PROCEEDINGS OF THE TENTH
WORKSHOP ON ALGORITHM
ENGINEERING AND EXPERIMENTS
AND THE FIFTH WORKSHOP

ON ANALYTIC ALGORITHMICS
AND COMBINATORICS




SIAM PROCEEDINGS SERIES LIST

Computational Information Retrieval (2001), Michael Berry, editor

Proceedings of the Fiffeenth Annual ACM-SIAM Symposium on Discrete Algorithms (2004), J. lan Munro,
editor

Applied Mathematics Entering the 21st Century: Invited Talks from the ICIAM 2003 Congress (2004), James
M. Hill and Ross Moore, editors

Proceedings of the Fourth SIAM International Conference on Data Mining (2004), Michael W. Berry,
Umeshwar Dayal, Chandrika Kamath, and David Skillicorn, editors

Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2005), Adam
Buchsbaum, editor

Mathematics for Industry: Challenges and Frontiers. A Process View: Practice and Theory (2005), David R.
Ferguson and Thomas J. Peters, editors

Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms (2006), CIiff Stein,
editor

Proceedings of the Sixth SIAM International Conference on Data Mining (2006), Joydeep Ghosh, Diane
Lambert, David Skillicorn, and Jaideep Srivastava, editors

Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2007), Hal Gabow,
editor

Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on
Analytic Algorithmics and Combinatorics (2007), David Applegate, Gerth Stglting Brodal, Daniel Panario,
and Robert Sedgewick, editors

Proceedings of the Seventh SIAM International Conference on Data Mining (2007), Chid Apte, Bing Liu,
Srinivasan Parthasarathy, and David Skillicorn, editors

Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2008), Shang-Hua
Teng, editor

Proceedings of the Tenth Workshop on Algorithm Engineering and Experiments and the Fifth Workshop on
Analytic Algorithmics and Combinatorics (2008), J. lan Munro, Robert Sedgewick, Wojciech Szpankowski,
and Dorothea Wagner, editors



PROCEEDINGS OF THE TENTH
WORKSHOP ON ALGORITHM
ENGINEERING AND EXPERIMENTS
AND THE FIFTH WORKSHOP
ON ANALYTIC ALGORITHMICS
AND COMBINATORICS

Edited by J. lan Munro, Robert Sedgewick,
Wojciech Szpankowski, and Dorothea Wagner

Siam
Society for Industrial and Applied Mathematics
Philadelphia



PROCEEDINGS OF THE TENTH WORKSHOP

ON ALGORITHM ENGINEERING AND EXPERIMENTS

AND THE FIFTH WORKSHOP ON ANALYTIC

ALGORITHMICS AND COMBINATORICS

Proceedings of the Tenth Workshop on Algorithm Engineering and Experiments, San Francisco, CA,
January 19, 2008.

Proceedings of the Fifth Workshop on Analytic Algorithmics and Combinatorics, San Francisco, CA,
January 19, 2008.

The Workshop on Algorithm Engineering and Experiments was supported by the ACM Special Interest
Group on Algorithms and Computation Theory and the Society for Industrial and Applied
Mathematics.

Copyright © 2008 by the Society for Industrial and Applied Mathematics.
10987654321

All rights reserved. Printed in the United States of America. No part of this book may be reproduced,
stored, or tfransmitted in any manner without the written permission of the publisher. For information,
write to the Association for Computing Machinery, 1515 Broadway, New York, NY 10036 and the
Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA
19104-2688 USA.

Library of Congress Control Number: 2008923320
ISBN 978-0-898716-53-5

SlaJTL is a registered trademark.



CONTENTS

Vii Preface to the Workshop on Algorithm Engineering and Experiments

iX Preface to the Workshop on Analytic Algorithmics and Combinatorics

Workshop on Algorithm Engineering and Experiments

3 Compressed Inverted Indexes for In-Memory Search Engines
Frederik Transier and Peter Sanders

13 SHARC: Fast and Robust Unidirectional Routing
Reinhard Bauer and Daniel Delling

27 Obtaining Optimal k-Cardinality Trees Fast
Markus Chimani, Maria Kandyba, Ivana Ljubi¢, and Petra Muizel

37 Implementing Partial Persistence in Object-Oriented Languages
Frédéric Pluguet, Stefan Langerman, Antoine Marot, and Roel Wuyts

49 Comparing Online Learning Algorithms to Stochastic Approaches for the Mulfi-period
Newsvendor Problem
Shawn O’Neil and Amitabh Chaudhary

64 Routing in Graphs with Applications to Material Flow Problems
Rolf H. Méhring
65 How Much Geometry It Takes to Reconstruct a 2-Manifold in R3
Daniel Dumitriu, Stefan Funke, Martin Kutz, and Nikola Milosavijevic
75 Geometric Algorithms for Optimal Airspace Design and Air Traffic Controller Workload
Balancing
Amitabh Basu, Joseph S. B. Mitchell, and Girishkumar Sabhnani
90 Better Approximation of Betweenness Centrality

Robert Geisberger, Peter Sanders, and Dominik Schultes

101 Decoupling the CGAL 3D Triangulations from the Underlying Space
Manuel Caroli, Nico Kruithof, and Monique Teillaud

109 Consensus Clustering Algorithms: Comparison and Refinement
Andrey Goder and Viadimir Filkov

118 Shortest Path Feasibility Algorithms: An Experimental Evaluation
Boris V. Cherkassky, Loukas Georgiadis, Andrew V. Goldberg, Robert E. Tarjan, and Renato F.
Werneck

133 Ranking Tournaments: Local Search and a New Algorithm
Tom Coleman and Anthony Wirth

142 An Experimental Study of Recent Hotlink Assignment Algorithms
Tobias Jacobs

152 Empirical Study on Branchwidth and Branch Decomposition of Planar Graphs
Zhengbing Bian, Qian-Ping Gu, Marjan Marzban, Hisao Tamaki, and Yumi Yoshitake



CONTENTS

Workshop on Analytic Algorithmics and Combinatorics

169 On the Convergence of Upper Bound Techniques for the Average Length of Longest
Common Subsequences
George S. Lueker

183 Markovian Embeddings of General Random Strings
Manuel E. Lladser

191 Nearly Tight Bounds on the Encoding Length of the Burrows-Wheeler Transform
Ankur Gupta, Roberto Grossi, and Jeffrey Scoftt Vitter

203 Bloom Maps
David Talbot and John Talbot

213 Augmented Graph Models for Small-World Analysis with Geographical Factors
Van Nguyen and Chip Martel

228 Exact Analysis of the Recurrence Relations Generalized from the Tower of Hanoi
Akihiro Matsuura

234 Generating Random Derangements
Conrado Martinez, Alois Panholzer, and Helmut Prodinger

241 On the Number of Hamilton Cycles in Bounded Degree Graphs
Heidi Gebauer

249 Analysis of the Expected Number of Bit Comparisons Required by Quickselect
James Allen Fill and Takéhiko Nakama

257 Author Index

vi



ALENEX WORKSHOP PREFACE

The annual Workshop on Algorithm Engineering and Experiments (ALENEX) provides a forum for the
presentation of original research in all aspects of algorithm engineering. including the implementation,
tuning, and experimental evaluation of algorithms and data structures. ALENEX 2008, the tenth
workshop in this series, was held in San Francisco, California on January 19, 2008. The workshop was
sponsored by SIAM, the Society for Industrial and Applied Mathematics, and SIGACT, the ACM Special
Interest Group on Algorithms and Computation Theory.

These proceedings contain 14 contributed papers presented at the workshop as well as the abstract
of the invited talk by Rolf M&hring. The contributed papers were selected from a total of 40
submissions based on originality, technical contribution, and relevance. Considerable effort was
devoted to the evaluation of the submissions with three reviews or more per paper. It is nonetheless
expected that most of the papers in these proceedings will eventually appear in finished form in
scientific journals.

The workshop took place in conjunction with the Fifth Workshop on Analytic Algorithmics and
Combinatorics (ANALCO 2008), and papers from that workshop also appear in these proceedings.
Both workshops are concerned with looking beyond the big-oh asymptotic analysis of algorithms to
more precise measures of efficiency, albeit using very different approaches. The communities are
distinct, but the size of the intersection is increasing as is the flow between the two sessions. We hope
that others in the ALENEX community, not only those who attended the meeting. will find the ANALCO
papers of inferest.

We would like to express our gratitude to all the people who contributed to the success of the
workshop. In particular, we would like thank the authors of submitted papers, the ALENEX Program
Committee members, and the external reviewers. Special thanks go to Kirsten Wilden, for all of her
valuable help in the many aspects of organizing this workshop, and to Sara Murphy, for coordinating
the production of these proceedings.
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ANALCO WORKSHOP PREFACE

The aim of ANALCO is to provide a forum for original research in the analysis of algorithms and
associated combinatorial structures. The papers study properties of fundamental combinatorial
structures that arise in practical computational applications (such as trees, permutations, strings, tries,
and graphs) and address the precise analysis of algorithms for processing such structures, including
average-case analysis; analysis of moments, extrema, and distributions; and probabilistic analysis of
randomized algorithms. Some of the papers present significant new information about classic
algorithms; others present analyses of new algorithms that present unique analytic challenges, or
address tools and techniques for the analysis of algorithms and combinatorial structures, both
mathematical and computational.

The papers in these proceedings were presented in San Francisco on January 19, 2008, at the Fifth
Workshop on Analytic Algorithmics and Combinatorics (ANALCO’08). We selected 9 papers out of a
total of 20 submissions. An invited lecture by Don Knuth on “"Some Puzzling Problems” was the highlight
of the workshop.

The workshop took place on the same day as the Tenth Workshop on Algorithm Engineering and
Experiments (ALENEX'08). The papers from that workshop are also published in this volume. Since
researchers in both fields are approaching the problem of learning detailed information about the
performance of particular algorithms, we expect that interesting synergies will develop. People in the
ANALCO community are encouraged to look over the ALENEX papers for problems where the
analysis of algorithms might play a role; people in the ALENEX community are encouraged to look
over these ANALCO papers for problems where experimentation might play a role.

Robert Sedgewick and Wojciech Szpankowski

ANALCO 2008 Program Committee
Robert Sedgewick (co-chair), Princeton University
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Compressed Inverted Indexes for In-Memory Search Engines

Frederik Transier*

Abstract

We present the algorithmic core of a full text data base
that allows fast Boolean queries, phrase queries, and
document reporting using less space than the input text.
The system uses a carefully choreographed combination
of classical data compression techniques and inverted
index based search data structures. It outperforms
suffix array based techniques for all the above operations
for real world (natural language) texts.

1 Introduction

Searching in large text data bases has become a key
application of computers. Traditionally (a part of) the
index data structure is held in main memory while
the texts themselves are held on disks. However, this
limits the speed of text access. Therefore, with ever
increasing RAM capacities, there is now considerable
interest in data bases that keep everything in main
memory. For example, the TREX engine of SAP stores
large quantities of small texts (like memos or product
descriptions) and requires rapid access to all the data.
Such a search engine consists of a cluster of multi-
core machines, where each processing core is assigned
an about equal share of the data base. Since RAM
is hundreds of times more expensive than disks, good
data compression is very important for in-memory data
bases. In recent years, the algorithms community has
developed sophisticated data structures based on suffix
arrays that provide asymptotically efficient search using
very little space that can even be less than the text itself.

This paper studies a different approach to com-
pressed in-memory text search engines based on inverted
indexes. We show that with careful data compression we
can use very little space. The system consists of several
interacting parts that support Boolean queries, phrase
queries, and document reporting. It turns out that the
parts interact in a nontrivial way. For example, the in-
dex data structure introduced in [1] turns out to allow
better data compression as a side effect and can be used

*SAP AG (NW EIM TREX), 69190 Walldorf, Germany
and Universitat Karlsruhe (TH), 76128 Karlsruhe, Germany -
transier@ira.uka.de

TUniversitdt Karlsruhe (TH), 76128 Karlsruhe, Germany -
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to simplify the positional index used for phrase queries.
Both indexes together are used for a fast document re-
porting functionality that does not need to store the
original text. Since most previous papers focus only on
a subset of these aspects, we believe that our results are
of some interest both from the application perspective
and for algorithm engineering.

We therefore compare our framework with publicly
available implementations based on suffix arrays. Some-
what unexpectedly, our system is more space efficient
than compressed suffix arrays. Its query performance is
up to 3—4 orders of magnitude faster for Boolean queries,
about 20 times faster for phrase queries (the application
domain for which suffix arrays are designed), and about
five times faster for document reporting.’

We give a more concrete definition of the key terms
in Section 2 and related work in Section 3. Section 4
with our inverted index data structures constitutes
the main algorithmic part of the paper. We call it
compressed inverted index. Its modular design consists
of many ingredients each of which is given by a well
defined software module whose implementations can be
exchanged. In Section 5 we explain how to implement
all required operations using compressed suffix arrays.
Section 6 gives an experimental evaluation using real
world benchmark data and Section 7 summarizes the
results and outlines possible future work.

2 Preliminaries

We consider the problem of querying for a subset of
a large collection of normalized text documents. A
normalized text document is a set of words or terms
obtained from an arbitrary text source by smoothing out
all so-called term separators, i.e. spaces, commas and so
on. Thereby we do not distinguish between upper and
lower-case characters. For simplicity, we map each term
and each document to an integer value. So sometimes
we refer to documents or terms as document identifiers
(IDs) or term IDs respectively.

TNote that we do not make any claims about the performance
of suffix arrays for other applications such as in bioinformatics
where the data has very different structure and where we also

need different operations.



A few types of queries are of particular importance:
A Boolean AND query on a document collection asks for
all documents that contain all elements of a given list
of terms. Analogously, a Boolean OR query searches
for all documents that contain any of the terms in the
list. And finally, a phrase query asks for documents that
contain a given sequence of terms.

In a real-world search engine we are obviously
not interested in a list of document IDs as the result
set. Rather, we expect the document texts itself. So
we consider the reporting of result documents as an
important functionality of text search engines as well.

The most widely used data structure for text search
engines is the inverted indexr. In an inverted index,
there is a inverted list of document IDs for each term
ID showing in which document a term appears. In
this simplest version of an inverted index, it can just
answer Boolean queries. For phrase queries additional
positional information is needed, i.e. for each term in
a document a list of positions where it occurs. We
call indexes that contain such information positional
indexes.

Of course, there are many alternatives to the in-
verted index in the literature. Some of them have simi-
lar but somewhat different fields of application. So suf-
fix arrays are mainly used for substring queries. They
store all suffixes of a given text in alphabetical order.
In this way, a substring pattern can quickly be found
using binary search. And since a while ago, there are
also compressed versions of suffix arrays.

Just as well, compression can be applied to inverted
indexes. There exists a couple of standard compression
techniques suitable for inverted lists. A straight forward
approach is bit-compression. For each value in the list,
it uses the number of bits needed to code the largest
one among them. Thus, further compression can be
achived by trying to reduce the maximum entry of a
list. For example, a sorted list can be transformed into a
list of differences between every two consecutive values.
These delta values are smaller or at least equal to their
origins and thus, they can probably be stored using
fewer bits. The big drawback of those linear encoding
schemes is that a list have to be unpacked from the front
for accessing any value in it.

There are also variable bit length encodings. A very
popular one is the Golomb encoding from [2]. It is often
used on delta sequences. Golomb coding has a tunable
parameter. A value is coded in two parts. The result
of a division by the parameter and the remainder. The
quotient is coded in unary followed by the remainder in
truncated binary coding.

3 Related Work

Data structures for text search engines have been stud-
ied extensively in the past. Zobel and Moffat [3] give
a good overview. Across the relevant literature, the in-
verted index structure has been proved to be the method
of choice for fast Boolean querying. As a consequence,
a lot of work has been done in order to improve the ba-
sic data structure of a single inverted list with regard to
compression and simple operations such as intersections
or unions (q.v. [4, 1]).

Traditionally, search engines store at least the ma-
jor parts of their inverted index structures on hard disks.
They use either storage managements that are simi-
lar to those of Zobel et al. [5] or the persistent ob-
ject stores of databases (cp. [6]). Due to the grow-
ing amount of random access memory in computer sys-
tems, recent work have considered to purge disk-based
structures from index design. Strohman and Croft [7]
show how top-k Boolean query evaluation can be sig-
nificantly improved in terms of throughput by holding
impact-sorted inverted index structures in main mem-
ory. Besides strict in-memory and disk-based solutions
there are some hybrid approaches. Luk and Lam [8]
propose a main memory storage allocation scheme suit-
able for inverted lists of smaller size using a linked list
data structure. The scheme uses variable sized nodes
and therefore well suited for inverted lists that are sub-
ject of frequent updates. Typically, such approaches
are used in combination with larger main indexes to
hide the bottleneck of updating search optimized index
structures (cp. [9]).

Unbeaten for Boolean queries, there is a rub in
querying for phrases within inverted indexes. Those
queries are slow as the involved position lists have to
be merged. Several investigations have been made for
reducing this bottleneck. A simple approach of Gutwin
et al. [10] is to index phrases instead of terms. So-called
nextword indexes were proposed by Bahle et al. [11].
For each term, they store a list of all successors together
with their corresponding positions. Furthermore, a
combined index approach of the previous ones was
proposed by Williams et al. [12].

Suffix trees and suffix arrays were originally de-
signed for substring search. Hence they can also be used
for efficient phrase querying. Due to their high space
consumption, they were first unsuitable for large text in-
dexing. However, by now, various authors have worked
on the compression or succinct representations of suffix
arrays. For an overview see Navarro and Mékinen [13]
or the Pizza&Chili Website?. According to Gonzélez
and Navarro [14], they need about 0.3 to 1.5 times of

Zhttp://pizzachili.di.unipi.it/



the size of the indexed text — depending on the desired
space-time trade-off. Moreover, they are self-indezing,
i.e. they can reconstruct the indexed text efficiently. In
comparison to that, an inverted index needs about 0.2
to 1.0 times of the text size ([15]) depending on com-
pression, speed and their support of phrase searches.
Unfortunately, inverted indexes can not reconstruct the
text, so they require this amount of space in addition to
the (compressed) text size.

In recent work, Ferragina and Fischer [16] investi-
gated in building suffix arrays on terms. They need just
about 0.8 times of the space of character based suffix
arrays being twice as fast during the construction.

Puglisi et al. [17] compared compressed suffix
arrays and inverted indexes as approaches for substring
search. They indexed g¢-grams, i.e. strings of length
q, instead of words to allow full substring searches
rather than just simple term searches within their
inverted index. As their result, they found out that
inverted indexes are faster in reporting the location of
substring patterns when the number of their occurrences
is high. For rare patterns they noticed that suffix arrays
outperform inverted indexes. Bast et al. have observed
that suffix arrays are slower for prefix search [18] and
for phrase search [19].

4 Compressed Inverted Index

The core of our text index is a document-grained
inverted index. For each term ID we store either a
pointer to an inverted list or — if the term occurs in
one single document only — just a document ID. We
distinguish between two types of inverted lists. The
first type is used for all terms that occur in less than
K = 128 documents. In our implementation we use the
delta Golomb encoding in order to compress these small
lists in a simple but compact way. For the remaining
terms, we use an extension to the two-level lookup data
structure of [1]. It is organized as follows. Let 1.U
be the range of the N document IDs to be stored in a
list. Then the list can be split into k buckets spanning
the ranges u; = (i — 1)%..i% with ¢ = 1..k. According
to [1], the parameter k is thereby chosen as [%] with
B = 8, so that the buckets can be indexed by the [log k]
most significant bits of their contents. The top-level of
the data structure stores a pointer to each bucket in
the bottom-level. For accessing the positional index,
we also need a rank information, i.e. Z;:o n; for each
bucket ¢ whereas n; denotes the size of bucket j. An
interesting side effect is that using the rank information,
we can guess the average delta within each bucket ¢ as
the quotient of the range delta % and the rank delta n;.
In this way, we can choose a suitable Golomb parameter
for a bucket-wise delta encoding according to [15] as

bi = 1[1(2)
i-th bucket is given by 4108 %1. In contrast to the linear
encoding of the buckets, all top-level values are required
to be randomly accessible. The top-level is later used
to truncate the considered data (cp. algorithm lookup
in [1]) and hence, to reduce the querying time. We call
this two-level data structure a large inverted list.

The distinction between single values, small and
large lists offers two advantages. On the one hand, we
can store lists smaller than K in a very compact way.
On the other hand, this helps to avoid scanning huge
lists.

%3 Obviously, the initial delta value of the

LEMMA 4.1. Assuming the classical Zipfean distribu-
tion of M terms over N documents, our index contains
at least M — m(LM) single value entries.

Proof. According to [20], the classical Zipfean law says
that the rth most frequent term of a dictionary of M
words occurs % times in a collection of N documents,
where H; is the harmonic number of M. Claiming an
occurrence frequency of 1, we get r; = % as the order

of the first term that occurs just once. As the total

number of terms in our index is M, we have M — Him
unique terms. Due to [21] holds Hy, —In(n) — v < 5,

where 'y is the Euler-Mascheroni constant. Therefore

M- >M—N(g +In(M)+7)"! > M- a

Hu ln(M)

LEMMA 4.2. Our document-grained indexr contains at
least (1 — %)% small lists.

Proof. As in proof of Lemma 4.1, we can obtain the
order of the first term that’s occurrence frequency is
equal to K using the Zipfean law, i.e. rg = KHM

By subtracting this rank from that one of the unique
terms 71, we get the number of terms that occur more

than once but less or equal than K times. Thus,
rmn—rg = (1— %)% and due to [21] r; — ryp >
N - £) (g + M)+ > (1- )y O

As an extension of our document-grained inverted
index we store the positional information of each term in
a separate structure. Again, we distinguish the way of
storing the data depending on the list lengths: A vector
indexed by the term IDs provides the basis. For all
terms that occur only once within the index, we store
the single position itself. For the remaining terms we
store pointers to lists of different types. We use simple
linear encoded lists for terms that occur more often
but in just one single document. Terms that appear
in multiple documents just once in each, are stored in a

3In our experiments, this saves about 35 % space compared to

using a global Golomb parameter.



random accessible list, i.e. using bit-compression. And
finally, for all the others, we use indexed lists. An
indexed list is a two-level data structure whose top-
level points to buckets in the bottom level containing
an arbitrary number of values each. In our case, a
bucket contains a list of positions of the term within
a certain document. It is indexed from the top-level
by the rank of that document in the document-grained
index. Figure 1 shows how to retrieve term positions
from indexed lists for a given term v and a list of
document ID-rank pairs D.

Function positions(v, D)

0:=) // output
foreach (d,r) € D do // doc ID - rank pairs
i:=t"[r] // start of position values
e:=t"[r+1] // end of position values

while i < e do
0:=0U (d,b"[i])
1++
return O

// traverse bucket
// add to result

Figure 1: High level pseudocode for retrieving positional
information.

In a similar way, we have access to the positional
information coded in the bit-compressed lists. We can
consider them as lists that consist of a top-level only.
However, instead of storing pointers to buckets therein,
we store the single position values directly. Defining a
function positions for these lists is trivial. And for the
terms that occur in just one document it is even easier.

The advantages of the separation between
document-grained and positional information are
obvious: For cases in which we do not need the
functionality of a positional index, we can easily switch
off this part without any influence on the document-
grained data structures. Furthermore, Boolean queries
are very cache efficient as the inverted lists are free of
other information than the document IDs itself. And
even phrase queries are supposed to be fast. Due to the
fact that we work in main memory we can jump to the
positional information actually needed at little cost.

As usual for inverted index based text search en-
gines we use a dictionary that maps normalized terms
to term IDs and vice versa. Since this part of a search
engine is not our main focus, we use a simple uncom-
pressed dictionary. It stores the normalized terms al-
phabetically ordered and uses binary search for retriev-
ing IDs for a given term. The inverse mapping is done
via a separate vector that is indexed by the term IDs
and contains pointers to the respective terms. Surely,

our dictionary has not its strengths in mapping terms to
term IDs very fast, but as it holds uncompressed terms,
it has certainly no harmful influence on our reconstruc-
tion process in Section 4.2.

Memory management turned out to be crucial for
obtaining actual space consumption close to what one
would expect from summing the sizes of the many
ingredients. Most data is stored in blocks of 512 Kbytes
each. Lists that are greater than such a block get their
own contiguous memory snippet. Within the blocks,
we use word aligned allocation of different objects. We
tried byte-alignment but did not find the space saving
worth the computational overhead.

4.1 Querying the Compressed Inverted Index

Boolean Queries. Inverted indexes are by design well
suited to answer Boolean queries. The AND query
corresponds to an intersection of a set of inverted lists.
This problem has been studied extensively by various
authors in the past (cp. [22, 4, 1]). For our index we
use a simple binary merge algorithm for all small lists
and algorithm lookup from [1] for large lists.

Phrase Queries. The phrase search algorithm on the
index can be divided into four steps. First, we sort the
phrase terms according to their frequency, i.e. their
inverted list lengths. Of course, we have to bear in
mind the term positions within the phrase. Then,
we intersect the document-grained inverted lists of the
two least frequent terms — using algorithm lookup
if applicable — keeping track of the current rank for
each list. With this information, we can retrieve the
corresponding position lists using function positions
of Figure 1. As a result, we have two lists of pairs
consisting of a document and the position within the
document. In a third step, we combine the two lists
using a simple binary merge algorithm that normalizes
the positions according to the query phrase on the fly.
Finally, the further terms have to be incorporated into
the result set. In increasing order of frequency, we
repeat the following for each term: First, we intersect a
terms inverted list with the current result set. Then, we
retrieve the positions. And in the end, we merge them
with the previous result set.

4.2 Document Reporting. The query result of the
inverted index is a list of document IDs which are
associated with pointers to the original documents.
Traditionally, the documents are archived in a separate
storage location, i.e. in files on disk or on the network.
They were retrieved from there when the search engine
returns the results. However, since we want to exploit



associated advantages of main memory, our space is
scarce. So instead of storing the documents separately,
we use the information about the indexed documents
we have already stored. In fact, we know the term
ID - document ID mappings from the inverted lists,
as well as the position lists for these ID pairs. So
we could restore the sequence of normalized terms of
a document by traversing the inverted lists, gathering
the term IDs and placing their dictionary items using
algorithm positions. However, reconstructing a term
sequence this way would take too much time. Instead,
we store a bag of words for each document in addition
to our existing data structures. A bag of words is a
set of all the term IDs occurring in a document. We
store them sorted in increasing order of IDs using delta
Golomb encoding. Besides, we encode sequences of
consecutive value IDs as a 0 followed by the size of the
series. So we are able to build term sequences without
traversing through all inverted lists, just by positioning
all terms of the bag.

There is still a small step from the sequence of
normalized terms towards the original document we
have indexed before. For that reason, we store the
changes made to the terms during the normalization
process. In our dictionary, all terms are normalized to
lower-case characters — the most frequent spelling of
words in English texts. Any differences to this notation
in the original document are recorded in a list of term
escapes. An item in that list consists of a pair of a
position where the variation in the sequence occurs and
an escape value. The escape value indicates how the
term has to be modified. A value of 0 means that
the first character has to be capitalized and a value of
1 means that the whole term has to be spelled with
capital letters. Each greater escape value points to a
replacement term in a separate escape dictionary.

It remains to incorporate the term separators into
the string of adjusted terms. We store the arrangement
of separators and terms of each document as a (Golomb-
coded) list of values: A 0O-value followed by a number
x indicates that there are x terms separated by spaces.
A 1-value indicates a term (Recall that the normalized
text already tells us which term). A value of 2 or larger
encodes the ID of a separator. We use a simple binary
merge algorithm to reconstuct a document from its term
sequence and its separator arrangement.

5 Document Retrieval on Compressed Suffix
Arrays

In order to qualify our phrase querying performance,
we have implemented document retrieval algorithms on
compressed suffix arrays. Of course, suffix arrays know
neither terms nor term IDs, so we do not need a dictio-

nary here. However, as we expect the same query re-
sults, we perform the same normalization process to ob-
tain normalized documents, i.e. normalized document
terms separated by spaces. We concatenate all docu-
ments separated by a special end of document character
into single text from which we build the suffix array.

As the suffix array knows global character positions
only, we need to store all document starting positions
in a separate data structure. Again, we use a lookup list
as described in section 4, in which the rank information
correspond to the document IDs.

5.1 Querying Suffix Arrays

Phrase Queries. Phrase querying on suffix arrays is
straight forward. Here, a phrase search is equal to a
substring search of the normalized query phrase. Due
to the special separator characters, it is impossible to
get a result phrase that overlaps document bounds. As
the result, the suffix array returns positions where the
phrase occurrences start. They have to be remapped to
document IDs using the lookup list described above.

Boolean Queries. For Boolean queries, we first locate
the occurrences for each query term by a substring
search in the suffix array. Afterwards, we map the result
list of the least frequently occurring term to a list of
document IDs. Then, we insert the list in a binary
search tree (std::map) and incorporate the results of
the next frequently occurring term by performing a tree
lookup for each of its items. We put all hits in a second
tree and swap them as soon as we have checked all of
the items. This process is repeated until all term IDs
are processed.

We also tried two other approaches for Boolean
queries. The first one was to build a hash table from the
shortest document ID list using stdext: :hash map and
to check there for the IDs of the remaining lists. The
second one was to sort all lists and to intersect them
like the inverted lists. However, these two alternatives
could not compete with the previous one. Anyway, the
major parts of the querying time are spent during suffix
array operations. We will see this in the experimental
section.

5.2 Document reporting. Document reporting on
suffix arrays is simple. They support this operation
innately. However, the document bounds required for
reporting have to be retrieved outside the suffix array
in our lookup data structure.

Of course, as we have indexed the normalized text
into the suffix array, it returns the normalized text as
well. In order to get the original input document, we



have to take a similar process as we used while retriev-
ing original documents from our inverted index. We
did not implement this, so we will compare just the re-
construction of the normalized text in our experimental
section.

6 Experiments

Table 1: Index properties (50000 documents of WT2g)

CII CSA
dictionary 23.9 -
document index 32.3 -
positional index 126.3 -
bag of words 23.7 -
suffix array - 230.8
doc bound list - 0.1
sum [MB]| 206.1 230.9
text delta 108.7 -

314.8 -
input size (norm.) 412.8 (360.5) | - (360.5)
compression 0.76 (0.57) | - (0.64)
indexing time [min] 5.6 (5.1) | -(9.3)
peak mem usage [GB]| 0.7 3.2

We have implemented all algorithms using C++.
We used a framework wich allows us to switch easily
between different approaches while preserving the envi-
ronment for our measurements. Most tuning parame-
ters in our implementation were set heuristically using
back-of-the-envelope calculations and occasional exper-
iments. We have not spent much effort in systematic
tuning or extensive evaluation of tradeoffs since good
space-time compromises are usually easy to obtain that
are not very sensitive with respect to the values chosen.

The experiments were done on one core of an Intel
Core 2 Duo E6600 processor clocked at 2.4 GHz with
4 GB main memory and 2 x 2048 Kbyte L2 cache,
running OpenSuSE 10.2 (kernel 2.6.18). The program
was compiled by the gnu C+4++ compiler 4.1.2 using
optimization level -O3. Timing was done using PAPI
3.5.0%.

For our experiments we used the WT2g® text cor-
pus, which is a standard benchmark for web search. Al-
though WT2g is by now considered a ‘small’ input, it
is right size for the amount of data assigned to one pro-
cessing core of an in-memory text search engine based
on a cluster of low cost machines. Using more than 1-2
GByte of data on one core would mean investing much
more money into RAM than into processing power.

Thttp://icl.cs.utk.edu/papi/
Shttp://ir.dcs.gla.ac.uk/test_collections/access_to-data.html
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(b) Execution of queries with a length of two terms.

Figure 2: AND queries on the first 50 000 documents of
WT2g.

As arepresentative of the compressed suffix indexes,
we used the compressed suffix array (CSA) implemen-
tation by Sadakane available from the Pizza& Chili web-
site. Compressed suffix arrays showed the best perfor-
mance among the highly space efficient implementations
on our system. For a comparision of further Pizza& Chili
indexes based on a WT2g subset see Appendix A. We
built the suffix array via the API using default param-
eters. The peak memory usage for indexing the first
50000 documents of WT2g into a compressed suffix
array was already at the limits of our physical main
memory. So the following comparison will be based on
this subset. Additionaly, we have conducted our exper-
iments for the compressed inverted index on the com-
plete WT2g corpus, as well as on WT2g.s which was
already used in [1]. It is derived from the former by
indexing each sentence of the plain normalized text as a
single document. The results are shown in Appendix B.
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Figure 3: Phrase queries on the first 50000 documents
of WT2g.

Table 1 contains the properties of the two different
indexes. The size of the parts of the compressed inverted
index (CII) that provide the same functionality as the
CSA is about 10% smaller than the CSA index and
about 43% smaller than the input text. In addition, 26%
of the input size is required by the CII for reconstructing
the original documents from their normalized versions.
This still leaves a saving of more than 20% compared to
the input text.

The indexing time of both methods is comparable
but ours needs only about one fifth of the memory
during construction. We still need about twice as
much memory than the input text during compression.
However, note that the text itself could be streamed
from disk during construction. Furthermore, we can
build the index for one core at a time (possibly in
parallel), temporarily using the space of the other
cores for the construction. Hence, this looks like an
acceptable space consumption.

For evaluating the querying performance, we gener-
ated pseudo real-world queries by selecting random hits.
From a randomly chosen document, we used between
one and ten arbitrary terms to build an AND query.
Similarly, we chose a random term from such a docu-
ment as the start of a phrase query. The lengths of the
generated phrase queries ranged between two and ten
terms. We built 100000 queries varying in their lengths
according to the distribution given in [23], where it is
reported that over 80% of real world queries consists of
between one and three terms.

Our first experiment was to determine the AND
querying performance of the two approaches. Figure
2(a) shows the average query time over the first 10 000 of
our generated queries. As expected, the inverted index
performs well over the entire range of query lengths.
It benefits from a larger number of query terms since
this makes it more likely that the query contains a
rare term with a short inverted list. Since the running
time of the intersection algorithm [1] is essentially linear
in the smaller list, this decreases processing time. In
contrast, the compressed suffix arrays produce unsorted
lists of occurrences for all query terms that have to
be generated using complicated algorithms which cause
many cache faults. This takes the major part of the
querying time (in-SA time). In comparison to that, the
time required for mapping the positions to document
IDs and merging the lists is negligible. The bottom line
difference is huge. On the average, our data structure
is more than 5 000 times faster than CSA. In Figure
2(b) we took a closer look at the ’difficult’ queries with
a length of two terms. The figure shows how many
percent of the queries take longer than a given time.
In a double logarithmic plot, both curves have a quite
clear cutoff. However, the differences are again huge.
While inverted indexes never took more than 3.6 ms,
the CSA needs up to 35 s, almost 10 000 times longer.
We can conclude that a search engine based on suffix
array would probably need an additional inverted index
at least for the Boolean queries.

Our next experiment was to investigate the phrase
querying performance — a home match for suffix arrays.
In Figure 3(a) we see the average time required for
the 100000 queries of our pseudo real-world query set.
For the most frequent practical case of two terms, the
inverted index is nevertheless more than 20 times faster.
Suffix arrays are slightly faster for the rare and easy
phrases with more than four terms. The distribution of
the query times in Figure 3(b) indicates that the largest
observed query times are a factor 24 apart. CSA needs
nearly 5s for some of the phrases. The reason is that
some phrases occur very frequently, and unpacking all
of them can be very expensive.
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Finally, Figure 4 shows the throughput for docu-
ment reporting as a function of document size. Our
scheme allows 6-8 MByte per second of text output.
Retrieving data from disk (assuming an access latency
of 5ms) would be faster beginning at around 32 KByte.°
This suggests a hybrid storage scheme keeping longer
files on disk. But note that in many applications, the
texts are much shorter. For CSA, the bandwidth is
about five times smaller.

In the appendix we also show results for the full
wt2g data set which is about 5x larger. The average
query time goes up proportionally to about 5ms for two
term AND queries and about 70ms for two term phrase
queries. Large query times are now 50ms for AND
queries and 1.1 s for phrase queries. All these numbers
are satisfactory for a text search engine, although it
would be good to reduce the expensive phrase queries
by indexing also some pairs and triples of word. The
interesting question is how much space this would cost.

7 Conclusions and Future Work

A carefully engineered in-memory search engine based
on inverted indexes and positional indexes allows fast
queries using considerably less memory than the input
size. We believe that we have not yet reached the end
of what can be achieved with our approach: The bags
of words are not optimally encodeable with Golomb

SOn the first glance, it looks like parallel disks would be a

way to mitigate disk access cost. However, with the advent of
multicore processors, this option has become quite unattractive —
one disk now costs more than a processing core so that even rack
servers now tend to have less than one disk per processing core.
Using blade servers, the ratio of cores to disks is even larger.
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codes and we could use more adaptive schemes. We
could also compress the dictionary. With respect to
query performance it seems most interesting to add
a carefully selected set of phrases to the index in
order to speed up the most expensive phrase queries.
So far, space consumption and performance of index
construction has not been our focus of attention. We
will attack these issues together with the question of
fast updates. The latter will be implemented using a
small index for recent updates together with a batched
update of the static data structures that should run in
the background without replicating too much data. It
would also be interesting to try suffix arrays that use
the document IDs as their alphabet. Unfortunately, the
current implementations seem to be tied to an 8 bit
alphabet.
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Comparision of different Pizza& Chili index
implementations on the WT2g subset

We have tried all implementations available on the
Pizzad&Chili site.  However, some implementations
crashed and others had so long indexing times (e.g.,
due to swapping) that we had to abort them. Table 2
summarizes the results of the other indices. Since CSA
gives the best performance, we use it as our reference in
the main paper.
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B Further experimental results for CII

WT2g WT2g.s
# of documents 247491 | 10749669
dictionary 85.9 55.3
document index 163.6 380.6
positional index 663.9 654.0
bag of words 1394 410.2
text delta [MB] 557.6 -
sum [MB] 1610.4 | 1500.2
input size [MB] 2118.8 1487.0
compression 0.76 1.07
indexing time [min] 81.7 35.6
peak mem usage [GB| 3.2 3.5

Table 3: Index properties

Here, an average document length of 25.6 seems to be the
limit of the compression potential of the bag-of-words approach.
Obviously, the shorter the document lengths are, the more values
have to be stored in the bags while indexing equal contents.



query count

CSA | CCSA | SSA2 | AF-index
suffix array 230.8 | 500.8 | 302.5 279.2
doc bound list 0.1 0.1 0.1 0.1
sum [MB] 230.9 | 500.9 | 302.6 279.3
compression 0.64 1.39 0.84 0.77
indexing time [min] 9.3 | 11.5 8.7 23.0
peak mem usage [GB]| 3.2 3.1 2.1 3.1

Table 2: Index properties
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query lenghts are slower on WT2g.s, as there are more
documents and hence more results. Larger queries benefit
from larger inverted lists, as in these cases more lookup lists
are used.
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SHARC: Fast and Robust Unidirectional Routing *

Reinhard Bauer

Abstract

During the last years, impressive speed-up techniques for
D1JKSTRA’s algorithm have been developed. Unfortunately,
the most advanced techniques use bidirectional search which
makes it hard to use them in scenarios where a back-
ward search is prohibited. Even worse, such scenarios are
widely spread, e.g., timetable-information systems or time-
dependent networks.

In this work, we present a unidirectional speed-up tech-
nique which competes with bidirectional approaches. More-
over, we show how to exploit the advantage of unidirectional
routing for fast exact queries in timetable information sys-
tems and for fast approximative queries in time-dependent
scenarios. By running experiments on several inputs other
than road networks, we show that our approach is very ro-
bust to the input.

1 Introduction

Computing shortest paths in graphs is used in many
real-world applications like route planning in road net-
works, timetable information for railways, or schedul-
ing for airplanes. In general, DIJKSTRA’s algorithm [10]
finds a shortest path between a given source s and tar-
get t. Unfortunately, the algorithm is far too slow to
be used on huge datasets. Thus, several speed-up tech-
niques have been developed (see [33, 29] for an overview)
yielding faster query times for typical instances, e.g.,
road or railway networks. Due to the availability of huge
road networks, recent research on shortest paths speed-
up techniques solely concentrated on those networks [9].
The fastest known techniques [5, 1] were developed for
road networks and use specific properties of those net-
works in order to gain their enormous speed-ups.
However, these techniques perform a bidirectional
query or at least need to know the exact target node of a
query. In general, these hierarchical techniques step up
a hierarchy—built during preprocessing—starting both
from source and target and perform a fast query on a
very small graph. Unfortunately, in certain scenarios a
backward search is prohibited, e.g. in timetable infor-

" *Partially supported by the Future and Emerging Technologies
Unit of EC (IST priority — 6th FP), under contract no. FP6-
021235-2 (project ARRIVAL).

fUniversitdt Karlsruhe (TH), 76128 Karlsruhe, Germany,
{rbauer,delling}@ira.uka.de.
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mation systems and time-dependent graphs the time of
arrival is unknown. One option would be to guess the
arrival time and then to adjust the arrival time after for-
ward and backward search have met. Another option is
to develop a fast unidirectional algorithm.

In this work, we introduce SHARC-Routing, a fast
and robust approach for unidirectional routing in large
networks. The central idea of SHARC (Shortcuts +
Arc-Flags) is the adaptation of techniques developed for
Highway Hierarchies [28] to Arc-Flags [21, 22, 23, 18].
In general, SHARC-Routing iteratively constructs a
contraction-based hierarchy during preprocessing and
automatically sets arc-flags for edges removed during
contraction. More precisely, arc-flags are set in such a
way that a unidirectional query considers these removed
component-edges only at the beginning and the end of a
query. As a result, we are able to route very efficiently
in scenarios where other techniques fail due to their
bidirectional nature. By using approximative arc-flags
we are able to route very efficiently in time-dependent
networks, increasing performance by one order of mag-
nitude over previous time-dependent approaches. Fur-
thermore, SHARC allows to perform very fast queries—
without updating the preprocessing—in scenarios where
metrics are changed frequently, e.g. different speed pro-
files for fast and slow cars. In case a user needs even
faster query times, our approach can also be used as
a bidirectional algorithm that outperforms the most
prominent techniques (see Figure 1 for an example on a
typical search space of uni- and bidirectional SHARC).
Only Transit-Node Routing is faster than this variant of
SHARC, but SHARC needs considerably less space. A
side-effect of SHARC is that preprocessing takes much
less time than for pure Arc-Flags.

Related Work. To our best knowledge, three ap-
proaches exist that iteratively contract and prune the
graph during preprocessing. This idea was introduced
in [27]. First, the graph is contracted and afterwards
partial trees are built in order to determine highway
edges. Non-highway edges are removed from the graph.
The contraction was significantly enhanced in [28] re-
ducing preprocessing and query times drastically. The
RE algorithm, introduced in [14, 15], also uses the con-
traction from [28] but pruning is based on reach values



Figure 1: Search space of a typical uni-(left) and bidirectional(right) SHARC-query. The source of the query is
the upper flag, the target the lower one. Relaxed edges are drawn in black. The shortest path is drawn thicker.
Note that the bidirectional query only relaxes shortest-path edges.

for edges. A technique relying on contraction as well
is Highway-Node Routing [31], which combines several
ideas from other speed-up techniques. All those tech-
niques build a hierarchy during the preprocessing and
the query exploits this hierarchy. Moreover, these tech-
niques gain their impressive speed-ups from using a bidi-
rectional query, which—among other problems—makes
it hard to use them in time-dependent graphs. Up to
now, solely pure ALT [13] has been proven to work in
such graphs [7]. Moreover, REAL [14, 15]—a combina-
tion of RE and ALT—can be used in a unidirectional
sense but still, the exact target node has to be known
for ALT, which is unknown in timetable information
systems (cf. [26] for details).

Similar to Arc-Flags [21, 22, 23, 18], Geometric
Containers [34] attaches a label to each edge indicating
whether this edge is important for the current query.
However, Geometric Containers has a worse perfor-
mance than Arc-Flags and preprocessing is based on
computing a full shortest path tree from every node
within the graph. For more details on classic Arc-Flags,
see Section 2.

Overview. This paper is organized as follows. Sec-
tion 2 introduces basic definitions and reviews the clas-
sic Arc-Flag approach. Preprocessing and the query al-
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gorithm of our SHARC approach are presented in Sec-
tion 3, while Section 4 shows how SHARC can be used
in time-dependent scenarios. Our experimental study
on real-world and synthetic datasets is located in Sec-
tion 5 showing the excellent performance of SHARC on
various instances. Our work is concluded by a summary
and possible future work in Section 6.

2 Preliminaries

Throughout the whole work we restrict ourselves to
simple, directed graphs G = (V, E') with positive length
function len : E — RT. The reverse graph G = (V, E)
is the graph obtained from G by substituting each
(u,v) € E by (v,u). Given a set of edges H, source(H)
/ target(H) denotes the set of all source / target nodes
of edges in H. With deg;,,(v) / deg,,.(v) we denote the
number of edges whose target / source node is v. The 2-
core of an undirected graph is the maximal node induced
subgraph of minimum node degree 2. The 2-core of a
directed graph is the 2-core of the corresponding simple,
unweighted, undirected graph. A tree on a graph for
which exactly the root lies in the 2-core is called an
attached tree.

A partition of V' is a family C = {Cy, C,...,Ci} of
sets C; C V such that each node v € V is contained
in exactly one set C;. An element of a partition is



called a cell. A multilevel partition of V is a family of
partitions {C°,C!,...,C'} such that for each i < [ and
each Cf € C'a cell CiH € C'F! exists with C% C CLFL
In that case the cell CiF! is called the supercell of C:.
The supercell of a level-I cell is V. The boundary nodes
B¢ of a cell C are all nodes u € C for which at least one
node v € V'\ C exists such that (v,u) € E or (u,v) € E.
The distance according to len between two nodes u and
v we denote by d(u,v).

Classic Arc-Flags. The classic Arc-Flag approach,
introduced in [21, 22], first computes a partition C of
the graph and then attaches a label to each edge e.
A label contains, for each cell C; € C, a flag AF¢,(e)
which is true iff a shortest path to a node in C; starts
with e. A modified DIJKSTRA then only considers those
edges for which the flag of the target node’s cell is true.
The big advantage of this approach is its easy query
algorithm. Furthermore an Arc-Flags DIJKSTRA often
is optimal in the sense that it only visits those edges
that are on the shortest path. However, preprocessing
is very extensive, either regarding preprocessing time or
memory consumption. The original approach grows a
full shortest path tree from each boundary node yielding
preprocessing times of several weeks for instances like
the Western European road network. Recently, a new
centralized approach has been introduced [17]. Tt grows
a centralized tree from each cell keeping the distances
to all boundary nodes of this cell in memory. This
approach allows to preprocess the Western European
road network within one day but for the price of high
memory consumption during preprocessing.

Note that AF¢,(e) is true for almost all edges
e € C; (we call this flags the own-cell-flag). Due to these
own-cell-flags an Arc-Flags DIJKSTRA yields no speed-
up for queries within the same cell. Even worse, using
a unidirectional query, more and more edges become
important when approaching the target cell (the coning
effect) and finally, all edges are considered as soon as the
search enters the target cell. While the coning effect
can be weakened by a bidirectional query, the former
also holds for such queries. Thus, a two-level approach
is introduced in [23] which weakens these drawbacks
as cells become quite small on the lower level. It is
obvious that this approach can be extended to a multi-
level approach.

3 Static SHARC

In this section, we explain SHARC-Routing in static sce-
narios, i.e., the graph remains untouched between two
queries. In general, the SHARC query is a standard
multi-level Arc-Flags DIJKSTRA, while the preprocess-
ing incorporates ideas from hierarchical approaches.
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3.1 Preprocessing of SHARC is similar to Highway
Hierarchies and REAL. During the initialization phase,
we extract the 2-core of the graph and perform a multi-
level partition of G according to an input parameter P.
The number of levels L is an input parameter as well.
Then, an iterative process starts. At each step i we
first contract the graph by bypassing unimportant nodes
and set the arc-flags automatically for each removed
edge. On the contracted graph we compute the arc-
flags of level ¢ by growing a partial centralized shortest-
path tree from each cell C; At the end of each
step we prune the input by detecting those edges
that already have their final arc-flags assigned. In
the finalization phase, we assemble the output-graph,
refine arc-flags of edges removed during contraction
and finally reattach the 1-shell nodes removed at the
beginning. Figure 2 shows a scheme of the SHARC-
preprocessing. In the following we explain each phase
separately. We hereby restrict ourselves to arc-flags
for the unidirectional variant of SHARC. However,
the extension to computing bidirectional arc-flags is
straight-forward.

3.1.1 1-Shell Nodes. First of all, we extract the
2-core of the graph as we can directly assign correct
arc-flags to attached trees that are fully contained in a
cell: Each edge targeting the core gets all flags assigned
true while those directing away from the core only
get their own-cell flag set true. By removing 1-shell
nodes before computing the partition we ensure the
“fully contained” property by assigning all nodes in an
attached tree to the cell of its root. After the last step
of our preprocessing we simply reattach the nodes and
edges of the 1-shell to the output graph.

3.1.2 Multi-Level Partition. As shown in [23], the
classic Arc-Flag method heavily depends on the par-
tition used. The same holds for SHARC. In order to
achieve good speed-ups, several requirements have to
be fulfilled: cells should be connected, the size of cells
should be balanced, and the number of boundary nodes
has to be low. In this work, we use a locally optimized
partition obtained from SCOTCH [25]. For details, see
Section 5. The number of levels L and the number of
cells per level are tuning-parameters.

3.1.3 Contraction. The graph is contracted by it-
eratively bypassing nodes until no node is bypassable
any more. To bypass a node n we first remove n, its
incoming edges I and its outgoing edges O from the
graph. Then, for each u € source(I) and for each
v € target(I) \ {u} we introduce a new edge of the
length len(u,n) + len(n,v). If there already is an edge
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Figure 2: Schematic representation of the preprocess-
ing. Input parameters are the partition parameters P,
the number of levels L, and the contraction parame-
ter c. During initialization, we remove the 1-shell nodes
and partition the graph. Afterwards, an iterative pro-
cess starts which contracts the graph, sets arc-flags, and
prunes the graph. Moreover, during the last iteration
step, boundary shortcuts are added to the graph. Dur-
ing the finalization, we construct the output-graph, re-
fine arc-flags and reattach the 1-shell nodes to the graph.
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connecting u and v in the graph, we only keep the one
with smaller length. We call the number of edges of
the path that a shortcut represents on the graph at the
beginning of the current iteration step the hop number
of the shortcut. To check whether a node is bypassable
we first determine the number #shortcut of new edges
that would be inserted into the graph if n is bypassed,
i.e., existing edges connecting nodes in source(I) with
nodes in target(O) do not contribute to #shortcut.
Then we say a node is bypassable iff the bypass criterion
#shorteut < c-(deg;,,(n)+deg,,;(n)) is fulfilled, where
c is a tunable contraction parameter.

A node being bypassed influences the degree of their
neighbors and thus, their bypassability. Therefore, the
order in which nodes are bypassed changes the resulting
contracted graph. We use a heap to determine the next
bypassable node. The key of a node n within the heap
is h - #shortcut/(deg;, (n) + deg,,;(n)) where h is the
hop number of the hop-maximal shortcut that would
be added if n was bypassed, smaller keys have higher
priority. To keep the length of shortcuts limited we do
not bypass a node if that results in adding a shortcut
with hop number greater than 10. We say that the nodes
that have been bypassed belong to the component, while
the remaining nodes are called core-nodes. In order
to guarantee correctness, we use cell-aware contraction,
i.e., a node n is never marked bypassable if any of its
neighboring nodes is not in the same cell as n.

Our contraction routine mainly follows the ideas
introduced in [28]. The idea to control the order, in
which the nodes are bypassed using a heap is due to
[14]. In addition, we slightly altered the bypassing
criterion, leading to significantely better results, e.g.
on the road network of Western Europe, our routine
bypasses twice the number of nodes with the same
contraction parameter. The main difference to [28] is
that we do not count existing edges for determining
#shortcut. Finally, the idea to bound the hop number
of a shortcut is due to [6].

3.1.4 Boundary-Shortcuts. During our study, we
observed that—at least for long-range queries on road
networks—a classic bidirected Arc-Flags DIJKSTRA of-
ten is optimal in the sense that it visits only the edges
on the shortest path between two nodes. However, such
shortest paths may become quite long in road networks.
One advantage of SHARC over classic Arc-Flags is that
the contraction routine reduces the number of hops of
shortest paths in the network yielding smaller search
spaces. In order to further reduce this hop number we
enrich the graph by additional shortcuts. In general
we could try any shortcuts as our preprocessing favors
paths with less hops over those with more hops, and



thus, added shortcuts are used for long range queries.
However, adding shortcuts crossing cell-borders can in-
crease the number of boundary nodes, and hence, in-
crease preprocessing time. Therefore, we use the fol-
lowing heuristic to determine good shortcuts: we add
boundary shortcuts between some boundary nodes be-
longing to the same cell C' at level L — 1. In order
to keep the number of added edges small we compute
the betweenness [4] values c¢g of the boundary nodes on
the remaining core-graph. Each boundary node with a
betweenness value higher than half the maximum gets
3 - /|Bc| additional outgoing edges. The targets are
those boundary nodes with highest cg - h values, where
h is the number of hops of the added shortcut.

3.1.5 Arc-Flags. Our query algorithm is executed
on the original graph enhanced by shortcuts added
during the contraction phase. Thus, we have to assign
arc-flags to each edge we remove during the contraction
phase. One option would be to set every flag to true.
However, we can do better. First of all, we keep all arc-
flags that already have been computed for lower levels.
We set the arc-flags of the current and all higher levels
depending on the source node s of the deleted edge. If
s is a core node, we only set the own-cell flag to true
(and others to false) because this edge can only be
relevant for a query targeting a node in this cell. If s
belongs to the component, all arc-flags are set to true as
a query has to leave the component in order to reach a
node outside this cell. Finally, shortcuts get their own-

Figure 3: Example for assigning arc-flags during con-
traction for a partition having four cells. All nodes are
in cell 3. The red nodes (4 and 5) are removed, the
dashed shortcuts are added by the contraction. Arc-
flags are indicated by a 1 for true and O for false. The
edges directing into the component get only their own-
cell flag set true. All edges in and out of the component
get full flags. The added shortcuts get their own-cell
flags fixed to false.
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cell flag fized to false as relaxing shortcuts when the
target cell is reached yields no speed-up. See Figure 3
for an example. As a result, an Arc-Flags query only
considers components at the beginning and the end of
a query. Moreover, we reduce the search space.

Assigning Arc-Flags to Core-Edges. After the
contraction phase and assigning arc-flags to removed
edges, we compute the arc-flags of the core-edges of
the current level i. As described in [17], we grow,
for each cell C, one centralized shortest path tree on
the reverse graph starting from every boundary node
n € Be of C. We stop growing the tree as soon as all
nodes of C’s supercell have a distance to each b € B¢
greater than the smallest key in the priority queue used
by the centralized shortest path tree algorithm (see [17]
for details). For any edge e that is in the supercell of C
and that lies on a shortest path to at least one b € B¢,
we set AF(e) = true.

Note that the centralized approach sets arc-flags to
true for all possible shortest paths between two nodes.
In order to favor boundary shortcuts, we extend the
centralized approach by introducing a second matrix
that stores the number of hops to every boundary
node. With the help of this second matrix we are able
to assign true arc-flags only to hop-minimal shortest
paths. However, using a second matrix increases the
high memory consumption of the centralized approach
even further. Thus, we use this extension only during
the last iteration step where the core is small.

3.1.6 Pruning. After computing arc-flags at the cur-
rent level, we prune the input. We remove unimportant
edges from the graph by running two steps. First, we
identify prunable cells. A cell C is called prunable if
all neighboring cells are assigned to the same supercell.
Then we remove all edges from a prunable cell that have
at most their own-cell bit set. For those edges no flag
can be assigned true in higher levels as then at least
one flag for the surrounding cells must have been set
before.

3.1.7 Refinement of Arc-Flags. Our contraction
routine described above sets all flags to true for almost
all edges removed by our contraction routine. However,
we can do better: we are able to refine arc-flags by
propagation of arc-flags from higher to lower levels.
Before explaining our propagation routine we need the
notion of level. The level I(u) of a node w is determined
by the iteration step it is removed in from the graph. All
nodes removed during iteration step 7 belong to level i.
Those nodes which are part of the core-graph after the
last iteration step belong to level L. In the following,
we explain our propagation routine for a given node wu.



Figure 4: Example for refining the arc-flags of outgoing edges from node 4. The figure in the left shows the graph
from Figure 3 after the last iteration step. The figure on the right shows the result of our refinement routine

starting at node 4.

First, we build a partial shortest-path tree T start-
ing at u, not relaxing edges that target nodes on a level
smaller than [(u). We stop the growth as soon as all
nodes in the priority queue are covered. A node v is
called covered as soon as a node between u and v—with
respect to T—belongs to a level > I(u). After the termi-
nation of the growth we remove all covered nodes from
T resulting in a tree rooted at u and with leaves either
in I(u) or in a level higher than I(u). Those leaves of
the built tree belonging to a level higher than I(u) we
call entry nodes N (u) of u.

With this information we refine the arc-flags of all
edges outgoing from w. First, we set all flags—except
the own-cell flags—of all levels > I(u) for all outgoing
edges from u to false. Next, we assign entry nodes to
outgoing edges from w. Starting at an entry node ng
we follow the predecessor in T" until we finally end up in
a node x whose predecessor is u. The edge (u,z) now
inherits the flags from ng. Every edge outgoing from
ng whose target t is not an entry node of v and not in a
level < I(u) propagates all true flags of all levels > [(u)
to (u,x).

In order to propagate flags from higher to lower
levels we perform our propagation-routine in L — 1 re-
finement steps, starting at level L — 1 and in descending
order. Figure 4 gives an example. Note that during re-
finement step ¢ we only refine arc-flags of edges outgoing
from nodes belonging to level i.

3.1.8 Output Graph. The output graph of the pre-
processing consists of the original graph enhanced by all
shortcuts that are in the contracted graph at the end of
at least one iteration step. Note that an edge (u,v)
may be contained in no shortest path because a shorter
path from u to v already exists. This especially holds
for the shortcuts we added to the graph. As a conse-
quence, such edges have no flag set true after the last
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step. Thus, we can remove all edges from the output
graph with no flag set true. Furthermore the multi-
level partition and the computed arc-flags are given.

3.2 Query. Basically, our query is a multi-level Arc-
Flags D1IJKSTRA adapted from the two-level Arc-Flags
DUKSTRA presented in [23]. The query is a modified
DiKSTRA that operates on the output graph. The
modifications are as follows: When settling a node n,
we compute the lowest level ¢ on which n and the target
node t are in the same supercell. When relaxing the
edges outgoing from n, we consider only those edges
having a set arc-flag on level ¢ for the corresponding
cell of t. It is proven that Arc-Flags performs correct
queries. However, as our preprocessing is different, we
have to prove Theorem 3.1.

THEOREM 3.1. The distances computed by SHARC are
correct with respect to the original graph.

The proof can be found in Appendix A. We want
to point out that the SHARC query, compared to
plain DIJKSTRA, only needs to additionally compute the
common level of the current node and the target. Thus,
our query is very efficient with a much smaller overhead
compared to other hierarchical approaches. Note that
SHARC uses shortcuts which have to be unpacked for
determining the shortest path (if not only the distance
is queried). However, we can directly use the methods
from [6], as our contraction works similar to Highway
Hierarchies.

Multi-Metric Query. In [3], we observed that the
shortest path structure of a graph—as long as edge
weights somehow correspond to travel times—hardly
changes when we switch from one metric to another.
Thus, one might expect that arc-flags are similar to each
other for these metrics. We exploit this observation for
our multi-metric variant of SHARC. During preprocess-



ing, we compute arc-flags for all metrics and at the end
we store only one arc-flag per edge by setting a flag
true as soon as the flag is true for at least one metric.
An important precondition for multi-metric SHARC is
that we use the same partition for each metric. Note
that the structure of the core computed by our contrac-
tion routine is independent of the applied metric.
Optimizations. In order to improve both perfor-
mance and space efficiency, we use three optimizations.
Firstly, we increase locality by reordering nodes accord-
ing to the level they have been removed at from the
graph. As a consequence, the number of cache misses is
reduced yielding lower query times. Secondly, we check
before running a query, whether the target is in the
1-shell of the graph. If this check holds we do not re-
lax edges that target 1-shell nodes whenever we settle
a node being part of the 2-core. Finally, we store each
different arc-flag only once in a separate array. We as-
sign an additional pointer to each edge indicating the
correct arc-flags. This yields a lower space overhead.

4 Time-Dependent SHARC

Up to this point, we have shown how preprocessing
works in a static scenario. As our query is unidirectional
it seems promising to use SHARC in a time-dependent
scenario. The fastest known technique for such a
scenario is ALT yielding only mild speed-ups of factor
3-5. In this section we present how to perform queries
in time-dependent graphs with SHARC. In general, we
assume that a time-dependent network (V,E)
derives from an independent network G = (V, E) by
increasing edge weights at certain times of the day. For
road networks these increases represent rush hours.

The idea is to compute approximative arc-flags
in G and to use these flags for routing in In
order to compute approximative arc-flags, we relax our
criterion for setting arc-flags. Recall that for exact flags,
AFc((u,v)) is set true if d(u,b) + len(u,v) = d(v,b)
holds for at least one b € Bg. For ~-approximate
flags (indicated by AF), we set AF¢((u,v)) = true if
equation d(u,b) +len(u,v) < -d(v,b) holds for at least
one b € Bc. Note that we only have to change this
criterion in order to compute approximative arc-flags
instead of exact ones by our preprocessing. However, we
do not add boundary shortcuts as this relaxed criterion
does not favor those shortcuts.

It is easy to see that there exists a trade-off between
performance and quality. Low ~y-values yield low query
times but the error-rate may increase, while a large ~
reduces the error rate of v-SHARC but yields worse
query performance, as much more edges are relaxed
during the query than necessary.
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5 Experiments

In this section, we present an extensive experimental
evaluation of our SHARC-Routing approach. To this
end, we evaluate the performance of SHARC in various
scenarios and inputs. Our tests were executed on one
core of an AMD Opteron 2218 running SUSE Linux
10.1. The machine is clocked at 2.6 GHz, has 16 GB
of RAM and 2 x 1 MB of L2 cache. The program was
compiled with GCC 4.1, using optimization level 3.

Implementation Details. Our implementation is
written in C++ using solely the STL. As priority queue
we use a binary heap. Our graph is represented as
forward star implementation. As described in [30], we
have to store each edge twice if we want to iterate
efficiently over incoming and outgoing edges. Thus, the
authors propose to compress edges if target and length
of incoming and outgoing edges are equal. However,
SHARC allows an even simpler implementation. During
preprocessing we only operate on the reverse graph and
thus do not iterate over outgoing edges while during
the query we only iterate over outgoing edges. As
a consequence, we only have to store each edge once
(for preprocessing at its target, for the query at its
source). Thus, another advantage of our unidirectional
SHARC approach is that we can reduce the memory
consumption of the graph. Note that this does not
hold for our bidirectional SHARC variant which needs
considerably more space (cf. Tab. 1).

Multi-Level Partition. As already mentioned,
the performance of SHARC highly depends on the par-
tition of the graph. Up to now [2], we used METIS [20]
for partitioning a given graph. However, in our experi-
mental study we observed two downsides of METIS: On
the one hand, cells are sometimes disconnected and the
number of boundary nodes is quite high. Thus, we also
tested PARTY [24] and SCOTCH |[25] for partitioning.
The former produces connected cells but for the price of
an even higher number of boundary nodes. SCOTCH
has the lowest number of boundary cells, but connec-
tivity of cells cannot be guaranteed. Due to this low
number of boundary nodes, we used SCOTCH and im-
prove the obtained partitioning by adding smaller pieces
of disconnected cells to neighbor cells. As a result, con-
structing and optimizing a partition can be done in less
than 3 minutes for all inputs used.

Default Setting. Unless otherwise stated, we use
a unidirectional variant of SHARC with a 3-level parti-
tion with 16 cells per supercell on level 0 and 1 and 96
cells on level 2. Moreover, we use a value of ¢ = 2.5 as
contraction parameter. When performing random s-t
queries, the source s and target ¢t are picked uniformly
at random and results are based on 10000 queries.



Table 1: Performance of SHARC and the most prominent speed-up techniques on the European and US road
network with travel times. Prepro shows the computation time of the preprocessing in hours and minutes and
the eventual additional bytes per node needed for the preprocessed data. For queries, the search space is given
in the number of settled nodes, execution times are given in milliseconds. Note that other techniques have been
evaluated on slightly different computers. The results for Highway Hierarchies and Highway-Node Routing derive
from [30]. Results for Arc-Flags are based on 200 PARTY cells and are taken from [17].

Europe USA
PREPRO QUERY PREPRO QUERY

[h'm] [B/n] | #settled  [ms] | [hom] [B/n] | #settled  [ms]
SHARC 2:17 13 1114 0.39 1:57 16 1770 0.68
bidirectional SHARC 3:12 20 145  0.091 2:38 21 350 0.18
Highway Hierarchies 0:19 48 709  0.61 0:17 34 925  0.67
Highway-Node 0:15 8 1017 0.88 0:16 8 760  0.50
REAL-(64,16) 2:21 32 679 1.10 2:01 43 540 1.05
Arc-Flags 17:08 19 2369 1.60 || 10:10 10 8180 4.30
Grid-based Transit-Node - - - — || 20:00 21 NA 0.063
HH-based Transit-Node 2:44 251 NA 0.006 3:25 244 NA 0.005

5.1 Static Environment. We start our experimen-
tal evaluation with various tests for the static scenario.
We hereby focus on road networks but also evaluate
graphs derived from timetable information systems and
synthetic datasets that have been evaluated in [2].

5.1.1 Road Networks. As inputs we use the largest
strongly connected component of the road networks of
Western Europe, provided by PTV AG for scientific use,
and of the US which is taken from the DIMACS home-
page [9]. The former graph has approximately 18 mil-
lion nodes and 42.6 million edges and edge lengths cor-
respond to travel times. The corresponding figures for
the USA are 23.9 million and 58.3 million, respectively.

Random Queries. Tab. 1 reports the results of
SHARC with default settings compared to the most
prominent speed-up techniques. In addition, we report
the results of a variant of SHARC which uses bidirec-
tional search in connection with a 2-level partition (16
cells per supercell at level 0, 112 at level 1).

We observe excellent query times for SHARC in
general. Interestingly, SHARC has a lower preprocess-
ing time for the US than for Europe but for the price
of worse query performance. On the one hand, this is
due to the bigger size of the input yielding bigger cell
sizes and on the other hand, the average hop number of
shortest paths are bigger for the US than for Europe.
However, the number of boundary nodes is smaller for
the US yielding lower preprocessing effort. The bidirec-
tional variant of SHARC has a more extensive prepro-
cessing: both time and additional space increase, which
is due to computing and storing forward and backward
arc-flags. However, preprocessing does not take twice
the time than for default SHARC as we use a 2-level

setup for the bidirectional variant and preprocessing the
third level for default SHARC is quite expensive (around
40% of the total preprocessing time). Comparing query
performance, bidirectional SHARC is clearly superior
to the unidirectional variant. This is due to the known
disadvantages of uni-directional classic Arc-Flags: the
coning effect and no arc-flag information as soon as the
search enters the target cell (cf. Section 2 for details).

Comparing SHARC with other techniques, we ob-
serve that SHARC can compete with any other tech-
nique except HH-based Transit Node Routing, which
requires much more space than SHARC. Stunningly, for
Europe, SHARC settles more nodes than Highway Node
Routing or REAL, but query times are smaller. This is
due to the very low computational overhead of SHARC.
Regarding preprocessing, SHARC uses less space than
REAL or Highway Hierarchies. The computation time
of the preprocessing is similar to REAL but longer than
for Highway-Node Routing. The bidirectional variant
uses more space and has longer preprocessing times,
but the performance of the query is very good. The
number of nodes settled is smaller than for any other
technique and due to the low computational overhead
query times are clearly lower than for Highway Hier-
archies, Highway-Node Routing or REAL. Compared
to the classic Arc-Flags, SHARC significantely reduces
preprocessing time and query performance is better.

Local Queries. Figure 5 reports the query times
of uni- and bidirectional SHARC with respect to the
Dijkstra rank. For an s-t query, the Dijkstra rank of
node v is the number of nodes inserted in the priority
queue before v is reached. Thus, it is a kind of distance
measure. As input we again use the European road
network instance.
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Figure 5: Comparison of uni- and bidirectional SHARC using the Dijkstra rank methodology [27]. The results are
represented as box-and-whisker plot [32]: each box spreads from the lower to the upper quartile and contains the
median, the whiskers extend to the minimum and maximum value omitting outliers, which are plotted individually.

Note that we use a logarithmic scale due to outliers.
Unidirectional SHARC gets slower with increasing rank
but the median stays below 0.6 ms while for bidirec-
tional SHARC the median of the queries stays below
0.2 ms. However, for the latter, query times increase up
to ranks of 2'3 which is roughly the size of cells at the
lowest level. Above this rank query times decrease and
increase again till the size of cells at level 1 is reached.
Interestingly, this effect deriving from the partition can-
not be observed for the unidirectional variant. Com-
paring uni- and bidirectional SHARC we observe more
outliers for the latter which is mainly due to less levels.
Still, all outliers are below 3 ms.

Table 2: Performance of SHARC on different metrics
using the European road instance. Multi-metric refers
to the variant with one arc-flag and three edge weights
(one weight per metric) per edge, while single refers to
running SHARC on the applied metric.

PREPRO QUERY
profile metric || [h:m] [B/n] | #settled [ms]
linear single 2:17 13 1114 0.39

multi 6:51 16 1392 0.51
slow car single 1:56 14 1146 0.41
multi 6:51 16 1372 0.50
fast car single 2:24 13 1063 0.37
multi 6:51 16 1348 0.49
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Multi-Metric Queries. The original dataset of
Western Europe contains 13 different road categories.
By applying different speed profiles to the categories
we obtain different metrics. Tab. 2 gives an overview
of the performance of SHARC when applied to metrics
representing typical average speeds of slow/fast cars.
Moreover, we report results for the linear profile which
is most often used in other publications and is obtained
by assigning average speeds of 10, 20, ..., 130 to the
13 categories. Finally, results are given for multi-metric
SHARC, which stores only one arc-flag for each edge.

As expected, SHARC performs very well on other
metrics based on travel times. Stunningly, the loss in
performance is only very little when storing only one
arc-flag for all three metrics. However, the overhead
increases due to storing more edge weights for shortcuts
and the size of the arc-flags vector increases slightly.
Due to the fact that we have to compute arc-flags for all
metrics during preprocessing, the computational effort
increases.

5.1.2 Timetable Information Networks. Unlike
bidirectional approaches, SHARC-Routing can be used
for timetable information. In general, two approaches
exist to model timetable information as graphs: time-
dependent and time-expanded networks (cf. [26] for
details). In such networks timetable information can be
obtained by running a shortest path query. However, in



Table 3: Performance of plain D1JKSTRA and SHARC
on a local and long-distance time-expanded timetable
networks, unit disk graphs (udg) with average degree
5 and 7, and grid graphs with 2 and 3 number of
dimensions. Due to the smaller size of the input, we
use a 2-level partition with 16,112 cells.

PREPRO QUERY
graph  tech. [h:m] [B/n] #sett  [ms]
rail Dijkstra || 0:00 0 11299830 406.2
local ~ SHARC || 10:02 9 11006 3.8
rail Dijkstra 0:00 0| 609352 221.2
long SHARC 3:29 15 7519 2.2
udg Dijkstra || 0:00 0 | 487818 257.3
deg.5 SHARC 0:01 16 568 0.3
udg Dijkstra || 0:00 0| 521874 330.1
deg.7 SHARC 0:10 42 1835 1.0
grid Dijkstra 0:00 0| 125675  36.7
2-dim SHARC 0:32 60 1089 0.4
grid Dijkstra || 0:00 0] 125398  78.6
3—-dim SHARC 1:02 97 5839 1.9

both models a backward search is prohibited as the time
of arrival is unknown in advance. Tab. 3 reports the
results of SHARC on 2 time-expanded networks: The
first represents the local traffic of Berlin/Brandenburg,
has 2599953 nodes and 3 899 807 edges, the other graph
depicts long distance connections of Europe (1192736
nodes, 1789088 edges). For comparison, we also report
results for plain DIJKSTRA.

For time-expanded railway graphs we observe an in-
crease in performance of factor 100 over plain DIJKSTRA
but preprocessing is still quite high which is mainly due
to the partition. The number of boundary nodes is very
high yielding high preprocessing times. However, com-
pared to other techniques (see [2]) SHARC (clearly) out-
performs any other technique when applied to timetable
information system.

5.1.3 Other inputs. In order to show the robustness
of SHARC-Routing we also present results on synthetic
data. On the one hand, 2- and 3-dimensional grids
are evaluated. The number of nodes is set to 250 000,
and thus, the number of edges is 1 and 1.5 million,
respectively. Edge weights are picked uniformly at
random from 1 to 1000. On the other hand, we evaluate
random geometric graphs—so called unit disk graphs—
which are widely used for experimental evaluations in
the field of sensor networks (see e.g. [19]). Such graphs
are obtained by arranging nodes uniformly at random
on the plane and connecting nodes with a distance
below a given threshold. By applying different threshold
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values we vary the density of the graph. In our setup, we
use graphs with about 1000000 nodes and an average
degree of 5 and 7, respectively. As metric, we use the
distance between nodes according to their embedding.
The results can be found in Tab. 3.

We observe that SHARC provides very good results
for all inputs. For unit disk graphs, performance gets
worse with increasing degree as the graph gets denser.
The same holds for grid graphs when increasing the
number of dimensions.

5.2 Time-Dependency. Our final testset is per-
formed on a time-dependent variant of the European
road network instance. We interpret the initial values
as empty roads and add transit times according to rush
hours. Due to the lack of data we increase all motor-
ways by a factor of two and all national roads by a
factor of 1.5 during rush hours. Our model is inspired
by [11]. Our time-dependent implementation assigns 24
different weights to edges, each representing the edge
weight at one hour of the day. Between two full hours,
we interpolate the real edge weight linearly. An easy
approach would be to store 24 edge weights separately.
As this consumes a lot of memory, we reduce this over-
head by storing factors for each hour between 5:00 and
22:00 of the day and the edge weight representing the
empty road. Then we compute the travel time of the
day by multiplying the initial edge weight with the fac-
tor (afterwards, we still have to interpolate). For each
factor at the day, we store 7 bits resulting in 128 addi-
tional bits for each time-dependent edge. Note that we
assume that roads are empty between 23:00 and 4:00.

Another problem for time-dependency is shortcut-
ting time-dependent edges. We avoid this problem
by not bypassing nodes which are incident to a time-
dependent edge which has the advantage that the space-
overhead for additional shortcuts stay small. Tab. 4
shows the performance of 7-SHARC for different ap-
proximation values. Like in the static scenario we use
our default settings. For comparison, the values of time-
dependent DIJKSTRA and ALT are also given. As we
perform approximative SHARC-queries, we report three
types of errors: By error-rate we denote the percentage
of inaccurate queries. Besides the number of inaccurate
queries it is also important to know the quality of a
found path. Thus, we report the maximum and average
relative error of all queries, computed by 1 — ps/up,
where us and up depict the lengths of the paths found
by SHARC and plain DIJKSTRA, respectively.

We observe that using y values higher than 1.0
drastically reduces query performance. While error-
rates are quite high for low 7 values, the relative error is
still quite low. Thus, the quality of the computed paths



Table 4: Performance of the time-dependent versions of DIJKSTRA, ALT, and SHARC on the Western European
road network with time-dependent edge weights. For ALT, we use 16 avoid landmarks [16].

ERROR PREPRO QUERY

y rate rel. avg. rel. max | [hm] [B/n] | #settled [ms]

Dijkstra -1 0.0%  0.000% 0.00% | 0:00 09016965 8890.1
ALT - 0.0% 0.000% 0.00% | 0:16 128 | 2763861 2270.7
SHARC || 1.000 | 61.5%  0.242% 15.90% | 2:51 13 9804 3.8
1.005 | 39.9%  0.096% 15.90% | 2:53 13 113993 61.2

1.010 | 32.9% 0.046% 15.90% | 2:51 13 221074 131.3

1.020 | 29.5% 0.024% 14.37% | 2:50 13 285971 182.7

1.050 | 27.4% 0.013% 2.19% | 2:51 13 312593 210.9

1.100 | 26.5% 0.009% 0.56% | 2:52 12 321501 220.8

is good, although in the worst-case the found path is
15.9% longer than the shortest. However, by increasing
v we are able to reduce the error-rate and the relative
error significantely: The error-rate drops below 27%,
the average error is below 0.01%, and in worst case the
found path is only 0.56% longer than optimal. Generally
speaking, SHARC routing allows a trade-off between
quality and performance. Allowing moderate errors, we
are able to perform queries 2 000 times faster than plain
D1JKSTRA, while queries are still 40 times faster when
allowing only very small errors.

Comparing SHARC (with v = 1.1) and ALT, we
observe that SHARC queries are one order of magnitude
faster but for the price of correctness. In addition,
the overhead is much smaller than for ALT. Note that
we do not have to store time-dependent edge weights
for shortcuts due to our weaker bypassing criterion.
Summarizing, SHARC allows to perform fast queries
in time-dependent networks with moderate error-rates
and small average relative errors.

6 Conclusion

In this work, we introduced SHARC-Routing which
combines several ideas from Highway Hierarchies, Arc-
Flags, and the REAL-algorithm. More precisely, our ap-
proach can be interpreted as a unidirectional hierarchi-
cal approach: SHARC steps up the hierarchy at the be-
ginning of the query, runs a strongly goal-directed query
on the highest level and automatically steps down the
hierarchy as soon as the search is approaching the target
cell. As a result we are able to perform queries as fast
as bidirectional approaches but SHARC can be used in
scenarios where former techniques fail due to their bidi-
rectional nature. Moreover, a bidirectional variant of
SHARC clearly outperforms existing techniques except
Transit Node Routing which needs much more space
than SHARC.
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Regarding future work, we are very optimistic that
SHARC is very helpful when running multi-criteria
queries due to the performance in multi-metric scenar-
ios. In [15], an algorithm is introduced for computing
exact reach values which is based on partitioning the
graph. As our pruning rule would also hold for reach
values, we are optimistic that we can compute ezxact
reach values for our output graph with our SHARC pre-
processing. For the time-dependent scenario one could
think of other ways to determine good approximation
values. Moreover, it would be interesting how to per-
form correct time-dependent SHARC queries.

SHARC-Routing itself also leaves room for improve-
ment. The pruning rule could be enhanced in such a
way that we can prune all cells. Moreover, it would be
interesting to find better additional shortcuts, maybe
by adapting the algorithms from [12] to approximate
betweenness better. Another interesting question aris-
ing is whether we can further improve the contraction
routine. And finally, finding partitions optimized for
SHARC is an interesting question as well.

Summarizing, SHARC-Routing is a powerful, easy,
fast and robust unidirectional technique for performing
shortest-path queries in large networks.
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A Proof of Correctness

We here present a proof of correctness for SHARC-
Routing. SHARC directly adapts the query from classic
Arc-Flags, which is proved to be correct. Hence, we only
have to show the correctness for all techniques that are
used for SHARC-Routing but not for classic Arc-Flags.

The proof is logically split into two parts. First,
we prove the correctness of the preprocessing without
the refinement phase. Afterwards, we show that the
refinement phase is correct as well.

A.1 Initialization and Main Phase. We denote by
G; the graph after iteration step é,i=1,...,L —1. By
G we denote the graph directly before iteration step 1
starts. The level I(u) of a node u is defined to be the
integer ¢ such that u is contained in G;_1 but not in G;.
We further define the level of a node contained in Gr_1
to be L.

The correctness of the multi-level arc-flag approach
is known. The correctness of the handling of the 1-
shell nodes is due to the fact that a shortest path
starting from or ending at a 1-shell node w is either
completely included in the attached tree T in which
also u is contained, or has to leave or enter T' via the
corresponding core-node.

We want to stress that, when computing arc-flags,
shortest paths do not have to be unique. We remember
how SHARC handles that: In each level | < L — 1
all shortest paths are considered, i.e., a shortest path
directed acyclic graph is grown instead of a shortest
paths tree and a flag for a cell C and an edge (u,v) is set
true, if at least one shortest path to C' containing (u, v)
exists. In level L — 1, all shortest paths are considered,
that are hop minimal for given source and target, i.e., a
flag for a cell C' and an edge (u,v) is set true, if at least
one shortest path to C' containing (u,v) exists that is
hop minimal among all shortest paths with same source
and target.

We observe that the distances between two arbi-
trary nodes v and v are the same in the graph Gy and
Uh—o Gk forany i =1,...,L — 1.

Hence, to proof the correctness of unidirectional
SHARC-Routing without the refinement phase and
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without 1-shell nodes we additionally have to proof the
following lemma:

LEMMA A.1. Given arbitrary nodes s and t in Gy, for
which there is a path from s to t in Go. At each
step i of the SHARC-preprocessing there exists a short-
est s-t-path P = (v1,..., 05,501, .., Ujp; W1, ..., W),
g1, 72,73 € No, in U,._, Gk, such that

e the nodes vy, ..
at most 1,

v, and wy, ..., w;, have level of

o the nodes ui,...,u;, have level of at least i + 1

o uj, andt are in the same cell at level i

e for each edge e of P, the arc-flags assigned to e
until step i allow the path P to t.

We use the convention that j, =0, k € {1,2,3} means
that the according subpath is void.

The lemma guarantees that, at each iteration step,
arc-flags are set properly. The correctness of the
bidirectional variant follows from the observation that
a hop-minimal shortest path on a graph is also a hop-
minimal shortest path on the reverse graph.

Proof. We show the claim by induction on the iteration
steps. The claim holds trivially for ¢ 0. The
inductive step works as follows: Assume the claim holds

for step i. Given arbitrary nodes s and ¢, for which
there is a path from s to ¢ in Gyp. We denote by
P = (v1,...,0j;U1,...,Uj,;W1,...,wj,) the s-t-path

according to the lemma for step i.

The iteration step ¢ + 1 consists of the contraction
phase, the insertion of boundary shortcuts in case i4+1 =
L — 1, the arc-flag computation and the pruning phase.
We consider the phases one after another:

After the Contraction Phase. There exists a maxi-
mal path (ue,,up,, ... ,up,) with 1 < 4,<...<{l; <k
for which

e foreach f=1,...,d—1either £ +1 = {71 or the
subpaths (ug,, e, 41, .- ue,,,) have been replaced
by a shortcut,

e the nodes uq, ..
and

., up, —1 have been deleted, if ¢1 # 1

e the nodes uy,+1,...,ur have been deleted, if ¢4 #

k.
By the construction of the contraction routine we know

o (U, Uy, ..., up,) is also a shortest path



e uy, is in the same component as ug in all levels
greater than i (because of cell aware contraction)

the deleted edges in (uq,...,up —1) either already
have their arc-flags for the path P assigned. Then
the arc-flags are correct because of the inductive
hypothesis. Otherwise, We know that the nodes
U1, ..., Uy —1 are in the component. Hence, all arc-
flags for all higher levels are assigned true.

the deleted edges in (4,41, ...,ux) either already
have their arc-flags for the path P assigned, then
arc-flags are correct because of the inductive hy-
pothesis. Otherwise, by cell-aware contraction we
know that wg,+1, ..., u are in the same component
as t for all levels at least i. As the own-cell flag al-
ways is set true for deleted edges the path stays
valid.

As distances do not change during preprocessing
we know that, for arbitrary ¢, 0 < ¢ < L —1 a
shortest path in G; is also a shortest path in Uf;& G.
Concluding, the path P = (V15 Uy, ULy e, Uy 15
Uy, Uty e vy Ulys Ulytds - - -5 Uk, W1, - - ., W, ) fullfills all
claims of the lemma for iteration step i + 1.

After Insertion of Boundary Shortcuts. Here, the
claim holds trivially.

After Arc-Flags Computation. Here, the claim also
holds trivially.

After Pruning. We consider the path P obtained from
the contraction step. Let (u;,,u;,4+1) be an edge of P
deleted in the pruning step, for which w;, is not in the
same cell as u;, at level 14 1. As there exists a shortest
path to u;, not only the own-cell flag of (u;,,u;, +1) is
set, which is a contradiction to the assumption that
(uy,,u;,+1) has been deleted in the pruning step.

Furthermore, let (u;,,u;,11) be an edge of P deleted
in the pruning step. Then, all edges on P after
(ur,,ui +1) are also deleted in that step. Summariz-
ing, if no edge on P is deleted in the pruning step,
then P fullfills all claims of the lemma for iteration step
i + 1. Otherwise, the path (vi,...,vj,u1,...,up —1;
Ugy, Uy s - - ULy ULyt 1y - - Uy W, - -+, Wy, ) Tull-
fills all claims of the lemma for iteration step ¢+ 1 where
Uy, , Ui, +1 18 the first edge on P that has been deleted in
the pruning step.

ULy e

Summarizing, Lemma A.1 holds during all phases
of all iteration steps of SHARC-preprocessing. So, the
preprocessing algorithm (without the refinement phase)
is correct. 0
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A.2 Refinement phase. Recall that the own-cell
flag does not get altered by the refinement routine.
Hence, we only have to consider flags for other cells.
Assume we perform the propagation routine at a level [
to a level [ node s.

A path P from s to a node ¢ in another cell on
level > [ needs to contain a level > [ node that is in
the same cell as u because of the cell-aware contraction.
Moreover, with iterated application of Lemma A.1 we
know that there must be an (arc-flag valid) shortest s-t-
path P for which the sequence of the levels of the nodes
first is monotonically ascending and then monotonically
descending. In fact, to cross a border of the current cell
at level [, at least two level > [ nodes are on P. We
consider the first level > [ node u; on P. This must
be an entry node of s. The node us after u; on P is
covered and therefore no entry node. Furthermore it
is of level > [. Hence, the flags of the edge (u1,us2)
are propagated to the first edge on P and the claim
holds which proves that the refinement phase is correct.
Together with Lemma A.1 and the correctness of the
multi-level Arc-Flags query, SHARC-Routing is correct.



Obtaining Optimal k-Cardinality Trees Fast

Markus Chimani*

Abstract

Given an undirected graph G = (V, E) with edge weights and
a positive integer number k, the k-Cardinality Tree problem
consists of finding a subtree T of G with exactly k edges and
the minimum possible weight. Many algorithms have been
proposed to solve this NP-hard problem, resulting in mainly
heuristic and metaheuristic approaches.

In this paper we present an exact ILP-based algo-
rithm using directed cuts. We mathematically compare the
strength of our formulation to the previously known ILP
formulations of this problem, and give an extensive study
on the algorithm’s practical performance compared to the
state-of-the-art metaheuristics.

In contrast to the widespread assumption that such a
problem cannot be efficiently tackled by exact algorithms for
medium and large graphs (between 200 and 5000 nodes), our
results show that our algorithm not only has the advantage
of proving the optimality of the computed solution, but also
often outperforms the metaheuristic approaches in terms of
running time.

1 Introduction

We consider the k-Cardinality Tree problem (KCT):
given an undirected graph G = (V, E), an edge weight
function w : E — R, and a positive integer number k,
find a subgraph T of G which is a minimum weight tree
with exactly k edges. This problem has been extensively
studied in literature as it has various applications, e.g.,
in oil-field leasing, facility layout, open pit mining, ma-
trix decomposition, quorum-cast routing, telecommuni-
cations, etc [9]. A large amount of research was devoted
to the development of heuristic [5, 14] and, in particular,
metaheuristic methods [4, 8, 11, 7, 25]. An often used
argument for heuristic approaches is that exact methods
for this NP-hard problem would require too much com-
putation time and could only be applied to very small
graphs [9, 10].

The problem also received a lot of attention in the
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approximation algorithm community [1, 3, 17, 18]: a
central idea thereby is the primal-dual scheme, based
on integer linear programs (ILPs), which was pro-
posed by Goemans and Williamson [19] for the prize-
collecting Steiner tree problem. An exact approach was
presented by Fischetti et al. [15], by formulating an
ILP based on general subtour elimination constraints
(GsEC). This formulation was implemented by Ehrgott
and Freitag [13] using a Branch-and-Cut approach. The
resulting algorithm was only able to solve graphs with
up to 30 nodes, which may be mainly due to the com-
parably weak computers in 1996.

In this paper we show that the traditional argu-
ment for metaheuristics over exact algorithms is de-
ceptive on this and related problems. We propose
a novel exact ILP-based algorithm which can indeed
be used to solve all known benchmark instances of
KCTLIB [6]—containing graphs of up to 5000 nodes—
to provable optimality. Furthermore, our algorithm of-
ten, in particular on mostly all graphs with up to 1000
nodes, is faster than the state-of-the-art metaheuristic
approaches, which can neither guarantee nor assess the
quality of their solution.

To achieve these results, we present Branch-
and-Cut algorithms for KCT and NKCT—the node-
weighted variant of KCT. Therefore, we transform
both KCT and NKCT into a similar directed and
rooted problem called k-Cardinality Arborescence prob-
lem (KCA), and formulate an ILP for the latter, see Sec-
tion 2. In the section thereafter, we provide polyhedral
and algorithmic comparison to the known GSEC formu-
lation. In Section 4, we describe the resulting Branch-
and-Cut algorithm in order to deal with the exponential
ILP size. We conclude the paper with the extensive ex-
perimental study in Section 5, where we compare our
algorithm with the state-of-the-art metaheuristics for
the KCT.

2 Directed Cut Approach

2.1 Transformation into the k-Cardinality Ar-
borescence Problem. Let D = (Vp,Ap) be a di-
rected graph with a distinguished root vertex r €
Vp and arc costs ¢, for all arcs a € Ap. The k-
Cardinality Arborescence problem (KCA) consists of
finding a weight minimum rooted tree Tp with k arcs



which is directed from the root outwards. More for-
mally, Tp has to satisfy the following properties:

(P1) Tp contains exactly k arcs,

(P2) for all v € V(Tp) \ {r}, there exists a directed
path r — v in Tp, and

(P3) for all v € V(Tp) \ {r}, v has in-degree 1 in Tp.

We transform any given KCT instance (G
(V,E),w,k) into a corresponding KCA instance
(Gr,r,c,k + 1) as follows: we replace each edge {i,j}
of G by two arcs (i,7) and (j,), introduce an artifi-
cial root vertex r and connect r to every node in V.
Hence we obtain a digraph G, = (VU{r}, AU A,) with
A={(i,7),(j,i) | {i,j} € E} and A, = {(r,) | j € V}.
For each arc a = (i,j) we define the cost function
c(a) :=01if i =r, and ¢(a) := w({7,7}) otherwise.

To be able to interpret each feasible solution T¢;, of
this resulting KCA instance as a solution of the original
KCT instance, we impose an additional constraint

(P4) Tg, contains only a single arc of A,.

If this property is satisfied, it is easy to see that a
feasible KCT solution with the same objective value can
be obtained by removing r from T, and interpreting
the directed arcs as undirected edges.

2.2 The Node-weighted k-Cardinality Tree
Problem. The Node-weighted k-Cardinality Tree
problem (NKCT) is defined analogously to KCT but
its weight function w’ : V' — R uses the nodes as its
basic set, instead of the edges (see, e.g., [10] for the list
of references). We can also consider the general All-
weighted k-Cardinality Tree problem (AKCT), where a
weight-function w for the edges, and a weight-function
w’ for the nodes are given.

We can transform any NKCT and AKCT instance
into a corresponding KCA instance using the ideas
of [24]: the solution of KCA is a rooted, directed tree
where each vertex (except for the unweighted root)
has in-degree 1. Thereby, a one-to-one relationship
between each selected arc and its target node allows
us to precompute the node-weights into the arc-weights
of KCA: for all (4,j) € AU A, we have ¢((4,7)) := w'(j)
for NKCT, and ¢((4,j)) := w({i,j}) + w’'(j) for AKCT.

2.3 ILP for the KCA. In the following let the
graphs be defined as described in Section 2.1. To
model KCA as an ILP, we introduce two sets of binary
variables:

Ta,Yy €{0,1} Va€ AUA, YveEV
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Thereby, the variables are 1, if the corresponding vertex
or arc is in the solution and 0 otherwise.

Let S C V. The sets E(S) and A(S) are the edges
and arcs of the subgraphs of G and G, respectively,
induced by S. Furthermore, we denote by §7(S5)
{(i,j7) e AUA, |ie€ S,j e V\S}and 6 (S) ={(i,j) €
AUA, |ieV\S,je S} the outgoing and ingoing
edges of a set S, respectively. We can give the following
ILP formulation, using x(B) := ;. ¥p, with B C A,
as a shorthand:

(2.1) DCurt : min Z c(a) - xq
a€A
(2.2)  z(67(9)) >y VSCV\{r},Yves
(2.3) (6 (v)) =y YoeV
(2.4) z(A) =k
(2.5) z(6T(r)) =1
(2.6) Tay Yo € {0,1} Vac AUA,. YveV

The dcut-constraints (2.2) ensure property (P2) via
directed cuts, while property (P3) is ensured by the
in-degree constraints (2.3). Constraint (2.4) ensures
the k-cardinality requirement (P1) and property (P4)
is modeled by (2.5).

LEMMA 2.1. By replacing all in-degree constraints
(2.3) by a single node-cardinality constraint

(2.7) y(V) =k +1,
we obtain an equivalent ILP and an equivalent LP-
relaxation.

Proof. The node-cardinality constraint can be gener-
ated directly from (2.3) and (2.4), (2.5). Vice versa,
we can generate (2.3) from (2.7), using the dcut-
constraints (2.2). O

Although the formulation using (2.7) requires less
constraints, the ILP using in-degree constraints has
certain advantages in practice, see Section 4.

3 Polyhedral Comparison

In [15], Fischetti et al. give an ILP formulation for
the undirected KCT problem based on general subtour
elimination constraints (GSEC). We reformulate this
approach and show that both Gsec and DCuT are
equivalent from the polyhedral point of view.

In order to distinguish between undirected edges
and directed arcs we introduce the binary variables
ze € {0,1} for every edge e € E, which are 1 ife € T
and 0 otherwise. For representing the selection of the



nodes we use the y-variables as in the previous section.
The constraints (3.9) are called the gsec-constraints.

min Z c(e) - ze

eck

(3.8) GSEC :

9) 2(E(5)) < y(S\{t})
10) 2(E)=k
11) y(V)=k+1
12)  ze,y» € {0,1}

(3. VS CV,|S|>2,vte S
(3.

(3.

(3. VYee E\NveV

Let Pp and Pg be the polyhedra corresponding to
the DCuT and GSEC LP-relaxations, respectively. l.e.,

Pp:={ (x,y)€ RIAVA+IV] [0 <@e,y, <1
and (z,y) satisfies (2.2)—(2.5) }

Pg = { (Z7y) € RIZIHIVI | 0<z,y, <1
and (z,y) satisfies (3.9)—(3.11) }

THEOREM 3.1. The GSEC and the DCUT formulations
have equally strong LP-relazations, i.e.,

Pa = proj.(Pp),

whereby proj,(Pp) is the projection of Pp onto the
(2,y) variable space with zg; jy = (. j) + x4 for all
{i,j} € E.

Proof. We prove equality by showing mutual inclusion:

e proj,(Pp) C Pg: Any (2,y) € proj,(Pp) satisfies
(3.10) by definition, and (3.11) by (2.3) and Lemma
2.1. Let = be the vector from which we projected
the vector Z, and consider some S C V with |S] > 2
and some vertex ¢ € S. We show that (Z,7) also
satisfies the corresponding gsec-constraint (3.9):

Z(E(5)) = 2(A(S)) = Xopes T(6™ (v) — Z(
(2.3) (2.2)

7
L
@
)
=

e Pg C proj,(Pp): Consider any (Z,7) € P and a set

X:={ =z¢€ RlAUA - | z satisfies (2.5)
and Tij + X5 = E{ij} V(i,j) cA }

Every such projective vector € X clearly satisfies
(2.4). In order to generate the dcut-inequalities
(2.2) for the corresponding (Z, ), it is sufficient to
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show that we can always find an £ € X, which
together with 7 satisfies the indegree-constraints
(2.3). Since then, for any S CV and t € S:

£(07(9)) = 2ves 2(67 (v)) — £(A(S))
(2 3) _ B (3.9) B

y(S) - z(E(S)) = 4.

We show the existence of such an & using a proof

technique similar to [20, proof of Claim 2|, where

it was used for the Steiner tree problem.

An & € X satisfying (2.3) can be interpreted as the
set of feasible flows in a bipartite transportation
network (N, L), with N := (EU{r})UV. For each
undirected edge e = (u,w) € E in G, our network
contains exactly two outgoing arcs (e, u), (e,w) €
L. Furthermore, L contains all arcs of A,.. For all
nodes e € E in N we define a supply s(e) := Z; for
the root 7 we set s(r) := 1. For all nodes v € V' in
N we define a demand d(v) := @,

Finding a feasible flow for this network can be
viewed as a capacitated transportation problem on
a complete bipartite network with capacities either
zero (if the corresponding edge does not exist in L)
or infinity. Note that in our network the sum of all
supplies is equal to the sum of all demands, due to
(3.10) and (3.11). Hence, each feasible flow in such
a network will lead to a feasible & € X. Such a
flow exists if and only if for every set M C N with

5(+N (M) = () the condition
(3.13) s(M) < d(M)

is satisfied, whereby s(M) and d(M) are the total
supply and the total demand in M, respectively,
cf. [16, 20]. In order to show that this condition
holds for (N, L), we distinguish between two cases;
let U :=ENM:

r € M: Since r has an outgoing arc for every v €
V and (5(NL)( ) = 0, we have V. C M.
Condition (3.13) is satisfied, since s(r) = 1
and therefore:

s(M)=s(r)+z(U) <

s(r) + Z(E)

= 5(B) +1 " vy = ag),

r & M: Let S := VNM. We then have U C E(S5).
If |S| <1 we have U = () and therefore (3.13)
is automatically satisfied. For |S| > 2, the
condition is also satisfied, since for every t € S
we have:

(3 9)
Z(E(S) < y(5) -4
(S) =d(M). O

s(M) =z

n S
<A



3.1 Other approaches.

3.1.1 Multi-Commodity Flow. One can formulate
a multi-commodity-flow based ILP for KCA (McF)
as it was done for the prize-collecting Steiner tree
problem (PCST) [22], and augment it with cardinality
inequalities. Analogously to the proof in [22], which
shows the equivalence of DCuUT and McF for PCST, we
can obtain:

LEMMA 3.1. The LP-relaxzation of McF for KCA is
equivalent to GSEC and DCUT.

Nonetheless, we know from similar problems [12, 23]
that directed-cut based approaches are usually more
efficient than multi-commodity flows in practice.

3.1.2 Undirected Cuts for Approximation Al-
gorithms. In [17], Garg presents an approximation al-
gorithm for KCT, using an ILP for lower bounds (GU-
Curt). It is based on undirected cuts and has to be
solved |V| times, once for all possible choices of a root
node r.

LEMMA 3.2. DCuT is stronger than GUCUT.

Proof. Clearly, each feasible point in Pp is feasible
in the LP-relaxation of GUCUT using the projection
proj,. On the other hand, using a traditional argument,
assume a complete graph on 3 nodes is given, where each
vertex variable is set to 1, and each edge variable is set
to 0.5. This solution is feasible for the LP-relaxation of
GUCuUT, but infeasible for DCuT. O

4 Branch-and-Cut Algorithm

Based on our DCuT formulation, we developed and im-
plemented a Branch-and-Cut algorithm. For a general
description of the Branch-and-Cut scheme see, e.g., [27]:
Such algorithms start with solving an LP relazation,
i.e., the ILP without the integrality properties, only
considering a certain subset of all constraints. Given
the fractional solution of this partial LP, we perform a
separation routine, i.e., identify constraints of the full
constraint set which the current solution violates. We
then add these constraints to our current LP and reit-
erate these steps. If at some point we cannot find any
violated constraints, we have to resort to branching, i.e.,
we generate two disjoint subproblems, e.g., by fixing a
variable to 0 or 1. By using the LP relaxation as a lower
bound, and some heuristic solution as an upper bound,
we can prune irrelevant subproblems.

In [13], a Branch-and-Cut algorithm based on the
GSEC formulation has been developed. Note that the
dcut-constraints are sparser than the gsec-constraints,
which in general often leads to a faster optimization
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in practice. This conjecture was experimentally con-
firmed, e.g., for the similar prize-collecting Steiner tree
problem [23], where a directed-cut based formulation
was compared to a GSEC formulation. The former was
both faster in overall running time and required less
iterations, by an order of 1-2 magnitudes. Hence we
can expect our DCUT approach to have advantages over
GSEC in practice. In Section 4.2 we will discuss the for-
mal differences in the performances between the DCuT
and the GSEC separation algorithms.

4.1 Initialization. Our algorithm starts with the
constraints (2.3), (2.4), and (2.5). We prefer the in-
degree constrains (2.3) over the node-cardinality con-
straint (2.7), as they strengthen the initial LP and we
do not require to separate dcut-constraints with |S| =1
later.

For the same reason, we add the orientation-
constraints

(4.14) Tij + 25 < Y; Vi € ‘/,V{’L,j} S

to our initial ILP. Intuitively, these constraints ensure a
unique orientation for each edge, and require for each se-
lected arc that both incident nodes are selected as well.
These constraints do not actually strengthen the DCUT
formulation as they represent the gsec-constraints for
all two-element sets S = {i,j} C V. From the proof
of Theorem 3.1, we know that these inequalities can be
generated with the help of (2.3) and (2.2). Nonethe-
less, as experimentally shown in [22] for PCST and is
also confirmed by our own experiments, the addition of
(4.14) speeds up the algorithm tremendously, as they
do not have to be separated explicitly by the Branch-
and-Cut algorithm.

We also tried asymmetry constraints [22] to reduce

the search space by excluding symmetric solutions:
(4.15) Ty <1—y; Vi,jeV,i<j.
They assure that for each KCA solution, the vertex
adjacent to the root is the one with the smallest possible
index. Anyhow, we will see in our experiments that
the quadratic number of these constraints becomes a
hindrance for large graphs and/or small & in practice.

4.2 Separation. The dcut-constraints (2.2) can be
separated in polynomial time via the traditional
maximum-flow separation scheme: we compute the
maximum-flow from r to each v € V using the edge
values of the current solution as capacities. If the flow
is less than y,, we extract one or more of the induced
minimum (r,v)-cuts and add the corresponding con-
straints to our model. In order to obtain more cuts



with a single separation step we also use nested- and
back-cuts [21, 23]. Indeed, using these additional cuts
significantly speeds up the computation.

Recall that in a general separation procedure we
search for the most violated inequality of the current
LP-relaxation. In order to find the most violated in-
equality of the DCuT formulation, or to show that no
such exists, we construct the flow network only once and
perform at most |V| maximum-flow calculations on it.
This is a main reason why the DCUT formulation per-
forms better than GSEC in practice: a single separation
step for GSEC requires 2|V| — 2 maximum-flow calcu-
lations, as already shown by Fischetti et al. [15]. Fur-
thermore, the corresponding flow network is not static
over all those calculations, but has to be adapted prior
to each call of the maximum-flow algorithm.

Our test sets, as described in Section 5, also contain
grid graphs. In such graphs, it is easy to detect and
enumerate all 4-cycles by embedding the grids into the
plane and traversing all faces except for the single large
one. Note that due to our transformation, all 4-cycles
are bidirected. Let C4 be the set of all bidirected 4-
cycles; a cycle C' € Cy then consists of 8 arcs and V[C]
gives the vertices on C. We use a separation routine for
gsec-constraints on these cycles:

S Y

acC ieVI[C\{v}

(4.16) VC € Cyq,Vv € V[C].

Yi

4.3 Upper Bounds and Proving Optimality. In
the last decade, several heuristics and metaheuristics
have been developed for KCT. See, e.g., [4, 5, 8, 11]
for an extensive comparison. Traditional Branch-and-
Cut algorithms allow to use such algorithms as primal
heuristics, giving upper bounds which the Branch-and-
Cut algorithm can use for bounding purposes when
branching. The use of such heuristics is two-fold: (a)
they can be used as start-heuristics, giving a good initial
upper bound before starting the actual Branch-and-
Cut algorithm, and (b) they can be run multiple times
during the exact algorithm, using the current fractional
solutions as an additional input, or hint, in order to
generate new and tighter upper bounds on the fly.

Let h be a primal bound obtained by such a
heuristic. Mathematically, we can add this bound to
our LP as

Zc(a)-xa < h-A.

acA
Thereby, A := min{c(a) — ¢(b) | c(a) > ¢(b), a,b € A}
denotes the minimal difference between any two cost
values. If the resulting ILP is found to be infeasible,
we have a proof that h was optimal, i.e., the heuristic
solution was optimal.
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As our experiments reveal, our algorithm is already
very successful without the use of any such heuristic.
Hence we compared our heuristic-less Branch-and-Cut
algorithm (DC™) with one using a perfect heuristic: a
(hypothetical) algorithm that requires no running time
and gives the optimal solution. We can simulate such a
perfect heuristic by using the optimal solution obtained
by a prior run of DC™. We can then measure how
long the algorithm takes to discover the infeasibility of
the ILP. We call this algorithm variant DC*. If the
runtime performance of DC~ and DC™ are similar, we
can conclude that using any heuristic for bounding is
not necessary.

5 Experimental results

We implemented our algorithm in C++ using CPLEX
9.0 and LEDA 5.0.1. The experiments were performed
on 2.4 GHz AMD Opteron with 2GB RAM per pro-
cess. We tested our algorithm on all instances of the
KCTLIB [6] which consists of the following benchmark
sets:

(BX) The set by Blesa and Xhafa [2] contains 35 4-
regular graphs with 25-1000 nodes. The value of k
is fixed to 20. The results of [8] have already shown
that these instances are easy, which was confirmed
by our experiments: our algorithm needed on
average 1.47 seconds per instance to solve them to
optimality, the median was 0.09 seconds.

(BB) The set by Blesa and Blum [8] is divided into four
subsets of dense, sparse, grid and 4-regular graphs,
respectively, with different sizes of up to 2500
nodes. Each instance has to be solved for different
values of k, specified in the benchmark set: these
are kye of n = |V, for ke = {10%, ...,90%}!, and
additionally k£ = 2 and K = n — 2. Note that the
latter two settings are rather insignificant for our
analysis, as they can be solved optimally via trivial
algorithms in quadratic time.

The most successful known metaheuristics for
(BB) are the hybrid evolutionary algorithm
(HyEA) [4] and the ant colony optimization algo-
rithm (ACO) [11].

(UBM) The set by Urosevi¢ et al. [25] consists of large
20-regular graphs with 500-5000 nodes which were
originally generated randomly. The values for k are
defined as for (BB) by using kye1 = {10%, ...,50%}.
In [25] a variable neighborhood decomposition
search (VNDS) was presented, which is still the
best known metaheuristic for this benchmark set.

TFor the grid instances, the values ke differ slightly.



| # of nodes

| 500 | 1000 | 1500 [ 2000 | 3000 | 4000 [ 5000 |

avg. time in sec. 7.5 48.3

107.4

310.7 | 1972 | 5549 | 15372.2

avg. gap of BKS | 1.5% | 0.1%

0.1%

0.2% | 0.2% | 0.3% 0.3%

Table 1: Average running times and average gap to the BKS provided in [5, 7, 25] for (UBM).
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Figure 1: Speed-up factors for dense, regular and sparse
graphs with |V] < 2000 obtained when asymmetry
constraints (4.15) are included in the initial LP

Our computational experiments on (UBM) show
that all instances with up to 3000 nodes can be solved
to optimality within two hours. We are also able to
solve the graphs with 4000 and 5000 nodes to optimal-
ity, although only about 50% of them in less than two
hours. Note that for these large instances the VNDS
metaheuristic of [25] is faster than our algorithm, how-
ever they thereby could not reach optimal solutions. Ta-
ble 1 gives the average running times and the differences
between the optimal solutions and the previously best
known solutions (BKS).

In the following we will concentrate on the more
common and diversified benchmark set (BB), and com-
pare our results to those of HyEA and ACO. Unless
specified otherwise, we always report on the DC™ algo-
rithm, i.e., the Branch-and-Cut algorithm without using
any heuristic for upper bounds.

Algorithmic Behaviour. Figure 1 illustrates the
effectiveness of the asymmetry constraints (4.15) de-
pending on increasing relative cardinality k,e;. There-
fore we measured the speed-up by the quotient ti—‘”y
whereby t,sy and tp denote the running time with and
without using (4.15), resprectively. The constraints al-
low a speed-up by more than an order of magnitude for
sparse, dense and regular graphs, but only for large car-
dinality k > 5. Our experiments show that for smaller
k, a variable x,;, for some i € V, is quickly set to 1
and stays at this value until the final result. In these
cases the constraints cannot help and only slow down

)

32

100

10
=) g @ o
= RS o
él§-© 2 Q@-?fe'@%%"*@&%%§§
g b3

0.1 °

<

0,01 ; ; ; T : . . ! ;

0% 10% 20% 30% 40% 50%

rel

60% 70% 80% 90% 100%

Figure 2: Speed-up factors for the grid instances of
(BB) when gsec-constraints (4.16) are separated. For
each instance and ke value there is a diamond-shaped
datapoint; the short horizontal bars denote the average
speed-up per kyel.

the algorithm. Interestingly, the constraints were never
profitable for the grid instances. For graphs with more
than 2000 nodes using (4.15) is not possible due to mem-
ory restrictions, as the O(|V|?) many asymmetry con-
straints are too much to handle. Hence, we ommitted
these graphs in our figure.

We also report on the experiments with the special
gsec-constraints (4.16) within the separation routine
for the grid graphs. The clear advantage of these
constraints is shown in Figure 2, which shows the
obtained speed-up factor f;ﬁ by the use of these
constraints.

Based on these results we choose to include the
assymmetry constraints for all non-grid instances with
less then 2000 nodes and k£ > %, in all the remaining
experiments. For the grid instances we always separate
the gsec-constraints (4.16).

In Table 2, we show that the computation time is
not only dependent on the graph size, but also on the
density of the graph. Generally, we leave table cells
empty if there is no problem instance with according
properties.

As described in Section 4.3, we also investigate the
influence of primal heuristics on our Branch-and-Cut
algorithm. For the tested instances with 1000 nodes
the comparison of the running times of DCT and DC™
is shown in Figure 3. In general, our experiments show
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DC—

of DC* compared to DC™ for the instances with 1000

nodes.

| avg. deg [ set [ 500 nodes [ 1000 nodes ‘
2.5 (BB 1 8.1
1 (BB 0.9 15.7
10 (BB 2.6 25
20 (UBM 7.5 48.4
36.3 (BB 10.7 —

Table 2: Average CPU time (in seconds) over k. values
of 10%, 20%, ..., 50%, sorted by the average degree of
the graphs.

that DCT is only 10-30% percent faster than DC™
on average, even for the large graphs. Hence, we can
conclude that a bounding heuristic is not crucial for the
success of our algorithm.

Runtime Comparison. Table 3 summarizes the
average and median computation times of our algo-
rithm, sorted by size and categorized according to the
special properties of the underlying graphs. We can ob-
serve that performance does not differ significantly be-
tween the sparse, regular and dense graphs, but that the
grid instances are more difficult and require more com-
putational power. This was also noticed in [9, 10, 14].

The behaviour of DC™ also has a clear dependency
on k, see Figures 5(a), 5(c) and 5(d): for the sparse,
dense and regular instances the running time increases
with increasing k. In contrast to this, solving the grid
instances (cf. Figure 5(b)) is more difficult for the
relatively small k-values.

The original experiments for HyEA and ACO were
performed on an Intel Pentium IV, 3.06 GHz with 1GB
RAM and a Pentium IV 2.4 GHz with 512MB RAM,
respectively. Using the well-known SPEC performance
evaluation [26], we computed scaling factors of both ma-
chines to our computer: for the running time compar-
ison we divided the times given in [4] and [11] by 1.5
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Figure 4: Dependancy of the BKS quality on kg,
for selected instances. The vertical axis gives the
percentage of the tested instances for which the BKS
provided in [6] are optimal.

and 2, respectively. Anyhow, note that these factors

are elaborate guesses and are only meant to help the

reader to better evaluate the relative performance.
Table 3 additionally gives the average factor of

t . . . .
TXEA i e., the running time of our algorithm compared

t(])D (scaled) running time of HyEA. Analogously, Figure 5
shows the CPU time in (scaled) seconds of HyEA, ACO
and our algorithm.

We observe that our DC™ algorithm performs bet-
ter than the best metaheuristics in particular for the
medium values of &, i.e., 40—70% of |V, on all instances
with up to 1089 nodes, except for the very dense graph
le450_15a.g with 450 nodes and 8168 edges, where
HyEA was slightly faster. Interestingly, the gap be-
tween the heuristic and the optimal solution tended to
be larger especially for medium values of k (cf. next
paragraph and Figure 4 for details).

Solution Quality. For each instance of the sets
(BX) and (BB) we compared the previously best known
solutions, see [6], with the optimal solution obtained by
our algorithm, in order to assess their quality. Most of
the BKS were found by HyEA, followed by ACO. Note
that these solutions where obtained by taking the best
solutions over 20 independent runs per instance. In Ta-
ble 4 we show the number of instances for which we
proved that BKS was in fact not optimal, and give the
corresponding average gap gappys : BK(S;% (in per-
cent), where OPT denotes the optimal objective value
obtained by DC™ and BKS denotes the best known so-
lution obtained by either ACO or HyEA. Analogously,
we give the average gaps gap,,, := % (in per-
cent), AVG denotes the average solution obtained by
a metaheuristic. We observe that—concerning the so-
lution quality—metaheuristics work quite well on in-
stances with up to 1000 nodes and relatively small k.

C



| # nodes | 500 |  1000-1089 | 2500

group avg/med | 2EA [ ayg/med | ZLEA avg/med tHyRA
tha- tha— tha-

sparse 1.7/2.0 2.2 15.2/20.2 2.6 923.2/391.5 0.1

regular 1.7/1.5 3.1 22.2/21.4 5.7 —

dense 7.5/7.9 2.2 25.5/27.9 2.7 —

grid 11.7/1.2 0.1 124.8/98.7 1.1 3704.1/2800.1 0.1

Table 3: Average/median CPU time (in seconds) and the average speed-up factor of DC~ to HyEA for the
instance set (BB). Cells are left empty if there exists no instance matching the given criteria.
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Figure 5: Running times of DC~, HyEA, and ACO (in seconds) for instances of (BB) with ~1000 nodes, depending
on k. The figures for the grid and regular instances show the times for two different instances of the same type,
respectively.
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instance [ (IV1],12]) l €q.

| gapiis | gapavg ACO [ gapavy HyEA

regular g400-4-1.g (400,800) 10/11 0.09 0.07 0.04
regular g400-4-5.g (400,800) 8/11 0.19 0.31 0.35
regular g1000-4-1.g | (1000,2000) | 7/11 | 0.07 0.65 0.12
regular g1000-4-5.g | (1000,2000) | 3/11 0.08 0.45 0.35
sparse steinc5.g (500,625) 11/11 - 0.97 0.06
sparse steind5.g (1000,1250) | 11/11 - 0.48 0.11
sparse steine5.g (2500,3125) | 3/11 0.13 n/a 0.23
dense le450a.g (450,8168) | 11/11 - n/a 0.04
dense steincl5.g (500,2500) | 11/11 - 0.36 0.02
dense steind15.g (1000,5000) | 10/11 0.22 0.38 0.04
grid 15x15-1 (225,400) 13/13 - 1.27 0.18
grid 15x15-2 (225,400) 13/13 - 2.04 0.12
grid 45x5-1 (225,400) | 4/13 | 054 n/a 1.22
grid 45x5-2 (225,400) | 10/13 | 0.08 n/a 0.13
grid 33x33-1 (1089,2112) | 3/12 0.31 1.70 0.57
grid 33x33-2 (1089,2112) | 3/12 0.39 2.48 0.49
grid 50x50-1 (2500,4900) | 2/11 | 0.95 n/a 1.27
grid 50x50-2 (2500,4900) | 2/11 | 0.55 n/a 0.82

Table 4: Quality of previously best known solutions (BKS) provided in [6] for selected instances. “eq.” denotes
the number of instances for which the BKS was optimal. For the other instances where BKS was not optimal, we
give the average relative gap (gappks) between OPT and BKS. For all instances we also give the average relative
gap (gapavg) between the average solution of the metaheuristic and OPT. All gaps are given in percent. Cells

marked as “

In particular, for kK = 2 and k = n — 2 they always
found an optimal solution.
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Abstract

A partially persistent data structure is a data structure
which preserves previous versions of itself when it is
modified. General theoretical schemes are known (e.g.
the fat node method) for making any data structure par-
tially persistent. To our knowledge however no general
implementation of these theoretical methods exists to
date. This paper evaluates different methods to achieve
this goal and presents the first working implementation
of partial persistence in the object-oriented language
Java. Our approach is transparent, i.e., it allows any
existing data structures to become persistent without
changing its implementation where all previous solu-
tions require an extensive modification of the code by
hand. This transparent property is important in view of
the large number of algorithmic results that rely on per-
sistence. Our implementation uses aspect-oriented pro-
gramming, a modularization technique which allows us
to instrument the existing code with the needed hooks
for the persistence implementation. The implementa-
tion is then validated by running benchmarks to ana-
lyze both the cost of persistence and of the aspect ori-
ented approach. We also illustrate its applicability by
implementing a random binary search tree and making
it persistent, and then using the resulting structure to
implement a point location data structure in just a few
lines.

1 Introduction

In the algorithm literature, a gap exists between tex-
tual descriptions of algorithms in scientific articles and
their implementation in a programming language. Al-
gorithms are described in english text or (pseudo-)code
and expressed using three kinds of operations: basic op-
erations (such as basic arithmetic, assignment or sim-
ple control-flow), new operations (introduced by the
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paper) and external operations (referencing other re-
search). When implementing the algorithm these op-
erations need to be implemented efficiently and easily
in a concrete language. This is easy enough for the ba-
sic operations that are supported directly in almost any
programming language in use today. New operations
are typically described in detail by the author of the
proposed algorithm, and therefore can be implemented
with some more work. But problems can arise with the
external operations because they potentially hide very
complex implementations not explained in the same ar-
ticle (referencing previous articles), thereby posing a
real problem for developers.

An example of a well-understood yet complex algo-
rithm frequently encountered is that of persistence. A
regular data structure is ephemeral, i.e., only the last
state of the data structure is stored and previous values
are lost. On the other hand, a persistent data struc-
ture keeps old values when an update operation is per-
formed. Several flavors of persistence were defined by
Driscoll, Sarnak, Sleator and Tarjan[15]. A structure is
partially persistent if previous versions remain accessible
for queries but not for updates. A fully persistent struc-
ture offers accesses to its previous versions for queries
and updates, where each update operation on a version
of the data structure creates a new branch from this
version for the new version.

Different methods presented by Driscoll et al.[15]
can be used to make ephemeral structures persistent
with only a constant factor slowdown. However, their
most efficient techniques can only be applied in a pointer
model, i.e., when data structures are only composed of a
network of records of bounded size and in-degree. Their
less efficient fat node method can be applied in the RAM
model to obtain partially persistent data structures with



a O(log m)! slowdown in speed (where m is the number
of updates on the structure). Using the fact that version
numbers are integers between 0 and m, one can use Y-
Fast trees of Willard [33] combined with the dynamic
perfect hashing scheme of Dietzfelbinger et al.[13] to
obtain partially persistent arrays (or persistence in the
RAM model) with a slowdown of O(loglogm) in speed.
This result was extended to full persistence by Dietz[12].

Note that all the above results are theoretical, and
to our knowledge, no general and fully transparent
persistent system has been implemented to this day.
By transparent (or non intrusive), we mean that no
modification must be done to the code implementing
an ephemeral structure to transform it into a persistent
one. However, a quick review of the literature reveals
that over 20 papers use persistence as an external
operation [5, 34, 17, 18, 1, 20, 3, 6, 21, 10, 25, 22, 2, 32,
23, 9, 16, 8, 7, 4, 11], notified by the simple sentence
“Make this structure persistent” or “The time and
space bounds can be reduced if persistent structures are
used”. Given that no implementation of a mechanism is
available to make a structure persistent, implementing
either of these more advanced results is very difficult
and time-consuming.

Two partial solutions were previously proposed to
introduce the Driscoll et al. persistence as an external
operation. The first one is the Zhiqing Liu persistent
runtime system [24]. The entire system is persistent
and uses a persistent stack and persistent heap to save
changes. The granularity of changes to be recorded can
be tuned to manage the quantity of recorded data. This
solution is not flexible enough to change a subset of
classes to persistent ones. However, in scientific articles,
it is common that only a subset of all used structures
for algorithms must be made persistent. The second
previously existing solution is the Allen Parrish et al.
persistent template class [27]. A template class Per is
provided by the author. The author admits that the
solution suffers from some problems (e.g. because of
references in C++) and it is not transparent for the
initial program since all variable declarations must be
modified by hand.

On the other side all previous practical attempts to
save previous states in a general and transparent way
lack some of the main advantages of Driscoll et al. ef-
ficient persistence: some papers[28, 29| propose tech-
niques to trace a program, events are logged, but full
snapshots of previous versions are not readily accessible.
Caffeine[19] on the other hand stores previous states as
prolog facts for fast future queries, but the snapshots

TThroughout this article, we write Ig0 = lgl = 1 and lgz =
logy x for x > 2.
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are taken by brute force, as a copy of the entire set of
objects to trace.

This paper shows how any ephemeral data struc-
tures in an object-oriented language can become par-
tially persistent (i.e., each state of any object can be
saved and accessed efficiently in time and space) without
modifying the ephemeral program, in a simple, trans-
parent and fine-grained way. To obtain these results we
developed a variant of the fat node method proposed in
[15] to save previous states in the objects themselves,
and tested several data structures optimized for this
task. We use aspect-oriented programming to transpar-
ently include a mechanism for detecting state changes.

Any paper that uses persistence as an external
operation therefore becomes much easier to implement.
‘We show this by implementing a treap, a random binary
search tree [31] and making it partially persistent in one
line. We use persistent treaps to implement the planar
point location solution from [14] in just a few lines of
code.

The rest of this paper is organized as follows.
Section 2 introduces the fat node method of Driscoll
et al. and discusses some improvements. Section 3
explains how we implement this theoretical method in
an object-oriented language. Section 4 shows how to
use our system to create a data structure for planar
point location using persistent search trees in a few lines
of code. Benchmark results of our implementation are
described in Section 5.

2 The Fat Node Method

2.1 Fat Node Method in the RAM Model. The
fat node method as proposed by Driscoll et al.[15] is used
to transform an ephemeral structure into a partially
persistent structure in which changes of fields occurring
in a node are saved in the node itself without erasing
old values of fields. Although the fat node method
was originally described only for data structures in the
pointer model of computation, we will discuss it in the
more general RAM model of computation to which it
easily generalizes.

In the RAM model of computation, each memory
unit has an address and instructions can be used to
either read or store a value at some address. Each
memory unit is ephemeral by nature, i.e., when an
instruction is used to store a new value at some address,
the previous value is lost forever.

A data structure is composed of a set of memory
units containing the data, along with routines (lists
of instructions in the RAM model) that are used to
perform operations (queries or updates) on the data. In
order to transform such a data structure into a partially
persistent one, we first need to maintain a global version



counter which is incremented every time an operation is
performed on the data structure (note that several basic
instructions could occur when performing an operation).
We then simulate the RAM model by maintaining for
every memory unit an auxiliary structure which records
the values stored at that address after every operation
where it is modified, along with the timestamp (value
of the version counter) for the time at which that value
was stored.

Whenever the original structure performs a store
on an address, if the current version counter is present
in the auxiliary structure, the corresponding value is
updated. Otherwise, a new entry is added in the
auxiliary structure, with the new value and the current
timestamp. Whenever an instruction wants to read a
value from an address at time ¢, the auxiliary structure
is searched to find the value whose timestamp is the
largest among those less than ¢. This way, persistent
query operations can be performed at any desired time
in the past. A data structure to maintain the auxiliary
data structure in O(1) time per update and O(logn)
time per search can be developed using standard data
structure techniques. The specific data structure we
use and optimize for those operations is described in
the next subsection.

2.2 An Efficient Structure for States. As de-
scribed above, the auxiliary structure for each memory
address must allow to add a new value with a time-
stamp greater than all previously stored timestamps, to
update the value associated with the most recent time-
stamp, and to search for the value whose timestamp
is the largest among those smaller than a given t. Of
course any dictionary data structure that implements
predecessor queries would do (e.g., any balanced tree,
skip-list, etc.), but since this will be the most heavily
used structure after applying the persistence transfor-
mation, special care has to be taken to make the struc-
ture as efficient as possible while keeping the memory
overhead within reasonable bounds.

The simple structure we describe stores an extensi-
ble array where new elements can be appended at the
end in O(1) time (assuming constant time memory al-
location), and where the number of pointers to follow
and the number of comparisons to be performed during
a search are both bounded by Igm + 2 in the worst case
where m is the number of elements in the array. The
space used is O(m).

The structure is composed of a linked list of
lgm] + 1 arrays of exponentially decreasing sizes
ollem] ollem]-1 " 1 Rach array stores (value, ver-
sion number) pairs in decreasing order of version num-
ber, and all arrays are completely filled except maybe
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Figure 1: Structure to save versions of a field.

the frontmost and largest array. The frontmost array
maintains the position of its element with the largest
version number.

When storing the first value in an empty structure
during initialization, an array of size one is created and
the value and version number are stored (Fig.2.2 a).
When a change occurs a second version is generated, an
array of size 2 is created and linked to first array; the
new version is stored along with its version number at
the end of this array (Fig.2.2 b). Further changes fill
the frontmost array from back to front until the array is
full. When the array is full and the next update occurs,
a new array is created whose size is twice that of the
previous array, and is linked to that previous array, and
the next version is stored in the last position of the new
array (see Fig.2.2 ¢ and d). The last version of the
field is stored in the frontmost list and its value can be
retrieved or updated in O(1) time. The insertion of a
new version costs O(1) time as well.

When searching for the entry whose timestamp
is the largest among those smaller than ¢, the list is
followed until the array containing the sought element
is found. This can be done by comparing t to the first
element of each array until the last array is reached or
an element larger than ¢ is found. If 1 < k < [lgm]
pointers are followed, then k& comparisons have been
made and the array found is of size 2U'8™=k+1  That
array is then binary searched to find the desired element,
using |lgm]| — k + 2 further comparisons.

2.3 Snapshots. Initially we had planned to make
persistent objects record all versions of each field, re-
gardless of the specific task at hand, but when imple-
menting this solution we realized that different appli-
cations could need different granularities of versioning
information, and that it is usually not necessary to save
all states all the time. Suppose for example that we
want to implement a balanced tree in the persistent
language. If the application only requires to go back
to previous consistent states of the tree, the interme-



diate state changes during the balancing operations do
not need to be stored. On the other hand, if we want to
use persistence to debug an operation in the same tree,
it could be useful to store all steps. We therefore need
a way for the user to indicate the consistent states in a
system or, in other words, to define the granularity of
the persistence.

The solution we decided to implement allows the
user to explicitly indicate when the states have to be
remembered by taking a snapshot, which can be done
anytime. The result of a snapshot is a picture of the
complete system at the time when it is created. To
the user it is an object that can be used to access
any data at the moment the snapshot was taken. In
our previous example, the user is interested in seeing
consistent states of a tree, would only take snapshots
before or after performing operations on the tree (add,
delete, ...), while a debugger application would take
snapshots after any change to any tree object.

In practice, when the user takes a snapshot, the
implementation will return an object containing the
global version number, and will increment the global
version number. Then, whenever the value of a field f
is changed, if the version number of the last saved state
of f is equal to the global version number, the value of
the last state can be forgotten and replaced by the new
value. Otherwise, a new state is created with the global
version number as version number.

The global view mechanism is used to browse past
states. At each read of an attribute of a persistent
object the system checks if the global view is activated
or not. If not (the system is at now), the original read
is performed. Otherwise the system looks for, in the
states structure associated to this attribute, the last
value before or at version number joined to the global
view. Using a persistent object in the past is completely
transparent for the user: he chooses a previously taken
snapshot and manipulates objects as he could in the
present. Because we implement partial persistence, a
change in past is not permitted (only querying the
structure is allowed).

3 Implementation

3.1 Possible Choices. The easiest way to use per-
sistence could be to select a language that already per-
sistent. For instance, in a functional language all data
structures are intrinsically persistent [26]. However few
algorithms are developed in a functional model and their
analysis is often difficult. Because most algorithms are
described using imperative models of computation we
restrict our research to this paradigm.

Unfortunately, to our knowledge, no usual impera-
tive language (e.g. C++, Java, ...) allows to imple-
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ment directly the persistence in a transparent way: an
instrumentation of all accesses to given variables must
be performed, without modifying original code. So we
must interfere in the compilation process. We see sev-
eral possible methods to insert a persistence mechanism
in a transparent way for imperative languages: before
the compilation (pre-compilation), after the compilation
(change the bytecode), during the compilation and add
more reflection to languages.

Before the compilation Adding transparent persis-
tence via a pre-compilation would offer the advan-
tage of being able to add the same pre-compiler to
any implementation of the language. However, it
requires to parse the code and extract necessary in-
formation to perform a transformation of the code.
These operations are non-trivial.

After the compilation The manipulation can be also
performed on the bytecode generated by a com-
piler. In that case, any language that can be trans-
formed into the same bytecode could be rendered
persistent. However, manipulating bytecode is also
a complex task and it is not clear how one would
instruct the persistence system on which parts of
the code should be rendered persistent.

During the compilation More generally, one could
interact at any level of the compilation (lexical
analysis, parsing, semantic analysis, generation of
code and optimization of generated code). The
compiler must provide enough flexibility to accept
this kind of interaction (either directly in the source
code if it is open-source or via a plugin mechanism).

Adding more reflection Some solutions exist that
add more reflection and introspection at a high ab-
straction level to instrument accesses to variables in
existing languages. Aspect-Oriented Programming
(AOP) has been developed in this way. Having that
type of mechanisms at hand greatly simplifies the
transparent implementation of persistence.

To develop our solution we selected the widespread
object-oriented imperative programming language Java
with the AspectJ module for the AOP functionalities.
Note that our solution is easily adaptable to any lan-
guage supporting the aspect paradigm (e.g. C++,C#,
Python, Smalltalk), a Smalltalk implementation follow-
ing similar principles was developed in parallel to the
Java system described here.

3.2 Aspect-Oriented Programming. Aspect-
oriented programming (AOP) is a modularization
mechanism that allows a program to be split between



(functional) base code, and so called cross-cutting
behavior that needs to be applied throughout the base
code.

Take for example an application that implements a
number of data structures (vectors, balanced trees, ...).
For helping with debugging, the developers want to keep
a log file that shows whenever elements are deleted from
these data structures. A good solution to implement
this behavior using a non-AOP language would be to
implement a logging facility, and to change the delete
functionality in the data structure implementations to
call this logging facility. An alternative would be to
call the logging facility in the code that uses the data
structures. In both cases however, the logging code that
is only there for the purpose of debugging is added to the
base program (either in the data structures themselves
or in the code that uses the data structures).

Using aspect-oriented programming, the data struc-
tures and the client code are written without taking the
logging code into account. The logging code is imple-
mented in its own module (an aspect), that contains the
logging facility itself as well as expressions that indicate
where this logging facility needs to be called. The base
program and this logging code are then composed by a
so-called weaver, that produces the final program that
does logging. An aspect implements the behavior that
needs to be called, and specifies when the behavior needs
to be called. In our example, we could decide to call the
log functionality as last statement in the implementa-
tion of any delete procedure in any of our data struc-
tures (which corresponds to the first manual solution).
We could also decide to execute the log functionality
after every call to a delete procedure, corresponding to
the second solution.

An aspect language hands a developer a number
of points (join points) in the execution of the program
where code can be called (the advice code), and a lan-
guage to use them. Such language typically supports
quantifiers and wildcard expressions that make it easy
to specify global criteria. In our example, the second
approach needs to express ’After any call to a method
named delete, call the following piece of code: ...°. Ex-
actly what join points are offered depends on the aspect
language. Typically code can be executed before, after
or around the execution of behavior (calling a function,
constructing an object, etc.). Aspect languages also of-
fer support to add elements to existing code (e.g., meth-
ods, fields, interfaces, if AOP extends OOP).

3.3 Java Specific Implementation Details. In
order to implement persistence we must map each field
of the object to an instance of our states structure
containing the different values of this field. Fields in
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Java are statically typed, that is, their type can not
be modified during the execution of a program. Thus
a states structure can not be stored directly in place
of those fields. Furthermore AspectJ only provides the
names of the fields accessed. Because of this, we have
to create a dictionary in each object for mapping the
field name to the structure storing its states (named
fieldsAndStates in previous codes). When a field
in a persistent object is accessed, a lookup in the
corresponding dictionary is performed.

3.4 Transparent Persistence with AspectJ. Our
implementation uses the aspect-oriented Aspect]J sys-
tem to add persistence to existing Java programs with-
out having to change these programs.

In order to use AspectJ to make classes persistent,
the developer writes an aspect declaration. For example,
the following AspectJ code makes all classes in a package
treap persistent (note the wildcard expression treap.*):

declare parents: (treap.*) implements PObject;

Note that other criteria could be used, such as ex-
plicitly enumerating classes or selecting a number of
classes based on their name. Technically, the aspect dec-
laration updates the existing class to add our PObject
interface to it. AspectJ will install all necessary wrap-
pers to classes implementing the PObject interface, adds
an instance variable in these classes, initializes them,
and finally extends classes with some methods to access
old states of fields of instances. Note that this solution
is transparent. The existing structure is made persis-
tent with the aspect declaration, which is not part of
the ephemeral implementation. The rest of the aspect
is used to manage the states:

e Adding a new variable to contain a dictionary in
each persistent object:

public FieldsAndStates PObject.fieldsAndStates
new FieldsWithStates();

e Declaration of the pointcuts of setters and getters
of persistent objects, but not in the aspects pack-
age:

// declaration of pointcut setters with 1 arg
pointcut setters(PObject t):

// all updates of PObject implementors

set(x PObject+.*)

// not in ’aspects’ package

&% ! within(aspects.*)

// put the target in the variable t

&& target(t);




// same for all read operations
pointcut getters(PObject t): get(* PObject+.*)
&% ! within(aspects.*) && target(t);

e Definition of the advice code after each update of a
field of a persistent object (we ask to save the new
value for the set field):

after (Object newValue, PObject t)
setters(t) && args(newValue) {
t.fieldsAndStates.addStateWithValueFor (
// the field name:
thisJoinPoint.getSignature() .getName(),
// the new value stored in field:
newValue); }

e Definition of the advice code around each read on
a field of a persistent object:

Object around(PObject t) : getters(t) {
if (!Snapshot.globalViewActivated())
return proceed(t); // original read
// retrieve the states of the field
OrderedStates states = t.getStatesFor(
thisJoinPoint.getSignature() .getName());
// search the good version of field
// in respect to current snapshot VN
return Snapshot.valueOfStates(states);}

Note that, because to AspectJ limitations, the
arrays can not be made persistent in this way: AspectJ
does not offer a mechanism to instrument accesses to
the elements of an array. However such a feature is
available in the Smalltalk implementation, the reflection
mechanism being more powerful.

4 Planar Point Location and Treaps

Planar point location is a classical problem in compu-
tational geometry: given a subdivision of the plane into
polygonal regions (delimited by n segments), construct
a data structure such that given a point, the region con-
taining it can be reported quickly.

Dobkin and Lipton[14] proposed a solution con-
sisting in subdividing the plane into vertical slabs de-
termined by vertical lines positioned at each vertex.
Within each slab, there exists a total order between line
segments determined by the order in which any vertical
line in the slab intersects them. Each segment is associ-
ated to the polygon just above it, and a balanced binary
search tree storing the segments is constructed for each
slab.

When a point is queried, its x-coordinate is used
to determine which slab contains it in O(logn) time,
and the binary search tree of the corresponding slab
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is used to locate the region containing the point, also
in O(logn) time. Unfortunately, the worst-case space
requirement for this structure is ©(n2?). To solve this
problem, Sarnak and Tarjan[30] use persistence in order
to reduce the space to O(n). A vertical line sweeps the
plane from z = —oo to x = 400, maintaining at every
point the vertical order of the segment in a balanced
binary search tree. The tree is modified every time the
line sweeps over a point, but all previous versions of
the tree are kept, effectively constructing Dobkin and
Lipton’s structure while using a space proportional to
the number of structural changes in the tree.

In order to illustrate how transparent persistence
can simplify the implementation of complex data struc-
tures, we implemented a random treap(31], a random-
ized binary search tree. The system then transforms
automatically this structure into a partially persistent
structure via the persistence aspect.

The following code is placed in a class storing a set
of points. Each point stores its incoming and outgoing
segments. In the construction of the point location
data structure, each point of the set is swept by the
sweepline, its outgoing segments are added in the treap,
the incoming are removed and a snapshot is taken and
stored in the info associated to the point.

private void constructRTreap(){
rtreap = new RandomTreap();
Iterator it = points.iterator();
while(it.hasNext ()){
Point point = (Point)it.next();
LinkedInfosPoint info = point.getInfo();
Iterator segmentsIt
info.incomingSegmentsIterator();
while(segmentsIt.hasNext()){
rtreap.delete((Segment)segmentsIt.next());}
segmentsIt = info.outgoingSegmentsIterator();
while(segmentsIt.hasNext()){
rtreap.put ((Segment)segmentsIt.next());}
info.setSnapshot (Snapshot.takeSnapshot ());}}

In the location step of a point p, the slab containing
p is determined. The user asks to the system to see the
structure through the snapshot associated to the left
point of the slab. The treap can then be used normally
to locate the point.

public Segment locatePoint (Point p){
Point thePoint = getLastPointBefore(p);
LinkedInfosPoint assoc

(LinkedInfosPoint) points.get(thePoint);
Snapshot.globalViewOn(assoc.getSnapshot());
return

(Segment)rtreap.searchEqualsOrJustBefore(p);}
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insertion

5 Tests, Experiences and Performance

All tests were made on a Dual 2 GHz PowerPC G5 with
2 Go DDR of memory, using the NetBeans IDE 5.5 with
version 1.5.0_.06 of Java and the AspectJ Development
Environment (AJDE) version 1.5.02. The following
parameters were used: -Xms1024m and -Xmx1024m (the
size of stack is exactly of 1 Go) and -Xnoclassgc
(no automatic garbage collector). We disable the
garbage collector to avoid parasite behavior during the
performance tests. A manual garbage collection is
performed before each test to clean the stack.

All experiments follow the same structure. For
n objects, we perform some operation (insert, search,
..) 10% times, accumulate the total time t (using
System.nanoTime()) and we finally calculate the av-
erage time per operation (t/(10°n)). Thus we estimate
the average time (in nanoseconds) per operation.

Java is a dynamic language and has many features
to improve its performance (Just In Time compilation,
Hotspot dynamic compilation, ...)%. As we will see, this
will make it challenging to interpret our tests.

5.1 States Structure. The first test on states struc-
ture measures the insertion time. We create an empty
instance of states structure and add n states in it (see
Fig. 2). We also show the time taken by a growable
array to perform the same operation. A growable array
begins with an array of one element. At each inser-
tion, if the array is full, a double sized array is cre-
ated, the full array is copied into the new one using
System.arraycopy(...) and the element is inserted
in the first free place in the array. This technique is
similar to the implementation of the Vector class from
the standard Java libraries, but tailored to our needs.

Zhttp:/ /www.netbeans.org, http://java.sun.com,
http://aspectj-netbeans.sourceforge.net

Shttp://www-128.ibm.com/developerworks/library/j-jtp12214/
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Figure 3: Number of elements in the structure vs.
average time per search

For each structure the time per insertion seems
constant, with peaks at each new allocation (in Java, an
initialization is performed during each array allocation
causing a linear allocation time). This operation is
amortized by next insertions until the next allocation.
The growable array is 1.2 time slower than states
structure.

We next measure search time. We perform a search
for each saved state in a structure containing n states
and compute the average time (see Fig. 3). Results
are shown using different growing factor. All curves
are roughly logarithmic, as expected, but an intriguing
phenomenon occurs: the performance becomes signifi-
cantly worse when using a factor 2. Subsequent analysis
revealed that dereferencing a Java array whose size is a
power of two takes much more time than for most other
array sizes (£200ns vs £20ns).

As in the previous test we also performed the same
test with growable arrays. The time to find an element
is also logarithmic. Our structure was always more
efficient.

5.2 DPersistence Aspect. The Java Just In
Time(JIT) compiler is a real challenge for algo-
rithm analysis: a read of a variable takes 40ns when the
compiler is enabled. In the same conditions two reads
take 45ns as total time. The sum of individual times
is thus not equal to the time of combined operations.
On the other hand this property is respected without
enabling the compiler. Therefore we chose to disable
the compiler, in order to collect more coherent data.

We now analyze the performance of our implemen-
tation of persistence in Java. A given number of changes
is performed on an attribute of an object. We separate
the time for each step of the persistence of an update
operation (see Fig. 4):

Original Java It is the time to perform one change in
the native Java program;
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Figure 4: Number of updates vs. average time per

update.
AspectJ (target and getSignature) The  aspect
adds some new code after each change. It takes

extra time to retrieve the target object of the
change and get the name of affected attribute (in
signature). We measure an overhead of about 6;

AspectJ + lookup in dictionary As explained in
Section 3.3 a dictionary is used to map the name
of the target variable to the states data structure.
The measured overhead is of about 32;

No Snapshot Adding the mechanism described in
Subsection 3.4, without taking a snapshot (all
changes update the value of the last state associ-
ated to the attribute). We measure an overhead of
37;

Snapshot after each update Same as the previous
test but taking a snapshot after each change. The
measured overhead is now 41.

Remark that the cost of AspectJ (to retrieve the affected
attribute name and the target object) followed by
the search in the dictionary induce an overload of 32
compared with the average time to perform a change on
an attribute of a simple object in Java. Saving the state
in the structure takes only between 600ns and 1200ns,
i.e.,, only 4 to 9 times slower that the original code.
If AspectJ were able to provide a mechanism to put
the states directly in the attributes, much better results
should be achievable.

In a second test (Fig. 5) we analyze the read
a value that was just updated (only the read time
is observed). Here the activation of the global view
(Section 2.3) is important: if the global view v is
activated we are looking for the value of an attribute
in the last saved state before or at version number
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v.wersionNumber. Otherwise the actual value of the
attribute is returned (no lookup in dictionary is then
performed). We decompose the operation:

Original Java The time of a read in the original Java.
Does not differ much from an update ;

AspectJ (GV not activated) The global view is not
activated. The aspect returns the actual value con-
tained in the attribute. We measure an overhead
of about 5.5;

AspectJ (GV activated: getSignature) The
global view is activated, states of this attribute
must be consulted. As a first step we report the
search of the name of relevant attribute, using the
signature of the read operation given by AspectJ.
We measure an overhead of about 7.7;

AspectJ + lookup in dictionary After the previ-
ous operation the dictionary is consulted to retrieve
the states data structure associated to the target
variable. The measured overhead is of about 35;

No Snapshot The entire mechanism is activated,
without taking a snapshot after the updates. We
measure an overhead of 43;

Snapshot after each update, GV on first VNN
The same previous test but taking a snapshot after
each change. The global view is activated and
its version number is the first one of the system:
at each read a search must be performed to find
the first state in the associated states structure of
the target attribute. The curve is logarithmic as
expected.

The general observations made in our previous tests
are confirmed here: the total performance is dominated
by the three first phases.

Two important remarks can be made. Firstly
a drawback of our implementation is that a lookup
in dictionary must be done for each operation on an
attribute (update or read via the global snapshot). The
time of an update followed by read (with the global view
activated) is so the sum of their individual time. We
could not find a better method considering the features
of Java and AspectJ. Secondly in order to interpret the
large overhead of our system, the following must be
taken into consideration :

The compiler is disabled With the compiler en-
abled the analysis can be done less precisely but
we remark that the performance optimizations per-
formed by the compiler reduce considerably this
overhead ;
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per read.

Applications We will see in next section that in
real applications, the persistent operations can be
mixed with a large number of regular operations,
making the overhead acceptable.

5.3 Persistent Treaps and Planar Point Loca-
tion. We now test the performance of persistent treaps.
Fig. 6 shows the average time per insertion in a treap
vs. the number of elements in the treap. The same test
is done on non persistent and persistent treaps (without
snapshot and with snapshot after each insertion). The
global view is not activated. An overhead of roughly 2 is
observed for persistent ones. Remark that taking snap-
shot after each insertion does not increase the time by
insertion considerably, due to the fact that the lookup
in the dictionary takes more time that updating the last
state or adding a new state in the states structure.

The second test (Fig. 7) gives the average time
for searching in persistent and non persistent treaps.
As a first result experiments indicate that search in a
non persistent random treap takes time O(lgn). For
persistent treaps several cases of the global view is
considered: disabled (the overhead is about 3.6), global
view on present (the last saved value in the states
structure) and global view at middle of states (if there
are k insertions with snapshots, the global view version
number is the (k/2)th version number generated). The
overhead of two last ones is about 25. Note that the
theoretical expected search time is O(lgn xlglgn) : the
expected number of states in a treap node is no more
than the logarithm of the size of its subtree. However in
our tests, the dictionary lookup dominates the running
time, explaining the roughly logarithmic curve.

The explanation of these surprising low overheads
(3.6 instead of 5.5 and 25 instead of 43) is the next
one. When an insertion is performed in a persistent
treap the operations are either non persistent ones (e.g.
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comparisons or assignments of temporary variables) or
a read in present (the global view is disabled) or a
persistent update. Persistent operations are minority
and do not increase too much the total time. The same
observations can be applied to the search operations. So
the high overheads observed during the aspect tests are
lowered in the case of persistent treaps.

The test for the planar point location was realized as
follow. For each n, number of given points in the plane,
we generate random points and generate a Delaunay tri-
angulation for these points. We run our implementation
of the planar point location using as parameters the set
of points and the segments generated. We measure the
time t to locate n other random points in the plane.
Fig. 8 shows the average time t/n to perform a search.
As expected the curve is nearly logarithmic.

5.4 Size Tests. Now we analyze the space in memory
of our implementation of the persistence in Java.

As first state we take a simple class composed by 1,
2, 3 or 4 Integer fields. The original size is 8 bytes + 16
bytes per field (4 for the pointer and 12 for the Integer
object). Transforming this class to a persistent one the
aspect adds a field containing a optimized Hashtable
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instance and some useful informations for AspectJ. The
size grows to 50 + 140 bytes per field, an overhead
about 8.

Fig. 9 shows the total sizes of objects with,
respectively, 1, 2, 3 and 4 fields after updates (of
all fields), each one followed by a snapshot. The
total size grows linearly according vertical steps due
to instantiation of a new array in states structure at
each power of 2. The steps of the stair graphs are not
horizontal because at each change a new state is created
and added in the states structure.

Fig. 10 shows the sizes of ephemeral and persistent
(no snapshot and snapshot after each insertion) treaps.
When no snapshot is taken the observed average over-
head is about 7.5. It grows to 9.5 with snapshots.

6 Conclusions

This paper presents a first fully transparent implemen-
tation of persistence in an object-oriented language.
The performance of our implementation is far from opti-
mal, partly due to the restriction of the language and of
the overhead intrinsic to the aspect-oriented program-
ming system used. There are several ways in which a
more efficient implementation of persistence could be
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designed, e.g., by writing precompilers to generate per-
sistent code or by directly modifying the virtual ma-
chine. Nevertheless the approach presented here has the
advantage of being easy to implement in any language
that supports the aspect paradigm (C++, C#, Java,
JavaScript, PHP, Python, Smalltalk and many others).
A Smalltalk version is moreover currently developed in
the Squeak environment.

Several interesting theoretical questions emerge
from our work: is it possible to implement persistence
in a way that would exploit the structure of the data
structure, i.e., if the structure is indeed composed of
nodes of low indegree, could the implementation be au-
tomatically faster? How would we implement garbage
collecting on saved states when a snapshot is deleted?
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Comparing Online Learning Algorithms to Stochastic Approaches for the
Multi-Period Newsvendor Problem

Shawn O’Neil

Abstract

The the
dilemma of a newspaper salesman—how many papers should

multi-period newsvendor problem describes
he purchase each day to resell, when he doesn’t know the
demand? We develop approaches for this well known prob-
lem based on two machine learning algorithms: Weighted
Majority of Warmuth and Littlestone, and Follow the Per-
turbed Leader of Kalai and Vempala. With some modified
analysis, it isn’t hard to show theoretical bounds for our
modified versions of these algorithms. More importantly, we
test the algorithms in a variety of simulated conditions, and
compare the results to those given by traditional stochastic
approaches which assume more information about the de-
mands than is typically known. Our tests indicate that such
online learning algorithms can perform well in comparison to
stochastic approaches, even when the stochastic approaches
are given perfect information.

1 Introduction

On each morning of some sequence of days, a newspaper
salesman needs to decide how many newspapers to order
at a cost of ¢ per paper, so that he can resell them for
an income of r per paper. Unfortunately, every day it
is unknown how many papers d will be demanded. If
too many are ordered, some profits are lost on unused
stock. If too few are ordered, some profits are lost due
to unmet demand. The actual profit seen by a vendor
who orders x items on a day with demand d is given by
rmin{d,z} — zc. The papers ordered for a single day
are of course only useful for that day; leftover papers
cannot be sold in any later period.

This model describes a wide variety of products in
industry. Fashion items and the trends they rely on are
typically short lived, inducing many manufacturers to
introduce new product lines every season[16]. Consumer
electronics also have a short selling season due to their
continuously evolving nature; cellular phones can have a
lifecycle as short as six months[2]. Some vaccines such as
those for influenza are only useful for a single season[6].

For many such products, due to required minimum
manufacturing or processing times, the vendor must fi-
nalize his order before any demand is seen. Further,
because properties of the products themselves can vary
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markedly between selling periods, so too can the de-
mand seen each period. This demand uncertainty is the
most challenging hallmark of the newsvendor model.

A common approach taken to resolve the demand
uncertainty issue is using a stochastic model for the
demands; assuming, for example that for each period
the demand is drawn independently from some known
distribution. In using such an approach, the goal is then
to choose an order amount which maximizes expected
profit (see, e.g., [11]). However, such approaches are
commonly inadequate, as the quality of the final result
depends heavily on the quality of the assumptions made
about the distribution. Given the strong uncertainty
inherent in many newsvendor items, such quality is
usually low. (See [21] for a lengthier discussion on the
shortcomings of this approach.)

Alternate approaches to the newsvendor problem
are more “adversarial” in nature. In these models, very
little is assumed about the nature of the demands, and
worst-case analysis is used. Typically, only a lower
bound m and upper bound M on the range of possible
demand values are assumed. One solution in this area
develops a strategy to minimize the mazimum regret:

(OPT — ALG),

max
demand values

where OPT denotes the profit of the offline optimal
algorithm which knows the demand values, and ALG
is the profit of the strategy used (see [17, 21, 22]).

Another method used to evaluate and design online
algorithms for such problems is competitive ratio, where
the goal is to minimize the ratio OPT/ALG in the worst
case. However, one can show, using Yao’s technique, a
lower bound of Q(M/(mk)) for this ratio in the single
period case when r = kc. This bound is tight, as a
simple balancing algorithm can guarantee profits of this
form.

Similarly restrictive results can be found for the
worst case approach to regret with respect to OPT seen
above. The single period minimaz regret solution results
in a maximum regret of ¢(M — m)(r — ¢)/r[21], which
implies that for ¢ periods of a newsvendor game it is
possible to suffer a regret of t¢(M — m)(r — ¢)/r, even
for the best possible deterministic algorithm.



For these reasons, we turn away from evaluating
the performance of algorithms in terms of the dynamic
offline optimal, and consider a more realistic target:
the static offline optimal, which we denote here by
STOPT. STOPT is a weaker version of OPT which
makes an optimal decision based on perfect knowledge
of the demands, but is required to choose one single
order quantity to use for all periods.

Comparing the performance of algorithms with
the performance of STOPT has practical significance,
because any bounds for an algorithm with respect
to STOPT also hold with respect to an algorithm
which makes decisions based on stationary stochastic
assumptions. Much of the inventory theory literature
deals with algorithms of this type[15, 11].

We look at adaptations of two Expert Advice al-
gorithms: Weighted Majority, developed by Littlestone
and Warmuth[14], and Follow the Perturbed Leader, de-
veloped by Kalai and Vempala[12].

In the expert advice problem, the algorithm de-
signer is given access to n experts, each of whom make
a prediction for each period, and suffer some cost for in-
correct predictions. The goal is to design an algorithm
that makes its own predictions based on the experts’ ad-
vice, and yet does not suffer much more cost than the
best performing expert in hindsight.

In our setting, we use naive experts which make
fixed predictions in the range [m, M|, and the cost they
suffer in each period is the regret (difference in profit)
from the dynamic offline OPT. Adapting the Weighted
Majority algorithm to the non linear profit function of
the newsvendor problem requires some careful attention
if one wants to show theoretical performance bounds,
whereas Follow the Perturbed Leader is a more straight-
forward implementation. Details of the algorithms’ op-
eration and theoretical performance bounds in this set-
ting can be found in the appendices.

2 Goals of This Paper

In Section 4, we’ll give overviews of the operation
of three algorithms, two based on Weighted Majority
variants which we call WMN and WMNS, and one based
on Follow the Perturbed Leader which we call FPL.
Each of these algorithms takes parameters which are
chosen by the experimenter as input, which affect their
operation and the performance bounds they achieve.

The primary interest of this paper, then, is to em-
pirically evaluate the performance of these algorithms
and compare the results to those generated by STOPT
as well as more traditional stochastic approaches. Each
of the stochastic solutions takes as input the assump-
tions made by the experimenter about the mean and
standard deviation of the input distribution.
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Further, the specifics of the problem instance itself
may lead to interesting observations about all of the
solutions specified. For instance, we know that the
relationship of r and ¢ can make a large difference on the
performance of the minimax regret solution; does this
ratio also affect the performance of other approaches we
are going to test? Do certain types of input distributions
favor one approach over the other?

Given such a large number of possible experimental
variables, we are forced to select those which we believe
will be most interesting, and design experiments using
simulated data which are most likely to highlight the
advantages and deficiencies of the different approaches.

3 Related Work

The Newsvendor Problem The origins of the
newsvendor problem can be traced as far back as Edge-
worth’s 1888 paper[10] in which the author considers
how much money a bank should keep in reserve to sat-
isfy customer withdrawal demands, with high proba-
bility. If the demand distribution and the first two
moments are assumed known (normal, log-normal, and
Poisson are common), then it can be shown that the ex-
pected profit is maximized at x, where ¢(z) = (r —c¢)/r
and ¢(-) is the cumulative probability density func-
tion for the distribution. Gallego’s lecture notes[11] as
well as the book by Porteus[15] have useful overviews.
When only the mean and standard deviation are known,
Scarf’s results[18] give the optimal stocking quantity
which maximizes the expected profit assuming the worst
case distribution with those two moments (a maxi-min
approach). In some situations this solution prescribes
ordering no items at all.

Among worst-case analyses, one of the earliest uses
of the minimax regret criterion for decision making un-
der uncertainty was introduced by Savage[17]. Apply-
ing the techniques to the newsvendor problem, Vairak-
tarakis describes adversarial solutions for several per-
formance criteria in the setting of multiple item types
per period and a budget constraint[21]. Bertsimas and
Thiele give solutions for several variants of the newsven-
dor problem which optimize the order quantity based on
historical data[3]. The solutions discussed take into ac-
count risk preferences by “trimming,” or ignoring, his-
torical data which leads to overly optimistic predictions.

Learning from Experts Weighted Majority is a very
adaptable machine learning algorithm developed by Lit-
tlestone and Warmuth[14]. There are several versions
of the weighted majority algorithm, including discrete,
continuous, and randomized. Each consults the predic-
tions of experts, and seeks to minimize the regret (in
terms of prediction mistakes) with respect to the best



expert in the pool.

Weighted Majority and variations thereof have been
applied to a wide variety of areas including online
portfolio selection[8, 7] and robust option pricing[9].
Other variants include the WINNOW algorithm also
developed by Littlestone[13], which has been applied to
such areas as predicting user actions on the world wide
webl[1].

Follow the Perturbed leader is a general algorithm
for online decision making which is also applicable
to the learning from experts problem. It’s creators,
Kalai and Vempala[12], apply the algorithm to such
problems as online shortest paths[20] and the tree
update problem[19].

4 Algorithms

For these experiments, we impliment the following
algorithms as described:

STOPT This approach is given perfect information
about the demand sequence, and chooses the single or-
der quantity to use for all periods which maximizes the
overall profit (and thus also minimizes the total regret).
As Bertsimas and Thiele discuss[3], the static offline op-
timal choice is the [t — t(c/r)]*" order statistic of the
demand sequence.

NORMAL This stochastic solution assumes the de-
mands will be drawn from a known normal distribution,
and maximizes the expected profit. This approach pre-
scribes ordering the amount g+ 0@~ ((r—c¢)/r), where
¢~ 1(-) is the inverse of the standard normal cumulative
distribution function[11].

SCARF This stochastic solution is described in Scarf’s
original paper[18] as well as in [11]. The solution max-
imizes the expected profit for the worst case distribu-
tion (a maximin approach in the stochastic sense) with
first and second moments p and . The order quantity
is prescribed to be p+ Z(\/(r —c)/c — \/c/(r —¢)) if
c(1+4 0?/pu?) < r, and 0 otherwise.

MINIMAX This is the minimax regret approach men-
tioned in Section 1. Described by [21], the algorithm
orders the quantity (M (r —c)+mc)/r for every period,
which minimizes the maximum possible regret from the
optimal for each period. As such, it also minimizes the
maximum possible regret for the whole sequence.

The solution works by balancing the regret suffered
by the two worst case possibilities: the demand being
m or M. Because of this, its order never changes (as
long as the range [m, M] doesn’t change), and is very
pessimistic in nature.
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WMN We develop this algorithm (Weighted Majority
Newsvendor) as an adaptation of the Weighted Major-
ity algorithm of Littlestone and Warmuth[14]. The al-
gorithm takes two parameters: n, the number of “ex-
perts” to consult, and 3 € (0, 1], the weight adjustment
parameter. Essentially, we divide up the range [m, M|
into n buckets, and have expert i predict the minimax
regret order quantity for the i** bucket. Buckets and
experts are set up so that each bucket/expert pair has
the same minimax regret.

As per the standard operation of Weighted Major-
ity, each expert is given an initial weight of 1. After
each round, we decrease each expert ¢’s weight by some
factor F, where F' depends on (3 and the regret that
expert would have suffered on the demand seen using
its prediction. If an expert is often wrong, its weight
will be decreased faster than others. This punishment
happens faster overall with smaller §’s.

The amount ordered by WMN in a given period is
the weighted average of all experts. The intuition is
that wherever the static optimal choice is, it must fall
in one of the n buckets, and thus one of our experts will
be close to this static optimal choice. Further, because
experts’ weights are decreased according to how poorly
they do, the algorithm is able to learn where the static
optimal choice is after a few periods, and even adapt to
changing inputs over time.

Adapting the analysis of Weighted Majority to the
non linear newsvendor profit function requires special
care to ensure bounds similar to that of Weighted
Majority can still be given. In Appendix A, we give a
detailed description of WMN and a proof of the following
theorem:

THEOREM 4.1. The total regret experienced by WMN
for a t period newsvendor game with per item cost ¢, per
item revenue r, and all demands within [m, M| satisfies

WM NTotalRegret

Cln(n) . In (%) (M —m)(r—c)t
1-p nr(l—p)
In (%) STOPTTotaZRegret
1-p
where C = max{(M — m)(r — ¢),(M — m)c} is the
mazimum possible single period regret, n is the number

of buckets used by WMN, and 3 is the update parameter
used.

+

WMNS WMNS, for Weighted Majority Newsvendor
Shifting, is based on the “shifting target” version of the
standard Weighted Majority algorithm. Here, if the in-
put sequence can be decomposed into subsequences such



that for each subsequence a particular expert does very
well, then WMNS will do nearly as well for that subse-
quence. WMNS needs no information about how many
shifts there will be, or when they will be. For exam-
ple, if for the first third of the sequence all demands
are near m, WMNS will initially adjust the weights of
the experts so that it is ordering near m as well. If the
sequence shifts so that demands are then drawn from
near M, WMNS will adjust the weights quickly (quicker
than WMN) so that the order quantities will match.

This ability comes from WMNS’s use of a weight
limiting factor § € (0,1], so that no expert’s weight
will be less than § times the average weight. When
a new expert starts doing significantly better, the old
best expert’s weight is decreased to below the new
expert’s weight more rapidly, as the new expert’s weight
is guaranteed not to be too low in relation.

THEOREM 4.2. The total regret experienced by WMNS
for a t period newsvendor game with per item cost ¢, per
item revenue r, and all demands within [m, M| satisfies

WM NSTotalRegret

kECln <%) In (%) (M —m)(r — o)t
SA-A-0) " w-B1-)
n (4) SSTOPTrorattegret
(1-8@1-9)

where C = max{(M — m)(r — ¢),(M — m)c} is the
mazimum possible single period regret, n is the number
of buckets used by WMNS, [ is the update parameter
used, and 0 is the weight limiting parameter used.
SSTOPT s allowed to use a static optimal choice for
k subsequences (i.e., is allowed to change order values
k — 1 times, see below).

+

Details of WMNS’s operation and proof of the above
bounds are given in Appendix B.

SSTOPT This “optimal,” which makes its decisions
based on the entire sequence, is a slightly stronger
version of STOPT, which is allowed to change its order
quantity exactly k — 1 times during the sequence.

FPL Similar to WMN, FPL is a randomized algorithm
based upon the Follow the Perturbed Leader approach
developed by Kalai and Vempala[l2]. As a general
algorithm it is well suited to making decisions a number
of times, when one wants to minimize the total cost
in relation to the best single decision for all periods.
Here, decisions will be of the form “use expert s
prediction,” where the experts again predict minimax
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values in buckets which divide the [m, M] range. FPL
as we use it takes two parameters, n, for the number
of experts/buckets, and e, which affects the final cost
bound in relation to the best static decision.

THEOREM 4.3. The total regret experienced by FPL for
a t period newsvendor game with per item cost c, per
item revenue r, and all demands within [m, M| satisfies

E[FPI—TotalRegret]
< 4C(1 4 In(n)) n (14 €)c(M —m)(r—c)t

€
+ (1 + 6)STOI:rrTot(leRegret

where C = max{(M —m)(r —c),(M —m)c} is the maz-
imum possible single period regret, n is the number of
buckets used by FPL, and € is the randomness parameter
used.

Details of the algorithm and proof of the bounds it gives
in our application appear in Appendix C.

5 Experiments

In order to evaluate the online learning algorithms for
the newsvendor problem, we run them on simulated
demand sequences comparing the total regret suffered
by each approach to the regret suffered by the stochastic
algorithms SCARF and NORMAL, as well as MINIMAX
and STOPT.

Unless otherwise noted, all experiments consist of
100 demand newsvendor sequences, and each data point
represents the average of 100 such trials. Thus, data
points in the following figures typically represent the
average total regret of various approaches on newsven-
dor sequences of length 100. Also, due to space limi-
tations, we won’t experiment with the affect of the up-
per and lower demand bounds [m, M]; we’ll instead fix
these bounds to [10,100] for all tests. Whenever a nor-
mal distribution is used, we restrict it to this range by
resampling if a demand falls outside the range, and we
further restrict all demands to be integers.

5.1 Algorithm Parameters

5.1.1 f, ¢, and p For this first batch of tests, we in-
vestigate the performance of our three machine learning
approaches while varying some of the parameters they
accept as input. WMN and WMNS use § as a weight
adjustment parameter: the smaller 3 is, the quicker ex-
pert weights are adjusted downward. WMNS also uses a
“weight limiting” parameter §, which we hold constant
at 0.3 for these tests.

FPL uses the parameter €, which affects the amount
of “randommness” used in deciding which expert to



follow. Smaller e values lead to more randomness being
used. Even though the bounds discussed for FPL are
only valid for € € (0,1], the algorithm is still operable
for larger values, so we test € € (0,5]. While we test
the effects of varying 8 and €, we hold the number of
experts, n, at 32.

For Figures 1, 2, and 3, the distribution is nor-
mal with mean demand of 25 and standard deviation
15. Note that because the distribution is bounded to
[10,100] via resampling, the actual mean of the distri-
bution used is about 29.3. The per item cost ¢ is held
at 1, and the per item profit r is 4.

Figure 1 plots the average total regret of WMN,
WMNS, and FPL as we vary (3 and e. We also show
the average total regret of STOPT as a baseline for
comparison. One thing to notice in this figure is that
while WMNS is adapted to be useful in situations where
the distribution makes drastic changes over time, it does
very nearly as well as WMN in this case.

On the other hand, even though FPL suffers a re-
spectably low amount of regret, it’s performance is only
comparable to the other two approaches when rather
large €’s are used which aren’t valid for theoretical anal-
ysis.

Regret - Varying Algorithm Parameters - 3,&
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Figure 1: Average regret suffered on a 100 period
newsvendor sequence, varying algorithm parameters.
Even though € must be less than or equal to 1 for FPL’s
theoretical bounds to hold, we see that in this situation
it performs well with larger values also.

Figure 2 shows the regret of NORMAL and SCARF
on the same test, varying the mean assumed about
the demand distribution. Both approaches assume the
correct standard deviation of 15. As this figure shows,
the consequences of assuming incorrect information can
be quite drastic for such stochastic algorithms.

In fact, it is interesting to look at the range of
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u values used by NORMAL for which it suffers less
regret than WMN. When WMN uses a § of 0.5, a
rather naive choice, the average regret suffered is about
1856. NORMAL suffers less regret than this only when
it assumes g € [21.7,37], or within about 7.6 units on
either side of the actual mean.

In Figure 2 we also plot the rather large regret suf-
fered by the pessimistic worst case algorithm MINIMAX.

Regret - Varying Algorithm Parameters - 1

8000

STOPT =— '

7000

6000

5000

4000 |-

3000 [

2000

o
o
o

Average Regret (Demands from N(25,15

0 . . .
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Figure 2: Average regret suffered on a 100 period
newsvendor sequence, varying the mean assumed by
NORMAL and SCARF. This plot shows the conse-
quences to the stochastic approaches of assuming incor-
rect information. For comparison, we also plot WMN'’s
regret of 1856 when WMN uses a § = 0.5.

In Figure 3 we indicate what the theoretical bounds
for WMN, WMNS, and FPL would be in the previous ex-
periment. That is, given the values used for r,c,m, M t,
as well as the parameters used by the algorithms, we
use the actual regret suffered by STOPT to compute
the worst case regret for the algorithms no matter the
input sequence. We see that the theoretical bounds are
much higher than the actual empirical performance seen
in figure 1, by as much as an order of magnitude.

As is reflected in Figure 3, the theoretical bounds
given in Theorems 4.1 and 4.2 increase without bound
as 3 is reduced to 0, because of the In(1/3) term.

Because of this, we begin to notice the trade off
between minimizing the theoretical bounds and getting
good performance in actual simulation. (Later, in
Figures 9 and 10, we’ll see the same phenomenon.)
Similar to MINIMAX, the three experts algorithms
give theoretical worst case bounds (though in relation
to STOPT, rather than OPT), and as such have a
pessimistic nature to them as well. Using a § which
decreases weights rapidly will quickly find the correct
amount to order, however may be more susceptible to



poor performance with very adversarial sequences.
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Figure 3: Average worst case theoretical bounds com-
puted using algorithm parameters, problem parameters,
and the actual regret suffered by STOPT. Comparing
to Figure 1, we see a trade off between low worst case
bounds and better empirical performance.

5.1.2 Number of Experts: n Having looked at the
effects of varying 8 and €, we now turn our attention to
the other main parameter of WMN, WMNS, and FPL:
the number of experts/buckets used. Intuitively, using a
larger value for n means that we are more likely to have
an expert close to STOPT’s order value. On the other
hand, all of the theoretical bounds grow as n becomes
very large.

For Figures 4 and 5 we run the same test as section
5.1.1, with all demands drawn from N(25,15) bounded
to [10,100]. Here, WMN uses S = 0.5, WMNS uses
8 =0.5,0 =0.3, and FPL uses ¢ = 0.75.

Figure 4 plots the average total regret of the three
algorithms varying the number of experts used from 1
to 100. Like the last test, WMN and WMNS perform
remarkably similar, and FPL performs somewhat worse.
(Had we used a larger €, this difference would probably
not be as striking.) In this plot, it appears that above a
certain point, around 5 or 10, increasing the number of
experts is ineffective. One possible reason for this is that
because WMN and WMNS use the weighted average of
experts, it is possible for them to settle upon an order
quantity between two experts, making the number of
experts somewhat less important. This cannot be the
case for FPL, however, as FPL always goes with a single
expert’s choice.

Figure 5 shows the computed theoretical bounds
given by varying the number of experts for this test.
Again, we see that a modest number of experts appears
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Figure 4: Average regret suffered while holding 3, §, and
€ constant and varying the number of experts/buckets
used n. While small values of n result in poor per-
formance, past a certain point increasing the number
doesn’t help.

to be best, and increasing beyond this point has no
benefit. Though it is difficult to see, there is a slight
upcurve for WMN and WMNS toward the right side
of the graph; theoretically, there will always be a
minimizing value of n given a value for STOPT’s regret.
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Figure 5: Theoretical bounds while varying the number
of experts used, computed using the actual average reget
suffered by STOPT.

5.2 Problem Parameters Now we turn our atten-
tion to how the various approaches perform under dif-
ferent problem conditions. For all of the tests in this
section, WMN uses a 8 = 0.5, WMNS uses 5 = 0.5,0 =
0.3, and FPL uses ¢ 0.75. Then number of ex-
perts/buckets, n, used by all three is 32. Given the



results so far, these seem to be typical naive choices
which one might use in practice if no information about
the problem is given.

In contrast, for all the tests in this section, we give
SCARF and NORMAL the actual mean and standard de-
viation of the sequence to be used. Giving such perfect
information about the input distribution represents a
best case for these; comparing with typical naive imple-
mentations of the experts algorithms should give some
insight as to their real-world applicability.

5.2.1 Per Item Profit: r Since we know that the
worst case regret that can be suffered by MINIMAX
depends on r and ¢, it will be interesting to look at
a situation where we hold ¢ constant to 1, and vary the
per item profit r.

As in Section 5.1.1, all demands are drawn from the
bounded normal N(25,15). Figure 6 shows the average
regret for the various algorithms as we increase the
value of r from 1 to 10. Notice that when r = 1, the
correct order quantity is 0, as no net profit is possible
in this situation. STOPT, MINIMAX;, and the stochastic
approaches all take this into account, and as such suffer
no regret. The experts algorithms on the other hand
aren’t given information about r and ¢, and must adjust
their operation over time as they normally do.

Overall, as r increases with respect to ¢, the cost
of poor decisions is amplified in comparison with OPT
(which is how regret is measured). Thus, we see that
all regret curves increase as r increases, with NORMAL
and SCARF tracking STOPT most closely, followed by
WMN and WMNS, whose plots nearly overlap.

Regret - Varying Problem Parameters - r

Average Regret (Demands from N(25,15))

Return r

Figure 6: Average regret on sequences with demands
drawn from N(25,15) bounded to [10,100], varying r
and holding ¢ at 1. SCARF and NORMAL are given
perfect information, while WMN, WMNS, and FPL use
relatively naive operating parameters.
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5.2.2 Distribution: m,M Mix Perhaps the most
important consideration for a multi-period newsvendor
algorithm is how well it deals with the inherent demand
uncertainty. We've already looked at the effects of
various algorithm parameters, but there we used a fairly
“tame” distribution for demand values based on the
normal. Here, we’ll look at a somewhat more difficult
distribution: all 100 demand values will either be the
minimum value m or the maximum value M. (Recall
that these are 10 and 100, respectively.) Further, the
sequences will be randomized so that where each type
occurs is unknown. We still fix r to be 4 and ¢ to be 1.

Figure 7 plots the regret of the WMN,WMNS, and
FPL as we vary the number of minimum value m’s which
appear in the sequence. Thus, at 0 on the left half of
the graph, all demands in the sequence are M’s. In the
middle at 50, each sequence is a random mixture of 50
m’s and 50 M'’s.

In this figure we see a performance difference be-
tween WMN and WMNS, though this difference is still
fairly small. All three algorithms do fairly well despite
the large variance in demand values, tracking STOPT’s
regret in a somewhat linear fashion throughout the mix
range.
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Figure 7: Average regret for m,M mix. Here, all
demands in the 100 period sequence are either m = 10
or M = 100, and we vary how many of the demands
are m’s. The order the demands are presented in is
randomized.

Figure 8, which plots the regret of the stochastic
approaches and MINIMAX, shows several interesting
characteristics. There are a few points in the curve
where SCARF and NORMAL perform as well as STOPT,
but for much of the range they suffer a significant
amount of regret in spite of the fact that they are
working with perfect information about the actual mean



and standard deviation. In comparison, the other
algorithms perform similarly, if not better in some
areas, given no a-priori information about the demand
sequence.

MINIMAX manages the same regret for the entire
range because whether a period demand is m or M,
MINIMAX is designed to suffer the same regret. STOPT
experiences the most regret when there are [t—t(c/r)]| =
75 minimum demands and 25 maximum demands. Note
than in this case, STOPT’s perfect knowledge of the
demand sequence doesn’t help it fare any better than
MINIMAX, which operates completely blind. (Both of
these features can also be shown algebraically, for any
values of r and c.)
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Figure 8: Average regret for m,M mix for the stochastic
approaches as well as MINIMAX. Despite SCARF and
NORMAL being given perfect information about the
mean and standard deviation, they still suffer regret

comparable to the other algorithms. (WMN’s regret
using § = 0.5 is also shown for comparison.)

5.2.3 Distribution: Shifting Normals, Algo-
rithm Parameters Revisited Finally, for this last
set of tests, we explore if WMNS can perform better
than WMN when the input is characterized by dramatic
“shifts” in the demand sequence. Because WMNS em-
ploys a weight limiting factor 4, it is theoretically able to
adjust the relative weights of the experts more quickly,
and thus change decisions more rapidly.

Here, our sequence length is now 400 periods. The
first 100 demands are drawn from N(25,15), the second
100 are drawn from N(75,15), the third 100 are again
from N(25,15), and the last 100 demands are drawn
from N(75,15). As usual, all demands are bounded
to [10,100], so the true means of each subsequence are
about 29.3 and 73.4, respectively.
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Figure 9 plots WMN’s regret when WMN uses § =
0.5, FPL’s regret when ¢ = 0.75, and WMNS’s regret
varying the § used from 0 to .99. WMNS also used a
constant 3 of 0.5. As we can see, up to a point increasing
0 leads to less regret, such that WMNS can outperform
STOPT and achieve regret closer to that of SSTOPT.
If § is too high, however, we see an increase in regret,
as fairly little weight adjustment is happening at all,
limiting WMNS’s learning ability.

Regret - Varying Algorithm Parameters - &
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15000

to000 F T
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Average Regret (Demands from N(25,15) and N(75,15))

0.4 0.6 0.8
& Used by WMNS

0.2

Figure 9: Regret of WMNS varying §, the weight
limiting parameter. For this plot, demand sequences
were 400 periods long, with the first and third sets
of 100 demands being drawn from N(25,15), and the
second and fourth being drawn from N(75,15). SCARF
and NORMAL, not shown in this plot, do approximately
as well as STOPT given perfect information.

The increase in performance, however, comes at a
steep price in terms of the theoretical regret bound,
shown in Figure 10. bound for WMNS is computed from
the actual average regret of SSTOPT which used the
single best static order value on each of the four subse-
quences. This increase in the computed bound happens
primarily because of the (1—4§) term in the denominator
of the bound (in Theorem 4.2), as SSTOPT roiaiRegret
will generally be a fairly large number.

6 Conclusion

Looking at all of the figures and discussion in aggregate,
we see that overall WMN and WMNS perform compara-
bly to the traditional stochastic approaches SCARF and
NORMAL, even when those approaches are given perfect
information about the demand distribution. When the
stochastic methods assume incorrect information, they
suffer as expected.

Though the bounds given for FPL are comparable
to the bounds for WMN, the actual performance for
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Figure 10: Regret bound of WMNS varying 6. The
bound was computed in terms of SSTOPT’s regret,
where SSTOPT was allowed to use the static optimal
decision for each 100 period subsequence.

this problem wasn’t as good, except for in the more
difficult [m, M] distribution mix scenario. Nevertheless,
all algorithms significantly outperformed the bounds
given for all tests that we ran.

We believe part of the reason for this is that in
the general experts problem, it is possible to have a
single expert perform well in a period while all other
experts simultaneously suffer maximum regret. In the
newsvendor setting, this is not possible, as the optimal
order for a single period suffers no regret, and the
regret suffered increases linearly as one looks at order
quantities on either side. Designing an algorithm which
exploits this fact will be the focus of future research.

Philosophically speaking, designing approaches
which successfully balance the competing goals of good
worst case performance and acceptable average case per-
formance is one of the most interesting and challenging
areas of online algorithms research. Sometimes, it seems
to be necessary to further restrict the input criteria to
achieve good average case results. Other times, simple
extensions to an algorithm can improve average case re-
sults without sacrificing worst case performance, such
as the THREAT algorithm discussed in [4].

Of course, a solution isn’t worth much if no one
uses it. Brown and Tang surveyed 250 MBA students
and 6 professional buyers, supplying them with sim-
ple newsvendor problems[5]. Very few of the subjects
used the classical newsvendor solution as prescribed by
NORMAL, though the approach was known to almost
all. One possible explanation given is that the classi-
cal solution doesn’t take into account risk preferences—
buyers may be more comfortable underestimating de-
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mand to have a stronger guarantee on a particular profit
rather than shoot for a higher profit with less certainty.
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A  WMN Operation and Bounds

Definitions In this section, we suppose we are going
to play ¢ periods of the newsvendor problem, with item
cost ¢ and item revenue r. We have access to n experts,
each of which makes a prediction of the demand each
period. (In Section A.1, we’ll discuss how WMN actually
chooses experts’ predictions and give the final bounds.)
In period j, each expert i predicts a demand of I'EJ )
and the true demand is revealed to be dU) at the
end of the period. The experts are allowed to change
their predictions any way they wish between periods;
the only restriction is that xgj ) and d¥) are within
the interval [m, M] for all ¢ and j. WMN (Weighted
Majority Newsvendor) will aggregate the predictions of
the experts, and order an amount v for the j*" period.

Clearly, the optimal choice for period j would be
d¥), so the true dynamic offline optimal’s profit for
period j, which we’ll denote as OPTY) is d) (r — ¢).
WMN’s profit is WMNY) = min{d@), v }r —y¢, and
the profit each expert i would have made is EXZ(J ) =
min{d"¥), xgj)}r - a:l(-J)c.

Algorithm WMN Algorithm WMN operates as fol-

lows: each expert ¢ is assigned an initial weight wgl) =1.
Also, a weight adjustment parameter 8 € (0,1] is cho-
sen. In each period j, WMN orders an amount ~)
which is the weighted average of the predictions of the
experts: () =31 wzwxgj)/ S ng).

In every period, after dV) is revealed, we update
each expert i’s weight by some factor F: wlItY =

i =
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wl(j 'F, where F satisfies

5f(d(j)7w§'7>) <F<1-(1-— 5)f(d(j)7x§j)) )

We use f(d(j),xz(-j)) = (dD(r—c) — min{d(j),xl(-j)}r +
ml(-J)c)/C, where C = max{(M — m)(r — ¢), (M — m)c}
is the maximum possible regret any prediction can
suffer. Choosing C in this fashion guarantees that 0 <
f(d9), xEj)) < 1 for any valid d¥) and xz(-j), which allows
us to ensure that such an update factor F exists[14].
Intuitively, f (d(j ), xgj )) gives a sense of the regret expert
1 would have suffered. In practice, we use the upper
bound on F' as the update factor.

Analysis For clarity, we define s) = """ | wl(] ) to be
the total sum of weights over the experts in period j.
To prove bounds on the total regret of WMN, we begin
as in [14] by showing a bound on In(s(*+1) /s(1)), (s(t+1)
is the sum of weights at the end of the game, s(!) is
the sum of weights at the start.) Because of the upper
bound on each update factor F, we have that s*1 ig
less than or equal to:

n

S wl? [1- (1= 8)5(dD, )]

i=1
— g _ (1-7) Zwl(j)f(d(j)’ ml(j))
i=1

n

_oaafs

i=1

ng)d(j)(r )
C

n wz(j) (4)

Z“]

; C
=1

We arrive at the last line by the definition of () and
7). (Also, it must be noted that d(j),mgj),ng) >0.)
Now, by virtue of the fact that the summation over a
minimum is less than or equal to the minimum of two

- wij) min{d"¥), mgj)}r
_ Z +
i=1 c

s dD (r —¢)

:s(”—(l—ﬁ)l c

NORGRE

— é z:lr1111{11)§j)d(j)7 ng)xz(-j)} + C

i=1



summations, the above is less then or equal to:

s (r — ¢)

s(j)—(l—ﬁ)[ c

RO

— ((7;min{;ng)d(j),;ng)xgj)} + i C

, ) 1
— @ _ 1=

dD(r - ¢)

— min{d®, 4 4+ 7(j)c]

=50 [1 = (1= B)f (D D)) .

So, over the entire sequence,

t
S <O 1= (= )6 D,a9)]

Jj=1

In(s4V /sy < 3 In [1 (- ﬁ)f(d<j>77<j))}

Going a step further, we have the beginnings of a bound
on the total regret of WMN:

t

Zf(d(j)"y(j)) <

Jj=1

In(s®) /5(t+1)
1-p

Now we’ll bound s+, We let m; 22:1 F(dD 21
be the total “adjusted regret” for expert i. By the
lower bound on our update factor F', and the fact that
wgl) =1 for all i:

S(t-i-l) > Z wl(l)ﬁmi
=1

= p™, Vi,
In(sW /sy > In(n) — my; In(3), Vi .
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Combining this with the above, we finally get, for any
expert 1,

t

S FdD, 40

Jj=1

B In(n) + In (

) Xy £, 2

1-p ’
t

Z (OPT(j) _ WMN(j))

j=1

1

B

1 t j (4)
_ Cln(n) N In (§> Zj:l (OPT(J) _ EXi] )
1-p 1-p7 ’
Thus, we have our total regret for WMN bounded in

terms of the total regret for our best performing expert
(since the bound holds for all experts).

A.1 Placing Experts in Buckets So far, we have
a bound on the regret of WMN in terms of the regret
of the best expert. Now, we’re interested in deriving a
similar bound in terms of the regret of the offline static
optimal, STOPT.

The approach we take is to let each of our n
experts consistently predict a unique demand for all
t newsvendor periods. We divide the overall range
[m, M] into n “buckets,” such that each bucket has the
same minimax regret should the demand fall in that
bucket. There are n + 1 bucket endpoints, {qo, ¢1,
..y Gn}. As Vairaktarakis shows[21], for a given bucket
i (with endpoints ¢;—; and ¢;) the minimax regret
order quantity is (qi (r—c)+ cqi,l) /7, which results in
a maximum regret of (c(¢; — ¢i—1)(r — ¢))/r when the
demand is at either endpoint.

To achieve our “many buckets, same regret” goal,
we simply need to choose the endpoints according to:
(M —m)

qi +m .

n

We then let expert ¢ consistently predict the optimal
order quantity for the i*"* bucket:

(ir — ¢)(M —m)

Gy qi(r—c)+eqi1
o= rn

r

+m, Vj .

CrLAamM A.1. For a t-period newsvendor game, there
exists an expert i such that the difference in i’s profit
and any given static offline algorithm is at most

(M —m)(r—c)t '

Proof. Suppose the static offline algorithm chooses a
value which lies in the i** bucket. The expert who



minimizes his difference in profit is the i** expert,
since regret increases as demand moves further from
the expert’s prediction, and each expert has the same
regret at his bucket boundaries. For a single period, the
true demand could fall in one of three places: below the
bucket, in the bucket, or above the bucket.

If the demand d falls below the bucket (d < ¢;—1),
the maximum difference in profit occurs if the static
algorithm has chosen the lowest point in the bucket at
¢i—1- The difference in profit is then

dr — ¢;—1c — (dr — xl(j)c) = oM = m)(r = ) .
nr

If the demand falls in the *"* bucket, we know from
above that the maximal difference in profit (which is
now equivalent to regret within this bucket, since the
static algorithm can now predict the demand exactly) is
the same thing. Similarly, if the demand falls above the
it" bucket, the worst case is when the static algorithm
is at the top of the bucket at ¢;, and the difference in
profit can again be shown to be the same.

All three cases give identical worst case profit
difference. Summing over all ¢ periods, we have the
claim.

Since the claim holds for any static offline algorithm,
it also holds for the static offline optimal algorithm,
STOPT. Using the notation from Section A, the claim
implies that there exists an expert ¢ such that

M —m)(r—c)t .

() > (STOPT(j) - Ex§j>) <A

j=1

Using the substitution

t t
S (0PTY —EX) = Y (0PTW — STOPTY))

1 =1

<.

J

(STOPTW — EXY)) |
1

_|_

t

J

in the bound shown at the end of Section A, and the
bound implied by Equation 1.1, we have the following
theorem:

THEOREM A.1. The total regret experienced by WMN
for a t period newsvendor game with per item cost ¢, per
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item revenue r, and all demands within [m, M| satisfies

t
WMNTotarregret = »_(OPTH) — WMNU))

j=1
_Chm) ™ (%) (M —m)(r — )t
- 1-p nr(l— )
In (4) 5, (OPTY — STOPTY)
+ =3

where C = max{(M — m)(r — ¢),(M — m)c} is the
mazimum possible single period regret, n is the number
of experts used by WMN, and (3 is the update parameter
used.

The first term, which depends on the maximum
possible single period regret, is independent of the
number of periods. This gives the following corollary:

COROLLARY A.1. The average per period regret of
WMN approaches

In (%) (M —m)(r—c)
nr(1—f)
n (4) X/, (OPTY) — STOPT®)
t(1—p)

as the number of periods becomes arbitrarily large.

B WMNS Operation and Bounds

In this section, we’ll look at an extension of the results
and provide an algorithm which does well in the face
of an input sequence which can be decomposed into
subsequences, where for each subsequence a different
expert does well. This algorithm is analogous to the
“shifting target” version of Littlestone and Warmuth’s
Weighted Majority algorithm. Using the same method
of selecting experts as in Section A.1, we show a bound
on the regret of the algorithm in terms of the “semi-
static offline optimal” algorithm SSTOPT. SSTOPT is
a version of STOPT described above which is allowed to
change its choice k — 1 times during the sequence.

B.1 Doing as Well as the Best Expert on any
Subsequence

Definitions We again consider playing ¢ periods of
a newsvendor game, with all demands drawn from
[m, M], per item cost ¢, and per item revenue r. The
algorithm described here, WMNS (Weighted Majority
Newsvendor Shifting), will however operate slightly
differently compared to WMN. These differences will



allow us to partition the sequence of periods into
subsequences, and show that WMNS will perform as
well as the best expert for each subsequence, despite the
fact that nothing is known about when the subsequences
start or end or how many there are.

Aside from the definitions mentioned in Section A,
we need to define two subsets of the n experts: UPD,
those which are “updatable”, and 'UPD, those which
are not. As we will see, WMNS uses a weight limiting
factor §. For any period j, UPD is defined as those
experts whose weights satisfy w > (630, w(J )/n.
UPD contains all other experts.

Algorithm WMNS WMNS operates as WMN, with a
couple of notable differences. First, a weight limiting
parameter § € (0,1] is chosen in addition to the
weight update parameter 8 € (0,1]. Initially all
experts’ weights are set to 1. In each period j, WMNS
orders the amount ) which is the weighted average
of the predictions of the wupdatable experts: ~()
> ieurn w(])x(a)/ Y ieurn w(])

In every period, after the actual demand d) is
revealed, we update only the experts in UPD by the
same factor F' described in Section A: w!/ ™ = wF
where

gHAPw) < p <1 — (1= B)f(dD,aD) .

Again, we use f(d(j)7x§j)) = (d(j)(r —¢) —
min{d(j)7x£j)}r + :rgj)c)/(C, where C max{(M —
m)(r —¢), (M —m)c}.

Analysis We start by showing that for any subse-
quence, WMNS performs nearly as well as the best ex-
pert for that subsequence. This means that if an ex-
pert does quite well for some subsequence, and then for
another (later) subsequence another expert does quite
well, WMNS will track the change quickly.

We let s0) = S wz(j) be the total sum of weights

3577)31) = > icurp w() be

the sum of Welghts of updatable experts, and s,m)D =

of all experts in period j,

Y icwuPD wi @) he the sum of weights of not updatable
experts. We define init to be the index of the first period
of the subsequence, and fin to be the index of the last
period of the subsequence.

We are interested in finding a bound for
In(s(/i+1) /5(init)) - Pirst we note that, by the oper-
ation of WMNS, for any period j and any expert 4,
ng) > 6(53(j)/n. This is also true for the first period,
because 1 > 3651 /n = 6.

By the bound on the update factor F' and the
mechanism of WMNS, we have that sVt is less than
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or equal to:

Z (J) [1 _ (1 _ ﬁ)f(d<j>,a:§”)] n Z wz(j)

iEUPD iEUPD
_ S(j) _ (1 _ 6) Z ng)f(d(j),mz(»j))
i€EUPD
() ()
; w;”’dY (r —c
_S(J)_(1_6)|: Z i (C( )
i€EUPD
ng) min{d(”,mg‘j)}r wij)xl(-j)c]
i€EUPD C i€EUPD

<59 - (1-p)g {sé?;pd“’(r —0)

(49)

~ min{s9h o7, s pd@}r + 55 'y(j)c] .

We arrive at the last line by the definition of suPD
and 7), as well as moving the summation inside of the
min expression as in Section A. Next we need a lower

bound for SZ(/?7)>D:

sI) = sl — Z w
i€UPD
> s0) Z 659 /n
1€\UPD
> sW(1-9).
So, we have that
sUD < 5U) (1 — ﬁ)sz(/{%pf(d(j),’y(j))

<50 1= (1= B)(1 = 6)f(dD,A)] .

Over all periods in this subsequence,

fin
srint) < i T [1 -(1-p)0 *§)f(d<j)7,y(j))] 7

Jj=init
In <5 )
fin

glinit)
i i In
S 0 <

j=init

fin

> -u-

j=init

(fin+1)
<

B)(1=8)f(d?, ),
(s(init)/s(fin+1))
(1-83)(1-9)

In any period j, because WMNS doesn’t up-
date weights below ($6s\9)/n, we know that w("m) >

B6s) In. If we let m; = wazmt (dD, 1), we have
by the lower bound on the update factor F":

g(fint1) > wl(finJrl) > wginit)ﬁmi’ Vi

n

p, Vi



Consequently, for all experts i: THEOREM B.2. The total regret experienced by WMNS

JGinit) for at period newsvendor game with per item cost c, per
fz”f f(d(j) (j)) . In (s(f’mH)) item revenue r, and all demands within [m, M| satisfies
Y Y Y R )
j=init (1 - 5)(1 - 5) . | |
In (#) WMNSrotaiRegret = Z(OPT(]) — WMNSY)
668 init 5nli /7L j:1
= Ta-pa-0

ECln ( 2 In (L) e(M—m)(r—-c)t
I (35) +mimn (3) ' = (1—5)((166—)5) * <22(1—ﬁ)(1—5)

1-81 -9 , ,
1=A1-2) In (%) > (OPTW — sSTOPTW)
By substitution and rearrangement similar to that +
in Section A, we arrive at the following theorem: 1-5)1~-3)

THEOREM B.1. For any subsequence of newsvendor pe- where C = max{(M — m)(r — ¢),(M — m)c} is the
riods indezed from init to fin and any expert i, WMNS’s mazimum possible single period regret, n is the number
regret satisfies of experts used by WMNS, 3 is the update parameter

Fin used, and 0 is the weight limiting parameter used.

WMNSSubseqRegret = Z (OPT(]) — WMNSO))

Jj=init

When k£ = ¢, then SSTOPT is equivalent to OPT,
though in this case the bound becomes useless because
Cln (%) In (%) ngmt(op—r(j) . EXEj)) of the kC factor in the first tern.a. When & i?, constant,

however, we can note the following corollary:

Sa-ma-s " -5 -9

. COROLLARY B.1. When the number of changes k
B.2 Doing as Well as SSTOPT SSTOPT, the SSTOPT s allowed is constant, the average per period
“Semi-Static Offline Optimal” algorithm is a slightly regret of WMNS approaches

stronger version of STOPT, which is allowed to change

its order choice k — 1 times for the whole ¢t period In (1) (M —m)(r — ¢)

newsvendor game. Consider subsequence [, (1 <1 < k), A

which is the subsequence where SSTOPT is using it’s nr(l—B3)(1-9)

I*" choice. For this subsequence, SSTOPT acts as a In (%) Zt':1(OPT(j) _ SSTOPT(j))
static offline optimal for periods from initl to finl, J

the beginning and ending indices of [. We define ¢; = (1= pB)(1-9)

finl+1 —initl; the number of periods in subsequence [.
(Thus, Zle t; = t.) In essense, we are now considering
k individual newsvendor games against different static
optimal algorithms.

By defining experts according to the same construc-
tion of Section A.l, we can show that for any subse-
quence [,

as the number of periods becomes arbitrarily large.

C FPL Operation and Bounds

FPL, for Follow the Perturbed Leader, was developed
by Kalai and Vempala in [12]. (In this paper, they give
two versions of the algorithm, FPL and FPL *. We use
the latter for our problem.) In the experts setting, the
algorithm keeps track of the total regret suffered by each
expert. When a decision needs to be made, a random

finl
> (OPTY — WMNSY))

j=initl cost is added to each expert’s sum regret so far, and
Cln %) In (é) (M —m)(r— o)t FPL chooses the expert with the lowest overall regret.

~ (=81 -9) nr(l—B)(1—9) Definitions FPL takes as input a “randomness” pa-

In (%) ijzlmﬂ(OPT(j) — SSTOPTY) rameter e. For the bounds given to hold, € must be in

+ A=A 1=0) the range (0, 1], however the algorithm will still operate

with larger values.

Summing over all k subsequences (again, WMNS Two other values are used by FPL and the bounds
requires no knowledge of how long subsequences are, given in [12], A and D. A is defined as the maximum
or even how many there are), we ultimately reach the of the sum of all experts’ regret for a single period,
following theorem: and D is the maximum “diameter difference” between
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two decisions. (Because FPL is applicable to general
decision making settings, these values have a more
precise meaning which we won’t go into.) However, in
Section 2 of [12], the authors note that for the experts
problem, D is 1, and A is the maximum regret of a
single expert for one period. In our case, this is then
A =C=max{(M —m)(r —c),(M —m)c}.

Algorithm FPL For each period, let s; be the total
regret suffered by expert i so far. For each expert i,
choose a perturbation factor p; from the exponential
distribution with rate €/2A. The best perturbed expert
so far then is argmax;{s; + p;}. Use the prediction of
this expert.

Note that this algorithm is a specific, limited version
of the general algorithm FPL *.

Bounds of FPL Kalai and Vempala give the following
theorem, which bounds the regret of FPL in terms of
the regret of the best performing expert:

THEOREM C.1. (Due to Kalai and Vempala.) The
expected regret of FPL satisfies

E[FPLTotalRegret] g (1 + 6)-2\47;nTotalRegret
| 4AD(1 +In(n))

€

Where Minrotairegret 15 the regret of the best per-
forming expert.

If we place experts in n buckets accoring to Section
A.1, we know that the best expert won’t suffer more
than

(M —m)(r— o)t

nr

extra regret from the true static optimal on any ¢ period
newsvendor sequence. Using the notation of Appendix
A, we can now give a theorem similar to Theorem A.1:

THEOREM C.2. The total regret experienced by FPL for
a t period newsvendor game with per item cost c, per
item revenue r, and all demands within [m, M| satisfies

E [FPLT otalRegret]
< 4C(1 +1In(n)) N (14 €)c(M —m)(r—c)t

€ nr

t
+(1+¢) ) (OPTY —sTOPTY))

=1

J

where C = max{(M —m)(r —c¢),(M —m)c} is the maz-
imum possible single period regret, n is the number of
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experts used by FPL, and € is the randomness parameter
used.

OPTY and STOPTY) are the profits of OPT and
STOPT, respectively, in period j.

D Newsvendor Extensions

One frequently discussed extension to the classic
newsvendor problem considers, in addition, per item
overstock costs ¢, and per item understock costs c,.
Understock costs can be used to express customer ill
will due to unmet demand, or perhaps in the vaccine
ordering setting to express costs to the economy due to
unvaccinated portions of the workforce. Overstock costs
may represent extra storage costs or disposal costs for
outdated products such as unwanted consumer electron-
ics. Vairaktarakis[21] and Bertsimas and Thiele[3] also
discusses these extensions.

The profit function for a prediction x in a period is
given by min{d, x}r — x¢ — max{(d — z)c,, (x — d)c, }.
Because of the negative max term in the expression, we
can use this model and the bounds will follow through
a proof similar to that of Section A using the trick
of moving the summation inside the max expression.
Of course, we’ll also need to adjust C and f(d\¥), xgj))
accordingly. Using the same bucket endpoints as in
Section A.1 and letting expert 4 consistently choose the
minimax regret order quantity

L) _ G(r = et el +aima(etco)
' T+ CotCy
(M —m) 3 (M —m)(c+co) i~
n n(r+ co + cy)

we can get the following bound for WMN:

WM NTotalRegret
(n) In (%) (M —m)(c+ co)(r—c+cy)t
B n(l—=B)(r+co+cu)
In (4) 5, (OPTY — STOPT)
1-p

where Co = max{(M —m)(r —c+cy), (M —m)(c+co)}-
Similar bounds can be had for WMNS and FPL.

Another commonly discussed extension considers
per item salvage profit s (usually s < ¢), wherein unused
items can be sold for a guaranteed smaller profit. In
this version, the profit function for a prediction z is
min{d, z}r—zc+max{0, (x—d)s}. Here, the max term is
positive, so the expression won’t follow through a proof
technique similar to the one used for WMN and WMNS.
This indicates that, unfortunately, salvage profits are

incompatible with these approaches, though a bound
can still be had for FPL.

+



Routing in Graphs with Applications
to Material Flow Problems

Rolf H. M6hring*

Material flow problems are complex logistic optimization problems. We want
to utilize the available logistic network in such a way that the load is minimized
or the throughput is maximized. This lecture deals with these optimization
problems from the viewpoint of network flow theory and reports on two indus-
trial applications: (1) contolling material flow with automated guided vehicles
in a container terminal (cooperation with HHLA), and (2) timetabling in public
transport (cooperation with Deutsche Bahn and Berlin Public Transport). The
key ingredient for (1) is a very fast real-time algorithm which avoids collisions,
deadlocks, and other conflicts already at route computation, while for (2) it is
the use of integer programs based on special bases of the cycle space of the
routing graph.
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How much Geometry it takes to

Daniel Dumitriuf Stefan Funket

Abstract

Known algorithms for reconstructing a 2-manifold from
a point sample in R® are naturally based on deci-
sions/predicates that take the geometry of the point sample
into account. Facing the always present problem of round-off
errors that easily compromise the exactness of those predi-
cate decisions, an exact and robust implementation of these
algorithms is far from being trivial and typically requires
the employment of advanced datatypes for exact arithmetic
as provided by libraries like CORE, LEDA or GMP. In this
paper we present a new reconstruction algorithm, one of
whose main novelties is to throw away geometry informa-
tion early on in the reconstruction process and to mainly
operate combinatorially on a graph structure. As such it
is less susceptible to robustness problems due to round-off
errors and also benefits from not requiring expensive exact
arithmetic by faster running times. A more theoretical view
on our algorithm including correctness proofs under suitable
sampling conditions can be found in a companion paper [3].

1 Introduction

Robust Geometric Computation Geometric algo-
rithms use geometric predicates in their conditionals
(e.g. does a point r lie to the left or right of an oriented
line through p and ¢). A common strategy for the exact
implementation of geometric algorithms is to evaluate
all geometric predicates exactly. While floating-point
filters have proved to be quite efficient both in theory
and practice to speed-up the exact evaluation of predi-
cates, they tend to become less efficient for more com-
plicated (i.e. higher degree) predicates like the insphere
predicate’ which is the basis for all algorithms based on
the Delaunay tetrahedralization in R3.

The evaluation of a geometric predicate amounts
to the computation of the sign of an arithmetic ex-
pression. Round-off errors during floating-point com-
putation might easily lead to reporting a wrong sign of
such an arithmetic expression, which most of the time
has disastrous consequences ([7]). A floating-point filter

Max-Planck-Institut fiir Informatik, Saarbriicken, Germany,
dumitriu@mpi-inf.mpg.de
fErnst-Moritz-Arndt-Universitét
stefan.funke@uni-greifswald.de
§Stanford University, Stanford, U.S.A, nikolam@stanford.edu
IThe insphere predicate for points p,q,r,s,t decides whether
point ¢ lies inside, on or outside the sphere defined by p, q,r, s.

Greifswald, Germany,
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Reconstruct a 2-Manifold in R?

Martin Kutz' Nikola Milosavljevic?

Figure 1: Output of our algorithm for the Stanford
Bunny. Due to the conservative adjacency creation,
some faces (light) are non-triangular, which can
easily be triangulated later on, though.

evaluates the expression using floating-point arithmetic
and also computes an error bound to determine whether
the floating point computation is reliable. If the error
bound does not suffice to prove reliability, the expres-
sion is re-evaluated using exact arithmetic. The quality
of the error bounds typically deteriorates, though, with
the complexity of the predicate expression and hence,
more predicate decisions require the fallback of expen-
sive exact arithmetic computation.

A different approach to the robustness problem is
to design the algorithm to be able to cope with round-
off errors right from the beginning. The difficulty of
designing robust algorithms is illustrated in [4, 8, 9].
In [9] Sugihara et al. develop an algorithm for computing
the Voronoi diagram of a set of points whose termination
is guaranteed by certain purely combinatorial graph
properties; geometric predicate evaluations are only
used to steer the execution of the algorithm in a certain
direction. In particular, their algorithm would also
terminate if the outcome of all geometric predicates was
completely randomized.

In this paper we present an algorithm for recon-



structing a 2-manifold in R? in the spirit of the work by
Sugihara et al. The main idea is that only at the begin-
ning of the algorithm we require the exact evaluation
of a few simple (i.e. low-degree) predicates and then es-
sentially work combinatorially without evaluating any
geometric predicates. Nevertheless we show (both ex-
perimentally as well as theoretically in a companion pa-
per [3]) that the output of our algorithm faithfully re-
sembles the original 2-manifold. Most importantly, our
algorithm produces this output without any evaluation
of a complicated geometric test like the insphere predi-
cate in R3, which is the basis of all related Voronoi-based
reconstruction algorithms.

Related Work The problem of reconstructing a sur-
face I" in R3 from a finite point sample V has attracted
a lot of attention both in the computer graphics com-
munity as well as in the computational geometry com-
munity. While in the former the emphasis is mostly
on algorithms that work ‘well in practice’, the latter
has focused on algorithms that come with a theoretical
guarantee: if the point sample V' satisfies a certain sam-
pling condition, the output of the respective algorithm
is guaranteed to be ‘close’ to the original surface.

In [1], Amenta and Bern proposed a framework for
rigorously analyzing algorithms reconstructing smooth
closed surfaces. They define for every point p € I' on
the surface the local feature size 1fs(p) as the distance
of p to the medial axis®> of T. A set of points V C
' is called a e-sample of ' if Vp € I'ds € V
[sp| < e - lfs(p). Many algorithms have been proposed
that determine a collection of Delaunay triangles which
form a piecewise linear surface that is topologically
equivalent to the original surface and converges to
the latter both point-wise as well as in terms of the
surface normals as the sampling density goes to infinity
(¢ — 0). Common to almost all those algorithms is
the fact that they require the computation of a Voronoi
diagram/Delaunay triangulation of a point set in R3
which incurs both an inherent Q(n?) running time as
well as the need for the exact evaluation of the insphere
predicate.

In [5] Funke and Milosavljevic present an algorithm
for computing wirtual coordinates for the nodes of a
wireless sensor network which are themselves unaware
of their location. Their approach crucially depends on a
subroutine to identify a provably planar subgraph of a
communication graph that is a quasi-Unit-Disk graph.
A similar subroutine will also be used in our surface
reconstruction algorithm presented in this paper.

2The medial axis of I" is defined as the set of points which have

at least two closest points on T'.
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Our Contribution We propose a new graph-based al-
gorithm for reconstructing a 2-manifold in R3. Our al-
gorithm fundamentally differs from previous approaches
in two respects: first, it mainly operates combinatorially
on a graph structure, which is derived from the origi-
nal geometry; secondly, the created adjacencies/edges
are “conservative” in a sense that two samples are only
connected if in all reasonable reconstructions those two
samples are adjacent. Interestingly we can show in the
theoretical companion paper [3], though, that conserva-
tive edge creation only leads to small, constant-size faces
in the respective reconstruction, hence the topology of
the original surface is faithfully captured. While the
theoretical analysis requires an absurdly high sampling
density — like most of the above mentioned algorithms
do — this paper shows that our algorithm is actually
very practical for real-world datasets. Due to the lo-
cal nature of computation in our algorithm there is also
potential for use e.g. in parallel computing or external
memory scenarios.

2 Our Algorithm

The main idea of our algorithm is first to derive a graph
G(V') which captures mutual proximity information of
the samples in V and then decide on adjacencies be-
tween (some of the) samples of V' only based on the
connectivity structure of G(V). To keep the presenta-
tion simple, we assume that V is a uniform> e-sample
from a closed smooth 2-manifold T' in R3. In practice,
sample sets are indeed often close to uniform and even
small non-uniformities in the sample set never prevented
our algorithm to work in practice. In theory, a prepro-
cessing stage can enforce local uniformity which is suf-
ficient to prove correctness of our algorithm. See [3] for
more details. The high-level view of our algorithm is as
follows:

1. Construct a local neighborhood graph G(V) by

creating an edge from every point v to all other

points v" with |vv'| < O(g).

. Compute a subsample S of V' as a maximal k-hop
stable set in G(V)

. Construct the graph Voronoi diagram for V with
respect to the subsample S

. Identify adjacencies between elements in S by
inspection of the graph Voronoi diagram

. Output faces of the reconstruction as minimal
cycles in the graph induced by the adjacencies
between elements in S

In step one we create a unit-disk graph of the point
set connecting two samples iff their distance is less

3V is a uniform e-sample if for any p € I' Is € V with |ps| < .



than some constant times €. In step two we compute
a maximal subsample S C V with the property that
there are no two s1,sy € S closer than k£ hops in the
graph G(V). Such a maximal (not maximum!) k-hop
stable set can easily computed in a greedy fashion. In
step three, we essentially compute a discrete analogue
of the geometric Voronoi diagram but using G(V) as
a discrete approximation of the space between the
subsample vertices in S. That is, we assign each node
v € V its closest (in terms of hop-distance) node in S
(breaking ties according to node IDs). This partitions
V' into tiles consisting of nodes which have the same
closest s € S which we also call landmark or site.
Two elements s1,s2 € S are then declared adjacent
in step four, iff the respective tiles are touching each
other by a sufficient amount, i.e. the number of nodes
in one of the tiles with direct neighbors in the other
tile is above some threshold. Finally, in step five, we
collect the adjacencies to actually create faces of the
reconstruction of our algorithm. Observe that only
Step 1. involves the geometry of the sample set V, all
other steps can be implemented fully combinatorially.
Also, the only geometric predicate required in step one
is the comparison of coordinates and distances between
input points — very low degree predicates that can be
evaluated exactly very efficiently using known floating-
point filter techniques. We want to emphasize two
things:

1. Our algorithm does not compute a reconstruction
of V with respect to the original surface I" (involv-
ing all v € V) but only of a subsample S C V. For
sufficiently dense sample sets, this reconstruction of
S with respect to I still captures the topology of I.
There is also a generic (and rather simple) way of
incorporating the remaining points of V into the re-
construction (requiring some higher-degree geomet-
ric predicates, though), see [6]. In practice, with
the presence of scanning devices producing millions
or even billions of point samples, the fact that we
only compute a reconstruction of a subsample is
not a real concern.

. The reconstruction computed by our algorithm
does not only contain triangular faces, but also
larger faces (though of size less than 5 in practice
and of constant size in theory). If required, these
non-triangular faces can be triangulated easily (re-
quiring only low-degree geometric predicates).

In [3] we provide a theoretical justification for the cor-
rectness of our algorithm under the e-sampling condi-
tion proposed in [1]. The core components of the cor-
rectness proof are:

67

Figure 2: The Dragon, head close-up: point cloud,
graph Voronoi diagram, identified adjacencies between
subsamples and discovered faces (left to right, top to
bottom)

e We show that the local neighborhood graph corre-
sponds locally to a quasi-unit-disk graph for a set
of points in the plane.

e The identified adjacencies locally form a planar
graph.

e The faces of this graph have bounded size.

What does this mean? The graph that we constructed
on the subsample of points S is a mesh that is locally
planar and covers the whole 2-manifold. The mesh
has the nice property that all its cells (aka faces) have
constant size (number of bounding vertices). Therefore
its connectivity structure faithfully reflects the topology
of the underlying 2-manifold.

THEOREM 2.1. ([3]) The adjacencies created between
samples in S form a graph which faithfully reflects the
topology of the underlying 2-manifold.

As can be read from Table 1, the running times
are heavily dominated by the construction of the local
neighborhood graph. We expect considerable improve-
ments by an order of magnitude by performing batched
nearest neighbor queries (and not asking for the s near-
est neighbors separately for each sample).

3 Implementation

We have implemented our algorithm in C++, using
Qt4 and OpenGL for rendering and the graphical user



Model Points Open Read Octr Ngb Mis Vor Cpbm Cyc Total CoCone
Bunny 35947 0.83 039 0.14 3.42 0.45 0.29 0.22 0.05 5.79 29
Bone 177907 0.83 1.62 0.97 20.45 2.77 1.70  1.29 0.62 30.25 137
Hand 327323 0.83 3.08 2.13 36.87 477 281 231 0.86 53.66 1216
Dragon 435545 0.83 4.79 297  49.03 6.44 4.01 3.59 1.33 72.99 761
Buddha 543524 0.83 6.10 4.10 63.18 830 5.11 420 1.89 93.71 876
Blade 882954 0.83 6.95 6.23 104.32 14.31 845 7.09 4.74 152.92 >1800

Table 1: Time spent in different stages (seconds)
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Figure 3: Plot of the time spent in different stages of
the algorithm for different input sizes

interface.

For our implementation we make the simplifying
assumption that the set of input data points V is a
locally uniform sampling, which is typically true for
sample data acquired by laser scanning (this means
in particular that apart from a lower bound on the
density of the sample there is also an upper bound,
see the companion paper for a more precise definition).
In that way we can determine the local neighborhood
graph G(V) (first step of our algorithm) by connecting
a sample to its k nearest neighbors (k = 15 worked well
in our experiments).

Also making use of the assumption that V is a
locally uniform sample, we can declare two samples
s1, 82 € S adjacent as follows: s; and sy are adjacent if
the number of edges linking a sample v; (belonging to
the graph Voronoi cell of s1) to a sample vy (belonging
to sa’s cell) is above a certain threshold a (a = 7 worked
well in our experiments). Figure 2 illustrates the main
steps of our algorithm using a close-up of the Dragon
model.

3.1 Implementation Details We provide here sup-

plementary information about our design choices.
Input. The input represents the points in a point

cloud P and comes in a simplified PLY format, a simple
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object description designed as a convenient format for
working with polygonal models. In our case there is
no special header, since we are only interested in the
points themselves. That is why each line in the file
corresponds to a sample point and is a simple list of its
three coordinates. We simply report but skip any line
not conforming to this format.

Spatial representation. In order to allow for
efficient positional queries, the points in V are stored
in an octree. An octree is a structure suited for storing
spatial data, which takes into consideration the relative
distribution of points, backed up by an 8-ary tree. Each
node in the tree represents a cube. The tree root
corresponds to the bounding box of the point cloud and
stores all the points. This cube is split in two along each
axis, yielding eight smaller cubes.

A threshold o (called octree granularity) is im-
posed on the number of points that can lie within any
node/cube. When the threshold is exceeded, the cube is
split into eight smaller cubes of equal volume. They pro-
vide a refinement of the larger cube and this is recorded
by making them the children of the tree node corre-
sponding to the big cube. The process of splitting con-
tinues recursively and stops when all the tree leaves con-
tain less than o points.

k-nearest neighbors. The octree structure is par-
ticularly useful when looking for the k-nearest neighbors
of a given point.

First, we perform a traversal of the tree starting
at the root and aiming at ending in the leaf that
contains the query point. The decisions about which
direction to follow at each step in this traversal are made
based on the geometric coordinates of the query point;
three simple comparisons with the middle coordinates
of the current node’s bounding box along each axis are
enough to decide which child to move to. As we go
down in the traversal, we insert all siblings of nodes on
this path into a priority queue based on the Euclidean
distance from the query point to the circumsphere of the
current node’s corresponding cube. The priority queue’s
first element will contain the node with the smallest
distance.

After finishing the traversal, a top-x-like algorithm
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Figure 4: Main window of our application

is used. The first node in the priority queue is extracted
and if it is a leaf, a test is performed for the points stored
in the node to check whether they are eligible for the set
of k-nearest neighbors. For internal nodes, their eight
children are inserted back into the queue. The algorithm
ends when the distance d,,q, to the furthest nearest-
neighbor cannot be improved, i.e. when the distance to
the circumsphere of the node currently popped out of
the queue is larger than d,qz-

Neighborhood graph. We compute an (undi-
rected) neighborhood graph Gy = (V, En) by taking
as vertices all the initial sample points V. For each
of them we compute its k-nearest neighbors as shown
above, and we create an edge between points and each
of its nearest neighbors discovered in this way.

Independent set. In the next step, a maximal
independent set S in Gy is computed, such that any
two vertices in .S are at least k£ hops away.

To this end, we use a straightforward greedy algo-
rithm: in the beginning, all vertices of Gy are marked
as eligible. We choose an eligible vertex v and perform
a breadth-first search to discover all vertices reachable
in less than k hops from v, which are then marked as in-
eligible. This process continues until there are no more
eligible vertices left.

Graph Voronoi diagram. The vertices in S are
used as landmark nodes (sites) for a graph Voronoi
diagram in the neighborhood graph Gp. Since the
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distance function for this diagram is simply the number
of hops in the graph (i.e. all edges have unit weight), we
use a parallel breadth-first search.

The processing queue is initialized with all the
landmarks, then when a new vertex v is first seen, it is
assigned to the vertex u from which it was reached. If u
had already been assigned to a landmark £ (i.e. it is not a
landmark itself), we assign v also to £. In this way in the
end we know for each vertex its “dominating” landmark,
and we can easily determine the graph Voronoi cells.

Combinatorial Delaunay map. We create cell
adjacencies in a conservative manner, leading to a
so called combinatorial Delaunay map CDM(S) =
(VCD]W(S), ECD]W(S)). Let Sl and SQ be two graph
Voronoi cells; the number bg, s, of points in S; with
at least one (1-hop) neighbor in Sy is calculated. If
bs,s, + bs,s, is greater than some threshold a, the
points s; and ss, corresponding to Voronoi cells S7 and
Sy respectively, are added to Viopar(s), and the edge
(s1,52) is added to Ecpas(s)-

Face enumeration. The adjacencies on S are
further used for face detection. Faces correspond to
elementary cycles in this graph, with the supplementary
constraint that any edge is allowed to appear in at most
two cycles. Since we are interested in finding faces aka
small cycles, we need an algorithm that enumerates the
graph cycles in increasing order of cycle length. To this
end, we implemented a simple enumeration algorithm



Figure 5: Skeleton hand: full view (left), metacarpi (right)

which first outputs cycles of length 3, then 4, and so
forth, always only considering those edges which have
not already been used in two cycles before.

4 Experimental Evaluation

4.1 Benchmarking on standard Data Sets Our
reconstruction application was compiled with g++
3.3.5, optimization -03, and evaluation was made on a
machine with a Pentium 4 processor at 3 GHz, 1 GB of
RAM, running Debian Linux kernel version 2.6.13. A
screenshot of the main window of our implementation
is given in Figure 4.

We benchmarked our implementation® on publicly
available data sets obtained from laser scans of physical
models, most of them from the Large Geometric Models
Archive at Georgia Institute of Technology and the 8D
Scanning Repository at Stanford University.

In Table 1 you can see a detailed account of the
running times spent in different parts of our implemen-
tation ( Octr refers to the octree construction, Ngb to the
construction of the local neighborhood graph; Mis, Vor,
CDM denote respectively the three phases to construct
S (the subsample), the tile partitioning and CDM(S)
(the adjacencies between the elements of the subsam-
ple), Cyc the routine to identify face cycles). We also
ran® the CoCone algorithm [2] on the same datasets
to give a rough comparison with other algorithms. We
want to emphasize, though, that the Cocone algorithm
does more than ours as it incorporates all sample points
into the reconstruction (which would be done in a post-
processing step of our algorithm which we expect to

IThe source code and some models are available online at

http://www.mpi-inf .mpg.de/~dumitriu/work/genus
5We thank Tamal K. Dey for providing us with an executable
of the CoCone code.
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take only a fraction of the overall time). Figure 3 shows
a plot of the same data. We never ran into any ro-
bustness problems with our algorithm, even when only
employing floating-point arithmetic (the only real pred-
icate that we require is the comparison of distances be-
tween points). The CoCone algorithm — as far as the
authors reported to us — though, requires exact arith-
metic for reliable operation due to its far more complex
geometric tests like the insphere predicate.

In Figure 1 you can see the output of our algorithm
for the dataset Bunny; the light color denotes non-
triangular faces. Figure 6 shows the largest model tested
(Blade), with almost 900,000 sample points. On the
left, a full view of the model; at its right edge, we can
observe the ragged structure, and on the lower part
the reconstructed curved areas. Top right, the long
sharp edge has been correctly discovered; we can also
clearly recognize the concavity of the blade. Bottom
right: close-up on the lower side of the model, where a
screw hole pierces through the blade from one side to
the other. In Figure 5 we see the model Hand. In the
full view we observe that the phalanges are correctly
individualized, as well as the wrist. On the right: close-
up on the metacarpi: the holes in-between are visible;
the algorithm detects the narrow spaces between the
bones. Figure 7 shows one of the most difficult models
(Happy Buddha) because of its curved features: the face,
the hand-supported object, the necklace, and especially
the folded outfit embellished with religious symbols.
This causes sharp transitions, holes and concave regions.
On top right, close-up on discovered openings in the
cape. On bottom right, details of the bottom of the
small round three-legged seat on which Buddha stands;
its rims were correctly emphasized, as well as the
decorative embossed rings just above the seat legs.



Figure 6: Turbine blade: full view (left), cutting edge and screw hole (right)

4.2 Parameter Variation We examine more closely
the effect of varying parameters k and a on the exper-
imental results obtained. In the following we use the
model Stanford Bunny, fixing the other parameters at
o = 50 (the octree is built with at most fifty original
points stored in any leaf), and x = 15 (for each input
point, we find its fifteen nearest neighbors).

As a supplementary measure of the reconstruction
quality, we also computed a value corresponding to the
genus of the reconstruction if it forms a 2-manifold.
The genus is a topologically invariant property, defined
as the largest number of non-intersecting simple closed
curves that can be drawn on the surface without sepa-
rating it. Roughly speaking, it is the number of handles
of an orientable 2-manifold.

The genus of a surface, also called the geometric
genus, is related to the Euler’s formula. In fact, Euler’s
formula is a particular version (for simply connected
polyhedra, i.e. of genus 0) of the general relation

(4.1) n—e+f=2-2g

where n = number of vertices, e = number of edges,
f = number of faces, and g = geometric genus value.

71

Solving out Equation 4.1 for g, we get

_2-n+te—f
B 2

We computed the genus value of our Bunny recon-
struction according to the formula in Equation 4.2. A
genus different than zero shows that something went
wrong in the reconstruction (either the reconstruction
does not form a 2-manifold or it does but exhibits han-
dles). The results are shown in Table 2 and Figure 8.

(4.2)

Dependence on k To determine the dependence on
k, we fixed the threshold a at 7 and varied k. For very
small values of k, there is not enough “room” to identify
reasonable adjacencies, hence the reconstruction does
not patch up to a 2-manifold, leading to bad genus
values. As we increase the parameter, things improve
quickly (with a strange anomaly at & = 7 which we
cannot explain at this time), of course at the cost of a
much coarser subsampling.

Dependence on a This time we fixed k at 5 and
varied a. A small value yields a denser combinatorial
Delaunay map, with a higher percentage of triangles,
but the genus number is extremely large (since there
are too many adjacencies and the reconstruction does



Figure 7: Happy Buddha: full view (left), side holes and bottom ridge (right)

k | faces | genus value a | faces | triangles | genus value
2 | 6415 62.5 2 | 1024 99.4% 43
3| 3199 5 3| 1023 99.5% 24
4 | 1620 1 6| 998 97.3% 1.5
51 976 0 7| 976 95.3% 0
7| 457 1.5 11 898 87.0% 0
14 94 0 15 | 778 73.3% 3.5
15 80 0 20 | 543 48.4% 18.5

Table 2: Dependence on k (left, for a = 7) and a (right, for k = 5)

not form a 2-manifold). Increasing the value causes
a drastic drop in adjacencies and finally leads to a 2-
manifold with correct genus. With larger values of a, of
course, there are more and more non-triangular faces.
Too large values for a lead to too few adjacencies and
hence the reconstruction does not form a 2-manifold.
Overall, we consider k the most crucial parameter
for our algorithm, which essentially determines the
‘coarseness’ of the subsample S. According to the
theory in [3], k must be chosen very large to guarantee
sufficient density of CDM(S); of course, this comes at
the cost of a very coarse subsample S (see Figure 8,
top right). A too large k might ‘smooth out’ important
details of the model. A too small choice of k, on the
other hand, even in practice allows only for very few
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certified adjacencies (see Figure 8, top left). This results
in larger faces. In our experiments, a value of kK = 5 has
proven to perform very well in practice, see Figure 8,
top center.

4.3 Further Examples In Figure 9 we can see the
Dragon model. The spurs on front and back legs are
visible, as well as the front claw clenched on a ball. On
bottom, a close-up of the scale ridge on the back; we can
notice that the individual scales are clearly delimited.
The output of our algorithm on the Stanford Bunny
can be seen in Figure 10. The main features are
correctly detected, including paws, snout, and ears. On
bottom, a close-up on the carved ears, whose concavity
can be easily noticed (dots represent the original sample



Figure 8: Effect of varying parameters k (top, for values 2,5,14) and a (bottom, for values 2,7,15); the thick red

edges are not part of any face

points).

5 Outlook

Theoretically, our approach has the potential to work for
reconstructing 2-manifolds even in higher dimensions;
it does not extend to non-2-manifolds, though, as the
“planarity property” of a graph that our algorithm
crucially depends on (see [3] for more details) does not
have an equivalent for non-2-manifolds.

On the practical side, we intend to complete our im-
plementation and incorporate the pruned sample points
into the reconstruction via weighted Delaunay triangu-
lations. In the future, it might also be interesting to
apply our algorithm to massive datasets; the inherently
local computation and decision making exhibits nice lo-
cality properties which might be of use both in a paral-
lel computing as well as an external memory scenario.
Maybe the most interesting aspect of this paper is the
fact that we were able to produce reasonable reconstruc-
tions of scanned 3D objects in a robust manner using
only very simple geometric predicates (comparison of
distances between points).
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Figure 9: Dragon: full view (left), back scales (right)
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Figure 10: Stanford bunny: full view (left), carved ears
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Abstract

The National Airspace System (NAS) is designed to ac-
commodate a large number of flights over North Amer-
ica. For purposes of workload limitations for air traf-
fic controllers, the airspace is partitioned into approxi-
mately 600 sectors; each sector is observed by one or
more controllers. In order to satisfy workload limi-
tations for controllers, it is important that sectors be
designed carefully according to the traffic patterns of
flights, so that no sector becomes overloaded. We formu-
late and study the airspace sectorization problem from
an algorithmic point of view, modeling the problem of
optimal sectorization as a geometric partition problem
with constraints. The novelty of the problem is that
it partitions data consisting of trajectories of moving
points, rather than static point set partitioning that is
commonly studied. First, we formulate and solve the 1d
version of the problem, showing how to partition a line
into “sectors” (intervals) according to historical trajec-
tory data. Then, we apply the 1D solution framework
to design a 2D sectorization heuristic based on binary
space partitions. We also devise partitions based on
balanced “pie partitions” of a convex polygon.

We evaluate our 2D algorithms experimentally. We
conduct experiments using actual historical flight track
data for the NAS as the basis of our partitioning. We
compare the workload balance of our methods to that
of the existing set of sectors for the NAS and find that
our resectorization yields competitive and improved
workload balancing. In particular, our methods yield
an improvement by a factor between 2 and 3 over the
current sectorization in terms of the time-average and
the worst-case workloads of the maximum workload
sector. An even better improvement is seen in the
standard deviations (over all sectors) of both time-
average and worst-case workloads.
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1 Introduction

The National Airspace System (NAS) is a complex
transportation system designed to facilitate the man-
agement of air traffic with safety as the primary objec-
tive and efficiency as the secondary objective. Airspace
design engineers and air transportation policy makers
are continually “tweaking” the system to adjust for
changes in the demand patterns, changes in weather
systems that disrupt the network, and changes in the
air traffic management (ATM) policies that govern the
safe operation of aircraft.

A key component of the NAS is the partitioning of
airspace into managerial units. At the highest level, the
NAS is partitioned into 20 Air Route Traffic Control
Centers (ARTCC), each of which is partitioned into
sectors, each one of which is managed by one air traffic
controller (or a small team of 1-3 controllers) at any
given time of the day. There are a total of about 600
sectors; the FAA employs about 15,000 controllers, of
which over 7000 are due to retire within the next 9
years [21], suggesting a need to redesign the airspace for
fewer controllers in the near future. There are roughly
60,000 daily flights within the NAS, interconnecting
about 2000 airports. See Figure 1.

The capacity of the NAS to accommodate increases
in traffic demand are being pushed to the limits. Both
the FAA and NASA are backing initiatives to study
how greater throughput can be accommodated safely
through system redesign and new technologies for au-
tomation, communication, and ATM. The National
Airspace Redesign (NAR) initiative [20] has been in
place for the last few years to address this challenging
problem. Airspace redesign is critical for anticipated fu-
ture growth in the NAS. Current sector boundaries are
largely determined by historical effects and have evolved
over time; they are not the result of analysis of route
structures and demand profiles, which have changed
over the years, while the sector geometry has stayed
relatively constant.



In this paper we study the automatic sectorization
(“sector boundary design”) of airspace problem from a
formal and geometric perspective, while attempting to
model precisely the system design constraints. In doing
so, we have developed a tool, GEOSECT, which allows
us to explore algorithms and heuristics for automatic
sectorization and load balancing.

More formally, the sectorization problem is to deter-
mine a decomposition of a given airspace domain D into
a set of k sectors, o1,...,0k, in an “optimal” manner.
Optimality is defined in terms of the workloads, w(o;), of
the sectors, where w(o;) is a numerical value indicating
the amount of “effort” required to manage and control
traffic in sector ;. The objective may be to minimize
the maximum workload (min-max) or to minimize the
average workload (min-avg) across sectors, subject to
an upper bound, &, on the number of sectors. Alterna-
tively, the objective may be to minimize k subject to
a bound on the maximum or average workload across
sectors.

The definition of workload is critical. It needs to
take into account human factors issues, which include
subjective estimations of psychological/physiological
state and mental workload, such as issues of visual
and auditory perception, memory, stress, and attention
span. Many research studies (see, e.g., [14, 17, 25, 24])
have addressed the modeling and quantification of ATC
workload.

We model the problem using a geometric and easily
quantified approach to defining sector workload: Based
on a given set of historical flight data, w(o) is defined
to be the maximum (worst-case) or the time average
number of aircraft in sector ¢ during a fixed time win-
dow [0,T] (typically, the time window corresponds to
a 24-hour day). This definition accounts directly for
the traffic density /number of flights aspect of workload.
While it does not include other components that of-
ten make up an aggregated workload estimate, we are
able to quantify some these other factors and add them
to our model. We have already done so for coordina-
tion workload between sectors (which accounts for the
number of times a flight must be “handed off” between
controllers), as we report later; other workload compo-
nents for potential inclusion in our analysis include traf-
fic mix, separation standards, aircraft speeds, crossing
aircraft profiles, angle of intersection between routes,
directions of flights, number of facilities in a sector, lo-
cation of conflicts within a sector, number of altitude
changes, etc (see [27] for more details). We also men-
tion (Section 6) the extension of our methods to account
for no-fly constraints and the location of airports within
sectors.

76

The historical track data is assumed to be given. It
gives a set of trajectories (each given by a sequence of
way points with time stamps) for each recorded flight
path in the NAS over the time window [0,7]. We
are using the historical data to give a distribution (in
space and time) of the typical trajectories of the aircraft
in the NAS; on any given day, of course, the flight
paths vary, with weather conditions and other events
that disrupt the standard schedule. Thus, a potentially
more desirable method of assessing workload is to use
track data from an airspace simulation (such as NASA’s
Airspace Concept Evaluation System [30]), since this
allows one to evaluate the “ideal” routes for a given
set of demand, to incorporate new air traffic concepts
(such as “Free Flight”), and to modify the demand
according to predicted future growth. The methods we
investigate, though, work equally well with input from
a simulator or from historical data.

v
ey 1
j ¢
{

Figure 1: Top: The current sectorization of the airspace
over the USA. Bottom: Historical track data for flights.

1.1 Related Work The sectorization problem has
been studied most recently as a global optimization
problem using techniques of integer programming; after
discretizing the NAS into 2566 hexagonal cells, Yousefi
and Donohue [29, 28] formulate and solve an extensive
mathematical programming model that captures more
of the sector workload issues than many prior methods.
They use a large-scale simulation to compute en route



metrics that are combined to give a workload model.
Delahaye et al. [11] use genetic algorithms for sectoriza-
tion. Tran et al. [26] apply graph partitioning methods
to sectorization.

In the algorithms literature, there has been related
work on partitioning of rectangles and arrays for load
balancing of processors; see, e.g., [5, 4, 6, 15, 16, 18, 19].

Geographical load balancing applications have
arisen in political districting (to avoid gerrymandering);
see Altman [1] (who proves NP-hardness of political dis-
tricting), Altman and McDonald [2], and Forman and
Yue [12]. Geographic load balancing also arises in elec-
tric power districting; see, e.g., Bergey, Ragsdale, and
Hoskote [3]. Recent work in the computational geome-
try literature looks at minimum-cost load balancing in
sensor networks; see Carmi and Katz [7].

What makes our sectorization problem novel com-
pared with most geometric load balancing problems pre-
viously studied is that the input data consists of trajec-
tories of mowving points; typical geometric partitioning
problems have addressed static point data. This implies
that a 2D version of our problem is really best thought
of in 3D (z,y,t), and it means that even the 1D version
of our problem has interesting structure, as it maps to
a 2D partitioning problem in space-time.

1.2 Summary of Contributions

e model the airspace sectorization problem in al-

1) W del the ai torizati blem in al
gorithmic terms, as a precise computational geo-
metric formulation.

(2) We provide an exact solution to some versions of
the one-dimensional (1D) sectorization problem.

(3) We develop a suite of heuristics to solve the problem
in two dimensions (2D), using the 1D solution as a
subproblem, and we discuss algorithmic issues.

(4) We implement and conduct experiments to test the
effectiveness of our methods on real flight data. We
present extensive computational results comparing
our methods and design choices in our heuristics.
We compare also the results we obtain with the
existing sectorization currently in use by the FAA.

Our results are quite promising: our best heuristic
methods yield an improvement by a factor between
2 and 3 over the current sectorization in terms of
the time-average and the worst-case workloads of
the maximum workload sector. An even better
improvement is seen in the standard deviations
(over all sectors) of both time-average and worst-
case workloads.
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We have made various simplifications in develop-
ing the model and implementing our solutions. We are
able to extend our solutions in several directions; see
Section 6. Currently, our software works in only 2D;
however, the methods extend to account for different
altitudes and climb and descend trajectories. We also
deal with only one altitude level of sectorization, the
so-called “high altitude” sectors; there are also low alti-
tude sectors for general aviation aircraft and ultra-high
altitude sectors for military and certain transcontinen-
tal flights. Our experiments currently include all of
the airspace in a contiguous region; additional exper-
iments will consider only en route airspace and exclude
from sectorization the Terminal Radar Approach Con-
trol (TRACON) areas near major airports. We model
workload in terms of aircraft density (number of air-
crafts in a sector), determined by a given set of track
data, which may come from historical data (as ours did)
or from the results of a simulation. We have extended
the results to include coordination workload in the ob-
jective function as well, so that we take into account
the number of times a flight must be handed off be-
tween sectors. We acknowledge that our current model
is a simplification of workload estimation; it is, how-
ever, applicable to a broader model and it should help
in understanding the bigger picture, including the oper-
ational constraints that impact the sectorization prob-
lem.

2 The 1D Sectorization Problem

We begin with a study of the 1D problem, which has
interesting algorithmic aspects of its own; further, the
1D solution is used within the 2D heuristics we develop
and implement.

Consider an airspace domain that is 1-dimensional,
consisting of an interval, without loss of generality D =
[0,1], on the x-axis. Flights can take off at some point
(“airport”) of D and land at another point (“airport”).

The input data consists of a set S of flight trajec-
tories, each represented by a sequence of “waypoints”,
(zi,t;), where t; is the timestamp when the flight is
recorded to be at location x; € [0,1]. We consider
there to be a finite time horizon, [0,T], containing all of
the timestamps t;. We generally assume that the flight
speed between waypoints is constant; thus, a trajectory
can be thought of as a t-monotone polygonal chain in
the (z,t)-plane. In this “LineLand” model, it probably
makes most sense to consider trajectories that consist of
only two waypoints — the starting point and the destina-
tion point. (Other waypoints between the start and des-
tination z-coordinates may be used to specify changes
in speed; however, waypoints outside the interval of



(start, destination) correspond to seemingly unreason-
able trajectories, which do some amount of doubling
back.) Thus, we consider the input S = {s1,...,s,} to
be a set of line segments in the (x,t)-plane, all of which
lie within the 1-by-T rectangle, [0, 1] x [0, T7.

The sectorization problem asks us to partition [0, 1]
into a set of k sectors, o1,09,...,0%; le., we desire
partition points, g = 0 < 71 < T2 < -+ < T <
2 = 1, which define the sector intervals o; = (x;_1, ;).

The maz-workload, w(o;), of a sector o; = (z;—1,x;)
is defined to be the maximum number of flights ever
simultaneously in sector o;: this is given geometrically
by the maximum number of segments of .S intersected by
a horizontal segment, (x;_1,t)(x;,t), for t € [0,T]. One
can envision a sweep of the rectangle [z;_1,2;] X [0,T]
by a horizontal segment — the max-workload of o; is
the maximum number of segments of S intersected
during the sweep. The avg-workload, w(c;), of a sector
0; = (zi—1, ;) is defined to be the time-average number
of flights in the sector o;: this is given geometrically by
the sum of the lengths of the ¢-projections of segments
S clipped to the rectangle [z;_1, z;] x [0,T], divided by
T. If we let &(t) denote the number of segments of S
crossed by the horizontal segment (x;_1,t)(z;,t), then
w(oy) = maxyepo.r &(t) and @(0;) = & [ &(t)dt.

The min-k sectorization problem is to determine a
set of partition points x; (and corresponding sectors
0;) in order to minimize the number, k, of sectors in
a partitioning of [0,1], subject to a specified workload
bound, B. The workload bound B stipulates that
w(o;) < B, orthat w(o;) < B, foralli =1,...,k, in the
max-workload or the avg-workload case, respectively.

The min-B sectorization problem is to determine
a set of partition points z; (and corresponding sectors
0;) in order to minimize the upper bound, B, on the
workloads of the sectors, subject to their being at most
(and therefore exactly) k sectors, where k is specified
as part of the input. In other words, we want to
determine the x;’s, i = 1,...,k, subject to w(o;) < B,
or w(o;) < B, for all i = 1,...,k, in the max-workload
or the avg-workload case, respectively.

Thus, we get four versions of our sectorization
problem, depending if we are using max-workload or
avg-workload measures, and depending on the choice of
min-k or min-B in the optimization.

min-k, max-workload. We are given a budget
B on the max-workload in each sector and wish to
minimize the number, k, of sectors. We prove that
the following greedy algorithm is optimal: At stage 4,
with partition points z1,...,x; already determined, we
compute partition point x;;; in order to make sector

78

oi41 = (zi,z;41) as large as possible, subject to the
budget constraint B.

The determination of x;41 according to this greedy
rule is an interesting geometric subproblem in its own
right, and it is related to the following problem: Given
a set of n line segments in the plane, determine the
lowest point of the B-level. Recall that the j-level of a
set of line segments S is defined to be the locus of all
points on S that have exactly j segments lying strictly
below. In our setting, “below” means “leftward” in the
(z,t)-plane, and “lowest” point on the B-level means
the leftmost point of the B-level. The lowest point
on the B-level in an arrangement of lines is solved in
expected time O(nlogn) by the randomized algorithm
of Chan [9]. In fact, this algorithm is readily adapted
to give the same expected running time O(nlogn)
for computing the lowest point on the B-level in an
arrangement of line segments or x-monotone curves
of constant complexity [8]. Below, we give a simple
O(nlog®n) deterministic algorithm; we are not aware
of an O(nlogn) deterministic algorithm for computing
the lowest point on the B-level of an arrangement of
lines or of segments.

Consider sweeping a vertical line ¢ rightwards from
T z;. The max-workload of the sector between
r = x; and £ can change only at certain events, when
¢ passes over a critical point, and it can only go up
(by definition). See Figure 2. Each left endpoint of a
segment of S is a potential critical point. A critical point
may also occur at the intersection of two segments of .5,
if the signs of these segments’ slopes are opposite (since,
in this case, the t-projections of the segments within
the vertical strip start to overlap, possibly causing the
max-workload to change). A critical point may occur
at the intersection p; N sy, for some segment s; € S,
if the signs of the slopes of s; and s; are opposite;
here, p; is the rightwards ray from the right endpoint
of segment s; € S. Finally, a critical point can occur at
the intersection p;; N s;, for some segment s; € S, if the
signs of the slopes of s; and s; are the same. Here, p;;
is the rightwards ray from the point a; ; = {z = x;}Ns;
on s; intersected by the vertical line z = x;.

We can now solve the geometric subproblem us-
ing binary search on the set of z-coordinates of po-
tential critical points.  Using slope selection (see
Cole et al. [10]), we can, in O(nlogn) time, compute the
median z-coordinate, ', among vertices in the arrange-
ment, A, of the n lines containing each segment of S, the
(at most n) lines containing each ray p;, the (at most n)
lines containing each ray p;;, and the (at most n) verti-
cal lines through left endpoints of segments in S. In fact,
we compute z’ to be the median z-coordinate among



vertices of the arrangement that lie between x T;
and x = 1. Now, we can “test” the value z/, to see
if z;41 should lie to its left or its right, by comput-
ing the workload, w([z;,2']): If w([z;,2']) > B, then
we know that z;,11 < z’; otherwise, x;41 > 2/. Com-
puting the workload w([x;,x’]) is easily done in time
O(nlogn), e.g., by clipping the segments S to the strip
[x;, 2], projecting the clipped segments onto the t-axis,
and sweeping in ¢t to determine the depth of overlap
among the projections. Since there are at most O(n?)
candidate critical points, and each step of the binary
search takes time O(nlogn), we get that the overall
algorithm to determine x;11 greedily takes (determinis-
tic) time O(nlognlogn?) = O(nlog®n). Doing this for
each stage of the greedy algorithm yields the following:

THEOREM 2.1. The one-dimensional min-k, mazx-
workload, sectorization problem can be solved exactly in
(deterministic) time O(knlog® n), where k is the output
optimal number of sectors. Using a randomized algo-
rithm, it can be solved in expected time O(knlogn).

Proof. We have described the algorithm and its running
time already. In order to justify the correctness of
the algorithm, consider an optimal partition X* =
{z7,25,...,2}. }. Let the output of the greedy solution
be X = {z1,22,...,2k}. Let i be the first index for
which =} # z;. If 7 > x;, then x; could not have
been the greedy output, since we could have pushed
x; further to the right (to z}) without violating the
budget constraint B. Thus, =] < z;. Now, we can
replace x; with x; in X*. The workload of the sector
[} = xi_1,x] = x;] clearly cannot exceed the budget
B (since the greedy sectors must be feasible), and the
workload of the sector [z},z}, ] only went down with
the replacement of zj with x; > zj. Continuing this
argument, we convert solution X* into solution X,
proving that the greedy algorithm produced an optimal
partition.

min-B, max-workload. We are given an allowed
number k of sectors and wish to determine a set of
partition points, 21,...,25_1, 2, = 1, of [0,1] in order
to minimize the maximum workload, B = max; w(o;).
We do this optimization using binary search, using the
min-k solution above to test a particular value, B’, of
(integer) budget B. Note that the optimal B* must
lie between 1 and By < n, where By is the maximum
number of segments of S intersected by a horizontal line.
For each test value B’, we run the greedy algorithm
to determine the optimal number of sectors, k*(B’),
subject to budget B’. If k*(B’) > k, then we know
that B* < B’; otherwise, we know that B* > B’. The
binary search concludes in O(logn) steps, so we get
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Figure 2: Sweeping ¢ (red) rightwards. The hollow blue
circles indicate critical points where the max-workload
might increase as £ sweeps.

THEOREM 2.2. The one-dimensional min-B, mazx-
workload, sectorization problem can be solved exactly in
(deterministic) time O(knlog®n). Using a randomized
algorithm, it can be solved in expected time O(kn log? n).

min-k and min-B, avg-workload. In the aver-
age workload case, we consider the “cost” of a sector
to be the time-average number of aircraft in a sector.
Since the time-average w(o;) for sector o; = (x;_1, ;)
is simply the sum, (1/T) ) g o, (s), of the lengths
lo; (8) of the t-projections of the segments s € S clipped
to sector o;, each of which varies linearly with z;, we
see that the function f(x) = w((x;,x)) that measures
the time-average workload of the interval (x;,z) is a
piecewise-linear (and continuous) function of x. The
function f(x) has breakpoints that correspond to the
z-coordinates of endpoints of S. For the min-k avg-

workload, k is exactly equal to [(1/ T)Zig“—(s)], where
w(s) is the length of the ¢-projection of segment s. The
sector (interval) boundaries can be determined by greed-
ily scanning from left to right the O(n) possible critical
values of x, between which the function f(z) has an
easy-to-describe (linear) formula, which we can thresh-
old against the budget B. Thus, the overall running
time becomes just O(nlogn + k) for the min-k prob-
lem. For the min-B version, the avg-workload of each

of the k sectors will be exactly (1/ T)M, and the
running time of the algorithm to determine the sector
boundaries remains the same, i.e., O(nlogn + k). The
correctness of the greedy approach is proven similarly

as before and is omitted here. In summary,

THEOREM 2.3. The one-dimensional min-k (and min-



B), avg-workload, sectorization problem can be solved
exactly in time O(nlogn + k), where k is the output
optimal number of sectors.

Remark. Note that the min-B problem is (trivially)
always feasible, both for max-workload and for avg-
workload. The min-k problem is always feasible for
avg-workload and, for max-workload, it is feasible and
results in a finite k provided that B is at least as
large as dpqaz, the maximum number of segments of S
passing through a common point. (If B < 4z, NO
partitioning in the immediate z-vicinity of the high-
degree vertex will suffice to meet the (max-workload)
budget constraint; if B = 0,4, then there needs to be
an infinite sequence of partition points, converging on
the z-coordinate of the high-degree vertex.)

3 The Sectorization Problem in Two

Dimensions

In contrast with prior work on partitioning sets of
(static) points in the plane, or elements of an array (e.g.,
see [15, 16, 18, 19]), our sectorization problem involves
a third dimension (time): The input data consists of a
set S of trajectories, which correspond to ¢t-monotone
polygonal chains in (z,y,t)-space. We let n denote
the number of trajectories, and N the total number
of waypoints (vertices) in the full set of n trajectories.
Given a domain of interest, D C R2, we are to partition
it into a small number of sectors, each of which has
a small workload. As in the 1D problem, we can
distinguish the min-k from the min-B problem, where
k denotes the number of sectors in the partition and B
denotes an upper bound on either the max-workload or
the avg-workload of the sectors.

The max-workload for a sector ¢ C D is the max-
imum number of trajectories intersected by a “hori-
zontal” (in t) polygon of shape o, sweeping vertically
through time, ¢ € [0,T]. Another way to view the prob-
lem is to clip the 3D trajectories to the vertical cylinder
defined by o, and project each clipped trajectory onto
the t-axis. The maximum depth of this set of intervals is
the max-workload for o; the sum of the interval lengths,
divided by T, is the avg-workload for o.

3.1 Hardness Not surprisingly, the sectorization
problem in two (or more) dimensions is NP-hard, in
general. We sketch a proof of the special case in which
sectors are required to be axis-aligned rectangles, and
the goal is to minimize the max-workload upper bound
B, subject to a bound k on the number of sectors. Hard-
ness follows from the result of Khanna, Muthukrishnan
et al [15], who proved that the following problem is NP-
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hard (and also NP-hard to approximate within a fac-
tor of %): Given an n x n array A of integers, find a
rectangular partition of A into k rectangles, in order
to minimize the maximum weight of a rectangle. The
weight here is defined to be the sum of the array el-
ements in the rectangle. For a given instance of the
array partitioning problem, we construct an instance of
the sectorization problem in which we form small “bun-
dles” of straight trajectories associated with each entry
of A, laid out in a regular grid in the xy-plane. Then,
an optimal decomposition into k rectangular sectors of
minimum upper bound B on max-workload corresponds
exactly to a solution to the array partitioning problem.
We have sketched:

THEOREM 3.1. The optimal sectorization problem
(min-k or min-B) for partitioning into rectangular
sectors in two dimensions is NP-hard.

3.2 Heuristics for 2D Sectorization Given the
difficulty of solving the 2D sectorization problem ex-
actly, we turn our attention to heuristics for its solu-
tion. We consider the min-k version, in which a budget
B is given, and our goal is to partition D into a small
number k of sectors.

Our heuristics for 2D sectorization are based on
two forms of recursive partitioning: binary space par-
titions (BSP) and pie-partitions. BSP algorithms have
been studied extensively in the computational geome-
try literature, starting with the work of Paterson and
Yao [22, 23]. Pie-partitions are based on a multi-way
partition into cones having a common apex; see below.

The use of recursive partitions heuristics is both
natural and theoretically motivated. For sectorizations
based on BSP partitions whose cuts come from fixed
orientations (as ours do) with discretized intercepts
(translations), we are able to solve the min-k problem
(for given budget B) optimally, as well as the min-
B problem (for given k) using dynamic programming.
A subproblem is defined by a convex polygon having
O(1) sides; by selecting an optimal cut from among a
discrete set of possibilities, and recursively optimizing
on each side of the cut, we obtain an optimal BSP-based
sectorization. This sketches the proof of the following
theorem:

THEOREM 3.2. The min-k and min-B optimal fixed-
orientation, discrete intercepts BSP sectorization prob-
lem in 2D has an exact polynomial-time algorithm.

Proof. Let ¢ be the number of fixed orientations and d
be the number of fixed intercepts. This gives us O(cd)



total number of polygons possible using these orienta-
tions and intercepts. A subproblem of the dynamic pro-
gram is such a polygon and we maintain the optimal way
to partition it in an array. The algorithm for min-k, with
given budget B is as follows (it returns the number of
sectors):

Partition_mink(Polygon P)

e If the max-workload of the polygon is B, simply
return 1.

e Else for each pair of orientation and intercept (o, 1)
recursively solve the two polygons (say P, and P,
which P is divided into and compute w(o,1)
Partition(P;) + Partition(Ps).

~—

e Return w(o, ) which is minimum over all choices of
orientation and intercept.

Running time is clearly O(c2d?nlogn).

For min — B, given k we have the following algo-
rithm which returns the workload :

Partition_minB(Polygon P, k)

e If k =1, simply return max-workload(P).

e Else for each pair of orientation and intercept (o, 7),
and every possible way to partition k£ into k; and
ko such that k = k1 + ko, recursively solve the two
polygons (say P; and P») which P is divided into
and compute B(o, 1, k1, ko) = maxPartition(Py,k1),
Partition(Ps,k2).

e return B(o,i, k1, ks) which is minimum over all
choices of orientation and intercept and ki and ko.

Running time is clearly O(kc?d?nlogn).

It is easy to see why the above algorithms work. The
first cut made by an optimal solution on the polygon P,
is one of the cuts that is considered by the algorithm,
and then the subproblems are recursively solved. Now
look at the optimal solution on either side of this cut.
The subproblems solved recursively on either side can
be only better than this optimal. Moreover, the first cut
found by the algorithm did at least as good as this cut.
So the output from the algorithm is at least as good as
the optimal partitioning.

If we do not restrict ourselves to BSP sectorizations,
but still consider the class of allowable cuts to lie on a
discrete set of lines, of dicrete slopes and intercepts,
then we can obtain a polynomial-time constant-factor
approximation for the (non-BSP-based) min-k sector-
ization problem, using the fact that an optimal sector-
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