm]t - SA, 1 9 1 1 Qll
~11 ~/ln 1 sd~m ~"ml ~'mn m JJ

SO

c~ 91 ' / 1 Qll Qlnl Qlnl, . , O m l Qml Q m n m Qmnm = 1
~11 ~ ~t;n 1)tml " ~tmn m)

if and only if /1, = ~1 +"" + Am where A, k = ~/klikl +"" + ~"kn k ink.
In general, the blossom of a C-patch, like the blossom of an S-patch, is not mul-

tiaffine, but if any factor flIk (u, v) consists entirely of linear functions, then the blos-
som of the C-patch will be multiaffine in the corresponding blossom parameters
because each of these parameters in the blossom will appear only to the first power.
Thus if the C-patch is the convolution of S-patches that represent Bezier curves or
triangular Bezier patches, the blossom of the C-patch will be multiaffine in every
parameter pair. For example, the blossom of the pentagonal patch in Example 8.2 is
multiaffine in all its parameters and so too is the blossom of the hexagonal patch in
Example 8.3.

To summarize: two good things happen for C-patches: there is a multitier evalua-
tion algorithm, and the dual functionals can be constructed by blossoming this algo-
rithm. Moreover, if all the S-patches in the convolution for the C-patch are standard
Bezier patches (or Bezier curves), then the blossom is multiaffine in all its parameters.

In fact, even if the S-patch barycentric coordinate functions are not normalized
to sum to one, as long as the blending functions for the C-patch sum to one, all the

8.6 C-Patches 4 8 5

results in this section including the multitier evaluation algorithm remain valid.
Blossoming the multitier evaluation algorithm still provides the dual functionals for
the C-patch. The proofs are exactly the same (see Exercise 11). We shall make use of
these observations in Section 8.7.11, when we blossom toric Bezier C-patches.

As usual, we can construct rational C-patches by introducing scalar weights
{wz} and setting

~, CJ (u, v)wzP Z
R(u, v) = h e l d

Z wpC~(u,v)
p e l d

There is also a multitier evaluation algorithm for rational C-patches: simply replace
the input P~(u,v) - PZ at the base of the algorithm by P~(u,v) -(wzPz,w ~) and
divide the output of the algorithm by the weight. Since the blending in Equation
(8.21) now occurs in Grassmann space, the blending functions for a rational C-patch
need not even sum to one. Therefore, we can generate the barycentric coordinate
functions for a rational C-patch by convolving the unnormalized barycentric coordi-
nate functions of rational S-patches. Blossoming still provides the dual functionals
for rational C-patches constructed in this fashion (see Exercise 10).

To get a better feel for the relative advantages and disadvantages of S-patches
and C-patches, we close with a comparison (Table 8.2) of the hexagonal S-patch and
hexagonal C-patch, where d I = d 2 = d 3, for the domain in Example 8.3.

From this comparison we see that while C-patches have many fine properties,
they have one embarrassing deficiency: the boundary of a C-patch is not easy to deter-
mine. This lack of control over the boundary makes it hard to use arbitrary C-patches
in practice to fill n-sided holes. Toric Bezier patches overcome this difficulty, so it is
to these patches that we next turn our attention. Nevertheless, in the study of toric
Bezier patches we shall need the technology of C-patches, since the methods applied
here are required to effectively blossom toric Bezier schemes (see Section 8.7.11).

Table 8.2 Comparison of hexagonal S-patches and hexagonal C-patches.

Property Hexagonal S-Patch Hexagonal C-Patch

Type rational

Parametric degree 4 x depth
Number of barycentric
coordinate functions 6

Evaluation pyramid algorithm

Blossom symmetric, not multiaffine

Boundaries Bezier curves determined by
boundary control points

polynomial

3 x depth

7

multitier algorithm

multisymmetric,
multiaffine

unknown

486 C H A P T E R 8 Pyramid Algori thms for Mult is ided Bezier Patches

Exercises

1. Let A(u,v) = {Ai(u,v) l i e I}, B(u,v) - {Bj(u,v) l j e J}, and
C(u,v) = A(u,v) | B(u, v). Show that

a. ZCk(u,v) = { za i (u ,v) } { ZBj(u,v)}
k~I(~J i~l j~J

b. Z A i (u , v) - Z B j (u , v) - 1 :=~ ~,Ck(U,V) =- 1
i~l j~J k~I(~J

2. Implement both the pyramid algorithm and the multitier evaluation algo-
rithm for the pentagonal C-patch in Example 8.2 with d 1 = d 2 = d 3. Which
algorithm do you prefer? Why? Experiment with pentagonal C-patches of
different depths. Determine how changing the location of the control points
affects the shape of the surface.

3. Show that a surface whose barycentric coordinate functions are generated
by convolution from the barycentric coordinate functions of several C-
patches is a C-patch.

4. Compute the blossom of the basis functions for the C-patches constructed in
Examples 8.2 and 8.3 with d 1 = d 2 -- d 3 = 2.

5. Consider the functions defined by

(~ij(u, v)) - ((1 + u - v) / 2,(1 - u + v) / 2) | ((3 - u - v) / 3,u / 3, v] 3)

I = ((0, 0), (1,1)) �9 ((0, 0), (1, 0), (0,1))

where beneath each term on the right-hand side we have indicated the
indexing assigned to the factor.

a. How many functions are in the set {~ij(u,v)}? What is their degree?

b. Compute explicit expressions for the functions {f l6(u,v)} .

c. Show that the functions {fl(i(u, v) } generate a pentagonal C-patch.

d. Compute the blossom of the basis functions for this C-patch of depth
d = (2,2).

e. How does this pentagonal patch differ from the pentagonal patch in
Example 8.2?

6. Consider the functions defined by

(~ij(u, v)) - ((1 + u - v) / 3,(2 - u)/3 , v /3) | ((1- u + v) / 3 , u / 3 , (2 - v)/3)

I - ((0, 0), (1, 0), (0,1)) @ ((0, 0), (0,1), (1,1))

where beneath each term on the right-hand side we have indicated the
indexing assigned to the factor.

a. How many functions are in the set {,6ij(u,v)}? What is their degree?

b. Compute explicit expressions for the functions {~ij(u, v) }.

8.6 C-Patches 4871
I

c. Show that the functions {flij(u, v) } generate a hexagonal C-patch.

d. Compute the blossom of the basis functions for this C-patch of depth
d = (2,2).

e. How does this hexagonal patch differ from the hexagonal patch in Exam-
ple 8.3?

7. Consider the hexagonal domain in Figure 8.12. Which algorithm is more
efficient:

a. the pyramid algorithm for the S-patch with this hexagonal domain or

b. the multitier algorithm for the C-patch with this hexagonal domain?

Justify your answer.

8. Complete the proof of the validity of the multitier evaluation algorithm for
C-patches by completing the inductive argument.

9. Prove that the multitier evaluation algorithm is valid for rational C-patches.

10. Prove that blossoming the multitier evaluation algorithm provides the dual
functionals for rational C-patches.

11. Let ill(U, v) - fill (u, v) | | ~I m (U, V) be the barycentric coordinate func-
tions for a C-patch. Suppose that the functions in the set {C~(u,v)}sum to
one, and that the functions in the sets flI~ (u, v) satisfy

flkj(Qkl) = 0 j ~1

=1 j - 1
but are not normalized to sum to one. Show that

a. The multitier evaluation algorithm is still valid.

b. Blossoming the multitier evaluation algorithm still provides the dual
functionals for the C-patch.

12. Suppose that I = 11 ~ 12 and that ill(U, V) = fill (U, V) @ fli 2 (U, V) . Let
d = (d 1,d2) with d 2 > dl. Consider the C-patch with control points
{P&}, /~ ~ I d : Idl ~ Id2.

a. Show that this C-patch has the following evaluation algorithm"

i. For each ~ s ldo 2-dl, run the standard pyramid algorithm with the
A , ,

initial data

g&01 (u, v) - PA, 1 +~, /]'1 E I dl

and barycentric coordinate functions {fli(u,v)}. The output is a col-
lection of values

P~(u,v), r E I d2-dl.

488 C H A P T E R 8 Pyramid Algori thms for Mult is ided Bezier Patches

ii. Run the standard pyramid algorithm with the initial data

P~(u,v)- P~(u,v), ~ E I d2-dl

computed in step (i) and barycentric coordinate functions [ill2 (u, v) }.

b. Generalize the result in part (a) to 1 - 11 G ... (91 m and d = (d 1 din).

13. Show that the first-order partial derivative with respect to u or v of a C-patch
of depth d = (d 1 din) can be computed by summing the following m terms.
For each k = 1 m, take the first-order partial derivative with respect to u or
v of any one level in the kth tier of the multitier evaluation algorithm, then
run the entire evaluation algorithm, and multiply the result by d k. Explain
how to apply similar techniques to calculate the second-order partial deriva-
tives of a C-patch.

8.7 Toric Bezier Patches

Toric Bezier patches are pyramid patches defined by special indexing sets and spe-
cial barycentric coordinate functions. These indexing sets and barycentric coordinate
functions are chosen to overcome some of the deficiencies we have observed in arbi-
trary P-patches and in general C-patches.

Blossoming the pyramid algorithm does not provide the dual functionals for
arbitrary pyramid patches. C-patches overcome this deficiency by blossoming the
multitier evaluation algorithm, but C-patches have two other serious shortcomings.
First, as we observed in the previous section, the boundary of a C-patch is not easy
to determine. More serious, but perhaps more subtle, we do not even know what the
boundary control points are for a C-patch.

Consider again the C-patches in Examples 8.2 and 8.3. In both cases, the points
in the indexing set lie inside or on the boundary of the domain polygon. We have
carefully chosen the indexing sets for the S-patches that generate these C-patches to
force this concurrence. This juxtaposition creates the illusion that the boundary con-
trol points of the C-patch are the points whose indices lie on the boundaries of the
domain polygon. But, in general, there is no relationship at all between the domain
polygon of a C-patch and its indexing set. We could easily have chosen a different
indexing for the S-patches, without altering the domain polygon of the C-patch. In
fact, the domain of a C-patch need not have the same shape as the convex hull of its
indexing set. So what exactly are the boundary control points of a C-patch?

When the index set of a C-patch consists of points in the plane, there are gener-
ally two distinct polygons associated with the C-patch: the domain polygon and the
convex hull of the index set. The domain polygon specifies the geometry of the
patch; the index set describes the topology of the control structure. If these two sets
were to coincide, we might be better able to control the boundary of the patch.

For toric Bezier patches these two sets do coincide. So we can talk about the
boundary control points of a toric Bezier patch. Toric Bezier patches overcome both
of the problems we encountered with C-patches: their domain coincides with the

8.7 Toric Bezier Patches 489]

convex hull of their indexing set, and their boundaries are the Bezier curves deter-
mined by their boundary control points.

Moreover, unlike general pyramid patches, blossoming the pyramid algorithm
provides the dual functionals for most of the blending functions of a toric Bezier
patch. In addition, many toric Bezier patches are also C-patches, so these patches
inherit the multitier evaluation algorithm and the blossoming procedure genetic to
C-patches.

To define toric Bezier patches, we need to go back to where we began this chap-
ter and to reexamine what we mean both by polygonal arrays of control points and
by barycentric coordinate functions. We begin, then, with a discussion of lattice
polygons and barycentric coordinates for lattice polygons. We will then apply these
new kinds of indexing sets and new types of barycentric coordinate functions to
build multisided toric Bezier patches based on techniques already familiar to us from
S-patches and C-patches.

Exercise

1. Give an example to show that the domain of a C-patch indexed by an array
of 2-tuples need not have the same shape as the convex hull of its indexing
set.

8.7.1 Lattice Polygons

What is a polygonal array of points? We have asked this question once before, in
Section 8.2. There our answer was that a polygonal array of points is any collection
of points indexed by a set of the form I d, where I is an ordered set of n distinct p-
tuples. This definition was certainly useful from the perspective of S-patches. But
look again at Figures 8.10 and 8.12. The points in these figures surely look like they
form pentagonal and hexagonal arrays. Yet these configurations do not conform with
the definition of pentagonal and hexagonal arrays in Section 8.2.

These arrangements of points appear polygonal because their convex hulls are
polygons. So evidently there is another possible definition of a polygonal array: An
array is polygonal if it is indexed by a finite set of points in the plane. The shape of
the array is the shape of the convex hull of the indexing set. A boundary of the array
consists of the points in the array corresponding to the indices on a boundary of the
convex hull of the index set. If we adopt these alternative definitions, then the control
points for the C-patches in Examples 8.2 and 8.3 form pentagonal and hexagonal
arrays.

To construct barycentric coordinates for these indexing sets, we cannot, as it
happens, choose just any finite collection of points in the plane for our indexing set.
Instead we must restrict ourselves to lattice polygons. A lattice polygon is the inter-
section of the convex hull of a set of points having integer coordinates with the lat-
tice Z x Z. Equivalently, a lattice polygon consists of all the points with integer
coordinates inside or on the boundary of a convex polygon whose vertices have inte-
ger coordinates. The convex hull of a lattice polygon I is often called the Newton

490 CHAPTER 8 P y r a m i d A lgor i thms f o r Mul t i s ided Bez ier Patches

po l ygon of I. We shall see in Section 8.7.2 that the elements of the index set are used
as exponents to construct barycentric coordinate functions. So we choose a lattice
polygon as our index set to ensure that these exponents are always integers.

The arrays of points in Figures 8.10 and 8.12 are lattice polygons, and their
Newton polygons are the domains for the corresponding C-patches in Examples 8.2
and 8.3. Other important examples are easy to construct. Let i,j,d denote nonnegative
integers. Then

I d - {(i,j) 10 < i,j < d}

is a lattice rectangle and is the indexing set for a (d + 1) x (d + 1) rectangular array
{Pij }--that is, for the control points of a tensor product surface. Similarly,

I d = {(i,j) 10 < i + j < d}

is a lattice triangle and is the indexing set for an order d triangular array {Pij }--that
is, for the control points of a triangular patch.

An array of control points for a toric Bezier patch of depth d is a collection of
points {P Z} indexed by a set I d, where I is a lattice polygon. The boundary points of
the array {P Z} are the points in the array indexed by the points of I d lying on the
boundary of the Newton polygon of 1 d. We shall see in Section 8.7.3 that for toric
Bezier patches the Newton polygon of I is the domain polygon, so for toric Bezier
patches the domain polygon and the indexing set--the geometry of the patch and the
combinatorial structure of the control ne t I a r e intimately related. It turns out as well
that the boundary curves of a toric Bezier patch are the Bezier curves determined by
the boundary control points. But before we can define precisely what we mean by a
toric Bezier patch, we need to introduce barycentric coordinate functions for lattice
polygons.

Exercises

1. Show that the only polygonal arrays of depth d that are also lattice polygons
are I d and 1T d.

2. Let E and F be two sets of points in the lattice Z x Z lying on distinct line
segments in the xy-plane. Show that E @ F consists of the points in the lat-
tice Z x Z lying in a parallelogram with sides equal and parallel to the line
segments containing E and F.

3. Let L(u, v) - au + bv + c - 0 be a boundary of the Newton polygon of a lat-
tice polygon I. Show that Ld(u,v) - au + bv + dc - 0 is a boundary of the
Newton polygon of I d.

4. Let Q1 Qn be the vertices of the Newton polygon of the lattice polygon I.
Show that

a. The points

Q1 ~ " " @ Q1,. . ., Qn @ ' " ~) Qn
~, ,i �9 x

Y -v-

d summands d summands

are the vertices of the Newton polygon of I d.

8.7.2

8.7 Toric Bezier Patches 491
,

b. The boundaries of the Newton polygon of I d are the d-fold Minkowski
sums of the corresponding boundaries of the Newton polygon of I.

c. The boundaries of the Newton polygon of I d are parallel to the corre-
sponding boundaries of the Newton polygon of I.

d. Area(Newton polygon of I d) = d 2 • Area(Newton polygon of I).

Barycentric Coordinates for Lattice Polygons

To build toric Bezier patches, we are going to construct barycentric coordinate func-
tions {flij }(i,j)eI for lattice polygons I that have properties similar to the barycentric
coordinates {ill fin} associated with the vertices of convex polygons Q. The main
properties of the barycentric coordinate functions {ill fin } for a convex polygon Q
with ordered vertices Q1 Qn are described in Table 8.1. We reproduce these prop-
erties in Table 8.3; alongside we list the analogous properties we want to hold for the
barycentric coordinate functions {flij }(i,j)eI of a lattice polygon I whose Newton
polygon has vertices Q1 Qn.

The first two properties of the barycentric coordinate functions for lattice poly-
gons are required because we want the toric Bezier surfaces defined by these func-
tions to be affine invariant and to lie in the convex hulls of their control points. The
third property guarantees that the boundary curves of these surfaces are determined
only by their boundary control points, and the fourth property ensures that these sur-
faces interpolate their comer control points. The fourth property is also key in ensur-
ing that the blossom of a toric Bezier patch evaluated at the vertices of the domain
polygon provides at least some of the dual functionals for toric Bezier patches (see
Section 8.7.10). This property is crucial as well for the construction of toric S-
patches (see Section 8.7.6). The final property asserts that the functions describing
these surfaces are not too complicatedmthat toric Bezier surfaces are defined by
rational expressions.

Table 8.3 Properties of barycentric coordinates for convex polygons and lattice polygons.

Convex Polygons Lattice Polygons

/ 7

1. X flk - 1 . 1. X ~ij =1.
k=l (i,j)~I

2. flk > 0 in the interior of Q.

3. flk = 0 on the line QiQi+l, k r i, i + 1.

4. f lk(Qj) - O j ~: k

=1 j = k .

5. fll fin are rational functions.

2. flij > 0 in the interior of Convex Hull (/)

3. flij = 0 on the line QkQk+l, if and only
if (i, j) ~ QkQk+l"

4. flij(Qk) - 0 (i , j) :/: Qk

= 1 (i , j) - Qk �9

5. {flij} are rational functions.

492 c H A P T E R 8 Pyramid Algorithms for Mult isided Bezier Patches

Just as we gave an explicit construction for the barycentric coordinate functions
of a convex polygon Q, we can provide an explicit construction for the barycentric
coordinate functions of a lattice polygon I. Let Q1 Qn be the vertices of the New-
ton polygon of I, and let L k (u, v) - aku + bkV + c k = O, k = 1 n, be the equation of
the kth boundary line QkQk+l. Normalize these equations so that the normal vector
(ak,b k) of the line Lk(U,V) satisfies the following two constraints:

i. (ak,bk) points into the Newton polygon of I.

ii. (ak,bk) is the shortest vector in this direction with integer coordinates.

The first condition will guarantee that our barycentric coordinate functions are posi-
tive inside the domain polygon; the second condition will ensure that below we deal
only with integer exponents and that these exponents are of the lowest possible size.
Notice that we can always enforce the second condition because the vertices of the
Newton polygon of I have integer coordinates.

By the third property in Table 8.3, a barycentric coordinate function must vanish
on each boundary to which its index does not belong. The easiest way to construct a
rational function fl(u,v) that vanishes on the kth boundary QkQk+l of the Newton
polygon of I is to make Lk(U,V) a factor of the numerator of fl(u,v). We took advan-
tage of precisely this observation in Section 8.1 to construct barycentric coordinates
for convex polygons. Thus the numerators of the barycentric coordinate functions
{flij }(i,j)~l for a lattice polygon I are all going to be products of powers of the func-
tions Lk(u,v). In particular, define

ai j (u ,v) = cij{Ll(U,V) }Ll(i , j) . . . {Ln(u,v) }Ln(i,j) (8.22)

flij(U, V) _ aiJ (u' v) . (8.23)
Zakt(u,v)

(k,l)~I

The constants c 6 > 0 are arbitrary normalizing constants that will be chosen later
(see Sections 8.7.4, 8.7.5, 8.7.6, and 8.7.10 and Examples 8.4 and 8.5) to guarantee
that certain desirable formulas are satisfied.

THEOREM
8.2

Properties o f Barycentric Coordinates for Lattice Polygons

Let {flij(u,v)} be the functions defined by Equation (8.23) for the lattice
polygon I whose Newton polygon has vertices Q1 Qn. Then:

1. ~/3i j=l .
(i,j)~I

2. flij > 0 in the interior of the Newton polygon of I.

3. flij - 0 on the boundary QkQk+l , if and only if (i, j) ~ QkQk+l"

4. flij(Qk) = 0 (i, j) r Qk

= 1 (i , j) - Qk �9

5. { flij } are rational functions.

8.7 Toric Bezier Patches 49 3

Proof Property 1 is immediate from Equation (8.23).

Property 2 follows because Lk(u,v) is chosen with its normal pointing into
the Newton polygon of I. Hence in the interior of the Newton polygon
Lk(u,v) > 0, so by Equations (8.22) and (8.23) aij(u,v), flij(u,v) in the interior
of the Newton polygon of I.

Property 3 is valid for the following reason. If (i,j) does not lie on the kth
boundary QkQI~+I, then the exponent Lk(i, j) r O, so Lk(u,v) is a factor of
aij(u,v). Hence aij(u,v) and flij(u,v) vanish on QkQk+l. If, however, (i,j)
does lie on the kth boundary QkQk+l, then the exponent Lk(i,j) = 0, so the
factor Lk(u,v) disappears from Equation (8.22) and aij(u,v) does not vanish
on QkQk+l. Hence flij(u,v) does not vanish on QlcQk+l.
Property 4 is immediate from Properties 1 and 3. In fact, notice that at a
vertex (i,j) of the Newton polygon of I, the function aij(u,v) is just the
product of powers of the edges of the polygon not passing through the ver-
tex (i,j). Thus the numerator aij(u,v) of flij(u,v) is very similar to the numer-
ator ak(u,v) for the corresponding barycentric coordinate function flk(u,v)
at the vertex (i,j) defined in Equation (8.3). (For further comparisons
between the barycentric coordinate functions at the vertices of a lattice
polygon and the barycentric coordinate functions of the corresponding
convex polygon, see Section 8.7.6.)

Property 5 follows immediately from Equations (8.22) and (8.23) because
we have chosen the coefficients (ak,bk) to be integers.

EXAMPLE
8.4

Lattice Squares

Consider the lattice square

I d - {(i,j) 10 < i,j < d}.

The equations of the boundaries of the Newton polygon of IR a are the four
l i n e s ' u = 0 , v = 0 , d - u = 0 , d - v - 0 . Let

_ (d , (d cij i) j)"

Then

f l i j (u , v) -

(d)(J).i (d _ .)d- i (d _ v) d- j)d-j

which are the standard tensor product Bemstein basis functions for the
square with side d.

d v)d_ l d2d
E (d - 1(d -

k,l=0

494 CHAPTER 8 Pyramid Algorithms for Multisided Bezier Patches

EXAMPLE
8.5

Lattice Triangles

Consider the lattice triangle

I d - {(i,j) 10 < i + j < d}.

The equations of the boundaries of the Newton polygon of I d are the lines
u = 0 , v = 0 , d - u - v = O . Let

d
Ci j - (i j d- i- j)"

Then

flij(u,v) =

d (i j d - i - j) ui v j (d - u - v) d - i - j

d)ukv I (d - u - v) d-k-I
2(k t d-k-1

O<k+l<d

d (i j d - i - j) ui vj (d - u - v) d - i - j

d d

which are the standard bivariate Bernstein basis functions for the isosceles
fight triangle with side d.

Thus barycentric coordinates for lattice polygons are generalizations of the
bivariate Bernstein basis functions. We shall see shortly that surfaces defined using
barycentric coordinate functions for lattice polygons are multisided generalizations
of standard Bezier patches.

Exercises

1. Let I be the lattice polygon in Figure 8.10 or Figure 8.12. For each (i,j) e I,
define

aij(u,v) = product of the boundary lines on which (i,j) does not lie

flij(U, V) = aij (u' v) .
Za~l(u,v)

(k,l)el

a. Show that these functions {flij(u, v) } satisfy all the conditions of Theorem
8.2.

b. Show that these functions are not the same as the functions defined by
Equations (8.22) and (8.23).

2. Let I be a lattice polygon, and let Lk(U,V) be a boundary of the Newton poly-
gon of I. Show that there exist integers (ak,b k) such that (ak,b k) is normal to
Lk(U,V).

3. Compute the barycentric coordinate functions for the lattice polygons in
Figures 8.10 and 8.12.

8.7 Toric Bezier Patches 4 9 5

4. Suppose that the number of lattice points is the same along each edge of a
lattice polygon I. Let Lk(U,V) - aku + bkV + c k - O, k = 1 n, be the equa-
tion of the kth boundary of the Newton polygon of I, normalized so that
(ak,bk) is the shortest normal vector of the line Lk(U,V) = 0 with integer coor-
dinates pointing into the convex hull of I. Show that

17 17

a. Z a k = Z b k = O.
k=l k=l

b. The numerators of the barycentric coordinate functions all have the same
total degree.

5. Let Q1 Qn be the vertices of the Newton polygon of a lattice polygon I,
and let L k (u, v) = aku + bkV + c k = 0, k = 1,...,n, be the equation of the kth
boundary line QkQk+l, where the normal (ak,bk) points into the Newton
polygon of I and (ak,b k) is the shortest vector in this direction with integer
coordinates. Let R k be the lattice point on the line QkQk+l closest to Qk, and
let T e I. Show that

a. L k(P) - Det 1

b. a~(P)=
2 n 2 Area(AQ1R 1T) } 2 Area(AQnRnT) cij{Area(AQ1R1P) } . . .{Area(AQnRnP)

(Compare to Section 8.1, Exercise 3.)

6. Here we are going to show that barycentric coordinate functions for a lattice
polygon I whose Newton polygon has more than four sides cannot be poly-
nomials. Suppose that {~ij}(i,j)eI are polynomials, and that P is a point of
intersection between two nonadjacent edges of the Newton polygon of I.

a. Show that if {flij}(i,j)et satisfy Property 3 of Theorem 8.2, then flij(P) = 0
for all (i,j) e I.

b. Conclude that Zijflij ~ 1, and hence that {flij}(i,j)eI cannot be barycen-
tric coordinate functions for the lattice polygon I.

c. Why do rational functions not suffer from the same problem?

d. Explain why barycentric coordinates for lattice rectangles can be polyno-
mials. (Compare to Section 8.1, Exercise 5.)

8.7.3 The Pyramid Algorithm for Toric Bezier Patches

A toric Bezier patch o f depth d is a pyramid patch of depth d, whose indexing array I
is a lattice polygon and whose barycentric coordinate functions are the barycentric
coordinates of I (see Figure 8.13).

Let us unwind what this definition really means. We start with a set of control
points {P~} indexed by a set I a, where I is a lattice polygon. To compute points on
the corresponding toric Bezier patch of depth d, we run the pyramid algorithm,
where the barycentric coordinate functions {flij(u,v)} are the barycentric coordinates

496 CHAPTER 8 Pyramid Algori thms for Mul t is ided Bezier Patches

Figure 8.13 The pyramid algorithm for a pentagonal toric Bezier patch of depth 2. The eight overlapping
striped pentagons at the base represent pentagonal toric Bezier patches of depth 1--one of
these patches is completely hidden by the dark pentagon--and the dark central pentagon
represents the pentagonal toric Bezier patch of depth 2. Each pentagonal panel represents
the result of multiplying the points in the corresponding pentagonal array by the barycentric
coordinates of the lattice pentagon in Figure 8.10 and adding the results. Interior control
points are obscured by the dark panel. Compare to the pyramid algorithm for a pentagonal
S-patch in Figure 8.8.

for the lattice polygon I. Notice that the domain of a toric Bezier patch of depth d is
the Newton polygon of I, not the Newton polygon of I d.

The Pyramid Algorithm for Toric Bezier Patches

1. P~ (u, v) -- P)c

1': (u, v) 2 /3p (u, l-I 2. : v) e r + p (u , v)
peI

3. B(u, v) - pd (u, v) .

/~ ~ I d

7, ~. I d- l (8.24)

By Equation (8.15) the blending functions {B~(u,v)}2eld for a toric Bezier
patch of depth d can be computed by convolving the barycentric coordinate func-
tions. That is,

{B~(u,v) } = [3i(u,v) | " " | [3i(u,v) , (8.25)
v -

d factors

where ~l(U,V) = {~ii(u,v) }(i,j)eI. Moreover, by Equation (8.17), if
I = { il,Jl) (in,Jn) }, then we also have an explicit formula for the blending
functions:

kl kn
B~ (u, v) - ~.km (i,,jl)+...+kn (i,,,jn)=,~ (k,d.kn)[3ilJl (U, V)" " [3inJn (U, V) �9 (8.26)

8.7 Toric Bezier Patches 4 9 7

EXAMPLE
8.6

Tensor Product Bez ier Patches

Consider the lattice rectangle I R = {(0,0),(1,0),(1,1),(0,1)}. The equations
of the boundaries of the Newton polygon of I R are the four lines
u = 0 , v = 0, 1 - u = 0, 1 - v = 0. Hence the barycentric coordinate func-
tions of I R are just the barycentric coordinates of the unit square:
(1 - u) (1 - v) , u (1 - v) , (1 -u)v , u v . Therefore, by Equation (8.25), the

blending functions for the corresponding toric Bezier patch of depth d are
the functions

/B~(u,O/=
{(1 - u) (1 - v), u (1 - v) , (1 - u)v, uv} | ... | - u) (1 - v), u (1 - v) , (1 - u)v, uv},

d fc~tors

which are the blending functions for a tensor product Bezier patch of bide-
greed .

EXAMPLE
8.7

Triangular Bez ier Patches

Consider the lattice triangle I T = {(0,0),(1,0),(0,1)}. The equations of the
boundaries of the Newton polygon of I T are the three lines

1 - u - v = 0, u = 0, v = 0. Hence the barycentric coordinate functions of I T
are just the barycentric coordinates of the standard triangle: (1 - u - v), u, v.
Therefore, by Equation (8.26), the blending functions for the corresponding
toric Bezier patch of depth d are the functions

d d Bij (u, v) - (i j d - i - j) u iv j (1 - u - v) d - i - J , 0 < i + j < n,

which are the blending functions for a triangular Bezier patch of degree d.

EXAMPLE
8.8

Pentagonal Toric Bez ier Patches

Consider the lattice pentagon in Figure 8.10. The equations of the bound-
aries of the Newton polygon are the five lines u = 0, v = 0, 2 - u = 0,
2 - v = O, 3 - u - v = 0. Thus, by Equation (8.22), the numerators of the
eight barycentric coordinate functions are

aoo(U,V) = (2 - u) 2 (2 - v) 2 (3 - u - v) 3

a 0 1 (u, v) = v (2 - u) 2 (2 - v) (3 - u - v) 2

a 2 0 (U, V) - U 2 (2 - v) 2 (3 - u - v)

a 1 2 (u, v) = uv 2 (2 - u)

a l l (u, v) = uv(2 - u)(2 - v)(3 - u - v)

alO(U,V) = u (2 - u) (2 - V)2(3- u - V) 2

a02 (u, V) = V 2 (2 - u) 2 (3 - u - v)

O~21(u,v) = uZv(2 - V)

4 9 8 CHAPTER 8 Pyramid Algorithms for Multisided Bezier Patches

Figure 8.14 A pentagonal toric Bezier patch of depth d = 1

Figure 8.14 shows an example of a pentagonal toric Bezier patch of depth
d = 1 generated using these eight barycentric coordinate functions.

Toric Bezier patches of depth d have the following underlying structure:

�9 DomainmNewton polygon of a lattice polygon I

�9 Control points--indexed by a power I d of the lattice polygon I

�9 Blending functions---convolutions of barycentric coordinates for the lattice
polygon I

We shall show in subsequent sections that, in common with triangular and ten-
sor product Bezier patches, toric Bezier patches also share the following associated
properties and procedures. Notice that affine invariance and the convex hull property
follow immediately from the first two properties of barycentric coordinates for lat-
tice polygons listed in Theorem 8.2.

Properties of toric Bezier patches

�9 Affine invariance

�9 Convex hull property

�9 Nondegenerate

�9 Boundary curves~Bezier curves determined by the boundary control
points

�9 Implicit Degree--d 2 x 2Area(Newton polygon of/)

�9 Special cases~Triangular and tensor product Bezier patches

Procedures for toric Bezier patches

�9 Evaluation algorithmmpyramid algorithm whose edges are labeled
with the barycentric coordinate functions for the lattice polygon I

�9 Differentiation algorithm

8.7 Toric Bezier Patches 499

�9 Blossoming algorithm

�9 Subdivision algorithm

�9 Depth elevation algorithm

Toric Bezier patches are, in general, rational surfaces because the barycentric
coordinate functions for a lattice polygon are, in general, rational functions. Since
toric Bezier patches are already rational surfaces, we may as well introduce scalar
weights {w~} and define rational toric Bezier patches using mass-points in Grass-
mann space instead of affine points in affine space.

A rational toric Bezier patch of depth d is a rational pyramid patch of depth d,
whose indexing array I is a lattice polygon and whose barycentric coordinate func-
tions are the barycentric coordinates of I. Thus, for a rational toric Bezier patch, the
input to the pyramid algorithm is a collection of mass-points P~(u,v) = (wzPz,w2),
/l ~ I d, and the output of the algorithm must be divided by the weight. In terms of the
blending functions {B~(u,v)l a rational toric Bezier patch R(u,v) is given by

~_, B~ (u, v)w2PA,
R(u, v) - / ~ E I d �9 (8.27)

Z wyB~,(u,v)
7~I d

Notice that for a rational toric Bezier patch the denominator

Zau(u,v)
(k,l)EI

of the barycentric coordinate functions flij(u,v) appears to the same power in the
numerator and denominator of R(u,v). Therefore, we can cancel these factors. Thus
for rational toric Bezier patches, we can use the numerators aij(u,v) in place of the
barycentric coordinate functions flij(u,v)--that is, we do not need to normalize the
barycentric coordinate functions to sum to one, since the division in Equation (8.27)
performs the necessary normalization automatically. Hence, we can replace the
barycentric coordinate functions flij(u,v) by the numerators aij(u,v) in the pyramid
algorithm for a rational toric Bezier patch.

Exercises

1. Consider the lattice line I = {(0,0),(1,0)}. Describe the toric Bezier patches
of depth d corresponding to this lattice line.

2. Consider the lattice rectangle I~ - {(i, j) 10 < i, j < n}.

a. Describe the toric Bezier patches of depth 1 corresponding to this lattice
rectangle.

b. Describe the toric Bezier patches of depth d corresponding to this lattice
rectangle.

3. Consider the lattice triangle I~ = {(i,j) 10 < i + j < n}.

a. Describe the toric Bezier patches of depth 1 corresponding to this lattice
triangle.

500 C H A P T E R 8 Pyramid Algori thms for Multisided Bezier Patches

8.7.4

b. Describe the toric Bezier patches of depth d corresponding to this lattice
triangle.

4. Compute the blending functions for the pentagonal and hexagonal toric
Bezier patches of depth 2 defined by the lattice polygons in Figures 8.10
and 8.12.

5. Implement the pyramid algorithm for the pentagonal toric Bezier patches
defined by the lattice pentagon in Figure 8.10. Experiment with pentagonal
patches of different depths. Determine how changing the location of the
control points affects the shape of the surface.

6. Implement the pyramid algorithm for the hexagonal toric Bezier patches
defined by the lattice hexagon in Figure 8.12. Experiment with hexagonal
patches of different depths. Determine how changing the location of the
control points affects the shape of the surface.

7. Generalize the pyramid algorithm for toric Bezier patches by replacing I d-l
with I 1 @... @ Id_ l , where I 1 I d are lattice polygons.

a. What is the domain of the patch?

b. How must Equation (8.24) be altered to make the pyramid algorithm
valid?

c. Describe the blending functions for this patch. (Compare to Section 8.5,
Exercise 1.)

8. Show that the only toric Bezier patches that are also S-patches are

a. Bezier curves of degree 1

b. triangular Bezier patches of degree 1

c. tensor product patches of bidegree 1

The Boundaries of a Toric Bezier Patch

The boundaries of a toric Bezier patch are the Bezier curves determined by their
boundary control points. This result holds provided only that the constant coeffi-
cients c ij for the barycentric coordinate functions corresponding to lattice points
along the boundary of the Newton polygon of the lattice polygon are properly cho-
sen. We are going to prove this assertion shortly below. Thus, unlike general pyramid
patches, in toric Bezier patches we maintain control over the boundary of the patch.
This control is one of the main advantages of toric Bezier patches over arbitrary pyr-
amid patches.

To analyze the boundaries, consider a toric Bezier patch B(u,v) with control
points {P,~} indexed by a lattice polygon I with barycentric coordinate functions
{~ijJ(i,j)el. Let Q1 Qm be the vertices of the Newton polygon of I. Then by Theo-
rem 8.2,

flij - 0 on the boundary QkQk+l, if (i, j) ~ QkQk+l.

8.7 Toric Bezier Patches 50]

Thus the kth boundary of B(u,v) is completely determined by the points of {PA.}
indexed by the values of I along the boundary QkQk+l, since the coefficients
flij(u, v) of all the other control points vanish along this boundary. Hence the bound-
ary curves of a toric Bezier patch of depth d = 1 are completely determined by the
boundary control points of the patch.

To show that these boundary curves are actually Bezier curves, let us focus on a
specific boundary QlQl+l. Suppose that R 0 R n are the points in the lattice poly-
gon I along the boundary QIQI+I, and denote by flo fin the barycentric coordi-
nate functions of I corresponding to the points R o R n. We are going to apply a
reparametrization to show that when restricted to the boundary QlQl+l, these bary-
centric coordinate functions are univariate Bernstein polynomials.

Let Lk(U,V) - a k U + b k v + c k = 0 be the equation of the kth boundary line
QkQk+l, k = 1 m , of the Newton polygon of I. Then by Equations (8.22) and
(8.23), when (u,v) are restricted to the boundary QlQl+l

ah(U,V) = c h {Ll(U,V) } LI(Rh) ...{Lm(u,v) }Lm(Rh) (8.28)

flh (u, v) - ah (u, v) h - 0 n. (8.29)
n
~,ag(U,V)

g=0

But since R o R n lie along the edge of a lattice polygon, there are integers p,q,r,s
such that

R h = (p + rh, q + sh) h = 0 n .

Therefore, on the boundary QIQI+I

ah(U,V) - c h {Ll(U,V) }al(p+rh)+bl(q+sh)+Cl . . . {Lm(u,v) }am(p+rh)+bm(q+sh)+cm

We can now split a h (u, v) into two factors:

1. C - { L I (U , v) } alp+blq+cl . . . {Lm(u,v) } amp+bmq+cm

2. Oh = Ch{{Ll(tt, v) }alr+blS...{Zm(u,v) }amr+bms} h.

The first factor is independent of h, and hence is common to ah(u,v) for all
h = 0 n. Therefore, this factor cancels in the expression for flh(u,v) in Equation
(8.29). We are free to choose c h in any manner we like, so let c h = (~). Now apply the
reparametrization

.t: - {Ll (U,V) }alr+blS.. .{Lm(u,v) } amr+bms.

Then along the boundary QlQl+l

flh (u, v) =
(~,) rh . (8.3o)
n :~(g)rg

g=0

502 C H A P T E R 8 Pyramid Algorithms for Multisided Bezier Patches

Substituting T = t / (1 - t) into Equation (8.30) and multiplying the numerator and
denominator by (1 - t) n yields

f lh(U,V) - (~) t h (l - t) n-h n = (~)t h (1 - t) n-h - B~ (t).

~ , (g) tg (1 - t) n-g
g=0

Thus, when restricted to the boundary QIQI+I, the barycentric coordinate func-
tions of the lattice polygon I corresponding to the lattice points R o R n along this
boundary reduce to the univariate Bernstein basis functions. Therefore, the corre-
sponding boundary curve of B(u,v) is the Bezier curve determined by the control
points of {P;t} indexed by the points of I lying along the boundary QIQI+I. Notice
that the boundary curve is polynomial even though the surface is rational.

All that work was just for the base case of a toric Bezier patch~that is, for a
toric Bezier patch of depth d = 1. What about the boundaries of a toric Bezier patch
of depth d > 1? Here we can reason as follows. By Equation (8.25) the blending
functions {B~(u,v)} can be computed from the barycentric coordinate functions
ill(tt ,v) = {flij}(i,j)~I by the discrete convolution formula

{ B ~ (u , v) } - f l I (U , V) | 1 7 4 f lI(U,V)
�9 , J o

d factors

But the boundaries of the Newton polygon of I d are just the d-fold Minkowski sums
of the corresponding boundaries of the Newton polygon of I (see Section 8.7.1,
Exercise 4). Therefore, when restricted to the kth boundary of I, the blending func-
tions {B~(u,v) l where ~ lies along the kth boundary of the Newton polygon of I d, are
just d-fold convolutions of the barycentric coordinate functions corresponding to the
lattice points along the kth boundary of the Newton polygon of I. But we have just
proved that under a reparametrization when restricted to the kth boundary of the
Newton polygon of I, these barycentric coordinate functions are univariate Bernstein
basis functions. Since the convolution of Bernstein bases are Bernstein bases of
higher degree, the blending functions of {B~(u,v)l where ~ lies along the kth bound-
ary of the Newton polygon of I d, when restricted to the kth boundary of the Newton
polygon of I, are univariate Bernstein basis functions. Hence the boundary curves of
a toric Bezier patch of depth d > 1 are the Bezier curves determined by their bound-
ary control points.

Exercises

1. Show that the boundaries of a rational toric Bezier patch are the rational
Bezier curves determined by the mass-points along their boundaries.

2. Consider a boundary of a toric Bezier patch.

a. Show that along a patch boundary, the pyramid algorithm reduces to the
triangular computation along the lateral face of the pyramid whose base
consists of the corresponding boundary control points.

b. Explain how this triangular computation is related to the de Casteljau
algorithm for a Bezier curve with the same control points.

8.7 Toric Bezier Patches 503

8.7.5 The Monomial and Bernstein Representations of a Toric Bezier Patch

What is the parametric degree of a toric Bezier patch? Since a toric Bezier patch is a
pyramid patch, the degree of the patch depends on the degree of the barycentric
coordinate functions of the patch. By Equation (8.23), the degree of the barycentric
coordinate funct ions {flq}(i,j)eI depends, in turn, on the degree of the functions
{aij}(i,j)el. Let Lk(u,v) - aku + bkv + c k - O, k - 1 ,p, be the equations of the
boundaries of the Newton polygon of I. Then by Equation (8.22)

degree{ aij(u,v) } = ~ Lk (i, j) .
k=l

Therefore, naively, for a toric Bezier patch of depth d - 1,

p
parametr ic degree = max(i,j)e I { Z Lk (i, j)},

k=l

and for patches of depth d this degree must be multiplied by d.
The preceding analysis drastically overestimates the parametric degree of a toric

Bezier patch. The functions {aij}(i,j)eI actually have many common factors, and
these factors cancel in the expression in Equation (8.23) for the barycentric coordi-
nate functions {flij}(i,j)e1. The truth is that after this cancellation and a simple change
of variables the only powers of the parameters that appear in the barycentric coordi-
nate functions are the values (i, j) e Imthat is, the powers indexed by the lattice
polygon of the patch.

The techniques used in the previous section to analyze the boundaries of a toric
Bezier patch can be employed here as well to find simple monomial and Bernstein
representations for the barycentric coordinate functions of a toric Bezier patch.
Recall that by Equation (8.22)

aij(u,v) _ cij{Ll(U,V) }Ll(i,j)...{Lp(u,v) }Lp(i,j)

= cij{L 1 (u,v)} ali+blj+cl ""{Lp(u,v)}api+bpj+Cp. (8.31)

Thus we can split oc/j(u, v) into three factors:

1. C - {LI(U,V)} q ""{Lp(u,v)} cp

�9 }'
2. O i - {{Ll(ll, v)} al }ap

3. Ej - {{LI(U,V)} bl ""{Lp(u,v)'bP} j.

The first factor is independent of i,j, and hence is common to aiy(u,v) for all
(i, j) e I . Therefore, this factor cancels in the expression for ~ij(u,v) in Equation
(8.23). Now let

1 504 CHAPTER 8 Pyramid Algorithms for Multisided Bezier Patches

tY = {LI(U,V) } a l " ' { L p (u , v) }ap

z " - {LI(U,V)} bl . . ' {Lp(u ,v) } bp

Substituting these parameters into Equation (8.31) yields

ctij(u, v) - cijtY ~'c J (i, j) e I . (8.32)

Hence the barycentric coordinate functions of a toric Bezier patch with lattice poly-
gon I can be represented in rational form by monomials indexed by the set I. The
control points and weights of the patch are unchanged. To find the blending func-
tions for a patch of depth d, we just convolve the barycentric coordinate functions.
Thus, the blending functions of a toric Bezier patch of depth d with lattice polygon I
can be represented in rational form by monomials indexed by the set I d.

With just a bit more work, we can also use Equation (8.32) to find both tensor
product and triangular Bezier representations for a toric Bezier patch. We will illus-
trate the technique for the tensor product basis and leave the triangular case as an
exercise (see Exercise 2). Let m = max{i} and n = max{j} for all (i,j) e I. Substitute
cr = s / (1- s) and T = t / (1- t) into Equation (8.32), and multiply the numerator and
denominator by (1 - s) m (1- t) n t o obtain

CijS i (1 - s) m-i t j (1 - t) n - j B m (s)Bj (t)

a/j (u, v) - (1 - s) m (1 - t) n - (1 - s) m (1 - t) n

where we have chosen cij - (m)(j). Again the denominators (1 - s) m (1 - t) n are
common to aij(u,v) for all (i,j) e I. Therefore, this factor cancels in the expression
for flij(u,v) in Equation (8.23). Hence, the barycentric coordinate functions for a toric
Bezier patch with lattice polygon I can be represented in rational form by bivariate
Bernstein basis functions of bidegree (m,n) indexed by the set I. Consequently, the
blending functions of a toric Bezier patch with lattice polygon I of depth d can be
represented in rational form by bivariate Bemstein basis functions of bidegree
(md,nd) indexed by the set I d.

The implicit degree of a rational surface whose exponents lie in a lattice polygon
I is known to be 2 x Area(Newton polygon of/). But by Section 8.7.1, Exercise 4(d),

Area(Newton polygon of I d) = d 2 x Area(Newton polygon of I).

Therefore, it follows from the preceding analysis that the implicit degree of a toric
Bezier patch of depth d with lattice polygon I is d 2 x 2Area(Newton polygon of I).

Exercises

1. Show that the blending functions of a toric Bezier patch are linearly inde-
pendent. Conclude that toric Bezier patches are nondegenerate~that is, that
these surfaces never collapse to a single point unless all their control points
are located at that point.

8.7 Toric Bezier Patches 5 0 5

2. Show that the barycentric coordinate functions of a toric Bezier patch with
lattice polygon I can be represented in rational form by triangular Bernstein
basis functions of total degree n = max{ i + j }, (i, j) e I, indexed by the set I.
Conclude that the blending functions of a toric Bezier patch of depth d with
lattice polygon I can be represented in rational form by triangular Bemstein
basis functions of total degree nd indexed by the set I d. (Hint: Consider the
change of variables cy = s/(1 - s - t) and ~" = t/(1 - s - t).)

3. Consider the barycentric coordinate functions of a rational toric Bezier
patch with lattice polygon I. Show that these functions can be represented in
rational form by

a. the monomials indexed by the set I

b. the bivariate Bemstein basis functions of bidegree (m,n) indexed by the
set/ , where m = max{i} and n = max{j} for all (i , j) e I

c. the bivariate Bemstein basis functions of total degree n indexed by the
set I, where n = max{i + j} for all (i, j) e I

4. Suppose that J is a lattice polygon generated by rotating and translating
another lattice polygon I. Show that the toric Bezier patches built using the
lattice polygon J are identical to the toric Bezier patches built using the lat-
tice polygon I.

5. Let I be a lattice polygon. Show that

2 x Area(convex hull I) = 2 x (number of interior points/)
+ (number of boundary points I) - 2.

(Hint: Split I into two lattice polygons and apply induction.)

6. Let I be a lattice polygon, and let L k (u, v) = 0, k = 1 p , be the equations
of the boundaries of the Newton polygon of I. For all (i, j) e I, define

a 6 (X 1 Yp) = C~jxlLI(i 'J)".XpLp (i'j)

~ij(Xl Xp) -
a i j (X 1 Xp)

Z a k l (X l Xp)
(k,l)eI

Show that if we replace the barycentric coordinate functions ~ij(u, v) for the
lattice polygon I with the functions flij(Xl Xp), we generate the same
toric Bezier patch for x 1 Xp >_ O. (Hint: Consider a change of variables.)

8.7.6 Toric S-Patches

If we use the barycentric coordinate functions for a convex polygon constructed in
Section 8.1, then the parametric degree of an n-sided S-patch of depth d is d(n - 2).

506 C H A P T E R 8 Pyramid Algor i thms f o r Mul t i s ided Bez ier Patches

But what is the implicit degree? In general, the implicit degree of a rational surface
is given by the formula

implicit degree = (parametric degree) 2 - number of base points (with multiplicity),

where a base po in t is a parameter value where the blending functions evaluate to
0/0.

The blending functions for S-patches have base points wherever nonadjacent
sides of the domain polygon intersect because by Equations (8.3) and (8.4) the
numerators and denominators of all the barycentric coordinate functions vanish at
these points. For an n-sided S-patch there are (~) - n - n (n - 3) / 2 such base points,
and for an S-patch of depth d these base points each have multiplicity d 2. Therefore,
for a generic n-sided S-patch of depth d,

implicit degree - d2(n - 2) 2 - d Z n (n - 3)/2 - d2(n 2 - 5n + 8)/2.

For example, for a three-sided S-patch of depth d (i.e., a Bezier patch of degree d), the
implicit degree is d2; for a four-sided S-patch of depth d (e.g, a tensor product Bezier
patch of bidegree d), the implicit degree is 2d 2. For a five-sided S-patch of depth d,
the implicit degree is 4d 2, and for a six-sided S-patch of depth d, the implicit degree is
7d 2.

By contrast, we observed in Section 8.7.5 that the implicit degree of a toric Bez-
ier patch of depth d with lattice polygon I is d 2 x 2Area (Newton polygon of I). For
three-sided and four-sided toric schemes, we get the same degrees as for three-sided
and four-sided S-patches, since three-sided and four-sided toric Bezier patches are
equivalent to triangular and tensor product Bezier patches. But consider the lattice
pentagon I - {(0,0),(1,0),(2,1),(1,2),(0,1),(1,1)} depicted in Figure 8.5. For this lat-
tice pentagon 2 x A r e a (N e w t o n polygon of I) - 5. Hence for the corresponding toric
Bezier patches of depth d, the implicit degree is 5d 2, which is clearly larger than
4d 2, the implicit degree of a five-sided S-patch of depth d. On the other hand, con-
sider the lattice hexagon in Figure 8.12. Here 2 x A r e a (N e w t o n polygon of I) - 6.
Hence the corresponding toric Bezier patches of depth d have implicit degree 6d 2,
which is clearly smaller than 7d 2, the implicit degree of a six-sided S-patch of depth
d. So sometimes S-patches have lower implicit degree, sometimes toric Bezier
patches have lower implicit degree, and sometimes both schemes have the same
implicit degree.

We can, however, always generate n-sided S-patches of depth d with the same
implicit degree as an n-sided toric Bezier patch of depth d by choosing a different set
of barycentric coordinate functions. Suppose that the vertices Q1 Qn of a convex
polygon Q have integer coordinates in the plane. Let /31 fin be the barycentric
coordinate functions at Q1 Qn for the lattice polygon I whose vertices are at
Q1 Qn, and set the constant coefficients of the aij(u,v) in Equation (8.22) to zero
for all indices (i, j) e I not at the vertices of I. By Theorem 8.2 these functions
/~1 /~n satisfy all the properties of barycentric coordinate functions for the convex
polygon Q. Explicitly if Lk(U,V) =- aku + bkV + c k - O, k = 1 n, is the equation of the
kth boundary line QkQk+l, normalized in the usual fashion (see Section 8.7.2), then

ak(U, v) - e k {L 1 (u, v) } L1 (Qk) . . .{Ln(u, v) } Ln(Q~) (8.33)

8.7 Toric Bezier Patches 507

flk (u, v) - ak (u, v) k - 1 n. (8.34)
n

Zal(u,v)
/=1

Contrast this construction with the standard construction of barycentric coordinates
for the convex polygon Q given in Equations (8.3) and (8.4):

Ctk(U,V)- ekLl (U 'V) ' "Ln(u 'v) (8.35)
Lk_l(U,V)Lk(U,V)

~k (u, v) - ak (u, v) n k - 1 n. (8.36)
Zal(u,v)
/=1

Notice that in both sets of equationsmEquations (8.33) and (8.35)rathe lines
Lk_l (U, v) ,Lk (u, v) are suppressed in a f (u , v) . In Equation (8.33), these lines disap-
pear because their exponents Lk_ 1 (Qk) = Lk(Qk) = 0; in Equation (8.35), these lines
are canceled by the denominator.

At first glance Equations (8.33) and (8.34) look more complicated and of higher
parametric degree than Equations (8.35) and (8.36). But proceeding as in Section
8.7.5, we can simplify the expressions for fll fin in Equation (8.34). First remove
the common factor

C - {Ll(U,V)} cl . . . {Ln(u,v)} cn

from the functions ak (u, v) and then apply the change of variables

ty = {Ll(U,V) } al . . . {Ln(u,v) } an

"c - {Ll(U,V) } bl . . . {Ln(u,v) } bn .

After performing these operations, we are left with

ctk(u,v) = ek tykl 1~k2 Qk = (kl,k2),

so the only powers that appear in the barycentric coordinate functions are the coordi-
nates of the vertices of the polygon Q. Hence the implicit degree of the correspond-
ing S-patch of depth d is d 2 x 2Area(Q), the same degree as the toric Bezier patch of
depth d whose lattice polygon consists of all the points with integer coordinates
inside or on the boundary of Q.

We can use the barycentric coordinate functions in Equation (8.34) to construct
an n-sided S-patch, without necessarily using the polygon Q to index the polygonal
array of control points. Any indexing set I of n distinct p-tuples will still work.
For example, we can use the barycentric coordinate functions generated by the
lattice hexagon depicted in Figure 8.12 together with the simplicial indexing set
A g = {k 1 k6) lk 1 +..-+k 6 - d} to generate hexagonal S-patches of depth d. This
approach keeps the degree of the S-patch low and still allows arbitrary hexagonal
arrays of control points. We call the barycentric coordinate functions in Equation
(8.34) toric barycentric coordinate func t ions for the convex polygon Q, and we call
an S-patch that uses toric barycentric coordinate functions a toric S-patch.

508 C H A P T E R 8 Pyramid Algorithms for Multisided Bezier Patches

Exercises

1. Show that the blending functions of an S-patch generated by the toric barycen-
tric coordinates are linearly independent. Conclude that S-patches generated by
the toric barycentric coordinate functions are nondegenerate~that is, that
these surfaces never collapse to a single point unless all their control points are
located at that point. Compare this result to Section 8.4.1, Exercise 2.

2. Consider the pentagon with vertices Q = { (0,0),(1,0),(2,1),(1,2),(0,1) }.

a. Implement the pyramid algorithm for control points {P Z} indexed by I d,
where I consists of the vertices of the standard 4-simplex, using

i. the standard barycentric coordinate functions for the pentagon with
vertices Q

ii. the toric barycentric coordinate functions for the pentagon with ver-
tices Q

b. What are the implicit degrees of these S-patches of depth d?

c. Compare the shapes of the pentagonal surfaces generated by these two
sets of barycentric coordinates.

3. Consider the hexagon Q depicted in Figure 8.12.

a. Implement the pyramid algorithm for control points {P,~} indexed by I d,
where I consists of the vertices of the standard 5-simplex, using

i. the standard barycentric coordinate functions for the hexagon Q

ii. the toric barycentric coordinate functions for the hexagon Q

b. What are the implicit degrees of these S-patches of depth d?

c. Compare the shapes of the hexagonal surfaces generated by these two
sets of barycentric coordinates.

4. What is the implicit degree of

a. a seven-sided S-patch of depth d?

b. an eight-sided S-patch of depth d?

c. the lowest-degree seven-sided toric Bezier patch of depth d?

d. the lowest-degree eight-sided toric Bezier patch of depth d?

8.7.7 Subdividing Toric Bezier Patches into Tensor Product Bezier Patches

In Section 8.7.5 we showed how to extend a lattice polygon to a lattice rectangle and
then perform a change of variables to convert any toric Bezier patch to rational
monomial or rational tensor product Bezier form. By applying this technique, we
could treat an n-sided toric Bezier patch as a rational tensor product Bezier patch and
apply the subdivision algorithm that we already know for tensor product patches.
This approach, however, would subdivide an n-sided toric patch into four tensor
product Bezier patches without regard for the n-sided structure of the patch. Our
goal here is to develop an alternative subdivision procedure for n-sided patches that
respects the n-sided structure of the patch.

8.7 Toric Bezier Patches 5 0 9

Every n-sided toric Bezier patch can be split into n rational tensor product Bez-
ier patches. This subdivision can be performed by placing a tensor product patch at
each comer of the toric patch, so that the tensor product patches all meet at a com-
mon point and patches at adjacent vertices join along smooth curves on the toric sur-
face (see Figure 8.15). This subdivision procedure can be applied to reduce the
analysis of toric Bezier patchesmfor example, rendering and intersection algo-
rithmsmto the analysis of standard rational tensor product Bezier patches.

How is this done? Consider first a rational tensor product Bezier patch

m n

z Zwijeij8
P(u , v) - i=0j=0 0 < u,v < 1.

m n
~., Z wij Bm (u) B j (v)

i=0j=0

If we subdivide this patch at u = 1/2 and v = 1/2 by the method in Section 5.8.1,
then we split the patch into four subpatches as illustrated in Figure 8.16.

But there is another more direct way to find the control points of each of these
subpatches. Let us focus for now on the subpatch at the comer P00. To find the
control points of this subpatch, divide the numerator and denominator of P(u ,v) by
(1 - u)m(1 - v) n and then apply the change of variables

b/ V
s - t -

1 - u 1 - v

to obtain the reparametrized patch

P * (s , t) -

m /l

E Ewi jPi j (r~) (j) s i t j
i=0j=0

m n

~., E w i j (m) (7) s i t j
i=0 j=0

(a)

Figure 8.15 Subdivision of a hexagonal toric Bezier patch into six rational tensor product Bezier patches:
(a) schematic diagram and (b) actual surface patch.

CHAPTER 8

P o n

Poo

Pyramid Algorithms for Multisided Bezier Patches i SlO

Figure 8.16 Schematic diagram of a rational tensor product Bezier patch subdivided into four rational
tensor product Bezier patches.

Point for point, P(u,v) and P*(s,t) represent the same surface, but the domain of
P(u,v) is 0 < u,v < 1 whereas the corresponding domain of P*(s,t) is 0 < s,t < oo.
Suppose, however, that we restrict the domain of P*(s,t) to 0 < s,t < 1. Within this
restricted domain, P*(s,t) is precisely the subpatch of P(u,v) at the comer P00, since
0 < s,t < 1 if and only if 0 < u, v < 1/2. But 0 < s,t < 1 is the standard tensor product
domain. So to find the Bezier control points of the subpatch at P00, we need only
convert the expression for P*(s,t) from the monomial basis to the tensor product
Bernstein basis. We can easily perform this change of basis using any one of the
standard change of basis algorithms such as blossoming for converting from mono-
mial to Bezier form. The control points for the subpatches at the other three comers
can be found in a similar fashion (see Exercise 1).

To recapitulate what we have just done: At each comer of a tensor product Bez-
ier patch, we have a rectangular array of control points. To find the subpatches at
each comer, we perform:

1. a change of variables from tensor product Bernstein to monomial form

2. a change of basis from monomial to tensor product Bernstein form

We would like to proceed in a similar fashion to subdivide an arbitrary toric
Bezier patch into a collection of rational tensor product Bezier patches. But one
problem we immediately encounter is that for arbitrary toric Bezier patches we do
not have a rectangular array of control points at each comer of the patch (see Figure
8.17). So we shall need to begin by extending the lattice polygon for the toric patch
to a rectangular tensor product lattice at each comer of the patch. When we extend
the lattice, we may introduce additional lattice points; the corresponding additional
control points are simply set to zero. We can then proceed to subdivide the toric Bez-
ier patch into a collection of rational tensor product Bezier patches just as we were
able to subdivide rational tensor product Bezier patches.

8.7 Toric Bezier Patches 51 1

(0,2) o (1,2) j - (2,2)

(0,1) (2,1)

(0,0) i -,/(1,0) o (2,0)

(a) Lattice hexagon

(1,2).

(. .5)

(0' 1) (l~ (2,1)

(.S,.5) (1.5,.5)

(1,0)

(b) Lattice rhombus

Figure 8.17 Extending the lattice at a corner for (a) a lattice hexagon and (b) a lattice rhombus. Notice
that for the lattice rhombus we not only need to add points to the lattice polygon, but we
must also add points to the lattice Z x Z.

To summarize: the subdivision algorithm for toric Bezier patches has the follow-
ing four steps:

1. Extend the lattice polygon at each comer of the patch to a lattice rectangle.

2. Fill in the additional control points with zeros.

3. Perform a change of variables to convert to monomial form.

4. Perform a change of basis from monomial to tensor product Bernstein form.

Now we shall explain in detail how to execute each of these steps.
To begin, we need to construct for each vertex of the toric patch a rectangular

array of control points indexed by a lattice rectangle anchored at the corresponding
vertex of the domain polygon. These new lattice rectangles must contain the original
lattice polygon to ensure that we can still represent all the control points of the origi-
nal patch by indices in the new lattices. Thus to prepare the way for subdivision, we
are going to construct at each vertex Qk of the lattice polygon I for the toric patch a
new lattice A k that contains the lattice Z x Z.

Let R k be the nearest point in I to Qk along the boundary Qk-lQk, and let S k e I
be the nearest point in I to Qk along the boundary QkQk+l. Define

D k = 2 • Area(ARkQkS k)

(ek -Ok)
Ekl =

Ek2 =
Dk

Then starting from the point Qk and adding integer multiples of Ekl,Ek2 forms a new
planar lattice A k. We are now going to show that the lattice A k contains the lattice
Z • Z ~ t h a t is, A k is a lattice extension of Z • Z.

51 2 C H A P T EFt 8 Pyramid Algorithms for Multisided Bezier Patches

LEMMA
8.3

The lattice A k contains the lattice Z x Z.

Proof To prove that A k contains Z x Z, we shall first show that for every point R in
the plane

R = Qk + Lk(R)gkl + Lk-1 (R)Ek2'

where Lj(u,v), j = 1 p, denote the boundaries of the Newton polygon of
I. Since Ekl,Ek2 are parallel to different edges of the Newton polygon of I,
certainly for every point R in the plane there are real numbers A,,/,t such that

R = Qk + ~Ekl + flEk2"

But because Qk,Rk,Sk ~ I, there must exist integers hij, i, j = 1,2, such that

R k - Q k = (hll,hl2)

Sk - Qk = (h21,h22)" (8.37)

Moreover,

0 , det(: 211 12,1
Applying Lk_ 1 to both sides of the equation R - Qk + AEkl + flEk2 and
recalling that Qk + 2Ekl lies on Lk_ 1 yields

Lk_I(R) = P(Nk_ 1 �9 Ek2),

where Nk_ 1 denotes the normal of Lk_ 1. But by Equation (8.37)

Nk-1 = (-hl2,hl 1).

Hence

Nk-1 * (Sk - Qk) hi lh22 - h12h21 = 1.
Nk_ 1 �9 Ek2 - =

Dk Dk

Therefore, / , t - Lk_I(R). A similar argument shows that A,- Lk(R). Thus
for every point R in the plane

R - Qk + Lk(R)Ekl + Lk-I(R)Ek2" (8.38)

It follows immediately that A k is a lattice extension of Z • Z, since if R
Z • Z, then Lk_I(R),Lk(R) are integers.

To extend the original lattice polygon I to a lattice rectangle I~, we now take all
lattice points in the new lattice A k with 0 < i < maxRei{Lk_l(R)} and 0 < j <
maxRel{Lk(R) }. By Equation (8.38) this lattice rectangle I~ contains the original
lattice polygon I. Control points corresponding to lattice points in I~ not in the origi-
nal lattice polygon I are simply set to zero.

8.7 Toric Bezier Patches 513

Next, we need to perform a change of variables to represent the toric Bezier
patch in monomial form. We proceed exactly as in Section 8.7.5, but we replace the
original lattice polygon I by the new lattice rectangle I~. Using the expression in
Equation (8.38) for R, we can rewrite ag(U,V) as

aR(U,V) _ CR{LI(U,V) }LI(R)...{Lp(u,v) }Lp(R)

= C R {L 1 (u, v)] L1 (Qk)+Lk (R)(N1 "Ekl)+Lk-1 (R)(N1 "Ek2)

�9 ..{Lp (u, v) }Lp (Qk)+Lk (R)(Np,Ekl)+Lk_ 1 (R)(Np,Ek2)

(8.39)

Thus, as in Section 8.7.5, we can split aR(U,V) into three factors:

1. C - {Ll(U,v)}Ll(Qk)...{Lp(u,v)} Lp(Qk)

2. D k = {{L l(u,v) } (NI'Ekl) �9 . .{Lp(u,v) }(Np'Ekl)} Lk(R)

3. Ek_ 1 = {{Ll(U,V)} (NI'Ek2) �9 . . { L p (u , v) }(Np'Ek2)} Lk-I(R)

The first factor is independent of R, and hence is common to an(U,V) for all R e I.
Therefore, this factor cancels in the expression for [3e(U,V) in Equation (8.23). Let

t = {LI(U,V)}(NI'Ekl)"'{Lp(u,v)} (Np eEkl)

S -- {LI(U,V) } (NI'Ek2) ""{Lp(u,v)} (Np'Ek2). (8.40)

Substituting these parameters into Equation (8.39) and discarding C yields

OCR(U,V) = cRsLk-l(R)t Lk(R) R e I . (8.41)

Thus aR(U,V) and hence too flR(U,V) is now represented in monomial form.
Consider the image on the toric patch of the unit square {(s,t)I 0 < s,t < 1}.

Along the boundary s = 0, aR(U,V) ~: 0 if and only if R lies on the boundary Lk_ 1.
Therefore, as in Section 8.7.4, the curve corresponding to s = 0 is the Bezier curve
whose control points are indexed by the lattice points along the boundary Lk_l--that
is, the (k - 1)st boundary of the toric Bezier patch. (If Lk(Rk_ 1) ~e 1, then reparame-
triZe by setting u = tLk(et-1).) In particular, if PO Pm are the control points corre-
sponding to the lattice points along Lk_ 1, then in monomial form the boundary curve
s = 0 i s

m (r~)th
e(t)- Z m ph.

h=0 Z (g) tg
g=0

514 C H A P T E R 8 Pyramid Algorithms for Multisided Bezier Patches

When s = t = O, aR(U, v) r 0 if and only if R = Qk, so this curve starts at PQk' which
is the initial point along the (k - 1)st boundary of the toric Bezier patch. Moreover,
when s = O, t = 1, we arrive at the point

m m

(h) e(1)= ~ - -~Ph '
h=O

which is the point corresponding to the parameter value 1/2 for the Bezier curve
with control points PO Pm. Similarly, the curve corresponding to t = 0 is the seg-
ment of the kth boundary of the toric Bezier patch extending from the initial point to
the midpoint of the boundary. Finally notice that the boundary s = 1 is generated by
the functions aR(u,v) = CR tLk(R), so this boundary is identical to the boundary corre-
sponding to t = 1 for the rectangular patch located at Qk+l. Hence these patches join
along smooth curves on the toric surface as indicated in Figure 8.15.

The unit square {(s,t)I 0 _< s,t <_ 1} is the domain of a tensor product patch.
Since R - Q k + Lk(R)Ekl + Lk-I (R)Ek2, the index R ~ I corresponds to the index
(Lk-I (R) ,Lk(R)) in the new lattice A k anchored at Qk. Thus the monomial coeffi-
cients Tij for this tensor product patch are given by

Tij - PR i = Lk_I(R) and j - Lk(R)
= 0 otherwise,

where 0 < i < maxR~I{Lk_l (R)} and 0 < j < maxRd {Lk(R)}. With this indexing
the toric Bezier surface defined by the control points {PR} and the tensor product
patch defined by the monomial coefficients {T i j} are identical by the change of vari-
ables in Equation (8.40).

Equation (8.41) represents the barycentric coordinate functions of the tensor
product surface in monomial form. Thus the control points {T i j} are the monomial
coefficients for the tensor product patch. To find the corresponding Bezier control
points, we can simply apply any one of the standard change of basis algorithms such
as blossoming to convert from monomial to tensor product Bezier form.

The preceding analysis applies to toric Bezier patches of depth d = 1. But the
same approach to subdivision works as well for toric Bezier patches of depth d > 1
because the blending functions for these patches are generated by convolution from
the blending functions of patches of depth d = 1. Hence we can simply replace the
boundaries Lk(u,v) - aku + bkv + c k by Ld(u,v) = aku + bkv + dc k, k - 1 p and
proceed with the same analysis. Thus the monomial form in Equation (8.40) for the
numerators of the barycentric coordinate functions extends by convolution to the
blending functions of toric Bezier patches of arbitrary depth (see Exercise 4).

Exercises

1. Consider a rational tensor product Bezier patch P(u,v) of bidegree (m,n)
with control points (wijPij,wij). Show how to apply a change of variables and
a change of basis to find the control points for the subpatches induced by
subdivision at (u,v) - (.5,.5) at the comers PmO,POn,Pmn.

8.7 Toric Bezier Patches 51 5

2. Implement both the standard subdivision algorithm in Section 5.8.1 and the
toric subdivision algorithm for rational tensor product Bezier surfaces.
Which algorithm do you prefer? Why?

3. Show that in the subdivision of a toric Bezier patch into rational tensor
product Bezier patches, the tensor product patches all share a common
point. Find an explicit expression for this common point.

4. Develop an algorithm for subdividing n-sided toric Bezier patches of arbi-
trary depth d into n rational tensor product Bezier patches.

5. Implement the subdivision algorithm for hexagonal toric Bezier patches
whose lattice hexagon is illustrated in Figure 8.12. That is, implement the
algorithm to subdivide these hexagonal toric Bezier patches into six rational
tensor product Bezier patches. Then apply the subdivision algorithm to ren-
der and to intersect these hexagonal toric Bezier patches.

6. Consider a rational triangular Bezier patch P(u,v) of total degree n with con-
trol points Pijk.

a. Show that the subdivision technique for toric Bezier patches applied at
the comer Poon is equivalent to the following procedure:

i. Divide numerator and denominator by (1 - u - v) n.

ii. Apply the change of variables: s = u/(1 - u - v), t = v/(1 - u - v).

iii. Convert from monomial to tensor product Bernstein form.

b. Use the subdivision technique for toric Bezier patches to subdivide a
rational Bezier triangle into three rational tensor product Bezier patches.

7. Consider a rational triangular Bezier patch

W ijk Pijk Bijnk (u, v)

P(u,v) - i+j+k=n 0 <_ u + v <_ 1.

~., W ij k B ijnk (u)
i+j+k=n

Divide the numerator and denominator of P(u,v) by (2u + 2v - 1) n and then
apply the change of variables

u v
s - t - �9

2 u + 2 v - 1 2 u + 2 v - 1

a. Show that the reparametrized surface is given by

E (- 1) n - i - j WijkPijkBijnk (s , t)

P * (s,t) - i+j+k=n
~., (- 1) n - i - j W ij k B ijnk (s , t)

i+j+k=n

b. Show that the change of variables (u,v) ~ (s,t) maps the triangle with
vertices (0,1),(1,0),(1/3,1/3) to the triangle with vertices (0,1),(1,0),(1,1).

51 6 C H A P T E R 8 Pyramid Algorithms for Multisided Bezier Patches

c. Use parts (a) and (b) to show that P * (s,t) restricted to the domain trian-
gle with vertices (0,1),(1,0),(1,1) is point for point the same surface as
P(u,v) restricted to the domain triangle with vertices (0,1),(1,0),(1/3,1/3).

d. Find the control points of P * (s,t) relative to the Bernstein basis over the
domain triangle with vertices (0,1),(1,0),(1,1) by performing a change of
basis.

e. Using the change of variables cr = 1 - s, 7: = 1 - t , show that the con-
trol points in part (d) are the same as the control points relative to the
Bernstein basis {B/~k(cr, T)} over the standard unit triangle with verti-
ces at (0,0),(1,0),(0,1) of the subpatch of the original patch restricted
to the domain triangle with vertices (1/3,1/3),(0,1),(1,1). Conclude that
the change of basis in part (d) plays the role of a subdivision algorithm
at the parameter values (u,v)= (1/3,1/3) for a particular subpatch of
the original triangular patch.

f. Apply blossoming to show that the standard subdivision algorithm at
(u, v) = (1/3,1/3) and the change of basis in part (d) are exactly the same
procedure.

8. Explain how to modify the subdivision technique for toric Bezier patches pre-
sented in the text so that the rational tensor product Bezier patches inserted at
the comers are replaced by rational triangular Bezier patches. Show, however,
that these triangular Bezier patches do not necessarily cover the original toric
Bezier patch.

9. Let P(u,v) be an n-sided toric Bezier patch with control points Pij defined
over a lattice polygon I whose boundaries are Ll(u,v) L n (u , v) . Define

Z cijPijXl L1 (i , j) . . . xnLn (i,j)

p , (x 1 Xn) = (i,j)eI
~, C6xlL1 (i,j) . . . xnLn (i,j)

(i ,j)eI

a. Show that the patches P* (1 1 , x i , x i + l , 1 1), 0 _< x i , x i + 1 <_ 1, are
exactly the patches constructed in the text that subdivide the surface
P(u,v) into n rational tensor product Bezier patches.

b. Show that these patches all meet at the point P * (1 1).

c. Show that adjacent patches share a common edge.

10. Let P(u,v) be an n-sided toric Bezier patch with control points Pij defined
over a lattice polygon I whose boundaries are Ll(u,v) Ln(u,v). Define
P * (x 1 x n) as in Exercise 9.

a. Show that the patches P * (1 1 , x i , x i + 1,1 1), xi ,xi+ 1 >_ O, x i + xi+ 1 <_ 1,
subdivide the surface P(u,v) into n rational triangular Bezier patches.

b. Show that these patches all meet at the point P * (1 1).

c. Show that adjacent patches share a common edge.

8.7 Toric Bezier Patches 5] 7

8.7.8 Depth Elevation for Toric Bezier Patches

Every toric Bezier patch of depth d can be represented as a toric Bezier patch of
depth d + 1 with the same lattice polygon. To prove this assertion, we will first show
how to express the blending functions {B~(u,v)} in terms of the blending functions
{B~ + l(tt,v) }.

We begin by deriving another explicit expression for the toric Bezier blending
functions {Bd(u v) } Suppose that I = {Pl Pm} is a lattice polygon with barycentric]t ' "
coordinate functions {flpa flpm}" Let Lj(u,v) - aju + bjv + cj - O, j = 1 n be the
equation of the jth boundary of the Newton polygon of I. Then

LJ(u,v) - aju + bjv + d c j - O, j - 1 n,

is the equation of the jth boundary of the Newton polygon of I d (see Section 8.7.1,
Exercise 3). By Equation (8.26)

d k 1 �9 ~ km (u, v) .
B~ (u, v) - ~'klPl +" "'+kmPm =,~ (kl'" "kin)flPl (u, V)'" Pm

Moreover, by Equations (8.22) and (8.23),

cp{Ll(U,V) }LI(P). . .{Ln(u,v) }Ln(P)
tip (U, v) - D(u, v) p e I

D(u, v) = Z act (u, v).
cr ~I

Substituting these formulas for {flPh } into the expression for {B~(u,v)} yields expo-
nents of the form

klLj(Pl) +. . . + kmLj(Pm) - LJ (~)

because kip 1 +. . . + kmP m = A and k 1 +... + k m = d. Hence

B J (u , v) -

a k~. km Ldl(;t)
~klP 1 +...+kmPm=,~ " (kl...km)Cpl "'Cpm {L 1 (u, v)] �9 . .{Ln(u,v)} L~(x)

{D(u,v)} d

Therefore, since the factor {Ll(U,V) }L~(A')...{Ln(u,v) } Lan(A) appears in every term,

B~ (u, v) - c~ {L 1 (u, v)} gd (~) �9 . .{Ln(u,v)} Ldn(x)

{D(u,v)} d
(8.42)

d k 1 . k m
C~ - ~_,klPl +.. .+kmPm= ~ (kl...km)Cpl " "Cpm .

To express the blending functions {B~(u,v)} in terms of the blending functions
d+l d { B 7 (u,v) }, we shall multiply the expression for B~(u,v) in Equation (8.42) by each

of the barycentric coordinate functions of I and addthe results. To proceed, observe
that by Equation (8.42)

i 518 CHAPTER 8 Pyramid Algorithms for Multisided Bezier Patches

flp (U, v)B~ (u, v) -
CpC~ {L 1 (U, V) } Lr (~')+L1 (P)" "{L n (u, V) } Ld (A)+Ln (p)

{D(u,v)} d+l

CpCff~ {L 1 (u, v) } Ld+l (Z+p)...{Ln (tt, v) } Lan+l (&+P)

{D(u,v)} d+l

Therefore,

od+ (,,v)
d+l ~ CZ+p

Summing both sides of this equation over all p e I and recalling that the barycentric
coordinate functions sum to one yields

4
CpCA rid+l, v). (8.43) B~(u ,v) - ~, d+l DA+ptU,

pel CA+p

Now consider a toric Bezier patch BCl(u,v) of depth d with control points {P~}
and let Bd+l(u,v) be the toric Bezier patch of depth d + 1 with control points {P g+l}
defined by

d
"Tpd+l - ~ CpCT-Pd+l P/-P' (8.44)

peI c 7

where c d - 0 if 7 - P ~ Id Then 7-P

d
,-,d+l ,, CpCT-p pd = / / d + l (u , v) p / + 1 -]~ t~ 7 ~,u,v)]~ Bd+l(u, v) Z "7 - d+l 7 -P

7eI d+l ?,el d+l peI c 7

x = ~ d + l O~+p A, eI d I C&+p &eI d

= B d (u, v) ,

so the s u r f a c e Bd+l(u,v) is the depth-elevated form of the surface B d (u,v). There-
fore, Equation (8.44) is the depth elevation formula for toric Bezier patches.

Exercise

1. Show that for triangular Bezier patches, the depth elevation formula in
Equation (8.44) reduces to the standard three-term degree elevation formula
given in Section 5.8.2, Exercise 9.

8.7 Toric Bezier Patches 51 9

8.7.9 Differentiating Toric Bezier Patches

We can differentiate toric Bezier patches exactly in the same way that we can differ-
entiate S-patches because the blending functions {B~(u,v)} for a toric Bezier patch
of depth d can be expressed in terms of discrete d-fold convolutions of the barycen-
tric coordinate functions fll(u,v)- {flp(U,V)}pel of the lattice polygon 1. That is, by
Equation (8.25),

/B,~ (u, ~)1 -/~t (u, v) | | (u, v)
~, ~ ,

- v

d factors

Hence, the derivative formulas we derived for S-patches in Section 8.4.3 readily
extend to toric Bezier patches.

For example, first-order partial derivatives are easy to compute. Indeed by Equa-
tion (5.21),

{~B~(u'v)}- d~)flI-(U'V)}| fli(u,v)|174 fli(u,v)
au L au " d-1 yaotor, "

or equivalently,

d-1 (u, V) = d Z B~_p .
~U peI ~u

Therefore, the first-order partial derivative with respect to u of the toric Bezier patch

is given by

B(u, v) - Z BJ (. , v)P~
~ I d

~B(u,v) =d Z
~tt yeld-1

BJ-l(u,v)(~ ~flP(U'V) I
\pe I Ou P~+P "

An analogous formula holds, of course, for the first-order partial derivative with
respect to v.

Algorithmically, these formulas say that to find the first-order partial derivative
of a toric Bezier patch of depth d, we need only take the first-order partial derivative
of the barycentric coordinate functions on the bottom level of the pyramid algorithm,
then run the algorithm, and multiply the result by d. As with S-patches, it follows by
our convolution formulas that we could, if we choose, take the first-order partial
derivative of the barycentric coordinate functions on any level of the pyramid algo-
rithm, then run the algorithm, and multiply the result by d.

Along any boundary of a toric Bezier patch most of the blending functions
{(B~-l(u,v)} vanish because most of the barycentric coordinate functions are zero
along the boundary. In fact, let Lk(u,v) denote the kth boundary of the Newton poly-
gon of I, and let ~I k denote the indices of I lying on Lk(u,v). Then along Lk(u,v) = O,

i 520 C H A P T E R 8 Pyramid Algorithms for Multisided Bezier Patches

flp(U,V) = 0, p ~ t)l k. Now let ~I d-1 denote the indices along the kth boundary of
the Newton polygon of 1 d-1. Then, by Equation (8.25), along the boundary Lk(U,V)

Therefore, along Lk(U,V)

- l (u , v) - 0, r

igB(u, v)
~ = d Z

3u r~ald-1
Bd-l(u'v)l ~'oflp(u'v))

k, peI aU Pr+p �9

Again an analogous formula holds for the partial derivative with respect to v
along Lk(U,V). It follows then that only the control points indexed by the elements of
Ol~-I (9 1 affect the first-order partial derivatives along, or the directional derivatives
across, the kth boundary of the patch.

Higher-order partial derivatives are not much more difficult to compute. For
example,

{~2B~(u'v)} = d ~2 flI(U'V) | fli(u,v)|174 fli(u,v)
~u2 ~u2 ' d-1 factors

+ d(d- 1) aflz(U'V-------~)| aflz(U'V~)| flt(u,v)|174 flt(u,v),
~u ~u d-2 factors

and similar results hold for the other second-order partial derivatives of the blending
functions. Again this formula has the same algorithmic interpretation that we found
when differentiating S-patches. To find a second-order partial derivative of a toric
Bezier patch of depth d:

1. Take the second-order partial derivative of one level of the pyramid algo-
rithm, then run the algorithm, and multiply the result by d

2. Take the first-order partial derivative of two different levels of the pyramid
algorithm, then run the algorithm, and multiply the result by d(d-1)

3. Add the results of 1 and 2

Higher-order partial derivatives of toric Bezier patches can be computed with similar
algorithms.

Exercises

1. Show that the normal along the kth boundary of a toric Bezier patch of
depth d with lattice polygon I depends only on the control points indexed by
3I d-1 @ I. (Compare to Section 8.4.3, Exercise 1.)

8.7 Toric Bezier Patches 5 21

2. Show that to find the first-order partial derivatives of a toric Bezier patch of
depth d, we could, if we choose, take the first-order partial derivative of any
level of the pyramid algorithm, then run the algorithm, and multiply the
result by d. Explain why in some cases it might be better to take the deriva-
tive of the last level of the algorithm instead of the first level. (Compare to
Section 8.4.3, Exercise 2.)

3. Consider a toric Bezier patch of depth d with lattice polygon I.

a. Show that only the control points indexed by the elements of

~I d-2 G 12

affect the second-order partial derivatives of the patch along the kth
boundary.

b. Generalize the result in part (a) to higher-order partial derivatives.

(Compare to Section 8.4.3, Exercise 3.)

4. Develop an algorithm for finding the third-order partial derivatives of a toric
Bezier patch of depth d. How many different pyramids must you compute?
What are the normalizations for each of these pyramids? (Compare to Sec-
tion 8.4.3, Exercise 4.)

8.7.10 Blossoming Toric Bezier Patches

We could try to blossom a toric Bezier patch B(u,v) of depth d just as we blossom an
S-patch of depth d, by replacing the parameters (u,v) by a different parameter pair
(uk,vk) on each level of the pyramid algorithm. Let us denote this function by
b((ul ,v 1) (Ud,Vd)). This function would certainly be symmetric and satisfy the
diagonal property, just like the blossom of an S-patch. But there is a problem with
the dual functional property. What we would like to have happen is that each control
point of the toric Bezier patch should be given by the blossom of the patch evaluated
at some collection of vertices of the patch. Unfortunately, this cannot always occur,
even for toric Bezier patches of depth d = 1 because there are more control points
than there are vertices. There are just not enough vertices to go around.

Nevertheless, we do get a partial dual functional property. Let
flz(u,v) - {flij(u,v)} be the barycentric coordinate functions for the lattice
polygon I whose Newton polygon has vertices Q1 Qn. By Equation (8.25)

and by Theorem 8.2

IBJ (u, v) I - flz(u, v) | | fli(u, v)
~ r

d factors

flij(Qk) - 0 (i, j) r Qk

= 1 (i , j) - Q k .

5 2 2 C H A P T E R 8 Pyramid Algori thms for Mult is ided Bezier Patches

Hence for k 1 +. . . + k n - d,

kl k n

SO

b~(Q1 Q1 Qn Qn) = 1 /~ = klQ ! ~ . . . @ knQ n
�9 j �9 j

= 0 otherwise.

Now let {P~} be the control points of B(u,v). Since

v) - 2 BJ v)P ,
~,EI d

it follows by linearity that

So if we can express the index of a control point as a d-fold Minkowski sum of the
vertices of I, then we can compute the control point by evaluating the function
b((Ul,Vl) (Ud,Vd)) at the corresponding vertices of I. Unfortunately, in general, not
all indices in/d, and hence not all control points in {P~} can be expressed in this
manner (see Exercise 1).

What is to be done? We need either more sets of vertices or more levels in the
pyramid algorithm. To overcome our predicament, our strategy is going to be to try
to express a toric Bezier patch as a C-patch~that is, to write the barycentric coordi-
nate functions of a toric Bezier patch as convolutions of the barycentric coordinate
functions of a collection of S-patches. If we are successful, then we can apply the
blossoming procedure that we already know works for C-patches to compute the
dual functionals for the toric Bezier patch. Therefore, we turn our attention next to
toric Bezier C-patches.

Exercises

1. Let I denote the lattice pentagon depicted in Figure 8.10. Show that for
every d > 1 there are indices in I a that cannot be expressed as the d-fold
Minkowski sum of the vertices of I. Conclude that blossoming the pyramid
algorithm does not provide all the dual functionals for these pentagonal lat-
tices for any depth.

2. Let I denote the lattice hexagon depicted in Figure 8.12. Show that every
index of I a for d > 2 can be expressed as the d-fold Minkowski sum of verti-
ces in I. Conclude that blossoming the pyramid algorithm provides the dual
functionals for these lattice hexagons of depth d > 2.

8.7 Toric Bezier Patches 5 2 3

3. Suppose that B(u,v) is a toric Bezier patch of depth d with barycentric coor-
dinate functions {flPl (u, v) flPm (u, v)} and blending functions

{BJ(u,v)}- {flPl (u,v) flora (b/'V)} @ "'" @ {/~Pl (b/,V) /~Pm (U,V) }
~,

d factors
^

Let B(Upl Upm) be the polynomial generated by replacing the barycentric
coordinate functions tiP1 (u, v) flPm (u, v) with the parameters Up1 Upm
in the pyramid algorithm for B(u,v), and let

{[~ (Upl Upm) } -- {Upl Upm } @"" | {Upl Upm }.

d factors

Then [~(upl Upm) and /}~ (upl Upm) are polynomials of degree d in m
variables with polynomial blossoms

/) ((U l l Ulm) (Udl Udm)) and /~((ull Ulm) (Udl Udm)).

Show that

a. bJ((Ul,Vl) (Ud,Vd)) -

/)~ ((flPl (ul ' vl) flPm (ul ' vl)) (flPl (ud' vd) flPm (ud' vd)))

b. b((Ul,Vl) (Ud,Vd))=

/)((flpl (Ul 'Vl) flPm (ul'vl)) (tiP, (Ud'Vd) flPm (ud'vd)))
(Compare to Section 8.4.4, Exercise 6.)

8 . 7 . 1 1 Toric Bezier C-Patches

A toric Bezier C-patch is a toric Bezier patch that is also a C-patch. To determine if
the functions al(U,V) = { a i , j (u , v) }(i,j)eI for a lattice polygon I define a C-patch, we
must seek

1. a decomposition

I - 11 @.. . G I m

2. a distribution

gti(U , V) = al l (U, V) @"" @ aim (U, V).

A decomposit ion means that I can be expressed as a Minkowski sum of lattice
polygons 11 I m. For an arbitrary lattice polygon I a decomposition does not always
exist, but a decomposition of I does exist for many interesting lattice polygons.
Indeed, for some lattice polygons, there are several different decompositions (see
Exercise 1). Suppose that a decomposition of I does exist. By Equation (8.22) the

�9 l 5 2 4 C H A P T E R 8 Pyramid Algorithms for Multisided Bezier Patches

functions al(U,V) are products of powers of the boundaries of the Newton polygon
of I. Therefore, a distribution means that products of the lines bounding the Newton
polygon of I can be apportioned to the nodes of the lattice polygons 11 I m in the
decomposition so that

�9 the functions at the nodes are the numerators of barycentric coordinate
functions for convex polygons P1 Pm;

�9 convolving these products gives exactly the functions ai(u,v) defined in
Equation (8.22)~the numerators of the barycentric coordinate functions for
the lattice polygon I.

Although a decomposition of I need not exist, when there is a decomposition of
I into lines (two nodes) and triangles (three nodes), there is always an associated dis-
tribution.

For example, consider the lattice hexagon in Figure 8.12. Evidently this lattice
polygon can be decomposed into the Minkowski sum of the three linear lattices. Now
we want to distribute products of the lines bounding the hexagon to the nodes of these
linear lattices so that the functions ai(u,v) for the lattice hexagon result from convolv-
ing these products. Figure 8.18 illustrates such a distribution (see Exercise 1).

We are still missing the pofygons~the line segments~associated with these
three linear lattices. (Recall that for S-patches, the polygon is not necessarily the
convex hull of the indexing set.) So far with each linear array I k in Figure 8.18, there
are associated two quadratic functions, Fkl,Fk2. We want these functions to repre-
sent barycentric coordinate functions for a line segment. Thus for each array I k, we
need to find two points Qkl, Qk2 so that

Fkl(Qkh) = 0 1 :/: h
(8.45)

=1 1 - h .

Actually it is enough to find points Qkl,Qk2 such that

Fkl(Qkh) = 0 l r h

~1 l = h ,

(1 - u + v) (2 - u) u(l+u-v)

(o,o) (1,o)
|

v(1 - u + v) u v

(0,1)

|

(o,o)
(2 - v) (l + u - v) (2 - u) (2 - v)

(1,1)

Figure 8.18 A distribution for the lattice hexagon in Figure 8.12. It is straightforward to verify directly
that the functions a~(u, v) for the lattice hexagon are given by convolving the functions at the
nodes of these three linear lattices.

8.7 Toric Bezier Patches 5 2 5

since we can always multiply Fkl by a constant to force Fkl(Qkl)- 1. We have the
freedom to multiply by constants because we have the freedom to choose the con-
stant coefficients in the functions ai(u,v). In our example we can take the point Qkl
to be the intersection of the lines that factor Fk2 and the point Qk2 to be the intersec-
tion of the lines that factor Fkl. Notice that these points are vertices of the Newton
polygon of the original lattice hexagon.

With this distribution, we have essentially represented the barycentric coordi-
nates for the hexagonal patch as a convolution of the barycentric coordinates of three
linear S-patches. We say essentially because we have represented the functions
ai(u,v) by convolution instead of the barycentric coordinate functions flt(u,v). This
problem is easily overcome; since there are three factors in the convolution, simply
divide the function at each node by the factor

{ Z akt(u,v)} 1/3.
(k,/)~l

(For rational toric Bezier patches, we can ignore this normalization entirely.) Notice,
by the way, that even with this normalization, the functions labeling the nodes for
each line do not sum to one. It turns out that this does not matter; we care only that
the barycentric coordinate functions flI(u,v) for the lattice hexagon sum to one and
that Equation (8.45) is satisfied so that we know where to evaluate the blossom to
obtain the dual functionals for the C-patch (see Section 8.6, Exercise 11).

The domain of a C-patch is the intersection of the domains of the corresponding
S-patches. For each of the S-patches whose index set is depicted in Figure 8.18, the
domain is actually bounded by a quadrilateral~by the four lines contained in the
factors at the two nodes. (The domain is bounded by four lines in uv-space even
though the polygon itself is a line segment because the barycentric coordinate func-
tions are nonnegative inside a quadrilateral.) But because we have a distribution, an
apportioning of the products of the lines bounding the hexagon to the vertices of the
lines in the decomposition, the intersection of these three quadrilaterals is exactly the
hexagon. Whenever we have a distribution, the lines in the factors at the vertices of
the S-patches~that is, the lines that factor the barycentric coordinate functions of
the S-patches~are exactly the lines that bound the toric Bezier patch. Therefore, the
intersection of the domains of the S-patches in the decomposition will always be the
domain of the corresponding toric Bezier patch.

For the lattice hexagon, I = I 1 @ 12 ~ 13 and

so the corresponding toric Bezier patches are C-patches. Let d = (dl,d2,d3). Then
there is a three-tier evaluation algorithm for the hexagonal toric Bezier patches
indexed by I d = 1 dl @ 1 d2 ~ 1 d3. Moreover, the mechanism for blossoming C-patches
applies without any modification to these hexagonal patches. Therefore, we can
blossom the hexagonal toric Bezier patches indexed by I d simply by blossoming
each tier of the three-tier evaluation algorithm independently. Thus we have suc-
ceeded in constructing a blossom for these hexagonal toric Bezier patches that is tri-
symmetric, reduces to the original patch along the diagonal, and satisfies the dual

i 526 C H A P T E R 8 Pyramid Algorithms for Multisided Bezier Patches

functional property. This blossom, however, is not multiaffine, since the functions in
the distribution are not linear.

We have illustrated our approach with a particular example, but the details are
much the same for all toric Bezier patches with lattice polygons that have a decom-
position into a Minkowski sum of lines and triangles. The only missing detail is how
the distribution is accomplished. We shall explain precisely how to perform the dis-
tribution in Theorem 8.6, but first we need some preparatory lemmas.

LEMMA
8.4

Suppose that I = 11 @... @ I m is a decomposition of I. Let

L(u,v) =- au + bv + c = 0

be a bounding line of the Newton polygon of I, and let N = (a,b) be a normal
vector of L(u,v) pointing into the Newton polygon of I. For each index set lj,
let Qj be a node of Ij at which N points into the Newton polygon of Ij, and let
Q = Q1 @"" @ Qm. Then L(Q) = 0mthat is, Q lies on L.

Proof Since N is an inward-pointing normal, L(R) > 0 for all R e I. Let Rj r Qj
be another node of Ij. By assumption, N points into the Newton polygon of
Ij at Qj, so

N �9 (R j - Qj) > 0

or equivalently

N . Rj > N . Qj.

Hence for all R e I 1 G. . . �9 I m - I , we have

N �9 R > N �9 Q, so L(R) > L(Q) > O.

Therefore, L(Q) is the minimum value of L on 1. But L is zero on indices of
I that lie on L, and positive for all other indices in I; hence L(Q) = O.

LEMMA
8.5

Suppose that I = I 1 ~ . . . ~ I m is a decomposition of I. Let

L(u,v) - au + bv + c = 0

be a bounding line of the Newton polygon of I, and let N = (a,b) be a normal
vector of L(u,v) pointing into the Newton polygon of I. For each index set lj,
let Qj be a node of Ij at which N points into the Newton polygon of Ij, and let
Lj(u,v) - au + bv + cj - 0 be the line through Qj parallel to L(u,v). If

R - R 1 @...@ R m, then L(R) = LI(R1) +.-. + Lm(Rm).

8.7 Toric Bezier Patches 5 2 7

Proof Let c* - c 1 + . . . + c m and let L * (u,v) - au + bv + c *. If R - R1 @. . . @ Rm,

then L 1 (R 1) +. . . + L m (R m) - L * (R) . We shall now show that L* - L. Cer-
tainly the line L * (u , v) - 0 is parallel to the line L(u,v) - O. Let
Q - Q1 @"" @ Qm. By Lemma 8.4, L(Q) = 0. But, by assumption,

Lj (Qj) - 0,

so L * (Q) - L 1 (Q1) +"" + Lm (Qm) - O. Hence Q must lie on both L* and L.
But L* is parallel to L. Therefore, L* - L.

THEOREM
8.6

Let I be a lattice polygon, and let Lk(u,v) = 0, k = 1 n, be the equation of
the kth boundary line of the Newton polygon of I with normal vector N k
pointing into the Newton polygon. Suppose that I - I 1 ~ . . . 0 1 m is a
decomposition of I. For each index set Ij, let Qkj be the node of Ij at which
N k points into the Newton polygon of Ij, and let Lkj(u,v) - 0 be the line
through Qkj parallel to Lk(u,v) - O. Then the distribution associated to each
node Rj of lj is given by

OCRj (u,v) - {Ll(U,V) }Ll j (Rj) . . . {Ln(u ,v) } Lnj(Rj)"

Proof Let R - R 1 @.. . @ R m, where Rj ~ I j . By Lemma 8.5,

L k l (R 1) + ' " + Lkm(R m) - L k (R).

Therefore,

aRl(u,v)...aRm(u,v)
= {Ll(u,v) } Lll(R1)+'''+Llm(Rm) ...{Ln(u,v)}Lnl(R1)+'"+Lnm(Rm)

= {LI(U,V) } Ll(R) . . . {Ln(u,v)]Ln(R)

= a R (u , v) .

Thus we have successfully apportioned products of the lines bounding the
Newton polygon of I to the nodes of the lattice polygons I 1 I m in the
decomposition so that convolving these products gives exactly the functions
ag(U,V) defined in Equation (8 .22)~the numerators of the barycentric
coordinate functions for the lattice polygon I.

Exercises

1. Let I be the lattice hexagon in Figure 8.12.

a. Verify that Figure 8.18 represents a distribution for I.

b. Show that I = I 1 @ 12, where I 1 = { (0,0),(1,0),(0,1)} and
12 = { (0,0),(0,1), (1,1) }, is another decomposition for I.

528 C H A P T E R 8 Pyramid Algori thms for Mul t is ided Bezier Patches

c. Find a distribution for the decomposition in part (b).

2. Consider the lattice pentagon 11 = { (0,0),(1,0),(0,1),(1,1),(1,2),(2,1) }.

a. Show that I - I 1 ~)12, where I 1 = {(0,0),(1,0),(0,1)} and
12 - { (0,0), (1,1) }.

b. Find a distribution for this decomposition.

3. Find a distribution for the decomposition of the lattice pentagon in Figure
8.10.

4. Explain why it is not necessary to normalize the distribution in Figure 8.18
for a rational hexagonal Bezier patch.

5. For the hexagonal toric Bezier patches whose lattice hexagon is illustrated
in Figure 8.12, there are three evaluation algorithms:

i. The pyramid algorithm

ii. A two-tier evaluation algorithm based on the decomposition in Exercise 1

iii. A three-tier evaluation algorithm based on the decomposition in Figure
8.18

Implement all three of these evaluation algorithms. Which algorithm do you
prefer? Why? Experiment with toric hexagonal Bezier patches of different
depths. Determine how changing the location of the control points affects
the shape of the surface.

6. Here we develop a multidepth elevation formula for toric Bezier C-patches
whose lattice polygon I has a decomposition I - I 1 0) . . . O) I m into lines and
triangles. Let d = (d 1 d m) and suppose that

0[, I (hi, V) -- adi11 (H, V) (~ . . . (~ a im dm (hi, 1;)

is a distribution. Let L k (u , v) - aku + bkv + c k - 0 , k = 1,...,n, be the equa-
tion of the kth boundary line of the Newton polygon of I, and, adopting the
notation of Theorem 8.6, define

Lkj(U, v) -- aku + bkV + Ck, j j - 1 m ,

L d (u,v) = aku + bkV + Ck,ld 1 +. . . + Ck,md m k - 1 n .

a. Show that there are constants cg, c~ such that if ~ e lj

d d
i. a~ (u , v) - C~Ll(U,V) E1 (P) . . .Ln(u,v) En(p)

ii. a~(u,v)c t~(u ,v) = c~c~ {LI(U,v) ILdl (Pl+Llj(~I . . . ILn(u,v) } Edn(pl+Lnj(~)

b. Now let ej be the m-tuple with a 1 in the jth position and a zero every-
where else. Using part (a) show that

8.8 Summary 52 9

fEa~(u,v)ta~(u,v) _ Z c~c ~ d+ej
d+ej ap+~ (U,V).

~I j ~elj Cp+~

. d+ej
c. Using the fact that {air (u,v) } | {aid (u,v)} - {ald+e J (U,V)}, show that

d+ej
Z a (u,v) Z Z aT (u,v).

~elj ~,~I d ,celd+ej

d. Dividing the result in part (b) by the result in part (c), conclude that

- Z c~c~ Bd+e j
d+ej p+~ (u, v) .

e. Applying the result of part (d), show that

d
p/+ej_ 2 c~cy_~ d d i d

- d + e j Pg'-~' where c9,_ ~ - 0 if ~ ' - ~ ~ ,
~I j Cy

is the depth elevation formula in the direction ej. That is, using part (d),
show that the toric Bezier surface of multidepth d with control points
{PJ} is identical to the toric Bezier surface of multidepth d + ej with

r~d+ea control points { r/1, ~/.

8.8 Summary

Multisided Bezier patches have many different formulations: S-patches, C-patches,
and toric Bezier patches are the three most important paradigms. Each of these
schemes is an example of a pyramid patch with a polygonal domain, but with a dif-
ferent type of indexing set and a different collection of barycentric coordinate func-
tions. We review these differences in Table 8.4. Below we summarize the properties
and algorithms that these multisided schemes share with the standard three-sided
and four-sided Bezier patches.

Table 8.4 Framework for constructing multisided Bezier patches.

Patch Index Set Domain Barycentric Coordinates

S-patch p-tuples convex polygon

C-patch Minkowski sums

convex polygon

intersection polygon convolutions

Toric Bezier lattice polygon Newton polygon lattice polygon

530 C H A P Y E R 8 Pyramid Algorithms for Multisided Bezier Patches

�9 Properties of multisided Bezier patches

1. Rational

2. Affine invariant

3. Lie in the convex hull of their control points

4. Boundaries are Bezier curves determined by boundary control points
(toric Bezier patches and S-patches, but not C-patches)

5. Nondegenerate (toric Bezier patches and toric S-patches)

�9 Algorithms for multisided Bezier patches

1. Pyramid evaluation algorithm

2. Multitier evaluation algorithm (C-patches)

3. Differentiation

4. Depth elevation (toric Bezier patches and simplicial S-patches)

5. Blossoming

6. Subdivision (toric Bezier patches)

These pyramid patches do not by any means exhaust the possibilities for multi-
sided surfaces. Other approaches to multisided patches include multivariate B-
splines and subdivision surfaces. Each of these schemes could, in itself, be the sub-
ject for a separate book, so we have not attempted to cover these topics here. Our
hope is that the tools you have learned throughout this text will give you an entry
into these and other topics as the need arises. So, for now, we end our choreography
here. We trust you have enjoyed the dance.

Index

A

adjacent patches
tensor product Bezier,

276-277
tensor product B-spline, 431
triangular Bezier, 283-284

affine basis, 7
affine combinations, 6

of blossom values, 321
defined, 5
divided difference, 181
in knot insertion algorithm,

373
affine coordinates

defined, 21, 29
exercises, 30-31
See also coordinates

affine independents, 7
affine invariance, 25

Bezier curves, 191, 197
B-spline curves, 362
defined, 191
rational Bezier patches, 295
tensor product Bezier

patches, 273
tensor product B-splines, 427
triangular Bezier patches, 282

affine lines, 7
affine plane, 33, 35

barycentric coordinates in,
34, 36

rectangular coordinates in, 34
affine spaces, 2-10

barycentric coordinates in, 31

defined, 6
division by zero and, 26
exercises, 8-10
flaws, 17
framework, 6
geometry, 17
Grassmann space mapping,

21
models, 6
points, 6
projection in, 22, 25, 72
projective space mapping, 21
rational Bezier curves in, 255
rational Bezier surfaces in,

293
rational Hermite interpolation

in, 140
rational Lagrange inter-

polation in, 74
See also ambient spaces

affine transformations, 8
defined, 8
of knots, 440
of nodes, 53, 65
performing, 25

Aiken's algorithm, 55-56
ambient spaces, 1-27

affine spaces, 2-10
Grassmann spaces, 10-17
mappings between, 21-22
projective spaces, 17-21
vector spaces, 1-2

antidifferentiation, 182
See also integration

approximating polynomials, 221,
222

approximation
Bernstein, 222
Bezier, 187-306
B-spline, 347
Lagrange, 70

approximation theory, 198
arrays. See polygonal arrays
a r r o w s

in Neville's pyramid diagram,
98

reversing, in triangle, 214
axiomatic approach (divided

difference), 170-173
axioms,

blossoming, 311
divided difference, 170-173

B

barycentric coordinates, 31-38
in affine plane, 34, 36
in affine space, 31
along affine line, 33
area formula for, 35
basis choice and, 31
canonical triangle, 282
for convex polygons,

446-450, 491
C-patch, 477,529
defined, 27, 31
exercises, 36-38,446-450
for hexagonal patch, 525

531

532 Index

barycentric coordinates
(continued)

illustrated, 34
labels, 330
for lattice polygons, 491-495
line formula for, 35
as linear functions, 330
in one/two dimensions, 32
properties, in affine plane, 36
properties for convex

polygons, 446
pyramid patch, 474
rectangular coordinate

conversion, 32
signs, 33
solving for, 33
S-patch, 529
specifying, 33
standard properties, 96
for toric Bezier patches, 504,

529
for triangles, 34-36, 446-447
See also coordinates

bases,
Bemstein, 194-199, 355
Bemstein, of negative degree,

199, 237
B-patch, 430-437
B-spline, 383-405
Hermite, 130-135
Lagrange, 58-65
L-patch, 436
monomial, 217-220, 356
Newton, 156-157
Newton dual, 356-357,

380-383
Poisson, 205,237
power, 357
progressive, 355-358
Taylor, 56-58, 155

Bemstein approximation, 222
Bernstein basis functions,

194-199, 222, 297,298
alternating sums, 300
antiderivative, computing,

253
bicubic, 268
biquadratic, 271
bivariate, 281,306, 478
boundary values, 300
coefficient weights, 257
computing, 195

conversion to monomial
form, 200, 211, 301

comer values, 300
de Boor-Fix formulas, 305
defined, 195
definite integrals of, 254
definitions, 299
degree elevation, 305
Descartes' Law of Signs, 211,

301
differentiating, 243-250
directional derivatives, 304
discrete convolution,

239-243,276-277,296,
302, 502

down recurrence, 195-196,
240

dual basis for, 317
exercises, 198-199
explicit formula for, 196, 197
generating functions, 218,

302
Homer's evaluation

algorithm, 201-202
identities, 299-306
integrals, 304
integrating, 253-255
linear dependency and

nondegeneracy, 200-201
linear independence, 301
Marsden identities, 305
maximum values, 300
monomial basis

representation, 217
nonnegativity, 299
partial derivatives, 303
partitions of unity, 300
in probability theory,

197-198
properties, 200-212
recursion, 240, 302
representation of monomials,

301
scaled, 231
standard recursion formula,

196
subdivision, 303
symmetries, 299
unimodality, 202-206, 302
univariate, 306, 478,502
up recurrence, 195

Bemstein blending functions,
256

See also Bemstein basis
functions

Bemstein polynomials. See
Bemstein basis functions

Bemstein recurrences, 240, 302,
482

Bezier approximation, 187-306
determination, 234, 235
for proving Weierstrass

Theorem, 221
Bezier coefficients, 245

dual functionals, 342
of tensor product Bezier

patches, 336
uniqueness, 330, 336
See also control points

Bezier control polygon, 267
Bezier curves

affine invariance, 191, 197
algorithms for, 299
analysis tools, 298
blossoming, 312, 313
continuity conditions for

adjacent curves, 246
control points, 222, 229, 238
control points, finding, 232
control points, first/last, 238
control points, fixed, 260
convex hull property,

191-192
cubic, 189, 225,232, 245,

247
de Casteljau's algorithm for,

189, 232, 233
defined, 188
degree elevation for,

224-228, 319
derivatives, 245,246, 251
derivatives, evaluating, 244
differential properties, 238
differentiating, 243-250
elementary properties of,

190-194
exercises, 193-194
integral, 256, 261,266
integrating, 253-255
interpolation of end points,

193-194
intersection algorithm, 234
interval, 189
mass, in Grassmann space,

260

Index 5 3 3

nondegenerate, 201
oscillation, 206, 208
polynomial parametrization,

190
probability theory and, 229
properties, 200-212, 298-299
rational, 255-267
rendering, 229
rendering algorithm, 234
smoothness, 238
as special B-spline segments,

355
subdivision, 229
splitting, 229
symmetry, 193
variation diminishing prop-

erty, 206-212, 227,234
Bezier patches

algorithms for, 299
analysis tools, 298
biquadratic, 271
blossoming, 327-339,

521-523
differentiating, 295
multisided, 445-530
patch shapes, 267
properties, 298-299
rational, 293-297
shapes, 267
subdivision for tensor product

patches, 334
subdivision for toric patches,

508-516
subdivision for triangular

patches, 283,330
tensor product, 267-279,477
three-sided, schematic

construction, 285
toric, 446, 488-489
triangular, 279-292

Bezier/monomial form
conversion, 217-220

algorithm, 217-218
exercises, 218-220
knot insertion, 377-379

Bezout's Theorem, 105
bicubic Bernstein basis

function, 268
bicubic interpolation, 89
bicubic Lagrange basis function,

88

bicubic patches, pyramid
algorithm, 92

bicubic tensor product Bezier
surface

with control polyhedron, 269
data, 268
patch illustration, 270
schematic construction, 270
See also tensor product

Bezier patches
bidegree blossom

existence of, 335
homogenizing, 337
See also blossoms

bilinear interpolants, 91
bilinear recurrence, 269, 271
binomial distribution, 298
binomial theorem, 217,229,297,

298
biquadratic interpolants, 91
biquadratic parametrization

sphere, 108,293,
torus, 110

biquadratic patches, Neville's
algorithm for, 90

bisymmetric, 335
bivariate Bernstein basis

functions, 281,306, 478
bivariate Hermite basis function,

144
bivariate interpolation

bilinear, 92
problem, 86, 87

bivariate Lagrange interpolant
exercises, 106-107
explicit formula based on,

105
on triangular grid, 105
uniqueness, 103-107

bivariate polynomials, 85
problem, solving, 86
quadratic interpolation and,

85, 86
See also polynomials

blending functions, 25
Bernstein, 256
B-patch, 435-436
B-spline, 383
computing, by discrete

convolution, 475
convex hull property and, 198

C-patch, 477-478,482
discrete distributions and, 198
Hermite, 130-135
Lagrange, 58-65
L-patch, 436
P-patch, 474, 475
rational, 256
simplicial S-patch, 463
S-patch, 459-462, 506
at tetrahedron base, 282
toric Bezier patch, 489,496,

519
toric S-patches, 506

blossoming, 307-345
applications, 341
axioms, 311
Bezier curves, 312, 313
Bezier patches, 327-339
B-splines, 389-391
central ideas, 341
change of basis algorithms,

317-321
C-patches, 483-484
cubic polynomials, 311
curves, 317
de Boor algorithm, 350
de Casteljau algorithm,

307-310
defined, 307
degree elevation with,

318-319
dual functionals and,

389-391
homogenization and, 322
homogenizing commute and,

325,327
idea behind, 311
key de Casteljau construc-

tions, 340-341
monomial basis, 315
for monomial to Bezier form

conversion, 319
power basis, 315
P-patches, 475-476
recurrence of cubic

polynomials, 348
relation to divided difference,

182
S-patches, 469-473
special bivariate bases, 344
special tensor product bases,

344

534 Index

blossoming (continued)
special univariate bases, 344
subdivision with, 317-318
summary, 340-345
tensor product Bezier

patches, 335-339
toric Bezier C-patches, 525
toric Bezier patches, 521-523
triangular Bezier patches,

328-335,469
use of, 307

blossoming identities, 341-345
bisymmetry, 335
blossom of the derivatives,

345
composites, 342
convolutions, 343
de Boor-Fix representation,

345
degree elevation, 342
derivatives, 343
diagonal, 342
dual functionals, 342
linearity, 342
multiaffine, 341
partial derivatives of the

blossom, 345
products, 342
symmetry, 341

blossoms
analysis tools, 341
of bidegree, 335,337
biquadratic tensor product

Bezier patch, 336
bisymmetric, 335
B-spline, 389
cubic triangular Bezier patch,

329
defined, 310, 311,329
diagonal, 310, 311,340
dual functional property, 317,

319, 340, 390
examples, 308, 337
evaluating, at end points, 317
existence of, 310-317, 340
formula, derivation of, 314
homogeneous, 321-327, 330
linearity, 319
multiaffine, 310, 311,323,

335,340
multilinear, 322, 323-324

parameters, 335
properties, 310
symmetry, 310, 311,340
uniqueness of, 310-317,329,

335,340
values, 314
values, affine combinations

of, 321
values, computing, 366
variables, replacing, 310

Boehm's derivative algorithm,
380-381

for cubic curves, 380
defined, 380
exercises, 381
first step, 381
illustrated, 380

Boehm's knot insertion
algorithm, 368-371

control points and, 368-369
for converting B-spline seg-

ment to Bezier form, 376
for cubic B-spline curves, 369
de Boor algorithm use, 369
defined, 368
exercises, 373-374
illustrated, 369, 370, 371
for inserting double knot, 370
for inserting triple knot, 371
steps, 370
See also knot insertion

Boolean sum Hermite surfaces,
150-154

compatibility conditions,
150-151

construction, 150
cross-boundary derivatives,

150
data, 151
defined, 151
exercises, 152-154
filling four-sided hole with,

153
interpolation properties, 152
mesh of curves intersection,

151
See also Hermite surfaces

Boolean sum surfaces, 114-115
defined, 114
exercises, 115-116
Hermite, 150-154
illustrated, 114

mesh of curves and, 114-115
boundaries

Newton polygon, 502, 512
polygonal array, 489
P-patch, 474, 475
S-patch, 467
tensor product Bezier patch,

273
tensor product Lagrange

patch, 87
toric Bezier patch, 488-489,

500-502, 513-514
triangular Bezier patch, 282
triangular Lagrange patch, 97
values, 300

B-patches, 433-437
cubic, 434
defined, 433
exercises, 435--437
knot-net, 435
multivariate B-spline surface

with, 435
quadratic, 434
triangular, 435

B-spline basis functions. See
B-splines

B-spline coefficients, 389
B-spline curves, 347, 358-364

affine invariance, 362
algorithms, 356, 438-439
analysis tools, 438
compact support, 386, 439
constructing, 359
continuity at multiple knots,

362
conversion to piecewise

Bezier form, 375-376
cubic, 349, 350
de Boor algorithm for, 348,

349
derivatives, computing, 380
differentiating de Boor

algorithm for, 352
differentiating segment on,

350
exercises, 361
first/last control points and,

363
generation of all splines, 366
geometric construction

algorithm, 350

Index 5 3 5

interpolation of control
points, 363

joins, 347
knot insertion algorithms for,

367-383
local control, 362
local convex hull, 362
locally nondegenerate,

362-363
piecewise polynomial, 361,

362
properties, 361-364, 438
quadratic, 411
rational, 418
variation diminishing

property, 376
verifying smoothness, 350

B-spline identities, 439-443
blossoming as dual func-

tions, 442
de-Boor-Fix formula, 442
degree elevation, 442
Descartes' Law of Signs, 441
differentiation, 440
divided difference formula,

442
evaluation at knots, 440
geometric characterization,

443
integration, 441
interpolation at knots, 439
invariance under affine trans-

formations at knots, 440
knot insertion, 442
linear independence, 441
Marsden identity, 442
nodes, 441
nonnegativity, 440
nonstandard differentiation,

441
nonstandard recursion, 440
partial derivatives, knots, 442
partition of unity, 440
recursion, 440
recursion for derivative, 441
representation of monomials,

442
smoothness at knots, 439
for uniform B-splines, 443

B-spline segments
adjacent, de Boor algorithm

for, 360

cubic, 358
de Boor algorithm for, 350,

359
defined, 358
of degree n, 360
differentiating, 359
Newton dual form

conversion, 381
See also progressive

polynomial curves
B-spline surfaces, 347

algorithms, 438-439
analysis tools, 438
joins, 347
multivariate, 435
properties, 438
tensor product, 427-429

B-splines, 383-405
antiderivative of, 392
blossoming and dual

functionals, 389-391
compact support, 386
computing, 383
constructing from divided dif-

ference operator, 394
continuity, 386
from de Boor algorithm,

383-384
defined, 347, 383
of degree 0 and 1,385
of degree 2 and 3,385
differentiating, 391-394
divided difference and, 182,

394-402
down recurrence, 384-385
down recurrence for

differentiating, 391
dual functional property, 350
geometric characterization of,

402-405
indexing, 384
integration, 183, 391-394,

441
in large-scale industrial

applications, 347
multivariate, 404
nodes, 390
nonnegativity, 387
partition of unity, 386-387
piecewise polynomial, 386
properties of, 386-389

rational, 418-422
spline basis, 387
two-term differentiation

formula, 398-399
uniform, 405-418
unimodality, 387
univariate, 404
up recurrence, 384
uses, 383

r

cancellation
divided difference, 166, 181,

396, 397
divided difference axiom, 171

canonical triangle, 282
cardinal basis functions, 83
cardinal conditions, 63, 87
Catmull-Rom splines, 422-426

construction, 425
continuity, 424
cubic, 425
defined, 422
exercises, 425-426
interpolation, 423
knot insertion and, 425,426
local control, 425
nondegenerate, 425
piecewise polynomial, 422
properties, 424-425
recursive evaluation

algorithm, 424
value of points on, 424

Cauchy's Integral Formula, 172
Ceva's Theorem, 16
Chaikin's knot insertion

algorithm, 408-4 11
defined, 410
exercises, 410-411
generalization of, 415
illustrated, 410

change of basis algorithms
between Bezier and

monomial form, 217-220,
319, 377-379

blossoming for, 317-321
fast forward differencing and,

177
with knot insertion, 375-379
principles of duality, 212-216

[5 3 6 Index

circles
approximation by Lagrange

interpolation, 71
as rational Bezier curves, 257
rational parametrization, 71

Clenshaw's algorithm, 199
compact support, 386, 439
Complex Contour Integration

Formula for the Divided
Difference, 173, 183

composites, blossom, 342
cone, 112
constant interpolants, 54
continuity at multiple knots, 362

Bezier curves, 246
Bezier surfaces, 284

continuity conditions
Bezier curves, 246
Bezier surfaces, 284

continuous convolution
defining, 406
n-fold, 406
of two functions, 406
uniform B-splines and,

406-408,443
control points

arrays of, 100
Bezier curve, 222, 229, 232,

238,260, 265
boundary, 88, 97,273,282,

295,452, 490
B-spline, 358-359, 361
convex hull of, 192
C-patch, 482
cubic triangular Bezier

patches, 284
defined, 53
first/last, 238
interpolation of, 363
joining, 234
lattice point correspondence,

512
overlapping arrays of, 96
polygonal array of, 450
P-patch, 474
rational Bezier curves, 257
rational Bezier patches, 294
rational Hermite curves,

135-143
rational Lagrange curves, 74
rectangular array of, 267, 510
set to one, 64

simplicial S-patch, 463
S-patch, 460
spline, 409
subpatches, 510
in three dimensions, 92
toric Bezier patch, 521
triangular array of, 97, 279,

284
triangular Bezier patch, 282,

283
unimodality and, 204
uniqueness of, 313-314

convex hulls
Bezier curves, 225
blending functions and, 198
of control points, 192
defined, 192
finding, 235
intersecting, 235
in intersection algorithm, 235
local, 362
property, 191-192
of two points, 192

convex polygons
barycentric coordinates for,

446-450, 491
S-patches, 459

convex set, 191, 192
convolutions

Bemstein basis, 239-243,
304, 502

blossom, 343
continuous, 406-408,443
discrete, 239-243,298, 302,

451-452
uniform B-splines, 406-408

coordinate-free style, 27
coordinates, 27-38

affine, 21, 29
barycentric, 27, 31-38,

446-450, 491-495
Grassmann, 11, 29
homogeneous, 19, 29
rectangular, 27, 28

comer cutting, 225,227
de Boor algorithm, 376
de Casteljau algorithm, 233
defined, 227
degree elevation, 225
knot insertion, 375-376
oscillation and, 227
subdivision, 233

comer values, 300
C-patch blossom, 483-484

diagonal, 483,484
dual functional, 484
multiaffine and, 484
multisymmetry, 483
See also blossoming;

blossoms
C-patches, 476-488

advantages/disadvantages,
485

barycentric coordinate
functions, 477,529

blending functions, 477-478,
482

blossoming, 483-484
control points, 482
defined, 472, 476
domains for, 480, 481,525,

529
exercises, 486-488
hexagonal, 479, 485
indexing sets, 488,529
multitier evaluation algorithm

for, 481
pentagonal, 478,482
S-patch comparison, 485
as special P-patches, 481
summary, 484
toric Bezier, 523-529
See also multisided Bezier

patches
cubic Bezier curves

control points, algorithm for
finding, 247

de Casteljau's algorithm for,
189,233

first derivative of, 245
multilinear blossom of, 324
nodes, labeling, 309
subdivision algorithm for,

232
See also Bezier curves

cubic B-patch, 434
See also B-patches

cubic B-spline curves
Boehm's knot insertion

algorithm for, 369
converting one segment to

Bezier form, 376
de Boor algorithm for, 349

Index 537

differentiating de Boor
algorithm for, 352

differentiation algorithm for,
379

double knot insertion into,
370

geometric construction
algorithm, 350

Oslo algorithm, 372
triple knot insertion into, 371
See also B-spline curves

cubic Catmull-Rom splines, 425
See also Catmull-Rom

splines
cubic curves, 123

Boehm's derivative algorithm
for, 380

degree elevation algorithm
for, 225

dynamic programming algo-
rithm for, 218,219

See also cubic Bezier curves;
cubic B-spline curves

cubic Hermite basis functions,
122-123, 133

Neville's algorithm for, 122
properties, 137

cubic Hermite interpolation,
119-124

applications, 123
exercises, 123-124
Neville's algorithm for, 122,

127
cubic interpolants, 54, 97
cubic interpolation

Hermite, 119-124
Neville's algorithm for, 52
Neville's pyramid algorithm

for, 98
surface, 98

cubic Lagrange basis functions,
61-62

computation of, 216
defined, 61
down recurrence, 67
illustrated, 61
See also Lagrange basis

functions
cubic polynomials, 311

blossoming, 311
blossoming recurrence, 348
evaluation algorithm, 241

fast forward differencing
algorithm for, 177

Homer evaluation algorithm
for, 156

Homer's method for, 82
overlapping difference

triangles for, 176
See also polynomials

cubic triangular Bezier patches
blossom, 329
control points, 284
with control polyhedron, 281
data, 280
See also triangular Bezier

patches
curves

affine invariant, 25
approximating, 221
Bezier, 188-194
blossoming, 317
B-spline, 347, 358-364
collection of, 112
cubic, 123, 218, 219
exercises, 26-27
graphical representation, 51
Hermite, 135-143, 146
implicit representation for, 39
interpolating, 53, 88
Lagrange, 69-77, 88
oscillation measurement, 206
parametric representation of,

40
piecewise linear, 49
polynomial, 24
progressive, 389
rail, 112
rational, 25, 69-77, 135-143
representations, 38-43
smooth, 49
space, 88
translation invariant, 24-25

cylinder, 112

D

de Boor algorithm, 347-355
for adjacent B-spline

segments, 360
arrow reversal in, 384
blossoming, 350, 351
Boehm's knot insertion

algorithm and, 369

B-spline computation,
383-384

for B-spline segment, 350,
359

as corner-cutting procedure,
376

defined, 348
denominators, 348
differentiating, 352, 392
exercises, 352-355
homogenizing, 351
knots, 348,366
labels, 349, 361
linear interpolations, 350
Neville's algorithm with, 424
Oslo algorithm and, 371
point evaluation, 348
polynomial segment

generation, 366
for single segment of cubic

B-spline curve, 349
for tensor product B-spline

surfaces, 431
de Boor-Fix formulas, 305

blossom, 345
B-splines, 442

de Casteljau triangle, 196, 232
de Casteljau's algorithm,

188-190, 269, 298
bivariate, 328
blossoming, 307-310
as corner-cutting procedure,

233
for cubic Bezier curves, 189,

233
defined, 188-189
as dynamic programming

algorithm, 194
evaluation, 271
generalizing, 348
geometric interpretation, 189
homogenizing, 323,324, 336,

356
illustrated, 193
interior nodes, 307
key blossoming construc-

tions, 340-341
labeling, 307, 308
number of multiplications,

272
pyramid, 328

5 3 8 Index

de Casteljau's algorithm
(continued)

pyramid algorithm vs., 272,
273

subdivision, 232, 318,330
for tensor product surfaces,

273,335
tetrahedral, 283,285, 328
triangular, 286, 287
triangular Bezier patch

generated by, 286
two-tier, 481,482
univariate, 286

decomposition, 523,526, 527
defined, 523
distribution and, 524
into Minkowski sum of lines

and triangles, 526
lattice polygon, 524

degree elevation, 224-228, 305
for Bezier curves, 224-228,

319
blossoming for, 318-319, 342
B-splines, 442
convergence of, 234
as corner-cutting procedure,

225
for cubic curves, 225
defined, 224
exercises, 227-228
formula, 225,298
See also Bezier curves

dehomogenization, 322
depth elevation

exercise, 518
formula, 518
for simplicial S-patches, 465
for toric Bezier patches,

517-518,528-529
derivatives

Bernstein basis functions,
303-304

Bezier curves, 244, 245-246,
251

blossom, 343,345
Boehm's algorithm, 380-381
B-spline curve, 380
cross-boundary, 150
directional, 304
divided differences as, 165
partial, 303,345,442,

466-468, 519-520

toric Bezier patches, 519-520
Descartes' Law of Signs,

206-212, 301
for Bernstein basis, 211
in bivariate setting, 274
for B-splines, 441
definition, 208,209
for monomial basis, 210
variation diminishing prop-

erty proof with, 211-212
diagonal, 311,315,318, 335

blossom, 310, 311,340, 342
C-patch blossom, 483,484
formula, 340, 342
S-patch blossom, 469, 470
toric blossom, 521

differentiation
Bernstein polynomials and

Bezier curves, 243-250
Bezier surface, 295
B-spline curve segment, 350,

359
B-splines, 440
de Boor algorithm, 352, 392
de Casteljau algorithm, 245
discrete convolution, 243
divided difference axiom, 171
divided differences and, 165,

181
integration and, 238-255
as knot insertion, 379-380
knot insertion from, 381-383
nonstandard algorithm, 441
pyramid algorithm, 274
rational Bezier curves,

264-267
S-patches, 466-469
tensor product Bezier patch,

274
tensor product B-spline patch,

427
tetrahedral de Casteljau

algorithm, 283
toric Bezier patches, 519-521
triangular de Casteljau's algo-

rithm, 287
two-term formula for Bern-

stein basis, 298
two-term formula for

B-splines, 398-399
uniform B-splines, 443

directional derivatives, 304
discrete convolution, 239-243,

298, 302
associativity, 239
in blending function compu-

tation, 475
commutativity, 239, 243,274
differentiating, 243
down recurrence, 240
indexing of, 451,452
sequence definition, 239
See also Bernstein basis

functions
discrete distributions, 198
Discrete Fourier Transform

(DFT)
defined, 79
for matrix multiplication, 80
monomial to Lagrange basis

conversion, 79
distribution, 523,524, 525,527

decomposition and, 524
defined, 524
performing, 526-527

divided differences, 157-165
affine combinations, 181
alternative definition, 160
antidifferentiation, 182
axiomatic approach, 170-173
axioms, 170-171
B-spline integration, 183
B-splines and, 182, 394-402,

442
cancellation, 166, 181,396
connection to Newton bases,

161
complex contour integration,

183
computation, for four distinct

nodes, 159
defined, 158
definitions, 159, 160, 161
as derivative, 165
determinant formula, 182
differentiation and, 165, 181
as discrete version of

derivative, 165
distinct nodes and, 165
dual functionals of Newton

basis, 167, 182
equality conditions, 167, 181
exercises, 163-165

Index 5 3 9

Hermite-Genocchi Formula,
183

highest-order coefficient of
Newton interpolant, 166

highest-order coefficient of
polynomial interpolant,
166, 180

identical nodes and, 165
identities for, 180-183
Lagrange coefficients, 182
Leibniz's rule, 166, 168, 181
as linear operator, 163
linearity, 166, 181
Newton coefficients of poly-

nomial interpolant, 167,
182

operator, 171
partial derivatives with

respect to nodes, 182
properties of, 165-170
recurrence, 162, 168
recursion, 166, 180
recursive definition, 159
relation to blossoming, 182
symmetry, 166, 181
triangular computation, 159
value on low-order

polynomials, 167, 181
values on monomials, 181

domain triangles, 280, 281
down recurrence, 130

for Bernstein basis functions,
195-196, 240

for B-splines, 384-385
for cubic progressive basis

functions, 353
defined, 66
for differentiating B-splines,

391
for discrete convolution

functions, 240
illustrated, 67
for Lagrange basis functions,

66
for P-patch basis functions,

475
for S-patch basis functions,

461
See also up recurrence

dual functionals, 163,298
for Bezier coefficients, 342
from blossom, 317, 319, 342

blossoming and, 389-391
for B-splines, 350
C-patch blossom, 484
defined, 163, 317, 390
divided differences and, 163
importance of, 163
for Lagrange bases, 163
for monomial coefficients,

342
for Newton basis, 163, 167,

182
for power coefficients, 342
S-patch blossom, 469, 470,

471
tensor product Bezier

patches, 336
toric blossom, 521-523
triangular Bezier patches, 329

dynamic programming, 54
in building Hermite interpo-

lant, 127
for Taylor polynomial

computation, 128-129
dynamic programming

algorithm, 54-55, 66
for cubic curves, 218, 219
de Boor algorithm, 347-355
de Casteljau algorithm as,

194
Neville's algorithm, 49-53
pyramid algorithm, 473-474
for tensor product surfaces,

89

E

end points, interpolation,
193-194

equality conditions, divided dif-
ference, 167, 181

evaluation algorithms
bilinear, 272
for B-patches, 433-435
for C-patches, 481
for cubic monomial basis,

356
cubic polynomial, 241
de Boor's, 347-355,358-361
de Casteljau's, 271
Homer's, 156, 157,201-202
for L-patches, 436
multitier, 481

Neville's, 155
for S-patches, 459
for tensor product Bezier

patches, 269
for toric Bezier C-patches,

525
See also pyramid algorithms

exercises
affine spaces, 8-10
affine/Gras smann/homoge-

neous coordinates, 30-31
all splines are B-splines, 367
ambient space mappings,

22-24
axiomatic approach (divided

differences), 172-173
barycentric coordinates,

36-38
barycentric coordinates for

convex polygons, 449-450
barycentric coordinates for

lattice polygons, 494-495
Bernstein basis functions,

198-199
Bernstein polynomials/

Bezier curves, 255
Bernstein polynomials/

Bezier curves differentia-
tion, 247-250

Bezier curves, 193-194
Bezier/monomial form

conversion, 218-220
bivariate Lagrange interpo-

lant, 106-107
blossom uniqueness, 315-317
blossoming S-patches,

472-473
blossoming tensor product

Bezier patches, 338-339
blossoming toric Bezier

patches, 521-523
blossoming triangular Bezier

patches, 331-335
Boehm's derivative

algorithm, 381
Boehm's knot insertion

algorithm, 373-374
Boolean sum Hermite

surfaces, 152-154
Boolean sum surfaces,

115-116
B-patches, 435-437

i540 Index

exercises (continued)
B-spline curve properties,

363-364
B-spline curves, 361
B-spline properties, 388-389
B-splines and divided

difference, 399-402
Catmull-Rom splines,

425-426
Chaikin's knot insertion

algorithm, 410-411
change of basis algorithms,

320-321
change of basis algorithms

via knot insertion, 379
continuous convolution and

uniform B-splines, 408
C-patches, 486-488
cubic Hermite interpolation,

123-124
curves/surfaces, 26-27
curve/surface representations,

43
de Boor algorithm, 352-355
degree elevation, 227-228
depth elevation, 518
differentiating rational Bezier

curves, 266-267
differentiating S-patches,

468-469
differentiating/integrating

B-splines, 393-394
divided difference properties,

169-170
divided differences, 163-165
extended Neville's algorithm,

129-130
Fast Fourier Transform

(FFT), 81-83
forward differencing, 179
geometric characterization of

B-splines, 405
Grassmann spaces, 16-17
Hermite basis functions,

133-135
homogenization, 325-327
Homer evaluation algorithm,

202
knot insertion from differenti-

ation, 382
Lagrange basis functions,

64-65

Lagrange interpolation
computational techniques,
68-69

lattice polygons, 490-491
linear interpolation, 49
lofted Hermite surfaces,

149-150
lofted surfaces, 115-116
monomial/Bernstein repre-

sentations of toric Bezier
patches, 504-505

multisided grids, 456-457
Neville's algorithm, 53,

55-56
Newton basis, 157
Oslo algorithm, 373-374
Pascal's triangle, 198-199
piecewise Bezier form

conversion, 376
polygonal arrays, 452-454
polynomial interpolants,

57-58
P-patches, 476
progressive bases, 357-358
projective spaces, 20-21
rational Bezier curves,

261-264, 295-297
rational B-spline curves,

420-422
rational Hermite curves,

140-143
rational Lagrange curves,

75-77
rational Lagrange surfaces,

109-111
rectangular tensor product

Lagrange surfaces, 93
simplicial S-patches, 465-466
S-patch blending functions,

461-462
surface interpolation, 86
tensor product Bezier

patches, 274-279
tensor product B-spline

surfaces, 428-429
tensor product Hermite

surfaces, 146-148
toric Bezier C-patches,

527-529
toric Bezier patch boundaries,

502

toric Bezier patch differentia-
tion, 520-521

toric Bezier patch pyramid
algorithm, 499-500

toric Bezier patch sub-
division, 508-516

toric S-patches, 508
triangular Bezier patches,

287-292
triangular Lagrange patches,

100-103
uniform B-splines, 406
unimodality, 205-206
variation diminishing

property, 212
Wang's formula, 252
Weierstrass Approximation

Theorem, 223-224
explicit representations, 38
extended Neville algorithm,

125-127

F

factored knot insertion, 382
fast forward differencing,

173-174
change of basis algorithms

and, 177
for cubic polynomials, 177
defined, 173, 177
function of, 178
numerical instability, 177
point evaluation, 174

Fast Fourier Transform (FFT),
77-83

exercises, 81-83
for polynomial multiplica-

tion, 81
purpose, 77

First Principle of Duality, 213,
217, 218,225,412

forward differencing, 173-179,
218

applications, 178
as divided differences, 175
exercises, 179
for exponential sequence, 179
fast, 173-174
knot insertion via, 383
recursive definition, 174
triangular computation, 174

Index 541

G

general pyramid algorithm, 474
generating functions, 302

defined, 218
exercises, 220
for monomial to Bezier form

conversion, 320
Grassmann coordinates

adapting, 29
defined, 11, 29
exercises, 30-31
of vectors, 29
See also coordinates

Grassmann spaces, 10-17
addition in, 14
affine space mapping, 21
Bezier curve mass in, 260
cubic Hermite representation

in, 135
defined, 13
dimension of, 13
exercises, 16-17
geometric model, 13, 14, 15
Lagrange curve in, 73
mass-points, 11-13
models, 11
polynomial curves in, 72
polynomial surfaces in, 108
projections from, 22, 26
projective space and, 19, 21
rational Bezier curve control

points, 260
rational Bezier curves, 257
rational B-spline curves, 418
rational Lagrange curves,

69-77
rational Hermite curves,

130-135
reparametrized circle in, 258
vectors, 12-13
zero vector, 16
See also ambient spaces

H

half integers
algorithm for inserting knots

at, 410
B-splines with knots at, 414
Chaikin's algorithm for

inserting knots at, 410

control points relative to, 411
Lane-Riesenfeld algorithm

for inserting knots at, 415
Hermite basis functions,

130-135
applying, 149
bivariate, 144
cubic, 122-123, 133
exercises, 133-135
explicit expressions for, 122,

130
finding, 131
properties, 144, 152
rational, 143
univariate, 144

Hermite curves
polynomial, 146
rational, 135-143

Hermite interpolation, 119-154
building, with dynamic pro-

gramming, 127
collection of points/vectors,

130
cubic, 119-124, 136
free-form surface using, 145
Lagrange interpolation vs.,

140
masses, 138
Neville's algorithm for, 121,

124-130
one derivative at each point,

131
rational, 138
tensor product, 143
triangular, 148
at two points, 131, 138
See also interpolation

Hermite polynomials, 119
Hermite surfaces, 143-154

Boolean sum, 150-154
lofted, 148-150
tensor product, 143-148
See also surfaces

Hermite-Genocchi formula, 183,
402

hexagonal C-patch, 479
homogeneous blossom,

321-327,330
homogeneous coordinates

defined, 19, 29
exercises, 30-31

rectangular coordinates
recovery from, 29-30

See also coordinates
homogeneous de Casteljau

algorithm, 323,324
homogeneous polynomials, 322
homogenization, 321-327

bidegree blossom, 337
bivariate, 337
blossoming and, 322-327
de Boor algorithm, 351
de Casteljau's algorithm, 336,

356
de Casteljau's tetrahedral

algorithm, 330
defined, 321,322
dehomogenization and, 322
exercises, 325-327
formula, 337
in univariate setting, 337

Homer evaluation algorithm,
201-202

applying, 162, 202
for cubic polynomials, 82
defined, 156
exercises, 202
illustrated, 157
ladder algorithm vs., 155
method, 78, 82, 173, 177
for polynomial evaluation,

156

I

identities,
Bemstein, 299-306
blossoming, 341-345
B-spline, 439-443
divided difference, 180-183

implicit representations
for closed curves/surfaces, 39
defined, 39
drawbacks, 39-40
See also representations

indexing sets
for barycentric coordinate

functions, 479-480
C-patch, 488,529
lattice polygons as, 490
S-patch, 488,529
toric Bezier patch, 488,529

542 Index

integral Bezier curves, 266
algorithms, 261
defined, 256
standard properties, 256
See also Bezier curves

integrals, 304
integration

Bernstein polynomials/
Bezier curves, 253-255

B-splines, 183, 391-394, 441
differentiation and, 238-255
uniform B-splines, 443
See also antidifferentiation

interpolants
bicubic, 87
bilinear, 91
biquadratic, 91
bivariate Lagrange, 103-107
Catmull-Rom, 422-426
constant, 54
cubic, 54, 97
Hermite, 121, 127
Lagrange, 49-53, 58-65
linear, 54
lower-order, 96
Newton, 166
pentagonal, 455
polynomial, 56-58, 63, 162,

166, 167
quadratic, 54, 96, 97, 120
quadrilateral, 456-457
rational, 69-77
rectangular, 90, 91
tensor product, 86-94
triangular, 96-103

interpolation
bicubic, 89
bivariate, 85, 92
by recursive calls, 54
Catmull-Rom, 422-426
control points, 53,363
cubic, 52
curves, 88
dynamic programming

approach, 54-55
of end points, 193-194
Hermite, 119-154
Lagrange, 47-117
linear, 47-49
Newton, 155-183
nodes, 53
quadratic, 85

rational Bezier curves, 256,
26O

spline, 187
surface, 84-86
transfinite, 111

intersection algorithm
Bezier curves, 234
convex hulls in, 235

K

knot insertion, 367-383
algorithm types, 368
for Bezier subdivision,

376-379
Boehm's algorithm, 368-371
B-splines, 442
Catmull-Rom splines and,

425,426
Chaikin's algorithm, 408-411
change of basis algorithms

via, 375-379
as change of basis procedure,

409
defined, 367
from differentiation, 381-383
differentiation as, 379-380
factored, 382
fast, 381
with forward differencing,

383
in geometric progression, 411
at half integers, 410, 414
idea behind, 367
Lane-Riesenfeld algorithm,

411-418
for monomial to Bezier form

conversion, 376-379
n-fold, 377, 380
Oslo algorithm, 371-374
piecewise Bezier form

conversion via, 375-376
precision, 367
problem, 367-368
refinement and, 367
tensor product B-spline patch,

427
for uniform B-splines,

408-418
without multiplication, 382

knot sequences, 349
progressive, 349, 355-358

uniform, 405
knot-net, 435
knots

consecutive, 368,389
in de Boor algorithm, 358
defined, 348
evaluation at, 440
interpolation, 439
interval, 368, 389
multiplicity of, 360-361,363,

367, 397
piecewise polynomial, 395
progressive basis, 349
smoothness at, 439

I.

labeling
de Boor algorithm, 347-355,

358-361
de Casteljau pyramid

algorithm, 328
de Casteljau's algorithm, 307,

308
interior nodes, 307
Neville's algorithm, 307
nodes, 309
scheme illustration, 309

ladder algorithm, 67-68, 155
3n+l multiplications, 68
defined, 67
Homer's method vs., 155
illustrated, 68

Lagrange basis functions, 58-65
arrays of, 100
bicubic, 88
cardinal conditions, 63
conversion to monomial

form, 80
cubic, 61-62, 216
defined, 62
denominator, 132
exercises, 64-65
explicit expressions for, 98
explicit formula for, 65, 132
monomial conversion to, 78,

79
nodes, 53, 87
properties, 62-63
rational, 77
with special nodes, 78
tensor product, 87

Index 543

triangular, 97
univariate, 87

Lagrange blending functions,
108

See also Lagrange basis
functions

Lagrange coefficients, 79
defined, 182
transformation algorithm to

Newton coefficients, 215
Lagrange curves

approximation, 70
cubic, 52
defined, 52
in Grassmann space, 73
ladder algorithm for, 155
mass, in Grassmann space, 74
Neville's algorithm, 49-53
rational, 69-77
semicircle as, 72
on surfaces, 88

Lagrange interpolation, 47-117
computational techniques,

65-69
drawbacks, 206
Hermite interpolation vs., 140
illustrated, 187
polynomial curve generation,

69
quadratic interpolant, 120
rational surface representa-

tion with, 108
tensor product, 86, 94
triangular, 279-280
univariate, 77
See also interpolation;

Lagrange curves
Lagrange surfaces,

tensor product, 86-94
triangular, 94-103

Lane-Riesenfeld knot insertion
algorithm, 411-418

defined, 415
exercises, 416-418
illustrated, 415
iterating, 415
See also knot insertion

lattice extension, 511
lattice polygons, 489-495

barycentric coordinates for,
491-495

decomposition, 524
defined, 489
exercises, 490-491
extending, 508, 512
hexagons, 524
as indexing sets, 490
pentagons, 497-498
rectangles, 508, 511
squares, 493
triangles, 494

leaf nodes, 129, 130
Leibniz's rule, 126, 264

defined, 166
divided difference, 166, 181
proof, 168

lifting, 71
linear independence

Bernstein basis, 301
B-splines, 441
Lagrange basis, 63
Newton basis, 157

linear interpolants, 54, 121
linear interpolation, 47-49

bilinear generalization, 90
de Boor algorithm, 350
de fined, 47
exercises, 49
formula, 47
graphical representation, 48
on linear interpolants, 121
on lower-order interpolants,

96
problems, 48
univariate, 92
See also interpolation

linear operator, 163
linear recurrences, 269
linear transformations, 7-8
linearity

blossom, 319, 342
divided difference, 166, 181
divided difference axiom, 170

local control
B-spline curves, 362
Catmull-Rom splines, 425

local convex hull, 362
locally nondegenerate, 362-363
lofted Hermite surfaces,

148-150
with common boundary

curve, 149

data, 149
defined, 148-149
exercises, 150
interpolation properties, 149
piecing surfaces together and,

149-150
See also Hermite surfaces

lofted surfaces, 112-113
computing points on, 113
defined, 112
exercises, 115-116
illustrated, 113
See also surfaces

L-patches, 436

M

marching algorithm, 382
Marsden identities

Bernstein basis functions, 305
B-splines, 442

masses
rational Bezier curves,

255-267
rational B-splines, 418-422
rational cubic Hermite

curves, 138
rational Hermite interpola-

tion, 138
rational Lagrange curves, 74

mass-points, 8, 10-17
adding vectors to, 12
addition of, 12
algebra, 11-12
complete arithmetic for, 12
defined, 11
geometric model, 15
natural representation of, 16
notation, 15
physical model, 14-15
scalar multiplication of, 11
See also Grassmann spaces

mesh
of curves in range, 114
specifying, by two sets of

curves, 113
Minkowski sum, 451

defined, 451
d-fold, 502, 522
of triangular array and

rectangular array, 451
of two lines, 479

} 544 Index

monomial basis
blossoming, 315
B-spline representation, 442,

390
conversion to, 298
conversion to Bezier form,

218, 376-379
cubic, evaluation algorithm,

356
Descartes' Law of Signs for,

210
Fast Fourier Transform,

77-83
representation of Bernstein

basis, 218, 301
representation of toric Bezier

patch, 503-505, 513
values of divided difference

on, 181
monomial coefficients, 356

dual functionals, 342
values, 356

monomial to Bezier form
conversion

blossoming for, 319
generating functions for, 218
knot insertion for, 376-379

multiaffine, 311, 315, 318
alternative characterization,

312-313
blossom, 310, 311,335,340,

341
C-patch and, 484
formula, 340, 341
polynomials, 312
S-patches and, 470
symmetric, 348

multilinear blossom, 322
constructing, 323-324
illustrated, 324
See also blossoms

multisided Bezier patches,
445

algorithms for, 530
alternative approaches, 530
construction framework, 529
formulations, 529
properties, 530
pyramid algorithms for,

459-460, 474, 495-496
See also specific patches

multisided grids, 454-457
multisymmetry, C-patch, 483
multivariate B-splines, 404
multivariate polynomial, 311

Neville's algorithm, 49-53, 155
for biquadratic patches, 90
bivariate version, 88-89
control points set to one, 64
for cubic Hermite

interpolation, 122
for cubic polynomial

interpolation, 188
de Boor algorithm with, 424
defined, 52, 54
diagram, 55
efficiency, 93
exercises, 53, 55-56
extended, 124-130
for Hermite interpolation,

121,124-130
illustrated, 52
labeling scheme, 307
multisided grids and,

454-457
number of nodes in, 91
parallel property, 55, 129
pyramid algorithms vs., 93
structure, 54-56
for tensor product surfaces,

93
tetrahedral, 279
total cost of, 92
for triangular surface patches,

95
Neville's pyramid algorithm,

97-98
arrows, 98
schematic diagram, 98
triangular Lagrange basis

functions and, 97
Newton basis functions,

155-157
coefficients, 156
defined, 156
dual functionals for, 163, 167,

182
exercises, 157
features, 156

Homer's method and, 156
interpolating polynomial

relative to, 155-156
nodes, 156
normalized, 215
properties, 156
Taylor basis and, 156

Newton coefficients, 157
finding, 158
higher-order, 158
normalized, 215
for polynomial interpolant,

160, 161,162, 167, 182
rescaled, 179
See also divided differences

Newton dual basis, 356-357
B-spline segment conversion,

381
defined, 356

Newton dual coefficients, 381
Newton interpolant, 166
Newton interpolation, 157-162
Newton polygons

boundaries, 502, 512
bounding line, 526, 527
defined, 489-490
pointing into, 526
for toric Bezier patches, 490,

496
vertices, 491,500, 521

nodes
B-spline, 390, 441
defined, 53
distinct, 165
identical, 165
interior, 54, 308
labeling, 309, 328
leaf, 129, 130
Newton basis for, 156
number, in Neville's

algorithm, 91
number, in pyramid

algorithm, 92
sequence of, 85
special, 78
tensor product surfaces, 86

nonnegativity, B-splines, 387,
440

nonuniform rational B-splines,
419

n-simplex, 402

Index 545

O

Oslo algorithm, 371-374
control points, 372
for cubic B-spline curves, 372
de Boor algorithm and, 371
defined, 371
efficient version of, 372
exercises, 373-374
for n+ 1 knots, 373
running, 371-372
See also knot insertion

overlapping pyramids, 431,433

P

parametric functions, 41-42
parametric polynomials, 70
parametric representations,

40-4 1
of curves, 40-41
defined, 40
of surfaces, 40
See also representations

partial derivatives, 303
Bernstein polynomials, 277,

303
Bezier patches, 275-278,290
of blossom, 345
B-splines with respect to

knots, 442
divided difference, 169, 182
S-patches, 466, 467, 468
toric Bezier patches, 519, 520

partitions of unity
Bernstein basis functions, 300
B-splines, 386-387,440

Pascal's triangle, 196, 415
binomial coefficients, 197
exercises, 198-199
illustrated, 197
monomial coefficients at base

of, 218,219
paths triangle, 196-197
recurrence in, 196

patches
adjacent, 431
bicubic, 92
biquadratic, 90
B-patch, 433-437
C-patch, 476-488
L-patch, 436

procedures, 458
properties, 458
pyramid (P-patch), 473-476
rational Bezier, 293-297
rational B-spline, 428
rational Lagrange, 107-111
rectangular, 94
S-patch, 457-473
tensor product Bezier,

267-279
tensor product B-spline,

427-429
tensor product Lagrange,

86-94
toric Bezier, 488-489
triangular Bezier, 279-292
triangular Lagrange, 94-103
See also surfaces

paths triangle, 197
See also Pascal's triangle

pentagonal arrays, 451,453
pentagonal C-patch, 478,482
pentagonal interpolants, 455
pentagonal toric Bezier patch,

496, 497
illustrated example, 498
pyramid algorithm for, 496
See also toric Bezier patches

piecewise Bezier form
continuity conditions, 246
conversion to, 375-376

piecewise polynomial, 347
B-spline curves, 362
B-splines, 386
Catmull-Rom spline, 422
cubic Hermite, 119-124
knots, 395
See also splines

points
addition of, 4
anne combination of, 4-5, 5
affine space, 6
algebra for, 3
dots, 4
equivalence classes of, 19
at infinity, 17-21
interpolation of, 49-53
mass-points, 8, 10-17
in projective space, 18, 29
rectangular array of, 87
representation, 4
scalar multiplication and, 5

sequence of, 85
sharp, 49
subtraction of, 4
translation and, 3
vectors vs., 3
See also control points;

polygonal arrays
Poisson basis functions, 243
Polya's urn model, 238
polygonal arrays, 450-454

adjacency, 452
boundaries, 452, 489
defined, 450-451,489
exercises, 452-454
hexagonal, 479-480
lattice polygon, 489-491
n-sided, 452
pentagonal, 451,453
rectangular, 87,450-451
shape, 489
triangular, 95,450-451

polynomial patches, 295
Bezier, 275-276, 289-290
B-patch, 430-437
defining, 24
in Grassmann space, 108
Hermite, 143-154
Lagrange, 86-103
L-patch, 436
tensor product. See tensor

product surfaces
triangular. See triangular

patches
See also surfaces

polynomial curves
defining, 24
in Grassmann space, 72
projection, 71
See also curves

polynomial interpolants
computing, 162
highest-order coefficient of,

166, 180
Newton coefficients of, 160,

167, 182
uniqueness, 56-58, 63
See also Hermite inter-

polation; Lagrange inter-
polation; Newton
interpolation

polynomial parametrization,
107, 190

546 Index

polynomial segments, 358
polynomials, 42

approximating, 70, 221,222
Bernstein, 201,239, 347
Bezier, 244, 245
bivariate, 85
cubic, 82, 156, 311
fast multiplication of, 77, 81
Hermite, 119
homogeneous, 322
interpolating, 49-53
Lagrange, 52
linearly independent, 213
multiaffine, 312
multivariate, 311
Newton, 156-157
parametric, 70
piecewise, 347, 362, 386
symmetric, 312
Taylor, 125, 127, 221
univariate, 85, 155

power coefficients, dual
functionals, 342

principles of duality, 212-216
exercises, 215-216
First Principle of Duality,

213,217,218,225,412
first two, combining, 215
schematic depiction, 214
Second Principle of Duality,

214
Third Principle of Duality,

215
triangular computations and,

214
probability theory, 297

Bezier curves and, 229
for deriving subdivision, 320
random walks, 308
urn models, 229-231,

237-238
progressive bases

defined, 349
examples, 355
exercises, 357-358
generated by progressive knot

sequences, 355-358
represented by knot

sequences, 378
progressive basis functions, 353
progressive polynomial curves,

389

progressive sequences
defined, 349
progressive bases generated

by, 355-358
projective spaces, 17-21

addition in, 20
affine points, 20
affine space mapping, 21
algebra, 19
defined, 18
exercises, 20-21
Grassmann space and, 19, 21
homogeneous coordinates, 19
illustrated, 18
points at infinity, 20
points in, 18, 29
See also ambient spaces

pyramid algorithms
for bicubic patches, 92
for biquadratic Bernstein

basis functions, 271
de Casteljau algorithm vs.,

272,273
differentiating, 274, 283,

466-469, 519-521
general, 473
local, 431
for multisided Bezier patches,

459-460, 474, 495496
Neville's algorithm vs., 93
number of multiplications in,

273
number of nodes in, 92
for pentagonal toric Bezier

patch, 496
for S-patches, 459, 460
for tensor product Bezier

patches, 271-272
for tensor product Lagrange

patches, 91-94
for toric Bezier patches,

495-496
total cost, 93
for triangular Bezier patches,

279-280
triangular B-patches and,

430-437
triangular de Casteljau's

algorithm vs., 287
for triangular Lagrange

patches, 94-103

pyramid patch (P-patch),
473-476

blending functions, 474, 475
blossoming, 475-476
boundaries, 474, 475
control points, 474
C-patches as, 481
defined, 474
down recurrence, 475
exercises, 476
for pentagonal patch, 482
rational, 475
recursive evaluation

algorithms, 474
surface representation, 474
toric patches as, 488,

495-496
pyramids

for adjacent patches, 431
overlapping, 431,433

Pythagorean theorem, 234

O
quadratic B-patch, 434
quadratic interpolants, 54, 97,

120
triangular, 96

quadratic interpolation, 85
quadratic parametrization, 108,

293
quadrilateral interpolant,

456-457
quotient rule, 136

R

rail curves, 112
random walk, 308
rational Bezier curves, 255-267

affine invariant, 255
in affine space, 255
algorithms, 261
circles as, 257
continuous, 260
control points, 257,265
control points in Grassmann

space, 260
defined, 255-256
denominator, 264
derivative continuity,

265-266

Index 547

derivatives, 264
differentiating, 264-267
exercises, 261-264, 295-297
in Grassmann space, 257
interpolation, 256, 260
limits of, 260
mass distribution, 256
with nonzero weights, 256
numerator, 264
points, evaluation, 261
quarter circle as, 258
reduction to ordinary Bezier

curve, 256
reparametrizing, 258
rth derivative, 266
scalar field, 256
semicircle as, 259
weights, 259
See also Bezier curves

rational Bezier patches, 293-297
affine invariant, 295
in affine space, 293
control points, 294
defined, 293
explicit formula for, 293
introduction, 293
with negative weights, 295
points, evaluating, 295
with positive weights, 295
tensor product representation,

293
triangular representation, 293
weights, 293-294
weights, increasing, 295
See also Bezier surfaces

rational blending functions, 256
Bezier, 256
B-spline, 491
Hermite, 143
Lagrange, 76-77
S-patch, 462

rational B-spline curves,
418-422

affine invariant, 420
algorithms, 420
conversion to piecewise

rational Bezier form, 420
defined, 418
exercises, 420-422
general, 419
intersecting, 420

nonuniform, 419
with nonzero weights, 419
projection to, 418-419
properties, 419-421
rendering, 420
weights, 419
See also B-spline curves

rational curves
Bezier, 255-267
B-spline, 418-422
cubic, 135
defining, 25
Hermite, 135-143
Lagrange, 69-77

rational Hermite curves,
135-143

computing values along, 140
cubic, 137
defined, 135-136
exercises, 140-143
general, 137
mass, 140
quadratic, 139
See also Hermite curves

rational Lagrange curves, 69-77
behavior, 74
as continuous curve, 74
control points, 74
defined, 72
exercises, 75-77
mass effect on, 73
masses set to zero, 74
point computation, 74
See also Lagrange curves

rational Lagrange surfaces,
107-111

control point interpolation,
108

denominator, 109
exercises, 109-111
singularity, 109
tensor product, 109
triangular, 109

rational parametrization, 107
rational P-patches, 475
rational surfaces,

Bezier, 293-297
B-spline, 428
Hermite, 147, 150, 153-154
Lagrange, 107-111
S-patches, 457-473
toric Bezier patches, 488-489

rational quadratic
parametrization, 138

rational S-patches, 462
rational tensor product Bezier

patches, 293, 510
rational tensor product Lagrange

parametrization, 108
rational toric Bezier patches, 499
rational triangular Lagrange

parametrization, 108
rectangular arrays, 267, 451, 510
rectangular coordinates, 27

in affine plane, 34
along affine line, 33
defined, 28
illustrated, 34
introducing, 28

rectangular grid, 94
rectangular interpolants, 90, 91
rectangular patches, 94

tensor product Bezier, 267
tensor product B-spline,

427-429
tensor product Hermite,

143-148
tensor product Lagrange,

86-94
See also tensor product

surfaces
recursion, 83

Bernstein basis functions,
196, 302

B-splines, 440
for the B-spline derivative,

441
divided difference, 166, 180
nonstandard, 440
uniform B-splines, 443

recursive subdivision
applying, 233
binary tree generated by, 236
control polygons generated

by, 233
convergence, 234
as powerful tool, 250
See also subdivision; subdivi-

sion algorithm
rendering algorithm, 234
representations, 38-43

exercises, 43
explicit, 38
implicit, 39

5 4 8 Index

representations (continued)
parametric, 40-4 1
procedural, 42

Rolle's Theorem, 250
ruled surfaces, 112

$

Sablonniere's tetrahedral
algorithm, 373-374

sampling with replacement,
229-231

binomial distribution for, 230
modeling, 230

Second Principle of Duality, 214
simplicial S-patches, 463-466

blending function, 463
control points, 463
defined, 463
depth elevation, 465
exercises, 465-466
n-sided, 464
properties, 463
See also S-patches

space curves, mesh interpolation,
88

spaces
affine, 2-10
ambient, 1-27
Grassmann, 10-17
projective, 17-21
vector, 1-2

S-patch blossom, 469-473
blending functions, 470
diagonal, 469,470
dual functional, 469, 470
exercises, 472-473
properties, 469
symmetry, 469,470
See also blossoming;

blossoms
S-patches, 446, 457-473

advantages/disadvantages,
485

barycentric coordinates, 529
blending functions, 459-462,

506
blossoming, 469-473
boundaries, 467
control points, 460
C-patch comparison, 485
defined, 455,457

differentiating, 466-469
domain, 529
dual functionals, 471
five-sided, 506
framework, 458
hexagonal, 485
indexing sets for, 488
n-sided, 506, 507
over convex polygonal

domains, 459
partial derivatives, 466, 467,

468
polynomial patches and, 460
pyramid algorithm for, 458,

459, 460
rational, 460
simplicial, 463--466
toric, 505-508
See also multisided Bezier

patches
spheres

biquadratic parametrization,
293

quadratic parametrization,
293

splines
as B-spline curves, 366-367
Catmull-Rom, 422-426
construction, 364
control points, 409
defined, 347
interpolation, 187
limitations, 418
See also B-splines

subdivision, 229-238,297,298,
303

with blossoming, 317-318
control polygons generated

by, 233
as corner-cutting procedure,

233
defined, 229
deriving, with probability

theory, 320
exercises, 235-238
from knot insertion, 376-379
recursive, 233,234, 250
See also Bezier curves

subdivision algorithm, 231-238
for Bezier curves, 232
convergence, 235

de Casteljau algorithm, 232,
318,330

geometric interpretation of,
232

for hexagonal toric Bezier
patch, 509

for tensor product Bezier
patches, 274

for toric Bezier patches,
508-516

for triangular Bezier patches,
282, 330, 344

uniform B-splines, 443
surface interpolation, 84-86

bivariate interpolation prob-
lem and, 86

Boolean sum, 114
construction, 96
exercises, 86
Hermite, 143-154,
lofted surfaces, 112
tensor product Lagrange,

86-94
triangular Lagrange, 94-103

surfaces
affine invariant, 25
Bezier, 267-297
Boolean sum, 114-115
B-patch, 430-437
B-spline, 347, 427-429,

438-439
C-patch, 476-488
exercises, 26-27
Hermite, 143-154
implicit representations for,

39
Lagrange, 86-103
lofted, 112-113
L-patch, 436
polynomial, 24, 108
representations, 38-43
ruled, 112
S-patch, 457-473
tensor product, 86-94,

267-274, 427-429
toric, 488-489
translation invariant, 24-25
triangular, 98,279-287,

430-437
See also patches

symmetric algorithms, 274

Index 549

symmetry, 311, 315, 318
Bernstein basis functions, 299
Bezier curves, 193
bisymmetric, 335
blossom, 310, 311,340, 341
divided difference, 166, 181
divided difference axiom, 170
polynomials, 312
S-patch blossom, 469, 470

T

Taylor basis, 156
Taylor coefficients, 155
Taylor expansion, 126
Taylor polynomials, 125, 127

for approximating curves,
221

computation with dynamic
programming, 128-129

See also polynomials
Taylor's Theorem, 56-57,250
tensor product

bicubic interpolant, 87
construction, 87

tensor product Bezier patches,
267-279, 477, 497

bicubic, 268,269, 270
biquadratic, 336
blending functions, 267
blossoming, 335-339
boundaries, 273
with control polyhedron, 269
differentiating, 274
dual functional property, 336
evaluation algorithm, 269
exercises, 274-279
properties, 273
pyramid algorithm, 271-272,

473-474, 495-496
rational, 293, 510
rectangular, 267
schematic construction, 270
standard algorithm inherit-

ance, 274
uniqueness of Bezier

coefficients of, 336
See also Bezier surfaces

tensor product B-spline
surfaces, 427-429

bilinear evaluation algorithm,
433

biquadratic, 431
de Boor algorithm for, 431
differentiating, 427
evaluating, 427
exercises, 428-429
knot insertion, 427
local bilinear evaluation

algorithm, 432
local recurrences, 431
properties, 427
pyramid algorithm, 430-437
rational, 428
rectangular, 432
See also B-spline surfaces

tensor product Hermite surfaces,
143-148

construction, 144
data for, 145
exercises, 146-148
interpolation illustration, 146
See also Hermite surfaces

tensor product Lagrange
surfaces, 86-94

defined, 87
exercises, 93-94
See also Lagrange surfaces

tensor product surfaces
Bezier, 267-279
B-spline, 427-429
construction, 86
de Casteljau's algorithm for,

273,335
dynamic programming

algorithm for, 89
Hermite, 143-148
Lagrange, 86-94
Neville's algorithm for, 93
nodes, 86
See also surfaces

tetrahedral de Casteljau's
algorithm, 283,328

homogenizing, 330
number of multiplications in,

287
triangular Bezier patches

generated by, 285
Third Principle of Duality, 215
toric Bezier C-patches, 523-529

blossoming, 525
defined, 523
domain, 525

evaluation algorithm, 525
exercises, 527-529
tri-symmetric blossom,

525-526
See also toric Bezier patches

toric Bezier patches, 446,
488-489

array of control points for,
490

barycentric coordinate
functions of, 504, 529

Bernstein representation,
503-505

blending functions, 489, 496,
519

blossoming, 521-523
boundaries, 488-489,

500-502, 513-514
boundary control points, 488,

500, 501
boundary curves, 501,502
building, 491
control points, 521
C-patches, 523-527
defined, 488
of depth d, 495
depth elevation for, 517-518
differentiating, 519-521
domains, 496, 529
hexagonal, 509, 523-529
lattice polygons, 489-495
monomial representation,

503-505, 513
Newton polygon, 490
n-sided, 509
partial derivatives, 519-520
pentagonal, 496, 497
procedures, 498-499
properties, 498
pyramid algorithm for,

495-500
rational, 499
S-patches, 505-507
subdividing, 508-516
subdivision algorithm, 511
triangular Bezier representa-

tions for, 504
underlying structure, 498
See also multisided Bezier

patches
transfinite interpolation, 111

1 5 5 0 Index

transformations
anne, 8, 25,440
linear, 7-8, 25

translation invariance, 24-25
defined, 24-25
uniform B-splines, 443

triangles
barycentric coordinates for,

446-447
de Boor, 384
de Casteljau, 286
lattice, 494
overlapping, 359
Pascal's, 196-199, 415
paths, 196-197

triangular arrays, 451
triangular Bezier patches,

279-292, 455,497
affine invariance, 282
basis functions, 281
blossoming, 328-335,469
boundary curves, 282
characteristic properties, 282
computing points along, 286
constructing, 279-280
control points, 282, 283
with control polyhedron, 281
cubic, 280
data for, 280
degree n, 282
differentiating, 283,287
dual functional property, 329
exercises, 287-292
generated by de Casteljau's

tetrahedral algorithm, 286
higher-order smoothness and,

283
quadratic, 286
rational, 293
standard algorithms and,

282-283
subdivision, 282, 330, 334
tetrahedral de Casteljau

algorithm for, 283
variation diminishing

property and, 282
See also Bezier surfaces

triangular B-patches, 430-437
triangular de Casteljau's

algorithm, 286, 287
differentiating, 287

number of multiplications in,
287

pyramid algorithm vs., 287
speed, 287

triangular grid, 95,279
illustrated, 95
Lagrange interpolant on, 105
for parametrizations, 108
triangular interpolants over,

97
triangular interpolants, 96
triangular Lagrange patches,

94-103
array of basis functions, 100
array of control points, 100
boundaries, 97
exercises, 100-103
Neville's algorithm for, 95

triangular patches
Bezier, 279-292
B-patch, 430-437
Lagrange, 94-103

twists, 145

tl

undetermined coefficients, 83
uniform B-splines, 405-418

Chaikin's knot insertion
algorithm, 408-4 11

continuous convolution and,
406-408,443

curve intersection, 415
defined, 405
of degree n, 405
differentiation, 443
exercises, 406
generation of, 406
identities, 443
integration, 443
with knots at integers, 406
Lane-Riesenfeld knot inser-

tion algorithm, 411-418
subdivision, 443
translation invariance, 443
See also B-splines

uniform knot sequence, 405
unimodality, 202-206, 302

Bernstein basis, 202-206
B-splines, 387
control point effects and, 204
defined, 202

exercises, 205-206
forms, 202-203
See also Bernstein basis

functions
uniqueness

Bezier control points, 312
B-spline coefficients, 387
blossom, 313
polynomial interpolant,

56-58
univariate Bernstein basis

functions, 306, 478
univariate B-splines, 404
univariate Hermite basis

functions, 144
univariate Lagrange basis

functions, 58-65
up recurrence, 130

Bernstein basis functions, 195
B-splines, 384
defined, 66
Hermite, 119-130
illustrated, 66
Lagrange, 65
See also down recurrence

V

variation diminishing property,
206-212, 227, 234

Bezier curves, 206-212, 227,
234

B-spline curves, 376
corner cutting and, 227
defined, 207
definition/analysis of,

211-212
exercises, 212
illustrated, 207
proving, 208, 211
triangular Bezier patches and,

282
vector spaces, 1-2

defined, 1
formation, 2
in science and mathematics, 2
See also ambient spaces

vectors, 1
adding to mass-points, 12
addition of, 2, 4
addition triangle rule, 4
affine coordinates, 28-29

arrows, 3, 4
basis, 7
examples, 2
Grassmann coordinates of, 29
linearly independent, 7
points vs., 3
representation, 4
scalar multiplication of, 2, 4
translation and, 3

1111-7.

Wang's formula, 250-252
deriving, 250
exercises, 252
purpose, 250

Weierstrass Approximation
Theorem, 220-224

applying, 226
approximating polynomials,

221
bivariate version, 293
defined, 220-221
exercises, 223-224
proving with Bezier

approximation, 221
weights

Bernstein basis function, 257
negative, 259, 294, 295
positive, 259, 294, 295
rational Bezier curves, 256,

259
rational Bezier patches, 294,

295
rational B-spline curves, 419
rational Hermite curves,

130-135
rational Lagrange curves,

69-77
scalar, 259, 293
zero, 259, 294
See also masses

Index 551

About the Author

Ron Goldman has been a professor of computer science at Rice University since
1990. Previously he worked in industry, solving problems in computer graphics, geo-
metric modeling, and computer-aided design. He served as a mathematician at Manu-
facturing Data Systems Inc., where he helped implement one of the first industrial
solid-modeling systems. Later he was employed as a senior design engineer at Ford
Motor Company, enhancing the capabilities of their corporate graphics and computer-
aided design software. From Ford, Dr. Goldman moved to Control Data Corporation
as a principal consultant for the development group devoted to computer-aided design
and manufacturing. He left Control Data Corporation in 1987 to become an associate
professor of computer science at the University of Waterloo in Ontario, Canada,
before joining the faculty at Rice.

Dr. Goldman's current research interests lie in the mathematical representation,
manipulation, and analysis of shape, using computers. He is particularly interested in
algorithms for polynomial and piecewise polynomial curves and surfaces and has
investigated both parametrically and implicitly represented geometry. His current
work includes research in computer-aided geometric design, solid modeling, com-
puter graphics, computer algebra, elimination theory, and splines, and he has pub-
lished over 100 research articles on these and related topics. He also lectures
extensively at national and international conferences devoted to these subjects.

Dr. Goldman holds a B.S. in mathematics from M.I.T. and an M.A. and a Ph.D.
in mathematics from Johns Hopkins University. He is an associate editor of Com-
puter-Aided Design and Computer-Aided Geometric Design and a co-organizer of
the Dagstuhl meeting on geometric modeling.

	sdarticle
	sdarticle2
	sdarticle3
	sdarticle4
	sdarticle5
	sdarticle6
	sdarticle7
	sdarticle8
	sdarticle9
	sdarticle10
	sdarticle11
	sdarticle12

