
Proportionate-type Normalized Least Mean Square Algorithms

www.it-ebooks.info

http://www.it-ebooks.info/

FOCUS SERIES

Series Editor Francis Castanié

Proportionate-type
Normalized Least Mean

Square Algorithms

Kevin Wagner
Miloš Doroslovački

www.it-ebooks.info

http://www.it-ebooks.info/

First published 2013 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2013
The rights of Kevin Wagner and Miloš Doroslovački to be identified as the authors of this work have
been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2013937864

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISSN: 2051-2481 (Print)
ISSN: 2051-249X (Online)
ISBN: 978-1-84821-470-5

Printed and bound in Great Britain by CPI Group (UK) Ltd., Croydon, Surrey CR0 4YY

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

PREFACE . ix

NOTATION . xi

ACRONYMS . xiii

CHAPTER 1. INTRODUCTION TO PTNLMS ALGORITHMS 1

1.1. Applications motivating PtNLMS algorithms 1
1.2. Historical review of existing PtNLMS algorithms 4
1.3. Unified framework for representing PtNLMS algorithms 6
1.4. Proportionate-type NLMS adaptive filtering algorithms 8

1.4.1. Proportionate-type least mean square algorithm 8
1.4.2. PNLMS algorithm . 8
1.4.3. PNLMS++ algorithm . 8
1.4.4. IPNLMS algorithm . 9
1.4.5. IIPNLMS algorithm . 10
1.4.6. IAF-PNLMS algorithm . 10
1.4.7. MPNLMS algorithm . 11
1.4.8. EPNLMS algorithm . 11

1.5. Summary . 12

CHAPTER 2. LMS ANALYSIS TECHNIQUES 13

2.1. LMS analysis based on small adaptation step-size 13
2.1.1. Statistical LMS theory: small step-size assumptions 13
2.1.2. LMS analysis using stochastic difference equations

with constant coefficients . 14
2.2. LMS analysis based on independent input signal assumptions 18

2.2.1. Statistical LMS theory: independent input signal assumptions . . . 18

www.it-ebooks.info

http://www.it-ebooks.info/

vi PtNLMS Algorithms

2.2.2. LMS analysis using stochastic difference equations with
stochastic coefficients . 19

2.3. Performance of statistical LMS theory 24
2.4. Summary . 27

CHAPTER 3. PTNLMS ANALYSIS TECHNIQUES 29

3.1. Transient analysis of PtNLMS algorithm for white input 29
3.1.1. Link between MSWD and MSE . 30
3.1.2. Recursive calculation of the MWD and MSWD

for PtNLMS algorithms . 30
3.2. Steady-state analysis of PtNLMS algorithm: bias

and MSWD calculation . 33
3.3. Convergence analysis of the simplified PNLMS algorithm 37

3.3.1. Transient theory and results . 37
3.3.2. Steady-state theory and results . 46

3.4. Convergence analysis of the PNLMS algorithm 47
3.4.1. Transient theory and results . 48
3.4.2. Steady-state theory and results . 53

3.5. Summary . 54

CHAPTER 4. ALGORITHMS DESIGNED BASED ON MINIMIZATION
OF USER-DEFINED CRITERIA . 57

4.1. PtNLMS algorithms with gain allocation motivated
by MSE minimization for white input 57

4.1.1. Optimal gain calculation resulting from MMSE 58
4.1.2. Water-filling algorithm simplifications 62
4.1.3. Implementation of algorithms . 63
4.1.4. Simulation results . 65

4.2. PtNLMS algorithm obtained by minimization of MSE
modeled by exponential functions . 68

4.2.1. WD for proportionate-type steepest descent algorithm 69
4.2.2. Water-filling gain allocation for minimization of the MSE

modeled by exponential functions 69
4.2.3. Simulation results . 73

4.3. PtNLMS algorithm obtained by minimization of the MSWD
for colored input . 76

4.3.1. Optimal gain algorithm . 76
4.3.2. Relationship between minimization of MSE and MSWD 81
4.3.3. Simulation results . 82

4.4. Reduced computational complexity suboptimal gain allocation
for PtNLMS algorithm with colored input 83

4.4.1. Suboptimal gain allocation algorithms 84
4.4.2. Simulation results . 85

4.5. Summary . 88

www.it-ebooks.info

http://www.it-ebooks.info/

Contents vii

CHAPTER 5. PROBABILITY DENSITY OF WD FOR PTLMS
ALGORITHMS . 91

5.1. Proportionate-type least mean square algorithms 91
5.1.1. Weight deviation recursion . 91

5.2. Derivation of the conditional PDF for the PtLMS algorithm 92
5.2.1. Conditional PDF derivation . 92

5.3. Applications using the conditional PDF 100
5.3.1. Methodology for finding the steady-state joint PDF

using the conditional PDF . 101
5.3.2. Algorithm based on constrained maximization

of the conditional PDF . 104
5.4. Summary . 111

CHAPTER 6. ADAPTIVE STEP-SIZE PTNLMS ALGORITHMS 113

6.1. Adaptation of µ-law for compression of weight estimates
using the output square error . 113

6.2. AMPNLMS and AEPNLMS simplification 114
6.3. Algorithm performance results . 116

6.3.1. Learning curve performance of the ASPNLMS, AMPNLMS
and AEPNLMS algorithms for a white input signal 116

6.3.2. Learning curve performance of the ASPNLMS, AMPNLMS
and AEPNLMS algorithms for a color input signal 117

6.3.3. Learning curve performance of the ASPNLMS, AMPNLMS
and AEPNLMS algorithms for a voice input signal 117

6.3.4. Parameter effects on algorithms . 119
6.4. Summary . 124

CHAPTER 7. COMPLEX PTNLMS ALGORITHMS 125

7.1. Complex adaptive filter framework . 126
7.2. cPtNLMS and cPtAP algorithm derivation 126

7.2.1. Algorithm simplifications . 129
7.2.2. Alternative representations . 131
7.2.3. Stability considerations of the cPtNLMS algorithm 131
7.2.4. Calculation of stepsize control matrix 132

7.3. Complex water-filling gain allocation algorithm
for white input signals: one gain per coefficient case 133

7.3.1. Derivation . 133
7.3.2. Implementation . 136

7.4. Complex colored water-filling gain allocation algorithm:
one gain per coefficient case . 136

7.4.1. Problem statement and assumptions 136
7.4.2. Optimal gain allocation resulting from minimization of MSWD . . 137

www.it-ebooks.info

http://www.it-ebooks.info/

viii PtNLMS Algorithms

7.4.3. Implementation . 138
7.5. Simulation results . 139

7.5.1. cPtNLMS algorithm simulation results 139
7.5.2. cPtAP algorithm simulation results 141

7.6. Transform domain PtNLMS algorithms 144
7.6.1. Derivation . 145
7.6.2. Implementation . 146
7.6.3. Simulation results . 147

7.7. Summary . 151

CHAPTER 8. COMPUTATIONAL COMPLEXITY FOR PTNLMS
ALGORITHMS . 153

8.1. LMS computational complexity . 153
8.2. NLMS computational complexity . 154
8.3. PtNLMS computational complexity . 154
8.4. Computational complexity for specific PtNLMS algorithms 155
8.5. Summary . 157

CONCLUSION . 159

APPENDIX 1. CALCULATION OF β
(0)
i , β(1)

i,j AND β
(2)
i 161

APPENDIX 2. IMPULSE RESPONSE LEGEND 167

BIBLIOGRAPHY . 169

INDEX . 173

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Aims of this book

The primary goal of this book is to impart additional capabilities and tools to the
field of adaptive filtering. A large part of this book deals with the operation of adaptive
filters when the unknown impulse response is sparse. A sparse impulse response is
one in which only a few coefficients contain the majority of energy. In this case, the
algorithm designer attempts to use the a priori knowledge of sparsity. Proportionate-
type normalized least mean square (PtNLMS) algorithms attempt to leverage this
knowledge of sparsity. However, an ideal algorithm would be robust and could provide
superior channel estimation in both sparse and non-sparse (dispersive) channels. In
addition, it would be preferable for the algorithm to work in both stationary and non-
stationary environments. Taking all these factors into consideration, this book attempts
to add to the state of the art in PtNLMS algorithm functionality for all these diverse
conditions.

Organization of this book

Chapter 1 introduces the framework of the PtNLMS algorithm. A review of prior
work performed in the field of adaptive filtering is presented.

Chapter 2 describes classic techniques used to analyze the steady-state and
transient regimes of the least mean square (LMS) algorithm.

In Chapter 3, a general methodology is presented for analyzing steady-state and
transient analysis of an arbitrary PtNLMS algorithm for white input signals. This
chapter builds on the previous chapter and examines that the usability and limitations
of assuming the weight deviations are Gaussian.

In Chapter 4, several new algorithms are discussed which attempt to choose a gain
at any time instant that will minimize user-defined criteria, such as mean square output
error and mean square weight deviation. The solution to this optimization problem

www.it-ebooks.info

http://www.it-ebooks.info/

x PtNLMS Algorithms

results in a water-filling algorithm. The algorithms described are then tested in a wide
variety of input as well as impulse scenarios.

In Chapter 5, an analytic expression for the conditional probability density
function of the weight deviations, given the preceding weight deviations, is derived.
This joint conditional probability density function is then used to derive the
steady-state joint probability density function for weight deviations under different
gain allocation laws.

In Chapter 6, a modification of the µ-law PNLMS algorithm is introduced.
Motivated by minimizing the mean square error (MSE) at all times, the adaptive
step-size algorithms described in this chapter are shown to exhibit robust
convergence properties.

In Chapter 7, the PtNLMS algorithm is extended from real-valued signals to
complex-valued signals. In addition, several simplifications of the complex PtNLMS
algorithm are proposed and so are their implementations. Finally, complex
water-filling algorithms are derived.

In Chapter 8, the computational complexities of algorithms introduced in this book
are compared to classic algorithms such as the normalized least mean square (NLMS)
and proportionate normalized least mean square (PNLMS) algorithms.

www.it-ebooks.info

http://www.it-ebooks.info/

Notation

The following notation is used throughout this book. Vectors are denoted by
boldface lowercase letters, such as x. All vectors are column vectors unless explicitly
stated otherwise. Scalars are denoted by Roman or Greek letters, such as x or ν. The
ith component of vector x is given by xi. Matrices are denoted by boldface capital
letters, such as A. The (i, j)th entry of any matrix A is denoted as [A]ij ≡ aij . We
frequently encounter time-varying vectors in this book. A vector at time k is given by
x(k). For notational convenience, this time indexing is often suppressed so that the
notation x implies x(k). Additionally, we use the definitions x+ ≡ x(k + 1) and
x− ≡ x(k − 1) to represent the vector x at times k + 1 and k − 1, respectively.

For vector a with length L, we define the function Diag{a} as an L × L matrix
whose diagonal entries are the L elements of a and all other entries are zero. For matrix
A, we define the function diag{A} as a column vector containing the L diagonal
entries from A. For matrices, Re{A} and Im{A} represent the real and imaginary
parts of the complex matrix A.

The list of notation is given below.

x a vector
x a scalar
A a matrix
xi the ith entry of vector x
[A]ij ≡ aij the (i, j)th entry of any matrix A
Diag{a} a diagonal matrix whose diagonal entries are the

elements of vector a
diag{A} a column vector whose entries are the diagonal

elements of matrix A
I identity matrix
E {x} expected value of random vector x

www.it-ebooks.info

http://www.it-ebooks.info/

xii PtNLMS Algorithms

.T matrix transposition

.H complex transposition (Hermitian transposition)

.∗ complex conjugation
� the Hadamard product
Im{A} imaginary part of complex matrix A
Re{A} real part of complex matrix A
||x||2 squared Euclidean norm of the vector x
||x||2W xTWx for column vector x and positive definite matrix W
Tr{A} trace of the matrix A

www.it-ebooks.info

http://www.it-ebooks.info/

Acronyms

The following acronyms are used in this book.

AEPNLMS adaptive �-proportionate normalized least mean square
AMPNLMS adaptive µ-proportionate normalized least mean square
APAF affine projection adaptive filter
ASPNLMS adaptive segmented proportionate normalized

least mean square
cCWF complex colored water-filling
cLMS complex least mean square
cMPNLMS complex µ-proportionate normalized least mean square
cNLMS complex normalized least mean square
cPNLMS complex proportionate normalized least mean square
cPtAP complex proportionate-type affine projection
cPtNLMS complex proportionate-type normalized least mean square
CWF colored water-filling
cWF complex water-filling
DCT discrete cosine transform
DCT-cPtNLMS discrete cosine transform complex proportionate-type

normalized least mean square
DCT-LMS discrete cosine transform least mean square
DCT-NLMS discrete cosine transform normalized least mean square
DCT-PNLMS discrete cosine transform proportionate-type normalized

least mean square
DCT-WF discrete cosine transform water-filling
DFT discrete Fourier transform
DWT discrete wavelet transform
EPNLMS �-proportionate normalized least mean square
Haar-cPtNLMS Haar complex proportionate-type normalized

least mean square

www.it-ebooks.info

http://www.it-ebooks.info/

xiv PtNLMS Algorithms

Haar-NLMS Haar normalized least mean square
Haar-PNLMS Haar proportionate-type normalized least mean square
Haar-WF Haar water-filling
IAF-PNLMS individual activation factor proportionate

normalized least mean square
IIPNLMS improved improved proportionate normalized

least mean square
IPNLMS improved proportionate normalized least mean square
LMS least mean square
MMSE minimum mean square error
MPNLMS µ-proportionate normalized least mean square
MSE mean square error
MSWD mean square weight deviation
MWD mean weight deviation
NLMS normalized least mean square
PDF probability distribution function
PNLMS proportionate normalized least mean square
PNLMS++ proportionate normalized least mean square plus plus
PtLMS proportionate-type least mean square
PtNLMS proportionate-type normalized least mean square
RLS recursive least squares
SNR signal-to-noise ratio
SO-NLMS self-orthogonalizing normalized least mean square
SO-PNLMS self-orthogonalizing proportionate normalized

least mean square
SO-WF self-orthogonalizing water-filling
SPNLMS segmented proportionate normalized least mean square
TD-CPtNLMS transform domain complex proportionate-type

normalized least mean square
VOIP voice over IP
WD weight deviation
WF water-filling

www.it-ebooks.info

http://www.it-ebooks.info/

1

Introduction to PtNLMS Algorithms

The objective of this chapter is to introduce proportionate-type normalized least mean square
(PtNLMS) algorithms in preparation for performing analysis of these algorithms in subsequent
chapters. In section 1.1, we begin by presenting applications for PtNLMS algorithms as the
motivation for why analysis and design of PtNLMS algorithms is a worthwhile cause. In section
1.2, a historical review of relevant algorithms and literature is given. This review is by no means
exhaustive; however, it should serve the needs of this work by acting as a foundation for the
analysis that follows. In section 1.3, standard notation and a unified framework for representing
PtNLMS algorithms are presented. This notation and framework will be used throughout the
remainder of this book. Finally, with this standardized notation and framework in hand, we
present several PtNLMS algorithms in section 1.4. The chosen PtNLMS algorithms will be
referenced frequently throughout this work.

1.1. Applications motivating PtNLMS algorithms

Historically, PtNLMS algorithms have found use in network echo cancellation
applications as a method for reducing the presence of delayed copies of the original
signal, i.e. echoes. For instance, in many telephone communication systems the
network consists of two types of wire segments: a four-wire central network and a
two-wire local network [MIN 06]. A converting device, called a hybrid, is needed at
the junction of the two-wire to four-wire segments. When a far-end user talks a
portion of the signal is reflected back to the far-end listener, due to the impedance
mismatch in the hybrid as shown in Figure 1.1. This type of echo is called electric
echo or circuit echo. An adaptive filter can be used to estimate the impulse response
of the hybrid and remove the echo caused by the hybrid.

www.it-ebooks.info

http://www.it-ebooks.info/

2 PtNLMS Algorithms

In modern telephone networks, greater delays increase the need for echo
cancellation. Specifically, these communication networks have driven the need for
faster converging echo cancellation algorithms when the echo path is sparse. A
sparse echo path is that in which a large percentage of the energy is distributed to
only a few coefficients. Conversely, a dispersive echo path has distributed most of its
energy more or less evenly across all of the coefficients. Examples of a dispersive
impulse response and a sparse impulse response are shown in Figures 1.2a and 1.2b,
respectively. While most network echo path cancelers have echo path lengths in the
order of 64 ms, the active part of the echo path is usually only about 4–6 ms long
[GAY 98], hence the echo path is sparse. The active part of an echo path corresponds
to the coefficients of the echo path that contain the majority of the energy. When the
impulse response is sparse, PtNLMS algorithms can offer improved performance
relative to standard algorithms such as the least mean square (LMS) and normalized
least mean square (NLMS) [HAY 02].

Hybrid

Far--end User Near--end User

H

Original Signal

Echo Signal

H bH bridb

Figure 1.1. Telephone echo example

Another application for PtNLMS has been spawned by the emergence of Voice
over IP (VOIP) as an important and viable alternative to circuit switched networks. In
these systems, longer delays are introduced due to packetization [SON 06]. In
addition, echoes can be created during the transition from traditional telephone
circuits to IP-based telephone networks [MIN 06].

The advent of telephone communication via satellite has motivated the search for
a better way to eliminate echoes [WEI 77]. The distortion caused by echo suppressors
is particularly noticeable on satellite-routed connections.

Let us also mention that modern applications of echo cancellation include
acoustic underwater communication where the impulse response is often sparse
[STO 09], television signals where the delay can be significant due to satellite
communication [SCH 95], high-definition television terrestrial transmission that
requires equalization due to inter-symbol interference caused by multi-path channels
exhibiting sparse behavior [FAN 05], and applications where the impulse response is
sparse in the transform domain [DEN 07].

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to PtNLMS Algorithms 3

50 100 150 200 250 300 350 400 450 500

−0.3

−0.2

−0.1

0

0.1

0.2

COEFFICIENT NUMBER

A
M

P
L
IT

U
D

E

a) Dispersive impulse response

50 100 150 200 250 300 350 400 450 500
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

COEFFICIENT NUMBER

AM
PL
IT
UD

E

b) Sparse impulse response

Figure 1.2. Dispersive and sparse impulse responses

www.it-ebooks.info

http://www.it-ebooks.info/

4 PtNLMS Algorithms

When examining these applications as well as others like them, several questions
regarding the desired performance of the PtNLMS algorithms need to be answered in
order to design an algorithm for the intended application. For instance, we need to
know what the required convergence of the algorithm needs to be. We also need to
know the computational complexity that the application can support as well as what
level of steady-state bias can be tolerated. To address these questions we need to
understand the underlying mechanics of each PtNLMS algorithm as well as what
factors control how the algorithms perform. Therefore, we intend to analyze
PtNLMS algorithms to find out what factors influence the convergence, steady-state
performance, and what the implementation cost of possible improvements in terms of
computational complexity is. In doing so, a better understanding of what influences
the performance of PtNLMS algorithms is provided. Answering these questions will
allow us to design algorithms that perform their desired tasks more efficiently.

1.2. Historical review of existing PtNLMS algorithms

In the past, adaptive filtering algorithms such as the LMS and NLMS have been
examined extensively [HAY 02]. These algorithms offer low computational
complexity and proven robustness. The LMS and NLMS algorithms share the
property of the adaptive weights being updated in the direction of the input vector.
These algorithms perform favorably in most adaptive filtering situations.

The LMS and NLMS algorithms fall within the larger class of PtNLMS
algorithms. PtNLMS algorithms can update the adaptive filter coefficients such that
some coefficients are favored. That is, some coefficients receive more emphasis
during the update process. Because of this fact, the PtNLMS algorithms are better
suited to deal with sparse impulse responses.

An example of a PtNLMS algorithm is the proportionate normalized least mean
square (PNLMS) algorithm [DUT 00]. This algorithm updates the adaptive filter
coefficients by assigning a gain proportional to the magnitude of the current
coefficient estimates. This approach improves the initial convergence rates. However,
this gain adaptation scheme causes the PNLMS algorithm to suffer from slow
convergence of small coefficients, and as a result the time needed to reach
steady-state error is increased compared to the NLMS algorithm. The PNLMS
algorithm has been shown to outperform the LMS and NLMS algorithms when
operating on a sparse impulse response. Currently, any analytical model to describe
learning curve convergence of the PNLMS algorithm does not exist [SON 06].

Another weakness of the PNLMS algorithm is that when the impulse response
is dispersive, the algorithm converges much slower than the NLMS algorithm. To
remedy this issue the PNLMS++ was proposed [GAY 98]. The PNLMS++ algorithm
solves this issue by alternating between the NLMS and PNLMS algorithms on each
sample period of the algorithm. The improved PNLMS (IPNLMS) was introduced to

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to PtNLMS Algorithms 5

build upon the PNLMS++ algorithm [BEN 02]. The IPNLMS attempts to exploit the
shape of the estimated echo, instead of blindly alternating between the PNLMS and
NLMS algorithms as is done in the PNLMS++ algorithm. The IPNLMS algorithm
performs better than the NLMS and PNLMS algorithms no matter what the nature of
the impulse response.

In the following, the improved IPNLMS (IIPNLMS) algorithm was proposed
[CUI 04]. This algorithm attempted to identify active and inactive regions of the echo
path impulse response. Active regions received updates more in-line with the NLMS
methodology, while inactive regions received gains based upon the PNLMS
methodology. In this way, the IIPNLMS was able to outperform the IPNLMS
algorithm. The idea of applying gain selectively to active and inactive regions was
explored previously in the so-called partial update algorithms. These algorithms,
motivated by reducing computational complexity while improving performance,
update a subset of all the coefficients during each sampling period. Examples of
partial update NLMS algorithms can be found in [TAN 02] and [NAY 03].

Another set of algorithms was designed by seeking a condition to achieve the
fastest overall convergence. Initially, the steepest descent algorithm was optimized
and then the resulting deterministic algorithm was cast into the stochastic framework.
It can be shown that the total number of iterations for overall convergence is
minimized when all of the coefficients reach the �-vicinity of their true values
simultaneously (where � is some small positive number). This approach results in the
µ-law PNLMS (MPNLMS) [DEN 05]. The MPNLMS algorithm addresses the issue
of assigning too much update gain to large coefficients, which occurs in the PNLMS
algorithms.

The �-law PNLMS (EPNLMS) [WAG 06] algorithm is a second implementation
of the same philosophy used to generate the MPNLMS algorithm. This algorithm
gives the minimum gain possible to all of the coefficients with magnitude less than �.
It assumes that the impulse response is sparse and contains many small magnitude
coefficients [DEN 06]. The EPNLMS outperforms the MPNLMS algorithm in many
cases, however the MPNLMS algorithm’s performance is more robust regarding the
choice of algorithm parameters, as well as input signal and unknown system
characteristics, than the EPNLMS algorithm.

The individual activation factor PNLMS (IAF-PNLMS) algorithm was introduced
in [DAS 10]. The standard PNLMS algorithm performance depends on some
predefined parameters controlling proportionality activation through a minimum gain
that is common for all of the coefficients. In contrast, the IAF-PNLMS algorithm
computes a separate minimum gain for each coefficient. This time varying minimum
gain is called the activation factor and has the following characteristics: (1) an
individual activation factor is used for each adaptive filter coefficient; (2) each
individual activation factor is computed in terms of the past and current values of the
corresponding coefficient magnitude, thereby each activation factor presents some

www.it-ebooks.info

http://www.it-ebooks.info/

6 PtNLMS Algorithms

inherent memory associated with its corresponding coefficient magnitude; (3) the
individual activation factors do not rely on the proportionality and initialization
parameters, since they are no longer in the proposed formulation. As a consequence,
the convergence features of the IAF-PNLMS algorithm are improved relative to the
NLMS and PNLMS algorithms.

1.3. Unified framework for representing PtNLMS algorithms

We begin by introducing a unified framework for representing PtNLMS
algorithms. All signals are real-valued throughout this chapter and the majority of
this book. It will be stated explicitly if the signals under examination are complex.
Let us assume there is some input signal denoted as x(k) for time k that excites an
unknown system with impulse response w. Let the output of the system be
y(k) = wTx(k), where x(k) = [x(k), x(k − 1), . . . , x(k − L + 1)]T and L is the
length of the filter. The measured output of the system, d(k), contains measurement
noise v(k) and is equal to the sum of y(k) and v(k). The impulse response of the
system is estimated with the adaptive filter coefficient vector (also called weight
vector), ŵ(k), which also has length L. The outputs of the adaptive filters is given by
ŷ(k) = ŵT (k)x(k). The error signal e(k) between the outputs of the adaptive filters
ŷ(k) and d(k) drives the adaptive algorithm. A diagram of this processing scheme is
shown in Figure 1.3. The weight deviation vector is given by z(k) = w − ŵ(k).

Figure 1.3. Adaptive filtering “system identification” configuration

The PtNLMS algorithm is shown in Table 1.1. Here, β is the fixed step-size
parameter. The term F [|ŵl(k)|, k], with l ∈ {1, 2, . . . , L}, governs how each
coefficient is updated and we refer to this term as the control law. In the case when
F [|ŵl(k)|, k] is less than γmin, the quantity γmin is used to set the minimum gain a
coefficient can receive. The constant δp, where δp ≥ 0, is important in the beginning
of learning when all of the coefficients are zero and together with ρ, where ρ ≥ 0,

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to PtNLMS Algorithms 7

prevent the very small coefficients from stalling. G(k) = Diag {g1(k), . . . , gL(k)}
is the time-varying step-size control diagonal matrix. The constant δ is typically a
small positive number used to avoid division by zero if the inputs are zero, that is
when x(k) = 0.

x(k) = [x(k), x(k − 1), . . . , x(k − L+ 1)]T

ŷ(k) = xT (k)ŵ(k)
e(k) = d(k)− ŷ(k)
F [|ŵl(k)|, k] = Specified by the user
γmin(k) = ρ max{δp, F [|ŵ1(k)|, k], . . . , F [|ŵL(k)|, k]}
γl(k) = max{γmin(k), F [|ŵl(k)|, k]}
gl(k) = γl(k)

1
L

3L

i=1
γi(k)

G(k) = Diag{g1(k), . . . , gL(k)}
ŵ(k + 1) = ŵ(k) + βG(k)x(k)e(k)

xT (k)G(k)x(k)+δ

Table 1.1. PtNLMS algorithm with time-varying step-size matrix

Some common examples of the term F [|ŵl(k)|, k] are F [|ŵl(k)|, k] = 1 and
F [|ŵl(k)|, k] = |ŵl(k)|, which result in the NLMS and PNLMS algorithms,
respectively.

Assuming that the impulse response being estimated is sparse, the PtNLMS
algorithms begin by setting ŵ(0) = 0. These algorithms rely on the fact that the true
system impulse response w is sparse and most coefficients are zero, therefore the
initial estimate ŵ(0) = 0 is correct for most of the estimated weights. In the
following, the weights that differ from zero should be driven toward their true values
as quickly as possible to speed up convergence. The question, as proposed in
[DEN 05], then becomes how to determine when an estimated coefficient’s true value
is non-zero and how to assign gain to all of the coefficients in a manner that increases
the convergence rate of the overall algorithm. These two issues give rise to the
question of switching criteria within the context of the overall control law. The
control law determines how to assign gain to each of the estimated coefficients. This
process can be broken into separate steps for most algorithms:

1) The first step does switching in order to separate the estimated coefficients into
two categories: those that are near to their true values and those that are not.

2) The second step of the overall control law determines how to assign gain once
the coefficients have been separated into two categories based on the switching
criterion.

In general, we want to assign the minimal possible gain to all of the coefficients
that are near their true values. This law is common throughout almost all of the
PtNLMS algorithms. The various algorithms addressed mainly differ in how they

www.it-ebooks.info

http://www.it-ebooks.info/

8 PtNLMS Algorithms

assign gain to the estimated coefficients that are not near their optimal values. That is,
the algorithms vary in the specification of the function F [|ŵl(k)|, k].

1.4. Proportionate-type NLMS adaptive filtering algorithms

In this section, mathematical representations of several PtNLMS algorithms are
presented in further detail.

1.4.1. Proportionate-type least mean square algorithm

The first algorithm we examine is the PtLMS algorithm. Strictly speaking, the
PtLMS algorithm is not a PtNLMS algorithm because the update term for the weight
deviation is not normalized by the input signal power. However, the PtLMS
algorithm serves as a building block toward the PtNLMS algorithms. The PtLMS
adaptive filtering algorithm is presented in Table 1.2. When we set G(k) = I for all
k, where I is the identity matrix, then the PtLMS algorithm reduces to the widely
known LMS [HAY 02] algorithm.

x(k) = [x(k), x(k − 1), . . . , x(k − L+ 1)]T

ŷ(k) = xT (k)ŵ(k)
e(k) = d(k)− ŷ(k)
ŵ(k + 1) = ŵ(k) + βG(k)x(k)e(k)

Table 1.2. PtLMS algorithm with time-averaging step-size matrix

1.4.2. PNLMS algorithm

The Proportionate NLMS algorithm was first proposed in [DUT 00]. The control
law for these algorithms assigns a gain proportionate to the magnitude of the estimated
coefficients,

F [|ŵl(k)|, k] = |ŵl(k)|, 1 ≤ l ≤ L. [1.1]

The motivation for this algorithm is based on knowledge that the impulse response
is sparse. Therefore it is desired to adapt coefficients with large magnitudes faster than
those that are at or near zero.

1.4.3. PNLMS++ algorithm

The PNLMS++ algorithm introduced in [GAY 98] is a combination of the
PNLMS and NLMS algorithms. For instance, one implementation of the PNLMS++

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to PtNLMS Algorithms 9

algorithm is to alternate between the NLMS and PNLMS gains logic every iteration.
This implementation is shown here:

F [|ŵl(k)|, k] =
� |ŵl(k)|, 1 ≤ l ≤ L, if k is odd,
1, if k is even.

An alternative implementation of the PNLMS++ algorithm is to alternate between
the NLMS and PNLMS algorithms every M th iteration.

1.4.4. IPNLMS algorithm

The improved PNLMS (IPNLMS) was introduced in [BEN 02] and has the
following control law:

F [|ŵl(k)|, k] = (1− αIPNLMS)
||ŵ(k)||1

L
+ (1 + αIPNLMS)|ŵl(k)|, [1.2]

where ||ŵ(k)||1 =
3L

j=1 |ŵj(k)| is the L1 norm of the vector ŵ(k) and
−1 ≤ αIPNLMS ≤ 1. The algorithm uses ρ = 0, that is the minimum gain logic
introduced in Table 1.1, which in this case, is unnecessary. The components of the
time-varying gain matrix are given by:

gl(k) =
F [|ŵl(k)|, k]

||F [|ŵl(k)|, k]||1

=
(1− αIPNLMS)

2L
+ (1 + αIPNLMS)

|ŵl(k)|
2||ŵ(k)||1 . [1.3]

However in practice, to avoid division by zero, especially at the beginning of
adaptation when the estimated coefficients are all close to zero, a slightly modified
form of the time-varying gain matrix is used:

gl(k) =
(1− αIPNLMS)

2L
+ (1 + αIPNLMS)

|ŵl(k)|
2||ŵ(k)||1 + �IPNLMS

, [1.4]

where �IPNLMS is a small positive number. Note for αIPNLMS = −1 this algorithm
reduces to the NLMS algorithm and for αIPNLMS = 1 the IPNLMS algorithm behaves
like the PNLMS algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

10 PtNLMS Algorithms

1.4.5. IIPNLMS algorithm

In the following, the improved IPNLMS (IIPNLMS) algorithm was given in
[CUI 04]. The components of the time-varying gain matrix for the IIPNLMS
algorithm are given by:

F [|ŵl(k)|, k] = |ŵl(k)|
γmin(k) = ρ max{δp, F [|ŵ1(k)|, k], . . . , F [|ŵL(k)|, k]}

γl(k) = max{γmin(k), F [|ŵl(k)|, k]}

γ�
l(k) =

1− αIIPNLMS l(k)

2
+

1 + αIIPNLMS l(k)

2
γl(k)

gl(k) =
γ�
l(k)

1
L

3L
l=1 γ

�
l(k)

.

The term αIIPNLMS l(k) is unique to the IIPNLMS algorithm and is described as
follows. First, the objective of the IIPNLMS algorithm was to derive a rule to locate
the “active” portion of the echo path in order to further improve performance. In the
IPNLMS, the parameter αIPNLMS was fixed for the whole echo path coefficients.
Second, in the IIPNLMS version, αIIPNLMS is allowed to vary as:

αIIPNLMS l(k) =

�
α1 IIPNLMS, when γl(k) > γIIPNLMS max

l
γl(k)

α2 IIPNLMS, when γl(k) < γIIPNLMS max
l

γl(k)

where γIIPNLMS is a parameter used to control the threshold in order to locate the
“active” portion.

1.4.6. IAF-PNLMS algorithm

The IAF-PNLMS algorithm was introduced in [DAS 10]. The IAF-PNLMS
algorithm proceeds in the following manner:

F [|ŵl(k)|, k] = |ŵl(k)|

ψl(k) =


1
2F [|ŵl(k)|, k] + 1

2γl(k − 1), k = mL
m = 1, 2, 3, . . .

ψl(k − 1), otherwise

γl(k) = max{ψl(k), F [|ŵl(k)|, k]}.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to PtNLMS Algorithms 11

Typically, ψl(0) is initialized to some small positive constant for all of the
coefficients.

In contrast to the other PNLMS-type algorithms, such as the PNLMS and
IPNLMS, the IAF-PNLMS algorithm transfers part of the inactive coefficient gains
via ψl(k) to the active coefficient gains [DAS 10], and, as a consequence, has the
following properties:

1) It provides better (“truly proportionate”) gain distribution compared with the
PNLMS and IPNLMS algorithms.

2) It slows down the convergence speed of the small coefficients.

Point (1) leads to an improvement in the convergence speed as well as in tracking
ability, enabling the IAF-PNLMS algorithm to outperform both the PNLMS and
IPNLMS algorithms for impulse responses with high sparseness. Moreover, the point
(2) is undesirable, arising from the fact that the IAF-PNLMS algorithm transfers
gains from the inactive coefficients to the active coefficients over the whole
adaptation process.

1.4.7. MPNLMS algorithm

The control law for the MPNLMS algorithm assigns a gain proportional to the
logarithm of the estimated coefficients [DEN 05, DEN 06] as follows:

F [|ŵl(k)|, k] = ln(1 + µ|ŵl(k)|), 1 ≤ l ≤ L, [1.5]

where µ = 1/�. The parameter � is used to define when a coefficient is considered to
be converged. For instance, a coefficient could be considered to have converged if it is
within the �-vicinity of its true value.

1.4.8. EPNLMS algorithm

The EPNLMS algorithm uses switching [DEN 06]. The switching criterion for this
algorithm is based on the magnitude of the estimated coefficients. If the coefficient
magnitude is less than �, the minimum possible gain is assigned. Otherwise the gain
assigned to the coefficients is proportional to the natural logarithm of the magnitude
of the coefficient as shown here:

F [|ŵl(k)|, k] =
 0 if |ŵl(k)| < �

ln

"
|ŵl(k)|

�

(
if |ŵl(k)| ≥ �.

This algorithm tries to limit the resources (update gain) applied to the coefficients
that have reached the �-vicinity of their assumed true values of zero (sparsity).

www.it-ebooks.info

http://www.it-ebooks.info/

12 PtNLMS Algorithms

1.5. Summary

In this chapter, an introduction to PtNLMS algorithms was given. The chapter
started by presenting applications that motivate the design and analysis of PtNLMS
algorithms. Classic examples of applications for PtNLMS algorithms such as
telephone echo cancellation were discussed as well as more recent applications such
as VOIP and acoustic underwater communication. Then a unified framework for
representing PtNLMS algorithms was presented, followed by several examples of
PtNLMS algorithms. Key strengths and weaknesses of each PtNLMS algorithm were
also discussed.

www.it-ebooks.info

http://www.it-ebooks.info/

2

LMS Analysis Techniques

After the introduction of the LMS algorithm, several underlying theories were developed in order to
predict the performance of the algorithm. In this chapter, a review of LMS analysis techniques are
presented. The first LMS analysis technique reviewed in this chapter relies on the small adaptation
step-size assumption. This assumption results in a recursion for the weight deviation vector that
has constant coefficients. The second LMS analysis technique reviewed in this chapter assumes
that the input signal is an independent Gaussian vector random process that is also independent
of the measurement noise. In this case, the recursion for the weight deviation vector is an equation
with random coefficients. Note that other techniques have been used to analyze the convergence
of LMS algorithms such as ordinary differential equations introduced in [BEN 80]. We do not
examine these other techniques.

2.1. LMS analysis based on small adaptation step-size

In this section, we review techniques that have been used to analyze LMS filters in
both the steady-state and transient regimes. The LMS theory presented here assumes
a small step-size β and was developed by Kushner [KUS 84] and Haykin [HAY 02].

2.1.1. Statistical LMS theory: small step-size assumptions

ASSUMPTION 2.1.– The input x(k) and weight deviation vector z(k) are
independent.

This is a reasonable assumption when β is sufficiently small, that is when z(k)
fluctuates much slower than x(k) [HAY 02, SAY 03]. In this case, the LMS estimator
acts as a low-pass filter with a low cutoff frequency.

ASSUMPTION 2.2.– The measurement noise v(k) is a stationary white process with
zero-mean, variance σ2

v , and it is independent of the input.

www.it-ebooks.info

http://www.it-ebooks.info/

14 PtNLMS Algorithms

2.1.2. LMS analysis using stochastic difference equations with constant coefficients

In this section, we will review the transient and steady-state analysis as presented
by [HAY 02]. We begin with the transient analysis of the LMS algorithm and
conclude with the steady-state analysis of the LMS algorithm. The transient analysis
presented here focuses on finding three quantities: the mean weight deviation
(MWD) recursion, the mean square weight deviation (MSWD) recursion and the
mean square error (MSE) recursion. Now we will examine each of these quantities.

2.1.2.1. Transient analysis of the LMS algorithm: MWD recursion

The weight deviation recursion is obtained by starting with the weight vector
recursion for the LMS algorithm:

ŵ(k + 1) = ŵ(k) + βx(k)e(k). [2.1]

Next the error term is expressed in terms of the weight deviation vector as:

e(k) = xT (k)[w − ŵ(k)] + v(k) = xT (k)z(k) + v(k). [2.2]

Now the weight deviation recursion can be formed by substituting equation [2.1]
into the definition of the weight deviation z(k + 1) = w − ŵ(k + 1) and replacing
the error term with the term given in equation [2.2] to form:

z(k + 1) = z(k)− βx(k)xT (k)z(k)− βx(k)v(k). [2.3]

Taking the expectation of the weight deviation recursion yields:

E{z(k + 1)} = E{z(k)} − βE{x(k)xT (k)z(k)} − E{βx(k)v(k)}
= (I− βR)E{z(k)}, [2.4]

where R = E{x(k)xT (k)}.

The term E{x(k)xT (k)z(k)} was calculated by using assumption 2.1. Since the
input signal is independent of the weight deviation the following expectation can be
expressed as:

E{x(k)xT (k)z(k)} = E[E{x(k)xT (k)}z(k)] = RE{z(k)}. [2.5]

Similarly, by enacting assumption 2.2 the expectation E{βx(k)v(k)} is zero.

It turns out that the MWD at time k+1 can be expressed in terms of the true weight
vector w by the equation:

E{z(k + 1)} = (I− βR)k+1E{z(0)} = (I− βR)k+1w. [2.6]

www.it-ebooks.info

http://www.it-ebooks.info/

LMS Analysis Techniques 15

The term z(0) = w − ŵ(0). Throughout this chapter it is assumed that the initial
estimate ŵ(0) = 0. Hence, the weight deviation at time zero reduces the true weight
vector.

2.1.2.1.1. Coordinate change
To study the conditions that result in the stability of equation [2.4], it is

convenient to introduce a coordinate change. Beause the covariance matrix R is real
and symmetric, we can perform an eigendecomposition to produce the relation:

R = QΛQT , [2.7]

where Λ is a diagonal matrix and Q an orthonormal matrix such that
QQT = QTQ = I. Note that the ith diagonal entry of Λ is denoted by λi and
represents the ith eigenvalue of the matrix R.

Let us now introduce the transformed quantity ż = QT z. Hence equation [2.4]
can now be rewritten as:

E{ż(k + 1)} = (I− βΛ)E{ż(k)}. [2.8]

2.1.2.1.2. MWD stability condition
Examining equation [2.8] we see that stability of E{ż(k + 1)} can be guaranteed

if |1−βλi| < 1 for all i = 1, 2, . . . , L, that is the algorithm is guaranteed to converge.
Next, let us consider λmax be the largest eigenvalue. Then using the fact that β > 0
and λi > 0 for all i, the stability condition can be rewritten as:

0 < β <
2

λmax
. [2.9]

This condition guarantees that the LMS filter converges in the mean [HAY 02].

2.1.2.2. Transient analysis of the LMS algorithm: MSWD recursion

In [HAY 02], the MSWD recursion is analyzed by first performing the coordinate
change procedure discussed in section 2.1.2.1.1 on [2.3] and then replacing the
resulting equation with the stochastic equation given by:

ż(k + 1) = [I− βΛ]ż(k)− βẋ(k)v(k). [2.10]

Kushner [KUS 84] has shown that for small step-size, the solution of the original
difference equation [2.3] is close to the solution of [2.10]. We can write the vector
recursion in component-wise form as:

żi(k + 1) = (1− βλi)żi(k)− βẋi(k)v(k). [2.11]

www.it-ebooks.info

http://www.it-ebooks.info/

16 PtNLMS Algorithms

This recursion can be expressed in terms of all the prior weight deviations as:

żi(k + 1) = (1− βλi)
k+1ẇi − β

k2
l=0

(1− βλi)
k−lẋi(l)v(l), [2.12]

where we used the definition żi(0) = ẇi. Next the square weight deviation can be
formed by squaring the previous expression:

ż2i (k + 1) = (1− βλi)
2(k+1)ẇ2

i

+β2
k2

l=0

k2
j=0

(1− βλi)
(2k−l−j)ẋi(l)v(l)ẋi(j)v(j)

−2β(1− βλi)
k+1ẇi

k2
l=0

(1− βλi)
k−lẋi(l)v(l). [2.13]

Next the expectation of ż2i (k + 1) is formed. This process results in:

E{ż2i (k + 1)} = (1− βλi)
2(k+1)ẇ2

i + β2
k2

l=0

(1− βλi)
2(k−l)λiσ

2
v , [2.14]

where we have employed the facts that the noise is white, zero-mean and independent
of the input signal, and the transformed input signal has covariance matrix Λ. Using
the definition of the geometric series it is possible to rewrite the term:

k2
l=0

(1− βλi)
2(k−l) =

1− (1− βλi)
2(k+1)

βλi(2− λiβ)
. [2.15]

Hence the recursion for the mean square deviation for the ith weight becomes:

E{ż2i (k + 1)} = (1− βλi)
2(k+1)

�
ẇ2

i −
βσ2

v

2− λiβ

�
+

βσ2
v

2− λiβ
. [2.16]

Using the previous expression it is possible to write the MSWD recursion at time
k + 1 in terms of the impulse response, ẇ, as:

E||ż(k + 1)||2 = E||ẇ||2Fk+1 +
k2

l=0

β2σ2
vTr(FlΛ), [2.17]

www.it-ebooks.info

http://www.it-ebooks.info/

LMS Analysis Techniques 17

where F = (I − βΛ)2. The condition for convergence in this case is given by β <
2/λmax.

2.1.2.3. Transient analysis of the LMS algorithm: relationship of MSWD to MSE

The MSE at time k is given by the equation:

J(k) = E{e2(k)}
= E{[xT (k)z(k) + v(k)]2}
= E{zT (k)x(k)xT (k)z(k) + 2xT (k)z(k)v(k) + v2(k)}. [2.18]

The first term in this expression can be replaced by E{zT (k)Rz(k)} by applying
assumption 2.1. Applying assumption 2.2 results in the second term becoming zero
and the last term being equal to σ2

v . Hence the MSE can be expressed as:

E{e2(k)} ≈ σ2
v + E{zT (k)Rz(k)}. [2.19]

Substituting ż = QT z into this expression yields:

E{e2(k)} ≈ σ2
v + E{żT (k)Λż(k)} = σ2

v +

L2
j=1

λiE{ż2i (k)}. [2.20]

Hence using [2.20] and [2.16] we can calculate the MSE at all times.

2.1.2.4. Steady-state analysis of the LMS algorithm

By taking the limits as k approaches infinity of [2.6], [2.16] and [2.20] and
assuming the stability condition given in [2.9] holds, then it is straightforward to
calculate the MWD, MSWD and MSE in steady-state.

First, the MWD in steady-state is zero. This implies that the estimated impulse
response approaches the true impulse response in the mean. Next the ith component
of MSWD becomes:

E{ż2i (∞)} =
βσ2

v

2− βλi
[2.21]

in steady-state. And finally the MSE in steady-state is given by:

J(∞) = σ2
v + βσ2

v

L2
j=1

λj

2− βλj
. [2.22]

www.it-ebooks.info

http://www.it-ebooks.info/

18 PtNLMS Algorithms

Hence, the MSE for the LMS algorithm decays to the value given by equation
[2.22].

Finally, we introduce misadjustment, which is a quantity used to measure the ratio
of the steady-state value of the excess MSE to the minimum MSE. The excess MSE
is the difference between the MSE at time k and the minimum MSE. The minimum
MSE is the variance of the noise, σ2

v . For the LMS algorithm the misadjustment is
given by:

M =
J(∞)− σ2

v

σ2
v

= β
L2

j=1

λj

2− βλj
. [2.23]

Note that it is possible to reduce the steady-state quantities to simpler forms by
making more assumptions. For instance, we could assume that the input signal was
independently and identically distributed (i.i.d.), which would reduce steady-state
MSE to:

J(∞) = σ2
v + βσ2

vL
λ

2− βλ
,

where λi = λ for all i.

2.2. LMS analysis based on independent input signal assumptions

In the previous section, the LMS theory assuming a small step-size was examined.
The strengths of this theory include the fact that there is no assumption made about
the input signal and, therefore, the theory should be robust under a wide variety of
input signals. A weakness of this theory is that the small step-size assumption implies
the theory will not work for large values of the step-size parameter. In this section, the
small step-size assumption is removed. Instead the input signal is assumed to be an
independent Gaussian random vector process. We begin by presenting the assumptions
that will be applied in this section.

2.2.1. Statistical LMS theory: independent input signal assumptions

ASSUMPTION 2.3.– The input signal, x(k), is an independent, identically
distributed, Gaussian vector process with zero-mean and covariance
R = E{x(k)x(k)T }.

This assumption allows the calculation of fourth-order terms of the input signal.

In addition, assumption 2.2 specifies the properties of the measurement noise,
v(k).

www.it-ebooks.info

http://www.it-ebooks.info/

LMS Analysis Techniques 19

2.2.2. LMS analysis using stochastic difference equations with stochastic
coefficients

Replacing the weight deviation recursion [2.3] with the stochastic equation given
by [2.10] simplifies analysis. However, this substitution results in erroneous results
when compared with simulations due to the fact that fourth-order terms of the input
signal present when squaring [2.3] are disregarded in the treatment of the approximate
system. A more thorough treatment was presented by [SAY 03]. We will present the
findings here. We begin by noting that the treatment of the MWD is the same in both
sets of work, therefore we will not discuss the MWD in this section.

2.2.2.1. Transient analysis of the LMS algorithm: MSWD recursion revisited

In this section, we seek the MSWD recursion. However, in order to find the MSWD
it will prove helpful to first find a more general recursion for E||z(k+1)||2Σ, where Σ
is an arbitrary positive definite diagonal matrix. We will refer to this recursion as the
weighted variance recursion.

We begin by writing the weighted variance at time k + 1 in terms of the weighted
variance at time k. Substituting equation [2.3] into ||z(k + 1)||2Σ yields:

||z(k + 1)||2Σ = ||z(k)||2Σ − β||z(k)||2x(k)xT (k)Σ − β||z(k)||2Σx(k)xT (k)

+β2||z(k)||2x(k)xT (k)Σx(k)xT (k)

+β2zT (k)x(k)v(k)||x(k)||2Σ+ β2||x(k)||2ΣxT (k)z(k)v(k)

+β2v2(k)||x(k)||2Σ
−βv(k)zT (k)Σx(k)− βv(k)xT (k)Σz(k). [2.24]

The next step is to consider the expectation of both sides of equation [2.24]. The
cross terms involving v(k) vanish due to assumption 2.2, that is the noise terms are
zero-mean and independent of the input signal. Hence, we can write:

E
�||z(k + 1)||2Σ

�
= E

�||z(k)||2Σ�− βE
�
||z(k)||2x(k)xT (k)Σ

	
− βE

�
||z(k)||2Σx(k)xT (k)

	
+ β2E

�
||z(k)||2x(k)xT (k)Σx(k)xT (k)

	
+ β2E

�
v2(k)||x(k)||2Σ

�
. [2.25]

www.it-ebooks.info

http://www.it-ebooks.info/

20 PtNLMS Algorithms

This equality can be written more compactly by introducing the quantity:

Σ
�
= Σ− βx(k)xT (k)Σ− βΣx(k)xT (k) + β2x(k)xT (k)Σx(k)xT (k). [2.26]

Then, we can write:

E
�||z(k + 1)||2Σ

�
= E

�||z(k)||2
Σ�

�
+ β2σ2

vE
�||x(k)||2Σ�, [2.27]

where in the second term we applied the independence of the noise and the input.

2.2.2.1.1. Independence assumption
At this point, we apply assumption 2.1 that states that the input signal and weight

deviations can be considered independent. This allows us to write:

E
�||z(k)||2

Σ�
�
= E

�
||z(k)||2

E{Σ�}
	
, [2.28]

where

E
�
Σ

�	
= Σ− βE

�
x(k)xT (k)

�
Σ− βΣE

�
x(k)xT (k)

�
+ β2E

�
x(k)xT (k)Σx(k)xT (k)

�
. [2.29]

2.2.2.1.2. Coordinate change
The evaluation of the moments in [2.29] can be simplified with a change of

coordinates. We apply the similar coordinate transformations to the transformations
used in the section 2.1.2.1.1, namely ż(k) = QT z(k), ẋ(k) = QTx(k) and
Σ̇ = QTΣQ.

After making these changes of variable, the variance relation [2.27] maintains the
same form. For instance, it is easy to show that:

||ż(k)||2 = żT (k)ż(k) = zT (k)QQT z(k) = ||z(k)||2.
Therefore the variance relation becomes:

E
�||ż(k + 1)||2

Σ̇

�
= E

�
||ż(k)||2

E{Σ̇�}
	
+ β2σ2

vE
�||ẋ(k)||2

Σ̇

�
, [2.30]

where

E
�
Σ̇

�	
= Σ̇− βE

�
ẋ(k)ẋT (k)

�
Σ̇− βΣ̇E

�
ẋ(k)ẋT (k)

�
+ β2E

�
ẋ(k)ẋT (k)Σ̇ẋ(k)ẋT (k)

	
. [2.31]

www.it-ebooks.info

http://www.it-ebooks.info/

LMS Analysis Techniques 21

With this transformation in place we will now calculate the expectation:

E
�
ẋ(k)ẋ(k)T Σ̇ẋ(k)ẋ(k)T

	
.

Since ẋ is a real-valued Gaussian random vector with zero-mean and diagonal
covariance Λ, the fourth moment is well known [HAY 02] and is given by:

E
�
ẋ(k)ẋ(k)T Σ̇ẋ(k)ẋ(k)T

	
= ΛTr(Σ̇Λ) + 2ΛΣ̇Λ.

Hence, [2.31] simplifies to:

E
�
Σ̇

�	
= Σ̇− βΣ̇Λ− βΛΣ̇+ β2

�
ΛTr(Σ̇Λ) + 2ΛΣ̇Λ

�
. [2.32]

2.2.2.1.3. Linear vector relation
Using the fact that Λ and Σ̇ are diagonal matrices, it is possible to write [2.30] in a

more compact form. Note that since Λ and Σ̇ are diagonal this implies that E
�
Σ̇

�
	

is

diagonal too. First, define λ = diag(Λ) and σ̇ = diag(Σ̇). Using these definitions
it is possible to write [2.32] as a vector recursion:

E
�
σ̇

�	
= (I− 2βΛ+ 2β2Λ2)σ̇ + β2λλT σ̇,

which can be written as:

E
�
σ̇

�	
= Fσ̇,

where

F = I− 2βΛ+ 2β2Λ2 + β2λλT .

Now we can rewrite [2.30] as:

E
�
||ż(k + 1)||2Diag(σ̇)

	
= E

�
||ż(k)||2Diag(Fσ̇)

	
+ β2σ2

vλ
T σ̇. [2.33]

By choosing σ̇ = 1, where 1 = [1, 1, . . . , 1]T , the MSWD at time k + 1 can be
expressed in terms of the impulse response as:

E
�||ż(k + 1)||2� = E

�
||ẇ||2Diag(Fk+11)

	
+ β2σ2

v

k2
l=0

λTFl1. [2.34]

This expression also allows us to calculate the MSE at any time using [2.20].

www.it-ebooks.info

http://www.it-ebooks.info/

22 PtNLMS Algorithms

2.2.2.1.4. MSWD stability condition
To ensure mean square stability we require that F is a stable matrix. It has been

shown in [SAY 03] and [HAY 91] that this condition can be satisfied if:

1

2

L2
i=1

βλi

1− βλi
< 1. [2.35]

A separate proof of this same claim is given next.

The difference equation describing the evolution of the MSWD error is:E
�
(z+1)

2
�

...
E
�
(z+L)

2
�
 = FT

E
�
z21
�

...
E
�
z2L

�
+ β2σ2

vλ, [2.36]

where

F = FT = I− 2βΛ+ 2β2Λ2 + β2λλT .

The stability of the MSWD error is guaranteed if and only if all eigenvalues of F,
ϑ(F), satisfy:

−1 < ϑ(F) < 1.

Since

F = (I− βΛ)2 + β2Λ2 + β2λλT

is non-negative definite, ϑ(F) > −1 is satisfied.

Note that if v and α are an eigenvector and eigenvalue of F, then v and α− 1 are
an eigenvector and eigenvalue of F− I:

Fv = αF =⇒ (F− I)v = Fv − v = αv − v = (α− 1)v.

Therefore, to show ϑ(F) < 1 we can equivalently show ϑ(F − I) < 0. Next, we
define:

G ≡F− I = −2βΛ+ 2β2Λ2 + β2λλT

= −2βΛ(I− βΛ) + β2λλT

= Λ
1
2 (I− βΛ)

1
2

×
�
−2βI+ β2(I− βΛ)−

1
2Λ− 1

2λλTΛ− 1
2 (I− βΛ)−

1
2

�
(I− βΛ)

1
2Λ

1
2

= Λ
1
2 (I− βΛ)

1
2H(I− βΛ)

1
2Λ

1
2 ,

www.it-ebooks.info

http://www.it-ebooks.info/

LMS Analysis Techniques 23

where

H ≡
�
−2βI+ β2(I− βΛ)−

1
2Λ− 1

2λλTΛ− 1
2 (I− βΛ)−

1
2

�
. [2.37]

The matrices G and H are congruent matrices (i.e. for some arbitrary matrix A,
G = AHAT). Sylvester’s law of inertia states that two congruent symmetric
matrices with real entries have the same numbers of positive, negative and zero
eigenvalues [SYL 52]. Hence to show that all eigenvalues of G are negative implies
that all eigenvalues of H are negative and vice-versa. By inspection one eigenvector
of H is (I− βΛ)−1/2Λ−1/2λ, which yields:

�
−2βI+ β2(I− βΛ)−

1
2Λ− 1

2λλT (I− βΛ)−
1
2Λ− 1

2

�
(I− βΛ)−

1
2Λ− 1

2λ

=
�−2β + β2λT (I− βΛ)−1Λ−1λ

�
(I− βΛ)−

1
2Λ− 1

2λ. [2.38]

Therefore, the eigenvector:

(I− βΛ)−
1
2Λ− 1

2λ

has the eigenvalue:

−2β + β2λT (I− βΛ)−1Λ−1λ.

The other L− 1 eigenvectors are perpendicular to the eigenvector:

(I− βΛ)−
1
2Λ− 1

2λ.

Let us denote these L− 1 eigenvectors as:�
(I− βΛ)−

1
2Λ− 1

2λ
�⊥

.

Multiplying H with these eigenvectors yields:

�
−2βI+ β2(I− βΛ)−

1
2Λ− 1

2λλT (I− βΛ)−
1
2Λ− 1

2

� �
(I− βΛ)−

1
2Λ− 1

2λ
�⊥

= −2β
�
(I− βΛ)−

1
2Λ− 1

2λ
�⊥

. [2.39]

On the basis of this result, the other L − 1 eigenvalues have value −2β that is
always negative.

www.it-ebooks.info

http://www.it-ebooks.info/

24 PtNLMS Algorithms

To guarantee that all eigenvalues are negative we need only to require that:

0 > −2β + β2λT (I− βΛ)−1Λ−1λ

=⇒ β2
L2

i=1

λi

(1− βλi)
< 2β

=⇒ 1

2

L2
i=1

βλi

(1− βλi)
< 1.

This is the result given in equation [2.35].

It turns out that this condition also ensures convergence in the mean, that is
E {ż(∞)} = 0. In the case when the input is also i.i.d., that is λi = λ ∀ i, then the
stability condition can be reduced to:

β <
1

λ(L2 + 1)
. [2.40]

2.2.2.2. LMS steady-state revisited

Using the MSWD recursion given by [2.34] in the limit as k approaches infinity
results in the relation:

E
�||ż(∞)||2� = β2σ2

vλ
T (I− F)−11 =

βσ2
v

3L
j=1

1
1−βλj

2− β
3L

j=1
λj

1−βλj

. [2.41]

This implies the MSE in steady-state is given by:

J(∞) = σ2
v +

βσ2
v

3L
j=1

λj

1−βλj

2− β
3L

j=1
λj

1−βλj

[2.42]

and the misadjustment is:

M =
β
3L

j=1
λj

1−βλj

2− β
3L

j=1
λj

1−βλj

. [2.43]

2.3. Performance of statistical LMS theory

We now examine the performance of the statistical LMS theory developed in
[HAY 02] and [SAY 03]. In Figures 2.1 and 2.2, the convergence curve of the LMS
algorithm obtained by Monte Carlo simulation is compared to the convergence curve
derived from the statistical LMS theory presented in [HAY 02] and [SAY 03]. In

www.it-ebooks.info

http://www.it-ebooks.info/

LMS Analysis Techniques 25

Figure 2.1, β = 0.0005, while in Figure 2.2 β = 0.0001. In both cases, the input
signal is white and has power σ2

x = 1, the noise has power σ2
v = 10−4 and the sparse

impulse response depicted in Figure 1.2b was employed. A total of 10 Monte Carlo
trials were averaged together to produce the simulation curve. For large values of β
the independent input theory agrees more with the simulation than the small step-size
theory. For smaller values of β both theories agree well with the simulation.

0 1 2 3 4 5 6 7 8 9
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
LEARNING CURVE COMPARISON

ITERATIONS

dB

β = 0.0005
σx
2 = 1
σv
2 = 0.0001

Random Seed = 50
Monte Carlo = 10

LMS Ensemble Average
LMS Theory (Constant Coefficients)
LMS Theory (Stochastic Coefficients)

Figure 2.1. Convergence analysis of LMS algorithm (β = 0.0005)

In Figure 2.3, the steady-state MSE using the small step-size theory and the
independent input theory are compared to the simulated steady-state MSE as a
function of β. The vertical line represents the cutoff value of β given in [2.40], which
the LMS algorithm will still converge. For small values of β the steady-state value
generated by both the small step-size theory and the independent input theory match
the simulated steady-state MSE. As β increases, independent input theory matches
the simulation much better than the small step-size theory. Finally, the LMS
algorithm remains stable for values of β less than the theorized stability limit.

www.it-ebooks.info

http://www.it-ebooks.info/

26 PtNLMS Algorithms

0 1 2 3 4 5 6 7 8 9
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
LEARNING CURVE COMPARISON

ITERATIONS

dB

β = 0.0001
σx
2 = 1
σv
2 = 0.0001

Random Seed = 50
Monte Carlo = 10

LMS Ensemble Average
LMS Theory (Constant Coefficients)
LMS Theory (Stochastic Coefficients)

Figure 2.2. Convergence analysis of LMS algorithm (β = 0.0001)

1 2 3 4 5 6 7 8 9 10

x 10
−3

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

STEADY−STATE MSE VS. β

β

d
B

σ
x

2
= 1

σ
v

2
= 0.0001

Random Seed = 50
Monte Carlo = 10

LMS Ensemble Average

LMS Theory (Constant Coeff.)

LMS Theory (Stochastic Coeff.)

Theorized stable β cutoff

LMS Theory (Constant Coeff.)

LMS Ensemble Average

LMS Theory
(Stochastic Coeff.)

Figure 2.3. Steady-state MSE vs. β

www.it-ebooks.info

http://www.it-ebooks.info/

LMS Analysis Techniques 27

2.4. Summary

This chapter presented a review of LMS analysis techniques used to predict and
measure the performance of the LMS algorithm. Two analysis techniques were
employed to analyze the LMS algorithm. The first LMS analysis technique reviewed
in this chapter relied on the small adaptation step-size assumption. This assumption
results in a recursion for the weight deviation vector, which has constant coefficients.
The second LMS analysis technique reviewed in this chapter assumed that the input
signal is an independent Gaussian vector random process that is also independent of
the measurement noise. In this case, the recursion for the weight deviation vector is
an equation with random coefficients.

In addition, the analysis performed under both sets of assumptions examined the
LMS algorithms’ performance in the transient and steady-state regimes of
convergence. The transient regime analysis developed expressions for the MWD,
MSWD and MSE. The steady-state analysis of the LMS examined the MSE and
misalignment. Finally, simulations were used to compare the performance of the
LMS algorithm to the theory developed in the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

3

PtNLMS Analysis Techniques

In this chapter, we analyze the transient and steady-state properties of two PtNLMS algorithms
for the white input. One initial goal of our research was to analyze the PNLMS algorithm in both
the steady-state and transient regimes. Currently, an analytical model to describe the transient
and steady-state properties of the PNLMS algorithm does not exist [SON 06]. In the process of
analyzing the PNLMS algorithm, we also examined a simplified version of the algorithm named the
simplified PNLMS. The simplified algorithm served the purposes of testing the validity of certain
assumptions employed and easing the analysis.

In addition, in this chapter, we will present analysis with a diverse number of assumptions being
applied. Removing assumptions renders the analysis mathematically more difficult in exchange
for obtaining more accurate modeling. We will point out the implications of assumptions as we
proceed.

This chapter is organized as follows. First, a general approach will be described and then the
simplified PNLMS algorithm will be analyzed, followed by the analysis of the PNLMS algorithm.
As we proceed, some results in each section can be applied to later algorithms. These results will
be pointed out as needed.

3.1. Transient analysis of PtNLMS algorithm for white input

In this section, the theory for analyzing the transient regime of the PtNLMS is
presented. This analysis involves generating deterministic recursions for the MWD,
MSWD, and MSE as a function time, so that these quantities can be evaluated at any
given time.

www.it-ebooks.info

http://www.it-ebooks.info/

30 PtNLMS Algorithms

3.1.1. Link between MSWD and MSE

In addition to assumptions 2.1 and 2.2, we introduce the following assumption:

ASSUMPTION 3.1.– The input signal x(k) is a stationary white Gaussian random
process with zero-mean and variance σ2

x.

This implies that the covariance matrix, R, is a diagonal matrix with [R]ii = σ2
x

for all i. The more general case of a colored input signal can be transformed into a
system with a diagonal covariance matrix through a coordinate change as shown in
sections 2.1.2.1.1 and 2.2.2.1.2, and the results presented here can be extended to this
system. However, it should be noted that the input signal to the transformed system is
not necessarily i.i.d. and care should be taken when applying the presented results.

In the case of zero-mean white stationary input, [2.19] can be written as:

J(k) ≈ σ2
v + σ2

x

L2
i=1

E
�
z2i (k)

�
. [3.1]

Hence, in order to calculate the MSE, we need to find the expected value of the
square WDs z2i (k).

3.1.2. Recursive calculation of the MWD and MSWD for PtNLMS algorithms

At this stage, we calculate the recursive forms of the MWD and the MSWD for an
arbitrary PtNLMS algorithm. We can represent the WD at time k + 1 in terms of the
prior WD at time k using the recursion for the estimated optimal coefficient vector.
We assume that the input vector, x(k), contains input values in the delay line, that is
xi(k) = x(k − i+ 1), for i = 1, 2, . . . , L.

Using the time-index dropping notation, the WD recursion for any PtNLMS
algorithm in component-wise form is given by:

z+i = zi −
βgixi

3L
j=1 xjzj3L

j=1 x
2
jgj + δ

− βgixiv3L
j=1 x

2
jgj + δ

. [3.2]

The component-wise form of the square of the WD is given by:

(z+i)
2 = z2i − 2βgixi

3L
j=1xjzjzi3L

j=1 x
2
jgj + δ

− 2βgixivzi3L
j=1 x

2
jgj + δ

[3.3]

+
β2g2i x

2
i

3L
j=1

3L
m=1 xjxmzjzm

(
3L

j=1 x
2
jgj + δ)2

+
β2g2i x

2
i v

2

(
3L

j=1 x
2
jgj + δ)2

+
2β2g2i x

2
i

3L
j=1 xjzjv

(
3L

j=1 x
2
jgj + δ)2

.

www.it-ebooks.info

http://www.it-ebooks.info/

PtNLMS Analysis Techniques 31

At this point, equations [3.2] and [3.3] are general to all PtNLMS algorithms.

3.1.2.1. MWD calculation
The MWD can be found recursively from the prior time step by:

E
�
z+i

�
=E {zi} − βE

gi

L2
j=1

"
E

�
xixj3L

j=1 gjx
2
j + δ

4444z

zj

(
=E {zi} − E

�
β
(0)
i gizi

	
, [3.4]

where

β
(0)
i = E

�
β

x2
i3L

j=1 gjx
2
j + δ

4444z

and it can be calculated approximately as:

β
(0)
i ≈ β

gi

�
1− b

0
π

2σ2
x

e
b2

2σ2
x erfc

b/
2σ2

x

&�
, [3.5]

where b2 = σ2
x(L − gi)/gi as shown in section A1.1. Note that the conditional

expectation in [3.4] is zero when i �= j, that is

E

�
xixj3L

j=1 gjx
2
j + δ

4444z

= 0, ∀ i �= j,

since the probability of

|xixj |3L
j=1 gjx

2
j + δ

and the probability of

−|xixj |3L
j=1 gjx

2
j + δ

are same. We can calculate the term E
�
giziβ

(0)
i

	
explicitly by making the

assumption that the variances of zi are small, such that when we calculate the term
β
(0)
i , we can replace zi with their means and have

β
(0)
i ≈ β

(0)
i |z=E{z} = β̂

(0)
i . [3.6]

Now we can rewrite

E
�
giziβ

(0)
i

	
≈ E {gizi} β̂(0)

i . [3.7]

www.it-ebooks.info

http://www.it-ebooks.info/

32 PtNLMS Algorithms

3.1.2.2. MSWD calculation
Next, we calculate the expectation of the square WD:

E
�
(z+i)

2
�
=E

�
z2i
�− 2βE

gizi

L2
j=1

E

�
xixj3L

j=1 gjx
2
j + δ

4444z

zj


+ β2E

g2i

L2
j=1

E

�
x2
ix

2
j

(
3L

j=1 gjx
2
j + δ)2

4444z

z2j


+ β2σ2

vE

�
g2iE

�
x2
i

(
3L

j=1 gjx
2
j + δ)2

4444z

=E
�
z2i
�− 2E

�
giz

2
i β

(0)
i

	
+ E

g2i

L2
j=1

β
(1)
i,j z

2
j


+ σ2

vE
�
g2i β

(2)
i

	
, [3.8]

where

β
(1)
i,j = E

�
β2x2

ix
2
j

(
3L

j=1 gjx
2
j + δ)2

4444z

and

β
(2)
i = E

�
β2x2

i

(
3L

j=1 gjx
2
j + δ)2

4444z

.

It can be derived that β
(1)
i,j is approximately β

(0)
i β

(0)
j for i �= j as shown in

appendix A1.2. The approximate calculation for β(2)
i can also be done (see section

A1.3) and is given by:

β
(2)
i ≈ β2

2g2i

�0
π

2σ2
x

e
b2

2σ2
x erfc

b/
2σ2

x

&"
1

b
+

b

σ2
x

(
− 1

σ2
x

�
. [3.9]

The expectations involving the conditional expectations can be done similarly, as
in the case of β(0)

i , see [3.6] and [3.7].

At this point, in order to go further, we need to calculate terms such as E {gizi},
E
�
giz

2
i

�
, E

�
g2i z

2
j

�
and E

�
g2i
�

. Since these terms involve the gain function gi, the
specific algorithm being used needs to be known to perform the expectation. We will
delay this analysis for the time being and focus on steady-state next.

www.it-ebooks.info

http://www.it-ebooks.info/

PtNLMS Analysis Techniques 33

3.2. Steady-state analysis of PtNLMS algorithm: bias and MSWD calculation

The steady-state MWD and MSWD for a PtNLMS algorithm can be calculated by
setting

E
�
z+i

�
= E {zi}

and

E
�
(z+i)

2
�
= E

�
z2i
�
,

respectively. The following assumption is also employed.

ASSUMPTION 3.2.– The denominator term in [3.2] and [3.3],
3L

j=1 x
2
jgj + δ, is

assumed to be constant and equal to E{3L
j=1 x

2
jgj + δ} = Lσ2

x + δ.

For L >>
-
2
3L

i=1 g
2
i , the standard deviation of the term

3L
j=1 x

2
jgj + δ

becomes much smaller than the expected value [DOR 06]. Hence, we say that the
denominator term is approximately constant. This condition is satisfied for large
values of L and g that have at least several tens of significant entries.

Using recursions [3.4] and [3.8] for the MWD and MSWD, respectively, and
assumption 3.2, yields in the steady-state regime:

E {gizi} = 0 [3.10]

0 = −2E
�
giz

2
i

�
+ β0E

g2i (2z
2
i +

L2
j=1

z2j)

+ β0
σ2
v

σ2
x

E
�
g2i
�
, [3.11]

where

β0 =
βσ2

x

σ2
xL+ δ

and the following substitutions have been made:

β̂
(0)
i ↔ β0 [3.12]

β̂
(1)
i,i ↔ 3β2

0

β̂
(1)
i,j ↔ β2

0 , i �= j

β̂
(2)
i ↔ β2

0

σ2
x

.

www.it-ebooks.info

http://www.it-ebooks.info/

34 PtNLMS Algorithms

The analysis that follows could be performed also by using β̂
(0)
i , β̂(1)

i,j and β̂
(2)
i .

To calculate the expectations in these expressions, we assume that the gain can be
expanded in a Taylor series about the zero WD as:

gi(z) ≈ gi(0) +

L2
j=1

�gij(0)zj ,

where �gij(·) is the gradient of the ith gain with respect to WD zj . Next, we assume
that only �gii are significantly different from zero and �gij ≈ 0 if i �= j. This
assumption was based on calculating the gradient for numerous algorithms and then
recognizing that the off-diagonal terms of the gradient matrix �G, [�G]ij = �gij ,
were much smaller than the diagonal terms. Simulation results depicting the gradient
will be presented in following sections when discussing specific algorithms. Under
this assumption, we can express

E {gizi} ≈E {[gi(0) +�gii(0)zi]zi}
= gi(0)E {zi}+�gii(0)E

�
z2i
�
. [3.13]

This expression along with [3.10] implies that the steady-state bias can be related
to the steady-state MSWD in the following manner:

E {zi} = −�gii(0)

gi(0)
E
�
z2i
�
.

A consequence of this relationship is that the steady-state bias only tends to zero
when there is no noise. In simulations of the PNLMS algorithm, we have seen that this
bias does exist. For example, the WD of a coefficient having the true value −0.14 is
shown in Figure 3.1. We can clearly see a bias exists. The parameters used to generate
this curve were σ2

x = 1, σ2
v = 10−2, and β = 1.8. The used echo path impulse

response is the same as the response in Figure 1.2(b).

To calculate the expectations in [3.11] we need the following expressions for
E
�
z3i
�

and E
�
z4i
�

:

E
�
z3i
�
= 3E {zi}E

�
z2i
�− 2E {zi}3

E
�
z4i
�
= 3E

�
z2i
�2 − 2E {zi}4 .

These expressions can be derived by assuming that in steady-state, zi = ui +
E {zi}, where ui is a zero-mean Gaussian random variable. These expressions use the
knowledge that a steady-state bias exists.

www.it-ebooks.info

http://www.it-ebooks.info/

PtNLMS Analysis Techniques 35

0 5000 10000 15000
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

k

z i(
k)

Bias of Coefficient i = 220

Figure 3.1. Simulated weight deviation of a coefficient with true value −0.14

Next, we calculate E
�
giz

2
i

�
, E

�
g2i z

2
j

�
and E

�
g2i
�

as:

E
�
giz

2
i

� ≈ gi(0)E
�
z2i
�− 3

�g2ii(0)

gi(0)
E
�
z2i
�2

+ 2
�g4ii(0)

g3i (0)
E
�
z2i
�3

[3.14]

E
�
g2i z

2
j

� ≈

��
g2i (0)E

�
z2j
�−�g2ii(0)E

�
z2i
�
E
�
z2j
�
, i �= j

g2i (0)E
�
z2i
�− 3�g2ii(0)E

�
z2i
�2

+4
�g4

ii(0)

g2
i
(0)

E
�
z2i
�3 − 2

�g6
ii(0)

g4
i
(0)

E
�
z2i
�4

, i = j

[3.15]

E
�
g2i
� ≈ g2i (0)−�g2ii(0)E

�
z2i
�
. [3.16]

If we place these expectations into [3.11] and ignore all terms involving E
�
z2i
�2

and E
�
z2i
�3

, this results in

αiE
�
z2i
�−

2
j �=i

E
�
z2j
� ≈ σ2

v

σ2
x

, i = 1, 2, . . . , L, [3.17]

where we define

αi =
2gi(0)− 3β0g

2
i (0)

β0 [g2i (0)−�g2ii(0)E {z2i }]
.

www.it-ebooks.info

http://www.it-ebooks.info/

36 PtNLMS Algorithms

We can solve the system of equations in [3.17] using the matrix inversion lemma
[WOO 50]. Equation [3.17] can be rewritten in the following form:"

Diag{α}+ I− 11T

(
E {z� z} =

σ2
v

σ2
x

1, [3.18]

where α = [α1, α2, . . . , αL]
T , 1 is the vector of 1s, and E {z� z} = [E

�
z21
�
,

E
�
z22
�
, . . . , E

�
z2L

�
]T . Defining A = Diag{α} + I and applying the matrix

inversion lemma to [3.18], yields:

E {z� z} =

"
A−1 +

A−111TA−1

1−3L
j=1

1
αj+1

(
σ2
v

σ2
x

1. [3.19]

Rewriting [3.19] in component-wise form and performing a few algebraic
manipulations, it is possible to show that the solution to [3.17] is given by:

E
�
z2i
�
=

1
1+αi

1−3L
j=1

1
1+αj

σ2
v

σ2
x

.

We make one final assumption that β0 is small and therefore we can rewrite αi as:

αi ≈ 2gi(0)

β0 [g2i (0)−�g2ii(0)E {z2i }]
.

Next, we can write

E
�
z2i
� ≈

β0

�
gi(0)− �gii(0)

gi(0)
E
�
z2i
��

2− β0L+ β0

3L
j=1

�gjj(0)
gj(0)

E
�
z2j
� σ2

v

σ2
x

.

If we let

c =
β0

2− β0L+ β0

3L
j=1

�gjj(0)
gj(0)

E
�
z2j
� σ2

v

σ2
x

, [3.20]

then we can express E
�
z2i
�

as:

E
�
z2i
� ≈ cgi(0)

1 + c
�g2

ii
(0)

gi(0)

. [3.21]

By replacing E
�
z2j
�

in [3.20] by [3.21] we can numerically solve for c and finally
get E

�
z2i
�

through [3.21].

www.it-ebooks.info

http://www.it-ebooks.info/

PtNLMS Analysis Techniques 37

3.3. Convergence analysis of the simplified PNLMS algorithm

The simplified PNLMS algorithm, as its name suggests, makes several
assumptions in order to simplify the PNLMS algorithm from the standpoint of trying
to analyze and predict its performance. The calculation of the gain for the simplified
PNLMS algorithm is given in Table 3.1. The simplified PNLMS algorithm avoids the
usage of the maximum function that is employed in the PNLMS, MPNLMS and
EPNLMS algorithms.

x(k) = [x(k), x(k − 1), . . . , x(k − L+ 1)]T

ŷ(k) = xT (k)ŵ(k)
e(k) = d(k)− ŷ(k)
F [|ŵl(k)|, k] = ρ+ |ŵl(k)|
gl(k) = F [|ŵl(k)|,k]

1
L

3L

i=1
F [|ŵi(k)|,k]

G(k) = Diag{g1(k), . . . , gL(k)}
ŵ(k + 1) = ŵ(k) + βG(k)x(k)e(k)

xT (k)G(k)x(k)+δ

Table 3.1. Simplified PNLMS algorithm

For comparison purposes, we plot the simplified PNLMS algorithm learning curve
performance versus the PNLMS algorithm learning curve performance in Figure 3.2.
The following parameters were used in these simulations: σ2

x = 1, σ2
v = 10−4, ρ =

0.01, δp = 0.01, δ = 10−4, L = 512 and β = 0.1 as well as the impulse response
shown in Figure 1.2(b). The input signal was white zero-mean Gaussian noise. In this
case, the simplified PNLMS has better MSE performance for a large portion of the
transient regime.

3.3.1. Transient theory and results

Now, as the gain function used by the simplified PNLMS algorithm has been
introduced, we can analyze the transient regime of the simplified PNLMS algorithm
by applying the theory developed in section 3.1.2.

3.3.1.1. Product of gain and WD expectations

To calculate the MWD and MSWD, we will find the following expectations:
E {gizi}, E

�
giz

2
i

�
, E

�
g2i z

2
i

�
and E

�
g2i
�

. Note that we assume
E
�
g2i z

2
j

� ≈ E
�
g2i
�
E
�
z2j
�

if i �= j, that is g2i and z2j are approximately
uncorrelated. We begin by assuming that the ith component of the WD at time k has
a normal distribution with mean µi(k) and variance σ2

i (k), that is

zi(k) ∼ N �
µi(k), σ

2
i (k)

�
.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PtNLMS Analysis Techniques 39

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

COEFFICIENT VALUE

PD
F

ITERATION: k = 10

Data histogram
Gaussian PDF fit

a) Empirical and Gaussian PDFs for coefficient 20
at iteration k = 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

COEFFICIENT VALUE

PD
F

ITERATION: k = 100

Data histogram
Gaussian PDF fit

b) Empirical and Gaussian PDFs for coefficient 20
at iteration k = 100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

COEFFICIENT VALUE

PD
F

ITERATION: k = 400

Data histogram
Gaussian PDF fit

c) Empirical and Gaussian PDFs for coefficient 20
at iteration k = 400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

COEFFICIENT VALUE

PD
F

ITERATION: k = 2952

Data histogram
Gaussian PDF fit

d) Empirical and Gaussian PDFs for coefficient 20
at iteration k = 2, 952

Figure 3.3. Histograms and Gaussian PDF fits for coefficient 20 at iterations
k = 10, 100, 400 and 2,952 using the unit sample impulse response and

simplified PNLMS algorithm

Next, we plot the MSE versus iteration in Figure 3.5. This is to show that the
steady-state has been reached. As a final test of Gaussianity, we have performed
Lilliefors test [CON 80] and plotted the results in Figures 3.6 and 3.7 for coefficient
20 and 1, respectively. The Lilliefors test is a variant of the Kolmogorov–Smirnov
test. The Kolmogorov–Smirnov statistic provides a means of testing whether a set of
observations comes from a completely specified continuous distribution, however if
one or more of the distribution parameters are estimated from the data, the
Kolmogorov–Smirnov test is no longer valid. The Lilliefors test provides a means of
determining whether a set of observations comes from a normal distribution when the
mean and variance are unknown and must be estimated from the data [LIL 67]. In
these figures, we have plotted three curves versus time. The first curve being the
output of the Lilliefors test where 1 indicates Gaussianity has been rejected with a
5% significance level and 0 indicates Gaussianity has not been rejected. Note that

www.it-ebooks.info

http://www.it-ebooks.info/

40 PtNLMS Algorithms

just because the Lilliefors test has not rejected the hypothesis of Gaussianity, this
does not guarantee the distribution is Gaussian. The second curve is the Lilliefors test
statistic and the last curve is the Lilliefors test critical value. The Lilliefors test
statistic needs to be less than the critical value to avoid rejection. As can be seen in
these two figures, as the algorithm approaches steady-state, Gaussianity is no longer
rejected. In the transient regime, Gaussianity is rejected implying that our Gaussian
assumption of the WD is closer to reality as the algorithm proceeds with time.

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

500

1000

1500

COEFFICIENT VALUE

PD
F

ITERATION: k = 10

Data histogram
Gaussian PDF fit

a) Empirical and Gaussian PDFs for coefficient 1 at
iteration k = 10

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

500

1000

1500

COEFFICIENT VALUE

PD
F

ITERATION: k = 100

Data histogram
Gaussian PDF fit

b) Empirical and Gaussian PDFs for coefficient 1 at
iteration k = 100

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

500

1000

1500

COEFFICIENT VALUE

PD
F

ITERATION: k = 400

Data histogram
Gaussian PDF fit

c) Empirical and Gaussian PDFs for coefficient 1 at
iteration k = 400

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

500

1000

1500

COEFFICIENT VALUE

PD
F

ITERATION: k = 2952

Data histogram
Gaussian PDF fit

d) Empirical and Gaussian PDFs for coefficient 1 at
iteration k = 2,952

Figure 3.4. Histograms and Gaussian PDF fits for coefficient 1 at iterations
k = 10, 100, 400 and 2,952 using the unit sample impulse response and

simplified PNLMS algorithm

With the assumption that the WDs are Gaussian random variables, we are now in
a position to calculate the expected value of various gain and WD products. One final
assumption is that the expectation of the ratio is equal to the ratio of expectations. For
example,

E {gi} = E

�
(ρ+ |ŵi|)

1
L

3L
j=1(ρ+ |ŵj |)

≈ E {(ρ+ |ŵi|)}

E
�

1
L

3L
j=1(ρ+ |ŵj |)

	 . [3.22]

www.it-ebooks.info

http://www.it-ebooks.info/

PtNLMS Analysis Techniques 41

0 500 1000 1500 2000 2500 3000
−40

−35

−30

−25

−20

−15

−10

−5

0

5

ITERATIONS

dB

Figure 3.5. Simplified PNLMS MSE

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ITERATIONS

Lilliefors Test Result
Lilliefors Test Statistic
Critical Value

Steady−state Reached

Figure 3.6. Result of Lilliefors test for coefficient 20

www.it-ebooks.info

http://www.it-ebooks.info/

42 PtNLMS Algorithms

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ITERATIONS

Lilliefors Test Result

Lilliefors Test Statistic

Critical Value

Steady−state Reached

Figure 3.7. Result of Lilliefors test for coefficient 1

After this assumption, what remains to be calculated is E {ρ+ |ŵi|},
E {(ρ+ |ŵi|)zi}, E{(ρ +|ŵi|)z2i }, E

�
(ρ+ |ŵi|)2z2i

�
and E

�
(ρ+ |ŵi|)2

�
. Each

of these expectations can be found. Now we show each expectation after applying the
assumption that the WD is a Gaussian random variable. For notational convenience,
we let µi = µ, wi = w, ŵi = ŵ, zi = z and σi = σ, so we can write

E {ρ+ |ŵ|}= ρ+
2√
2πσ2

�0
πσ2

2
(µ− w)erf

"
µ− w√
2σ2

(
+ σ2e−

(µ−w)2

2σ2

�

E {(ρ+ |ŵ|)z}= ρµ+
2√
2πσ2

�0
πσ2

2
(µ2 − µw + σ2)erf

"
µ− w√
2σ2

(

+ σ2µe−
(µ−w)2

2σ2

�

E
�
(ρ+ |ŵ|)z2�= ρ(µ2 + σ2) +

2√
2πσ2

�0
πσ2

2
(µ3 − µ2w + 3µσ2 − σ2w)

× erf
"
µ− w√
2σ2

(
+ σ2(µ2 + 2σ2)e−

(µ−w)2

2σ2

�

E
�
(ρ+ |ŵ|)2�= ρ2 +

4ρ√
2πσ2

�0
πσ2

2
(µ− w)erf

"
µ− w√
2σ2

(

+ σ2e−
(µ−w)2

2σ2

�
+ w2 − 2wµ+ σ2 + µ2

www.it-ebooks.info

http://www.it-ebooks.info/

PtNLMS Analysis Techniques 43

E
�
(ρ+ |ŵ|)2z2�= ρ2(µ2 + σ2) +

4ρ√
2πσ2

�0
πσ2

2
(µ3 − µ2w + 3µσ2 − σ2w)

× erf
"
µ− w√
2σ2

(
+ σ2(µ2 + 2σ2)e−

(µ−w)2

2σ2

�
+w2(µ2 + σ2)− 2wµ(µ2 + 3σ2) + µ4 + 6µ2σ2 + 3σ4. [3.23]

This approach has been named the non-separable approach. The non-separable
approach uses the terms β

(0)
i , β

(1)
i,j and β

(2)
i directly and does not use the

approximations given in [3.12].

3.3.1.2. Separability of gain and WD

For comparison purposes, we examine the implications of assuming the WD and
gain are independent. The theory that results from this assumption is referred to as
the separable approach theory. With separability, assumed expectations of the form
E {h1(gi)h2(zj)} are equal to E {h1(gi)}E {h2(zj)} for all i and j and arbitrary
functions h1 and h2. The argument for this assumption is that gi is a function of
ŵi = wi − zi and it is dominated by wi when zi is small. In addition, the assumption
is made that E

�
g2i
� ≈ E {gi}2. This assumption is reasonable when zi is small.

The separable approach uses the approximations given in [3.12] in place of β(0)
i , β(1)

i,j

and β
(2)
i .

In the separable case, the MWD and MSWD are given by (after also assuming3L
j=1 gjx

2
j + δ = Lσ2

x + δ):

E
�
z+i

�
=E {zi} − βoE {gi}E {zi} [3.24]

E
�
(z+i)

2
�
=E

�
z2i
�− 2βoE {gi}E

�
z2i
�

+β2
o (E {gi})2

" L2
j=1

E
�
z2j
�
+ 2E

�
z2i
�(

+
β2
oσ

2
v

σ2
x

(E {gi})2, [3.25]

respectively. At this point what remains to be found is E {gi}. This term can be
expressed as:

E {gi} = E

�
Fi

1
L

3
j Fj

≈ ρ+ E {|ŵi|}

1
L

3
j(ρ+ E {|ŵj |})

. [3.26]

The recursions in [3.24] and [3.25] are initialized by setting E {zi(0)} = wi and
E
�
z2i (0)

�
= w2

i .

www.it-ebooks.info

http://www.it-ebooks.info/

44 PtNLMS Algorithms

3.3.1.3. Transient analysis results

In this section, we compare the learning curve generated by simulation versus the
theory developed in this section for the simplified PNLMS algorithm. In the
simulations and figures that are shown, the following parameters have been chosen:
L = 512, σ2

x = 1 σ2
v = 10−4, δ = 10−4, ρ = 0.01, and the impulse response used is

shown in Figure 1.2(b). We have developed a metric to quantitatively measure how
well the theory fits the ensemble averaged results. The metric is given by:

C =

3
k |E

�
e2T (k)

�− E
�
e2MC(k)

� |3
k E {e2MC(k)}

,

where E
�
e2T (k)

�
is the MSE [3.1] generated by the theory at time k and E

�
e2MC(k)

�
is the squared output error generated by the ensemble average at time k. The term in
the denominator is used in an attempt to make the metric independent of the input
signal power.

We compare the performance of the separable approach theory versus the
non-separable approach theory. The performance of the separable approach theory is
shown in Figures 3.8 and 3.9 using a log and linear scale, respectively. The linear
scale has been plotted to compare theory to simulation results during the transient
regime of convergence. The result when using the non-separable approach theory is
shown in Figures 3.10 and 3.11 using a log and linear scale, respectively. The
non-separable approach theory performs slightly better than the separable approach
theory.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 104

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
ENSEMBLE−AVERAGED SQUARED ERROR VS. THEORY MSE

ITERATIONS

dB

β = 0.1
ρ = 0.01
δ= 0.0001
δp = 0.01
C = 0.19571

ENSEMBLE AVERAGED
THEORY

Figure 3.8. Learning curve of simplified PNLMS algorithm using separable
approach (log scale)

www.it-ebooks.info

http://www.it-ebooks.info/

PtNLMS Analysis Techniques 45

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5
ENSEMBLE−AVERAGED SQUARED ERROR VS. THEORY MSE

ITERATIONS

Sq
ua
re
d
Er
ro
r

β = 0.1
ρ = 0.01
δ= 0.0001
δp = 0.01
C = 0.19571

ENSEMBLE AVERAGED
THEORY

Figure 3.9. Learning curve of simplified PNLMS algorithm using separable
approach (linear scale)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 104

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
ENSEMBLE−AVERAGED SQUARED ERROR VS. THEORY MSE

ITERATIONS

dB

β = 0.1
ρ = 0.01
δ= 0.0001
δp = 0.01
C = 0.11482

ENSEMBLE AVERAGED SIMPLIFIED PNLMS
SIMPLIFIED PNLMS THEORY

Figure 3.10. Learning curve of simplified PNLMS algorithm using
non-separable approach (log scale)

www.it-ebooks.info

http://www.it-ebooks.info/

46 PtNLMS Algorithms

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5
ENSEMBLE−AVERAGED SQUARED ERROR VS. THEORY MSE

ITERATIONS

Sq
ua
re
d
Er
ro
r

β = 0.1
ρ = 0.01
δ= 0.0001
δp = 0.01
C = 0.11482

ENSEMBLE AVERAGED SIMPLIFIED PNLMS
SIMPLIFIED PNLMS THEORY

Figure 3.11. Learning curve of simplified PNLMS algorithm using
non-separable approach (linear scale)

3.3.2. Steady-state theory and results

3.3.2.1. Calculation of gradient terms

All that remains to be calculated is the gradient of the gain �gij(0) for different
values of i and j. To begin, we represent the gain as:

gi(z) =
ρ+ |wi − zi|

D
,

where

D = ρL+
L2

j=1

|wj − zj |.

Taking the derivative of the gain with respect to each component of the WD it can
be shown that the gradient is given by:

∂gi
∂zk

=

�
ρ+|wi−zi|

D2 sgn(wk − zk), i �= k
ρ+|wi−zi|

D2 sgn(wi − zi)− sgn(wi−zi)
D , i = k

[3.27]

where the sign operator is defined as sgn(x) = 1 if x > 0, sgn(x) = 0 if x = 0, and
sgn(x) = −1 if x < 0.

www.it-ebooks.info

http://www.it-ebooks.info/

PtNLMS Analysis Techniques 47

In Figure 3.12, we plot the |�gik(0)| for k = 201, 202, . . . , 273, i = 201,
202, . . . , 273. The echo path impulse response is the response given in Figure 1.2(b)
and ρ = 0.01. The chosen values for i and k are in the support of the impulse
response. As seen in the figure, the terms with i = k are the most significant. Note
that all combinations of (i, k) not displayed here resulted in a gradient with value
zero.

200

220

240

260

280

200

220

240

260

280
0

0.02

0.04

0.06

0.08

0.1

0.12

k

|∇ g
ik

(0)|

i

Figure 3.12. Absolute value of gradient

3.3.2.2. steady-state results

In Figure 3.13, we plot the simulated and theoretical steady-state MSE for various
values of β. These curves were generated with an SNR set to 20 dB (i.e. σ2

v = 10−2). A
total of 100 Monte Carlo trials were used to generate the simulated results. In addition,
ρ = 0.01 and δ = 0.0001. The theory performs well for values of β < 1.

3.4. Convergence analysis of the PNLMS algorithm

We now attempt to extend the analysis to the PNLMS algorithm. The main
difference between the simplified PNLMS algorithm and PNLMS algorithm is the
usage of the max function when calculating the time-varying update gain matrix by
the PNLMS algorithm. The PNLMS algorithm is given in Table 1.1 and [1.1].

www.it-ebooks.info

http://www.it-ebooks.info/

48 PtNLMS Algorithms

0 0.5 1 1.5 2
−70

−60

−50

−40

−30

−20

−10

0

10
STEADY STATE MSE: SIMULATIONS VS. THEORY

β

dB

σx
2 = 1
σn
2 = 0.01
ρ = 0.01
δ= 0.0001
Monte Carlo = 100

Simulated Steady−state MSE
Theory Steady−state MSE

Figure 3.13. Theoretical and simulated steady-state MSE as a function of β

3.4.1. Transient theory and results

3.4.1.1. Recursive calculation of the MWD and MSWD

We start by placing the expression for the gain of the PNLMS algorithm into the
recursions developed for the MWD [3.4] and MSWD [3.8], which are general to all
PtNLMS algorithms. At this point, we need to find the following expectations:
E {gizi}, E

�
giz

2
i

�
, E

�
g2i z

2
i

�
and E

�
g2i
�

. Note that we assume, as before,
E
�
g2i z

2
j

�
= E

�
g2i
�
E
�
z2j
�

if i �= j. As we did when analyzing the simplified
PNLMS, we assume that the expectation of the ratio is equal to the ratio of
expectations, for example

E {gi} = E

�
max{γmin, |ŵi|}

1
L

3L
j=1 max{γmin, |ŵj |}

≈ E {max{γmin, |ŵi|}}

E
�

1
L

3L
j=1 max{γmin, |ŵj |}

	 .[3.28]

After this assumption, the following terms will be calculated:

E
�

max{γmin, |ŵi|}
�

E
�

max{γmin, |ŵi|}zi
�

E
�

max{γmin, |ŵi|}z2i
�

E
�

max2{γmin, |ŵi|}z2i
�

E
�

max2{γmin, |ŵi|}
�
.

www.it-ebooks.info

http://www.it-ebooks.info/

PtNLMS Analysis Techniques 49

Each of these expectations can be found by assuming that the WD is Gaussian with
distribution zi ∼ N �

µi, σ
2
i

�
. As an example, we will show the calculation of the term

E {max{γmin, |ŵi|}} in detail and list the others.

We begin by recognizing that ŵi = wi − zi, which implies that ŵi is Gaussian
with distribution ŵi ∼ N �

mi, σ
2
i

�
where mi = wi − µi. Then after dropping the

subscripts for notational convenience and writing mi = m, σi = σ, wi = w, ŵi = ŵ,
zi = z and γmin = a. It is assumed that max{w} ≡ |w|max is much larger than δp
and

a ≈ ρmax{δp, |w|max} = ρ|w|max.

The above approximation is valid after a short initial adaptation period. Next, we
can write

E {max{a, |ŵ|}}=
� a

−a

a√
2πσ2

e−
(ŵ−m)2

2σ2 dx+

� ∞

a

ŵ√
2πσ2

e−
(ŵ−m)2

2σ2 dx

−
� −a

−∞

ŵ√
2πσ2

e−
(ŵ−m)2

2σ2 dx. [3.29]

These integrals are well known and can be looked up in numerous tables.
Following the same strategy, we can calculate all of the desired expectations. A list of
the required expectations is shown below:

E {max{a, |ŵ|}}=
0

σ2

2π

�
e−

(a+m)2

2σ2 + e−
(a−m)2

2σ2

�
+

a+m

2
erf

"
a+m√
2σ2

(
+

a−m

2
erf

"
a−m√
2σ2

(
[3.30]

E {max{a, |ŵ|}z}=
0

σ2

2π
(w −m)

�
e−

(a+m)2

2σ2 + e−
(a−m)2

2σ2

�
+

w(a+m)− am− σ2 −m2

2
erf

"
a+m√
2σ2

(
+

w(a−m)− am+ σ2 +m2

2
erf

"
a−m√
2σ2

(
[3.31]

www.it-ebooks.info

http://www.it-ebooks.info/

50 PtNLMS Algorithms

E
�

max{a, |ŵ|}z2�
=

0
σ2

2π
(w2 − 2wm+m2 + 2σ2)

�
e−

(a+m)2

2σ2 + e−
(a−m)2

2σ2

�
+
w2(a+m)− 2w(am+ σ2 +m2) + aσ2 + am2 + 3σ2m+m3

2
erf

"
a+m√
2σ2

(
+
w2(a−m)− 2w(am− σ2 −m2) + aσ2 + am2 − 3σ2m−m3

2
erf

"
a−m√
2σ2

(
[3.32]

E
�

max2{a, |ŵ|}z2� =0
σ2

2π

�
w2(a−m)− 2w(−m2 − 2σ2 + am)

+am2 − 5σ2m+ 3σ2a−m3
�
e−

(a+m)2

2σ2

+

0
σ2

2π

�
w2(a+m)− 2w(m2 + 2σ2 + am)

+am2 + 5σ2m+ 3σ2a+m3
�
e−

(a−m)2

2σ2

+
1

2

�
w2(a2 − σ2 −m2)− 2w(−3σ2m−m3 + a2m) + a2(σ2 +m2)

−3σ4 − 6σ2m2 −m4
�

erf
"
a+m√
2σ2

(
+
1

2

�
w2(a2 − σ2 −m2)− 2w(−3σ2m−m3 + a2m) + a2(σ2 +m2)

−3σ4 − 6σ2m2 −m4
�

erf
"
a−m√
2σ2

(
+w2(σ2 +m2)− 2w(3mσ2 +m3) + 3σ4 + 6σ2m2 +m4 [3.33]

E
�

max2{a, |ŵ|}� =

0
σ2

2π
[a−m] e−

(a+m)2

2σ2 +

0
σ2

2π
[a+m] e−

(a−m)2

2σ2

+
a2 − σ2 −m2

2

�
erf

"
a+m√
2σ2

(
+ erf

"
a−m√
2σ2

(�
+ σ2 +m2. [3.34]

www.it-ebooks.info

http://www.it-ebooks.info/

PtNLMS Analysis Techniques 51

Placing these expressions into [3.4] and [3.8] allows us to recursively estimate the
MWD and MSWD at all times.

3.4.1.2. Transient analysis results

Now we compare the theoretical expectations to actual results from Monte Carlo
simulations. In the simulations and figures that are shown, the following parameters
have been chosen unless specified otherwise: L = 512, σ2

x = 1, σ2
v = 10−4,

ρ = 0.01 and δ = 10−4. In Figures 3.14 and 3.15, we plot the ensemble averaged
learning curve and the learning curve predicted by the theory for β = 0.1 using a log
and linear scale, respectively. Similarly, in Figures 3.16 and 3.17, we plot the
ensemble averaged learning curve and the learning curve predicted by the theory for
β = 1.0 using a log and linear scale, respectively. Both figures used the measured
echo path impulse response given in Figure 1.2(b). Note that the non-separable
approach was employed in these figures. The separable approach offered
significantly degraded performance when analyzing the PNLMS algorithm. The
quantitative measure C introduced in section 3.3.1.3 was used here to measure how
well the theory fits the ensemble averaged results. We see that for small values of β,
the theory matches the simulation quite well. As β is increased, the assumptions are
less applicable and the theoretical predictions are less reliable.

0 0.5 1 1.5 2 2.5 3 3.5
x 104

−60

−50

−40

−30

−20

−10

0
ENSEMBLE−AVERAGED SQUARED ERROR VS. THEORY MSE

ITERATIONS

dB

β = 0.1
ρ = 0.01
δ= 0.0001
δp = 0.01
C = 0.17399

ENSEMBLE AVERAGED
THEORY

Figure 3.14. Theoretical and experimental learning curve of PNLMS
algorithm for β = 0.1 and a measured echo path impulse response (log scale)

www.it-ebooks.info

http://www.it-ebooks.info/

52 PtNLMS Algorithms

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5
ENSEMBLE−AVERAGED SQUARED ERROR VS. THEORY MSE

ITERATIONS

SQ
UA

RE
D
ER

RO
R

β = 0.1
ρ = 0.01
δ= 0.0001
δp = 0.01
C = 0.17584

ENSEMBLE AVERAGED
THEORY

Figure 3.15. Theoretical and experimental learning curve of PNLMS
algorithm for β = 0.1 and a measured echo path impulse response

(linear scale)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−60

−50

−40

−30

−20

−10

0
ENSEMBLE−AVERAGED SQUARED ERROR VS. THEORY MSE

ITERATIONS

dB

β = 1
ρ = 0.01
δ= 0.0001
δp = 0.01
C = 0.24834

ENSEMBLE AVERAGED
THEORY

Figure 3.16. Theoretical and experimental learning curve of PNLMS
algorithm for β = 1 and a measured echo path impulse response (log scale)

www.it-ebooks.info

http://www.it-ebooks.info/

PtNLMS Analysis Techniques 53

0 500 1000 1500 2000
0

0.5

1

1.5
ENSEMBLE−AVERAGED SQUARED ERROR VS. THEORY MSE

ITERATIONS

SQ
UA

RE
D
ER

RO
R

β = 1
ρ = 0.01
δ= 0.0001
δp = 0.01
C = 0.24834

ENSEMBLE AVERAGED
THEORY

Figure 3.17. Theoretical and experimental learning curve of PNLMS
algorithm for β = 1 and a measured echo path impulse response

(linear scale)

3.4.2. Steady-state theory and results

3.4.2.1. Calculation of gain gradient terms
All that remains to be calculated is the gradient of the gain �gik(0) for different

values of i and k. To begin, we represent the gain as:

gi(z) =
max{ρ|wM − zM |, |wi − zi|}

D
,

where

D =
2
j∈Da

|wj − zj |+ ρ|wM − zM ||Dc
a|.

The index M corresponds to the element of w with the largest magnitude. Da is a
set of active coefficient indices, i.e. the indices that satisfy |wj−zj | > ρ|wM−zM |. Dc

a

is the complement of Da and |Dc
a| is the number of elements in the set Dc

a (cardinality
of Dc

a). An example of a gradient term for i ∈ Da and k = i evaluated at z = 0 is
given by:

�gii(0) =
− |wi|

wi
D0 − |wi|
D2

0

,

where D0 = D|z=0.

www.it-ebooks.info

http://www.it-ebooks.info/

54 PtNLMS Algorithms

In Figure 3.18, we plot the |�gik(0)| for k = 201, 202, . . . , 273 and i = 201, 202,
. . . , 273. The echo path impulse response is the response given in Figure 1.2(b). As
seen in the figure, the terms with i = k are the most significant. In addition, all
combinations of (i, k) for which the gradient is not displayed result in gradient values
of zero.

200
220

240
260

280

200
220

240
260

280
0

20

40

60

80

k

|∇ gik(0)|

i

Figure 3.18. Absolute value of gradient

3.4.2.2. Algorithm steady-state results

In Figure 3.19, we plot the simulated and theoretical steady-state MSE for various
values of β. These curves were generated with an SNR set to 20 dB (i.e. σ2

v = 10−2).
A total of 20 Monte Carlo trials were used to generate the simulated results. The theory
performs well for values of β < 1.2.

3.5. Summary

This chapter extends the techniques used to analyze the LMS algorithm to the
PtNLMS algorithm. The analysis of the transient and steady-state regimes of
the PtNLMS algorithm requires calculating various expectations of the product of the
WD and the gain. In general, the gain can be a nonlinear function of the WD, which
makes the calculation of the expectation of the product of the WD and the gain
mathematically intractable. Because of this limitation, this chapter builds the
framework for analyzing an arbitrary PtNLMS algorithm and then focuses on a
thorough analysis of the simplified PNLMS and PNLMS algorithms.

www.it-ebooks.info

http://www.it-ebooks.info/

PtNLMS Analysis Techniques 55

0 0.5 1 1.5 2
−70

−60

−50

−40

−30

−20

−10

0

10
STEADY STATE MSE: SIMULATIONS VS. THEORY

β

dB

σx
2 = 1
σn
2 = 0.01
ρ = 0.01
δ= 0.0001
Random Seed = 50
Monte Carlo = 20

Simulated Steady State MSE
Theory Steady State MSE

Figure 3.19. Theoretical and simulated steady-state MSE as a function of β

The simplified PNLMS algorithm linearizes the calculation of the gain function
used in the PNLMS algorithm by replacing the max function used in the PNLMS
algorithm by a linear function of the magnitude of the estimated WD. The simplified
algorithm served the purposes of testing the validity of certain assumptions employed
and easing the analysis. Next, the PNLMS algorithm was analyzed. The analysis
presented in this chapter relied on a diverse number of assumptions being applied.
After removing some assumptions the analysis became mathematically more
difficult, but provided greater accuracy of modeling.

Finally, the theoretical expectations for transient and steady-state behavior of
MSE were compared to numerical simulations of the simplified PNLMS and PNLMS
algorithms. The simulations confirmed that the theory matches the algorithm
behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

4

Algorithms Designed Based on
Minimization of User-Defined Criteria

In this chapter, several new PtNLMS algorithms are presented. While each of these algorithms
uses diverse assumptions and have diverse forms, the commonality between these new
algorithms is the approach that was taken in their derivation. Specifically, all of the algorithms
presented in this chapter attempt to find an optimal gain such that a user-defined criterion is
minimized. First, we assume white input and derive two PtNLMS algorithms that use gain
allocation minimizing the MSE in the next iteration with respect to the current MSE. Next, again
for white input, we derive a PtNLMS algorithm based on minimization of the MSE modeled by
exponential functions. Then, we assume colored input and derive a PtNLMS algorithm by
minimizing the MSWD. For this algorithm, we give a suboptimal implementation that reduces
computational complexity.

4.1. PtNLMS algorithms with gain allocation motivated by MSE minimization
for white input

In the past, ad hoc methods have been used to choose gains in PtNLMS
algorithms without strong theoretical underpinnings. In this section, a theoretical
framework and motivation for adaptively choosing gains is presented, such that the
MSE will be minimized at any given time. Note that due to [3.1], minimizing the
MSE is reduced to minimization of the sum of the MSWDs. As a result of this
approach, a new optimal PtNLMS algorithm is introduced. A computationally
simplified version of the theoretical optimal algorithm is derived as well. Both of
these algorithms require knowledge of the MSWDs. Feasible implementations,
which estimate the MSWDs, are presented. The performance of these new feasible
algorithms is compared to the performance of standard adaptive algorithms, when
operating with sparse, non-sparse, and time-varying impulse responses, when the

www.it-ebooks.info

http://www.it-ebooks.info/

58 PtNLMS Algorithms

input signal is white. Specifically, we consider the transient and steady-state MSEs of
each algorithm.

4.1.1. Optimal gain calculation resulting from MMSE

In this section, we seek the optimal gain at each time step k. Our approach to this
problem is to minimize the MSE with respect to the gain under two constraints. The
two constraints that are to be satisfied are gi(k) ≥ 0 ∀ i, k and

3L
i=1 gi(k) = L ∀ k.

The considered criterion is the minimization of the MSE.

The recursions for the WD and the square of the WD are given by [3.2] and [3.3],
respectively.

In addition to assumptions 2.1, 2.2, 3.1 and 3.2 we use the following assumption:

ASSUMPTION 4.1.– The gain gi is a deterministic function of time.

This assumption facilitates analysis and provides an upper bound on the
performance of the algorithm.

Next, we use assumption 3.2 and define βa = β/(σ2
xL + δ). This allows us to

rewrite the WD recursion in [3.2] as:

z+i = zi − βagixi

L2
j=1

xjzj − βagixiv. [4.1]

Note this approximation has transformed the PtNLMS algorithm into a
proportionate-type least mean square (PtLMS) algorithm. This approximation will be
used again in Chapters 5 and 7. At this point, we attempt to find the optimal gain at
each time step k by optimizing our user-defined criterion with respect to the gain.

The criterion we try to minimize is the MSE at time k + 1. The MSE at time k is
given in [3.1]. Note that J(k) is the approximate MSE at instant k [HAY 02].

Now the expectations of the WD and square WD are given by:

E{z+i }=E {zi} − βaσ
2
xgiE {zi} [4.2]

E{z+2
i }=E

�
z2i
�− 2βaσ

2
xgiE

�
z2i
�

[4.3]

+ β2
aσ

4
xg

2
i

2E
�
z2i
�
+

L2
j=1

E
�
z2j
�+ β2

aσ
2
xσ

2
vg

2
i .

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 59

Note that [4.2] and [4.3] become [3.24] and [3.25] after replacing gi with E{gi}
and taking care that β0 = βaσ

2
x. We make the following definitions for notational

convenience:

ci = 2βaσ
2
xE

�
z2i
�

qi = 2β2
aσ

4
x

2E
�
z2i
�
+

L2
j=1

E
�
z2j
�
+

σ2
v

σ2
x

.

Next, we assume that E
�
z2i
�

are known, and we try to find the optimal gain by
minimizing J+ = σ2

v + σ2
x

3L
i=1 E

�
z+2
i

�
for all k, with respect to the gain and

impose the constraint
3L

j=1 gj = L. We can recast this problem as an optimization
problem in the form

min
g

J+ − σ2
v

σ2
x

−
L2

j=1

E
�
z2j
�
= −cTg +

1

2
gTQg,

such that gi ≥ 0 ∀ i and 1Tg = L, where g = [g1, g2, . . . , gL]
T , c = [c1, c2, . . . , cL]

T

and Q = Diag {q1, q2, . . . , qL}.

Next, for convenience, we make the substitution gi = s2i (si is real) and
incorporate the constraint into the minimization problem. This results in the
Lagrangian function

T (s, λ) = −
L2

i=1

cis
2
i +

1

2

L2
i=1

qis
4
i + λ(

L2
i=1

s2i − L). [4.4]

Taking the first derivative and setting it equal to zero yields three solutions, si = 0
and si = ±/

(ci − λ)/qi. If we examine the second derivative ∂2T/∂2si, we find that
the first solution results in a minimum if λ ≥ ci and the second and third solutions
result in a minimum if λ < ci, as shown in the following derivation.

4.1.1.1. Minima of Lagrangian [4.4]

The first and second derivatives of T (s, λ) are given by:

∂T

∂si
= 2si(−ci + λ+ qis

2
i)

∂2T

∂s2i
= 2(−ci + λ) + 6qis

2
i . [4.5]

www.it-ebooks.info

http://www.it-ebooks.info/

60 PtNLMS Algorithms

Setting the first derivative to zero and solving for si results in three solutions,
si = 0 and si = ±/

(ci − λ)/qi. However, recalling the original definition gi = s2i ,
the last two solutions give the same gain and have the same character with respect
to the sign of the second derivative. Hence, we condense the last two solutions into
si =

/
(ci − λ)/qi from this point forward. Now, if we substitute these solutions into

the second derivative, we have

∂2T

∂s2i
|si=0 = 2(λ− ci)

∂2T

∂s2i
|
si=

-
ci−λ

qi

= 4(ci − λ). [4.6]

We notice that the second derivative will be greater than zero when using the first
solution, si = 0, if λ > ci. While the second derivative will be greater than zero when
using the solution si =

/
(ci − λ)/qi, if λ < ci. Recall that the sign of the second

derivative determines whether the solution results in a maximum or a minimum. In our
case, we require the solution to be a minimum. Note that if using the second solution
and λ > ci, there is no solution for gi, since this would result in an imaginary value
for si, which is not allowed.

It turns out that the solution to this problem is of the “water-filling” [PAL 05]
variety. We find the constant λ according to the following procedure. First, we sort the
entries of c in ascending order to form a new vector such that c(1) < c(2) < . . . < c(L),
where c(j) is the jth entry of the new vector. We subsequently rearrange the elements
of Q to match the position of the original indices in the sorted c and to form a new
matrix whose diagonal elements are q(1), q(2), . . ., q(L). The optimal value of λ solves
the following equation:

L2
j=1

"
c(j) − λ

q(j)

(
+

= L [4.7]

where we define the operator (x)+ = x, if x ≥ 0, and (x)+ = 0, if x < 0.

In Figure 4.1(a), we depict how the optimal value λ can be chosen. On the abscissa
of the figure is candidate values of λ, while the ordinate axis corresponds to various
volumes of “water”. The curve depicted is a function of the c and q vectors. If we
trace down from the intersection of the volume L, we find the corresponding optimal
value λ. We will refer to this algorithm as the water-filling PtNLMS algorithm.

We illustrate this water-filling problem in Figure 4.1(b). We have a pitcher
containing a volume L of water. After pouring the contents of the pitcher into a
vessel with the profile shown in Figure 4.1(b), we want to know the difference of the

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

62 PtNLMS Algorithms

4.1.2. Water-filling algorithm simplifications

The water-filling algorithm can be simplified by approximating the term

qi = 2β2
aσ

4
x

2E
�
z2i
�
+

L2
j=1

E
�
z2j
�
+

σ2
v

σ2
x


≈ 2β2

aσ
4
x

 L2
j=1

E
�
z2j
�
+

σ2
v

σ2
x

 [4.9]

≈ 2β2
aσ

4
x

 L2
j=1

E
�
z2j
� . [4.10]

Approximation [4.9] assumes that the sum of all MSWDs is much larger than the
ith MSWD (which is reasonable for long adaptive filters where the error in one
coefficient is much less than the cumulative error in all other coefficients). Note this
approximation makes qi identical for all i. This eliminates the need to sort qi.
Approximation [4.10] assumes that the input signal power is much larger than the
noise power, and that σ2

v/σ
2
x � 3L

j=1 E
�
z2j
�

(which is true at least at the beginning
of adaptation).

As a final simplification, if we also assume that β = 1, then we can reduce the
water-filling algorithm to the following form:

gi =
E
�
z2i
�

1
L

3L
j=1 E

�
z2j
� . [4.11]

Here, we see that the gains are proportional to the MSWDs. We can estimate the
MSWDs using the methods discussed in section 4.1.3. This approach resembles the
gain given by the water-filling algorithm, with the benefit of less computational
complexity. We refer to this algorithm as the z2-proportionate algorithm. The
derivation of this simplification is given in the following.

4.1.2.1. Water-filling and z2-proportionate algorithm relationship

We will show that β = 1 implies λ = 0. Let us begin by applying simplifications
[4.9] and [4.10]. After these simplifications, we note that qi is independent of i, so

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 63

we define qi = q. Additionally, we make the approximation βa = β/(Lσ2
x + δ) ≈

β/(Lσ2
x). If β = 1, we can rewrite [4.8] as:

λi =
1

L− i+ 1

L2
j=i

c(j) − L

L− i+ 1
q

=
2

L(L− i+ 1)

 L2
j=i

E
�
z2(j)

	
−

L2
j=1

E
�
z2j
� . [4.12]

Note that we substituted the values of cj and q from [4.4] and [4.10], respectively.
We see that λi < 0 for all i �= 1 and λ1 = 0. Since c(i) > 0 for all i and we choose
λ = λi such that c(i−1) < λi < c(i), λ must be in the first segment. In other words,
λ = λ1 = 0. Therefore, β = 1 implies λ = 0.

The water-filling algorithm has two solutions for the gain at any given time k,
namely; gi = 0 if λ ≥ ci and gi = (ci − λ)/qi if λ < ci. Since for β = 1, λ = 0, we
can reduce the second solution to

gi =
ci
qi

=
E
�
z2i
�

βaσ2
x

3L
j=1 E

�
z2j
� ≈ E

�
z2i
�

1
L

3L
j=1 E

�
z2j
� . [4.13]

Therefore, the water-filling algorithm reduces to z2-proportionate algorithm.

4.1.3. Implementation of algorithms

The water-filling algorithm proposed as well as the z2-proportionate are not
feasible because we are required to know E

�
z2i
�

= E{[wi − ŵi]
2}. We take the

following approach to overcome this lack of knowledge.

4.1.3.1. Biased estimation of MSWD

In this approach, we make the following approximations E
�
z2i
� ≈ (�E {zi})2 and3L

j=1 E
�
z2j
� ≈ 3L

j=1(
�E {zj})2 where we replace the MSWD with the square of the

MWD. Note that an arbitrary random variable a, the notation â represents an estimate
of a.

To find �E {zi}, we rewrite the error as e =
3L

j=1 xjzj+v. Next, we multiply both
sides of the equation by xi and take the expectation (assuming xi is a white signal).

www.it-ebooks.info

http://www.it-ebooks.info/

64 PtNLMS Algorithms

This results in E {xie} = σ2
xE {zi} . If we define pi = xie, we can calculate E {pi}

and then solve for E {zi}. We update our estimate of E {pi} in the following fashion:

�E {pi}= α(�E {pi})− + (1− α)pi

�E {zi}= �E {pi}/σ2
x,

where 0 ≤ α ≤ 1 and (�E {pi})− = �E {pi(k − 1)}. This approach has been called
“biased” because we replace E

�
z2i
�

with (�E {zi})2. In doing so, the variance is
assumed to be zero (only an approximation). This approach was used in [LI 08] and
[SHI 04].

The major weakness of this approach is the sensitivity of the algorithm to the
choice of α. If α is chosen too large (i.e. close to 1), the steady-state error approaches
the noise floor but the transient performance can be unsatisfactory. Conversely, if α is
set too small, the algorithm will reach steady-state rapidly; however, the steady-state
error will have an additional misadjustment component that can be several decibels
above the noise floor. Moreover, the approximation for E

�
z2i
�

is poor in the steady-
state where an estimate of the variance of zi will be needed as well.

4.1.3.2. Adaptive convex gain combination

A potential solution to the above problems is presented here as an adaptive
convex gain combination of the water-filling or z2-proportionate gain with the
NLMS gain. Let g∗ represent the gain generated from the water-filling or
z2-proportionate algorithm and 1 be the L × 1 vector of 1s. The gain used in the
implementation of the proposed algorithms is the mixture of g∗ and 1 given as
g = (1− ζ)g∗ + ζ1. Here, ζ is a mixing parameter defined as:

ζ = min

1, ωσ2
v

σ2
x

3
j=1(

�E {zj})2 + σ2
v

, [4.14]

where ω ≥ 0. The denominator term in [4.14] is an estimate of the MSE. Hence, as
the estimated MSE approaches the noise floor, the algorithm acts more like the
NLMS algorithm by equally distributing gain to all coefficients. This is reasonable
since the estimate of E

�
z2i
�

used is poor in steady-state and its usage in this regime
should be avoided. Moreover, E

�
z2i
�

should be evenly distributed in steady-state;
therefore, equal gain for all weights should be applied. When the estimated MSE is
large relative to the noise floor, then the algorithm inherits the characteristics of
water-filling or z2-proportionate algorithm. Now α can be chosen to ensure
satisfactory transient performance. Some modification of [4.14] can be used as well.
For example, the denominator term in [4.14] could be obtained directly by smoothing
the square error e2.

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 65

This gain selection methodology is a variant of the gain proposed in the sparseness-
controlled PNLMS (SC-PNLMS). But instead of estimating sparsity, an estimate of
the distance to the noise floor is used to set the gain.

4.1.4. Simulation results

4.1.4.1. Algorithm comparison for white input

In Figure 4.2(a) we compare the NLMS, PNLMS, water-filling, z2-proportionate,
recursive least squares (RLS) [HAY 02] and ideal water-filling algorithms for
β = 0.1, ρ = 0.01, σ2

x = 1, σ2
v = 10−4, δ = 10−4, δp = 0.01 and L = 512. The

RLS algorithm’s forgetting factor and regularization parameter are both set to 1
[HAY 02]. The ideal water-filling algorithm uses the instantaneous value of the WD
vector, z(k) = w − ŵ(k), as the input to the water-filling algorithm. The impulse
response used in this simulation is given in Figure 4.2(b). The input signal consists of
white noise. The z2-proportionate and water-filling algorithms used the
implementation described in section 4.1.3.2 with the values of (α,ω) = (0.99, 5) and
(α,ω) = (0.999, 2), respectively. The different values of α and ω for the
z2-proportionate and water-filling algorithms result from tuning the algorithms for
good transient and steady-state performance.

The NLMS algorithm has the slowest initial convergence but better overall
convergence than the PNLMS algorithm. The water-filling and z2-proportionate
algorithms offer an improvement in the overall convergence rate relative to the
PNLMS algorithm. The RLS algorithm has the fastest convergence at the expense of
increased computational complexity.

The z2-proportionate algorithm reaches steady-state faster than the water-filling
algorithm. This result is due to the fact that the sorting operations used in the water-
filling algorithm causes it to be more sensitive to errors in the estimation of E

�
z2i
�

.

4.1.4.2. Algorithm comparison for non-sparse impulse responses

In Figure 4.3(a), we present the performance of the NLMS, PNLMS,
water-filling, z2-proportionate and RLS algorithm for a dispersive impulse response.
The impulse response used in these simulations is shown in Figure 4.3(b). Otherwise,
the parameters used are the same as those given in section 4.1.4.1.

Under these conditions, the z2-proportionate and water-filling algorithms have
good convergence performance. These algorithms do not depend on sparsity during
their derivation. The algorithms that assume sparsity such as the PNLMS struggle in
this environment.

www.it-ebooks.info

http://www.it-ebooks.info/

66 PtNLMS Algorithms

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
LEARNING CURVE COMPARISON

ITERATIONS

M
SE

(d
B)

β = 0.1
ρ = 0.01
δ= 0.0001
δp = 0.01

NLMS
PNLMS
Water−filling
z2−proportionate
RLS
Ideal Water−filling

NLMS

Water−filling

z2−proportionate

Ideal Water−filling PNLMS

RLS

a)

0 100 200 300 400 500 600
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

COEFFICIENT NUMBER

AM
PL
IT
UD

E

SPARSE IMPULSE RESPONSE

b)

Figure 4.2. White input: a) sparse impulse response algorithm comparison
and b) sparse impulse response

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 67

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
LEARNING CURVE COMPARISON

ITERATIONS

M
SE

(d
B)

β = 0.1
ρ = 0.01
δ= 0.0001
δp = 0.01

NLMS
PNLMS
Water−filling
z2−proportionate
RLS

PNLMS
NLMS

Water−filling

RLS

z2−proportionate

a)

50 100 150 200 250 300 350 400 450 500

−0.1

−0.05

0

0.05

0.1

COEFFICIENT NUMBER

AM
PL
IT
UD

E

DISPERSIVE IMPULSE RESPONSE

b)
Figure 4.3. White input: a) dispersive impulse response algorithm comparison

and b) dispersive impulse responses

www.it-ebooks.info

http://www.it-ebooks.info/

68 PtNLMS Algorithms

4.1.4.3. Algorithm comparison for a time-varying impulse response

The performance of the NLMS, PNLMS, water-filling, the z2-proportionate and
RLS algorithms are compared when the impulse response is time varying and the
input signal is white as shown in Figure 4.4. The algorithm parameters are the same
as those described in section 4.1.4.1. The impulse response is changed to the sparse
impulse response in Figure 1.2(b) after 40,000 iterations. The algorithms maintain
the same convergence properties with the exception of a few small changes due to the
characteristics of the two different impulse responses. The RLS algorithm does not
track the change in impulse response also. The RLS algorithm’s forgetting factor and
regularization parameter could potentially be tuned to improve its tracking
performance.

0 1 2 3 4 5 6 7

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5
LEARNING CURVE COMPARISON

ITERATIONS

M
S
E
(d
B
)

β = 0.1

ρ = 0.01

δ = 0.0001
δ
p
= 0.01

NLMS

PNLMS

Water−filling

z
2
−proportionate

RLS

RLS

NLMS

Water−filling

z
2
−proportionate

PNLMS

Figure 4.4. Time-varying impulse response performance

4.2. PtNLMS algorithm obtained by minimization of MSE modeled by
exponential functions

In this section, using the proportionate-type steepest descent algorithm, we
represent the current WDs in terms of initial WDs. Then, we attempt to minimize the
MSE with respect to the time average of all gains applied up to a given instant. The
corresponding optimal time averaged gains are found using a water-filling procedure.
The stochastic counterpart is obtained in two steps. First, the true weights, which are
unknown, are replaced by their current estimates in the expression for the optimal
time averaged gains. Second, the current gains are calculated based on the difference
between the estimated optimal cumulative gain and the actual given cumulative gain.
Additionally, a simplified gain allocation method is proposed that avoids the sorting

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 69

needed in the water-filling procedure. The resulting algorithm initially behaves like
the PNLMS algorithm and as time proceeds the algorithm behaves like the NLMS
algorithm. This type of behavior is typically desired and results in enhanced
convergence performance. We present results for the new algorithms and compare
them to other standard PtNLMS algorithms.

4.2.1. WD for proportionate-type steepest descent algorithm

Instead of minimizing J+ given by [3.1] we are going to consider the
minimization of the MSE of an associate proportionate-type steepest descent
algorithm. From [DEN 05], we can express the deterministic ith WD at time k + 1
(denoted as ẑ+i) recursively as:

ẑ+i =
�
1− βaσ

2
xgi(k)

�
ẑi(k)

=
k+

p=0

[1− β0gi(p)] ẑi(0). [4.15]

Additionally, if β0gi(p) << 1 ∀ p = 0, 1, . . . , k, then we can approximate [4.15]
by:

ẑ+i ≈ e−(k+1)β0gi(k)wi [4.16]

where ẑi(0) = wi and

gi(k) =
1

k + 1

k2
p=0

gi(p).

The term gi(k) is the time average of all gains applied.

4.2.2. Water-filling gain allocation for minimization of the MSE modeled by
exponential functions

Let us consider minimization of the MSE of the steepest descent algorithm with
respect to the average gains, that is

min
g(k)

Ĵ+ = σ2
v + σ2

x min
g(k)

� L2
j=1

(ẑ+j)
2

�
s.t. gi(k)≥ 0

L2
i=1

gi(k) =L, [4.17]

www.it-ebooks.info

http://www.it-ebooks.info/

70 PtNLMS Algorithms

where (ẑ+j)
2 is given by [4.16] and g(k) is the vector representation of the average

gains at time k, that is g(k) = [g1(k), g2(k), . . . , gL(k)]
T .

To find the optimal gain, we define the Lagrangian as:

T (s, λ) = Ĵ+ + λ

 L2
j=1

gj − L


= σ2

v + σ2
x

L2
j=1

e−2(k+1)β0gjw2
j + λ

 L2
j=1

gj − L

 . [4.18]

For notational convenience, we suppress the time indexing on the average gain,
that is gi(k) = gi. In the following, we substitute s2j = gj (sj is real) into T (s, λ) and
take the derivative with respect to si. This substitution ensures that our solutions for
gi ≥ 0. The result of this derivative is given by:

∂T (s, λ)

∂si
=2si

�
λ− 2(k + 1)σ2

xβ0e
−2(k+1)β0s

2
iw2

i

�
. [4.19]

Setting the derivative to zero, there are two solutions for the gain:

gi = 0 [4.20]

gi =
1

2(k + 1)β0
ln

2(k + 1)σ2
xβ0w

2
i

λ
. [4.21]

If we examine the second derivative ∂2T/∂s2i , we see that the first solution [4.20]
results in a minimum if λ ≥ 2(k + 1)σ2

xβ0w
2
i and the second solution [4.21] results

in a minimum if 0 < λ < 2(k + 1)σ2
xβ0w

2
i .

The solution to this problem is again of the “waterfilling” variety. We choose the
constant λ according to the following rules. First, we sort the entries of
w = [w1, w2, . . . , wL]

T into non-descending order to form a new vector such that
w(1) ≤ w(2) ≤ . . . ≤ w(L). Next, we solve for λj such that

L2
i=j

1

2(k + 1)β0
ln

2(k + 1)σ2
xβ0w

2
(i)

λj
= L. [4.22]

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 71

If λj satisfies the inequalities

2(k + 1)σ2
xβ0w

2
(j−1) ≤ λj < 2(k + 1)σ2

xβ0w
2
(j), [4.23]

then we set λ = λj , where w2
(0) = 0. This value of λ is used to specify which

coefficients receive zero gain and which do not.

4.2.2.1. Calculation of Lagrange multipliers

We seek to find λj that satisfies [4.22]. We can rearrange this expression such that

L2
i=j

ln
2(k + 1)σ2

xβ0

λj
+

L2
i=j

lnw2
(i) = 2(k + 1)Lβ0. [4.24]

Rearranging terms further yields

ln
�
2(k + 1)σ2

xβ0

�− lnλj +
1

L− j + 1

L2
i=j

lnw2
(i) =

2(k + 1)Lβ0

L− j + 1
[4.25]

and finally solving for λj results in

λj = 2(k + 1)σ2
xβ0

 L+
i=j

w2
(i)

 1
L−j+1

e−
2(k+1)β0L

L−j+1 . [4.26]

If we substitute λj into the second solution for the gain [4.21], we can write

g(i) =
L

L− j + 1
+

1

(k + 1)β0

ln |w(i)| − 1

L− j + 1

L2
l=j

ln |w(l)|
&
, i ≥ j. [4.27]

Note that the optimality of the average gain is only for the instant k + 1, not for
instants before or after k + 1. Hence, if k + 1 is larger, the optimal average gain is
distributed more evenly across all of the active coefficients, while the inactive
coefficients receive zero gain.

4.2.2.2. Usage of the proposed water-filling scheme in PtNLMS algorithm

Up to this point, the implementation of the proposed water-filling algorithm has
not been feasible because we require the knowledge of wi. To avoid this problem, we
substitute the estimated value of the impulse response ŵi(k) for the true impulse
response. Next, the estimated average gain is calculated using the water-filling

www.it-ebooks.info

http://www.it-ebooks.info/

72 PtNLMS Algorithms

procedure described in section 4.2.2 and the estimated impulse response ŵi(k). The
estimated optimal average gain can be represented as:

ĝi=

��
0, if λ ≥ 2(k + 1)σ2

xβ0ŵ
2
i

L
L−j+1 + 1

(k+1)β0

ln |ŵi| −

3L

l=j
ln |ŵ(l)|

L−j+1

&
, if λ < 2(k + 1)σ2

xβ0ŵ
2
i .

At this point, the instantaneous gain at time k is calculated. The instantaneous
gain is defined as the gain that needs to be applied at the current time step in order
to achieve the desired estimated optimal cumulative gain. The instantaneous gain is
written as follows:

Δ[|ŵi(k)|] = (k + 1)ĝi −
k−12
p=0

gi(p), [4.28]

where gi(p) are previously applied gains. Since the difference in [4.28] can be
negative, we form

F [|ŵi(k)|] = (Δ [|ŵi(k)|])+ . [4.29]

This ensures that none of the terms are negative. As a final step, minimum gain
logic is implemented to ensure that all coefficients receive at least some small gain.
This helps to avoid stalling. The remainder of the proposed algorithm is summarized
in Table 1.1 using the function F defined in [4.29].

4.2.2.3. Modified water-filling algorithm

For long impulse responses, sorting and checking the inequality in [4.23] can be
time intensive. Hence, as an alternative, we propose the following modification of the
proposed algorithm. Instead of [4.27] we use

ĝi =

1 +
1

(k + 1)β0

ln |ŵi(k)| − 1

L

L2
j=1

ln |ŵj(k)|


+

. [4.30]

Here, we have avoided sorting altogether. Then, we allow the algorithm to run as
before. Again, we calculate the instantaneous gain and incorporate the minimum gain
logic summarized in Table 1.1.

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 73

4.2.3. Simulation results

In this section, we present performance results for the two new proposed
algorithms. The performance results are presented by estimating MSE as a function
of time. For comparison purposes, the learning curves of the NLMS, PNLMS,
MPNLMS, water-filling and RLS algorithms are also included. The RLS algorithm
uses a value of 1 for the forgetting factor and regularization parameter.

The water-filling algorithm is implemented using the convex gain combination
described in section 4.1.3.2 and the biased estimation of MSWDs described in section
4.1.3.1. The water-filling algorithm results presented in these simulations used the
values (α,ω) = (0.999, 2).

The learning curves were the result of averaging 10 Monte Carlo runs. Other
relevant parameters used in these simulations are as follows: the input signal power
was set to σ2

x = 1, σ2
v = 10−4, β = 0.1, ρ = 0.01, δp = 0.01, δ = 10−4 and

µ = 3563 (µ is a parameter used in the MPNLMS algorithm). The impulse response
employed has a length of L = 512 and is shown in Figure 4.2(b).

In Figure 4.5, the MSE is plotted versus time for a white input signal and the sparse
impulse response shown in Figure 4.2(b). Here, the reader can see that the proposed
algorithms outperform the NLMS and PNLMS algorithms. The RLS algorithm has
better performance at the price of significantly increased computational complexity.

0 0.5 1 1.5 2 2.5 3 3.5
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
LEARNING CURVE COMPARISON

ITERATIONS

dB

β = 0.1
ρ = 0.01
δ= 0.0001
δp = 0.01

NLMS
PNLMS
MPNLMS
Water−filling
Proposed Water−filling Algorithm
Proposed Modified Water−filling Algorithm
RLS

RLS MPNLMS

NLMS

Water−filling
PNLMS

Proposed
Water−filling

Proposed Modified
Water−filling

Figure 4.5. Comparison of proposed water-filling algorithms for white input
signal and sparse impulse response

www.it-ebooks.info

http://www.it-ebooks.info/

74 PtNLMS Algorithms

In Figure 4.6, the MSE is plotted for a white input signal and the non-sparse
impulse response shown in Figure 4.3(b). The impulse response employed was
generated by a zero-mean Gaussian process. The MPNLMS algorithm uses a value
of µ = 7155 with this impulse response. In this scenario, the two proposed
algorithms have better convergence than the PNLMS algorithm and slower
convergence than the NLMS.

0 0.5 1 1.5 2 2.5 3 3.5
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5
LEARNING CURVE COMPARISON

ITERATIONS

dB

β = 0.1
ρ = 0.01
δ= 0.0001
δp = 0.01

NLMS
PNLMS
MPNLMS
Water−filling
Proposed Water−filling Algorithm
Proposed Modified Water−filling Algorithm
RLS

RLS

PNLMS

Water−filling

MPNLMS

NLMS

Proposed Water−filling
Proposed Modified

Water−filling

Figure 4.6. Comparison of proposed water-filling algorithms for white input
signal and dispersive impulse response

The MSE performance for a time varying impulse response is shown in
Figure 4.7. Here, at time 40,000, the impulse response is changed from the impulse
response shown in Figure 4.2(b) to an alternate sparse impulse response that is shown
in Figure 1.2(b). The proposed algorithms and RLS algorithm perform poorly after
this change and would require additional reset logic to handle a time varying impulse
response. This behavior was expected for the proposed algorithms due to the fact that
the gain is based on all previous gains. After the change, the applied gain depends
heavily on gains designed for the non-actual impulse response.

In Figures 4.8 and 4.9, the MSE performance is displayed for a colored input signal
with moderate and strong coloration, respectively. The impulse response used in these
simulations is given in Figure 4.2(b). The MPNLMS uses a value of µ = 4,115 in
Figure 4.8 and µ = 8,175 in Figure 4.9. The input signal consists of colored noise
generated by a single-pole system as follows:

x(k) = γx(k − 1) + n(k), [4.31]

where x(0) = n(0), n(k) is a white Gaussian random process with variance σ2
n = 1,

and pole γ. In Figure 4.8, γ = −0.5 that implies σ2
x = σ2

n/(1 − γ2) = 1.333. While

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 75

in Figure 4.9, γ = −0.9 and σ2
x = σ2

n/(1− γ2) = 5.263. The water-filling algorithm
is unstable in both of these figures. This is because the water-filling algorithm’s
derivation relies heavily on the assumption that the input signal is white. For
moderate coloration, the proposed algorithms outperform the PNLMS and NLMS
algorithms. For strong coloration, the proposed algorithms initially perform better
than the NLMS and worse than the PNLMS algorithm.

0 1 2 3 4 5 6 7
x 104

−40

−30

−20

−10

0

10

20

30

LEARNING CURVE COMPARISON

ITERATIONS

dB

β = 0.1
ρ = 0.01
δ= 0.0001
δp = 0.01

NLMS
PNLMS
MPNLMS
Water−filling
Proposed Water−filling Algorithm
Proposed Modified Water−filling Algorithm
RLS RLS

Modified Proposed
Water−filling

Proposed
Water−filling

NLMS
PNLMS

Water−filling

MPNLMS

Figure 4.7. Comparison of proposed water-filling algorithms for white input
signal and a time varying sparse impulse response

0 1 2 3 4 5 6 7
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
LEARNING CURVE COMPARISON

ITERATIONS

dB

β = 0.1
ρ = 0.01
δ= 0.0001
δp = 0.01

NLMS
PNLMS
MPNLMS
Water−filling
Proposed Water−filling Algorithm
Proposed Modified Water−filling Algorithm
RLS

NLMS

RLS

Proposed Modified
Water−filling

MPNLMS

PNLMS

Proposed Water−filling

Water−filling

Figure 4.8. Comparison of proposed water-filling algorithms for color input
signal (pole = −0.5) and sparse impulse response

www.it-ebooks.info

http://www.it-ebooks.info/

76 PtNLMS Algorithms

0 1 2 3 4 5 6 7
x 104

−40

−30

−20

−10

0

10

20

30
LEARNING CURVE COMPARISON

ITERATIONS

dB
β = 0.1
ρ = 0.01
δ= 0.0001
δp = 0.01

NLMS
PNLMS
MPNLMS
Water−filling
Proposed Water−filling Algorithm
Proposed Modified Water−filling Algorithm
RLS

Proposed Modified
Water−filling

PNLMS

MPNLMS

Water−filling

RLS

NLMS

Proposed
Water−filling

Figure 4.9. Comparison of proposed water-filling algorithms for color input
signal (pole = −0.9) and sparse impulse response

4.3. PtNLMS algorithm obtained by minimization of the MSWD for colored
input

The water-filling algorithm in section 4.1.1 was designed with the goal of
minimizing the MSE by choosing optimal gains at each time step. This algorithm
relied on the limiting assumption that the input signal was white. In this section, a
colored water-filling (CWF) algorithm is derived and implemented that no longer
requires that the input signal is white.

The algorithm results from minimizing the MSWD with respect to the gain. The
implementation of this algorithm requires the estimation of the MWD and knowledge
of the input signal covariance matrix. An estimation scheme for the MWD is given.
One application of this algorithm is to perform system identification for echo
cancellation.

4.3.1. Optimal gain algorithm

In this section, we seek the optimal gain at each time step k. Our approach to
this problem is to minimize the MSWD with respect to the gain under the same two
constraints given in section 4.1.1.

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 77

The recursion for the WD vector is defined by [3.2], that is

z+ = z− βGxxT z

xTGx+ δ
− βGxv

xTGx+ δ
. [4.32]

Before proceeding further, let us state the assumptions that will be used in the
following derivations. In addition to the independence assumptions 2.1 and 2.2, we
have in place of the input, assumptions 2.3 or 3.1.

ASSUMPTION 4.2.– The input signal is a stationary Gaussian process with zero-mean
and covariance matrix R, where [R]ii = σ2

x.

Hence, the input is no longer independent. Additionally, assumption 3.2 is still
used. Now for

L >>
-
2gT (R�R)g/σ2

x

the standard deviation of the term
3L

j=1 x
2
jgj + δ becomes much smaller than the

expected value, where � represents the Hadamard product and g = diag(G). A
sufficient condition for this to assume is that

S >>
2λmax(R)

σ2
x

[4.33]

where S is the support size defined as

S =
[
3

j gj]
23

j g
2
j

=
L23
j g

2
j

[4.34]

and λmax(R) is the largest eigenvalue of the covariance matrix R. The condition in
[4.33] is satisfied for large values of L, and g that is not extremely sparse. Hence, we
can have it so that the denominator term is approximately constant.

As in section 4.1.1, we employ assumption 3.2 and use the definition
βa = β/(Lσ2

x + δ). This allows us to rewrite the WD recursion as:

z+ = z− βaGxxT z− βaGxv. [4.35]

Again, in this form the algorithm can be interpreted as a PtLMS algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

78 PtNLMS Algorithms

4.3.1.1. Optimal gain resulting from minimization of MSWD

The criterion we try to minimize is the MSWD at time k + 1. The square WD at
time k + 1 can be represented by:

z+
T
z+ = zT z− βaz

TGxxT z− βaz
TGxv

−βaz
TxxTGz+ β2

az
TxxTG2xxT z+ β2

az
TxxTG2xv

−βax
TGzv + β2

ax
TG2xxT zv + β2

ax
TG2xv2. [4.36]

Next, taking the expectation of [4.36] given the prior WD z, and using assumption
4.3 yields:

E
�
z+

T
z+|z

	
= zT z− 2βaz

TDiag(Rz)g

+2β2
ag

TDiag2(Rz)g + β2
az

TRzgTDiag [diag(R)]g

+β2
aσ

2
vg

TDiag [diag(R)]g. [4.37]

ASSUMPTION 4.3.– The gain g depends only on the WD vector z.

In [WAG 09] and earlier in assumption 4.1, we assumed that the gain was a
deterministic function of time and took the expectation with respect to the input and
prior WDs instead of assuming the prior WDs are given and g is only a function of z.
We could work in this way now, but the resulting feasible algorithm would be the
same regardless of which set of the assumptions are used.

Next, we make the substitution g = s � s to ensure the solution gi ≥ 0 ∀ i (s is
real) and construct the Lagrangian:

T (s, λ) = zT z− 2βaz
TDiag(Rz)(s� s) + 2β2

a (s� s)
T
Diag2(Rz)(s� s)

+β2
az

TRz (s� s)
T
Diag [diag(R)] (s� s)

+β2
aσ

2
v (s� s)

T
Diag [diag(R)] (s� s)

+λ
!
1T (s� s)− L

'
[4.38]

where 1 is again the L× 1 vector of ones.

We can calculate the gradient and Hessian of the Lagrangian that are given by:

∂T (s, λ)

∂s
= {2λ− 4βaDiag [z�Rz] + 8β2

aDiag [Rz�Rz� (s� s)]

+ 4β2
az

TRzσ2
xDiag (s� s) + 4β2

aσ
2
xσ

2
vDiag (s� s)

�
s [4.39]

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 79

and

∂2T (s, λ)

∂sT∂s
= 2λI− 4βaDiag [z�Rz] + 8β2

aDiag [Rz�Rz� (s� s)]

+4β2
az

TRzσ2
xDiag (s� s) + 4β2

aσ
2
xσ

2
vDiag (s� s)

+2diag(s)
�
8β2

aDiag [Rz�Rz] + 4β2
az

TRzσ2
xI+ 4β2

aσ
2
xσ

2
vI
�
. [4.40]

To aid in finding minimums of the Lagrangian, we rewrite equations [4.39] and
[4.40] in component-wise form as follows:

∂T (s, λ)

∂si
= {2λ− 4βazi [Rz]i

+8β2
a [Rz]

2
i s

2
i + 4β2

az
TRzσ2

xs
2
i + 4β2

aσ
2
xσ

2
vs

2
i

�
si [4.41]

and

∂2T (s, λ)

∂s2i
= 2λ− 4βazi [Rz]i + 8β2

a [Rz]
2
i s

2
i

+ 4β2
az

TRzσ2
xs

2
i + 4β2

aσ
2
xσ

2
vs

2
i

+ 2
�
8β2

a [Rz]
2
i + 4β2

az
TRzσ2

x + 4β2
aσ

2
xσ

2
v

	
s2i . [4.42]

Examining the component-wise form of the gradient, there are two solutions

s2i = 0

s2i =
4βazi [Rz]i − 2λ

8β2
a [Rz]

2
i + 4β2

az
TRzσ2

x + 4β2
aσ

2
xσ

2
v

. [4.43]

By substituting the first solution into the component-wise form of the Hessian,
it turns out the first solution results in minimum when λ − 2βazi [Rz]i > 0 and a
maximum when λ−2βazi [Rz]i < 0. In contrast, when the second candidate solution
is substituted into the component-wise form of the Hessian, a minimum occurs when
λ − 2βazi [Rz]i < 0 and no solution exists when λ − 2βazi [Rz]i > 0. As a result,
the gain that minimizes the MSWD at time k + 1 can be written as:

gi =

2βazi [Rz]i − λ

4β2
a [Rz]

2
i + 2β2

az
TRzσ2

x + 2β2
aσ

2
xσ

2
v

&
+

. [4.44]

www.it-ebooks.info

http://www.it-ebooks.info/

80 PtNLMS Algorithms

Now the solution can be obtained by a water-filling algorithm similar to the
solution proposed for the white input case in section 4.1.1. First, make the following
definitions:

ci = 2βazi [Rz]i

qi = 4β2
a [Rz]

2
i + 2β2

az
TRzσ2

x + 2β2
aσ

2
xσ

2
v . [4.45]

Next, find the constant λ according to the following procedure. First, we sort the
entries of c = [c1, c2, . . . cL]

T in ascending order to form a new vector such that c(1) <
c(2) < . . . < c(L). We subsequently rearrange the elements of q = [q1, q2, . . . qL]

T

to match the position of the original indices in the sorted c and to form a new vector
whose elements are q(1), q(2), . . ., q(L). The optimal value of λ solves the following
equation:

L2
j=1

"
c(j) − λ

q(j)

(
+

= L. [4.46]

From [4.46] the candidate solutions are

λi =

3L
j=i

c(j)
q(j)

− L3L
j=i

1
q(j)

. [4.47]

We choose λ = λi if c(i−1) < λi < c(i), where c(0) = −∞.

4.3.1.2. Implementation

The algorithm presented so far is not feasible because it requires the knowledge of
zi [Rz]i, [Rz]2i and zTRz. We propose replacing these quantities with an estimate of
their corresponding mean values.

We begin with

E{p} = E{xe} = E{x(xT z+ v)} = RE {z} [4.48]

then E {z} = R−1E {p}. We update our estimate of E {p} in the following fashion:

�E {p} = α �E {p−}+ (1− α)p,

where 0 < α < 1. Then, we make the estimate �E {z} = R−1�E {p}.

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 81

Now, we make three approximations by replacing

zi[Rz]i ≈ �E {zi}�E {pi}

[Rz]
2
i ≈

�
�E {pi}

�2
zTRz≈ �E {zT }R�E {z}.

Note that these estimates are only approximate and good when the variance of zi
is small compared to the mean of zi that is typically true in the transient regime.

If α is chosen too large (that is close to 1), the transient performance can be
unsatisfactory. Conversely, if α is set too small, the steady-state error will be large.
One solution to this problem is to use the adaptive convex gain combination
presented in section 4.1.3.2.

4.3.2. Relationship between minimization of MSE and MSWD

Let the MSE at time k + 1 be represented by J(k + 1) = J+. The MSE can be
written as:

J+ = σ2
v + E{(x+)T z+(z+)Tx+}. [4.49]

Applying assumption 2.1, we can take the expectation with respect to the input
signal first that yields

J+ = σ2
v + Ez{(z+)TRz+}. [4.50]

Next, applying the Cauchy–Schwarz inequality gives:

J+ ≤ σ2
v +

-
Ez{(z+)T z+}

-
Ez{(z+)TR2z+}. [4.51]

Let λmax(R) represent the largest eigenvalue of the covariance matrix R. Then,
we can write

J+ ≤ σ2
v +

-
Ez{(z+)T z+}

-
Ez{λ2

max(R)(z+)T z+}
= σ2

v + Ez{(z+)T z+}λmax(R). [4.52]

www.it-ebooks.info

http://www.it-ebooks.info/

82 PtNLMS Algorithms

Hence, by minimizing the MSWD, we minimize an upper bound for J+.

4.3.3. Simulation results

In Figures 4.10 and 4.11, we show the misalignment and MSE for the NLMS,
PNLMS, MPNLMS, color water-filling and ideal color water-filling algorithms with
β = 0.02, ρ = 0.01, σ2

v = 10−4, δ = 10−4, δp = 0.01 and L = 50, respectively. The
misalignment at time k is defined by M(k) = zT z/wTw. The MPNLMS used the
value 22,941 in the µ-law. The ideal color water-filling algorithm uses the
instantaneous value of the WD, z(k) = w − ŵ(k), as the input to the water-filling
algorithm. The color water-filling algorithm uses the implementation described in
section 4.3.1.2 with (ω,α) = (5, 0.999). The impulse response used in this
simulation is given in Figure 4.12. The input signal consists of colored noise
generated by the single-pole system given in [4.31] with γ = −0.9, x(0) = n(0) and
n(k) is a white Gaussian random variable with variance σ2

n = 1. Therefore,
σ2
x = σ2

n/(1− γ2) = 5.263.

0 0.5 1 1.5 2 2.5 3 3.5 4
x 105

−80

−70

−60

−50

−40

−30

−20

−10

0
MISALIGNMENT CURVE

ITERATIONS

M
IS
AL
IG
NM
EN
T
(d
B)

β = 0.02
ρ = 0.01
δ= 0.0001
δp = 0.01

NLMS
PNLMS
MPNLMS
Feasible CWF
Ideal CWF

NLMS

MPNLMS
Feasible CWF

PNLMS

Ideal CWF

Figure 4.10. Misalignment comparison

The NLMS algorithm has the slowest convergence followed by the PNLMS
algorithm and then the MPNLMS algorithm. The feasible and ideal CWF algorithms
offer significant improvement in the convergence rate relative to the other algorithms.

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 83

0 0.5 1 1.5 2 2.5
x 105

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10
LEARNING CURVE

ITERATIONS

M
SE

(d
B)

β = 0.02
ρ = 0.01
δ= 0.0001
δp = 0.01

NLMS
PNLMS
MPNLMS
Feasible CWF
Ideal CWF

Ideal CWF

Feasible CWF

MPNLMS

PNLMS

NLMS

Figure 4.11. MSE comparison

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

COEFFICIENT NUMBER

AM
PL
IT
UD

E

Figure 4.12. Impulse response

4.4. Reduced computational complexity suboptimal gain allocation for PtNLMS
algorithm with colored input

The water-filling algorithm was designed with the goal of minimizing the MSE
by choosing optimal gains at each time step. This algorithm relied on the limiting

www.it-ebooks.info

http://www.it-ebooks.info/

84 PtNLMS Algorithms

assumption that the input signal is white. A CWF algorithm was derived and
implemented that no longer requires that the input signal be white. This algorithm
resulted from minimizing the MSWD with respect to the gain. The implementation
of this algorithm required the estimation of the MWD and knowledge of the input
signal covariance matrix. In this section, two suboptimal algorithms are introduced
for gain allocation in the colored input case. Each algorithm offers a reduction in
computational complexity by removing the sorting function needed in the original
algorithm.

4.4.1. Suboptimal gain allocation algorithms

The first suboptimal gain allocation uses the following gain

gi =
|�E {zi} �E {pi}|

1
L

3L
j=1 | �E {zj} �E {pj}|

[4.53]

while the second suboptimal algorithm uses

gi =
�E {pi}

2

1
L

3L
j=1

�E {pj}
2 , [4.54]

where �E {zi} and �E {pi} are defined in section 4.3.1. Both of these suboptimal
algorithms avoid the sorting operation. The former algorithm will be referred to as
the suboptimal gain allocation version 1 and the latter algorithm as the suboptimal
gain allocation version 2. Suboptimal gain allocation version 2 is simpler than
suboptimal gain allocation version 1 because it does not require multiplication with
R−1 in order to form g.

4.4.1.1. Adaptive convex gain combination revisited

In section 4.1.3.2, the mixing parameter was related to an estimate of the mean
square deviation error that involves the calculation �E {z} = R−1�E {p}. This matrix
multiplication is computationally complex. In an effort to make the algorithm
implementation computationally less complex, we propose the following mixing
parameter:

ζ = min

�
1,

ωσ2
v

�E {e2}

�
[4.55]

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 85

where ω ≥ 0,

�E {e2} = ψ �E {(e−)2}+ (1− ψ)e2,

and 0 < ψ < 1. The denominator term in [4.55] is related to an estimate of the MSE.
Hence, as the estimated MSE approaches zero, the algorithm acts more like the
NLMS by equally distributing gain to all coefficients. When the estimated MSE is
large relative to σ2

v , then the algorithm inherits the characteristics of CWF algorithm.
Now, α can be chosen to ensure satisfactory transient performance. This
implementation avoids the matrix multiplication required to calculate �E {z}.

4.4.2. Simulation results

In this section, we compare the learning curves for the NLMS, PNLMS,
MPNLMS, CWF, ideal CWF, suboptimal gain allocation version 1 and suboptimal
gain allocation version 2 algorithms with two different input signals. In the first
example, colored noise generated by a single-pole system was the input signal. In the
second example, speech was the input signal.

The following parameters were used in both Monte Carlo simulations, β = 0.05,
ρ = 0.01, σ2

v = 10−4, δ = 10−4 and δp = 0.01, respectively. The ideal color
water-filling algorithm uses the instantaneous value of the WD, z(k) = w − ŵ(k),
as the input to the water-filling algorithm. The feasible color water-filling algorithms
use the implementation described in sections 4.3.1.2 and 4.4.1.1 with (ω, α,ψ) =
(5, 0.99, 0.9).

4.4.2.1. Single-pole input signal

In this section, the input signal consists of colored noise generated by a
single-pole system as [4.31], where γ = −0.65, x(0) = n(0) and n(k) is a white
Gaussian random variable with variance σ2

n = 1. Therefore,
σ2
x = σ2

n/(1− γ2) = 1.7316. The impulse response used in this simulation is shown
in Figure 4.2(b). This impulse response has length L = 512 and corresponds to a
real-world network echo path. For this example, the MPNLMS used the value 46,894
in the µ-law. The learning curves associated with the colored input signal are shown
in Figure 4.13. A total of 10 Monte Carlo trials were used to generate these curves.
The ideal CWF algorithm provides the best performance followed by the feasible
implementation of the CWF algorithm. Both suboptimal algorithms offer improved
convergence relative to the NLMS, PNLMS and MPNLMS algorithms for moderate
input signal coloration.

4.4.2.2. Speech input signal

In this section, the learning curves are displayed when speech is the input signal.
The CWF, ideal CWF and suboptimal gain allocation version 1 algorithms require

www.it-ebooks.info

http://www.it-ebooks.info/

86 PtNLMS Algorithms

knowledge of the input signal’s covariance matrix. Because the input signal’s
covariance R is unknown when speech is the input signal, an estimate is generated in
the following fashion:

R̂(k) = 1R̂(k − 1) + (1− 1)xxT , [4.56]

where 0 < 1 < 1. For the simulation presented here, the value 1 = 0.98 was used.
Additionally, the CWF and suboptimal gain allocation version 1 both require the
calculation of the inverse covariance matrix. Since the estimate R̂(k) can be singular,
we can find the pseudo-inverse of R̂(k) and substitute this into the algorithms where
necessary. The impulse used in this simulation is shown in Figure 4.12. For this
example, the MPNLMS used the value 874 in the µ-law. The speech input signal and
associated learning curve results are shown in Figures 4.14(a) and 4.14(b),
respectively. Additionally, the learning curve results after averaging 100 uniform
shifts of the input signal are shown in Figure 4.15.

0 2 4 6 8 10 12 14 16 18
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
LEARNING CURVE

ITERATIONS

M
SE

(d
B)

NLMS
PNLMS
MPNLMS
Feasible CWF
Ideal CWF
Suboptimal 1
Suboptimal 2

NLMS

PNLMS

MPNLMS

Ideal CWF

CWF

Suboptimal 1
Suboptimal 2

Figure 4.13. MSE comparison

Again the ideal CWF algorithm provides the best performance. Of the feasible
algorithms, the CWF algorithm performs the best in the initial stages of convergence;
however, the PNLMS algorithm eventually outperforms it. The two suboptimal
algorithms have poor performance in the non-stationary input signal environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 87

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

TIME

AM
PL
IT
UD

E
INPUT SIGNAL (SPEECH)

a)

0 1000 2000 3000 4000 5000 6000 7000
−45

−40

−35

−30

−25

−20

−15
LEARNING CURVE

ITERATIONS

M
SE

(d
B)

NLMS
PNLMS
MPNLMS
Feasible CWF
Ideal CWF
Suboptimal 1
Suboptimal 2

Ideal CWF

MPNLMS

CWF
PNLMS

NLMS

Suboptimal 2

Suboptimal 1

b)

Figure 4.14. a) Input speech signal and b) MSE comparison for speech

www.it-ebooks.info

http://www.it-ebooks.info/

88 PtNLMS Algorithms

0 1000 2000 3000 4000 5000 6000 7000
−45

−40

−35

−30

−25

−20

−15
LEARNING CURVE

ITERATIONS

M
SE

(d
B)

NLMS
PNLMS
MPNLMS
Feasible CWF
Ideal CWF
Suboptimal 1
Suboptimal 2

CWF Ideal CWF

Suboptimal 1

MPNLMS

PNLMS

NLMS
Suboptimal 2

Figure 4.15. MSE comparison for speech (averaged over 100 uniform
shifts of the input signal)

4.5. Summary

This chapter presented algorithms that attempt to find an optimal gain such that a
user-defined criterion is minimized.

In section 4.1, the water-filling algorithm for white input signals was developed
by choosing gains at each time step in a manner that minimized the MSE.
Additionally, the z2-proportionate algorithm was generated by simplifying the
water-filling algorithm. Through simulation in white input scenarios, it was shown
that the water-filling and z2-proportionate algorithms have better learning curve
convergence rates when compared to other standard algorithms such as the PNLMS
and NLMS algorithms.

The focus of section 4.2 was on finding optimal gains that minimized the MSE of
a proportionate steepest descent algorithm for white input signals. With increasing
time, the optimal time averaged gains tend to be uniformly distributed along the
coefficients. Two PtNLMS algorithms based on the estimate of the optimal time
averaged gains are designed. The second algorithm developed is an approximation
that is computationally less complex. Numerical examples showed that the new
algorithms had faster convergence than the NLMS and PNLMS algorithms when the
input is white, and the impulse response is sparse and time invariant.

www.it-ebooks.info

http://www.it-ebooks.info/

Minimization of User-Defined Criteria 89

In section 4.3, the CWF algorithm was introduced. This algorithm provides gains
at each time step in a manner that tries to minimize the MSWD. Through simulation
in colored input scenarios, it was shown that the feasible and ideal CWF algorithms
have impressively better learning curve and misalignment convergence rates relative
to other standard algorithms such as the MPNLMS, PNLMS and NLMS algorithms,
when the steady-state errors are of the same level.

Finally, section 4.4 presented two suboptimal algorithms for gain allocation in the
colored input case. Each algorithm offers a reduction in computational complexity by
removing the sorting function needed in the original algorithm. For stationary
colored input signals the suboptimal algorithms offer improved MSE convergence
performance relative to other standard algorithms such the NLMS, PNLMS and
MPNLMS. For non-stationary input signals, the suboptimal algorithms do not
provide improved MSE convergence performance relative to standard algorithms.
The suboptimal algorithms’ parameters could potentially be tuned to provide better
convergence performance.

www.it-ebooks.info

http://www.it-ebooks.info/

5

Probability Density of WD for PtLMS
Algorithms

Up to this point, we have been attempting to analyze both the transient and steady-state
performance of a wide array of PtNLMS algorithms. These algorithms have been analyzed in
Chapter 3 (also see [WAG 08]) by assuming the WD recursion that involves Gaussian quantities.
Then, the recursions for the mean and second moment of the WD can be calculated and used to
describe the evolution of the PtNLMS algorithm in time. However, the assumption of Gaussianity
is not necessarily good for all types of PtNLMS algorithms. Therefore, a more accurate
calculation of the PDF is needed. Ideally, algorithm designers would have knowledge of both the
joint and conditional PDFs at any time allowing them to control algorithm properties.
The conditional PDF is derived and presented here with the same goal of manipulating the
convergence properties of the algorithm. Finally, the conditional PDF can be used to derive the
steady-state joint PDF. The steady-state joint PDF has typically been assumed to be Gaussian in
most literature; however, this is not necessarily a good assumption as shown in this chapter.

5.1. Proportionate-type least mean square algorithms

5.1.1. Weight deviation recursion

We begin by introducing the WD recursion for the PtLMS algorithm. The detail of
the PtLMS algorithm is given in Table 5.1.

For notational simplicity, again we denote z(k + 1), z(k), x(k), gl[ŵ(k)], v(k),
σ2
v(k) by z+, z, x, gl, v, σ2

v , respectively.

We can express the recursion for the WD in component-wise form as expressed
in equation [4.1]. Examining the PtLMS algorithm instead of the PtNLMS algorithm
eases analysis and facilitates derivation of theoretical results.

Before proceeding, we use the following assumptions:

www.it-ebooks.info

http://www.it-ebooks.info/

92 PtNLMS Algorithms

x(k) = [x(k), x(k − 1), . . . , x(k − L+ 1)]T

ŷ(k) = xT (k)ŵ(k)
e(k) = d(k)− ŷ(k)
gl[ŵ(k)] ≥ 0 ∀ l ∈ {1, 2, . . . , L} . Specified by the user.
G(k) = Diag{g1[ŵ(k)], . . . , gL[ŵ(k)]}
ŵ(k + 1) = ŵ(k) + βG(k)x(k)e(k)

Table 5.1. PtLMS algorithm with time-varying stepsize matrix

ASSUMPTION 5.1.– The input signal is a Gaussian process with zero-mean and
covariance matrix R(k).

In contrast to assumption 4.2, the input is not assumed stationary now. For
notational convenience, R(k) is represented by R.

ASSUMPTION 5.2.– The input x(k) at time k and weight deviation vectors at time k
and all previous times, z(0), z(1), . . . , z(k), are independent.

Note that this assumption is a strengthened version of assumption 2.1.

ASSUMPTION 5.3.– The measurement noise v(k) is white Gaussian random process
with zero-mean, variance σ2

v(k), and it is independent of the input.

Compared to assumption 2.2, here the stationarity is not assumed. On the other
hand, v(k) is now considered Gaussian, which was not the case before.

Next, an expression for the conditional PDF, f(z+|z), is derived.

5.2. Derivation of the Conditional PDF of WD for the PtLMS algorithm

In this section, the conditional PDF of the current WDs given the preceding WDs
is generated for a wide array of PtLMS algorithms. The conditional PDF is derived for
colored input signals when noise is present as well as when noise is absent. In addition,
the marginal conditional PDF for WDs is derived. Finally, potential applications of the
derived conditional probability distributions are discussed and examples finding the
steady-state probability distributions are presented.

5.2.1. Conditional PDF derivation

5.2.1.1. Derivation of the joint conditional PDF

Start by rearranging equation [4.1] as

zi − z+i = βagixi(
L2

j=1

xjzj + v). [5.1]

Defining yi = (zi − z+i)/(βagi) and t =
3L

j=1 xjzj + v yields yi = xit. Note
that z is assumed to be a known vector independent of x and v. We know that the

www.it-ebooks.info

http://www.it-ebooks.info/

Probability Density of WD for PtLMS Algorithms 93

distribution of t is Gaussian since it is the sum of Gaussian random variables, i.e.
t ∼ N (0, σ2

t), where σ2
t = zTRz+ σ2

v .

Define the joint PDF of the random vector y = [y1, y2, . . . yL]
T as fy(ν) and the

PDF of t as ft(τ). Next, express the PDF of y in terms of the joint PDF of (x, t) as
follows:

fy(ν) =

� ∞

−∞
fy(ν|t = τ)ft(τ)dτ =

� ∞

−∞

1

|τ |L fx,t(ν/τ,τ)dτ. [5.2]

(x, t) is jointly Gaussian with PDF given by:

fx,t(ξ, τ) =
1

[(2π)L+1det(P)]
1
2

e−
1
2 [ξ

T ,τ]P−1[ξT ,τ]T

where P is the covariance matrix of [x, t]T and det(P) is the determinant of the matrix
P. The covariance matrix P can be written as:

P =

�
R Rz

zTR zTRz+ σ2
v

�
.

To calculate the determinant and the inverse of P, we rewrite P as:

P =

�
I 0
zT 1

� �
R 0
0T σ2

v

� �
I z
0T 1

�
.

The determinant can be found to be det(P) = σ2
vdet(R).

Next, the inverse of the covariance matrix can be calculated as:

P−1 =

�
I 0
zT 1

�−1 �R−1 0
0T 1

σ2
v

� �
I z
0T 1

�−1

.

It can be shown that�
I 0
zT 1

�−1

=

�
I 0

−zT 1

�
and �

I z
0T 1

�−1

=

�
I −z
0T 1

�
.

Using these relationship yields:

P−1 =

�
R−1 + zzT − z

σ2
v

−zT

σ2
v

1
σ2
v

�
. [5.3]

With this information, we can represent the joint PDF of y as:

fy(ν) =
2e

zT ν

σ2
v

(2π)
L+1
2 σv[det(R)]

1
2

� ∞

0

e
− 1

2{[νTR−1ν+
(νT z)2

σ2
v

] 1
τ2 + 1

σ2
v
τ2} dτ

τL
. [5.4]

For notational convenience, let α = νTR−1ν + (νT z)2

σ2
v

and γ = 1/σ2
v .

www.it-ebooks.info

http://www.it-ebooks.info/

94 PtNLMS Algorithms

5.2.1.1.1. Evaluation of integral [5.4]

To evaluate the integral in [5.4] substitute τ = eu, which yields:

I =

� ∞

−∞
e−

1
2{αe−2u+γe2u} e

udu

eLu
. [5.5]

Next, using the identity

αe−2u + γe2u = (α+ γ) cosh(2u)− (α− γ) sinh(2u) [5.6]

results in

I =

� ∞

−∞
e−

α+γ
2 cosh(2u)+α−γ

2 sinh(2u)−(L−1)udu. [5.7]

At this stage, let

α+ γ

2
= ρ cosh θ

and

α− γ

2
= ρ sinh θ.

The goal here is to find (ρ,θ) in terms of (α,γ) and then substitute these values
into [5.7]. Proceeding with this goal, we form

ρ2[cosh2(θ)− sinh2(θ)] =

"
α+ γ

2

(2

−
"
α− γ

2

(2

= αγ. [5.8]

We note that cosh2(θ)− sinh2(θ) = 1, hence we have ρ =
√
αγ.

Next, we solve for θ in terms of (α,γ), by starting with

tanh(θ) =
eθ − e−θ

eθ + e−θ
=

α− γ

α+ γ
.

After some algebraic manipulation, it yields:

θ =
1

2
ln

α

γ
.

Integral I may now be rewritten as:

I =

� ∞

−∞
e−

√
αγ cosh(1

2 ln α
γ) cosh(2u)+

√
αγ sinh(1

2 ln α
γ) sinh(2u)e−(L−1)udu.

=

� ∞

−∞
e−

√
αγ cosh[2(u− 1

4 ln α
γ)]−(L−1)udu. [5.9]

www.it-ebooks.info

http://www.it-ebooks.info/

Probability Density of WD for PtLMS Algorithms 95

Substituting

v = u− 1

4
ln

α

γ

into [5.9] gives

I = e−
L−1

4 ln α
γ

� ∞

−∞
e−

√
αγ cosh(2v)−(L−1)vdv. [5.10]

Finally, substituting ω = 2v, we have

I =
1

2

"
α

γ

(−L−1
4

� ∞

−∞
e−

√
αγ cosh(ω)− (L−1)

2 ωdω. [5.11]

From [MEC 66], the modified Bessel function of the second kind is defined as:

Kn(r) =

� ∞

0

e−r cosh(φ) cosh(nφ)dφ

=
1

2

� ∞

0

e−r cosh(φ)+nφdφ+
1

2

� ∞

0

e−r cosh(φ)−nφdφ

=
1

2

� 0

−∞
e−r cosh(φ)−nφdφ+

1

2

� ∞

0

e−r cosh(φ)−nφdφ

=
1

2

� ∞

−∞
e−r cosh(φ)−nφdφ. [5.12]

The modified Bessel function of the second kind for n = 0, 1, 2, 3 and 4 is shown
in Figure 5.1. There are also asymptotic forms of the modified Bessel function of the
second kind [ABR 72], such as:

For r >> |n2 − 1/4| : Kn(r)≈
0

π

2r
e−r

For 0 < r <
√
n+ 1 : Kn(r)≈ Γ(n)

2

"
2

r

(n

if n > 0.

Applying the result of [5.12] into [5.11], we have

I =
1

2

"
α

γ

(−L−1
4

� ∞

−∞
e−

√
αγ cosh(w)− (L−1)

2 wdw =

"
α

γ

(−L−1
4

KL−1
2

(
√
αγ). [5.13]

www.it-ebooks.info

http://www.it-ebooks.info/

96 PtNLMS Algorithms

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

r

K
n
(r
)

K
n
(r) vs. r

K
0
(r)

K
1
(r)

K
2
(r)

K
3
(r)

K
4
(r)

K
4
(r)

K
0
(r)

K
1
(r)

K
2
(r)

K
3
(r)

Figure 5.1. Modified bessel function of the second kind

Hence, [5.4] can be represented as:

fy(ν) =
2e

zT ν

σ2
v

�
σ2
v

�
νTR−1ν + (νT z)2

σ2
v

�	−L−1
4

(2π)
L+1
2 σv[det(R)]

1
2

×KL−1
2

 .
1

σ2
v

[νTR−1ν +
(νT z)2

σ2
v

]

&
. [5.14]

The final step involves substituting y = − 1
βa

G−1(z+ − z), which gives after
rearranging terms

f(z+|z) = 2e
− 1

βaσ2
v
zTG−1(z+−z)

(2πβa)
L+1
2 σv[det(R)]

1
2 det(G)

×
KL−1

2

"√
(z+−z)TG−1(σ2

vR
−1+zzT)G−1(z+−z)

βaσ2
v

(
[(z+ − z)TG−1(σ2

vR
−1 + zzT)G−1(z+ − z)]

L−1
4

. [5.15]

www.it-ebooks.info

http://www.it-ebooks.info/

Probability Density of WD for PtLMS Algorithms 97

5.2.1.1.2. Special case–input is white stationary noise

Assume that the input noise is white, such that R = σ2
xI, where I is the identity

matrix. Note that det(R) = σ2L
x . If this is the case, then [5.15] can be reduced to

f(z+|z) = 2e
− 1

βaσ2
v

3L

i=1

zi(z
+
i

−zi)

gi

(2πβa)
L+1
2 σvσL

x

,L
j=1 gj

×
KL−1

2

1

βaσ2
v

0
σ2
v

σ2
x

3L
i=1

(z+
i
−zi)2

g2
i

+
�3L

i=1
(z+

i
−zi)zi
gi

�2&
�

σ2
v

σ2
x

3L
i=1

(z+
i
−zi)2

g2
i

+
�3L

i=1
(z+

i
−zi)zi
gi

�2�L−1
4

. [5.16]

5.2.1.2. Derivation of the joint conditional PDF with no measurement noise

Now assume that there is no measurement noise so that yi = xit and
t =

3L
i=1 xizi, that is y = tx. Using this information, the joint PDF of (x, t) can be

written as:

fx,t(ξ, τ) = ft|x(τ |ξ)fx(ξ) = δ(τ −
L2

j=1

ξjzj)
1

(2π)
L
2 (detR)

1
2

e−
1
2ξ

TRξ [5.17]

where δ(a) is the Dirac delta function evaluated for the argument a. Substituting [5.17]
into [5.2] yields:

fy(ν) =

� ∞

−∞
fx,t(ν/τ,τ)

dτ

|τ |L =

� ∞

−∞

δ(τ −3L
j=1

νj
τ zj)

(2π)
L
2 (detR)

1
2

e−
1

2τ2 νTRν dτ

|τ |L . [5.18]

Next, we note that the argument of the Dirac delta function becomes zero when
τ = ±

√
νT z. In addition fy(ν) = 0 for νT z < 0. Using this fact, we can rewrite

[5.18] as:

fy(ν) =

� ∞

−∞

1
2δ(τ +

√
νT z) + 1

2δ(τ −
√
νT z)

(2π)
L
2 (detR)

1
2

e−
1

2τ2 νTRν dτ

|τ |L

=
1

(2π)
L
2 (detR)

1
2

e−
1
2ν

TR−1ν/νT z

(νz)
L
2

. [5.19]

www.it-ebooks.info

http://www.it-ebooks.info/

98 PtNLMS Algorithms

Next, we make the substitution y = − 1
βa

G−1(z+ − z) that yields:

f(z+|z) = e
1
2

(z+−z)T G−1R−1G−1(z+−z)

βazT G−1(z+−z)

(2πβa)
L
2 (detR)

1
2 detG [−zTG−1(z+ − z)]

L
2

[5.20]

if zTG−1(z+ − z) < 0, otherwise f(z+|z) = 0. Hence, the term zTG−1(z+ − z)
defines a boundary that divides the conditional PDF into two regions. This condition
also shows that the weighted update G−1(z+ − z) needs to be in a direction opposite
of z, otherwise f(z+|z) = 0.

5.2.1.3. Derivation of marginal conditional PDF

In this section, the derivation of the marginal conditional PDF is described. We
begin by expressing the fyi(νi) in terms of the PDF of (xi, t) as follows:

fyi(νi) =

� ∞

−∞
fyi(νi|t = τ)ft(τ)dτ =

� ∞

−∞

1

|τ |fxi,t(νi/τ,τ)dτ. [5.21]

Again (x, t) is jointly Gaussian with PDF given by:

fxi,t(ξi, τ) =
1

[(2π)2det(P̂)]
1
2

e−
1
2 [ξi,τ]P̂

−1[ξi,τ]
T

where P̂ is the covariance matrix of [xi, t]
T and det(P̂) is the determinant of the

matrix P̂. The covariance matrix P̂ is given by:

P̂ =

�
rii pi
pi zTRz+ σ2

v

�
.

where pi is the ith component of the vector p = Rz and rii = [R]ii. The covariance
matrix P̂ is positive definite if R is positive definite and σ2

v > 0.

With this information, we can represent the PDF of yi as:

fyi(νi) =
e

νipi
rii[z

T Rz+σ2
v]−p2

i

π
/

rii[zTRz+ σ2
v]− p2i

� ∞

0

e−
1
2{ α̂

τ2 +γ̂τ2} dτ
τ

[5.22]

where

α̂ =
ν2i (z

TRz+ σ2
v)

rii(zTRz+ σ2
v)− p2i

www.it-ebooks.info

http://www.it-ebooks.info/

Probability Density of WD for PtLMS Algorithms 99

and

γ̂ =
rii

rii(zTRz+ σ2
v)− p2i

.

This integral can be evaluated using the techniques presented in section 5.2.1.1.1.

After evaluating the integral in [5.22] and substituting yi = − (z+
i
−zi)

βagi
, the marginal

PDF is given by:

f(z+i |z) =
e
− 1

βagi

pi(z
+
i

−zi)

rii(z
T Rz+σ2

v)−p2
i

βagiπ
/
rii(zTRz+ σ2

v)− p2i

×K0

� /
rii(zTRz+ σ2

v)

rii(zTRz+ σ2
v)− p2i

|z+i − zi|
βagi

�
. [5.23]

The same result given in [5.23] can be obtained using [OMU 65] where the
distribution of the product of dependent Gaussian variables is calculated.

5.2.1.4. Derivation of the marginal conditional PDF with no measurement noise

Assume that there is no measurement noise. In this case, the covariance matrix
becomes:

P̂|σ2
v=0 =

�
rii pi
pi zTRz

�
=

�
eTi Rei eTi Rz
zTReTi zTRz

�
where ei denotes a vector with 1 at the ith component and 0 everywhere else. It can
be shown that P̂|σ2

v=0 is positive definite if z �= ziei. The proof starts by writing the
determinant and then applying Schwarz’s inequality:

det P̂|σ2
v=0 = eTi Reiz

TRz− (eTi Rz)2 ≥ eTi Reiz
TRz− eTi Reiz

TRz = 0.[5.24]

The only case when the equality holds is if z = ziei. The marginal PDF with no
measurement noise has three different forms.

5.2.1.4.1. Form 1

For z �= ziei, the marginal PDF is [5.23] with σ2
v set to zero.

5.2.1.4.2. Form 2

When z = 0, the marginal PDF becomes f(z+i |z = 0) = δ(z+i).

www.it-ebooks.info

http://www.it-ebooks.info/

100 PtNLMS Algorithms

5.2.1.4.3. Form 3

When z = ziei and zi �= 0, we can write

fx,t(ξ, τ) = ft|x(τ |ξ)fx(ξ) = δ(τ −
L2

j=1

ξjzj)fx(ξ) = δ(τ − ξizi)fx(ξ). [5.25]

Next, fxi,t(ξi, τ) can be found by integrating [5.25] over all xj where j �= i. This
operation yields:

fxi,t(ξi, τ) = δ(τ − ξizi)
1√
2πrii

e
− ξ2

i
2rii . [5.26]

Since yi = xit, we can write

fyi(νi) =

� ∞

−∞
fxi,t

�νi
τ
, τ
% dτ

|τ | =
� ∞

−∞
δ
�
τ − νi

τ
zi

% 1√
2πrii

e
− ν2

i
2riiτ

2
dτ

τ
. [5.27]

The argument of the Dirac delta function in [5.27] becomes zero when
τ = ±√

νizi. Also, fyi
(νi) = 0 for νizi < 0. After evaluating the integral in [5.27]

and performing the transformation of variables yi = − z+
i
−zi

βagi
yields:

f(z+i |z = eizi) =
e
− |z+

i
−zi|

2βagirii|zi|-
2βagiπriizi(zi − z+i)

[5.28]

if zi(z+i − zi) < 0, otherwise f(z+i |z) = 0 if zi(z+i − zi) ≥ 0.

5.3. Applications using the conditional PDF

The conditional PDFs derived in this chapter can be used in several applications.
For instance, the evolution of f [z(k)] may be calculated analytically or numerically.
In addition, the steady-state properties of f [z(k)] can be examined. Another
application is to use the knowledge of the conditional PDF to design an algorithm
that attempts to maximize the conditional PDF for the true weights at every time
instance. In this section, we will present several of these applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Probability Density of WD for PtLMS Algorithms 101

5.3.1. Methodology for finding the steady-state joint PDF using the conditional
PDF

In general, in order to find the steady-state PDF f (z), we need to solve the integral
equation given by:

f
!
z+

'
=

� ∞

−∞
. . .

� ∞

−∞
f
!
z+|z' f (z) dz [5.29]

where for an arbitrary vector a of length L the notation da represents da1da2 . . . daL.
This is a problem of finding the eigenfunction corresponding to the eigenvalue 1,
which can be solved numerically. Note that the conditional PDF f (z+| z) is stationary
and defines a Markov chain that is assumed to converge to a stationary Markov chain
whose state-space PDF f (z+) is the same as f (z) [DOO 53]. The derivation showing
that z(0), z(1), . . . , z(k), form a Markov chain follows next for the interested reader.

5.3.1.1. Markov chain proof

The goal is to show that

f [z(k + 1)|z(k), z(k − 1), . . . , z(0)] = f [z(k + 1)|z(k)] , [5.30]

that is z(0), z(1), . . . , z(k) form a Markov chain.

We begin by writing equation [4.1] in vector form as

z(k + 1) =
�
I− βaG(k)x(k)xT (k)

�
z(k)− βaG(k)x(k)v(k). [5.31]

Next, we express

f [z(k + 1)|z(k), z(k − 1), . . . , z(0)]

=

� ∞

−∞
. . .

� ∞

−∞
f [z(k + 1)|z(k), z(k − 1), . . . , z(0),x(k), v(k)]

×f [x(k), v(k)|z(k), z(k − 1), . . . , z(0)] dx(k)dv(k). [5.32]

Next, since we assumed x(k), v(k) and z(k), . . . , z(0) are jointly independent in
assumptions 5.2 and 5.3, we can write

f [x(k), v(k)|z(k), z(k − 1), . . . , z(0)] = f [x(k), v(k)] . [5.33]

In addition from [5.31] it is straightforward to show that

f [z(k + 1)|z(k), z(k − 1), . . . , z(0),x(k), v(k)]

= f [z(k + 1)|z(k),x(k), v(k)] . [5.34]

www.it-ebooks.info

http://www.it-ebooks.info/

102 PtNLMS Algorithms

Finally, substituting [5.33] and [5.34] into [5.32] yields:

f [z(k + 1)|z(k), z(k − 1), . . . , z(0)]

=

� ∞

−∞
. . .

� ∞

−∞
f [z(k + 1)|z(k),x(k), v(k)] f [x(k), v(k)] dx(k)dv(k)

=

� ∞

−∞
. . .

� ∞

−∞
f [z(k + 1),x(k), v(k)|z(k)] dx(k)dv(k)

= f [z(k + 1)|z(k)] Q.E.D. [5.35]

5.3.1.2. Steady-state PDF for a one-dimensional example

As an example, the steady-state PDF f [z(k)] based on the theory presented in this
section will be compared to a simulated steady-state PDF with the same parameters.
In this example, L = 1, σ2

x = 1, σ2
v = 0.1, βa = 0.1, w1 = 0.1, and the number

of Monte Carlo runs used was 107. The gain at any time k was given by g1[ŵ1(k)] =
1+ ln(1+µ|ŵ1(k)|), where µ = 10. Time-varying gain was chosen to accentuate the
shape of the steady-state PDF and because it is related to the gain in the MPNLMS
algorithm.

To find the steady-state PDF f (z1), we need to solve the integral equation given
by:

f
!
z+1

'
=

� ∞

−∞
f
!
z+1 |z1

'
f (z1) dz1, [5.36]

which will be solved numerically.

In Figure 5.2, three curves are shown. The first curve was generated by
numerically solving the eigenfunction problem associated with [5.36], the second
curve was generated through Monte Carlo simulations using the algorithm in
Table 5.1, and the third curve was generated by estimating the mean and variance of
the data obtained by the simulations and fitting a Gaussian curve to the data using
these estimates. The function f (z1) versus z1 was plotted for each curve. As it is
seen from the figure, the theoretical steady-state PDF and the steady-state PDF
obtained by simulation are very close to each other, while the steady-state PDF
obtained by Gaussian approximation has lighter tails and is not as peaked.

5.3.1.3. Steady-state PDF for a two-dimensional example

In this section, a two-dimensional (2D) example is presented. The input signal
was white with variance σ2

x = 1. The parameters used in this simulation were L =
2, σ2

x = 1, σ2
v = 0.1, βa = 5, w = [0, 0.01]T , ρ = 0.01, δp = 10−4 and the

number of Monte Carlo runs used was 107. The gain applied to the estimation of the ith
component of the impulse response at any time k was calculated using the MPNLMS

www.it-ebooks.info

http://www.it-ebooks.info/

Probability Density of WD for PtLMS Algorithms 103

gain logic with µ = 0.01. The MPNLMS gain logic is described in section 1.4.7
and Table 1.1 or alternatively [DEN 05]. In Figures 5.3, 5.4 and 5.5, the steady-state
PDFs of the 2D problem are shown using the histogram of simulated data, Gaussian
distribution fitted to the simulated data and solution of [5.36] corresponding to an
eigenvalue of 1, respectively. It is easily seen that the theoretical solution and the
histogram of simulated data both share similar forms while the Gaussian fitted to the
simulated data differs significantly.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

z
1

f(
z
1
)

Theoretical Distribution

Simulation Distribution

Simulation Distribution: Gaussian Fit Using Data

Simulation Distribution:
Gaussian Fit Using Data

Theoretical Distribution

Simulation Distribution

Figure 5.2. Steady-state PDF example for L = 1

−0.1
0

0.1

−0.1
0

0.1

0

500

1000

1500

2000

2500

z2

Distribution based on Histogram

z1

f(z
+ |
z)

Figure 5.3. Steady-state PDF resulting from the histogram of
simulated data for L = 2

www.it-ebooks.info

http://www.it-ebooks.info/

104 PtNLMS Algorithms

−0.1
0

0.1

−0.1
0

0.1

0

500

1000

1500

2000

2500

z2

Gaussian Distribution Fit to Simulated Data

z1

f(z
+ |
z)

Figure 5.4. Steady-state PDF resulting from gaussian fit to
simulated data for L = 2

−0.1
0

0.1

−0.1
0

0.1

0

500

1000

1500

2000

2500

z2

Theoretical Distribution

z1

f(z
+ |
z)

Figure 5.5. Theoretical steady-state PDF for L = 2

5.3.2. Algorithm based on constrained maximization of the conditional PDF

In this section, we apply a constrained optimization approach to the maximization
of the weight conditional PDF at any time step. The input signal is stationary, white
and has the properties as described in assumption 5.1, that is R(k) = σ2

xI. For this
application, we assume that

f(z+|z) ≈
L+

i=1

f(z+i |z),

www.it-ebooks.info

http://www.it-ebooks.info/

Probability Density of WD for PtLMS Algorithms 105

where f(z+i |z) is given by [5.23]. The same approach was taken using f(z+|z)
directly; however, no solution has been found to date.

Our goal is to find the gains g that maximize f(0|z) under the constraint that
gi ≥ 0 ∀i and

3L
i=1 gi = L. To facilitate the solution of this problem, we introduce:

1) gi = s2i and maximize with respect to si (real) to ensure gi ≥ 0;

2) the Lagrange multiplier λ to incorporate the constraint
3L

i=1 gi = L;

3) usage of the natural logarithm, ln(·), to aid in finding the solution.

We begin by defining the Lagrangian as:

Λ(s, λ) =

L2
i=1

ln f(z+i |z)|z+
i
=0 + λ

L2

i=1

s2i − L

&

=
L2

i=1

hi + λ

L2

i=1

s2i − L

&
[5.37]

where

hi =
ai
s2i

− ln bi − 2 ln si + lnK0(
ci
s2i

)

and K0 is the modified Bessel function of the second kind and of the order zero. We
have made the following definitions:

ai =
z2i

βa [σ2
x(||z||22 − z2i) + σ2

v]

bi = πσxβa

-
σ2
x(||z||22 − z2i) + σ2

v

ci =

-
||z||22 + σ2

v

σ2
x

βa

!
σ2
x(||z||22 − z2i) + σ2

v

' |zi|. [5.38]

Using the Lagrangian results in the following optimization problem:

max
s,
3L

i=1
s2
i
=L

ln f(0|z) = Λ (s, λ)|(s,λ)∈{stationary points of Λ}. [5.39]

www.it-ebooks.info

http://www.it-ebooks.info/

106 PtNLMS Algorithms

To solve this problem, we take the derivative of ln f(0|z) with respect to s and set
it to zero. This derivative is

∂hi

∂sj
=


0, i �= j

−2ai

s3
i

− 2
si

+ 2 ci
s3
i

K1(
ci
s2
i

)

K0(
ci
s2
i

)
, i = j

[5.40]

where K1 is the modified Bessel function of the second kind of first order and
∂K0(x)

∂x = −K1(x) [ABR 72].

At this point, we simplify this derivative by assuming ci/s
2
i is large enough such

that we can make the approximation

K1(
ci
s2
i

)

K0(
ci
s2
i

)
≈ 1

and then we have

∂Λ(s, λ)

∂si
= −2

ai
s3i

− 2

si
+ 2

ci
s3i

+ 2λsi.

Setting ∂Λ(s,λ)
∂si

= 0, we obtain two possible solutions for s2i ,

s2i,1 =
1 +

/
1− 4λ(ci − ai)

2λ

s2i,2 =
1−/

1− 4λ(ci − ai)

2λ
. [5.41]

Note that ci − ai is always non-negative. It is seen that the second solution s2i,2
provides maximum for λ ≤ 1/[4(ci−ai)]. For λ > 1/[4(ci−ai)], there is no solution.
To have a solution ∀i, λ ≤ 1/[4maxi(ci − ai)]. To find λ, we solve numerically3L

i=1 s
2
i,2 = L. Then, we can calculate the gains using s2i,2.

5.3.2.1. Arguments for solution existence

At this point, we still need to prove that a λ always exists such that
3L

i=1 s
2
i,2 = L.

We start by defining S =
3L

i=1 s
2
i,2. If we reorganize the terms of S, we find that

S =
L2

i=1

1−/
1− 4λ(ci − ai)

2λ

1 +
/
1− 4λ(ci − ai)

1 +
/

1− 4λ(ci − ai)

= 2
L2

i=1

ci − ai

1 +
/

1− 4λ(ci − ai)
. [5.42]

www.it-ebooks.info

http://www.it-ebooks.info/

Probability Density of WD for PtLMS Algorithms 107

Examining S, we note that the following limits exist:

lim
λ→−∞

S = 0

lim
λ→0

S =
L2

i=1

(ci − ai)

lim
λ→ 1

4maxi(ci−ai)

S ≥
L2

i=1

(ci − ai). [5.43]

In Figure 5.6, we show S(λ) for c − a = [1, 1, 1, 1, 2]T . From this figure, we see
that limλ→0 S =

3L
i=1(ci − ai).

−3 −2 −1 0 1 2
2

3

4

5

6

7

8

λ

S

← Σ
i=1

L
(c

i
− a

i
)

Figure 5.6. S(λ) versus λ

To prove that a solution always exists, we set out to prove that
3L

i=1(ci−ai) ≥ L.
To begin, we write

L2
i=1

(ci − ai) =

L2
i=1

|zi|(
-

||z||22 + σ2
v

σ2
x
− |zi|)

βaσ2
x(||z||22 − z2i +

σ2
v

σ2
x
)

=

L2
i=1

|zi|
βaσ2

x(
-

||z||22 + σ2
v

σ2
x
+ |zi|)

=
L2

i=1

|zi|
βaσ2

x

-
||z||22 + σ2

v

σ2
x
(1 + |zi|-

||z||22+
σ2
v

σ2
x

)
. [5.44]

www.it-ebooks.info

http://www.it-ebooks.info/

108 PtNLMS Algorithms

At this point, we recognize that

1 +
|zi|-

||z||22 + σ2
v

σ2
x

≤ 2.

In addition we approximate

βa =
β

σ2
xL+ δ

≈ β

σ2
xL

,

where 0 < β < 2. Note that in this chapter, we are dealing with the PtLMS algorithm.
However, we can relate the PtLMS algorithm to the PtNLMS algorithm via the relation
βa = β/(σ2

xL + δ) as was done in section 3.2 when using assumption 3.2. Applying
these approximations yields:

L2
i=1

(ci − ai)≥
3L

i=1 |zi|
2βaσ2

x

-
||z||22 + σ2

v

σ2
x

=
L

2β

||z||1-
||z||22 + σ2

v

σ2
x

. [5.45]

Before examining the general case, we describe what happens when σ2
v/σ

2
x = 0.

If this is the case, then we have

L2
i=1

(ci − ai) ≥ L

2β

||z||1
||z||2 . [5.46]

We know that ||z||1/||z||2 ≥ 1, therefore we can guarantee a solution when there
is no noise if 0 ≤ β ≤ 1/2. Typically, ||z||1/||z||2 >> 1 and hence the LHS of [5.46]
remains larger than L for all values of interest for β (i.e. 0 < β < 2).

When σ2
v/σ

2
x > 0, the condition for a solution can also be derived. The worst-case

scenario occurs when ||z||22 becomes very small. This happens when we approach
steady-state and allows us to use the approximation ||z||22 ≈ βσ2

v/(2σ
2
x). It is obtained

after equating [2.42], where now the adaptation stepsize is denoted by βa, and [3.1]
that gives:

E{||z||22} ≈ βaσ
2
vL

2

that is

E{||z||22} ≈ βσ2
vL

2σ2
x

.

www.it-ebooks.info

http://www.it-ebooks.info/

Probability Density of WD for PtLMS Algorithms 109

Next, we assumed ||z||22 ≈ E{||z||22}. The argument for solution existence further
goes as follows:

L2
i=1

(ci − ai)≥ L

2β

||z||1-
||z||22 + 2

β ||z||22

=
L

2β

||z||1
||z||2

1-
1 + 2

β

. [5.47]

We again use the fact that ||z||1/||z||2 ≥ 1. Then, our condition for the existence
of a solution becomes 0 < β <

√
5/2 − 1. But typically, ||z||1/||z||2 >> 1 and

therefore a solution can exist for all values of interest for β (i.e. 0 < β < 2).

5.3.2.2. Feasible conditional PDF constrained maximization algorithms

The algorithm proposed in the previous sections is not feasible. Specifically, we
need to know zi(k) = wi − ŵi(k) that requires the knowledge of the optimal impulse
response. The feasible version of the algorithm replaces zi(k) with the estimate
�E {zi(k)}. The estimate of �E {zi(k)} is performed using the implementation

discussed in section 4.1.3. To calculate ai, bi and ci in [5.38], we need to estimate

z2i (k) as well. We make this estimate using �E {zi(k)}
2
. Also, the estimate of |zi(k)|

in [5.38] is done using | �E {zi(k)}|.
In addition, other algorithms could be generated by improving the current estimate

of K1(
ci
s2
i

)/K0(
ci
s2
i

) ≈ 1. For instance, we examined approximating this ratio through
the parametric equation

K1(
ci
s2
i

)

K0(
ci
s2
i

)
≈ 1 + 1(

ci
s2i

)ς ,

where 0 < 1 < 1 and ς < 0. We were able to generate an alternate algorithm using
ς = −1 for any value of 1. However, the performance of this algorithm was equivalent
to using K1(

ci
s2
i

)/K0(
ci
s2
i

) ≈ 1, hence these results will not be presented here.

5.3.2.3. Results

We calculate the performance of several algorithms by computing the following
metric:

L(k) =
L2

i=1

ln f(zi(k + 1) = 0|z(k)).

In Figure 5.7, we compute and compare L(k) of four algorithms, namely the
NLMS, PNLMS, feasible conditional PDF maximizing algorithm and the

www.it-ebooks.info

http://www.it-ebooks.info/

110 PtNLMS Algorithms

non-feasible conditional PDF maximizing algorithm. Note that the non-feasible
conditional PDF maximizing algorithm uses the true value of w. The parameters
used in these simulations were as follows: σ2

x = 1, σ2
v = 10−4, βa = 10−4, ρ = 0.1,

δ = 0.01L and δp = 0.01. In addition, we chose α = 0.99, ω = 2 and used a
real-world impulse response with length L = 512, as shown in Figure 4.2(b). Next,
we compared the MSE of each algorithm in Figure 5.8.

1 2 3 4 5 6 7

x 10
4

−12

−10

−8

−6

−4

−2

0

2
x 10

4

ITERATIONS

L(k) COMPARISON

NLMS

PNLMS

Feasible Conditional PDF Maximization

Non−feasible Conditional PDF Maximization

NLMS

Non−feasible Conditional PDF Maximization

PNLMS

Feasible Conditional
PDF Maximization

Figure 5.7. L(k) for non-feasible conditional PDF maximizing, feasible
conditional PDF maximizing, NLMS and PNLMS algorithms

0 1 2 3 4 5 6 7

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

ITERATIONS

d
B

LEARNING CURVE COMPARISON

NLMS

PNLMS

Feasible Conditional PDF Maximization

Non−feasible Conditional PDF Maximization

NLMS

PNLMS

Non−Feasible Conditional PDF Maximization

Feasible Conditional PDF Maximization

Figure 5.8. MSE for non-feasible Conditional PDF maximizing, feasible
conditional PDF maximizing, NLMS and PNLMS algorithms

www.it-ebooks.info

http://www.it-ebooks.info/

Probability Density of WD for PtLMS Algorithms 111

We see that the metric L(k) is maximized for the non-feasible conditional PDF
maximizing algorithm. The feasible conditional PDF algorithm achieves its
maximum faster than the PNLMS and NLMS algorithms. However, the steady-state
value of L(k) achieved by the NLMS and PNLMS algorithms is greater than that of
the feasible conditional PDF algorithm. In addition, the feasible conditional PDF
maximizing algorithm improves the MSE performance. On the basis of these
preliminary results, it appears that the conditional PDF maximizing algorithm may
offer some performance benefits.

Initially, the metric L(k) also shows a precipitous drop for all of the algorithms
before recovering and reaching its steady-state value. To explain this phenomenon, we
first recall that our impulse response is sparse and most of the coefficients have true
values of zero. Hence, we initially have zi(k) = 0 for most coefficients. Therefore,
the probability of the WD being zero in the next step is high. Once we apply the
gain, the WD of these coefficients naturally drifts from the value of zero causing the
decrease in L(k). As time proceeds, the coefficients reach steady-state and the WD
has less variation about zero, increasing the value of L(k).

5.4. Summary

In this chapter, we described a closed-form solution for the joint conditional PDF
of the PtLMS algorithm. It was shown that the joint conditional PDF for the current
WDs given the prior WDs is not Gaussian and therefore the first and second
moments calculated by assuming Gaussianity are of dubious value for describing the
evolution of the WD in time. Two applications were subsequently proposed using the
joint conditional PDF of the PtLMS algorithm. The first application showed that it is
possible to find the steady-state PDF for WDs using the conditional PDF. Again the
steady-state PDF of the PtLMS algorithm was not Gaussian, which is often assumed
during the analysis. The second application proposed uses the constrained
maximization of the conditional PDF as the basis of a PtNLMS algorithm.
Simulation results were presented showing the strengths and weaknesses of the
proposed algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

6

Adaptive Step-Size PtNLMS Algorithms

In the previous chapters, we have proposed several schemes for gain allocation in PtNLMS
algorithms for fast decay at any time instant. For instance, the proposed gain allocation schemes
are based on (1) maximization of one-step decay of the mean square output error, (2)
maximization of one-step conditional probability density for true weight values, (3) maximization
of one-step decay of the MSWD. In this chapter, an adaptation of the µ-law for compression of
weight estimates using the output square error is presented. Additionally, we will propose a
simplification of the adaptive µ-law algorithm, which approximates the logarithmic function with a
piecewise linear function. It will be shown that there is no significant loss in performance.
Comparisons between the algorithms presented in earlier chapters with the µ-law compression
algorithm will be presented for sparse echo-cancellation scenarios as well as for white input,
color input and voice inputs.

6.1. Adaptation of µ-law for compression of weight estimates using the output
square error

The adaptive MPNLMS (AMPNLMS) algorithm is a modification of the
MPNLMS algorithm in section 1.4.7. In the MPNLMS algorithm, the parameter µ of
the µ-law compression is constant whereas in the AMPNLMS algorithm the
parameter µ is allowed to vary with time. This modification provides the algorithm
with more flexibility when attempting to minimize the MSE. We summarize the
calculation of the gain defining F -function done by the AMPNLMS algorithm in
Table 6.1, where the F -function is defined by (M). The algorithm begins by forming
an estimate of the MSE. The estimate of the MSE is given by ζ(k + 1) and is
obtained by time averaging, where 0 < ξ < 1 is a constant. The estimated MSE is
then scaled by the factor ν to form �̃L(k). The term “�̃L(k)” is the distance to the
steady-state MSE (noise floor) that is considered to be the achievement of
convergence when reached by the MSE. Next, the term “�c(k)” is calculated. The

www.it-ebooks.info

http://www.it-ebooks.info/

114 PtNLMS Algorithms

term “�c(k)” is the distance each WD must be from zero to achieve convergence.
Finally, the µ-law compression constant µ(k) is related to 1/�c(k).

ζ(k + 1) = ξζ(k) + (1− ξ)e2(k)

�̃L(k) = ζ(k+1)
ν

�c(k) =
-

�̃L(k)
Lσ2

x

µ(k) = 1
�c(k)

F [|ŵl(k)|] = ln[1 + µ(k)|ŵl(k)|] (M)

F [|ŵl(k)|] =
�
ln[µ(k)|ŵl(k)|] if |ŵl(k)| > �c(k)
0 if |ŵl(k)| < �c(k)

(E)

Table 6.1. AMPNLMS/AEPNLMS algorithm

The strategy employed by the AMPNLMS is to start out with a large value for
�c(k) and slowly decrease the required �-neighborhood to be reached by the converged
algorithm. In doing so, the AMPNLMS algorithm initially behaves like the PNLMS
algorithm and then transitions to perform like the NLMS algorithm as time progresses.
This transition reflects our knowledge of the impulse response. Initially, we know
that the impulse response is sparse and therefore we direct our resources in a manner
to most efficiently estimate the impulse response. As the time passes, our a priori
knowledge [which is ŵ(k)] becomes close to the true value of the impulse response
and the coefficient estimate errors are uniformly distributed along all coefficients, in
contrast to the initial situation. Therefore, it is advantageous to employ an NLMS-like
adaptation scheme.

Just as we modified the MPNLMS algorithm to create the AMPNLMS algorithm,
we can perform the same operation to create the adaptive EPNLMS (AEPNLMS)
algorithm from the EPNLMS algorithm in section 1.4.8. Once again we relate current
choice of �c(k) to the MSE. The calculation of the gain defining F -function for the
AEPNLMS algorithm is summarized in Table 6.1, where the F -function is defined
by (E).

The AEPNLMS algorithm is more sensitive to the choice of algorithm parameters
in comparison to the AMPNLMS algorithm.

6.2. AMPNLMS and AEPNLMS simplification

The segmented PNLMS (SPNLMS) algorithm was proposed in [DEN 06] as a
means to avoid the calculation of the logarithm function in the MPNLMS and
EPNLMS algorithms. The gain defining F -function is calculated based on

F [|ŵl(k)|, k] =
� |ŵl(k)|

κ if |ŵl(k)| < κ
1 if |ŵl(k)| ≥ κ.

www.it-ebooks.info

http://www.it-ebooks.info/

Adaptive Step-Size PtNLMS Algorithms 115

The SPNLMS algorithm is a two-segment linear approximation of the logarithm
function. In this case, the first linear segment has slope 1/κ over the range
0 < |ŵl(k)| < κ, while the second linear segment has slope zero for all |ŵl(k)| > κ.
In Figure 6.1, we show an example of the F -function for κ = 1/200 = 0.005. Note
that tuning the parameter κ can potentially improve algorithm performance. For the
impulse response chosen in [DEN 06], the parameter κ was set to 0.005, which
resulted in adequate learning curve performance.

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

x

F(
x)

F−function for SPNLMS Algorithm

Transition point = 0.005

Figure 6.1. SPNLMS F -function with κ = 0.005.

On the basis of this concept, we introduce the adaptive SPNLMS (ASPNLMS)
algorithm. The ASPNLMS algorithm attempts to avoid the computation of the
logarithm term in the AMPNLMS and AEPNLMS algorithms. The ASPNLMS
algorithm is given in Table 6.2 where we introduce the scaling factor Υ to adjust the
algorithm’s performance.

ζ(k + 1) = ξζ(k) + (1− ξ)e2(k)

�̃L(k) = ζ(k+1)
ν

�c(k) =
-

�̃L(k)
Lσ2

x

F [|ŵl(k)|] =

�
|ŵl(k)|
Υ�c(k)

if |ŵl(k)| < Υ�c(k)

1 if |ŵl(k)| ≥ Υ�c(k)

Table 6.2. ASPNLMS algorithm

www.it-ebooks.info

http://www.it-ebooks.info/

116 PtNLMS Algorithms

6.3. Algorithm performance results

In this section, we present the MSE versus iteration of the ASPNLMS,
AMPNLMS and AEPNLMS algorithms. The following input parameters are used in
these simulations, unless otherwise specified, β = 0.1, ρ = 0.01, σ2

x = 1,
σ2
v = 10−4, δ = 10−4, δp = 0.01, L = 512, ν = 1, 000 and ξ = 0.99. In all

simulations, the parameter κ = 0.005 is chosen for the SPNLMS algorithm. The
impulse response used in these simulations is given in Figure 4.2(b). We will examine
the performance of these algorithms for white, colored and speech input signals. The
effects of varying parameters ξ and ν on the ASPNLMS, AMPNLMS and
AEPNLMS algorithms will be examined. Also, it will be shown that the ASPNLMS
algorithm is very sensitive to Υ, while the AEPNLMS is very sensitive to ρ.

6.3.1. Learning curve performance of the ASPNLMS, AMPNLMS and AEPNLMS
algorithms for a white input signal

We begin by comparing the learning curve performance of the ASPNLMS,
AMPNLMS and AEPNLMS algorithms for a white input signal. For reference, we
also include the learning curves of the NLMS, PNLMS, MPNLMS, EPNLMS and
SPNLMS. The results of this simulation can be seen in Figure 6.2. We let Υ = 10 in
the ASPNLMS algorithm. The SPNLMS algorithm requires less computations and
outperforms both the MPNLMS and EPNLMS algorithm in this case. Similarly, the
ASPNLMS outperforms both the AMPNLMS and AEPNLMS algorithms as well as
requiring less computations. The SPNLMS and ASPNLMS do not always
outperform their counterpart algorithms but can with some tuning of the input
parameters. Specifically for the ASPNLMS algorithm, the Υ parameter can greatly
affect the algorithm performance.

0 0.5 1 1.5 2 2.5
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
LEARNING CURVE COMPARISON

ITERATIONS

dB

NLMS
PNLMS
MPNLMS
EPNLMS
AMPNLMS
AEPNLMS
SPNLMS
ASPNLMS

NLMS

ASPNLMS

EPNLMS

SPNLMS

AEPNLMS

MPNLMS

PNLMS

AMPNLMS

Figure 6.2. White input algorithm comparison

www.it-ebooks.info

http://www.it-ebooks.info/

Adaptive Step-Size PtNLMS Algorithms 117

6.3.2. Learning curve performance of the ASPNLMS, AMPNLMS and AEPNLMS
algorithms for a color input signal

Next, we compare all of the algorithms when operating in a colored input scenario.
The input process is given by:

x(k) = −γx(k − 1) + ψ(k),

where ψ(k) is a white noise process with variance σ2
ψ = 1 and γ ∈ (−1, 1).

In Figure 6.3, we plot all of the algorithms for γ = 0.9. The ASPNLMS
algorithm has the best performance followed by the AMPNLMS and
AEPNLMS algorithms. The adaptation of the µ(k) allows the AMPNLMS and
AEPNLMS algorithms to overcome the different input signal environment.

0 1 2 3 4 5 6 7
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
LEARNING CURVE COMPARISON

ITERATIONS

dB

NLMS
PNLMS
MPNLMS
EPNLMS
AMPNLMS
AEPNLMS
SPNLMS
ASPNLMS

NLMS

PNLMS
MPNLMS

EPNLMS

SPNLMS

AMPNLMS

ASPNLMS

AEPNLMS

Figure 6.3. Color input algorithm comparison

6.3.3. Learning curve performance of the ASPNLMS, AMPNLMS and AEPNLMS
algorithms for a voice input signal

Next, we compare the learning curve performance with a voice input signal. The
impulse used in this simulation is shown in Figure 4.12. The input speech signal is
shown in Figure 6.4(a) and the learning curve performance of the algorithms of
interest is shown in Figure 6.4(b), where algorithm results have been averaged using
100 uniform shifts of the input signal. The noise power was reduced to σ2

v = 10−8 in
this simulation. The algorithms used the proportionate affine projection method
introduced in [LIU 09] with P = 5.

www.it-ebooks.info

http://www.it-ebooks.info/

118 PtNLMS Algorithms

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time Sample

M
ag
nit
ud
e
of
In
pu
tS
pe
ec
h
Si
gn
al

a) Speech signal

0 1000 2000 3000 4000 5000 6000 7000
−90

−80

−70

−60

−50

−40

−30

−20

ITERATIONS

dB

LEARNING CURVE COMPARISON

NLMS
PNLMS
MPNLMS
EPNLMS
AMPNLMS
AEPNLMS
SPNLMS
ASPNLMS

AMPNLMS

MPNLMS
EPNLMS

ASPNLMS

NLMS

PNLMS

SPNLMS

AEPNLMS

b) Learning curve performance

Figure 6.4. Voice input algorithm comparison (averaged over 100 uniform
shifts of input signal)

www.it-ebooks.info

http://www.it-ebooks.info/

Adaptive Step-Size PtNLMS Algorithms 119

The learning curve comparison will be performed over two intervals. The first
interval is the initial convergence period, which is dominated by impulse response
learning errors. The second interval is the post-initial, which is dominated by
fluctuations around the true impulse response values. During the initial interval, the
algorithms have the following convergence performance ranked from best to worst
performance: AEPNLMS, PNLMS, SPNLMS, AMPNLMS, MPNLMS, EPNLMS,
ASPNLMS and finally NLMS. The convergence performance of the MPNLMS and
EPNLMS algorithms is nearly the same. During the post-initial interval the
algorithms have the following convergence ranked from best to worst again:
SPNLMS, AMPNLMS, MPNLMS, EPNLMS, PNLMS, ASPNLMS, NLMS and
finally AEPNLMS. The AMPNLMS, MPNLMS and EPNLMS algorithms have
nearly identical convergence performance in the post-initial interval. The post-initial
learning curve performance is more relevant when the impulse response does not
change.

6.3.4. Parameter effects on algorithms

In this section, we examine the effects of varying parameters used in the
AMPNLMS, AEPNLMS and ASPNLMS algorithms on their respective learning
curves. The impulse response used in simulations corresponds to a real-world
network echo path given in Figure 6.5. The input is zero-mean, stationary and white.

50 100 150 200 250 300 350 400 450 500

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

COEFFICIENT

A
M

P
L

IT
U

D
E

Figure 6.5. Impulse response

www.it-ebooks.info

http://www.it-ebooks.info/

120 PtNLMS Algorithms

6.3.4.1. ν parameter effects

We compare the estimated MSE performance of the AMPNLMS, AEPNLMS and
ASPNLMS using different values of ν in Figures 6.6(a)–6.6(c). Specifically, we have
chosen ν = 1, 10, 100and 1, 000. The values ξ = 0.99 and Υ = 10 are fixed in these
simulations. Of the four considered values for ν, the value ν = 1,000 provides all
three algorithms with the best performance.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

ITERATIONS

dB

LEARNING CURVE COMPARISON

AMPNLMS ν = 1000
AMPNLMS ν = 100
AMPNLMS ν = 10
AMPNLMS ν = 1

ν = 10

ν = 100

ν = 1000

ν = 1

a) AMPNLMS ν comparison

0 0.5 1 1.5 2 2.5
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

ITERATIONS

dB

LEARNING CURVE COMPARISON

AEPNLMS ν = 1000
AEPNLMS ν = 100
AEPNLMS ν = 10
AEPNLMS ν = 1

ν = 1

ν = 1000

ν = 10
ν = 100

b) AEPNLMS ν comparison

Figure 6.6. ν comparison

www.it-ebooks.info

http://www.it-ebooks.info/

Adaptive Step-Size PtNLMS Algorithms 121

0 0.5 1 1.5 2 2.5
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
LEARNING CURVE COMPARISON

ITERATIONS

dB
ASPNLMS ν = 1000
ASPNLMS ν = 100
ASPNLMS ν = 10
ASPNLMS ν = 1

ν = 1

ν = 10

ν = 100

ν = 1000

c) ASPNLMS ν comparison

Figure 6.6. (Continued) ν comparison

6.3.4.2. ξ parameter effects

Next, the sensitivity of the AMPNLMS, AEPNLMS and ASPNLMS algorithms
to the parameter ξ is examined. In Figures 6.7(a)–6.7(c), we compare the estimated
MSE performance of the AMPNLMS, AEPNLMS and ASPNLMS algorithms for a
fixed value of ν = 1, 000, and varying ξ = 0.5, 0.9, 0.99 and 0.999. Varying the value
of ξ does not have as great an effect on the MSE performance as the ν parameter does
have.

6.3.4.3. Effects of Υ on ASPNLMS algorithm

In Figure 6.8, we examine the effects of changing Υ on the learning curve of the
ASPNLMS algorithm. The MSE is plotted for Υ = 1, 10, 100 and 1,000 and the
parameters ξ = 0.99, ν = 1, 000 are fixed. The ASPNLMS algorithm convergence is
very sensitive to the choice of Υ. The optimal choice of Υ will be related to the impulse
response. This limitation is a potential shortcoming of the ASPNLMS algorithm.

6.3.4.4. Effects of ρ on AEPNLMS algorithm

In this section, the MSE performance of the AEPNLMS algorithm is plotted for
ρ = 0.1, 0.01, 0.001 and 0.0001 in Figure 6.9. In these simulations, the parameters
ξ = 0.99 and ν = 1, 000 are fixed. The AEPNLMS is very sensitive to the choice of
the ρ parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

122 PtNLMS Algorithms

0 0.5 1 1.5 2 2.5
x 104

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

ITERATIONS

dB

LEARNING CURVE COMPARISON

AMPNLMS ξ = 0.999
AMPNLMS ξ = 0.99
AMPNLMS ξ = 0.9
AMPNLMS ξ = 0.5

ξ = 0.999

ξ = 0.5, 0.9, 0.99
nearly equivalent performance

a) AMPNLMS ξ comparison

0 0.5 1 1.5 2 2.5
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

ITERATIONS

dB

LEARNING CURVE COMPARISON

AEPNLMS ξ = 0.999
AEPNLMS ξ = 0.99
AEPNLMS ξ = 0.9
AEPNLMS ξ = 0.5

ξ = 0.999

ξ = 0.9

ξ = 0.99

ξ = 0.5

b) AEPNLMS ξ comparison

0 0.5 1 1.5 2 2.5
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
LEARNING CURVE COMPARISON

ITERATIONS

dB

ASPNLMS ξ = 0.999
ASPNLMS ξ = 0.99
ASPNLMS ξ = 0.9
ASPNLMS ξ = 0.5

ξ = 0.999 ξ = 0.5, 0.9, and 0.99
nearly equivalent performance

c) ASPNLMS ξ comparison

Figure 6.7. ξ comparison

www.it-ebooks.info

http://www.it-ebooks.info/

Adaptive Step-Size PtNLMS Algorithms 123

0 0.5 1 1.5 2 2.5
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
LEARNING CURVE COMPARISON

ITERATIONS

dB
ASPNLMS = 1
ASPNLMS = 10
ASPNLMS = 100
ASPNLMS = 1000

= 1000

= 1

= 10

= 100

Figure 6.8. ASPNLMS Υ comparison

0 0.5 1 1.5 2 2.5
x 104

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

ITERATIONS

dB

LEARNING CURVE COMPARISON

AEPNLMS ρ = 0.1
AEPNLMS ρ = 0.01
AEPNLMS ρ = 0.001
AEPNLMS ρ = 0.0001

ρ = 0.001

ρ = 0.0001

ρ = 0.1

ρ = 0.01

Figure 6.9. AEPNLMS ρ comparison

www.it-ebooks.info

http://www.it-ebooks.info/

124 PtNLMS Algorithms

6.4. Summary

In this chapter, three new PtNLMS algorithms have been discussed. The
AMPNLMS algorithm is a modification of the MPNLMS where the parameter µ is
allowed to vary with time. The adaptive µ parameter is related to the MSE. In doing
so, the �-neighborhood of the unknown impulse response, which the algorithm is
required to converge to, is slowly tightened as time passes. The tightening is
controlled by the evolving MSE. This modification results in superior MSE
convergence. Similarly, the AEPNLMS algorithm is a modification of the EPNLMS
algorithm with an adaptive µ parameter. This algorithm shows improvement with
respect to the EPNLMS algorithm; however, like the EPNLMS algorithm, the
AEPNLMS algorithm displays sensitivity to the choice of algorithm parameter ρ.
This limitation implies that more parameter tuning is required to achieve acceptable
learning curve performance. The final algorithm introduced in this chapter,
ASPNLMS, is a simplification of the AMPNLMS and AEPNLMS algorithms. The
ASPNLMS algorithm avoids the usage of the logarithm function by approximating
the logarithm with a two-segment linear function. This algorithm reduces the
computational complexity and can offer superior convergence performance to the
AMPNLMS and AEPNLMS algorithms. The drawback of the ASPNLMS algorithm
is its sensitivity to the choice of parameter Υ.

www.it-ebooks.info

http://www.it-ebooks.info/

7

Complex PtNLMS Algorithms

The complex least mean square (cLMS) adaptive filter [WID 75] was originally proposed to extend
the LMS algorithm from real-valued signals to complex-valued signals. In this chapter, the PtNLMS
algorithm is extended from real-valued signals to complex-valued signals. The resulting algorithm
is named the complex PtNLMS (cPtNLMS) [WAG 12b] algorithm. The cPtNLMS algorithm updates
the real and imaginary parts of the unknown impulse response by applying separate real-valued
gains.

The cPtNLMS algorithm is derived as a special case of the complex
proportionate-type affine projection (cPtAP) algorithm. The cPtAP algorithm is of
practical importance in communication systems, for example, when working with
microwave radio channels [SPI 96b] or cable modem channels [SPI 96a]. There, the
ability to estimate an unknown complex impulse response is required and the input
signal is complex, colored, and has an unknown covariance matrix. The cPtAP
algorithm can also be used when the input signal has non-stationary statistics, such as
speech. Motivated by the derivation of the affine projection adaptive filter (APAF)
[HAY 02], the cPtAP algorithm is derived by minimizing the weighted squared
Euclidean norm of the change in the weight vector subject to the constraints that
multiple a posteriori output errors are equal to zero.

Several simplifications of the cPtNLMS and cPtAP algorithms will be proposed.
In addition, the complex water-filling (cWF) gain allocation algorithm for white input
signals is proposed and derived, followed by the cWF gain allocation algorithm for
colored input signals.

The final section of this chapter deals with the topic of self-orthogonalizing
adaptive filters [HAY 02]. The concept behind the self-orthogonalizing adaptive filter
involves, first, whitening the input signal and then applying the cLMS filter to the
whitened signal. This approach will be extended from the cLMS algorithm to

www.it-ebooks.info

http://www.it-ebooks.info/

126 PtNLMS Algorithms

cPtNLMS algorithms. The resulting algorithm is named the transform domain
cPtNLMS (TD-cPtNLMS) algorithm.

7.1. Complex adaptive filter framework

All signals are complex throughout this chapter. Let us assume there is some
complex input signal denoted as x(k) for time k that excites an unknown system with
complex impulse response w. Let the output of the system be y(k) = xH(k)w(k),
where x(k) = [x(k), x(k − 1), . . . , x(k − L + 1)]T and L is the length of the filter.
The measured output of the system d(k) contains complex-valued measurement
noise v(k) and is equal to the sum of y(k) and v(k). The impulse response of the
system is estimated with the adaptive filter coefficient vector ŵ(k), which also has
length L. The output of the adaptive filter is given by ŷ(k) = xH(k)ŵ(k). The error
signal e(k) is equal to the difference of the measured output, d(k) and the output of
the adaptive filter ŷ(k). Finally, we define j =

√−1.

7.2. cPtNLMS and cPtAP algorithm derivation

Because the cPtAP algorithm is an extension of the cPtNLMS algorithm from a
single constraint to multiple constraints, the derivations of both algorithms are very
similar. Therefore, only the derivation of the cPtAP algorithm will be presented in this
section. When it is appropriate, differences between the derivations of the cPtNLMS
and cPtAP algorithms will be pointed out and explained.

The estimated weight vector can be written in terms of real and imaginary parts
ŵ = ŵR + jŵI , where ŵR and ŵI are vectors of length L consisting of the real and
imaginary components of ŵ, respectively. Motivated by the derivation of the APAF
and NLMS algorithms, let us consider the following minimization problem:

min
ŵ+

(ŵ+
R − ŵR)

TM−1
R (ŵ+

R − ŵR)

+(ŵ+
I − ŵI)

TM−1
I (ŵ+

I − ŵI) [7.1]

such that

d=


d(n)
d(n− 1)
...
d(n− P + 1)

=

xH(n)
xH(n− 1)
...
xH(n− P + 1)

 ŵ+=XHŵ+, [7.2]

www.it-ebooks.info

http://www.it-ebooks.info/

Complex PtNLMS Algorithms 127

where MR and MI are real-valued, non-negative and diagonal matrices, which have
the property that Tr[MR] = Tr[MI] = L and P is a positive integer. For P = 1 the
constraint is reduced to:

d = xH(n)ŵ+

and the solution to this problem results in the cPtNLMS algorithm.

The method of Lagrange multipliers will be used to replace this constrained
minimization problem with one of unconstrained minimizations. Prior to performing
this step the following definitions are introduced to aid in the derivation. Let

ω̂ =

�
ŵR

ŵI

�
M =

�
MR 0
0 MI

�
. [7.3]

The following form of XHŵ will also be employed:

XHŵ= (XT
R − jXT

I)(ŵR + jŵI)

=XT
RŵR +XT

I ŵI + jXT
RŵI − jXT

I ŵR

= [XT
R, X

T
I]

�
ŵR

ŵI

�
+ j[−XT

I , X
T
R]

�
ŵR

ŵI

�
= [XH , jXH]

�
ŵR

ŵI

�
= [XH , jXH]ω̂. [7.4]

Using these definitions the minimization problem can be rewritten as:

min
ω̂+

J(ω̂+) = (ω̂+ − ω̂)TM−1(ω̂+ − ω̂)

+λT
!
d− [XH , jXH]ω̂+

'
+ λH

!
d∗ − [XT ,−jXT]ω̂+

'
, [7.5]

where λ is the Lagrangian multiplier vector of length L. Next taking the derivative of
J(ω̂+) with respect to ω̂+ and setting the result to zero yields:

∂J(ω̂+)

∂ω̂+
= 2M−1(ω̂+ − ω̂)−

�
X∗

jX∗

�
λ−

�
X

−jX

�
λ∗ = 0. [7.6]

Multiplying [7.6] from the left by M and rearranging terms allows us to write:

2(ω̂+ − ω̂) =M

�
X∗

jX∗

�
λ+M

�
X

−jX

�
λ∗. [7.7]

www.it-ebooks.info

http://www.it-ebooks.info/

128 PtNLMS Algorithms

Next defining the error vector as:

e =


d(n)− xH(n)ŵ(n)

d(n− 1)− xH(n− 1)ŵ(n)
...

d(n− P + 1)− xH(n− P + 1)ŵ(n)

 = d−XHŵ [7.8]

and combining with [7.4] results in:�
XH , jXH

�
(ω̂+ − ω̂) = e�

XT ,−jXT
�
(ω̂+ − ω̂) = e∗.

In addition, the following definitions are employed:

A=XT (MR +MI)X
∗

B=XT (MR −MI)X

to form the following linear system of equations:

2

�
e∗

e

�
=

�
A B
B∗ A∗

� �
λ
λ∗

�
. [7.9]

Matrix multiplying equation [7.9] from the left with:�
I −B [A∗]−1

0 I

�
[7.10]

yields:

2

�
I −B [A∗]−1

0 I

� �
e∗

e

�
=

�
A−B [A∗]−1

B∗ 0
B∗ A∗

� �
λ
λ∗

�
. [7.11]

By inspection of [7.11] the solution for λ is given by:

λ= 2
�
A−B [A∗]−1

B∗
	−1 �

e∗ −B [A∗]−1
e
	
. [7.12]

Note that for P = 1, equation [7.12] is reduced to:

λ= 2
xH(MR +MI)xe

∗ − xT (MR −MI)xe

[xH(MR +MI)x]
2 − |xT (MR −MI)x|2

. [7.13]

www.it-ebooks.info

http://www.it-ebooks.info/

Complex PtNLMS Algorithms 129

Returning our attention to [7.7], this equation can be rewritten as:

2(ω̂+ − ω̂) =

�
MRX

∗

jMIX
∗

�
λ+

�
MRX

−jMIX

�
λ∗. [7.14]

Using the definition in [7.3] allows us to write:

2(ŵ+
R − ŵR) =MRX

∗λ+MRXλ∗

2(ŵ+
I − ŵI) = jMIX

∗λ− jMIXλ∗. [7.15]

Next using [7.15] we form:

ŵ+ − ŵ= (ŵ+
R − ŵR) + j(ŵ+

I − ŵI)

=
1

2
MRX

∗λ+
1

2
MRXλ∗ − 1

2
MIX

∗λ+
1

2
MIXλ∗

=
1

2
(MR −MI)X

∗λ+
1

2
(MR +MI)Xλ∗. [7.16]

Next the step-size parameter β is introduced to allow control over the update. The
resulting cPtAP algorithm with separate gains for real and imaginary coefficients is
given by:

ŵ+ = ŵ +
β

2
(MR −MI)X

∗λ+
β

2
(MR +MI)Xλ∗. [7.17]

The cPtNLMS is obtained by setting P = 1 and substituting [7.13] into [7.16]
yields:

ŵ+ = ŵ [7.18]

+β

�
xH(MR +MI)xe

∗ − xT (MR −MI)xe
�

[xH(MR +MI)x]
2 − |xT (MR −MI)x|2

(MR −MI)x
∗

+β

�
xH(MR +MI)xe− xH(MR −MI)x

∗e∗
�

[xH(MR +MI)x]
2 − |xT (MR −MI)x|2

(MR +MI)x.

7.2.1. Algorithm simplifications

The cPtAP algorithm given in [7.17] can be simplified under certain conditions.
For instance, it is straightforward to show that by setting MR = MI = G in [7.12],
λ is reduced to:

λ =
�
XTGX∗�−1

e∗ [7.19]

www.it-ebooks.info

http://www.it-ebooks.info/

130 PtNLMS Algorithms

and hence [7.17] can be rewritten as:

ŵ+ = ŵ + βGX
�
XHGX

�−1
e. [7.20]

As it turns out [7.20], with β = 1, is the solution to the following minimization:

min
ŵ+

(ŵ+ − ŵ)HG−1(ŵ+ − ŵ), such that d = XHŵ+, [7.21]

where G is the step-size control matrix. This version of the cPtAP algorithm uses
one real-valued gain to simultaneously update both the real and imaginary parts of
the estimated coefficient. Similarly, the cPtNLMS algorithm given in [7.18] can be
simplified by setting MR = MI = G and results in:

ŵ+ = ŵ + β
Gxe

xHGx
. [7.22]

Equation [7.22] is the solution to the following minimization:

min
ŵ+

(ŵ+ − ŵ)HG−1(ŵ+ − ŵ), such that d = xHŵ+. [7.23]

A separate simplification to [7.17] can be made if it is assumed that:

XT (MR −MI)X ≈ 0. [7.24]

Using this approximation [7.12] is reduced to:

λ = 2
�
XT (MR +MI)X

∗�−1
e∗. [7.25]

Combining [7.17] and [7.25] results in:

ŵ+ = ŵ + βMR

�
X∗A−1e∗ +X(A∗)−1e

�
+βMI

�
X(A∗)−1e−X∗A−1e∗

�
. [7.26]

This version of the cPtAP algorithm reduces the computational complexity of
[7.17] and will be referred to as the simplified cPtAP algorithm. Similarly, the
cPtNLMS algorithm in [7.18] can be simplified if it is assumed that:

xT (MR −MI)x ≈ 0. [7.27]

Using this approximation [7.18] is reduced to:

ŵ+ = ŵ + β
MR(xe+ x∗e∗) +MI(xe− x∗e∗)

xH(MR +MI)x
. [7.28]

This version of the cPtNLMS algorithm will be referred to as the simplified
cPtNLMS algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

Complex PtNLMS Algorithms 131

7.2.2. Alternative representations

There are alternative ways to represent [7.16]. For instance, we could rearrange
terms such that:

ŵ+ − ŵ = (ŵ+
R − ŵR) + j(ŵ+

I − ŵI)

= MR
Xλ∗ +X∗λ

2
+MI

Xλ∗ −X∗λ
2

= MRRe(Xλ∗) + jMI Im(Xλ∗). [7.29]

Using [7.29] and introducing the step-size parameter β will result in an alternate
form of the cPtAP algorithm. In this version of the cPtAP algorithm, the estimated
impulse response coefficients are updated by one purely real term multiplying MR and
another purely imaginary term multiplying MI . Equivalent results can be obtained for
the cPtNLMS algorithm by setting P = 1.

7.2.3. Stability considerations of the cPtNLMS algorithm

We will now prove that the denominator term in [7.18] is always non-negative. The
denominator can be written as:

�
xH(MR +MI)x

�2 − |xT (MR −MI)x|2

= xHMRxx
HMRx− xTMRxx

HMRx
∗

+xHMIxx
HMRx+ xTMIxx

HMRx
∗

+xHMRxx
HMIx+ xTMRxx

HMIx
∗

+xHMIxx
HMIx− xTMIxx

HMIx
∗.

This can be subsequently written as:

�
xH(MR +MI)x

�2 − |xT (MR −MI)x|2

= xHMRxx
HMRx− |xTMRx|2

+xHMIxx
HMRx+ 2Re

�
xTMIxx

HMRx
∗�

+xHMRxx
HMIx− |xTMIx|2

+xHMIxx
HMIx.

www.it-ebooks.info

http://www.it-ebooks.info/

132 PtNLMS Algorithms

In the following, we used the inequalities:

|xTMRx| = |
L2

i=1

[MR]ii x
2
i | ≤

L2
i=1

[MR]ii |xi|2 = xHMRx [7.30]

|xTMIx| = |
L2

i=1

[MI]ii x
2
i | ≤

L2
i=1

[MI]ii |xi|2 = xHMIx [7.31]

Re
�
xTMIxx

HMRx
∗�≥− |xTMIx||xHMRx

∗| [7.32]

to show that:�
xH(MR +MI)x

�2 − |xT (MR −MI)x|2

≥ 2xHMRxx
HMIx− 2xHMRxx

HMIx = 0. [7.33]

7.2.4. Calculation of stepsize control matrix

In this section, several examples of cPtNLMS algorithms are shown. The results
presented here can be readily extended to the cPtAP algorithm as well. The calculation
of the step-size control matrix for the cPtNLMS algorithm using one real-valued gain
per coefficient is the same as shown for the PtNLMS algorithm in Table 1.1.

FR[|ŵR,l(k)|, k] = Specified by the user
FI [|ŵI,l(k)|, k] = Specified by the user
γmin,R(k) = ρ max{δp, FR[|ŵR,1(k)|, k], . . . , FR[|ŵR,L(k)|, k]}
γmin,I(k) = ρ max{δp, FI [|ŵI,1(k)|, k], . . . , FI [|ŵI,L(k)|, k]}
γR,l(k) = max{γmin,R(k), FR[|ŵR,l(k)|, k]}
γI,l(k) = max{γmin,I(k), FI [|ŵI,l(k)|, k]}
mR,l(k) = γR,l(k)

1
L

3L

i=1
γR,i(k)

mI,l(k) = γI,l(k)
1
L

3L

i=1
γI,i(k)

MR(k) = Diag{mR,1(k), . . . ,mR,L(k)}
MI(k) = Diag{mI,1(k), . . . ,mI,L(k)}

Table 7.1. Step-size control matrix for cPtNLMS algorithm using separate
real-valued gains for coefficients’ real and imaginary parts

The calculation of the step-size control matrices for the cPtNLMS algorithm
using separate real-valued gains for coefficients real and imaginary parts is shown in
Table 7.1. In this case, the user specifies two functions FR[|ŵR,l(k)|, k] and
FI [|ŵI,l(k)|, k], which govern how the real and imaginary parts of a coefficient are
updated. Next a minimum gain for the real and imaginary parts is calculated,

www.it-ebooks.info

http://www.it-ebooks.info/

Complex PtNLMS Algorithms 133

γmin,R(k) and γmin,I(k), respectively. Finally, the step-size control matrix for the
real MR(k) and imaginary MI(k) parts are obtained. Some examples of the terms
FR[|ŵR,l(k)|, k] and FI [|ŵI,l(k)|, k] include FR[|ŵR,l(k)|, k] = |ŵR,l(k)| and
FI [|ŵI,l(k)|, k] = |ŵI,l(k)|. This yields the complex PNLMS algorithm using
separate gains for coefficient real and imaginary parts. In a similar manner, the
complex MPNLMS algorithm can be created by setting FR[|ŵR,l(k)|, k]
= ln(1 + µ|ŵR,l(k)|) and FI [|ŵI,l(k)|, k] = ln(1 + µ|ŵI,l(k)|).

The cPtAP algorithms presented in the subsequent section’s simulations are listed
next. The complex affine projection (cIAP) algorithm uses G = I, where I is the
identity matrix. The complex proportionate affine projection (cPAP) algorithm using
one gain to simultaneously update the real and imaginary coefficients (cPAP
one-gain) employs the gain control logic function F [|ŵl(k)|, k] = |ŵl(k)| for
l = 1, 2, . . . , L. The cPAP algorithm using separate gains to update the real and
imaginary coefficients (cPAP two-gain) employs the gain control logic functions
FR[|ŵR,l(k)|, k] = |ŵR,l(k)| and FI [|ŵI,l(k)|, k] = |ŵI,l(k)| for l = 1, 2, . . . , L.
Finally, the simplified cPAP algorithm using separate gains to update the real and
imaginary coefficients (simplified cPAP) employs the same gain control logic
functions as the cPAP two-gain algorithm.

In non-stationary environments, the inversion of the term:

A−B [A∗]−1
B∗ [7.34]

in [7.12] may cause numerical difficulties. To guard against such a possibility, we add
a small term δI prior to performing the inversion, where δ > 0 . This modification is
referred to as regularization [HAY 02]. Regularization is performed on cPtAP
algorithms for which simulation results are presented. Note that the size of the term
in [7.34] is P × P . In practice, P is typically less than 10, hence the inversion of
[7.34] is not computationally burdensome.

7.3. Complex water-filling gain allocation algorithm for white input signals: one
gain per coefficient case

In this section, the (cWF) gain allocation algorithm with one gain per coefficient,
under the assumption of white input signals, is derived. The cWF gain allocation
algorithm for white input signals is derived by minimizing the MSE at each time
step. After the derivation of the cWF gain allocation algorithm, the implementation
of the proposed algorithm is discussed.

7.3.1. Derivation

The cWF gain allocation algorithm is derived under the assumptions 2.1, 4.1, and
the following two assumptions that are complex signal counterparts of assumptions
2.2 and 3.1.

www.it-ebooks.info

http://www.it-ebooks.info/

134 PtNLMS Algorithms

ASSUMPTION 7.1.– The measurement noise v(k) is a white complex circular
stationary process with zero-mean, variance σ2

v , and it is independent of the input.

ASSUMPTION 7.2.– The input signal is a white complex circular Gaussian stationary
random process with zero-mean and variance σ2

x.

Next we define the weight deviation as z = w− ŵ. Using this definition the error
can be written as:

e = xHw − xHŵ + v = xHz+ v. [7.35]

This implies that:

|e|2 = e∗e= (xHz+ v)∗(xHz+ v)

= zHxxHz+ v∗xHz+ vxT z∗ + v∗v. [7.36]

Next, taking the expectation of [7.36] and using assumptions 2.1, 7.1, and 7.2
yield:

J = E{|e|2} = σ2
xE{zT z∗}+ σ2

v = σ2
x

L2
i=1

E{|zi|2}+ σ2
v . [7.37]

The goal then becomes to minimize J at each time step by choosing the step-
size control matrix G appropriately. Next we will express the MSWD in terms of G.
Before doing this, note that recursion in [7.22] can be simplified by introducing the
approximation:

xHGx =
L2

i=1

|xi|2gi ≈ σ2
x

L2
i=1

gi = σ2
xL. [7.38]

Here the value |xi|2 has been replaced by its expected value E{|xi|2} = σ2
x and

then the property that the sum of the gains equals L has been employed. The last
approximation is an extension of assumption 3.2 to complex-valued signals. Using
this approximation and the definition, βa = β/(σ2

xL), it is possible to write:

z+ = z− βaGxxHz− βaGxv. [7.39]

In this form, the algorithm can be interpreted as a cPtLMS algorithm. Writing this
recursion in component-wise form and taking the expectation yield:

z+l = zl − βaglxl

L2
i=1

x∗
i zi − βaglxlv [7.40]

E
�
z+l

�
=E {zl} − βaσ

2
xglE {zl} . [7.41]

www.it-ebooks.info

http://www.it-ebooks.info/

Complex PtNLMS Algorithms 135

Next we form the component-wise square weight deviation:

|z+l |2 = |zl|2 − βaglxl

L2
i=1

x∗
i ziz

∗
l − βaglx

∗
l

L2
i=1

xiz
∗
i zl

−βaglxlvz
∗
l − βaglx

∗
l v

∗zl

+β2
ag

2
l |xl|2

L2
i=1

xiz
∗
i v + β2

ag
2
l |xl|2

L2
i=1

x∗
i ziv

∗

+β2
ag

2
l |xl|2

L2
r=1

L2
s=1

xrz
∗
rx

∗
szs + β2

ag
2
l |xl|2|v|2. [7.42]

Taking the expectation results in:

E
�|z+l |2� = E

�|zl|2�− 2βaglσ
2
xE

�|zl|2�+ β2
ag

2
l σ

2
xσ

2
v

+β2
ag

2
l

L2
r=1

L2
s=1

z∗rzsE{xlx
∗
l xrx

∗
s}. [7.43]

The expectation in the last term is given by [SAY 03]:

E{xlx
∗
l xrx

∗
s} =

 σ4
x, r = s �= l

2σ4
x, r = s = l

0, otherwise
. [7.44]

Therefore, [7.43] becomes:

E
�|z+l |2� = E

�|zl|2�− 2βaglσ
2
xE

�|zi|2�+ β2
ag

2
l σ

2
xσ

2
v

+β2
ag

2
l σ

4
x

E
�|zl|2�+

L2
i=1

E
�|zi|2�& . [7.45]

At this point we define:

cl ≡ 2βaσ
2
xE

�|zl|2�
ql ≡ 2β2

aσ
4
x

E
�|zl|2�+

L2
i=1

E
�|zi|2�+

σ2
v

σ2
x

&
Q=Diag(q).

www.it-ebooks.info

http://www.it-ebooks.info/

136 PtNLMS Algorithms

Then, we can recast the minimization problem as:

min
g

1T g=L
gi≥0 ∀ i

J+ − σ2
v

σ2
x

−
L2

i=1

E
�|zi|2� = min

g

1T g=L
gi≥0 ∀ i

�
−cTg +

1

2
gTQg

�
. [7.46]

The minimization then proceeds as it did in the real-valued case (see 4.1.1 or
[WAG 09]).

7.3.2. Implementation

To find �E {zi} we rewrite the error as e =
3L

j=1 x
∗
jzj + v and proceed as in

section 4.1.3.

7.4. Complex colored water-filling gain allocation algorithm: one gain per
coefficient case

In this section, the complex colored water-filling (cCWF) gain allocation
algorithm is proposed. The cCWF extends the cWF gain allocation algorithm to
colored input signals with no restrictions on the covariance or pseudo-covariance
matrices. The cCWF is derived by minimizing the mean square weight deviation.

7.4.1. Problem statement and assumptions

We seek the optimal gain at each time step k. Our approach to this problem is to
minimize the MSWD with respect to the gain under two constraints. The two
constraints that are to be satisfied are gi(k) ≥ 0 ∀ i, k and

3L
i=1 gi(k) = L ∀ k.

Note that in addition to assumptions 2.1, 4.3 and 7.1, we have:

ASSUMPTION 7.3.– The input signal is a stationary Gaussian noise process with
zero-mean, covariance R = E{xxH} and pseudo-covariance T = E{xxT }. Let
σ2
x = [R]ii ∀ i.

ASSUMPTION 7.4.–
3L

l=1 |xl|2gl + δ is constant for all times.

This latter assumption is the version of assumption 3.2 for the complex input. For

L >>
-
gT (R�R∗ +T�T∗)g

1
σ2
x [7.47]

www.it-ebooks.info

http://www.it-ebooks.info/

Complex PtNLMS Algorithms 137

the standard deviation of the term
3L

l=1 |xl|2gl + δ becomes much smaller than the
expected value. It can be shown that a sufficient condition for this to happen is that the
support S satisfies:

S >>
λmax(R�R∗ +T�T∗)

σ4
x

,

where S is defined by [4.34] and λmax is the largest eigenvalue of R�R∗ +T�T∗.
The condition in [7.47] is satisfied for large values of L and g that is not extremely
sparse. Hence we can assume that the denominator term is approximately constant.

By following the steps described in section 7.3.1, we again have [7.39].

7.4.2. Optimal gain allocation resulting from minimization of MSWD

The criterion we try to minimize is the mean square weight deviation at time k+1.
The square weight deviation at time k + 1 can be represented by:

z+
H
z+ = zHz− βaz

HGxxHz− βaz
HGxv

−βaz
HxxHGz+ β2

az
HxxHG2xxHz+ β2

az
HxxHG2xv

−βax
HGzv∗ + β2

ax
HG2xxHzv∗ + β2

ax
HG2x|v|2. [7.48]

Next taking the expectation of [7.48] given the prior weight deviation z, and using
assumption 4.3 yields:

E
�
z+

H
z+|z

	
= zHz− βa

�
zHDiag(Rz) + zTDiag(R∗z∗)

�
g

+β2
aσ

2
xz

HRzgTg + β2
aσ

2
vσ

2
xg

Tg

+β2
ag

T [Diag(Rz)Diag∗(Rz)]g

+β2
ag

T [Diag(Tz∗)Diag∗(Tz∗)]g. [7.49]

Setting:

cT = βa

�
zHDiag(Rz) + zTDiag(R∗z∗)

�
[7.50]

Q= 2β2
aσ

2
xz

HRzI+ 2β2
aσ

2
vσ

2
xI

+2β2
a [Diag(Rz)Diag∗(Rz)]

+2β2
a [Diag(Tz∗)Diag∗(Tz∗)] . [7.51]

www.it-ebooks.info

http://www.it-ebooks.info/

138 PtNLMS Algorithms

Now the constrained optimization problem can be recast as:

min
g

1T g=L
gi≥0 ∀ i

!||z+||2 − ||z||2' = min
g

gi≥0 ∀ i

�
−cTg +

1

2
gTQg + λ

!
1Tg − L

'�
, [7.52]

where λ is the Lagrange multiplier used to incorporate the constraint that the sum of
the gains equal L.

The minimization then proceeds as it did in the real-valued case in section 4.3.1
and results in

gi =

"
ci − λ

[Q]ii

(
+

. [7.53]

Note that it can be shown that minimizing the MSWD minimizes an upper bound
for the MSE, similarly as it is done for the real signal case in section 4.3.2.

7.4.3. Implementation

To proceed we need to calculate the terms Rz, R∗z∗, zHRz and Tz∗. We propose
replacing these quantities with an estimate of their corresponding mean values. Recall
also that R and T are assumed known.

To find the estimate of z, �E {z}, we begin with:

E{p} = E{xe} = E{x(xHz+ v)} = RE {z} [7.54]

and continue as it is described in section 4.3.1.2.

Now we make three approximations by replacing:

Rz≈ �E {p},

zHRz≈ �E {z}H �E {p},
Tz∗ ≈T�E {z}∗.

The obtained estimate is good in the transient regime. In the steady-state regime,
it is preferable to use uniform gains. One way to implement gradual migration from
the different gains to the uniform migration is to use, after replacing squaring with
absolute value squaring, the adaptive convex gain combination presented in section
4.1.3.2.

www.it-ebooks.info

http://www.it-ebooks.info/

Complex PtNLMS Algorithms 139

7.5. Simulation results

7.5.1. cPtNLMS algorithm simulation results

In this section, we compare the MSE versus iteration for several cPtNLMS
algorithms. The real part of the impulse response is given in Figure 6.5, while the
imaginary part corresponds to the impulse response in Figure 1.2b shifted by 100
samples to the left. The impulse response has length L = 512. The step-size control
parameter β was set to a value of 0.1 for all of the cPtNLMS algorithms. The input
signal used in the first set of simulations was white, circular, complex, Gaussian and
stationary with power σ2

x = 1. The noise used in all simulations was white, circular,
complex, Gaussian and stationary with power σ2

v = 10−4. The parameter values
ρ = 0.01, δ = 0.0001, δp = 0.01 and µ = 2, 960 (used in cMPNLMS algorithm)
were also used.

The MSE learning curve performance for the cNLMS, cPNLMS with one gain
per coefficient, simplified cPNLMS with separate gains for the real and imaginary
parts, cPNLMS with separate gains for the real and imaginary parts, cMPNLMS with
one gain per coefficient, simplified cMPNLMS with separate gains for the real and
imaginary parts, cMPNLMS with separate gains for the real and imaginary parts and
cWF with one gain per coefficient algorithms are depicted in Figure 7.1. Here we see
that the cPtNLMS algorithms outperform the cNLMS algorithm in the transient
regime. The simplified algorithms perform virtually the same as the exact separate
gain algorithms. In addition, the separate gains for the real and imaginary parts of
coefficients versions result in better convergence than the single gain versions. The
cWF algorithm with one gain per coefficient has superior convergence performance
than all of the algorithms that use only one gain to update the estimated impulse
response.

In Figure 7.2, the MSE performance is displayed for a colored input signal. The
input signal consists of colored noise generated by a single pole system [4.31], where
n(k) is a white, circular, complex, Gaussian and stationary process with power σ2

n =
1, and γ is the complex pole. The value γ = 0.3560 − 0.8266j was used in this
simulation. The magnitude of γ is equal to 0.9, which implies σ2

x = σ2
α/(1− |γ|2) =

5.263. Similar trends hold for the colored and white input signal cases. Of course,
the convergence rate is lower because of the colored input. The cWF algorithm with
one gain per coefficient does not converge. This behavior is not surprising as the cWF
algorithm relies on the assumption that the input signal is white.

Now, we are going to assess the performance of the cCWF algorithm. The input
signal consists of colored noise generated by a single pole system [4.31] with n(k) =
nR(k) + jnI(k), where nR(k) and nI(k) are white, mutually independent, Gaussian
and stationary processes with power σ2

nR
= 1/4 and σ2

nI
= 3/4, respectively. This

implies that n(k) is non-circular with power equal to one. The algorithm is initialized
such that x(0) = n(0). The value of pole γ = −0.5756 + 0.1693j is used in this

www.it-ebooks.info

http://www.it-ebooks.info/

140 PtNLMS Algorithms

simulation. Hence |γ| = 0.6 which implies σ2
x = σ2

n/(1−|γ|2) = 1.562. µ = 37, 291
is used in the cMPNLMS algorithm. The cCWF algorithm uses values of α = 0.999
and ω = 2.

0 1 2 3 4 5 6

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
LEARNING CURVE COMPARISON

ITERATIONS

d
B β = 0.1

ρ = 0.01

δ = 0.0001
δ

p
= 0.01

cNLMS

cPNLMS (One Gain)

cPNLMS (Simplified)

cPNLMS (Separate Gains)

cMPNLMS (One Gain)

cMPNLMS (Simplified)

cMPNLMS (Separate Gains)

cWF

cNLMS

cMPNLMS (One Gain)

cPNLMS (One Gain)

cPNLMS (Separate Gains)

cPNLMS (Simplified)

cMPNLMS (Separate Gains)

cMPNLMS (Simplified)

cWF

Figure 7.1. cPtNLMS learning curve comparison with white input

0 1 2 3 4 5 6

x 10
4

−40

−30

−20

−10

0

10

LEARNING CURVE COMPARISON

ITERATIONS

d
B

β = 0.1

ρ = 0.01

δ = 0.0001
δ

p
= 0.01

cNLMS

cPNLMS (One Gain)

cPNLMS (Simplified)

cPNLMS (Separate Gains)

cMPNLMS (One Gain)

cMPNLMS (Simplified)

cMPNLMS (Separate Gains)

cWF
cMPNLMS (One Gain)

cPNLMS (One Gain)

cPNLMS (Simplified)

cNLMS

cMPNLMS (Simplified)
cMPNLMS (Separate Gains)

cPNLMS (Separate Gains)

cWF
(Unstable)

Figure 7.2. cPtNLMS learning curve comparison with colored input

www.it-ebooks.info

http://www.it-ebooks.info/

Complex PtNLMS Algorithms 141

The MSE learning curve performance for the cNLMS, cPNLMS with one gain
per coefficient, cMPNLMS with one gain per coefficient, cCWF and Ideal cCWF
algorithms are depicted in Figure 7.3. The Ideal cCWF uses the true value w as the
input to the cCWF gain allocation algorithm. The Ideal cCWF does not use the
adaptive convex gain combination. In Figure 7.3, we see that the Ideal cCWF
algorithm has the best performance followed by the cCWF.

0 1 2 3 4 5 6

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
LEARNING CURVE

ITERATIONS

M
S

E
(d

B
)

β = 0.1

ρ = 0.01

δ = 0.0001
δ

p
= 0.01

cNLMS

cPNLMS

cMPNLMS

Feasible cCWF

Ideal cCWF

cNLMS

cMPNLMS

Feasible cCWF

Ideal cCWF

cPNLMS

Figure 7.3. cPtNLMS learning curve comparison for cCWF algorithm
performance assessment

7.5.2. cPtAP algorithm simulation results

In this section, we compare the MSE versus iteration for the cIAP, cPAP one-gain,
cPAP two-gain and simplified cPAP. For reference purposes, we also plot the MSE
versus iteration of the cNLMS and cPNLMS using separate gains to update the real
and imaginary coefficients (cPNLMS two-gain).

The colored input signal was generated using the methodology described in section
7.5.1. The following values were used in simulations σ2

nR
= 3/4, σ2

nI
= 1/4 and

γ = −0.8634 + 0.2540j. The magnitude of γ is equal to 0.9, which implies σ2
x =

σ2
α/(1 − |γ|2) = 5.263. The real part of the impulse response is displayed in Figure

6.5 and the imaginary part of the impulse response is displayed in Figure 1.2b. The
impulse response used has length L = 512 and has separate support for its real and
imaginary parts. The noise used in the first simulation was white, circular, complex,
Gaussian and stationary with power σ2

v = 10−4. The parameter values P = 5, ρ =
0.01, δ = 0.0001 and δp = 0.01 were also used [WAG 12b].

www.it-ebooks.info

http://www.it-ebooks.info/

142 PtNLMS Algorithms

The MSE learning curve performance with colored input and 100 Monte Carlo
trials is presented in Figure 7.4. A zoomed-in version of Figure 7.4, focusing on the
transient regime of convergence, is displayed in Figure 7.5. The step-size control
parameter β was set to a value of 0.5 for the cPtNLMS algorithms, 0.12 for the cIAP
algorithm, and 0.072 for the cPAP algorithms. Different values of β were used in
each algorithm to ensure the same steady-state MSE was achieved by all of the
algorithms. The cPtNLMS algorithms have the slowest convergence. The cIAP
algorithm is the first to reach steady-state, however the various cPAP algorithms have
a faster initial convergence rate than the cIAP algorithm. These last two trends mimic
the trends seen when observing the convergence rates of the NLMS and PNLMS
algorithms [DUT 00]. The cPAP two-gain and simplified cPAP algorithms have
roughly the same convergence rates. Finally, the cPAP two-gain algorithms have a
faster convergence rate than the cPAP one-gain algorithm.

0 1 2 3 4 5 6 7 8

x 10
4

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10
LEARNING CURVE

ITERATIONS

M
S

E
(d

B
)

β = 0.5

ρ = 0.01

δ = 0.0001
δ

p
= 0.01

cNLMS

cPNLMS (2−gain)

cIAP

cPAP (1−gain)

cPAP (2−gain)

cPAP (simplified)

cNLMS

cPNLMS (2−gain)

cPAP (1−gain)

cPAP (simplified)

cPAP (2−gain)
cIAP

Figure 7.4. cPtAP learning curve comparison with colored input

Next, the MSE learning curve performance averaged over 100 uniform shifts of a
complex speech input signal is presented in Figure 7.6. The complex speech used in
this simulation was obtained by calculating the analytic signal [COH 95] of the real
speech depicted in Figure 7.7. The same values of β that were used in the colored input
signal simulation were also used in the speech input signal simulation. The parameter
P was set to a value of 5. The impulse response was chosen such that L = 50. The
real and imaginary parts of the impulse response had separate support. No noise was
added to this simulation, that is σ2

v = 0. Again, the cPAP two-gain and simplified
cPAP algorithms have roughly the same convergence rates. In addition, the cPAP two-
gain algorithm has a faster convergence rate than the cPAP one-gain algorithm. In the
case of speech input, the cPAP two-gain algorithm outperforms the cPNLMS two-gain
algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

Complex PtNLMS Algorithms 143

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10
LEARNING CURVE

ITERATIONS

M
S

E
(d

B
)

cNLMS

cPNLMS (2−gain)

cIAP

cPAP (1−gain)

cPAP (2−gain)

cPAP (simplified)
cNLMS

cPNLMS (2−gain)

cPAP (1−gain)

cPAP (simplified)

cPAP (2−gain)

cIAP

Figure 7.5. cPtAP learning curve comparison with colored input
(zoomed-in view)

0 5000 10000 15000

−70

−60

−50

−40

−30

−20

−10

0
LEARNING CURVE

ITERATIONS

M
S

E
(d

B
)

cNLMS

cPNLMS (2−gain)

cIAP

cPAP (1−gain)

cPAP (2−gain)

cPAP (simplified)

cNLMS

cPNLMS (2−gain)

cIAP

cPAP (2−gain)

cPAP (simplified)

cPAP (1−gain)

Figure 7.6. cPtAP learning curve comparison with speech input (averaged
over 100 uniform shifts of input signal)

www.it-ebooks.info

http://www.it-ebooks.info/

144 PtNLMS Algorithms

0 5000 10000 15000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

ITERATION

A
M

P
L
IT

U
D

E

SPEECH RECORD

Figure 7.7. Speech record

7.6. Transform domain PtNLMS algorithms

The self-orthogonalizing adaptive filter [HAY 02] was originally introduced in an
effort to improve the MSE convergence of the LMS [HAY 02] algorithm when the
input signal was colored. The original derivation of the self-orthogonalizing filter
required knowledge of the covariance matrix. The concept of the self-orthogonalizing
adaptive filter was subsequently extended to situations where the covariance matrix
was unknown. In this extension, the discrete cosine transform (DCT) matrix was
used as an estimate of the Karhunen–Loeve transform (KLT). The DCT–LMS
[HAY 02] algorithm was proposed that initially whitened the input signal using the
DCT matrix and then applied the LMS algorithm to the whitened input signal. The
DCT–LMS algorithm offered improved convergence in colored input signal scenarios
at the expense of increased computational complexity.

In this section, the self-orthogonalizing adaptive filter is introduced to the general
case of cPtNLMS algorithms for complex colored input signals and complex impulse
responses. The self-orthogonalizing cPtNLMS algorithm is derived for an arbitrary
gain control matrix. The resulting algorithm is named the TD-cPtNLMS algorithm.
Next, the TD-cPtNLMS algorithm is extended to the case of an unknown covariance
matrix. The DCT and Haar wavelet transform are proposed as possible substitutes for
the unknown eigenvector matrix, which results in the DCT–cPtNLMS and
Haar-cPtNLMS algorithms. The trade-off in convergence performance between
applying standard cPtNLMS algorithms on the original sparse impulse response and
colored input signals as opposed to applying the DCT-cPtNLMS algorithm and
Haar-cPtNLMS algorithm on the transformed impulse response (not necessarily
sparse anymore) and a whitened input signal is compared through simulation.

www.it-ebooks.info

http://www.it-ebooks.info/

Complex PtNLMS Algorithms 145

This section is organized in the following manner. First, the TD-cPtNLMS
algorithm is derived. Next, it follows a discussion on the implementation of the
TD-cPtNLMS algorithm when the covariance matrix is unknown. Finally, simulation
results are presented and discussed.

7.6.1. Derivation

The cPtNLMS algorithm using one real-valued gain to update both the real and
imaginary parts of the estimated coefficients is given by [7.22].

To find the cPtNLMS algorithm in the transform domain we first choose the
transform matrix QH . Now the input signal to the algorithm is:

x̃ = Λ− 1
2QHx.

Optimally, that is to get x̃ white, we would take Q and Λ such that:

R = QΛQH ,

where R is the autocorrelation matrix of x, Q is the matrix of eigenvectors of R and
Λ is the diagonal matrix of eigenvalues of R. Now we can start by minimizing:

(ŵ+
T − ŵT)

HG−1
T (ŵ+

T − ŵT)

under the condition:

d = x̃Hŵ+
T ,

where GT is called the step-size control matrix and is a real-valued, non-negative and
diagonal matrix with Tr[GT] = L.

The method of Lagrange multipliers will be used to cast this constrained
minimization problem into one of the unconstrained minimizations. The
minimization problem can be rewritten as:

min
ŵ+

T

J(ŵ+
T) = (ŵ+

T − ŵT)
TG−1

T (ŵ+
T − ŵT)

+λ
!
d− x̃Hŵ+

T

'
+λ∗ !d∗ − x̃T (ŵ+

T)
∗' [7.55]

Next, taking the derivative of J(ŵ+
T) with respect to ŵ+

T and setting the result to
zero yield:

∂J(ŵ+
T)

∂ŵ+
T

= (ŵ+
T − ŵT)

HG−1
T − λx̃H = 0T . [7.56]

www.it-ebooks.info

http://www.it-ebooks.info/

146 PtNLMS Algorithms

where 0 is the column vector of zeros and length L. Taking the conjugate transpose of
equation [7.56], multiplying from the left by GT and rearranging terms allows us to
write:

ŵ+
T = ŵT + λ∗GT x̃. [7.57]

Next we substitute the recursion for the estimated impulse response given in [7.57]
into the constraint equation d = x̃Hŵ+

T to yield:

d = x̃HŵT + λ∗x̃HGT x̃. [7.58]

Defining the a priori error as e = d − x̃HŵT and rearranging terms in [7.58]
allows us to solve for λ∗, which is given by:

λ∗ =
e

x̃HGT x̃
. [7.59]

Substituting the solution for λ∗ into [7.57] results in:

ŵ+
T = ŵT +

GT x̃e

x̃HGT x̃
. [7.60]

Next, the step-size parameter β is introduced to allow control over the update. The
resulting algorithm is called the TD-cPtNLMS algorithm and is given by:

ŵ+
T = ŵT + β

GT x̃e

x̃HGT x̃
. [7.61]

In both cases, d is same and given as:

d = xHw + v.

The optimal (Wiener) weights in the transform domain are:

wT = Λ
1
2QHw.

Note that the optimal weights depend on Λ and QH , and therefore on their sparsity
property as well.

7.6.2. Implementation

If the input signals covariance matrix, R, is not available a priori then the TD-
cPtNLMS algorithm is not feasible. To overcome this shortcoming we propose the
following modification. Choose some orthogonal transformation, such as the DCT,
discrete Fourier transform (DFT) or discrete wavelet transform (DWT), for Q.

www.it-ebooks.info

http://www.it-ebooks.info/

Complex PtNLMS Algorithms 147

At this stage we are still left to estimate Λ. In practice, the transformed input
signal, x� = QHx, is used to form an estimate of the eigenvalues. The following
recursion can be used to estimate the eigenvalues:

[Λ̃]ii = �[Λ̃]ii +
1

k
(|x�

i(k)|2 − �[Λ̃]ii), [7.62]

where Λ̃ is the estimate of the eigenvalue matrix, Λ, and 0 ≤ � ≤ 1 is the forgetting
factor.

7.6.3. Simulation results

In this section, we investigate for sparse unknown systems and the colored inputs
the question of whether the convergence of cPtNLMS algorithms is better in the
original signal domain or in the transformed signal domain, assuming the same
steady-state mean square output error in both cases. The input signal used in all of
the simulations was a stationary, real and colored input signal. The input signal
consists of colored noise generated by a single pole system [4.31] where n(k) is a
white, real, Gaussian and stationary process with power σ2

n = 1. The value of
γ = 0.95 was used, which implies σ2

x = σ2
n/(1 − |γ|2) = 10.2564. The impulse

response depicted in Figure 6.5 with length L = 512 was used. The measurement
noise used in all simulations was white, real, Gaussian, and stationary with power
σ2
v = 10−4. The parameter values β = 0.1, and � = 1 were used. The following

parameters related to the NLMS and PNLMS algorithms were also used ρ = 0.01,
δ = 0.0001, and δp = 0.01. The DCT water-filling (DCT-WF) algorithms used the
step-size parameter of β0 = β/(σ2

x̃L) = 1.9−4 to ensure that the steady-state MSE
was the same for all of the algorithms displayed. The term σ2

x̃ = 1 is defined to be the
variance of x̃i for all i = 1, 2, . . . , L. In addition, the self-orthogonalizing
water-filling (SO-WF), DCT-WF, and Haar water-filling (Haar-WF) algorithms used
the following parameters (ω,α) = (2, 0.9999), (ω,α) = (2, 0.99999), and
(ω,α) = (2, 0.99999), respectively. The parameters (ω,α) are related to the
implementation of the water-filling algorithm [WAG 11] and have been tuned to
increase the convergence speed of the algorithms.

The first set of simulations examined the MSE versus iteration for the NLMS,
PNLMS, self-orthogonalizing NLMS (SO-NLMS), self-orthogonalizing PNLMS
(SO-PNLMS), and SO-WF algorithms. The self-orthogonalizing algorithms used
knowledge of the covariance matrix R. In Figure 7.8, the impulse response in the
original domain and the transformed domain is plotted. The transformed impulse
response is no longer sparse. Next, the learning curve comparison when using the
transformation matrix QH is displayed in Figure 7.9. The SO-NLMS algorithm has
the best learning curve performance, followed by the SO-WF and SO-PNLMS
algorithms. Because the impulse response is dispersive in the transform domain, the
SO-NLMS algorithm outperforms the SO-PNLMS algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

148 PtNLMS Algorithms

50 100 150 200 250 300 350 400 450 500

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Coefficient Number

M
a
g
n
it
u
d
e

o
f
C

o
e
ff
ic

ie
n
t

Impulse Response

w

w
Tw

w
T

Figure 7.8. Impulse response in the original domain and transform domain
when R is known

0 1 2 3 4 5 6

x 10
5

−50

−40

−30

−20

−10

0

10
LEARNING CURVE

ITERATIONS

M
S

E
(d

B
)

NLMS

SO−NLMS

PNLMS

SO−PNLMS

SO−WF

NLMS

PNLMS

SO−PNLMS

SO−WF

SO−NLMS

Figure 7.9. Learning curve comparison when R is known

The second set of simulations examined the MSE versus iteration for the NLMS,
PNLMS, DCT-NLMS, DCT-PNLMS and DCT-WF. The DCT was used as an
estimate of QH in the DCT-NLMS, DCT-PNLMS and DCT-WF algorithms. In
Figure 7.10, the impulse response in the original domain and the transformed domain
is plotted. The transformed impulse response is no longer sparse. Next, the learning

www.it-ebooks.info

http://www.it-ebooks.info/

Complex PtNLMS Algorithms 149

curve comparison when using the DCT is displayed in Figure 7.11. Here the
DCT-NLMS has the best overall convergence performance followed by the DCT-WF
algorithm and then by the DCT-PNLMS algorithm. Note that the DCT-NLMS has
better convergence performance than the DCT-PNLMS algorithm because the
transform domain signal is no longer sparse. The PNLMS is better than the NLMS
algorithm in the original domain because the impulse response is sparse in this
domain. The DCT-NLMS and DCT-PNLMS algorithms outperform their counterpart
algorithms in the original signal domain. The counterpart algorithm to the DCT-WF
is the cCWF [WAG 12a] algorithm. The cCWF is not stable for the value of β chosen
in these simulations and has not been included in the figure. Note, the similarity
between algorithms using the KLT and DCT is expected, because asymptotically the
DCT becomes the KLT in this scenario [HAY 02]. This can be seen further in
Figures 7.8 and 7.10 where the transform domain impulse responses are similar.

0 100 200 300 400 500 600
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Coefficient Number

M
a
g
n
it
u
d
e

o
f
C

o
e
ff
ic

ie
n
t

Impulse Response

w

w
T

w
T

w

Figure 7.10. Impulse response in the original domain and transform domain
when using the DCT

The third set of simulations examined the MSE versus iteration for the NLMS,
PNLMS, Haar-NLMS, Haar-PNLMS and Haar-WF algorithms. The Haar wavelet
orthonormal basis was used as an estimate of QH in the Haar-NLMS, Haar-PNLMS
and Haar-WF algorithms. Because L = 512, a nine-level Haar wavelet transform was
used in these algorithms. In Figure 7.12, the impulse response in the original domain
and the transformed domain is plotted. The transformed impulse response is still
sparse in this scenario. Next, the learning curve comparison when using the Haar
wavelet transform is displayed in Figure 7.13. The Haar-WF has the best overall
convergence performance followed by the Haar-PNLMS, PNLMS, Haar-NLMS and,
finally, the NLMS algorithm. The Haar-PNLMS algorithm has superior convergence
performance relative to the Haar-NLMS algorithm because the impulse response is

www.it-ebooks.info

http://www.it-ebooks.info/

150 PtNLMS Algorithms

sparse in the transform domain. The Haar-NLMS algorithm does not converge as
quickly as the DCT-NLMS algorithm because the Haar wavelet transform does not
whiten the colored input signal as well as the DCT. Hence, there is a trade-off
between whitening the input signal and sparsity of impulse response in the transform
domain.

0 1 2 3 4 5 6

x 10
5

−50

−40

−30

−20

−10

0

10
LEARNING CURVE

ITERATIONS

M
S

E
(d

B
)

NLMS

DCT−NLMS

PNLMS

DCT−PNLMS

DCT−WF

NLMS

PNLMS

DCT−WF

DCT−NLMS

DCT−PNLMS

Figure 7.11. Learning curve comparison using the DCT

50 100 150 200 250 300 350 400 450 500

−0.4

−0.2

0

0.2

0.4

0.6

Coefficient Number

M
a

g
n

it
u

d
e

o
f

C
o

e
ff

ic
ie

n
t

Impulse Response

w

w
T

w

w
T

Figure 7.12. Impulse response in the original domain and transform domain
when using the Haar transform

www.it-ebooks.info

http://www.it-ebooks.info/

Complex PtNLMS Algorithms 151

0 1 2 3 4 5 6

x 10
5

−50

−40

−30

−20

−10

0

10
LEARNING CURVE

ITERATIONS

M
S

E
(d

B
)

NLMS

Haar−NLMS

PNLMS

Haar−PNLMS

Haar−WF
NLMS

Haar−NLMS

PNLMS

Haar−WF
Haar−PNLMS

Figure 7.13. Learning curve comparison using the Haar transform

7.7. Summary

In this chapter, we have introduced a family of cPtAP algorithms that were
derived by minimizing the second norm of the weighted difference between the
current estimate of the impulse response and the new estimate under the constraints
that at the last P time steps the new adaptive filter output equals the measured output.
The cPtNLMS algorithms were also introduced employing a single constraint, or
rather by setting P = 1. The choice of the step-size control matrix is arbitrary during
the derivation that allows the users to design algorithms to suit their needs. Moreover,
it can be noted from the simulations that the performances of the complex algorithm
with separate gains for the imaginary parts and its simplified version are nearly
indistinguishable. The cWF gain allocation algorithms for white and colored input
signals were derived. It was also shown through simulation that the cPtAP algorithms
offer superior convergence with stationary complex colored inputs and complex
speech inputs relative to cPtNLMS algorithms. The usage of separate gains for
updating the estimates of the real and imaginary parts provides superior convergence
performance relative to using the same gain to update the real and imaginary parts of
the estimated impulse response. Finally, the TD-cPtNLMS were derived and it was
shown through simulation that in order to improve the MSE convergence
performance, the choice of transformation matrix needs to balance the needs for
whitening the input signal with the sparsity of the transformed impulse response.

www.it-ebooks.info

http://www.it-ebooks.info/

8

Computational Complexity for PtNLMS
Algorithms

In this chapter, we present a systematic approach to calculate the computational complexity for
an arbitrary PtNLMS algorithm.

8.1. LMS computational complexity

Before examining an arbitrary PtNLMS algorithm, we begin by reviewing the
LMS algorithm. The LMS algorithm is repeated here for convenience:

ŷ(k) = xT (k)ŵ(k)

e(k) = d(k)− ŷ(k)

ŵ(k + 1) = ŵ(k) + βx(k)e(k).

The computational complexity of the LMS algorithm can be calculated in the
following steps.

1) Each iteration requires the evaluation of the inner product xT (k)ŵ(k). This
operation requires L multiplications and L− 1 additions.

2) Next, the term “d(k)− ŷ(k)” is calculated, which needs one addition.

3) Evaluation of the product βe(k) requires one multiplication.

4) Multiplication of the scalar βe(k) by the vector x(k) requires L multiplications

5) Finally, the sum of ŵ(k) + βx(k)e(k) requires L additions.

To summarize:

LMS requires 2L+ 1 multiplications and 2L additions.

www.it-ebooks.info

http://www.it-ebooks.info/

154 PtNLMS Algorithms

8.2. NLMS computational complexity

Compared to the LMS, the NLMS requires the computation of two additional
quantities in the weight update equation given by:

ŵ(k + 1) = ŵ(k) +
β

δ + ||x(k)||2x(k)e(k). [8.1]

1) The inner product ||x(k)||2 requires L multiplications and L − 1 additions.
However, for tap-delay lines, this can be implemented more efficiently as, ||x(k)||2 =
||x(k−1)||2−x2(k−L)+x2(k), which requires two additions and two multiplications.

2) One addition and one division are needed to evaluate β/(δ + ||x(k)||2) .

Hence,

NLMS requires 2L+ 3 multiplications, 2L+ 3 additions, and one division.

8.3. PtNLMS computational complexity

Let us begin by assuming that the function F [|ŵl(k)|, k] is given for all
l = 1, 2, . . . , L. Compared to the LMS algorithm, an arbitrary PtNLMS algorithm
requires the following additional computations:

1) The term “γmin(k) = ρmax{δp, F [|ŵ1(k)|, k], . . . , F [|ŵL(k)|, k]}” requires
one multiplication and L comparisons to compute.

2) The quantity γl(k) = max{γmin(k), F [|ŵl(k)|, k]} needs one comparison to
compute.

3) To calculate gl(k) = γl(k)/
�

1
L

3L
i=1 γi(k)

%
, one multiplication, L − 1

additions, and one division operations are needed.

4) The term “G(k)x(k)” requires L multiplication

5) The calculation of β/[xT (k)G(k)x(k) + δ] given G(k)x(k) requires L
multiplications, L additions and one division.

6) Finally, L multiplications are needed to calculate:

βG(k)x(k)/[xT (k)G(k)x(k) + δ.

www.it-ebooks.info

http://www.it-ebooks.info/

Computational Complexity for PtNLMS Algorithms 155

Therefore,

PtNLMS requires 5L+3 multiplications, 4L−1 additions, 2 divisions, and L+1
comparisons, and calculation of F [|ŵl(k)|, k], l = 1, . . . , L.

8.4. Computational complexity for specific PtNLMS algorithms

The computational complexity of the NLMS, PNLMS, SPNLMS, ASPNLMS,
MPNLMS, EPNLMS, AMPNLMS, AEPNLMS, z2-proportionate, WF, CWF
suboptimal gain allocation version 1, CWF suboptimal gain allocation version 2,
CWF, cPNLMS and RLS algorithms is listed in Table 8.1 in terms of the total
number of additions (A), multiplications (M), divisions (D), comparisons (C),
memory words (MW) and logarithms (L) needed per algorithm iteration. All
multiplications, additions, divisions, comparisons and logarithms are real-valued
operations. Note that the implementation described in section 4.1.3 is included in the
computational complexity calculations for the CWF, CWF suboptimal gain allocation
version 1 and CWF suboptimal gain allocation version 2 algorithms. Additionally, it
is assumed that R is stationary and known. Therefore, R and R−1 are precomputed
and stored in memory. For cross-referencing purposes, Table 8.3 contains the section
numbers where each algorithm is originally discussed.

Algorithm A M D C MW L

NLMS 2L + 3 2L + 3 1 0 4L+7 0
PNLMS 4L + 2 5L + 4 2 2L 8L+11 0
SPNLMS 4L + 2 6L + 4 2 3L 9L + 12 0
ASPNLMS 4L + 3 6L + 8 2 3L 9L + 18 0
MPNLMS 5L + 2 6L + 4 2 2L 9L + 12 L
EPNLMS 4L + 2 6L + 4 2 3L 9L + 12 L
AMPNLMS 5L + 3 6L + 6 3 2L 9L + 18 L
AEPNLMS 4L + 3 6L + 6 3 3L 9L + 18 L
z2-proportionate 6L + 2 9L + 2 2 1 10L+11 0
Water-filling O(L2) 13L + 3 2 O(L lnL) 13L+11 0
CWF suboptimal 1 O(L2) O(L2) 1 1 O(L2) 0
CWF suboptimal 2 6L + 3 13L + 7 1 1 10L+11 0
CWF O(L2) O(L2) 2 O(L lnL) O(L2) 0
cPNLMS O(100L) O(100L) 2 2L + 2 16L + 22 0
RLS O(L2) O(L2) 1 0 O(L2) 0

Table 8.1. Computational complexity of algorithms – addition (A),
multiplication (M), division (D), comparison (C), memory words

(MW) and logarithm (L)

www.it-ebooks.info

http://www.it-ebooks.info/

156 PtNLMS Algorithms

The NLMS algorithm requires the least number of computations. The CWF
algorithm requires the highest number of operations due to the sort operation needed
to find the optimal value of λ. Based on standard sort algorithms, we estimate that the
sort operation requires L lnL comparison operations [HOA 62]. With regard to
memory requirements, the NLMS algorithm requires the least number of words. The
CWF suboptimal gain allocation version 1, CWF and RLS algorithms require the
maximum amount of words. The cPNLMS algorithm requires twice as many
memory words as the real-valued PNLMS algorithm.

In Table 8.2, we display the average computation time in microseconds per
algorithm iteration for the NLMS, PNLMS, SPNLMS, ASPNLMS, MPNLMS,
EPNLMS, AMPNLMS, AEPNLMS, z2-proportionate, WF, CWF suboptimal gain
allocation version 1, CWF suboptimal gain allocation version 2, CWF, cPNLMS and
RLS algorithms. These simulations were performed on a 2.30 GHz quad-core AMD
Opteron processor with an impulse response of length L = 512. We can see that the
NLMS algorithm has the fastest simulation time, while the PNLMS and the CWF
suboptimal gain allocation version 2 algorithm have comparable simulation times.
The RLS algorithm takes significantly longer to operate. The cPNLMS algorithm
takes approximately twice as long as the PNLMS algorithm.

Algorithm Simulation time Relative time
per iteration (µs) w.r.t. NLMS

NLMS 28.8 1.00
PNLMS 46.1 1.60
SPNLMS 89.6 3.10
ASPNLMS 91.7 3.18
MPNLMS 108.8 3.77
EPNLMS 113.9 3.95
AMPNLMS 111.7 3.87
AEPNLMS 125.9 4.37
z2-proportionate 48.8 1.69
Water-filling 268.6 9.33
CWF suboptimal 1 442.4 16.24
CWF suboptimal 2 56.2 2.07
CWF 2,000.0 72.02
cPNLMS 110.3 3.83
RLS 35,800.0 1,243.00

Table 8.2. Algorithm simulation times relative to NLMS

www.it-ebooks.info

http://www.it-ebooks.info/

Computational Complexity for PtNLMS Algorithms 157

Algorithm Section number

NLMS 1.3
PNLMS 1.4.2
SPNLMS 6.2
ASPNLMS 6.2
MPNLMS 1.4.7
EPNLMS 1.4.8
AMPNLMS 6.1
AEPNLMS 6.1
z2-proportionate 4.1.2
Water-filling 4.1.1
CWF suboptimal 1 4.4
CWF suboptimal 2 4.4
CWF 4.3
cPNLMS 7
RLS 4.1.4.1

Table 8.3. Algorithm description location

8.5. Summary

In this chapter, the methodology used to calculate the computational complexity of
PtNLMS algorithms has been presented. The computational complexity for a variety
of algorithms has been shown.

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion

There are many opportunities to extend the results presented in this book further. Keeping that in
mind, this section presents several open questions that are not addressed in this book as well as
ideas for future extensions of the work presented here.

A closed-form solution for the joint probability density function of the weight
deviation at any time is an open area of research. The assumption that the weight
deviations are Gaussian seems to be satisfactory, at least for simple gain control laws
such as the NLMS and PNLMS algorithms. However, this assumption quickly leads
to erroneous results when examining more complex gain control laws such as the
MPNLMS algorithm. Besides allowing the analysis of existing algorithms, knowledge
of the joint probability density function would allow the user to design new algorithms
by choosing gains that manipulate the joint probability density function. A future area
of work could be to find a closed-form representation of the joint probability density
function in some specific cases.

Due to the lack of finding a closed-form solution for the joint probability density
function at all times, further applications and examples that manipulate the
conditional probability density function of the weight deviations, given the previous
weight deviations, could be studied. For instance, this book gives one- and
two-dimensional examples of numerically finding the steady-state joint probability
density function of the weight deviations using the conditional probability density
function. An extension of this would be numerically finding the steady-state joint
probability density function of the weight deviation for an arbitrary dimension
problem. In addition, gain allocation algorithms, which maximize the conditional
probability density function for the true weights, could be derived.

Another area of future work is choosing optimal gains that minimize the mean
square output error for colored input signals. The work presented in this book finds

www.it-ebooks.info

http://www.it-ebooks.info/

160 PtNLMS Algorithms

optimal gains for minimizing the mean square weight deviation. It was shown that
minimizing the mean square weight deviation minimizes an upper bound for the
mean square error. Minimizing the mean square weight deviation resulted in gains
that depended only on corresponding weight deviations. This means that the ith gain
depends only on the ith weight deviation. Minimizing the mean square output error
results in a problem where the ith gain depends on all the weight deviations. There is
currently no solution for this problem.

In addition, transient analysis of PtNLMS algorithms is an open question when
the input signal is colored. Also, an extension of white-input analysis to the
segmented PNLMS and MPNLMS can be considered. Similarly, transient and
steady-state analyses could be extended to the cPtNLMS algorithm. Finally, there is
the possibility of finding more computationally efficient implementations of the
algorithms presented.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix 1

Calculation of β(0)
i , β(1)

i,j and β
(2)
i

A1.1. Calculation of β(0)
i term

We assume δ is very small and we can write:

β
(0)
i ≈ E

�
βx2

i (k)

gi(k)x2
i (k) +

3
j �=i gj(k)x

2
j (k)

4444z�.

When all gi(k), for i = 1, 2, . . . , L, are equal or when all but one of these gains
are equal, it is possible to calculate the above expectation [TAR 88]. But, in general,
the expectation is difficult to calculate and we proceed by assuming that we are trying
to calculate the following (where for notational simplicity we consider the time
indexing):

β
(0)
i ≈ E

�
βx2

i

gix2
i + E{3j �=i gjx

2
j |z}

|z
�
,

where E{3j �=i gjx
2
j |z} =

3
j �=i gjE{x2

j} = σ2
x(L− gi). This was calculated using

the fact that E{x2
i } = σ2

x,
3L

i=1 gi = L, and that xi, i = 1, 2, . . . , L are independent
of z.

Now, we define a2 = σ2
x(L− gi) and calculate the initial expectation as:

β
(0)
i ≈E

�
βx2

i

gix2
i + a2

|z
�

=
β

gi
Exi

�
x2
i

x2
i + a2/gi

�
. [A1.1]

The expectation in [A1.1] uses the conditional PDF of xi.

www.it-ebooks.info

http://www.it-ebooks.info/

162 PtNLMS Algorithms

Next, we define b2 = a2/gi and note that b ≥ 0. Now, we need to find the
expectation:

Exi

�
x2
i

x2
i + b2

�
=Exi

�
x2
i + b2 − b2

x2
i + b2

�
= Exi

�
1− b2

x2
i + b2

�
= 1− b

0
π

2σ2
x

e
b2

2σ2
x erfc

! b/
2σ2

x

'
. [A1.2]

Therefore, we have:

β
(0)
i ≈ E

�
βx2

i

gix2
i +

3
j �=i gjx

2
j

|z
�

≈ β

gi

�
1− b

0
π

2σ2
x

e
b2

2σ2
x erfc

! b/
2σ2

x

'�
. [A1.3]

We show β
(0)
i versus gain in Figure A1.1.

0 50 100 150 200 250 300 350 400 450 500
0

1

x 10
−4

Gain g
i

β
i(0

)

Figure A1.1. β(0)
i versus gain for σ2

x = 0.01, L = 512 and β = 0.1

A1.2. Calculation of β(1)
i,j term

We assume that δ is very small and we can write:

β
(1)
i,j ≈ E

�
β2x2

ix
2
j

(gix2
i +

3
j �=i gjx

2
j)

2
|z
�
.

Again, we make the assumption:

β
(1)
i,j ≈ E

�
β2x2

ix
2
j

(gix2
i + E{3j �=i gjx

2
j |z})2

|z
�
.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix 1 163

A1.2.1. Case 1: i = j

The expression for β(1)
i,i becomes:

β
(1)
i,i ≈ E

�
β2x4

i

(gix2
i + E{3j �=i gjx

2
j |z})2

|z
�
.

Using the same constants where b2 = a2/gi and a2 = σ2
x(L− gi), we can rewrite:

β
(1)
i,i ≈ β2

g2i
E

�
x4
i

(x2
i + b2)2

|z
�

=
β2

g2i

�
1− Exi

�
2x2

i b
2

(x2
i + b2)2

�
− Exi

�
b4

(x2
i + b2)2

��
. [A1.4]

We can calculate these expectations as follows:

I1 =Exi

�
1

(x2
i + b2)2

�
=

1

2b2

�0
π

2σ2
x

e
b2

2σ2
x erfc

! b/
2σ2

x

'
(
1

b
− b

σ2
x

) +
1

σ2
x

�
. [A1.5]

I2 =Exi

�
x2
i

(x2
i + b2)2

�
=

1

2

�0
π

2σ2
x

e
b2

2σ2
x erfc

! b/
2σ2

x

'
(
1

b
+

b

σ2
x

)− 1

σ2
x

�
[A1.6]

and this leads to:

β
(1)
i,i ≈ β2

g2i

�
1− 2b2I2 − b4I1

�
. [A1.7]

The calculation of I1 and I2 results in large numerical errors for large values of b.
Knowing that the erfc(x) function [ABR 72] is bounded from below and above as:

2√
π

e−x2

x+
√
x2 + 2

< erfc(x) <
2√
π

e−x2

x+
-
x2 + 4

π

we resort to the calculation of the lower and the upper bound in place of erfc(x) itself.
In Figure A1.2, we plot the ensemble averaged value of β(1)

i,i as well as its bounds
when the upper and the lower bounds on the erfc(x) function are used.

www.it-ebooks.info

http://www.it-ebooks.info/

164 PtNLMS Algorithms

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−7

Gain

β
(1
)

i,
i

Monte Carlo Simulation of β
(1)

i,i

Monte Carlo

Lower bound of erfc used

Upper bound of erfc used

Monte Carlo

Lower bound of erfc used

Upper bound of erfc used

Figure A1.2. β(1)
i,j versus gain for σ2

x = 0.01, L = 512, 105 Monte Carlo
trials and β = 0.1

A1.2.2. Case 2: i �= j

We start with:

β
(1)
i,j ≈E

�
β2x2

ix
2
j

(gix2
i + E{3j �=i gjx

2
j |z})2

|z
�

=E

�
βx2

i

(gix2
i + E{3l �=i glx

2
l |z})

βx2
j

(gjx2
j + E{3l �=j glx

2
l |z})

|z
�

=E

�
βx2

i

(gix2
i + a2i)

|z
�
E

�
βx2

j

(gjx2
j + a2j)

|z
�

= β
(0)
i β

(0)
j , [A1.8]

where we let a2i = σ2
x(L− gi).

A1.3. Calculation of β(2)
i term

We assume that δ is very small and we can write:

β
(2)
i ≈ E

�
β2x2

i

(gix2
i +

3
j �=i gjx

2
j)

2
|z
�
.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix 1 165

Again, we make the assumption:

β
(2)
i ≈ E

�
β2x2

i

(gix2
i + E{3j �=i gjx

2
j |z})2

|z
�
.

Using the same constants where b2 = a2/gi and a2 = σ2
x(L− gi), we can rewrite:

β
(2)
i ≈ β2

g2i
E

�
x2
i

(x2
i + b2)2

|zi
�
.

We can calculate this expectation (same expectation as A1.6) that gives us

β
(2)
i ≈ β2

2g2i

�0
π

2σ2
x

exp(
b2

2σ2
x

)erfc
! b/

2σ2
x

'
(
1

b
+

b

σ2
x

)− 1

σ2
x

�
. [A1.9]

The ensemble averaged β
(2)
i is shown in Figure A1.3.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−5

Gain

β
(2
)

i

Monte Carlo Simulation of β
(2)

i

Monte Carlo

Lower bound of erfc used

Upper bound of erfc used

Upper bound of erfc used

Lower bound of erfc used

Monte Carlo

Figure A1.3. β(2)
i versus gain for σ2

x = 0.01, L = 512, 104 Monte Carlo
trials and β = 0.1

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix 2

Impulse Response Legend

A wide variety of impulse responses are used to generate the simulation results
discussed in this book. In this section, the reader can find a description of impulse
response that was used in each figure. The description of each impulse response
shown in Table A2.1 includes the name of an impulse response, the length of
the impulse response L, the figures in which the impulse response is shown, whether
the impulse response was fabricated data or real-world data, a description of the
impulse response sparseness such as sparse and dispersive, and a list of figures in
which the impulse response was used.

Name L Figure presenting Source Sparsity Figure presenting
impulse response performance

Sparse1 512 1.2b Real world Sparse 2.1, 2.2, 2.3, 3.1,
3.2, 3.8, 3.10, 3.12,

3.13, 3.14, 3.16, 3.18,
3.19, 4.4, 4.7, 7.1,

7.2, A1.1, A1.2, A1.3
Sparse2 512 4.2b Real world Sparse 4.2a, 4.4, 4.5, 4.7,

4.8, 4.9, 4.13, 5.7,
5.8, 6.2, 6.3

Sparse3 512 6.5 Real world Sparse 6.6a, 6.6b, 6.6c,
6.7a, 6.7b, 6.7c,
6.8, 6.9, 7.1, 7.2

δ-Impulse 50 Not shown Simulated Sparse 3.3, 3.4, 3.5, 3.6,
3.7

Dispersive1 512 1.2a Real world Dispersive
Dispersive2 512 4.3b Simulated Dispersive 4.3a, 4.6
Exponential 50 4.12 Simulated Sparse 4.10, 4.11, 4.14b, 4.15,

6.4b

Table A2.1. Impulse response legend

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography

[ABR 72] ABRAMOWITZ M., STEGUN I., Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, 9th ed., Dover, New York, 1972.

[BEN 80] BENVENISTE A., GOURSAT M., RUGET G., “Analysis of stochastic approximation
schemes with discontinuous and dependent forcing terms with applications to data
communication algorithms”, IEEE Transactions on Automatic Control, vol. 25, no. 6,
pp. 1042–1058, December 1980.

[BEN 02] BENESTY J., GAY S., “An improved PNLMS algorithm”, 2002 IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, Orlando, FL,
pp. 1881–1884, May 2002.

[COH 95] COHEN L., Time-Frequency Analysis, Prentice Hall, 1995.

[CON 80] CONOVER W., Practical Nonparametric Statistics, 2nd ed., John Wiley & Sons,
Inc., New Jersey, 1980.

[CUI 04] CUI J., NAYLOR P., BROWN D., “An improved IPNLMS algorithm for echo
cancellation in packet-switched networks”, IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2004 (ICASSP ’04), vol. 4, Montreal, Quebec, Canada,
pp. 141–144, May 2004.

[DEN 05] DENG H., DOROSLOVAČKI M., “Improving convergence of the PNLMS algorithm
for sparse impulse response identification”, IEEE Signal Processing Letters, vol. 12, no. 3,
pp. 181–184, March 2005.

[DEN 06] DENG H., DOROSLOVAČKI M., “Proportionate adaptive algorithms for network
echo cancellation”, IEEE Transactions on Signal Processing, vol. 54, no. 5, pp. 1794–
1803, May 2006.

[DEN 07] DENG H., DOROSLOVAČKI M., “Wavelet-based MPNLMS adaptive algorithm for
network echo cancellation”, EURASIP Journal on Audio, Speech, and Music Processing,
vol. 2007, pp. 1–5, March 2007.

[DOO 53] DOOB J., Stochastic Processes, Wiley, 1953.

www.it-ebooks.info

http://www.it-ebooks.info/

170 PtNLMS Algorithms

[DOR 06] DOROSLOVAČKI M., DENG H., “On convergence of proportionate-type NLMS
adaptive algorithms”, IEEE International Conference on Acoustics, Speech and Signal
Processing, 2006 (ICASSP ’06), vol. 3, Toulouse, France, pp. 105–108, May 2006.

[DUT 00] DUTTWEILER D., “Proportionate normalized least-mean-squares adaptation in
echo cancellers”, IEEE Transactions on Speech and Audio Processing, vol. 8, no. 5,
pp. 508–518, September 2000.

[FAN 05] FAN L., HE C., WANG D., et al. , “Efficient robust adaptive decision feedback
equalizer for large delay sparse channel”, IEEE Transactions on Consumer Electronics,
vol. 51, no. 2, pp. 449–456, May 2005.

[GAY 98] GAY S., “An efficient, fast converging adaptive filter for network echo cancellation”,
Conference Record of the 32nd Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, vol. 1, pp. 394–398, November 1998.

[HAY 91] HAYKIN S., Adaptive Filter Theory, 2nd ed., Prentice Hall, Upper Saddle River,
NJ, 1991.

[HAY 02] HAYKIN S., Adaptive Filter Theory, 4th ed., Prentice Hall, Upper Saddle River, NJ,
2002.

[HOA 62] HOARE C., “Quicksort”, Computer Journal, vol. 5, no. 1, pp. 10–16, 1962.

[KUS 84] KUSHNER H., Approximation and Weak Convergence Methods for Random Process
with Applications to Stochastic System Theory, MIT Press, Cambridge, MA, 1984.

[LI 08] LI N., ZHANG Y., HAO Y., et al., “A new variable step-size NLMS algorithm designed
for applications with exponential decay impulse responses”, Signal Processing, vol. 88,
no. 9, pp. 2346–2349, September 2008.

[LIL 67] LILLIEFORS H., “On the Kolmogorov-Smirnov test for normality with mean and
variance unknown”, Journal of American Statistical Association, vol. 62, no. 318, pp. 399–
402, June 1967.

[LIU 09] LIU L., FUKUMOTO M., SAIKI S., et al., “A variable step-size proportionate affine
projection algorithm for identification of sparse impulse response”, EURASIP Journal on
Advances in Signal Processing, vol. 2009, pp. 1–10, September 2009.

[LOG 09] LOGANATHAN P., KHONG A., NAYLOR P., “A class of sparseness-controlled
algorithms for echo cancellation”, IEEE Transactions on Audio, Speech, and Language
Processing, vol. 17, no. 8, pp. 1591–1601, November 2009.

[MEC 66] MECHEL F., “Calculation of the modified Bessel functions of the second kind with
complex argument”, Mathematics of Computation, vol. 20, no. 95, pp. 407–412, July 1966.

[MIN 06] MINTANDJIAN L., NAYLOR P., “A study of synchronous convergence in µ-law
PNLMS for voice over IP”, Proceedings of the European Signal Processing Conference,
Florence, Italy, September 2006.

[NAY 03] NAYLOR P., SHERLIKER W., “A short-sort M-max NLMS partial-update adaptive
filter with applications to echo cancellation”, IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2003 (ICASSP ’03), Hong Kong, China, vol. 5, pp. 373–
376, April 2003.

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography 171

[OMU 65] OMURA J., KAILATH T., Some useful probability distributions, Report No. 7050–
6, Stanford Electronics Laboratories, 1965.

[PAL 05] PALOMAR D., FONOLLOSA J., “Practical algorithms for a family of waterfilling
solutions”, IEEE Transactions on Signal Processing, vol. 53, no. 2, pp. 686–695, February
2005.

[SAY 03] SAYED A., Fundamentals of Adaptive Filtering, John Wiley & Sons, New Jersey,
2003.

[SCH 95] SCHREIBER W.F., “Advanced television system for terrestrial broadcasting: some
problems and some proposed solutions”, Proceedings of the IEEE, vol. 83, no. 6, pp. 958–
981, June 1995.

[SHI 04] SHIN H.-C., SAYED A.H., SONG W.-J., “Variable step-size NLMS and affine
projection algorithms”, IEEE Signal Processing Letters, vol. 11, no. 2, pp. 132–135,
February 2004.

[SON 06] SONDHI M.M., “The history of echo cancellation”, IEEE Signal Processing
Magazine, vol. 23, no. 5, pp. 95–102, September 2006.

[SOU 10] DAS CHAGAS DE SOUZA F., TOBIAS O., SEARA R., et al., “A PNLMS algorithm
with individual activation factors”, IEEE Transactions on Signal Processing, vol. 58, no. 4,
pp. 2036–2047, April 2010.

[SPI 96a] SIGNAL PROCESSING INFORMATION BASE, October 1996. Available at:
http://spib. rice.edu/spib/cable.html.

[SPI 96b] SIGNAL PROCESSING INFORMATION BASE, October 1996. Available at:
http://spib. rice.edu/spib/microwave.html.

[STO 09] STOJANOVIC M., PREISIG J., “Underwater acoustic communication channels:
propagation models and statistical characterization”, IEEE Communications Magazine,
vol. 47, no. 1, pp. 84–88, January 2009.

[SYL 52] SYLVESTER J., “A demonstration of the theorem that every homogeneous quadratic
polynomial is reducible by real orthogonal substitutions to the form of a sum of positive
and negative squares”, Philosophical Magazine, vol. 4, pp. 138–142, 1852.

[TAN 02] TANRIKULU O., DOGANCAY K., “Selective-partial-update proportionate
normalized least-mean-squares algorithm for network echo cancellation”, IEEE
International Conference on Acoustics, Speech, and Signal Processing, 2002 (ICASSP
’02), vol. 2, pp. 1889–1892, Orlando, FL, May 2002.

[TAR 88] TARRAB M., FEUER A., “Convergence and performance analysis of the normalized
LMS algorithm with uncorrelated Gaussian data”, IEEE Transactions on Information
Theory, vol. 34, no. 4, pp. 680–691, July 1988.

[WAG 06] WAGNER K., DOROSLOVAČKI M., DENG H., “Convergence of proportionate-type
LMS adaptive filters and choice of gain matrix”, 40th Asilomar Conference on Signals,
Systems and Computers, 2006 (ACSSC ’06), Pacific Grove, CA, pp. 243–247, November
2006.

www.it-ebooks.info

http://www.it-ebooks.info/

172 PtNLMS Algorithms

[WAG 08] WAGNER K., DOROSLOVAČKI M., “Analytical analysis of transient and steady-
state properties of the proportionate NLMS algorithm”, 42nd Asilomar Conference on
Signals, Systems and Computers, 2008, Pacific Grove, CA, pp. 256–260, October 2008.

[WAG 09] WAGNER K., DOROSLOVAČKI M., “Gain allocation in proportionate-type NLMS
algorithms for fast decay of output error at all times”, IEEE International Conference on
Acoustics, Speech and Signal Processing, 2009 (ICASSP ’09), Taipei, Taiwan, pp. 3117–
3120, April 2009.

[WAG 11] WAGNER K., DOROSLOVAČKI M., “Proportionate-type normalized least mean
square algorithms with gain allocation motivated by mean-square-error minimization for
white input”, IEEE Transactions on Signal Processing, vol. 59, no. 5, pp. 2410–2415, May
2011.

[WAG 12a] WAGNER K., DOROSLOVAČKI M., “Complex colored water-filling algorithm for
gain allocation in proportionate adaptive filtering”, 46th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, November 2012.

[WAG 12b] WAGNER K., DOROSLOVAČKI M., “Complex proportionate-type normalized
least mean square algorithms”, IEEE International Conference on Acoustics, Speech and
Signal Processing, 2012 (ICASSP ’12), pp. 3285–3288, Kyoto, Japan, March 2012.

[WEI 77] WEINSTEIN S., “Echo Cancellation in the telephone network”, IEEE
Communications Society Magazine, vol. 15, no. 1, pp. 8–15, January 1977.

[WID 75] WIDROW B., MCCOOL J., BALL M., “The complex LMS algorithm”, Proceedings
of the IEEE, vol. 63, no. 4, pp. 719–720, April 1975.

[WOO 50] WOODBURY M., Inverting modified matrices, Memorandum Report no. 42,
Statistical Research Group, Princeton University, Princeton, NJ, 1950.

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A

Acoustic underwater communication, 2
Adaptation gain

Taylor series, 34
Adaptive EPNLMS algorithm see also

AEPNLMS algorithm, 114
Adaptive MPNLMS algorithm see also

AMPNLMS algorithm, 113
Adaptive SPNLMS algorithm see also

ASPNLMS algorithm, 115
AEPNLMS algorithm, 114

computational complexity, 155
parameter tuning, 119
performance, 116
simplification, 114

AMPNLMS algorithm, 113
computational complexity, 155
parameter tuning, 119
performance, 116
simplification, 114

ASPNLMS algorithm, 115
computational complexity, 155
parameter tuning, 119
performance, 116

C

Cable modem channel, 125
Cauchy–Schwarz inequality, 81
cCWF algorithm

performance, 140, 149

cIAP algorithm, 133
performance, 141

cLMS algorithm, 125
cMPNLMS algorithm

one gain per coefficient performance,
139, 141

performance, 139
simplified

performance, 139
cNLMS algorithm

performance, 139, 141
Color water-filling algorithm see also

CWF algorithm, 80, 82
Complex adaptive filter, 126
Complex affine projection algorithm see

also cIAP algorithm, 133
Complex colored water-filling algorithm

see also cCWF algorithm, 140
Complex LMS algorithm see also cLMS

algorithm, 125
Complex proportionate affine projection

algorithm see also cPAP, 133
Complex proportionate type affine

projection algorithm see also cPtAP
algorithm, 125

Complex PtLMS (cPtLMS) algorithm, 134
Complex PtNLMS algorithm see also

cPtNLMS algorithm, 125
Complex water-filling algorithm see also

cWF algorithm, 139

www.it-ebooks.info

http://www.it-ebooks.info/

174 PtNLMS Algorithms

Conditional PDF maximizing PtNLMS
algorithm
implementation, 109
performance, 109

Constrained optimization using Lagrange
multipliers, 59, 70, 71, 79, 105, 138,
145

Control law, 6
general strategy for sparse systems, 7
switching, 7

Coordinate change, 15, 20
cPAP algorithm, 133

one gain per coefficient, 133
one gain per coefficient performance,

141
performance, 141
representation, 133
simplified, 133

performance, 141
cPNLMS algorithm

computational complexity, 155
one gain per coefficient performance,

139, 141
performance, 139, 141
simplified

performance, 139
cPtAP algorithm, 125, 129

alternative representation, 131
derivation, 126
gain matrix choice, 132
one gain per coefficient, 130
performance, 141
simplified, 130

cPtNLMS algorithm, 129
alternative representation, 131
derivation, 126
gain matrix choice, 132
one gain per coefficient, 130, 145
performance, 139, 147
self-orthogonalizing adaptive filter, 144
simplified, 130
stability consideration, 131

CWF algorithm, 80
computational complexity, 155
gain allocation version 1, 84
gain allocation version 2, 85
performance, 82

performance with gain allocation
version 1, 86

performance with gain allocation
version 2, 86

suboptimal gain allocation, 84
cWF algorithm

implementation, 136
performance, 139

CWF suboptimal 1 algorithm
computational complexity, 155

CWF suboptimal 2 algorithm
computational complexity, 155

D

DCT and KLT relationship, 149
DCT-cPtNLMS algorithm, 144
DCT-LMS algorithm, 144
DCT-NLMS algorithm

performance, 148
DCT-PNLMS algorithm

performance, 148
DCT-WF algorithm

performance, 147, 148
Discrete cosine transform (DCT), 144

E

Echo path
active part, 2
dispersive, 2
sparse, 2

EPNLMS algorithm, 5, 11
computational complexity, 155

�-law PNLMS algorithm see also
EPNLMS algorithm, 5

erfc(x) bounds, 163
Exponential-MSE-model PtNLMS

algorithm performance, 73

G

Gain allocation
z2-algorithm, 62
z2-algorithm implementation, 63
z2-algorithm performance, 65
exponential-MSE-model PtNLMS

algorithm
performance, 73

www.it-ebooks.info

http://www.it-ebooks.info/

Index 175

color water-filling algorithm, 80
complex colored water-filling (cCWF)

algorithm, 136
complex water-filling algorithm, 133
cWF algorithm implementation, 136
estimation of MSWD, 63
exponential-MSE-model PtNLMS

algorithm, 72, 73
gain combination, 64, 85
maximization of conditional PDF of

WDs, 104
minimizing exponentially modeled

MSE, 68, 70
minimizing MSE, 58
minimizing MSWD, 77, 136, 137
MSWD minimization implementation,

81, 138
relation between water-filling and

z2-algorithm, 62
suboptimal, 84
water-filling algorithm, 60, 62
water-filling algorithm

implementation, 63
water-filling algorithm performance, 65

Gain gradient, 34, 46, 53
Gaussian random vector

fourth moment, 21

H

Haar-cPtNLMS algorithm, 144
Haar-NLMS algorithm

performance, 149
Haar-PNLMS algorithm

performance, 149
Haar-WF algorithm

performance, 147, 149
Hessian, 79
High definition television, 2
Hybrid, 1

I

IAF-PNLMS algorithm, 5, 10
IIPNLMS algorithm, 5, 10
Improved IPNLMS algorithm see also

IIPNLMS algorithm, 5
Improved PNLMS algorithm see also

IPNLMS algorithm, 4

Impulse response legend, 167
Individual-Activation-Factor PNLMS

algorithm see also IAF-PNLMS
algorithm, 5

Initial weight estimate, 7
IPNLMS algorithm, 4, 9

J

Joint conditional PDF of WDs, 159
in PtLMS algorithm, 92
in PtLMS algorithm

for white stationary input, 97
no measurement noise, 97

K

Karhunen-Loeve transform (KLT), 144
Kolmogorov-Smirnov test, 39

L

Least mean square algorithm see also LMS
algorithm, 2

Lilliefors test, 39
LMS algorithm, 2, 4, 13

comparison between small step-size
and independent input analysis, 24

computational complexity, 153
independent input assumptions, 18
independent input steady-state

analysis, 24
independent input transient analysis, 19
misadjustment, 18, 24
small adaptation step-size analysis, 13
small adaptation step-size assumptions,

13
small adaptation step-size steady-state

analysis, 17
small adaptation step-size transient

analysis, 14

M

Marginal conditional PDF of WD in
PtLMS algorithm, 98
no measurement noise, 99

Markov chain for WDs, 101
Microwave radio channel, 125

www.it-ebooks.info

http://www.it-ebooks.info/

176 PtNLMS Algorithms

Modified Bessel function of the second
kind, 95, 106

MPNLMS algorithm, 5, 11
computational complexity, 155

MSE and MSWD minimization
relationship, 82, 138

µ-law PNLMS algorithm see also
MPNLMS algorithm, 5

N

Network echo cancellation, 1
NLMS algorithm, 2, 4

computational complexity, 154, 155
Normalized least mean square algorithm

see also NLMS algorithm, 2

P

Partial update algorithms, 5
PNLMS algorithm, 4, 8

computational complexity, 155
Gaussianity assumption for WD, 49,

159
steady-state analysis, 53, 54
transient analysis, 48, 51

PNLMS++ algorithm, 4, 8
Proportionate normalized least mean

square algorithm see also PNLMS
algorithm, 4

Proportionate type least mean square
algorithm see also PtLMS algorithm, 8

Proportionate type steepest descent
algorithm, 69

PtLMS algorithm, 8, 58, 78, 91
PtNLMS algorithm, 4, 6

computational complexity, 153, 154
Gaussianity assumption for WD, 91
MSE minimization for colored input,

159
performance, 4
simulation time, 156
steady-state analysis, 33
steady-state analysis for colored input,

160
steady-state MSWD, 36
transient analysis, 29

transient analysis for colored input, 160
unified framework, 6
weight steady-state bias, 34

R

Recursion
for MSWD in PtNLMS algorithm, 30,

32
for MWD in PtNLMS algorithm, 30,

31
MSWD in LMS algorithm, 15, 19
MSWD in PNLMS algorithm, 48
MWD in LMS algorithm, 14, 19
MWD in PNLMS algorithm, 48
WD in PtLMS algorithm, 91

Relation between MSWD and MSE, 17, 30
RLS algorithm

computational complexity, 155

S

Satellite communication, 2
Segmented PNLMS algorithm see also

SPNLMS algorithm, 114
Self-orthogonalizing adaptive filter, 125,

144
Simplified PNLMS algorithm, 37

Gaussianity assumption for WD, 37, 39
separability of gain and WD, 43
steady-state analysis, 46, 47
transient analysis, 37, 44

SO-NLMS algorithm
performance, 147

SO-PNLMS algorithm
performance, 147

SO-WF algorithm
performance, 147

SPNLMS algorithm, 114
computational complexity, 155

Stability condition
for MSWD in LMS algorithm, 17, 22,

24
for MWD in LMS algorithm, 15

Steady-state joint PDF for WDs, 101, 102,
159

Steepest descent algorithm, 5
Step-size matrix, 7

www.it-ebooks.info

http://www.it-ebooks.info/

Index 177

Stochastic difference equation
with constant coefficients, 14
with stochastic coefficients, 19

Support size, 78, 137
Sylvester’s law of inertia, 23
System identification configuration, 6

T

TD-cPtNLMS algorithm, 126, 144, 146
eigenvalue estimation, 147
implementation, 146
performance, 147
sparsity-whitening trade-off, 150

Time-averaged gain, 69
Transform domain cPtNLMS algorithm see

also TD-cPtNLMS algorithm, 126
Transform domain PtNLMS algorithm see

also TD-PtNLMS algorithm, 144

V

Voice over IP (VOIP), 2

W

Water-filling algorithm see also WF
algorithm, 65

WF algorithm
computational complexity, 155
performance, 65

whitening, 144

Z

z2-algorithm
performance, 65

z2-proportionate algorithm
computational complexity, 155

www.it-ebooks.info

http://www.it-ebooks.info/

	Title Page

	Copyright

	Contents
	Preface
	Notation
	Acronyms
	1. Introduction to PtNLMS Algorithms
	1.1. Applications motivating PtNLMS algorithms
	1.2. Historical review of existing PtNLMS algorithms
	1.3. Unified framework for representing PtNLMS algorithms
	1.4. Proportionate-type NLMS adaptive filtering algorithms
	1.4.1. Proportionate-type least mean square algorithm
	1.4.2. PNLMS algorithm
	1.4.3. PNLMS++ algorithm
	1.4.4. IPNLMS algorithm
	1.4.5. IIPNLMS algorithm
	1.4.6. IAF-PNLMS algorithm
	1.4.7. MPNLMS algorithm
	1.4.8. EPNLMS algorithm

	1.5. Summary

	2. LMS Analysis Techniques
	2.1. LMS analysis based on small adaptation step-size
	2.1.1. Statistical LMS theory: small step-size assumptions
	2.1.2. LMS analysis using stochastic difference equations with constant coefficients
	2.1.2.1. Transient analysis of the LMS algorithm: MWD recursion
	2.1.2.2. Transient analysis of the LMS algorithm: MSWD recursion
	2.1.2.3. Transient analysis of the LMS algorithm: relationship of MSWD to MSE
	2.1.2.4. Steady-state analysis of the LMS algorithm

	2.2. LMS analysis based on independent input signal assumptions
	2.2.1. Statistical LMS theory: independent input signal assumptions
	2.2.2. LMS analysis using stochastic difference equations with stochastic coefficients
	2.2.2.1. Transient analysis of the LMS algorithm: MSWD recursion revisited
	2.2.2.2. LMS steady-state revisited

	2.3. Performance of statistical LMS theory
	2.4. Summary

	3. PtNLMS Analysis Techniques
	3.1. Transient analysis of PtNLMS algorithm for white input
	3.1.1. Link between MSWD and MSE
	3.1.2. Recursive calculation of the MWD and MSWD for PtNLMS algorithms

	3.2. Steady-state analysis of PtNLMS algorithm: bias and MSWD calculation
	3.3. Convergence analysis of the simplified PNLMS algorithm
	3.3.1. Transient theory and results
	3.3.1.1. Product of gain and WD expectations
	3.3.1.2. Separability of gain and WD
	3.3.1.3. Transient analysis results

	3.3.2. Steady-state theory and results
	3.3.2.1. Calculation of gradient terms
	3.3.2.2. steady-state results

	3.4. Convergence analysis of the PNLMS algorithm
	3.4.1. Transient theory and results
	3.4.1.1. Recursive calculation of the MWD and MSWD
	3.4.1.2. Transient analysis results

	3.4.2. Steady-state theory and results
	3.4.2.1. Calculation of gain gradient terms
	3.4.2.2. Algorithm steady-state results

	3.5. Summary

	4. Algorithms Designed Based on Minimization of User-Defined Criteria
	4.1. PtNLMS algorithms with gain allocation motivated by MSE minimization for white input
	4.1.1. Optimal gain calculation resulting from MMSE
	4.1.2. Water-filling algorithm simplifications
	4.1.2.1. Water-filling and z2-proportionate algorithm relationship

	4.1.3. Implementation of algorithms
	4.1.3.1. Biased estimation of MSWD
	4.1.3.2. Adaptive convex gain combination

	4.1.4. Simulation results
	4.1.4.1. Algorithm comparison for white input
	4.1.4.2. Algorithm comparison for non-sparse impulse responses
	4.1.4.3. Algorithm comparison for a time-varying impulse response

	4.2. PtNLMS algorithm obtained by minimization of MSE modeled by exponential functions
	4.2.1. WD for proportionate-type steepest descent algorithm
	4.2.2. Water-filling gain allocation for minimization of the MSE modeled by exponential functions
	4.2.2.1. Calculation of Lagrange multipliers
	4.2.2.2. Usage of the proposed water-filling scheme in PtNLMS algorithm
	4.2.2.3. Modified water-filling algorithm

	4.2.3. Simulation results

	4.3. PtNLMS algorithm obtained by minimization of the MSWD for colored input
	4.3.1. Optimal gain algorithm
	4.3.1.1. Optimal gain resulting from minimization of MSWD
	4.3.1.2. Implementation

	4.3.2. Relationship between minimization of MSE and MSWD
	4.3.3. Simulation results

	4.4. Reduced computational complexity suboptimal gain allocation for PtNLMS algorithm with colored input
	4.4.1. Suboptimal gain allocation algorithms
	4.4.1.1. Adaptive convex gain combination revisited

	4.4.2. Simulation results
	4.4.2.1. Single-pole input signal
	4.4.2.2. Speech input signal

	4.5. Summary

	5. Probability Density of WD for PtLMS Algorithms
	5.1. Proportionate-type least mean square algorithms
	5.1.1. Weight deviation recursion

	5.2. Derivation of the Conditional PDF of WD for the PtLMS algorithm
	5.2.1. Conditional PDF derivation
	5.2.1.1. Derivation of the joint conditional PDF
	5.2.1.2. Derivation of the joint conditional PDF with no measurement noise
	5.2.1.3. Derivation of marginal conditional PDF
	5.2.1.4. Derivation of the marginal conditional PDF with no measurement noise

	5.3. Applications using the conditional PDF
	5.3.1. Methodology for finding the steady-state joint PDF using the conditional PDF
	5.3.1.1. Markov chain proof
	5.3.1.2. Steady-state PDF for a one-dimensional example
	5.3.1.3. Steady-state PDF for a two-dimensional example

	5.3.2. Algorithm based on constrained maximization of the conditional PDF
	5.3.2.1. Arguments for solution existence
	5.3.2.2. Feasible conditional PDF constrained maximization algorithms
	5.3.2.3. Results

	5.4. Summary

	6. Adaptive Step-Size PtNLMS Algorithms
	6.1. Adaptation of μ-law for compression of weight estimates using the output square error
	6.2. AMPNLMS and AEPNLMS simplification
	6.3. Algorithm performance results
	6.3.1. Learning curve performance of the ASPNLMS, AMPNLMS and AEPNLMS algorithms for a white input signal
	6.3.2. Learning curve performance of the ASPNLMS, AMPNLMS and AEPNLMS algorithms for a color input signal
	6.3.3. Learning curve performance of the ASPNLMS, AMPNLMS and AEPNLMS algorithms for a voice input signal
	6.3.4. Parameter effects on algorithms
	6.3.4.1. ν parameter effects
	6.3.4.2. ξ parameter effects
	6.3.4.3. Effects of Υ on ASPNLMS algorithm
	6.3.4.4. Effects of ρ on AEPNLMS algorithm

	6.4. Summary

	7. Complex PtNLMS Algorithms
	7.1. Complex adaptive filter framework
	7.2. cPtNLMS and cPtAP algorithm derivation
	7.2.1. Algorithm simplifications
	7.2.2. Alternative representations
	7.2.3. Stability considerations of the cPtNLMS algorithm
	7.2.4. Calculation of stepsize control matrix

	7.3. Complex water-filling gain allocation algorithm for white input signals: one gain per coefficient case
	7.3.1. Derivation
	7.3.2. Implementation

	7.4. Complex colored water-filling gain allocation algorithm: one gain per coefficient case
	7.4.1. Problem statement and assumptions
	7.4.2. Optimal gain allocation resulting from minimization of MSWD
	7.4.3. Implementation

	7.5. Simulation results
	7.5.1. cPtNLMS algorithm simulation results
	7.5.2. cPtAP algorithm simulation results

	7.6. Transform domain PtNLMS algorithms
	7.6.1. Derivation
	7.6.2. Implementation
	7.6.3. Simulation results

	7.7. Summary

	8. Computational Complexity for PtNLMS Algorithms
	8.1. LMS computational complexity
	8.2. NLMS computational complexity
	8.3. PtNLMS computational complexity
	8.4. Computational complexity for specific PtNLMS algorithms
	8.5. Summary

	Conclusion
	Appendix 1
	Appendix 2
	Bibliography
	Index

