

PROCEEDINGS OF THE EIGHTH

WORKSHOP ON ALGORITHM

ENGINEERING AND EXPERIMENTS

AND THE THIRD WORKSHOP

ON ANALYTIC ALGORITHMICS

AND COMBINATORICS

SIAM PROCEEDINGS SERIES LIST

Fifth International Conference on Mathematical and Numerical Aspects of Wave Propagation (2000),
Alfredo Bermudez, Dolores Gomez, Christophe Hazard, Patrick Joly, and Jean E. Roberts, editors

Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (2001), S. Rao Kosaraju, editor

Proceedings of the Tenth SIAM Conference on Parallel Processing for Scientific Computing (2001), Charles
Koelbel and Juan Meza, editors

Computational Information Retrieval (2001), Michael Berry, editor

Collected Lectures on the Preservation of Stability under Discretization (2002), Donald Estep and Simon
Tavener, editors

Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2003), Martin Farach-
Colton, editor

Proceedings of the Fifth Workshop on Algorithm Engineering and Experiments (2003), Richard E, Ladner, editor

Fast Algorithms for Structured Matrices: Theory and Applications (2003), Vadim Olshevsky, editor

Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2004), Ian Munro, editor

Applied Mathematics Entering the 21st Century: Invited Talks from the ICIAM 2003 Congress (2004), James
M. Hill and Ross Moore, editors

Proceedings of the Fourth SIAM International Conference on Data Mining (2004), Michael W. Berry,
Umeshwar Dayal, Chandrika Kamath, and David Skillicorn, editors

Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2005), Adam
Buchsbaum, editor

Mathematics for Industry: Challenges and Frontiers. A Process View: Practice and Theory (2005), David R.
Ferguson and Thomas J. Peters, editors

Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms (2006), Cliff Stein, editor
Proceedings of the Eighth Workshop on Algorithm Engineering and Experiments and the Third Workshop on

Analytic Algorithmics and Combinatorics (2006), Rajeev Raman, Robert Sedgewick, and Matthias F.
Stallmann, editors

Proceedings of the Sixth SIAM International Conference on Data Mining (2006), Joydeep Ghosh, Diane
Lambert, David Skillicorn, and Jaideep Srivastava, editors

PROCEEDINGS OF THE EIGHTH

WORKSHOP ON ALGORITHM

ENGINEERING AND EXPERIMENTS

AND THE THIRD WORKSHOP

ON ANALYTIC ALGORITHMICS

AND COMBINATORICS

Edited by Rajeev Raman, Robert Sedgewick, and Matthias F. Stallmann

S1HJTL
Society for Industrial and Applied Mathematics

Philadelphia

PROCEEDINGS OF THE EIGHTH WORKSHOP

ON ALGORITHM ENGINEERING AND EXPERIMENTS

AND THE THIRD WORKSHOP ON ANALYTIC

ALGORITHMICS AND COMBINATORICS

Proceedings of the Eighth Workshop on Algorithm Engineering and Experiments, Miami, FL, January 21,
2006

Proceedings of the Third Workshop on Analytic Algorithmics and Combinatorics, Miami, FL, January 21,
2006

The workshop was supported by the ACM Special Interest Group on Algorithms and Computation Theory
and the Society for Industrial and Applied Mathematics.

Copyright © 2006 by the Society for Industrial and Applied Mathematics.

1 0 9 8 7 6 5 4 3 2 1

All rights reserved. Printed in the United States of America. No part of this book may be reproduced,
stored, or transmitted in any manner without the written permission of the publisher. For information, write
to the Society for Industrial and Applied Mathematics, 3600 University City Science Center, Philadelphia,
PA 19104-2688.

Library of Congress Control Number: 2006922417
ISBN 0-89871-610-1

S1HJTL is a registered trademark.

CONTENTS

vii Preface to the Workshop on Algorithm Engineering and Experiments

ix Preface to the Workshop on Analytic Algorithmics and Combinatorics

Workshop on Algorithm Engineering and Experiments

3 Exact and Efficient Construction of Minkowski Sums of Convex Polyhedra with Applications
Efi Fogel and Dan Halperin

16 An Experimental Study of Point Location in General Planar Arrangements
Idit Haran and Dan Halperin

26 Summarizing Spatial Data Streams Using ClusterHulls
John Hershberger, Nisheeth Shrivastava, and Subhash Suri

41 Distance-Sensitive Bloom Filters
Adam Kirsch and Michael Mitzenmacher

51 An Experimental Study of Old and New Depth Measures
John Hugg, Eynat Rafalin, Kathryn Seyboth, and Diane Souvaine

65 Keep Your Friends Close and Your Enemies Closer: The Art of Proximity Searching
David Mount

66 Implementation and Experiments with an Algorithm for Parallel Scheduling of Complex Dags
under Uncertainty
Grzegorz Malewicz

75 Using Markov Chains to Design Algorithms for Bounded-Space On-Line Bin Cover
Eyjolfur Asgeirsson and Cliff Stein

86 Data Reduction, Exact, and Heuristic Algorithms for Clique Cover
Jens Gramm, Jiong Guo, Falk Huffner, and Rolf Niedermeier

95 Fast Reconfiguration of Data Placement in Parallel Disks
Srinivas Kashyap, Samir Khuller, Yung-Chun (Justin) Wan, and Leana Golubchik

108 Force-Directed Approaches to Sensor Localization
Alon Efrat, David Forrester, Anand Iyer, Stephen G. Kobourov, and Cesim Erten

119 Compact Routing on Power Law Graphs with Additive Stretch
Arthur Brady and Lenore Cowen

129 Reach for A*: Efficient Point-to-Point Shortest Path Algorithms
Andrew V, Goldberg, Haim Kaplan, and Renato F. Werneck

144 Distributed Routing in Small-World Networks
Oskar Sandberg

156 Engineering Multi-Level Overlay Graphs for Shortest-Path Queries
Martin Holzer, Frank Schulz, and Dorothea Wagner

171 Optimal Incremental Sorting
Rodrigo Paredes and Gonzalo Navarro

v

CONTENTS

Workshop on Analytic Algorithmics and Combinatorics

185 Deterministic Random Walks
Joshua Cooper, Benjamin Doerr, Joel Spencer, and Garbor Tardos

198 Binary Trees, Left and Right Paths, WKB Expansions, and Painleve Transcendents
Charles Knessl and Wojciech Szpankowski

205 On the Variance of Quickselect
Jean Daligault and Conrado Martinez

211 Semirandom Models as Benchmarks for Coloring Algorithms
Michael Krivelevich and Dan Vilenchik

222 New Results and Open Problems for Deletion Channels
Michael Mifzenmacher

223 Partial Fillup and Search Time in LC Tries
Svante Janson and Wojciech Szpankowski

230 Distinct Values Estimators for Power Law Distributions
Rajeev Motwani and Sergei Vassilvitskii

238 A Random-Surfer Web-Graph Model
Avrim Blum, T-H. Hubert Chan, and Mugizi Robert Rwebangira

247 Asymptotic Optimality of the Static Frequency Caching in the Presence of Correlated Requests
Predrag R. Jelenkovic and Ana Radovanovic

253 Exploring the Average Values of Boolean Functions via Asymptotics and Experimentation
Robin Pemantle and Mark Daniel Ward

263 Permanents of Circulants: A Transfer Matrix Approach
Mordecai J. Golin, Yiu Cho Leung, and Yajun Wang

273 Random Partitions with Parts in the Range of a Polynomial
William M. Y. Goh and Pawet Hitczenko

281 Author Index

VI

ALENEX WORKSHOP PREFACE

The annual Workshop on Algorithm Engineering and Experiments (ALENEX) provides a forum for the
presentation of original research in all aspects of algorithm engineering, including the implementation
and experimental evaluation of algorithms and data structures, ALENEX 2006, the eighth workshop in this
series, was held in Miami, Florida, on January 21, 2006. The workshop was sponsored by SIAM, the Society
for Industrial and Applied Mathematics, and SIGACT, the ACM Special Interest Group on Algorithms and
Computation Theory.

These proceedings contain 15 contributed papers presented at the workshop, together with the abstract
of an invited lecture by David Mount, entitled "Keep Your Friends Close and Your Enemies Closer: The Art
of Proximity Searching," The contributed papers were selected from a total of 46 submissions based on
originality, technical contribution, and relevance. Considerable effort was devoted to the evaluation of
the submissions with four reviews or more per paper, It is nonetheless expected that most of the papers in
these proceedings will eventually appear in finished form in scientific journals.

The workshop took place on the same day as the Third Workshop on Analytic Algorithmics and Combinatorics
(ANALCO 2006), and papers from that workshop also appear in these proceedings. As both workshops
are concerned with looking beyond the big-oh asymptotic analysis of algorithms, we hope that the
ALENEX community will find the ANALCO papers to be of interest.

We would like to express our gratitude to all the people who contributed to the success of the workshop.
In particular, we would like thank the authors of submitted papers, the ALENEX Program Committee
members, and the external reviewers, Special thanks go to Adam Buchsbaum for answering our many
questions along the way, to Andrei Voronkov for timely technical assistance with the use of the EasyChair
system, and to Sara Murphy and Sarah M. Granlund for coordinating the production of these proceedings.
Finally, we are indebted to Kirsten Wilden, for all of her valuable help in the many aspects of organizing
this workshop.

Rajeev Raman and Matt Stallmann

ALENEX 2006 Program Committee
Ricardo Baeza-Yates, UPF, Barcelona, Spain and University of Chile, Santiago
Luciana Buriol, University of Rome "La Sapienza," Italy
Thomas Erlebach, University of Leicester, United Kingdom
Irene Finocchi, University of Rome "La Sapienza," Italy
Roberto Grossi, University of Pisa, Italy
Lutz Kettner, Max Planck Institute for Informatics, Saarbrucken, Germany
Eduardo Sany Laber, PUC, Rio de Janeiro, Brazil
Alex Lopez-Ortiz, University of Waterloo, Canada
Stefan Naher, University of Trier, Germany
Rajeev Raman (co-chair), University of Leicester, United Kingdom
Peter Sanders, University of Karlsruhe, Germany
Matt Stallmann (co-chair), North Carolina State University
lleana Streinu, Smith College
Thomas Willhalm, Intel, Germany

ALENEX 2006 Steering Committee
Lars Arge, University of Aarhus Richard E. Ladner, University of Washington
Roberto Battiti, University of Trento Catherine C. McGeoch, Amherst College
Adam Buchsbaum, AT&T Labs—Research Bernard M.E. Moret, University of New Mexico
Camil Demetrescu, University of Rome "La Sapienza" David Mount, University of Maryland, College Park
Andrew V. Goldberg, Microsoft Research Jack Snoeyink, University of North Carolina,
Michael T. Goodrich, University of California, Irvine Chapel Hill
Giuseppe F. Italiano, University of Rome, "Tor Vergata" Clifford Stein, Columbia University
David S, Johnson, AT&T Labs—Research Roberto Tamassia, Brown University

vii

ALENEX WORKSHOP PREFACE

ALENEX 2006 External Reviewers

Ernst Althaus
Spyros Angelopolous
Lars Arge
Jeremy Barbay
Michael Baur
Luca Becchetti
Iwona Bialynicka-Birula
Brona Brejova
Saverio Caminiti
Timothy Chan
Valentina Ciriani
Carlos Cotta
Roman Dementiev
Camil Demetrescu
Reza Dorrigiv
Mitre Dourado
Arash Farzan
Gereon Frahling
G. Franceschini
Stefan Funke
Marco Gaertler
Emilio Di Giacomo
Robert Gorke
Peter Hachenberger
Michael Hoffmann
Martin Holzer
Daniel Huson
Juha Karkkainen
Martin Kutz

Gad M. Landau
Marcelo Mas
Steffen Mecke
Andreas Meyer
Ulrich Meyer
Gabriel Moruz
David Mount
Carlos Oliveira
Anna Ostlin Pagh
Maurizio Patrignani
Seth Pettie
Derek Phillips
Sylvain Pion
Maurizio Pizzonia
Marcus Poggi
Fabio Protti
Claude-Guy Quimper
Romeo Rizzi
Salvator Roura
Marie-France Sagot
Guido Schaefer
Dominik Schultes
Frank Schulz
Ingolf Sommer
Siang Wun Song
Renzo Sprugnoli
Eduardo Uchoa
Ugo Vaccaro

VIII

ANALCO WORKSHOP PREFACE

The papers in this proceedings, along with an invited talk by Michael Mitzenmacher on "New Results and
Open Problems for Deletion Channels," were presented at the Third Workshop on Analytic Algorithmics
and Combinatorics (ANALCO06), which was held in Miami on January 21, 2006. The aim of ANALCO is
to provide a forum for the presentation of original research in the analysis of algorithms and associated
combinatorial structures. The papers study properties of fundamental combinatorial structures that arise
in practical computational applications (such as permutations, trees, strings, tries, and graphs) and
address the precise analysis of algorithms for processing such structures, including average-case analysis;
analysis of moments, extrema, and distributions; and probabilistic analysis of randomized algorithms. Some
of the papers present significant new information about classic algorithms; others present analyses of new
algorithms that present unique analytic challenges, or address tools and techniques for the analysis of
algorithms and combinatorial structures, both mathematical and computational.

The workshop took place on the same day as the Eighth Workshop on Algorithm Engineering and
Experiments (ALENEX06); the papers from that workshop are also published in this volume. Since
researchers in both fields are approaching the problem of learning detailed information about the
performance of particular algorithms, we expect that interesting synergies will develop, People in the
ANALCO community are encouraged to look over the ALENEX papers for problems where the analysis
of algorithms might play a role; people in the ALENEX community are encouraged to look over these
ANALCO papers for problems where experimentation might play a role.

ANALCO 2006 Program Committee

Jim Fill, Johns Hopkins University
Mordecai Golin, Hong Kong University of Science and Technology
Philippe Jacquet, INRIA, France
Claire Kenyon, Brown University
Colin McDiarmid, University of Oxford
Daniel Panario, Carleton University
Robert Sedgewick (chair), Princeton University
Alfredo Viola, University of Uruguay
Mark Ward, Purdue University

ANALCO 2006 Steering Committee

Philippe Flajolet, INRIA, France
Robert Sedgewick, Princeton University
Wojciech Szpankowski, Purdue University

IX

This page intentionally left blank

Workshop on Algorithm Engineering and Experiments

This page intentionally left blank

Exact and Efficient Construction of Minkowski Sums of Convex
Polyhedra with Applications*

Efi Fogel Dan Halperin

Abstract

We present an exact implementation of an efficient
algorithm that computes Minkowski sums of convex
polyhedra in R3. Our implementation is complete
in the sense that it does not assume general
position. Namely, it can handle degenerate input,
and it produces exact results. We also present
applications of the Minkowski-sum computation to
answer collision and proximity queries about the
relative placement of two convex polyhedra in R3.
The algorithms use a dual representation of convex
polyhedra, and their implementation is mainly
based on the Arrangement package of CGAL, the
Computational Geometry Algorithm Library. We
compare our Minkowski-sum construction with
the only three other methods that produce exact
results we are aware of. One is a simple approach
that computes the convex hull of the pairwise sums
of vertices of two convex polyhedra. The second is
based on Nef polyhedra embedded on the sphere,
and the third is an output sensitive approach
based on linear programming. Our method is
significantly faster. The results of experimentation
with a broad family of convex polyhedra are
reported. The relevant programs, source code,
data sets, and documentation are available at
http://www.cs.tau.ac.il/~efif/CD, and a short
movie [16] that describes some of the concepts
portrayed in this paper can be downloaded from
http://www.cs.tau.ac.il/~ef if/CD/Mink3d.avi.

1 Introduction

Let P and Q be two closed convex polyhedra in
Rd. The Minkowski sum of P and Q is the convex

*This work has been supported in part by the 1ST Program-
mers of the EU as Shared-cost RTD (FET Open) Project under
Contract No IST-2001-39250 (MOVIE — Motion Planning in
Virtual Environments), by the 1ST Programmers of the EU as
Shared-cost RTD (FET Open) Project under Contract No IST-
006413 (ACS — Algorithms for Complex Shapes), by The Israel
Science Foundation founded by the Israel Academy of Sciences
and Humanities (Center for Geometric Computing and its Ap-
plications), and by the Hermann Minkowski-Minerva Center for
Geometry at Tel Aviv University.

t School of Computer Science, Tel-Aviv University, 69978,
Israel, {efif, danha}®post. tau. ac. il

polyhedron M = P 0 Q = {p + q\p e P,q <E
Q}. A polyhedron P translated by a vector t is
denoted by P*. Collision Detection is a procedure
that determines whether P and Q overlap. The
Separation Distance vr(P, Q) and the Penetration
Depth 6(P,Q) defined as

are the minimum distances by which P has to be
translated so that P and Q intersect or become
interior disjoint respectively. The problems above
can also be posed given a normalized direction d,
in which case the minimum distance sought is in
direction d. The Directional Penetration Depth, for
example, is defined as

We present an exact, complete, and robust im-
plementation of efficient algorithms to compute the
Minkowski sum of two convex polyhedra, detect
collision, and compute the Euclidean separation
distance between, and the directional penetration-
depth of, two convex polyhedra in R3. The algo-
rithms use a dual representation of convex polyhe-
dra, polytopes for short, named Cubical Gaussian
Map. They are implemented on top of the CGAL li-
brary [1] , and are mainly based on the Arrangement
package of the library [17], although other parts,
such as the Polyhedral-Surface package produced
by L. Kettner [28], are used as well. The results
obtained by this implementation are exact as long
as the underlying number type supports the arith-
metic operations +, — , *, and / in unlimited preci-
sion over the rationals,1 such as the rational number
type Gmpq provided by GMP — Gnu's Multi Preci-
sion library [2]. The implementation is complete
and robust, as it handles all degenerate cases, and
guarantees exact results. We also report on the per-
formance of our methods compared to other.

Minkowski sums are closely related to proxim-
ity queries. For example, the minimum separation

l Commonly referred to as a field number type.

3

http://www.cs.tau.ac.il/~efif/CD
http://www.cs.tau.ac.il/~efif/CD/Mink3d.avi

distance between two polytopes P and Q is the same
as the minimum distance between the origin arid the
boundary of the Minkowski sum of P and the re-
flection of Q through the origin [12]. Computing
Minkowski sums, collision detection and proximity
computation comprise fundamental tasks in compu-
tational geometry [26, 32, 35]. These operations are
ubiquitous in robotics, solid modeling, design au-
tomation, manufacturing, assembly planning, vir-
tual prototyping, and many more domains; see, e.g.,
[10, 27, 29]. The wide spectrum of ideas expressed
in the massive amount of literature published about
the subject during the last three decades has in-
spired the development of quite a few useful so-
lutions. For a full list of packages and overview
about the subject see [32]. However, only recent
advances in the implementation of computational-
geometry algorithms and data structures made our
exact, complete, and efficient implementation pos-
sible.

Various methods to compute the Minkowski
sum of two poly hedra in R3 have been proposed.
The goal is typically to compute the boundary of
the sum and provide some representation of it. The
combinatorial complexity of the Minkowski sum of
two polyhedra of ra and n features respectively can
be as high as 6(m3n3). One common approach to
compute it, is to decompose each polyhedron into
convex pieces, compute pairwise Minkowski sums
of pieces of the two, and finally the union of the
pairwise sums. Computing the exact Minkowski
sum of non-convex polyhedra is naturally expen-
sive. Therefore, researchers have focused on com-
puting an approximation that satisfies some crite-
ria, such as the algorithm presented by Varadhan
and Manocha [36]. They guarantee a two-sides
Hausdorff distance bound on the approximation,
and ensure that it has the same number of con-
nected components as the exact Minkowski sum.
Computing the Minkowski sum of two convex poly-
hedra remains a key operation, and this is what we
focus on. The combinatorial complexity of the sum
can be as high as O(ran) when both polyhedra are
convex.

Convex decomposition is not always possible,
as in the presence of non-convex curved objects.
In these cases other techniques must be applied,
such as approximations using polynomial/rational
curves in 2D [30]. Seong at al. [34] proposed an
algorithm to compute Minkowski sums of a subclass
of objects; that is, surfaces generated by slope-
monotone closed curves. Flato and Halperin [7]
presented algorithms for robust construction of
planar Minkowski sums based on CGAL. While the
citations in this paragraph refer to computations

of Minkowski sums of non-convex polyhedra, and
we concentrate on the convex cases, the latter is
of particular interest, as our method makes heavy
use of the same software components, in particular
the CGAL Arrangement package [17], which went
through a few phases of improvements since its
usage in [7] and recently was redesigned and re-
implemented [38].

A particular accomplishment of the kinetic
framework in two dimensions introduced by Guibas
et al. [24] was the definition of the convolution
operation in two dimensions, a superset of the
Minkowski sum operation, and its exploitation in
a variety of algorithmic problems. Basch et al. ex-
tended its predecessor concepts and presented an al-
gorithm to compute the convolution in three dimen-
sions [8]. An output-sensitive algorithm for com-
puting Minkowski sums of polytopes was introduced
in [25]. Gritzmann and Sturmfels [22] obtained a
polynomial time algorithm in the input and output
sizes for computing Minkowski sums of k polytopes
in Rd for a fixed dimension d, and Fukuda [18] pro-
vided an output sensitive polynomial algorithm for
variables d and k. Ghosh [19] presented a unified al-
gorithm for computing 2D and 3D Minkowski sums
of both convex and non-convex polyhedra based
on a slope diagram representation. Computing the
Minkowski sum amounts to computing the slope di-
agrams of the two objects, merging them, and ex-
tracting the boundary of the Minkowski sum from
the merged diagram. Bekker and Roerdink [9] pro-
vided a few variations on the same idea. The slope
diagram of a 3D convex polyhedron can be rep-
resented as a 2D object, essentially reducing the
problem to a lower dimension. We follow the same
approach.

A simple method to compute the Minkowski
sum of two polytopes is to compute the convex hull
of the pairwise sum of the vertices of the two poly-
topes. While there are many implementations of
various algorithms to compute Minkowski sums and
answer proximity queries, we are unaware of the
existence of complete implementations of methods
to compute exact Minkowski sums other than (i)
the naive method above, (ii) a method based on
Nef polyhedra embedded on the sphere [21], and
(iii) an implementation of Fukuda's algorithm by
Weibel [37]. Our method exhibits much better per-
formance than the other methods in all cases, as
demonstrated by the experiments listed in Table 4.
Our method well handles degenerate cases that re-
quire special treatment when alternative represen-
tations are used. For example, the case of two par-
allel facets facing the same direction, one from each
polytope, does not bear any burden on our method,

4

and neither does the extreme case of two polytopes
with identical sets of normals.

In some cases it is sufficient to build only
portions of the boundary of the Minkowski sum
of two given polytopes to answer collision and
proximity queries efficiently. This requires locating
the corresponding features that contribute to the
sought portion of the boundary. The Cubical
Gaussian Map, a dual representation of polytopes
in 3D used in our implementations, consists of six
planar maps that correspond to the six faces of the
unit cube — the parallel-axis cube circumscribing
the unit sphere. We use the CGAL Arrangement
package to maintain these data structures, and
harness the ability to answer point-location queries
efficiently that comes along, to locate corresponding
features of two given polytopes.

The rest of this paper is organized as follows.
The Cubical Gaussian Map dual representation of
polytopes in E3 is described in Section 2 along with
some of its properties. In Section 3 we show how
3D Minkowski sums can be computed efficiently,
when the input polytopes are represented by cu-
bical Gaussian maps. Section 4 presents an exact
implementation of an efficient collision-detection al-
gorithm under translation based on the dual repre-
sentation, and provides suggestions for future di-
rections. In Section 5 we examine the complexity
of Minkowski sums, as a preparation for the fol-
lowing section, dedicated to experimental results.
In this last section we highlight the performance of
our method on various benchmarks. The software
access-information along with some further design
details are provided in the Appendix.

2 The Cubical Gaussian Map

The Gaussian Map G of a compact convex poly-
hedron P in Euclidean three-dimensional space R3

is a set-valued function from P to the unit sphere
§2, which assigns to each point p the set of outward
unit normals to support planes to P at p. Thus,
the whole of a facet / of P is mapped under G to
a single point — the outward unit normal to /. An
edge e of P is mapped to a (geodesic) segment G(e)
on §2, whose length is easily seen to be the exterior
dihedral angle at e. A vertex v of P is mapped by
G to a spherical polygon G(i>), whose sides are the
images under G of edges incident to v, and whose
angles are the angles supplementary to the planar
angles of the facets incident to v; that is, G(e\)
and Gfa} meet at angle TT — a whenever e\ and e-2
meet at angle a. In other words, G(v) is exactly the
"spherical polar" of the link of v in P. (The link of
a vertex is the intersection of an infinitesimal sphere

centered at v with P, rescaled, so that the radius is
1.) The above implies that G(P) is combinatorially
dual to P, and metrically it is the unit sphere S2.

An alternative and
practical definition fol-
lows. A direction in R3

can be represented by
a point u G S2. Let
P be a polytope in R3,
and let V denote the
set of its boundary ver-
tices. For a direction
w, we define the extremal point in direction u to be
\v(u) = argmaxpev(w,p), where (- , -) denotes the
inner product. The decomposition of S2 into maxi-
mal connected regions, so that the extremal point is
the same for all directions within any region forms
the Gaussian map of P. For some u 6 S2 the inter-
section point of the ray du emanating from the ori-
gin with one of the hyperplanes listed below is a cen-
tral projection of u denoted as Ud- The relevant hy-
perplanes are Xd = l, d = l,2,3, if w lies in the posi-
tive respective hemisphere, and Xd = — 1, d = 1,2,3
otherwise.

Similarly, the Cubical Gaussian Map (CGM) C
of a polytope P in R3 is a set-valued function from
P to the six faces of the unit cube whose edges are
parallel to the major axes and are of length two. A
facet / of P is mapped under C to a central pro-
jection of the outward unit normal to / onto one
of the cube faces. Observe that, a single edge e of
P is mapped to a chain of at most three connected
segments that lie in three adjacent cube-faces re-
spectively, and a vertex v of P is mapped to at
most five abutting convex dual faces that lie in five
adjacent cube-faces respectively. The decomposi-
tion of the unit-cube faces into maximal connected
regions, so that the extremal point is the same for
all directions within any region forms the CGM of
P. Likewise, the inverse CGM, denoted by C~l,
maps the six faces of the unit cube to the polytope
boundary. Each planar face / is extended with the
coordinates of its dual vertex v = C~1(f) among
the other attributes (detailed below), resulting with
a unique representation. Figure 2 shows the CGM
of a tetrahedron.

While using the CGM increases the overhead of
some operations sixfold, and introduces degenera-
cies that are not present in the case of alternative
representations, it simplifies the construction and
manipulation of the representation, as the partition
of each cube face is a planar map of segments, a
well known concept that has been intensively ex-
perimented with in recent years. We use the CGAL

Figure 1: Central projec-
tion

5

Figure 2: (a) A tetrahedron, (b) the CGM of the tetrahedron, and (c) the CGM unfolded. Thick lines indicate
real edges.

Arrangement_22 data structure to maintain the pla-
nar maps. The construction of the six planar maps
from the polytope features and their incident re-
lations amounts to the insertion of segments that
are pairwise disjoint in their interiors into the pla-
nar maps, an operation that can be carried out ef-
ficiently, especially when one or both endpoints are
known, and we take advantage of it. The construc-
tion of the Minkowski sum, described in the next
section, amounts to the computation of the over-
lay of six pairs of planar maps, an operation well
supported by the data structure as well.

A related dual representation had been consid-
ered and discarded before the CGM representation
was chosen. It uses only two planar maps that par-
tition two parallel planes respectively instead of six,
but each planar map partitions the entire plane.3 In
this representation facets that are near orthogonal
to the parallel planes are mapped to points that
are far away from the origin. The exact representa-
tion of such points requires coordinates with large
bit-lengths, which increases significantly the time
it takes to perform exact arithmetic operations on
them. Moreover, facets exactly orthogonal to the
parallel planes are mapped to points at infinity, and
require special handling all together.

Features that are not in general position, such
as two parallel facets facing the same direction, one
from each polytope, or worse yet, two identical poly-
topes, typically require special treatment. Still, the
handling of many of these problematic cases falls
under the "generic" case, and becomes transpar-
ent to the CGM layer. Consider for example the

^CcAL prescribes the suffix _2 (resp. _3) for all data struc-
tures of planar objects (resp. 3D objects) as a convention.

3Each planar map that corresponds to one of the six
unit-cube faces in the CGM representation also partitions
the entire plane, but only the [—!,—!] X [1,1] square is
relevant. The unbounded face, which comprises all the rest,
is irrelevant.

case of two neighboring facets in one polytope that
have parallel neighboring facets in the other. This
translates to overlapping segments, one from each
CGM of the two polytopes,4 that appear during the
Minkowski sum computation. The algorithm that
computes it is oblivious to this condition, as the un-
derlying Arrangement_2 data structure is perfectly
capable of handling overlapping segments. How-
ever, as mentioned above, other degeneracies do
emerge, and are handled successfully. One example
is a facet / mapped to a point that lies on an edge
of the unit cube, or even worse, coincides with one
of the eight corners of the cube. Figure 8(a,b,c) de-
picts an extreme degenerate case of an octahedron
oriented in such a way that its eight facet-normals
are mapped to the eight vertices of the unit cube
respectively.

The dual representation is extended further, in
order to handle all these degeneracies and perform
all the necessary operations as efficiently as possi-
ble. Each planar map is initialized with four edges
and four vertices that define the unit square — the
parallel-axis square circumscribing the unit circle.
During construction, some of these edges or por-
tions of them along with some of these vertices may
turn into real elements of the CGM. The introduc-
tion of these artificial elements not only expedites
the traversals below, but is also necessary for han-
dling degenerate cases, such as an empty cube face
that appears in the representation of the tetrahe-
dron and depicted in Figure 2(c). The global data
consists of the six planar maps and 24 references to
the vertices that coincide with the unit-cube cor-
ners.

The exact mapping from a facet normal in the
3D coordinate-system to a pair that consists of a
planar map and a planar point in the 2D coordinate-

1 Other conditions translate to overlapping segments as
well.

6

Figure 3: The data structure. Large numbers indicate
plane ids. Small numbers indicate corner ids. X and
Y axes in different 2D coordinate systems are rendered
in different colors.

system is denned precisely through the indexing
and ordering system, illustrated in Figure 3. Now
before your eyes cross permanently, we advise you
to keep reading the next few lines, as they reveal
the meaning of some of the enigmatic numbers that
appear in the figure. The six planar maps are given
unique ids from 0 through 5. Ids 0, 1, and 2 are
associated with planes contained in negative half
spaces, and ids 3, 4, and 5 are associated with planes
contained in positive half spaces. The major axes in
the 2D Cartesian coordinate-system of each planar
map are determined by the 3D coordinate-system.
The four corner vertices of each planar map are also
given unique ids from 0 through 3 in lexicographic
order in their respective 2D coordinate-system, see
Table 1 columns titled Underlying Plane and 2D
Axes.

A doubly-connected edge list (DCEL) data struc-
ture is used by the Arrangement_2 data structure
to maintain the incidence relations on its features.
Each topological edge of the subdivision is repre-
sented by two halfedges with opposite orientation,
and each halfedge is associated with the face to its
left. Each feature type of the Arrangement_2 data
structure is extended to hold additional attributes.
Some of the attributes are introduced only in or-
der to expedite the computation of certain oper-
ations, but most of them are necessary to handle
degenerate cases such as a planar vertex lying on
the unit-square boundary. Each planar-map vertex
v is extended with (i) the coefficients of the plane
containing the polygonal facet C~l(v), (ii) the lo-
cation of the vertex — an enumeration indicating
whether the vertex coincides with a cube corner, or

lies on a cube edge, or contained in a cube face,
(iii) a boolean flag indicating whether it is non-
artificial (there exists a facet that maps to it), and
(iv) a pointer to a vertex of a planar map associated
with an adjacent cube-face that represents the same
central projection for vertices that coincide with a
cube corner or lie on a cube edge. Each planar-map
halfedge e is extended with a boolean flag indicating
whether it is non-artificial (there exists a polytope
edge that maps to it). Each planar-map face / is
extended with the polytope vertex that maps to it

Each vertex that coin-
cides with a unit-cube corner
or lies on a unit-cube edge
contains a pointer to a ver-
tex of a planar map associ-
ated with an adjacent cube
face that represents the same
central projection. Vertices

that lie on a unit-cube edge (but do not coincide
with unit-cube corners) come in pairs. Two vertices
that form such a pair lie on the unit-square bound-
ary of planar maps associated with adjacent cube
faces, and they point to each other. Vertices that
coincide with unit-cube corners come in triplets and
form cyclic chains ordered clockwise around the re-
spective vertices. The specific connections are listed
in Table 1. As a convention, edges incident to
a vertex are ordered clockwise around the vertex,
and edges that form the boundary of a face are
ordered counterclockwise. The Polyhedron^S and
Arrangement_2 data structures for example, both
use a DCEL data structure that follows the conven-
tion above. We provide a fast clockwise traversal of
the faces incident to any given vertex v. Clockwise
traversals around internal vertices are immediately
available by the DCEL. Clockwise traversals around
boundary vertices are enabled by the cyclic chains
above. This traversal is used to calculate the nor-
mal to the (primary) polytope-facet / = C~l(v)
and to render the facet. Fortunately, rendering sys-
tems are capable of handling a sequence of vertices
that define a polygon in clockwise order as well, an
order opposite to the conventional ordering above.

The data structure also sup-
ports a fast traversal over the
planar-map halfedges that form
each one of the four unit-square
edges. This traversal is used dur-
ing construction to quickly locate
a vertex that coincides with a cube
corner or lies on a cube edge. It is also used to up-
date the cyclic chains of pointers mentioned above;
see Section 3.

7

Underlying
Plane

Id
0
1
2
3
4
5

Eq

x = -1
y = -i
z = -1
X = 1

y = 1
2; = 1

2D Axes

X
Z
X
Y
Y
Z
X

Y
Y
Z
X
Z
X
Y

Corner
0 (0,0)

PM
1
2
0
2
0
1

Cr
0
0
0
1
1
1

1 (0,1)
PM

2
0
1
1
2
0

Cr
2
2
2
3
3
3

2 (1,0)
PM

5
3
4
4
5
3

Cr
0
0
0
1
1
1

3(1 ,1)
PM

4
5
3
5
3
4

Cr
2
2
2
3
3
3

Table 1: The coordinate systems, and the cyclic chains of corner vertices. PM stands for Planar Map, and
Cr stands for Corner.

We maintain a flag that indicates whether a
planar vertex coincides with a cube corner, a cube
edge, or a cube face. At first glance this looks re-
dundant. After all, this information could be de-
rived by comparing the x and y coordinates to —1
and +1. However, it has a good reason as explained
next. Using exact number-types often leads to rep-
resentations of the geometric objects with large bit-
lengths. Even though we use various techniques to
prevent the length from growing exponentially [17],
we cannot avoid the length from growing at all.
Even the computation of a single intersection re-
quires a few multiplications and additions. Cached
information computed once and stored at the fea-
tures of the planar map avoids unnecessary process-
ing of potentially-long representations.

3 Exact Minkowski Sums

The overlay of two planar subdivisions S\ and 8-2
is a planar subdivision S such that there is a face
/ in S if and only if there are faces f\ and /2 in
S\ and £2 respectively such that / is a maximal
connected subset of f\ D /2- The overlay of the
Gaussian maps of two polytopes P and Q identifies
all the pairs of features of P and Q respectively that
have common supporting planes, as they occupy the
same space on the unit sphere, thus, identifying
all the pairwise features that contribute to the
boundary of the Minkowski sum of P and Q. A
facet of the Minkowski sum is either a facet /
of Q translated by a vertex of P supported by a
plane parallel to /, or vice versa, or it is a facet
parallel to two parallel planes supporting an edge
of P and an edge of Q respectively. A vertex of
the Minkowski sum is the sum of two vertices of
P and Q respectively supported by parallel planes.
A similar argument holds for the cubical Gaussian
map with the unit cube replacing the unit sphere.
More precisely, a single map that subdivides the
unit sphere is replaced by six planar maps, and the
computation of a single overlay is replaced by the

computation of six overlays of corresponding pairs
of planar maps. Recall that each (primal) vertex is
associated with a planar-map face, and is the sum
of two vertices associated with the two overlapping
faces of the two CGM'S of the two input polytopes
respectively.

Each planar map in a CGM is a convex sub-
division. Finke and Hinrichs [15] describe how to
compute the overlay of such special subdivisions
optimally in linear time. However, a preliminary
investigation shows that a large constant governs
the linear complexity, which renders this choice
less attractive. Instead, we resort to a sweep-line
based algorithm that exhibits good practical perfor-
mance. In particular we use the overlay operation
supported by the Arrangement_2 package. It re-
quires the provision of a complementary component
that is responsible for updating the attributes of the
DCEL features of the resulting six planar maps.

The overlay operates on two instances of
Arrangement_2. In the description below i>i, ei,
and /i denote a vertex, a halfedge, and a face of the
first operand respectively, and v%, 62, and /2 denote
the same feature types of the second operand re-
spectively. When the overlay operation progresses,
new vertices, halfedges, and faces of the resulting
planar map are created based on features of the two
operands. There are ten cases described below that
must be handled. When a new feature is created its
attributes are updated. The updates performed in
all cases except for case (1) are simple and require
constant time. We omit their details due to lack of
space.

A new vertex v is induced by coinciding vertices
vi and t>2-
The location of the vertex v is set to be the
same as the location of the vertex v\ (the
locations of v% and v\ must be identical). The
induced vertex is not artificial if (i) at least
one of the vertices v\ or 1*2 is not artificial, or

1.

8

(ii) the vertex lies on a cube edge or coincides
with a cube corner, and both vertices v\ and
v<2 have non-artificial incident halfedges that do
not overlap.

2. A new vertex is induced by a vertex v\ that lies
on an edge 62-

3. A new vertex is induced by a vertex v-z that lies
on an edge e\.

4. A new vertex is induced by a vertex v\ that is
contained in a face /2.

5. A new vertex is induced by a vertex v% that is
contained in a face f\.

Q. A new vertex is induced by the intersection of
two edges e\ and 62-

7. A new edge is induced by the overlap of two
edges ei and 62-

8. A new edge is induced by the an edge e\ that
is contained in a face /2.

9. A new edge is induced by the an edge 62 that
is contained in a face j\.

10. A new face is induced by the overlap of two
faces f i and /2.

After the six map overlays are computed, some
maintenance operations must be performed to ob-
tain a valid CGM representation. As mentioned
above, the global data consists of the six planar
maps and 24 references to vertices that coincide
with the unit-cube corners. For each planar map
we traverse its vertices, obtain the four vertices that
coincide with the unit-cube corners, and initialize
the global data. We also update the cyclic chains
of pointers to vertices that represent identical cen-
tral projections. To this end, we exploit the fast
traversal over the halfedges that coincide with the
unit-cube edges mentioned in Section 2.

The complexity of a single overlay operation is
O(fclogn), where n is the total number of vertices
in the input planar maps, and k is the number of
vertices in the resulting planar map. The total
number of vertices in all the six planar maps in
a CGM that represents a polytope P is of the
same order as the number of facets in the primary
polytope P. Thus, the complexity of the entire
overlay operation is O(Flog(Fi -f -^2)), where FI
and F-2 are the number of facets in the input
polytopes respectively, and F is the number of
facets in the Minkowski sum.

4 Exact Collision Detection

Computing the separation distance between two
polytopes with m and n features respectively can
be done in O(logralogn) time, after an investment
of at most linear time in preprocessing [13]. Many
practical algorithms that exploit spatial and tempo-
ral coherence between successive queries have been
developed, some of which became classic, such as
the GJK algorithm [20] and its improvement [11],
and the LC algorithm [31] and its optimized varia-
tions [14, 23, 33]. Several general- pur pose software
libraries that offer practical solutions are available
today, such as the SOLID library [4] based on the
improved GJK algorithm, the SWIFT library [5]
based on an advanced version of the LC algorithm,
the QuickCD library [3], and more. For an exten-
sive review of methods and libraries see the recent
survey [32].

Given two polytopes P and Q, detecting col-
lision between them and computing their relative
placement can be conveniently done in the config-
uration space, where their Minkowski sum M =
P® (-Q) resides. These problems can be solved in
many ways, and not all require the explicit repre-
sentation of the Minkowski sum M. However, hav-
ing it available is attractive, especially when the
polytopes are restricted to translations only, as the
combinatorial structure of the Minkowski sum M
is invariant to translations of P or Q. The algo-
rithms described below are based on the following
well known observations:

Given two polytopes P and Q in the CGM
representation, we reflect Q through the origin to
obtain — Q, compute the Minkowski sum M, and
retain it in the CGM representation. Then, each
time P or Q or both translate by two vectors u
and w in R3 respectively, we apply a procedure
that determines whether the query point s = w — u
is inside, on the boundary of, or outside M. In
addition to an enumeration of one of the three
conditions above, the procedure returns a witness of
the respective relative placement in form of a pair
that consists of a vertex v — C(f) — a mapping of
a facet / of M embedded in a unit cube face, and
the planar map P containing v. This information is
used as a hint in consecutive invocations. The facet
/ is the one stabbed by the ray r emanating from
an internal point c M, and going through s. The
internal point could be the average of all vertices

9

of M computed once and retained along M, or just
the midpoint of two vertices that have supporting
planes with opposite normals easily extracted from
the CGM. Once / is obtained, determining whether
Pu and Qw collide is trivial, according to the first
formula (of the three) above.

Figure 4: Simulation of motion.

The procedure applies a local walk on the
cube faces. It starts with some vertex vs, and
then performs a loop moving from the current
vertex to a neighboring vertex, until it reaches the
final vertex, perhaps jumping from a planar map
associated with one cube-face to a different one
associated with an adjacent cube-face. The first
time the procedure is invoked, vs is chosen to be
a vertex that lies on the central projection of the
normal directed in the same direction as the ray
r. In consecutive calls, vs is chosen to be the final
vertex of the previous call exploiting spatial and
temporal coherence. Figure 4 is a snapshot of a
simulation program that detects collision between
a static obstacle and a moving robot, and draws
the obstacle and the trail of the robot. The
Minkowski sum is recomputed only when the robot
is rotated, which occurs every other frame. The
program is able to identify the case where the robot
grazes the obstacle, but does not penetrate it. The
computation takes just a fraction of a second on a
Pentium PC clocked at 1.7 GHz. Similar procedures
that compute the directional penetration-depth and
minimum distance are available as well.

We intend to develop a complete integrated
framework that answers proximity queries about
the relative placement of polytopes that undergo
rigid motions including rotation using the cubical
Gaussian-map in the follow-up project. Some of
the methods we foresee compute only those por-
tions of the Minkowski sum that are absolutely nec-
essary, making our approach even more competi-
tive. Briefly, instead of computing the Minkowski

sum of P and — Q, we walk simultaneously on the
two respective CGM'S, producing one feature of the
Minkowski sum at each step of the walk. Such a
strategy could be adapted to the case of rotation
by rotating the trajectory of the walk, keeping the
CGM of — Q intact, instead of rotating the CGM
itself.

5 Minkowski Sum Complexity

The number of facets of the Minkowski sum of
two polytopes in R3 with m and n facets respec-
tively is bounded from above by 0(mn). Before
reporting on our experiments, we give an exam-
ple of a Minkowski sum with complexity fJ(mn).
The example depicted in Figure 6 gives rise to a
number as high as lm+ Kn+ > when ran is odd,
and (m+i)(n+i)+i when mn ig even The exam_
pie consists of two identical squashed dioctago-
nal pyramids, each containing n faces (n = 17
in Figure 6), but one is rotated about the Z
axis approximately5 90° compared to the other.
This is perhaps best seen1

when the spherical Gaussian
map is examined, see Fig-
ure 5. The pyramid must be
squashed to ensure that the j
spherical edges that are the
mappings of the pyramid-
base edges are sufficiently
long. (A similar configu-
ration, where the polytopes Figure 5: m = n = 9
are non-squashed is depicted in Figure 8(d,e,f,g,h,i).
A careful counting reveals that the number of ver-
tices in the dual representation excluding the artifi-
cial vertices reaches (m+1Kn+1) =162, which is the
number of facets of the Minkowski sum. We are
still investigating the problem of bounding the ex-
act maximum complexity of the Minkowski sum of
two polytopes. Our preliminary results imply that
the coefficient of the ran component is higher than
in the example illustrated here.

Not every pair of polytopes yields a Minkowski
sum proportional to ran. As a matter of fact, it
can be as low as n in the extremely-degenerate case
of two identical polytopes variant under scaling.
Even if no degeneracies exist, the complexity can
be proportional to only ra + n, as in the case of
two geodesic spheres6 level / = 2 slightly rotated

5The results of all rotations are approximate, as we have
not yet dealt with exact rotation. One of our immediate
future goals is the handling of exact rotations.

6An icosahedron, every triangle of which is divided into
(I + I)2 triangles, whose vertices are elevated to the circum-
scribing sphere.

10

Figure 6: (a) The Minkowski sum of two approximately orthogonal squashed dioctagonal pyramids, (b) the
CGM, and (c) the CGM unfolded, where red lines are graphs of edges that originate from one polytope and
blue lines are graphs of edges that originate from the other.

Figure 7: (a) The Minkowski sum of two geodesic spheres level 2 slightly rotated with respect to each other,
(b) the CGM of the Minkowski sum, and (c) the CGM unfolded.

with respect to each other, depicted in Figure 7.
Naturally, an algorithm that accounts for all pairs
of vertices, one from each polytope, is rendered
inferior compared to an output sensitive algorithm
such as ours in such cases, as we demonstrate in the
next section.

6 Experimental Results

We have created a large database of convex poly-
hedra in polygonal representation stored in an
extended VRML format [6]. In particular, each
model is provided in a representation that con-
sists of the array of boundary vertices and the
set of boundary polygons, where each polygon
is described by an array of indices into the ver-
tex array. (Identical to the IndexedFaceSet rep-
resentation.) Constructing the CGM of a model
given in this representation is done indirectly.
First, the CGAL Polyhedron^S data structure that
represents the model is constructed [28]. This
data structure consists of vertices, edges, and
facets and incidence relations on them. Then,
the CGM is constructed using the accessible
incidence relations provided by Polyhedron^.
Once the construction of the CGM is com-
plete, the intermediate representation is discarded.

Planar map
0, (*=-!)
1, (y — -1)

2, (* = -!)
0 („ __ 1 \o, ^x — ± ^

4, (y = i)
5, (z = 1)
Total

V
12
36
12
12
21
12

105

HE
32

104
32
32
72
32

304

F
6

18
6
6

17
6

59

Table 2: The number of features
of the six planar maps of the CGM
of the dioctagonal pyramid object.

Table 2 shows
the number
of vertices,
halfedges, and
faces of the six
planar maps
that comprise
the CGM of
our squashed
dioctagonal
pyramid. The
number of faces
of each planar
map include the unbounded face. Table 3 shows
the number of features in the primal and dual
representations of a small subset of our polytopes
collection. The number of planar features is the
total number of features of the six planar maps.

As mentioned above, the Minkowski sum of
two polytopes is the convex hull of the pairwise
sum of the vertices of the two polytopes. We
have implemented this straightforward method us-
ing the CGAL convex-hulLS function, which uses the
Polyhedron_3 data structure to represent the re-
sulting polytope, and used it to verify the correct-
ness of our method. We compared the time it took
to compute exact Minkowski sums using these two

11

methods, a third method implemented by Hachen-
berger based on Nef polyhedra embedded on the
sphere [21], and a fourth method implemented by
Weibel [37], based on an output sensitive algorithm
designed by Fukuda [18].

The Nef-based method is not specialized for
Minkowski sums. It can compute the overlay of two
arbitrary Nef polyhedra embedded on the sphere,
which can have open and closed boundaries, facets
with holes, and lower dimensional features. The
overlay is computed by two separate hemisphere-
sweeps.

Fukuda's algorithm relies on linear program-
ming. Its complexity is O(6LP(3, 8)V), where <5 =
81 +82 is the sum of the maximal degrees of vertices,
81 and 62, in the two input polytopes respectively, V
is the number of vertices of the resulting Minkowski
sum, and LP(d, m) is the time required to solve a
linear programming in d variables and m inequali-
ties. Note, that Fukuda's algorithm is more general,
as it can be used to compute the Minkowski sum of
polytopes in an arbitrary dimension d, and as far
as we know, it has not been optimized specifically
for d = 3.

The results listed in Table 4, produced by
experiments conducted on a Pentium PC clocked
at 1.7 GHz, show that our method is much more
efficient in all cases, and more than three hundred
times faster than the convex-hull method in one
case. The last column of the table indicates the
ratio jfi, where FI and F<2 are the number of
facets of the input polytopes respectively, and F
is the number of facets of the Minkowski sum.
As this ratio increases, the relative performance
of the output-sensitive algorithms compared to the
convex-hull method, increases as expected.

References

Object
Type

Tetrahedron
Octahedron
Icosahedron
DP
PH
TI
GS4

Primal
V

4
6

12
17
92

120
252

E
6

12
30
32

150
180
750

F
4
6

20
17
60
62

500

Dual
V

38
24
72

105
196
230
708

HE
94
48

192
304
684
840

2124

F
21
12
36
59

158
202
366

Table 3: Complexity of the primal and dual represen-
tations. DP — Dioctagonal Pyramid, PH — Pentag-
onal Hexecontahedron, TI — Truncated Icosidodeca-
hedron, GS4 — Geodesic Sphere level 4.

[1] The CGAL project homepage.
http://www.cgal.org/.

[2] The GNU MP bignum library.
http://www.swox.com/gmp/.

[3] The QuiCKCD library homepage,
http://www.ams.sunysb.edu/~ jklosow/quickcd/
QuickCD.html.

[4] The SOLID library homepage.
http://www.win.tue.nl/cs/tt/gino/solid/.

[5] The SWIFT++ library homepage.
http://gamma.cs.unc.edu/SWIFT++/.

[6] The web3D homepage. http://www.web3d.org/.
[7] P. K. Agarwal, E. Flato, and D. Halperin. Poly-

gon decomposition for efficient construction of
Minkowski sums. Comput. Geom. Theory Appl.,
21:39-61, 2002.

[8] J. Basch, L. J. Guibas, and G. D. Ramkumar.
Reporting red-blue intersections between two sets
of connected line segments. In Proc. 4th Annu.
Euro. Sympos. Alg., volume 1136 of LNCS, pages
302-319. Springer-Verlag, 1996.

[9] H. Bekker and J. B. T. M. Roerdink. An effi-
cient algorithm to calculate the Minkowski sum of
convex 3d polyhedra. In Proc. of the Int. Conf.
on Comput. Sci.-Part I, pages 619-628. Springer-
Verlag, 2001.

[10] J.-D. Boissonnat, E. de Lange, and M. Teillaud.
Minkowski operations for satellite antenna layout.
In Proc. 13th Annu. ACM Sympos. on Comput.
Geom., pages 67-76, 1997.

[11] S. A. Cameron. Enhancing GJK: computing min-
imum and penetration distances between convex
polyhedra. In Proc. of IEEE Int. Conf. Robot.
Auto., pages 3112-3117, Apr. 1997.

[12] S. A. Cameron and R. K. Culley. Determining
the minimum translational distance between two
convex polyhedra. In Proc. of IEEE Int. Conf.
Robot. Auto., pages 591-596, 1986.

[13] D. P. Dobkin and D. G. Kirkpatrick. Determin-
ing the separation of preprocessed polyhedra - a
unified approach. In Proc. 17th Int. Colloq. Auto.
Lang. Prog., volume 443 of LNCS, pages 400-413.
Springer-Verlag, 1990.

[14] S. A. Ehmann and M. C. Lin. Accelerated proxim-
ity queries between convex polyhedra by multi-level
Voronoi marching. In Proc. IEEE/RST Int.. Conf.
Intell. Robot. Sys., pages 2101-2106, 2000.

[15] U. Finke and K. H. Hinrichs. Overlaying sim-
ply connected planar subdivisions in linear time.
In Proc. llth Annu. ACM Sympos. on Comput.
Geom., pages 119-126. ACM Press, 1995.

[16] E. Fogel and D. Halperin. Video: Exact minkowski
sums of convex polyhedra. In Proc. ACM Sympos.
on Comput. Geom., pages 382-383, 2005.

[17] E. Fogel, R. Wein, and D. Halperin. Code flexibil-
ity and program efficiency by genericity: Improving
CGAL'S arrangements. In Proc. 12th Annu. Euro.
Sympos. Alg., volume 3221 of LNCS, pages 664-
676. Springer-Verlag, 2004.

[18] K. Fukuda. From the zonotope construction to the
Minkowski addition of convex polytopes. Journal

12

http://www.cgal.org/
http://www.swox.com/gmp/
http://www.ams.sunysb.edu/~jklosow/quickcd/QuickCD.html
http://www.win.tue.nl/cs/tt/gino/solid/
http://gamma.cs.unc.edu/SWIFT++/
http://www.web3d.org/

Object 1

Icos
DP
PH
GS4

Object 2

Icos
ODP
TI
RGS4

Minkowski Sum
Primal

V
12

131
248

1048

E
30

261
586

2568

F
20

132
340

1531

Dual
V

72
242
514

1906

HE
192
832

1670
6288

F
36

186
333

1250

CGM

0.01
0.02
0.05
0.31

NGM

0.36
1.08
2.94

14.33

Fuk

0.04
0.35
1.55
5.80

CH

0.1
0.31
3.85

107.35

FiF2
F

20
2.2

10.9
163.3

Table 4: Time consumption (in seconds) of the Minkowski-sum computation. Icos — Icosahedron, DP —
Dioctagonal Pyramid, ODP — Orthogonal Dioctagonal Pyramid, PH — Pentagonal Hexecontahedron, TI —
Truncated Icosidodecahedron, GS4 — Geodesic Sphere level 4, RGS4 — Rotated Geodesic Sphere level 4,
CH — the Convex Hull method, CGM — the Cubical Gaussian Map based method, NGM — the Nef based
method, Fuk— Fukuda's Linear Programming based algorithm, ̂ ^i — the ratio between the product of the
number of input facets and the number of output facets.

of Symbolic Computation, 38(4):1261-1272, 2004.
[19] P. K. Ghosh. A unified computational frame-

work for Minkowski operations. Comp. Graph.,
17(4):357-378, 1993.

[20] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A
fast procedure for computing the distance between
complex objects. Proc. of IEEE Int. J. Robot.
Auto., 4(2):193-203, 1988.

[21] M. Granados, P. Hachenberger, S. Hert, L. Ket-
tner, K. Mehlhorn, and M. Seel. Boolean opera-
tions on 3d selective nef complexes: Data struc-
ture, algorithms, and implementation. In Proc.
llth Annu. Euro. Sympos. Alg., volume 2832 of
LNCS, pages 174-186. Springer-Verlag, 2003.

[22] P. Gritzmann and B. Sturmfels. Minkowski addi-
tion of polytopes: Computational complexity and
applications to Grobner bases. SIAM J. Disc.
Math, 6(2):246-269, 1993.

[23] L. Guibas, D. Hsu, and L. Zhang. H-walk: Hi-
erarchical distance computation for moving con-
vex bodies. In ACM Sympos. on Comput. Geom.,
pages 265-273, 1999.

[24] L. J. Guibas, L. Ramshaw, and J. Stolfi. A kinetic
framework for computational geometry. In Proc.
24th Annu. IEEE Sympos. Found. Comput. Sci.,
pages 100-111, 1983.

[25] L. J. Guibas and R. Seidel. Computing convolu-
tions by reciprocal search. Disc. Comp. Geom.,
2:175-193, 1987.

[26] D. Halperin, L. Kavraki, and J.-C. Latombe.
Robotics. In J. E. Goodman and J. O'Rourke, edi-
tors, Handbook of Discrete and Computational Ge-
ometry, 2nd Edition, chapter 48, pages 1065-1093.
CRC, 2004.

[27] A. Kaul and J. Rossignac. Solid-interpolation de-
formations: Construction and animation of PIPs.
In Eurographics'91, pages 493-505, 1991.

[28] L. Kettner. Using generic programming for design-
ing a data structure for polyhedral surfaces. Com-
put. Geom. Theory Appl, 13:65-90, 1999.

[29] J.-C. Latombe. Robot Motion Planning. Kluwer
Academic Publishers, Boston, 1991.

[30] I. K. Lee, M. S. Kim, and G. Elber. Poly-
nomial/rational approximation of Minkowski sum

boundary curves. Graphical Models and Image
Processing, 60(2): 136-165, 1998.

[31] M. C. Lin and J. F. Canny. A fast algorithm for
incremental distance calculation. In Proc. of IEEE
Int. Conf. Robot. Auto., pages 1008-1014, 1991.

[32] M. C. Lin and D. Manocha. Collision and proxim-
ity queries. In J. E. Goodman and J. O'Rourke,
editors, Handbook of Discrete and Computational
Geometry, 2nd Edition, chapter 35, pages 787-807.
CRC, 2004.

[33] B. Mirtich. V-clip: Fast and robust polyhedral col-
lision detection. ACM Trans. Graph., 17(3): 177-
208, 1998.

[34] J.-K. Seong, M.-S. Kim, and K. Sugihara. The
Minkowski sum of two simple surfaces generated
by slope-monotone closed curves. In Geom. Model.
Proc.: Theory and Appl., pages 33-42. IEEE Com-
put. Sci., 2002.

[35] M. Sharir. Algorithmic motion planning. In J. E.
Goodman and J. O'Rourke, editors, Handbook of
Discrete and Computational Geometry, 2nd Edi-
tion, chapter 47, pages 1037-1064. CRC, 2004.

[36] G. Varadhan and D. Manocha. Accurate
Minkowski sum approximation of polyhedral mod-
els. In Proc. Comput. Graph, and Appl., 12th Pa-
cific Conf. on (PG'04), pages 392-401. IEEE Com-
put. Sci., 2004.

[37] C. Weibel. Minkowski sums.
http://roso.epf1.ch/cw/poly/public.php.

[38] R. Wein, E. Fogel, B. Zukerman, and
D. Halperin. Advanced programming tech-
niques applied to cgal's arrangement package.
In Library-Centric Software Design Work-
shop (LCSD'05), 2005. Available online at
http://IcsdOB.cs.tamu.edu/#program.

13

http://roso.epfl.ch/cw/poly/public.php
http://lcsd05.cs.tamu.edu/#program

A Software Components,
Libraries and Packages

We have developed the Cubical_gaussian_map_3
data structure, which can be used to construct
and maintain cubical Gaussian-maps, and compute
Minkowski sums of pairs of polytopes represented
by the Cubical- gauss ian_map_3 data structure.7

We have developed two interactive 3D applications;
a player of 3D objects stored in an extended VRML
format, and an interactive application that detects
collisions and answers proximity queries for poly-
topes that undergo translation and rotation. The
format was extended with two geometry nodes:
the ExactPolyhedron node represents models us-
ing the CGAL Polyhedron^ data structure, and
the CubicalGaussianMap node represents models
using the Cubical_gaussian_map_3 data structure.
Inability to provide exact coordinates impairs the
entire process. To this end, the format was further
extended with a node called ExactCoordinate that
represents exact coordinates. It has a field mem-
ber called rat Point that specifies triple rational-
coordinates, where each coordinates is specified by
two integers, the numerator and the denominator
of a coordinate in R3. Both applications are linked
with (i) CGAL, (ii) a library that provides the ex-
act rational number-type, and (iii) internal libraries
that construct and maintain 3D scene-graphs, writ-
ten in C++, and built on top of OpenGL. We ex-
perimented with two different exact number types:
one provided by LED A 4.4.1, namely ledajrat, and
one by GMP 4.1.2, namely Gmpq. The former does
not normalize the rational numbers automatically.
Therefore, we had to initiate normalization opera-
tions to contain their bit-length growth. We chose
to do it right after the central projections of the
facet-normals are calculated, and before the chains
of segments, which are the mapping of facet-edges,
are inserted into the planar maps. Our experience
shows that indiscriminate normalization consider-
ably slows down the planar-map construction, and
the choice of number type may have a drastic im-
pact on the performance of the code overall. The in-
ternal code was divided into three libraries; (i) SGAL
— The main 3D scene-graph library, (ii) SCGAL —
Extensions that depend on CGAL, and (iii) SGLUT
— Miscellaneous windowing and main-event loop
utilities that depend on the glut library.

The 3D programs, source code, data sets,
and documentation can be downloaded from
http://www.cs.tau.ac.il/~efif/CD/3d.

Unfortunately, compiling and executing the
programs require an unpublished fairly recent
version of CGAL. Thus, until the upcoming public
release of CGAL (version 3.2) becomes available, the
programs are useful only for those who have access
to the internal release. Precompiled executables,
compiled with g++ 3.3.2 on Linux Debian, are
available as well.

B Additional Models

See next page.

7We intend to introduce a package by the same name,
Cubical_gaussian_map_3, to a prospective future-release of
CGAL.

14

http://www.cs.tau.ac.il/~efif/CD/3d

Figure 8: (a) An octahedron, (d) a dioctagonal pyramid, (g) the Minkowski sum of two approximately
orthogonal dioctagonal pyramids, (j) the Minkowski sum of a Pentagonal Hexecontahedron and a Truncated
Icosidodecahedron, (b,e,h,k) the CGM of the respective polytope, and (c,f,i,l) the CGM unfolded.

15

An Experimental Study of Point Location in General Planar
Arrangements*

Idit Haran1" Dan Halperin^

Abstract

We study the performance in practice of various
point-location algorithms implemented in CGAL,
including a newly devised Landmarks algorithm.
Among the other algorithms studied are: a naive
approach, a "walk along a line" strategy and a
trapezoidal-decomposition based search structure.
The current implementation addresses general ar-
rangements of arbitrary planar curves, including
arrangements of non-linear segments (e.g., conic
arcs) and allows for degenerate input (for exam-
ple, more than two curves intersecting in a sin-
gle point, or overlapping curves). All calculations
use exact number types and thus result in the
correct point location. In our Landmarks algo-
rithm (a.k.a. Jump & Walk), special points, "land-
marks", are chosen in a preprocessing stage, their
place in the arrangement is found, and they are in-
serted into a data-structure that enables efficient
nearest-neighbor search. Given a query point, the
nearest landmark is located and then the algo-
rithm "walks" from the landmark to the query
point. We report on extensive experiments with
arrangements composed of line segments or conic
arcs. The results indicate that the Landmarks ap-
proach is the most efficient when the overall cost
of a query is taken into account, combining both
preprocessing and query time. The simplicity of
the algorithm enables an almost straightforward
implementation and rather easy maintenance. The
generic programming implementation allows versa-
tility both in the selected type of landmarks, and in
the choice of the nearest-neighbor search structure.
The end result is a highly effective point-location
algorithm for most practical purposes.

"Work reported in this paper has been supported in part
by the 1ST Programme of the EU as a Shared-corst RTD
(FET Open) Project under Contract No IST-006413 (ACS
- Algorithms for Complex Shapes), by the 1ST Programme
of the EU as Shared-cost RTD (FET Open) Project under
Contract No IST-2001-39250 (MOVIE - Motion Planning
in Virtual Environments), and by the Hermann Minkowski
- Minerva Center for Geometry at Tel Aviv University.

t School of Computer Science, Tel-Aviv University,
69978,Israel. {haranidi,danha}@post.tau.ac.il

1 Introduction

Given a set C of n planar curves, the arrangement
A(C) is the subdivision of the plane induced by
the curves in C into maximal connected cells. The
cells can be 0-dimensional (vertices), 1-dimensional
(edges) or 2-dimensional (faces). The planar map
of A(C) is the embedding of the arrangement as
a planar graph, such that each arrangement ver-
tex corresponds to a planar point, and each edge
corresponds to a planar subcurve of one of the
curves in C. Arrangements and planar maps are
ubiquitous in computational geometry, and have
numerous applications (see, e.g., [5, 18].) Fig-
ure 1 shows two arrangements of different types of
curves, one induced by line segments and the other
by conic arcs.1 The planar point-location problem
is one of the most fundamental problems applied
to arrangements: Preprocess an arrangement into
a data structure, so that given any query point g,
the cell of the arrangement containing q can be
efficiently retrieved.

In case the arrangement remains unmodified
once it is constructed, it may be useful to invest
considerable amount of time in preprocessing in
order to achieve real-time performance of point-
location queries. On the other hand, if the arrange-
ment is dynamic, and new curves are inserted to
it (or removed from it), an auxiliary point-location
data-structure that can be efficiently updated must
be employed, perhaps at the expense of the query
answering speed.

A naive approach to point location might be
traversing over all the edges and vertices in the
arrangement, and finding the geometric entity that
is exactly on, or directly above, the query point.
The time it takes to perform the query using this
approach is proportional to the number of edges n,
both in the average and worst-case scenarios.

A more economical approach [25] is to draw a
vertical line through every vertex of the arrange-
ment to obtain vertical slabs in which point lo-
cation is almost one-dimensional. Then, two bi-
nary searches suffice to answer a query: one on
x-coordinates for the slab containing g, and one on

1A conic curve is an algebraic planar curve of degree 2.
A conic arc is a bounded segment of a conic curve.

16

Figure 1: Random arrangements of line segments (a) and of conic arcs (b).

edges that cross the slab. Query time is O(logn),
but the space may be quadratic. In order to re-
duce the space to linear storage space, Sarnack and
Tarjan [26] used Persistent Search Trees. Edahiro
et al. [15] used these ideas and developed a point-
location algorithm that is based on a grid. The
plane is divided into cells of equal size called buck-
ets using horizontal and vertical partition lines. In
each bucket the local point location is performed
using the slabs algorithm described above.

Another approach aiming at worst-case query
time O(logn) was proposed by Kirkpatrick [19],
using a data structure of size O(n). Mulmuley [23]
and Seidel [27] proposed an alternative method
that uses the vertical decomposition of the arrange-
ment into pseudo-trapezoidal cells, and constructs
a search Directed Acyclic Graph (DAG) over these
simple cells. We refer to the latter algorithm,
which is based on Randomized Incremental Con-
struction, as the RIC algorithm.

Point location in Delaunay triangulations was
extensively studied: Early works on point loca-
tion in triangulations can be found in [21] and [22].
Devillers et al. [12] proposed a Walk along a line
algorithm, which does not require the generation of
additional data structures, and offers 0(\/n) query
time on the average (O(n) in the worst case). The
walk may begin at an arbitrary vertex of the tri-
angulation, and advance towards the query point.
Due to the simplicity of the structures (triangles),
the walk consists of low-cost operations. Devillers
later proposed a walk strategy based on a Delaunay
hierarchy [10], which uses a hierarchy of triangles,
and performs a hierarchical search from the highest
level in the hierarchy to the lowest. At each level of
the hierarchical search, a walk is performed to find
the triangle in the next lower level, until the trian-
gle in the lowest level is found. Other algorithms
that were developed only for Delaunay triangula-
tions, often referred to as Jump & Walk algorithms,
were proposed by Devroye et al. [13, 14].

Arya et al. [6] devised point location algo-
rithms aiming at good average (rather than worst-
case) query time. The efficiency of these algo-
rithms is measured with respect to the entropy of
the arrangement.

The algorithms presented in this paper are
part of the arrangement package in CGAL, the
Computational Geometry Algorithms Library [1].
CGAL is the product of a collaborative effort of
several sites in Europe and Israel, aiming to pro-
vide a generic and robust, yet efficient, imple-
mentation of widely used geometric data struc-
tures and algorithms. It is a software library writ-
ten in C++ according to the generic program-
ming paradigm. Robustness of the algorithms is
achieved by both handling all degenerate cases,
and by using exact number types. CGAL'S arrange-
ment package was the first generic software imple-
mentation, designed for constructing arrangements
of arbitrary planar curves and supporting opera-
tions and queries on such arrangements [16, 17].
The arrangement class-template is parameterized
by a traits class that encapsulates the geometry
of the family of curves it handles. Robustness is
guaranteed, as long as the traits classes use exact
number types for the computations they perform.
Among the number-type libraries that are used are
GMP- Gnu's multi-precision library [4], for rational
numbers, and CORE [2] and LED A [3] for algebraic
numbers.

Point location constitutes a significant part of
the arrangement package, as it is a basic query
applied to arrangements during their construc-
tion. Various point-location algorithms (also re-
ferred to as point-location strategies) have been
implemented as part of the CGAL'S arrangement
package: The Naive strategy traverses all vertices
and edges, and locates the nearest edge or ver-
tex that is situated exactly on, or immediately
above, the query point. The Walk algorithm traces
(in reverse order) a vertical ray r emanating from

17

the query point to infinity; it traverses the zone1

of r in the arrangement. This vertical walk is
simpler than a walk along an arbitrary direction
(that will be explained in details below, as part of
the Landmarks algorithm), as it requires simpler
predicates ("above/below" comparisons). Simple
predicates are desirable in exact computing espe-
cially with non-linear curves. Both the Naive and
the Walk strategies maintain no data structures,
beyond the basic representation of the arrange-
ment, and do not require any preprocessing stage.
Another point-location strategy implemented in
CGAL for line-segments arrangement is a triangu-
lation algorithm, which consists of a preprocess-
ing stage where the arrangement is refined using
a Constrained Delaunay Triangulation. In the tri-
angulation, point location is implemented using a
triangulation hierarchy [10]. The algorithm uses
the triangulation package of CGAL [9]. The RIC
point-location algorithm described above was also
implemented in CGAL [16].

The motivation behind the development of the
new, Landmarks, algorithm, was to address both
issues of preprocessing complexity and query time,
something that none of the existing strategies do
well. The Naive and the Walk algorithms have,
in general, bad query time, which precludes their
use in large arrangements. The RIC algorithm
answers queries very fast, but it uses relatively
large amount of memory and requires a complex
preprocessing stage. In the case of dynamic ar-
rangements, where curves are constantly being in-
serted to or removed from, this is a major draw-
back. Moreover, in real-life applications the curves
are typically inserted to the arrangement in non-
random order. This reduces the performance of the
RIC algorithm, as it relies on random order of in-
sertion, unless special procedures are followed [11].

In the Landmarks algorithm, special points,
which we call "landmarks", are chosen in a pre-
processing stage, their place in the arrangement
is found, and they are inserted into a hierarchi-
cal data-structure enabling fast nearest-neighbor
search. Given a query point, the nearest landmark
is located, and a "walk" strategy is applied, start-
ing at the landmark and advancing towards the
query point. This walk part differs from other walk
algorithms that were tailored for triangulations
(especially Delaunay triangulations), as it is geared
towards general arrangements that may contain
faces of arbitrary topology, with unbounded com-
plexity, and a variety of degeneracies. It also differs
from the Walk algorithm implemented in CGAL as
the walk direction is arbitrary, rather than vertical.
Tests that were carried out using the Landmarks

2The zone of a curve is the collection of all the cells in
the arrangement that the curve intersects.

algorithm, reported in Section 3 indicate that the
Landmarks algorithm has relatively short prepro-
cessing stage, and it answers queries fast.

The rest of this paper is organized as follows:
Section 2 describes the Landmarks algorithm in
details. Section 3 presents a thorough point-
location benchmark conducted on arrangements
of varying size and density, composed of either
line segments or conic arcs, with an emphasis on
studying the behavior of the Landmarks algorithm.
Concluding remarks are given in Section 4.

2 Point Location with Landmarks

The basic idea behind the Landmarks algorithm is
to choose and locate points (landmarks) within the
arrangement, and store them in a data structure
that supports nearest-neighbor search. During
query time, the landmark closest to the query
point is found using the nearest-neighbor search
and a short "walk along a line" is performed from
the landmark towards the query point. The key
motivation behind the Landmarks algorithm is to
reduce the number of costly algebraic predicates
involved in the Walk or the RIC algorithms at
the expense of increased number of the relatively
inexpensive coordinate comparisons (in nearest-
neighbor search.)

The algorithm relies on three independent
components, each of which can be optimized or
replaced by a different component (of the same
functionality):

1. Choosing the landmarks that faithfully repre-
sent the arrangement, and locating them in
the arrangement.

2. Constructing a data structure that sup-
ports nearest-neighbor search (such as a kd-
trees [8]), and using this structure to find the
nearest landmark given a query point.

3. Applying a "walk along a line" procedure,
moving from the landmark towards the query
point.

The following sections elaborate on these com-
ponents.

2.1 Choosing the Landmarks. When choos-
ing the landmarks we aim to minimize the expected
length of the "walk" inside the arrangement to-
wards a query point. The search for a good set of
landmarks has two aspects:

1. Choosing the number of landmarks.

2. Choosing the distribution of the landmarks
throughout the arrangement.

18

It is clear that as the number of landmarks
grows, the walk stage becomes faster. How-
ever, this results in longer preprocessing time, and
larger memory usage. Indeed, in certain cases the
nearest-neighbor search consumes a significant por-
tion of the overall query time (when "overshooting"
with the number of landmarks - see Section 3.3 be-
low).

What constitutes a good set of landmarks de-
pends on the specific structure of the arrangement
at hand. In order to assess the quality of the
landmarks, we defined a metric representing the
complexity of the walk stage: The arrangement
distance (AD) between two points is the number
of faces crossed by the straight line segment that
connects these points. If two points reside in the
same face of the arrangement, the arrangement dis-
tance is defined to be zero. The arrangement dis-
tance may differ substantially from the Euclidean
distance, as two points, which are spatially close,
can be separated in an arrangement by many small
faces.

The landmarks may be chosen with respect to
the (0,1 or 2-dimensional) cells of the arrangement.
One can use the vertices of the arrangement as
landmarks, points along the edges (e.g., the edges
midpoints), or interior points in the faces. In order
to choose representative points inside the faces, it
may be useful to preprocess the arrangement faces,
which are possibly non-convex, for example using
vertical decomposition or triangulation.3 Such pre-
processing will result in simple faces (pseudo trape-
zoids and triangles respectively) for which interior
points can be easily determined. Landmarks may
also be chosen independently of the arrangement
geometry. One option is to spread the landmarks
randomly inside a rectangle bounding the arrange-
ment. Another is to use a uniform grid, or to
use other structured point sets, such as Halton
sequences or Hammersley points [20, 24]. Each
choice has its advantages and disadvantages and
improved performance may be achieved using com-
binations of different types of landmark choices.

In the current implementation the landmark
type is given as a template parameter, called gen-
erator, to the Landmarks algorithm, and can be
easily replaced. This generator is responsible for
creating the sets of landmark points and updating
them if necessary. The following types of land-
mark generators were implemented: LM(vert) -
all the arrangement vertices are used as landmarks,
LM(mide) - midpoints of all the arrangement edges
are chosen, LM(rand) - random points are selected,
LM(grid) - the landmarks are chosen on a uniform

3 Triangulation is relevant only in case of arrangements
of line segments.

grid, and LM(halton) - Halton sequence points are
used. In the LM(rand), LM(grid) and LM(halton)
the number of landmarks is given as a parameter
to the generator, and is set to be the number of
vertices by default. The benefit of using vertices
or edge's midpoints as landmarks, is that their lo-
cation in the arrangement is known, and they rep-
resent the arrangement well (dense areas contain
more vertices). The drawback is that walking from
a vertex requires a preparatory step in which we ex-
amine all incident faces around the vertex to decide
on the startup face. Walking from the midpoints of
the edges also requires a small preparatory step to
choose between the two faces incident to the edge.

For random landmarks, we use uniform sam-
ples inside the arrangement bounding-rectangle.
After choosing the points, we have to locate
them in the arrangement. To this end, we use
the newly implemented batched point location in
CGAL, which uses the sweep algorithm for con-
structing the arrangement, while adding the land-
mark points as special events in the sweep. When
reaching such a special event during the sweep,
we search the y-structure to find the edge that is
just above the point. Similar preprocessing is con-
ducted on the uniform grid, when the grid points
are used as landmarks, and also on the Halton
points. When random points, grid points or Halton
points are used, it is in most cases clear in which
face a landmark is located (as opposed to the case
of vertices or edge midpoints). Thus, a prepara-
tory step is scarcely required at the beginning of
the walk stage.

2.2 Nearest Neighbor Search Structure.
Following the choice and location of the land-
marks, we have to store them in a data structure
that supports nearest-neighbor queries. The search
structure should allow for fast preprocessing and
query. A search structure that supports approxi-
mate nearest-neighbor search can also be suitable,
since the landmarks are used as starting points for
the walk, and the final accurate result of the point
location is computed in the walk stage.

Exact results can be obtained by constructing
a Voronoi diagram of the landmarks. However,
locating the query point in the Voronoi diagram
is again a point-location problem. Thus, using
Voronoi diagrams as our search structure takes
us back to the problem we are trying to solve.
Instead, we look for a simple data structure that
will answer nearest-neighbor queries quickly, even
if only approximately.

The nearest-neighbor search structure is a
template parameter to the Landmarks algorithm.
This modularity enables us to test several nearest-
neighbor structures. One implementation uses

19

Figure 2: The query algorithm diagram.

the CGAL'S spatial searching package, which is
based on kd-trees. The input points provided
to this structure (landmarks, query points) are
approximations of the original points (rounded
to double), which leads to extremely fast search.
Again, we emphasize that the end result is always
exact.

Another implementation uses the ANN pack-
age [7], which supports data structures and al-
gorithms for both exact and approximate near-
est neighbor searching. The library implements a
number of different data structures, based on kd-
trees and box-decomposition trees, and employs a
couple of different search strategies. Few tests that
were made using this package show similar results
to those using CGAL'S kd-tree.

In the special case of LM(grid), no search
structure is needed, and the closest landmark can
be found in O(l) time.

2.3 Walking from the Landmark to the
Query Point. The "walk" algorithm developed
as part of this work is geared towards general ar-
rangements, which may contain faces of arbitrary
topology and of unbounded (not necessarily con-
stant) complexity. This is different from previous
Walk algorithms that were tailored for triangula-
tions, especially the Delaunay triangulation.

The "walk" stage is summarized in the dia-
gram in Figure 2. First, the startup face must be
determined. As explained in the previous section,
certain types of landmarks (vertices, edges) are not
associated with a single startup face. A virtual line
segment s is then drawn from the landmark (whose

location in the arrangement is known) to the query
point q. Based on the direction of s, the startup
face / out of the faces incident to the landmark is
associated with the landmark.

Then, a test whether the query point q lies
inside / is applied. This operation requires a pass
over all the edges on the face boundary. This pass
is quick, since we only count the number of /'s
edges above q. We first check if the point is in the
edge's x-range. If it is, we check the location of q
with respect to the edge, and count the edge only if
the point is below it. If the number of edges above
q is odd, then q is found to be inside /, and the
query is terminated.

Otherwise, we continue our walk along the
virtual segment s toward q. In order to walk along
s, we need to find the first edge e on /'s boundary
that intersects 5. Since the arrangement's data-
structure holds for each edge the information of
both faces incident to this edge, all we need is to
cross to the face on the other side of e.

Figure 3 shows two examples of walking from
a vertex type landmark towards the query point.

As explained above, crossing to the next face
requires finding the edge e on the boundary of /
that intersects s. Actually, there is no need to find
the exact intersection point between e and s, as
this may be an expensive operation. Instead, it
is sufficient to perform a simpler operation. The
idea is to consider the :r-range that contains both
the curves s and e, and compare the vertical order
of these curves on the left and right boundaries of
this range. If the vertical order changes, it implies
that the curves intersect; see, e.g., Figure 4(a). In
case several edges on /'s boundary intersects s, we
cross using the first edge that was found, and mark
this edge as used. This edge will not be crossed
again during this walk, which assures that the walk
process ends.

Care should be exercised when dealing with
special cases, such as when s and e share a common
endpoint, as shown in Figure 4(b). In this case we
need to compare the curves slightly to the right of
this endpoint (the endpoint of e is the landmark I) .
Another case that is relevant to non-linear curves,
shown in Figure 4(c), is when e and s intersect an
even number of times (two in this case), and thus
no crossing is needed.

3 Experimental Results

3.1 The Benchmark. In this section we de-
scribe the benchmark we used to study the behav-
ior of various point-location algorithms and specif-
ically the newly proposed Landmarks algorithm.

The benchmark was conducted using four

20

Figure 3: Walking from a landmark located on a vertex v to a query point q: no crossing is needed (a),
multiple crossings are required during the walk (b).

Figure 4: Walk algorithms, crossing to the next face. In all cases the vertical order of the curves is
compared on the left and right boundaries of the marked x-range. (a) s and e swap their y-order,
therefore we should use e to cross to the next face, (b) s and e share a common left endpoint, but e
is above s immediately to the right of this point, (c) The y-order does not change, as s and e have an
even number (two) of intersections.

types of arrangements: denotes as random seg-
ments, random conies, robotics, and Norway. Each
arrangement in the first type was constructed by
line segments that were generated by connecting
pairs of points whose coordinates x, y are each cho-
sen uniformly at random in the range [0,1000].
We generated arrangements of various sizes, up
to arrangements consisting of more than 1,350,000
edges.

The second type of arrangements, random con-
ies, are composed of 20% random line segments,
40% circles and 40% canonical ellipses. The circles
centers were chosen uniformly at random in the
range [0,1000] x [0,1000] and their radii were cho-
sen uniformly at random in the range [0, 250]. The
ellipses were chosen in a similar manner, with their
axes lengths chosen independently in the range
[0,250].

The third type, robotics, is a line-segment
arrangement that was constructed by computing
the Minkowski sum4 of a star-shaped robot and
a set of obstacles. This arrangement consists of
25,533 edges. The last type, Norway, is also a
line-segment arrangement, that was constructed by
computing the Minkowski sum of the border of

4The Minkowski sum of sets A and 5 is the set {a+61 a 6
A , 6 B}

Norway and a polygon. The resulting arrangement
consist of 42,786 edges.

For each arrangement we selected 1000 ran-
dom query points to be located in the arrange-
ment. For the comparison between the various al-
gorithms, we measured the preprocessing time, the
average query time, and the memory usage of the
algorithms. All algorithms were run on the same
set of arrangements and same sets of query points.

Several point-location algorithms were stud-
ied. We tested the different variants of the Land-
marks algorithm: LM(vert), LM(rand), LM(grid),
LM(halton) and LM(mide). The number of land-
marks used in the LM(vert), LM(rand), LM(grid),
LM(halton) is equal to the number of vertices of
the arrangement. The number of landmarks used
in the LM(mide) is equal to the number of edges of
the arrangement. All Landmarks algorithms, be-
sides LM(grid), use CGAL'S kd-tree as their nearest
neighbor search structure.

We also used the benchmark to study the
Naive algorithm, the Walk (from infinity) algo-
rithm, the RIC algorithm, and the Triangulation
algorithm (only for line segments). The LM(mide)
was also not implemented on conic-arc arrange-
ments, since finding the midpoint of a conic arc
connecting two vertices of the arrangement, which

21

may have been constructed by intersection of two
conic curves, is not a trivial operation, and the
middle point may possibly be of high algebraic de-
gree.

As stated above, all calculations use exact
number types, and result in the exact point lo-
cation. The benchmark was conducted on a sin-
gle 2.4GHz PC with 1GB of RAM, running under
LINUX.

3.2 Results. Table 1 shows the average query
time associated with point location in arrange-
ments of varying types and sizes using the dif-
ferent point-location algorithms. The number of
edges mentioned in these tables is the number
of undirected edges of the arrangement. In the
CGAL implementation each edge is represented by
two halfedges with opposite orientations.

Table 2 shows the preprocessing time for the
same arrangements and same algorithms as in Ta-
ble 1. The actual preprocessing consist of two
parts: Construction of the arrangement (com-
mon to all algorithms), and construction of auxil-
iary data structures needed for the point location,
which are algorithm specific. As mentioned above,
the Naive and the Walk strategies do not require
any specific preprocessing stage besides construct-
ing the arrangement, and therefore do not appear
in the table.

Table 3 shows the memory usage of the point-
location strategies of the random line-segment ar-
rangements from Tables 1 and 2.

The information presented in these tables
shows that, unsurprisingly, the Naive and the Walk
strategies, although they do not require any pre-
processing stage and any memory besides the ba-
sic arrangement representation, result with the
longest query time in most cases, especially in case
of large arrangements.

The Triangulation algorithm has the worst
preprocessing time, which is mainly due to the time
for subdividing the faces of the arrangement using
Constrained Delaunay Triangulation (CDT); this
implies that resorting to CDT is probably not the
way to go for point location in arrangements of
segments. The query time of this algorithm is quite
fast, since it uses the Dalaunay hierarchy, although
it is not as fast as the RIC or the Landmarks
algorithm.

The RIC algorithm results with fast query
time, but it consumes the largest amount of mem-
ory, and its preprocessing stage is very slow.

All the Landmarks algorithms have rather fast
preprocessing time and fast query time. The
LM(vert) has by far the fastest preprocessing time,

since the location of the landmarks is known, and
there is no need to locate them in the preprocessing
stage. The LM(grid) has the fastest query time
for large-size arrangements induced by both line-
segments and conic-arcs. The size of the memory
used by LM(vert) algorithm is the smallest of all
algorithms.

The other two variants of landmarks that were
examined but are not reported in the tables are
(i) the LM(halton), which has similar results to
that of the LM(rand), and (ii) the LM(mide) which
yields similar results to those of the LM(vert),
although since it uses more landmarks, it has a
little longer query and preprocess, which makes it
less efficient for these types of arrangement.

Figure 5 presents the combined cost of a query
(amortizing also the preprocessing time over all
queries) on the last random-segments arrangement
shown in the tables, which consists of more than
1,350,000 edges. The x-axis indicates the num-
ber of queries m. The y-axis indicates the average
amortized cost-per-query, cost(m), which is calcu-
lated in the following manner:

. . preprocessing time
cost(m) = haverage query time

m
(3.1)

We can see that when m is small, the cost
is a function of the preprocessing time of the
algorithm. Clearly, when m —> oo, cost(m)
becomes the query time. For the Naive and the
Walk algorithms that do not require preprocessing,
cost(m] = query time = constant. Looking at the
lower envelope of these graphs we can see that for
m < 100 the Walk algorithm is the most efficient.
For 100 < m < 100,000 the LM(vert) algorithm
is the most efficient, and for m > 100,000 the
LM(grid) algorithm gives the best performance.
As we can see, for each number of queries, there
exists a Landmarks algorithm, which is better than
the RIC algorithm.

3.3 Analysis. As mentioned in Sections 2
and 3, there are various parameters that effect the
performance of the Landmarks algorithm, such as
the number of landmarks, their distribution over
the arrangement, and the structure used for the
nearest-neighbor search. We checked the effect of
varying the number of landmarks on the perfor-
mance of the algorithm, using several random ar-
rangements.

Table 4 shows typical results, obtained for the
last random-segments arrangement of our bench-
mark. The landmarks used for these tests were
random points sampled uniformly in the bound-
ing rectangle of the arrangement. As expected,
increasing the number of random landmarks in-

22

Arrang.
Type

random
segments

random
conies

robotics
Norway

#Edges

2112
37046

235446
955866

1366364
1001
3418

13743
25533
42786

Naive

2.2
36.7

241 .4
1636.1
2443.6

1.4
5.6

21.7
37.6
65.7

Walk

0.8
3.6
9.7

15.0
18.0
0.2
0.5
1.1
1.3
0.9

RIG

0.06
0.09
0.12
0.23
0.27
0.05
0.07
0.09
0.08
0.10

Triang.

0.86
1.17
1.96
1.83
2.10
N/A
N/A
N/A
0.39
0.52

LM
(vert)

0.16
0.20
0.38
1.27
1.80
0.31
0.32
0.38
0.12
0.15

LM
(rand)

0.13
0.16
0.35
1.45
2.06
0.08
0.07
0.07
0.11
0.15

LM
(grid)

0.13
0.15
0.18
0.18
0.19
0.07
0.06
0.07
0.07
0.08

Table 1: Average time (in milliseconds) for one point-location query.

Arrang.
Type

random
segments

random
conies

robotics
Norway

#Edges

2112
37046

235446
955866

1366364
1001
3418

13743
25533
42786

Construct.
Arrangement

0.07
1.26
8.90

60.51
97.67
8.24

29.22
127.04

2.63
5.28

RIG

0.5
29.7

115.0
616.5

1302.3
2.20
6.09

28.26
8.29

20.06

Triang.

11.2
360.2

3360.1
21172.2
33949.1

N/A
N/A
N/A

34.67
70.33

LM
(vert)

0.01
0.05
0.33
2.25
3.37
0.01
0.03
0.13
0.06
0.10

LM
(rand)

0.12
2.97

24.23
141.88
212.79

0.17
0.61
2.72
1.69
3.23

LM
(grid)

0.13
2.95

22.25
100.79
148.61

0.22
0.80
3.57
0.35
2.37

Table 2: Preprocessing time (in seconds).

creases the preprocessing time of the algorithm.
However, the query time decreases only until a cer-
tain minimum around 100,000 landmarks, and it is
much larger for 1,000,000 landmarks. The last col-
umn in the table shows the percentage of queries,
where the chosen startup landmark was in the same
face as the query point. As expected, this number
increases with the number of landmarks.

An in-depth analysis of the duration of the
Landmarks algorithm reveals that the major time-
consuming operations vary with the size of the
arrangement (and consequently, the number of
landmarks used), and with the Landmarks type
used. Figure 6 shows the duration percentages of
the various steps of the query operation, in the
LM(vert) and LM(grid) algorithms. As can be seen
in the LM(vert) diagram, the nearest-neighbor
search part increases when more landmarks are
present, and becomes the most time-consuming
part in large arrangements. In the LM(grid)
algorithm, this step is negligible.

A significant step that is common to all Land-
marks algorithms, checking whether the query
point is in the current face, also consumes a sig-
nificant part of the query time. This part is the
major step of the LM(grid) algorithm.

Additional operation shown in the LM(vert)
diagram is finding the startup face in a specified di-
rection. This step is relevant only in the LM(vert)
and the LM(mide) algorithms. The last opera-
tion, crossing to the next face, is relatively short
in LM(vert), as in most cases (more than 90%)
the query point is found to be inside the startup
face. This step is a little longer in LM(grid) than in
LM(vert), since only about 70% of the query points
are found to be in the same face as the landmark
point.

4 Conclusions

We propose a new Landmarks algorithm for ex-
act point location in general planar arrangements,
and have integrated an implementation of our al-
gorithm into CGAL. We use generic programming,
which allows for the adjustment and extension
for any type of planar arrangements. We tested
the performance of the algorithm on arrangements
constructed of different types of curves, i.e., line
segments and conic arcs, and compared it with
other point-location algorithms.

The main observation of our experiments is
that the Landmarks algorithm is the best strat-
egy considering the cost per query, which takes

23

Arrang.
Type

random
segments

#Edges

2112
37046

235446
955866

1366364

Arrangement
Size

0.8
9.5

57.3
231.3
333.8

RIG

1.3
21.5

136.5
555.0
793.2

Triang.

0.3
7.7

46.4
206.1
268.9

LM
(vert)

0.2
2.6

17.0
55.8
86.8

LM
(rand)

0.5
8.1

51.9
208.5
307.0

LM
(grid)

0.5
6.8

44.4
178.1
258.9

Table 3: Memory usage (in MBytes) by the point location data structure.

Number of
Landmarks

100
1000

10000
100000

1000000

Preprocessing
Time [sec]

61.7
59.0
60.8
74.3

207.2

Query
Time [msec]

4.93
1.60
0.58
0.48
3.02

% Queries
with AD=0

3.4
7.6

19.2
42.3
71.9

Table 4: LM(rand) algorithm performance for a fixed arrangement and a varying number of random
landmarks.

Figure 5: The average combined (amortized) cost per query in a large arrangement, with 1,366,384
edges.

Figure 6: The average breakdown of the time required by the main steps of the Landmarks algorithms
in a single point-location query, for arrangements of varying size.

24

into account both (amortized) preprocessing time
and query time. Moreover, the memory space re-
quired by the algorithm is smaller compared to
other algorithms that use auxiliary data structure
for point location. The algorithm is easy to imple-
ment, maintain, and adjust for different needs us-
ing different kinds of landmarks and search struc-
tures.

It remains open to study the optimal number
of landmarks required for arrangements of different
sizes. This number should balance well between
the time it takes to find the nearest landmark using
the nearest-neighbor search structure, and the time
it takes to walk from the landmark to the query
point.

Acknowledgments

We wish to thank Ron Wein for his great help re-
garding conic-arc arrangements, and for his draw-
ings. We also thank Efi Fogel for adjusting the
benchmark for our needs, and Oren Nechushtan for
testing the RIC algorithm implemented in CGAL.

References

[1] The CGAL project homepage,
http://www.cgal.org/.

[2] The CORE library homepage,
http://www.cs.nyu.edu/exact/core_pages/.

[3] The LEDA homepage, http: //www. algorithmic-
solutions .com/enleda.htm.

[4] The GNU MP bignum library,
http://www.swox.com/gmp/.

[5] P. K. Agarwal and M. Sharir. Arrangements and
their applications. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Geometry,
pages 49-119. Elsevier Science Publishers B.V.
North-Holland, Amsterdam, 2000.

[6] S. Arya, T. Malamatos, and D. M. Mount.
Entropy-preserving cutting and space-efficient
planar point location. In Proc. 12th ACM-SIAM
Sympos. Disc. Alg., pages 256-261, 2001.

[7] S. Arya, D. M. Mount, N. S. Netanyahu, R. Sil-
verman, and A. Wu. An optimal algorithm for
approximate nearest neighbor searching in fixed
dimensions. J. ACM, 45:891-923, 1998.

[8] J. L. Bentley. Multidimensional binary search
trees used for associative searching. Commun.
ACM, 18(9):509-517, Sept. 1975.

[9] J.-D. Boissonnat, O. Devillers, S. Pion, M. Teil-
laud, and M. Yvinec. Triangulations in CGAL.
Comput. Geom. Theory Appl., 22(l-3):5-19.

[10] O. Devillers. The Delaunay hierarchy. Internat.
J. Found. Comput. Sci., 13:163-180, 2002.

[11] O. Devillers and P. Guigue. The shuffling buffer.
Internat. J. Comput. Geom. Appl., 11:555-572,
2001.

[12] O. Devillers, S. Pion, and M. Teillaud. Walking

in a triangulation. Internat. J. Found. Comput.
Sci., 13:181-199, 2002.

[13] L. Devroye, C. Lemaire, and J.-M. Moreau. Fast
Delaunay point-location with search structures.
In Proc. llth Canad. Conf. Comput. Geom.,
pages 136-141, 1999.

[14] L. Devroye, E. P. Mu'cke, and B. Zhu. A note
on point location in Delaunay triangulations of
random points. Algorithmica, 22:477-482, 1998.

[15] M. Edahiro, I. Kokubo, and T. Asano. A new
point-location algorithm and its practical effi-
ciency — comparison with existing algorithms.
ACM Trans. Graph., 3:86-109, 1984.

[16] E. Flato, D. Halperin, I. Hanniel, O. Nechushtan,
and E. Ezra. The design and implementation
of planar maps in CGAL. J. Exp. Algorithmics,
5:13, 2000.

[17] E. Fogel, R. Wein, and D. Halperin. Code flex-
ibility and program efficiency by genericity: Im-
proving cgal's arrangements. In Proc. 12th An-
nual European Symposium on Algorithms (ESA),
volume 3221 of LNCS, pages 664-676. Springer-
Verlag, 2004.

[18] D. Halperin. Arrangements. In J. E. Goodman
and J. O'Rourke, editors, Handbook of Discrete
and Computational Geometry, chapter 24, pages
529-562. Chapman & Hall/CRC, 2nd edition,
2004.

[19] D. G. Kirkpatrick. Optimal search in planar
subdivisions. SIAM J. Comput., 12(l):28-35,
1983.

[20] J. Matousek. Geometric Discrepancy — An
Illustrated Guide. Springer, 1999.

[21] K. Mehlhorn and S. Naher. LEDA: A Plat-
form for Combinatorial and Geometric Comput-
ing. Cambridge University Press, Cambridge,
UK, 2000.

[22] E. P. Miicke, I. Saias, and B. Zhu. Fast ran-
domized point location without preprocessing in
two- and three-dimensional Delaunay triangula-
tions. In Proc. 12th Annu. ACM Sympos. Com-
put. Geom., pages 274-283, 1996.

[23] K. Mulmuley. A fast planar partition algorithm,
I. J. Symbolic Comput., 10(3-4) :253-280, 1990.

[24] H. Niederreiter. Random Number Generation and
Quasi-Monte Carlo Methods, volume 63 of Re-
gional Conference Series in Applied Mathematics.
CBMS-NSF, 1992.

[25] F. P. Preparata and M. I. Shamos. Computa-
tional Geometry — An Introduction. Springer,
1985.

[26] N. Sarnak and R. E. Tarjan. Planar point
location using persistent search trees. Commun.
ACM, 29(7):669-679, July 1986.

[27] R. Seidel. A simple and fast incremental random-
ized algorithm for computing trapezoidal decom-
positions and for triangulating polygons. Com-
put. Geom. Theory Appl., l(l):51-64, 1991.

25

http://www.cgal.org/
http://www.cs.nyu.edu/exact/core_pages/
http://www.algorithmic-solutions.com/enleda.htm
http://www.algorithmic-solutions.com/enleda.htm
http://www.swox.com/gmp/

Summarizing Spatial Data Streams Using ClusterHulls

John Hershberger* Nisheeth Shrivastava* Subhash Suri*

Abstract

We consider the following problem: given an on-line,
possibly unbounded stream of two-dirnensional points,
how can we summarize its spatial distribution or shape
using a small, bounded amount of memory? We pro-
pose a novel scheme, called ClusterHull, which repre-
sents the shape of the stream as a dynamic collection of
convex hulls, with a total of at most m vertices, where
m is the size of the memory. The algorithm dynami-
cally adjusts both the number of hulls and the number
of vertices in each hull to best represent the stream
using its fixed memory budget. This algorithm ad-
dresses a problem whose importance is increasingly rec-
ognized, namely the problem of summarizing real-time
data streams to enable on-line analytical processing.
As a motivating example, consider habitat monitoring
using wireless sensor networks. The sensors produce a
steady stream of geographic data, namely, the locations
of objects being tracked. In order to conserve their lim-
ited resources (power, bandwidth, storage), the sensors
can compute, store, and exchange ClusterHull sum-
maries of their data, without losing important geomet-
ric information. We are not aware of other schemes
specifically designed for capturing shape information
in geometric data streams, and so we compare Cluster-
Hull with some of the best general-purpose clustering
schemes such as CURE, fc-median, and LSEARCH. We
show through experiments that ClusterHull is able to
represent the shape of two-dimensional data streams
more faithfully and flexibly than the stream versions
of these clustering algorithms.

*A partial summary of this work will be presented as a poster
at ICDE '06, and represented in the proceedings by a three-page
abstract.

t Mentor Graphics Corp., 8005 SW Boeckman Road,
Wilsonville, OR 97070, USA, and (by courtesy) Computer Sci-
ence Department, University of California at Santa Barbara.
john_hershberger@mentor.com.

* Computer Science Department, University of California,
Santa Barbara, CA 93106, USA. {nisheeth,suri}@cs.ucsb.
edu. The research of Nisheeth Shrivastava and Subhash Suri
was supported in part by National Science Foundation grants
IIS-0121562 and CCF-0514738.

1 Introduction

The extraction of meaning from data is perhaps the
most important problem in all of science. Algorithms
that can aid in this process by identifying useful struc-
ture are valuable in many areas of science, engineer-
ing, and information management. The problem takes
many forms in different disciplines, but in many set-
tings a geometric abstraction can be convenient: for
instance, it helps formalize many informal but visually
meaningful concepts such as similarity, groups, shape,
etc. In many applications, geometric coordinates are a
natural and integral part of data: e.g., locations of sen-
sors in environmental monitoring, objects in location-
aware computing, digital battlefield simulation, or me-
teorological data. Even when data have no intrinsic ge-
ometric association, many natural data analysis tasks
such as clustering are best performed in an appropri-
ate artificial coordinate space: e.g., data objects are
mapped to points in some Euclidean space using cer-
tain attribute values, where similar objects (points) are
grouped into spatial clusters for efficient indexing and
retrieval. Thus we see that the problem of finding a
simple characterization of a distribution known only
through a collection of sample points is a fundamental
one in many settings.

Recently there has been a growing interest in de-
tecting patterns and analyzing trends in data that are
generated continuously, often delivered in some fixed
order and at a rapid rate. Some notable applica-
tions of such data processing include monitoring and
surveillance using sensor networks, transactions in fi-
nancial markets and stock exchanges, web logs and
click streams, monitoring and traffic engineering of IP
networks, telecommunication call records, retail and
credit card transactions, and so on. Imagine, for in-
stance, a surveillance application, where a remote en-
vironment instrumented by a wireless sensor network
is being monitored through sensors that record the
movement of objects (e.g., animals). The data gath-
ered by each sensor can be thought of as a stream of
two-dimensional points (geographic locations). Given
the severe resource constraints of a wireless sensor net-
work, it would be rather inefficient for each sensor to
send its entire stream of raw data to a remote base sta-

26

tion. Indeed, it would be far more efficient to compute
and send a compact geometric summary of the trajec-
tory. One can imagine many other remote monitoring
applications like forest fire hazards, marine life, etc.,
where the shape of the observation point cloud is a nat-
ural and useful data summary. Thus, there are many
sources of "transient" geometric data, where the key
goal is to spot important trends and patterns, where
only a small summary of the data can be stored, and
where a "visual" summary such as shape or distribu-
tion of the data points is quite valuable to an analyst.

A common theme underlying these data processing
applications is the continuous, real-time, large-volume,
transient, single-pass nature of data. As a result, data
streams have emerged as an important paradigm for
designing algorithms and answering database queries
for these applications. In the data stream model,
one assumes that data arrive as a continuous stream,
in some arbitrary order possibly determined by an
adversary; the total size of the data stream is quite
large; the algorithm may have memory to store only
a tiny fraction of the stream; and any data not
explicitly stored are essentially lost. Thus, data stream
processing necessarily entails data reduction, where
most of the data elements are discarded and only
a small representative sample is kept. At the same
time, the patterns or queries that the applications seek
may require knowledge of the entire history of the
stream, or a large portion of it, not just the most
recent fraction of the data. The lack of access to
full data significantly complicates the task of data
analysis, because patterns are often hidden, and easily
lost unless care is taken during the data reduction
process. For simple database aggregates, sub-sampling
can be appropriate, but for many advanced queries or
patterns, sophisticated synopses or summaries must be
constructed. Many such schemes have recently been
developed for computing quantile summaries [21], most
frequent or top-fc items [23], distinct item counts [3, 24],
etc.

When dealing with geoinetric data, an analyst's
goal is often not as precisely stated as many of these
numerically-oriented database queries. The analyst
may wish to understand the general structure of the
data stream, look for unusual patterns, or search for
certain "qualitative" anomalies before diving into a
more precisely focused and quantitative analysis. The
"shape" of a point cloud, for instance, can convey im-
portant qualitative aspects of a data set more effec-
tively than many numerical statistics. In a stream set-
ting, where the data must be constantly discarded and
compressed, special care must be taken to ensure that
the sampling faithfully captures the overall shape of

the point distribution.
Shape is an elusive concept, which is quite chal-

lenging even to define precisely. Many areas of com-
puter science, including computer vision, computer
graphics, and computational geometry deal with rep-
resentation, matching and extraction of shape. How-
ever, techniques in those areas tend to be compu-
tationally expensive and unsuited for data streams.
One of the more successful techniques in processing of
data streams is clustering. The clustering algorithms
are mainly concerned with identifying dense groups of
points, and are not specifically designed to extract the
boundary features of the cluster groups. Neverthe-
less, by maintaining some sample points in each clus-
ter, one can extract some information about the geo-
metric shape of the clusters. We will show, perhaps
unsurprisingly, that ClusterHull, which explicitly aims
to summarize the geometric shape of the input point
stream using a limited memory budget, is more effec-
tive than general-purpose stream clustering schemes,
such as CURE, fc-median and LSEARCH.

1.1 ClusterHull

Given an on-line, possibly unbounded stream of two-
dimensional points, we propose a scheme for summa-
rizing its spatial distribution or shape using a small,
bounded amount of memory m. Our scheme, called
ClusterHull, represents the shape of the stream as a
dynamic collection of convex hulls, with a total of at
most m vertices. The algorithm dynamically adjusts
both the number of hulls and the number of vertices
in each hull to represent the stream using its fixed
memory budget. Thus, the algorithm attempts to cap-
ture the shape by decomposing the stream of points
into groups or clusters and maintaining an approxi-
mate convex hull of each group. Depending on the
input, the algorithm adaptively spends more points
on clusters with complex (potentially more interesting)
boundaries and fewer on simple clusters. Because each
cluster is represented by its convex hull, the Cluster-
Hull summary is particularly useful for preserving such
geometric characteristics of each cluster as its bound-
ary shape, orientation, and volume. Because hulls are
objects with spatial extent, we can also maintain addi-
tional information such as the number of input points
contained within each hull, or their approximate data
density (e.g., population divided by the hull volume).
By shading the hulls in proportion to their density, we
can then compactly convey a simple visual representa-
tion of the data distribution. By contrast, such infor-
mation seems difficult to maintain in stream clustering
schemes, because the cluster centers in those schemes

27

constantly move during the algorithm.

For illustration, in Figure 1 we compare the output
of our ClusterHull algorithm with those produced by
two popular stream-clustering schemes, fc-median [19]
and CURE [20]. The top row shows the input data
(left), and output of ClusterHull (right) with memory
budget set to m = 45 points. The middle row shows
outputs of fc-median, while the bottom row shows the
outputs of CURE. One can see that both the boundary
shapes and the densities of the point clusters are quite
accurately summarized by the cluster hulls.

Figure 1: The top row shows the input data (left) and
the output of ClusterHull (right) with memory budget
of m = 45. The hulls are shaded in proportion to their
estimated point density. The middle row shows two
different outputs of the stream ^-medians algorithm,
with m = 45: in one case (left), the algorithm simply
computes k = 45 cluster centers; in the other (right),
the algorithm computes k = 5 centers, but maintains
9 (random) sample points from the cluster to get a
rough approximation of the cluster geometry. (This is
a simple enhancement implemented by us to give more
expressive power to the A;-median algorithm.) Finally,
the bottom row shows the outputs of CURE: in the
left figure, the algorithm computes k = 45 cluster
centers; in the right figure, the algorithm computes
k = 5 clusters, with c — 9 samples per cluster. CURE
has a tunable shrinkage parameter, a, which we set
to 0.4, in the middle of the range suggested by its
authors [20].

We implemented ClusterHull and experimented
with both synthetic and real data to evaluate its per-
formance. In all cases, the representation by Cluster-
Hull appears to be more information-rich than those
by clustering schemes such as CURE, fc-medians, or
LSEARCH, even when the latter are enhanced with
some simple mechanisms to capture cluster shape.
Thus, our general conclusion is that ClusterHull can be
a useful tool for summarizing geometric data streams.

ClusterHull is computationally efficient, and thus
well-suited for streaming data. At the arrival of each
new point, the algorithm must decide whether the
point lies in one of the existing hulls (actually, within a
certain ring around each hull), and possibly merge two
existing hulls. With appropriate data structures, this
processing can be done in amortized time O(log m) per
point.

ClusterHull is a general paradigm, which can be
extended in several orthogonal directions and adapted
to different applications. For instance, if the input data
are noisy, then covering all points by cluster hulls can
lead to poor shape results. We propose an incremental
cleanup mechanism, in which we periodically discard
light-weight hulls, that deals with noise in the data
very effectively. Similarly, the performance of a shape
summary scheme can depend on the order in which
input is presented. If points are presented in a bad
order, the ClusterHull algorithm may create long,
skinny, inter-penetrating hulls early in the stream
processing. We show that a period-doubling cleanup
is effective in correcting the effects of these early
mistakes. When there is spatial coherence within
the data stream, our scheme is able to exploit that
coherence. For instance, imagine a point stream
generated by a sensor field monitoring the movement
of an unknown number of vehicles in a two-dimensional
plane. The data naturally cluster into a set of spatially
coherent trajectories, which our algorithm is able to
isolate and represent more effectively than general-
purpose clustering algorithms.

1.2 Related Work

Inferring shape from an unordered point cloud is a
well-studied problem that has been considered in many
fields, including computer vision, machine learning,
pattern analysis, and computational geometry [4, 10,
11, 26]. However, the classical algorithms from these
areas tend to be computationally expensive and require
full access to data, making them unsuited for use in a
data stream setting.

An area where significant progress has occurred
on stream algorithms is clustering. Our focus is some-

28

what different from classical clustering—we are mainly
interested in low-dimensional data and capturing the
"surface" or boundary of the point cloud, while clus-
tering tends to focus on the "volume" or density and
moderate and large dimensions. While classical clus-
tering schemes of the past have focused on cluster cen-
ters, which work well for spherical clusters, some recent
work has addressed the problem of non-spherical clus-
ters, and tried to pay more attention to the geometry
of the clusters. Still this attention to geometry does
not extend to the shape of the boundary.

Our aim is not to exhaustively survey the clus-
tering literature, which is immense and growing, but
only to comment briefly on those clustering schemes
that could potentially be relevant to the problem
of summarizing shape of two- or three-dimensional
point streams. Many well-known clustering schemes
(e.g., [5, 7, 16, 25]) require excessive computation and
require multiple passes over the data, making them un-
suited for our problem setting. There are machine-
learning based clustering schemes [12, 13, 27], that use
classification to group items into clusters. These meth-
ods are based on statistical functions, and not geared
towards shape representation. Clustering algorithms
based on spectral methods [8, 14, 18, 28] use the sin-
gular value decomposition on the similarity graph of
the data, and are good at clustering statistical data,
especially in high dimensions. We are unaware of any
results showing that these methods are particularly ef-
fective at capturing boundary shapes, and, more im-
portantly, streaming versions of these algorithms are
not available. So, we now focus on clustering schemes
that work on streams and are designed to capture some
of the geometric information about clusters.

One of the popular clustering schemes for large
data sets is BIRCH [30], which also works on data
streams. An extension of BIRCH by Aggarwal et al. [2]
also computes multi-resolution clusters in evolving
streams. While BIRCH appears to work well for
spherical-shaped clusters of uniform size, Guha et
al. [20] experimentally show that it performs poorly
when the data are clustered into groups of unequal
sizes and different shapes. The CURE clustering
scheme proposed by Guha et al. [20] addresses this
problem, and is better at identifying non-spherical
clusters. CURE also maintains a number of sample
points for each cluster, which can be used to deduce the
geometry of the cluster. It can also be extended easily
for streaming data (as noted in[19]). Thus, CURE
is one of the clustering schemes we compare against
ClusterHull.

In [19], Guha et al. propose two stream variants of
fc-center clustering, with provable theoretical guaran-

tees as well as experimental support for their perfor-
mance. The stream fc-median algorithm attempts to
minimize the sum of the distances between the input
points and their cluster centers. Guha et al. [19] also
propose a variant where the number of clusters k can be
relaxed during the intermediate steps of the algorithm.
They call this algorithm LSEARCH (local search).
Through experimentation, they argue that the stream
versions of their fc-median and LSEARCH algorithms
produce better quality clusters than BIRCH, although
the latter is computationally more efficient. Since we
are chiefly concerned with the quality of the shape, we
compare the output of ClusterHull against the results
of fc-median and LSEARCH (but not BIRCH).

1.3 Organization

The paper is organized in seven sections. Section 2
describes the basic algorithm for computing cluster
hulls. In Section 3 we discuss the cost function used
in refining and unrefming our cluster hulls. Section 4
provides extensions to the basic ClusterHull algorithm.
In Sections 5 and 6 we present some experimental
results. We conclude in Section 7.

2 Representing Shape as a
Cluster of Hulls

We are interested in simple, highly efficient algorithms
that can identify and maintain bounded-memory ap-
proximations of a stream of points. Some techniques
from computational geometry appear especially well-
suited for this. For instance, the convex hull is a useful
shape representation of the outer boundary of the whole
data stream. Although the convex hull accurately rep-
resents a convex shape with an arbitrary aspect ratio
and orientation, it loses all the internal details. There-
fore, when the points are distributed non-uniformly
within the convex hull, the outer hull is a poor rep-
resentation of the data.

Clustering schemes, such as /c-medians, partition
the points into groups that may represent the distribu-
tion better. However, because the goal of many clus-
tering schemes is typically to minimize the maximum
or the sum of distance functions, there is no explicit at-
tention given to the shape of clusters—each cluster is
conceptually treated as a ball, centered at the cluster
center. Our goal is to mediate between the two ex-
tremes offered by the convex hull and fc-medians. We
would like to combine the best features of the convex
hull—its ability to represent convex shapes with any

29

aspect ratio accurately—with those of ball-covering ap-
proximations such as ^-medians—their ability to repre-
sent nonconvex and disconnected point sets. With this
motivation, we propose the following measure for rep-
resenting the shape of a point set under the bounded
memory constraint.

Given a two-dimensional set of N points,
and a memory budget of m, where m <^ N,
compute a set of convex hulls such that (1)
the collection of hulls uses at most m vertices,
(2) the hulls together cover all the points of S,
and (3) the total area covered by the hulls is
minimized.

Intuitively, this definition interpolates between a single
convex hull, which potentially covers a large area,
and ^-medians clustering, which fails to represent the
shape of individual clusters accurately. Later we
will relax the condition of "covering all the points"
to deal with noisy data—in the relaxed problem, a
constant fraction of the points may be dropped from
consideration. But the general goal will remain the
same: to compute a set of convex hulls that attempts
to cover the important geometric features of the data
stream using least possible area, under the constraint
that the algorithm is allowed to use at most m vertices.

2.1 Geometric approximation in data
streams

Even the classical convex hull (outer boundary) com-
putation involves some subtle and nontrivial issues in
the data stream setting. What should one do when
the number of extreme vertices in the convex hull ex-
ceeds the memory available? Clearly, some of the ex-
treme vertices must be dropped. But which ones, and
how shall we measure the error introduced in this ap-
proximation? This problem of summarizing the con-
vex hull of a point stream using a fixed memory m has
been studied recently in computational geometry and
data streams [1, 6, 9, 17, 22]. An adaptive sampling
scheme proposed in [22] achieves an optimal memory-
error tradeoff in the following sense: given memory m,
the algorithm maintains a hull that (1) lies within the
true convex hull, (2) uses at most m vertices, and (3)
approximates the true hull well—any input point not
in the computed hull lies within distance O(D/m2) of
the hull, where D is the diameter of the point stream.
Moreover, the error bound of O(D/m2) is the best pos-
sible in the worst case.

In our problem setting, we will maintain not one
but many convex hulls, depending on the geometry of
the stream, with each hull roughly corresponding to a

cluster. Moreover, the locations of these hulls are not
determined a priori—rather, as in fc-medians, they are
dynamically determined by the algorithm. Unlike k-
medians clusters, however, each hull can use a different
fraction of the available memory to represent its cluster
boundary. One of the key challenges in designing the
ClusterHull algorithm is to formulate a good policy for
this memory allocation. For this we will introduce a
cost function that the various hulls use to decide how
many hull vertices each gets. Let us first begin with an
outline of our scheme.

2.2 The basic algorithm
The available memory m is divided into two pools: a
fixed pool of k groups, each with a constant number of
vertices; and a shared pool of O(k) points, from which
different cluster hulls draw additional vertices. The
number A: has the same role as the parameter fed to k-
medians clustering—it is set to some number at least as
large as the number of native clusters expected in the
input. (Thus our representation will maintain a more
refined view of the cluster structure than necessary, but
simple post-processing can clean up the unnecessary
sub-clustering.) The exact constants in this division
are tunable, and we show their effect on the perfor-
mance of the algorithm through experimentation. For
the sake of concreteness, we can assume that each of
the k groups is initially allocated 8 vertices, and the
common pool has a total of Sk vertices. Thus, if the
available memory is m, then we must have m > 16k.

Figure 2: An approximate hull, with 6 sampling
directions. The sample hull's vertices are a, 6, c, d.

Our algorithm approximates the convex hull of
each group by its extreme vertices in selected (sam-
ple) directions: among all the points assigned to this
cluster group, for each sample direction, the algorithm
retains the extreme vertex in that direction. See Fig-
ure 2 for an example. Each edge of this sampled hull
supports what we call an uncertainty triangle—the tri-
angle formed by the edge and the tangents at the two

30

endpoints of the edge in the sample directions for which
those endpoints are extreme. A simple but important
property of the construction is that the boundary of
the true convex hull is sandwiched in the ring of un-
certainty triangles defined by the edges of the com-
puted hull. See Figure 3 for an illustration. The ex-
tremal directions are divided into two sets, one contain-
ing uniformly-spaced fixed directions, corresponding to
the initial endowment of memory, and another contain-
ing adaptively chosen directions, corresponding to ad-
ditional memory drawn from the common pool. The
adaptive directions are added incrementally, bisecting
previously chosen directional intervals, to minimize the
error of the approximation.

if \H\ > k then
Choose two hulls H, H' 6 H such that merging

H and H' into a single convex hull will result
in the minimum increase to w(H).

Remove H and H' from 7Y, merge them to form
a new hull H*, and put that into H.

If H * has an uncertainty triangle over either edge
joining points of the former H and H1 whose
height exceeds the previous maximum
uncertainty triangle height, refine (repeatedly
bisect) the angular interval associated with that
uncertainty triangle by choosing new adaptive
directions until the triangle height is less than
the previous maximum.

while the total number of adaptive directions
in use exceeds ck

Unrefine (discard one of the adaptive directions
for some H EH] so that the uncertainty triangle
created by unrefinement has minimum height.

Figure 3: The true hull is sandwiched in a ring of
uncertainty triangles.

Each hull has an individual cost associated with
it, and the whole collection of k hulls has a total cost
that is the sum of the individual costs. Our goal
is to choose the cost function such that minimizing
the total cost leads to a set of approximate convex
hulls that represent the shape of the point set well.
Furthermore, because our minimization is performed
on-line, assigning each new point in the stream to a
convex hull when the point arrives, we want our cost
function to be robust: as much as possible, we want it
to reduce the chance of assigning early-arriving points
to hulls in a way that forces late-arriving points to incur
high cost. We leave the technical details of our choice
of the cost function to the following section.

Let us now describe the high-level organization of
our algorithm. Suppose that the current point set S
is partitioned among k convex hulls H I , ... ,Hk- The
cost of hull Hi is w(Hi), and the total cost of the
partition Ji — {Hi,..., H^} is w(71) = J^ew w(H).
We process each incoming point p with the following
algorithm:

Algorithm Cluster-Hull

if p is contained in any H E 7i, or in the ring of
uncertainty triangles for any such H, then

Assign p to H without modifying H.
else

Create a new hull containing only p and add it to 7i.

The last two steps (refinement and unrefinement)
are technical steps for preserving the approximation
quality of the convex hulls that were introduced in [22].
The key observation is that an uncertainty triangle
with "large height" leads to a poor approximation of a
convex hull. Ideally, we would like uncertainty triangles
to be flat. The height of an uncertainty triangle is
determined by two key variables: the length of the
convex hull edge, and the angle-difference between the
two sampling directions that form that triangle. More
precisely, consider an edge pq. We can assume that the
extreme directions for p and g, namely, 9P and #9, point
toward the same side of pq, and hence the intersection
of the supporting lines projects perpendicularly onto
pq. Therefore the height of the uncertainty triangle is
at most the edge length l(pq) times the tangent of the
smaller of the angles between pq and the supporting
lines. Observe that the sum of these two angles equals
the angle between the directions 9P and 9q. If we define
9(pq) to be \6P — Oq\, then the height of the uncertainty
triangle at pq is at most l(pq) • ta,n(d(pq)/2), which is
closely approximated by

This formula forms the basis for adaptively choos-
ing new sampling directions: we devote more sampling
directions to cluster hull edges whose uncertainty tri-
angles have large height. Refinement is the process of
introducing a new sampling direction that bisects two
consecutive sampling directions; unrefinement is the
converse of this process. The analysis in [22] showed

31

that if a single convex hull is maintained using m/2
uniformly spaced sampling directions, and m/2 adap-
tively chosen directions (using the policy of minimizing
the maximum height of an uncertainty triangle), then
the maximum distance error between true and approx-
imate hulls is O(D/m2}. Because in ClusterHull we
share the refinement directions among k different hulls,
we choose them to minimize the global maximum un-
certainty triangle height explicitly. We point out that
the allocation of adaptive directions is independent of
the cost function w(H). The cost function guides the
partition into convex hulls; once that choice is made,
we allocate adaptive directions to minimize the error
for that partition. One could imagine making the as-
signment of adaptive directions dependent on the cost
function, but for simplicity we have chosen not to do
so.

3 Choosing a Cost Function

In this section we describe the cost function we apply
to the convex hulls that ClusterHull maintains. We
discuss the intuition behind the cost function, experi-
mental support for that intuition, and variants on the
cost function that we considered.

The a-hull is a well-known structure for represent-
ing the shape of a set of points [15]. It can be viewed as
an extension of the convex hull in which half-planes are
replaced by the complements of fixed-radius disks (i.e.,
the regions outside the disks). In particular, the con-
vex hull is the intersection of all half-planes containing
the point set, and the a-hull is the intersection of all
disk-complements with radius p that contain the point
set.1 See Figure 4 for examples of the convex hull and
a-hull on an L-shaped point set. The a-hull minimizes
the area of the shape that covers the points, subject to
the radius constraint on the disks.

Figure 4: Shape representations for a set of points:
(left) convex hull, (right) a-hull.

The a-hull is not well suited to represent the shape
of a stream of points, because an unbounded number of
input points may appear on the boundary of the shape.
Our goal of covering the input points with bounded-
complexity convex hulls of minimum total area is an
attempt to mimic the modeling power of the a-hull in
a data stream setting.

Although our goal is to minimize the total area of
our convex hull representation, we use a slightly more
complex function as the cost of a convex hull H:

(3.2) w(H) = area(#) + p • (perimeter(#))2.

Here ^ is a constant, chosen empirically as described
below. Note that the perimeter is squared in this
expression to match units: if the perimeter term
entered linearly, then simply changing the units of
measurement would change the relative importance
of the area and perimeter terms, which would be
undesirable.

1In the definition of cv-hulls, the disk radius p = l/\a\, and
a < 0, but we are not concerned with these technical details.

Figure 5: Input distributions: L-shaped and ellipses.

We want to minimize total area, and so defining
w(H) = area(#) seems natural; however, this proves
to be infeasible in a stream setting. If a point set has
only two points, the area of its convex hull is zero;
thus all such hulls have the same cost. The first Ik
points that arrive in a data stream are paired up into
k two-point convex hulls, each with cost zero, and the
pairing will be arbitrary. In particular, some convex
hulls are likely to cross natural cluster boundaries.
When these clusters grow as more points arrive, they
will have higher cost than the optimal hulls that
would have been chosen by an off-line algorithm. This
effect is clearly visible in the clusters produced by
our algorithm in Figure 6 (right) for the ellipses data
set of Figure 5 (right). By contrast, the L-shaped
distribution of Figure 5 (left) is recovered well using
the area cost function, as shown in Figure 6 (left).

We can avoid the tendency of the area cost to
create long thin needles in the early stages of the
stream by minimizing the perimeter. If we choose
w(H) = perimeter^), then the well-separated clus-
ters of the ellipses data set are recovered perfectly, even
when the points arrive on-line—see Figure 7 (right).

32

Figure 6: With the area cost function, Cluster Hull
faithfully recovers the L-shaped distribution of points.
But it performs poorly on a set of n — 10,000
points distributed among ten elliptical clusters; it
merges pairs of points from different groups and creates
intersecting hulls.

Figure 7: With the perimeter cost function, Cluster-
Hull faithfully recovers the disjoint elliptical clusters,
but performs poorly on the L-shaped distribution.

However, as the poor recovery of the L distribution
shows (Figure 7 (left)), the perimeter cost has its own
liabilities. The total perimeter of two hulls that are
relatively near each other can often be reduced by
merging the two into one. Furthermore, merging two
large hulls reduces the perimeter more than merging
two similar small ones, and so the perimeter cost
applied to a stream often results in many small hulls
and a few large ones that contain multiple "natural"
clusters.

We need to incorporate both area and perimeter
into our cost function to avoid the problems shown
in Figures 6 and 7. Because our overall goal is to
minimize area, we choose to keep the area term primary
in our cost function (Equation 3.2). In that function
(perimeter(/f))2 is multiplied by a constant p, which
is chosen to adjust the relative importance of area and
perimeter in the cost. Experimentation shows that
choosing ^ = 0.05 gives good shape reconstruction on
a variety of inputs. With p, substantially smaller than
0.05, the perimeter effect is not strong enough, and
with /i greater than 0.1, it is too strong. (Intuitively,
we want to add just enough perimeter dependence to
avoid creating needle convex hulls in the early stages
of the stream.)

Figure 8: With the combined area and perimeter cost
function, the algorithm ClusterHull recovers both the
ellipse and L distributions. The choice of n = 0.05
gives good shape reconstruction.

We can understand the combined area-perimeter
cost by modeling it as the area of a fattened convex
hull. If we let p = // • perimeter(#), we see that
the area-perimeter cost (3.2) is very close to the area
obtained by fattening H by p. The true area is
area(#)+p-perimeter(#)4-7rp2 = area(#)+p2(^4-
TT); if IJL is small, then If IJL is relatively large compared
to TT, and the extra ?rp2 term is not very significant.

Because the cost (3.2) may fatten long thin
clusters more than is desirable, we also experi-
mented with replacing the constant /j, in (3.2) by
a value inversely related to the aspect ratio of H.
The aspect ratio of H is diam(H}/\jidth(H) =
0((perimeter(#))2/area(#)). Thus if we simply re-
placed p, by l/aspectRatio(#) in (3.2), we would es-
sentially obtain the area cost. We compromised by
using the cost

w(H] = area(#) +
IJL • (perimeter(#))2/(aspectRatio(#))x'

for various values of x (x = 0.5, x = 0.1).
The aspect ratio is conveniently approximated as
(perimeter(/f))2/area(^), since the quantities in
that expression are already maintained by our convex
hull approximation. Except in extreme cases, the re-
sults with this cost function were not enough different
from the basic area-perimeter cost to merit a separate
figure.

The cost (3.2) fattens each hull by a radius pro-
portional to its own perimeter. This is appropriate if
the clusters have different natural scales and we want
to fatten each according to its own dimensions. How-
ever, in our motivating structure the a-hull, a uniform
radius is used to define all the clusters. To fatten hulls
uniformly, we could use the weight function

w(H) — area(#) + p • perimeter(ff) 4- Trp2.

However, the choice of the fattening radius p is prob-
lematic. We might like to choose p such that a-hulls

33

defined using radius-p disks form exactly k clusters,
but then the optimum value of p would decrease and
increase as the stream points arrived. We can avoid
these difficulties by sticking to the simpler cost of def-
inition (3.2).

4 Extensions and Enhancements

In this section we discuss how to enhance the basic
ClusterHull algorithm to improve the quality of shape
representation.

4.1 Spatial incoherence and
period-doubling cleanup

In many data streams the arriving points are ordered
arbitrarily, possibly even adversarily. The ClusterHull
scheme (and indeed any on-line clustering algorithm)
is vulnerable to early errors, in which an early-arriving
point is assigned to a hull that later proves to be the
wrong one.

Figure 9 (left) shows a particularly bad input con-
sisting of five thin parallel stripes. We used ClusterHull
with IJL — 0.05 to maintain five hulls, with the input
points ordered randomly. A low density sample from
the stripe distribution (such as a prefix of the stream)
looks to the algorithm very much like uniformly dis-
tributed points. Early hull merges combine hulls from
different stripes, and the ClusterHull algorithm cannot
recover from this mistake. See Figure 9 (right).

Figure 9: Processing the stripes input (left) in random
order leads to errors for our algorithm (right).

If the input data arrive in random order, the
idea of period-doubling cleanup may help identify and
amplify the true clusters. The idea is to process the
input stream in rounds in which the number of points
processed doubles in each round. At the end of each
round we identify low density hulls and discard them—
these likely group points from several true clusters.
The dense hulls are retained from round to round, and
are allowed to grow.

Formally, the period-doubling cleanup operates as
follows: For each H H we maintain the number of

points it represents, denoted by count(/f). The density
of any hull H is density(#) = count(#)/area(#).
The algorithm also maintains an approximate convex
hull G of all the input points. After each round, it
discards from H every hull H for which any of the
following holds:

• count (H)

• density(#) < density(Gf)

• density(#) < | • median{density(A) :

Here TV is the number of points seen so far. In our
experiments, we set the tunable parameter 6 to 0.1.

The first test takes care of hulls with a very small
number of tightly clustered points (these may have high
densities because of their smaller area, and will not be
caught by density pruning). The second test discards
hulls that have less than average density. The intuition
is that each cluster should be at least as dense as the
entire input space (otherwise it is not an interesting
cluster). In case the points are distributed over a
very large area, but the individual clusters are very
compact, the average density may not be very helpful
for discarding hulls. Instead, we should discard hulls
that have low densities relative to other hulls in the
data structure; the third test takes care of this case—
it discards any hull with density significantly less than
the median density.

Figure 10 (left) shows the result of period-doubling
cleanup on the stripes distribution; the sparse hulls
that were initially found have been discarded and five
dense hulls have been correctly computed. We note
that, with the same amount of memory, neither CURE
nor the fc-median clustering is able to represent the
stripes distribution well (cf. Figure 10). Our exper-
iments show that applying period-doubling cleanup
helps improve clustering on almost all data sets.

Figure 10: Period-doubling cleanup (left) on Cluster-
Hull corrects the errors in the stripes distribution; the
middle figure shows the output of /c-medians, and the
right figure shows the output of CURE.

34

4.2 Noisy data and incremental
cleanup

Sampling error and outliers cause difficulty for nearly
all clustering algorithms. Likewise, a few outliers can
adversely affect the ClusterHull shape summary. An
algorithm needs some way to distinguish between dense
regions of the input distribution (the true clusters) and
sparse ones (noise). In this section, we propose an
incremental cleanup mechanism that can improve the
performance of our algorithm in the presence of noise.
Both the period-doubling and the incremental cleanup
are inspired by sampling techniques used in frequency
estimation in streams. In particular, period-doubling
is inspired by sticky sampling and incremental cleanup
is inspired by lossy counting [23]. The incremental
cleanup also processes the input in rounds, but the
rounds do not increase in length. This is because
noise is not limited to the beginning of the input; if
we increased the round length, all the hulls would be
corrupted by noisy points. Instead, we fix the size of
each round depending on the (estimated) noise in the
input.

Specifically, the incremental cleanup assumes that
the input stream consists of points drawn randomly
from a fixed distribution, with roughly (1 — e)N of
them belonging to high density clusters and eTV of them
being low density noise. The expected noise frequency
e affects the quality of the output. We can estimate
it conservatively if it is unknown. The idea is to set
the value of 6 to be roughly equal to e, and process the
input in rounds of /c/(2e) points. The logic is that in
every round, only about k/2 hulls will be corrupted by
noisy points, still leaving half of the hulls untouched
and free to track the true distribution of the input. If
we set k to be more than twice the expected number
of natural clusters in the input, we obtain a good
representation of the clusters.

Figure 11: Incremental cleanup, with estimated noise
frequency e = 0.1, applied to distributions with 1%,
10%, and 20% actual background noise.

This scheme propagates the good hulls (those with
high density and high cardinality) from one round of
the algorithm to the next, while discarding hulls that
are sparse or belong to outliers. See Figure 11 for
an example of how this scheme identifies true clusters

and discards noisy regions. Of course, if noise is
underestimated significantly (Figure 11 (right)), the
quality of the cluster hulls suffers.

4.3 Spatial coherence
tracking

and trajectory

Section 4.1 considered spatially incoherent input
streams. If the input is spatially coherent, as occurs
in some applications, ClusterHull performs particularly
well. If the input stream consists of locations reported
by sensors detecting some moving entity (a light pen
on a tablet, a tank in a battlefield, animals in a remote
habitat), our algorithm effectively finds a covering of
the trajectory by convex "lozenges." The algorithm
also works well when there are multiple simultaneous
trajectories to represent, as might occur when sensors
track multiple independent entities. If the stripes of
Figure 9 are fed to the algorithm in left-to-right order
they are recovered perfectly; likewise in Figure 12 a
synthetic trajectory is represented accurately.

Figure 12: Input along a trajectory in (a); the shape is
recovered well using ra = 100 in (b), and using ra = 150
in (c).

4.4 Density estimation and display

Stream versions of traditional clustering schemes (in-
cluding fc-median and CURE) do not include an es-
timate of the density of points associated with each
cluster center, whereas each cluster hull H can easily
maintain count(/f). As in Section 4.1, this gives an es-
timate of the density of the points in each hull. If this
information is displayed graphically (cf. Figure 13) it
conveys more insight about the distribution of the in-
put data than does the simple cluster-center output or
even cluster-sample output.

5 Implementation and
Experiments

We implemented the convex hull algorithm of [22]
and the ClusterHull algorithm on top of it. The

35

convex hull algorithm takes logarithmic time per in-
serted point, on the average, but our Cluster Hull imple-
mentation is more simple-minded, optimized more for
ease of implementation than for runtime performance.
The bottleneck in our implementation is neighborhood
queries/point location, taking time proportional to the
number of hulls. By storing the hull edges in a quad-
tree, we could speed up these operations to O(logra)
time.

When a new point arrives, we must check which
hull it belongs to, if any. Using a quad-tree, this
reduces to a logarithmic-time search, followed by
logarithmic-time point-in-polygon tests with an ex-
pected constant number of hulls. Each new hull H
must compute its optimum merge cost—the minimum
increment to w(li,} caused by merging H with another
hull. On average, this increment is greater for more
distant hulls. Using the quad-tree we can compute the
increment for O(l) nearby hulls first. Simple lower
bounds on the incremental cost of distant merges then
let us avoid computing the costs for distant hulls. Com-
puting the incremental cost for a single pair of hulls re-
duces to computing tangents between the hulls, which
takes logarithmic time [22].

Merging hulls eliminates some vertices forever, and
so we can charge the time spent performing the merge
to the deleted vertices. Thus a careful implementation
of the ClusterHull algorithm would process stream
points in O(logra) amortized time per point, where
m is the total number of hull vertices.

In the remainder of this section we evaluate the
performance of our algorithm on different data sets.
When comparing our scheme with fc-median cluster-
ing [19], we used an enhanced version of the latter.
The algorithm is allowed to keep a constant number of
sample points per cluster, which can be used to deduce
the approximate shape of that cluster. We ran the k-
medians clustering using k clusters and total memory
(number of samples) equal to m. CURE already has
a parameter for maintaining samples in each cluster,
so we used that feature. In this section, we analyze
the output of these three algorithms (ClusterHull, k-
median, CURE) on a variety of different data sets, and
as a function of m, the memory.

Throughout this section, we use the period-
doubling cleanup along with the area-perimeter cost
(Equation 3.2) to compute the hulls. We use /j, = .05
and r, the number of initial sample directions per hull,
equal to 8. The values of these parameters are critical
for our algorithm; however, in this section we use the
same set of parameters for all data sets. This shows
that when tuned properly, our algorithm can generate

good quality clusters for a variety of input distributions
using a single set of parameters. In the next section,
we will analyze in detail the effects of these param-
eters on the results of our scheme. To visualize the
output, we also shade the hulls generated by our algo-
rithm according to their densities (darker regions are
more dense).

5.1 West Nile virus spread

Figure 13: The westnile data set is shown in the top
figure (a). Figures (b) and (c) show the outputs of
ClusterHull for m = 256 and m = 512. Figures (d)
and (e) show the corresponding outputs for A;-medians.
Figures (f) and (g) show the corresponding outputs for
CURE.

Our first data set, westnile (Figure 13 (a)), con-
tains about 68,000 points corresponding to the loca-
tions of the West Nile virus cases reported in the US, as
collected by the CDC and the USGS [29]. We random-
ized the input order to eliminate any spatial coherence
that might give an advantage to our algorithm. We ran
ClusterHull to generate output of total size m = 256

36

and 512 (Figures (b) and (c)). The clustering algo-
rithms fc-medians and CURE were used to generate
clusters with the same amount of memory. The results
are shown in Figure 13.

All three algorithms are able to track high-density
regions in coherent clusters, but there was little infor-
mation about the shapes of the clusters in the output
of /c-medians or CURE. Visually the output of Cluster-
Hull looks strikingly similar to the input set, offering
the analyst a faithful yet compact representation of the
geometric shapes of important regions.

5.2 The circles and the ellipse data
sets

Figure 14: The left column shows output of ClusterHull
(top), k-medians (middle) and CURE (bottom) for
circles dataset with m — 64. The right column
shows corresponding outputs for ellipse dataset with
m = 128.

In this experiment, we compared ClusterHull with
fc-median and CURE on the circles and the ellipse
data sets described earlier. The circles set contains
n = 10,000 points generated inside 3 circles of different
sizes. We ran the three algorithms with a total memory
m = 64. The output of ClusterHull is shown in
Figure 14 (a); the output of fc-median is shown in (b);
and the output of CURE is shown in (c).

Similarly, Figures 14 (d), (e), and (f), respectively,
show the outputs of ClusterHull, A>median, and CURE

on the ellipse data set with memory m = 128. The
ellipse data set contains n = 10,000 points distributed
among ten ellipse-shaped clusters.

In all cases, ClusterHull output is more accurate,
visually informative, and able to compute the bound-
aries of clusters with remarkable precision. The out-
puts of other schemes are ambiguous, inaccurate, and
lacking in details of the cluster shape boundary. For
the circles data, the fc-inedian does a poor job in de-
termining the true cluster structure. For the ellipse
data, CURE does a poor job in separating the clus-
ters. (CURE needed a much larger memory—a "win-
dow size" of at least 500—to separate the clusters cor-
rectly.)

6 Tuning ClusterHull
Parameters

In this section, we study the effects of various param-
eters on the quality of clusters.

6.1 Variation with r

Figure 15: The result of varying r on the ellipses data
set.

We first consider the effect of changing r, the
number of initial directions assigned to each hull. To
isolate the effects of r, we fixed the values of ^ = .05
and k = 10. We ran the experiments on two data sets,
ellipses and circles. The results are shown in Figures 15
and 16, respectively.

The results show that the shape representation
with 4 initial directions is very crude: ellipses are
turned into pointy polygons. As we increase r, the
representation of clusters becomes more refined. This
contrast can be seen if we compare the boundary of

37

Figure 16: The result of varying r on the circles data
set.

the big circle in Figure 16 for r = 4 and 8. However,
increasing the number of directions means that we need
more memory for the hulls (memory grows linearly with
r). For r = 8, we get a good balance between memory
usage and the quality of the shapes.

6.2 Variation with p,

Figure 17: For the circles data set, ClusterHull recovers
clusters correctly for // G [.05, .5], but fails for JJL < .01.

We considered values of [i in the range [.01,.5].
We fixed r — 8, and ran our algorithm for two data
sets, circles and stripes. We fixed the number of hulls,
k = 10 (m = 128) for circles and k = 5 (ra = 64) for
stripes.

If the value of/z is too small, the area dominates the
cost function. This causes distant hulls to merge into
long skinny hulls spanning multiple clusters. Although
the period-doubling cleanup gets rid of most of them

Figure 18: For the stripes data set, ClusterHull re-
covers clusters correctly for p, e [.01,. 1], but fails for

> .5.

by discarding hulls with small densities, the output still
contains some hulls spanning multiple natural clusters.
Figure 17 shows this effect when // = .01.

On the other hand, if /^ is increased too much, the
cost function prefers decreasing the total perimeter,
and it is hard to prevent large neighboring clusters from
merging together. In Figure 18, neighboring stripes are
merged into a single hull for p, = .5. The results show
that choosing fj, in the range [.05, .1] gives good clusters
for most input sets.

7 Conclusion

We developed a novel framework for summarizing the
geometric shape and distribution of a two-dimensional
point stream. We also proposed an area-based quality
measure for such a summary. Unlike existing stream-
clustering methods, our scheme adaptively allocates
its fixed memory budget to represent different clusters
with different degrees of detail. Such an adaptive
scheme can be particularly useful when the input has
widely varying cluster structures, and the boundary
shape, orientation, or volume of those clusters can be
important clues in the analysis.

Our scheme uses a simple and natural cost func-
tion to control the cluster structure. Experiments show
that this cost function performs well across widely dif-
ferent input distributions. The overall framework of
ClusterHull is flexible and easily adapted to different
applications. For instance, we show that the scheme
can be enhanced with period-doubling and incremental

38

cleanup to deal effectively with noise and extreme data
distributions. In those settings, especially when the in-
put has spatial coherence, our scheme performs notice-
ably better than general-purpose clustering methods
like CURE and k-medians.

Because our hulls tend to be more stable than, for
instance, the centroids of A> medians, we can maintain
other useful data statistics such as population count or
density of individual hulls. (Our hulls grow by merging
with other hulls, whereas the centroids in fc-medians
potentially shift after each new point arrival. The use
of incremental cleanup may cause some of our hulls
to be discarded, but that happens only for very low-
weight, and hence less-interesting hulls.) Thus, the
cluster hulls can capture some important frequency
statistics, such as which five hulls have the most points,
or which hulls have the highest densities, etc.

Although ClusterHull is inspired by the a-hull
and built on top of an optimal convex hull structure,
the theoretical guarantees of those structures do not
extend to give approximation bounds for ClusterHull.
Providing a theoretical justification for ClusterHull's
practical performance is a challenge for future work.

References
[I] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan.

Approximating extent measures of points. J. ACM,
51(4):606-635, 2004.

[2] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A
framework for clustering evolving data streams. In
Proc. of the 29th VLDB conference, 2003.

[3] N. Alon, Y. Matias, M. Szegedy. The space complexity
of approximating the frequency moments. J. Comput.
Syst. Sci. 58 (1999), 137-147.

[4] N. Amenta, M. Bern, and D. Eppstein. The crust and
the /3-skeleton: Combinatorial curve reconstruction.
Graphical Models and Image Processing, 60:125-135,
1998.

[5] P. S. Bradley, U. Fayyad, and C. Reina. Scaling
Clustering Algorithms to Large Databases. Proc. 4th
International Conf. on Knowledge Discovery and Data
Mining (KDD-98), 1998.

[6] T. Chan. Faster core-set constructions and data
stream algorithms in fixed dimensions. In Proc. 20th
Annu. ACM Sympos. Comput. Geom., pages 152-159,
2004.

[7] M. Charikar, C. Chekuri, T. Feder, and R. Motwani.
Incremental clustering and dynamic information re-
trieval. In Proc. 29th Annu. ACM Symp. Theory Com-
puting, pages 626-635, 1997.

[8] D. Cheng, R. Kannan, S. Vempala, G. Wang A
Divide-and-Merge Methodology for Clustering. In
Proc. of the ACM Symposium on Principles of
Database Systems, 2005.

[9] G. Cormode and S. Muthukrishnan. Radial histogram
for spatial streams. Technical Report 2003-11, DI-
MACS, 2003.

[10] B. Curless and M. Levoy. A volumetric method for
building complex models from range images. In Proc.
SIGGRAPH 96, pages 303-312, 1996.

[11] T. K. Dey, K. Mehlhorn, and E. Ramos. Curve
reconstruction: Connecting dots with good reason.
Comp. Geom.: Theory and Appl., 15:229-244, 2000.

[12] P. Domingos and G. Hulten. A general method for
scaling up machine learning algorithms and its appli-
cation to clustering. In Proc. of the 18th International
Conference on Machine Learning, ICML, 2001

[13] P. Domingos, G. Hulten. Learning from Infinite
Data in Finite Time. In Proc. Advances in Neural
Information Processing Systems (NIPS), 2002

[14] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and
V. Vinay. Clustering in large graphs and matrices.
In Proc. of 10th Symposium on Discrete Algorithms
(SODA), 1999.

[15] H. Edelsbrunner. Algorithms in Combinatorial Geom-
etry, volume 10 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Heidelberg, West
Germany, 1987.

[16] M. Ester, H. Kriegel and X. Xu. A database interface
for clustering in large spatial databases. In Int.
Conference on Knowledge Discovery in Databases and
Data Mining (KDD-95), Montreal, Cananda, August
1995.

[17] J. Feigenbaum, S. Kannan, and J. Zhang. Computing
diameter in the streaming and sliding-window models,
2002. Manuscript.

[18] A. Frieze, R. Kannan and S. Vempala. Fast Monte-
Carlo algorithms for finding low-rank approximations.
In Proc. of 39th Symposium on Foundations of Com-
puter Science (FOGS), 1998.

[19] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O'Callaghan. Clustering data streams: Theory and
practice. IEEE Trans. Knowl. Data Engineering, Vol.
15, pages 515-528, 2003.

[20] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient
clustering algorithm for large databases. In Proc.
of International Conference on Management of Data
(SIGMOD), 1998.

[21] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. Proc. of SIG-
MOD, pages 58-66, 2001.

[22] J. Hershberger and S. Suri. Adaptive sampling for
geometric problems over data streams. In Proc. 23rd
ACM Sympos. Principles Database Syst, pages 252-
262, 2004.

[23] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In VLDB, pages 346-357,
2002.

[24] S. Muthukrishnan. Data streams: Algorithms and
applications. Preprint, 2003.

39

[25] R. T. Ng and J. Han. Efficient and Effective Clustering
Methods for Spatial Data Mining. In Proceedings of
the 20th VLDB Conference, 1994.

[26] J. O'Rourke and G. T. Toussaint. Pattern recognition.
In Jacob E. Goodman and Joseph O'Rourke, editors,
Handbook of Discrete and Computational Geometry,
chapter 43, pages 797-813. CRC Press LLC, Boca
Raton, FL, 1997.

[27] D. Pelleg, and A. W. Moore. X-means: Extending
K-means with Efficient Estimation of the Number of
Clusters. In Proc. of the 17th International Confer-
ence on Machine Learning (ICML), 2000.

[28] S. Vempala R. Kannan and A. Vetta On clusterings -
good, bad and spectral. In Proc. 41st Symposium on
the Foundation of Computer Science, FOGS, 2000.

[29] USGS West Nile Virus Maps - 2002. http://cindi.
usgs.gov/hazard/event/west_nile/.

[30] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
An Efficient Data Clustering Method for Very Large
Databases. In Proc. of the International Conference
on Management of Data (SIGMOD), 1996.

40

http://cindi.usgs.gov/hazard/event/west_nile/
http://cindi.usgs.gov/hazard/event/west_nile/

Distance-Sensitive Bloom Filters

Adam Kirsch Michael Mitzenmacher

Abstract
A Bloom filter is a space-efficient data structure that
answers set membership queries with some chance of
a false positive. We introduce the problem of design-
ing generalizations of Bloom filters designed to answer
queries of the form, "Is x close to an element of S1?"
where closeness is measured under a suitable metric.
Such a data structure would have several natural appli-
cations in networking and database applications.

We demonstrate how appropriate data structures
can be designed using locality-sensitive hash functions
as a building block, and we specifically analyze the
performance of a natural scheme under the Hamming
metric.

1 Introduction
A Bloom filter is a simple, space-efficient, randomized
data structure that allows one to answer set membership
queries with a small but constant probability of a false
positive.1 Bloom filters have found numerous uses,
particularly in distributed databases and networking
(see, e.g. [2, 9, 10]). Here we initiate a new direction
in the study of Bloom filters by considering distance-
sensitive Bloom filters that answer approximate set
membership queries in the following sense: given a
metric space ([/, d), a finite set S C C/, and parameters
0 < e < S, the filter aims to effectively distinguish
between inputs u e U such that d(u,x) < £ for some
x 6 S and inputs u G U such that d(u, x) > 6 for every
x G S. Our constructions allow false positives and false
negatives. By comparison, the standard Bloom filter
corresponds to the case where £ = 0 and 6 is any positive
constant, and it only gives false positives.

We establish a framework for constructing distance-
sensitive Bloom filters when the metric d admits a

* Division of Engineering and Applied Sciences, Harvard Uni-
versity, Cambridge, MA 02138. Supported in part by an NSF
Graduate Research Fellowship and NSF grants CCR-9983832 and
CCR-0121154. Email: kirschOeecs.harvard.edu

tDivision of Engineering and Applied Sciences, Harvard
University, Cambridge, MA 02138. Supported in part
by NSF grants CCR-9983832 and CCR-0121154. Email:
michaelmSeecs.harvard.edu

1We assume some familiarity with Bloom filters throughout
the paper; see [2] for background.

locality-sensitive hash family (see, e.g., [4, 5, 7]). The
potential benefits of this type of data structure are its
speed and space; it can provide a quick answer without
performing comparisons against the entire set, or even
without performing a full nearest-neighbor query, and
it should require less space than the original data. For
example, in a distributed setting, client processes might
use such a filter to determine whether sending a nearest
neighbor query to a server would be worthwhile without
actually querying the server; if the filter indicates that
there is no sufficiently close neighbor to the query, then
the request can be skipped. Of course, in all applications
the consequences of and tradeoffs between false positives
and false negatives need to be considered carefully.

As an example of a possible application of a
distance-sensitive Bloom filter, consider a large data-
base that identifies characteristics of people using a large
number of fields. Given a vector of characteristic values,
one may want to know if there is a person in the data-
base that matches on a large fraction of the characteris-
tics. One can imagine this being useful for employment
databases, where one is seeking a candidate matching
a list of attributes. A company may wish to provide a
distance-sensitive Bloom filter as a way of advertising
the utility of its database while providing very little in-
formation about its actual content. Similarly, the data
structure may also be useful for criminal identification;
it could provide a quick spot-test for whether a suspect
in custody matches characteristics of suspects for other
unsolved crimes.

As a networking example, the SPIE system for IP
traceback represents packet headers seen over a small
interval of time by a Bloom filter [16]. The authors
of that work found that packet headers usually remain
consistent as packets travel among routers. A distance-
sensitive Bloom filter might allow small changes in the
packet header bits while still allowing the Bloom filter
to answer queries appropriately.

As a very general example, suppose that we have
a collection of sets, with each set being represented
by a Bloom filter. For example, a Bloom filter might
represent packet traces as above, or a sketch of a
document as in [3]. The relative Hamming distance
between two Bloom filters (of the same size, and created
with the same hash functions) can be used as a measure

41

of the similarity of the underlying sets (see, e.g., [2]).
Hence, one can construct a distance-sensitive Bloom
filter on top of such a collection of Bloom filters to
attempt to quickly and easily answer questions of the
form, "Are there any sets in the collection very close
to this query set?" Such a general construction may
prove useful for other distributed applications where
Bloom filters are used. For this reason, we pay special

a

attention to the case where U = {0,1} and d is the
relative Hamming metric on U.

A more distant but potentially very exciting appli-
cation of distance-sensitive Bloom filters is in the con-
text of DNA sequences. One might hope that such a fil-
ter could effectively handle queries when d is chosen to
be the edit distance metric, in order to answer questions
of the form, "Is there a DNA sequence close to this one
in your database?" Unfortunately, edit distance cur-
rently appears to be too difficult to adequately handle
in our framework, as there is no known good locality-
sensitive hash function for edit distance, although there
is recent work attempting to connect edit distance and
Hamming distance via various reductions [7, 11]. Simi-
lar problems arise in computer virus detection, and ad
hoc variations of Bloom filters have recently been used
in this setting [15].

Although there are many potential applications,
this problem does not appear to have been the subject of
much study. Manber and Wu [8] considered the problem
of handling a single character error using Bloom filters
in the context of password security. Work on nearest-
neighbor problems (including [4, 5, 7]) is clearly related,
but the problem setting is not equivalent. Our work
also seems similar in spirit to work on property testing
[14, 6], and specifically to the recently introduced notion
of tolerant property testing [13], although here the task
is to design a structure based on an input set that will
allow quick subsequent testing of closeness to that set,
instead of an algorithm to test closeness of an object to
some property.

Our main contributions in this paper are therefore

1. introducing the formal problem of developing
Bloom filter variants that effectively determine
whether queries are close to an item in a partic-
ular set,

2. developing the connection between this problem
and locality-sensitive hashing, and

3. examining in detail the case where U = E£ and d
is the relative Hamming metric.

Hamming metric on C7, and \S\ = n, our distance-
sensitive Bloom filter is only efficient and effective for
constant 6 when £ = O(l/logn). That is, we can only
differentiate between query strings that differ from all
strings in S on a (constant) 5-fraction of bits and query
strings that share a 1 — e = 1 — O(l/logn)-fraction of
bits with some string in S. We would prefer £ to be
constant. Nevertheless, our experiments suggest that
even with this limitation distance-sensitive Bloom filters
work sufficiently well to be useful in practice.

Our work leaves many additional open problems.
Indeed, one obvious question is whether Bloom filters
provide the appropriate paradigm for this problem;
alternatives to standard Bloom filters have recently
received study [12]. Our major reasons for initiating
our study with Bloom filters are because they provide a
natural theoretical framework and because Bloom filters
are already widely accepted, understood, and used by
practitioners.

2 A General Approach

This section gives a general approach to designing
distance-sensitive Bloom filters for metric spaces ([/, d)
that admit a locality-sensitive hash family [5] .

DEFINITION 2.1. A family H = {h : U — > V} is
(ri,r2,/?i,p2)-sensitive with respect to a metric space
([/, d) if r\ < r-2, pi > p-2, and for any x, y 6 U,

We say that any such family is a (£/, d)-locality-sensitive
hash (LSH) family, omitting (U, d} when the meaning is
clear.

It turns out that our approach is more effectively
expressed when we generalize Definition 2.1.

DEFINITION 2.2. Let (U,d) be a metric space, and let
PL : R>o — >• [0, 1] and PH '• B£>o —* [0, 1] be non-
increasing. A hash family H : U —> V is called
(pL,p#)-distance sensitive (with respect to (U,d)) if for
all x, y e U

We note that Definition 2.2 really does general-
ize Definition 2.1, since for any (ri,r2,pi,p2)-locality-
sensitive hash family H, we may set

Our initial results are not as strons
For example, when U = {0,1}

as one might hope.
, d is the relative

42

and Proof. For the lower bound, we write

and get that H is a (p£,p#)-distance-sensitive hash
family.

We are now ready to present our first and most gen-
eral distance-sensitive Bloom filter construction, which
is essentially a standard partitioned Bloom filter where
the random hash functions are replaced by distance-
sensitive hash functions. Let Ji : U —> V be a (PL,PH}-
distance sensitive hash function, fix some S C U with
n elements, and let A be an array consisting of k dis-
joint rn'-bit arrays, A[l, 1],..., ̂ [A;,™'] (for a total of
m — km' bits), where k and m' are parameters. If
V ^ [m'], then let H' : V —>• [m'} be a weakly pairwise-
independent hash family.

To initialize the filter, we first choose / i i , . . . , hk <—
H independently. If V ^ [m'], then we also choose
h(,..., h'k <— H' independently, and define ^ = h't o hi
for i e [k]. If V — [m'], then we define gt = hi for
i 6 [A;]. Next, we set all of the bits in A to zero. Finally,
for x 6 S and i e [fe], we set A[z,^(x)] = 1.

It remains to specify how to use the filter to
effectively determine whether a query u £ U is close
to some x G S. In a standard Bloom filter, to answer
queries of the form, "Is u 57" we simply check if
all of u's hash locations in A (that is, the set of bits
{A[i, hi(u)] : i e [A;]}) are set to 1; we return "w e 5"
if this is the case and we return "u ^ 5" otherwise. In
our setting, we must consider that u might not be in 5
but still be close to some element of 51, in which case
it might be that not all of w's hash locations are set
to 1. We consider instead the set of w's hash locations
that are set to 1; specifically, by symmetry, it suffices
to consider the number B(u) of u's hash locations that
are set to 1.

Now, it is easy to see that B(u) = X^effcl A [i , g i (u)] .
As the A [i , g i (u)] ' s are independent and identically
distributed bits, B(u) ~ Bin(A;,gu) for some qu 6 [0,1]
(where Bin(t, r) denotes the binomial distribution with
t trials and common success probability r). We derive
upper and lower bounds on qu.

PROPOSITION 2.1. In an abuse of notation, we define
d(u, S} = mmX£s d(u, x) for u G U. Let 1 (•) denote the
indicator function. For any u e U,

where the last step follows from the fact that PL is non-
increasing.

For the upper bound, we write

so

43

Now, if then for any

and if then for any

For real-valued random variables X and Y, we write
X <st Y or if Y stochastically dominates X. That
is X <8t Y if for all x e R, Pr(X > x) < Pr(r >
x). The following corollary now follows readily from
Proposition 2.1.

COROLLARY 2.1. For am/ u eU,

Corollary 2.1 suggests that if the filter is configured
properly then whenever u E U is particularly close to
some x 6 S and v G U is particularly far from every x
S, we should have that qu is substantially larger than
qv. Since binomial distributions are reasonably well-
concentrated around their expectations, this intuition
suggests the existence of some threshold t (that does
not depend on the particular strings in S) such that
B(u) is unlikely to be below t and B(v) is unlikely to
be above t. It follows that for any w U that is either
particularly close to some x e S or particularly far from
every x S, we can effectively determine which of these
two cases applies by comparing B(w) and t.

As an example, we consider t — k, which corre-
sponds to the technique used by a standard Bloom fil-
ter. More specifically, we suppose that when the filter
is queried with parameters 0 < £ < 6 and u 6 U, it
responds that "d(w, S) < e" if all of w's hash locations
are 1 and "d(u, S) > 5" otherwise. For this scheme,
Corollary 2.1 immediately tells us that

The setting of t = k is simply an example. For any real
application, it is important to assess the relative severity
of false positives and false negatives and experimentally
determine the value of t that optimizes the tradeoff
between the observed frequencies of the two types of
errors.

Before continuing, we note that the bound for
the false positive probability is unfortunately rather
weak in this general setting, due to the fact that
the probability that a particular hash location is set
to 1 (from the occurrence of the event {3x 6 S :
hi(x) = hi(u}} for some fixed i e [k] and u 6 U
with d(u,S) > 6) is bounded only by np#(<5); this
requires that PH($) is certainly 0(1 /n) and preferably
o(l/n). In practice, this weakness may be avoided,
although this depends on the set 5 (and the underlying
metric); in particular, maxu J^xes Pn(d(x, u)} will often
be smaller than npfj(8), and one may be able to bound
maxu ^2X£sPH(d(x,u)) easily given S. Alternatively,
the bound npn(S) may be reasonably tight, such as
when PH($) is small and collisions between elements of
S are unlikely. Similar issues arise in nearest- neighbor
problems [1]; this issue clearly warrants further study.

3 The Relative Hamming Metric on U = E^
To give more insight and make the problem more
concrete, we now focus on the special case where

U — S^ for some i and alphabet E, and d is the
relative Hamming metric on U (that is, d(u, v) —
Y^i=i 1 (ui 7^ vi] /£> where 1 (•) is the indicator function
and for u 6 U and i E [•£], we let u^ denote the
ith character of u). Without loss of generality, we
suppose that E = {0,.. . , r — 1} for some r > 2. An
obvious alternative approach in this situation would be
to simply choose s character locations (independently
and uniformly at random) and for each string in S use
these s characters as a sketch for the string. To check if
any string in S has distance at most e from some input
x the sketches can be checked to see if any match in
(slightly less than) a 1 — £ fraction of locations. Such
schemes require checking at least O(n) characters to find
a potential match; while this may be suitable for some
applications, we aim (in the spirit of standard Bloom
filter constructions) to use only a constant number of
character lookups into the data structure, making this
approach unsuitable (although it may also be useful in
practice).

We first give a general analysis of a distance-
sensitive Bloom filter and show that this analysis does
not yield performance tradeoffs nearly as good as a
standard Bloom filter. Then we show that by limiting
our goals appropriately, our analysis yields results that
are suitable in practice for the important case where r =
2. Finally, we present the results of simple experiments
that demonstrate the potential practicability of the
scheme.

Recall that, given parameters 0 < e < S < 1,
our goal is to effectively distinguish between the strings
u e U where d(w, S) < s, which we call e-close to S,
and those where d(u, S) > 5, which we call S-far from
S.

We define

Here n is the number of items, ra is the total size
of the filter (in bits), k > 1 is the number of hash
functions, and t! is the number of locations read per
hash function. If r = 2, the bits yield a location in the
hash table in the natural way. Specifically, we define the
hash family H : U —>• [ra'] in the case where r = 2 as

44

follows: we choose h <— H by choosing ii,..., {(• <— [l\
uniformly and independently, and then denning h(u) =
Ui-t • • • Uit, + 1 (where we are considering u^ • • • Uit, as a
number in binary). If r > 2, we do essentially the same
thing, but with an added level of pairwise independent
hashing from E to {0,1}. More precisely, if r > 2, we let
Hf : E —> {0,1} be a pairwise independent hash family,
and we define the hash family Ji : U —> [m'\ as follows:
we choose h <— 7i by choosing i i , . . . , if <— [t] uniformly
and independently, h(,..., h'^, <— H' independently, and
then defining h(u] = h'^u^} • • • /4'(wv) + 1. Using
these definitions, we construct the filter described in
Section 2.

It is easy to verify that H is a (/>£,,p#)-distance
sensitive hash function for PL(Z) = PH(Z) = (1 — czf .
(Indeed, if r = 2, then Ji is a canonical example of a
locality-sensitive hash family [5].) Proposition 2.1 now
immediately yields the following result.

COROLLARY 3.1. Consider some u e U.

• I f d (u , S) < 8, then qu>(l- csf.

• Ifd(u, S} > 6, then qu < n(l - cdf.

In Section 2, we gave some intuition as to why
results of the above form should allow for a properly
configured filter to effectively distinguish between those
u 6 U that are e-close to S and those u e U that are
6-far from S. Theorem 3.1 formalizes that intuition.

THEOREM 3.1. When t = k(l - ce)1'/2, then for any
fixed u G U, over the random choices made constructing
the filter:

Proof. For the first inequality, we have d(u, S) < £.
Then

REMARK 3.1. While the correct choice of the threshold
t in practice may depend on the relative importance
of false positive and false negatives, the choice of t —
k(l — ce)1 /2 presented here allows provable statements
that give insight into the performance tradeoffs involved
in designing the filter; specifically, the bounds are the
same order of magnitude in the exponent, and allow for
the asymptotic analyses in Sections 3.1 and 3.2.

where the second step follows from Corollary 3.1, the
fifth step follows from the fact that t' > logi-ce 4n, and
the other steps are obvious. Therefore,

3.1 Asymptotic Analysis: The Bad News. We
now consider what Theorem 3.1 suggests about the
performance of our basic distance-sensitive Bloom filter
construction. While the experiments in Section 4 show
that our construction is likely to be useful in many
practical situations, it does not scale well to very large
numbers of items. By comparison, we recall that
standard Bloom filters have the following three very
desirable properties when properly configured:

1. They use O(n) bits (and the hidden constant is
small).

2. They guarantee a small constant error probability
(asymptotically and in practice).

3. To answer a query, one must only read a small
constant number of bits in the array.

Our construction does not appear to meet these
goals for constant (with respect to n) values of the

45

by Corollary 3.1. Therefore,

ay the Azuma-Hoeffding inequality.
For the second inequality, if d(u, S) > 5, then

by the Azuma-Hoeffding inequality.

parameters £ and 8. In fact, it does not even seem
to meet the last two goals for constant £ and 8. For
example, for r = 2, if we take k — 0(1) and E — f2(l),
then the bounds in Theorem 3.1 yield constant error
probabilities only if t1 = 0(1), in which case

Similarly, if k = 0(1) and <5 = 1 — 17(1), then the bounds
in Theorem 3.1 give constant error probabilities only if
(1 - £}e' = n(l), implying that

which cannot hold for constant £. Therefore, the only
way that Theorem 3.1 allows us to achieve the desired
goals is if we restrict our attention to cases where the
gap between £ and 8 is extremely large for sufficiently
large n.

3.2 Asymptotic Analysis: The Good News. If
we loosen the desired properties for a distance-sensitive
Bloom filter, we can still obtain results that appear
useful in practice. Specifically, in the case of the relative
Hamming metric, we note that the total length of the
strings in the original set is at least n£log2r bits.
Therefore, we should seek that the total length of the
filter m is much less than nt, and not be concerned if
m = u)(ri) so long as this condition holds. Furthermore,
and more importantly, we consider cases where 8 is
constant but £ is only 0(1 / log n). That is, we only seek
to differentiate between query strings that differ from all
strings in S on a (constant) 5-fraction of bits and query
strings that share a 1 - £ — 1 - 0(l/logri)-fraction
of bits with some string in S. This restriction clearly
limits the scalability of the construction. However, it
still allows very useful results for n in the thousands
or tens of thousands. (Larger n can be handled, but
only with quite small values of £ or quite large values of
i.} In fact, as our experiments in Section 4 show, the
asymptotic restriction that £ — 0(l/logn) still allows
for excellent performance with reasonable values of n,
I , and 8. And if a particular application allows for an
even smaller value of £, say £ = c'/n for some constant
c', then the performance for reasonable values of n and
t only improves, although the gap between e and a
reasonable value of 8 may be quite large.

For convenience we focus on the binary case where
r = 2, so U = {0,1} . In this case, kl1', the total number
of sampled characters, is still logarithmic in n. The
space used in the filter is

For 6 < 1/2 (which is the normal case, as even
random bit strings will agree on roughly 1/2 of the
entries) and e = O(l/logn), we have that m — u>(n).
However, in many cases we can still configure the filter
with reasonable parameters so that m <C nt. To gain
some insight (that will guide our experiments) it is
worth considering some sample cases. For n — 1000,
e = 0.1, and 6 = 0.4, we find I' = 21. Hence for k < 32
the number of bits required is less than 226, giving an
improvement over the total number of bits nt whenever
t > 216 bits or 8 Kilobytes. Similarly, for n = 10000,
£ = 0.05, and 8 = 0.4, we find t' = 24, and again for
k < 32 there is a space savings whenever t > 216.

Formally, we have the following asymptotic relation-
ship, which shows that t need only grow polynomially
with n to have m — o(nt). (Little effort has been made
to optimize the constants below.)

PROPOSITION 3.1. For any constant 6 and r > 1, if
logn t = (4 — 6c8}/c8 + £)(!/ log n), then we may choose
£ = fJ(l/logn) and have m = o(ni}.

46

Proof. Let
that

Since we have

Therefore, we have that

for sufficiently large n, since in that case

Solving the above inequality for ce gives

Therefore, we may choose

Equivalently, we may choose

Since we have that and

where we have used the Taylor series for 1/(1 + x) (for
\x\ < 1). Therefore, we may choose e — £)(l/logn) if

which holds by our assumption on logn i — 27. D

Proposition 3.1 tells us that distance-sensitive
Bloom filters can be very space efficient. Unfortunately,
for certain reasonable settings of n, £, and 5, the length
t of the strings may need to be very large in order for
the filter to require less space than the natural encod-
ing of the set, particularly when r > 2 (so c = 1/2).
(And in these cases, one might be willing to sacrifice
very fast query times to reduce the storage requirement
using, for instance, the sketching approach mentioned
in Section 3.) For example, consider the case where the
characters in the alphabet £ are bytes, so r — 256. Then
if, as before, n = 1000, e = 0.1, and 5 = 0.4, we now
have m' — 249. Therefore, even if k = 1 (which is al-
most certainly too small to achieve good performance),
m < nllog2r only if t > 7 x 1010. We are unaware
of any current applications where t can be this large,
although there may be future applications of distance-
sensitive Bloom filters to extremely long strings, such
as DNA analysis. Thus, while distance-sensitive Bloom
filters work reasonably well for binary strings, there is
much room for improvement in dealing with larger al-
phabets.

4 A Simple Experiment
We present experimental results demonstrating the be-
havior of the basic distance-sensitive Bloom filter of Sec-
tion 3 in the special case where r = 2. In our experi-
ments, we populate our data set S with uniform random
binary strings of 65,536 characters, and test whether
we can distinguish strings that are near an element of

S from strings far from every element of S (under the
Hamming metric). In part, this test is chosen because it
represents a worthwhile test case; surely we would hope
that any worthwhile scheme would perform reasonably
on random inputs. In application terms, for the setting
described in Section 1 of a distance-sensitive Bloom fil-
ter taken over a collection of other Bloom filters, this
random experiment roughly corresponds to sets of the
same size with no overlapping elements; similar results
would hold even if small overlaps between sets were al-
lowed.

We consider sets of sizes n = 1000 and n = 10000
with t = 65536. For n = 1000, we take e = 0.1 and
5 = 0.4, and for n = 10000, we take £ = 0.05 and
6 = 0.4. For each value of n and k = {!,...,25},
we repeat the following experiment 10 times. Generate
50000 independent close queries by randomly selecting
a string in S and flipping an £-fraction of its bits, and
testing whether the filter returns a false negative. Then
generate 50000 independent far queries by randomly
selecting a string in S and flipping a ^-fraction of its bits,
and testing whether the filter returns a false positive
(here, the implicit assumption is that the query string
is 5-far from all strings in 5, not just the one chosen; this
holds with very high probability). We compute observed
false positive and false negative rates by averaging our
results over all queries.

The results are given in Figures 1 and Figure 2,
with a summary in Table 1. In the figures, the x-axis is
given in terms of the number m of bits used, but recall
that m = km', so it also reflects the number k of hash
functions. The abrupt jumps in the false positive rate
correspond to values of k where the threshold value \t\
increases. At such a point, it naturally becomes much
harder for a false positive to occur, and easier for a false
negative to occur.

As the figures and table indicate, we successfully use
fewer than ni bits and require only a constant number
of bit lookups into the data structure (the array A).
The observed false positive and negative rates are quite
reasonable; in particular, the false negative rate falls
rapidly, which is good as false negatives are often very
damaging for applications.

We emphasize that although the experimental re-
sults appear to give modest size improvements, this is
because we have chosen a small value for the item size
of t bits. For larger values of I, the results would be en-
tirely the same, except that the ratio m/nt would shrink
further.

Before concluding, we point out a few interesting
characteristics of these experiments. First, recall that
these tests roughly correspond to the application de-
scribed in Section 1 where a distance-sensitive Bloom

47

where we have used the facts that 7 > 0 and ex < 1 + 2x
for x 6 [0,1]. Therefore, we may choose £ — £l(l/ logn)
if

or, equivalently,

Figure 1: The observed false positive and false negative rates for n = 1000, i — 65536, e — 0.1, and 6 = 0.4.

Figure 2: The observed false positive and false negative rates for n = 10000, i = 65536, e = 0.05, and 5 = 0.4.

(a) n = IOC

I* \]pQ*A/ i rt£.

5
10
15
20
25

105
210
315
420
525

)0, t = 65536,

fp rate

0.04744
0.09235
0.134926
0.01572
0.023874

e — 0. 1, and

fn rate

0.124236
0.015366
0.001934
0.002816
0.000372

<5 = 0.4.

m/ni
0.16
0.32
0.48
0.64
0.8

(b) n

k

5
10
15
20
25

= 100C

kt'
120
240
360
480
600

)0, i = 65536,

fp rate
0.025958
0.001338
0.000068
0.000158
0.000006

e = 0.05, anc

fn rate

0.019746
0.00495
0.00125
0.000034
0.000012

1 6 = 0.4.

m/ni
0.128
0.256
0.384
0.512
0.64

Table 1: The number ki' of sampled bits, the observed false positive and false negative rates, and the corresponding
storage requirements, for various values of k.

48

filter is formed for a collection of Bloom filters with no
shared elements. In certain instances of this applica-
tion, we might be justified in choosing a very small e.
For example, if the Bloom filters each represent sets of
n' = c\n elements and have size c^n'', and £ = 03/n,
where ci, 02, and 03 are reasonable constants, then a
query Bloom filter is £-close to the set of Bloom filters
if (roughly speaking) the set underlying the query filter
shares all but a constant number of items with one of the
other sets. While this threshold is certainly low, it may
be suitable for some applications, and for such appli-
cations a properly configured distance-sensitive Bloom
filter is likely to be extremely successful.

On a more general note, these experiments have the
nice property that the set S is uniformly sampled from
{0,1} . Thus, it is unlikely that any close query is fir-
close to any element of 5 other than the one used to gen-
erate the query. Furthermore, for a far query, the events
corresponding to hash collisions between the query and
the elements of S are independent and, since i' is rea-
sonably sized, each occur with small probability. By
looking back at the proof of Proposition 2.1, it follows
that the bounds in Corollary 3.1 are fairly tight. There-
fore, while those results may be very weak for certain
data sets, it is impossible to substantially improve them
without taking into account specific properties of S.

5 Conclusions and Further Work

We strongly believe that efficient distance-sensitive
Bloom filters will find significant use in many applica-
tions. Our initial work suggests that distance-sensitive
Bloom filters can be constructed with parameters suit-
able in practice, but further improvements appear pos-
sible.

We suggest a number of open questions for further
work:

• Is there a general approach that would allow con-
stant e, 6 > 0, a linear number of bits, a constant
number of hash functions, and constant false posi-
tive/false negative probabilities?

• Are there simple and natural conditions one can
place on a set S for natural metrics that would
yield stronger bounds?

• There are very natural information-theoretic
bounds on the number of bits required for Bloom-
filter-like structures. Are there equivalent bounds
in this setting? (Perhaps one must fix a metric,
such as the relative Hamming metric.)

• Can closeness in edit distance be handled using
data structures of this type?

References

[1] A. Andoni, M. Datar, N. Immorlica, P. Indyk, and
V. Mirrokni. Locality-sensitive hashing using stable
distributions. To appear in Nearest Neighbor Methods
in Learning and Vision: Theory and Practice, MIT
Press.

[2] A. Broder and M. Mitzenmacher. Network Applica-
tions of Bloom Filters: A Survey. Internet Mathemat-
ics, 1(4):485-509, 2004.

[3] N. Jain, M. Dahlin, and R. Tewari. Using Bloom niters
to refine web search results. In Proc. of the Eighth
International Workshop on the Web and Databases
(WebDB2005), 2005.

[4] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In Proc. of the 20th ACM Symposium
on Computational Geometry, pp. 253-262, 2004.

[5] A. Gionis, P. Indyk, and R. Motwani. Similarity Search
in High Dimensions via Hashing. In Proc. of the 25th
International Conference on Very Large Data Bases,
pp. 518-529, 1999.

[6] O. Goldreich, S. Goldwasser, and D. Ron. Property
testing and its connection to learning and approxima-
tion. JACM, 45(4):653-750, 1998.

[7] P. Indyk. Approximate nearest neighbor under edit dis-
tance via product metrics. In Proc. of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp.
646-650, 2004.

[8] U. Manber and S. Wu. An algorithm for approximate
membership checking with applications to password
security. Information Processing Letters, 50(4): 191-
197, 1994.

[9] M. Mitzenmacher. Compressed Bloom Filters.
IEEE/ACM Transactions on Networking, 10(5) :613-
620, 2002.

[10] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005.

[11] R. Ostrovsky and Y. Rabani. Low distortion embed-
dings for edit distance. In Proc. of the 37th Annual
ACM Symposium on Theory of Computing, 218-224,
2005.

[12] A. Pagh, R. Pagh, and S. Srinivas Rao. An Optimal
Bloom Filter Replacement. In Proc. of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp.
823-829, 2005.

[13] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant prop-
erty testing and distance approximation. ECCC Report
No. 10, 2004.

[14] R. Rubinfeld and M. Sudan. Robust characterization
of polynomials with applications to program testing.
SI AM Journal on Computing, 25(2):252-271, 1996.

[15] K. Shanmugasundaram, H. Brunnimann, and N.
Memon. Payload attribution via hierarchical Bloom fil-
ters. In Proc. of the llth ACM Conference on Com-
puter and Communications Security, pp. 31-41, 2004.

49

[16] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F.
Tchakountio, B. Schwartz, S. Kent, and W. Strayer.
Single-Packet IP Traceback. IEEE/ACM Transactions
on Networking, 10(6):721-734, 2002.

50

An Experimental Study of Old and New Depth Measures*

John Huggt Eynat Rafalin^ Kathryn Seyboth^ Diane Souvaine^

Abstract
Data depth is a statistical analysis method that assigns a
numeric value to a point based on its centrality relative to a
data set. Examples include the half-space depth (also known
as Tukey depth), convex-hull peeling depth and LI depth.
Data depth has significant potential as a data analysis
tool. The lack of efficient computational tools for depth
based analysis of large high-dimensional data sets, however,
prevents it from being in widespread use.

We provide an experimental evaluation of several exist-
ing depth measures on different types of data sets, recognize
problems with the existing measures and suggest modifica-
tions. Specifically, we show how the L\ depth contours are
not indicative of shape and suggest a PCA-based scaling
that handles this problem; we demonstrate how most exist-
ing depth measures are unable to cope with multimodal data
sets and how the newly suggested proximity graph depth
addresses this issue; and we explore how depth measures
perform when the underlying distribution is not elliptic.

Our experimental tool is of independent interest: it
is an interactive software tool for the generation of data
sets and visualization of the performance of multiple depth
measures. The tool uses a hierarchical render-pipeline to
allow for diverse data sets and fine control of the visual
result. With this tool, new ideas in the field of data depth
can be evaluated visually and quickly, allowing researchers
to assess and adjust current depth functions.

1 Introduction
Over the last decade, statisticians have developed the
concept of data depth as a method of multivariate data
analysis that is an attractive alternative to classical
statistics [47, 36, 35]. In this era, massive data sets are
the norm, whether the discipline is financial markets,
human biology, molecular biology or sociology. Data
depth provides the ability to analyze, quantify and vi-
sualize these data sets without making prior assump-
tions about the probability distribution from which they
come.

Proposed data depth metrics are inherently geomet-
ric, with a numeric value assigned to each data point

"This material is based upon work supported by the National
Science Foundation under Grant No. CCF-0431027.

t Department of Computer Science, Tufts University, Medford,
MA 02155. {jhugg,erafalin,kseyboth,dls}@cs.tufts.edu

* 2005-2006 MIT Visiting Scientist & Radcliffe Institute Fellow.

that represents its centrality within the given data set.
The depth median, the point of maximal depth, is the
depth based estimator for the center of the data set.
Depth contours can be used to visualize and quantify
the data (see, e.g. [36]).

Data depth remains a relatively new field. A number
of data depth measures have been proposed, analyzed,
and, in some cases, coded, and new data depth measures
continue to be proposed. Examples include convex-hull
peeling depth [13, 4], half-space depth [21, 56], simplicial
depth [34], regression depth [44, 48] and LI depth [57].
Despite all of the theoretical analysis and individual
experiments, there is no conclusive evidence as to which
depth measure should be applied to which data sets.
One key problem is that several data depth measures
which perform beautifully in two dimensions quickly
become impractical as the dimensionality increases.
Others that can be effectively computed in higher
dimensions are not statistically significant and produce
output that can be misleading.

The goal of this work has been to develop Depth
Explorer as an experimental platform for analysis and
visualization both of random data sets and of pre-
existing data sets using multiple different data depth
measures. In particular, Depth Explorer includes
implementations of standard data depth measures such
as half-space depth, convex hull peeling depth, and LI
depth. It also includes implementations of the newer
class of proximity graph data depth measures [42, 43]
such as Delaunay depth, Gabriel Graph depth, and (3-
skeleton depth. Depth Explorer allows the user to
analyze and visualize a data set using each of these
measures. More importantly, however, the Depth
Explorer experimental platform allows the comparison
of depth measures. In particular, our testing of LI depth
demonstrated the poor results that L\ depth generates
on certain types of data set. And yet LI depth has
been one of the few data depth metrics known to be
computable in time that is linear in dimension, rather
than exponential. We have developed an enhanced
version of LI depth that we call LI scaling depth that
retains the computational efficiency of LI depth but
produces much better output.

The paper reports not only on the development,
availability, and features of the Depth Explorer

51

Sandbox but also on the results of the experiments we
have performed using this platform. Section 2 provides
background information on the data depth concept, in-
cluding applications and examples of depth functions.
Section 3 provides technical information about Depth
Explorer. Sections 4, 5 and 6 present analysis of data
sets and depth measures using Depth Explorer and
Section 7 describes future work.

2 Data Depth
A data depth measures how deep (or central) a given
point x Ed is relative to jP, a probability distribution
in Rd, or relative to a given data cloud.

Sections 2.1 and 2.2) introduce general principles
of data depth irrespective of the particular data depth
functions chosen . Definitions of four types of data
depth functions, with different features and computa-
tional complexities, are presented in Section 2.3).

2.1 General Concepts
The following concepts apply to the data depth method-
olgy and distinguish it from other statistical methods.

• Non-parametric methodology: Scientific mea-
surements can be viewed as sample points drawn
from some unknown probability distribution, where
the analysis of the measurements involves compu-
tation of quantitative characteristics of the proba-
bility distribution (estimators), based on the data
set. If the underlying distribution is known (for ex-
ample normal distribution, log-normal distribution,
Cauchy, etc.), the characteristics of the data can be
computed using methods from classical statistics.
However, in most real life experiments the underly-
ing distribution is not known. The concept of data
depth requires no assumption about the underlying
distribution and data is analyzed according to the
relative position of the data points.

• Center-outward ordering of points: The data
depth concept allows the creation of a multivari-
ate analog to the univariate statistical analysis
tool of rank statistics. Rank statistics is based
on the ordering of one-dimensional observations,
where the order reflects extremeness, contiguity,
variability or the effect of external contamination
and provides a parameter estimation method [4]. If
S = {Xi,... Xn} is a sample of observations in E1

then the order statistics is defined as {-X"[i], • • • -X"[n]}
where X[^ < X^} • • • < X\ny

l In higher dimensions
the order of multivariate data is not well defined,

lAn alternative ranking order is from the outside inward,
where the deepest point equals the median.

and several ordering methods were suggested (e.g.
[4]). The data depth concept provides a method of
extending order statistics to any dimension by or-
dering the points according to their depth values.

• Application to multivariate (high-
dimensional) data sets: The concept of
data depth is defined with respect to points in
Euclidean space in any dimension, thus enabling
the derivation of multivariate distributional char-
acteristics of a data set. The methodology enables
the exploration of high dimensional data sets using
simple two-dimensional graphs that are easy to
visualize and interpret, and using quantitative
estimators.

• Robustness: In the statistical analysis of
datasets, observations that deviate from the main
part of the data (outliers) can have an undesirable
influence on the analysis of the data. Many depth
functions are "robust against the possibility of one
or several unannounced outliers that may occur in
the data and yield reasonable results even if sev-
eral unannounced outliers occur in the data" [46].
For example, "by adding k bad data points to a
data-set one can corrupt at most the ^-outermost
(half-space) depth contours while the ones inside
must still reflect the shape of the good data" [12].

2.2 Depth Contours, Median and Mode

The median is a depth based estimator for the
center of a data set. The median of a set S under some
depth measure D : S —> R. is the set of points M such
that Vp G M, D(p) > D(q) Vq e S. This definition
supports the possibility that several points will tie for
the deepest depth. The use of a single point or group
of points as the median relies on the assumption of
unimodality that is common in depth measures. Depth
Explorer highlights the median points, visualizing the
center of a data set.

The mode of a set is the most common value [59].
We use the term mode flexibly and refer to a bimodal
(or multimodal) distribution or point set as one having
two (or more) local maxima. The multiple maxima can
be created, for example, from overlaying two different
unimodal distributions. Often clustering algorithms are
used to detect the points associated with each mode
of the data set. This association, however, does not
necessarily attribute a data point to the center of the
distribution where it originated. For example, points
located between two centers and far from each could be
assigned to either of the two clusters.

Depth contours [55] are nested regions of increas-

52

Figure 1: 50% deepest points highlighted for different distributions calculated using Half-space Depth. All distributions
contain 500 points.

ing depth and serve as a topological map of the data.
Let Dp(x), x e Md, be the value of a given depth func-
tion for point x with respect to a probability distribution
F. The region enclosed by the contour of depth
t is the set RF(t) = {x e Rd : DF(x) > t}. The a cen-
tral region, Ca (0 < a < 1) is, for well behaved dis-
tributions, the region enclosed by the contour of depth
ta Ca = RF(ta}, where P{x e Rd : DF(x] < ta} = a
[36]. Well-behaved depth functions produce depth con-
tours that are affinely equivariant, nested, connected
and compact [61]. Contours have applications in visu-
alization and quantification of data sets.

In Depth Explorer highlighting the IQOa% deep-
est points visualizes the a central region. See, e.g., Fig-
ure 1.

If the underlying distribution is elliptic then the
convex hull containing the a% deepest points is a sim-
plified sample estimate of the boundary of the contour
[35]. However, in such a case the resulting contour may
also contain shallower data points, that are not the a%
deepest points. In real life data sets usually the under-
lying probability distributions is not known, but if the
data set is unimodal and convex then it is reasonable
to assume that the underlying probability distribution
is elliptic.

As a method of comparing the performance of
a variety of depth measures, Depth Explorer can
display the convex hulls enclosing the 20%,.. . 100%
deepest points under each of these measures, visualizing
the type of contour produced by each measure. See
Figure 2.

2.3 Depth Measures
We present four types of depth functions, with different
features and computational complexities, that are all
implemented in the Depth Explorer Sandbox. The
convex-hull peeling depth is one of the early depth mea-
sures studied by the computational geometry commu-

nity, but it lacks many statistical properties. Half-space
depth is probably the best-known depth measures in the
computational literature and has attractive statistical
properties. The LI depth does not possess many desir-
able statistical properties, but the simplicity of its com-
putation makes it useful for certain application of data
depth. The newly suggested proximity depth was devel-
oped as a depth measure that is efficient to compute in
high dimensions.

2.4 Convex-Hull Peeling Depth

DEFINITION 2.1. The convex-hull peeling depth
[13, 4] °f a point Xk with respect to a data set S =
{Xi, • • • Xn} in Rd is the level of the convex layer to
which Xk belongs. The level of the convex layer is de-
fined as follows: the points on the outer convex hull of S
are designated level one and the points on the kth level
are the points on the convex hull of the set S after the
points on all previous levels were removed (see Figure
2(a)).

Convex-hull peeling depth is appealing because of the
relative simplicity of its computation. However it lacks
distributional properties and is not robust in the pres-
ence of outliers. The convex-hull peeling layers can be
computed in the plane in optimal G(nlogn) time using
Chazelle's deletions-only dynamic convex-hull algorithm
[8] and in higher dimensions using iterative applications
of any convex-hull algorithm (the complexity of com-
puting the convex hull for a set of n points in Rd once is
O(nlogn + n'-< 2 J) for even d [41] and O(nlogn + n l -2 - l)
for odd d [9] and it can be applied as many as O(n) times
to compute the entire set of peeling layers). The ver-
tices of all convex layers can be computed in O(n2 y)
time for any constant 7 < 2/([d/2j2 + 1) [6].

53

Figure 2: 20%, 40%, 60%, 80% and 100% contours for a data
set consisting of 500 points, normally distributed, width
scaled by 5. Note that the LI depth contours appear
more round that is warranted by the distribution, while
the Delaunay-Based Proximity Depth contours are the most
elongated.

2.5 Half-space Depth

DEFINITION 2.2. The half-space depth [21, 56] (in
the literature sometimes called location depth or Tukey
depth) of a point x relative to a set of points S =
{Xi,..., Xn} is the minimum number of points of<S lying
in any closed half-space passing through x (see Figure

The half-space depth has many attractive statistical
properties [61, 12]. However, its computation is expo-
nential in dimension. The half-space depth of a single
point in R2 can be computed in O(nlogn) time [52],
matching the lower bound [2]. The set of half-space
depth contours can be computed in the plane in op-
timal 6(n2) time [38] (expanding upon ideas in [11]),
or using other methods [52, 25, 29], including compu-
tation of the depth contours in Rd using parallel ar-
rangement construction [17]. Theoretical and practical

Intuitively, the I/i median of a cloud of points in Mn

is the point that minimizes the sum of the Euclidean
distances to all points in the cloud. The LI depth
of a point can be summarized by the question, "How
much does the cloud need to be skewed before this
point becomes the LI median?". The LI depth ranges
between 0 and 1. It is fast and easy to compute in any
dimension, contributing to its appeal for study of large
high-dimensional data sets. The LI depth is non-zero
outside the convex hull of the data set and therefore
can be used to measure within-cluster and between-
cluster distance (see Section 7.1). However, it lacks
many statistical properties.

2.7 Proximity Depth
For any proximity graph the proximity graph depth
is defined using a point's minimum path length along
graph edges to the convex hull of the data set S.

DEFINITION 2.4. The [proximity graph] depth of
a point x relative to a set S = {Xi...Xn} is the
minimum number of edges in the [proximity graph] of
S that must be traversed in order to travel from x to
any point on the convex hull of S (see Figure 3).

Proximity graphs are graphs in which points close to
each other by some definition of closeness are connected
[24]. We concentrate our analysis on the Delaunay
triangulation [16] and ^-skeletons [28] which are a
parameterized family of proximity graphs, which include
as a special case the Gabriel graph and the relative
neighborhood graph. We denote by 6(p, q] the Euclidean
distance between points p and q.

54

algorithms for computing or approximating the deep-
est contour relative to the data set (also known as the
Tukey median] in two and higher dimensions exist for
some time [52, 49, 51, 53, 58, 37, 30, 1], culminating
in an O(n log n) expected time randomized optimal al-
gorithm, which can be extended to any fixed higher di-
mension d, yielding an O(nd~1} expected time algorithm
[7]. The problem of computing the half-space depth is
NP-hard for unbounded dimension [3].

2.6 The LI Depth

DEFINITION 2.3. The LI depth (LiD) [57] of a point
x with respect to a data set S = {Xi, • • • Xn} in Rd is
one minus the average of the unit vectors from x to all
observations in S:

where

is a weight assigned to observation Xi

(and is I if all observations are unique), and \\x — Xi\\
is the Euclidean distance between x and Xi (see Figure
2(c)).

2(b)).

Figure 3: Exploring a proximity depth calculation. The
edge-distance from each data point to a convex-hull point is
illustrated using highlighted trees. Two normal clouds with
250 points separated horizontally by 6 standard deviations.

DEFINITION 2.5. The Delaunay triangulation (DT)
of a d- dimensional point set S is the simplicial decom-
position of the convex hull of S such that the d-sphere
defined by the points of every simplex in the decomposi-
tion contains no point r S [16].

This decomposition is the dual of the Voronoi diagram
and is unique for every set of points [14].

DEFINITION 2.6. The ft skeleton of a point set S in
Rd is the set of edges joining (3-neighbors.
Points p and q are lune-based (3-neighbors for (3 > 1,
iff the lune defined by the intersection of the spheres
centered at (1 — |)p + |<? and (1 — |)g + &p, each with
radius ^5(p^q), contains no point r e S.
Points p and q are circle-based (3-neighbors for (3 >
I , iff the lune defined by the union of the two spheres of
radius &6(p,q) contains no point r £ S.
Points p and q are (3 -neighbors for (3 < I , iff the lune
defined by the intersection of the two sphere of radius
2 ^(PQ} which contain p andq in their boundary contains
no point r e S (for (3 < I the lune-based and circle-based
neighbors are identical).

For (3 > 1 the lune-based /3-skeletons are planar
and monotonic with respect to f3: G^ (S) C Gp2(S), for
/3i < /52- The Gabriel graph (GG) [18] is the lune-based
1-skeleton while the relative neighborhood graph (RNG)
[54] is the lune-based 2-skeleton. The circle-based (3-
skeletons for /3 > 1, are not necessarily planar and
have a reverse monotonic relation with respect to (3:
G f t (5)cG A (5) , for /3 i> |32.

For (3 < 1, as (3 becomes smaller, the 0 skeleton
tends towards the complete graph.

Overall Complexity The depths of all points in a
proximity graph can be determined in linear time in the

number of edges in the graph by using a breadth-first
search (BFS) of the graph, beginning at every point on
the convex hull of S (Figure 3). Assignment of all depths
of a point set is accomplished by (1) Computation of the
proximity graph; (2) Location of all convex hull points;
and (3) Breadth-first search of the proximity graph.

In two dimensions there are optimal O(n log n) time
algorithms to compute the DT [16], the circle-based /3-
skeletons for (3 > 1, and the lune-based /3-skeleton for
1 < /5 < 2 [28, 33, 23]. The lune-based /3-skeletons for
(3 > 2 and the ^-skeletons for f3 < 1 can be computed in
optimal O(n2) time [28, 23]. Points on the convex hull
can be determined in O(nlogn) time [40], for an overall
time requirement of O(n log n) for the DT and O(n2) or
O(nlogn) for the /3-skeleton.

In dimensions higher than 2, the DT can be cal-
culated in O(n^') time [15]. The /^-skeletons require
checking n points for interiority on n2 lunes, which re-
quires a distance calculation for a total of O(dn3) time.
More efficient algorithms for specific graphs like the GG
or RNG or for 3-dimensional space are known [24]. The
set of points on the convex hull of the set can be found in
O(ran) time, where ra is the number of extreme points
[39]. Breadth-first search then requires linear time in
the size of the proximity graph. Clearly, the time com-
plexity in higher dimensions is dominated by the com-
putation of the proximity graph itself. Assignment of
all depths, then, has a total complexity of O(n^) time
for Delaunay depth and O(dn3) time for the /3-skeleton
depths. The exponential dependence on dimension for
calculating Delaunay depth makes it impractical for use
in high dimensions.

3 The Depth Explorer Statistical Sandbox
Depth Explorer is an interactive software tool for
the generation of data sets and visualization of the
performance of multiple depth measures. The tool is
aimed for use by statisticians, to visually and quickly
evaluate new ideas in the field of depth based statistics,
allowing researchers to assess and adjust current depth
functions. It was designed to be simple to use. The tool
uses a hierarchical render-pipeline to allow for diverse
data sets and fine control of the visual result. The
Depth Explorer source, executable for Mac OS X and
documentation is publicly available and can be found in
[22].

3.1 Scene Generation and the Render Tree
Depth Explorer enables automatic generation of data
sets and transformation or composition of existing data
sets. For each data set, Depth Explorer can quickly
visualize the behavior of the depth measure on the data.
Data sets are defined using a hierarchical representation

55

of the scene (the render-tree) in an XML file. Clicking
a toolbar button switches to "live" view and renders
the scene to the screen. The user can then switch
back into XML editor mode to adjust the scene and
then re-render. The changes are almost instantly
re-rendered into the window, allowing for interactive
experimentation. Generated PDF files can be saved to
the filesystem.

Data generation, transformations and visualizations
are specified hierarchically using XML tags in the render
tree, see Figure 4. The tree is rendered starting from
the leaf nodes and moving up. Each node is a C++
module that, given the output of its children nodes,
modifies or appends the data, then passes it to its
parent. Ultimately, the root node, called the canvas
node describes the dimensions and scale of the PDF
output file and renders its childrens' data onto the PDF
document. The leaf nodes are data sources, either
CSV files with a data set, or a random cloud generator
with a set of points. Depth Explorer can currently
create Gaussian clouds with any number of points with
standard deviation 1, as well as uniformly distributed
clouds on the range (—1, — 1) to (1,1).

Non-leaf nodes modify data or add visualizations.
Depth Explorer supports affine transformation nodes
that can scale, rotate or translate nodes below them.
With affine transformations and any number of ran-
domly generated clouds, a broad spectrum of data sets
can be generated to test statistical methods.

Visualizations include the display of the a% con-
tour by highlighting the a% deepest points. If the set
is dense enough this serves as a good visual approx-
imation to the a,1100 central region, see, e.g., Figure
1. Depth Explorer displays the convex hulls enclos-
ing the 20%, 40%, 60%, 80% and 100% deepest points,
to visualize a subset of the depth contours, under the
assumption that the underlying distribution is elliptic
and the convex hull containing the a% deepest points
is a simplified sample estimate of the boundary of the
contour, see Figure 2. Note that the resulting contour
may contain shallower data points, that are not the a%
deepest points.

As Depth Explorer uses a modular, tree-based
Tenderer, it is trivial to combine visualizations, even
at different points in the hierarchy. By viewing two
visualizations on the same data, it is possible to compare
depth measures or convey two concepts in one image.
Figure 3 illustrates how Depth Explorer can help
visualize a powerful concept, such as computation of
the proximity depth.

3.2 Depth Explorer Construction
The Depth Explorer program is currently divided into

two sections. The libdepthengine library contains all of
the code to load a render-tree into memory and render
it to PDF. This library is written entirely in portable
C++. It uses PDFlib from GmbH Software [19] to
generate PDF files and it uses Apple's implementation
of BLAS [5] and LAPACK [31] to do matrix math
and compute eigenvalues. PDFlib is open source and
very portable, and thus does not introduce platform
dependency. The BLAS and LAPACK routines used are
standard and thus implemented in all implementations
of BLAS and LAPACK, and do not introduce platform
dependence as well.

The Depth Explorer GUI links against lib-
depthengine and is responsible for editing XML data,
viewing rendered scenes, saving rendered scenes as
PDF files and printing. The GUI was developed with
Objective-C using the Apple's Cocoa [10] application
frameworks. Although the implementation is platform
dependent, the amount of code is small and the com-
plexity is very low compared to libdepthengine. For ex-
ample, while the Cocoa frameworks provide support for
XML parsing, parsing in Depth Explorer is done in-
side libdepthengine in portable C++.

3.3 Performance and Interactivity
Depth Explorer does not render instantaneously even
a relatively easy depth measure like LI. Nonetheless,
almost all scenes are rendered within seconds, not min-
utes, allowing for interactive feedback. On a 1.5 Giga-
hertz Powerbook G4, rendering most scenes commonly
requires 2-5 seconds. Rendering time is heavily depen-
dent on the processing that is done in each node. If no
depth-based visualizations are included in the render
tree, than even the most complicated scene with thou-
sands of data points will render almost instantly. When
depth calculations are involved, computation time is
slower.

To render an LI 50% depth contour on a cloud of
1000 points takes about two seconds. To render the
same contour on 10,000 points requires about 5 seconds.
While the scale-up should be linear according to the
algorithm, the software is tuned to handle large amounts
of data, thus the slowdown is only apparent in very large
datasets or with very slow computations.

Thus Depth Explorer is not a "sit and wait" pro-
gram: almost all scenes can be rendered in a matter of
seconds, not minutes. Conversely, Depth Explorer is
not a real-time program: it is not fast enough to give dy-
namic feedback as the user changes parameters to the
render tree nodes. Thus a render button is required.
As more (slower) depth measures2 and complex visu-

-^Depth Explorer's current implementation of Halfspace Depth

56

Figure 4: The Render tree form XML to Final Scene. This scene is denned by two source clouds, a uniform square with
300 points and a normal cloud with 500 points. The square is translated and rotated while the normal cloud is scaled
and rotated. Both clouds are rotated 13 degrees together. Two depth contours are calculated, one LI 50% contour on the
normal cloud and one PCA-Based LI Scaling 60% contour on the entire scene.

alizations are supported, it seems unlikely that Depth
Explorer will ever become fully realtime. See Section
7 for a discussion of speed improvements.

4 Analysis of the LI Depth Measure

The LI Depth measure has many statisticians very
excited as the computation time is very low. With a
fast depth measure available, suddenly the concept of
data depth is applicable to many new and more complex
problems. LI Depth is hoped to be "good enough", that
is, its speed will make up for its sub-par results. Still,
as LI Depth is a new and relatively untested depth
measure, it is still unknown just how much quality of
result is compromised for speed.

To answer this question, we analyzed the LI depth
function on unimodal normally distributed data sets
that were scaled or rotated. It is desirable that depth
contours will be representative of the shape of the
of data. However, as we demonstrated visually (see
Figure 2) LI depth contours do not exhibit this desirable
property, while all other tested depth measure do. Since
the contour is supposed to be indicative of the shape of
the cloud, the Lx depth measure is not as useful as many
other depth measures.

Using Depth Explorer to visualize how LI Depth
performs on various data sets, we discovered that, under
the LI depth, a point whose distance to the median
point is small is more likely to have higher depth than

and Beta-Based Proximity depth are naive and thus have O(n3)
time complexity. This limits these particular depth calculations
to about 500 points. This will be improved in a upcoming minor
revision.

the same point in other depth measures. Consequently,
LI depth contours tend to be more circular than desired.

As LI depth is most successful on hyper-spherical
data, by performing an affine transformations for non-
spherical data we can create a shape that approaches a
hypersphere and compute the L\ depth on this scaled
cloud. The depth values for the scaled cloud are then
used for the corresponding points in the original cloud.

This works very well when data sets are scaled
along an axis, but many times, a data set is elongated
or compressed in directions not parallel to an axis.
Thus, Principal Component Analysis (PCA) is used
to determine the major directions of the data cloud.
Scaling along these vectors produces an approximation
of a hyperspherical cloud for many data sets (see Figure
5).

DEFINITION 4.1. The k-PCA-based LI depth of a point
x with respect to a data set S = {Xi,...Xn} in Rd

is the LI depth of pca(x) with respect to a data set
pca(S] — {pca(Xi),.. .pca(Xn}}. Let vi,v<2,.. .vn be
the eigenvectors for S, computed using PCA analysis.
Then pea : IRd —> Rd is defined as follows: (i) rotate
S so that the first k primary vectors coincide with the
axes and (ii) For each of the primary k axes, project the
points of S on the axis and scale the projected set such
that the .8 and .2 quantiles go to 1 and -1 respectively,
(as a result of this transformation 60% of the data fits
between —I and I for each of the pnmary k axis).

The PCA-based LI depth of a point x with respect to
a data set S in Rd is the d-PCA-based LI depth. We
assume that data sets are centrally symmetric relative
to each of the axis and therefore always use the e?-PCA-

57

based LI depth.
PCA-scaling-Li depth removes much of the afore-

mentioned bias towards points closer to the median
when assigning depth values. We used Depth Ex-
plorer to confirm this visually, see, e.g. Figure 5. Note
that the final contour generated approximates the shape
of the cloud.

PCA-scaling does not, address the tendency for LI
depth contours to be rounded in square data clouds
and is limited to handling data clouds that are roughly
convex (see Section 6).

5 Multimodality and Depth Measures

5.1 Multimodal Distribution
Depth Explorer was tested on multimodal data sets
and the behavior of depth functions on these data sets
was analyzed. The tested depth functions, convex-hull
peeling depth, half-space depth and L\ depth, were not
well suited for analysis of multimodal data sets (see
Figure 8). However, the newly suggested proximity
depth was found to handle these data sets well, see
Figure 8 and 9.

5.2 Median and Seeds
The median, as it was defined in Section 2, is not a
good estimator in multimodal situations, because points
that are not of maximum depth in the set may in fact
be local maxima, local peaks in depth (see Figure 6).
Estimating a set using a simple median ignored local
maxima that represent several modes. The proximity
graph depth allows the definition of an estimator that
handles modes of a data set:

DEFINITION 5.1. A seed of a point set S under some
depth measure D : S —-> R is a connected set of points
T C S st Vp, q e T, D(p) = D(q) and Mr e 5, r £ T
adjacent to some u T, D(r] < D(u).

Unfortunately, points of different clusters are not neces-
sarily distinguished by the proximity graph depth mea-
sures. Distributions that are too close behave as a single
mode; those separated by large empty regions appear
unimodal as the dearth of points between the clusters
prevents paths from traveling inward quickly from the
convex hull.

Quantitative analysis
Tests performed on Depth Explorer verify the abilitiy of
the proximity graph seeds to discern unimodality and
bimodality quantitatively. Analysis of both bimodal
and unimodal planar point sets was performed using
a separate program that computed the seeds. Bimodal
sets in two dimensions (containing x and y coordinates)
were created by combining two 200-point normal distri-
bution sets, each with x and y standard deviations of

Figure 6: Highlighted deepest point approximates the depth
median. 500 points, Y-axis compressed 70%, rotated 10
degrees.

10. They began centered at the same x-coordinate, but
were then separated in increments of 10. The unimodal
sets began with an x-coordinate standard deviation of
10, which was gradually increased to stretch the uni-
modal set in the x-direction. We plotted the standard
deviation of the x-values of the points of local maxima
against the x-coordinate range of the set. When the
bimodal sets are close, they behave very similarly to
the unimodal sets, but as they pull apart their seeds
separate, illustrating the bimodal behavior (Figures 7
and 9). This behavior is similar for each of the proxim-
ity graph depth measures.

Algorithms Finding seeds requires a recursive
search to locate all points associated with the seed
and to locate all points in S that are connected to
that seed. The basic process to compute the seeds is
that of comparing the depth of point p to the depth
of its neighbors in the proximity graph and checking

58

(a) Convex Hull Peling (b) Halfspace Depth
Depth

Figure 5: How Affine Scaling Improves the LI Depth Results

Figure 7: Computation of seeds using the Deiaunay depth
function for unimodal and bimodal point sets. For every
x-value X the unimodal point set was constructed to have
comparable width to the width of the bimodal point set,
whose separation is X. The standard deviation of the x-
values of the local maxima were computed. The results
support our assumption, that in a bimodal point set we
expect to find wider gaps between the points of local
maxima and therefore larger standard deviation compared
to unimodal point sets.

whether it is deeper or of the same depth as its neighbors
(compare (p)).

One method of computation searches the list of
points to locate those that are deeper or of the same
depth as their neighbor. In this case, every connected
grouping of points must be checked and there can be
O(n) such groupings. The compare(p) process is called
recursively for each point p in a grouping exactly once
and obtains a yes/no answer for that point before
returning. Because compare(p) eliminates points of
lower depth than p, it is called at most n times. Each
call iterates through some portion of p's adjacency
list. Each edge in the graph represents two entries
in adjacency lists, and is considered exactly twice,
producing an algorithm with a running time that is
linear in the size of the proximity graph. The size of the
graph is linear in two dimensions and up to quadratic
in higher dimensions. The process does not add to the
overall complexity, because construction of the graphs
requires at least as much time.

Additional improvements allow the number of seeds
to be decreased further (see [42, 43]). For example, only
those seeds with CH-value great than 2 and over half
of the maximum (CH-point seeds). The CH-value of a
seed T is the number of convex hull vertices that can be
reached by a path originating at T for which the depths
of points visited along the path is strictly decreasing.

5.3 Proximity Graph Depth Function Family
We compared the family /3-skeleton depth functions
with the DT depth visually, using the Depth Explorer
(see Figure 9), and quantitatively, with a separate
code written in C++, using the LEDA library [32].
For the quantitative analysis 300 normally distributed
data sets with 400 points each were generated and
the average number of seeds produced was calculated.

59

Figure 8: Deepest 30% of the points of a bimodal distri-
bution highlighted with different depth measures. The tra-
ditional depth measures' depth is biased towards the space
between distributions, while proximity depth measures rec-
ognize bimodality. The distribution is two normal clouds
with 250 points separated horizontally by 6 standard devia-
tions.

Figure 9: Highlighted seeds for a bimodal data set comput-
ing with three proximity depth measures. The distribution
is two normal clouds with 250 points separated horizontally
by 6 standard deviations.

60

The average number of CH-point seeds was plotted
against the average deepest depth attained by the
point set (Figure 10). The locations of the points
indicate that the values (3 = .962 and (3 — .970 best
approximate the performance of Delaunay Depth for
these two characteristics. The weakness of the GG (1-
skeleton) is also visible, as it finds many more seeds in
a unimodal data set than the other graphs.

Figure 10: Performance comparison of proximity-depth
schemes for 300 normally distributed unimodal point sets
with 400 points. A low average number of seeds and a high
average number of deepest depth values is desirable. The
.962-skeleton and .970-skeleton perform most similarly to
the DT The weakness of the GG (1-skeleton) is also visible
here, as it finds many more seeds than the other graphs.

6 Non-Elliptic Underlying Distributions

We tested the behavior of depth functions on point sets
that did not follow an elliptic distribution. It is desirable
that the depth contours will be indicative of the shape
of the data cloud. However, for most depth functions,
this does not hold. In fact, the four desirable properties
of depth functions, as suggested by statisticians as a tool
to analyze and evaluate depth functions [34, 60, 61, 20]
assume that the underlying distribution is unimodal and
that the ordering of the points is center-outward.

When the cloud is not round, as in the square
uniform plot from Figure l(a), the depth contours are
still round, when they should be more rectangular to
match the shape of the data.

If the data points are not in a convex position,
but follow a banana-like shape, as in Figures 11 (a) and
ll(b), none of the depth functions capture this shape,
not even the proximity graph depth functions which are
not convex. We are currently working on a version of
the proximity graph depth that will handle this type of
distribution.

Figure 11: 30% deepest points highlighted where the
underlying data set is distributed in non-convex position.
Traditional depth measures bias towards the inside center of
the curve, while proximity-based depth measures have much
less bias, and can better represent shape.

7 Future Work

Depth Explorer has great potential as a tool for
evaluation and analysis of depth functions, and the work
presented here just scratches the surface. Our goal is to
continue exploration of depth functions using this tool
and to make it publicly available and more user-friendly,
such that other researchers, especially in the statistics
community, can make use of it.

7.1 Depth Explorer for Analysis of Real Life
Data
Application of the data-depth concept to real-life data
have been suggested by statisticians for a while. Many
of them are two-dimensional graphs that visualize sta-
tistical properties of high-dimensional data sets. The
flexible architecture of Depth Explorer can be aug-
mented to compute and display these graphs

• The multivariate nature of data depth yields simple
two dimensional graphs for high dimensional data
sets, that can be easily visualized and interpreted
[36]. Examples include scale curves as a measure of
scale/dispression, tracking how the depth contours

61

expand; shrinkage plots and fan plots as a measure
of kurtosis, the overall spread relative to the spread
in the tail; and depth vs. depth (DD) plot to com-
pare variation between two sample distributions.

• The bagplot [50] 3 is a visual tool based on the
half-space depth function that is indicative of the
shape of a two dimensional data set. It includes
a bag, the contour containing the n/2 observations
with largest depth. Magnifying the bag by a factor
3 yields the fence, where observations outside the
fence are flagged as outliers. The bagplot is an
affine invariant and robust visualization tools for
the location, spread, correlation, skewness, and
tails of a two dimensional data set.

• The robust nature of the data depth concept makes
it appropriate to serve as a robust classification
and cluster analysis tool. Rousseeuw et al. [52]
suggest using the volumes of the depth contours
that contain a of the points of each cluster (for
a constant a) to classify a data point to a given
cluster or to partition a given set into a number of
clusters. Jornsten, Vardi and Zhang [27] introduced
the Relative Data Depth, ReD, based on the LI
depth as a validation tool for selecting the number
of clusters and identifying outliers, in conjunction
with an exact K-median algorithm. The concept
was tested on several real-life data sets [26].

7.2 Technical Enhancements
On the technical side, work will concentrate on the
following directions:

• Depth Explorer is currently limited to two di-
mensional visualizations and data. Since many of
the computations extend trivially to three or more
dimensions, support for two dimensional visualiza-
tions on higher dimensional data is under devel-
opment. Later extending the software to support
three dimensional visualizations will be a priority,
however, a three dimensional interface will require
careful consideration and much development. This
will be a major focus in the ongoing development
of Depth Explorer.

• Massive improvements to the editor interface in-
cluding direct integration with online help and au-
tomatic highlighting of XML errors. A live preview
of the data distribution will be added, eliminating
the current back and forth nature of constructing
a scene.

3The Sunburst plot [36] is a similar visual tool.

• The process to add a new data generator, modifier
or visualizer is currently very simple. Steps need to
be taken to further simplify this process and fully
document it. The goal is to make it nearly trivial
to expand the functionality of Depth Explorer
within the render tree framework.

• Additional visualization types, For example: color-
ing points for clustering visualizations according to
membership; shading regions of depth rather than
outlinining or highlighting them; points displaying
their numerical depth value as they are moused
over.

• The current tool is single-threaded and cannot
take advantage of the recent push for dual core
processors on the desktop. Making the render
process parallelizable will decrease render time,
especially as the size of the render increases.

• Support of additional platforms other than Mac OS
X including Microsoft Windows. Depth explorer
has been developed with portability in mind, how-
ever, as development resources are limited, devel-
opment and testing on additional platforms may be
a secondary priority for the immediate future.

References

[1] P. K. Agarwal, M. Sharir, and E. Welzl. Algorithms
for center and Tverberg points. In Proc. 20th Annu.
ACM Sympos. Comput. Geom., pages 61-67, 2004.

[2] G. Aloupis, C. Cortes, F. Gomez, M. Soss, and G. Tou-
ssaint. Lower bounds for computing statistical depth.
Computational Statistics & Data Analysis, 40(2) :223-
229, 2002.

[3] N. Amenta, M. Bern, D. Eppstein, and S.-H. Teng.
Regression depth and center points. Discrete & Com-
putational Geometry, 23(3):305-323, 2000.

[4] V. Barnett. The ordering of multivariate data. J. Roy.
Statist. Soc. Ser. A, 139(3):318-355, 1976.

[5] BLAS. Basic linear algebra subprograms,
http://www.netlib.org/blas/.

[6] T. M. Chan. Output-sensitive results on convex hulls,
extreme points, and related problems. Discrete Com-
put. Geom., 16(4):369-387, 1996. Eleventh Annual
Symposium on Computational Geometry (Vancouver,
BC, 1995).

[7] T. M. Chan. An optimal randomized algorithm for
maximum Tukey depth. In Proceedings of 15th ACM-
SIAM Symposium on Discrete Algorithms (SODA04).
ACM Press, 2004.

[8] B. Chazelle. On the convex layers of a planar set. IEEE
JYans. Inform. Theory, 31(4):509-517, 1985.

62

http://www.netlib.org/blas/

[9] B. Chazelle. An optimal convex hull algorithm in any
fixed dimension. Discrete Comput. Geom., 10(4) :377-
409, 1993.

[10] COCOA. Apple cocoa,
http://developer.apple.com/cocoa/.

[11] R. Cole, M. Sharir, and C. K. Yap. On fc-hulls
and related problems. SI AM Journal on Computing,
15(l):61-77, 1987.

[12] D. L. Donoho and M. Gasko. Breakdown properties
of location estimates based on halfspace depth and
projected outlyingness. Ann. Statist., 20(4):1803-1827,
1992.

[13] W. Eddy. Convex hull peeling. In H. Caussinus, edi-
tor, COMPSTAT, pages 42-47. Physica-Verlag, Wien,
1982.

[14] H. Edelsbrunner. Algorithms in Computational Geom-
etry. Springer-Verlag, 1978.

[15] H. Edelsbrunner and R. Seidel. Voronoi diagrams and
arrangements. Discrete and Computational Geometry,
1:25-44, 1986.

[16] S. Fortune. Voronoi diagrams and Delaunay triangu-
lations. In Handbook of discrete and computational ge-
ometry, CRC Press Ser. Discrete Math. Appl., pages
377-388. CRC Press, Inc., Boca Raton, FL, USA, 1997.

[17] K. Fukuda and V. Rosta. Exact parallel algorithms
for the location depth and the maximum feasible sub-
system problems. In Frontiers in global optimization,
volume 74 of Nonconvex Optim. Appl., pages 123-133.
Kluwer Acad. Publ., Boston, MA, 2004.

[18] K. R. Gabriel and R. R. Sokal. A new statistical
approach to geographic variation analysis. Systematic
Zoology, 18:259-278, 1969.

[19] Pdflib gmbh - main page, 2005.
[20] X. He and G. Wang. Convergence of depth contours

for multivariate datasets. Ann. Statist., 25(2):495-504,
1997.

[21] J. Hodges. A bivariate sign test. The Annals of
Mathematical Statistics, 26:523-527, 1955.

[22] J. Hugg. Depth explorer website,
www.cs.tufts.edu/r/geometry/depthexplorer/.

[23] F. Hurtado, G. Liotta, and H. Meijer. Optimal and
suboptimal robust algorithms for proximity graphs.
Comput. Geom., 25(l-2):35-49, 2003. Special is-
sue on the European Workshop on Computational
Geometry—CG01 (Berlin).

[24] J. W. Jaromczyk and G. T. Toussaint. Relative
neighborhood graphs and their relatives. Proc. IEEE,
80(9):1502-1517, sep 1992.

[25] T. Johnson, I. Kwok, and R. Ng. Fast computation
of 2-dimensional depth contours. In Proc. 4th Interna-
tional Conference on Knowledge Discovery and Data
Mining, pages 224-228, 1998.

[26] R. Jornsten. Clustering and classification based on
the LI data depth. J. Multivariate Anal., 90(l):67-89,
2004.

[27] R. Jornsten, Y. Vardi, and C.-H. Zhang. A robust
clustering method and visualization tool based on data
depth. In Statistical data analysis based on the L\-

norm and related methods (Neuchdtel, 2002), Stat. Ind.
Technol., pages 353-366. Birkhauser, Basel, 2002.

[28] D. G. Kirkpatrick and J. D. Radke. A framework
for computational morphology. In G. Toussaint, ed-
itor, Computational geometry, pages 217-248. North-
Holland, 1985.

[29] S. Krishnan, N. H. Mustafa, and S. Venkatasubrama-
nian. Hardware-assisted computation of depth con-
tours. In 13th ACM-SIAM Symposium on Discrete Al-
gorithms, 2002.

[30] S. Langerman and W. Steiger. Optimization in ar-
rangements. In Proceedings of the 20th International
Symposium on Theoretical Aspects of Computer Sci-
ence (STAGS 2003), 2003.

[31] LAPACK. Linear algebra package,
http://www.netlib.org/lapack/.

[32] LED A. Library of efficient data structures and algo-
rithms, www.ag2.mpi-sb.mpg.de/LEDA.

[33] A. Lingas. A linear-time construction of the relative
neighborhood graph from the Delaunay triangulation.
Comput. Geom., 4(4): 199-208, 1994.

[34] R. Liu. On a notion of data depth based on random
simplices. The Annals of Statistics, 18:405-414, 1990.

[35] R. Liu. Data depth: center-outward ordering of mul-
tivariate data and nonparametric multivariate statis-
tics. In M. Akritas and D. Politis, editors, Recent Ad-
vances and Trends in Nonparametric Statistics, pages
155-168. Elsevier Science, 2003.

[36] R. Liu, J. Parelius, and K. Singh. Multivariate analysis
by data depth: descriptive statistics, graphics and
inference. The Annals of Statistics, 27:783-858, 1999.

[37] J. Matousek. Computing the center of planar point
sets. DIM ACS Series in Disc. Math, and Theoretical
Comp. Sci., 6:221-230, 1991.

[38] K. Miller, S. Ramaswami, P. Rousseeuw, T. Sellares,
D. Souvaine, I. Streinu, and A. Struyf. Efficient
computation of location depth contours by methods
of combinatorial geometry. Statistics and Computing,
13(2):153-162, 2003.

[39] T. Ottmann, S. Schuierer, and S. Soundaralakshmi.
Enumerating extreme points in higher dimensions.
In Symposium on Theoretical Aspects of Computer
Science, pages 562-570, 1995.

[40] F. Preparata and S. Hong. Convex hulls of finite sets of
points in two and three dimensions. Commun. ACM,
20(2):87-93, 1977.

[41] F. P. Preparata and M. I. Shamos. Computational ge-
ometry. Texts and Monographs in Computer Science.
Springer-Verlag, New York, 1985. An introduction.

[42] E. Rafalin, K. Seyboth, and D. Souvaine. Path length
in proximity graphs as a data depth measure. Tufts CS
Technical Report 2005-5, Tufts University, Nov. 2005.
Abstract appeared in Proceedings of the 15th Annual
Fall Workshop on Computational Geometry, UPenn,
2005, pages 11-12.

[43] E. Rafalin, K. Seyboth, and D. Souvaine. Proximity
graph depth, depth contours, and a new multimodal
median, 2005. submitted for publication 22nd Annual

63

http://www.netlib.org/lapack/
www.ag2.mpi-sb.mpg.de/LEDA
www.cs.tufts.edu/r/geometry/depthexplorer/
http://developer.apple.com/cocoa/

ACM Symposium on Computational Geometry.
[44] P. Rousseeuw and M. Hubert. Depth in an arrange-

ment of hyperplanes. Discrete & Computational Ge-
ometry, 22:167-176, 1999.

[45] P. Rousseeuw and I. Ruts. Bivariate location depth.
Applied Statistics-Journal of the Royal Statistical Soci-
ety Series C, 45(4):516-526, 1996.

[46] P. J. Rousseeuw. Introduction to positive-breakdown
methods. In Robust inference, volume 15 of Handbook
of Statist., pages 101-121. North-Holland, Amsterdam,
1997.

[47] P. J. Rousseeuw. Introduction to positive-breakdown
methods. In J. E. Goodman and J. O'Rourke, editors,
Handbook of discrete and computational geometry, Dis-
crete Mathematics and its Applications (Boca Raton),
pages xviii+1539. Chapman & Hall/CRC, Boca Raton,
FL, second edition, 2004.

[48] P. J. Rousseeuw and M. Hubert. Regression depth.
J. Amer. Statist. Assoc., 94:388-433 (with discussion),
1999.

[49] P. J. Rousseeuw and I. Ruts. Constructing the bivari-
ate tukey median. Statistica Sinica, 8:827-839, 1998.

[50] P. J. Rousseeuw, I. Ruts, and J. W. Tukey. The bag-
plot: A bivariate boxplot. The American Statistician,
53:382-387, 1999.

[51] P. J. Rousseeuw and A. Struyf. Computing loca-
tion depth and regression depth in higher dimensions.
Statistics and Computing, 8:193-203, 1998.

[52] I. Ruts and P. J. Rousseeuw. Computing depth
contours of bivariate point clouds. Comp. Stat. and
Data Analysis, 23:153-168, 1996.

[53] A. Struyf and P. Rousseeuw. High-dimensional com-
putation of the deepest location. Manuscript, Dept.
of Mathematics and Computer Science, University of
Antwerp, Belgium, 1999.

[54] G. Toussaint. The relative neighborhood graph of
a finite planar set. Pattern Recognition, 12:261-268,
1980.

[55] J. Tukey. Mathematics and the picturing of data. In
Proceedings of the International Congress of Mathe-
matics, pages 523-531, 1974.

[56] J. W. Tukey. Mathematics and the picturing of data.
In Proc. of the Int. Cong, of Math. (Vancouver, B. C.,
1974), Vol. 2, pages 523-531. Canad. Math. Congress,
Montreal, Que., 1975.

[57] Y. Vardi and C.-H. Zhang. The multivariate Li-
median and associated data depth. Proc. Nat. Acad.
Sci. USA., 97:1423-1426, 2000.

[58] K. Verbarg. Approximate center points in dense point
sets. Inform. Process. Lett., 61(5):271-278, 1997.

[59] E. W. Weisstein. Mode. From MathWorld,
http://mathworld.wolfram.com/Mode.html.

[60] Y. Zuo and R. Serfling. General notions of statistical
depth function. Ann. Statist., 28(2):461-482, 2000.

[61] Y. Zuo and R. Serfling. Structural properties and
convergence results for contours of sample statistical
depth functions. Ann. Statist, 28(2):483-499, 2000.

64

http://mathworld.wolfram.com/Mode.html

Keep Your Friends Close and Your Enemies Closer:
The Art of Proximity Searching

David Mount
University of Maryland, College Park

University of Maryland Institute for Advanced Computer Studies

Proximity searching is the general term used for various distance-based search problems in
geometric and metric space settings. It includes the well known nearest neighbor problem and its
relatives, such as range searching, distance selection, and point location. In spite of many years
of research, this field remains a fruitful source of new ideas, new problems, and new
computational challenges. It is also one of the success stories of algorithm design, where theory
has informed the design of the latest software innovations, and algorithm experimentation has led
to new theoretical insights. In this talk, we will survey some recent results in this area and
present directions for future research and challenges.

65

Implementation and Experiments with an Algorithm for
Parallel Scheduling of Complex Dags under Uncertainty*

(Extended Abstract)

Grzegorz Malewicz^

Abstract

Our earlier paper introduced a parallel scheduling problem
where a directed acyclic graph modeling t tasks and their
dependencies needs to be executed on n unreliable workers.
Worker i executes task j correctly with probability p,,j.
The goal is to find a regimen £, that dictates how workers
get assigned to tasks (possibly in parallel and redundantly)
throughout execution, to minimize the expected completion
time. The paper provided a polynomial time algorithm
for the problem restricted to the case when dag width and
the number of workers are at most a constant, and showed
necessity of these restrictions, unless P=NP. The current
paper describes algorithm engineering approaches used to
produce an efficient implementation of the algorithm, and
experiments demonstrating how the algorithm scales.

Key words: Parallel scheduling, combinatorial
optimization, algorithm implementation, application of
perfect hashing, grid computing, project management.

1 Introduction

Grid computing infrastructures have been developed
over the past several years to enable fast execution of
computations using collections of distributed comput-
ers [12]. Among the most important remaining chal-
lenges is to achieve efficiency of executing large-scale,
sophisticated computations using unreliable computers.
These problems are manifested, for example, in the
Sloan Digital Sky Survey computations [1] that have
sophisticated task dependencies. When a computer
fails to correctly execute an assigned task, then the
progress of execution may be delayed because dependent
tasks cannot be executed pending successful execution
of the task. It is conceivable that task dependencies and

* Research performed in part during a visit to the Division of
Mathematics and Computer Science, Argonne National Labora-
tory, Argonne, IL 60439 supported by NSF grant ITR-800864,
and a stay with the Department of Computer Science, University
of Alabama, Tuscaloosa, AL 35487. Patent pending [21].

t Google Inc., 1600 Amphitheatre Parkway, Mountain View,
CA 94043, USA, E-mail: malewicz@google.com

worker reliabilities play a significant role in the ability
to execute a computation quickly. Therefore, one would
like to determine relationships among these factors, and
develop algorithms for quick execution of complex com-
putations on unreliable computers.

A similar problem arises when managing
projects [17] such as production planning or soft-
ware development. Here a collection of activities and
precedence constraints are given. Workers can be
assigned to perform the activities. In practice, a worker
assigned to an activity may fail to perform it. For
example, if an activity consists of writing a piece of
code and testing it, it could happen that the test fails.
The manager of the project may be able to estimate
the success probability of a worker assigned to an
activity based on prior experience with the worker.
The manager may be able to redundantly assign
workers to an activity. For example, two workers may
independently write a piece of code and test it; if at
least one test succeeds, the activity is completed. Thus
the manager faces a problem of how to assign workers
to activities, possibly in parallel and redundantly, over
the course of the project, so as to minimize the total
time of conducting the project.

These two application areas motivate the study of
the following fundamental parallel computing schedul-
ing problem. A directed acyclic graph (dag) is given
representing t tasks and their dependencies. There are
n workers. At any given unit of time workers are as-
signed in some way to the tasks that are "eligible" based
on precedence constraints and tasks executed thus far
(more than one task can be assigned a worker; more
than one worker can be assigned to a task; workers can
idle). The workers then attempt to execute the assigned
tasks. The attempt of worker i to execute task j suc-
ceeds with probability 0 < pij < I . In the next unit of
time workers are again assigned to tasks. The execution
proceeds in this manner until all tasks have been exe-
cuted. The goal is to determine a regimen E, that dic-
tates how workers get assigned to tasks throughout ex-
ecution, that minimizes the expected completion time.

66

Note that tasks are not unit size; instead we are model-
ing geometric distribution of task duration.

Our prior paper [22] introduced this parallel
scheduling problem. The paper shows a polynomial
time algorithm that finds an optimal regimen when dag
width is at most a constant and the number of work-
ers is also at most a constant. These two restrictions
may appear to be too severe. However, they are funda-
mentally required. Specifically, the paper demonstrates
that the problem is NP-hard with constant number of
workers when dag width can grow, and is also NP-hard
with constant dag width when the number of workers
can grow. When both dag width and the number of
workers are unconstrained, then the problem is inap-
proximable within factor less than 5/4, unless P=NP.

Let us sketch how the algorithm works. Say that
we are given a dag of task dependencies, and the
probabilities of success of workers (an example is in
Figure l(a)). A subset of tasks Y satisfies precedence
constraints when for any task i in V, every task j on
which i depends is also in Y. We enumerate all subsets
YI, . . . , Ym of tasks that satisfy precedence constraints,
and determine pairs of subsets such that Yj can be
obtained from Yi by executing some eligible tasks in Y^.
These subsets and the "obtainability" relation form, it
turns out, a dag, which we call admissible evolution of
execution, denoted A (see Figure l(b)). The expected
time to completion of a regimen starting with tasks Y
already executed depends recursively on expectations
when starting with the subsets that are the children
of Y in A. This suggests a dynamic programming
approach. We process a topological sort of A in the
reverse order. When processing a subset Y, we consider
all ways in which workers can be assigned to eligible
tasks, since it can be shown that workers do not have to
idle, and pick an assignment that minimizes expectation
according to our recursive equation. After the sort
has been processed, we have found a regimen E that
minimizes expected completion time (see Figure l(b)
and (c)).

It is important to better understand the conditions
under which this algorithm produces an optimal regi-
men in a reasonable amount of time. Indeed, certain
critical production planning projects for the military,
emergency response team activities, or computational
projects may favor an optimal regimen, even when de-
rived at a considerable cost, over a suboptimal one, since
the latter may lead to a significant waste of resources
that may be costly, or priceless, such as human lives
during crisis operations. In such applications, an ap-
proximation scheduling algorithm may be inappropriate
even though the algorithm may derive a regimen much
quicker than an optimal scheduling algorithm. There-

fore, it is of practical significance to engineer an effi-
cient implementation of our algorithm, and study how
its running time depends on the problem instance.

Contributions. This paper describes an efficient
implementation of the algorithm and an evaluation of
its scalability. Our implementation first produces a
topological sort of A, and then processes the sort. The
processing consists of triple nested loops: the outer
loop traverses the sort, the middle loop enumerates
assignments, and the inner loop evaluates the recursive
equation.

Our first contribution is a range of practical ap-
proaches that we applied when developing our imple-
mentation, with the goal of making the implementation
efficient. Our first approach is a method for producing a
topological sort of A in a memory-efficient way, exploit-
ing the structure of A. Specifically, we observe that each
arc leads from a subset to a subset with strictly more
tasks. Hence we can list subsets of executed tasks of
cardinality zero, then of cardinality one, and so on. We
show how to create the list without explicitly maintain-
ing arcs, which saves on memory. Our second approach
is a fast implementation of the body of the inner loop.
That body is the most often performed part of the code.
There, a significant contributor to the running time is a
static dictionary lookup. We observe that even though
the dictionary keys may be large, they are similar in a
precise sense. We take advantage of the similarity and
design a perfect hash table using a "linear" hash func-
tion, so that the hash of similar parts of the keys can
be precomputed before the inner loop starts, and only
the hash of the differences is computed within the body,
thus saving on the time of lookups.

Our second contribution is an experimental evalu-
ation of scalability of the implementation. A user of
the implementation may want to judge which instances
can be quickly solved. We give one judgment method
based on three very simple parameters of the instance:
dag width, the number of workers, and the number of
tasks. We say that the implementation succeeds on an
instance, when the implementation running on a specific
dedicated computer can construct an optimal regimen
for the instance quickly enough. We explore the land-
scape of the parameters and estimate where chances of
success are high and where they are low, thus outlin-
ing the limits of scalability of the implementation. The
landscape has subtle shape. Indeed, our implementa-
tion can succeed on problem instances with hundreds of
tasks, provided that dag width and the number of work-
ers are small; and can succeed on medium size dags with
larger width but small number of workers, or with larger
number of workers but small width. Note that it is pos-
sible that instances with such parameters have occurred

67

Figure 1: An instance of the scheduling problem and an optimal solution. From left to right: (a) 12 dependent
tasks with 3 workers and probabilities of success, (b) admissible evolution of execution listing, for each node, the
minimum expected time to completion and a corresponding assignment of workers, (c) a set of executed tasks
(darker) and the resulting eligible tasks (lighter); the minimum expected time to completion is 6.664043; worker
assignment is: one to 3, two to 3, three to 5; for any other assignment expectation is at least 6.69; this set can be
encountered during execution (the darker frame on a path of lighter frames in (b)). Visualized with [15].

or will occur in practice, for example in project manage-
ment for small businesses. We could, then, claim that
our implementation has the potential of being practical.

Related and prior work. Operations Research
community studies scheduling under constrained re-
sources [26, 24, 25, 30] and typically offers heuristics for
NP-hard problems. In project scheduling under uncer-
tainty [18, 10, 11] a task can be executed by one worker
at a time. The restriction can be relaxed and a heuris-
tic approach is offered [31]. Theoretical Computer Sci-
ence community studies stochastic scheduling where one
wants to minimize the expected completion time when
task durations are random variables [19, 16, 28]. Any
task can be executed by one worker only. There are
other sequencing and scheduling problems, with ([14]
ND20 and ND21) and without [6] probabilistic failures.
Systems community has implemented scheduling algo-
rithms in grid computing (e.g., [29]) and project man-
agement fields (e.g., [23]). These implementations often

use basic algorithms that may not model the problems
accurately, or be less resilient to certain failures. Our
implementation of the scheduling algorithm uses a static
dictionary. Efficient implementations can use a perfect
hash table [13, 7, 9] or a trie data structure (cf. [20]).
Our implementation uses a special perfect hash table
that exploits algorithm features that may be difficult to
achieve with a trie.

2 Background

2.1 Model A computation is modeled by a directed
acyclic graph Q with nodes Ng = {!,...,i}, called
tasks, and arcs Ag, each having the form (u —» i>),
where u.v Ng. We denote the set {!,...,£} by [t].
Arcs specify dependencies between tasks: given an arc
(u —> v), v cannot be executed until u has been; task
u is a parent of v. A set of tasks satisfies precedence
constraints if, for every task in the set, all parents of
the task are also in the set. Given such set X, we

68

denote by E(X) the set of tasks not in X all whose
parents are in X; tasks in this set are called eligible when
tasks X have been executed (any non-executed source
is eligible). A chain is a sequence of tasks t t i , . . . , Uk
such that (HI —> w^+i) is in Ag, for 1 < i < k. A set
of chains is said to cover the dag if every task of the
dag is a task in at least one of the chains (chains may
"overlap"). An antichain is a set of tasks such that no
two are "comparable" i.e., for any two distinct tasks u
and v from the set, there is no chain from u to v nor from
v to u. The largest cardinality of an antichain is called
width of the dag. A famous Dilworth's Theorem [8]
states that dag width is equal to the minimum number
of chains that cover the dag.

The execution of tasks is modeled by the following
game. There are n workers identified with elements of
[n]. Let X be a set of tasks that satisfies precedence
constraints. The game starts with Y = X, and proceeds
in rounds. During a round, workers are assigned to
tasks in E(Y) according to a regimen E. The regimen
specifies an assignment E(y) that maps each worker
to an element of the set E(Y) U {_!_} i.e., either to a
task that is eligible in this round, or to a distinguished
element _L. Note that the assignment is determined by
the set of tasks Y. The assignment enables directing
multiple workers to the same task, or to different tasks;
workers can also idle. Then each worker that was
assigned to a task attempts to execute the task. The
attempt of worker i assigned to task j succeeds with
probability 0 < pij < I independently of any other
attempts. We assume that there is at least one worker
that has non-zero probability of success, for any given
task. A task is executed in this round if, and only if, at
least one worker assigned to the task has succeeded. All
executed tasks are added to Y, and the game proceeds
to the next round. It could be the case that all attempts
have failed; then the set Y remains unchanged, and in
the next round worker assignment remains unchanged,
too. Notice that we are not assuming that each task
takes the same amount of time to execute. Rather,
we are assuming that each attempt to execute a task
takes the same amount of time. Since attempts by
different workers may fail with different probabilities, we
are modeling a geometric distribution of task durations.
Formally, a regimen E is a function E : 1N<3 —> ([n] —>•
(Ng U {-L})), such that for any subset Z of tasks that
satisfies precedence constraints, the value E(Z) is a
function from [n] to the set E(Z) U {_!_}. The game
proceeds until a round when all sinks of Q are in Y. We
say that the game ends in such round.

The quality of the game is determined by how
quickly the game ends. Specifically, the number of
rounds of the game, beyond the first round, until the

round when the game ends is called time to completion
of regimen E starting with tasks X already executed.
This time is a random variable. When X is empty
(i.e., the game starts with an empty set of executed
tasks), we call the time simply completion time. Our
goal is to find a regimen E* that minimizes the expected
completion time. We call this goal the Recomputation
and Overbooking allowed Probabilistic dAg Scheduling
Problem (ROPAS).

2.2 Algorithm This section outlines an algorithm,
called OPT (a pseudocode is given in Figure 2), that
solves ROPAS [22]. The algorithm finds an optimal
regimen using a dynamic programming approach.

We begin by constructing a topological sort
FI, . . . , Ym of a certain dag A = (A^, A A) called admis-
sible evolution of execution for Q. The dag is produced
inductively. Each node of A will be a subset of nodes
of Q. We begin with a set NA = {0}. For any node
X e NA that does not contain all sinks of Q, we calcu-
late the set of eligible tasks E(X) in Q. We then take
all non-empty subsets D C E(X), add to NA a node
X U D, if it is not already there, and add to AA an arc
(X, X U D), if it is not already there. The dag A has a
single source 0 and a single sink Ng.

We process the topological sort in the reverse order,
while defining a regimen called E*. We initialize the
regimen arbitrarily. When we process a node X of A,
we define two values: a number TX and an assignment
£*(X). Specifically, we begin by setting Tym to 0, and
£*(ym) so that each worker is assigned to _L. Now let
1 < h < m, and let us discuss how Tyh and E*(y^)
are defined. Let D C H . . . , D^ be all the distinct subsets
of E(Yh), such that DQ = 0. We consider all possible
|.E(Y/l)|

n assignments of the n workers to the tasks of
E(Yh) (but not to J_). For any assignment, we calculate
the probability a^ that DI is exactly the set of tasks
executed by workers in the assignment. Node Yh U Di
has already been processed, for any i > 1, and so Tyh\jDi
is defined. If a\ + . . . + a^ > 0, then we compute the
weighted sum l/(ai + . . . + a fc) • (1 + £i=:1 a» • Ty^uD,).
We pick an assignment that minimizes the sum. We
set Ty,, to the minimum, and E*(Yh) to the assignment
that achieves the minimum. Then we move back in the
topological sort to process another node, by decreasing
h. After the entire sort has been processed, the regimen
E* has been determined. This regimen minimizes the
expected completion time.

THEOREM 2.1. ([22]) The algorithm OPT solves the
ROPAS Problem in polynomial time when width of Q
is bounded by a constant and the number of workers is
also bounded by a constant.

69

Data structure: T is a dictionary that maps nodes of A to distinct floating point variables

Figure 2: An algorithm for constructing an optimal regimen S*, for a dag Q describing dependencies among t
tasks, and n workers such that worker i executes task j successfully with probability pij.

THEOREM 2.2. ([22]) The ROPAS Problem is inap-
proximable to within less than 5/4 factor, unless P=NP.
When restricted to the dag with two independent tasks
(where the number of workers may grow), the problem is
NP-hard. The problem is also NP-hard when restricted
to two workers (where the dag width may grow).

2.3 Hashing We summarize relevant background on
hash functions. Given two sets A and B, a family of
hash functions (transformations) from A to B is called
c-universal [3, 27], if for any distinct x, y e A, at most a
c/ \B\ fraction of the hash functions map x and y to the
same element of B. If a family is 1-universal, it is called
universal. We will use three families of hash functions.
Any hash function from the first two families maps any
subset of [t] to an integer. The families differ by the
range of their hash functions. Let r, s > 1 be fixed
integers. Hash functions are indexed by vectors v of
length t with coordinates from V = {0,.. . , r • s — I } .
For the first family T, each hash function fv maps
any subset to an element of V = {0,..., r • s — 1}
as prescribed by fv(Y) — (X^er^i n iodr -s) . For
the second family ?', each hash function f'v maps
any subset to an element of V = {0, . . . , s — 1 } as
prescribed by f'v(Y} — (XlievVi m°d s)- Note that
f'v(Y] = (fv(Y) mod s). The third family T" consists
of hash functions that map integers to integers. Let
p be a prime number at least r • s, and 1 < b < p.
Hash functions from f" are indexed by numbers g
from {0, . . . , /> — 1}. A hash function f'g' maps elements
of V to elements of {0,..., b — 1} and is defined as
fg(x) = ((g • x mod p) mod 6).

THEOREM 2.3. ([3]) The families T and T' are uni-
versal and the family T" is 1-universal.

THEOREM 2.4. ([13]) Fix a c-universal family of hash
functions from A to B, such that B has cardinality at
least d-m2, and fix a subset of A of cardinality m. Then
at least a (1 — c/(2oQ) fraction of the functions map the
elements of the subset to distinct elements of B.

THEOREM 2.5. ([13]) Fix a universal family of hash
functions from A to B, and a subset of A of cardinality
at most \B\. For a given function, let GI be the number of
elements of the subset mapped by the function to i e B.
Then at least half of the functions have the property that

3 Engineering the algorithm.

This section presents several practical approaches that
we used to engineer an efficient implementation of the
algorithm OPT.

The first phase of the algorithm constructs a topo-
logical sort of A. One approach is to explicitly construct
A, and then use a linear time topological sort algorithm
(cf. [5]). However, A often has significantly more arcs
than nodes, which slows down the construction, and
may cause a memory overflow (thus necessitating an out
of core algorithm) . We notice that a topological sort can
be obtained by listing subsets of executed tasks in the
order of cardinalities of the subsets. Hence there is no
need to explicitly represent arcs. When listing subsets,
we can produce duplicates, but these can be removed in
a space-efficient way with the help of a dynamic hash
table. We omit details of the construction from this
extended abstract.

The second phase processes the sort. The process-
ing typically takes significantly longer than the con-
struction of the sort, especially when the dag width or
the number of workers are large. This is due to the triple
nested loops in lines 03 to 15 and dictionary accesses in
the inner loop. We focus on keeping the number of it-
erations of the inner loop low, and also keeping low the
running time of the body of the inner loop. We outline
how we achieve our goal.

The number of iterations of the inner loop may
sometimes be reduced. By inspecting the pij, we can
determine which tasks must be executed and which
cannot be through 5, and only consider the sets D that
do not contain such tasks.

The final improvement is to implement the body of

70

OPT(t,g,n,(pitj))
01 let YI ,..., ym be a topological sort of A
02 Tym = 0
03 for /i = m — 1 downto 1 do
04 mm = oo
05 for all assignments S of workers to E(Y^)
06 let / C ^(Yh) be the assigned tasks
07 sum = 0

08
09
10
11
12
13
14
15

for all nonempty subsets D C /
let a — Pr[S executes exactly D]
sum = sum + a • Tyh UD

let b = Pr [every assigned worker fails]
if (1 + sum)/(I — 6) < min, then

mm = (1 + s«m)/(l — 6)
£*(y/j = s

Tyh = mm

the inner loop well. Here the main cost appears to be
the dictionary lookup TyhU£>, where Y/j, U D is a subset
of nodes of Q. The lookups can be accomplished quickly
when we use a carefully crafted perfect hash table, so
that the lookup time is on the order of the cardinality
of D, rather than the cardinality of Yh U D, the latter
of which may be quite large, while the former may be
fairly small.

We outline a design of a two-level perfect hash table.
We use the family F of hash functions to find a function
fv that maps the sets YI , . . . , Ym to distinct numbers
from {0,..., rs — 1}—s is the smallest power of 2 that
is at least m, and r = 2s—and the family T' to find f'v
that maps the numbers to slots of total squares of sizes
linear in s. Theorems 2.5 and 2.4 ensure that we can
find a desired v. Note that the fact that s is a power of 2
and so is r simplifies the computation of (x mod s} and
also (x mod rs), since we merely need to take logical
"and" of x with appropriate masks. We construct the
second level hash table using the family F". We pick
bi as the smallest power of 2 at least 2 • c?, and p as
the smallest prime at least 6^, for any «, and at least rs.
By Theorem 2.4, we can select gi from {0,... ,p — 1} to
obtain f'g((x) — (gix mod bi) that distributes content
of the slot i into distinct slots of the second level hash
table.

The body of the inner loop is implemented as
follows. The hash function fv is linear in the sense
that for disjoint X and Y, fv(X U Y) is equal to
(fv(X] + fv(Y)} mod rs. We can use this fact to
reduce the amount of computation inside the loop.
Right before we begin executing the inner loop, we
compute fv(Yh). The loop now considers all subsets D
of /, except for the empty one. For a given subset D, the
value fv(D) is computed, then the value of fv(Yh\JD) is
computed using linearity, and from this the slot in the
first level hash table and then the slot in the second level
hash table are determined. We also need to compute
the probability a that a given D considered within the
body will be executed by S. This computation can be
accelerated using a scratch table that for any given task
j from / contains the probability 1 — qj that this task
will be executed, and another scratch table containing
the probability qj that this task will not be executed.

We observe that the probability a and the value
fv(Yh U D) could be computed "incrementally" from
their values from the previous iteration, or the value
sum resulting from the loop of lines 08 to 10 in a
"bottom-up" manner. However, such approach may
lead to the accumulation of numerical errors or a more
complex control structure.

The algorithm was implemented in C++. The
source code contains over 5,000 lines (over 110KB).

A discussion of performance improvements due to our
algorithm engineering approaches has been omitted
from this extended abstract.

4 Scalability experiments

A user of the implementation may want to judge which
instances can be quickly solved. This section develops
one judgment method. The method is based on three
very simple parameters of the instance: dag width, the
number of workers, and the number of tasks. We say
that the implementation succeeds on an instance, when
the implementation running on a specific dedicated
computer can construct an optimal regimen for the
instance quickly enough. We explore the landscape of
the parameters and estimate where chances of success
are high and where they are low, thus outlining the
limits of scalability of the implementation.

The implementation has exponential running time,
and so one could claim that it cannot tackle large prob-
lem instances quickly enough. We show here, however,
that a response to this claim is subtle. Our imple-
mentation can actually succeed on problem instances
with hundreds of tasks, provided that dag width and
the number of workers are small; and can succeed on
medium size dags with larger width but small number
of workers, or with larger number of workers but small
width. Note that it is possible that instances with such
parameters have occurred or will occur in practice, for
example in project management for small businesses.
We could, then, claim that our implementation has the
potential of being practical.

4.1 Experimental setup We overview our judg-
ment approach. Let us fix parameters w, n and t. Cer-
tain dags of width w on t tasks may be more typical than
others in practice, and so assume that we have a proba-
bility distribution of dags with the parameters. The re-
source consumption of the implementation does not de-
pend much on the pitj, so we assume that pij = 1/2 for
every instance. In this setting, we can find the probabil-
ity that the implementation running on a randomly se-
lected instance will produce an optimal regimen within a
given bound on space and time. We say that our imple-
mentation scales within the landscape of triples (w;, t, n)
where the probability is high. We next discuss details
of the approach.

Pseudorandom dags are generated by picking a
chain of length t and breaking it in w — 1 pseudorandom
places to obtain w chains. We selected this probability
distribution on dags because it is conservative in our
setting (see [2] for other distributions). Indeed, for dags
occurring in practice (e.g., the AIRSN family [32]) when
the width of a dag is u>, then the dag can usually be

71

covered by w chains that overlap. However, our process
produces dags with disjoint chains. When chains are
disjoint, the graph of admissible evolution of execution
tends to have more nodes, and each node X usually has
the property that E(X) has about as many tasks as
the width of the dag. As a result, the space and time
consumption of the implementation should be larger
on dags generated through our process compared to
practical dags. Hence our estimate of the limits of
scalability of the implementation is conservative.

We define the success probability of our implemen-
tation. Let pw>n>t be the probability that an instance
with parameters w;, n and t generated through our pro-
cess can be computed by our implementation within 120
seconds on our dedicated hardware platform Dell Opti-
plex GX280 with a 3.4GHz Intel Pentium 4 processor
and 4GB of memory and virtual memory disabled, run-
ning Windows XP Professional. We compiled the im-
plementation in Visual Studio .NET environment in a
release configuration with default optimizations. Our
choice of the definition seems to capture the notion of
efficiency well given the current state of technology. It
may be interesting to define efficiency in a platform-
independent manner for the sake of subsequent compar-
isons with other implementations and algorithms. How-
ever, it is also quite important to demonstrate how quick
an implementation is on a real hardware and software
platform. Hence we focus on our definition.

Our goal is to estimate where the probability is
high within the landscape of triples and where it is low.
We consider all pairs of w and n with the parameters
ranging from 2 to 29. For a fixed pair, we try to find
the largest in, for which pw,n,t is large, and the smallest
tub for which pw>n>t is small. Clearly the probability is
monotonically decreasing with t. Therefore, the interval
[tib,tub] intuitively denotes the values of the number of
tasks where a transition occurs i.e., the implementation
becomes inefficient.

The search for tub and tit, is carried out experimen-
tally as follows. We generate 9 pseudorandom instances
with parameters w, n and t. If the implementation suc-
ceeds on each, then with confidence at least 95% the
probability pw,n,t is at least 0.7. Indeed under the null
hypothesis that pw,n,t < 0.7, 9 Bernoulli trials succeed
with probability less than 0.79 < 0.05. Similarly, if 9
pseudorandomly selected instances fail, then with con-
fidence at least 95% pw>n,t is at most 0.3 (see [4] for
a discussion of hypothesis testing). The search begins
with t = w tasks, and uses expanding and then con-
tracting binary search to determine tub and tib-

4.2 Results The results of the experiments are de-
picted in Figure 3. In the extreme cases, the implemen-

tation often succeeds when presented with a small and
slim dag of width 2 on 2 tasks but with as many as
28 workers, and also often succeeds with just 2 workers
but on a fairly wide dag of width 20 with 20 tasks. The
middle range is perhaps more interesting, because it is
there where we believe many practical instances will re-
side. Here success often occurs with fairly large graphs
on 351, 120, 45, and 21 tasks, as width and the number
of workers increase together from 3 to 6. Width of up to
4 also often admits success for quite large dags when the
number of workers is moderate, and when the number
of workers is up to 4, then again fairly large dags often
succeed with moderate width.

Acknowledgements. The author thanks Ian Fos-
ter (Argonne) for hosting his visit at Argonne, Fred-
erica Darema (NSF) for support that facilitated that
visit, and David Cordes (UAlabama) for providing an
environment that initiated this research.

References

[1] Annis, J., Zhao, Y., Voeckler, J., Wilde, M., Kent, S.,
Foster, I.: Applying Chimera Virtual Data Concepts to
Cluster Finding in the Sloan Sky Survey. 15th Confer-
ence on High Performance Networking and Computing
(SC) (2002) 56

[2] Brightwell, G.: Models of random partial orders.
Surveys in combinatorics, Cambridge University Press
(1993) 53-83

[3] Carter, J.L., Wegman, M.N.: Universal classes of hash
functions. Journal of Computer and System Sciences,
Vol. 18(2) (1979) 143-154

[4] Cohen, P.R.: Empirical Methods for Artificial Intelli-
gence. Cambridge: MIT Press (1995)

[5] Gormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.:
Introduction to Algorithms (2nd Edition). MIT Press
(2001)

[6] Crescenzi, P., Kann, V. (eds.): A compendium of
NP optimization problems, http: //www. nada. kth. se/
~viggo/wwwcompendium/nodel73.html

[7] Czech, Z.J., Havas, G., Majewski, B.S.: Perfect hash-
ing, Fundamental Study. Theoretical Computer Sci-
ence, Vol.182 (1997) 1-143

[8] Dilworth, R.P.: A decomposition theorem for partially
ordered sets. Annals of Mathematics, Vol. 51 (1950)
161-166

[9] Farach, M., Muthukrishnan, S.: Perfect Hashing for
Strings: Formalization and Algorithms. Combinatorial
Pattern Matching (1996) 130-140

[10] Fernandez, A., Armacost, R., Pet-Edwards, J.: Under-
standing Simulation Solutions to Resource constrained
Project Scheduling Problems with Stochastic task Du-
rations. Engineering Management Journal, Vol. 10(4)
(1998) 5-13

72

http://www.nada.kth.se/~viggo/wwwcompendium/node173.html
http://www.nada.kth.se/~viggo/wwwcompendium/node173.html

Figure 3: Scalability of the algorithm demonstrated through confidence intervals for a range of problem
parameters. Each cell contains two numbers. The former (if darker) is the number of tasks that yields at least
0.7 probability of success with 95% confidence, unless (if lighter) no success was achieved with that parameter
value; the latter at most 0.3 probability of success with the same confidence. Success means that computation
takes at most 3 minutes on a dedicated 3.4GHz Pentium processor with 4GB of memory.

[11] Fernandez, A., Armacost, R.L., Pet-Edwards, J.: A [17]
Model for the Resource Constrained Project Schedul-
ing Problem with Stochastic Task Durations. 7th In- [18]
dustrial Engineering Research Conference Proceedings
(1998)

[12] Foster, I., Kesselman, C. [eds.]: The Grid: Blueprint
for a New Computing Infrastructure, 2nd ed. Morgan- [19]
Kaufmann, San Francisco, CA (2004)

[13] Fredman, M.L., Komlos, J., Szemeredi, E.: Storing a
sparse table with O(l) worst case access time. Journal [20]
of the ACM, Vol. 31(3) (1984) 538-544

[14] Garey, M.R., Johnson, D.S.: Computers and In- [21]
tractability. Freeman, New York (1979)

[15] Graphviz - Graph Visualization Software, AT&T Re-
search http://www.graphviz.org

[16] Goel, A., Indyk, P.: Stochastic load balancing and re- [22]
lated problems. 40th Annual Symposium on Founda-
tions of Computer Science (FOGS) (1999) 579-586

Hillier, F.S., Lieberman, G.J.: Introduction to Opera-
tions Research, 8th ed. McGraw-Hill (2004)
Herroelen, W., Leus, R.: Project scheduling under
uncertainty: Survey and research potentials. European
Journal of Operational Research, Vol. 165(2) (2005)
289-306
Kleinberg, J., Rabani, Y., Tardos, E.: Allocating
Bandwidth for Bursty Connections. SIAM Journal on
Computing, Vol. 30(1) (2000) 191-217
Knuth, D.E.: The Art of Computer Programming,
Volume 3, Second Edition. Addison-Wesley (1998)
Malewicz, G. (inventor), University of Alabama (as-
signee): Method and System for Parallel Scheduling
of Complex Dags under Uncertainty. Patent pending
(2005)
Malewicz, G.: Parallel Scheduling of Complex Dags un-
der Uncertainty. 17th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA) (2005) 66-75

73

http://www.graphviz.org

[23] Microsoft Project 2003 http://www.microsoft.com/
office/project/default.asp

[24] Mori, M., Tseng, C.: A Resource Constrained Project
Scheduling Problem with Reattempt at Failure: A
Heuristic Approach. Journal of the Operations Re-
search Society of Japan, Vol. 40(1) (1997) 33-44

[25] Narasimhan, M., Ramanujam, J.: A fast approach to
computing exact solutions to the resource-constrained
scheduling problem. ACM Transactions on Design Au-
tomation of Electronic Systems, Vol. 6(4) (2001) 490-
500

[26] Ozdamar, L., Ulusoy, G.: A survey on the resource-
constrained project scheduling problem. HE Transac-
tions, Vol. 27 (1995) 574-586

[27] Pagh, R.: Hash and Displace: Efficient Evaluation of
Minimal Perfect Hash Functions. Workshop on Algo-
rithms and Data Structures (WADS) (1999) 49-54

[28] Skutella, M., Uetz, M.: Stochastic Machine Scheduling
with Precedence Constraints. SIAM Journal on Com-
puting, Vol. 34(4) (2005) 788-802

[29] Thain, D., Tannenbaum, T., Livny, M.: Distributed
Computing in Practice: The Condor Experience. Con-
currency and Computation: Practice and Experience,
Vol. 17(2-4) (2005) 323-356

[30] Tseng, C.C., Mori, M., Yajima, Y.: A project schedul-
ing model considering the success probability. Proceed-
ings on the Association of Asian Pacific Operational
Research Societies (APROS) (1994) 399-406

[31] Turnquist, M.A., Nozick, L.K.: Allocating Time and
Resources in Project Management Under Uncertainty.
36th Annual Hawaii International Conference on Sys-
tem Sciences (HICSS) (2003) 250c

[32] Zhao, Y., Dobson, J., Foster, L, Moreau, L., Wilde, M.:
A Notation and System for Expressing and Executing
Cleanly Typed Workflows on Messy Scientific Data.
SIGMOD Record (2005)

74

http://www.microsoft.com/office/project/default.asp
http://www.microsoft.com/office/project/default.asp

Using Markov Chains To Design Algorithms For Bounded-Space
On-Line Bin Cover

Eyjolfur Asgeirsson Cliff Stein

Abstract

We show how the on-line bounded-space bin cover prob-
lem can be modeled with a Markov chain. We then use
this Markov chain formulation to derive an algorithm
for the on-line bounded-space bin cover problem. Our
algorithm is designed to perform well in a restrictive en-
vironment where it can utilize only very few open bins at
each time. We analyze the performance of our algorithm
and compare it to the Sum-of-Squares with Threshold
algorithm. The experimental results show that our algo-
rithm compares favorably with the Sum-of-Squares with
Threshold algorithm, and the average waste incurred by
our algorithm is very small even when it is forced to use
only a handful of open bins.

1 Introduction

The bin cover problem is, in a sense, a dual problem
to the classic bin packing problem. Bin covering takes
as input a list of items L = {ai,a2,. . . ,an} with sizes
in (0,1) and places them into bins of unit demand so
as to maximize the number of bins that are filled to at
least 1. The problem of rinding an optimal bin cover is
NP-hard so our emphasis will be on designing a good
approximation algorithm. We will focus on a restricted
class of algorithms, which are on-line and bounded-
space. In an on-line setting, the items arrive one at a
time and must be assigned to a bin on arrival, without
any knowledge of the items that are yet to arrive. An
on-line bin cover algorithm is K-bounded-space if at no
time during its operations does the number of open bins
exceed K.

This bounded-space on-line restriction has many
practical applications. For example, consider the prob-
lem of packing irregular candy pieces into boxes where
each box must contain at least 1 Ib of candy. The candy
pieces arrive one at a time and we must decide in which
box to put each piece, while the flowline allows only K

* Department of IEOR, Columbia University, New York,
NY. Research partially supported by NSF Grant DMI-9970063.
ea367®columbia.edu.

t Department of IEOR, Columbia University, New York,
NY. Research partially supported by NSF Grant DMI-9970063.
cliffOieor.columbia.edu.

open boxes at each time.
Given a list L and an algorithm A, let A(L) be the

number of bins filled to at least unit level by A, OPT(L)
be the optimal number of bins that can be filled using
the items in L and s(L) be the sum of the item sizes in
L. Then we have that s(L) > OPT(L) > A(L}.

The worst case performance of bin cover algorithms
is usually measured using the following formulas:

The R^ ratio is a better measure of performance for
typical applications than RA. No polynomial-time ap-
proximation algorithm A can have RA > 1/2 because
of the NP-completeness of distinguishing between in-
stances that can fill two bins opposed to one, whereas
in typical applications the number of filled bins is likely
to be large.

Another way to measure the performance of bin
cover algorithms is to look at the average waste. The
objective of minimizing the average waste is equivalent
to the objective of maximizing the asymptotic worst
case ratio. We define the average waste of algorithm
A is defined as:

When we talk about the expected performance of al-
gorithm A, the average waste is often called Expected
Average Waste of algorithm A (EAWA).

A key average-case metric for both bin cover and bin
packing is the Expected Waste Rate (EW). Let L
be a list of n items, where the size of each item is chosen
independently according to an item-size distribution F.
The Expected Waste Rate for bin covering is defined as:

75

while for bin packing, the Expected Waste Rate is
defined as:

Asymptotic worst case ratio:

The on-line bounded-space bin cover problem has
not been covered extensively in the literature, but
less restrictive variants of the bin cover problem have
been studied [6, 14]. However, results for bin covering
have not been as forthcoming as results for the closely
related, but more famous, bin packing problem [1, 4, 3].
Fernandez de la Vega and Lueker [11] introduced an
asymptotic PTAS for the off-line bin packing problem
in 1981 and in 1982, Karmarkar and Karp [12] gave
an improved algorithm. However, for a long time
afterwards it was still an open question whether a
similar approximation scheme existed for the bin cover
variant. This question wasn't answered until 2001, when
Csirik, Johnson and Kenyon, [7], gave a PTAS for the
off-line bin covering problem. They also looked at the
on-line version of bin cover and introduced algorithms,
based on a well known Sum-Of-Squares algorithm (SS)
for bin packing [8, 9]. These modified SS algorithms
perform well for on-line bin cover. In section 4, we will
look closely at one of these algorithms, an algorithm
called Sum-Of-Squares with Threshold (SST), and use
it for comparison with our algorithm.

The best known on-line bounded-space bin cover
algorithm is also one of the most simple ones, Next
Fit (NF). NF has, at all times, only one open bin to
which all items are assigned. When the demand of
the bin is satisfied, NF closes the bin and opens a
new empty bin. Hence, NF is an on-line 1-bounded-
space bin cover algorithm. Csirik and Totik [10] have
shown that every on-line bin cover algorithm, A, must
have R^ < 1/2. It is easy to verify that even
though NF is a very simple algorithm, it achieves
that ratio. However, due to the simplicity of NF, the
average case performance of NF is equal to its worst
case performance. More sophisticated algorithms can
achieve much better average case performance, even
though the worst case performance of NF cannot be
improved on.

In this paper, we will show how we can model
the on-line bounded-space bin cover problem using a
Markov chain. We will use this Markov chain to
derive an algorithm for the on-line bounded-space bin
cover problem. Our focus is on designing an algorithm
with a good average case performance while using
approximations to help control the exploding size of the
state space. To measure the average case performance
of our algorithm, we compare it to the Sum-of-Squares
with Threshold (SST) algorithm. Our algorithm is
designed to perform well in very restricted settings that
are similar to real life situations. However, even with the
restrictions of bounded-space that our algorithm must
satisfy, experimental results show that it does very well
when compared to SST.

The input lists that we will focus on have item sizes
that are drawn randomly from discrete distributions.
The bins have unit demand and the item sizes are
integral multiples of l/B for some integer B and the
probabilities are rational numbers. By scaling up both
the demand of the bins and the item sizes we can
equivalently assume that the bins have demand B and
the item sizes are integers. Most real-world applications
can be scaled to fit this model. The convention is that
"polynomial time" can include polynomials in n and B
[7]. We will also assume that the item distributions are
nontrivial, i.e. distributions where at least two items
have positive probabilities.

Of special interest among the discrete distributions
are a class of distributions called called perfect packing
distributions [2]. These distributions satisfy the prop-
erty that EW®PT = o(n). Courcoubetis and Weber
[5] showed that this implies that EW°PT = O(y/n) for
bin packing. This property is called the perfect packing
property. In bin packing, if a distribution F has the
perfect packing property then the asymptotic expected
ratio of OPT(Ln(F)) to s(Ln(F)) is 1. It's easy to see
that this property holds for bin covering if and only if
it holds for bin packing.

2 Definitions and connection to Markov chains

In this section we will define the terms that we use
to describe our algorithm and show how we can use
Markov chains to analyze the performance of many on-
line bounded-space bin cover algorithms. In the next
section we will then use the concepts from this section
to design such an algorithm.

DEFINITION 2.1. The level of a bin is the sum of the
sizes of all items in the bin.

DEFINITION 2.2. An open bin is a bin in which items
can be placed and whose level is less than its demand.
When the level of a bin is greater than or equal to the
demand of the bin, the bin becomes closed. Closed bins
cannot accept further items. The difference between the
total size of items in a closed bin and the demand of the
bin is called waste.

Since we are looking at a K-bounded-space algorithms,
we can assume that we have, at all times, K open bins
and write the level of these bins as a vector, called bin-
state.

DEFINITION 2.3. Assume we have K open bins
bi, • • • •, OK, and bin i has level li. Then the vector of bin
levels a = [/ I , . . . , / K] is called a bin-state. Since we
will only look at bins that are identical, we can reduce the
number of possible bin-states by assuming that the bin-
states are sorted, i.e. for any bin state a = [/ i , . . . , IK]

76

we have that li < li+i for i — 1,... ,K — 1. If the
bin-state is not sorted, we will call it an unsorted bin-
state. If all bin levels are less than the demand, the
bin-state is called open-bin-state, otherwise we refer
to it as a closed-bin-state.

When an algorithm places an item into a bin such that
the demand of the bin is satisfied, the bin is closed and
replaced by an empty bin. This means that the closed-
bin-states that we will use will have exactly one closed
bin. Since the bin-states are sorted, the closed bin will
always be the last bin in the bin-state.

We can use the following lemma to determine the
total number of different bin-states.

LEMMA 2.1. Let the demand of each bin be B and the
sizes of the items be inteoers. Then for a K-bounded
space algorithm,

Proof. Let S be the be the set of all possible bin-
states. Then we have S — {00, • • • ,VM-I} where
0-j = [/ ! , . . . , /£-] , /*• is the level of the j-th bin in the
sorted bin-state <TJ and /*• < /*-+1 for all j = 1, . . . , K — 1.
The total number of different open-bin-states is equal to
the number of different multisets of size K from a set of
B elements, or (B+£~l).

Since the size of the largest item is B, the last bin
in a sorted bin-state has B — 1 possible bin levels, i.e.
bin levels from B to 2J5 — 1. The number of possible
bin-level combinations for the first K — 1 bins is equal
to the number of different multisets of size K — 1 from
a set of B elements, or (B^72) • ^ne total number of
closed-bin-states is then (B — 1)(^_^~2) and the total

number of bin-states is (B+£~l) + (B - l)(B£*i~2). •

Of all these bin-states, the bin-state CTQ has special
significance since it is the initial bin-state where all bins
are empty.

Since there are only a fixed number of possible bin-
states for on-line bounded-space bin cover algorithms,
we can use Markov chains to analyze the performance
of such algorithms when the item distribution is known,
provided that the item distribution and the algorithms
satisfy the following conditions:

1. The algorithm does not change behavior based on
the number of closed bins or on the items seen, i.e.
it only depends on the current bin-state and the
size of the current item.

2. The item distribution is fixed and nontrivial, i.e. it
does not change over time and at least two item
have positive probabilities.

If these conditions are satisfied for an algorithm A
we can write A as a Markov chain. Each bin-state
that algorithm A can encounter becomes a state in the
Markov chain. We will overload the syntax and let the
bin-state GI denote both the bin-state of algorithm A
and the corresponding state in the Markov chain.

Let 7"4(cr^, j, Vi>} be an indicator variable that is
equal to 1 if algorithm A moves to bin-state av whenever
it is in an open-bin-state ai and receives an item of size
j. Then the transition probability from open-bin-state
&i to state aii, p(0-j,oy), is calculated as follows:

where J is the set of possible item sizes, J =
[1, 2, . . . , B — 1] and PJ is the probability of item of size

3-
The states in the Markov chain that corresponds to

closed-bin-states have a transition probability of 1 to the
open-bin-state where the closed bin has been replaced
with an empty bin. Since the state space is finite, there
will be at least one recurrent class in the Markov chain.
If there are some transient states then we can simply
remove them since we are only interested in the long
run performance of the algorithm. The algorithms for
on-line bounded-space bin-cover are not likely to create
Markov chains with multiple recurrence classes, but if
that happens we can look at each recurrence class in
isolation and then look at the probability of the Markov
chain being in each recurrence class.

We now focus on the positive recurrent class of the
Markov chain. Since any algorithm with only one open
bin is trivially Next Fit, we will only consider instances
where K > 1. The item distribution is nontrivial
so this class will be aperiodic. Markov chains that
have only one class, positive recurrent and aperiodic
have limiting probabilities [13] that determine the mean
time spent in any state. These limiting probabilities
allow us to calculate exactly the expected waste of the
algorithm. Let TT^ be the long-run proportion of time
that the Markov chain is in state i and let Sc be the
set of states in the Markov chain that correspond to
closed-bin-states. Then the expected average waste of
algorithm A is:

where Wi is the actual waste of the closed bin in the
closed- bin-state i.

If the Markov chain has multiple recurrence classes,
we can calculate the expected average waste of the
algorithm by taking a weighted average of the expected

77

there are at most
possible bin-states.

average waste for each recurrence class, where the
weight of each such class is based on the probability
that the Markov chain will end up in that class.

3 Using Markov chains to design an algorithm

Analyzing the expected performance of an on-line
bounded-space bin cover algorithm for a specific item
distribution using Markov chains might be useful in
some situations, but we would like to use the idea behind
this method to design such algorithms. Observe that we
can completely describe an on-line bounded space bin
cover algorithm by the parameters 7A(<7i, j, ov), i.e. the
parameters that effectively determine into which bin we
place an item of size j for all possible bin-states that can
occur. A helpful notation is to let of ~* be the bin state
that we get if the current bin-state Oi and we place an
item of size j into bin number k. (Recall that the bins
are stored in sorted order.)

We can now write the formulation for an on-line
K-bounded-space bin cover algorithm as:

where PJ is the probability of item of size j, k* is the bin
that we will place an item of size j into if the current

where S is the set of all states in the Markov chain and
J is the item distribution. However, in general, this
formulation does not immediately yield an algorithm.
Even though the optimal solution to this problem
would give us an optimal algorithm for the on-line
K-bounded-space bin cover problem, this formulation
cannot be solved efficiently because of the complicated
connection between the 7(0^, j, oy) variables and the
limiting probabilities TT.

3.1 Approximate solution Let us assume that we
have a ranking criteria for all the closed-bin-states, i.e.
some cost that determines how desirable each closed-
bin-state is. We will define this in detail later but for
now, let's just call this cost bin- state- cost, or bsc.

Given the bin-state-cost for all closed bin-states, we
can calculate the expected bin-state-cost for any open-
bin-state o~i in a recursive manner:

Figure 1: The Min-Bin-State-Cost (BSC) algorithm.
The parameter k* is used both in the initialization step
and when we are packing the items. We could store
the values of k* for each bin-state and each item size

. during the initialization. However, due to the storage
/requirements of such a table and since it is easy to find
k*, we use a simple comparison of k bin-states to find
k* for each item when we are packing the items.

LEMMA 3.1. For any bin-state o~i and any item j and
any bin k in ai, the bin- state of ~" ~ is always later in a
lexicographic order than &i. This still holds when of ~*
is a closed-bin- state.

bin-state is GI and of "* is the resulting bin-state after
the item has been placed in bin k*.

COROLLARY 3.1. Given the bin-state- cost of all closed-
bin-states, we can calculate the bin- state- cost of all bin-
states in one pass by iterating through the bin-states in
reverse lexicographic order.

Once we define the bin-state-cost, we can use Corollary
3.1 to create the BSC algorithm shown in Figure 1.

We define the cost for each closed-bin-state in the
following manner. The cost has two parts:

• The actual waste that we incur from the closed bin

78

Proof. and
Then

since and for any
while all other elements are identical,

we have that

ALGORITHM 3.1. BSC
Input: Sorted list of all states, probability of each
item size, list of items.
Output: Packing of all the items into bins.

Initialize:
For state <TJ = OM • • • 0"o
Calculate EBSC(ai)

Packing items:

For each item j in the list of items

for each bin k

place item j in bin k*

min

Figure 2: Effect of a on average waste incurred by the Figure 3: Effect of a on average waste incurred by the
BSC algorithm. The bin size was 100, the items sizes BSC algorithm. The bin size was 100 and the item
were integers obtained by rounding from 7V(50, 7). distribution was discrete Uniform (15,65).

• A penalty for all open bins whose level is too
high, i.e. if they are unlikely to be closed without
incurring a large waste.

We set the penalty for each open bin as max(0, h + a —
B), where h is the level in the bin and a is a number
such that the probability of receiving an item no greater
than a is small. The recursive formula for the expected
bin-state-cost then becomes

where WK is the actual waste of the closed bin (the last
bin) in the closed-bin-state. The optimal value for a
depends on the item distribution and the number of
bins that we can have open. Figures 2 and 3 show
how the choice of a affects the performance of the BSC
algorithm. We often refer to his constant a as a penalty
item, since we are effectively penalizing the bins that
are too full.

3.2 Groups When the number of open bins grows,
using a Markov chain to design the algorithm quickly
becomes impractical since the number of possible states
grows very rapidly with the number of open bins.

To be able to use many bins, we partition the open
bins into groups such that each group has a manageable
number of bins. We then find a BSC algorithm for each
group of bins. Then, when we pack items we must do

it in two steps, first we select which group we will use
for the item, and then in which bin from that group we
will place the item.

We tried two different greedy methods to select into
which group we place each item. Let G — {1,... ,<?} be
the set of groups and GI be the bin-state of group i. Also
let bsc(ai) be the expected bin-state-cost of &i and let
k* be the bin in group i that we will use for an item of
size j according to the BSC algorithm. We then tried
the two following greedy methods.

Aggressive Greedy:

Conservative Greedy:

The aggressive greedy method tries to minimize the
best expected bin-state-cost over all the groups while
the conservative greedy method tries to maximize the
improvement in expected bin-state-cost we can get for
any group by adding the item to that group.

Figures 4 and 5 show comparisons between these
two methods. In our experiments, the conservative
greedy was often much better than the aggressive greedy
method whereas in the few instances where the aggres-
sive greedy performed better, the difference was very
small. Our results indicate that when choosing into
which group we place an item, it is preferable to avoid
getting into trouble rather than selecting the most at-
tractive option for each item.

79

Figure 4: Greedy comparison. Bin size of 600 and an Figure 5: Greedy comparison. Bins of size 100 and
item distribution of Normal(100,15). The number of the item distribution is Uniform(15,65). The number of
groups is from 1 to 10 where each group consists of 3 groups is from 1 to 10 where each group consists of 3
bins. bins.

3.3 Decreasing the number of states As we men-
tioned at the beginning of Section 3.2, the number of
states grows rapidly with the demand of the bins. Since
the demand is an integer, the number of different bin
levels that a single bin can have is equal to the demand.
We will now show how we can ignore a few bin levels to
decrease the number of states in the Markov chain, and
thereby reduce the running time of the algorithm.

DEFINITION 3.1. // bin-states ai = (/|,... ,11
K) and

CTJ = (/] , . . . , 13
K] are such that X^=i Kjt ~ ^k = ^ ^en

we say that the bin-states (?i and cr. are adjacent.

Figures 6 and 7 show the expected bin-state-cost
of all bin-states of the BCS algorithm for two different
item distributions and a bin size B = 100. The first item
distribution is a normal distribution JV(25,5) where we
round the items to the nearest integer. The second
is a discrete uniform distribution between 10 and 40.
Usually, we only look at the sorted bin-states, but here
we plot all bin-states to get a better picture.

In Figures 6 and 7, we have 100 bin levels and two
bins, for a total of 5050 sorted open-bin-states. The
steep edges when either bin has level close to 100 are due
to the a-factor kicking in when the bin levels become too
high. The size of a for the first one was set to 10 which
is 3 standard deviations below the mean, and the second
one also had a of size 10 which is equal to the smallest
possible item we can get from that distribution.

However, they both support the intuition that, for
the majority of the bin-states, there should only be a

small difference in the bin-state-cost of adjacent bin-
states. When the bin-levels are not at some critical lev-
els based on the item distribution and the bin demand,
the expected bin-state-cost will change slowly between
adjacent bin-states.

To decrease the number of bin-states we do the
following:

• If the item distribution has a smallest item, i.e.
no items are smaller than /?, we ignore all bin
levels between 0 and f3. We can do this since it
is impossible for any bin to have level between 0
and (3.

• Select a subset, L, of the remaining bin-levels. We
try to minimize the size of L, while still making sure
that L captures the variations in bin-state-costs for
the bin-states.

When we now run the BSC-algorithm, we calculate the
expected bin-state-cost as before, but in each step, we
round the actual bin-state to the nearest bin-state that
consists only of bin-levels from L.

To see the effect of using only a subset of the
bin-levels, we created four different subsets, with bin
demand of 100 and a set of item distributions where
the distribution is uniform between 18 and X where
X = 21,...,40. We used the same subsets for all
19 distributions. We ran the BSC-algorithm for each
subset of bin levels and each item distribution using 3
open bins. The subsets are shown on the left graph
in Figure 8. The first subset is as detailed as possible

80

Figure 6: The expected bin-state-cost with two bins of
demand 100, an item distribution of AT(25,5) rounded
to the nearest integer and a penalty item of size 10.

Size of subsets
100 levels
83 levels
42 levels
29 levels
17 levels

3 Bins
171,700
98,770
13,244
4,495

969

4 Bins
4,421,275
2,123,555

148,995
35,960
4,845

5 Bins
91,962,520
36,949,857
1,370,754

237,336
20,349

Table 1: Number of different sorted open-bin-states for
various sized subsets and number of open bins.

with 83 different bin-levels, we only omit the bin levels
1,...,17, since the smallest item is 18, we will never
encounter those. The next subset uses every other bin-
level between 18 and 99, this gives us a subset of size 42.
The third set has size 29 while the last set uses only 17
bin-levels by jumping in steps of 5 between 18 and 99.
Figure 8 show the comparison of the algorithm using
these 4 different sets on 19 uniform distributions.

Figure 8 shows that we can decrease the number
of bin-states significantly without severely affecting the
performance. The average waste incurred does not
increase significantly if we use 42 levels rather than 83,
however, as Table 1 shows, the complexity decreases by
almost an order of magnitude.

Table 1 shows the number of different sorted bin
states for 3,4 and 5 open bins, using 5 different sized
subsets of the bin levels. As we can see, the number of
bin-states decreases dramatically when we decrease the
size of the subset. Notice that, for 3,4 and 5 bins, we can
reduce the number of bin-states by a factor of 1.7, 2.1
and 2.5 respectively, just by removing the unnecessary

Figure 7: The expected bin-state-cost with two bins of
demand 100. The item distribution was discrete uniform
between 10 and 40 and a penalty item of size 10.

Figure 8: Comparison of using different sized subsets of
the bin levels. The sizes of the subsets are 83,42,29 and
17, and the item distribution is uniform between 18 and
X, where X = [21,..., 40]. The size of a was 18 and we
used 3 open bins. The results are averages taken over 5
instances.

81

Figure 9: This graph shows the average ratio
A(Ln(F))/s(Ln(F)) for the SST algorithm and the BSC
algorithm. The values for the SST algorithm are shown
after it has closed 2000, 10000 and 300000 bins. The
BSC algorithm uses 3 groups of 3 bins for a total of
9 open bins. The values for the BSC algorithms are
evaluated after closing 100000 bins. The item distrib-
utions shown are uniform distribution between 18 and
all values from 18 to 99.

bin-levels between 0 and 18. Sorting the bin-states is
crucial, the number of unsorted bin states with 100 bin
levels is 1,000,000 for 3 open bins, 100,000,000 for 4 open
bins and 10,000,000,000 for 5 open bins.

Since the number of possible bin-states is a bottle-
neck on how many bins we can keep open, using a small
set of bin-levels allows us to increase the number of open
bins. Using a smaller set of bin-levels will increase the
average waste incurred, but having more open bins will
decrease the average waste. Hence there is a tradeoff
between the size of the set of bin-levels we use and the
number of open bins.

4 Comparison with Sum Of Squares with
Threshold

The Sum-of-Squares algorithm (SS) is a well known
algorithm that performs well for on-line bin packing.
The SS algorithm keeps track of how many bins, n^,
have bin-level equal to i in the current packing. When
a new item is packed, it is placed in a bin so as to
minimize X!t=o n?> subject to the constraint that no bin
is overfilled. The SS-algorithm has EW^S(F) = O(^)
for all perfect packing distributions F, so it performs
well on such distributions for the on-line bin cover
problem. However, if the distribution does not satisfy

Figure 10: This graph shows how many bins the SST
algorithm is using after it has closed 2000, 10000 and
300000 bins. The values for the BSC algorithms are
evaluated after closing 100000 bins. Since the BSC
algorithm uses only 9 open bins, we only show values
between 0 and 500 for the SST algorithm.

the perfect packing property, then SS can fail miserably
since it never considers overfilling a bin, which is often
necessary for bin covering. Csirik, Johnson and Kenyon
[7] showed how to modify the SS algorithm to make it
useful for on-line bin covering with general distributions.
The version that they introduced and we will consider
here is called Sum-of-Squares with Threshold, SST,
where they allow the SS algorithm to fill a bin up to
a threshold T, where at each time interval, T depends
on the number of bins closed so far and the sum of the
items seen so far.

The SST algorithm has a definite advantage over
our algorithm since it is not restricted by the bounded-
space condition. This means that there are no restric-
tions on how many bins SST can keep open at each time.
When the distribution is a perfect packing distribution,
the average waste of the algorithm will get arbitrarily
close to 0 as the number of items increases. To get a rel-
evant comparison between the BSC algorithm and SST,
we will run them both for a long time, and look at how
the average waste of both algorithms changes over time
and how many bins SST must keep open to achieve its
performance.

Figure 9 looks at the ratio of A(Ln(F))/s(Ln(F))
for both the algorithms, while Figure 10 shows the
number of open bins that the SST algorithm is using.

Figures 9 arid 10 indicate that using 9 open bins
for the BSC algorithm gives similar results to the

82

Figure 11: The performance of the BSC algorithm with
item distribution N(100,15) for bin sizes from 200 to
800. This graph shows the performance for a single
group of 1,2,3 and 4 bins.

SST algorithm after closing 10,000 bins, while the SST
algorithm uses at least 4 times as many open bins and
up to 54 times as many. When the item distribution
is very difficult, the SST algorithm takes a long time
to reach a good average ratio. For item distributions
that are uniform between 18 and an upper limit larger
than 82, the item distribution no longer satisfies the
perfect packing property and is very difficult to pack.
In those cases, our algorithm actually performs better
than SST after 300,000 closed bins. In the long run,
the SST algorithm performs much better than the BSC
algorithm, but for environments where the number of
open bins must be relatively small and items cannot
wait in open bins indefinitely, the BSC algorithm has
definite advantages over the SST algorithm.

5 Results and experiments

We looked at the performance of the BSC algorithm
when faced with a number of different bin sizes. We
kept the item distribution fixed as normal distribution
with mean 100 and standard deviation 15. We chose the
normal distribution since the distribution of items in a
practical setting, e.g. in the food industry, is often quite
close to the normal distribution. We look at bin sizes
between 200 and 800, and for each bin size we create a
special subset of the bin levels that we use. To speed
up the performance, we try to keep the number of bin
levels in each such subset no more than 100. Figure 11
shows the performance of using only a single group of
1,2,3 and 4 open bins. Figure 12 shows the results if

Figure 12: The performance of the BSC algorithm with
item distribution N(100,15) for bin sizes from 200 to
800. This graph shows the performance of three groups
of 1,2,3 and 4 bins, for a total of 3,6,9 and 12 bins,
and the performance of Sum of Squares with Threshold
algorithm after closing 100,000 bins.

we use three groups of 1,2,3 and 4 bins. The graph in
Figure 13 shows the performance of 1,2,3 and 4 groups
of 3 bins, with a total number of open bins as 3,6,9 and
12.
Small average waste using very few open bins. By
using only 9 open bins we get the average waste below
2 for bin sizes from 600 to 800 using item distribution
N(100,15). With only 12 open bins, we can get an
average waste well below 1 for bin sizes from 600 to
800, and less than 0.5 for the largest bin sizes. The
ratio A(Ln(F))/s(Ln(F)) for bin size 800 and average
waste 802 is around 0.9975, and for bin size 600 and
average waste 602, the ratio is .9967. Hence, by using
only 9 open bins, we consistently get a ratio above 0.996
for bin sizes above 600. With 12 open bins, this ratio is
greater than 0.998 for bin sizes above 600.
Using 12 bins gives results that are comparable
to SST for small bin sizes When the bin sizes are
small, it is often difficult to get small average waste,
since we can only fit a few items into each bin. We
ran the SST algorithm as comparison with the BSC
algorithm, allowing SST to close 100,000 bins. For small
bin sizes, between 200 and 500, we got very similar
results from the BSC algorithm with 3 groups of 4 bins
as the SST algorithm got after closing 100,000 bins. The
SST algorithm used from 100 to 14,000 open bins, while
the BSC algorithm used only 12. When the bin sizes
were above 600, the BSC algorithm was much better

83

Figure 13: The performance of the BSC algorithm with
item distribution N(100,15) for bin sizes from 200 to
800. This graph shows the performance of 1,2,3 and 4
groups where each groups consists of three bins.

than the SST algorithm since the SST algorithm did not
converge fast enough when the bin sizes grew larger.
Running time for packing items is small. We
ran the instances shown in Figures 11,12 and 13 on a
laptop with a l.TGHz Pentium-M processor and 512MB
memory. Running time for BSC when there are 3 bins
in a group is around 5 seconds for the smaller instances
to 20 seconds for the largest instances. This is the time
that it takes to calculate bin-state-cost for all bin-states
and fill 100,000 bins. When there are 4 bins in a group,
the running time is around 2 minutes for the smaller
problem up to 10 minutes for the largest instances. The
running time is dominated by the time it takes to set
up and calculate the bin-state-cost for all the bin-states.
Once the expected bin-state-cost is calculated, packing
the items is very fast.

6 Conclusions

Markov chains can be a powerful tool when dealing with
algorithms that have a closed and finite search space.
By formulating the problem in terms of a Markov chain
we can get new insights and ideas on how to solve it
or for algorithm design. We showed how ideas from
Markov chains helped us design an algorithm for the
on-line bounded-space bin covering problem. This
algorithm was called BSC-algorithm. We showed that
the BSC algorithm performs very well with various
item distributions and bin sizes, while using only very
few open bins. In experiments designed to simulate
practical settings, the BSC algorithm performed much

better than the Sum-of-Squares with Threshold algo-
rithm. The BSC algorithm has some very nice qualities
and should perform well in a practical setting.

Acknowledgments. The authors thank Agni Asgeirs-
son and Pall Jensson for helpful discussions.

References

[1] A. B. Assman, D. J. Johnson, D. J. Kleitman, J. Y-
T. Leung, On a dual version of the one-dimensional
bin packing problem, Journal of Algorithms, 5 (1984),
pp. 502-525.

[2] E. G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S.
Johnson, P. W. Shor, R. R. Weber, M. Yannakakis,
Perfect Packing Theorems and the Average Case Be-
havior of Optimal and On-line Packings, SI AM Rev.,
44 (2002), pp. 384-402.

[3] E. G. Coffman, Jr., D. S. Johnson, P. W. Shor,
R. R. Weber, Markov chains, computer proofs, and
average-case analysis of best fit bin packing, STOC
'93: Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, (1993), pp. 412-
421.

[4] E. G. Coffman, Jr., G. S. Lueker, An Introduction to
the Probabilistic Analysis of Packing and Partitioning
Algorithms, Wiley & Sons, New York, (1991).

[5] C. Courcoubetis, R. R. Weber, Stability of on-line
bin packing with random arrivals and long-run average
constraints, Prob. End. Inf. Sci.,4 (1990), pp. 447-460.

[6] J. Csirik, J. B. G. Frenk, G. Galambos, A. H. G. Rinooy
Kan, Probabilistic analysis of algorithms for dual bin
packing problems, Journal of Algorithms, 12(2) (1991),
pp. 189-203.

[7] J. Csirik, D. Johnson, C. Kenyon, Better approxima-
tion algorithms for bin covering, Proceedings of the
12th ACM-SIAM Symposium on Discrete Algorithms,
(2001), pp. 557-566.

[8] J. Csirik, D. Johnson, C. Kenyon, P. Shor, R. Weber,
A self organizing bin packing heuristic, Proceedings,
ACM-SIAM Workshop on Algorithm Engineering and
Experiments, (1999), pp. 246-265.

[9] J. Csirik, D. S. Johnson, C. Kenyon, J. B. Orlin, P. W.
Shor, R. R. Weber, On the sum-of-squares algorithm
for bin packing, Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing, (2000), pp. 208-
217.

[10] J. Csirik, V. Totik, Online algorithms for a dual version
of bin packing, Discrete Appl. Math., 21(2) (1988),
pp. 163-167.

[11] W. F. de la Vega, G. S. Lueker, Bin Packing can be
Solved within 1 + e in Linear Time, Combinatorica,l(4)
(1981), pp. 349-355.

[12] N. Karmarkar, R. Karp, An efficient approximation
scheme for the one-dimensional bin-packing problem,
Proceedings of the 23rd Annual Symposium on Foun-
dations of Computer Science, (1982), pp. 312-320.

84

[13] S. M. Ross, Introduction to Probability Models, Acad-
emic Press, (2000).

[14] T. P. Runarsson, P. Jensson, M. T. Jonsson, Dynamic
dual bin packing using fuzzy objectives, Proceedings of
1996 IEEE International Conference on Evolutionary
Computation (ICEC '96), (1996), pp. 219-222.

85

Data Reduction, Exact, and Heuristic Algorithms for Clique Cover

Jens Gramm* Jiong Quo* Falk Hiiffner^ Rolf Niedermeier^

Abstract

To cover the edges of a graph with a minimum number of
cliques is an NP-complete problem with many applications.
The state-of-the-art solving algorithm is a polynomial-time
heuristic from the 1970's. We present an improvement
of this heuristic. Our main contribution, however, is the
development of efficient and effective polynomial-time data
reduction rules that, combined with a search tree algorithm,
allow for exact problem solutions in competitive time. This
is confirmed by experiments with real-world and synthetic
data. Moreover, we prove the fixed-parameter tractability
of covering edges by cliques.

1 Introduction

Data reduction techniques for exactly solving NP-hard
combinatorial optimization problems have proven use-
ful in many studies [1, 3, 10, 16]. The point is that by
polynomial-time executable reduction rules many input
instances of hard combinatorial problems can be signifi-
cantly shrunk and/or simplified, without sacrificing the
possibility of finding an optimal solution to the given
problem. For such reduced instances then often exhaus-
tive search algorithms can be applied to efficiently find
optimal solutions in reasonable time. Hence data reduc-
tion techniques are considered as a "must" when try-
ing to cope with computational intractability. Studying
the NP-complete problem to cover the edges of a graph
with a minimum number of cliques ((EDGE) CLIQUE
COVER)1, we add a new example to the success story
of data reduction, presenting both empirical as well as
theoretical findings.

* Wilhelm-Schickard-Institut fur Informatik, Univer-
sitat Tubingen, Sand 13, D-72076 Tubingen, Germany,
grammOinformatik.uni-tuebingen.de. Supported by DFG
project OPAL, NI 369/2.

^Institut fur Informatik, Friedrich-Schiller-Universitat
Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany,
{guoIhueffnerIniedermrjOminet.uni-jena.de. Jiong Guo
and Falk Hiiffner supported by DFG Emmy Noether research
group PIAF, NI 369/4.

1We remark that covering vertices by cliques (VERTEX CLIQUE
COVER or CLIQUE PARTITION) is of less interest to be studied on
its own because it is equivalent to the well-investigated GRAPH
COLORING problem: A graph has a vertex clique cover of size A;
iff its complement graph can be colored with k colors such that
adjacent vertices have different colors.

Our study problem CLIQUE COVER, also known
as KEYWORD CONFLICT problem [12] or COVERING
BY CLIQUES (GT17) or INTERSECTION GRAPH BASIS
(GT59) [9], has applications in diverse fields such as
compiler optimization [19], computational geometry [2],
and applied statistics [11, 18]. Thus, it is not surprising
that there has been substantial work on (polynomial-
time) heuristic algorithms for CLIQUE COVER [12, 14,
19, 18, 11]. In this paper, we extend and complement
this work, particularly introducing new data reduction
techniques.

Formally, as a (parameterized) decision problem,
CLIQUE COVER is defined as follows:

CLIQUE COVER
Input: An undirected graph G = (V, E) and
an integer k > 0.
Question: Is there a set of at most k cliques
in G such that each edge in E has both
its endpoints in at least one of the selected
cliques?

CLIQUE COVER is hard to approximate in polyno-
mial time and nothing better than only a polynomial
approximation factor is known [5].

We examine CLIQUE COVER in the context of
parameterized complexity [7, 17]. An instance of a
parameterized problem consists of a problem instance /
and a parameter k. A parameterized problem is fixed-
parameter tractable if it can be solved in f(k) • \I\°^
time, where / is a computable function solely depending
on the parameter k, not on the input size |/|.

Our contributions are as follows. We start with
a thorough mathematical analysis of the heuristic of
Kellerman [12] and the postprocessing of Kou et al. [14],
which is state of the art [19, 11]. For an n-vertex and
m-edge graph, we improve the runtime from O(nra2)
to O(nm}. Afterwards, as our main algorithmic contri-
bution, we introduce and analyze data reduction tech-
niques for CLIQUE COVER. As a side effect, we pro-
vide a so-called problem kernel for CLIQUE COVER, for
the first time showing—somewhat surprisingly—that
the problem is fixed-parameter tractable with respect
to the parameter k. We continue with describing an
exact algorithm based on a search tree. For our ex-
perimental investigations, we combined our data reduc-

86

tion rules with the search tree, clearly outperforming
heuristic approaches in several ways. For instance, we
can solve real-world instances from a statistical applica-
tion [18]—so far solved heuristically [18, 11]—optimally
without time loss. This indicates that for a significant
fraction of real-world instances our exact approach is
clearly to be preferred to a heuristic approach which
is without guaranteed solution quality. We also ex-
perimented with random graphs of different densities,
showing that our exact approach works extremely well
for sparse graphs. In addition, our empirical results re-
veal that for dense graphs a data reduction rule that
was designed for showing the problem kernel does very
well. In particular, this gives strong empirical support
for further theoretical studies in the direction of im-
proved fixed-parameter tractability results for CLIQUE
COVER, nicely demonstrating a fruitful interchange be-
tween applied and theoretical algorithmic research.

Not all details and proofs are given in this extended
abstract.

2 Improved Heuristic

Kellerman [12] proposed a polynomial-time heuristic for
CLIQUE COVER. This heuristic was improved by Kou,
Stockmeyer, and Wong [14] by adding a postprocessing
step; this version has been successfully applied to
instruction scheduling problems [19] and in the analysis
of statistical data [11], Clearly, both versions of the
heuristic run in polynomial time but in both cases a
more precise analysis of their runtime was not given.
In this section, for an n-vertex and m-edge graph, we
analyze the runtime of both heuristics as O(nm2). We
show how to slightly modify Kellerman's heuristic such
that we can improve the runtime of both heuristics
to O(nm) by a careful use of additional data structures.

The CLIQUE COVER heuristic by Kellerman [12],
further-on referred to as CC-Heuristic 1, is described
in pseudo-code in the left column of Fig. 1. To
simplify notation, we use V = {1,..., n} as vertex set.
The algorithm starts with an empty clique cover and
successively, for i = 1,... ,n, updates the clique cover
to account for edges {i,j} with j < i. In case there
are no edges between the currently processed vertex i
and the set W of its already processed neighbors, a new
clique is created, containing only i. Otherwise, we try to
add i to existing cliques where possible. After this, there
may still remain uncovered edges between i and W. To
cover those edges, we create a new clique containing i
and its neighbors from one of the existing cliques such
that the number of edges covered by this new clique
is maximized. We repeat this process until all edges
between i and vertices from W are covered.

To improve both the analysis and in some cases the

Figure 2: The add-to-clique subroutine.

result of the heuristic, we assume that the algorithm is
aborted as soon as ra cliques are generated. In that case
we can simply take the solution that covers each edge
separately by a two- vertex clique.

It is relatively straightforward to observe that CC-
Heuristic 1 runs in O(nm2) time.

To improve the runtime, the idea is to identify the
"hot spots" and to use caching data structures that will
give the computation of these hot spots basically for
free, and spread the work of keeping this structure up-
to-date throughout the rest of the program.

We maintain the following two tables for vertices i,
1 < i < n, where Cj, 1 < / < m, are the cliques
generated by the algorithm:

with {i,j} G E called uncovered if VI < / < m :
{i, j} <2 Cl- The set N>(i) is defined analogously. The
table S1^] is used to keep track of the existing cliques to
which a vertex i may be added. Using S[i] will avoid
to inspect every existing clique individually in order to
test whether vertex i can be added to the clique (see
lines 10 and 11 for CC-Heuristic 1 in Fig. 1). The
table I[i] is used to keep track of the existing cliques
with which a vertex i has an "uncovered overlap", i.e.,
with which i shares yet uncovered edges. The cliques
are kept sorted by the size of this uncovered overlap.
Using table 7[i], we will avoid the costly computation
of a clique with maximum uncovered overlap in line 18.
Thus, tables S and / help to replace costly operations
during the heuristic by constant-time look-ups in these
tables. This comes at the price of having to keep these
tables up-to-date throughout the heuristic.

We now first explain how the newly introduced
tables are updated throughout the heuristic and, then,

87

where the set N<(i) for a vertex i is defined as

Figure 1: Comparison of CC-Heuristic 1 by Kellerman [12] and the improved CC-Heuristic 2 in pseudo-code. Code
in the right column indicates that in CC-Heuristic 2 the code replaces the corresponding lines of CC-Heuristic 1
shown in the left column.

we show how they are used to modify CC-Heuristic 1.
Initially, the entries S[i] and I[i] are empty for all
1 < i < n. To handle all modifications to our partial
clique cover and to update tables S and /, we introduce
the function add-to-clique, presented in pseudo-code in
Fig. 2. The function adds one vertex i to a clique Ci
and updates these tables as follows.

• Table S: The grown C/ might not be subset
of N<(j) anymore for some j with / G S[j}. This
is accounted for in lines 1-3. To this end, we need
to find all vertices j such that clique Ci is subset
of N<(j) before adding i to Ci but is not subset
of N<(j) after adding i to C\. All these j are
certainly found when inspecting all neighbors of one
arbitrarily selected element j' of the old C/. If, for
some j, / e S[j] but i £ N<(j), then we remove /
from S[j].

• Table /: For each j in N>(i), we percolate / to its
right place in I[j] since Ci n N<(j) has grown by
one. This is done in lines 4-5.

Clearly, after these updates, the addition of i to Ci has
been correctly accounted for.

Fig. 1 shows how function add-to-clique is used
to modify CC-Heuristic 1 in order to obtain our new
heuristic to which we refer as CC-Heuristic 2. More
precisely, we replace every addition of a vertex to a
clique by a call to the new function add-to-clique; this
explains the changes of lines 6, 12, and 20 and makes
sure that in these modifications the tables I and S are
updated.

Table S is then used to speed up lines 10 to 14
of the old heuristic where the currently processed ver-
tex i is added to existing cliques where possible. Here,
instead of testing for each existing clique individually
whether this is possible (as done in CC-Heuristic 1),
CC-Heuristic 2 directly accesses these cliques in table
entry S[i]. Moreover, we also change the heuristic by
adding vertex i to an existing clique Ci only if there
are edges between i and C\ which are yet uncovered. In
contrast, CC-Heuristic 1 adds vertex i to every possible
existing clique C/ (unless all edges connecting i to pre-

88

viously processed vertices are already covered). Thus,
in some cases CC-Heuristic 1 may add vertex i to an
existing clique while not covering previously uncovered
edges, and, in other cases, vertex i is not added to an
existing clique although this would be possible. There-
fore, our modification makes the algorithm more con-
sistent and additionally this change will be essential in
the runtime proof.

Table / is used to speed up lines 18 to 20 of the
old heuristic where new cliques are generated for the
still uncovered edges connecting the currently processed
vertex i to its already processed neighbors in W. More
precisely, we generate a clique containing i and C/ D W
where Ci is chosen such that it maximizes the overlap
with W. While the choice of I was time-consuming
in CC-Heuristic 1, it is now done by a constant-time
look-up in table entry I\i\. Then, the new clique Gfc is
built by adding each element individually, using add-to-
clique. This concludes the changes of CC-Heuristic 2 in
comparison with CC-Heuristic 1.

To infer the runtime we observe the following essen-
tial invariant which applies to the solutions generated
by CC-Heuristic 2:

LEMMA 2.1. In a solution generated by CC-Heuristic 2,
the sum of solution clique sizes is at most 2m.

It is not clear how to prove the invariant stated
in Lemma 2.1 for CC-Heuristic 1. The reason lies in
line 11 of the heuristic where CC-Heuristic 1 may add
new vertices to a clique without covering previously
uncovered edges. This is prevented by the modification
introduced in CC-Heuristic 2 and we can infer the
following runtime:

THEOREM 2.1. CC-Heuristic 2 runs in O(nra) time.

Proof. We first analyze the runtime of add-to-clique.
Clearly, each of the for loops iterates at most n times.
The set operations in lines 2 and 3 can be implemented
to run in constant time by using bitmaps. The update
in line 5 can also be done in constant time by using n
buckets for each I[i] and an additional map that allows
us to find the bucket where / resides. In summary, one
add-to-clique call takes O(n) time.

To analyze the runtime of the modified algorithm,
we note that the total runtime is dominated by add-
to-clique calls. We analyze the number and total
runtime of add-to-clique calls amortized over the whole
algorithm: With Lemma 2.1 the sum of clique sizes is at
most 2m and therefore add-to-clique is called at most
2m times. Since lines 13 and 14 take at most O(n)
time and are called only on occasion of an add-to-clique
call, their runtime can be also subsumed here. This

shows a total runtime of O(nm) for all add-to-clique
calls (including lines 13 and 14).

Leaving aside the add-to-clique calls and
lines 13/14, all other operations inside the main
loop—iterating over all n vertices—can be done in
O(m) time. This is in particular true for line 11: Using
bitmaps in combination with a doubly-linked structure,
testing Ci for containment in a set U can be done in
\C{\ steps. With Lemma 2.1 we infer that testing all
existing cliques for containment in a set U can be done
in O(m) time.

Finally, we turn our attention to the postprocessing
proposed by Kou et al. [14] as an addition for CC-
Heuristic 1. They proposed to test every clique found
by CC-Heuristic 1 for redundancy: For every clique C
in the solution of CC-Heuristic 1, it is tested whether C
is "subsumed" by the remaining cliques of the solution,
i.e., whether each of G's edges is also covered by another
clique of the solution. If C is subsumed, then C is
deleted from the solution. Kou et al. left it open to
give a precise estimation of the time complexity of this
postprocessing.

The following result is straightforward to obtain by
using appropriate caching data structures.

PROPOSITION 2.1. The postprocessing proposed by Kou
et al. [14] on instances returned by CC-Heuristic 2 can
be done in O(nm) time.

3 Data Reduction

A (data) reduction rule replaces, in polynomial time,
a given CLIQUE COVER instance (G, k) consisting of a
graph G and a nonnegative integer A; by a "simpler"
instance (G', k') such that (G, k) has a solution iff
(G', k') has a solution. An instance to which none of
a given set of reduction rules applies is called reduced
with respect to these rules. A parameterized problem
such as CLIQUE COVER (the parameter is k) is said to
have a problem kernel if, after the application of the
reduction rules, the reduced instance has size f (k) for
a function / depending only on k. It is a well-known
result from parameterized complexity theory that the
existence of a problem kernel implies fixed-parameter
tractability for a parameterized problem [7, 17].

We formulate reduction rules for a generalized ver-
sion of CLIQUE COVER in which already some edges
may be marked as "covered." Then, the question is to
find a clique cover of size k that covers all non-covered
edges. Clearly, CLIQUE COVER is the special case of this
annotated version where no edge is marked as covered.

We start by describing an initialization routine that
sets up auxiliary data structures once at the beginning
of the algorithm such that the many applications of the

89

subsequent Rule 2 become cheaper in terms of runtime.
Moreover, the data structures initialized here are also
used by the exact algorithm proposed in Sect. 4. From
the reduction rules below, only Rule 1 updates these
auxiliary data structures.

Initialization We inspect every edge {u,v} of the
original graph. We use two auxiliary variables: We
compute a set N^u^ of its common neighbors and
we determine whether the vertices in Ar{W)U} induce
a clique. More precisely, we compute a positive
integer C{n>v} which stores the number of edges
interconnecting the vertices of N{UjV}.

The following is easy to see.

LEMMA 3.1. The proposed initialization can be done in
O(m2) time.

We start the presentation of reduction rules with a
trivial rule removing isolated elements.

RULE 1. Remove isolated vertices and vertices that are
only adjacent to covered edges.

LEMMA 3.2. Rule 1 is correct. Every application of
Rule 1 including the update of auxiliary variables can
be executed in O(nm) time.

The next reduction rule is concerned with maximal
cliques. Note that we can safely assume that an optimal
solution consists of maximal cliques only since a non-
maximal clique in a solution can always be replaced by
a maximal clique it is contained in. The following rule
identifies maximal cliques which have to be part of every
optimal solution.

RULE 2. If an edge {u,v} is contained only in exactly
one maximal clique C, i.e., if the common neighbors of
u and v induce a clique, then add C to the solution,
mark its edges as covered, and decrease k by one.

LEMMA 3.3. Rule 2 is correct. Every application of
Rule 2 can be executed in O(m) time.

Rules 1 and 2 imply that all degree-1 and degree-2
vertices are removed from the instance. Further, they
imply that an isolated clique is deleted: Its vertices
belong to exactly one maximal clique; the clique, if it
contains more than one vertex, is added to the solution
by Rule 2 and its vertices are "cleaned up" by Rule 1.

In the following we present two interrelated reduc-
tion rules Rules 3' and 3. Rule 3' is subsumed by Rule 3.
Nevertheless we choose to present both rules separately
since Rule 3' is easier to understand and more efficient to
implement. Moreover, as will be shown in Theorem 3.1,
already Rule 3' is sufficient to show a problem kernel
for CLIQUE COVER.

Figure 3: An illustration of the partition of the neigh-
borhood of a vertex v. The two vertices with rectangles
are exits, the others are prisoners.

RULE 3'. // there is an edge {u,v} whose endpoints
have exactly the same closed neighborhood, i.e., for
which N[u] = N[v], then mark all edges incident to u
as covered. To reconstruct a solution for the unreduced
instance, add u to every clique containing v.

Comparing N[u] and N[v] for each edge {w, t>}, we
can in O(nm) time search an edge for which Rule 3' is
applicable and invoke the rule.

For formulating a generalization of Rule 3' we
introduce additional terminology. For a vertex v, we
partition the set of vertices that are connected by an
uncovered edge to v into prisoners p with N(p} C N(v)
and exits x with N(x) \ N(v) ^ 0.2 We say that the
prisoners dominate the exits if for every exit x there is a
prisoner connected to x. An illustration of the concept
of prisoners and exits is given in Fig. 3.

RULE 3. // there is a vertex v which has at least one
prisoner and whose prisoners dominate its exits, then
mark all edges incident to v as covered. To reconstruct
a solution for the unreduced instance, add v to every
clique containing a prisoner of v.

Observe that a vertex v is always a prisoner of a
vertex u with u ^ v and N[u] — N[v] (and vice versa).
Thus, Rule 3' is subsumed by Rule 3.

LEMMA 3.4. Rule 3 is correct. Every application of
Rule 3 can be executed in O(n3) time.

Proof. For the correctness note that, by definition,
every neighbor of v's prisoners is also a neighbor of v
itself. If a prisoner of v participates in a clique C,
then C U {?;} is also a clique in the graph. Therefore,

2We remark that the concept of prisoners and exits (and, in ad-
dition, "gates") was introduced for data reduction rules designed
for the DOMINATING SET problem [4]. The strength of these rules
has been proven theoretically [4] as well as empirically [3].

90

it is correct to add v to every clique containing a
prisoner in the reduced graph. Next, we show that
all edges adjacent to v are covered by the cliques
resulting by adding v to the cliques containing v's
prisoners. W.l.o.g. we can assume that prisoners are not
"isolated," i.e., they are connected to other prisoners
or exits since, otherwise, Rules 1 and 2 would delete
the isolated prisoner. Now, we consider separately the
edges connecting v to prisoners and edges connecting v
to exits. Regarding an edge {v,w} to a non-isolated
prisoner w, vertex w has to be part of a clique C of the
solution for the instance after application of the rule.
Therefore, the edge {v,w} is covered by C U {v} in
the solution for the unreduced instance. Regarding an
edge {v,x} to an exit x, the exit x is dominated by a
prisoner w and therefore x has to be part of a clique C
with w. Therefore, the edge {v, x} is covered by C\J {v}
in the solution for the unreduced instance.

For executing the rule, we inspect every vertex v
to test whether the rule is applicable. To this end,
we inspect every neighbor u of v. In O(n) time, we
determine whether u is an exit or a prisoner. Having
identified all prisoners, we can for every exit u determine
in O(n) time whether u is dominated by a prisoner.

LEMMA 3.5. Using Rules 1 to 3, in O(n4) time one can
generate a reduced instance where none of these rules
applies any further.

From a theoretical viewpoint, the main result of this
section is a problem kernel with respect to parameter k
for CLIQUE COVER:

THEOREM 3.1. A CLIQUE COVER instance reduced
with respect to Rules 1 and 3' contains at most 2k ver-
tices or, otherwise, has no solution.

Proof. Consider a graph G — (V,E) that is reduced
with respect to Rules 1 and 3' and has a clique
cover Ci, . . . , Cfc of size k. We assign to each ver-
tex v € V a binary vector bv of length k where bit i,
1 < i < A;, is set iff v is contained in clique Ci. If we
assume that G has more than 2fc vertices, then there
must be u ̂ v e V with bu = bv. Since Rule 1 does not
apply, every vertex is contained in at least one clique,
and since bu = bv, u and v are contained in the same
cliques. Therefore, u and v are connected. As they
also share the same neighborhood, Rule 3' applies, in
contradiction to our assumption that G is reduced with
respect to Rule 3'. Consequently, G cannot have more
than 2fc vertices.

COROLLARY 3.1. CLIQUE COVER is fixed-parameter
tractable with respect to parameter k.

Figure 4: Exact algorithm for CLIQUE COVER.

The result of Corollary 3.1 might be surprising when
noting that many graph problems that involve cliques
turn out to be hard in the parameterized sense. For
example, the NP-complete CLIQUE problem is known to
be W[l]-complete with respect to the clique size [7, 17].
Another example even more closely related to CLIQUE
COVER is given by the NP-complete CLIQUE PARTITION
problem, which is also hard in the parameterized sense.
Herein, we ask, given a graph, for a set of k cliques
covering all vertices of the input graph (in contrast
to covering all edges as in CLIQUE COVER). CLIQUE
PARTITION is NP-hard already for k = 3 [9]. It follows
that there is no hope for obtaining fixed-parameter
tractability for CLIQUE PARTITION with respect to
parameter fc, unless P = NP.

4 Exact Search Tree Algorithm

Search trees are a popular means of exactly solving hard
problems. The basic method is to identify for a given
instance a small set of simplified instances such that the
given instance has a solution if at least one of the sim-
plified instances has one. The corresponding algorithm
branches recursively into each of these instances until a
stop criterion is met.

The search tree algorithm presented here for
CLIQUE COVER works as follows. We choose an un-
covered edge, enumerate all maximal cliques this edge
is part of, and then branch according to which of these
cliques we add to the clique cover. The recursion stops
as soon as a solution is found or k cliques are generated
without finding a solution. The algorithm is presented
in pseudo-code in Fig. 4.

91

Regarding the choice of the edge to branch on, we
would, ideally, like to branch on the edge that is con-
tained in the least number of maximal cliques. However,
this calculation would be costly. Therefore, we make use
of the infrastructure set up for an efficient incremen-
tal application of Rule 2. The initialization described
in Sect. 3 provides a set N^^j containing the common
neighborhood of edge {?, j} and a counter c^^ contain-
ing the number of edges in the common neighborhood
of its endpoints. Therefore, (2)~c{i,j"} ig the num-
ber of edges missing in the common neighborhood of
edge {i,j} as compared to a clique (the score). For
branching, we choose the edge with the lowest score.
If the score is 0, then the edge is contained in only
one maximal clique (and thus will be reduced). If the
score is 1, the edge is contained in exactly two maximal
cliques. Generalizing this, it is plausible to assume that
an edge is contained in few maximal cliques if its score
is low.

Having chosen the edge to branch on, we determine
the set of maximal cliques the edge is contained in using
a variant of the classical Bron-Kerbosch algorithm [6]
by Koch [13].

We use the branching routine within an iterative
deepening framework, that is, we impose a maximum
search depth k and increase this limit by one when no
solution is found.

Combining the data reduction rules described in
Sect. 3—which yield a problem kernel for CLIQUE
COVER—with the search tree algorithm described here,
we obtain a competitive fixed-parameter algorithm for
CLIQUE COVER that can solve problem instances of
considerable size (a few hundred vertices) efficiently (see
Sect. 5).

5 Experimental Results

In this extended abstract we focus on the newly de-
veloped exact algorithm with data reduction rules—
eperimental investigations of CC-Heuristic 1 are kept
to a minimum and of CC-Heuristic 2 are completely
omitted. This is to become part of the full version of
the paper.

We implemented the search tree algorithm from
Sect. 4 and the data reduction rules from Sect. 3. The
program is written in the Objective Caml programming
language [15] and consists of about 1200 lines of code.
The source code is free software and available from the
authors on request. Graphs are implemented using a
purely functional representation based on Patricia trees.
This allows to (conceptually) modify the graph in the
course of the algorithm without having to worry about
how to restore it when returning from the recursion.
Moreover, it allows for quick intersection operations

Clique cover size

A
B
C
D
E

n

13
17

124
121
97

m Heuristic Optimal

55
86

4847
4706
3559

4
6

50
48
34

4
5

49
48
31

Table 1: Clique cover sizes for five real-world CLIQUE
COVER instances, where "Heuristic" is CC-Heuristic 1
with the postprocessing by Kou et al. [14].

on neighbor sets, as required for some reduction rules.
The cache data structure c described in Sect. 3 is
implemented using a priority search queue.

We tested our implementation on various inputs on
an AMD Athlon 64 3400+ with 2.4GHz, 512KB cache,
and 1GB main memory, running under the Debian
GNU/Linux 3.1 operating system.

Real Data. We first tested the implementation on
five "real-world" instances from an application in graph-
ical statistics [18] (see Table 1). Currently, heuristics
like that of Kou et al. [14] are used to solve the problem
in practice [18, 11]. With our implementation of CC-
Heuristic 1, the runtime is negligible for these instances
(< 0.1 s). Our implementation based on the search tree
with data reduction could solve all instances to opti-
mality within less than two seconds. We observe that
the heuristic produces reasonably good results for these
cases; previously nothing was known about its solution
quality. In summary, the application of our algorithm
in this area seems quite attractive, since we can pro-
vide provably optimal results within acceptable runtime
bounds.

Random Graphs. Next, we tested the implemen-
tation of the exact algorithm on random graphs, that
is, graphs where every possible edge is present with
a fixed probability. It is known that with high prob-
ability a random graph has a large clique cover of
size O(n2/\og2n) [8]. Therefore, relying on branching
and a not too large search tree is unlikely to succeed, and
reduction rules are crucial. The results are presented in
Fig. 5. In the following, the "size" of an instance means
the number of vertices. We exhibit three trials: Sparse
graphs with m w nlogn, graphs with edge probabil-
ity 0.1, and graphs with edge probability 0.15. For the
denser graphs outliers occur: for example for graphs of
size 51 and edge probability 0.15, all instances could be
solved within a second but one, which took 25 minutes.
In contrast, sparse graphs can be solved uniformly very
quickly, and the growth even seems to be subexponen-

92

tial: Instances of size 1 000 can still be solved within 100
seconds and instances of size 2000 within 11 minutes,
with a standard deviation for the runtime of < 2 %.
Our approach is very promising for sparse instances up
to moderate size, while for denser instances probably a
fallback to heuristic algorithms is required to compen-
sate for the outliers.

The presence of extreme outliers for some combina-
tions of parameters makes it difficult to get a clear pic-
ture based only on combining statistics such as averages.
Therefore, we show measurements for several concrete
instances in Table 2. For edge probability 0.1 and 0.15,
respectively, we select an instance that takes very long,
and additionally present two arbitrary instances with
similar parameters. For sparse graphs, no such outliers
occur, so we show three arbitrary instances of similar
size.

Synthetic Data. Real instances are not com-
pletely random; in particular, in most sensible applica-
tions the clique cover is expected to be much smaller
than that of a random graph. The fixed-parameter
tractability of our algorithm also promises a better run-
time for instances where the clique cover is small. To ex-
amine this, we generated random graph instances with
approximately 200 vertices and 2000 edges by succes-
sively completing random sets of random size to form
cliques until at least 2000 edges are present, but no
more than 2020. By choosing the maximum size of the
placed cliques, the number of placed cliques is (roughly)
controlled. Figure 6 shows the resulting runtimes. In

Figure 6: Average runtime for graphs with n w 200 and
m w 2000 constructed by randomly placed cliques.

fact, these comparably large and dense instances can
be solved very quickly when the size of the clique cover
is small. Below a clique cover size of about 150, per-
formance is also very smooth; no outliers occur. In
contrast, the performance becomes erratic for more
than about 170 cliques, with frequent occurrences of
instances taking very long to solve. In summary, this
makes our exact algorithm also attractive for the nu-
merous applications where we can expect a small clique
cover as solution.

Effectiveness of Rule 3. The prisoner-exit-rule
(Rule 3) is comparably complicated and expensive and
has been developed in context with searching for a
problem kernel. Does it really gain any benefit in
practice? To examine this question, we repeated the
previous experiment with Rule 3 disabled (see Figure 6).
While initially similar, around a cover size of 80 the
performance drops sharply, and outliers taking very
long time to solve occur. This means that Rule 3
nearly doubled the range of instances that can be solved
smoothly, and is clearly worthwhile.

6 Outlook
As seen in Table 2, there are some outliers with ex-
ceedingly high runtimes when compared to "similar"
instances. Without the application of data reduction
Rule 3, there were even more such outliers. This clearly
indicates that Rule 3, which also leads to a size-2fc prob-

93

Figure 5: Runtime for random graphs. Each point is
the average over 20 runs.

n

sparse 602
602
603

p = 0.1 152
152
151

p = 0.15 80
80
80

m

3837
3786
3910
1202
1130
1207

531
492
501

\c\
3230
3239
3340

628
627
644
243
244
242

runtime

21.77
21.55
23.37

4860.24
0.83
1.01

24002.49
0.11
0.73

search tree

6463
6479
6681

76856966
1578
1603

1063679952
1248

33769

Rule 1

6434
3472
6365

103117567
1126
1715

1327673517
898

47098

Rule 2

5214833
5 243 941
5576130

126934019
196093
206 732

397529584
29450
38331

Rule 3

1192
0
0

166594479
4972
6260

225 500 975
1753
9488

Table 2: Statistics for selected CLIQUE COVER instances. Here, p is the edge probability, runtime is in seconds,
\C\ is the size of the clique cover, "search tree" is the number of nodes in the search tree, and "Rule r" is the
number of applications of Rule r.

lem kernel, can cope with some of the outliers but not
all. Hence it is an intriguing open question whether
there are further data reduction rules that can cope
with the remaining outliers. In parallel, this might also
lead to a better upper bound on the problem kernel size
and improved fixed-parameter tractability for CLIQUE
COVER.

Acknowledgements. We thank Ramona Schmid
(Universitat Tubingen) for help with the implementa-
tion and Hans-Peter Piepho (Universitat Hohenheim)
for providing the test data.

References

[1] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows,
M. A. Langston, W. H. Suters, and C. T. Symons.
Kernelization algorithms for the vertex cover problem:
Theory and experiments. In Proc. 6th ALENEX, pages
62-69. SIAM, 2004.

[2] P. K. Agarwal, N. Alon, B. Aronov, and S. Suri. Can
visibility graphs be represented compactly? Discrete
and Computational Geometry, 12:347-365, 1994.

[3] J. Alber, N. Betzler, and R. Niedermeier. Experiments
on data reduction for optimal domination in networks.
In Proc. 1st INOC, pages 1-6, 2003. Long version to
appear in Annals of Operations Research.

[4] J. Alber, M. R. Fellows, and R. Niedermeier.
Polynomial-time data reduction for Dominating Set.
Journal of the ACM, 51:363-384, 2004.

[5] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann,
A. Marchetti-Spaccamela, and M. Protasi. Com-
plexity and Approximation: Combinatorial Optimiza-
tion Problems and Their Approximability Properties.
Springer, 1999.

[6] C. Bron and J. Kerbosch. Algorithm 457: finding all
cliques of an undirected graph. Communications of the
ACM, 16(9):575-577, 1973.

[7] R. G. Downey and M. R. Fellows. Parameterized
Complexity. Springer, 1999.

[8] A. M. Frieze and B. A. Reed. Covering the edges of
a random graph by cliques. Combinatorica, 15(4) :489-
497, 1995.

[9] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[10] J. F. Gimpel. A reduction technique for prime impli-
cant tables. IEEE Transactions on Electronic Comput-
ers, EC-14:535-541, 1965.

[11] J. Gramm, J. Guo, F. HiifTner, R. Niedermeier, H.-P.
Piepho, and R. Schmid. Algorithms for compact letters
displays—comparison and evaluation. Manuscript,
FSU Jena, Dec. 2005.

[12] E. Kellerman. Determination of key word conflict. IBM
Technical Disclosure Bulletin, 16(2):544-546, 1973.

[13] I. Koch. Enumerating all connected maximal common
subgraphs in two graphs. Theoretical Computer Sci-
ence, 250(1-2): 1-30, 2001.

[14] L. T. Kou, L. J. Stockmeyer, and C.-K. Wong. Cov-
ering edges by cliques with regard to keyword conflicts
and intersection graphs. Communications of the ACM,
21 (2) .-135-139, 1978.

[15] X. Leroy, J. Vouillon, D. Doligez, et al. The Ob-
jective Caml system. Available on the web, 1996.
http://caml.inria.fr/ocaml/.

[16] S. Mecke and D. Wagner. Solving geometric covering
problems by data reduction. In Proc. 12th ESA,
volume 3221 of LNCS, pages 760-771. Springer, 2004.

[17] R. Niedermeier. Invitation to Fixed-Parameter Algo-
rithms. Oxford University Press, 2006.

[18] H.-P. Piepho. An algorithm for a letter-based represen-
tation of all-pairwise comparisons. Journal of Compu-
tational and Graphical Statistics, 13(2):456-466, 2004.

[19] S. Rajagopalan, M. Vachharajani, and S. Malik. Han-
dling irregular ILP within conventional VLIW sched-
ulers using artificial resource constraints. In Proc.
CASES, pages 157-164. ACM Press, 2000.

94

http://caml.inria.fr/ocaml/

Fast Reconfiguration of Data Placement in Parallel Disks

Yung-Chun (Justin) Wan
Google

Srinivas Kashyap and Samir Khuller t
Department of Computer Science

University of Maryland
College Park, MD 20742

Email: {raaghav, samir}@ cs.umd.edu

Leana Golubchik
Department of Computer Science and IMSC

University of Southern California
Los Angeles, CA 90089
Email: leana@cs.usc.edu

1 Introduction

The "How much information?" study produced by the
school of information management and systems at the
University of California at Berkeley [10], estimates that
about 5 exabytes of new information was produced in
2002. It estimates that the amount of stored informa-
tion doubled in the period between 1999 and 2002. It is
believed that more data will be created in the next five
years than in the history of the world. Clearly we live
in an era of data explosion. This data explosion neces-
sitates the use of large storage systems. Storage Area
Networks (or SANs) are the leading [13] infrastructure
for enterprise storage.

A SAN essentially allows multiple processors to
access several storage devices. They typically access
the storage medium as though it were one large shared
repository. One crucial function of such a storage
system is that of deciding the placement of data within
the system. This data placement is dependent on
the demand pattern for the data. For instance, if a
particular data item is very popular the storage system
might want to host it on a disk with high bandwidth or
make multiple copies of the item. The storage system
needs to be capable of handling flash crowds [8]. During
events triggered by such flash crowds, the demand

distribution becomes highly skewed and different from
the normal demand distribution.

It is known that the problem of computing an
optimal data placement1 for a given demand pattern is
NP-Hard [5]. However, polynomial time approximation
schemes as well as efficient combinatorial algorithms
that compute almost optimal solutions are known for
this problem [12, 11, 5]. So we can assume that a near-
optimal placement can be computed once a demand
pattern is specified.

As the demand pattern changes over time and
the popularity of items changes, the storage system
will have to modify its internal placement accordingly.
Such a modification in placement will typically involve
movement of data items from one set of disks to another
or requires changing the number of copies of a data item
in the system. For such a modification to be effective
it should be computed and applied quickly. In this
work we are concerned with the problem of finding such
a modification i.e., modifying the existing placement
to efficiently deal with a new demand pattern for the
data. This problem is referred to as the data migration
problem and was considered in [9, 6]. The authors
used a data placement algorithm to compute a new
"target" layout. The goal was to "convert" the existing
layout to the target layout as quickly as possible. The
communication model that was assumed was a half-
duplex model where a matching on the disks can be
fixed, and for each matched pair one can transfer a
single object in a round. The goal was to minimize
the number of rounds taken. The paper developed

1An optimal placement will allow a maximum number of users
to access information of their interest.

95

"This research was supported by NSF grant CCF-0430650.
The research was also funded in part by the NSF grant EIA-
0091474, the Okawa Research Award, and the Integrated Media
Systems Center, a National Science Foundation Engineering
Research Center, Cooperative Agreement No. EEC-9529152. Any
Opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect those of the National Science Foundation.

t Department of Computer Science and UMIACS

constant factor approximation algorithms for this NP-
hard problem [9]. In practice these algorithms find
solutions that are reasonably close to optimal. However,
even when there is no drastic change in the demand
distribution it can still take many rounds of migration
to achieve the new target layout. This happens since the
scheme completely disregards the existing placement in
trying to compute the target placement.

In this paper we consider a new approach to dealing
with the problem of changes in the demand pattern. We
ask the following question:

In a given number of migration rounds, can we obtain
a layout by making changes to the existing layout so

that the resulting layout will be the best possible layout
that we can obtain within the specified number of

rounds?

Of course, such a layout is interesting only if it is
significantly better than the existing layout for the new
demand pattern.

We approach the problem of finding a good layout
that can be obtained in a specified number of rounds
by trying to find a sequence of layouts. Each layout in
the sequence can be transformed to the next layout in
the sequence by applying a small set of changes to the
current layout. These changes are computed so that
they can be applied within one round of migration (a
disk may be involved in at most one transfer per round).

We show that by making these changes even for
a small number of consecutive rounds, the existing
placement that was computed for the old demand
pattern can be transformed into one that is almost as
good as the best layout for the new demand pattern.

Our method can therefore be used to quickly trans-
form an existing placement to deal with changes in the
demand pattern. We do not make any assumptions
about the type of demand changes - hence the method
can be used to quickly deal with any type of change in
the demands. We also show that the problem of find-
ing an optimal set of changes that can be applied in one
round is NP-hard (see Appendix A.I for the proof). The
proof demonstrates that some unexpected data move-
ment patterns can yield a high benefit.

In the remaining part of the introduction, we
present the model and the assumptions made, and re-
state our result formally.

1.1 Model summary We consider the following
model for our storage system. There are N parallel
disks that form a Storage Area Network. Each disk has
a storage capacity of K and has a load handling capacity
(or bandwidth) of L.

The efficiency of the system depends crucially on

the data layout pattern that is chosen for the disks. This
data layout pattern or data placement specifies for each
item, which set of disks it is stored on (note that the
whole item is stored on each of the disks specified by
the placement, so these are copies of the item). The
next problem is that of mapping the demand for data
to disks. Each disk has an upper bound on the total
demand that can be mapped to that disk. A simple
way to find an optimal assignment of demand to disks,
is by running a single network flow computation in an
appropriately defined graph (see Section 2.1).

Different communication models can be considered
based on how the disks are connected. We use the same
model as in [2, 7] where the disks may communicate on
any matching; in other words, the underlying communi-
cation graph allows for communication between any pair
of devices via a matching (e.g., as in a switched storage
network with unbounded backplane bandwidth). This
model best captures an architecture of parallel storage
devices that are connected on a switched network with
sufficient bandwidth. This is most appropriate for our
application. This model is one of the most widely used
in all the work related to gossiping and broadcasting.
These algorithms can also be extended to models where
the size of the matching in each round is constrained
[9]. This can be done by a simple simulation, where we
only choose a maximal subset of transfers to perform in
each round.

Suppose we are given an initial demand pattern
J. We use this to create an initial layout Lj. Over
time, the demand pattern for the data may change.
At some point of time the initial layout Lj may not
be very efficient. At this point the storage manager
may wish to re-compute a new layout pattern. Suppose
the target demand pattern is determined to be T (this
could be determined based on the recent demand for
data, or based upon projections determined by previous
historical trends). Our goal is to migrate data from
the current layout to a new layout. We would like
this migration to complete quickly since the system
is running inefficiently in addition to using a part of
its local bandwidth for migrating data. It is therefore
desirable to complete the conversion of one layout to
another layout quickly. However, note that previous
methods completely ignored the current layout and fixed
a target layout L-j based on the demand T. Is it possible
that there are layouts C' with the property that they are
almost as good as LT, however, at the same time we
can "convert" the initial layout Lj to C! in very few
rounds (say compared to the number of rounds required
to convert LX to LT)? It is our objective to consider
this central question in this paper. In fact, we answer
the question in the affirmative by doing a large set of

96

experiments.
To do this, we define the following one round prob-

lem. Given a layout Lp and a demand distribution T,
our goal is to find a one round migration (a matching),
such that if we transfer data along this matching, we
will get the maximum increase in utilization. In other
words, we will "convert" the layout Lp to a new layout
I/-P+I, such that we get the maximum utilization, and
the new layout is obtainable from the current layout in
one round of migration.

Now we can simply use an algorithm for the one
round problem repeatedly by starting with the initial
layout LX-, and running i iterations of the one round
algorithm. We will obtain a layout Lj+^, which could
be almost as good is the target layout L-J--

Of course there is no reason to assume that repeat-
edly solving the one round problem will actually yield an
optimal solution for the t round version of this problem.
However, as we will see, this approach is very effective.

2 The problem

2.1 Example Since the formal definition of the
problem will involve a lot of notation, we will first
informally illustrate the problem and our approach
using an example. In this example, we will show an
initial demand distribution Z; an initial placement for
this distribution LX] we will then show the changed
demand distribution T. We will show why the initial
placement Lj is inadequate to handle the changed
demand distribution T. We will then show how a small
change (a one-round migration) to the initial placement
LI results in a placement that is optimal for the new
demand distribution.

In this toy example, we consider a storage system
that consists of 4 identical disks. Each disk has storage
capacity of 3 units and load capacity (or bandwidth) of
100 units. There are 9 data items that need to be stored
in the system. The initial demand distribution T and
the new demand distribution T are as follows:

algorithm2 for the demand distribution above is as
follows (the numbers next to the items on disks indicates
the mapping of demand to that copy of the item):

Item
A
B
C
D
E
F
G
H
I

Initial demand
130
90
40
30
25
25
25
22
13

New Demand
55
55
20
60
5
10
15
70
110

The placement LX (which in this case is also an
optimal placement) obtained using the sliding window

Figure 1: Optimal placement Lz for the initial de-
mand distribution 2, satisfies all the demand. Storage
capacity K=3, Bandwidth L=100. In addition to pro-
ducing the layout the sliding window algorithm finds a
mapping of demand to disks, which is optimal for the
layout computed.

To determine the maximum amount of demand
that the current placement LX can satisfy for the new
demand distribution T, we compute the max-flow in
a network constructed as follows. In this network we
have a node corresponding to each item and a node
corresponding to each disk. We also have a source and
a sink vertex. We have edges from item vertices to disk
vertices if in the placement LX, that item was put on
the corresponding disk. Capacities of edges from the
source to every item is equal to the demand for that
item in the new distribution. The rest of the edges have
capacity equal to the disk bandwidth. Using the flow
network above, we can re-assign the demand T using the
same placement LX as given in Figure 3. Figure 2 shows
the flow network obtained by applying the construction
described above, corresponding to the initial placement
LX and new demand T.

A small change can convert LX to an optimal
placement. In general, we would like to find changes
that can be applied to the existing placement in a single
round and get a placement that is close to an optimal
placement for the new demand distribution. In a round
a disk can either be the source or the target of a data
transfer but not both. In fact, in this example a single
change that involves copying an item from one disk to
another is sufficient (and does not involve the other two
disks in data transfers). This is illustrated in Figure 4.

We stress that we are not trying to minimize the
total number of data transfers, but simply find the best
set of changes that can be applied in parallel to modify
the existing placement for the new demand distribution.

We compare this approach to that of previous works
[9, 6] which completely disregard the existing placement

^The sliding window algorithm proposed by Shachnai and
Tamir [12] is currently the best practical algorithm for this
problem. For more on the sliding window algorithm and its
performance, see [5].

97

Figure 2: Flow network to determine maximum
benefit of using placement LX with demand distribution
T. LX is sub-optimal for T and can only satisfy 350 out
of a maximum of 400 units of demand. Saturated edges
are show using solid lines.

Figure 3: Maximum demand that placement LX can
satisfy for the new demand distribution T. LX is
sub-optimal for T and can only satisfy 350 out of a
maximum of 400 units of demand.

Figure 4: Removing item B from disk 2 and replacing
it with a copy of item / from disk 4 converts LX to an
optimal placement C' for the new demand distribution
T. The placement shown above is optimal for T and
satisfies all demand.

and simply try to minimize the number of parallel
rounds needed to convert the existing placement to an
optimal placement for the new demand distribution. In
Fig. 6, we show that using the old approach, it takes 4
rounds of transfers to achieve what our approach did

in a single round (and using just one transfer). In
Figure 5 an optimal placement LT is recomputed 3 for
the new demand distribution T. We show in Figure
6 the smallest set of transfers required to convert LX
to LT. Note that both placement CJ (obtained after the
transfer shown in Figure 4 is applied) and placement LT
shown in Figure 5 are optimal placements for the new
demand distribution T. Note that this is an optimal
solution that also addresses the space constraint on the
disk (this property is not actually maintained by the
data migration algorithms developed earlier [9]).

Figure 5: Placement LT • Output of the Sliding
window algorithm for the new demand distribution T.

2.2 Formal definition The storage system con-
sists of TV disks. Each disk has load-capacity of L
and a storage-capacity of K. We have m items, each
item j has size 1 and demand ij. This constitutes an
m-dimensional demand distribution i = (^ i , . . . ,4n)-
An m-dimensional placement vector pi for a disk i is
(pn, . . . ,£>im) where pij are 0 — 1 entries indicating that
item j is on disk i. An m-dimensional demand vector di
for a disk i is (e^i, . . . , dim) where dij is the demand for
item j assigned to disk i. Define V({di}} = Y^i Y^j aij
as the benefit of the set of demand vectors {di}. A set of
placement and demand vectors that satisfy the follow-
ing constraints is said to constitute a feasible placement
and demand assignment:

1. Y^jPij — K for all disks i. This ensures that the
storage-capacity is not violated.

2. Y^J dij < L for all disks i. This ensures that the
load-capacity is not violated.

3. d^ < Pijij- This ensures that the demand for an
item j is routed to disk i only if that item is present
on disk i.

f°r a^ items j. This ensures that no
more than the total demand for an item is packed.

A one-round-migration is essentially a matching on
the set of disks. More formally, a one-round-migration is
a 0-1 function A(sd, s.j, tj, ti) where Sd,td € {!,..., N}

^Using the sliding window algorithm for computing a place-
ment for a given demand.

98

Figure 6: Transforming Lx to LT takes 4 rounds.
Note that the disks here will need to be renumbered
to match the sliding window output. Final disk 2
corresponds to disk 3 in the sliding window output,
final disk 3 corresponds to disk 2 in the sliding window
output.

and Si,ti G {!,...,m}. Here sd is the source disk,
Si is the source item, td is the target disk, ti is the
target item. Further, A(.) has to satisfy the following
conditions:

1. Yltd ESi Et. A(sd, Si,td,ti) < 1 for all disks sd.
This ensures that a disk can be the source for at
most one transfer.

2- ES j ESi Eti A(sd, Si,td,ti) < 1 for all disks td.
This ensures that a disk can be the target for at
most one transfer.

(ZX ESi Z)ti A(sd,Si,*d,**)) < 1 for all disk
pairs Sd = t^. This ensures that a disk can
simultaneously not be both a source and a target.

4. (sd = td) =>• A(sd>=Md»*) = 0- This ensures that
there are no self loops in the transfer graph.

o. 2—jt ' -'t ^\^di &ii ^dt "i) _: Ps,iSi tor all disks sd and
items Si. This ensures that a disk sd can be source
of an item Si only if that item is on that disk (i.e.
PsdSl = I)-

We can apply this function to an existing place-
ment to obtain a new placement as follows. If
&.(sd,Si,td,ti) = 1, then set Ptdti — 0 and ptdsi = 1-
We compute the optimal demand assignment for the
new placement using max-flow.

ONE-ROUND-MIGRATION: When given an initial
demand distribution ^initial ? a corresponding set of fea-
sible placement vectors {pi}, and demand vectors {di}
and a final demand distribution ifinai, the problem asks
for a one-round-migration A(.) that when applied to the
initial placement yields placement vectors {p*} and de-
mand vectors {d*} such that V({d*}) is maximized.

We show that this problem is NP-Hard (See Ap-
pendix A.I for a proof).

3 Algorithm for one round migration
For any disk d, let I(d) denote the items on that disk.

Corresponding to any placement {pi} (a placement
specifies for each item, which set of disks it is stored
on), we define the corresponding flow graph GP(V, E)
as follows. We add one node a^ to the graph for each
item i G {1.. .m}. We add one node dj for each disk
j G {1... AT}. We add one source vertex s and one sink
vertex t. We add edges (s, ctj) for each item i. Each of
these edges have capacity demand(i) (where demand(i)
is the demand for item i). We also add edges (dj, t) for
each disk j. These edges have capacity L (where L is the
load capacity of disk j) . For every disk j and for every
item i G /(j), we add an edge (a^,dj) with capacity L.

The algorithm starts with the initial placement and
works in phases. At the end of each phase, it outputs a
pair of disks and a transfer corresponding to that disk
pair.

We determine the disk and transfer pair as follows.
Consider a phase r. Let {pi}r be the current placement.
For every pair of disks di and dj, for every pair of items
(a.j,aj) in I(di) x /(dj), modify the placement {pi}r to
obtain {PJ}> by overwriting a,j on dj with a^. Compute
the max-flow in the flow graph for the placement {p|}r-
Note down the max-flow value and revert the placement
back to {pi}r- After we go through all pairs, pick the
(aj,aj) transfer pair and the corresponding (c^,dj) disk
pair that resulted in the flow-graph with the largest
max-flow value. Apply the transfer (a^,flj) modifying
placement {pi}r to obtain {pi}r+i - which will be the
starting placement for the next phase. We can no longer
use disks di and dj in the next phase. Repeat until there
is no pair that can increase the max-flow or till we run

99

out of disks.

4 Speeding up the algorithm
The algorithm described in Section 3 recomputes max-
flow in the flow graph from scratch when evaluating each
move. Recall that the algorithm proceeds in phases and
at the end of each phase, it identifies a pair of disks
(d i , d j) and a (di 6 I (d i) , d j € I(dj)) transfer for that
pair of disks.

We can speed up the algorithm by observing that
the max-flow value increases monotonically from one
phase to the next and therefore we need not recompute
max-flow from scratch for each phase. Rather, we
compute the residual network for the flow graph once
and then make incremental changes to this residual
network for each max-flow computation. All max-
flow computations in this version of the algorithm are
computed using the Edmonds-Karp algorithm (see [1]).
Let Gi denote the residual graph at the end of phase i.
Let GQ be the residual graph corresponding to the initial
graph. All max-flow computations in phase i + 1, we
begin with the residual graph Gi and find augmenting
paths (using BFS on the residual graph) to evaluate
the max-flow. After each transfer pair in phase i + 1 is
considered, we undo the changes to the residual graph
and revert back to Gi. At the end of phase i + 1, we
apply the best transfer found in that phase, recompute
max-flow and use the corresponding residual graph as
GI+I.

Even with the speedup, the algorithm needs to
perform around 415,000 max-flow computations even
for one of the smallest instances (N=60, K=15) that
we consider in our experiments. Since we want to
quickly compute the one-round migration, too many
flow computations are not acceptable. We therefore
consider the following variants of our algorithm. In our
experiments, we found these variants to yield solutions
that are as good as the algorithm described above.

Variant 1: For every pair of disks di and dj,
let I+(di) be the set of items on disk di that have
unsatisfied demand. For every pair of items (oj, dj) in
I+(di) x /(dj), overwrite dj on dj with a^, compute the
max-flow. Pick the (d i , d j) pair that gives the largest
increase in the max-flow value. Repeat till there is no
pair that can increase the max-flow or until we run out
of disks.

Variant 2: For every pair of disks di and dj,
let I+(di) be the set of items on disk di that have
unsatisfied demand and I-(dj) be the items with
lowest demand on disk dj. For every pair of items
(di,dj) in I+(di) x I ^ (d j) , overwrite dj on dj with a^,
compute the max-flow. Pick the (d i , d j) pair that gave
the largest increase in the max-flow value. Repeat till

there is no pair that can increase the max-flow or until
we run out of disks.

All the experimental results that we present in Sec-
tion 5 are obtained using the second variant (described
above). To solve4 even the largest instances in our ex-
periments, a C (gcc 3.3) implementation of the second
variant took only a couple of seconds while the brute
force algorithm took on the order of several hours.

5 Experiments
In this section, we describe the experiments used to
evaluate the performance of our heuristic and compare it
to the old approach to data migration. The framework
of our experiments is as follows:

1. (Create an initial layout] Run the sliding window
algorithm [5], given the number of user requests for
each data object.

2. (Create a target layout) To obtain a target layout,
we take one of the following approaches.

(a) Shuffle method 1: Initial demand distribution
is chosen with Zipf (will be defined later in
this section) parameter 0.0 (high-skew). To
generate the target distribution, pick 20% of
the items and promote them to become more
popular items.

(b) Shuffle method 2: Initial demand distribution
is chosen with Zipf parameter 0.0 (high-skew).
To generate the target distribution, the lowest
popularity item is promoted to become the
most popular item.

(c) Shuffle method 3: The initial demand dis-
tribution is chosen with Zipf parameter 1.0
(uniform-distribution). The target distribu-
tion is chosen with Zipf parameter 0.0 (high-
skew).

(d) Shuffle method 4: The initial demand dis-
tribution is chosen with Zipf parameter 0.0
(high-skew). The target distribution is
chosen with Zipf parameter 1.0 (uniform-
distribution).

3. Record the number of rounds required by the old
data migration scheme to migrate the initial layout
to the target layout.

4. Record the layout obtained in each round of our
heuristic. Run 10 successive rounds of our one
round migration starting from the initial layout.

4Experiments were run on a 2.8Ghz Pentium 4C processor with
1GB RAM running Ubuntu Linux 5.04.

100

The layout output after running these 10 successive
rounds of our heuristic will be considered as the
final layout output by our heuristic.

We note that few large-scale measurement studies
exist for the applications of interest here (e.g., video-on-
demand systems), and hence below we are considering
several potentially interesting distributions. Some of
these correspond to existing measurement studies (as
noted below) and others we consider in order to explore
the performance characteristics of our algorithms and to
further improve the understanding of such algorithms.
For instance, a Zipf distribution is often used for
characterizing people's preferences.
Zipf Distribution The Zipf distribution is denned as
follows:

where and

and 0 determines the degree of skewness. For in-
stance, 6 = 1.0 corresponds to the uniform distribu-
tion, whereas 9 — 0.0 corresponds to the skewness in
access patterns often attributed to movies-on-demand
type applications. See for instance the measurements
performed in [3]. Flash crowds are also known to skew
access patterns according to Zipf distribution [8]. In
the experiments below, Zipf parameters are chosen ac-
cording to the shuffle methods described earlier in the
section.

We now describe the storage system parameters
used in the experiments, namely the number of disks,
space capacity, and load capacity (the maximum num-
ber of simultaneous user requests that a disk may serve).

In the first set of experiments, we used a value of
60 disks. We tried three different pairs of settings for
space and load capacities, namely: (A) 15 and 40, (B)
30 and 35, and (C) 60 and 150.

In the second set of experiments, we varied the
number of disks from 10 to 100 in steps of 10. We
used a value of K=60, L=150 (this is the 3rd pair of
L,K values used in the first set of experiments).

We obtained these numbers from the specifications
of modern SCSI hard drives. For example, a 72GB
15,000 rpm disk can support a sustained transfer rate
of 75MB/S with an average seek time of around 3.5ms.
Considering MPEG-2 movies of 2 hours each with
encoding rates of 6Mbps, and assuming the transfer
rate under parallel load is 40% of the sustained rate,
the disk can store 15 movies and support 40 streams.
The space capacity 30 and the load capacity 35 are

obtained from using a 150GB 10,000 rpm disk with a
72MB/S sustained transfer rate. The space capacity 60
and the load capacity 150 are obtained by assuming that
movies are encoded using MPEG-4 format (instead of
MPEG-2). So a disk is capable of storing more movies
and supporting more streams. For each tuple of N,L,K
and shuffle method we generated 10 instances. These
instances were then solved using both our heuristic as
well as the old data migration heuristic. The results for
each N,L,K and shuffle method tuple were averaged out
over these 10 runs.

5.1 Results and Discussion Figures 7, 8, 9, 10
and Tables 1, 2, 3 correspond to the first set of
experiments. Figures 12, 13, 14, 15, 11 and Tables 4, 5,
6, 7 correspond to the second set of experiments.

Figures 8, 9, 10, 12, 13, 14, 15 compare the solution
quality of our heuristic with that of the old approach.
Tables 1, 2, 3, 4, 5, 6, 7 and Figure 7 compares the
number of rounds taken by our approach with the
number of rounds taken by the old approach to achieve
similar solution quality.

We highlight the following observations supported
by our experimental results:

• In all our experiments, our heuristic was able to get
within 8% of the optimal solution using 10 rounds.
This can be seen in all the figures and tables. For
instance, see Figure 7.

• In comparison (see Figure 7 and Tables 1, 2, 3, 4,
5, 6, 7), the old scheme took a significantly larger
number of rounds. For example, in the case of
K=60, L=150 (corresponding to storing video as
mpeg-4) the old scheme took over 100 rounds for
every shuffle method and for every value of N we
used, while our scheme was able to achieve similar
solution quality within 10 rounds.

• Response to change in demand distribution: The
experiments reveal an interesting behavior of the
heuristic. When the target demand distribution
is highly skewed, the heuristic's response or the
amount of improvement made in successive rounds
is linear. In contrast, when the demand is less
skewed (i.e. the demand distribution is significantly
different from the initial distribution but still the
target distribution is not very skewed), the response
is much sharper. For example in Figure 11, consider
the response curve for shuffle methods 4 and 2 (low-
skew) and contrast it with the flat response curves
for shuffle methods 1 and 3 (high-skew).

- Sharp response or diminishing returns: For a
concrete example; in Figure 12 the improve-

101

ment obtained by our heuristic in the first
round is almost as high as 10%, but successive
improvements taper off quickly. This probably
happens because we use a greedy algorithm
and most of the gains are made in the first
round and since this type of behavior is ob-
served mainly when the demand is less skewed,
there are presumably several items that need
to replicated.

— Flat response: For a concrete example; in
Figure 14 the improvement obtained by our
heuristic for N=100 in the first two rounds
(1 and 2) is just about twice the benefit
obtained in the last two rounds (9 and 10).
This is probably because most of the load
is concentrated on a few items and there is
a large amount of unsatisfied demand. In
each round we make more copies of these
high popularity items and see almost the same
benefit in each round.

• The case for this type of approach (that of making
small changes to existing placement in consecutive
rounds) is best supported by results from Table 7.
This is an example of a case where the existing
placement is already very good for the target
distribution. The storage manager may wish to do
a few rounds of migration to recover the amount
of lost load. Our scheme lets the storage manager
do such a quick adaptation. In contrast the old
scheme takes over 150 rounds on average to achieve
comparable results. This is especially unacceptable
given that we already start off with a pretty good
placement. In fact, shuffle method 4 seemed to
consistently trigger expensive migrations in the old
scheme while our scheme was able to get close
to optimal within a couple of rounds. This is
not surprising since the old scheme completely
disregards the existing placement.

• Shuffle method 3 seemed to produce "harder" in-
stances for our heuristic compared to the other
shuffle methods we tried. This is not surprising
since shuffle method 3 makes a drastic change to
the demand distribution (moving it from uniform
to highly skewed Zipf).

• It is very promising that our scheme performs
particularly well for shuffle methods 1 and 2 (which
is the type of demand change we expect to see in
practice).

Figure 7: Plot compares the number of rounds that
the old migration scheme took to reach within 5% of
the optimal solution. We used N=60 and tried each of
the shuffle methods for every pair of K and L shown in
the plot. Every data point was obtained by averaging
over 10 runs. In each of the experiments shown above,
our scheme was set to run for 10 consecutive rounds.

Figure 8: Plot shows improvement obtained by our
scheme when presented with instances generated using
the different shuffle methods. We used N=60, K=15,
L=40 for each experiment. Every data point was
obtained by averaging over 10 runs. SW is the solution
value achieved by the old method.

102

Figure 9: Plot shows improvement obtained by our
scheme when presented with instances generated using
the different shuffle methods. We used N=60, K=30,
L=35 for each experiment. Every data point was
obtained by averaging over 10 runs. SW is the solution
value achieved by the old method.

Figure 11: Plot comparing the response of our heuris-
tic to the various shuffle methods. The response to shuf-
fle 3 and shuffle 2 is much flatter than the diminishing
returns type of response for shuffle 4 and shuffle 1. We
used N=100, K=60, L=150 for each experiment. Every
data point was obtained by averaging over 10 runs.

Figure 10: Plot shows improvement obtained by our
scheme when presented with instances generated using
the different shuffle methods. We used N=60, K=60,
L=150 for each experiment. Every data point was
obtained by averaging over 10 runs. SW is the solution
value achieved by the old method.

Figure 12: Performance of our scheme with varying
number of disks for shuffle method 1. The number
of disks N varied from 10 to 100. K=60, L=150
for each experiment. Every data point was obtained
by averaging over 10 runs. SW is the solution value
achieved by the old method.

103

Figure 13: Performance of our scheme with varying
number of disks for shuffle method 2. The number
of disks N varied from 10 to 100. K=60, L=150
for each experiment. Every data point was obtained
by averaging over 10 runs. SW is the solution value
achieved by the old method.

Figure 14: Performance of our scheme with varying
number of disks for shuffle method 3. The number
of disks N varied from 10 to 100. K=60, L=150
for each experiment. Every data point was obtained
by averaging over 10 runs. SW is the solution value
achieved by the old method.

Figure 15: Performance of our scheme with varying
number of disks for shuffle method 4. The number
of disks N varied from 10 to 100. K=60, L=150
for each experiment. Every data point was obtained
by averaging over 10 runs. SW is the solution value
achieved by the old method.

Shuffle method

1
2
3
4

Our Scheme
Rounds

10
10
10
10

Demand %
99.10
98.86
97.26
99.04

Old Scheme
Rounds (avg)

41.8
39.1
43.7
54.2

Demand %
99.92
99.92
98.91
100

Table 1: Comparison of old scheme with our scheme
for N=60, K=15, L=40

Shuffle method

1
2
3
4

Our Scheme
Rounds | Demand %

10
10
10
10

98.50
97.72
97.02
98.57

Old Scheme
Rounds (avg)

54.2
41.6
71.8
89.9

Demand %
99.83
99.79
98.99
100

Table 2: Comparison of old scheme with our scheme
for N=60, K=30, L=35

Shuffle method

1
2
3
4

Our Scheme
Rounds

10
10
10
10

Demand %
99.41
98.54
94.41
99.30

Old Scheme
Rounds (avg)

130.3
127.3
150.4
170.5

Demand %
99.98
99.99
99.68
100

Table 3: Comparison of old scheme with our scheme
for N=60, K=60, L=150

6 Conclusion

We proposed a new approach to deal with the prob-
lem of changing demand. We defined the one-round-
migration problem to aid us in our effort. We showed
that the one-round-migration problem is NP-Hard and

104

N

10
20
30
40
50
60
70
80
90
100

Our Scheme
Rounds

10
10
10
10
10
10
10
10
10
10

Demand %
99.64
99.52
99.50
99.53
99.51
99.41
99.46
99.42
99.45
99.43

Old Scheme
Rounds (avg)

104.8
111.8
121

121.9
125.9
128.2
128.5
135.4
138.6
136.2

Demand %
99.98
99.99
99.99
99.98
99.99
99.98
99.99
100

99.99
99.99

Table 4: Comparison of old scheme with our scheme
for various number of disks N=10 to 100. Shuffle
method 1. K=60, L=150.

N

10
20
30
40
50
60
70
80
90
100

Our Scheme
Rounds

10
10
10
10
10
10
10
10
10
10

Demand %
99.33
99.31
99.22
99.30
99.29
99.32
99.29
99.25
99.29
99.32

Old Scheme
Rounds (avg)

128.3
139.6
148.9
159.2
166.6
170.8
178.7
183.6
190.3
196.1

Demand %
100
100
100
100
100
100
100
100
100
100

Table 7: Comparison of old scheme with our scheme
for various number of disks N=10 to 100. Shuffle
method 4. K=60, L=150.

N

10
20
30
40
50
60
70
80
90
100

Our Scheme
Rounds

10
10
10
10
10
10
10
10
10
10

Demand %
95.12
96.82
97.96
98.31
98.26
98.37
98.57
98.67
98.81
98.82

Old Scheme
Rounds (avg)

103.3
109.4
119.4
119.7
124.7
127.4
129.3
135.3
134.4
137.5

Demand %
99.98
99.98
99.97
99.98
99.99
100
100
100
100
100

Table 5: Comparison of old scheme with our scheme
for various number of disks N=10 to 100. Shuffle
method 2. K=60, L=150.

N

10
20
30
40
50
60
70
80
90
100

Our Scheme
Rounds

10
10
10
10
10
10
10
10
10
10

Demand %
98.89
98.46
97.03
96.22
94.45
93.89
93.29
92.69
92.29
91.63

Old Scheme
Rounds (avg)

126.2
133

138.8
144.1
146.5
149.4
149.8
154.6
152.8
155.9

Demand %
99.75
99.71
99.7

99.68
99.69
99.67
99.68
99.66
99.65
99.66

Table 6: Comparison of old scheme with our scheme
for various number of disks N=10 to 100. Shuffle
method 3. K=60, L=150.

that unexpected data movement patterns can yield high
benefit. We gave heuristics for the problem. We gave ex-
perimental evidence to suggest that our approach of do-
ing a few rounds of one-round-migration consecutively
performs very well in practice. In particular, in all our
experiments they were able to quickly adapt the existing

placement to one that is close to the optimal solution
for the changed demand pattern. We showed that, in
contrast, previous approaches took many more rounds
to achieve similar solution quality.

105

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and
James B. Orlin. Network flows: theory, algorithms,
and applications. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1993.

[2] Eric Anderson, Joseph Hall, Jason D. Hartline, Michael
Hobbs, Anna R. Karlin, Jared Saia, Ram Swami-
nathan, and John Wilkes. An experimental study of
data migration algorithms. In WAE '01: Proceedings
of the 5th International Workshop on Algorithm Engi-
neering, pages 145-158, London, UK, 2001. Springer-
Verlag.

[3] Ann Louise Chervenak. Tertiary storage: an evalua-
tion of new applications. PhD thesis, Berkeley, CA,
USA, 1994.

[4] Shahram Ghandeharizadeh and Richard Muntz. De-
sign and implementation of scalable continuous media
servers. Parallel Comput., 24(1):91-122, 1998.

[5] L. Golubchik, S. Khanna, S. Khuller, R. Thurimella,
and A. Zhu. Approximation algorithms for data place-
ment on parallel disks. In SODA '00: Proceedings of
the eleventh annual ACM-SIAM symposium on Dis-
crete algorithms, pages 223-232, Philadelphia, PA,
USA, 2000. Society for Industrial and Applied Mathe-
matics.

[6] L. Golubchik, S. Khuller, Y. Kim, S. Shargorodskaya,
and Y-C. Wan. Data migration on parallel disks. In
Proc. of European Symp. on Algorithms (2004)- LNCS
3221, pages 689-701. Springer, 2004.

[7] Joseph Hall, Jason Hartline, Anna R. Karlin, Jared
Saia, and John Wilkes. On algorithms for efficient data
migration. In SODA '01: Proceedings of the twelfth
annual ACM-SIAM symposium on Discrete algorithms,
pages 620-629, Philadelphia, PA, USA, 2001. Society
for Industrial and Applied Mathematics.

[8] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash
crowds and denial of service attacks: Characterization
and implications for cdns and web sites, 2002.

[9] Samir Khuller, Yoo-Ah Kim, and Yung-Chun (Justin)
Wan. Algorithms for data migration with cloning.
In PODS '03: Proceedings of the twenty-second ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 27-36, New York, NY, USA,
2003. ACM Press.

[10] How much information? School of
Information Management and Sys-
tems. University of California at Berkeley.
http://www.sims.berkeley.edu/research/projects/how-
much-info 2003/.

[11] H. Shachnai and T. Tamir. Polynomial time approx-
imation schemes for class-constrained packing prob-
lems. In Proceedings of Workshop on Approximation
Algorithms (APPROX). LNCS 1913, pages 238-249.
Springer-Verlag, 2000.

[12] H. Shachnai and T. Tamir. On two class-constrained
versions of the multiple knapsack problem. Algorith-
mica, 29(3):442-467, 2001.

[13] Introduction to Storage Area Networks. IBM Red-
book. http://www.redbooks.ibm.com/.

A Appendix

A.I Hardness proof Recall that the Subset-Sum
Problem is known to be JVP-complete [4]. The Subset-
Sum problem is defined as follows: Given a set S —
{ai,... ,an} and a number 6, where a^,6 e Z+. Does
there exist a subset S' C S such that Xlo-eS' ai = ̂
Let sum(S') = £a.€5a;.

The One-Round Migration problem is defined as
follows. We are given a collection of identical disks
DI, ... DJV- Each disk has a storage capacity of K, and
a load capacity of L. We are also given a collection
of data objects MI, .. .MM, and a layout of the data
objects on the disks. The layout specifies the subset of
K data objects stored on each disk. Each data object
Mi has demand Ui. The demand for any data object
may be assigned to the set of disks containing that
object (demand is splittable), without violating the load
capacity of the disks. For a given layout, there may be
no solution that satisfies all the demand. Is there a one-
round migration to compute a new layout in which all
the demand can be satisfied?

A one-round migration is a matching among the
disks, such that for each edge in the matching, one
source disk may send an item to a disk that it is matched
to (half-duplex model).

We show that the One-Round Migration problem is
TVP-hard by reducing Subset-Sum to it. We will create
a set of N = 3n + 4 disks, each having capacity two
(K = 2). There are 4n + 6 items in all. We will assume
that L is very large. The current layout is shown in
Figure 16.

The demand for various items is as follows: Demand
for Gi is L — ̂ . Demand for Ci = ^ + a^. Demand for
Ei = ^. Demand for Fi = L — a^.

Demand for A = sum(A) + |r. Demand for H —
sum(A) + ^. Demand for X = ^. Demand for
Y — L — b. Demand for Z = L — (sum(A) — b). Demand
for W = f.

If we assume that the demand for Cx is ^ then the
assignment shown can satisfy all the demand. We will
assume that all but two of the disks are load saturated
(total assigned demand is exactly L}. If the demand
for Ci increases by ai, then we have to re-assign some
of this demand. The claim is that all of the demand
can be handled after one round of migration if and only
if there is a solution to the subset-sum instance. It is
clear that a given solution (a matching) can be verified
in polynomial time.

(=>) Suppose there is a subset S' C S that adds

106

http://www.redbooks.ibm.com/
http://www.sims.berkeley.edu/research/projects/howmuch-info2003/

Figure 16: Reduction from SUBSET-SUM to
ONE-ROUND-MIGRATION. Shaded portion indicates
empty space. Number within brackets following item
name indicates the amount of load assigned to the item.

exactly to b. We copy H (from the disk containing H
and W) to the disk containing Z, and A (from the disk
containing X and A] to the disk containing Y. If a^ € 5'
then we copy Ci to the disk containing Gi, and over-
write the copy of A on that disk. All clients for A from
this set of disks can be moved to the disk containing A
and Y. If a» ^ Sf then we copy Ci to the disk containing
Fi and over-write the copy of H on that disk. All clients
for H from this set of disks can be moved to the disk
containing H and Z.

(-<=) First note that the total demand is 3nL + 4L.
Since there are 3n + 4 disks, all disks must be load
saturated for a solution to exist. We leave it for the
reader to verify that with the current layout there is
no solution that meets all the demand. Suppose there
exists a one-round migration that enables a solution
where all of the demand can be assigned. A new copy
has to be created for each (7$, or EI since the total load
for Ci and EI is L + a^, and exceeds L. Assume w.lo.g
that a copy of Ci will be made to handle the excess
demand of c^ on this disk. We also assume without
loss of generality that a^ < b so moving Ci to one of
the disks containing Y or Z would not be of much use
in load saturating those disks. The only choice is to
decide whether this new copy is made at the expense
of a copy of H or at the expense of a copy of A. Note
that Ci cannot overwrite any of the other items since
only a single copy of these items exists in the system.
Since this is a one-round migration, we cannot move
a single copy of an item to another disk, and then re-
write it subsequently. Note that Ci has to overwrite

the corresponding A disk or H disk, otherwise we will
be unable to recover all the demand. Since the disks
containing Y and Z are also load saturated, we will
copy an item onto those disks. Moreover we have to
move one item (either A or H) to the disk containing
Y. Suppose that A is copied to the disk containing Y
and H is copied to the disk containing Z. (The reverse
case is similar.) When we shift b amount of demand of A
to the disk containing V, we have to completely remove
the demand from a disk containing A, otherwise we will
lose some demand. If Ci is moved to a disk containing
A then ai e S'. If Ci is moved to a disk containing H
then ai £ S!. Since Ci over-writes A (H), all of the
demand of A (H) is moved out of the disk. Clearly, the
total size of Sf must be exactly b.

107

Force-Directed Approaches to Sensor Localization*

Alon Efrat, David Forrester, Anand Iyer, and Stephen G. Kobourov
Department of Computer Science

University of Arizona
{alon,forrestd,anand,kobourov}@cs.arizona.edu

Cesim Erten
Department of Computer Science and Engineering

Isik University, Turkey
cesimOisikun.edu.tr

Abstract

We consider the centralized, anchor-free sensor localiza-
tion problem. We consider the case where the sensor
network reports range information and the case where
in addition to the range, we also have angular informa-
tion about the relative order of each sensor's neighbors.
We experimented with classic and new force-directed
techniques. The classic techniques work well for small
networks with nodes distributed in simple regions. How-
ever, these techniques do not scale well with network
size and yield poor results with noisy data. We describe
a new force-directed technique, based on a multi-scale
dead-reckoning, that scales well for large networks, is re-
silient under range errors, and can reconstruct complex
underlying regions.

1 Introduction

Wireless sensor networks are used in many applications,
from natural habitat monitoring to earthquake detec-
tion; see [1] for a survey. Often, the actual location of
the sensors is not known but is necessary for the under-
lying application, e.g., determining the epicenter of a
quake. Further, the location of the sensors can be used
to design efficient network routing algorithms [13].

Abstractly, the sensor localization problem can be
thought of as a graph layout problem. The true state
of the underlying sensor network is captured by a lay-
out D of the source graph G. Given partial information
about G (adjacency information, possibly information
about edge lengths, or angles between adjacent neigh-
bors), we would like to construct a layout D of G that
matches D as well as possible. There are many varia-
tions of the problem, depending on the quality of the
edge length data (obtained using signal strength), or

^TETs work is supported in part by NSF grant ACR-0222920.

whether some of the vertices know their exact positions
(GPS-equipped sensors), or whether the vertices can
detect the relative order of their neighbors (obtained
by using multiple antennas per sensor). Centralized
and distributed algorithms have both been proposed for
these problems.

Sensors typically have a range that allows them to
detect other sensors that fall in that range, thus pro-
viding adjacency information for the underlying graph.
The strength of the signal, or the time of arrival of
the signal are typically used to estimate the actual dis-
tance between two sensors. However, sensing neighbors
is far from perfect, especially close to the limits. Sen-
sors equipped with GPS are often called anchors and
while they make the localization problem easier, they
are bulky and expensive. Anchor-free sensor networks
are more practical but pose greater challenges in local-
ization.

Sensors equipped with multiple antennas can pro-
vide angular information by reporting the relative order
of their neighbors or an estimate on the angle between
adjacent neighbors. Multiple antennas add to the cost
and size of the sensor, but not nearly as much as in
the case of GPS. Once again, the angular information is
not perfect, but even allowing for some errors, angular
information can be used to find good localizations.

In this paper we focus on the centralized sensor
localization problem for anchor-free networks. We
consider the cases with or without angular information.
We also consider different types of underlying regions
for the sensor network: simple convex polygons, simple
non-convex polygons, and non-simple polygons. Classic
force-directed methods can be augmented to take into
account the edge length information. This approach
works well for small graphs of up to fifty or so vertices,
provided that the graphs are well-connected. For

108

larger graphs, the simple force-directed algorithms fail
to reconstruct the vertex locations. We show that
multi-scale versions of the force-directed algorithms
can extend the utility of these algorithms to graphs
with hundreds of vertices, provided that the graphs
are denned inside simple convex polygons. Finally,
we describe a new multi-scale force-directed approach
that incorporates the angular information in a dead-
reckoning fashion. This approach can extend the utility
of multi-scale force-directed algorithms to graphs with
thousands of vertices, denned inside non-convex and
even non-simple polygons.

1.1 Related Work
In the last decade the sensor localization problem has
received a great deal of attention in the networks
and wireless communities, due to the lowering of the
production cost of miniature sensors and due to the
numerous practical applications, such as environmental
and natural habitat monitoring, smart rooms and robot
control [1]. Several recent approaches have exploited
the natural connections with graph layout algorithms.
Priyantha et al. [15] propose a new distributed anchor-
free layout technique, based on force-directed methods.
Gotsman and Koren [9] utilize a stress majorization
technique in their distributed method. Neither of
these approaches assumes that angular information is
available and as a consequence these algorithms need
additional assumptions to achieve good results (both
approaches assume that sensors are distributed in a
simple convex polygon, and Priyantha et al. assume
that the graph is rigid).

Most of the algorithms that do utilize angular infor-
mation, assume that a fraction of the sensors is GPS-
equipped. Doherty et al. [3] formulate the sensor lo-
calization problem as a linear or semidefinite program
based on both adjacency and angular information. Sav-
vides et al. [17] describe an ad-hoc localization system
(AHLoS) which employs an anchor-based algorithms for
sensor localization using both edge length and angu-
lar information. Savarese et al. [16] and Niculescu and
Nath [14] describe anchor-based algorithms for sensor
localization utilizing edge lengths information. Fekete
et al. [4] use a combination of stochastic, topological,
and geometric ideas for determining the structure of
boundary nodes of the region, and the topology of the
region.

1.2 Our Contributions
We focus on centralized force-directed sensor localiza-
tion algorithms for anchor-free networks. We consider
two variations of the problem: one in which the input
contains (noisy) edge lengths information and the other

in which the input also contains (noisy) angular infor-
mation. We perform experiments by varying the sizes
of the graphs, in terms of number of vertices and edge
density (average vertex degree). We also consider differ-
ent types of shapes for the region in which the sensors
are distributed: simple convex polygons, simple non-
convex polygons, and non-simple polygons. Finally, we
measure two types of performance metrics: the global
quality of the layout and the structure of the boundary
of the region.

We describe one new force-directed technique and
adapt several standard force-directed technique to the
centralized sensor localization problem. Two standard
force-directed techniques are those of Fruchterman-
Reingold [6] and Kamada-Kawai [11]. If we are
only given adjacency information about the underlying
graph, these algorithms fail to solve the sensor localiza-
tion problem even for small graphs. Incorporating the
(noisy) edge lengths information works surprisingly well
for graphs defined inside simple convex regions.

For larger graphs, the multi-scale graph layout
algorithms [7] perform better. However, even these
techniques fail to reconstruct graphs defined in non-
simple, or non-convex regions.

With the aid of (noisy) angular information, we can
extend the utility of multi-scale graph layout algorithms
to large graphs with complicated underlying regions.
In particular, we show that the new multi-scale dead-
reckoning algorithm performs well and is tolerant to
non-trivial noise for large networks defined in non-
simple and non-convex regions.

2 Algorithms, Metrics, and Experiments
In this section we briefly describe the algorithms we
implemented, the metrics used to evaluate performance,
and our experimental setup.

2.1 Algorithms
We implemented and tested six force-directed al-
gorithms: Fruchterman-Reingold Algorithm (FR),
Kamada-Kawai Algorithm (KK), Fruchterman-
Reingold Range Algorithm (FRR), Kamada-Kawai
Range Algorithm (KKR), Multi-Scale Kamada-Kawai
Range Algorithm (MSKKR) and Multi-Scale Dead-
Reckoning Algorithm (MSDR). The first two utilize
only the graph adjacency information. The next three
utilize the graph adjacency information and the edge
lengths (range) information. The last algorithm utilizes
the graph adjacency information, the edge lengths
(range) information and the angular information.
Details about these algorithms are provided in the next
section.

109

2.2 Metrics
We compare the performance of various algorithms
on different underlying graphs, varying the number of
vertices, edge density, as wrell as the types of regions
in which the graphs are defined. We also vary the
amount of error in both the edge length and angular
information. We implemented six different metrics
to capture the performance of the algorithms, some
intended to measure the global quality of the layout
and the others measuring the quality of the boundary.
In this paper, we report the results using the Frobenius
metrics for comparing the layouts globally and the
BAR metric for comparing the quality of the boundary
reconstruction.

The global quality metrics attempt to measure how
the layout D created by a given algorithm matches the
source layout D. In particular, the Frobenius metric [8]
is equivalent to the Frobenius norm of a matrix M whose
entries are:

where n is the number of sensors, dij is the actual
distance between sensors i and j in D, and d^ is the
distance between those sensors in the layout D. Thus,
we can measure the global quality of the layout1 in terms
of the Frobenius error:

The boundary alignment ratio (BAR) is the sum-of-
squares normalized error value of a boundary matching.
Given the true layout D, we compute its boundary and
then compute an approximation by taking a sample of
the boundary points B. We compute the same size
sample B of the boundary of the layout D produced by
our algorithm. We then apply the iterative closest point
algorithm (ICP) [2] to align the two boundaries using
rotation and translation. The boundary alignment ratio
is defined as:

1The global energy ratio (GER) defined by Priyantha et al. [15]
is similar to the Frobenius metric:

While appropriate for comparing the layouts obtained by different
algorithms for graphs of the same size, the GER metric is not well-
suited to compare the quality of the layout across different graph
sizes.

The ICP algorithm first computes a match p —> p for
each point p 6 B, based on nearest neighbors. Next, the
ICP algorithm aligns the two layouts D and D as well as
possible using the BAR metric. This process of nearest-
neighbor computation and alignment is repeated until
the improvement in the BAR score becomes negligible.

2.3 Experiments
Since we did not have actual sensors to work with,
we wrote a plugin for our graph visualization system,
Graphael [5], that simulates the placement of the sen-
sors and the reported information from each. Our sensor
data generator takes the following parameters as input:
number of sensors, average connectivity (density), re-
gion to place the sensors in (square-shape, star-shape,
etc.), range error, and angle error. All of our regions
have the same area so that the size of the region does
not affect the performance metric results.

Our data generator fills the region with the given
number of sensors placed at random inside it. Then
the distances between all pairs of sensors are computed
so that we can determine the sensor range that will
give us the desired average connectivity. Finally, we
connect the sensors that are within the determined
sensor range and report the distance between them
after incorporating the range error into the actual
distances. The range error specifies standard deviation
(in percentage) about 100% of the true edge length using
Gaussian distribution.

Next we compute the angular information. Each
sensor chooses a random direction to be called "north."
Then, the sensor detects the clockwise angle from north
that each of its neighbors are located at, and angle error
is factored in. We then sort these edges by reported
angle and generate a mapping from each edge to its
next clockwise edge about the node, and store with it
the angle to that edge. This procedure guarantees that
although error may be present in the reported data,
the sum of the reported angles between edges is equal
to 360°. Angle error specifies standard deviation (in
degrees) about the actual angle from a sensor's declared
"north" to an edge using Gaussian distribution.

3 Force-Directed Algorithms for Localization

Some of the most flexible algorithms for calculating
layouts of simple undirected graphs belong to a class
known as force-directed algorithms. Also known as
spring embedders, such algorithms calculate the layout
of a graph using only information contained within the
structure of the graph itself. In general, force-directed
methods define an objective function which maps each
graph layout into a number in 7?.+ representing the
energy of the layout. This function is defined in such a

110

Figure 1: Typical results illustrating input/output/boundary-allignment for KK (top) and FR (bottom) for graphs with 200
vertices inside square and star-shape regions, respectively.

way that low energies correspond to layouts in which
adjacent nodes are near some pre-specified distance
from each other, and in which non-adjacent nodes are
well-spaced. A layout for a graph is then calculated
by finding a (often local) minimum of this objective
function.

The Fruchterman-Reingold (FR) algorithm [6] de-
fines an attractive force function for adjacent vertices
and a repulsive force function for non-adjacent vertices.
The vertices in the layout are repeatedly moved accord-
ing to this function until a low energy state is reached.
FR, relies on edgeLength: the unweighted "ideal" dis-
tance between two adjacent vertices. The displace-
ment of a vertex v of G is calculated by FFR(V) =
Fa,FR + Fr,FR, where:

Alternatively, forces between the nodes can be com-
puted based on their graph theoretic distances, deter-
mined by the lengths of shortest paths between them.
The Kamada-Kawai (KK) algorithm [11] uses spring
forces proportional to the graph theoretic distances.
The displacement of a vertex v of G is calculated by

Since neither FR, nor KK use the range informa-
tion, the resulting layouts D are not of the same scale2

as the original graph layout D. Still, for small graphs
(50-100 vertices) in simple underlying regions these al-
gorithms often manage to reconstruct the underlying

2The notions of "scale" and "scalability" can be confusing.
In this context, "scale" refers to the edge lengths of the graph.
In general, when we refer to "scalable algorithms" we mean
algorithms whose performance does not degrade with larger input
sizes as measured by the number of vertices and edges in the input
graphs. Finally, when we refer to "multi-scale" algorithms we
mean multi-level, multi-stage type algorithms.

111

Figure 2: Typical results illustrating input/output/boundary-allignment for KKR (top) and FRR (bottom) for graphs with 1000
vertices, density 8, range error 10%, angle error 10°, inside U-shape and donut-shape regions, respectively.

structure, as well as the boundaries. For larger graphs
these algorithms exhibit the typical problems of fold-
over and global distortion; see Fig. 1. To address the
scale issue, we extend these algorithms to take into ac-
count the range information.

3.1 Range Extensions

In range version of the Fruchterman-Reirigold al-
gorithm. FRR, the forces are defined by FFRR(V] —
fa,FRR + Fr^pRR- The difference between the FR
and FRR algorithms is in the definition of edgeLength.
While in FR the ideal edgeLength was the same for all
edges, in FRR edgeLength is different for different edges
and is defined by the reported distance between the cor-
responding pair of vertices. In a sensor network setup,
this information comes from the range of the sensors
and strength-of-signal or time-of-arrival data.

In the range version of Kamada-Kawai, KKR, we
incorporate the range data and use the weighted graph
distance instead of the unweighted graph distance,

t v). Similar to KKR, the weight of the edges

comes from the range of the sensors and strength-of-
signal or time-of-arrival data.

FRR and KKR perform well on some graphs and
not so well on others; see Fig. 2. FRR works well for
small graphs of fifty to one hundred vertices, defined in
simple convex shapes. However, larger graphs pose seri-
ous problems as FRR often settles in a local minimum.
KKR, performs well on many large graphs, given enough
iterations. Yet, KKR performs poorly on graphs defined
in non-convex shapes. As we show in Section 4 the poor
performance on non-convex shapes of algorithms based
on the Kamada-Kawai approach can be addressed with
the help of angular information.

3.2 Multi-Scale Extensions

One of the problems with the classic force-
directed algorithms, such as Fruchterman-Reingold and
Kamada-Kawai, is that they typically do not scale to
larger graphs. One way to avoid this problem is to
use multi-scale variants of these algorithms. In par-
ticular, multi-scale variants of the Kamada-Kawai algo-

112

disg

Figure 3: Comparison between FRR, KKR, MSKKR, and MSDR algorithms measured by the Frobenius metric across square-
shape, star-shape, U-shape, and donut-shape graphs with 50 to 1000 vertices. There were twenty trials per shape, using graphs
with density 8, range error of 20% and angle error of 10°.

rithm have already been shown to produce good results
in traditional graph drawing setting [7, 10]. Our multi-
scale algorithm, MSKKR, uses these ideas to extend the
utility of KKR to larger graphs.

The MSKKR algorithm relies on a filtration of the
vertices, intelligent placement, and multi-scale refine-
ment. Given G = (V,E), we use a maximal indepen-
dent set filtration F : V = V0 D l/i D . . . , D Vk D 0,
such that each Vi is a maximal subset of Vi-\ for which
the graph distance between any pair of vertices is at
least 2*~l +1. It is easy to see that given this definition
k = O(logn).

The vertices in Vk are placed first, based on an
estimate of their graph distances. Then the vertices in
each successive set in the filtration are placed based on
their graph distances from the vertices that have already
been placed, followed by a refinement of the current
layout. Details of this approach are discussed in [7].

While the quality of the layouts obtained by KKR
are comparable to those obtained by MSKKR, the

multi-scale approach is much faster and offers a better
chance of getting right some of the global details of the
placement. As the charts in Fig. 3 indicate, MSKKR
performs especially well for star-shapes and donut-
shapes. The same figure indicates that just as KKR,
MSKKR has problems with U-shape graphs that the
next algorithm can address.

4 Multi-Scale Dead-Reckoning Algorithm

The KK, KKR, and MSKKR algorithms use either the
graph theoretical distance or a weighted version of this
distance when the range data is taken into account.
This approach provides layouts that typically match
the underlying graphs. Non-convex underlying shapes,
however, yield poor results even for MSKKR. This is a
problem exhibited by all of the algorithms considered
so far.

Consider the sensor network obtained by distribut-
ing sensors in a U-shape region. Both the Kamada-

113

Figure 4: A typical problem with graphs defined in non-convex shapes. Input/output/boundary-allignment for MSKKR for a
graph with 1000 vertices, density 8, range error of 10% and angle error of 10°.

Kawai and Fruchterman-Reingold style algorithm would
typically produce layouts in which the bends have been
straightened; see Fig. 4. This is not a flaw of the al-
gorithms but a byproduct of the way they compute the
layouts as both of these algorithms attempt to place
vertices whose graph distances are large, as far away
from each other as possible. Pairs of vertices at the tips
of the U-shape are at maximum graph distance from
each other, but their Euclidean distance is small. Thus,
to be able to reconstruct layouts of graphs defined in
non-convex or non-simple regions, we need additional
information. Most previous approaches rely on anchors
(vertices with GPS) but these are too costly and bulky.
Instead, angular information (if available) can be used
with great effect to improve the quality of the layouts.
With this in mind, we propose the multi-scale dead-
reckoning (MSDR) algorithm.

4.1 Dead-Reckoning

Dead-reckoning has been used for centuries as a
method of estimating the current position of a moving
object by applying the direction and distance traveled
to a previously determined position [12]. It is a common
method for calculating the position of a mobile robot,
using the robot's measurements of traveled distance and
turns made. Although the problem we are considering
is a static problem, we can use this technique to obtain
better estimates for the relative positions of two distant
sensor nodes. Given range and angular information, we
can compute the distance between two vertices x and
y in the graph using this idea. We call that distance
dr(x,y).

Suppose we want to calculate the dead-reckoning
distance from vertex A to a vertex D. Let node C be Z)'s
predecessor in the shortest path from A to D, and let

B be C"s predecessor; see Fig. 5. Assume that dr(A, B)
and dr(A,C) have already been calculated and that we
also know the orientation of L\BCA. The /.BCD is also
known since the angle between edges on node C is part
of the source data, and the lengths of the edges from B
to C and from C to D are known as well. To reduce
the number of special cases, we convert this angle to a
clockwise angle by negating it if it's counter-clockwise.

Ultimately, we want to calculate LACD so that we
can determine dr(A, D) via the law of cosines. To do
this, we first compute LBCA using the law of cosines:
dr(A, B)2 = edge(B, C)2 + dr(A, C)2 - 2 * edge(B, C) *

dr(A,C)*cos(LBCA):

To determine the clockwise angle LACD, we must either
add or subtract LBCA to/from /.BCD, depending on
the orientation of L\BCA. If L\BCA is clockwise, we
simply add the two. If L\BCA is counter-clockwise,
then the angles overlap and we must therefore take their
difference. Put another way, we can just convert LBCA

Figure 5: In the BFS path from vertex A to D, the predecessor
of D is C and the predecessor of C is B.

114

Figure 6: Comparison between MSKKR and MSDR measured by the Frobenius metric across square-shapes, star-shapes, Li-
shapes, and donut-shapes with 50 to 1000 vertices. There were twenty trials per shape, using graphs with density 8 and range
errors 0-50% and angle error 0° - 25°.

to a clockwise angle and add it to LBCD, then wrap it
so that it is in the range [0°,360°).

Now we know the following useful information:
dr(A,C), LACD, and edge(C,D). Using the law of
cosines again, we can compute the distance from A to
D: dr(A, D}2 = dr(A, C}2 + edge(C, D)2 - 2 * dr(A, C) *
edge(C,D) * cos(LACD}. Although LACD may be
over 180°, the law of cosines still yields the proper
DR distance (the law of cosines yields the same result
for the clockwise angle which is greater than 180° and
the counter-clockwise angle which is less than 180°).
After the DR distance has been computed, we save the
orientation of L\ACD (determined by whether or not
LACD is greater than 180°) so that we can reference it
when calculating the DR distance to further nodes.

There are two base cases that must be considered
separately. For nodes adjacent to the starting node,
the edge length is the DR distance and no further
computation is necessary. For nodes that are 2 edges
away from the starting node, LACD is already known

and does not need to be calculated. Therefore, only the
final law of cosines used in our algorithm needs to be
applied to find dr(A, D).

4.2 MSDR Performance

Putting together the dead-reckoning idea with the
multi-scale range-based Kamada-Kawai algorithm re-
sults in our MSDR algorithm. Not surprisingly, it out-
performs all of the algorithms discussed earlier in the
paper, given small angle errors; see Fig. 3.

Comparing MSKKR to MSDR shows that MSDR
with angle errors of less than 10° consistently performs
better; see Fig 6. Since MSKKR does not depend on
angle errors and is resilient to range-errors it produces
stable results for in most of the experiments, with
the exception of the U-shape. MSDR's performance
depends heavily on the angle errors and less on the
range errors. For non-convex shapes such as the U-
shape, MSDR offers significant advantages even with

115

50% range error and 25° angle error.
Layouts obtained with the MSDR algorithm using

small angle and range errors often match near-perfectly
the given source graphs; see Fig. 7.

The quality of the layouts under varying range
and angular errors is captured in Figs. 8-9. Under
the Frobenius metric, the algorithm seems stable for
range errors of less than 30% and angular errors of
less than 10°. As expected, the effect of angular
errors is more pronounced; see Fig. 8. MSDR also
captures the boundary of the underlying region very
well. Experiments with the BAR metric also confirm
that the MSDR is stable under range errors of up to
30%; see Fig. 9.

5 Conclusions and Future Work
We presented several adaptations of force-directed
graph layout algorithms for the centralized, anchor-
free sensor localization problem. We also presented a
new approach that takes advantage of angular infor-
mation, based on dead-reckoning and multi-scale tech-
niques. Our results indicate that incorporating angular
information can significantly improve the performance
of force-directed sensor localization approaches. All of
these algorithms as well as the simulation that gener-
ates the data have been implemented as a part of the
Graphael [5] system.

The results presented in this paper are for cen-
tralized algorithms, whereas distributed algorithms for
the sensor localization problem are more desirable. We
plan to explore the possibility of developing practical
distributed variants of the two multi-scale algorithms,
MSKKR and MSDR.

References

[1] I. F. Akyildiz, S. Weilian, Y. Sankarasubramaniam,
and E. E. Cayirci. A survey on sensor networks. IEEE
Communications Magazine, 40(8): 102-114, 2002.

[2] P. J. Besl and N. D. McKay. A method for registration
of 3-D shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 14(2):239-258, Feb. 1992.

[3] L. Doherty, K. Pister, and L. E. Ghaoui. Convex
optimization methods for sensor node position esti-
mation. In Proceedings of the 20th IEEE Computer
and Communications Societies (INFOCOM-01), pages
1655-1663, 2001.

[4] S. P. Fekete, A. Kroner, D. Pfisterer, S. Fischer,
and C. Buschmann. Neighborhood-based topology
recognition in sensor networks. In ALGOSENSORS,
volume 3121 of Lecture Notes in Computer Science,
pages 123-136. Springer, 2004.

[5] D. Forrester, S. G. Kobourov, A. Navabi, K. Wampler,
and G. Yee. graphael: A system for generalized

force-directed layouts. In 12th Symposium on Graph
Drawing (GD), pages 454-466, 2004.

[6] T. Fruchterman and E. Reingold. Graph drawing
by force-directed placement. Software - Practice and
Experience, 21(11):1129-1164, 1991.

[7] P. Gajer, M. T. Goodrich, and S. G. Kobourov. A fast
multi-dimensional algorithm for drawing large graphs.
Computational Geometry: Theory and Applications,
29(1):3-18, 2004.

[8] G. H. Golub and C. F. Van Loan. Matrix Computa-
tions. Johns Hopkins Press, Baltimore, MD, 1996.

[9] C. Gotsrnan and Y. Koren. Distributed graph layout
for sensor networks. In 12th Symposium on Graph
Drawing (GD), pages 273-284, 2004.

[10] D. Harel and Y. Koren. A fast multi-scale method for
drawing large graphs. Journal of Graph Algorithms
and Applications, 6:179-202, 2002.

[11] T. Kamada and S. Kawai. An algorithm for drawing
general undirected graphs. Information Processing
Letters, 31:7-15, 1989.

[12] E. Krotkov, M. Hebert, and R. Simmons. Stereo
perception and dead reckoning for a prototype lunar
rover. Autonomous Robots, 2(4):313-331, 1995.

[13] M. Mauve, J. Widmer, and H. Hartenstein. A Sur-
vey on Position-Based Routing in Mobile Ad-Hoc Net-
works, pages 30-39, November 2001.

[14] D. Niculescu and B. Nath. Ad hoc positioning system
(APS) using AOA. In Proceedings of the 22 Conference
of the IEEE Computer and Communications Societies
(INFOCOM-03), pages 1734-1743, 2003.

[15] N. B. Priyantha, H. Balakrishnan, E. Demaine, and
S. Teller. Anchor-free distributed localization in sen-
sor networks. In 1st International Conference on Em-
bedded Networked Sensor Systems (SenSys-03), pages
340-341, 2003. Also TR #892, MIT LCS, 2003.

[16] C. Savarese, J. Beutel, and J. Rabaey. Locationing
in distributed ad-hoc wireless sensor networks. In
Proceedings of the 2001 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages
2037-2040, 2001.

[17] A. Savvides, C. Han, and M. Srivastava. Dynamic
Fine-Grained localization in Ad-Hoc networks of sen-
sors. In Proceedings of the 7th Conference on Mobile
Computing and Networking (MOBICOM-01), pages
166-179, 2001.

116

Figure 7: Typical results illustrating input/output/boundary-allignment for MSDR on square-shape, star-shape, U-shape, and
donut-shape graphs. The underlying graphs have 1000 vertices, density 8, range error of 10% and angle error of 10°.

117

Figure 8: Frobenius metric error tolerance for MSDR across square-shape, star-shape, U-shape, and donut-shape graphs. There
were twenty trials for each experiment using graphs with 1000 vertices, density 8 and varying the range and angle errors.

Figure 9: BAR metric error tolerance for MSDR across square-shape, star-shape, U-shape, and donut-shape graphs. There
were twenty trials for each experiments using graphs with 1000 vertices, density 8 and varying the range and angle errors.

118

Compact Routing on Power Law Graphs with Additive Stretch'

Arthur Brady* Lenore Coweri*

Abstract
We present a universal routing scheme for unweighted,
undirected networks that always routes a packet along a path
whose length is at most an additive factor of d more than
OPT (where OPT is the length of an optimal path), using
O(e log2 n)-bit local routing tables and packet addresses,
with d and e parameters of the network topology. For power-
law random graphs, we demonstrate experimentally that d
and e take on small values. The Thorup-Zwick universal
multiplicative stretch 3 scheme has recently been suggested
for routing on the Internet inter-AS graph; we argue, based
on the results in this paper, that it is possible to improve
worst-case performance on this graph by directly exploiting
its power-law topology.

1 Introduction
Compact routing refers to the design of routing algo-
rithms which store a small amount of information in a
routing table at each node in a network, and provide
a bound on the stretch of messaging routes. Following
the terminology of Elkin for graph spanners [12], we
say that a compact routing scheme has stretch (a, ft)
when the length of the route taken by a message from
a source node u to a destination v is always at most
ad(u, v) + /?, where d(u, v] is the minimum length of a
path from u to v in the network. A scheme with stretch
(a, 0) is said to have multiplicative stretch a; one with
stretch (l,/3) is said to have additive stretch (3. If the
worst-case size of a local routing table in a given scheme
is o(n), the scheme is said to be compact, and there
is typically a tradeoff between minimizing multiplica-
tive stretch and minimizing routing table size. Com-
pact routing (and the closely-related problems of span-
ner construction and distance labeling) has been well-
studied on special-case networks, such as trees [16, 27],
graphs of bounded genus [19], and, recently, graphs
whose doubling dimension [7] is bounded. There has
also been much recent work on universal compact rout-
ing schemes [1, 10, 15, 27], which provide space bounds
and multiplicative stretch guarantees for any undirected
network. (As far as we know, the only work on compact

Supported in part by NSF grant CCR-0208629.
t Department of Computer Science, Tufts University, Medford,

MA 02155. Email: {abrady,cowen}0cs.tufts.edu

routing in directed networks is work on roundtrip rout-
ing, appearing in [9, 26]; though additive stretch has
been studied for graph spanners [3, 6], we are unaware
of any prior compact routing results, even for special-
case networks.)

A great deal of recent research has focused on
discovering and modeling the topological properties of
various large-scale real-world networks, including social
networks and the Internet graph. In 1999, several
teams [5, 20] reported independently that the degree
distribution of the web graph appeared to follow a
power-law. In a seminal paper of the same year,
Faloutsos et al. [13] reported that the degrees of the
Internet inter-AS graph also appeared to follow a power
law. Since then, there has been extensive interest
in random-graph models which capture this property.
Two popular families of models have been proposed by
Barabasi and Albert [5] and Aiello, Chung and Lu [2].
Barabasi and Albert proposed a model in which new
vertices are added iteratively to a graph and linked to
existing vertices with probability proportional to their
degree; they showed that this construction induces a
power-law degree distribution in the resulting graph.
Aiello et al. proposed a power-law random graph model
in which the degree sequence of an n-node graph is
constructed according to the desired distribution, and
demonstrate an elegant method of building a graph
using the given degree sequence. In what follows, we
will refer to graphs generated using the Barabasi and
Albert model as PC random graphs, and we will call
graphs generated by the Aiello, Chung and Lu model
PLRG graphs.

The minimum multiplicative stretch achieved by
any known universal compact routing scheme is 3
[10, 27]. In the name-independent routing model (cf.
[1, 4]), as well as in the case of name-dependent mod-
els where packet headers are restricted to be precisely
logn bits long, a result of Gavoille and Gengler [18]
shows that this is also a lower bound. Universal rout-
ing schemes only make their guarantees based on worst-
case graph topologies; the question naturally arises as
to the stretch in practice of these schemes on models
of real-world networks, in particular on power-law net-
works. This question motivated the recent work of Kri-
oukov et al. [22], who showed that on power-law random

119

graphs generated by the PLRG model, the average ex-
perimental performance of Thorup and Zwick's univer-
sal multiplicative stretch 3 routing algorithm [27] is in
fact much better than three, and closer to 1.1 on certain
power-law graphs. We consider the same problem they
do (name-dependent compact routing on PLRG mod-
els) but show that designing schemes that exploit the
expected structure of these networks can lead to better
stretch on this class of networks.

While the observation that the degrees of the ac-
tual Internet inter-AS routing graph obey a power-law
distribution is grounded in a lot of research (both the-
oretical and based on empirical measurement) [14, 24],
work has also appeared recently that has convincingly
cast doubt on the full sufficiency of this type of Internet
model. Chen et al. [8] observe that the inferred power-
law distribution may be (at least in part) due to arti-
facts of measurement, and Willinger et al. [29] conclude
that descriptive models in their current form fail to ad-
dress the underlying causes of the observed emergent
properties of the network. Despite this, the idea of a
power-law network remains an object of broad interest,
making appearances in economic, social and biological
models as well as in computer science.

The main theoretical result of this paper is a
universal routing scheme on undirected, unweighted
graphs with additive stretch (l,eQ, using 0(elog2n)-
bit local routing tables and message headers, where d
and e are parameters of the network. We also describe
a hybrid compact routing scheme which overlays our
stretch (l,d) scheme with the Thorup-Zwick universal
stretch (3,0) scheme, with table size the same as in
the latter (namely O(-y/n log2 n)). The hybrid scheme
always routes along the best path provided by either
scheme; its stretch is thus min{(l,d), (3,0)}.

Using the PLRG model, we verify experimentally
that for power-law random graphs generated over a sig-
nificant range of power-law parameters (which includes
all values which have been estimated for the Internet
graph), d and e take on small constant values, suggest-
ing that our new routing scheme may work very well in
practice.

Part of our contribution is the development of
DIGG (Dynamic Graph Generator), a free C++-based
software suite for the efficient generation and repre-
sentation (in XML) of large graphs according to user-
supplied parameters and generation algorithms. As the
name suggests, the software also provides a way to cre-
ate, store and analyze the life-cycles of dynamic graphs;
this functionality was not used in the current paper,
but we intend to demonstrate its utility in future work.
The current (beta) version of the DIGG source code,
the library of graphs which we generated for the exper-

imental component of this paper, and the analytic code
we created for our experiments are all freely available
at http://digg.cs.tufts.edu.

2 Definitions
Consider a communications network modeled as a con-
nected, undirected, unweighted graph G = (V, E), \V\ =
n, with network nodes represented as vertices (each
of which is assigned a unique label v 6 {1,2, . . . ,n}),
and direct communications links represented as edges
uv € E.

A routing scheme R is a distributed algorithm
defined on G which guarantees that any vertex u can
send a message M to any specified destination v (along
some (w,v)-path P in G), using metadata stored in M
along with information stored locally at each vertex in
P.

We refer to the metadata stored (by R) in a message
M as M's header, and to the local information stored
at a vertex v as v 's routing table. Given an input graph
G — (V, E), a routing scheme R must specify:

1. the construction of the routing table at each vertex

2. the construction of the header of any message M
originating at a given source u and intended for a
given destination v, and

3. a forwarding function F(table(x), header (M})
computed locally at each vertex x G V which, given
the information in rr's routing table and the infor-
mation in M's header, selects an edge adjacent to
x along which to forward M .

F is known as R's routing function. Given a source
vertex u, a destination vertex v and a message M,
the sequence of vertices (u = VQ, i>i, • • • , Vk) defined
by successive applications of F(table(vi), header(M}}
must be such that k is finite, and v^ = v . We refer
to this (w, v)-path as the route Puv from u to v with
respect to R. Note the distinction between the label of
a vertex v of G and the header of a message destined
for v. Because the header of a message is forced to be
succinct but is otherwise unconstrained, we are studying
compact routing in the name- dependent routing model
(also known as the labeled routing model). In contrast,
routing models in which a message header destined for
v is constrained to contain only the (logn)-bit label of
v are known as name-independent models (cf. [1, 4] for
formal definitions and discussion). Our compact routing
scheme requires neither a port-relabeling nor rewritable
headers, so it is said to be a 1-phase [11] routing scheme
in the fixed-port [16] model.

120

http://digg.cs.tufts.edu

As in Elkin [12], we say that a routing scheme R has
stretch (a, j3) with respect to a family of graphs Gf if the
length of any route Puv is always at most ad(w, v) + (3,
where d(u, v) is the minimum length of a path from u
to v in the network.

A routing scheme is called compact if headers have
size bounded by O(logc n) bits for some constant c, and
local routing tables each have size bounded by o(n)
bits. There is a natural tradeoff between header size
and routing table size. There is also a natural tradeoff
between the total size of all data structures employed
by a routing scheme and its stretch; intuitively, if we are
willing to take longer paths, we can use less information
overall to get where we're going.

Recent experimental work of Krioukov et al. [22]
looked at the performance of the best known universal
multiplicative stretch-3 compact routing algorithm (due
to Thorup and Zwick) on graphs generated by the
PLRG model, and showed that the average stretch of
routes on these graphs was much better than 3, and was
closer to a multiplicative stretch of 1.1. The question
we asked that led to this paper was: can you do better
still on PLRGs?

2.1 Some facts about power-law graphs

DEFINITION 2.1. A power-law graph G = (V,E) is an
undirected, unweighted graph whose degree distribution
approximates a power law, i.e. the number y = \{v 6
V | deg(v) = x}\ of vertices whose degree is x satisfies

1. For all ranges of 7 > 0, a random power-law
graph G7 has a unique giant component, and all
components other than the giant component have
size at most O(logn).

(Throughout the following - since we consider a
routing problem on connected networks, and since
all non-giant components are small - we ignore all
non-giant components, and abuse notation slightly
by identifying G7 with its giant component.)

2. For 0 < 7 < 2, G7 contains an edge-dense "core"
of diameter at most 3, which is connected to a set
of "tree-like tails" of constant length.

• an inner layer consisting of a small edge-dense
"core,"

• an outer layer of "tree-like tails,"

• and a "middle layer" in between the core and
the outer layer.

Furthermore, each of these three layers is of diam-
eter 0(logn).

4. For all ranges of 7, the highest-degree vertices in
G?7 are contained in the "core."

These facts suggest considering routing algorithms that
employ different strategies in the core and in the tails,
which is what we do in the next section.

3 Our new routing scheme

DEFINITION 3.1. Let G be an undirected, unweighted
graph, and let h be the node of G of highest degree
(breaking ties lexographically by node names, so that
h is always uniquely defined). For each positive even
integer d, we define the d-core of G to be the subgraph
of G induced by the set of vertices of distance at most
d/1 from h (thus the d-core is of diameter d). We also
define the d-fringe of G to be the subgraph of G induced
by the set of vertices which are not in the d-core of G.

DEFINITION 3.2. Given a graph H, we define the extra-
edge count BH of H to be the minimum number of
edges that must be removed from H in order to make
H acyclic.

With the parameters d and e defined, we are now ready
to state our principal theorem:

THEOREM 3.1. For any (unweighted, undirected) graph
G = (V, E}, \V | = n, there is a routing scheme CFROUTE
that uses O(elog2 n)-bit headers and routing tables, and
has a stretch of (l , d) , where e is the extra-edge count of
the d-fringe of G.

121

3. For 2 < 7 < 4, G7 contains

for some constant 7 e K+, called the power-law param-
eter ofG.

DEFINITION 2.2. A 7-RPLG (for "random power-law
graph") is a graph G7 = (F, E), \V\ = n, which has been
uniformly randomly selected from the set of all n-vertex
power-law graphs with power-law parameter 7.

Using a model very close to the PLRG model (but
not exactly identical, see [2, 23] for discussion); Lin-
coln Lu [23], in his probabilistic analysis of power-law
graph topology, observed that for sufficiently large val-
ues of n, with high probability1 the following hold:

1When we say "X is true with high probability," we mean that
the probability that X is false is o(n-1).

and

3. c is a value minimizing \n — r\

when

when

Notice that it is easy to construct graph families for
which either d or e must always be large, meaning that
there exist graph families where this routing scheme
isn't even compact. In this section, we prove this
theorem. In the following section, we describe an
experimental study of the tradeoffs between d and e
for the PLRG model, and demonstrate ranges of 7 for
which we will expect to achieve small additive stretch
using this routing scheme.

In order to present CFROUTE, we first need to
slightly modify a known compact routing algorithm on
trees, which we do in subsection 3.1. In subsection 3.2,
we present and analyze CFROUTE as a proof of Theorem
3.1.

3.1 A compact routing algorithm for trees
There exist compact routing schemes for trees due both
to Fraignaud and Gavoille [16] and to Thorup and
Zwick [28] which use 0(log2n)-bit headers, O(logn)-
bit routing tables, and guarantee stretch (1,0) (that is,
they always route along optimal paths). Given a tree
T — (V, E), we denote by TZTtable[u] the local routing
table assigned to vertex u by the Thorup-Zwick tree-
routing scheme on T, and by TZTheader[w] the header
assigned to vertex w by the Thorup-Zwick tree-routing
scheme on T. Let dr(u,v) represent the length of the
unique (u, v)-path in T.

Peleg [25] demonstrated that given any tree T with
uniform edge weights, each vertex v of T can be assigned
an O(log2 n)-bit label l (v) , such that given the labels of
any two vertices i>, w in T, the distance d(v, w) between
them can be computed exactly. Such a labeling scheme
is referred to as an (exact) distance labeling scheme; we
will refer to the scheme in [25] as the Peleg scheme. We
denote by IT(V] the label generated by the Peleg scheme
for a vertex v in a tree T.

We augment the Thorup-Zwick tree-routing scheme
slightly to create a new tree-routing scheme TZ' as
follows.

Let T = (V, E) be any tree with root r.

1. Initially, store a routing table TZTtable[u] at each
node u, and let TZTheader[w] be the header of
node w, exactly as in the Thorup-Zwick tree-
routing scheme.

2. For each vertex w, add the label IT(U) to
TZTtable[u] to form TZ'Ttable[u].

3. For each vertex v, add the label IT(V) to
TZTheader[v] to form TZrTheader[v}.

4. Routing decisions are made exactly as prescribed

by the Thorup-Zwick tree- routing scheme.

LEMMA 3.1. TZ' uses O (log2 n)- bit headers, O(log2n)-
bit routing tables, and allows any vertex u, given the
header of any destination v, to compute

Proof. The header and routing table size bounds are im-
mediate from the fact that TZ' only requires O(log n)
more bits than the corresponding headers and tables in
the original scheme. dT(u,v) can be computed from
IT(U) and IT(V) exactly as described in [25]. n

3.2 Proof of Theorem 3.1 Given an unweighted,
undirected graph G = (V, E1), |V| = n, and an even
integer d, denote the d-core of G by /, and denote the
^-fringe of G by F. Let h be the vertex of G of highest
degree, with ties broken lexicographically. Let T be a
single-source shortest path tree spanning G, with source
h. Consider T n F. Extend T D F by adding edges
between vertices in F, until we have a spanning tree
on each connected component of F. Call the resulting
forest TF. Let E' = {uv \ uv e E, uv £ TF, u,v e F}
be set of all edges of G between vertices in F which
are not contained in Tp. Let ep denote the extra-edge
count of F; note that because TF spans each connected
component of F, \E'\ < ep.

For any u,v e F, let d(u,v) denote the distance
from u to v in G, let d^(u,v) represent the distance
from u to v in T, and let £/TF(M, v) represent the distance
from u to v in Tp, or oo if there is no (u, v)-path in Tp.

DEFINITION 3.3. We define a set T of trees Ti to be the
union of the following two sets:

1. a set of spanning trees {To = T, TI, . . . , T|^/|} on
G, constructed as follows:

• i< — 1.
• For each edge uv 6 E' ,

— Grow a single-source shortest path tree Tj
rooted at u which includes uv.

— Increment i.

2. the connected components ofTp, with each assigned
an arbitrary root vertex.

Note that each vertex of G is in at most one component
of Tp. Throughout the following we refer to an element
of T as Tt.

CFROUTE consists of four parts: a preprocessing step,
in which we construct temporary data structures using
TZ', a labeling step, in which nodes are assigned
headers, a storage step, in which a local routing table
is constructed at each node, and the routing procedure
itself.

122

TZ'Tjheader[v], and compute
to the Peleg scheme ([25]).

according

Figure 1: The labeling step

Figure 2: The storage step

3.2.1 Preprocessing Process each tree Tj € T using
TZ'. Let TZ'Titable[u}) be the routing table for node
u in tree Tj, and let TZ'^ header [v}) be the header
assigned to node u in tree Tj.

3.2.2 Labeling Assign to each vertex v a list of pairs
(i, TZ'Ti header [v]) (ordered by increasing i), one for
every tree Tj which contains v.

3.2.3 Storage The routing table stored at each ver-
tex u consists of a list of pairs (i, TZ'Txtable\u\) (or-
dered by increasing i), one for every tree Tj which con-
tains u.

LEMMA 3.2. CFROUTE uses O(eFlog2n)-bit headers
and routing tables.

Proof. Given any node v e G, the number of trees
Ti 6 T containing i> is at most ep + 2:

• v is contained in T (because T spans G),

• v is contained in £"| < ep spanning trees Ti in T
by construction, and

• v is contained in at most 1 component of Tp •

So since the routing table at each node u contains
at most ep + 2 entries (i, T Z'T,table[u]}, and since
the header assigned to each node v contains at most
ep + 2 entries (i, TZ'Tiheader[v]), the result follows
immediately from Lemma 3.1. D

3.2.4 Routing procedure Routing from a source
vertex u to a destination v using CFROUTE proceeds
as follows:

1. For each tree Ti containing both u and v, ex-
tract /T;(W) from TZ'Titablelu], extract IT^V) from

2. Choose some tree Tj such that dTj(u,v) is mini-
mized.

3. Route from u to v in Tj according to TZ' .

3.2.5 Analysis of the routing procedure

LEMMA 3.3. Given any node u and any destination v,
CFROUTE routes from u to v along a path of length at
most d(u,v) + d.

Proof. Let u and v be any two vertices which are both
in /. Since dT(u,v) < dr(u,h) + dT(h,v] = d(u,h) +
d(h, v) < | + I? = d, and since 1 < d(w, i>), we have that
dr(u, v} < d(u, v} + (d - 1) < d(u, v) + d.

Now let u and v be such that u 6 / and v £ I. Since
w e / , d(u,h) < |. Since d(h,v) < d(h,u) +d(u,v) <
?-+d(u,v), we have that dr(u,v} < dr(u, h)+dT(h,v) —
d(u, h) + d(h, v) <% + [% + d(u, v)} = d(u, v) + d.

Finally, let u and v be any two vertices both in F, and
let P be any shortest (w, v)-path in G.

Either d^F (u, v} = d(u, i>), or dxF (u, v) > d(u, v). If the
latter is the case, then there exists some edge u'v' G P
which is not in Tp. We consider two cases.

1. If there exists some such edge where u', v' 6 F, then
because u'v' £ Tp, u'v' E E' , so the preprocessing
routine of CFROUTE constructed a single-source
shortest path tree Ti spanning G with source u'
(or v'\ wlog assume u'}. Since we have G?T,(M> v) <
dTL (u, u') + d^ (u', v) = d(u, u'} + d(u' , v} and since
u' is on some shortest (w, i»)-path P in G, we

2. Now assume that u' 6 / or v' G / (or both) for all
edges u'v' 6 P which are not in Tp.

Notice that because P contains at least one vertex
in /, we have that d (u , I) + d (I , v) < \P\ =
d(u,v). So we conclude that dT(u,v) < dr(u, h} +
dT(h, v) < [d(u, I) + f] + [f + d(I, v)} < d(u, v) + d.

TZ' routes with stretch (1,0) on each tree Ti. We have
shown that for any two vertices u, v e V, there is always
some tree Ti G T such that d^i (u, v} < d(u, v}+d. Given
a source u and a destination v, since we always choose
to route within a tree Tj minimizing dTT(u,v), we have
that any (w,v)-route in CFROUTE has length at most
d(u, v) + d, giving a stretch of (1, d) as desired. D

123

conclude that d,Ti(u,v) — d(u,v) for some T^.

3.3 A hybrid scheme In practice, when faced with
a network that may or may not be a PLRG, we remark
that the right thing to do is to superimpose our scheme
and Thorup and Zwick (TZ)'s universal stretch (3,0)
routing scheme, resulting in a hybrid scheme. (Note
that the latter is a different scheme from the Thorup-
Zwick tree-routing scheme discussed in Section 3.1).
The key observation is that the universal TZ scheme
can be modified so that a packet that arrives at any
node u destined for some node v can, with help from
the local routing table stored at M, compute exactly
the length of the path from u to v that would be
traversed using that scheme. (Our scheme already uses
an analogous function.) The details are straightforward
and are omitted from this extended abstract.

Thus we can simply concatenate headers for both
schemes, and store tables for both schemes at every
node. A packet then decides which scheme to follow
by computing which one would result in a shorter
path to its destination, then routing according to that
scheme. The hybrid scheme is guaranteed to have
better stretch than either the universal TZ scheme or
our new scheme implemented separately: its stretch
is min{(l,d), (3,0)}. It also uses tables of the same
asymptotic size as those used by the universal TZ
scheme, namely O(v

/Hlog2n) bits.

4 Experiments
We have shown that for a given graph G, a given value
of d, and / and F being the d-core and d-fringe of G
respectively, CFROUTE guarantees an additive stretch
of (l,d) and uses O(e^?log n)-bit headers arid routing
tables. It remains to determine what values of d and ep
are typical for power-law graphs.

We conducted two sets of experiments: the first was
an exploration of RPLG topology, and the second com-
pared the performance of the Thorup-Zwick universal
scheme, our scheme, and the hybrid scheme outlined in
Section 3.3 on RPLGs.

Our topology experiments were designed to provide
answers to the following:

• For a given 7-RPLG G7, can we find a small value
of d such that the extra-edge count ep of the d-
fringe F of G7 is also small?

• Lu [23]'s results on the properties of power-law
graphs hold for sufficiently large n. We were
interested in whether or not the desirable properties
(such as a low-diameter core) were observed for the
graph sizes we were interested in.

For the topology experiments, we used DIGG to imple-
ment the PLRG generator in [2], with which we gener-

ated random power-law graph instances on n vertices
(for n = 2500, 5000, 10000, 20000 and 40000) for
power-law parameter 7 (for 1.2 < 7 < 3.0). We con-
structed 30 graph instances for each value of the pa-
rameter pair (n, 7). DIGG supports the fast saving and
loading of graph instances to and from XML files; we
were thus able both to create a permanent library of
all the graph instances we generated, and to provide a
basis for exact or parallel replication of our experiments
by others.

For each generated graph instance C?7, we calculated2

the following:

1- dmini the minimum value of d such that the d-fringe
of G7 was exactly a forest, and

2. for each

• the extra-edge count e of the d-fringe of G7.

We divided our topology experiments into two
phases. In phase 1, we looked at graphs G7 where
1-2 < 7 < 1.9; in phase 2, we examined (27 for
2.0 < 7 < 3.0. According to the predictions in [23],
we expected to find that graphs in the first range
would actually have cores of constant diameter, and
that graphs in the second range would have core of
diameter O(logn). The extremely slow growth rates
of the observed diameters for both types of graph this
seem to confirm this prediction.

The table size of our algorithm is acceptable when e
is not too large, and its stretch is smallest when d = 2r
is as small as possible. Define e to be the average
value of the extra-edge count e of the d-fringe of G7

(for given values of n, 7 and d) across all graphs G7

in the corresponding sample set; we denote by ae the
estimated standard deviation of this statistic.

In phase 1 (1.2 < 7 < 1.9), we found that for all
observed values of n and 7, there was a sharp threshold:
~e was large when d was set to be 2 or 4, but setting d — 6
produced values of e and ae which were both less than
1. (In other words, for all values studied, the 6-fringe
of G7 differed on average from a forest by less than one
edge.)

In phase 2 (2.0 < 7 < 3.0), we found that for
all observed values of n and for 2.0 < 7 < 2.5 (this
being the range containing the vast majority of power-
law parameter estimates for the various models of the

2 Exceptions: we generated graphs for (n = 20000, 7 = 1.2),
but could not analyze them due to memory constraints. Also
because of memory issues, for n = 40000, we only generated
graphs for 2.0 < 7 < 3.0. As our data will show, however, the
properties under consideration began to conform very closely to
their predicted values in [23] well before n became this large.

124

Internet and web graphs), setting d = 10 produced
values of e and ae which were both less than 5. (In other
words, for these values, the 10-fringe of G7 differed on
average from a forest by less than 5 edges.)

Thus we conclude that for graph sizes up to 40,000,
our scheme displays a worst-case additive stretch of
(1,6) for phase 1 graphs, and (1,10) for phase 2 graphs,
while maintaining O(log n)-bit tables. Compare to
the Thorup-Zwick multiplicative-stretch scheme which
uses 0(v/nlog2n)-bit tables and has worst-case stretch
(3,0). Note that the theory of [23] implies that for
phase 1 graphs, the additive stretch and table size of our
scheme is unlikely to increase much as n grows beyond
40,000, whereas for phase 2 graphs, additive stretch and
table size should increase logarithmically.

As was noted by Krioukov et al. in [22], the average
stretch of the Thorup-Zwick scheme is considerably
better than worst-case stretch on power-law graphs. In
our routing experiments, simulations of the Thorup-
Zwick scheme on our synthetic RLPGs yielded average-
case (multiplicative) stretch between 1.25 and 1.18 (for
7 between 2.0 and 2.2).3 Simulations of the additive
scheme presented in this paper produced an average
multiplicative stretch between 1.22 and 1.11 (for 7 in
the same range), and the hybrid scheme outlined in
Section 3.3 resulted in an average multiplicative stretch
between 1.13 and 1.07. See Figures 9 - 11 for details.

The observed average stretch of our scheme was
consistently better than the average stretch of the TZ
scheme; also, the margin of improvement increased
significantly as 7 increased, which is intuitively due to
the fact that the fringe becomes more sparse as the
exponent of the power-law increases.

The hybrid scheme significantly outperformed both
schemes (indicating that the sets of optimal routes
discovered by each scheme were different from one
another, so that when taken together, they provided
a strong improvement over either scheme on its own).

We present two sets of figures summarizing two
different perspectives on our topology results.

In Figures 3 and 4, n is fixed at a particular value
in {10000, 20000}. Within each chart, e is plotted as a
function of 7 and d.

In each of figures 5 - 8, 7 is fixed at a particular
value in {2.0, 2.1, 2.2, 2.3}. (We emphasize the middle
range here because it is in this range that power-law
parameters for the Internet inter-AS topology have been
estimated.) Within each chart, e is plotted as a function

3Note that [22] reports an average TZ stretch of 1.1 on
RPLGs in this range, whereas we observed stretch closer to
1.2. The disparity is attributable to slight differences in the
respective methods used to generate degree distributions for
synthetic RPLGs.

of n and d.
For our routing experiments, we simulated the

Thorup-Zwick scheme, our scheme, and the hybrid
scheme outlined in Section 3.3 on 15 of the 10,000-
node graphs which we generated for the topology ex-
periments: 5 graphs each of 7 E {2.0, 2.1, 2.2}.

The essential power of our algorithm lies in exploit-
ing the sparsity of each RPLG, outside the core, using
a small number of spanning trees. We discovered in our
routing simulations that while a single spanning tree
sourced at the highest-degree node provided an aver-
age stretch close to the worst-case bound, adding a very
small number of spanning trees sourced at fringe edges
caused the stretch to drop dramatically. We therefore
added a heuristic to the simulations of our scheme and
the hybrid scheme: if the extra-edge count of the fringe
was less than 5, we added up to 5 trees spanning G7,
sourced at random edges in the fringe.

Figures 9-11 describe our results: we measured the
mean stretch over all possible paths (framed both mul-
tiplicatively and additively), as well as the percentage
of optimal paths used by each algorithm. All data has
been averaged over the 5 graphs in each set. More de-
tailed data, including the full distribution of stretch over
all paths for each algorithm on each graph, is available
on our website.

The most commonly studied model of Internet
routing is the inter-AS graph, which represents ASs
(autonomous systems, which are roughly equivalent
to ISPs) as vertices, and communications links (BGP
peering links; cf. [17] for discussion) as edges. Recent
empirical studies of the inter-AS graph [24] suggest that
it has less than 20,000 nodes; its power-law parameter
7 has been estimated to be between 2.0 and 2.5. Our
choices of n and 7 are therefore realistic for this type
of model, and our algorithm remains quite compact
(table size O(log2n)) across observed values of n and
7, guaranteeing an additive stretch of (1,10).

We remark that a more granular representation of
the Internet as a graph would model individual routers
as vertices. There are approximately 250,000 Internet
routers at present [21]. A model of this size would be
more than 6 times larger than the graphs we studied
in our experiments, but based on extrapolations of the
observed growth curves of e for phase 2 graphs with 7
between 2.0 and 2.5, we predict that when d = 10, both
e and ae will remain less than 5 for graphs of this size.
Thus for RPLGs of this size, the stretch and table size
of our algorithm would remain (1,10) and O(log n),
respectively. Unfortunately, less is known about the
topology of this type of Internet model; it may not even
exhibit a power-law degree distribution.

While additive-stretch and multiplicative-stretch

125

schemes are hard to rank against each other, certainly
we achieve a dramatic reduction in table size. If we have
space resources which can accomodate O(y/n log2 n)-bit
tables, we can instead implement the hybrid scheme of
Section 3.3, which is always guaranteed to do as well in
stretch as the better of our additive and Thorup and
Zwick's multiplicative stretch schemes. According to
our simulations, the hybrid scheme appears to signifi-
cantly outperform both schemes in practice.

We have made copies of our code for PLRG gen-
eration, topology analysis, routing simulations, and
routing-scheme stretch analysis, as well as complete
tabulations of all raw and aggregate analysis, and
all generated graphs (encoded in XML) available at
http://digg.cs.tufts.edu.

5 Discussion and future work

Taking into account the unique topological properties
of power-law graphs has allowed us to design better
compact routing schemes with superior performance on
these graphs. We intend to investigate applications of
this approach to other graph topologies.

Xenofontas Dimitropoulos and Dmitri Krioukov at
CAIDA (http://www.caida.org) have recently pro-
vided us with graph data which incorporates estimates
of inferred AS relationships in the real Internet inter-AS
graph, and we intend to study new schemes which take
advantage of their particular topological properties.

6 Acknowledgements

Thanks to Daniel Wolchonok and Patrick Schmid for
major contributions to the development of DIGG.
Kofi Laing and Alva Couch contributed helpful pre-
liminary discussions concerning its high-level de-
sign. Dmitri Krioukov and k daffy of CAIDA
(http://www.caida.org) continue to give critical in-
sight about routing on "real" Internet graphs. Thanks
to the anonymous referees for pointing out two errors
in an early version of this manuscript. The authors
gratefully acknowledge support from NSF grant CCR-
0208629.

References

[1] Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, Noam
Nisan, and Mikkel Thorup. Compact name-
independent routing with minimum stretch. In Pro-
ceedings of the 16th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA 2004), pages
20-24. ACM Press, June 2004.

[2] William Aiello, Fan Chung, and Linyuan Lu. A
random graph model for massive graphs. In STOC
'00: Proceedings of the thirty-second annual ACM

Figure 3: N = 10000. In this and the next figure, the mean
extra-edge count e (over all graphs in each set) of the d-fringe of
each graph is plotted as a function of the core diameter d and the
power-law parameter 7.

Figure 5: 7 = 2.0. In this and the following three figures,
the power-law parameter 7 is held fixed, and the mean extra-edge
count e of each set of graphs is plotted as a function of the graph
size N and the core diameter d.

126

Figure 4: N = 20000.

http://www.caida.org
http://www.caida.org
http://digg.cs.tufts.edu

Figure 6: 7 = 2.1.
Figure 9: Observed average-case multiplicative stretch for the
TZ universal scheme, the scheme presented in this paper, and the
hybrid scheme mentioned in Section 3.3.

Figure 7: 7 = 2.2.
Figure 10: A comparison of average-case additive stretch for
each of the three schemes.

Figure 8: 7 = 2.3.
Figure 11: Percentage of optimal (i.e. shortest) paths detected
by each of the three schemes in our routing simulations.

127

symposium on Theory of computing, pages 171-180,
New York, NY, USA, 2000. ACM Press.

[3] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and
Rajeev Motwani. Fast estimation of diameter and
shortest paths (without matrix multiplication). SI AM
J. Comput., 28(4):1167-1181, 1999.

[4] Marta Arias, Lenore Cowen, Kofi Laing, Rajmohan
Rajaraman, and Orjeta Taka. Compact routing with
name independence. In Proceedings of the 15th Annual
ACM Symposium on Parallelism in Algorithms and
Architectures, pages 184-192, 2003.

[5] Albert-Laszlo Barabasi and Reka Albert. Emergence
of scaling in random networks. Science, 286:509, 1999.

[6] Surender Baswana, Telikepalli Kavitha, Kurt
Mehlhorn, and Seth Pettie. New constructions
of (a, /3)-spanners and purely additive spanners. In
Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2005,
pages 672-681, January 2005.

[7] Hubert T-H. Chan, Anupam Gupta, Bruce M. Maggs,
and Shuheng Zhou. On hierarchical routing in doubling
metrics. In SODA '05: Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete algorithms,
pages 762-771, Philadelphia, PA, USA, 2005. Society
for Industrial and Applied Mathematics.

[8] Qian Chen, Hyunseok Chang, Ramesh Govindan,
Sugih Jamin, Scott J. Shenker, and Walter Willinger.
The origin of power laws in internet topologies revis-
ited. In Proc. of the IEEE INFOCOM, 2002.

[9] Lenore J. Cowen and Christopher G. Wagner. Com-
pact roundtrip routing in directed networks. In Proc.
19th ACM Symp. on Principles of Distrib. Computing,
pages 51-59, 2000.

[10] Lenore Cowen. Compact routing with minimum
stretch. J. of Algorithms, 38:170-183, 2001.

[11] Tamar Eilam, Cyril Gavoille, and David Peleg. Com-
pact routing schemes with low stretch factor. In 17th
Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 11-20, 1998.

[12] Michael Elkin and David Peleg. (1+e, /3)-spanner
constructions for general graphs. SI AM J. Comput.,
33(3):608-631, 2004.

[13] Michalis Faloutsos, Petros Faloutsos, and Christos
Faloutsos. On power-law relationships of the internet
topology. In SIGCOMM, pages 251-262, 1999.

[14] Georgos Siganos, Michalis Faloutsos, Petros Faloutsos,
and Christos Faloutsos. Power laws and the as-
level internet topology. IEEE/ACM Trans. Netw.,
ll(4):514-524, 2003.

[15] Pierre Fraigniaud and Cyril Gavoille. Local memory
requirement of universal routing schemes. In Proceed-
ings of the 8th Annual ACM Symposium on Parallel
Algorithms and Architectures. ACM, August 1996.

[16] Pierre Fraigniaud and Cyril Gavoille. Routing in
trees. In Fernando Orejas, Paul G. Spirakis, and Jan
van Leeuwen, editors, 28th International Colloquium
on Automata, Languages and Programming (ICALP),
volume 2076 of Lecture Notes in Computer Science,

pages 757-772. Springer, 2001.
[17] L. Gao. On inferring autonomous system relationships

in the internet, 2000.
[18] Cyril Gavoille and Marc Gengler. Space-efficiency

of routing schemes of stretch factor three. In 4.th
International Colloquium on Structural Information
and Communication Complexity (SIROCCO), pages
162-175, July 1997.

[19] Cyril Gavoille and Nicolas Hanusse. Compact routing
tables for graphs of bounded genus. In ICAL '99:
Proceedings of the 26th International Colloquium on
Automata, Languages and Programming, pages 351-
360, London, UK, 1999. Springer-Verlag.

[20] Jon M. Kleinberg, S. Ravi Kumar, Prabhakar Ragha-
van, Sridhar Rajagopalan, and Andrew S. Tomkins.
The web as a graph: Measurements, models and meth-
ods. In Proceedings of the International Conference on
Combinatorics and Computing, July 1999.

[21] Dmitri Krioukov. Private correspondence, 2005.
[22] Dmitri Krioukov, Kevin Fall, and Xiaowei Yang. Com-

pact routing on internet-like graphs. In Proceedings of
Infocom, 2004.

[23] Linyuan Lu. The diameter of random massive graphs.
In Proceedings of the twelfth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 912-921. Society
for Industrial and Applied Mathematics, 2001.

[24] Priya Mahadevan, Dmitri Krioukov, Marina
Fomenkov, Bradley Huffaker, Xenofontas Dim-
itropoulos, kc claffy, and Amin Vahdat. Lessons from
three views of the internet topology, 2005.

[25] David Peleg. Proximity-preserving labeling schemes
and their applications. In WG '99: Proceedings of
the 25th International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 30-41, London,
UK, 1999. Springer-Verlag.

[26] Liam Roditty, Mikkel Thorup, and Uri Zwick.
Roundtrip spanners and roundtrip routing in directed
graphs. In Proc. 13th ACM-SIAM Symp. on Discrete
Algorithms, pages 844-851, January 2002.

[27] Mikkel Thorup and Uri Zwick. Compact routing
schemes. In Proceedings of the 13th Annual ACM
Symposium on Parallel Algorithms and Architectures,
pages 1-10. ACM, July 2001.

[28] Mikkel Thorup and Uri Zwick. Approximate distance
oracles. In Proc. 33rd ACM Symp. on Theory of
Computing, pages 183-192, May 2001.

[29] Walter Willinger, Ramesh Govindan, Sugih Jamin,
Vern Paxson, and Scott Shenker. Scaling phenomena
in the internet: Critically examining criticality. PNAS,
99, 2002.

128

Reach for A*:
Efficient Point-to-Point Shortest Path Algorithms

Andrew V. Goldberg* Haim Kaplan^ Renato F. Werneck*

Abstract
We study the point-to-point shortest path problem in
a setting where preprocessing is allowed. We improve
the reach-based approach of Gutman [17] in several
ways. In particular, we introduce a bidirectional version
of the algorithm that uses implicit lower bounds and
we add shortcut arcs to reduce vertex reaches. Our
modifications greatly improve both preprocessing and
query times. The resulting algorithm is as fast as the
best previous method, due to Sanders and Schultes [28].
However, our algorithm is simpler and combines in a
natural way with A* search, which yields significantly
better query times.

1 Introduction
We study the following point-to-point shortest path
problem (P2P): given a directed graph G = (V,A)
with nonnegative arc lengths and two vertices, the
source s and the destination £, find a shortest path
from s to t. We are interested in exact shortest paths
only. We allow preprocessing, but limit the size of
the precomputed data to a (moderate) constant times
the input graph size. Preprocessing time is limited by
practical considerations. For example, in our motivating
application, driving directions on large road networks,
quadratic-time algorithms are impractical.

Finding shortest paths is a fundamental problem.
The single-source problem with nonnegative arc lengths
has been studied most extensively [1, 3, 4, 5, 9, 10, 11,
12, 15, 20, 25, 33, 37]. For this problem, near-optimal
algorithms are known both in theory, with near-linear
time bounds, and in practice, where running times are

* Microsoft Research, 1065 La Avenida, Mountain View,
CA 94062. E-mail: goldberg@microsoft.com; URL:
http://www.research.microsoft.com/~goldberg/.

t School of Mathematical Sciences, Tel Aviv University, Israel.
Part of this work was done while the author was visiting Microsoft
Research. E-mail: haimkQmath.tau.ac.il.

* Department of Computer Science, Princeton University, 35
Olden Street, Princeton, NJ 08544. Supported by the Aladdin
Project, NSF Grant no. CCR-9626862. Part of this work was
done while the author was visiting Microsoft Research. E-mail:
rwerneckQcs.princeton.edu.

within a small constant factor of the breadth-first search
time.

The P2P problem with no preprocessing has been
addressed, for example, in [19, 27, 31, 38]. While no
nontrivial theoretical results are known for the general
P2P problem, there has been work on the special case
of undirected planar graphs with slightly super-linear
preprocessing space. The best bound in this context
appears in [8]. Algorithms for approximate shortest
paths that use preprocessing have been studied; see e.g.
[2, 21, 34]. Previous work on exact algorithms with
preprocessing includes those using geometric informa-
tion [24, 36], hierarchical decomposition [28, 29, 30], the
notion of reach [17], and A* search combined with land-
mark distances [13, 16].

In this paper we focus on road networks. However,
our algorithms do not use any domain-specific informa-
tion, such as geographical coordinates, and therefore
can be applied to any network. Their efficiency, how-
ever, needs to be verified experimentally for each par-
ticular application. In addition to road networks, we
briefly discuss their performance on grid graphs.

We now discuss the most relevant recent develop-
ments in preprocessing-based algorithms for road net-
works. Such methods have two components: a prepro-
cessing algorithm that computes auxiliary data and a
query algorithm that computes an answer for a given
s-t pair.

Gutman [17] defines the notion of vertex reach.
Informally, the reach of a vertex is a number that is
big if the vertex is in the middle of a long shortest path
and small otherwise. Gutman shows how to prune an
s-t search based on (upper bounds on) vertex reaches
and (lower bounds on) vertex distances from s and to
t. He uses Euclidean distances for lower bounds, and
observes that the idea of reach can be combined with
Euclidean-based A* search to improve efficiency.

Goldberg and Harrelson [13] (see also [16]) have
shown that the performance of A* search (without
reaches) can be significantly improved if landmark-
based lower bounds are used instead of Euclidean
bounds. This leads to the ALT (A* search, land-
marks, and triangle inequality) algorithm for the prob-

129

http://www.research.microsoft.com/~goldberg/

lem. In [13], it was noted that the ALT method could
be combined with reach pruning in a natural way. Not
only would the improved lower bounds direct the search
better, but they would also make reach pruning more ef-
fective.

Sanders and Schultes [28] (see also [29]) have re-
cently introduced an interesting algorithm based on
highway hierarchy; we call it the HH algorithm. They de-
scribe it for undirected graphs, and briefly discuss how
to extend it to directed graphs. However, at the time
our experiments have been completed and our techni-
cal report [14] published, there was no implementation
of the directed version of the highway hierarchy algo-
rithm. Assuming that the directed version of HH is not
much slower than the undirected version, HH is the most
practical of the previously published P2P algorithms for
road networks. It has fast queries, relatively small mem-
ory overhead, and reasonable preprocessing complexity.
Since the directed case is more general, if an algorithm
for directed graphs performs well compared to HH then
it follows that this algorithm performs well compared
to the current state of the art. We compare our new
algorithms to HH in Section 8.3.

The notions of reach and highway hierarchies have
different motivations: The former is aimed at pruning
the shortest path search, while the latter takes advan-
tage of inherent road hierarchy to restrict the search to
a smaller subgraph. However, as we shall see, the two
approaches are related. Vertices primed by reach have
low reach values and as a result belong to a low level of
the highway hierarchy.

In this paper we study the reach method and its
relationship to the HH algorithm. We develop a shortest
path algorithm based on improved reach pruning that
is competitive with HH. Then we combine it with ALT
to make queries even faster.

The first contribution of our work is the introduc-
tion of several variants of the reach algorithm, includ-
ing bidirectional variants that do not need explicit lower
bounds. We also introduce the idea of adding shortcut
arcs to reduce vertex reaches. A small number of short-
cuts (less than n, the number of vertices) drastically
speeds up the preprocessing and the query of the reach-
based method. The performance of the algorithm that
implements these improvements (which we call RE) is
similar to that of HH. We then show that the techniques
behind RE and ALT can be combined in a natural way,
leading to a new algorithm, REAL. On road networks,
the time it takes for REAL to answer a query and the
number of vertices it scans are much lower than those
for RE and HH.

Furthermore, we suggest an interpretation of HH in
terms of reach, which explains the similarities between

the preprocessing algorithms of Gutman, HH, and RE.
It also shows why HH cannot be combined with ALT as
naturally as RE can.

In short, our results lead to a better understanding
of several recent P2P algorithms, leading to simplifi-
cation and improvement of the underlying techniques.
This, in turn, leads to practical algorithms. For the
graph of the road network of North America (which has
almost 30 million vertices), finding the fastest route be-
tween two random points takes less than 4 milliseconds
on a standard workstation, while scanning fewer than
2 000 vertices on average. Local queries are even faster.

Due to the page limit, we omit some details, proofs, and
experimental results. A full version of the paper is available
as a technical report [14].

2 Preliminaries

The input to the preprocessing stage of a P2P algorithm
is a directed graph G = (V,A) with n vertices and
ra arcs, and nonnegative lengths i(a) for every arc a.
The query stage also has as inputs a source s and a
sink t. The goal is to find a shortest path from s to
t. We denote by dist(v, w) the shortest-path distance
from vertex v to vertex w with respect to t. In general,
dist(t>,w) 7^ dist(u>, v).

The labeling method for the shortest path prob-
lem [22, 23] finds shortest paths from the source to
all vertices in the graph. The method works as fol-
lows (see e.g. [32]). It maintains for every vertex v
its distance label d(v), parent p(v), and status S(v) G
{unreached, labeled, scanned}. Initially d(v) = oo,
p(v) — nil, and S(v) = unreached for every ver-
tex v. The method starts by setting d (s) — 0 and
S(s) — labeled. While there are labeled vertices, the
method picks a labeled vertex i>, relaxes all arcs out of
v, and sets S(v) = scanned. To relax an arc (f,u»),
one checks if d(w) > d(v) + l(v, w) and, if true, sets
d(w) = d(v) -f t(v,w), p(w) — v, and S(w) = labeled.

If the length function is nonnegative, the labeling
method terminates with correct shortest path distances
and a shortest path tree. Its efficiency depends on the
rule to choose a vertex to scan next. We say that
d(v) is exact if it is equal to the distance from s to v.
Dijkstra [5] (and independently Dantzig [3]) observed
that if t is nonnegative and v is a labeled vertex with
the smallest distance label, then d(v] is exact and each
vertex is scanned once. We refer to the labeling method
with the minimum label selection rule as Dijkstra's
algorithm. If t is nonnegative then Dijkstra's algorithm
scans vertices in nondecreasing order of distance from s
and scans each vertex at most once.

For the P2P case, note that when the algorithm is
about to scan the sink i, we know that d(t) is exact and

130

the s-t path defined by the parent pointers is a shortest
path. We can terminate the algorithm at this point.
Intuitively, Dijkstra's algorithm searches a ball with s
in the center and t on the boundary.

One can also run Dijkstra's algorithm on the reverse
graph (the graph with every arc reversed) from the sink.
The reverse of the t-s path found is a shortest s-t path
in the original graph.

The bidirectional algorithm [3, 7, 26] alternates
between running the forward and reverse versions of
Dijkstra's algorithm, each maintaining its own set of
distance labels. We denote by d/(v) the distance label
of a vertex v maintained by the forward version of
Dijkstra's algorithm, and by dr(v) the distance label
of a vertex v maintained by the reverse version. (We
will still use d(v) when the direction would not matter
or is clear from the context.) During initialization, the
forward search scans s and the reverse search scans
t. The algorithm also maintains the length of the
shortest path seen so far, /z, and the corresponding
path. Initially, JJL = oo. When an arc (i>, w] is relaxed
by the forward search and w has already been scanned
by the reverse search, we know the shortest s-v and
w-t paths have lengths dj(v) and dr(w], respectively.
If n > df(v) + t(v,w) + d r (w] , we have found a path
shorter than those seen before, so we update ^ and its
path accordingly. We perform similar updates during
the reverse search. The algorithm terminates when the
search in one direction selects a vertex already scanned
in the other. A better criterion (see [16]) is to stop
the algorithm when the sum of the minimum labels of
labeled vertices for the forward and reverse searches
is at least /i, the length of the shortest path seen so
far. Intuitively, the bidirectional algorithm searches two
touching balls centered at s and t.

Alternating between scanning a vertex by the for-
ward search and scanning a vertex by the reverse search
balances the number of scanned vertices between these
searches. One can, however, coordinate the progress
of the two searches in any other way and, as long as
we stop according to one of the rules mentioned above,
correctness is preserved. Balancing the work of the for-
ward and reverse searches is a strategy guaranteed to
be within a factor of two of the optimal strategy, which
is the one that splits the work between the searches to
minimize the total number of scanned vertices. Also
note that remembering JJL is necessary, since there is no
guarantee that the shortest path will go through the
vertex at which the algorithm stops.

3 Reach-Based Pruning
The following definition of reach is due to Gutman [17].
Given a path P from s to £ and a vertex v on P, the reach

of v with respect to P is the minimum of the length of
the prefix of P (the subpath from s to v) and the length
of the suffix of P (the subpath from v to t}. The reach
of v, r (v) , is the maximum, over all shortest paths P
that contain v, of the reach of v with respect to P. (For
now, assume that the shortest path between any two
vertices is unique; Section 5 discusses this issue in more
detail.)

Let r(v) be an upper bound on r(t>), and let
dist(f, w} be a lower bound on dist(t>, w). The following
fact allows the use of reaches to prune Dijkstra's search:

Suppose r(v) < dist(s, v) and r(v) < dist(i>, t).
Then v is not on the shortest path from s to
t, and therefore Dijkstra's algorithm does not
need to label or scan v.

Note that this also holds for the bidirectional algorithm.
To compute reaches, it suffices to look at all shortest

paths in the graph and apply the definition of reach to
each vertex on each path. A more efficient algorithm
is as follows. Initialize r(v) = 0 for all vertices v. For
each vertex x, grow a complete shortest path tree Tx

rooted at x. For every vertex v, determine its reach
rx(v) within the tree, given by the minimum between
its depth (the distance from the root) and its height (the
distance to its farthest descendant). If rx(v) > r (v } ,
update r (v) . This algorithm runs in O(nra) time, which
is still impractical for large graphs. On the largest one
we tested, which has around 30 million vertices, this
computation would take years on existing workstations.

Note that, if one runs this algorithm from only a few
roots, one will obtain valid lower bounds for reaches.
Unfortunately, the query algorithm needs good upper
bounds to work correctly. Upper bounding algorithms
are considerably more complex, as Section 5 will show.

4 Queries Using Upper Bounds on Reaches
In this section, we describe how to make the bidirec-
tional Dijkstra's algorithm more efficient assuming we
have upper bounds on the reaches of every vertex. As
described in Section 3, to prune the search based on
the reach of some vertex i>, we need a lower bound on
the distance from the source to v and a lower bound on
the distance from v to the sink. We show how we can
use lower bounds implicit in the search itself to do the
pruning, thus obtaining a new algorithm.

During the bidirectional Dijkstra's algorithm, con-
sider the search in the forward direction, and let 7 be
the smallest distance label of a labeled vertex in the
reverse direction (i.e., the topmost label in the reverse
heap). If a vertex v has not been scanned in the re-
verse direction, then 7 is a lower bound on the distance
from v to the destination t. (The same idea applies to

131

Figure 1: Bidirectional bound algorithm. Assume v is about to be scanned in the forward direction, has not yet been
scanned in the reverse direction, and that the smallest distance label of a vertex not yet scanned in the reverse direction
is 7. Then v can be pruned if r(v] < d/(v) and r(v) < 7.

the reverse search: we use the topmost label in the for-
ward heap as a lower bound on the distance from s for
unscanned vertices in the reverse direction.) When we
are about to scan v we know that df(v] is the distance
from the source to v. So we can prune the search at v
if all the following conditions hold: (1) v has not been
scanned in the reverse direction, (2) f (v) < d/(v), and
(3) f (v) < 7. When using these bounds, the stopping
criterion is the same as for the standard bidirectional
algorithm (without pruning). We call the resulting pro-
cedure the bidirectional bound algorithm. See Figure 1.

An alternative is to use the distance label of the
vertex itself for pruning. Assume we are about to scan
a vertex v in the forward direction (the procedure in
the reverse direction is similar). If r(v) < d / (v) , we
prune the vertex. Note that if the distance from v
to t is at most r(v), the vertex will still be scanned
in the reverse direction, given the appropriate stopping
condition. More precisely, we stop the search in a given
direction when either there are no labeled vertices or
the minimum distance label of labeled vertices for the
corresponding search is at least half the length of the
shortest path seen so far. We call this the self-bounding
algorithm.

The reason why the self-bounding algorithm can
safely ignore the lower bound to the destination is that
it leaves to the other search to visit vertices that are
closer to it. Note, however, that when scanning an arc
(v, w), even if we end up pruning «;, we must check if
w has been scanned in the opposite direction and, if
so, check whether the candidate path using (v, w) is the
shortest path seen so far.

The following natural algorithm falls into both of
the above categories. The algorithm balances the radius
of the forward and reverse search regions by picking the
labeled vertex with minimum distance label considering
both search directions. Note that the distance label of
this vertex is also a lower bound on the distance to the

target, as the search in the opposite direction has not
selected the vertex yet. We refer to this algorithm as
distance-balanced. Note that one could also use explicit
lower bounds in combination with the implicit bounds.

We call our implementation of the bidirectional
Dijkstra's algorithm with reach-based pruning RE. The
query is distance-balanced and uses two optimizations:
early pruning and arc sorting. The former avoids
labeling unscanned vertices if reach and distance bounds
justify this. The latter uses adjacency lists sorted
in decreasing order by the reach of the head vertex,
which allows some vertices to be early-pruned without
explicitly looking at them. The resulting code is simple,
with just a few tests added to the implementation of the
bidirectional Dijkstra's algorithm.

5 Preprocessing

In this section we present an algorithm for efficiently
computing upper bounds on vertex reaches. Our algo-
rithm combines three main ideas, two introduced in [17],
and the third implicit in [28].

The first idea is the use of partial trees. Instead
of running a full shortest path computation from each
vertex, which is expensive, we stop these computations
early and use the resulting partial shortest path trees,
which contain all shortest paths with length lower than a
certain threshold. These trees allow us to divide vertices
into two sets, those with small reaches and those with
large reaches. We obtain upper bounds on the reaches of
the former vertices. The second idea is to delete these
low-reach vertices from the graph, replacing them by
penalties used in the rest of the computation. Then
we recursively bound reaches of the remaining vertices.
The third idea is to introduce shortcuts arcs to reduce
the reach of some vertices. This speeds up both the
preprocessing (since the graph will shrink faster) and
the queries (since more vertices will be pruned).

132

The preprocessing algorithm works in two phases:
during the main phase, partial trees are grown and
shortcuts are added; this is followed by the refinement
phase, when high-reach vertices are re-evaluated in
order to improve their reach bounds.

The main phase uses two subroutines: one adds
shortcuts to the graph (shortcut step), and the other
runs the partial-trees algorithm and eliminates low-
reach vertices (partial-trees step). The main phase starts
by applying the shortcut step. Then it proceeds in
iterations, each associated with a threshold e^ (which
increases with i, the iteration number). Each iteration
applies a partial-trees step followed by the shortcut step.
By the end of the i-ih iteration, the algorithm eliminates
every vertex which it can prove has reach less than
Ci. If there are still vertices left in the graph, we set
ei+i = ae-i (for some a > 1} and proceed to the next
iteration.

Approximate reach algorithms, including ours, need
the notion of a canonical path, which is a shortest
path with additional properties. In particular, between
every pair (s,t) there is a unique canonical path. We
implement canonical paths as follows. For each arc a, we
generate a length perturbation t'(a). When computing
the length of a path, we separately sum lengths and
perturbations along the path, and use the perturbation
to break ties in path lengths.

Next we briefly discuss the major components of
the algorithm. Due to space limitations, we discuss
a variant based on vertex reaches. We indeed use
vertex reaches for pruning the query, but our best
preprocessing algorithm uses arc reaches instead to gain
efficiency (see [14] for details). The main ideas behind
our arc-based preprocessing are the same as for the
vertex-based version that we describe.

5.1 Growing Partial Trees. To gain intuition on
the construction and use of partial trees, we consider
a graph such that all shortest paths are unique (and
therefore canonical) and a parameter e. We outline
an algorithm that partitions vertices into two groups,
those with high reach (e or more) and those with low
reach (less than e). For each vertex x in the graph, the
algorithm runs Dijkstra's shortest path algorithm from
x with an early termination condition. Let T be the
current tentative shortest path tree maintained by the
algorithm, and let T' be the subtree of T induced by the
scanned vertices. Note that any path in T' is a shortest
path. The tree construction stops when for every leaf y
of T', one of two conditions holds: (1) y is a leaf of T or
(2) the length of the x'-y path in T' is at least 2e, where
x' is the vertex adjacent to x on the x-y path in T'.

Let Tx, the partial tree of x, denote T' at the time

the tree construction stops. The algorithm marks all
vertices that have reach at least e with respect to a path
in Tx as high-reach vertices.

It is clear that the algorithm will never mark
a vertex whose reach is less than e, since its reach
restricted to the partial trees cannot be greater than
its actual reach. Therefore, to prove the correctness of
the algorithm, it is enough to show that every vertex
v with high reach is marked at the end. Consider a
minimal canonical path P such that the reach of v with
respect to P is high (at least e). Let x and y be the first
and the last vertices of P, respectively. Consider Tx.
By uniqueness of shortest paths, either P is a path in
Tx, or P contains a subpath of Tx that starts at x and
ends at a leaf, z, of Tx. In the former case v is marked.
For the latter case, note that z cannot be a leaf of T as
z has been scanned and the shortest path P continues
past z. The distance from x to v is at least e and the
distance from x', the successor of x on P, to v is less
than t (otherwise P would not be minimal). By the
algorithm, the distance from x' to z is at least 2e and
therefore the distance from v to z is at least e. Thus in
this case v is also marked.

Note that long arcs pose an efficiency problem for
this approach. For example, if x has an arc with
length lOOe adjacent to it, the depth of Tx is at least
102e. Building Tx will be expensive. All partial-tree-
based preprocessing algorithms, including ours, deal
with this problem by building smaller trees in such
cases and potentially classifying some low-reach vertices
as having high reach. This results in weaker upper
bounds on reaches and potentially slower query times,
but correctness is preserved.

Our algorithm builds the smaller trees as follows.
Consider a partial shortest path tree Tx rooted at a
vertex x, and let v / x be a vertex in this tree. Let f(v)
be the vertex adjacent to x on the shortest path from x
to v. The inner circle ofTx is the set containing the root
x and all vertices v 6 Tx such that d(v) — l(x, f(v)) < e.
We call vertices in the inner circle inner vertices; all
other vertices in Tx are outer vertices. The distance
from an outer vertex w to the inner circle is defined
in the obvious way, as the length of the path (in Tx)
between the closest (to w) inner vertex and w itself.
The partial tree stops growing when all labeled vertices
are outer vertices and have distance to the inner circle
greater than e.

Our preprocessing runs the partial-trees algorithm
in iterations, multiplying the value of e by a constant a,
each time it starts a new iteration. Iteration i applies
the partial-trees algorithm to a graph Gi = (Vi,Ai).
This is the graph induced by all arcs that have not been
eliminated yet (considering not only the original arcs,

133

but also shortcuts added in previous iterations). All
vertices in Vi have reach estimates above ez_] (for i > 1).
To compute valid upper bounds for them, the partial-
trees algorithm must take into account the vertices that
have been deleted. It does so by using the concept
of penalties, which implicitly increase the depths and
heights of vertices in the partial trees. This ensures the
algorithm will compute correct upper bounds.

Next we introduce arc reaches, which are similar to
vertex reaches but carry more information and lead to
faster preprocessing. They are useful for defining the
penalties as well.

5.2 Arc Reaches. Let (v, w) be an arc on the short-
est path P between s and t. The reach of this arc with
respect to P is the minimum of the length of the prefix
of P (the distance between s and w) and the length of
the suffix of P (the distance between v and t). Note
that the arc belongs to both the prefix and the suffix
(a definition that excluded the arc from both would be
equivalent). The arc reach of (v, w) with respect to the
entire graph, denoted by r(v,w), is the maximum reach
of this arc with respect to all shortest paths P contain-
ing it.

During the partial-trees algorithm, we actually try
to bound arc reaches instead of vertex reaches — the
procedure is essentially the same as described before,
and arc reaches are more powerful (the reach of an arc
may be much smaller than the reaches of its endpoints).
Once all arc reaches are bounded, they are converted
into vertex reaches: a valid upper bound on the reach
of a vertex can be obtained from upper bounds on the
reaches of all incident arcs.

Penalties are computed as follows. The in-penalty
of a vertex v € Vi is defined as

if v has at least one eliminated incoming arc, and zero
otherwise. In this expression, A+ is the set of original
arcs augmented by the shortcuts added up to iteration
i. The out-penalty of v is defined similarly, considering
outgoing arcs instead of incoming arcs:

If there is no outgoing arc, the out-penalty is zero.
The partial-trees algorithm works as described

above, but increases the lengths of path suffixes and
prefixes by out- and in-penalties, respectively, for the
purpose of reach computation.

5.3 Shortcut Step. We call a vertex v bypassable
if it has exactly two neighbors (u and w) and one of

the following condition holds: (1) v has exactly one
incoming arc, (w,v), and one outgoing arc, (f ,w); or
(2) v has exactly two outgoing arcs, (v,u) and (v,w),
and exactly two incoming arcs, (u,v) and (w,v). In the
first case, we say v is a candidate for a one-way bypass;
in the second, v is a candidate for a two-way bypass.
Shortcuts are used to go around bypassable vertices.

A line is a path in the graph containing at least
three vertices such that all vertices, except the first
and the last, are bypassable. Every bypassable vertex
belongs to exactly one line, which can either be one-
way or two-way. Once a line is identified, we may
bypass it. The simplest approach would be to do it
in a single step: if its first vertex is u and the last
one is w, we can simply add a shortcut (w, w) (and
(u>,w), in case it is a two-way line). The length and
the perturbation associated with the shortcut is the
sum of the corresponding values of the arcs it bypasses.
We break the tie thus created by making the shortcut
preferred (i.e., implicitly shorter). If v is a bypassed
vertex, any shortest path that passes through u and
w will no longer contain v. This potentially reduces
the reach of v. If the line has more than two arcs, we
actually add "sub-lines" as well: we recursively process
the left half, then the right half, and finally bypass the
entire line. This reduces reaches even further, as the
example in Figure 2 shows.

Once a vertex is bypassed, we immediately delete
it from the graph to speed up the reach computation.
As long as the appropriate penalties are assigned to its
neighbors, the computation will still find valid upper
bounds on all reaches.

One issue with the addition of shortcuts is that they
may be very long, which can hurt the performance of
the partial-trees algorithm in future iterations. To avoid
this, we limit the length of shortcuts that may be added
in iteration i to at most e^+i/2.

5.4 The Refinement Phase. The fact that penal-
ties are used to help compute valid upper bounds tends
to make the upper bounds less tight (in absolute terms)
as the algorithm progresses, since penalties become
higher. Therefore, additive errors tend to be larger for
vertices that remain in the graph after several itera-
tions. Since they have high reach, they are visited by
more queries than other vertices. If we could make these
reaches more precise, the query would be able to prune
more vertices. This is the goal of the refinement phase
of our algorithm: it recomputes the reach estimates of
the 6 vertices with highest (upper bounds on) reaches
found during the main step, where 6 is a user-defined
parameter (we used 6 — [lO-^/n]).

Let Vg be this set of high-reach vertices of G. To

134

in penalty(v) =

out-penalty(v) =

Figure 2: In this graph, (s,-u), (u,x), (x , v) , (f,y), (y,w), and (w,t) are the original edges (for simplicity, the graph is
undirected). Without shortcuts, their reaches are r(s) = 0, r(u) = 20, r(x) = 30, r(v) = 36, r(y) = 29, r(w) = 18, and
r(t) = 0. If we add just shortcut (u, w), the reaches of three vertices are reduced: r(x) = 19, r(v) = 12, and r(y) = 19. If
we also add shortcuts (u,v) and (v, w), the reaches of x and y are reduced even further, to r(x) = r(y) = 0.

recompute the reaches, we first determine the subgraph
GS = (Vs,As) induced by Vs. This graph contains
not only original arcs, but also the shortcuts between
vertices in V$ added during the main phase. We
then run an exact vertex reach computation on GS by
growing a complete shortest path tree from each vertex
in Vs. Because these shortest path trees include vertices
in GS only, we still have to use penalties to account for
the remaining vertices.

5.5 Additional Parameters. The choice of ei and
a is a tradeoff between preprocessing efficiency and the
quality of reaches and shortcuts. To choose e l 5 we first
pick k — min{500, Uv^/^J} vertices at random. For
each vertex, we compute the radius of a partial shortest
path tree with exactly [n/k\ scanned vertices. (This
radius is the distance label of the last scanned vertex.)
Then we set ei to be twice the minimum of all k radii.
We use a = 3.0 until we reach an iteration in the
main phase where the number of vertices is smaller than
8, then we reduce it to 1.5. This change allows the
algorithm to add more shortcuts in the final iterations.
The refinement step ensures that the reach bounds of
the last 8 vertices are still good.

6 Reach and the ALT Algorithm

6.1 A* Search and the ALT Algorithm. A poten-
tial function is a function from the vertices of a graph G
to reals. Given a potential function TT, the reduced cost
of an arc is defined as ^-(i;, w) = i(v, w) — n(v) + TT(W).
Suppose we replace the original distance function i by
i^- Then for any two vertices x and y, the length of
every x-y path (including the shortest) changes by the
same amount, TT(T/) — TT(X). Thus the problem of find-
ing shortest paths in G is equivalent to the problem of
finding shortest paths in the transformed graph.

Now suppose we are interested in finding the short-
est path from s to t. Let 717 be a (perhaps domain-
specific) potential function such that 717(1;) gives an es-
timate on the distance from v to t. In the context of

this paper, A* search [6, 18] is an algorithm that works
like Dijkstra's algorithm, except that at each step it se-
lects a labeled vertex v with the smallest key, defined
as k/(v) = df(v) + TT/(V), to scan next. It is easy to see
that A* search is equivalent to Dijkstra's algorithm on
the graph with length function £7r/. If 717 is such that
iitf is nonnegative for all arcs (i.e., if 717 is feasible), the
algorithm will find the correct shortest paths. We refer
to the class of A* search algorithms that use a feasi-
ble function 717 with 717 (£) — 0 as lower-bounding algo-
rithms. As shown in [16], better estimates lead to fewer
vertices being scanned. In particular, a lower-bounding
algorithm with a nonnegative potential function visits
no more vertices than Dijkstra's algorithm, which uses
the zero potential function.

We combine A* search and bidirectional search as
follows. Let 717 be the potential function used in the
forward search and let 7rr be the one used in the reverse
search. Since the latter works in the reverse graph, each
original arc (v, w) appears as (w, v), and its reduced cost
w.r.t. 7i> is i^r(w,v] = t(v,w) — Kr(w) + 7rr(i>), where
t(v,w) is in the original graph. We say that 717 and
7rr are consistent if, for all arcs (v,w), i ^ f (v , w] in the
original graph is equal to i^r(w, v) in the reverse graph.
This is equivalent to 717 -f 7rr = const.

If 717 and 7rr are not consistent, the forward and
reverse searches use different length functions. When
the searches meet, we have no guarantee that the
shortest path has been found. Assume 717 and 7rr

give lower bounds to the sink and from the source,
respectively. We use the average function suggested by
Ikeda et al. [19], defined as p/(v) = (717(1;) — Trr(v))/2
for the forward computation and as pr(v) = (^r(

v) ~
7T/(i;))/2 = —pf(v) for the reverse one. Although pf
and pr usually do not give lower bounds as good as the
original ones, they are feasible and consistent.

The ALT algorithm [13, 16] is based on A* and
uses landmarks and triangle inequality to compute
feasible lower bounds. We select a small subset of
vertices as landmarks and, for each vertex in the graph,
precompute distances to and from every landmark.

135

Consider a landmark L: ifd(-) is the distance to L, then,
by the triangle inequality, d(v] — d(w) < dist(v, w); if
d(-) is the distance from L, d(w) — d(v) < dist('t>, w). To
get the tightest lower bound, one can take the maximum
of these bounds, over all landmarks. Intuitively, the best
lower bound on dist(v,w) is given by a landmark that
appears "before" v or "after" w. We use the version of
ALT algorithm used in [16], which balances the work of
the forward search and the reverse search.

6.2 Reach and A* search. Reach-based pruning
can be easily combined with A* search. Gutman [17]
noticed this in the context of unidirectional search. The
general approach is to run A* search and prune vertices
(or arcs) based on reach conditions. When A* is about
to scan a vertex t>, we can extract the length of the
shortest path from the source to v from the key of
v (recall that kf(v) = d/(v) + 7r/(v)). Furthermore,
7r/(f) is a lower bound on the distance from v to the
destination. If the reach of v is smaller than both df (v)
and 7r/(t>), we prune the search at v.

The reason why reach-based priming works is that,
although A* search uses transformed lengths, the short-
est paths remain invariant. This applies to bidirectional
search as well. In this case, we use df(v) and Kf(v) to
prune in the forward direction, and dr(v) and Trr(v) to
prune in the reverse direction. Pruning by reach does
not affect the stopping condition of the algorithm. We
still use the usual condition for ^4* search, which is sim-
ilar to that of the standard bidirectional Dijkstra, but
with respect to reduced costs [16]. We call our imple-
mentation of the bidirectional A* search algorithm with
landmarks and reach-based pruning REAL. As in ALT,
we used a version of REAL that balances the work of the
forward search and the reverse search. Our implemen-
tation of REAL uses variants of early pruning and arc
sorting, modified for the context of A* search.

Note that we cannot use implicit bounds with A*
search. The implicit bound based on the radius of the
ball searched in the opposite direction does not apply
because the ball is in the transformed space. The self-
bounding algorithm cannot be combined with A* search
in a useful way, because it assumes that the two searches
will process balls of radius equal to half of the s-t
distance. This defeats the purpose of A* search, which
aims at processing a smaller set.

The main gain in the performance of A* search
comes from the fact that it directs the two searches
towards their goals, reducing the search space. Reach-
based pruning sparsifies search regions, and this sparsifi-
cation is effective for regions searched by both Dijkstra's
algorithm and A* search.

Note that REAL has two preprocessing algorithms:

the one used by RE (which computes shortcuts and
reaches) and the one used by ALT (which chooses land-
marks and computes distances from all vertices to it).
These two procedures are independent from each other:
since shortcuts do not change distances, landmarks can
be generated regardless of what shortcuts are added.
Furthermore, the query is still independent of the pre-
processing algorithm: the query only takes as input the
graph with shortcuts, the reach values, and the dis-
tances to and from landmarks. The actual algorithms
used to obtain this data can be changed at will.

7 Other Reach Definitions and Related Work
7.1 Gutman's Algorithm. In [17], Gutman com-
putes shortest routes with respect to travel times. How-
ever, his algorithm, which is unidirectional, uses Eu-
clidean bounds on travel distances, not times. This re-
quires a more general definition of reach, which involves,
in addition to the metric induced by graph distances
(native metric), another metric M, which can be dif-
ferent. To define reach, one considers native shortest
paths, but takes subpath lengths and computes reach
values for M-distances. It is easy to see how these
reaches can be used for pruning. Note that Gutman's
algorithm can benefit from shortcuts, although he does
not use them. All our algorithms have natural distance
bounds for the native metric, so we use it as M.

Other major differences between RE and Gutman's
algorithm are as follows. First, RE is bidirectional,
and bidirectional shortest path algorithms tend to scan
fewer vertices than unidirectional ones. Second, RE uses
implicit lower bounds and thus does not need the vertex
coordinates required by Gutman's algorithm. Finally,
RE preprocessing creates shortcuts, which Gutman's
algorithm does not. There are some other differences
in the preprocessing algorithm, but their effect on
performance is less significant. In particular, we do
not grow partial trees from eliminated vertices, which
requires a slightly different interpretation of penalties.

A variant of Gutman's algorithm uses A* search
with Euclidean lower bounds. In addition to the
differences mentioned in the previous paragraph, REAL
differs in using tighter landmark-based lower bounds.

7.2 Cardinality Reach and Highway Hierar-
chies. We now discuss the relationship between our
reach-based algorithm (RE) and the HH algorithm of
Sanders and Schultes. Since HH is described for undi-
rected graphs, we restrict the discussion to this case.

We introduce a variant of reach that we call c-reach
(cardinality reach). Given a vertex v on a shortest path
P, grow equal-cardinality balls centered at its endpoints
until v belongs to one of the balls. Let CP(V) be the

136

Table 1: Road Networks

NAME

NA
E

NW
COL
BAY

DESCRIPTION

North America
Eastern USA
Northwest USA
Colorado
Bay Area

VERTICES

29883886
4256990
1649045

585950
330024

ARCS LATITUDE (N) LONGITUDE (W)

70297895
10088732
3778225
1396345

793681

[—00, +00]
[24.0; 50.0]
[42.0; 50.0]
[37.0; 41.0]
[37.0; 39.0]

[—00, +00]
[-00; 79.0]

[116.0; 126.0]
[102.0; 109.0]

[121; 123]

cardinality of each of the balls at this point. The c-
reach of i>, c(v), is the maximum, over all shortest paths
P, of CP(V). Note that if we replace cardinality with
radius, we get the definition of reach. To use c-reach
for pruning the search, we need the following values.
For a vertex v and a nonnegative integer i, let p(v,i)
be the radius of the smallest ball centered at v that
contains i vertices. Consider a search for the shortest
path from s to t and a vertex v. We do not need to
scan v if p(s,c(v)) < dist(s,-y) and p(t, c(i>)) < dist(t>,£).
Implementation of this pruning method would require
maintaining n — 1 values of p for every vertex.

The main idea behind HH preprocessing is to use the
partial-trees algorithm for c-reaches instead of reaches.
Given a threshold h, the algorithm identifies vertices
that have c-reach below h (local vertices). Consider a
bidirectional search. During the search from s, once the
search radius advances past p(s, /i), one can prune local
vertices in this search. One can do similar pruning for
the reverse search. This idea is applied recursively to
the graph with low c-reach vertices deleted. This gives a
hierarchy of vertices, in which each vertex needs to store
a p-value for each level of the hierarchy it is present at.
The preprocessing phase of HH also shortcuts lines and
uses other heuristics to reduce the graph size at each
iteration.

An important property of the HH query algorithm,
which makes it similar to the self-bounding algorithm
discussed in Section 4, is that the search in a given
direction never goes to a lower level of the hierarchy.
Our self-bounding algorithm can be seen as having a
"continuous hierarchy" of reaches: once a search leaves
a reach level, it never comes back to it. Like the self-
bounding algorithm, HH cannot be combined with ^4*
search in a natural way.

8 Experimental Results
8.1 Experimental Setup. We implemented our al-
gorithms in C++ and compiled them with Microsoft
Visual C++ 7.0. All tests were performed on an AMD
Opteron with 16 GB of RAM running Microsoft Win-
dows Server 2003 at 2.4 GHz.

We use a standard cache-efficient graph represen-

tation. All arcs are stored in a single array, with each
arc represented by its head and its length.1 The ar-
ray is sorted by arc tail, so all outgoing arcs from a
vertex appear consecutively. An array of vertices maps
the identifier of a vertex to the position (in the list of
arcs) of the first element of its adjacency list. All query
algorithms use standard four-way heaps.

We conduct most of our tests on road networks.
We test our algorithm on the five graphs described
in Table 1. The first graph in the table, North
America (NA), was extracted from Mappoint.NET data
and represents Canada, the United States (including
Alaska), and the main roads of Mexico. The other
four instances are representative subgraphs of NA (for
tests on more subgraphs, see [14]). All graphs are
directed and biconnected. We ran tests with two length
functions: travel times and travel distances.

For a comparison with HH, we use the graph of the
United States built by Sanders and Schultes [28] based
on Tiger-Line data [35]. Because our implementations
of ALT and REAL assume the graph to be connected (to
simplify implementation), we only take the largest con-
nected component of this graph, which contains more
than 98.6% of the vertices. The graph is undirected,
and we replace each edge {v,w} by arcs (v,w) and
(w,v). Our version of the graph (which we call USA)
has 23 947 347 vertices and 57 708 624 arcs.

We also performed experiments with grid graphs.
Vertices of an x x y grid graph correspond to points on a
two-dimensional grid with coordinates i, j for 0 < i < x
and 0 < j < y. Each vertex has arcs to the vertices to
its left, right, up, and down neighbors, if present. Arc
lengths are integers chosen uniformly at random from
[1,1024]. We use square grids (i.e., x = y).

Unless otherwise noted, in each experiment we run
the algorithms with a fixed set of parameters. For ALT
we use the same parameters as in [16]: for each graph we
generated one set of 16 maxcover landmarks, and each s-
t search uses dynamic selection to pick between two and

1The length is stored as a 16-bit integer on the original graphs
and as a 32-bit integer for the graphs with shortcuts. The head
is always a 32-bit integer.

137

six of those. The same set of landmarks was also used
by REAL. Upper bounds on reaches were generated with
the algorithm described in Section 5. The reaches thus
obtained (alongside with the corresponding shortcuts)
were used by both RE and REAL.

8.2 Road Networks. Tables 2 and 3 present the
results obtained by our algorithms when applied to the
Mappoint .NET graphs with the travel-time and travel-
distance metrics, respectively. In these experiments,
we used 1000 random s-t pairs for each graph. We
give results for preprocessing, average-case performance,
and worst-case performance. For queries, we give both
absolute numbers and the speedup with respect to an
implementation of the bidirectional Dijkstra's algorithm
(to which we refer as B).

For queries, the running time generally increases
with graph size. While the complexity of ALT grows
roughly linearly with the graph size. RE and REAL scale
better. For small graphs, ALT is competitive with RE,
but for large graphs the latter is more than 20 times
faster. REAL is 3 to 4 times faster than RE.

In terms of preprocessing, we note that computing
landmarks is significantly faster than finding good upper
bounds on reaches. However, landmark data (with a
reasonable number of landmarks) takes up more space
than reach data; compare the space usage of RE and
ALT. In fact, the reaches themselves are a minor part
(less than 20%) of the total space required by RE.
The rest of the space is used up by the graph with
shortcuts (typically, the number of arcs increases by
35% to 55%) and by the shortcut translation map, used
to convert shortcuts into its constituent arcs. The time
for actually performing this conversion after each query
is not taken into account in our experiments, since not
all applications require it.

Next we compare the results for the two metrics.
With the travel distance metric, the superiority of high-
ways over local roads becomes much less pronounced
than with travel times. As a result, RE become twice
as slow for queries, and preprocessing takes 2.5 times
longer on NA. On the other hand, ALT queries slow
down only by about 20%, and preprocessing slows down
even less. Changes in the performance of REAL fall in-
between, which implies that its speedup with respect
to RE becomes higher (on NA, REAL visits less than one
tenth as many vertices as RE on average). All algorithms
require a similar amount of space for travel times and
for travel distances. While not quite as good as with
travel times, the performance for travel distances is still
excellent: REAL can find a shortest path on NA in less
than 6 milliseconds on average.

While s and t are usually far apart on random s-

t pairs, queries for driving directions tend to be more
local. We used an idea from [28] to generate queries
with different degrees of locality for NA. See Figure 3.
When s and t are close together, ALT visits fewer vertices
than RE. However, since the asymptotic performance of
ALT is worse, RE quickly surpasses it as s and t get
farther apart. REAL is the best algorithm in every case.
Comparing plots for travel time and distance metrics,
we note that ALT is less affected by the metric change
than the other algorithms.

8.3 Comparison to Highway Hierarchies. As al-
ready mentioned, HH is the most practical of the pre-
vious P2P algorithms. Recall that HH works for undi-
rected graphs only, while our algorithms work on di-
rected graphs (which are more general). To compare
our algorithms with HH, we use the (undirected) USA
graph. Data for HH on USA, which we take from [28] and
from a personal communication from Dominik Schultes,
is available for the travel time metric only.

We compare both operation counts and running
times. Since for all algorithms queries are based on
the bidirectional Dijkstra's algorithm, comparing the
number of vertices scanned is informative. For the
running times, note that the HH experiments were
conducted on a somewhat different machine. It was
slightly slower than ours: an AMD Opteron running at
2.2 GHz (ours is an AMD Opteron running at 2.4 GHz)
using the Linux operating system (ours uses Windows).
Furthermore, implementation styles may be different.
This introduces an extra error margin in the running
time comparison. (To emphasize this, we use w when
stating running times for HH in Table 4.) However,
comparing running times gives a good sanity check, and
is necessary for preprocessing algorithms, which differ
more than the query algorithms.

While in all our experiments we give the maximum
number of vertices visited during the 1000 queries we
tested, Sanders and Schultes also obtain an upper bound
on the worst-case number by running the search from
each vertex in the graph to an unreachable dummy
vertex and doubling the maximum number of vertices
scanned. We did the same for RE. Note that this
approach does not work for the landmark-based algo-
rithms, as preprocessing would determine that no land-
mark is reachable to or from the dummy vertex. For
both metrics, the upper bound is about a factor 1.5
higher than the lower bound given by the maximum
over 1000 trials, suggesting that the latter is a reason-
able approximation of the worst-case behavior.

Data presented in Table 4 for the travel time metric
suggests that RE and HH have similar performance and
memory requirements. REAL queries are faster, but

138

Table 2: Algorithm performance on road networks with travel times as arc lengths: total preprocessing time, total space
in disk required by the preprocessed data (in megabytes), average number of vertices scanned per query (over 1000 random
queries), maximum number of vertices scanned (over the same queries), and average running times. Query data shown in
both absolute values and as a speedup with respect to the bidirectional Dijkstra algorithm.

GRAPH METHOD

BAY ALT

RE

REAL

COL ALT

RE

REAL

NW ALT

RE

REAL

E ALT

RE

REAL

NA ALT

RE

REAL

PREP.
TIME
(min)

0.7
3.2
3.9
1.6
5.2
6.9
3.9

17.5
21.4
15.2
84.7
99.9
95.3

678.8
774.2

DISK

SPACE

(MB)

26
19
40
47
36
73

132
100
204
342
255
523

2398
1844
3726

QUERY

AVG SCANS
COUNT SPD

4052 29
1 590 74

290 404
7373 26
2 181 88

306 624
14178 36
2804 184

367 1 408
35044 42
6925 212

795 1 843
250381 41

14684 698
1595 6430

MAX SCANS

COUNT SPD

54818 5
3438 85
1691 172

85 246 6
5074 103
1612 324

144082 8
5877 203
1 513 789

487 194 8
13857 277
4 543 844

3584377 8
24618 1104

7450 3647

AVG TIME

ms SPD
3.39 16
1.17 48
0.45 123
5.84 15
1.80 49
0.59 149

12.52 21
2.39 112
0.73 365

44.47 18
7.06 116
1.61 510

393.41 19
17.38 439
3.67 2080

Table 3: Algorithm performance on road networks with travel distances as arc lengths: total preprocessing time, total
space in disk required by the preprocessed data (in megabytes), average number of vertices scanned per query (over 1000
random queries), maximum number of vertices scanned (over the same queries), and average running times. Query data
shown in both absolute values and as a speedup with respect to the bidirectional Dijkstra algorithm.

GRAPH METHOD

BAY ALT

RE

REAL

COL ALT

RE

REAL

NW ALT

RE

REAL

E ALT

RE

REAL

NA ALT

RE

REAL

PREP.

TIME

(min)
0.8
4.6
5.4
1.8
9.7

11.5
4.2

21.3
25.4
14.6

158.9
173.4
97.2

1623.0
1 720.2

DISK

SPACE

(MB)

27
19
41
48
36
75

136
101
208
353
258
537

2511
1866
3860

QUERY

AVG SCANS

COUNT SPD

3383 35
2 761 43

335 356
7 793 24
3 792 50

406 469
20662 26
4217 125

478 1 103
43 737 35
14025 108
1 142 1 323

292 777 36
30962 336
2653 3922

MAX SCANS

COUNT SPD

42 192 7
6313 45
2717 105

126755 4
10067 50
2805 178

426 069 3
10630 121
3058 419

582663 7
28 144 141
7 097 560

3588684 8
56 794 485
17527 1570

AVG TIME

ms SPD

3.25 18
2.05 28
0.45 128
6.34 14
3.16 28
0.72 123

21.61 12
3.81 71
0.89 302

61.98 15
13.28 69
2.27 404

476.86 17
34.92 231

5.97 1351

139

Figure 3: Average number of scanned vertices for local queries on NA with travel times (left) and distances (right). The
horizontal axis refers to buckets with 1 000 pairs each. Each pair s-t in bucket i is such that s is chosen at random and t is
the j-th farthest vertex from s, where j is selected uniformly at random from the range (2*-1,2*]. The vertical axis is in
log scale.

Table 4: Results for the undirected USA graph (same measures as in Table 2). For HH, averages are taken over 10000
random queries (but the maximum is still taken over i 000). For HH and RE we also give an upper bound on the maximum
number of scans (us). Data for HH with travel distances is not available.

METRIC METHOD

TIMES ALT

RE

REAL

HH

DISTANCES ALT

RE

REAL

PREP.
TIME

(min)
92.7

365.9
458.5

« 258.0
99.9

981.5
1081.4

DISK

SPACE

(MB)

1984
1476
3038
1457
1959
1503
3040

QUERY

AVG SCANS

COUNT SPD

177028 44
3851 2000

891 8646
3912 1969

256 507 33
22377 376
2119 3973

MAX SCANS

COUNT SPD UB

2587562 8 —
8722 2330 13364
3667 5541 —
5955 3412 8678

2674150 8 —
44 130 500 68 672
11163 1977 —

AVG TIME

ms SPD
322.78 21

4.50 1475
1.84 3601

w 7.04 « 937
392.84 15

25.59 236
4.89 1 235

it needs more memory. ALT queries are substantially
slower, but preprocessing is faster.

Lacking data for HH, we cannot compare it to our
algorithms for the travel distance metric. Performance
of our algorithms on USA with this metric is similar to
that on NA with the same metric. This suggests that
directed graphs are not much harder than undirected
ones for our algorithms. In contrast, with the travel
time metric, the performance of RE (and, to a lesser
extent, REAL) is much better on USA than on NA.
This suggests that the hierarchy on the USA graph
with travel times is more evident than on NA, probably
because USA has a small number of road categories.

8.4 Grids. Although road networks are our motivat-
ing application, we also tested our algorithms on grid
graphs. As with road networks, for each graph we gen-
erated 1 000 pairs of vertices, each selected uniformly

at random. These graphs have no natural hierarchy of
shortest paths, which results in a large fraction of the
vertices having high reach. For these tests, we used the
same parameter settings as for road networks. It is un-
clear how much one can increase performance by tuning
parameter values. As preprocessing for grids is fairly
expensive, we limited the maximum grid size to about
half a million vertices. The results are shown in Table 5.

As expected, RE does not get nearly as much
speedup on grids as it does on road networks (see
Tables 2 and 3). However, there is some speedup,
and it does grow (albeit slowly) with grid size. ALT
is significantly faster than RE: in fact, its speedup on
grids is comparable to that on road networks. However,
the speedup does not appear to change much with grid
size, and it is likely that for very large grids RE would
be faster.

An interesting observation is that REAL remains the

140

Table 5: Algorithm performance on grid graphs with random arc lengths. For each graph and each method, the table
shows the total time spent in preprocessing, the total size of the data stored on disk after preprocessing, the average
number of vertices scanned (over 1 000 random queries), the maximum number of vertices scanned (over the same queries),
and the average running time. For the last three measures, we show both the actual value and the speedup (SPD) with
respect to B.

VERTICES METHOD

65 536 ALT
RE

REAL

131 044 ALT

RE

REAL

262 144 ALT
RE

REAL

524 176 ALT

RE

REAL

PREP.

TIME

(min)
0.2

12.3
12.5
0.6

44.7
45.3

0.9
131.4
132.3

1.9
232.1
234.1

DISK

SPACE

(MB)
6.2
5.2
9.6

12.4
10.4
19.3
25.1
20.7
38.8
50.2
41.4
77.7

QUERY

AVG SCANS

COUNT SPD

686 29.6
5514 3.7

363 55.9
1 307 32.6
9369 4.6

551 77.4
2382 35.9

14449 5.9
791 108.0

4416 38.8
23201 7.4
1 172 146.3

MAX SCANS

COUNT SPD

8766 5.5
10036 4.8
2630 18.4

14400 7.2
16247 6.4
3174 32.6

27399 7.3
24248 8.3
5020 39.9

40 568 9.9
39433 10.2

7702 52.3

AVG TIME

msec SPD
0.52 17.6
3.09 2.9
0.34 26.4
1.42 13.9
5.94 3.3
0.77 25.8
2.81 16.1
9.75 4.6
1.22 37.1
5.25 17.5

17.47 5.3
1.61 57.2

best algorithm in this test, and its speedup grows with
grid size. For our largest grid, queries for REAL improve
on ALT by about a factor of four for all performance
measures that we considered. The space penalty of
REAL with respect to ALT is a factor of about 1.5. REAL
is over 50 times better than B. This shows that the
combination of reaches and landmarks is more robust
than either ALT or RE individually.

The most important downside of the reach-based
approach on grids is its large preprocessing time. An in-
teresting question is whether this can be improved. This
would require a more elaborate procedure for adding
shortcuts to a graph (instead of just waiting for lines
to appear during the preprocessing algorithm). Such an
improvement may lead to a better preprocessing algo-
rithm for road networks as well.

8.5 Additional Experiments. We ran our prepro-
cessing algorithm on BAY with and without shortcut
generation. The results are shown in Table 6. With-
out shortcuts, queries visited almost 10 times as many
vertices, and preprocessing was more than 15 times
slower; for larger graphs, the relative performance is
even worse. Without shortcuts, preprocessing NA is im-
practical. The table also compares approximate and ex-
act reach computations. Again, preprocessing for exact
reaches is extremely expensive, and of course shortcuts
do not make it any faster (note that the shortcuts in this
case are the ones added by the approximate algorithm).
Fortunately, our upper bounding heuristic seems to do

a good enough job: on BAY, exact reaches improved
queries by less than 25%.

We also experimented with the number of land-
marks REAL uses on NA. With as few as four landmarks,
REAL is already twice as fast as RE on average (while
visiting less than one third of the vertices). In general,
more landmarks give better results, but with more than
16 landmarks the additional speedup does not seem to
be worth the extra amount of space required.

9 Conclusion and Future Work

The reach-based shortest path approach leads to sim-
ple query algorithms with efficient implementations.
Adding shortcuts greatly improves the performance of
these algorithms on road networks. We have shown
that the algorithm RE, based on these ideas, is com-
petitive with the best previous method. Moreover, it
combines naturally with A* search. The resulting al-
gorithm, REAL, improves query times even more: an
average query in North America takes less than 4 mil-
liseconds.

However, we believe there is still room for improve-
ment. In particular, we could make the algorithm more
cache-efficient by reordering the vertices so that those
with high reach appear close to each other. There are
few of those, and they are much more likely to be visited
during any particular search than low-reach vertices.

The number of vertices visited could also be re-
duced. With shortcuts added, a shortest path on NA
with travel times has on average less than 100 vertices,

141

Table 6: Results for RE with different reach values on BAY, both with and without shortcuts.

METRIC

TIMES

DISTANCES

SHORTCUTS

NO

YES

NO

YES

REACHES

APPROX.

EXACT

APPROX.

EXACT

APPROX.

EXACT

APPROX.

EXACT

PREP.

TIME

(min)
52.8

966.1
3.2

980.7
82.5

956.9
4.6

1 078.9

QUERY

AVG

SCANS

13369
11194
1590
1383

17448
13986
2761
2208

MAX

SCANS

28420
24358
3438
3056

37171
30788
6313
5159

TIME

(ms)
6.44
6.05
1.17
0.97
9.47
7.61
2.05
1.55

but an average REAL search scans more than 1500 ver-
tices. Simply adding more landmarks would require too
much space, however. To overcome this, one could store
landmark distances only for a fraction (e.g., 20%) of the
vertices, those with reach greater than some threshold
R. The query algorithm would first search balls of ra-
dius R around s and t without using landmarks, then
would start using landmarks from that point on. An-
other potential improvement would be to pick a set of
landmarks specific to REAL (in our current implementa-
tion, REAL uses the same landmarks as ALT).

Also, one could reduce the space required to store
r values by picking a constant 7, rounding r's up to the
nearest integer power of 7, and storing the logarithms
to the base 7 of the f's.

Our query algorithm is independent of the prepro-
cessing algorithm, allowing us to state natural subprob-
lems for the latter. What is a good number of shortcuts
to add? Where to add them? How to do it efficiently?

Another natural problem, originally raised by Gut-
man [17], is that of efficient reach computation. Can one
compute reaches in less than O(nra) time? What about
provably good upper bounds on reaches? Our results
add another dimension to this direction of research by
allowing shortcuts to be added to improve performance.

Another interesting direction of research is to iden-
tify a wider class of graphs for which these techniques
work well, and to make the algorithms more robust over
that class.

Acknowledgments

We would like to thank Peter Sanders and Dominik
Schultes for their help with the USA graph data.

References

[1] B. V. Cherkassky, A. V. Goldberg, and T. Radzik.

Shortest Paths Algorithms: Theory and Experimental
Evaluation. Math. Prog., 73:129-174, 1996.

[2] L. J. Cowen and C. G. Wagner. Compact Roundtrip
Routing in Directed Networks. In Proc. Symp. on
Principles of Distributed Computation, pages 51-59,
2000.

[3] G. B. Dantzig. Linear Programming and Extensions.
Princeton Univ. Press, Princeton, NJ, 1962.

[4] E. V. Denardo and B. L. Fox. Shortest-Route Methods:
1. Reaching, Pruning, and Buckets. Oper. Res., 27:161-
186, 1979.

[5] E. W. Dijkstra. A Note on Two Problems in Connexion
with Graphs. Numer. Math., 1:269-271, 1959.

[6] J. Doran. An Approach to Automatic Problem-Solving.
Machine Intelligence, 1:105-127, 1967.

[7] D. Dreyfus. An Appraisal of Some Shortest Path Algo-
rithms. Technical Report RM-5433, Rand Corporation,
Santa Monica, CA, 1967.

[8] J. Fakcharoenphol and S. Rao. Planar graphs, negative
weight edges, shortest paths, and near linear time. In
Proc. 4^na IEEE Annual Symposium on Foundations
of Computer Science, pages 232-241, 2001.

[9] M. L. Fredman and R. E. Tarjan. Fibonacci Heaps
and Their Uses in Improved Network Optimization
Algorithms. J. Assoc. Comput. Mach., 34:596-615,
1987.

[10] G. Gallo and S. Pallottino. Shortest Paths Algorithms.
Annals of Oper. Res., 13:3-79, 1988.

[11] A. V. Goldberg. A Simple Shortest Path Algorithm
with Linear Average Time. In Proc. 9th ESA, Lecture
Notes in Computer Science LNCS 2161, pages 230-241.
Springer-Verlag, 2001.

[12] A. V. Goldberg. Shortest Path Algorithms: Engineer-
ing Aspects. In Proc. ESA AC '01, Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[13] A. V. Goldberg and C. Harrelson. Computing the
Shortest Path: A* Search Meets Graph Theory. In
Proc. 16th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 156-165, 2005.

[14] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach
for A*: Efficient Point-to-Point Shortest Path Al-

142

gorithms. Technical Report MSR-TR-2005-132, Mi-
crosoft Research, 2005.

[15] A. V. Goldberg and C. Silverstein. Implementations
of Dijkstra's Algorithm Based on Multi-Level Buckets.
In P. M. Pardalos, D. W. Hearn, and W. W. Hages,
editors, Lecture Notes in Economics and Mathematical
Systems 450 (Refereed Proceedings), pages 292-327.
Springer Verlag, 1997.

[16] A. V. Goldberg and R. F. Werneck. Computing
Point-to-Point Shortest Paths from External Memory.
In Proc. 7th International Workshop on Algorithm
Engineering and Experiments, pages 26-40. SIAM,
2005.

[17] R. Gutman. Reach-based Routing: A New Approach
to Shortest Path Algorithms Optimized for Road Net-
works. In Proc. 6th International Workshop on Al-
gorithm Engineering and Experiments, pages 100-111.
SIAM, 2004.

[18] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal
Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on System Science and
Cybernetics, SSC-4(2), 1968.

[19] T. Ikeda, M.-Y. Hsu, H. Imai, S. Nishimura, H. Shi-
moura, T. Hashimoto, K. Tenmoku, and K. Mitoh. A
Fast Algorithm for Finding Better Routes by AI Search
Techniques. In Proc. Vehicle Navigation and Informa-
tion Systems Conference. IEEE, 1994.

[20] R. Jacob, M. Marathe, and K. Nagel. A Computational
Study of Routing Algorithms for Realistic Transporta-
tion Networks. Oper. Res., 10:476-499, 1962.

[21] P. Klein. Preprocessing an Undirected Planar Network
to Enable Fast Approximate Distance Queries. In Proc.
13th ACM-SIAM Symposium on Discrete Algorithms,
pages 820-827, 2002.

[22] J. L. R. Ford. Network Flow Theory. Technical Report
P-932, The Rand Corporation, 1956.

[23] J. L. R. Ford and D. R. Fulkerson. Flows in Networks.
Princeton Univ. Press, Princeton, NJ, 1962.

[24] U. Lauther. An Extremely Fast, Exact Algorithm
for Finding Shortest Paths in Static Networks with
Geographical Background. In IfGIprints 22, Institut
fuer Geoinformatik, Universitaet Muenster (ISBN 3-
936616-22-1), pages 219-230, 2004.

[25] U. Meyer. Single-Source Shortest Paths on Arbitrary
Directed Graphs in Linear Average Time. In Proc. 12th
ACM-SIAM Symposium on Discrete Algorithms, pages
797-806, 2001.

[26] T. A. J. Nicholson. Finding the Shortest Route Be-
tween Two Points in a Network. Computer J., 9:275-
280, 1966.

[27] I. Pohl. Bi-directional Search. In Machine Intelligence,
volume 6, pages 124-140. Edinburgh Univ. Press, Ed-
inburgh, 1971.

[28] P. Sanders and D. Schultes. Highway Hierarchies
Hasten Exact Shortest Path Queries. In Proc. 13th
Annual European Symposium Algorithms, volume 3669
of LNCS, pages 568-579. Springer, 2005.

[29] D. Schultes. Fast and Exact Shortest Path Queries Us-

ing Highway Hierarchies. Master's thesis, Department
of Computer Science, Universitt des Saarlandes, Ger-
many, 2005.

[30] F. Schulz, D. Wagner, and K. Weihe. Using Multi-
Level Graphs for Timetable Information. In Proc. 4th
International Workshop on Algorithm Engineering and
Experiments, pages 43-59. LNCS, Springer, 2002.

[31] R. Sedgewick and J. Vitter. Shortest Paths in Eu-
clidean Graphs. Algorithmica, 1:31-48, 1986.

[32] R. E. Tarjan. Data Structures and Network Algo-
rithms. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 1983.

[33] M. Thorup. Undirected Single-Source Shortest Paths
with Positive Integer Weights in Linear Time. J. Assoc.
Comput. Mach., 46:362-394, 1999.

[34] M. Thorup. Compact Oracles for Reachability and Ap-
proximate Distances in Planar Digraphs. In Proc. 42nd
IEEE Annual Symposium on Foundations of Computer
Science, pages 242-251, 2001.

[35] D. US Census Bureau, Washington.
UA Census 2000 TIGER/Line files.
http://www.census.gov/geo/www/tiger/tugerua/ua.-
tgr2k.html, 2002.

[36] D. Wagner and T. Willhalm. Geometric Speed-Up
Techniques for Finding Shortest Paths in Large Sparse
Graphs. In European Symposium on Algorithms, 2003.

[37] F. B. Zhan and C. E. Noon. Shortest Path Algorithms:
An Evaluation using Real Road Networks. Transp.
Sci., 32:65-73, 1998.

[38] F. B. Zhan and C. E. Noon. A Comparison Be-
tween Label-Setting and Label-Correcting Algorithms
for Computing One-to-One Shortest Paths. Journal of
Geographic Information and Decision Analysis, 4, 2000.

143

http://www.census.gov/geo/www/tiger/tugerua/ua.-tgr2k.html

Distributed Routing in Small-World Networks

Oskar Sandberg *

December 26, 2005

Abstract

So called small-world networks - clustered networks
with small diameters - are thought to be prevalent in na-
ture, especially appearing in people's social interactions.
Many models exist for this phenomenon, with some of
the most recent explaining how it is possible to find
short routes between nodes in such networks. Search-
ing for such routes, however, always depends on nodes
knowing what their and their neighbors positions are
relative to the destination. In real applications where
one may wish to search a small-world network, such as
peer-to-peer computer networks, this cannot always be
assumed to be true.

We propose and explore a method of routing that does
not depend on such knowledge, and which can be im-
plemented in a completely distributed way without any
global elements. The Markov Chain Monte-Carlo based
algorithm takes only a graph as input, and requires no
further information about the nodes themselves. The
proposed method is tested against simulated and real
world data.

1 Introduction

The modern view of the so called "small-world phe-
nomenon" can be dated back to the famous experiments
by Stanley Milgram in the 1960s [15]. Milgram exper-
imented with people's ability to find routes to a desti-
nation within the social network of the American popu-
lation. He concluded that people were remarkably effi-
cient at finding such routes, even towards a destination
on the other side of the country. More recent studies
using the Internet have come to the same conclusion,
see [6].

Models to explain why graphs develop a small diame-
ter ([19], [4], [17]), have been around for some times.

*The Department of Mathematical Sciences. Chalmers
Technical University and Gothenburg University.
ossa@math.chalmers.se. I thank my advisors Olle Haggstrom
and Devdatt Dubhashi for their assistance in reading drafts of
this paper, as well as the anonymous referees for their helpful
comments.

Generally, these models specify the mixing of a struc-
tured base graph, such a as grid, and random "short-
cuts" edges between nodes. However, it was not until
Jon Kleinberg's work in 2000 [11] that a mathematical
model was developed for how efficient routing can take
place in such networks. Kleinberg showed that the pos-
sibility of efficient routing depends on a balance between
the proportion of shortcut edges of different lengths with
respect to coordinates in the base grid. Under a specific-
distribution, where the frequency of edges of different
lengths decreases inverse proportionally to the length,
simple greedy routing (always walking towards the des-
tination) can find routes in O(log2(n)) steps on average,
where n is the size of the graph.

1.1 Motivation Kleinberg's result is sharp in the
sense that graphs where edges are chosen from a dif-
ferent distribution are shown not to allow for efficient
searching. However, the small-world experiments seem
to show that greedy-like routing is efficient in the world's
social network. This indicates that some element of
Kleinberg's model is present in the real world. In [12]
and [18] this is motivated by reason of people's group
memberships1. Several dynamic processes by which net-
works can evolve to achieve a similar edge distribution
have also been proposed recently, for example, in [5], as
well as in forthcoming work by this author [16].

However, in Kleinberg's search algorithm, the individual
nodes are assumed to be aware of their own coordinates
as well as those of their neighbors and the destination
node. In the case of real world data, it may be difficult
to identify what these coordinates are. In fact the
participant nodes may be unaware of anything but
their immediate neighborhood and thus oblivious of
the global structure of the graph, and, importantly
for this work, of geographic (or other) coordinates.
For example, in peer-to-peer overlay networks on the
Internet, one may wish to automatically find routes
without relying on information about the local user,

1 Roughly: When a group is twice as large, people in it are half
as likely to know each other.

144

let alone his neighbors or the routes target. In such
a situation, how can we search for short paths from one
node to another?

1.2 Contribution With this in mind, this paper at-
tempts to return to Milgram's original problem of find-
ing paths between people in social networks. Starting
from an unmarked shortcut graph and no other infor-
mation on the coordinates, we attempt to fit it against
Kleinberg's model so as to make efficient searches pos-
sible. Taking as hypothesis that the graph was gen-
erated by applying Kleinberg's distribution model to a
base graph with co-ordinate information, we attempt
to recover the embedding. We approach this as a sta-
tistical estimation problem, with the configuration of
positions in the grid assigned to each node as a (multi-
dimensional) unknown parameter. With a good esti-
mate for this embedding, it is possible to make greedy
routing work without knowing the original positions of
the nodes when the graph was generated. We employ
a Markov Chain Monte-Carlo (MCMC) technique for
fitting the positions.

We summarize our contributions as follows:

1. We give an MCMC algorithm to generate an em-
bedding of a given graph into a one or two dimen-
sional (toric) grid which is tuned to the distribu-
tions of Kleinberg's model.

2. This method is tested using artificially generated
and controlled data: graphs generated according
to the ideal model in one and two dimensions. The
method is demonstrated to work quite well.

3. It is then applied to real social network data, taken
from the "web of trust" of the users of an email
cryptography program.

4. Finally, it is observed that the method used can be
fully distributed, working only with local knowl-
edge at each vertex. This suggests an application
to routing in decentralized networks of peers that
only connect directly to their own trusted friends
in the network. Such networks, known as Friend-
to-Friend networks of Darknets, have so far been
limited to communication only in small cliques, and
may become much more useful if global routing is
made possible.

5. Our algorithm can thus be viewed also as a general
purpose routing algorithm on arbitrary networks.
It is tailored to "small world" networks, but ap-
pears to also work quite well for a more general
class of graphs.

1.3 Previous Work Different methods of searching
social networks and similar graphs have been discussed
in previous work. In [3] a method is proposed for search-
ing so called "power-law networks", either by a random
walk or by targeting searches at nodes with high degree.
Because such graphs have a highly skewed degree distri-
bution, where a small set of nodes are connected to al-
most everyone, the methods are found to work well. The
first author of that paper and a co-author recently inves-
tigated the problem of searching social networks in [2].
There they found that power-law methods did not work
well, and instead attempted to use Kleinberg's model by
trying to identify people's positions in some base graph
based on their characteristics (where they live, work,
etc). This was found to work well on a network with
a canonical, highly structured base graph (employees of
Hewlett Packard) but less well on the social network
of students at Stanford University. Similarly Liben-
Nowell et. al. [13] performed greedy searches using the
town names as locations in the network of writers on
the website "LiveJournal". They claim positive results,
but consider searches successful when the same town as
the desired target is reached: a considerably easier task
than routing all the way.

In [20] the authors attempt to find methods to search a
network of references between scientific authors. They
mention Kleinberg's model, but state:

"The topology of referral networks is similar to
a two-dimensional lattice, but in our settings
there is no global information about the posi-
tion of the target, and hence it is not possible
to determine whether a move is toward or away
from the target".

It is the necessity of having such information that we
attempt to overcome here.

2 Kleinberg's Model

Kleinberg's small-world model, like that of Watts and
Strogatz [19] which preceded it, starts with a base graph
of local connections, onto which a random graph of
shortcut edges (long range contacts) is added. In its
most basic form, one starts with a /^-dimensional square
lattice as the base network, and then adds q directed
random edges at each node, selected so that each such
shortcut edge from x points to y with probability:

where d denotes lattice distance in the base graph, n the
size of the network, and Hk is a normalizing constant.

145

Kleinberg showed that in this case so-called greedy
routing finds a path from any point to any other in,
on average, O(log (n)} steps. Greedy routing means
always picking the neighbor (either through a shortcut
or the base graph) which is closest to the destination, in
terms of the lattice distance d, as the next step. Since
routing within the base graph is permitted, the path
strictly approaches the destination, and the same point
cannot be visited twice.

In order to make the model more applicable to the real
world, it is desirable to use the base graph only as a
distance function between nodes, and thus only use the
shortcut edges when routing. The necessity of a strictly
approaching path existing then disappears, and we are
left with the possibility of coming to a dead-end node
which has no neighbor closer to the destination than
itself. Kleinberg himself dealt with this issue in [12],
working on non-geographical models, and there used q
(node degree) equal to «log2(n) for a constant K. In
this case it is rather easy to see that K can be chosen so
as to make the probability that any node in the network
is dead-end for a given query is arbitrarily small for all
sizes n.

Actually, it suffices to keep the probability that a
dead-end is encountered in any given route small. By
approximate calculations one can see that this should
hold if q = 0(log(n) loglog(n))2. In practice we find
that scaling the number of links with log(n) preserves
the number of paths that do not encounter a dead end
for all Kleinberg model graphs we have simulated.

3 The Problem

The problem we are faced with here is this: given a
network, presumed to be generated as the shortcuts in
Kleinberg's model (in some number of dimensions), but
without any information on the position of the nodes,
can we find a good way to embed the network into
a base grid so as to make the routing between them
possible? This may be viewed as a parametric statistical
estimation problem. The embedding is thus seen as
the model's parameter, and the data set is a single
realization of the model.

Seen from another perspective, we are attempting to
find an algorithmic approach to answering the funda-
mental question of greedy routing: which of my neigh-

^Roughly: The probability that a link will not be dead-end to
a query decreases with (logn)""1. With clog(n) loglog(n) links
per node, the probability that a given node is a dead-end is thus
bounded by (logn)e. 9 can be made large by choosing a large
c, thus making the probability of encountering a node in the
O(logn)2 nodes encountered in a walk small.

bors is closest to the destination? In Kleinberg's model
this is given, since each node has a prescribed position,
but where graphs of this type occur in real life, that is
not necessarily the case. The appeal of the approach
described below is that we can attempt to answer the
question using no data other than the graph of long con-
nections itself, meaning that we use the clustering of the
graph to answer the question of who belongs near whom.

Our approach is as follows: we assign positions to
the nodes according to the a-posteriori distribution of
the positions, given that the edges present had been
assigned according to Kleinberg's model. Since long
edges occur with a small probability in the model, this
will tend to favor positions so that there are few long
edges, and many short ones.

4 Statement

Let V be a set of nodes. Let 0 be a function from V
onto G, a finite (and possibly toric) square lattice in k
dimensions3. 0 is the configuration of positions assigned
! to the nodes in a base graph G. Let d denote graph
distance in G. Thus for x,y 6 V, d((f)(x), (£>(y}} denotes
the distance between respective positions in the lattice.

Let E denote a set of edges between points in V, and
let them be numbered 1, . . . , m. If we assume that the
edges are chosen according to the Kleinberg's model,
with one end fixed to a particular node and the other
chosen randomly, then the probability of a particular E
depends on the distance its edges cover with respect to
(f> and G. In particular, if we let Xj and yj denote the
start and end point, respectively, of edge j, then:

where HQ is a normalizing constant.

When seen as a function of </>, (4.1) is the likelihood
function of a certain configuration having been used to
generate the graph. The most straightforward manner
in which to estimate 0 from a given realization E is
to choose the maximum likelihood estimate, that is
the configuration </> which maximizes (4.1). Clearly,
this is the same as configuration which minimizes the
product (or, equivalently, log sum) of the edge distances.
Explicitly finding 0 is clearly a difficult problem: in
one dimension it has been proven to be NP-complete
[7], and there is little reason to believe that higher

3In our experiments below, we focus mostly on the one
dimensional case, with some two dimensional results provided for
comparisson purposes.

146

dimensions will be easier. There may be hope in turning
to stochastic optimization techniques.

Another option, which we have chosen to explore here,
is to use a Bayesian approach. If we see 0 as a random
quantity chosen with some probability distribution from
the set of all possible such configurations (in other
words, as a parameter in the Bayesian tradition), we
can write:

which is the a-posteriori distribution of the node po-
sitions, having observed a particular set of edges E.
Instead of estimating the maximum likelihood config-
uration, we will try to assign configurations according
to this distribution.

4.1 Metropolis-Hastings Algorithm The
Metropolis-Hastings algorithm is a remarkable algo-
rithm used in the field of Markov Chain Monte-Carlo. It
allows one, given a certain distribution TT on a set 5, to
construct a Markov chain on S with TT as its stationary
distribution. While simulating a known distribution
might not seem extraordinary, Metropolis-Hastings has
many properties that make it useful in broad range of
applications.

The algorithm starts with a selection kernel a : S x S i—>
[0,1]. This assigns, for every state s, a distribution
a(s, r) of states which may be selected next. The next
state, r, is selected according to this distribution, and
then accepted with a probability /3(s,r) given by a
certain formula of a and TT. If the state is accepted, it
becomes the next value of the chain, otherwise the chain
stays in s for another time-step. If r is the proposed
state, then the formula is given by:

The Markov chain thus defined, with transition Matrix
P(s, r) — a(s, r)/5(s, r) if s ^ r (and the appropriate
row normalizing value if s = r), is irreducible if a is,
and can quite easily be shown to have TT as its stationary
distribution, see [9], [10]. The mixing properties of
the Markov chain depend on a, but beyond that the
selection kernel can be chosen as need be.

4.2 MCMC on the Positions Metropolis-Hastings
can be applied to our present problem, with the aim
of constructing a chain on the set of position functions,
S — Gv, that has (4.2) as its stationary distribution 4.
Let a be a selection kernel on S, and 02 be chosen by a

from 0i. It follows that, if we let a(0i,02) = a(02,0i),
and assume a uniform a-priori distribution, then:

where E(x V y) denotes the edges connected to x or y.
This function depends only on edge information that is
local to x and y.

We are now free to choose a symmetric selection kernel
according to our wishes. The most direct choice is to
choose x and y randomly and then to select 02 as the
x, y-switch of 0i. This is equivalent to the kernel:

with a and j3 given by (4.4) and (4.3) respectively, is
thus the Metropolis-Hastings chain with (4.2) as its sta-
tionary distribution. Starting from any position func-
tion, it eventually converges to the sought a-posteriori
distribution.

A problem with the uniform selection kernel is that we
are attempting to find a completely distributed solution
to our problem, but there is no distributed way of
picking two nodes uniformly at random. In practice,
we instead start a short random walk at x, and use as
y the node where the walk terminates. This requires
no central element. It is difficult to specify the kernel
of selection technique explicitely, but we find it more or
less equivalent to the one above. See Section 8 below.

4Another way of looking at this is as an example of Simulated
Annealing, which uses the Metropolis-Hastings method to try to
minimize an energy function. In this case, the energy function is
just the log sum of the edge distances, and the f3 coefficient is 1.

147

The Markov chain on S with transition matrix

if x, y-switch

otherwise.

In such cases,
Let be an x, y-switch of if

and for all
the above simplifies by cancellation to:

5 Experiments

In order to test the viability of the Markov Chain
Monte-Carlo method, we test the chain on several types
of simulated data. Working with the one-dimensional
case, where the base graph is a circle, we simulate net-
works of different sizes according to Kleinberg's model,
by creating the shortcuts through random matching of
nodes, and with the probability of shortcuts occurring
inverse squarely proportional to their length. We then
study the resulting configuration in several ways, de-
pending on whether the base graph is recreated after
the experiment, and whether, in case it is not, we stop
when reaching a dead-end node of the type described
above.

We also study the algorithm in two dimensions, by
simulating data on a grid according to Kleinberg's
model, and using the appropriate Markov chain for this
case. Finally, we study some real life data sets of social
networks, to try to determine if the method can be
applied to find routes between real people.

The simulator used was implemented in C on Linux and
Unix based systems. Source code, as well as the data
files and the plots for all the experiments, can be found
at:

http://www.math.Chalmers.se/~ossa/swroute/

Both the latter cases are non-optimal: the uniform
case represents "too little clustering", while the inverse
square case represents "too much". In Kleinberg's
result, the two types of graphs are shown not to have
log-polynomial search times in different ways: too much
clustering means not enough long edges to quickly
advance to our destination, too little means not enough
edges that take even closer when we are near it.

Performance on the graphs can be measured in three
different ways as well. In all cases, we choose two
nodes uniformly, and attempt to find a greedy route
between them by always selecting the neighbor closest
(in terms of the circular distance) to the destination.
The difference is when we encounter a dead end - that
is to say a node that has no neighbor closer to the
destination then itself. In this case we have the following
choices on how to proceed:

1. We can terminate the query, and label it as unsuc-
cessful.

2. We can continue the query, selecting the best node
even if it is further from the destination. In this
case it becomes important that we avoid loops, so
we never revisit a node.

3. We can use a "local connection" to skip to a
neighbor in the base from the current node, in the
direction of the destination.

6 Experimental Methodology

6.1 One-Dimensional Case We generated different
graphs of the size n = 1000 * 2r, for r between 0
and 7. The base graph is taken to be a ring of n
points. Each node is then given 3 Iog2 n random edges to
other nodes. Since all edges are undirected, the actual
mean degree is 6 Iog2 n, with some variation above the
base value. This somewhat arbitrary degree is chosen
because it keeps the probability that a route never hits
a dead end low when the edges are chosen according to
Kleinberg's model. Edges are sent randomly clockwise
or counterclockwise, and have length between 1 and n/2,
distributed according to three different models.

1. Kleinberg's model, where the probability that the
edge has length d is proportional to l/d.

2. A model with edges selected uniformly at random
between nodes.

3. A model where the probability of an edge having
length d is proportional to l/d2.

For the second case to be practical, it is necessary
that we limit the number of steps a query can take.
We have placed this limit as (Iog2n)2, at which point
we terminate and mark the query unsuccessful. This
value is of course highly arbitrary (except in order),
and always represents a tradeoff between success rate
and the mean steps taken by successful queries. This
makes such results rather difficult to analyze, but it is
included for being the most realistic option, in the sense
that if one was using this to try to search in a real social
network, the third case is unlikely to be an option, and
giving up, as in the first case, is unnecessary.

We look at each result for the graph with the positions
as they were when it was generated, after shuffling the
positions randomly, and finally with positions generated
by a running the Markov Chain for GOOOn iterations.
It would, of course, be ideal to be able to base such
a number off a theoretical bound on the mixing time,
but we do not have any such results at this time.
The number has been chosen by experimentation, but
also for practical purposes: for large n the numerical
complexity makes it difficult to simulate larger orders
of iterations in practical time-scales.

148

http://www.math.chalmers.se/~ossa/swroute/

Due to computational limitations, the data presented
is based off only one simulation at every size of the
graph. However, at least for graphs of limited size, the
variance in the important qualities has been seen to be
small, so we feel that the results are still indicative of
larger trends. The relatively regular behavior of the
data presented below strengthens this assessment.

After shuffling and when we continue at dead ends,
the situation is equivalent to a random walk, since the
greedy routing gains from the node positions. Searching
by random walk has actually been recommended in
several papers ([3], [8]), so this gives the possibility of
comparing our results to that.

6.2 Two Dimensional Case We also simulate
Kleinberg's model in two dimensions, generating differ-
ent graphs of the size n = 1024 *4r, for r between 0 and
3. A toric grid as the base graph (that is to say, each
line is closed into a loop). Shortcuts were chosen with
the vertex degrees as above, and with ideal distribution
where the probability that two nodes are connected de-
creasing inverse squared with distance (the probability
of an edge having length d is still proportional to 1/d,
but as d increases there are more choices of nodes at
that distance). We do this to compare the algorithm in
this setting to that in the one dimensional case.

We also try, for graphs with long range connections
generated against a two dimensional base graph, to use
the algorithm in one dimension, and vice versa. This is
to ask how crucial the dimension of the base grid is to
Kleinberg's model: whether the essential characteristics
needed for routing carry over between dimensions. Any
conclusion on the subject, of course, is subject to the
question of the performance of the algorithm.

6.3 Real World Data Finally, we test the method
on a real graph of social data. The graph is the
"web of trust" of the email cryptography tool Pretty
Good Privacy (PGP) [1]. In order to verify that the
person who you are encrypting a message for really
is the intended recipient, and that the sender really
is who he claims to be, PGP has a system where
users cryptographically sign each others keys, thereby
vouching for the key's authenticity. The graph in
question is thus a sample of people that know each other
"in real life" (that is outside the Internet), since the
veracity of a key can only be measured through face to
face contact.

We do not look at the complete web of trust, which con-
tained about 23,000 users, but only at smaller subsets.
The reason for this is two-fold. Firstly, the whole net-

work is not a connected component. Secondly a lot of
the nodes in the graph are in fact leaves, or have only
one or two vertices. Under such conditions, the algo-
rithm (or any greedy routing for that matter) cannot
be expected to work.

These were created by starting a single user as the new
graph's only vertex, and recursively growing the graph
in the following manner. If Gn is the new graph at step
n:

1. Let dGn be the vertices with at least one edge into
C?n, but who are not in Gn themselves.

2. Select a node x randomly from those members of
dGn who have the greatest number of edges into
Gn.

3. Let Gn+i be the graph induced by the vertices of
Gn and x.

4. Repeat until Gn+i is of the desired size.

This procedure is motivated by allowing us to get a
connected, dense, "local" subgraph to study. It is closest
we can come to the case where, having access to the base
graph, one uses a only the nodes in a particular section
of it and the shortcuts between them.

Daily copies of the web of trust graph are available at
the following URL:

http://www.lysator.liu.se/~j c/wotsap/

7 Experimental Results and Analysis

7.1 One Dimensional Case Experimental results
in the one dimensional case were good in most, but
not all, cases. Some of the simulated results can be
seen in 1 through 8. Lines marked as "start" show
the values with the graphs as they were generated,
"random" show the values when the positions have been
reassigned randomly (this was not done for the random
matchings case, as there is no difference from the start),
and "restored" show the values after our algorithm has
been used to optimize the positions.

In the ideal graph model, when the original graph is
known to allow log polynomial routing, we can see that
the algorithm works well in restoring the query lengths.
In particular, Figure 3, where queries have been able to
use the base graph, shows nearly identical performance
before and after restoration.

In the cases where queries cannot use the local connec-
tions, we see that proportion of queries that are suc-
cessful is a much harder property to restore than the

149

http://www.lysator.liu.se/~jc/wotsap/

Figure 1: The success-rate of queries when terminating Figure 3: Mean number of steps of successful queries
at dead-end nodes, on a graph generated by the ideal when allowed to use local connections, on a graph
model. generated by the ideal model.

Figure 2: Mean number of steps of successful queries Figure 4: Mean number of steps of successful queries
when terminating at dead-end nodes, on a graph gener- when terminating after (Iog2(n))2 steps, on a graph
ated by the ideal model. generated by the ideal model.

150

Figure 5: Mean number of steps of successful queries FiSure 7: The success-rate of queries when terminating
when allowed to use local connections, on a graph at dead-end nodes, on a graph generated by random
generated by random matchings. matchmgs.

Figure 8: The success-rate of queries when terminat-
Figure 6: Mean number of steps of successful queries ing at dead-end nodes, on a graph generated with con-
when terminating after (Iog2(n))2 steps, on a graph nection probabilities inverse square proportional to the
generated by random matchings. length

151

Figure 9: Matching Kleinberg's model in 2 dimensions
against a graph generated according to it. Success rate
when failing at dead-end nodes.

number of steps taken. Figure 1 shows this: for large
graphs the number of queries that never encounter a
dead-end falls dramatically. A plausible cause for this
is that it is easy for the algorithm to place the nodes in
the approximately right place, which is sufficient for the
edges to have approximately the necessary distribution,
but a good success rate depends on nodes being exactly
by those neighbors to which they have a lot edges.

Along with the ideal data, two non-ideal cases were ex-
amined. In the first case, where the long range con-
nections were added randomly, the algorithm performs
surprisingly well. At least with regard to the number
of steps, we can see a considerable improvement at all
sizes tested. See in particular Figures 6 and 5. However,
it is impossible for the success rate to be sustained for
large networks when the base graph is not used - in this
case there simply is no clustering in the graph - and as
expected the number of successful queries does fall as n
grows (Figure 7.

The other non-ideal case, that of too much clustering,
was the one that faired the worst. Even though this
leads to lots of short connections, which one would
believe could keep the success rate up, this was not
found to be the case. Both the success rate and the
mean number of steps of the successful queries were
not found to be significantly improved by the algorithm
in this case. The results in Figure 8 if particularly
depressing in this regard. It should be noted that it has
been shown [14] that graphs generated in this way are
not small-world graphs - their diameter is polynomial
in their size, so there is no reason to believe that they
can work well for this type of application.

Figure 10: Matching Kleinberg's model in 2 dimensions
against a graph generated according to it. Mean number
of steps of successful queries when failing at dead-end
nodes.

Figure 11: Matching Kleinberg's model in 2 dimensions
against a graph generated according to it. Mean number
of steps of queries when they are allowed to use local
connections.

152

Figure 12: The target function of the optimization (log
sum of shortcut distances) as the algorithm progresses.
The graphs have 10000 nodes with edges generated
using the ideal model. The values are normalized by
dividing by the log sum of the original graph: it can be
seen that we come much closer to restoring this value in
1 dimension.

7.2 Two Dimensional Case The algorithm was
also simulated with a pure two dimensional model. In
general, the algorithm does not perform as well as in
the one dimensional case, but it performs better than
against the one dimensional algorithm did on the graphs
generated from non-ideal models. See Figures 9 to 11
for some of the data.

It seems that the algorithm proposed here simply does
not function as well in the two-dimensional case. In
Figure 12 the sum of the logarithms of the shortcut
distances for a graph is plotted as the optimization is
run for a very large number of iterations. It indicates
that results in two-dimensions cannot be fixed by simply
running more iterations, in fact, it seems like it fails to
converge to one completely.

Graphs generated according to the two dimensional
model were also given to the one dimensional algorithm,
and vice versa. We found that data from either model
was best analyzed by fitting it against a base graph of
the same dimension - but the two dimensional method
actually did slightly better on one-dimensional data
than its own. For example at a network size of 4096,
we were able to restore a success rate of 0.670 when
failing at dead-ends using the two dimensional method
for one dimensional data, but only 0.650 on data from
the two dimensional model. This indicates that the
worse performance in two dimensions may be largely
due to Kleinberg's model in higher dimensions being
more difficult to fit correctly.

7.3 Real World Data We treated the real world
data in the same way as the simulated graphs. 2000
and 4000 vertex subgraphs were generated using the
procedure defined above, the nodes were given random
positions in a base graph, and then 6000n iterations of
the Metropolis-Hastings algorithm was performed. We
tried embedding the graph both in the one dimensional
case (circle) and two (torus). In one dimension, the
results were as follows:

Size
Mean degree
F Success
F Steps
C Succ
C Steps
LC Steps

2000
64.6

0.609
2.99

0.981
13.4
4.58

4000
46.4

0.341
3.24

0.798
26.0
7.21

Here "F Success/Steps" denotes the values when we
fail upon hitting a dead end, "C Succ/Steps" when we
continue and "LC steps" is the mean number of steps
for queries that use the local connections at dead ends.

The data was also tested using two-dimensional coordi-
nates and distance. The results are rather similar, with
some of the tests performing a little bit better, and some
(notably the success rate when failing on dead ends)
considerably worse.

Size
F Success
F Steps
C Succ
C Steps
LC Steps

2000
0.494
2.706
0.984

13.116
3.920

4000
0.323
3.100
0.874

22.468
5.331

It perhaps surprising that using two dimensions does
not work better, since one would expect the greater
freedom of the two dimensional assignment to fit better
with the real dynamics of social networks (people are,
after all, not actually one a circle). The trend was
similar with three-dimensional coordinates, which led to
success rates of 0.42 and 0.26 respectively for the large
and small graphs when failing at dead-ends, but similar
results to the others when continuing. As can be seen
from simulations above, the algorithm does not seem to
perform very well in general in higher dimensions, and
this may well be the culprit.5

&There is a general perception that the two-dimensional case
represents reality, since peoples geographical whereabouts are
two-dimensional. We find this reasoning somewhat specious. The
true metric of what makes two people closer (that is, more likely
to know one another) is probably much more complicated than

153

The two thousand node case has about the same degree
as the simulated data from the graphs above, so we can
compare the performance. From this we can see that the
"web of trust" does not nearly match the data from the
ideal model in any category. It does, however, seem to
show better performance than the uniform matchings in
some cases - most notably the crucial criteria of success
rate when dropping at dead ends.

To look at the 4000 nodes case, the mean degree is
considerably less than the experiments presented below,
and it the results are unsurprisingly worse. In this case
however, the dataset does have a lot of nodes with only a
few neighbors, and it is easy to understand it is difficult
for the algorithm to place those correctly.

At first glance, these results may seem rather negative,
but we believe there is cause for cautious optimism. For
one thing, success rates when searching in real social
networks have always been rather low. In [13], when
routing using actual geographic data, only 13% of the
queries were successful. They used a considerably larger
and less dense graph than ours, but on the other hand
they required only that the query would reach the same
town as the target. [2] showed similar results when
attempting to route among university students. Real
world Milgram type experiments have never had high
success rates either: Milgram originally got only around
20% of his queries through to the destination, and a
more recent replication of the experiment using the
Internet [6] had as few as 1.5% of queries succeed.

Moreover, there have not been, to the authors knowl-
edge, any previously suggested methods for routing
when giving nothing but a graph. Methods suggested
earlier for searching in such situations have been to ei-
ther walk randomly, or send queries to nodes of high
degree. With this in mind, even limited success may
find practical applications.

8 Distributed Implementation and Practical
Applications

The proposed model can easily be implemented in a
distributed fashion. The selection kernel used in the
simulations above is not decentralized, in that it involves
picking two nodes x and y uniformly from the set.
However, the alternative method is that nodes start
random walks of some length at random times, and

then propose to switch with the node at which the
walk terminates. Simulating this with random walks
of length log2(n)/2 (the log scaling motivated by the
presumed log scaling of the graphs diameter) did not
perform measurably worse in simulations than a uniform
choice (nor on the collected data in the last section)6.
For example, in a graph of 64,000 nodes generated with
the ideal distribution, we get (with the tests as described
above):

Test
Fail

Continue
Base Graph

Success Rate
0.668
0.996

1.0

Mean Steps
4.059
6.039
4.33

just geography (the author of this article is, for instance, perhaps
more likely to know somebody working in his field in New Zealand,
than a random person a town or two away). In any case, there is
a trade-off between the realism of a certain base graph, and how
well the optimization seems to function, which may well motivate
less realistic choices.

Once the nodes x and y have established contact (pre-
sumably via a communication tunnel through other
nodes), they require only local data in order to calcu-
late the value in (4.3) and decide whether to switch
positions. The amount of network traffic for this would
be relatively large, but not prohibitively so.

In a fully decentralized setting, the algorithm could be
run with the nodes independently joining the network,
and connecting to their neighbors in the shortcut graph.
They then choose a position randomly from a contin-
uum, and start initiating exchange queries at random
intervals. It is hard to say when such a system could
terminate, but nodes could, for example, start increas-
ing the intervals between exchange queries after they
have been in the network long. As long as some switch-
ing is going on, of course, a nodes position would not be
static, but at any particular time they may be reachable.

The perhaps most direct application for this kind of
process, when the base graph is a social network be-
tween people, is an overlay network on the Internet,
where friends connect only to each other, and then wish
to be able to communicate with people throughout the
network. Such networks, because they are difficult to
analyze, have been called "Darknets", and sometimes
also "Friend-to-Friend" (F2F) networks.

9 Conclusion

We have approached a largely unexplored question
regarding how to apply small-world models to actually
find greedy paths when only a graph is presented. The
method we have chosen to explore is a direct application
of the well known Metropolis-Hastings algorithm, and

eThe most direct decentralized method, that nodes only ever
switch positions with their neighbors, did not work well in
simulation.

154

it yields satisfactory results in many cases. While not
always able to restore the desired behavior, it leads to
better search performance than can be expected from
simpler methods like random searches.

Much work remains to be done in the area. The
algorithm depends, at its heart, on selecting nodes who
attempt to switch positions with each other in the base
graph. Currently the nodes that attempt to switch are
chosen uniformly at random, but better performance
should be possible with smarter choice of whom to
exchange with. Something closer to the Gibbs sampler,
where the selection kernel is the distribution of the sites
being updated, conditioned on the current value of those
that are not, might perhaps yield better results.

Taking a step back, one also needs to evaluate other
methods of stochastic optimization, to see if they can
be applicable and yield a better result. No other such
method, to the author's knowledge, applies as directly
to the situation as the Metropolis-Hastings/simulated
annealing approach used here, but it may be possible to
adapt other types of evolutionary methods to it.

Also, all the methods explored here are based on the
geographic models that Kleinberg used in his original
small-world paper [11]. His later work on the dynamics
of information [12] (and also [18]), revisited the problem
with hierarchical models, and finally a group based
abstraction covering both. It is possible to apply the
same techniques discussed below to the other models,
and it is an interesting question (that goes to the heart
of how social networks are formed) whether the results
would be better for real world data.

The final question, whether this can be used successfully
to route in real life social networks is not conclusively
answered. The results on the limited datasets we have
tried have shown that while it does work to some
respect, the results are far from what could be hoped for.
Attempting to apply this method, or any derivations
thereof, to other real life social networks is an important
future task.

References

[1] A. Abdul-Rahman. The pgp trust model. EDI-Forum:
the Journal of Electronic Commerce, 1997.

[2] L. Adamic and E. Adar. How to search a social
network. Social Networks, 27:187-203, 2005.

[3] L. Adamic, R. Lukose, A. Puniyani, and B. Huberman.
Search in power-law networks. Physical Review E, 64
(46135), 2001.

[4] B. Bollobas and F. Chung. The diameter of a cycle
plus a random matching. SI AM Journal on Discrete
Mathematics, 1:328-333, 1988.

[5] A. Clause! and C. Moore. How do networks become
navigable? Preprint, 2003.

[6] P. S. Dodds, M. Roby, and D. J. Watts. An experimen-
tal study of search in global social networks. Science,
301:827, 2003.

[7] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some
simplified np-complete problems. Theory of Computer
Science, 1:237-267, 1978.

[8] C. Gkantsidis, M. Mihail, and A. Saberi. Random
walks in peer-to-peer networks. In INFOCOM, 2004.

[9] O. Haggstrom. Finite Markov Chains and Algorithmic
Applications. Number 52 in London Mathematical
Society Student Texts. Cambridge University Press,
2002.

[10] W.K. Hastings. Monte carlo sampling methods using
markov chains and their applications. Biometrika,
57:97-109, 1970.

[11] J. Kleinberg. The Small-World Phenomenon: An
Algorithmic Perspective. In Proceedings of the 32nd
ACM Symposium on Theory of Computing, 2000.

[12] J. Kleinberg. Small-world phenomena and the dynam-
ics of information. In Advances in Neural Information
Processing Systems (NIPS) 14, 2001.

[13] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan,
and A. Tomkins. Geograph routing in social networks.
In Proceedings of the National Academy of Science,
volume 102, pages 11623-11628, 2005.

[14] C. Martel and V. Nguyen. Analyzing kleinberg's (and
other) small-world models. In PODC '04-' Proceedings
of the twenty-third annual ACM symposium on Prin-
ciples of distributed computing, pages 179-188, New
York, NY, USA, 2004. ACM Press.

[15] S. Milgram. The small world problem. Psychology
Today, 1:61, 1961.

[16] O. Sandberg and I. Clarke. An evolving model for small
world neighbor selection, draft, 2005.

[17] D.J. Watts. Small Worlds: The Dynamics of Networks
between Order and Randomness. Princeton University
Press, 1999.

[18] D.J. Watts, P. Dodds, and M. Newman. Identity
and search in social networks. Science, 296:1302-1305,
2002.

[19] D.J. Watts and S. Strogatz. Collective dynamics of
small world networks. Nature, 393:440, 1998.

[20] B. Yu and M. Singh. Search in referral network.
In Proceedings of AAMAS Workshop on Regulated
Agent-Based Social Systems: Theories and Applica-
tions, 2002.

155

Engineering Multi-Level Overlay Graphs for Shortest-Path Queries*

Martin Holzer* Prank Schulz^ Dorothea Wagner*

Abstract
An overlay graph of a given graph G = (V, E) on a subset
5" C V is a graph with vertex set S that preserves some
property of G. In particular, we consider variations of the
multi-level overlay graph used in [21] to speed up shortest-
path computations. In this work, we follow up and present
general vertex selection criteria and strategies of applying
these criteria to determine a subset S inducing an overlay
graph. The main contribution is a systematic experimental
study where we investigate the impact of selection criteria
and strategies on multi-level overlay graphs and the resulting
speed-up achieved for shortest-path queries. Depending
on selection strategy and graph type, a centrality index
criterion, a criterion based on planar separators, and vertex
degree turned out to be good selection criteria.

1 Introduction
Given a graph and a subset of distinguished vertices,
an overlay graph describes a topology defined on these
vertices, where edges correspond to paths in the under-
lying graph1. Consider, for example, as base graph the
Internet graph representing connections between hosts
and as overlay graph the topology of a peer-to-peer net-
work. Depending on the application, overlay graphs are
demanded to fulfill certain requirements such as high
connectivity and reliability in the case of peer-to-peer
networks.

In the course of this paper, we give several criteria
and strategies for selecting the vertices upon which an
overlay graph is to be built. Following the multi-level
graph approach introduced in [21], a speed-up technique
for exact single-source shortest-path computations, here
we focus on overlay graphs used for this kind of applica-
tion. With the multi-level approach, one or more levels
of overlay graphs inheriting shortest-path lengths from

*This work was partially supported by the 1ST Programme of
EC under contract no. IST-2002-001907 (DELIS).

t Address: Universitat Karlsruhe (TH), Fakultat fur Infor-
matik, Postfach 6980, 76128 Karlsruhe, Germany. Email:
{mholzer,fschulz,dwagner}@ira.uka.de.

1We use the term "overlay graph" in this general sense. Note
that sometimes "overlay graph" is used only in a specific context,
for example, associated with certain properties like uniform vertex
degree.

the base graph are constructed. Then a shortest-path
computation takes place in a graph consisting basically
of one of the overlay graphs and some additional edges.

We further refine this approach by introducing
shortest-path overlay graphs, which are overlay graphs
preserving the shortest-path property and additionally
have minimal number of edges. Besides providing a
procedure to construct such overlay graphs, we prove
their optimality.

In [20], it is shown that the multi-level approach
with one additional level is quite successful applied to
timetable information, and [21] provides a generaliza-
tion to multiple levels. In both studies, application-
specific information is used to determine the overlay
graphs.

In this work, however, we focus on getting along
without application-specific information. By the help
of extensive experiments we investigate the impact of
our general selection criteria on the quality of multi-
level graphs and measure speed-up when using them for
shortest-path search. To assure general applicability,
we consider different real-world and generated graphs.
It turns out that with global selection strategy, vertex
degree is a good criterion. The best results, however,
are achieved with recursive decomposition strategy and
either centrality index or planar-separator criterion.

The paper is organized as follows: In Section 2,
shortest-path overlay and multi-level graphs are intro-
duced and their application to speed up shortest-path
computation is presented in Section 3. Regular multi-
level graphs are theoretically analyzed in Section 4. Sec-
tion 5 provides an extensive experimental study.

1.1 Related Work There are numerous ap-
proaches to speed up single-pair shortest-path computa-
tions, most of them improving Dijkstra's algorithm [5]
(see [24] for a survey): On the one hand there are speed-
up techniques that can be applied without any prepro-
cessed information, for example, goal-directed and bidi-
rectional search [1]. On the other hand, much better
speed-up factors can be reached when additional infor-
mation computed in a preprocessing step can be used.
Such techniques represent a trade-off between precom-
puting all-pairs shortest paths (requiring space and pre-
processing time at least quadratic in the number of ver-

156

tices) and no additional information at all. Also, com-
binations of speed-up techniques are possible [7, 11, 20].

One class of preprocessing techniques [6, 8, 15,
16, 18, 20, 22] prunes the search space of Dijkstra's
algorithm: some of the edges and vertices Dijkstra's
algorithm would consider can safely be ignored since by
the additional information, the algorithm knows that
they cannot be part of a shortest path from the given
source to the given target.

Another common approach, which makes use of an
auxiliary graph and is also followed in this paper, is to
hierarchically decompose the graph into connected com-
ponents [9, 12, 13, 20, 21]. Such techniques exploit the
fact that—if the source s and the target t are not in the
same component at some level—any s-i-path will pass
through the border of the respective components. Addi-
tional edges connecting border vertices are maintained
and to find the shortest path one can show that an ap-
propriate choice of edges in the components around the
source and target and between border vertices suffices.

Now, we discuss two closely related hierarchical
techniques in more detail and show how shortest-path
overlay graphs, which will be defined later on in this
paper, can be applied therein.

HiTi graphs introduced by Jung and Pramanik [13]
are applied in the area of car navigation. The basic
difference to our approach is that the input graph is de-
composed into connected components by edge separa-
tors instead of vertex separators. For each component,
a complete graph on the boundary vertices stores the
shortest-path lengths between these vertices. As in our
approach, an appropriate subgraph is used to answer a
shortest-path query. The additional shortest-path infor-
mation on boundary vertices can be alternatively main-
tained by shortest-path overlay graphs.

Another recent study [18] precomputes a hierarchy
on the edges. Shortest paths are computed by a
variant of bidirectional search. The precomputed edge
hierarchy helps in that during the bidirectional search
only edges of a certain level have to be considered,
depending on the distance from the source and to
the target. The subgraph induced by edges belonging
to one level is compressed: iteratively, all vertices of
degree 1 are removed and paths of degree-2 vertices
are replaced by edges. This compression technique can
be regarded as the construction of a (not necessarily
minimal) overlay graph with inherited shortest-path
lengths on the remaining set of vertices.

2 Overlay Graphs
Let G — (V, E) be a directed, connected graph with
non-negative edge lengths. Unless stated otherwise, n
denotes the number of vertices and ra the number of

edges in G. The length of a path is the sum of the
lengths of the edges on the path. In this section, we will
define shortest-path overlay graphs and two variants of
multi-level graphs, which refines the approach from [21].

2.1 Shortest-Path Overlay Graph For a subset
S of the graph's vertices we seek a graph G' with vertex
set S" and shortest-path lengths inherited from G: For
each pair of vertices u, v e 5, shortest u-v-paths have
the same length in G and G'. Additionally, we want G'
to contain as few edges as possible. First, we formally
define shortest-path overlay graphs and show afterwards
that these graphs meet the above requirements.

DEFINITION 2.1. Given a subset S C V, the shortest-
path overlay graph G' := (S, E'} is defined as follows:
for each (u, v} e S x 5, there is an edge (u, v) in E' if
and only if for any shortest u-v-path in G no internal
vertex belongs to S. (Internal vertices are all vertices
on the path except u and v.)

Note that in [21], a different condition for e 6
E' is used: For each vertex u e 5, a standard
Dijkstra's algorithm is used to compute a shortest-path
tree Tu. Then an edge is added to E' if the path in
Tu contains no internal vertex belonging to S—there
can be another shortest path that contains an internal
vertex belonging to S and G' contains redundant edges
in this case. In contrast, for our new approach we can
prove uniqueness and minimality of the shortest-path
overlay graph. A minimal number of edges is desirable
for applications like speed-up techniques for shortest-
path algorithms since fewer edges result in a smaller
search space and hence a better running time. Figure 1
depicts two sample overlay graphs, one computed by the
procedure suggested in [21], and the minimal shortest-
path overlay graph computed by the subsequent new
procedure min-overlay, which implements the above
Definition 2.1:

Procedure min-overlay(G, /, S}

For each vertex u G S run Dijkstra's algorithm in G
with pairs (le, se) as edge weights, where le is the edge
length, se := —1 if the tail of e belongs to S \ {u},
and se := 0 otherwise. Addition is done pairwise, and
the order is lexicographic. The result of Dijkstra's
algorithm are distance labels (lv,sv) at the vertices.
For each v e S \ {u} we introduce an edge (u, v) in E'
with length lv if and only if sv =0.

THEOREM 2.1. The shortest-path overlay graph G' =
(S, E'} computed by min-overlay inherits shortest-path
lengths from G and the number of edges \E'\ is min-
imal among all graphs with vertex set S and inherited

157

Figure 1: From top to bottom: a decomposition (by
the planar-separator algorithm) of a 32 x 32 grid by
a separator of 208 vertices (black), an overlay graph
which is computed by a standard Dijkstra's algorithm
(2865 directed edges), and the corresponding minimal
shortest-path overlay graph (1076 directed edges).

shortest-path lengths. G' is the only overlay graph under
these constraints.

Proof. Let p be a shortest s-t-path in G with s, t £ S;
consider the subpaths p\,..., pk of p divided at all
vertices in S (i.e., the first and the last vertex of every
Pi is in 5, and no internal vertex of pi belongs to S).
Consider such a subpath pi = (vi,..., vi). Due to the
condition for edges being in E', either (i) any shortest
path from ^i to vi in G also has no internal vertex in
S and in this case there is an edge (v\,vi) in £"; or
(ii) there is a shortest path from v\ to vi via a vertex
u G 6'. In that case we replace the path pi by two
subpaths p[= (v i , . . . , u) and p" = (w, vi). Since case
(ii) can only occur a finite number of times (the two new
subpaths have shorter lengths as the replaced subpath),
this procedure will end up with a subdivision of p into
subpaths each of which has a corresponding edge in the
overlay graph G'. Hence, there is also an s-t path in G'
with the same length as p. Clearly, there is no shorter
path in G' since edge lengths in E' always correspond
to shortest-path lengths in G.

To prove minimality and uniqueness of G', assume
that there is an overlay graph (S, E") that also inherits
shortest-path lengths from G and there is an edge e' =
(u, v) E' which is not in E". Let (u = vi,..., Vk =
v) be a shortest u-v-path in (5, E"). It holds that
k > 2 because e' = (u,v) $. E". Since subpaths of
shortest paths are also shortest paths, l(vi,Vi+i) is the
length of a shortest Vj-Vj+i-path in G (1 < i < k).
Hence, there must also be a shortest M-v-path (u =
vi, • • • , v<2,. • • , Vk-i, • • • , v k — v) in G with (at least) one
internal vertex i>2 e 5, in contradiction to e E E'. D

Note that in the above described procedure, Dijk-
stra's algorithm can be terminated when sw < 0 for all
vertices w in the queue, since the condition sv = 0 can-
not be true for any vertex v whose label has not been
computed yet. This yields a better running time for the
construction of G'.

2.2 Basic Multi-Level Graph Iteratively re-
peating the min-overlay procedure, we obtain multi-
ple levels of shortest-path overlay graphs with decreas-
ing number of vertices which we call basic multi-level
(overlay) graph. It is based on a sequence of / subsets
of vertices S^ (I < i < I) which are decreasing with re-
spect to set inclusion: V = SQ D Si D 82 D ... D Si.
A vertex v is a level-i vertex if i is the highest index
such that v E Si. The additional edge sets are denoted
by E/i (1 < i < 1). To emphasize the dependence on G
and the sets Si,..., Si, we shall refer to the multi-level
graph by M(G; S\,..., Si). Together with G as level 0,
we say that M. is a I + 1 level graph.

158

Figure 2: Sample graph with vertex selections Si (big
circles and squares) and 82 (squares).

Figure 3: Additional edges in the basic (top) and ex-
tended (bottom) multi-level graph based on the selec-
tions shown in Figure 2.

2.3 Extended Multi-Level Graph In [21],
multi-level graphs are introduced in a slightly different
way, which will be called extended multi-level (overlay)
graphs here, denoted by M. Especially when the multi-
level graphs are applied to speed up shortest-path com-
putations, further edges are helpful: upward edges Ui
from vertices in Si-\ \ Si to vertices in S'j, and down-
ward edges Di from vertices in Si to vertices in S^i \Si
(! < ! < /) . The edges Ei of the shortest-path overlay
graph at level i are called level edges. The min-overlay
procedure can be extended to construct also downward
and upward edges: In the last step introducing the edges
we consider now also vertices v £ S \ V and introduce
a downward edge if and only if sv = 0. To construct
upward edges, we run Dijkstra's algorithm not only for
vertices u 6 5 but also for u' (£ S and introduce an edge
(«', v'} to vertices v' e S if and only if sv> = 0.

Figure 2 shows a sample graph and Figure 3 the
additional edges in the basic and the extended multi-
level graph, respectively.

3 Shortest-Path Search

Multi-level graphs can be used to speed up single-pair
shortest-path algorithms: Based on the source and the
target vertex, a subgraph of the multi-level graph is
determined and the shortest path is computed in that
subgraph. We review the definition of the tree of

connected components and the speed-up technique using
extended multi- level graphs from [21] and provide a new
variant applying the basic multi- level graph; we also
briefly discuss the correctness of the new variant.

3.1 Tree of Connected Components Consider
the subgraph of G that is induced by the vertices V\Si.
We will use the following notation: The set of connected
components is denoted by C^, and a single component
is usually referred to by C. For a vertex v V \ Si, let
C1 denote the component in Ci that contains v.

As data structure to determine the appropriate
subgraph of a multi-level graph for a pair of vertices
s, t G V a tree with the connected components C\ U . . . U
Ci as vertices is used. Additionally, there is a root C/+i
and for every vertex v e V a leaf CQ in the tree. The
parent of a leaf CQ is determined as follows: Let i be
the largest i with v S^. If i = /, the parent is the root
Ci+i. Otherwise, the level with smallest index where v
is contained in a connected component is level i + I , and
the parent of CQ is the component C?+l e Ci+i. The
parent of the components in Ci is also the root C/+i. For
one of the remaining components Ci G Ci , the parent is
the component C^_i for a vertex u £ Ci.

For the given pair of vertices s,t V, we consider
the CQ-CQ path in the component tree. Let L be the
smallest L with CS

L = C1
L (i.e., CS

L = C1
L is the lowest

common ancestor of CQ and CQ in the tree). Then the
CQ-CQ path is

where k > 0 and k' > 0 are the levels of the parents of
CQ and CQ, as denned above.

Figure 4 shows an illustration hereof.

3.2 Definition of the Subgraph The above de-
fined path in the component tree induces a subgraph
M.st of the basic multi- level graph M as follows: For
each component C = Cf with x e {s,t} and i < L in
the path, all edges of level i incident to a vertex in com-
ponent C belong to the edge set Est of the subgraph
Mst. Further, all edges of level L belong to Est. The
vertex set of Aist

 l$ induced by these edges. Figure 5
shows Mst for our sample graph.

A shortest-path search in the subgraph Mst pro-
ceeds as follows: Starting from a vertex s at level fc,
the original graph is searched until a vertex at a higher
level is reached. Outside this component, shortest-path
information is completely contained at the next higher
level k + I. By definition of the component tree, any
s-£-path leaves the component C|. Hence, it suffices
to maintain only level-A; edges incident to vertices in
component C|. The part of the shortest path between

159

Figure 5: Subgraph J\Ast of the basic multi-level graph
for a shortest-path search.

Figure 6: Subgraph M. si of the extended multi-level
graph for a shortest-path search.

Figure 4: Component tree of the sample graph in
Figure 2 (without leaves CQ).

vertices is then found using level edges of the
higher levels. The same argument applies iteratively to
higher levels, and symmetrically for components around
t. At the highest level L, s and t belong to the same
component, and all level- L edges are necessary. Con-
cluding, we state the outcome of the above description
as

LEMMA 3.1. The length of a shortest s-t-path is the
same in G and the subgraph M.st of the basic multi-level
graph M^S!,..., Si).

In a similar way, a subgraph M.st of M. with
the same s-t-shortest-path length as G is induced by
the following edge set: Basically, paths from vertices
in component Cf to higher level vertices adjacent to
that component are replaced by direct edges in Ui.
Symmetrically, paths in C\ are replaced by direct edges
in Di (cf. Figure 6). The correctness of this shortest-
path approach applying the extended multi-level graph
is proven in [21].

3.3 Selecting Vertices for Multi-Level Graphs
The crucial point to the construction of a multi-level
graph belonging to a given graph is the selection of
vertices by removal of which a decomposition of the
original graph into connected components is induced.

3.3.1 Selection Criteria We applied ten vertex
selection criteria: One random, benchmark criterion
(RND); two criteria related to vertex degree: degree

(DEG) arid percentage (PCT); one related to graph
cores (COR) [4]; four coming from centrality indexes:
reach (RCH) [8], closeness (CLO), betweenness (BET)
and betweenness approximation (BAP) [4]; and one
involving a planar-separator algorithm (PLS) [10]:

Random (RND). Vertices are selected uniformly at
random.

Degree (DEG). The desired number of vertices with
the highest degrees are selected.

Percentage (PCT). We consider for each vertex v its
percentage value, which is the share of i>'s adjacent
vertices that have smaller degree than v in all
adjacent vertices; an isolated vertex is assigned — 1.
The vertices with the highest percentage values are
selected.

Core (COR). The fc-core of a graph (for an integer
k) is the maximum subgraph such that all vertices
in that subgraph have degree at least k. The core
number of a vertex is denned to be the maximum k
such that it belongs to the fc-core; see [4] for further
details. The vertices with the highest core numbers
are selected.

Reach (RCH). The reach r(v,P) of a vertex v on
an s-t path P is defined to be mm{l(Psv),l(Pvt)},
where Psv and Pvt are the subpaths of P with
respect to v, and l(P) the respective path length.
The reach r(v) of v is denned to be max{r(i>, P) |
P shortest s-£-path over v}- see [8]. Reach thus
denotes the greatest distance of v to the nearer of
either end-vertex over all shortest paths containing
v. Here, as with the two following criteria, the
vertices with the greatest respective values are
selected.

160

level-(fc+l)

Closeness (CLO). Closeness of v is defined as c(v) —
1 /Y^tev d(v,t), letting d(v,t) denote the distance
from v to t (with 1/0 := 0); see [4] for further
details. Intuitively speaking, a vertex with great
closeness has short distances to most of the other
vertices.

Betweenness (BET). We define betweenness of v as

b(v) = ^2S tev ^fff'st) i where cr(s,i) stands for the
number of shortest paths from s to t and cr(s, t \ v)
for the number of shortest paths from s to t that
contain v as an inner vertex (with 0/0 := 0);
see [4] for further details. Betweenness marks how
important a vertex is to shortest paths.

Betweenness Approximation (BAP). The be-
tweenness values as defined above are approxi-
mated by random sampling letting s, t e V C V,
where \V'\ = (logn)/£2 for some appropriate choice
of £; see [4]. The goal of the approximation is to
obtain "good enough" betweenness values in much
shorter time than required for computation of the
exact values (cf. Section 5.3.1). The probability of
an error larger than en(n — 2) is at most 1/n.

Planar-Separator Criterion (PLS). This criterion
makes use of a planar-separator algorithm, and
picks the vertices returned by this algorithm as
selected vertices. We use the heuristic suggested
in [10], which is based on the Planar-Separator
Theorem by Lipton and Tar Jan. In order to
apply it also to non-planar graphs, we planarize
such a graph first by introducing new vertices
at crossings (assuming a straight-line embedding
of the given graph). Then the planar-separator
algorithm is applied to the planarized auxiliary
graph. Finally, separator vertices for the original
graph are inherited from the auxiliary graph, and
conflicts with edges that connect two vertices of
different components are resolved by declaring one
of the both end vertices to be separator vertices.

Figure 7 illustrates the different criteria with a
sample graph.

3.3.2 Selection Strategies With each criterion
except PLS, we consider two different strategies of
selecting vertices. The first, called global application,
is to determine, according to the criterion specified, a
given number of vertices picked from the whole graph.
With the second, referred to by recursive decomposition,
a maximum component size is chosen. Recursively,
for each connected component that is bigger than that
threshold, the vertices are sorted according to the
given criterion and from this list, the first vertices are
selected so long until the graph splits or the number

Figure 7: Highest-priority vertices in a sample graph
according to the different selection criteria: DEG: a, d,
h\ PCT: /i; COR: a, 6, d, /; RCH: 6, /, g- CLO: 0; BET:
g; PLS: {/,g} (for instance).

of non-selected vertices in this component falls below
the threshold. With more than one additional level,
vertices selected at one level are always selected at the
lower levels, too.

PLS is a special case: it is used to decompose
the graph recursively until all connected components
are smaller than the desired maximum component size.
Hence, PLS cannot be used as a global criterion.

4 Regular Multi-Level Graphs

The basic idea of multi-level graphs as speed-up tech-
nique for shortest path computation is that the sub-
graph Mst will be small and thus a shortest path can
be found faster using that subgraph instead of the orig-
inal graph G. In general, this is not necessarily true;
clearly, a bad example would be if the vertices in S do
not decompose the graph G at all. However, for regular
multi-level graphs, under certain assumptions concern-
ing the decomposition, we are able to prove a bound on
the total number of edges in the multi-level graph and
especially on the size of the subgraph Mst- Note that
these bounds always refer to the extended multi-level
graphs.

The size of the subgraph M.st depends crucially on
the highest level index L in the path of the component
tree (cf. Section 3.1) determining the subgraph, so we
are also interested in the probability that for a random
query at least a given level L is reached. Another
important parameter will be the maximum number of
adjacent vertices of a component over all components,
denoted by A. Due to lack of space, proofs are omitted;
they can be found in [19].

4.1 Size of the Multi-Level Graph and the
Search Space The first lemma shows that for multi-

161

level graphs that exhibit some regular hierarchical struc-
ture, the total number of additional edges can be
bounded as follows. With EG(S) we denote the edge
set induced by the vertex set S in the original graph G.
The total number of upward, downward, and level edges
is denoted by \U\, \D\, and \LE\, respectively.

LEMMA 4.1. Assume that for the decomposition of the
graph G into components, it holds that Y^i=i 1^1 — n>
and that for each i, I < i < I, the part of Ec(Si} that is
not in EG(Si+i) is at most half as big as the same part
in the previous level:

Let (s, t) 6 V x V be a query selected uniformly at
random, where P(s,t) = 1/n2. We are interested in the
probability that the lowest common ancestor of s and t
in the component tree, denoted as level(s,t), is at least
L (1 < L < / + !). Assuming that all components in
CL-I have the same size C, this probability amounts to

space (the number of edges in M.st) is asymptotically
dominated by the total number of levels /, which is
usually in O(log n), and by EI, the number of level edges
in level I:

Consider the highest level possible L = I + 1, and
further assume that C and the number of vertices in the
smallest subset of vertices \Si\ are constant. Then, with
n —> oo, for the probability that the highest level is used
in the subgraph Mst, it holds that

Finally, we are able to give a bound on the number
of edges and vertices of the subgraph M.st used for solv-
ing a shortest-path query, depending on L = level(s,t),
the level of the lowest common ancestor of s and t in
the component tree.

LEMMA 4.2. Given that the assumptions made above
hold, the total number of edges in the subgraph M.st is
bounded by

It turns out that A and the number of edges at the
highest level, |Ex_i|, are the crucial parameters to the
size of A^st- For the majority of all queries, level(s, t) =
I -f 1 (as we have seen above for random queries) and,
assuming A being smaller than a constant a, the search

4.2 Discussion Given that the assumptions made
in Lemma 4.1 are fulfilled by a reasonable decomposition
of the graph, the total number of additional edges is
less than m + [A2 + A]n. Hence, the parameter A
is crucial to the amount of additional space needed.
Concerning the efficiency of the technique, the number
of edges at the highest level, |Ex_i|, and the parameter
A are important (cf. Lemma 4.2). Another issue
is the similarity of the components. If there is one
large component at the highest level, the probability
that two vertices belong to that component is quite
high such that the highest level is not used for the
subgraph. In contrast, if all components have the same
size C, the probability that the highest level is used is
approximately (C — l)/C (if the graph is large enough;
cf. Inequation 4.2).

In summary, such decompositions should be used
for which the number of vertices |5/| and edges EI
are reasonably small, the components C^j have few
adjacent vertices in the corresponding set Si, and the
components at each level should be preferably of equal
size.

4.3 Component-Induced Random Graphs
Motivated by the results concerning regular multi-level
graphs, we will define now a random graph model that
fulfills all the assumptions made above. We use such
graphs afterwards in the experimental study.

4.3.1 Recursive Construction We construct a
component-induced random graph Gc(l,c,N,M,A) re-
cursively depending on the following parameters: (i) the
number of levels /; (ii) the number of components per
level c; (iii) the number of new vertices N and new edges
M per level; and (iv) the number of adjacent vertices per
component A. Feasible values are c > 1, M < N(N—l),
and A < N.

The recursive procedure takes as argument a level
index i, which is I at the beginning, and first computes a
classical Erdos-Reyni random graph R with N vertices
and M edges (i.e., R contains N vertices and M edges
selected uniformly at random from all possible edges;
see also [2]). If R is not connected, we repeat the
construction. By setting UN = Iog2 N + 3 and M =
HNN, the probability that R is connected is greater than
95% (cf. [2]). If the level index is 0 the procedure stops.
Otherwise, c components are constructed by applying

162

Then, the total number of additional edges in the multi-
level graph is at most

Figure 8: Sample component-induced graph with three
construction levels (medium-sized and fat vertices mark
selected vertices at level 2 and 3, respectively).

the recursive procedure c times with a level index of
i — I. Finally, for each of these components, A vertices
from R are selected randomly and two edges between
each of these vertices and randomly selected vertices in
the respective component are introduced.

An example of a component-induced graph with
three construction levels can be seen in Figure 8.

4.3.2 Analysis The number of edges of a
component-induced random graph is m < n(/j,N + 2).
By setting ^N = Iog2 N + 3 as mentioned above, the
graph Gc is sparse: for the number of edges in Gc, it
holds that m < n(log2 N + 5).

A regular multi-level graph M.(GC\ 5i,..., 5/) can
now be obtained by setting Si to be the vertices
generated at levels greater than or equal to i (1 <i<l).
Since the multi-level graph is regular (cf. [19]), the
results obtained above for regular multi-level graphs
apply. Finally, we want to investigate the crucial
parameter, namely the size of the subgraph A4st for
an s-t-query. By Lemma 4.2 and the fact that \Si\ = N
in our case, the size of the subgraph is

constant size. This implies that the speed-up of a
shortest-path algorithm can become arbitrarily high for
component-induced random graphs that are sufficiently
large by using the multi-level approach (e.g., for fixed
parameters c, JV, M, and ^4, increasing the number of
levels / yields arbitrarily large graphs, where the other
parameters remain constant).

5 Experimental Analysis

First, we introduce the graph classes considered in our
experiments, investigate the min-overlay procedure
to compute minimal shortest-path overlay graphs, and
present the results of prestudies regarding betweenness
approximation and the planarization technique. The
main results concern the basic and extended variants of
the multi-level graph approach as speed-up technique
for Dijkstra's algorithm. The code is written in C++
based on the LED A library [17].

5.1 Graph Classes With our experiments we
take into account four types of graphs, two randomly
generated and two taken from real world. All graphs are
connected and bidirected, i.e., each (undirected) edge is
replaced with two directed edges, one in either direction.

Component-Induced Random Graphs (ci-). The
random graphs introduced in Section 4.3 are of
regular hierarchical structure and the multi-level
graph approach theoretically works well for such
graphs. Edge lengths are chosen at random. We
computed a layout for the ci graphs using a spring
embedder from the LEDA library [17].

Planar Delaunay Graphs (del-). Planar Delaunay
graphs are graphs with a given number of vertices
randomly spread over a unit square for which the
Delaunay triangulation is computed and edges are
deleted from it at random until a given number of
edges has been reached. Edge lengths are the Eu-
clidian distances of the vertices.

Road Graphs (road-). By road graphs we denote
subgraphs of the German road network2. The
length of an edge is the length of the correspond-
ing road section (i.e., not the straight-line distance;
granularity: 10 meters).

Railway Graph (rail-). Railway graphs are graphs
condensed of networks reflecting train connections2

(cf. [20]): vertices stand for railway stations, and
there exists an edge between two vertices in a rail-
way graph if there is a non-stop connection be-
tween the respective vertices in the underlying net-

2We are grateful to the companies HaCon, Hannover, and PTV
AG, Karlsruhe, for providing us with railway and road data.

163

With constant A and the fact that the number of levels /
is logarithmic in the number of vertices in Gc, we obtain
that the size of the subgraph Mst is in O(logn + N2}.

Concluding, we consider the speed-up factor s —
m/\E(M.st}\ indicating how much faster a shortest-
path algorithm applied to the subgraph Mst can be
compared to the same algorithm applied to Gc. By the
latter observation concerning the size of the subgraph,
the factor s increases with the number of vertices
n in Gc, given that the parameter N is kept at a

n
ci 2000
del 10000
road 19463
rail 6848

unit lengths
opt blow-up
7.0 1.209
31.1 2.953
12.6 1.264
5.9 1.371

application lengths
opt blow-up
6.9 1

35.4 1
15.8 1.014
8.8 1

Figure 9: Sample planar Delaunay graph.

Table 1: The optimal density (opt) is defined to be the
number of edges of the minimal shortest-path overlay
graph divided by the number of its vertices. The blow-
up factor is the number of edges of the worst-case over-
lay graph divided by the number of edges of the minimal
shortest-path overlay graph. We distinguish the case of
unit edge lengths (left column) and edge lengths from
the corresponding application (right column).

work. Graphs representing both long-distance traf-
fic (Irail-) of several European countries and lo-
cal, short-distance traffic (srail-) of several Ger-
man regions are used. With this type of graph, the
length of an edge is assigned the average travel time
of all trains that contribute to this edge.

Sample instances of the named graph classes can
be found in Figures 8, 9, and 14, respectively. A graph
generator [3] for the ci- and del- graphs is available.

5.2 Shortest-Path Overlay Graphs In Theo-
rem 2.1 we proved that min-overlay yields shortest-
path overlay graphs that are minimal. We computed for
each of the four graph classes under consideration a set
of selected vertices by the recursive decomposition strat-
egy using PLS. Then we computed minimal shortest-
path overlay graphs by our new procedure min-overlay
(cf. Section 2.1) on the one hand, and shortest-path
overlay graphs computed by the procedure suggested
in [21] in the worst case3 on the other hand. Comparing
these two shortest-path overlay graphs shows how much
can be gained by using the new—minimal—procedure
compared to the previous method.

We computed the overlay graphs with unit edge
lengths as well as with real edge lengths from their
application. We show the density (i.e., the number of
edges divided by the number of vertices) of the minimal
shortest-path overlay graph and the blow-up of the
worst-case procedure (i.e., the non-optimal number of

aThe procedure in [21] applies Dijkstra's algorithm. When
two shortest paths of the same length are determined during a
run of Dijkstra's algorithm, one of them is selected arbitrarily.
This arbitrary choice can result in different shortest-path overlay
graphs, and by "worst case" we mean that we computed the one
resulting in a maximum number of edges.

edges divided by the optimal number of edges). The
outcome is depicted in Table 1. With unit edge lengths,
there are many paths of the same length, and the blow-
up is almost 3 for del graphs. For application edge
lengths the picture looks different, only for road graphs
a slight blow-up can be observed.

The missing blow-up for the ci, del and rail
graphs in the case of application edge lengths can be
explained by the fact that edge lengths are double-
values representing Euclidean lengths or mean travel
times. Hence, it is very unlikely that there are two paths
between a given pair of vertices with the same length.

The case of unit edge lengths constitutes the other
extreme, where same path lengths are highly probable.
With small integer edge lengths (e.g., when actual travel
times are used instead of mean travel times in the case
of rail graphs), the blow-up factors will be somewhere
between 1 and the unit edge length case.

5.3 Prestudies Concerning Selection Criteria
Most of the selection criteria described in Section 3.3.1
are uniquely determined. However, for BAP and PLS
we carried out prestudies investigating applicability to
our scenario.

5.3.1 Betweenness Approximation In order to
explore the quality of betweenness approximation with
different choices of e and to empirically determine
a value for practical application, we investigated the
multi-level approach for shortest-path queries with road
graphs. We answered shortest-path queries with the ex-
tended multi-level graph approach, with exact between-
ness values on the one hand, and with approximated
betweenness values on the other hand, for e between 0
and 2.

We evaluated the number of visited edges, which

164

Figure 10: The average number of edges visited by
the multi-level graph approach with BET divided by
the average number of edges visited by the multi-level
graph approach with BAP, applied to a road graph with
49 625 vertices. The abscissa denotes e. The horizontal
line indicates the same ratio comparing BET with the
standard Dijkstra's algorithm.

represents the size of the search space of the shortest-
path algorithm and its running time. Figure 10 shows
the number of visited edges with exact betweenness
divided by the number of visited edges with approxi-
mated betweenness values for a road graph with 49 625
vertices. Hence, the smaller this ratio, the worse the
multi-level graph approach works. Under £ = 0 we show
the result for the exact betweenness values, so the ratio
equals 1.

We observed that, with increasing £, the multi-
level approach with approximation gets worse only very
slowly but with £ > 1, the ratio drops drastically, and
the multi-level approach does not speed up the shortest-
path search anymore. Due to this experiment, we chose
e = 0.2 for the following ones. This choice of £ leads to
a drastically reduced preprocessing time of only about
0.5% of that needed to compute the exact betweenness
values. Further tests with other road graphs confirm
that the approximated betweenness values with e — 0.2
are almost as good as the exact ones for the multi-level
approach.

5.3.2 Planar-Separator Algorithm The main
questions regarding application of our planar separator
algorithm to non-planar graphs are: (i) how many cross-
ings induce auxiliary vertices during the planarization
and (ii) whether the transformation from the planarized
auxiliary graph to the original graph does not enlarge
the set of separator vertices too much. We planarized

n
1650
2239
2348
4553
6848
19463
49625
99529
199739
299790

m
4574
6452
8458
15866
19276
49692
125018
252390
501948
771418

n*
645
1830
3458
11447
3169
479
1060
2591
3754
8025

1 0*1 1 CM 1C
I*-5 1 l^l l^opt

22
68
154
605
183
165
336
773
2176
3399

38
107
132
412
399
196
410
941
2636
4104

16
55
58
164
164
177
382
855
2315
3628

Table 2: Applying the planar-separator algorithm to
non-planar graphs (Irail and road graphs): number of
vertices (n) and of edges (m); number of crossings yield-
ing new vertices (n*); separator size of the planarized
graph (|.S*|), size of 'retranslated' separator (\S\) and
optimized separator size (|S0pt)•

rail and road graphs, applied our planar-separator al-
gorithm to obtain connected components of maximum
size 500 (rail) and 1000 (road), and transformed the
separator of the planarized graph back to the original
one. Finally, a straight-forward heuristic was applied to
remove redundant separator vertices.

The results are depicted in Table 2 and show that
for both real-world graph classes the decomposition
works very well: the resulting separators for the road
graphs consist of roughly 1 percent of the total num-
ber of vertices (the number of crossings is between 1.8
and 2.7 percent). Concerning the rail graphs, the sep-
arators are slightly larger (between 1 and 3.6 percent),
but these numbers are still small taking into account
the large number of crossings (between 39 and 251 per-
cent of the total number of vertices in the original rail
graphs).

An alternative to the planar-separator algorithm
is the graph partitioning tool MeTiS [14]. In [10]
our experiments revealed that separators obtained by
MeTiS are of almost the same quality (with respect to
size and balance) as the ones obtained by our planar-
separator algorithm. Preliminary experiments with
MeTiS indicate that this observation translates also to
the multi-level approach: MeTiS is indeed applicable,
but not as good as PLS. We observed, for example,
a speed-up of 13.3 with the road graph with 99529
vertices (cf. the results for PLS below).

5.4 Multi-Level Graph Approach Concerning
the multi-level graph approach the most important mea-
surement is speed-up, i.e., the fraction of the number
edges visited by Dijkstra's algorithm and the number

165

of edges visited by the corresponding multi-level graph
approach. This parameter is independent of implemen-
tation and machine, and it turned out, for our experi-
ments, to be the parameter related most closely to CPU
time.

5.4.1 Selection Criteria In this section, we focus
on the extended multi-level graph approach, the basic
multi-level graph approach is discussed in Sections 5.4.2
and 5.4.3.
Small Graphs with One Additional Level. First, we in-
vestigate the numerous combinations of selection crite-
rion, number of selected vertices or maximal component
size, respectively, and graph type, thus providing a sys-
tematic overview of the parameters playing a crucial role
in our multi-level graph model.

We took into account one graph of each type
with about 1000 vertices: a component-induced graph
(cilOOO) with N = 50, C = 63, and A = 3 and a planar
Delaunay graph (dellOOO) with 2500 edges as generated
graphs; as real-world graphs, connected subgraphs of
our road and railway networks with approximately 1000
vertices, roadlOOO and rail 1000.

With global decomposition, we chose for the num-
ber of selected vertices 3, 5, 8, and 10 percent of the
number of vertices in the graph and with recursive de-
composition, the maximum component size was set to
3, 5, 10, and 20 percent, which in some preliminary runs
have turned out to be representative values.

Figure 11 shows in the form of standard boxplots
the average (over 1000 runs) speed-up (cf. the definition
of speed-up at the beginning of Section 5.4). The range
of all absolute values for one selection criterion and
one graph are shown; the horizontal line within a box
denotes the median, the cross marks the mean value.

The criterion yielding maximum overall speed-up
with both global selection and recursive decomposition
is BET/BAP (there is practically no difference between
these two criteria; cf. Section 5.3.1), which work
pretty well for all graphs but dellOOO: best speed-
up of almost 20 was achieved with roadlOOO. The
second-best criterion, of similar quality, turns out to
be PLS, followed by RCH. Some of the other criteria
work only slightly better than a selection by RND.
In general, with recursive decomposition higher speed-
ups are attainable: this holds true especially for the
centrality index criteria.

For del graphs large sets of separator vertices are
required to decompose the graph, which yields rather
poor performance with the multi-level graph approach;
in contrast, the approach works quite well for the real-
world graph classes road and rail, provided a suitable
selection criterion is used. For the ci graph BET/BAP

Figure 11: Average speed-up in terms of visited edges
with global (top) and recursive (bottom) decomposition;
graphs considered: cilOOO (white), roadlOOO (dark-
gray), rail 1000 (light-gray), and del 1000 (brown).

with recursive decomposition yields the best speed-up of
around 10. The vertex selection from the construction
of the ci graph leads to practically the same speed-
up factor. This shows once again the suitability of the
BET/BAP criterion.
Larger Graphs. Concerning road graphs, we now
consider the two best selection criteria identified in the
previous paragraph for this graph class, namely BAP
(not BET because of the high preprocessing time) and
PLS, with recursive decomposition strategy. Figure 12
shows the speed-up for graphs with 10000 to 100000
vertices for different maximum component sizes: 1, 10,
and 20 percent of the number of vertices in the graph.

For these graphs, 10 percent turned out always to
be the best choice (with one exception). Interestingly,
the PLS criterion is clearly superior to BAP, in con-
trast to the results with the smaller graphs. Another
noticeable observation is that, with increasing size of
the graphs, the speed-up increases—up to 31 with PLS
and maximum component size 10 percent.

166

Figure 12: Speed-up with PLS (top) and BAP (bottom)
criteria for larger road graphs, with maximum compo-
nent size percentages of 1 (solid), 10 (dashed), and 20
(dotted) percent.

Also for rail graphs, the PLS criterion is well-
suited (cf. Figure 13). We compare it with the DEG
criterion, which proved to work well for the rail 1000
graph. An interesting observation is the difference
between long-distance and local-traffic networks: The
DEG criterion works well (and somewhat better than
PLS) only for long-distance traffic; for local traffic, the
speed-up with DEG is not that distinct, while PLS still
achieves speed-up factors of between 12 and 19 with
extended multi-level graphs.

More detailed results for the larger road and rail
graphs can be found in Table 3 and visualizations of
some decompositions, in Figure 14.

5.4.2 Basic Multi-Level Graphs The difference
of the basic multi-level graph approach compared to the
extended one is that no upward and downward edges
are maintained (cf. Section 2.2). Hence, one can expect
less speed-up but at the same time less additional edges
in the multi-level graph. This intuition is approved by
Figure 15 depicting the quotient of speed-up (in terms of
visited edges) and graph expansion (in terms of edges):

Figure 13: Speed-up with extended (top) and basic
(bottom) multi-level graphs for rail graphs. The
abscissa denotes the number of vertices in the graph;
the maximum component percentages are 10 percent
for the extended and 1 percent for the basic multi-level
graphs. Criteria used: DEG (solid) and PLS (dashed);
graph classes: Irail (circle) and srail (triangle).

the best quotient observed with the extended version is
about 2.3, and roughly 12 with the basic version.

In fact, the graph expansion almost equals 1 for the
basic version (cf. column \L\/m in Table 3), so the lower
diagram in Figure 15 shows basically the speed-up and
can be compared to Figure 12 showing the speed-up
with the extended version. The best speed-up with the
basic version is obtained by a maximum component size
of 1 percent, in contrast to the extended version, where
the best speed-up is obtained with 10 percent. Hence,
the basic version works better with smaller components,
compared to the extended one.

Concluding the comparison of basic and extended
multi-level graphs, the results shown in Figures 12,13,
15, and Table 3 confirm that the speed-up with the basic
version is roughly half the speed-up achievable with the
extended version, sometimes less than half. Concerning
the additional number of edges, however, the basic
version is clearly superior with a graph expansion of

167

n
2070

10795

12070

14335

1650

2239

2348

4553

6848

9968

19463

49625

99529

crit
PLS
DEC
PLS
DEC
PLS
DEC
PLS
DEC
PLS
DEC
PLS
DEC
PLS
DEC
PLS
DEC
PLS
DEC
PLS
BAP
PLS
BAP
PLS
BAP
PLS
BAP

\Q\ \T\/ni m' ve ve

PI \L'\/m
 m ve> ««'

55 5.2% 3.9 14.2 3.1
198 19.2% 3.6 4.6 3.0
138 3.9% 6.2 18.3 5.2
706 14.8% 4.0 6.0 4.3
163 6.2% 8.6 11.3 4.8

1029 19.1% 4.1 4.9 3.8
194 5.6% 8.4 13.9 4.9

1347 20.2% 3.8 4.6 3.6
39 2.9% 2.9 20.9 5.8
34 3.5% 2.8 19.4 6.9
72 8.0% 4.0 8.6 3.9
74 5.9% 3.0 12.2 5.6
74 6.0% 3.5 12.2 4.6
66 4.2% 2.6 16.1 6.7

181 7.8% 4.0 9.1 5.6
144 6.2% 2.9 12.2 7.0
191 7.7% 6.0 10.2 5.6
203 6.0% 3.3 13.2 7.6
88 4.7% 7.7 14.6 4.9

261 6.1% 5.2 12.4 5.2
118 4.4% 9.9 15.1 6.7
278 4.3% 7.7 15.2 6.8
158 2.8% 12.1 21.9 11.1
507 2.8% 8.0 20.4 11.2
206 2.0% 15.6 31.4 13.3
913 2.7% 11.0 24.8 13.0

Table 3: Detailed results for larger rail and road
graphs with recursive decomposition strategy and max-
imum component size of 10 percent of the total num-
ber of vertices n: selection criterion (crit), number of
selected vertices (\S\), relative number of level edges
(|L|/m; this equals the relative number of edges in the
basic multi-level graph), graph expansion of extended
multi-level graph (ra'/m), and speed-up in terms of
visited edges (extended variant: ve/ve'; basic variant:
ve/ve').

less than 1.2.

5.4.3 Multiple Levels We considered basic and
extended multi-level graphs with two levels (cf. Fig-
ure 16). For the road graph with 99529 vertices, with
the extended version the speed-up could be increased
from 31.4 with one level to well over 50 and the basic
version could be improved from about 13 to 22. We ob-
served a similar behavior also with other road graphs
with up to 500000 vertices. Not only the speed-up can
be improved with multiple levels: While with one level
the speed-up of 31.4 required a graph expansion of 15.6
(cf. the column m'/ra in Table 3), the graph expansion

Figure 14: Recursive decompositions of srai!2070,
Irail6848, and road!9463 by PLS (cf. Table 3).

with maximum component size 15000 for level 1 and
300 for level 2 was only 6.1. The graph expansion for

168

Figure 15: Speed-up relative to graph expansion with ex-
tended (top) and basic (bottom) multi-level graphs for
road graphs and PLS criterion. Maximum component
percentages: 1 (solid), 10 (dashed), and 20 (dotted) per-
cent.

basic multi-level graphs with two levels is still negligible.
Further, we generated component-induced graphs

with up to 100000 vertices and considered belonging
multi-level graphs with up to five additional levels. In
this case, the vertex selections from the construction of
the graphs have been used for the extended multi-level
graph approach. These vertex sets are small and guar-
antee a regular graph decomposition. The main out-
come from experiments with component-induced graphs
of increasing size is that speed-up scales, up to a factor
of approximately 1000 for a graph with roughly 100000
vertices and 5 levels. These results confirm the intu-
ition and the theoretical results from Section 4 that a
regular (hierarchical) decomposition of the graph is es-
sential for the success of the multi-level graph approach.
For more details on the experiments with component-
induced graphs we refer the reader to [9].

6 Conclusions
We defined minimal shortest-path overlay graphs,
showed how to compute them and proved their mini-

Figure 16: Speed-up with extended (top) and ba-
sic (bottom) multi-level graphs and two levels for the
roadlOOOOO graph and PLS criterion. The abscissa
shows the maximum component size for level 1; max-
imum component sizes for level 2: 300 (solid), 500
(dashed), 1000 (dotted) and 1500 (dotted-dashed).

mality. Such graphs can be used to improve speed-up
techniques for shortest-path computations that main-
tain precomputed shortest-path information between se-
lected vertices in a hierarchical fashion. In particular,
we investigated two variants of the multi-level graph ap-
proach for speeding up shortest-path computation.

In an experimental study, we explored several vertex
selection criteria along with two general strategies to
decompose the input graph. We used these selections
to obtain multi-level overlay graphs and evaluated their
performance when used for shortest-path computation.

The recursive strategy turned out to yield better
performance than the global one. Concerning the
criteria, planar separator and betweenness centrality
clearly outperform the others. Experiments showed
that betweenness can be approximated very efficiently
and yields as good performance as the exact values.
The degree criterion applied to rail graphs works well,
especially for long-distance instances. For the other
graph classes the degree criterion cannot compete with

169

planar separator and betweenness.
Comparing the two multi-level graph variants, the

speed-up achieved with extended multi-level graphs
is clearly superior to that achieved with basic ones.
However, taking into account the sizes of the multi-level
graphs, the ratio between speed-up and graph expansion
is much more in favor of the basic variant.

Acknowledgments
The authors would like to thank Imen Borgi, Sebastian
Knopp, and Andrea Schumm, for their support in parts
of the implementation work.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network
Flows: Theory, Algorithms, and Applications, Prentice
Hall, 1993.

[2] B. Bollobas, Random Graphs, London Academic Press,
1985.

[3] I. Borgi, J. Graf, M. Holzer, F. Schulz, and T. Will-
halm, A graph generator, http://illwww.ira.uka.
de/resources/graphgenerator.php.

[4] U. Brandes and T. Erlebach, eds., Network Analysis,
vol. 3418 of LNCS, Springer, 2005.

[5] E. W. Dijkstra, A note on two problems in connex-
ion with graphs, Numerische Mathematik, 1 (1959),
pp. 269-271.

[6] A. Goldberg and C. Harrelson, Computing the shortest
path: A * search meets graph theory, in Proceedings of
the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2005), SIAM, 2005.

[7] A. Goldberg, H. Kaplan, and R. Werneck, Reach for
A*: Efficient point-to-point shortest path algorithms,
in Proceedings of the Eighth Workshop on Algorithm
Engineering and Experiments (ALENEX06), SIAM,
2006. To appear in the same volume.

[8] R. Gutman, Reach-based routing: A new approach to
shortest path algorithms optimized for road networks, in
Proceedings 6th Workshop on Algorithm Engineering
and Experiments (ALENEX), SIAM, 2004, pp. 100-
111.

[9] M. Holzer, Hierarchical speed-up techniques for
shortest-path algorithms, Master's thesis, Universitat
Konstanz, Fachbereich Informatik und Informations-
wissenschaft, 2003. http://www.ub.uni-konstanz.
de/kops/volltexte/2003/1038/.

[10] M. Holzer, G. Prasinos, F. Schulz, D. Wagner, and
C. Zaroliagis, Engineering planar separator algorithms,
in Proceedings 13th European Symposium on Algo-
rithms (ESA), vol. 3669 of LNCS, Springer, 2005,
pp. 628-639.

[11] M. Holzer, F. Schulz, and T. Willhalm, Combining
speed-up techniques for shortest-path computations, in
Proceedings Third International Workshop on Experi-
mental and Efficient Algorithms (WEA 2004), vol. 3059
of LNCS, Springer, 2004, pp. 269-284.

[12] N. Jing, Y.-W. Huang, and E. A. Rundensteiner, Hi-
erarchical encoded path views for path query process-
ing: An optimal model and its performance evalua-
tion, IEEE Trans. Knowledge and Data Engineering,
10 (1998).

[13] S. Jung and S. Pramanik, An efficient path computa-
tion model for hierarchically structured topographical
road maps, IEEE Trans. Knowledge and Data Engi-
neering, 14 (2002).

[14] G. Karypis, MeTiS.
http://www-users.cs.umn.edu/~karypis/metis.

[15] U. Lauther, An extremely fast, exact algorithm for find-
ing shortest paths in static networks with geographi-
cal background, in Geoinformation und Mobilitat - von
der Forschung zur praktischen Anwendung, vol. 22,
IfGI prints, Institut fur Geoinformatik, Miinster, 2004,
pp. 219-230.

[16] R. H. Mohring, H. Schilling, B. Schiitz, D. Wagner, and
T. Willhalrn, Partitioning graphs to speed up Dijkstra's
algorithm., in WEA, S. E. Nikoletseas, ed., vol. 3503
of Lecture Notes in Computer Science, Springer, 2005,
pp. 189-202.

[17] S. Naher and K. Mehlhorn, The LEDA Platform of
Combinatorial and Geometric Computing, Cambridge
University Press, 1999. (http://www.algorithmic-
solutions.com).

[18] P. Sanders and D. Schultes, Highway hierarchies hasten
exact shortest path queries, in Proceedings 17th Euro-
pean Symposium on Algorithms (ESA), 2005.

[19] F. Schulz, Timetable Information and Shortest Paths,
PhD thesis, Universitat Karlsruhe (TH), Fakultat In-
formatik, 2005.

[20] F. Schulz, D. Wagner, and K. Weihe, Dijkstra's algo-
rithm on-line: An empirical case study from public rail-
road transport, J. Experimental Algorithmics, 5 (2000).

[21] F. Schulz, D. Wagner, and C. Zaroliagis, Using multi-
level graphs for timetable information in railway sys-
tems, in Proceedings 4th Workshop on Algorithm En-
gineering and Experiments (ALENEX), vol. 2409 of
LNCS, Springer, 2002, pp. 43-59.

[22] D. Wagner and T. Willhalm, Geometric speed-up tech-
niques for finding shortest paths in large sparse graphs,
in Proc. llth European Symposium on Algorithms
(ESA), vol. 2832 of LNCS, Springer, 2003, pp. 776-
787.

[23] T. Willhalm, Engineering Shortest Paths and Layout
Algorithms for Large Graphs, PhD thesis, Universitat
Karlsruhe (TH), Fakultat Informatik, 2005.

[24] T. Willhalm and D. Wagner, Shortest path speedup
techniques, in Algorithmic Methods for Railway Op-
timization, LNCS, Springer, 2006. To appear, see
also [23].

170

http://www-users.cs.umn.edu/~karypis/metis
http://illwww.ira.uka.de/resources/graphgenerator.php
http://illwww.ira.uka.de/resources/graphgenerator.php
http://www.algorithmic-solutions.com
http://www.algorithmic-solutions.com
http://www.ub.uni-konstanz.de/kops/volltexte/2003/1038/
http://www.ub.uni-konstanz.de/kops/volltexte/2003/1038/

Optimal Incremental Sorting *

Rodrigo Paredes t Gonzalo Navarro

Abstract
Let A be a set of size ra. Obtaining the first k < m
elements of A in ascending order can be done in optimal
O(m + k log k} time. We present an algorithm (online on
A;) which incrementally gives the next smallest element
of the set, so that the first k elements are obtained in
optimal time for any A;. We also give a practical version
of the algorithm, with the same complexity on average,
which performs better in practice than the best existing
online algorithm. As a direct application, we use our
technique to implement Kruskal's Minimum Spanning
Tree algorithm, where our solution is competitive with
the best current implementations. We finally show that
our technique can be applied to several other problems,
such as obtaining an interval of the sorted sequence and
implementing heaps.

1 Introduction
There are cases where we need to obtain the smallest
elements from a fixed set without knowing how many
elements we will end up needing. Prominent exam-
ples are Kruskal's Minimum Spanning Tree (MST) algo-
rithm [16] or ranking by Web search engines [1]. Given
a graph, Kruskal's MST algorithm processes the edges
one by one, from smallest to largest, until it forms the
MST. At this point, remaining edges are not considered.
Web search engines display a very small sorted subset
of the most relevant documents among all those satisfy-
ing the query. Later, if the user wants more results, the
search engine displays the next group of most relevant
documents, and so on. In both cases, we could first sort
the whole set and later return the desired objects, but
obviously this is more work than necessary.

This problem can be called Incremental Sorting. It
can be stated as follows: Given a set A of m numbers,
output the elements of A from smallest to largest, so
that the process can be stopped after k elements have
been output, for any k that is unknown to the algorithm.
Therefore, Incremental Sorting is the online version of

* Supported in part by the Millennium Nucleus Center for Web
Research, Grant P04-067-F, Mideplan, Chile.

tCenter for Web Research, Dept. of Computer Science, Uni-
versity of Chile. Blanco Encalada 2120, Santiago, Chile,
{raparede,gnavarro}@dcc.uchile.cl

an instance of the Partial Sorting problem: Given a
set A of m numbers and an integer k < ra, output the
smallest k elements of A in ascending order.

In 1971, J. Chambers introduced the general notion
of Partial Sorting [3]: given an array A of m numbers,
and a fixed, sorted set of indices I = IQ < i\ < . . . <
ifc-i of size k < ra, arrange in place the elements of A

This property is equivalent to the statement that A[i] is
the i-th order statistic of A for all i 6 /.

We are interested in the particular case of finding
the first k order statistics of a given set A of size m > k.
This can be easily solved by first finding p, the k-th
smallest element of A, using O(ra) time SELECT algo-
rithm [2], and then collecting and sorting the elements
smaller than p. We call this algorithm SELECTSORT. Its
complexity, O(m + klogk), is optimal under the com-
parison model, as there are ra- = ra!/(m — k)\ possible
answers and log(ra-) = Q.(m + klogk).

A practical version of the above, QuiCKSELECT-
SORT (QSS), uses QUICKSELECT [10] and QUICKSORT
[11] as the selection and sorting algorithms, obtaining
O(m + k log k) average complexity. Recently, it has been
shown that selection and sorting can be interleaved. The
result, PARTiALQuiCKSORT (PQS), has the same aver-
age complexity but smaller constant terms [17].

To solve the online problem, we must select the
smallest element, then the second one, and so on until
the process finishes at some unknown value k G [0, ra —
I]. One can do this by using SELECT to find each of
the first k elements, which costs O(km) overall. We
can improve this by transforming A into a min-heap
in time O(rn) [6], and then performing k extractions.
This has O(ra + klogm) worst-case complexity. Note
that ra + fclogra = O(m + klogk), as they can differ
only if k = o(rac) for any c > 0, and then ra dominates
k log ra. However, according to experiments this scheme
is much slower than the offline practical algorithm PQS
if a classical heap is used.

In [22], P. Sanders proposes sequence heaps, a cache-
aware priority queue to solve the online problem, which
is optimized to insert and extract all the elements in the
priority queue at small amortized cost. Even though
the total CPU time used for this algorithm in the whole

171

so that

process of inserting and extracting all the m elements
is pretty close to the time of running QUICKSORT, our
experiments show that this scheme is not so efficient
when we want to sort just a small fraction of the set.
Then the quest for a practical online algorithm for
partial sorting is raised.

In this paper we present INCREMENTALSELECT
(IS), which is yet another algorithm that solves the
online problem in optimal O(m + klogk) time. But
our main contribution is iNCREMENTALQuiCKSELECT
(IQS), a practical variant of IS, which is O(m + k log k)
time on average. Our experimental results show that
IQS is almost as efficient as its offline version PQS,
and is faster in practice than alternative solutions.

As an application, we show how to use our algo-
rithm to boost the performance of Kruskal's MST al-
gorithm [16]. Given a graph G(V,E), we compute its
MST in O(\E\ + \V\ log2 \V\) average time, which is op-
timal in medium or high density graphs. In practice,
by using IQS we obtain an efficient MST implementa-
tion. Our implementation is much faster than any other
Kruskal's implementation we could program or find for
any graph density. As a matter of fact, our Kruskal's
version is faster than Prim's algorithm [20], even as op-
timized by B. Moret and H. Shapiro [18], and also com-
petitive with the best alternative implementations we
could find [14, 15].

We finally show that our algorithm can be used to
solve other basic problems, such as obtaining an incre-
mental segment of the sorted sequence, and implement-
ing a priority queue. The algorithm can obviously be
used to find the largest elements instead of the smallest.

2 Incremental sorting
In this section we describe IQS algorithm. At the
end we show how it can be converted into its worst-
case version IS. Essentially, to output the k smallest
elements, IQS calls QuiCKSELECT to find the smallest
element on arrays ^4[0, m — 1], A[l, m — 1], . . . , A[k —
1, m — 1]. This naturally leaves the k smallest elements
sorted in A[Q,k—1]. IQS avoids the O(km) complexity
by reusing the work among calls to QuiCKSELECT.

Let us recall how QuiCKSELECT works. Given an
integer k, QuiCKSELECT aims to find the k-th smallest
element from a set A of m numbers. For this sake it
chooses an object p (the pivot), and partitions A so
that the elements lower than p are allocated to the left-
side partition, and the others to the right side. After
the partitioning, p is placed in its correct position ip.
So, if ip = k, QuiCKSELECT returns p and finishes.
Otherwise, if k < ip it recursively processes the left
partition, else the right partition (with a new k <—
k — ip — 1).

Figure 1: Example of how IQS finds the first element of
an array. Each line corresponds to a new partition of a
sub-array. Note that all the pivot positions are stored in
stack S. In the example we use the first element as the
pivot but it could be any other element. The bottom
line shows the array with the three partitions generated
by the first call to IQS, and the pivot positions stored
in S.

Note that it is possible to reuse the work made
by previous calls to QuiCKSELECT. When we call
QuiCKSELECT on A[l, m — 1], a decreasing sequence of
pivots has already been used to partially sort A since the
previous invocation on A[Q,m — I]. IQS manages this
sequence of pivots to reuse previous work. Specifically,
it uses a stack S of decreasing pivot positions that are
relevant for the next calls to QuiCKSELECT.

Fig. 1 shows how IQS searches for the smallest
element of an array by using a stack initialized with
a single value m = 16. To find the next minimum, we
first check whether p, the top value in 5, is the index of
the element sought, in which case we pop and return it.
Otherwise, because of previous partitionings, it holds
that elements in A[l,p— I] are smaller than all the rest,
so we run QuiCKSELECT on that portion of the array,
pushing new pivots into S.

As can be seen in Fig. 1, the second minimum is the
pivot on the top of S", so we pop and return it. Fig. 2
shows how IQS finds the third minimum using the pivot
information stored in S. Notice that IQS just works on
the current first chunk ({29,25}), where it adds one
pivot position to 5 and returns the third element in the
next recursive call.

Now, retrieving the fourth and fifth elements is
easy since both of them are pivots. Fig. 3 shows
how IQS finds the sixth minimum. The current first
chunk contains three elements: {41,49,37}. So, IQS
obtains the next minimum by selecting 41 as pivot,
partitioning its chunk and returning the element 37.
The incremental sorting process will continue as long
as needed, and it can be stopped in any time.

172

Figure 2: Example of how IQS finds the third element of
the array. Since it starts with pivot information stored
in 5, it just works on the current first chunk ({29,25}).

Figure 3: Example of how IQS finds the sixth element of
an array. Since it starts with pivot information stored in
5, it just works on the current first chunk ({41,49,37}).
We omit the line where element 37 becomes a pivot and
is popped from S.

The algorithm is given in Fig. 4. Stack S is
initialized as S = {|-A|}. IQS receives the set A, the
index idx1 of the element sought (that is, we seek the
smallest element in A[idx,rn — 1]), and the current
stack S (with former pivot positions). First it checks
whether the top element of 5 is the desired index
idx, in which case it pops idx and returns A [idx].
Otherwise it chooses a random pivot index pidx from
[icfcr, S.topQ—1]. Pivot ^4[pidx] is used to partition
A[idx,S.top()—l]. After the partitioning, the pivot has
reached its final position pidx', which is pushed in S.
Finally, a recursive invocation continues the work on
the left hand of the partition.

Recall that partition(A, A[pidx], i, j) rearranges
A[i,.7'] and returns the new position pidx' of the original
element in A[pidx], so that, in the rearranged array,
all the elements smaller/larger than A[pidx'} appear
before/after pidx'. Thus, pivot A[pidx'} is left at the
correct position it would have in the sorted array A[i, j].
The next lemma shows that it is correct to search for
the minimum just within A[i,S.top() — 1], from which
the correctness of IQS immediately follows.

LEMMA 2.1. After i minima have been obtained in
A[Q, i — 1], (1) the pivot indices in S are decreasing
bottom to top, (2) for each pivot position p ^ m in

* Since we start counting array positions from 0, the place of
the fc-th element is k — 1, so idx = k — 1.

Figure 4: iNCREMENTALQuiCKSELECT (IQS) algo-
rithm. Stack S is initialized as 5" <— {|-A|}. Both S and
A are modified and rearranged during the algorithm.
Note that the search range is limited to the array seg-
ment A[idx,.S'.topO — !]• Procedure partition returns
the position of pivot A[pidx] after the partition com-
pletes. Note that the tail recursion can be easily re-
moved.

S, A[p] is not smaller than any element in A[i,p — 1]
and not larger than any element in A\p + 1, m — 1].

Proof. Initially this holds since i = 0 and S = {m}.
Assume this is valid before pushing p, when p' was
the top of the stack. Since the pivot was chosen from
A[i,p' — 1} and left at some position i < p < p' — I after
partitioning, property (1) is guaranteed. As for property
(2), after the partitioning it still holds for any pivot
other than p, as the partitioning rearranged elements at
the left of it. With respect to p, the partitioning ensures
that elements smaller than p are left at A[i,p— I], while
larger elements are left at A\p + l,p' — 1}. Since A\p]
was already not larger than elements in A[p', m — 1], the
lemma holds. It obviously remains true after removing
elements from S.

The worst-case complexity of IQS is O(m2), but it
is easy to derive worst-case optimal IS from it. The only
change is in line 2 of Fig. 4, where the random selection
of the next pivot position must be changed to choosing
the median of A[idx, S'.topO ~ l]i using the linear-time
selection algorithm [2]. Section 3 analyzes the worst-
case of IS and Section 4 considers the average-case of
IQS, both of which are O(m + k log k).

3 IS worst-case complexity
In this section we analyze IS, which is not as efficient in
practice as IQS, but has good worst-case performance.
In particular, the analysis serves as a basis for the
average-case analysis of IQS in Section 4. In IS, the

173

Figure 5: IS partition tree for incremental sorting when
k = 5, m = 31, j = 5.

partition is perfectly balanced since each pivot position
is chosen as the median of its array segment.

In this analysis we assume that m is of the form
2J — 1. We recall that array indices are in the range
[0, m — 1]. Fig. 5 illustrates the incremental sorting
process when k = 5 in a perfect balanced tree of m = 31
elements, j = 5. Black nodes are the elements already
reported, grey nodes are the pivots that remain in stack
S, and white nodes and trees are the other elements of
A.

The pivot at the tree root is the first to be obtained
(the median of ^4), at cost linear in m (both to obtain
the median and to partition the array). The two root
children are the medians of A[0, m^-} and A[m^-, m —
1]. Obtaining those pivots and partitioning with them
will cost time linear in m/2. The left child of the root
will actually be the second pivot to be processed. The
right child, on the other hand, will be processed only
if k > Z2y^, that is, at the moment we ask IS to
output the Z2j^-th minimum. In general, processing
the pivots at level h will cost O(2/l), but only some of
these will be required for a given k. The maximum level
is j = Iog2(m + 1).

It is not hard to see that, in order to obtain the
k smallest elements of A, we will require \^] pivots of
level h. Adding up their processing cost we get Eq. (3.1),
where we split the sum into the cases [^-1 > 1 and
[Jfcj.] = 1. Only then, in Eq. (3.3), we use k + 2h to
bound the terms of the first sum, and redistribute terms
to obtain that IS is O(m + k log k) worst-case time. The
extra space used by IS is O(logm) pivot positions.

4 IQS average-case complexity
In this case the final pivot position p after the parti-
tioning of A[Q, m — 1] distributes uniformly in [0, m — 1].
Consider again Fig. 5, where the root is not anymore
the middle of A but a random position. We call T(m, k}
the average number of key comparisons needed to ob-
tain the k smallest elements of A[Q, m — I]. After the
m — 1 comparisons used in the partitioning, there are
three cases depending on p: (1) k < p, in which case the
right subtree will never be expanded, and the total ex-
tra cost will beT(p, k) to solve j4[0,p-l]; (2) k = p+l,
in which case the left subtree will be fully expanded to
obtain its p elements at cost T(p,p); and (3) k > p + 1,
in which case we pay T(p, p} on the left subtree, whereas
the right subtree, of size m — 1 — p, will be expanded so
as to obtain the remaining k — p — 1 elements.

Thus IQS average cost follows Eq. (4.5), which is
rearranged as Eq. (4.6). It is easy to check that this is
exactly the same as Eq. (3.1) in [17], which shows that
IQS makes exactly the same number of comparisons of
the offline version, PQS. This is 2m + 2(m + l)Hm -
2(m + 3 - k)Hm+i-k - 6k + 6. That analysis [17] is
rather sophisticated, resorting to bivariate generating
functions. In which follows we give a simple develop-
ment arriving at a solution of the form O(m + k log k}.

(4.5)

Eq. (4.6) simplifies to Eq. (4.7) by noticing that
T(p,p) behaves exactly like QUICKSORT, 2(p+l)#p-4p
[9] (this can also be seen by writing down T(p) = T(p,p)
and noting that the very same QUICKSORT recurrence is

174

obtained), so that
1). We also writep' for k — p — l and rewrite the second
sum as

We make some pessimistic simplifications now. The
first sum governs the dependence on k of the recurrence.
To avoid such dependence, we bound the second argu-
ment to k and the first to m, as T(m, k) is monotonic on
both its arguments. The new recurrence, Eq. (4.8), de-
pends only on parameter m and treats k as a constant.

We subtract mT(ra) - (m - l)T(m - 1) using
Eq. (4.8), to obtain Eq. (4.9) and Eq. (4.10). Since T(fc)
is actually T(fc, fc), we use again QUICKSORT formula in
Eq. (4.11). We bound the first part by 2m + 2kHm-k

and the second part by 1kHk to obtain Eq. (4.12).

sum

Upper bounding again and multiplying by m we get a
new recurrence in Eq. (4.13). Note that this recurrence
only depends on m.

Note that Hm - Hk < ̂ ^ and thus (k - 2)(Hm -
Hk] < m — k. Also, Hm-k < Hm, so collecting terms we
obtain Eq. (4.17). Therefore, IQS is also O(m + fclogfc)
in the average-case when we choose pivots at random.

As a final remark, note that when we use QSS a
portion of the QUICKSORT partitioning work repeats
the work made in the previous QuiCKSELECT calling.
Fig. 6 illustrates this, showing that upon finding the k-
th element, the QuiCKSELECT stage has produced par-
titions AI arid ^2, however the QUICKSORT that follows
processes the left partition as a whole ([Aipi^]), ig-
noring the previous partitioning work done over it. On
the other hand, IQS sorts the left segment by process-
ing each partition independently, because it knows their
limits (as they are stored in the stack S). This also ap-
plies to PQS and it explains the finding of C. Martinez
that PQS, and thus IQS, makes Ik — 4Hk + 2 less com-
parisons than QSS [17].

Figure 6: Partition work performed by QSS. First, QSS
uses QuiCKSELECT for finding the fc-th element (left).
Then it uses QUICKSORT on the left array segment as a
whole ([Al pi A<2\} neglecting the previous partitioning
work (right).

175

This result does not yet look good enough, but we
plug it again into Eq. (4.7). In this case, we bound the

Subtracting again raT(m) — (m — l)T(m — 1) we get

Eq. (4.14). Noting that

we get Eq. (4.15), which is solved in Eq. (4.16).

5 IQS and the minimum spanning tree

In this section we explore a practical application of
IQS: improving the performance of Kruskal's Minimum
Spanning Tree (MST) algorithm.

Let us recall the MST problem. Let G(V, E) be a
connected graph with a nonnegative cost function d(e)
assigned to its edges e G E. A minimum spanning tree
mst of the graph G(V, E) is a tree composed of edges of
E that connect all the vertices of V at the lowest total
cost Y^eemst °Ke)' Note that, given a graph, its MST is
not necessarily unique.

Let n= |V | , ra= | .E | . The most popular algorithms
to solve the MST problem are Kruskal's [16] and Prim's
[20], whose basic versions have complexity O(mlogm)
and O(n2), respectively. We call these basic versions
Kruskall and Priml, respectively. In sparse graphs,
with \E\ — O(n), it is recommended to use Kruskall,
whereas in dense graphs, with \E\ = O(n2), Priml
is recommended [5, 25]. Alternatively, Prim can be
implemented using Fibonacci Heaps [8] to obtain O(m+
nlogn) complexity.

There are other MST algorithms compiled by Tar-
jan [23]. Recently, B. Chazelle [4] gave an O(ma(m, n))
algorithm, where a E u;(l) is the very slowly-growing in-
verse Ackermann's function. Later, S. Pettie and V. Ra-
machandran [19] proposed an algorithm that runs in
optimal time O(T*(m,n)), where T*(rn,n) is the mini-
mum number of edge-weight comparisons needed to de-
termine the MST of any graph G(V, E) with m edges
and n vertices. The best known upper bound of this al-
gorithm is also O(ma(m,n)). These algorithms almost
reach the lower bound £2(m), yet they are so compli-
cated that their interest is mainly theoretical. Further-
more, there is a randomized algorithm [13] that finds
the MST in O(m] time with high probability in the
restricted RAM model, but it is also considered imprac-
tical as it is complicated to implement and the O(m)
complexity hides a big constant factor.

Experimental studies on MST are given in [18, 14,
15]. In [18], they compare several versions of Kruskal's,
Prim's and Tarjan's algorithms, concluding that the
best in practice (albeit not in theory) is Prim using
pairing heaps [7]. We call this algorithm Prim2.
Their experiments show that neither Cheriton and
Tarjan's [23] nor Fredman and Tarjan's algorithm [8]
ever approach the speed of Prim2. On the other hand,
they show that Kruskall can run very fast when it uses
an array of edges that can be overwritten during sorting,
instead of an adjacency list. Moreover, they show
that it is possible to use heaps to improve Kruskal's
algorithm. They call this variant Kruskal's with demand
sorting, and we will refer to it as Kruskal2. The
result is a rather efficient MST version with complexity

Figure 7: The basic version of Kruskal's MST algorithm
(Kruskall). To carry out the heap-based optimization
(Kruskal2), we change line 3 to heapify(.E') and line
5 to (e — {u,v}) <— .E.extractMinQ.

O(m + fclogra), being k < m the number of edges
reviewed by Kruskal technique.

In [14, 15], they give an algorithm whose complexity
is O(m + nlogn). It generates a subgraph G' by
selecting ^/mn edges from G at random. Then, it builds
the minimum spanning forest T" of G'. Then, it filters
each edge e e E using the cycle property: discard e if
it is the heaviest edge on a cycle in T' U {e}. Finally, it
builds the MST of the subgraph that contains the edges
of T' and the edges that were not filtered out. We call
this algorithm iMax.

5.1 Kruskal's MST algorithm. Kruskal's algo-
rithm starts with n single-node components, and it
merges them until it produces a sole connected compo-
nent. To do this, Kruskall begins by setting the mst
to (V, 0), that is, n single-node trees. Later, in each it-
eration, it adds to the mst the cheapest edge of E that
does not produce a cycle on the mst, that is, it only
adds edges whose vertices belong to different connected
components. Once the edge is added, both components
are merged. The process ends when the mst becomes a
single connected component. At this point the mst is a
minimum spanning tree of G(V, E).

To manage the component operations, we use the
Union-Find data structure C with path compression,
see [5, 25] for a comprehensive explanation. Given
two vertices u and v, we use the find(w) operation
to compute which component u belongs to, and use
union(u, v) to merge the components of u and v. The
amortized cost of find(w) is O(o:(ra,n)) and the cost of
union(w, v) is constant.

Fig. 7 depicts the basic Kruskal's MST algorithm.

176

We need O(n) time to initialize both C and mst, and
O(ralogra) time to sort the edge set E. Then we make
at most mO(a(ra,n))-time iterations of the While
loop. Therefore, Kruskall complexity is O(mlogm).

Assuming we are using either full or random graphs
whose cost edges are assigned at random independently
of the rest (using any continuous distribution), the
subgraph composed by V with the edges reviewed by the
algorithm is a random graph [12]. Therefore, based on
[12, pp. 349], we expect to finish the MST construction
upon reviewing |nlnn+ ^7n+ \+O(^) edges, which
can be much lower than ra. So, it is not necessary
to sort the whole set E, but it is enough to select
and extract one by one the minimum-cost edges until
we complete the MST. The common solution of this
type consists in min-heapifying the set E, and later
performing as many min-extractions of the lowest cost
edge as needed (in [18], they do this in their Kruskal's
demand sorting version). This is an implementation of
Incremental Sort. For this sake we modify lines 3 and
5 of Fig. 7: line 3 changes to heapify(£) and line 5 to
(e = {u,v}) <— .E.extractMinQ.

Kruskal2 needs O(n) time to initialize both C and
mst, and O(ra) time to heapify E. We expect to review
^nlnn + O(n) edges in the While loop. For each of
these edges, we use O(logm) time to select and extract
the minimum element of the heap, and O(a(m, n)) time
to perform the union and find operations. Therefore,
Kruskal2 average complexity is O(m + nlognlogm).
As n — 1 < ra < n2, Kruskal2 average complexity can
also be written as O(m + nlog n).

5.2 IQS-based implementation of the Kruskal's
MST algorithm. We can use IQS in order to incre-
mentally sort E. After initializing C and mst, we create
the stack S, and push m into S. Later, inside the While
loop, we call IQS in order to obtain the k-th edge of E
incrementally. Fig. 8 shows our Kruskal's MST variant,
that we call KruskalS. Note that the expected number
of pivoting edges that we store in S is O(logm).

We need O(ri) time to initialize both C and mst,
and constant time for S. We expect to review |nlnn +
O(ri) edges within the While loop, thus we need
O(m + nlog2n) overall expected time for IQS and
O(na(m,n) logn) time for all the union and find
operations. Therefore, KruskalS average complexity
is O(m + nlog2 n), just as Kruskal2.

6 Experimental results

We ran two experimental series with IQS. In the
first series we compare IQS against other alternatives.
In the second we evaluate our KruskalS algorithm.
The experiments were run on an Intel Pentium 4 of

Figure 8: Our Kruskal's MST variant (KruskalS).
Note the changes in lines 3 and 5 with respect to
Kruskall.

3 GHz, 4 GB of RAM and local disk. For each
experimental condition we show averages computed over
50 repetitions, for all competing implementations. The
weighted least square fittings were performed with R
[21]. In order to illustrate the precision of our fittings,
we also show the average percent error of residuals with
respect to real values (|^I:^|100%) for fittings belonging
around to the 45% of the largest values2.

6.1 Evaluating IQS. We compared IQS against
PQS, QSS, and two online approach: the first
based on classical heaps [26] (called HEx), and
the second based on sequence heaps [22] (called
SH, obtained from www.mpi-inf.mpg.de/~sanders/-
programs/spq/). The idea is to verify that IQS is in
practice a competitive algorithm for the Partial Sorting
problem for finding the smallest elements in ascending
order. For this sake, we use random permutations in
[0,m — 1], for m [105,108], and we select the k first
elements with k = 2J < m, for j > 10. The selection is
incremental for IQS, HEx and SH, and in one shot for
PQS and QSS. We measure CPU time and the num-
ber of key comparisons, except for SH where we only
measure CPU time.

As it turned out to be more efficient, we implement
HEx by using the bottom up heuristic [24] for extract-
Min: when the minimum is extracted, we lift up ele-

^Our fittings are too pessimistic for small permutations or edge
sets, so we intend to show that they are asymptotically good. In
the first series we compute the percent error for permutations of
length ?n [107,108] for all the k values, approximately 45.4% of
the measures. In the second series we compute the percent error
for edge density in [16%, 100%] for all values of |V|, approximately
44.4% of the measures. Both turn out to be around 45%.

177

www.mpi-inf.mpg.de/~sanders/-programs/spq/
www.mpi-inf.mpg.de/~sanders/-programs/spq/

Figure 9: Performance comparison between IQS, PQS, QSS, HEx and SH as a function of the amount of
searched elements k for different values of set size m. Note the logscales in the plots.

* vj^cpu

Jr VfScmp

IQScpti

r\<£Scmp
Q»oCpW

vj^&cmp

HExc?m

HExcmp
CTT
*3**-cpu

Fitting
25.79m + 16.87A;log2A;
2.138m + 1.232A;log2 A;
25.81m +17.44Hog2 A;
2.138m + 1.232fclog2 A;
25.82m + 17.20/clog2A;
2.140m + 1.292A;log2 A;
23.85m + 67.89A;log2m
1.904m + 0.967A;log2m
9.165m Iog2 m + 66.16A;

Error
6.77%
5.54%
6.82%
5.54%
6.81%
5.53%
6.11%
1.20%
2.20%

Table 1: IQS, PQS, QSS, HEx and SH weighted least
square fittings. For SH we only compute the CPU time
fitting. CPU time is measured in nanoseconds.

ments on a min-path from the root to a leaf in the bot-
tom level. Then, we place the rightmost element (the
last of the heap) into the free leaf, and bubble it up to
restore the min-heap condition. Using this heuristic we
perform only Iog2 m + 0(1) key comparisons for each
extraction on average (saving up to half of the compar-
isons used by a straightforward implementation taken
from textbooks [5, 25]).

We summarize the experimental results in Figs. 9,
10 and 11, and Table 1. As can be seen from the least
square fittings of Table 1, IQS CPU time performance
is 2.99% slower than that of its offline version PQS.
The number of key comparisons is exactly the same,
as we expected from Section 4. This is an extremely
small price for permitting incremental sorting without
knowing in advance how many elements we wish to

retrieve, and shows that IQS is practical. Moreover,
as the pivots in the stack help us reuse the partitioning
work, our online IQS is 1.33% slower in CPU time and
uses 4.20% less key comparisons than the offline QSS.

On the other hand, we obtain large improvements
with respect to online alternatives. According to the
insertion and deletion strategy of sequence heaps, we
compute its CPU time least square fitting by noticing
that we can split the experiment in two stages. The
first inserts m random elements into the priority queue,
and the second extracts the smallest A; elements from it.
Then, we obtain a simplified 0(mlogm +A;) complexity
model that shows that most of the work performed by
SH comes from the insertion process. Note that, if we
want a small fraction of the sorted sequence, we prefer
to pay a lower insertion and a higher extraction cost
(just like IQS) than to perform most of the work in
the insertions and a little in the extractions. Finally,
even when the online HEx with the bottom-up heuristic
uses at most 2m key comparisons to heapify the array,
and log m +0(1) key comparisons on average to extract
elements, numerous cache faults slow down its perfor-
mance. As a matter of fact, HEx takes 3.88 times more
CPU time and 18.76% less key comparisons than IQS.

Fig. 9(a) compares the five algorithms. As can be
seen, even though SH is the best implementation to
sort the whole set, it is not so efficient to sort just a
small fraction of it. We suspect that this is because SH
is cleverly optimized for the whole process of insertions
and extractions, but not for a small fraction. As we
have already said, its CPU time depends only mildly on
the number of extracted elements, as most of the work
performed by SH comes from the insertion process.

178

Figure 10: Detail of key comparisons for IQS, PQS,
QSS and HEx for m — 108 varying k. Note the logscale
in the plot.

Figure 11: IQS CPU time as a function of k and m.
Note the logscale in the plot.

HEx has the second worst CPU performance for k <
O.lm and the worst for k 6 [O.lm,m], despite that it
makes less key comparisons than others when extracting
few objects, see Fig. 10. The reason is that classic
heaps (even with the bottom-up heuristic) do not take
advantage of the cache because of their poor locality of
reference, which slows down the performance of HEx.
Fig. 9(b) shows that PQS is the fastest algorithm when
sorting a small fraction of the set, but IQS and QSS
have rather similar behavior, and HEx follow them by
far, confirming the results of our fittings of Table 1.

Finally, Fig. 11 shows that, as k grows, IQS
behavior changes as follows. When k < 0.01m, there
is no difference in the first k element incremental
sorting, namely, the term m dominates the cost. When

Sorted edges
Kruskallcpu

Kruskal2cpu

Kruskal3cpu

Fitting
0.532nlnn

12.85mlog2 m
39.99m + 46.30n Iog2 n Iog2 m

19.26m + 10.93nlog2n

Error
1.69%
1.74%
6.96%
4.17%

Table 2: Weighted least square fittings for Kruskal's
MST versions (n = \V\, m = \E\). CPU time is
measured in nanoseconds.

0.01m < k < 0.04m, there is a slight increase of both
CPU time and key comparisons, that is, both terms
m and Hog A; take part in the cost. Finally, when
0.04m < k < m, term klogk leads the cost.

6.2 Evaluating KruskalS. We now evaluate how
IQS improves Kruskal's MST algorithm, so we compare
its three versions against state of the art alternatives.
We use synthetic graphs with edges chosen at random,
and with edge costs uniformly distributed in [0,1]. We
consider graphs with \V\ e [2000,26000], and graph
edge densities p e [0.5%, 100%], where p = nff1)100%.

According to the experiments of Section 6.1, we
preferred classical heaps using the bottom-up heuris-
tic (HEx) over sequence heaps (SE) to implement
Kruskal2 in these experiments (as we expect to extract
|nlnn + O(n) <C m edges). We also show results for
iMax and Prim2 implementations from [14], as well
as Priml in complete graphs3. We obtained both the
iMax and the optimized Prim2 implementations from
www.mpi-sb.mpg.de/~sanders/dfg/iMax.tgz.

For Kruskal's versions we measure the CPU time,
memory requirements and the size of the edge subset
reviewed during the MST construction. Note that those
edges are the ones we incrementally sort. As the three
versions run over the same graphs, they review the same
subset of edges and use almost the same memory. For
Priml we only measure CPU time. For Prim2 and
iMax we measure CPU time and memory requirements.

We summarize the experimental results in Figs. 12,
14 and 13, and Table 2. Table 2 shows our least
squares fittings for the MST experiments. First of all,
we compute the fitting for the number of lowest-cost
edges Kruskal's MST algorithm reviews to build the
tree. We obtain 0.532 |V|ln|V|, which is very close
to the theoretically expected value ||V| In |V|. Second,
we compute fittings for the CPU cost of the three
versions of Kruskal's using their theoretical complexity

^Note that we use the plain Priml, that is, without priority
queues. This is the best choice to implement Prim in complete
graphs.

179

www.mpi-sb.mpg.de/~sanders/dfg/iMax.tgz

Figure 12: Evaluating Kruskal3. MST CPU time, Figure 13: Memory used by Kruskal3, iMax and
dependence on p. For p — 100% Kruskall reaches 70.1 Prim2 for \V\ — 20000 nodes, dependence on p. As
seconds. Note the logscale. can be seen, iMax and Prim2 exhausts the memory

for p > 16% and p > 32%, respectively.

models. Note that, in terms of CPU time, Kruskall
is 18.27 times and Kruskal2 is 2.14 times slower than
KruskalS.

Fig. 12 compares the Kruskal's versions, Prim2
and iMax for n = 20000 and graph edge density
p G [0.5%, 100%]. As can be seen, Kruskall is, by
far, the slowest version, and, KruskalS is systematically
the best for all p. We also notice that, as p increases,
the advantage of our MST variant is more remarkable
against basic Kruskal's MST algorithm. We could not
complete the series for Prim2 and iMax, as their
structures require too much space. For 20000 vertices
and p > 32% these algorithms reach the 3 GB out-of-
memory threshold of our machine.

Fig. 13 shows the memory requirements of
KruskalS, iMax and Prim2 for n = 20000. Since our
Kruskal's implementation sort edges in place, we require
a bit of extra memory to manage the edge incremen-
tal sorting. On the other hand, the additional struc-
tures of Prim2 and iMax increase heavily the mem-
ory consumption of the process. We suspect that these
high memory requirements trigger many cache faults
and slow down the CPU performance. As a result, for
large graphs, Prim2 and iMax become slower than
KruskalS, despite their better complexity.

Figs. 14(a), 14(b), 14(c) and 14(d) show the com-
parison for four edge densities p = 2%, 8%, 32% and
100%, respectively. In the four plots KruskalS is al-
ways the best Kruskal's version for all sizes of set V and
all edge densities p. Moreover, Fig. 14(d) shows that
KruskalS is also better than Priml, even in complete
graphs. On the other hand, KruskalS is better than
iMax in the four plots, and very competitive against

Prim2, beating Prim2 in some cases (for \V\ > 18000
and 22000 vertices in p — 2% and 8%, respectively).
We suspect that this is due to the high memory us-
age of Prim2, which affects cache efficiency. Note that
with p = 32% and 100% we could not finish the se-
ries with Prim2 and iMax because of their memory
requirements.

7 Conclusions
We have presented iNCREMENTALQuiCKSELECT
(IQS), an algorithm to incrementally retrieve the next
smallest element from a set. IQS has the same average
complexity as existing solutions, but it is considerably
faster in practice. It is nearly as fast as the best algo-
rithm that knows beforehand the number of elements
to retrieve. We have applied IQS to solve the graph
MST problem, showing that the IQS-based Kruskal's
version is competitive against the best state-of-the-art
alternatives.

One trend of further work considers studying the
behaviour of our IQS-based Kruskal on different graph
classes, and also research variants tuned for secondary
memory. Another trend is to look for other applications
of IQS. We finish by detailing two of them.

The first is that we can use the IQS stack-of-
pivots underlying idea to partially sort in increas-
ing/decreasing order starting from any place of the ar-
ray. For instance, if we want to perform an incremen-
tal sorting in increasing order with a stack initialized
as the set size, we first use QuiCKSELECT to find the
first element we want, storing in the stack all the piv-
ots larger than the first element, and later we use IQS

180

Figure 14: Evaluating KruskalS. MST CPU time, dependence on n = \V\ in (a), (b), (c) and (d) for p — 2%,
8%, 32% and 100%, respectively. For n = 26000, in (a) Kruskall, Kruskal2 and iMax reach 2.67, 0.76 and
0.62 seconds; in (b) Kruskall, Kruskal2 and iMax reach 9.08, 1.56 and 1.53 seconds; in (c) Kruskall and
Kruskal2 reach 37.02 and 4.82 seconds; in (d) Kruskall, Kruskal2 and Priml reach 121.14, 13.84 and 25.96
seconds, respectively.

with the stack to search for the next elements (the other
pivots would be useful for decreasing order, initializing
the stack with —1). Moreover, with two stacks we can
make centered searching, namely, finding the k-th ele-
ment, the (k + l)-th and (k - l)-th, the (k + 2)-th and
(k — 2)-th, and so on.

The second remarkable application is that we can
use IQS as an underlying implementation of the HEAP
data structure [5, 25]. (Naturally, this allow us to speed
up HEAPSORT [26].) In this application, we heapify
the set A by using IQS to search for the first element,
paying on average O(m) CPU time, and then we extract
elements by using IQS incrementally, paying average
amortized time O(log/c) for the k-th extraction. To

insert a new element x, we need to know which is the
array segment that corresponds to x (see Fig. 1). To
do this it is enough with reviewing the pivot stack S.
Assume S = {\A\,pi,p2,...,pj}. From Lemma 2.1, we
know that A\p\] > A[pz] > ... > A[pj}. So, to insert x
we need to find the first pivot pi such that A\pi] < x,
so as to place x at A[PJ_I]. Then, we put ^4[p^_i] at
position pi-i + 1 (and increment pi-\ in S). Then,
we move the old A[pi-i + 1] value to A[pj_2], and so
on. Note that, as pivot closer to the bottom cover
exponentially larger areas, the insertion takes O(l) time
on average. With this IQS-based heap we can reach
the O(m+n log n) performance of Fibonacci-heap-based
Prim's algorithm [8], yet using a rather simple heap.

181

Acknowledgment
We wish to thank the very valuable comments from the
anonymous referees.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison-Wesley, 1999.

[2] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and
R. E. Tarjan. Time bounds for selection. Journal of
Computer and System Sciences, 7(4):448-461, 1973.

[3] J. M. Chambers. Algorithm 410 (PARTIAL SORTING).
Communications of the ACM, 14(5):357-358, 1971.

[4] B. Chazelle. A minimum spanning tree algorithm with
inverse-ackermann type complexity. Journal of the
ACM, 47(6): 1028-1047, 2000.

[5] T. H. Gormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
2nd edition, 2001.

[6] R. W. Floyd. Algorithm 245 (TREESORT). Communi-
cations of the ACM, 7:701, 1964.

[7] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E.
Tarjan. The pairing heap: a new form of self-adjusting
heap. Algorithmica, 1(1):111-129, 1986.

[8] M. L. Fredman and R. E. Tarjan. Fibonacci heaps
and their uses in improved network optimization algo-
rithms. Journal of the ACM, 34(3):596-615, 1987.

[9] G. Gonnet and R. Baeza-Yates. Handbook of Algo-
rithms and Data Structures. Addison-Wesley, 2nd edi-
tion, 1991.

[10] C. A. R. Hoare. Algorithm 65 (FIND). Communications
of the ACM, 4(7):321-322, 1961.

[11] C. A. R. Hoare. Quicksort. Computer Journal,
5(1):10-15, 1962.

[12] S. Janson, D. Knuth, T. Luczak, and B. Pittel. The
birth of the giant component. Random Structures &
Algorithms, 4(3):233-358, 1993.

[13] D. Karger, P. N. Klein, and R. E. Tarjan. A random-
ized linear-time algorithm to find minimum spanning
trees. J. ACM, 42(2):321-328, 1995.

[14] I. Katriel, P. Sanders, and J. Traff. A practical
minimum spanning tree algorithm using the cycle
property. Research Report MPI-I-2002-1-003, Max-
Planck-Institut fur Informatik, October 2002.

[15] I. Katriel, P. Sanders, and J. Traff. A practical
minimum spanning tree algorithm using the cycle
property. In llth European Symposium on Algorithms
(ESA '03), LNCS 2832, pages 679-690, 2003.

[16] J. Kruskal. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the
American Mathematical Society, 7:48-50, 1956.

[17] C. Martinez. Partial quicksort. In Proc. 6th ACM-
SIAM Workshop on Algorithm Engineering and Ex-
periments and 1st ACM-SIAM Workshop on Analytic
Algorithmics and Combinatorics, pages 224-228, 2004.

[18] B. Moret and H. Shapiro. An empirical analysis of
algorithms for constructing a minimum spanning tree.

In Proc. 2nd Workshop Algorithms and Data Structures
(WADS'91), LNCS 519, pages 400-411, 1991.

[19] S. Pettie and V. Ramachandran. An optimal mini-
mum spanning tree algorithm. Journal of the ACM,
49(1): 16-34, 2002.

[20] R. Prim. Shortest connection networks and some gen-
eralizations. Bell System Technical Journal, 36:1389-
1401, 1957.

[21] R Development Core Team. R: A language and
environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria, 2004.

[22] P. Sanders. Fast priority queues for cached memory.
J. Exp. Algorithmics, 5:7, 2000.

[23] R. E. Tarjan. Data structures and network algorithms.
Society for Industrial and Applied Mathematics, 1983.

[24] I. Wegener. BOTTOM-UP-HEAPSORT, a new variant
of HEAPSORT beating, on an average, QUICKSORT (if
n is not very small). Theoretical Computer Science,
118(l):81-98, 1993.

[25] M. Weiss. Data structures & algorithm analysis in
Java™. Addison-Wesley, 1999.

[26] J. Williams. Algorithm 232 (HEAPSORT). Communica-
tions of the ACM, 7(6):347-348, 1964.

182

Workshop on Analytic Algorithmics and Combinatorics

This page intentionally left blank

Deterministic Random Walks*

Joshua Cooper1" Benjamin Doerr* Joel Spencer^ Garbor Tardos^

Abstract
Jim Propp's P-machine, also known as 'rotor router
model' is a simple deterministic process that simulates
a random walk on a graph. Instead of distributing chips
to randomly chosen neighbors, it serves the neighbors in
a fixed order.

We investigate how well this process simulates a
random walk. For the graph being the infinite path,
we show that, independent of the starting configuration,
at each time and on each vertex, the number of chips
on this vertex deviates from the expected number of
chips in the random walk model by at most a constant
GI, which is approximately 2.29. For intervals of length
L, this improves to a difference of O(logL) (instead of
2.29L), for the Z/2 average of a contiguous set of intervals
even to O(\/\ogL). It seems plausible that similar
results hold for higher-dimensional grids Zd instead of
the path Z.

1 The Propp Machine
The following deterministic process was suggested by
Jim Propp as an attempt to derandomize random walks
on infinite grids Zd:

Rules of the Propp machine: Each vertex
x G Zd is associated with a 'rotor' and a cyclic
permutation of the Id cardinal directions of
Zd. Each vertex may hold an arbitrary number
of 'chips'. In each time step, each vertex sends
out all its chips to neighboring vertices in the
following manner: The first chip is sent into
the direction the rotor is pointing, then the

*The authors enjoyed the hospitality, generosity and the strong
coffee of the Renyi Institute (Budapest) while doing this research.
Spencer's research was partially supported by EU Project Fi-
nite Structures 003006; Doerr's by EU Research Training Net-
work COMBSTRU; Cooper's by an NSF Postdoctoral Fellowship
(USA, NSF Grant DMS-0303272); and Tardos was a member of
the Renyi Institute.

^Courant Institute of Mathematical Sciences, New York,
U.S.A. Research supported by NSF Grant DMS-0303272.

^Max-Planck-Institut fur Informatik, Saarbriicken, Germany.
§Courant Institute of Mathematical Sciences, New York,

U.S.A.
'Renyi Institute of the Hungarian Academy of Sciences, Bu-

dapest, Hungary.

rotor direction is updated to the next direction
in the cyclic ordering. The second chip is sent
in this direction, the rotor is updated, and so
on. In consequence, the chips are distributed
highly evenly among the neighbors.

This process found considerable attention recently. It
turns out that the Propp machine in several respects
behaves highly similar to a. random walk. Used to sim-
ulate internal diffusion limited aggregation (repeatedly,
a single chip is inserted at the origin, performs a ro-
tor router walk until it reaches an unoccupied position
and occupies it), it was shown by Levine and Peres [LP]
that this derandomization produces results that are ex-
tremely close to what a random walk would have pro-
duced. See also Kleber's paper [Kle05], which adds an
interesting experimental results: Having inserted three
million chips, the closest unoccupied site is at distance
976.45, the farthest occupied site is at distance 978.06.
Hence the occupied sites almost form a perfect circle!

In [CS05, CS], the authors consider the following
question: Start with an arbitrary initial position (that
is, chips on vertices and rotor directions), run the Propp
machine for some time and compare the number of chips
on a vertex with the expected number of chips a ran-
dom walk (run for the same amount of time) would have
gotten to that vertex. Apart from a technicality, which
we defer to the end of Section 2, the answer is astonish-
ing: For any grid Zd, this difference (discrepancy) can
be bounded by a constant, independent of the number
of chips, the run-time, the initial rotor positions and the
cyclic permutations of the cardinal directions.

In this paper, we continue this work. We mainly
regard the one-dimensional case, but as will be visible
from the proofs, our methods can be extended to higher
dimensions as well. Besides making the constant precise
(approximately 2.29), we show that the differences
become even better for larger intervals (both in space
and time). We also present a fairly general method
to prove lower bounds (the 'arrow forcing theorem').
This shows that all our upper bounds actually are sharp
(including the constant of about 2.29).

Instead of talking about the expected number of
chips the random walk produces on a vertex, we find
it more convenient to think of the following 'linear'

185

machine. Here, in each time step each vertex sends
out exactly the same number (possibly non-integral)
of chips to each neighbor. Hence for a given starting
configuration, after t time-steps the number of chips in
the linear model is exactly the expected number of chips
in the random walk model.

2 Our Results
We obtain the following results (again, see the end
of the section for a slight technical restriction): Fix
any starting configuration, that is, the number of chips
on each vertex and the position of the rotor on each
vertex. Now run both the Propp machine and the linear
machine for a fixed number of time-steps. Looking at
the resulting chip configurations, we have the following:

• On each vertex, the number of chips in both models
deviates by at most a constant c\ w 2.29. We may
interpret this as that the Propp machine simulates
a random walk extremely well. In some sense, it
is even better than the random walk. Recall that
in a random walk a vertex holding n chips only
in expectation sends n/2 chips to the left and the
right. With high probability, the actual numbers
deviate from this by f^n1/2"6).

• In each interval of length L, the number of chips
that are in this interval in the Propp model deviates
from that in the linear model by only O(logL)
(instead of, e.g., 2.29L).

• If we average this over all length L intervals in some
larger interval of Z, things become even better.
The average squared discrepancy in the length L
intervals also is only 0(logl/).

We may as well average over time. In the setting
just fixed, denote by f (x , T) the sum of the numbers of
chips on vertex x in the last T time steps in the Propp
model, and by E(x, T) the corresponding number for the
linear model. Then we have the following discrepancy
bounds:

• The discrepancy on a single vertex over a time
interval of length T is at most |/(x, T) - E(x, T}\ =
0(ja/2). fjence a vertex cannot have too few or
too many chips for a long time (it may, however,
alternate having too few and too many chips and
thus have an average O(l) discrepancy over time).

interval of length T satisfies

• We may extend this to discrepancies in intervals in
space and time: Let / be some interval in Z having
length L. Then the discrepancy in I over a time

Hence if L is small compared to T1/2, we get
L times the single vertex discrepancy in a time
interval of length T (no significant cancellation in
space); if L is of larger order than T1/2, we get
T times the O(logL) bound for intervals of length
L (no cancellation in time, the discrepancy cannot
leave the large interval in short time).

All bounds stated above are sharp, that is, for each
bound there is a starting configuration such that after
suitable run-time of the machines we find the claimed
discrepancy on a suitable vertex, in a suitable interval,
etc.

A technicality: There is one limitation, which we
only briefly mentioned, but without which our results
are not valid. Note that since Zd is a bipartite graphs,
the chips that start on even vertices ("even chips" for
short) never mix with those which start on odd positions
("odd chips"). It looks as if we would play two games
in one. This is not true, however. The even chips and
the odd ones do interfere with each other through the
rotors.

In fact, there are initial positions such that the odd
chips suitably reset the arrows and thus mess up the
even chips. Note that the odd chips are not visible if we
look at an even position after an even run-time. Hence
in this general setting, no useful bounds on discrepancies
on a single vertex can exist.

We therefore assume that the starting configuration
has chips only on even positions ("even starting config-
uration"). Of course, nothing would change if we only
allowed odd chips.

An alternative, in fact equivalent, solution would be
to have two rotors on each vertex, one for even and one
for odd chips.

3 The Basic Method
For numbers a and b set [a..b] = { z e Z | a < 2 < 6 } and
[b] = [!..&]. For integers m and n, we write m ~ n if in
and n have the same parity, that is, if m — n is even.

For a fixed starting configuration, we use /(x, t) to
denote the number of chips at time t at position x and
ARR(x, t) to denote the value of the arrow at time t
and position x, i.e., +1 if it points to the right, and —1

186

if it points to the left. We have:

Note that after an even starting configuration if
x ~ t does not hold, then we have /(x,i) = 0 and
ARR(x,t + 1) = ARR(z,£).

We consider the machine to be started at time
t = 0. Being a deterministic process, the initial
configuration (i.e., the values /(x,0) and ARR(x, 0),
x e Z) determines the configuration at any time t > 0
(i.e., the values /(x,t) and ARR(x,i), x G Z). The
totality of all configurations for t > 0 we term a game.
We call a configuration even if no chip is at an odd
position. Similarly, a position is odd if no chip is at
an even position. Clearly, an even position is always
followed by an odd position and vice versa.

By E(x, t) we denote the expected number of chips
on a vertex x after running a random walk for t steps
(from the implicitly given starting configuration). As
described earlier, this is equal to the number of chips
on x after running the linear machine for t time-steps.

In the proofs, we need the following mixed nota-
tion. Let E(x,ti,t2) be the expected number of chips
at location x and time t% if a simple random walk were
performed beginning from the Propp machine's config-
uration at time t\. In other words, this is the number of
chips on vertex x after t\ Propp and £2 — ̂ i linear steps.

Let H(x,t) denote the probability that a chip
arrives at location x at time t in a simple random
walk begun from the origin, i.e., H(x,i] = 2~*(/ t , ^ / 2)>
if t ~ x, and H(x,t) — 0 otherwise. Let INF(y,£)
denote the "influence" of a Propp step of a single chip
at distance y with t linear steps remaining (compared
to a linear step). More precisely, we compare the two
probabilities that a chip on position y reaches 0 if (a)
it is first sent to the right (by a single Propp step) and
then does a random walk for the remaining t — I time
steps, or (b) it just does t random walk steps starting
from y. Hence,

This shows in particular, that INF(y,£) < 0 for y > 0
and INF(y,£) > 0 for y < 0. We have INF(0,£) = 0.

Therefore, the first Propp step with arrow pointing to
the left has an influence of — INF(y,£).

Using this notation, we can conveniently express
the (signed) discrepancy f (x , t) — E(x, t) on a vertex x
using information about when "odd splits" occurred. It
suffices to prove the result for the vertex x = 0. Clearly,
E(Q,t,t) = f (Q , t) and £(0,0, £) = E(Q,t), so that

In comparing E(Q,s + l,t) and £"(0,s,t), note that
whenever there are two chips on some vertex at time s,
then these chips can be assumed to behave identically
no matter whether the next step is a linear or a Propp
step. Denote by ODDS the set of locations which are
occupied by an odd number of chips at time s. Then

Therefore, appealing to (3.3),

This equation will be crucial in the remainder of
the paper. It shows that the discrepancy on a vertex
only depends on the initial arrow positions and the set
of location-time pairs holding an odd number of chips.

In the remainder, we show that we can construct
starting configurations with arbitrary initial arrow po-
sitions and odd number of chips at arbitrary sets of
location-time pairs. This will be the heart of our lower
bound proofs in the following sections. Here NO denotes
the set of non-negative integers.

187

A simple calculation yields

Let Si(y) be the ith time (up to time t) that y is occupied
by an odd number of chips, beginning with i = 0.
Switching the order of summation and noting that the
arrows flip each time there is an odd number of chips
on a vertex, we have

Note that

THEOREM 3.1. (PARITY- FORCING THEOREM)
For any initial position of the arrows and any
TT : Z x NO — > {0, 1}, there is an initial even configura-
tion of the chips such that for all x G Z, t G NO such
that x ~ t, f (x , t} and ?r(x, i) have identical parity.

Since rotors change their direction if arid only if the
vertex has an odd number of chips, the parity-forcing
theorem is a consequence of the following arrow-forcing
statement.

THEOREM 3.2. (ARROW-FORCING THEOREM) Let
p(x,t] {— !,+!} be arbitrarily defined for t > 0
integer and x ~ t. Then there exists an even
initial configuration that results in a game with
ARR(x, t) = p(x, t) for all such x and t. Similarly, if
p(x, t} is defined for x ~ t + I a suitable odd initial
configuration can be found.

Proof. By symmetry, it is enough to prove the first
statement.

Assume the functions / and ARR describe the
game following an even initial configuration, and for
some T > 0, we have ARR(x,£) = p (x , t) for all
0 < t < T + 1 and x ~ t. We modify the initial
position by defining /'(x, 0) = /(x, 0) + ex2T for even x,
while we have /'(x, 0) = 0 for odd x and ARR7(x, 0) =
ARR(x,0) for all x. Here, tx e {0,1} are to be
determined.

Observe that a pile of 2T chips will split evenly T
times so that the arrows at time t < T remain the
same. Our goal is to choose the values ex so that
ARR'(x,£) = p (x , t) for 0 < t < T + 2 and x ~ t.
As stated above this holds automatically for t < T as
ARR7(x,£) = ARR(x,£) = p (x , t) in this case. For
t = T + I and x-T - I even we have ARR' (x,T + l) =
ARR7(x,T) = ARR(x,T) = ARR(x,T + l) = p(x,T +
1) since we start with an even configuration. To make
sure the equality also holds for t — T + 2 we need to
ensure that the parities of the piles /'(x,T) are right.
Observe that ARR'(x,T + 2) = ARR7 (re, T) if /'(x,T)
is even, otherwise ARR7(x,T + 2) = -ARR7 (re, T). So
for x — T even we must make /7(rr, T) even if and only
if p(z,T + 2) = p(rr,T). At time T the "extra" groups
of 2T chips have spread as in Pascal's Triangle and we
have

where re ~ T and the sum is over the even values of y
with |y — rr| < T. As /(x,T) are already given it suffices
to set the parity of the sum arbitrarily. For T = 0 the
sum is ex so this is possible. For T > 0 we express

where h depends only on ey with x — T < y < x + T.
We now determine the ey sequentially. We initialize by
setting ey = 0 for -T < y < T. The values ey for y > T
are set in increasing order. The value of ey is set so that
the sum at x = y — T (and thus f ' (y — T, T)) will have
the correct parity. Similarly, the values ey for y < —T
are set in decreasing order. The value of ey is set so that
the sum at x = y + T (and thus the f ' (y + T,T)) will
have the correct parity.

Note that the above procedure changes an even
initial configuration that matches the prescription in
p for times 0 < t < T + 1 into another even initial
configuration that matches the prescription in p for
times 0 < t < T+2. We start by defining /(z, 0) = 0 for
all x (no chips anywhere) and ARR(x, 0) = p(x, 0) for
even x, while ARR(x,0) = p(x, 1) for odd x. We now
have ARR(z, t) = p(x, t) for 0 < t < I and x ~ t. We
can apply the above procedure repeatedly to get an even
initial configuration that satisfies the prescription in p
for an ever increasing (but always finite) time period
0 < t < T. Notice however, that in the procedure
we do not change the initial configuration of arrows
ARR(x, 0) at all, and we change the initial number of
chips /(x,0) at position x only if \x\ > T. Thus at
any given position x the initial number of chips will be
constant after the first \x\ iterations. This means that
the process converges to an (even) initial configuration.
It is simple to check that this limit configuration satisfies
the statement of the theorem.

4 Discrepancy on a Single Vertex

THEOREM 4.1. There exists a constant c\ w 2.29,
independent of the initial (even) configuration, the time
t, or the location x, so that

It suffices to prove Theorem 4.1 for x = 0. In case t
is even we start with an even configuration, if t is odd,
then with an odd configuration (otherwise both /(O, t)
and E(Q,t) would be zero with no discrepancy).

188

The proof needs the following elementary fact. Let
X C E. We call a mapping / : X —> R unimodal, if there
is an m X such that / is monotonically increasing in

and / is monotonically decreasing in

LEMMA 4.1. Let f : X —•> R be non-negative and
unimodal. Let £ 1 , . . . , tn 6 X such that t\ < ... < tn.
Then

First we show that INF(y,w) with a fixed y < 0
is a non-negative imimodal function of u if restricted
to the values u ~ y. We have already seen that it is
non-negative. For the unimodality let y < 0 and u > 2,
u ~ y. We have

we have therefore

whenever u>y. Hence the difference is non-negative if
u > (y2 — 4)/3 and it is non-positive if u < (y2 — 4)/3.
Thus we have unimodality, with INF(y,w) taking its
maximum at the largest value of u not exceeding (y2 —
4)/3 with u ~ y. Let tmax(y) := [(y2 - 4)/3j. It is
easy to check that tmax (y) ~ y always holds, so we have
that INF(y, u) takes its maximum for fixed y < — 4 at
u = tmax (y). For 1 < |y| < 3 we have mint |INF(y,£)| =
|INF(y,|y|)|, for y - 0, mint |INF(y,i)| = 0, and, for
y > 4 we have, by symmetry, that —INF(y,£) is non-
negative and unimodal (again, restricted to u ~ y),
with maximum taken at u = tmax (y). Therefore, define
Cax(j/) = *max(y) when |y| > 3, otherwise £max (y) =

\y\.
LEMMA 4.2. For y e Z, the function |INF(y,£)| is
maximized over all nonnegative integers t with t ~ y
a^ = max{|y|,L(y2-4)/3j}.

To bound |/(0, t) - E(Q, t)\ we use the formula (3.4)
where the inner sums are alternating sums, for which
we can apply Lemma 4.1, as y ~ t — Sj(y) holds by our
even or odd starting position assumption. We get

Amazingly, the constant c\ defined above is best
possible. Indeed, let y > 0 be arbitrary and even
and let to = tmax(y). We apply the Arrow-forcing
Theorem to find an even starting position that makes
ARR(x, t) = — 1 if x > 0 and t < to — tmax(x) or
x < 0 and t > to — tmax (x) and makes ARR(x, t) — — 1
otherwise. It is easy to verify that in this case at a
position \x\ < y, x ^ 0 we have an odd number of chips
exactly once at time to — tmax (x) and the formula (3.4)
gives

5 Intervals in Space

In this section, we regard the discrepancy in intervals in
Z. For an arbitrary finite subset X of Z set

We show that the discrepancy in an interval of
length L is O(logL), and this is sharp. We need the
following facts about H.

LEMMA 5.1. For all x e Z,

is unimodal. H(x, t) is maximal for t = x2 — 2 and
t = x2. We have H(x,x2 - 2) = H(x,x2) = edx)"1).

Proof. Since H(x,t - 2) - H(x,t) = t-^H(x,t], we
conclude that H(x,t) is unimodal and it has exactly
two maxima, namely t = x2 — 2 and t — x2.

THEOREM 5.1. For any even initial configuration, any
time t and any interval X of length L,

There is an even initial configuration, a time t and an
interval X of length L such that

Proof. Without loss of generality, let X = [-L + 1..0].
Fix any even initial configuration. By (3.4), we have

Note that

Therefore, (4.5) implies that |/(0,t) - E(Q,t)\ is
bounded. With

189

Let us call

the contribution of the vertex y to the discrepancy in the
interval X. We first regard vertices y that lie outside X.
By symmetry, we may assume y G N. The contribution
of a vertex depends on its distance from the interval X.
If y is Q(L) away from X, its influences on the various
vertices of X are roughly equal, and all such influences
are quite small. In this case we bound its influence by
L times the one we computed in Theorem 4.1:

Let y > L. By Lemma 4.1 and 4.2,

Hence the total contribution of these vertices is

We now turn to vertices y £ [L]. Here mainly those
vertices of X that are close to y contribute to CON(y).
Hence, the approach above is too coarse.

Let 5j, €i 6 {0,1} such that y + L — 6^ and y — I + e*
have the same parity as t — Si(y) — I . Then by (3.2),

Thus the vertices in [L] contribute

^or y 6 A", note that exploiting symmetries, we can
employ the same reasoning as above: Denote the upper
bound for |CON(y)| computed above by by,L- Note that
it is non-decreasing in terms of L.

We have INF(ar, t) = -INF(-z, t) for all x e Z and
INF(0, t) = 0. Taking this into account, we see that for
each y 6 X, there is a subinterval Xy C X such that

_ / • * » - -*y Xy and

Denote by dy the distance from y to Xy, that is,
dy = minX£Xy \y — x\. Then the above yields CON(y) <
bdy,\xt\ < bdv,L- Note further, that at most two
different y yield the same dy. Hence

For the lower bound, we just have to place the chips
in a way the one of the logarithmic terms above actually
occurs. Without loss of generality, let L be odd.

190

Lemma 4.1 and 5.1,

Combining all cases, we have

Consider the following initial configuration (its ex-
istence is ensured by the parity forcing theorem): All
arrows point towards the interval X (arrows of vertices
in X may point anywhere). Let t = L2. Choose an
initial configuration of the chips such that f (y , s) is odd
if and only if y 6 [L] is even and t — s = y2.

Now by construction, CON(y) = 0 for all y <E Z\[L].
For y 6 [L], we have

Hence for this initial configuration,

6 Intervals in Time
In this section, we regard the discrepancy in time-
intervals. For x G Z and finite 5 C NO, set

LEMMA 6.1. (UNIMODALITY OF ROLLING SUMS) Let
f : Z -»• R be unimodal. Let A; e N. Define F : Z -»• R
by F(z) — ̂ 2i=Q f (z + i). Then F is unimodal.

Proof. If / is non-decreasing (resp. non-increasing),
then clearly so is F and thus it is unimodal. Hence let /
and m G Z be such that / is non-decreasing in Z<m and
non-increasing in Z>m. We show that for some M e Z,
G(x) := F(x4-1) — F(x) is nonnegative in Z<M and not
positive in Z>M- This implies that F is unimodal.

Since G(x) = f(x + k) - f (x) for all x e Z, G is
non-negative in Z<m_fc and not positive in Z>m. Let

Of course, analoguous statements hold for functions
denned only on even or odd integers.

The following result says that a single odd split
has an influence of exactly one on another vertex over
infinite time.

Proof. W.l.o.g., let x <E N. Then |INF(x,t)| = \H(x -
1, t — 1) — \H(x + 1, t — 1). Consider a random walk of
a single chip started at zero. Let Xyj be the indicator
random variable for the event that the chip is on vertex
y at time t. Let Yy>t be the indicator random variable
for the event that the chip is on vertex y at time t and
that it has not visited vertex x so far. Let T denote the
first time the chio arrives at x.

We show that the discrepancy of a single vertex in
a time-interval of length T is O(\/T), and this is sharp.

THEOREM 6.1. The maximal discrepancy \ f (x , S) —
E(x,S)\ of a single vertex x in a time interval S of
length T isQ(T1/2).

In the proof, we need the following fact that "rolling
sums" of unimodal functions are unimodal again.

191

Then

that is, G is non-increasing in Zn [m — fc, m\. Hence M
as claimed exists (and satisfies m — k < M < m).

LEMMA 6.2. For all

For any we have by symmetry that

Clearly, for and for

Note that is just the expected num-
ber or visits to x — 1 before visiting x. This number
of visits is exactly k if and only if the chip moves left
after each of its first k — I visits and right after the
kth visit. This happens with probability 2~ fc. Hence

Proof. [Proof of Theorem 6.1] Fix any even initial
configuration. Let £Q £ NO and S — [to ..to + T — I].

Without loss, let x = 0. By (3.4), we have

/(0,5)-£7(0,5)

By unimodality of rolling sums (Lemma 6.1),

We estimate the term maxseN | Etes ^NF(y, ^ ~~ s)l f°r

all y. For 1 < |y| < T1/2, we use Lemma 6.2 and simply
estimate

= O(T1/2).

For the lower bound, we invoke the parity forcing
theorem again. By this, there is an even initial configu-
ration such that all arrows point towards zero, and such
that there is an odd number of chips on vertex .T 6 Z
at time t e N0 if and only if x G X := [VT ..2\/T\
and t = 4T — x2. For this initial configuration and
5 = [4T + 1 .. 5T], we compute

\f(0,S)-E(Q,S)\

7 Space-Tirne-Intervals

We now regard the discrepancy in space-time-intervals.
Extending the previous notation, for finite X C Z and
finite 5 C N0 set

THEOREM 7.1. Let X C Z and 5 C NO 6e finite
intervals of lengths L and T, respectively. Then the
maximal discrepancy \f(X, S) — E(X, 5)| (taken over all
odd or even initial configurations) is Q(T\og(LT~1/2}),
ijL > T1/2, and 0(LT1/2) otherwise.

Proof. Fix an even initial configuration. Without loss
of generality, let X = [-L + 1..0]. Let to e NO and
£ = [to .. to + T — I}. As in previous proofs, by (3.4) we
have f (X , S} - E(X, S) - £yez CON(y) with

Case 1: Let L > T1/2.
We analyze first the contribution of vertices y G N.

Let y > L. Then

by unimodality of rolling sums, Lemma 4.1 and 4.2.
Now let T1/2 <y<L. Let H~(x,t) := max{H(x-

l,t),H(x,t}}. In other words, H~(x,t) = H(x,t), if
x ~ i, and H~(x,t} = /f(o: — l,i) otherwise. Similarly,
let /f+(x,t) := m.vx.{H(x,t'),H(x + l,t)}. Then, by
(3.2), total unimodularity of rolling sums, Lemma 4.1

192

and 5.1,

Finally let y < T1/2. Now starting as above

193

Putting all this together, we obtain

By symmetry, we have the same bounds for CON(i/)
if y < —L. Using the same resoning as in the proof
of Theorem 5.1, vertices y e X contribute at most as
much as those not in X.

Altogether, we have

We now prove the corresponding lower bound. Set
Y = [T1/2..!/]. Choose an even initial configuration
such that /(x, t) is odd if and only if x G Y and
t = L2 — x2. Direct all arrows towards zero. Let
S= [L2..L2+T-1]. Then for y£Y, with St,£t {0,1}
appropriately chosen as before,

For Hence the discrep-
ancy in this setting is at least

Case 2: Let
For the upper bound, we simply apply Theorem 6.1

as follows:

For the lower bound, the setting of Theorem 6.1
works as well. Choose an initial configuration such that
f (x , f) is odd if and only if x e X := [T1/2.. 2T1/2] and
t — 4T — y2. Then

8 Intervals in Space, Revisited

We stated in Theorem 5.1 that the discrepancy in an
interval of length L is O(logL). Here we state that
intervals of length L with about log L discrepancy are
very rare, the quadratic average of the discrepancies of
a long contiguous set of intervals of length L is only
0(v/logT), and this bound is tight.

For a set X of vertices we denote by DISC(X, t}
the discrepancy of the set X at time t, i.e., we set
Disc(X,t} = f (X , t) - E(X,t).

THEOREM 8.1. Let X be an interval of length L. For
M sufficiently large,

Furthermore, for a given L and M there exists an even
initial configuration, and a time t and an interval X of
length L such that

Proof. For the first statement we need to prove an
bound on the quadratic average of the dis-

crepancies DISC(X + /c, t) with k = 1, . . . , M. First note
that changing the individual discrepancies by a bounded
amount we change the quadratic average by at most the
same amount. We use this observation to freely neglect
O(l) terms in the discrepancy of the intervals. In par-
ticular we can change the intervals themselves by adding
or deleting a bounded number of vertices. We use this
to make a few simplifying assumptions. As in Section 7
we assume that (i) the starting configuration is odd, (ii)
the interval X is X = [-Z/..L'] with L' ~ t, and (iii) M
is even and we only consider even values of k, i.e., we

consider the average of DISC2(X + k,t) for 2 < k < M,
k even (this can be justified by considering X + k + 1
instead of X + k for odd k).

First we show that discrepancies caused by odd piles
at time t — L2 or before can be neglected. We start with
(34) for the individual discrepancies DlSC(x,i).

We have seen that |INF(z,w)| is unimodal for fixed z
and its maximum is at u = \z2/3] , so we have

Therefore the total contribution of DISC2 to the discrep-
ancy of an interval X + k is small. For

we have

We continue as in Section 7 collapsing a sum using
INF(z, u) = \E(z + 1, u - 1) - \H(z - 1, u - I). We
also use that DISC(X, t) = D!SCi(:r,£) = 0 for x ~ t as

194

for all Again, Hence

We separate the two terms in this last expression. With

we have

Our original goal was to prove an O(\/logL) bound on
the quadratic average of DISC(X + k, t). As DiSGi(X +
k , t) differs from DlSCpf + k,t) by O(l) it is clearly
enough to prove the same bound for the quadratic
average of DiSGi (X + k, t). By the last displayed formula
it is enough to prove the O(\XIog~L) bound on the two
parts D(k — L') and D(k + L') separately, both for
0 < k < M even. It is therefore enough to bound the
quadratic average of D(m} for an arbitrary interval /
of length M. Here we consider only values m ~ t, for
other values of m we have D(m) — 0.

Let to — max(0,t — L2 + 1) be the first time-step
considered. For y e Z and u ~ y + 1 we have an odd
pile at y if and only if ARR(w, u) ^ ARR(y, u + 2) and
in this case ARR(y, u} = (-l)'ARR(y, 0) for the index

we have

As before, we ignore the small difference and will
prove the O(v

/logL) bound on the quadratic average
of D'(rri) instead of D(m). Computing the square and
summing for m we get the following. The summations
are taken for m e /, m ~ t, for y^ £ Z, and for
iii, 112 G [to + 2, t — 3], iii ~ U2 ~ y -f 1, respectively.

195

Let us estimate the contribution to this sum coming
from a fixed y\, MI, and u?. Disregarding the signs and
extending the summation for all m (even outside /) the
contribution of each of the four terms we get from the
multiplication is exactly 1. As MI and u? can take at

the starting configuration is odd. i with Si(y) = u. For any ra ~ t we have

where ii = t\(y] is either to or to + 1, whichever makes
ti ~ y + 1 arid similarly £2 = tidj] is either t or t + 1,
so that t2 ~ y + 1- With

The same y — yi — y2 value arises exactly once for
every yi e /", a total of M - 2L2 possibility. The
highest possible value of v is less than 2L2 and the
same value v can be the result of at most v pairs MI ,
u2. There are 4L2 possible values of y\ outside /" but
inside /' contributing at most 4L6. Summing for all
these contributions we estimate

To finish the proof we set M > L6 for our threshold
for large enough M. We did not make an effort
to optimize for this threshold. This ensures that
53m D'2(m) = O(MlogL), so the quadratic average of
D'(m) (and therefore of Disc(JsC + k, t)) is O(v/IogT) as
claimed.

It remains to construct a starting configuration
where the quadratic average of discrepancies in the
intervals of length L is large. For our construction
we do not even use the value L. For a given (even)
parameter t we define a probability distribution on
starting positions, such that for all L < t and all
intervals X of length L the expectation of DISC2(X, t) =
miogL).

We let r(a,6) stand for independent random ±1
variables for all integers a arid 6 > 1. We look for an
even starting configuration (guaranteed by the Arrow-
forcing Theorem, such that ARR(x, u) = r(a, 6) for all
even x and u satisfying 46 < u < 4fe+1 and a1b < x <
(a + l)2b. For simplicity we set ARR(x, u) = I for all
u and all odd x and we also set ARR(x, u) = I for all
x and u < 4.

Simple calculation similar to the one in Section 7
shows that for an interval X = [c, d] we have

where the coefficients h(a,b) depend on X. Further
analysis shows that all coefficients are bounded and
G(logL) of them are above a positive absolute constant
for each interval of length L. This implies that the
expectation of DISC2(.X, t) is fJ(log L), and therefore the

expectation of the average -^ 53fc=i DISC2(A" -f fc, £) is
also Q(logL). This proves the second statement of the
theorem.

9 Conclusion

In this paper, we elaborated that Jim Propp's rotor
router model is a very good simulation for random walks
on Z. Not only that there is a constant bound for
errors on single vertices, these bounds become stronger
in several forms of averages.

We are optimistic that similar results hold for
higher-dimensional grids. For errors on single vertices,
this was shown by Cooper and Spencer [CS05, CS].
For higher-dimensional intervals, that is, products of
intervals, we note that interesting things mainly happen
along the boundary. Hence we expect the discrepancy
in a product of d intervals of length L to be of order
Ld-1logL. Note that the arrow-forcing theorem can
be extended to higher-dimensional grids, so our lower
bound proofs can be extended as well.

196

most Zr/2 values each, the total contribution coming
from a single value of y\ is at most L4.

Let us obtain the intervals /' and I" from 7 by
extending or shortening it at both ends by L2, i.e., if
/ = [a,&],then/' = [a-L2,&+£2],/' ' = [a + L2,6-L2].
If yi is outside /' we have H(y\ — m,t — HI — 1) =
H(yi — m, t — u\ +1) = 0 for all m e /, therefore such y\
has zero contribution to 53m D'2(m). The contribution
for fixed yi, 7/2, wi, and U2 can usually be written in
closed form using the identity

This identity works if we sum for all possible values of
m, but for y\ /" the contribution of the values m $ I
is zero. Therefore the contribution to]Cm^/2(m) °^
the fixed terms y\ /", y%, MI, and M2 is

where y = y\ — y^ and v = 2t — MI — u-i.
To estimate these contributions we first calculate

Here we used the estimate on the fourth moment of the
random walk:

From this work a number of open problems arise.
One is the following: The arrow/parity-forcing theorem
yields a simple, yet general way to produce lower
bounds. It is, however, quite wasteful in the number
of chips. To obtain a desired behavior for t time steps,
we will have G(2*) chips on many vertices. For actual
simulations, this is not desirable. Therefore, it seems
to be an interesting problem to look for sparser setups
that still produce large discrepancies.

References

[CS] J. Cooper and J. Spencer. Simulating a Random Walk
with Constant Error. arXiv:math.CO/0402323.

[CS05] J. Cooper and J. Spencer. Simulating a random walk
with constant error. Combinatorics, Probability and
Computing, 2005. To appear.

[KleOS] M. Kleber. Goldbug variations. Mathematical
Intelligencer, 27, 2005.

[LP] L. Levine and Y. Peres. Spherical Asymptotics for the
Rotor-Router Model in Zd. arXiv:math.PR/0503251.

197

Binary Trees, Left and Right Paths, WKB Expansions, and Painleve
Transcendents*

Charles Knessl* Wojciech Szpankowski*

Abstract
During the 10th Seminar on Analysis of Algorithms,
MSRI, Berkeley, June 2004, Knuth posed the problem
of analyzing the left and the right path length in
a random binary trees. In particular, Knuth asked
about properties of the generating function of the joint
distribution of the left and the right path lengths. In
this paper, we mostly focus on the asymptotic properties
of the distribution of the difference between the left
and the right path lengths. Among other things, we
show that the Laplace transform of the appropriately
normalized moment generating function of the path
difference satisfies the first Painleve transcendent. This
is a nonlinear differential equation that has appeared
in many modern applications, from nonlinear waves
to random matrices. Surprisingly, we find out that
the difference between path lengths is of the order
n5/4 where n is the number of nodes in the binary
tree. This was also recently observed by Marckert
and Janson. We present precise asymptotics of the
distribution's tails and moments. We shall also discuss
the joint distribution of the left and right path lengths.
Throughout, we use methods of analytic algorithmics
such as generating functions and complex asymptotics,
as well as methods of applied mathematics such as the
WKB method.

1 Introduction
Trees are the most important nonlinear structures that
arise in computer science. Applications are in abun-
dance; here we discuss binary unlabeled ordered trees
(further called binary trees) and study their asymptotic
properties when the number of nodes, n, becomes large.
While various interesting questions concerning statistics
of randomly generated binary trees were investigated
since Euler and Cayley [8, 17, 18, 25, 27, 28], recently

•The work was supported by NSF Grants CCR-0208709 and
DMS 05-03745, NIH Grant R01 GM068959-01, and NSA Grant
MDA 904-03-1-0036

^Dept. Math., Stat. & Computer Science, University of Illinois
at Chicago, Chicago, Illinois 60607-7045, U.S.A

* Department of Computer Science, Purdue University, West
Lafayette, IN 47907-2066 U.S.A.

novel applications have been surfacing. In 2003 Seroussi
[22], when studying universal types for sequences and
Lempel-Ziv'78 parsings, asked for the number of binary
trees of given path length (sum of all paths from the
root to all nodes). This was an open problem; partial
solutions are reported in [15, 23].

During the 10th Seminar on Analysis of Algorithms,
MSRI, Berkeley, June 2004, Knuth asked to analyze
the joint distribution of the left and the right path
lengths in random binary trees. This problem received
a lot of attention in the community (cf. related papers
[11, 20]) and leads to an interesting analysis, that
encompasses several other problems studied recently
[11, 15, 19, 20, 22, 23, 27]. Here, we mostly focus
on the asymptotic properties of the distribution of the
difference between the left and the right path lengths.
However, we also obtain some results for the joint
distribution of the left and the right path lengths in
a random binary tree.

In the standard model, that we adopt here, one
selects uniformly a tree among all binary unlabeled
ordered trees built on n nodes, Tn (where \Tn\ =
(2^)^j- ^Catalan number). Many deep and interesting
results concerning the behavior of binary trees in the
standard model were uncovered. For example, Flajolet
and Odlyzko [6] and Takacs [27] established the average
and the limiting distribution for the height (longest
path), while Louchard [19] and Takacs [26, 27, 28]
derive the limiting distribution for the path length.
As we indicate below, these limiting distributions are
expressible in terms of the Airy's function (cf. [2, 3]).
Recently, Seroussi [22, 23], and Knessl and Szpankowski
[15] analyzed properties of random binary trees when
selected uniformly from the set TI of all binary trees
of given path length t. Among other results, they
enumerated the number of trees in Tt and analyze the
number of nodes in a randomly selected tree from Tt.

We now summarize our main results and put them
into a bigger perspective. Let Nn (p, q) be the number of
binary trees built on n nodes with the right path length
equal to p and the left path length equal to q. It is easy

198

to see that its generating function Gn(w,v) satisfies

This is exactly the equation that Knuth asked to
analyze.

The above functional equation encompasses many
properties of binary trees. Let us first set w — v and
define C(w,z) = C(w,w,z). Recurrence (1.2) then
becomes

Observe that this equation is asymmetric with respect
to z and w. When enumerating trees in Tn, we
set w = 1 to get the well known algebraic equation
C(l, z) — 1 + z(72(l, z) that can be explicitly solved as
C(l,z) = (1 - v7! - 4z) /(2-z), leading to the Catalan
number. A randomly (uniformly) selected tree from Tn

has path length Tn that is asymptotically distributed as
Airy's distribution [26, 27], that is,

where W(a;) is the Airy distribution function defined
by its moments [7]. The Airy distribution arises in
surprisingly many contexts, such as parking allocations,
hashing tables, trees, discrete random walks, area under
a Brownian bridge, etc. [7, 19, 26, 27, 28].

Setting z = 1 in (1.3) we arrive at

which does not seem to be explicitly solvable, e.g.,
by using a Taylor expansion in w. Observe that the
coefficient ofw* in C(w, 1) enumerates binary trees with
a given path length t. In [15, 23] it was shown that

for large t, where c\ and c% are explicitly computable
constants.

Let us now set v = I in (1.2). Then

Observe that Gn(w, 1) is the generating function of
the right path length. Actually, recurrence (1.4) was
studied by Takacs in [26] when analyzing the area under
a Bernoulli random walk. Also, it appears in the
Kleitman- Winston conjecture [13, 29].

It turns out that there is a close link between the
path length difference in trees and the center of mass
S of the Integrated SuperBrownian Excursion (ISE),
which was introduced by Aldous in [1]. The ISE is
also related to the Brownian snake, which has various
applications in branching processes, random maps and
lattice trees (see the survey in [24]). Recent work on
this problem, and its connection to the path difference
in trees, is due to Marckert [20], Janson [10, 11], and
Janson and Chassaing [12].

In particular moments of the path length difference
were recently analyzed by Janson [11] using a Galton-
Watson branching process approach, and the limiting
distribution is implicit in Marckert [20], who applied
Brownian analysis. As pointed out by Janson [11]
"many different methods are useful and valuable, even
for the same types of problems, and should be employed
without prejudice".

Finally, we turn attention to results presented in
this paper. We first analyze the limiting distribution of
the difference T>n = 7£n — Cn where 7£n , Cn are the right
and left path lengths, respectively. We observe that the
difference Dn is of order n5/4. This was also recently
observed by Marckert [20] and Janson [11]. Among
other things, we show that the tail of the distribution is
thicker than that of the Gaussian distribution.

Next, we analyze moments of T>n. We first ob-
serve that odd moments vanish, while the normalized
even moments satisfy (asymptotically) a certain non-
linear recurrence that occurs in various forms in many
other problems, that are described by nonlinear func-
tional equations similar to (1.1) (e.g., quicksort, linear
hashing, enumeration of trees in Tt). In these cases, usu-
ally the limiting distribution can be characterized only
by moments. We conjecture that these problems con-
stitute a new class of distributions determined by mo-
ments. More precisely, let Z be a (normalized) limiting
distribution of such a process. Then for some am — >• oo
we have E[Zm]/am = cm such that in general cm satis-
fies

with some initial conditions, and given c*m, /3m and 7m.
In our case (cf. also [11] and [12]) the even normalized
moments of T>n converge as E[Pj[m+2yn5(m+i)/2 _>
(2m+2)!v

/7rAm for any integer m > 0, where ATO satisfy
the recurrence similar to (1.5) (cf. (2.23) and (2.24)

199

with GQ(W, v) = I . Summing over n we obtain the triple
transform C(w, v, z) (cf. also (2.12) below) that satisfies

while satisfies

below). Similar recurrences appear in the quicksort [14],
linear hashing [7], path length in binary trees [17, 19, 27,
28], area under Bernoulli walk [26], enumeration of trees
with given path length [15], and many others [8, 18, 25].

Finally, we analyze the moment generating function
of Vn. We shall show that the Laplace transform of an
appropriately normalized moment generating function
satisfies the first Painleve transcendent nonlinear differ-
ential equation [9]. This also appears in many mod-
ern applications, including nonlinear waves and random
matrices. We shall also discuss the joint distribution of
the left and the right path lengths, and this will be the
starting point of our analysis.

Throughout, we use methods of analytic algorith-
mics such as generating functions and complex asymp-
totics, as well as methods of applied mathematics, such
as the WKB method [4]. In this approach we make some
assumptions about the forms of asymptotic expansions,
for which we provide extensive numerical back-up.

2 Problem Statement and Summary of Results

Here we give a detailed summary of our main results;
the technical derivations appear in [16].

Let N(p, q; n) be the number of binary trees with n
nodes that have a total right path length p and a total
left path length q. We also set

Here we used tne fact that the left
or right path in a tree with n nodes can be at most (2).
We can easily verify that

since there are no trees where the path length difference
is one below the maximum, and exactly one tree (out of
Cn] has this difference either zero or two or three below
the maximum value of (2). In view of (2.2) we have
P-(J] n) = P-(—J; n) so it is sufficient to analyze (2.5)
for J > 0.

The generating function of N(p, q) in (2.1)

subject to the initial condition

and note the obvious symmetry relation

200

satisfies the recurrence

From (2.9) we also obtain the functional equation

We shall mostly focus on analyzing the difference
between the right and left path length, and this we
denote by

It is well known [8] that the total number of trees with
n nodes is the Catalan number

Then we define the probability distribution of the path
length difference, Z>n, by We study the limit n —> oo, with an appropriate

scaling of p and q. First we consider the path length
difference, with J scaled as

We note that Gn(l, 1) = Cn and from (2.5) we obtain

for the triple transform

for

For a fixed (3 we shall obtain

where p- ((3} is a probability density that can be repre-
sented as

where and

Thus the left side of (2.17) is the moment generating
function of p~(ft), which is an entire function of 6.

While we do not have an explicit formula for p_ (/3),
we have the following asymptotic and numerical values:
(2.18)

Figure 1: The density p_(ft) for (3 e [0,3].

as a function of the complex variable ft, this function
has an essential singularity at (5 = 0. While for \/3\
small and ft real, p- (ft) is locally Gaussian, its behavior
for \ft| small and ft imaginary is quite different.

The function H in (2.16) is an entire function
satisfying H(b) = H(-b) and H(0) = 0. Denoting its
Taylor series as

We also find that the density has two inflection points,
at ft = ±/3c, with

and setting

This is our first main result. We comment that tails with
exponent 4/3 are also observed for problems dealing
with the Brownian snake (see [5, 12, 21]).

The function p-(ft) is graphed in Figure 1 over
the range ft [0,3], and the derivatives p'_(ft) and
p'L(ft) are given over the same range in Figure 2. The
graph of p~(ft) somewhat resembles a Gaussian, but
it differs from the Gaussian density in at least three
important respects. First, the tail is clearly thicker in
view of (2.18). For any Gaussian density, we would have
(3cp-(G) = l/\/27r = .39894... while for the present
density (2.20) and (2.21) yield the value /3cp-(0) w
.34705. Finally, the Gaussian density would be an entire
function of /3, while we will show that if we view p- (ft)

we find that Am satisfies the nonlinear recurrence
(2.24)

with

This recurrence agrees with results in [12]. In view of
(2.22) and (2.17) the variance of the limiting density
p-((3) in (2.15) is

201

so that the numerical value of k' can be obtained from
(2.19).

We can also infer the behavior of H(b) for purely
imaginary values of b. Letting b = ix with x > 0 and
using (2.22) yields

Figure 2: The first derivative p'_(/3) and the second
derivative p'!_(0)-

We thus observe that the even moments of the difference
converge as follows

we shall show that for 6, B > 0 the function A(JB)
satisfies the nonlinear integral equation

We also have A(5) ~ 5/4 as JB —> 0+ and, in view of
(2.22),

Also, since we know the behavior of A(y) as y — » 0+ we
must have

202

The following asymptotic properties hold:

Here k' and CQ are related by

where

Then if

we find that A.(y) satisfies

These results agree with Janson [11].
Furthermore, setting

Note that this equation differs from (2.28) only slightly,
by the signs of the last two terms. However, (2.34)
can be analyzed by a Laplace transform whereas (2.28)
cannot. Indeed, setting

we obtain from (2.34)

we obtain from (2.36) and (2.37)

with

Thus

The second order nonlinear ODE in (2.39) is (after
a slight rescaling) the first Painleve transcendent [9].
This classic problem has been studied for over 100
years, and modern applications in nonlinear waves and
random matrices have been found in recent years. It is
well known that each singularity of t/i(c/>) is a double
pole, and the Laurent expansion near any singularity at
6 = — v has the form

is the moment generating function of the two-
dimensional density, which has support over the range
a > 0 and (3 R. We have #(0,0) = 0 and p(a, -(3} =
p(a,(3).

Setting a = 0 with H(b) = f/"(0,6) we obtain the
marginal distribution of the path length difference, with

The marginal distribution of the total path length
(without distinguishing between right and left paths)
is given by

Let us denote by i/* the singularity with the largest real
part. Note that to uniquely fix this we need the second
term in the expansion of t/i(0) as 0 —* oo, as given
below (2.39). In view of (2.40), (2.35), and (2.38) we
then obtain

so that

and (2.33) then yields

This has been previously shown to follow an Airy
distribution [15].

The function H(a,b] satisfies the integral equation

This yields the behavior of the moment generating
function of the density p- ((3) along the imaginary axis.
The constant v* is found numerically as

Finally, we discuss the joint distribution for the
total left and right path lengths. This problem we
formulate, but do not analyze. Introducing the scaling

In terms of the generating function in (2.8) the scaling
(2.44) translates to

and define P(p, q; n)
Prob [right path = p, left path = q \ # nodes = n\.
Then we obtain

and then, for fixed a and b and

203

Here we used the asymptotic behavior of the Catalan
numbers Cn. We have thus identified the scaling (2.44)
and the problem (2.46) that must be analyzed to obtain
the joint distribution of left and right paths in binary
trees with large numbers of nodes n. While it does
not seem feasible to solve (2.46) exactly, we believe
that an asymptotic analysis for a and/or b large should
be possible, and from this one can obtain asymptotic
properties of the joint density p(a, /3) for o; and/or |/?|
large.

References

[1] D. Aldous, Tree-based Models for Random Distribu-
tion of Mass, Journal of Statistical Physics, 73, 625-
641, 1993.

[2] M. Abramowitz, and I. Stegun, Handbook of Mathe-
matical Functions, Dover, New York, 1964.

[3] G. Andrews, R. Askey and R. Roy, Special Functions,
Cambridge University Press, 1999.

[4] C. Bender and S. Orszag, Advanced Mathematical
Methods for Scientists and Engineers, Mc-Graw Hill,
1978.

[5] A. Dembo and O. Zeitouni, Large Deviations for Ran-
dom Distribution of Mass, Random Discrete Struc-
tures (Minneapolis, MN, 1993), 45-53, IMA Vol. Math.
Appl., 76, Springer, New York, 1996.

[6] P. Flajolet, and A. Odlyzko, The Average Height of
Binary Trees and Other Simple Trees, J. Computer and
System Sciences, 25, 171-213, 1982.

[7] P. Flajolet, P. Poblete, and A. Viola, On the Analysis
of Linear Probing Hashing, Algorithmica, 22, 490-515,
1998.

[8] P. Flajolet and R. Sedgewick, Analytical Combina-
torics, in preparation.

[9] E. L. Ince, Ordinary Differential Equations, Dover,
New York, 1956.

[10] S. Janson, The Wiener Index of Simply Generated
Random Trees, Random Structures and Algorithms, 22,
337-358, 2003.

[11] S. Janson, Left and Right Pathlengths in Random
Binary Trees, preprint, 2004.

[12] S. Janson and P. Chassaing, The Center of Mass of the
ISE and the Wiener Index of Trees, Electronic Comm.
Probab., 9, 2004.

[13] J. Kim and B. Pittel, Confirming the Kleitman-Watson
Conjecture on the Largest Coefficient in a (/-Catalan
Number, J. Comb. Theory, Ser. A, 92, 197-206, 2000.

[14] C. Knessl and W. Szpankowski, Quicksort algorithm
again revisited, Discrete Math. Theor. Comput. Sci., 3
43-64, 1999.

[15] C. Knessl and W. Szpankowski, Enumeration of Binary
Trees, Lempel-Ziv'78 Parsings, and Universal Types,
Proc. of the Second Workshop on Analytic Algorithmics
and Combinatorics, (ANALCO04), Vancouver, 2005.

[16] C. Knessl and W. Szpankowski, On the Joint Path

Length Distribution in Random Binary Trees, preprint,
2005.

[17] D. E. Knuth, Selected Papers on the Analysis of Algo-
rithms, Cambridge University Press, Cambridge, 2000.

[18] D. E. Knuth, The Art of Computer Pro-
gramming. Fundamental Algorithms. Com-
binatorial Algorithms, Vol. 4, 2004; see
http://www-cs-facuity.Stanford.edu/knuth.

[19] G. Louchard, The Brownian Excursion Area: A Nu-
merical Analysis, Comp. & Maths, with Appls., 10, 413-
417, 1984.

[20] J-F. Marckert, The Rotation Correspondence is
Asymptotically a Dilatation, Random Structures & Al-
gorithms, 24, 118-132, 2004.

[21] L. Serlet, A Large Deviation Principle for the Brownian
Snake, Stochastic Processes and Applications, 67, 101-
115, 1997.

[22] G. Seroussi, On Universal Types, Proc. ISIT 2004, PP-
223, Chicago, 2004.

[23] G. Seroussi, "On the Number of t-ary Trees with a
Given Pathlength", preprint.

[24] G. Slade, Scaling Limits and Super-Brownian Motion,
Notices of the AMS, 49, 1056-1067, 2002.

[25] W. Szpankowski, Average Case Analysis of Algorithms
on Sequences, John Wiley & Sons, New York, 2001.

[26] L. Takacs, A Bernoulli Excursion and its Various
Applications, J. Appl. Probab., 23, 557-585, 1991.

[27] L. Takacs, Conditional Limit Theorems for Branch-
ing Processes, J. Applied Mathematics and Stochastic
Analysis, 4, 263-292, 1991.

[28] L. Takacs, The Asymptotic Distribution of the Total
Heights of Random Rooted Trees, Acta Sci. Math.
(Szegad), 57, 613-625, 1993.

[29] K. Watson and D. Kleitman, On the Asymptotic
Number of Tournament Score Sequences, J. Comb.
Theory, Ser. A, 35, 208-230, 1983.

204

http://www-cs-facuity.stanford.edu/knuth

On the Variance of Quickselect*

Jean Daligault^ Conrado Martinez*

December 20, 2005

Abstract
Quickselect with median-of-three is routinely used as
the method of choice for selection of the mth element
out of n in general-purpose libraries such as the C++
Standard Template Library. Its average behavior is
fairly well understood and has been shown to outper-
form that of the standard variant, which chooses a ran-
dom pivot on each stage. However, no results were pre-
viously known about the variance of the median-of-three
variant, other than for the number of comparisons made
when the rank m of the sought element is given by a uni-
form random variable. Here, we consider the variance
of the number of comparisons made by quickselect with
median-of-three and other quickselect variants when se-
lecting the mth element for m/n —» a as n —> oo. We
also investigate the behavior of proportion-from-s sam-
pling as s —> oo.

1 Introduction
Hoare's quickselect [5] finds the mth smallest element
(equivalently, the element of rank m in ascending order,
the mth order statistic) out of an array of n elements
by picking an element from the array —the pivot— and
rearranging the array so that elements smaller than
the pivot are to its left and elements larger than the
pivot are to its right. If the pivot has been brought to
position j — m then it is the sought element; otherwise,
if m < j then the procedure is recursively applied to
the subarray to the left of the pivot, and if m > j the
process continues in the right subarray, now looking for
the (m — j)th element.

The main measure of quickselect's performance is
the number Cn,m of comparisons made to select the mth

smallest element out of n. Knuth [8] has shown that

where Hn =]Ci<7<n V.? '1S the nth harmonic num-

ber. Thus E Cn,m is O(n) for all values of m, 1 <
m < n. Another interesting measure of performance
is the number Cn of comparisons needed when the
rank of the sought element is given by a uniformly dis-
tributed random variable in {1,..., n}. Since E Cn =

(1/n) • X^i<m<n^ Cn,™ it immediately follows that

E[ci0)] =3n + o(n).

Sometimes it is more convenient (and more
amenable to analysis) to consider the asymptotic be-
havior of Cn,m as n —> oo and ra/n —» a, for some
fixed a, 0 < a < I. It is not difficult to show that
m0(a) = lim n^oo E[cn

0Jnl /n = 2 + 2ft(a), where
m/n—>a L J

7^(x) = —(xlogx + (1 — x)log(l — x)} is the entropy
function.

Kirschenhofer and Prodinger [6] have computed the

exact form of V Cn,m • It is 0(n2), but even its

asymptotic behavior for m — a • n 4- o(n) is expressed
by a rather complicated formula:

*The research of the authors was supported by the Spanish
Min. of Science and Technology project TIC2002-00190 (AEDRI
II).

^ENS Cachan. 94235 Cachan Cedex, France. jean_daligault
at yahoo dot fr.

* Departament de Llenguatges i Sistemes Informatics. Uni-
versitat Politecnica de Catalunya. E-08034 Barcelona, Spain,
conrado at Isi dot upc dot edu.

where dilogx = J* j^ dz denotes the dilogarithm [I].
In quickselect with median-of-three the pivot of each

recursive stage is the median of a sample of three
elements of the array. This reduces the probabil-
ity of uneven partitions and there is a correspond-

205

ing reduction in the average performance (see [4, 7]
and references therein). In particular, mi (a) =

lim n-Kx> E Cn m In = 2 + 3a(l — a), and the av-
m/n—»a L J

erage number of comparisons to locate an element of

random rank is E Cn = 5/2 n + o(n). The general-

ization to quickselect with median-of-(It + 1) has also
been considered, both for fixed t and for variable-sized
samples, i.e., when t = t(n). Griibel [4] has investi-

gated the properties of mAcx) = lim n->oc E C n m\ In.
m/n—+a L J

Martinez and Roura [10] have computed the expected
value and variance of the number of comparisons needed
to locate an element of random rank Cn , for all fixed
t. They also establish results for variable-size samples
(t = t(n)), namely, the optimal sample size.

Martinez, Panario and Viola [9] have considered
another family of sampling strategies that they call
proportion-from-s. At each recursive stage, the chosen
pivot has a relative rank within the sample as close
as possible to the current relative rank a = rn/n of
sought element. As the algorithm proceeds, the size
n of current subarray and the rank ra of the sought
element within the current subarray change and so does
the relative rank; thus the rank of the selected pivot
nicely "adapts" to the current input. Their results
were established in a quite general framework, which
encompasses the proportion-from-s sampling strategies,
the standard variant and the median-of-(2£+l) sampling
strategies as particular instances of so-called adaptive
sampling strategies1.

The goal of this paper is to investigate and obtain
explicit results about

for several distinct variants of quickselect, each using its
own sampling strategy.

First, in Section 2 we establish that, for any adap-

tive sampling strategy, g(a] = lim n->oo E Crim A1-2

m/n—>a L J

exists, with x- — x(x — l)(x — 2) • • • (x — k + 1) denoting
the kth falling factorial of x [3], and we also give there
the integral equation that g(ot) satisfies. We get then
a few general results about g(a). The techniques used
are those developed in [4, 9]. In Section 3 we obtain
explicit solutions to that integral equation for the par-
ticular case of median-of-three and thus for its variance.
Afterwards, in Section 4, we show that if s —> oo then
proportion-from-s sampling strategies achieve not only

1Even though some of them do not "adapt" their choice of
pivots, like standard quickselect; but they are special degenerate
cases of the general definition given there.

optimal expected performance (a result due to [9]) but
subquadratic variance, i.e., lim n-^oo V\Cn m] In2 =

m/n—>a '
0. The immediate consequence is that CnjTn exhibits
concentration in probability. Median-of-(2£ +1) also
achieves subquadratic variance in the limit t —> oo, even
though the expected performance is not optimal in that
case.

2 General results
Following [9], we say that a sampling strategy is adap-
tive if it can be fully described by a function r : [0,1] —»
{1,..., s}, where s is the size of the samples. Quickse-
lect with adaptive sampling works as follows: if n > s,
a random sample of s elements from the current sub-
array of size 71 is chosen and the element whose rank
within the sample is r = r(a) is picked as the pivot
of the current recursive stage, where a — rn/n is the
current relative rank of the sought element. We as-
sume further that the function r can be finitely spec-
ified by the image of each interval of a partition of
[0,1] into t intervals. For convenience, we will assume
that the intervals Ik are defined by t — 1 endpoints
0 = OQ < «i < ft2 < • • • < a-e-i < at — 1 as fol-
lows: /i = [0,ai], It = [a*_i,l], 4 = (afc_i ,afc] if k> I
and a/t < 1/2, /^ = [0^-1, afc) if k < i and a^-i > 1/2,
and Ik — (a /c_i ,afc) if afc-i < 1/2 < a^ and 1 < k < t.
We will use the notation r^ for the value of r(a) when
a elk.

When s — I we have standard quickselect, and
r(a) = n = 1 for all a e [0,1]. Median-of-(2£ + 1)
sampling is characterized by s = It 4- 1 and r(a) = r-_ =
£4-1 for all a G [0,1]. In [9], proportion-from-s sampling
is introduced; for these strategies i = s and r(a) = r^ =
k for all a e Ik and 1 < k < s. The choice of endpoints
gives raise to interesting mathematical phenomena with
relevant practical implications; for "pure" proportion-
from-s, we have a^ = k/s.

We now restate two of the fundamental results of [9]
concerning quickselect with adaptive sampling.

THEOREM 2.1. ([9]) Let Cn,m be the cost to select the
mth out of n elements using an adaptive sampling
strategy with m/n —> o: for 0 < o ; < l as n —> oo. Then
we have that the expectation characteristic function of
the algorithm

206

is well defined, and the pivot from the sample; this is unimportant since we

It is important to notice that because r(a) is an
integer function the discontinuities carry on to f (a } .
So in general f(a] is defined by i pieces, say, /!,...,/£,
with fk the restriction of /(&) for a in the fcth interval.
The integral equation above can be transformed, after
careful manipulations, to a set of higher-order linear
differential equations, as shown in the following lemma.

LEMMA 2.1. ([9]) For any adaptive sampling strategy,

where f(ot) is the strategy's expectation characteristic
function, and a £ /&, I <k < i.

In order to obtain similar results about the vari-
ance of Cn,m, we consider its second factorial mo-

ment E[c£,m] = E[Cn,m(Cn;TO - 1)] since V[Cn,m] =

E[cJ,mj + E[Cn,m] - E[C7n>m]2. The starting point of

our analysis is the recurrence satisfied by Cn,m(v}, the
probability generating function (PGF) of Cn^m

fs r)where TT^ ' denotes the probability that the rth element
of the sample of size s is the jth element among the
n elements. The recurrence accounts for the n — 1
comparisons needed to partition the array around the
pivot, but it disregards the comparisons needed to select

assume that s is fixed. Now, E[CniTn and

(l); hence,

From this recurrence, we can establish the following
result.

THEOREM 2.2. Let Cn,m be cost to select the mth out
of n elements using an adaptive sampling strategy with
m/n — >• a for 0 < a < 1 as n — » oo. Then we have that
the second factorial moment characteristic function of
the algorithm

is well defined, and

where /(a) is the expectation characteristic function of
the sampling strategy.

Once we have results about g (a) , they can
be easily translated to the variance since v(a) =
limn_»00V[C'n)m]/n2 = g(a) - /2(a). For instance,
a sampling strategy is said to be symmetric if
limz_+a+ r(z) = \imz_a+ s + I - r(l - z). This no-
tion is quite natural, and both median-of-(2t + 1) and
propertion-from-s strategies2 are symmetric. If r is
symmetric then both g(a) and v(oi) are as well, now in
the usual sense, i.e., g(a) = g (l — a) and v(a) = v(l—a).
Another interesting result concerns the behavior of v(a)
when Q; —-> 0.

2Provided that the endpoints are taken such that a^ = a s_^
for k > s/2.

207

LEMMA 2.2. For any adaptive sampling strategy

In particular, for standard quickselect (t = 0) and quick-
select with median-of-(2£ + 1), we have vt(Q) — vt(l] =
3^4, since ro = t + I and s = It + 1. For proportion-
from-s, v(Q) = v (l] = a2(j"+3) ~ s""2 + O(s~3}. So
proportion-from- s has smaller variance when locating
elements of either low or high rank than median-of-
(2t + I). Furthermore, this result indicates that using
large samples can reduce the order of magnitude of the
variance; notice that for both types of strategies the co-
efficient of n2 in the variance tends to 0 when the size of
the samples tends to oo and we look for extreme ranks.
We will show later that this is indeed true for all ranks.

We now state one of the important results of this
paper, where we transform the original problem to one
of solving linear differential equations; we arrive at
this result after long and careful computations largely
similar to those which yield Lemma 2.1.

LEMMA 2.3. For any adaptive sampling strategy,

where g(a) is the second factorial moment characteristic
function, gk is its restriction to the kth interval, f (a)
is the expectation characteristic function, and a £ Ik,
\<k<L

Thus, except for the independent term 2/^s+3)(a) and
the higher order derivatives involved, we have the same
differential equation as for the expectation characteris-
tic function.

3 The variance of median-of-three

In the case of median-of-three (s = 3, £ = I and
ri = 2) we are specially lucky, since its expectation
characteristic function is m\(oi) = 2 + 3a(l — a) and
its sixth derivative vanishes in the differential equation
satisfied by g(a) (Lemma 2.3). Hence the corresponding
differential equation for g(a) is exactly the same as for
the expectation characteristic function mi (a), namely

Hence, the solution has to be integrated four times
to recover g(a). The symmetry g^(a} = g^(l — a)
can be used to show that

Integrating this four times we get four additional ar-
bitrary constants. The technique that we shall use to
obtain their value is to plug the general form of g(a)
back into the integral equation and compare coefficients.
This involves a somewhat long and tedious computa-
tion, but it is mostly mechanical and the use of a com-
puter algebra systems is of great help. We finally get

and from there

since mi (a) = 2 + 3a(l — a). The function v\(a) is sym-
metric and has two global maxima at a = 0.263338...
and a = 0.736661..., where it attains the value vi =
0.391151 — The global minima are a = 0 and a = 1,
where vi = 2/7 = 0.285714..., while vQ(Q) = v0(l) =
1/2. The function is depicted in Figure 1. A plot of the
function VQ(O) corresponding to standard quickselect is
shown in Figure 2 for comparison.

The leading coefficient of the variance to locate the
median of an array is given by t>i(l/2) = ^Iog2 —
|g§ =0.374229.... Compare this to v0(l/2) =

-4 log2 2 + 41og2+|-^= 0.955842 ..., where v0 (a)
has its unique global maximum.

208

where and all limits of are
taken from the right.

but here instead of

Figure 1: Plot of the coefficient vi(a) of the variance of
quickselect with median-of-three, when looking for the
m = a • n smallest element and n —* oo.

Figure 2: Plot of the coefficient VQ(O) of the variance
of standard quickselect, when looking for the m = a
smallest element and n -> oo (after [6]).

n

4 Optimal sampling

Consider a family of biased symmetric proper tion-from-
s sampling strategies, s G N, with r(a)/s —> a as
s —> oo. A sampling strategy is called biased [9] if
r(a) > a • s + 1 — a for a < 1/2. The quantity
6 = r — so: — 1 + Q: > O i s called the bias. For a
biased proportion-from-s strategy the endpoints of the
intervals are not evenly distributed in [0,1] but shifted
towards the left for a < 1/2 and, symmetrically, towards
the right when a. > 1/2. In [9], it has been shown that
optimal average performance is achieved when s —> oo
for such a family. In particular, the limiting expectation
characteristic function is /oo(o;) = lim^oo fs(a) =
1 + min(a, I — a).

To tackle a similar analysis for the variance we have
to study the behavior of

Since T^00^/^, •) is a contraction (see [4, 9]) it suffices
to find a fixed point g^; if we find it then it is unique,

and it is the limit characteristic function for the second
factorial moment of our family of sampling strategies. In
order to do that, we will need to analyze the asymptotic
behavior of

as s —> oo, as the operator T^00) can be expressed as
a combination of integrals with the form above, for
suitable choices of the integral limits and the function
y(x).

We apply Laplace's method to find asymptotic
estimations of the value of those integrals (see for
instance [2, Ch. 5, p. 211-212]). The maximum of the
"kernel" xr~l(l - x}s~r occurs at x* = (r — l)/(s - 1)
and so we have two fundamental situations: either the
maximum x* is inside (a, 6) and then I (s) = y(x*) +
O(s~1)] otherwise, if x* 0 [a, b] then I(s) = O(s~1)
(in general, I (s) —> 0 exponentially fast, except if the
maximum c were c = a or c — b and c ~ x*). Take
g^a) = (1 + min(a, 1 - a))2. Then

Now, if a < 1/2 then, by the definition of a biased
strategy, a < x* and thus the second integral tends
to 0, while the first yields the main contribution with
y(x) = (2x — a}2. Also, as x* = a + O(s~1}, we have

Because
of the symmetry of r, and after careful checking of the
special case a = 1/2, we finally arrive at

209

That is, QOQ is the limiting behavior of the second
moment factorial characteristic function of any family
of biased proportion-from-s sampling strategies; and
9<x> = f%o- Thus we obtain the following important
result.

THEOREM 4.1. For any family of symmetric biased
sampling strategies such that linis--^ r(a)/s = a, the
variance of quickselect using the family of sampling
strategies is subquadratic. Indeed,

Despite median-of-(2£ 4-1) sampling doesn't yield
optimal average behavior, an analogous to Theorem 4.1
holds. In particular, if t — > oo then the expectation
characteristic function mt(a) — > 2 [4]. Using the same
techniques that we have just used, we can also easily
show that gt(cx) — > 4. Hence, the coefficient of n2 in

V Cn'm vanishes as t — > oo. The same type of result

was already established for the variance of the cost of
selecting an element of random rank by Martinez and
Roura [10].

Now we turn our attention to the case of variable-
sized samples, i.e., when s = s(n). We assume that
s — * oo as n — > oo but that it does grow sublinearly
(s = o(n)). To begin with, the proof given in [9] that the
expectation characteristic function of biased proportion-
from-s strategies tends to /oo(<^) = 1 -fmin(o;, 1 — a) as
s — »• oo is valid for variable-size samples. The average
number of comparisons E[Cf

rijm] satisfies the recurrence

notice the the terms (3 • s + o(s), which account for the
average number of comparisons invested in selecting the
pivots from the samples. Here, the factor j3 = (3(a) is
the coefficient of the linear cost of the algorithm used
to select the pivot. For instance, ft (a) = 2 + 3a(l — a)
if we were using quickselect with median-of-three for
selecting pivots from the samples. The full details are
not straightforward, but the intuition is rather simple;
since s/n — > 0 and the asymptotic estimate for the

splitting probabilities w^j are valid for s = s(n),
Theorems 2.1 and 2.2 hold too in this case.

By computing more precise asymptotic estimates
of /(s) (see (4.4)), we can establish the behavior of
the lower order terms of /^ and #00- In particular,
/oc(a) = 14- min(a,l - a) + O(s~l) arid gx(a) =
(1 4 min(a, 1 - a))2 + O(s~1). Then E[Cn,m] = n(l 4

min

min(a, 1 — a))2 4 Q (n • s 4 n2/s). Hence, we have the
following result.

The variance of a sampling strategy satisfying the
hypothesis of the theorem above is minimized when
s = 6(v/n). Notice that this is consistent with
Theorem 4.1 and that we have then \/V[Cn,m] =
0(n3/4). We prove thus correct several conjectures
made in [9] concerning the variance of quickselect with
proportion-from-s sampling for variable-sized samples.
Also, asE[CVi,m] = n(l+min(a, l-a))+/3-s+O(n/s), it
follows that s = Q(^fn) minimizes the average number
of comparisons made. Lacking of a better estimate
for the term O(n/s) we cannot obtain a more precise
asymptotic estimate for the optimal sample size.

References

[1] M. Abramowitz and I.A. Stegun, editors. Handbook
of Mathematical Functions. Dover Publ., New York,
1964.

[2] N. Bleistein and R. A. Handelsman. Asymptotic
Expansions of Integrals. Dover Pub., New York, 1975.

[3] R.L. Graham, D.E. Knuth, and O. Patashnik. Con-
crete Mathematics. Addison-Wesley, Reading, Mass.,
2nd edition, 1994.

[4] R. Griibel. On the median-of-fc version of Hoare's se-
lection algorithm. Theoretical Informatics and Appli-
cations, 33(2): 177-192, 1999.

[5] C.A.R. Hoare. FIND (Algorithm 65). Communications
of the ACM, 4:321-322, 1961.

[6] P. Kirschenhofer and H. Prodinger. Comparisons in
Hoare's Find algorithm. Combinatorics, Probability
and Computing, 7:111-120, 1998.

[7] P. Kirschenhofer, H. Prodinger, and C. Martinez.
Analysis of Hoare's FIND algorithm with median-of-
three partition. Random Structures and Algorithms,
10(1):143-156, 1997.

[8] D.E. Knuth. Mathematical analysis of algorithms. In
Information Processing '11, Proc. of the 1971 IFIP
Congress, pages 19-27, Amsterdam, 1972. North-
Holland.

[9] C. Martinez, D. Panario, and A. Viola. Adaptive sam-
pling for quickselect. In Proc. of the 15th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA '04),
pages 440-448, 2004.

[10] C. Martinez and S. Roura. Optimal sampling strate-
gies in quicksort and quickselect. SI AM Journal on
Computing, 31(3):683-705, 2001.

210

THEOREM 4.2. Consider a symmetric biased sampling
strategy with s = s(n) —> oo as n —> oo, with s = o(n)
and such that linis-^ r(a)/s — a. Then the variance
of quickselect using this sampling strategy is

Semirandom Models as Benchmarks for Coloring Algorithms

Michael Krivelevich * Dan Vilenchik §

Abstract
Semirandom models generate problem instances by blend-
ing random and adversarial decisions, thus intermediating
between the worst-case assumptions that may be overly pes-
simistic in many situations, and the easy pure random case.
In the Gn,P,k random graph model, the n vertices are par-
titioned into k color classes each of size n/k. Then, ev-
ery edge connecting two different color classes is included
with probability p = p(n}. In the Semirandom variant,
G* p fc. an adversary may add edges as long as the planted
coloring is respected. Feige and Killian prove that unless
NP C BPP, no polynomial time algorithm works whp
when np < (1 — e)lnn, in particular when np is constant.
Therefore, it seems like G* p fc is not an interesting bench-
mark for polynomial time algorithms designed to work whp
on sparse instances (np a constant). We suggest two new cri-
teria, using semirandom models, to serve as benchmarks for
such algorithms. We also suggest two new coloring heuristics
and compare them with the coloring heuristics suggested by
Alon and Kahale 1997 and by Bottcher 2005. We prove that
in some explicit sense both our heuristics are preferable to
the latter.

1 Introduction and Results
Introduction. A k-coloring f of a graph G — (V, E)
is a mapping from the set of vertices V' to {1, 2,..., k}.
f is a legal coloring of G if for every edge (u, v) 6 E,
f (u) ^ f (v } . In the graph coloring problem we are
given a graph G = (V,E] and are asked to produce a
legal fc-coloring / with a minimal possible k. Such k
is called the chromatic number, commonly denoted by
X(G). For a broad view of the coloring problem the
reader is referred to [19].

The plethora of worst-case NP-hardness results
for problems in graph theory motivates the study of
heuristics that give "useful" answers for "typical" subset
of the problem instances, where "useful" and "typical"
are usually not well defined. One way of evaluating
and comparing heuristics is by running them on a
collection of input graphs (" benchmarks"), and checking
which heuristic usually gives better results. Though
empirical results are sometimes informative, we seek

Supported in part by USA-Israel BSF Grant 2002-133, and
by Grant 526/05 from the Israel Science Foundation.

tpart of the second author's PhD thesis prepared at Tel Aviv
University under the supervision of Prof. Michael Krivelevich.

* School Of Mathematical Sciences, Sackler Faculty of Exact
Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.

§ School of Computer Science, Sackler Faculty of Exact Sci-
ences, Tel-Aviv University, Tel-Aviv 69978, Israel.

more rigorous measures of evaluating heuristics. A
rigorous candidate for the analog of a "useful" answer
is the notion of approximation, where the goal of
the heuristic is to provide with a solution which is
guaranteed to be within small distance from an optimal
one. Although approximation algorithms are known for
several NP-hard problems, the coloring problem is not
amongst them. In particular, Feige and Kilian [10] prove
that no polynomial time algorithm approximates x(G)
within a factor of n1"6 for all input graphs G, unless
ZPP=NP.

When very little can be done in the worst case,
comparing heuristics' behavior on "average" instances
comes in mind. One possibility of rigourously modeling
"average" instances is to use random models. A good
candidate can be the well known random graph model
Gn,p introduced by Erdos and Renyi. A random graph
G in Gn^p consists of n vertices, and each of (7

2
l) pos-

sible edges is included w.p. p = p(n) independently of
the other. Bollobas [5] and Luczak [24] calculated the
probable value of x(Gn,p) to be whp 1 approximately
7ip/(2\n(np)) for p e [Co/n, log"7 n] ([5] actually ex-
tends to p < 0.99 with a somewhat different expression
for the chromatic number). Observe that the chromatic
number is typically rather high (roughly comparable
with the expected degree). In order to consider graphs
with a smaller chromatic number, Kucera [23] suggested
a model for generating random /e-colorable graphs, de-
noted throughout by Gn,pik- First, randomly partition
the vertex set V = {1, ...,n} into k classes V"i,..., \4, of
size n/k each. Then, for every i 7^ j, include every pos-
sible edge connecting a vertex in V^ with a vertex in Vj
(abbreviated Vi — Vj edges) with probability p = p(n).
This model is the analog of the planted clique, planted
bisection, and planted SAT distributions, studied e.g.
in [2], [11], [13], [14].
The Semirandom Model. The main drawback of
random models is that they may simply not capture the
space of "useful" problems. The instances generated
using random models are extremely unstructured (see
[16] for example), which probably does not reflect the
real-world examples. Further, there is the temptation

1 Writing whp we mean with probability tending to 1 as n goes
to infinity.

2 1 1

of over-exploiting the statistical properties of the ran-
dom graph (eigenvalues structure, vertex degrees, etc)
and design algorithms that perform well on a specific
distribution but fail completely when slightly changing
the distribution to a more realistic one (as many such
graph properties no longer possess the "clean" and man-
ageable behavior they have in the random setting).

To capture this notion of robustness desired from
an algorithm, semirandom models are introduced. In
the semirandom setting, first a random instance is gen-
erated. Next, an adversary may change the instance
further. These modifications cannot be arbitrary, or
the adversary can remake the graph into a worst-case
instance. Put differently, semirandom models generate
problem instances by blending random and adversarial
decisions, thus intermediating between the worst-case
assumptions, which may be overly pessimistic in many
situations, and the easy pure random case. As such,
they often serve as a driving force towards designing
more natural and efficient algorithms (e.g., introduc-
ing semi-definite programming not only as an impor-
tant tool in approximation algorithms but rather as part
of heuristics that solve "typical", and adversarial, in-
stances [9], [11]. [13] present a simpler and more natural
algorithm for a semi-random planted 3SAT distribution,
compared with [14] for the random setting).

The following semirandom variant of Gn,p^ was
suggested by Blum and Spencer [4], and is denoted
throughout by G* p fc. First, a graph G0 = Gn^p^ is
generated (throughout, we use GQ to denote a random
graph sampled according to Gn,p.fc, or the underlying
random part of a semirandom instance. The meaning
will be clear from the context). Next, an adversary is
allowed to add V^ — Vj edges for i ^ j.
Related Work. [22] suggests an O(^/np/logn)-
approximation algorithm for the chromatic number of
graphs on n vertices. They prove that over Gn,p,
p [n~2+ e

5 |] 5 the algorithm runs in expected poly-
nomial time . [8] extends the latter to p > C/n, C
a sufficiently large constant. In this work we focus on
heuristics that find a correct solution for "almost all"
instances. Alon and Kahale [1] suggest a polynomial
time algorithm based on spectral techniques that whp
finds a fc-coloring of Gnjp,fc with np > C'oA;2, CQ a suf-
ficiently large constant. Combining techniques from [1]
and [7], [6] suggests an expected polynomial time algo-
rithm for Gn,p,k based on SDP (semi-definite program-
ming). Both [1] and [6] fail in G*n ,,, as the adver-
sary may foil many statistics of the random graph which

2An algorithm A with running time t^(I) on an input instance
/, has expected polynomial running time over a distribution T> on
the inputs, if ̂ 7 t^(I) • Prx>[I] is polynomial.

both algorithms heavily rely on (eigenvalues structure,
vertex degrees, etc). Blum and Spencer [4] present a
heuristic that fc-colors G^ k whp for a constant fc, and
np > nak:, ctk > 2/5. Feige and Kilian [9] improve upon
this result, giving an SDP-based algorithm that fc-colors
G^ k for np > c(\ + e}kInn. They also provide with a
hardness result, proving that unless NP C BPP, it is
hard3 to /c-color G*n p k for np < (1 — e) Inn. The proof
of the hardness result is based on the existence whp
of isolated vertices when np < (1 —)lnn , more de-
tails ahead. Coja-Oghlan [7] gives a simpler SDP-based
heuristic that fc-colors G^pk for np > c(\ + e)fclnn,
and also provides a certificate for the optimality of the
coloring. [7] improves upon the hardness result of [9],
proving that unless NP C RP, it is hard to k-color
G ; s p J t f o r n p < (l - £) f l n (n / A O .
Our Results. In this work, we focus on the sparse case,
namely when np is constant (that may depend on k).
Semirandom distributions of sparse instances need to be
addressed with more delicacy. For example, in G*npk,
np a constant, whp there will be a constant fraction of
isolated vertices in GQ on which the adversary (if not
restricted otherwise) can plant a worst-case instance,
turning the problem hard. This is the basic idea
behind the hardness proofs in [7], [9]. Consequently,
(7* k is not an interesting benchmark in our (sparse)
setting . Therefore, different criteria for evaluating the
robustness of algorithms in the sparse case are in due.

The first to consider semirandom models for sparse
settings were [13] and [25], in the context of the planted
SAT distribution. In this paper we discuss two alterna-
tives for the coloring problem, which prove quite use-
ful. One possibility is to further limit the adversary
and to require that the algorithm succeeds whp when
spending polynomial time. To this end we introduce the
semirandom model G^p k. The only difference between
GH p k and G^p k is that in the latter, the adversary is
allowed to add only edges whose both endpoints belong
to a certain set H C V (which will be rigorously de-
fined and analyzed in the sequel). Another possibility
is to require that the algorithm finds a solution whp
over G*n k. This time however it will not be realistic
to require that the algorithm spends only polynomial
time (the aforementioned hardness results), rather the
algorithm is allowed to spend as much time as needed to
guarantee a solution whp. The preferable heuristic in
this case is the one guaranteeing a solution whp while
spending as little time as possible.

Building upon [1] and [7] we present two new color-
ing heuristics, COLOR and COLOR2. Using the afore-

3By "hard" we mean there exists no polynomial time algorithm
that solves the problem whp

212

mentioned criteria, we compare COLOR, COLOR2, [1],
and [6]. We prove that in some exact sense, COLOR
is the most robust heuristic of the four, and COLOR2
is preferable to [1], [6]. As a byproduct, we identify
the weakest links in all four algorithms, which yields a
deeper algorithmic understanding, thus serving as yet
another motivation for using semirandom models. For-
mally, we prove:

THEOREM 1.1. Let np > Co/e2 for some sufficiently
large constant CQ and a constant k, then there is an
algorithm COLOR that whp k-colors Gn^p^ in polyno-
mial time.

THEOREM 1.2. In the setting of Theorem 1.1, the al-
gorithm COLOR finds whp a k-coloring in polynomial
time for the semirandom distribution G^p k defined in
Section 4-

THEOREM 1.3. In the setting of Theorem 1.1, the al-
gorithm COLOR finds whp a k-coloring for G*n k in
time (1 + a)n, where a = exp{—£l(np/k}}.

Theorem 1.1 is already proven in [1], and an even
stronger version of it is proven in [6]. However, we show
that [1] fails to meet the requirements of Theorems 1.2
and 1.3, and that at least the analysis given in [6] fails
Theorem 1.2, and in Theorem 1.3, a should be adjusted
to tt((np/k}-°-5}. As for COLOR2,

THEOREM 1.4. In the setting of Theorem 1.1,
COLOR2 finds whp a k-coloring of Gn,p,fc in polyno-
mial time.

THEOREM 1.5. In the setting of Theorem 1.2, the al-
gorithm COLORS finds whp a k-coloring of
polynomial time.

However COLOR2 fails to meet the requirements of
Theorem 1.3. The proofs of Theorems 1.4 and 1.5 are
not given fully and only an outline is sketched.

The rest of the paper is structured as follows. In
Section 2 we present both algorithms, COLOR and
COLOR2. In Section 3 we analyze COLOR in the
random setting of Gn j p)fc- In Section 4, we describe
in details the semirandom variant G^ k, and prove
Theorems 1.2 and 1.3. We also compare all four
algorithms using G^p k and G^ p k as benchmarks. In
Section 5 we discuss some possibly interesting topics for
future research.

2 The Algorithms
In this section we present both algorithms, COLOR
and COLOR2. As the underlying ideas are common
to all four algorithms, and since we compare their per-
formances, we start by giving a short description of [1]

and [6]. In the description, we make remarks as to the
aforementioned set H, which correspond to the analy-
sis part. The reader at this stage may disregard these
notes, as we do not assume familiarity with the analysis
in [1]. The scheme in both algorithms is basically the
same, we start with [1]. First, using a spectral tech-
nique, a (1 — e)-approximation of the planted coloring
is obtained whp (e is a small constant, the probabil-
ity is taken over Gn,p,fc) . Next, a recoloring proce-
dure is applied to reach an even closer distance from
the planted coloring (and in particular, whp the set
H is now colored correctly). Then, a careful uncoloring
step guarantees that whp only correctly colored vertices
remain colored (in particular, H remains colored). Fi-
nally, using exhaustive search on the graph induced by
the uncolored vertices, the partial coloring is completed
whp to a legal one. Since this graph breaks down whp
to connected components of size O(logfcn), the latter
can be carried out successfully while spending polyno-
mial time. [6] runs in expected polynomial time over
Gntp,k- To achieve this, some modifications to [1] are
done, amongst which, the spectral step is replaced with
SDP, and possible mistakes in the recoloring and un-
coloring steps are corrected using a careful exhaustive
search.
Notation. For a graph G, we let V(G) denote its set
of vertices and E(G] the set of edges. For a set U C V,
G[U] denotes the subgraph of G induced by the vertices
of U. For a vertex v, N(v) denotes its set of neighbors
in G. For A, B C V we let e(A, B} be the number of
edges connecting a vertex from A and a vertex from B
in G. For two vertices u,v 6 V(G), G + (u,v) denotes
the graph G with the additional edge (w,f) . For two
graphs GI, ̂ 2, Gl \G2 denotes Gl with all the edges of
G-2 removed from it. The scalar product of two vectors
x, y E W1 is denoted (x, y}.
Motivation. The algorithm COLOR consists of two
steps. First (lines 1-12), using SDP, one obtains a
partial coloring of the graph, which satisfies (a) it
coincides with the planted coloring and (b) whp the
partial coloring colors all but a small fraction of the
vertices (in particular, the set H is colored). Next (lines
13-14), as done in Alon-Kahale, the partial coloring is
completed to a legal one using exhaustive search on the
set of uncolored vertices. In the setting of Theorems
1.1 and 1.2, the subgraph induced by the uncolored
vertices breaks down whp to connected components of
size at most O(logfcn), allowing the exhaustive search
to remain polynomial. COLOR2 is more similar to
[1] and [6]. Using SDP, a partial coloring is obtained.
However, using different analysis than [6], one can show
that the partial coloring is such that the recoloring step
can be skipped, and one can immediately approach the

213

uncoloring procedure. Finally, using exhaustive search,
a legal coloring is whp found.

As the first step in COLOR and COLOR2 is based
on the SDP of the max /i-cut problem, suggested by
Frieze and Jerrum [15], we start by presenting it.

Algorithm 1 : COLOR(G, k)

where the max is taken over all families (xv)v€v of unit
vectors in R'^'. If h > 2 is an integer, then SDPh
is a relaxation of the MAX h-CUT problem. Since
SDPh is a semidefinite program, its optimal value can
be computed up to an arbitrary high precision e > 0, in
time polynomial in | V|, /i, log ̂ (e.g. using the Ellipsoid
algorithm [17], [20]).

If G is fc-colorable, then SDPk(G] = \E(G}\ (since
\E(G)\ = max-k-cut(G) < SDPk(G) < \E(G)\) . More-
over, if G is a subgraph of G', then SDPh(G) <
SDPh(G'). The following Lemma is the key to under-
standing and analyzing both algorithms.

LEMMA 2.1. Let G = G* p f c , np > C^k2. Whp there
exists a s e t V < -) C V o f vertices, such that:
(a) Let V^ = V0 n V,, then |F0

W|/I^| > 1 -
exp

In the sequel (Lemma 3.1), we explicitly identify such a
set VQ, proving the lemma.
Another simple observation is that for any u £ V^,
v e Vj s.t. i ^ j, it holds that SDPk(G + (u , v)) =
SDPk(G] + 1. This observation, combined with Lemma
2.1, are the motivation behind steps 5-10 of COLOR.
As we shall prove in the next section, in steps 1-12, a
set meeting the requirements of VQ is colored according
to the planted coloring whp. Further, G[V\ VQ] breaks
down whp to connected components of size O(logfc n).

REMARK 2.1. Instead of iteratively picking up the v^s
(line 4), one can go over all (™) possibilities for v i, ..., Vk-
Another option is to choose all the v^s in one step (and
possibly amplify the success probability by repeating
the execution).

REMARK 2.2. The algorithm receives k as a parameter.
However, this is done only to simplify the description. If
one could efficiently calculate a lower bound r on x(G),
then a simple way to circumvent the problem of not

l: Compute the value of SDPk(G) up to precision of
0.05.

2: Let Wi = 0for i = l ,2, . . . , fc.
3: for i = I to k do
4: Let W = (Jp1! Wj, pick v< e V \ W u.a.r and set

Wi = {v,}.
5: for all u e V \ W and non-edges (vi, u) $. E do
6: Compute SDPk(G + (u,i^)) up to precision of

0.05.
7: if |SDPk(G +(vi,u))- SDPk(G)| < 0.1 then
8: W, <- Wi U {u}

9: end if
10: end for
11: end for
12: Color Wi with color i, and let U = V \ (J»fc

=1 Wi
13: Find the connected components in G[U].
14: In every component separately, use exhaustive

search to complete the partial coloring of (Ji=i Wi
to a legal A;-coloring of G.

knowing k is to run the algorithm with k = r, r + l,...,n
(of course the trivial bound r = 1 suffices, but one
can do better). Such a non trivial lower bound can
be calculated via SDP (in fact for G*n p k the value x(G]
itself can be calculated whp, Lemma 2.3 ahead). To
obtain this result and as motivation for the algorithm
COLOR2, we need the following discussion.

DEFINITION 2.1. Let G = (V,E) be a graph, \V\ = n.
We say that a family of n unit vectors (xv)V£y in Rn

is a rigid vector fc-coloring of G, if for every u, v V,
(xu,xv) > —l/(k — 1) and if (u, v) E then (xu,xv} —
-!/(*-!).

$2(G] commonly denotes the minimal real k > I such
that G admits a rigid vector fc-coloring. Since fi^G] can
be stated as a semidefinite program, it can be computed
up to an arbitrary precision in polynomial time. The
definition of ^^(G} in terms of vector coloring is related
to the work of Karger, Motwani and Sudan [20].

Proof. Let x(G] = c < n. One can find c unit vectors
{vi, ...,fc} in Rn s.t. (vi,Vj) — — l/(c — 1) for every
1 < i ^ J ' < h (for a proof, see for example [21] Claim
2.2). Consider a c-coloring of G, and assign Vi to all
vertices of color i. Clearly {fi,-..,vc} is a rigid vector
c-coloring of G, proving the Lemma.

214

LEMMA 2.2. For every graph

LEMMA 2.3. For

(6) For every for every
and for every

In particular, for

Proof. It is enough to show that $<2(G} = k (since
X(G) < k by definition, and tf2(G) < x(G) by the pre-
vious Lemma). By contradiction, assume that $2(G) —
h < k. Let (xv)V£y be a rigid vector /i-coloring of G.
(xv)V£v is also a feasible solution to SDP^, therefore,
SDPh(G) > \E(G)\. On the other hand, by Lemma 2.1,
whp SDPh(G) < \E(G)\ for h<k.

Therefore, when the input is G — G* p f c , we can
whp calculate k. Using the terminology of [7], we
call a rigid vector fc-coloring (xv)v£v of G = G*npk

integral w.r.t. the planted fe-coloring of G, if there
are k vectors (£*)i=i,...,/e s.t. xv = a:* for all v e Vi,
and {£*,£*} = — £Z7 for i ^ j. [7] proves that for
np > J^(fclnn), the rigid vector fc-coloring is whp
integral, therefore the planted coloring of the graph can
be easily reconstructed. This is not necessarily true in
the sparse case. However, in the sparse case, a rigid
vector /c-coloring of G is integral on VQ. Formally,

PROPOSITION 2.1. Let (xv}v^y be a rigid vector k-
coloring of G — G* p f c . Whp for every i, and every

S -f C. \/ ' nr — T») f ^ r Q j O / t j «A/ ^ .

Proof. Observe that (xv)v^v is also a feasible solution
to SDPk(G + (s , t } } , though not necessarily the optimal
one. Thus,

Algorithm 2 : COLOR2(G, k)

REMARK 2.3. Since the SDP of the rigid vector k-
coloring is not solved exactly (rather up to some pre-
defined precision) there are some extra technical issues
to take care of. For example, two vertices that should
have received the same vector assignment x* may have
received in fact two different, though very close, vectors.
As such issues are only technical in nature, details are
omitted.

3 The Random Setting

In this section we prove Theorem 1.1, and sketch the

l: Compute a rigid vector fc-coloring of G, {x*}.
2: Group the vertices in V according to the vectors

{x* } assigned to them by the rigid vector fc-coloring.
3: Let Wi C V be the set of vertices assigned with the

vector x*.
4: Color the k largest W^s (w.l.o.g i = 1,..., k} with k

different colors (one for every set).
5: while 3i,j e [l-.fc], v V s.t. v 6 W$ and v has less

than Q.98np/k neighbors colored j ^ i do
6: Uncolor v.
7: end while
8: Let U be the set of uncolored vertices. Find the

connected components in G[U].
9: In every component separately, use exhaustive

search to complete the partial coloring of G[V \ U]
to a legal fc-coloring of G.

is to show that whp, in steps 1-12, a huge fraction
of the vertices is colored correctly, and the remaining
vertices break into connected components of size at most
logfc(n). To this end, we introduce a set of vertices
H C V similar to the one described in [1]. Let us briefly
define H (a similar description can also be found in
[1]). First, let HQ be the set of vertices having at most
l.Olnp/k neighbors in GO in every color class (other
than their own). Consider the subgraph GQ[HQ] (the
subgraph induced by the vertices of HQ) and set i = 0.
While there exists a vertex Vi 6 Hi that has less than
Q.Q9np/k neighbors in Go[H.i\ in some color class (other
than its own), define Hi+\ to be H^ \ {v} and increment
i by 1. Let H be the remaining set of vertices when the
iterative procedure stops.

LEMMA 3.1. Whp, the set H satisfies the requirements
to the set VQ in Lemma 2.1.

Lemma 3.1 proves Lemma 2.1. The proof of requirement
(a) in Lemma 2.1 is given in [1] Lemma 2.7 (for k = 3).
The proof of requirement (6) follows closely the one
given in [7] Lemma 10, while using results from [1]
and [12]. The proof of Lemma 3.1 is highly technical
in nature, thus it is deferred to the appendix. In the
remainder of the section, it would be convenient for the
reader to think of VQ as H.
Recall that VQ is the set of vertices in VQ that belong
to color class Vi. We start by proving that if Vi happens
to fall in VQ , then whp most of the color class Vi is
recovered. Formally,

LEMMA 3.2. // Vi, chosen in line 4> belongs to VQ ,
then whp the corresponding Wi recovered in steps 5-8

analysis of COLOR2. The key to proving Theorem 1.1 satisfies

215

We conclude that or equivalently

that xs — xt. Since whp there exist
for every i, j, the second requirement

edges

holds by the definition of a rigid vector fc-coring.

Proof. First we prove that Wi C V^ w.p. 1. By
contradiction, suppose that in some step of the for
iteration in lines 5-8, some u £ Vj,j ^ i was included
in Wi. Then the condition in line 7 held. However,
it holds that SDPk(G + (vitu)) = SDPk(G) + 1 for
u ^ Vi. Choosing the precision of the SDP solution to be
high enough (0.05 in our case), we get a contradiction.
VQ C Wi holds whp by Lemma 2.1, requirement (&)
and again choosing a sufficiently high precision for the
SDP.

It therefore remains to prove that with rather high
(we shall prove constant) probability, the vertices
fi, t>2, . . . ,ffc chosen in line 4, satisfy Vi 6 VQ . This,
combined with Lemma 3.2, proves that whp most of
the vertices (and in particular the set V0) are colored
correctly when line 13 begins to execute. Formally,

LEMMA 3.3. With probability 1 — exp{Q(np/fc)}, all k
vectors v\,v<2,...,vk, chosen in line 4> satisfy w.l.o.g.

Proof. For starters, consider the first iteration where
Vi is chosen. Assume that Lemma 2.1 indeed holds.
By requirement (a) of Lemma 2.1, ^i belongs to some
VQ w.p. 1 — exp{fJ(np/fc)}, assume w.l.o.g. i = 1.
Now assume that f 1,1*2, ... ,t>i_i were all chosen to be
in VQ , VQ , ..., VQ respectively, and ask what is the
probability that Vi VQ . When picking Vi, the bad
events could be either that v^ Vj for some j < i — 1 (by
Lemma 3.2 and the assumption on the ?;/s, i'i will then
belong to Vj \ V^), or that ^ Vi \ VQ

l) . The number
of bad vertices is then at most n • exp{— Q(np/k)}. The
total number of remaining vertices to choose from is
at least n/k (since in every iteration at most one color
class is colored). Therefore, the probability of a bad
event happening is bounded by

Since Lemma 2.1 holds w.p. 1 — 0(1), the lemma follows.

REMARK 3.1. One can ensure that Lemma 3.3 occurs
with probability 1 by going over all possible (]J) choices
for vi,...,Vk and run COLOR for each such choice
(skipping line 4).

PROPOSITION 3.1. H is colored when the exhaustive
search begins with probability 1 — exp{—£l(np/k)}. Fur-
ther, (with probability 1) the partial coloring induced by
the Wi's (line 12) coincides with the planted coloring
(up to renaming of color classes).

Proposition 3.1 follows readily from Lemmas 3.1, 3.2
and 3.3.

PROPOSITION 3.2. Whp, the largest connected compo-
nent in G[V \ H] is of size at most logfc(n).

The proof of this Lemma is given in [1] Proposition
2.11, for k = 3. It generalizes easily for any constant k.
The intuition behind the proof comes from a well known
result concerning GHjp. If np < 1, then whp the largest
connected component in Gn^p is of size at most O(logn)
(see e.g. [3] for a complete discussion). Now consider
a random subgraph of size an of Gn,p, this subgraph
is exactly GnjCtp, where h = an. If anp < 1, whp the
largest connected component in Gn,ap is of size O(logn).
In our case, whp \V\H\-p < 1 but unfortunately V\H •
is not a truly random subset of vertices. Therefore, the
proof is burdened with more technicalities.

Combining Propositions 3.1 and 3.2, whp the ex-
haustive search consumes polynomial time, and suc-
ceeds in completing the partial coloring (line 12), to
a legal coloring of G (since at least the partial color-
ing can be completed to the planted one). Theorem 1.1
then follows.

Let us now sketch the proof of Theorem 1.4. Propo-
sition 2.1 and requirement (a) in Lemma 2.1 imply that
the set H is set correctly before the uncoloring proce-
dure begins. By the definition of H, and the fact that
the coloring of H coincides with the planted coloring, it
follows that H survives the uncoloring procedure. By
expansion properties of Gn,p,k, it holds that whp every
vertex that survived the uncoloring is colored according
to the planted coloring (Lemma 2.9 in [1]). This com-
bined with Proposition 3.2, allow the exhaustive search
to succeed whp in completing the partial coloring to a
legal one in polynomial time.

4 The Semirandom Setting

Let us recall the definition of the semirandom model
G*npk. First a random graph GQ = Gn,p,fc is generated
in the aforementioned way. Let Vi, Vi, ...,14 be the
planted color classes. Next an adversary may add edges
connecting a vertex in Vi with a vertex in Vj for i ^ j.

216

The last equality is due to np > Cok2. Let AI be the
event Vi 6 VG' . Then,

Improving upon [9], [7] proves that unless NP C RP,
there is no polynomial time algorithm that whp k-
colors G*npk when np < (I — e)|ln(n/A;) . In our
case np is constant, therefore it is not realistic to expect
COLOR to work whp in polynomial time over G*n k.
Let A C V be an arbitrary set of vertices, denote by
G^pk the following semirandom model. As in G*npk,
first GO is generated. Next, an adversary may add
Vi — Vj edges, only this time both endpoints belong to
A. Observe that Gv

n^k = G^k and G^pk = Gn,p,k.
Therefore, the choice of A in G^p k allows us to regulate
the hardness of the resulting distribution. In this work
we consider A = H. Note that H is in some sense a
random set which depends on G0. Arguably, G^pk is
not the most natural semirandom model to consider.
In particular, the fact that H depends on GO is not
a desirable property. However, as we show shortly, it
already suffices to separate COLOR and COLOR2 from
[1] and [6], identifying two weakest links in the latter.

4.1 Proof of Theorem 1.2

Proof. Note that Lemmas 3.1, 3.2 and 3.3 are valid in
G* p k to begin with, therefore remain valid in the more
restricted G^p /- Hence, Proposition 3.1 is also valid in
G^pk. Regarding Proposition 3.2, its proof for Gn^p^
relies on the random properties of GO [V \ H]. As the
adversary is not allowed to add edges to GQ[V \ //],
it remains valid in G^p fc. To summarize, the analysis
given in Section 3 remains valid for G^ k as well. Thus,
Theorem 1.2 follows.

As for Theorem 1.5, Lemmas 2.1, 3.1, and Proposi-
tion 2.1 assume G = G* p k. Proposition 3.2 is also valid
in G ^ p k - The only issue to address is the correctness
of the uncoloring procedure. As the expansion proper-
ties of GQ[V \ H] remain valid in G%p fc, the assertions
regarding the uncoloring procedure carry through.

Let us now compare the four algorithms, [1], [6],
COLOR and COLOR2, using G^k as a benchmark.
[1] fails already in the spectral step since whp H con-
tains almost all vertices allowing the adversary to jum-
ble with the spectra of the graph (emptying the eigen-
vectors, in particular the last two used in [1], from
meaningful information regarding the planted coloring).
One can prove that the SDP approximation (replacing
the spectral one), used in [6], still provides a (1 — e)-
approximation in G* k (though the issue of semiran-
donmess is not addressed in [6]). However, the analy-
sis of the recoloring step employed in [6] relies on ran-
dom properties of Gn-P;fc which need not hold in G^p k.
Therefore, the analysis in [6] doesn't show that the algo-
rithm finds a legal coloring whp in polynomial time. On
the other hand, both COLOR and COLOR2 find whp

a legal coloring in polynomial time when the graph G
is sampled according to G^ k. The two weakest links
- the spectral technique, and the recoloring procedure -
are not used in the latter. However, this model doesn't
suffice to separate COLOR from COLOR2. This will be
done promptly.

4.2 Proof of Theorem 1.3

Proof. Lemmas 3.1, 3.2 and 3.3 are valid in G*npk,
hence Proposition 3.1 is also valid in G*npk. However,
Proposition 3.2 need not necessarily hold. Therefore,
based on the above analysis, it need not hold that
the exhaustive search can end up successfully while
spending polynomial time. However, requirement (a)
in Lemma 2.1 and Lemma 3.1 imply that whp \U\ <
exp{— i l ,(np/k)}n (where U is the set of uncolored
vertices). Thus, the exhaustive search consumes at most

steps. Theorem 1.3 then follows.

Now let us compare [1], [6], COLOR and COLOR2 in
this setting. [1] fails for at least the aforementioned
reason. The analysis of the uncoloring procedure em-
ployed by COLOR2 (as well as by [1] and [6]) breaks
in G* A,, failing to show that all vertices surviving the
uncoloring are colored according to the planted color-
ing. Therefore, it might be the case that COLOR2 will
not be able to produce a legal coloring regardless of the
amount of time it is given (since the graph G[U] may
no longer be fc-colorable when taking into account the
constraints imposed by the coloring of V\U). As part of
the augmentations of [1] towards becoming an expected
polynomial time algorithm, [6] employs a recovery step
(which is basically a careful exhaustive search), which
eventually sets correctly the en vertices possibly missed
by the SDP approximation. At that stage a legal color-
ing is found, but not necessarily beforehand (at least the
analysis fails to show that). The analysis in [6] requires
e = f2((np/fc)~°-5). Therefore, the time guaranteed by
the current analysis in [6] to find a legal coloring is at
least (l + Q((?ip/k}~°-5))n. This is of course much larger
than the time COLOR spends.

5 Discussion

Semirandom models serve in many cases as useful
benchmarks for evaluating the robustness of algorithms
designed to work whp for random structures. How-
ever, when considering sparse random distributions, it
might be the case that the interesting and natural ad-
versaries render the problem hard (see for example [7],
[9]). Therefore, one cannot expect them to serve as

217

useful benchmarks when inspecting polynomial time al-
gorithms. In this work, we suggest two alternatives to
address the issue, and as a case study apply them to
[1], [6], COLOR, and COLOR2. The first alternative
is to further restrict the adversary, which translates to
Gn,P,k m our setting. Using G^ pk, np > C0k

2, as a
benchmark, we were able to claim that in some explicit
sense COLOR and COLOR2 are more robust than [1]
and [6]. However, G^p k doesn't separate COLOR from
COLOR2.
The second alternative is to consider the natural semi-
random distribution G*n k , allow the algorithms to use
as much time as needed to find a solution whp in
the semirandom setting, and then compare the running
times (which now may be superpolynomial). In our set-
ting, for G£)p>fc, np > Cb/e2, [1] and COLOR2 fail to
produce a solution (at least their analysis fails to show
it), regardless of the amount of time spent trying to
find one. In contrast, COLOR and [6] find a legal col-
oring whp in time (1 + 6)n, where b > 0 is a constant
depending on np/k. The exponent base guaranteed by
COLOR is much smaller than the one guaranteed by [6]
(6 decreases exponentially in np/k rather than polyno-
mially).

As we already mentioned, though useful, G^ k is
not the most natural model to consider. An interesting
question for further research is to come up with a more
natural semirandom model for up > C(A;), C(k] a
constant, while keeping the model interesting, in the
sense that one can expect a polynomial time algorithm
to solve it whp. Then, one naturally asks for a
polynomial time algorithm that works whp in that
model. Another interesting question is to characterize
the maximal set A of vertices s.t. G;^,, .. can be solved

II ,/J, ft.

in polynomial time whp.

References

[1] N. Alou and N. Kahale. A spectral technique for color-
ing random '^-colorable graphs. SI AM J. Coniput., 26
(1997), pp. 1733-1748.

[2] N. Alon, M. Krivelevich, and B. Sudakov. Finding
a large hidden clique in a random graph. Random
Structures and Algorithms. 13 (1998), pp. 457-466.

[3] N. Alon and J. H. Spencer. The probabilistic method.
Wiley-Interscience Series in Discrete Mathematics and
Optimization. Wiley-Interscience [John Wiley & Sons],
New York, second edition, 2000.

[4] A. Blum and J. Spencer. Coloring random and semi-
random k-colorable graphs. J. of Algorithms, 19 (1995),
pp. 204-234.

[5] B. Bollobas. The chromatic number of random graphs.
Combinatorica, 1 (1988), pp. 49-55.

[6] J. B6ttchf:r. Coloring sparse random k-colorable graphs
in polynomial expected time. In Proc. 30th Interna-
tional Symp. on Mathematical Foundations of Com-
puter Science. Lecture Notes in Comput. Sci. 3618
(2005), pp. 156-167.

[7] A. Coja-Oghlan. Coloring semirandom graphs opti-
mally. In Proc. 31st International Colloquium on Au-
tomata, Languages, and Programming, pp. 383-395,
2004.

[8] A. Coja-Oghlan. The Lovdsz number of random graphs.
Combin. Probab. Comput. 14 (2005) pp. 439-465.

[9] U. Feige and J. Kilian. Heuristics for semirandom
graph problems. J. Comput. and Syst. Sci., 63 (2001),
pp. 639-671.

[10] U. Feige and J. Kilian. Zero knowledge and the chro-
matic number. J. Comput. and Syst. Sci., 57 (1998),
pp. 187-199.

[11] U. Feige and R. Krauthgamer. Finding and certifying
a large hidden clique in a semirandom graph. Random
Structures and Algorithms, 16 (2000), pp. 195-208.

[12] U. Feige and E. Ofek. Spectral techniques applied to
sparse random graphs. Random Structures and Algo-
rithms, 27 (2000), pp 251-275.

[13] U. Feige and D. Vilenchik. A local search algorithm for
3SAT. Technical report, The Weizmann Institute of
Science, 2004.

[14] A. Flaxman. A spectral technique for random satisfiable
3CNF formulas. In Proc. 14th ACM-SIAM Symp. on
Discrete Algorithms, pp. 357-363, 2003.

[15] A. Frieze, M. Jerruin. Improved approximation algo-
rithms for MAX k-CUT and MAX BISECTION. Al-
gorithmica, 18 (1997), pp. 67-81.

[16] A. Frieze and C. McDiarmid. Algorithmic theory of
random graphs. Random Structures and Algorithms,
10 (1997), pp. 5-42.

[17] M. Grotschel, L. Lovasz, and A. Schrijver. Geometric
algorithms and combinatorial optimization. Algorithms
and Combinatorics (2). Springer-Verlag, Berlin, second
edition, 1993.

[18] C. Helmberg. Semidefinite programming. European
Journal of Operational Research, 137 (2002), pp. 461-
482.

[19] T. R. Jensen and B. Toft. Graph coloring problems.
Wiley-Interscience Series in Discrete Mathematics and
Optimization. Wiley-Interscience [John Wiley & Sons],
New York, 1995.

[20] D. Karger, R. Motwani, and M. Sudan. Approximate
graph coloring by semidefinite programming. J. of the
ACM, 45 (1998), pp. 246-265.

[21] M. Krivelevich. Deciding k-colorability in expected poly-
nomial time. Info. Process. Letters, 81 (2002). pp. 1-6.

[22] M. Krivelevich and V. H. Vu. Approximating the inde-
pendence number and the chromatic number in expected
polynomial time. J. Comb. Optim., 6 (2002), pp. 143-
155.

[23] L. Kucera. Expected behavior of graph coloring algo-
rithms. Proc. Fundamentals of Computation Theory.
56 (1977), pp. 447-451.

218

[24] T. Luczak. The chromatic number of random graphs.
Combinatorica, 11 (1991), pp. 45-54.

[25] D. Vilenchik. Finding a satisfying assignment for semi-
random satisfiable 3CNF formulas. Master's thesis,
The Weizmann Institute of Science, Rehovot, Israel,
January 2004.

A Proof of Lemma 3.1

To prove Lemma 3.1, one has to prove that both
requirements of Lemma 2.1 are met by H. The proof
of requirement (a) is given in [1] Lemma 2.7, for k — 3,
and readily generalizes to any constant k. The proof
of requirement (b} follows closely the one given in [7]
Lemma 10, while combining results from [1] and [12].
In this work we only prove requirement (6).
Notation. For a vector x e Rn, let \\x\\ be the ^2-norm
of x. We let ln 6 En be the vector whose all entries
equal 1, In Rnxn be the unit matrix, and Jn e Mnxn

the matrix whose all entries are 1 (the subscript n is
omitted when it is clear from context). By diag(x]
we denote the n x n diagonal matrix whose entries
are x. For two matrices A,B e Rnxn , the notation
A < B means (B — A) is a positive semidefinite matrix.
For a graph G, let A(G) denote the adjacency matrix
associated with the graph. Let L(G) be the Laplacian
of G , namely, L(G) = diag(Al) - A(G}.

Recall that given G — G* p fc, G0[H] stands for the
random part of G induced by the vertices of H. The
key to proving Lemma 3.1 is the following claim:

PROPOSITION A.l. Whp, Ifu* e V^nH, v* e V7-n#,
i ^ j, then SDPh(G0[H} + (u*,t;*)) < \E(G0[H])\ -

In the first inequality, we used the fact that for every
GI, (?2 s.t. GI is a subgraph of G*2, it holds that
SDPh(G2] < SDP^d) + SDPh(G2 \ GI). In the
second inequality, we used Proposition A.I and the fact
that for every graph G, SDPh(G] < \E(G}\.

Corollary A.I proves that H meets requirement (6) of
Lemma 2.1, and finishes the proof of Lemma 3.1.

It remains to prove Proposition A.I, namely to
bound SDPh(Go[H] + (u*,v*)) accordingly. As noted
in [7], SDP duality is often a convenient tool to bound
the value of a maximization problem. Given a graph
G, one can bound the value of SDPh(G) using its dual
problem DSDPh(G):

SDPh(G) < DSDPh(G) by weak SDP duality (see for
example [18]). In particular, we present a solution Y to
DSDPh(G0[H] + (u*X)), which is whp feasible and
whose value is \E(G0[H})\ - n(^)(Jfc - h). Since the
dual is a minimization problem, Proposition A.I follows.

Our last task is to provide with the aforementioned
solution Y. Recall that Vi , . . . ,Vfc are the planted
coloring classes of G0. Let W^ — Vi n H. and m = \H\.
Recall that w*,i;* Wi for some i. Assume some order
on V, and let i(Wa) denote the i'th vertex in color class
Wa, let dv be the degree of v in Go[H] -f (w*, f*) , and
di,l) be |AT(v) n Wj|. Moreover, we let

Observe that p^ has " probability units" , and therefore
can be viewed as an estimate for the probability of
an edge between i(Wa) and j(Wb) given their degrees
and e(Wa,Wb). Following the same logic, dmin is the
lowest expected degree of a vertex v G Wa in color class
Wb,b ^ a.

We are ready to define the solution Y. For 1 <
a, 6 < k define \Wa\ x \Wb matrices Y'ab as follows:

COROLLARY A.I. For as in Propo-
sition A.I, whp

Proof.

Let

For

be the m x m matrix whose blocks are the
yo'6's. Let Finally, we

PROPOSITION A.2. The value of the solution Y is whp

let

Proof. First observe that

219

Therefore, for a ̂ b,

Further, observe that

Therefore,

By the definition of //, pmm = ^(/>)- Further, whp
|Wa| = £l(n/k) for every a = !,...,&, (requirement
(a) in Lemma 2.1) and hence m = |//"| > (1 —
exp{— np/k})n = f2(n). It therefore follows that dmin >
£l(np/k}. Plugging the values of dmin and m in the
above expression, the claim follows.

PROPOSITION A. 3. The matrix Y defined above is
whp a feasible solution to the semidefinite programm

Proof. Indeed, Y is a real symmetric matrix. Further,
the definition of dmin ensures that every off diagonal
yij obeys y^ < 0. It remains to verify that L(Go[H] +
(w*X)) < F, or equivalently, that Y - L(GQ[H] +
(u*,v*}} is a positive semidefinite matrix (abbreviated
psd). Let A = A(G0[H]), L = L(G0[H]), L+ =
L(G0[H] + (w*,i;*)), and B - L

+
 - L. It is easy to see

that Y-L+ = dminl-(B-A-Y'}. Therefore, it suffices
to prove that the largest eigenvalue of (B — ̂ 4 — Y') is
at most dmin (since then, all eigenvalues of Y — L+

are non-negative, and this is equivalent to being psd).
The following lemma completes the proof of Proposition
A. 3. Proposition A.I then follows from Propositions
A.2, A.3, and SDP weak duality.

LEMMA A.I. The largest eigenvalue of B — A — Y' is
whp at most dmin .

Proof. (Lemma A.I) Our proof strategy is as follows.
We identify a subspace K C Rm spanned by a subset
of the eigenvectors of (B — A — Y1}. K has two
useful properties: (a) it contains no eigenvector whose
corresponding eigenvalue is greater than dmin and (6)
whp, \((B — A — Y')x,x)\ < dmin for every unit vector
xA-K. Let A be an eigenvalue of (B — A — Y1), and v\ its
corresponding eigenvector (assume all eigenvectors are
mutually perpendicular, and normalized to unit vectors,
e.g. via the Graham-Schmidt procedure). If v\ G K,
then by property (a), A < dmin- Otherwise, v\-LK, and
by property (6), \((B -A- Y')vx,vx)\ = \\\ < dmm.

Let us start by presenting the subspace K. For
a = 1. . . . , fc , we let l\vit Mm denote the vector whose
entries are 1 if the entry corresponds to a vertex in
Wa and 0 otherwise. Let 6v,wa be 1 if v 6 Wa and
0 otherwise. Similar to to the proof of Proposition A.2,

Let K be the vector space spanned by the £(a'b)'s and
1. Property (a) stated above follows from the latter. It
remains to prove that property (6) holds.

Before proving the Proposition we make the following
observations regarding some spectral properties of A
arid Y'. Similar to Y£b, Aab denotes the minor of A
corresponding to Wa (rows) and Wb (columns).

LEMMA A.2. Let G0 = Gn,p,k, Let A = A(GQ[H}} be
the adjacency matrix of the subgraph of GQ induced by
the vertices of H. Then the following holds whp:
(1) For all unit vectors xA.K, \(Ax,x}\ < O(^fnp).
(2) For all a,b {!,.., k} and all IA.X

The proof of Lemma A.2 is given in parts in [1] and [12].
We only point out the differences. Observe that l\va G
K for every a = 1, ..., k (using linear combinations of the

220

Further,

Therefore,

Finally, let By the above,

PROPOSITION A.4. for all
unit vectors

£(a,6)>s an(j -j^_ Therefore, the proof of (1) is essentially
the one given in [1], Lemma 3.2. The only difference
is that we consider the set H and [1] consider the set
of vertices, call it W, whose degree in every color class
doesn't exceed 5np/k. The two properties of W used
in [1] are \W\ > (1 — exp{—np/k})n and the bound on
the degree of vertices in W. Both properties hold for
H as well whp. The proof of (2) is essentially the one
given in [12], Lemma 3.2. Again, the only properties of
W used in the proof are its size, and the bound on the
degree of its vertices ([12] prove that property 2 holds
with probability 1 — O(exp{—np/k}) , however, it can be
shown that it holds with probability 1 — o(l) by using
stronger methods than Markov's inequality).

LEMMA A.3. For every unit vector xLK, whp

Proof. Consider the following \Wa x \Wb\ matrix Za^.
Zaa — 0, Zat, =]W~\3 ~ Yab- ^et Z be the m x m
matrix whose blocks are the Za^s. Since xJ_lvya for
every a, (Y'x,x) = —(Zx,x). Therefore it suffices to
estimate \(Zx,x)\. Let ^ G Rl^6 ' ,^ M1^'1 be two
vectors perpendicular to 1.

The last equality is by the choice of p.

We are finally ready to prove property (b} of the vector
space K (which was introduced at the beginning of this
section), concluding the proof of Lemma A.I. It is
readily seen that for every unit vector x, |{Sx,X'}| < 2.
For a unit vector

On the other hand, dmin = Q(np/k) by the properties
of H. Demanding O(^/np) < B(np/k] (or equivalently,
Cofc2 < np for a suitable choice of a constant CQ),
Lemma A.I then follows.

Putting everything together,

The last equality is due to Lemma A.2 (2), the proper-
ties of H (in particular, e(Wa,Wb) = Q(p(n/fc)2)), and
\Wa = O(n/k) for every a.
We are ready to bound \(Zx,x}\. For xLK e Rm, we
let xa 6 R'^'l denote the entries of x corresponding to

221

New Results and Open Problems for Deletion Channels

Michael Mitzenmacher
Harvard University

At this point, it seems that most everything is known about the basic channels studied in
information theory. For the i.i.d. (independent and identically distributed) binary erasure channel
and the i.i.d. binary symmetric error channel, the capacity has long been known, and there are
very efficient encoding and decoding schemes that are near capacity.

The situation is very different for the i.i.d. binary deletion channel. With this channel, the
sender sends n bits, and each bit is deleted with some fixed probability p. So, for example, the
sender might send 10110010, and the receiver obtains 1100. The i.i.d. binary deletion channel is
perhaps the most basic channel that incorporates the challenge of synchronization. Surprisingly,
even the capacity of the deletion channel remains unknown!

In this talk, I will survey what is known about the deletion channel, focusing on our work
on bounds on the capacity and on the many remaining open problems that seem well suited to
our community.

No previous background is required.

Joint work with Eleni Drinea.

222

Partial Fillup and Search Time in LC Tries'

Svante Janson* Wojciech Szpankowski*

Abstract

Andersson and Nilsson introduced in 1993 a level-
compressed trie (in short: LC trie) in which a full sub-
tree of a node is compressed to a single node of de-
gree being the size of the subtree. Recent experimen-
tal results indicated a "dramatic improvement" when
full subtrees are replaced by "partially filled subtrees".
In this paper, we provide a theoretical justification of
these experimental results showing, among others, a
rather moderate improvement of the search time over
the original LC tries. For such an analysis, we as-
sume that n strings are generated independently by a
binary memoryless source (a generalization to Markov
sources is possible) with p denoting the probability of
emitting a "1" (and q = I — p). We first prove that
the so called a-fillup Fn(a) (i.e., the largest level in
a trie with a fraction of nodes present at this level)
is concentrated on two values whp (with high proba-
bility); either Fn(a) = kn or Fn(a) = kn + I where
kn = log_i n — 3 / 2 (i / / ^~1(a)v/lnn + 0(1) is an
integer and $(x) denotes the normal distribution func-
tion. This result directly yields the typical depth (search
time) Dn(a) in the a-LC tries with p ^ 1/2, namely
we show that whp Dn(a) w Ciloglogn where C\ =
l/|log(l - h/\og(l/y/pq))\ and h = -plogp -qlogq
is the Shannon entropy rate. This should be com-
pared with recently found typical depth in the original
LC tries which is Ci log log n where €2 — l/|log(l —
hf log(l/ min{p, 1—p}))|. In conclusion, we observe that
a affects only the lower term of the a-fillup level Fn(a),
and the search time in a-LC tries is of the same order
as in the original LC tries.

1 Introduction
Tries and suffix trees are the most popular data struc-
tures on words [7]. A trie is a digital tree built over, say
n, strings (the reader is referred to [12, 14, 24] for an in

'The work was supported by NSF Grants CCR-0208709 and
DMS-02-02815, NIH Grant R01 GM068959-01, and NSA Grant
MDA 904-03-1-0036

tDept. Mathematics, Uppsala University, P.O. Box 480, SE-
751 06 Uppsala, Sweeden.

* Department of Computer Science, Purdue University, West
Lafayette, IN 47907-2066 U.S.A.

depth discussion of digital trees.) A string is stored in
an external node of a trie and the path length to such a
node is the shortest prefix of the string that is not a pre-
fix of any other strings (cf. Figure 1). Throughout, we
assume a binary alphabet. Then each branching node in
a trie is a binary node. A special case of a trie structure
is a suffix trie (tree) which is a trie built over suffixes of
a single string.

Since 1960 tries were used in many computer sci-
ence applications such as searching and sorting, dy-
namic hashing, conflict resolution algorithms, leader
election algorithms, IP addresses lookup, coding, poly-
nomial factorization, Lempel-Ziv compression schemes,
and molecular biology. For example, in the internet IP
addresses lookup problem [15, 22] one needs a fast al-
gorithm that directs an incoming packet with a given
IP address to its destination. As a matter of fact, this
is the longest matching prefix problem, and standard
tries are well suited for it. However, the search time is
too large. If there are n IP addresses in the database,
the search time is O(logn), and this is not acceptable.
In order to improve the search time, Nilsson [15] intro-
duced a novel data structure called the level compressed
trie or in short LC trie (cf. Figure 1). In the LC trie we
replace the root with a node of degree equal to the size
of the largest full subtree emanating from the root (the
depth of such a subtree is called the fillup level). This
is further carried on recursively throughout the whole
trie.

Some recent experimental results reported in [8, 18,
17] indicated a "dramatic improvement" in the search
time when full subtrees are replaced by "partially fillup
subtrees". In this paper, we provide a theoretical
justification of these experimental results by considering
a-LC tries in which one replaces a subtree with the last
level only a% filled by a node of degree equal to the size
of such a subtree (and we continue recursively). In order
to understand theoretically the a-LC trie behavior, we
study here the so called a-fillup level Fn(a) and the
typical depth or the search time Dn(a). The a-fillup
level is the last level in a trie that is a% filled up (e.g.,
in a binary trie level k is a% filled if it contains a2k

nodes). The typical depth is the length of a path from
the root to a randomly selected external node; thus it
represents the typical search time.

223

Figure 1: A trie and its associated full LC trie.

224

In this paper we analyze the a-fillup and the typical
depth in an a-LC trie in a probabilistic framework when
all strings are generated by a memoryless source with
P(l) = p and P(0) = q := I - p. Among other
results, we prove that the a-LC trie shows a rather
moderate improvement over the original LC tries. We
shall quantify this statement below.

Tries were analyzed over the last thirty years for
memoryless and Markov sources (cf. [2, 9, 11, 12, 14,
19, 20, 23, 24]). Pittel [19, 20] found the typical value
of the fillup level Fn (i.e., a = 1) in a trie built over
n strings generated by mixing sources; for memoryless
sources with high probability (whp)

where pm-m — miri{p, 1 — p} is the smallest probability
of generating a symbol and h-^ — log(l/pmin) is
the Renyi entropy of infinite order (cf. [24]). We let
log := Iog2.

This was further extended by Devroye [2], and
Knessl and Szpankowski [11] who, among other results,
proved that the fillup Fn is concentrated on two points
kn and kn + 1, where kn is an integer

for p ^ 1/2. The depth in regular tries was analyzed by
many authors who proved that whp the depth is about
(l//i) logn (where h — —plogp — (I — p) log(l — p) is
the Shannon entropy rate of the source) and that it is
normally distributed when p ^ 1/2 [20, 24].

The original LC tries were analyzed by Andersson
and Nilsson [1] for unbiased memory less source and by
Devroye [3] for memoryless sources (cf. also [21]). The
typical depth (search time) for regular LC tries was only
studied recently by Devroye and Szpankowski [4] who
proved that for memoryless sources with p ̂ 1/2

In this paper we shall prove some rather surprising
results. First of all, for 0 < a < 1 we show that the
a-fillup Fn(a) is whp equal either to kn or kn + 1 where

As a consequence, we find that if p ^ 1/2, the depth
Dn(a) of the a-LC is for large n typically about

The (full) 1-fillup Fn shown in (1.1) should be com-
pared to the a-fillup Fn(a) presented in (1.2). Observe
that the leading term of Fn(a) is not the same as the
leading term of Fn when p ^ 1/2. Furthermore, a con-
tributes only to the second term asymptotics. When
comparing the typical depths Dn and Dn(a] we con-
clude that both grow like log log n with two constants
that do not differ by much. This comparison led us to
a statement in the abstract that the improvement of a-
LC tries over the regular LC tries is rather moderate.
We may add that for relatively slowly growing functions
such as log log n the constants in front of them do mat-
ter (even for large values of n) and perhaps this led the
authors of [8, 17, 18] to their statements.

The paper is organized as follows. In the next
section we present our main results which are proved in
the next two sections. We first consider a poissonized
version of the problem for which we establish our
findings. Then we show how to depoissonize our results
completing our proof.

2 Main Results
Consider tries created by inserting n random strings of
0 and 1. We will always assume that the strings are
(potentially) infinite and that the bits in the strings
are independent random bits, with P(l) = p and thus
P(0) = q :— 1 — p; moreover we assume that different
strings are independent.

We let Xk := ^{internal nodes filled at level k}
and Xk := Xfc/2fc, i.e. the proportion of nodes filled at
level k. Note that X^ may both increase and decrease
as k grows, while

Recall that the fi Hup level of the trie is defined as the
last full level, i.e. max{A; : Xk = 1}, (and for example
the height is the last level with any nodes at all, i.e.
max{fc : Xk > 0}). Similarly, if 0 < a < 1, the a-fillup
level is the last level where at least a proportion a of
the nodes are filled, i.e. maxjfc : X^ > a}.

We will in this paper study the a-fillup level for a
given a with 0 < a < 1 and a given p with 0 < p < 1 .

We have the following result, where whp means with
probability tending to 1 as n — > oo, and $ denotes the
normal distribution function. Theorem 2.1 is proved in
Section 4, after first considering a Poissonized version
in Section 3.

THEOREM 2.1. Let a andp be fixed with 0 < a < 1 and
0 < p < I , and let Fn(a] be the a-fillup level for the trie
formed by n random strings as above. Then, for each n

225

there is an integer

Thus the a-fillup Fn(a) is concentrated on at most
two values; as in many similar situations (cf. [11]), it
is easily seen from the proof that in fact for most n
it is concentrated on a single value fcn, but there are
transitional regimes, close to the values of n where kn

changes, where Fn(a) takes two values with comparable
probabilities.

Note that when p = 1/2, the second term on
the right hand side disappears, and thus simply kn =
logn + 0(1); in particular, two different values of a £
(0,1) have their corresponding kn differing by 0(1)
only. When p 7^ 1/2, changing a means shifting kn

by 6(log1/2n). By Theorem 2.1, whp Fn(a) is shifted
by the same amounts.

To the first order, we thus have the following simple
result.

COROLLARY 2.1. For any fixed a andp with 0 < a < 1
and 0 < p < I ,

in particular

Surprisingly enough, the fill up level for a = 1 and
a < I are quantitatively different for p ^ 1/2. It
is well known, as explained in the introduction, that
the regular fillup Fn is concentrated on two points
around logn/log(l/pmin), while the partial fillup Fn(a)
concentrates around kn ~ \ogn/log(l/^/pq). Secondly,
the leading term of Fn(a) does not depend on a and
the second term is proportional to \/log n, while for the
regular fillup Fn the second term is of order log log log n.

Theorem 2.1 yields several consequences for the
behavior of a-LC tries. In particular, it implies the
typical behavior of the depth, that is, the search time.
Below we formulate our main second result concerning
the depth for a-LC tries delaying the formal proof (that
will follow the footsteps of [4]) till the final (journal)
version of the paper. However, after the statement of
theorem we provide a brief heuristics justification.

THEOREM 2.2. For any fixed 0 < a < I and p ^ 1/2
we have

First, let us explain heuristically our estimate for
Dn(a). By the Asymptotic Equipartition Property (cf.
[24]) at level kn there are about n1~hkri strings where
h is the entropy. That is, n1~hkn w n1~h/b where for
simplicity 6 = \og(l/^/pq). In the next level, we shall
have about n^1~ / l/^ nodes, and so on. In particular, at
level Dn(a) we have approximately

nodes. This leads to our estimate (2.3) of Theorem 2.2.
As a direct consequence of Theorem 2.2 we can

numerically quantify experimental results observed by
Nilsson and Karlsson who reported in [18] a "dramatic
improvement" in the search time of a-LC tries over the
regular LC tries. In a regular LC trie the search time
is O(loglogn) with the constant in front of log logn
being l/log(l - h/\og(l/pm-m))~l [4]. For a-LC tries
this constant decreases to l/log(l — h/log(l/^/pq))~l.
While it is hardly a "dramatic improvement", the
fact that we deal with a slowly growing leading term
log logn, may indeed lead to experimentally observed
significant changes in the search time.

3 Poissonization

In this section we consider a Poissonized version of the
problem, where there are Po(A) strings inserted in the
trie. We let F\(a) denote the a-fillup level of this trie.

THEOREM 3.1. Let a andp be fixed with 0 < a < 1 and
0 < p < 1, and let F\(a) be the a-fillup level for the trie
formed by Po(A) random strings as above. Then, for
each A > 0 there is an integer

We snail prove Ineorem 3.1 through a series or
lemmas. Observe first that a node at level k can be
labelled by a binary string of length k, and that the node
is filled if and only if at least two of the inserted strings
begin with this label. For r e {0, l}fc, let A/i(r) be
the number of ones in r, and let P(r] — pNl(r)qk~Nl(r)
be the probability that a random string begins with
r. Then, in the Poissonized version, the number of
inserted strings beginning with r G {0, l}fc has a
Poisson distribution Po(AP(r)), and these numbers are
independent for different strings r of the same length.

226

such that whp Moreover,
for

as where is the
entropy rate of the source.

such that whp

By the Berry-Esseen theorem [6, Theorem XVI.5.1],

which leads to

This finally implies

and the lemma follows by (3.11) and (3.12).

LEMMA 3.2. Fix p > 1/2. For every A > Q, there
exists c > 0 such that if \k — log^ /^ A| < Ak1/2, then

Proof. A string r 6 {0,1 }fc has two extensions rO and
rl in {0, l}fe+1. Clearly, 7ro,/ri < -^r? and if there are
exactly 2 (or 3) of the inserted strings beginning with
r, then ITQ + /ri < 1 < 2/r. Hence

Let p and 7 be as in the proof of Lemma 3.1, and
let j = [7]. Then ^ = p^~~i e [l,p] and thus

227

Consequently,

where Ir are independent indicators with

Hence,

so and, by Chebyshev's inequality,

Hence (3.10) yields, using

By (3.9) and the assumption (3.8),

Consequently, Xk is sharply concentrated, and it is
enough to study its expectation. (It is straightforward
to calculate Var (Xk) more precisely, and to obtain a
normal limit theorem for Xk, but we do not need that.)

Assume first p > 1/2.

LEMMA 3.1. // p > 1/2 and

then

Proof. Let
i.e.,

and define by

If then

Let By (3.5) and (3.6),

and

then and

This proves Theorem 3.1 in the case p > 1/2. The
case p < 1/2 follows by symmetry, interchanging p and
Q-

In the remaining case p = 1/2, all P(r) = 2~k are
equal. Thus, by (3.5) and (3.6),

Given a 6 (0,1), there is a /^ > 0 such that P(Po(/z) >
2) = a. We take A;A =_[log(A//z) - 1/2J. Then,
A2~ fcA > 21/2//, and thus E-X"fcA > a+ for some c*+ > a.
Similarly, JEiXi^+z < «- for some Q_ < a, and the
result follows in this case too.

4 Depoissonization

To complete the proof of Theorem 2.1 we must depois-
sonize the results obtained in Theorem 3.1, which we do
in this section.

Proof. [Proof of Theorem 2.1] Given an integer n, let
kn be as in the proof of Theorem 3.1 with A = n, and
let A± = n ± n2/3. Then P(Po(A_) < n)) -* 1 and
P(Po(A+) > n)) —•» 1 as n —>• oo. By monotonicity,

which completes the proof.

and

Moreover, the estimate EXkn = ot +
O(l/\/\ogn) follows easily from the similar estimate for
the Poisson version in Lemma 3.1; we omit the details.
This completes the proof of Theorem 2.1 for p > 1/2.
The case p < 1/2 is again the same by symmetry. The
proof when p = 1/2 is similar, now using (3.15).

References

[1] A. Andersson and S. Nilsson, Improved behavior of
tries by adaptive branching, Information Processing
Letters, 46, 295-300, 1993.

[2] L. Devroye, A Note on the Probabilistic Analysis of
Patricia Tries, Random Structures and Algorithms, 3,
203-214, 1992.

[3] L. Devroye, An analysis of random LC tries, Random
Structures and Algorithms, 19, 359-375, 2001.

[4] L. Devroye and W. Szpankowski, Probabilistic be-
havior of asymmetric level compressed tries, Random
Structures & Algorithms, 26, 2005

228

Moreover, by (3.13) and the
assumption,

Thus, if k is large enough, we have by the standard
normal approximation of the binomial probabilities
(which follows easily from Stirling's formula, as found
already by de Moivre [5])

for some c\ > 0. Hence, by (3.14),

we thus have whp F_ (a) < Fn(a) < F\+(a), and by
Theorem 3.1 it remains only to show that we can take

Let us now write -Xfc(A) and Xfc(A), since we are
working with several A.

LEMMA 4.1. Assume Then, for every k,

Proof. We have

and thus, by (3.10) and the argument in (3.11),

as needed.

Now assume p > 1/2. Starting with any k as in
(3.8), we can by Lemmas 3.1 and 3.2 shift k up or
down 0(1) steps and find k\ as in (3.4) such that, for

a suitable and

It follows
by (3.7) that whp and and hence By Lemma 4.1,

Hence, by the proof of The-

and thus whp

orem 3.1, for large n,

[5] A. de Moivre, The Doctrine of Chances, 2nd ed., H.
Woodfall, London, 1738

[6] W. Feller, An Introduction to Probability Theory and
its Applications, Vol. II. 2nd ed., Wiley, New York,
1971.

[7] D. Gusfield, Algorithms on Strings, Trees, and Se-
quences, Cambridge University Press, Cambridge,
1997.

[8] P. livonen, S. Nilsson and M. Tikkanen, An experimen-
tal study of compression methods for functional tries,
in: Workshop on Algorithmic Aspects of Advanced Pro-
gramming Languages (WAAAPL'99), 1999.

[9] P. Jacquet and W. Szpankowski, Analysis of Digital
Tries with Markovian Dependency, IEEE Trans. In-
formation Theory, 37, 1470-1475, 1991.

[10] P. Jacquet and W. Szpankowski, Analytical depois-
sonization and its applications, Theoretical Computer
Science, 201, 1-62, 1998

[11] C. Knessl and W. Szpankowski, On the number of full
levels in tries, Random Structures and Algorithms, 25,
247-276, 2004.

[12] D. E. Knuth, Fundamental Algorithms, 3rd ed,
Addison-Wesley, Reading, Massachusetts, 1997.

[13] D. E. Knuth, Selected Papers on Analysis of Algo-
rithms, CSLI, Stanford, 2000.

[14] H. Mahmoud, Evolution of Random Search Trees, John
Wiley & Sons, New York, 1992.

[15] S. Nilsson, Radix Sorting & Searching, PhD Thesis,
Lund University, 1996.

[16] S. Nilsson and G. Karlsson, Fast address look-up for
Internet routers, in: Proceedings IFIP 4ih Interna-
tional Conference on Broadband Communications, 11-
22, 1998.

[17] S. Nilsson and G. Karlsson, IP-address lookup using
LC-tries, IEEE Journal on Selected Areas in Commu-
nications, 17(6), 1083-1092, 1999.

[18] S. Nilsson and M. Tikkanen, An experimental study of
compression methods for dynamic tries, Algorithmica,
33(1), 19-33, 2002.

[19] B. Pittel, Asymptotic Growth of a Class of Random
Trees, Annals of Probability, 18, 414-427, 1985.

[20] B. Pittel, Paths in a Random Digital Tree: Limiting
Distributions, Adv. in Applied Probability, 18, 139-155,
1986.

[21] Y. Reznik, Some Results on Tries with Adaptive
Branching, Theoretical Computer Science, 289, 1009-
1026, 2002.

[22] V. Srinivasan and G. Varghese, Fast Address Lookups
using Controlled Prefix Expansions, ACM SIGMET-
RICS'98, 1998.

[23] W. Szpankowski, On the Height of Digital Trees and
Related Problems, Algorithmica, 6, 256-277, 1991.

[24] W. Szpankowski Average Case Analysis of Algorithms
on Sequences, John Wiley, New York, 2001.

229

Distinct Values Estimators for Power Law Distributions

Rajeev Motwani" Sergei Vassilvitskii^"

Abstract

The number of distinct values in a relation is an important
statistic for database query optimization. As databases
have grown in size, scalability of distinct values estimators
has become extremely important, since a naive linear scan
through the data is no longer feasible. An approach that
scales very well involves taking a sample of the data, and
performing the estimate on the sample. Unfortunately, it
has been shown that obtaining estimators with guaranteed
small error bounds requires an extremely large sample size
in the worst case. On the other hand, it is typically the
case that the data is not worst-case, but follows some form
of a Power Law or Zipfian distribution. We exploit data
distribution assumptions to devise distinct-values estimators
with analytic error guarantees for Zipfian distributions.
Our estimators are the first to have the required number
of samples depend only on the number of distinct values
present, Z?, and not the database size, n. This allows
the estimators to scale well with the size of the database,
particularly if the growth is due to multiple copies of the
data. In addition to theoretical analysis, we also provide
experimental evidence of the effectiveness of our estimators
by benchmarking their performance against previously best
known heuristic and analytic estimators on both synthetic
and real-world datasets.

1 Introduction

The number of distinct values of an attribute in a
relation is one of the critical statistics necessary for
effective query optimization. It is well-established [9]
that a bad estimate to the number of distinct values
can slow down the query execution time by several
orders of magnitude. Unfortunately, as the amount of
data stored in a database increases, this vital statistic
becomes increasingly difficult to estimate quickly with
reasonable accuracy. While the exact number of distinct
values in a column can be determined by a full scan of
the table, query optimizers would like to obtain a (low-
error) estimate with significantly lower effort. Even
if one is willing to perform a full scan, determining

* Stanford University. Supported in part by NSF Grants EIA-
0137761 and ITR-0331640, and grants from Media-X and SNRC.

t Stanford University. Supported in part by NSF Grants EIA-
0137761 and ITR-0331640, and grants from Media-X and SNRC.

the exact number of distinct values requires significant
memory overhead.

Several approaches have been considered in the
literature to deal with this issue. Recently, much of the
work has focused on streaming models, or algorithms
which are allowed to take only a single pass over the
data [1, 5, 6]. The challenge for these algorithms lies in
minimizing the space used, since the naive schemes run
out of memory long before a single scan is complete.
Another natural approach is to take a small random
sample from the large dataset (often on the order of
1-10%) and then to estimate the number of distinct
values from the sample. This problem has a rich history
in statistics [2, 8, 19], but the statistical methods are
essentially heuristic and in any case do not perform
well in the context of databases [12, 13]. There has
been some recent work in database literature [3, 7, 9, 10]
on trying to devise good distinct-values estimators for
random samples; but again, these are mostly based
on heuristics and are not supported by analytic error
guarantees.

An explanation for the apparent difficulty of
distinct-values estimation was provided in the power-
ful negative result of Charikar, Chaudhuri, Motwani,
and Narasayya [3]. They demonstrate two data distri-
bution scenarios where the numbers of distinct values
differ dramatically, yet a large number of random sam-
ples is required to distinguish between the two scenar-
ios. For example, to guarantee that an estimate has less
than 10% error with high probability, requires sampling
almost the entire table. While this negative result ex-
plains the difficulty of obtaining estimators with good
analytic error guarantees, the worst case scenarios rarely
occur in practice. This leaves open the possibility of ex-
ploiting our knowledge of real-world data distributions
to obtain estimators that are efficient and scalable, have
analytic error guarantees, and perform well in practice.
Indeed, in this paper we show that such positive re-
sults are possible once we make some assumptions about
the underlying data distribution, thereby allowing us to
circumvent the seemingly crippling negative result of
Charikar et al. [3].

It has been observed for over a half-century that
many large datasets follow a Power Law (also known
as Zipfian) distribution; for example, the distribution

230

of words in a natural language [20] or the distribution
of the (out-)degrees in the web graph [14]. We refer
the reader to the book by Knuth [15] and the survey
article by Mitzenmacher [17] for further examples and
an in-depth discussion. The underlying reasons for the
ubiquity of this class of data distributions have been
a subject of debate ever since the original paper by
Zipf [20], but as Mitzenmacher points out one thing is
clear: "Power law distributions are now pervasive in
computer science."

1.1 Our Results In this work, we assume that the n
data items in the column of interest follow a Zipfian
distribution (with some skew parameter 6) on some
number of distinct elements D. Our estimators work
on a random sample of the data from the column. We
assume that the value of 9 is known ahead of time.
In our experimental tests we show that the value of 0
can be easily estimated on real world datasets using
linear regression techniques. Of course, the value of D
is assumed to be unknown, since that is precisely the
quantity that we seek to estimate.

A key feature of the algorithms that we propose
is the independence of their running time from the
database size. These are the first algorithms where the
number of samples and the running time are a function
of solely the number of distinct elements present and
not of the database size itself. This property allows our
estimators to scale extremely well. In particular, the
running time of the estimators remains the same if the
database contains multiple copies of the same data.

We propose two algorithms for computing the num-
ber of distinct values. The first algorithm samples adap-
tively until a stopping condition is met. We prove that
for a large family of distributions the algorithm returns
D, the exact number of distinct values with high proba-
bility; and requires no more than O(\ogD/p£>) samples,
where pr> is the probability of selecting the least likely
element. Observe that if the underlying distribution is
uniform, coupon-collector arguments provide a match-
ing lower bound for the required number of samples.

The setting for the second algorithm is slightly
different. In some applications we are not able to
adaptively sample, but rather are presented with a
small fraction of the database and are asked to provide
the best possible estimate. In this setting the second
algorithm returns D a (1 + e) approximation to D with
high probability after examining only this small number
of random samples. In particular we analyze our
algorithm for Zipfian distributions where the estimator
is correct with probability 1 — exp(—£l (D) /e 2 } after
examining roughly I/PD samples.

We demonstrate via experiments that our estima-

tors not only have theoretical error guarantees, but also
outperform previously-known estimators on synthetic
and real world inputs.

The rest of this paper is organized as follows. We
begin in Sections 2 and 3 by formally defining the prob-
lem and presenting the goals that an estimator should
strive to achieve. In Section 4 we present an algorithm
for computing the exact number of distinct values in a
database with high probability. Section 5 introduces an
estimator that returns an e-error approximation to the
true number of distinct values. Finally, in Section 6 we
present experimental results comparing the performance
of our estimator best known heuristic and guaranteed
error estimators, on both synthetic and real world data.

2 Preliminaries

We assume the following set-up throughout the paper.
Let f — {Pi,Pz,...} be a family of probability distri-
butions, where Pj is a distribution on j elements. Let R
be a relation on n rows, and assume that the elements
in R are distributed along some Pj* T. Our goal is to
determine j*, the number of distinct elements present
in R.

To simplify notation, given a distribution P over a
set X and an element x e X, denote by Pi'i(P) the
probability of element i £ X in the distribution P.

As a special case we consider the family of Zipfian
or Power Law distributions parametrized by their skew,
9. ZQ = {Zi^,Z<2£,...}. where ZD,O is the Zipfian
distribution of parameter 9 on D elements defined as
follows. Rank the elements 1 through D in decreasing
order of probability mass. Then the probability of
selecting the ith element is

Observe that when 0 = 0, the Zipfian distribution
is simply the uniform distribution and ND,O — D. The
skew in the distribution increases with 0. In real-life
applications 0 is typically less than 2.

We assume that the value of 0 is known to our
algorithm; in practice a good estimate for the value of
0 can be obtained as a part of the sampling process as
discussed in Section 6.1.

Our estimation algorithm will deliver an estimate
D of the number of distinct values in the column. To
evaluate the performance of the estimators, we will use
ratio error, which is the multiplicative error of D with

231

where

respect to D. Formally, we define ratio error as

Under this definition, the error is always at least 1,
and no distinction is made between underestimates and
overestimates of the number of distinct values.

The following notation will be useful: After some
r samples, let f i n (r) be the number of distinct values
that appeared in the sample and /out('r, D) = D — fin,
the number of distinct values that were not part of the
sample.

3 Estimators

Our goal is to obtain distinct-values estimators with the
following desired properties:

Few Samples: The number of samples required for
good performance by the estimator should be small.

Error Guarantees: The estimator should be backed
by analytical error guarantees.

Scalability: The estimator should scale well as the
database size n increases. This implies that the
number of samples should grow sublinearly with
(or ideally be independent of) the database size.

As mentioned earlier, the vast majority of estima-
tors that operate on a random sample of the data (as
opposed to those which perform a full scan of the data)
do not provide any analytical guarantees for their per-
formance. The exception is the GEE (Guaranteed-Error
Estimator) estimator developed by Charikar et al. [3].

THEOREM 3.1. ([3]) Using a random sample of size r
from a table of size n, the expected ratio error for GEE
is 0 (\fnjr).

We note that the result above is the best possible due
to a matching lower bound described by the authors.
Observe that the bound is quite weak — even if we allow
a sample of 10%, the expected ratio error bound can be
as high as \/10 w 3.2. Further, the GEE estimator
does not scale well — to maintain the same error, the
sample size needs to increase linearly with the size of
the database.

Once we assume that the input distribution follows
a Zipfian distribution with unknown parameter D, we
can develop estimators which greatly improve upon
the GEE estimator presented above. We focus first
on determining exactly the number of distinct values
in the database, and then we relax this requirement
to devise estimators which may return a (1 + e)-error
approximation to the number of distinct values.

4 Exact Algorithm

We first seek to devise an algorithm which will return
D = Z), but is allowed to fail with some small proba-
bility 8. Note that without the knowledge of the data
distribution, the situation is grim — in the worst case
we would need to sample a large fraction of the database
to obtain the value of D with bounded error probability.

We begin by defining a notion of c-regular families
of distributions.

DEFINITION 4.1. A distribution family F =
{Pi,P2,...} is called c-regular if the following two
conditions hold:

The monotonicty condition ensures that the proba-
bility of an individual item i in the support, decreases
as the overall support of the distribution increases. The
c-regularity condition bounds the decrease in mass of
the least weighted element.

Many common distribution families are c-regular
for small values of c. For example, the family of
uniform distributions is 2-regular. The family of Zipfian
distributions of parameter 6 is 5-regular for 0 < 2

To simplify notation, for a multiset S, let
Distinct(S) be the number of distinct values appear-
ing in S.

The Exact Count algorithm presented below will
continue to sample until a particular stopping condition
is met, at which point the sample contains all of the
distinct values with high probability.

Algorithm 1 Exact Count Algorithm

Let Stop(t) = p9'"^1*r\ ' Jrrt+iPi + i
Let SCR denote the current sample
Draw a sample of size Stop(3)
while Stop(Distinct(S}} > \S\ do

Increase S until \S\ grows by a factor of clog3 4
end while
Output D — Distinct(S)

4.1 Analysis We will show that the above algorithm
returns D — D with probability at least 1/2.

LEMMA 4.1. Let S be a sample of size at lest Stop(3)
drawn uniformly at random from R. Let t be such
that Stop(t + 1) > \S\ > Stop(t). If t < D then
Pr[Distinct(S) <t + l]<(t + 1)~2.

232

Monotonicity: For any

c-Regularity: For any

Where the last inequality follows since Prj(Pt+i] >
Prt+i(Pt+i)- For event S to occur one of the events
£1,... ,£4+1 must occur. We can use the union bound
to limit Pr[£]. In particular Pr[£] < £*!}(* + 1)~3 =
(t + 1)-2.

It remains to show how the elements are broken up
into the aforementioned groups.

We can achieve this division using the following sim-
ple algorithm. Consider the elements in order of de-
creasing probability: Pri(PD], Pr2(PD),..., PrD(PD).
Put the first element into the first group. The mono-
tonicity property ensures that it will fit. Continue with
elements of weight Pr2(PD),Pr3(Prj), etc. Once an el-
ement no longer fits into the first group, begin filling
the next group. Again, by the monotonicity property,
the first element will fit in the group. After filling the
first t +1 groups, put the remaining elements into group
t + 2.

It is clear that each element will be present in
exactly one group. Further, each group {!,.. . ,£ + !}
is at least half full, since it contains at least one element,
and the elements are considered in order of decreasing
weight.

To conclude the analysis we need to bound the total
number of times that the event £ can occur. We do this
by showing that the value of t increases every time we
evaluate the stopping condition.

Where the second inequality follows from the c-
regularity condition.

THEOREM 4.1. The Exact-Count algorithm terminates
successfully with probability at least 1/2. Moreover, the
number of samples necessary is O(logD/Prrj(PD}-

Proof. The algorithm can potentially fail only when the
stopping condition is evaluated. Let E^ be the event
that the algorithm halts on the ith evaluation, but the
sample does not yet contain all of the distinct values.
Lemma 4.1 implies that at the point of ith evaluation,
\S\ > Stop(i + 1), and so Pr[Ei] < (i + 1)~2. By the
union bound, the event that algorithm fails is bounded
by

COROLLARY 4.1. For Zipfian distributions with param-
eter 0 the estimator above requires O(DeNrjj0logD)
samples.

The bound we present above is tight up to very
small factors. Consider two distributions: P which is
a uniform distribution on ra values and Q, a uniform
distribution on m-f 1 values. Let S be a sample from one
of the distributions, such that |5| = o(m fo°f™m) then
by standard coupon collector arguments S contains less
than m distinct values with high probability. It is easy
to see that the relative frequency of the elements in S is
the same whether the elements were drawn from P or
from Q, and so P and Q are indistinguishable.

THEOREM 4.2. There exist c-regular families of distri-
butions T on which any algorithm requires
samples.

5 Approximate Algorithm

Although the above algorithm provides us with analyt-
ical guarantees about the number of samples in the dis-
tribution, the required number of samples can be high.
In some applications there exists a hard limit on the run-
ning time of the estimator, thus we look for a procedure

233

Before proving the lemma, let us interpret its
meaning. Observe that the algorithm halts when
Distinct(S] < t. This lemma bounds the probability
of early halting (halting when Distinct(S) ^ D).

Proof. Consider the elements 1,2,..., D. For the sake of
the proof suppose we can split them up into t + 2 groups
with the following properties:

LEMMA 4.2. For \S\ > Stop(2], Stop-l(c\og34:- \S\) -
Stop-l(\S\} > I , where Stop'^U) = mmu{u :
Stop(u) > U}.

Proof. We will prove this by bounding the ratio

1. each element appears in exactly one group.

2. For groups

Let S be the event that Distinct(S) < t + 1. For £
to occur, all of the elements from at least one of the first
t + 1 groups can not present in S. Let £7 be the event
that no element from group j appears in the sample.

which returns the best possible estimate on the number
of distinct values given a sample from the database.

In this section we present an estimator which re-
turns D such that with probability at least (1 — 8} the
ratio error is bounded by (1+e). We provide the analysis
below for the case of Zipfian distributions parametrized
by their skew, 9.

5.1 Zipfian Distributions The algorithm we con-
sider is similar to the maximum likelihood estimator.
Recall that fin(r] is the number of distinct elements in
a random sample of size r. Let /*n(r, D, 0) be the ex-
pected number of distinct elements in a random sample
of size r coining from a Zipfian distribution of parameter
9 on D distinct values.

Observe that /*n(r, D, 9} can be computed when D
is known. Our estimator returns

In other words, our guess for the number of distinct
elements would (in expectation) have us see as many
distinct values as we did.

5.2 Analysis The analysis of the simple algorithm
above proceeds in two parts. First, we show that with
high probability the observed value of fin does not
deviate by more than a (1+e) factor from its expected
value, f*n(r,D,9). We then show that if this is the
case, then D does not deviate from D by a factor of
more than (1+e) with constant probability, provided
that our sample size is large enough.

LEMMA 5.1. In a sample of size r,

Proof. Let Xi be the number of distinct elements that
appear in the sample after i samples. Let Yi =
E[Xr\Xi,...,Xi] be the expected number of distinct
elements in the sample after r samples given the results
of the first i samples. Note that Yr — fin, the num-
ber of distinct values observed, and Yb = f*n(D, 0), the
expected number of unique values observed. By defi-
nition the l^s form a Doob martingale. Now consider
their successive difference, \Yi — YI-\\. Since the only
information revealed is the location of the ith sample,
|^-^-i|<l.

We can now invoke Azuma's inequality (see Section
4.4 of Motwani and Raghavan [16]) to bound the
difference \Yr — YQ\:

Plugging in the appropriate values for Yr,Yo and A =
eFo gives us the desired result.

We can prove an identical lemma for the values of
fout and f*ut(r,D,9) defined analogously.

COROLLARY 5.1. After r samples,

We have shown that the number of distinct elements
seen after r samples is very close to its expectation. We
now show that this implies that the maximum likelihood
estimator will produce a low ratio error.

Proof. For simplicity of notation let pi = Pr^Zjjj} and
Pi = Pri(Zf) 0), and N and N be the normalizing values
for the two distributions. Let us consider the value of

The estimate D returned by the algorithm is such
that fat(r,D,e) = font < rout(r,D,0}(l + e). Assume
that fout > f*ut (The proof is identical in the opposite
case). Then D > D and we seek to bound the ratio D/D
from above. By corollary 5.1, fout < (1 + e)/*ut(r, Z), 9)
w.h.p.

Therefore, 1 + e >

The second inequality follows since all of the terms in
the numerator are positive. Now consider the ratio of
the ith terms of each sum. Since the ratio of the sum
is bounded, there must exist at least one value i where
the ratio of the individual terms is bounded by (1 + e).
A simple analysis shows that the ratio decreases as i
increases, and thus the lowest ratio is achieved by the
last term.

234

LEMMA 5.2. Suppose that
Then the ratio error,

max

The probability of success of this procedure is
2exp(— e "^2)T'). To establish the result with con-
stant probability, we have to show that even after r as
above samples, f*ut(D,6] is sufficiently large.

From the above two lemmas, the main theorem for
Zipfian distributions follows:

THEOREM 5.1. Given r = ND,e(l + 2e)((l + 2e)D)9

samples the algorithm will produce an estimate D, such
that max(.D/D, D/D) < I + e with probability of error
less than 2exp(— il(D)e2).

We have chosen here to analyze in detail the case of
Zipfian distributions. Observe that the main algorithm
works even for non-Zipfian distributions. As long as the
value of foUt(r,P] can be estimated the algorithm pre-
sented above is well denned. However, the exact value
for r and the estimation error need to be recomputed
for each family of distributions.

6 Experimental Results

In this section we validate our estimator by comparing it
against GEE (the only other sampling based estimator

with analytical guarantees), as well as AE (Adaptive
Estimator), which was shown to outperform all of
the other heuristic estimators in the experiments of
Charikar et al [3]. We will refer to our estimator as
ZE (for Zipfian Estimator). We first test the three
estimators on synthetic data. We generate datasets
according to a Zipfian distribution with skew parameter
9 e {0,0.5,1}. We vary the number of distinct
elements from 10/c to 100/c, and vary the size of the
overall database from lOOfc to lOOOfc. We present
here the results of all three estimators on a dataset
of 500,000 elements drawn under the corresponding
Zipfian distribution on 50000 elements. The results for
the other synthetic scenarios were almost identical to
the ones shown.

Further, we tested the estimators on several real-
world datasets that we assumed followed a Zipfian
distribution. We present the results on the Router
dataset was obtained from [18]. It is a packet trace from
the Internet Traffic Archive. We are trying to predict
the number of distinct IP addresses served by the router.
Although this distribution is not a pure Zipfian, as the
probabilities of the most frequent values and the least
frequent values are a little bit skewed, the bulk of the
data follows a Zipfian distribution with 0 « 1.6.

6.1 Estimating Zipfian Skew Parameter All of
the analytical results above assumed that the parameter
6 was known to us ahead of time. In practice, we
can estimate the parameter from the data sampled
for distinct value counts. Let fi be the frequency of
the ith most common element. Then in expectation,
fi = rpi = %i~e, and log/* = log § - Ologi. Since §
is independent of i, we can estimate 6 by doing linear
regression on the log-log scale of the fi vs i data. Many
of the real world datasets (including Router) follow a
Zipfian distribution for the bulk of the data, but not for
the first or the last few elements, which can change the
9 parameter of the sample. To counteract this problem
we ignored the top 100 frequencies, as well as all of
the elements which did not appear at least 10 times in
the sample while estimating the value of the 9. Note
that the value of the parameter was estimated for the
synthetic datasets as well, even when we knew the exact
value that generated the dataset.

6.2 Discussion In the synthetically generated
datasets the ZE estimator was competitive with AE
and often outperformed it. This is not surprising since
ZE was designed particularly for Zipfian datasets. The
GEE estimator performed poorly on most of the data,
often having the results err by more than a factor of 5
even after a large sample.

235

For 6 > I the result follows since For

it can be shown that Combining the two

inequalities we get

LEMMA 5.3. After samples,

Proof. Consider the elements of rank D/2 through D.
and let i be one of these elements.

Therefore the probability that i is not present

in the sample of size r is at most

The
expected number of items not present is therefore J1(D).

Figure 1: Empirical results on synthetic and real world data

On the real-world dataset AE performed very well,
and ZE was competitive after about 2.5% of the
database was sampled. One must keep in mind that
the router dataset had very high skew (6 « 1.6), and ZE
was given fewer estimates than would be required by the
theoretical guarantees, but performed well nonetheless.
On real world data, the Zipfian Estimator, ZE grossly
outperformed the other estimator with guaranteed er-
ror bounds. The results were comparable only after a
10% fraction of the database was sampled. It is impor-
tant to note that because of the random access nature
of the estimation algorithms, a 10% sample requires al-
most as much time to compute as a full linear scan of
the database.

Although ZE and AE performed equally well, one
must remember that the Zipfian Estimator presented
here is guaranteed to perform well with high probability
on all Zipfian inputs, while the AE estimator is only
a heuristic and may perform poorly on some of the

inputs. In particular, the error of AE often rises as more
samples are taken from the database. When compared
to the only other estimator which has guarantees on
its results, GEE, the Zipfian estimator performed much
better, often giving results more than 10 times more
accurate on the same dataset.

References

[1] Alon, N., Matias, Y., and Szegedy, M. The space
complexity of approximating the frequency moments.
In Proceedings of the 28th ACM Symposium on the
Theory of Computing, 1996, pp. 20-29.

[2] Bunge, J., and Fitzpatrick, M. Estimating the Number
of Species: A review. Journal of the American Statis-
tical Association 88(1993): 364-373.

[3] Charikar, M., Chaudhuri S., Motwani, R., and
Narasayya, V. Towards Estimation Error Guarantees
for Distinct Values. In Proceedings of the Nineteenth

236

ACM Symposium on Principles of Database System,
2000, pp. 268-279.

[4] Chaudhuri, S., Das, G., and Srivastava, U. Effective
Use of Block-Level Sampling in Statistics Estimation.
In Proceedings of ACM-SIGMOD, 2004.

[5] Durand, M., and Flajolet, P. Loglog Counting of Large
Cardinalities. In Proceedings of llth Annual European
Symposium on Algorithms (ESA), 2003, pp. 605-617.

[6] Flajolet P., and Martin, G.N. Probabilistic counting.
In Proceedings of the IEEE Symposium on the Founda-
tions of Computer Science, 1983, pp 76-82.

[7] Gibbons, P.B. Distinct Sampling for Highly-Accurate
Answers to Distinct Values Queries and Event Reports.
In Proceedings of the 27th International Conference on
Very Large Databases, 2001.

[8] Goodman, L. On the estimation of the number of
classes in a population. Annals of Math. Stat. 1949,
pp. 72-579.

[9] Haas, P.J., Naughton, J., F., Seshadri, S., and Stokes,
L. Sampling-based Estimation of the Number of Dis-
tinct Values of an Attribute. In Proceedings of the 21st
International Conference on Very Large Databases,
1995.

[10] Haas, P.J., and Stokes, L. Estimating the number
of classes in a finite population. In Journal of the
American Statistical Association 1998, pp. 1475^1487.

[11] Heising, W.P. IBM Systems J. 2 (1963).
[12] Hou, W., Ozsoyoglu, G., and Taneja, B. Statistical

estimators for relational algebra expressions. In Pro-
ceedings of the 7th ACM Symposium on Principles of
Database Systems, 1988.

[13] Hou, W., Ozsoyoglu, G., and Taneja, B. Processing
aggregate relational queries with hard time constraints.
In Proceedings of the ACM-SIGMOD International
Conference on Management of Data, 1989.

[14] Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan,
S., and Tomkins, A. The Web as a graph: measure-
ments, models and methods. In Proceedings of the In-
ternational Conference on Combinatorics and Comput-
ing, 1999.

[15] Knuth, D.E. Sorting and Searching. Volume 3 of
The Art of Computer Programming. Addison-Wesley,
Reading, MA, 1971.

[16] Motwani, R., and Raghavan, P. Randomized Algo-
rithms. Cambridge University Press, 1995.

[17] Mitzenmacher, M. A Brief History of Generative Mod-
els for Power Law and Lognormal Distributions. In
Proceedings of the 39th Annual Allerton Conference on
Communication, Control, and Computing, 2001, pp.
182-191.

[18] A packet trace from the internet traffic archive,
http://ita.ee.Ibl.gov/html/contrib/DEC-PKT.html.

[19] Shlosser, A. On estimation of the size of the dictionary
of a long text on the basis of a sample. Engrg Cyber-
netics, 1981, pp. 97-102.

[20] Zipf, G. The Psycho-Biology of Language.
Houghton Mifflin, Boston, MA, 1935.

237

http://ita.ee.Ibl.gov/html/contrib/DEC-PKT.html

A Random-Surfer Web-Graph Model

Avrim Blum* T-H. Hubert Chan* Mugizi Robert Rwebangira*

Abstract

In this paper we provide theoretical and experimental results
on a random-surfer model for construction of a random
graph. In this model, a new node connects to the existing
graph by choosing a start node uniformly at random and then
performing a short random walk. We show that in certain
formulations, this results in the same distribution as the
preferential-attachment random-graph model, and in others
we give a direct analysis of power-law distribution of degrees
or "virtual degrees" of the resulting graphs. We also present
experimental results for a number of settings of parameters
that we are not able to analyze mathematically.

1 Introduction

There has been substantial work in recent years on the
preferential attachment random graph model. In this model,
a graph is constructed in the following manner. Nodes arrive
one at a time, and each new node makes k connections
to the existing graph. However, unlike classic random
graph models, these connections are not made uniformly
at random, but rather with probability proportional to the
degree of existing nodes in the graph. This process is known
to produce graphs with a power law degree distribution [2]
and that have high conductance [15], and has been proposed
as a model for graphs such as the graph of links between
pages on the World Wide Web.

A natural question that arises when considering the
preferential attachment model is why: why should a new
node connect to existing nodes with probability proportional
to their degree? Is it because we imagine that high degree
nodes are "better" (and the degree of a node is an indicator
of its quality) or is it for some other reason?

The starting point for this paper is the observation that
a simple "random surfer" model provides a natural explana-
tion for preferential attachment. In particular, imagine that
each new node (a person setting up their web page) puts in k
links into the existing graph by picking a random start node
and then randomly surfing the web until it finds k interesting
pages to connect to. Imagine also that each page is equally
likely to be interesting to the surfer and each link is bidirec-

* Computer Science Department, Carnegie Mellon University, Pitts-
burgh, PA 15213. {avrim, Hubert, rweba} at cs.cmu.edu. Supported in
part by the National Science Foundation under grants CCR-0122581, IIS-
0312814, and CCF-0514922.

tional (so we have an undirected graph). Then, if the prob-
ability p of a page being "interesting" is sufficiently small,
these connections will be made (approximately) according to
the stationary distribution of the walk, which is exactly the
preferential attachment distribution. Furthermore, since such
graphs have high conductance [15], one should not need an
extremely low value of p for this to hold. Thus, preferential-
attachment may arise even if all nodes are in a sense "equally
good", and differences between degrees may not necessarily
be an indicator of differences in inherent quality.

Based on this as motivation, in this paper we propose
and analyze several "random surfer" models for graph con-
struction. We also give a number of experimental results,
both for models we know how to analyze and for several that
we do not. Interestingly, the models we are best able to ana-
lyze in this setting are all directed graph models, rather than
undirected models as the one described above. In addition,
some of these models can be thought of as making a bridge
between the preferential attachment model and the copying
model of [13].

2 Random Surfer Models

In this section, we describe several random surfer models
that we will examine in the rest of the paper. In each model,
nodes arrive one at a time, making k connections to the
existing graph. In some models these connections will be
viewed as directed edges, and in some as undirected edges.
All our models begin with a single start node VQ having k
self-loops. In general, we use vt to denote the vertex added
in the tth step, and n as the total number of vertices.

To motivate our first model, note that if the connections
to the existing graph are made uniformly at random, then
we have an online version of the standard Erdos-Renyi
graph model, and with high probability the maximum degree
will be O(\ogn). On the other hand, suppose we make
each connection by first picking a random start node in the
existing graph, and then taking a random walk of exactly one
step. Then, in the directed case, this will just produce a star
(all edges will point to the root VQ), and in the undirected
case, it is not hard to show that there is a good chance this
produces something star-like of maximum degree fJ(n).1

'In particular, if the graph is currently a star of t nodes, then there is
a (t — l)/t chance the random start node is one of the spokes, so the 1-
step walk moves to the center and the next edge maintains the star. More

238

However, if we flip a coin and with probability p e (0, 1)
connect to the random start and with probability 1 — p take a
1-step walk, then we get something much more natural.

MODEL 1 . O-STEP WALK WITH SELF-LOOP) In this
model, we are given parameters k and p. At time t, vertex vt

makes k connections to the existing graph by repeating the
following process k times:

1. Pick an existing node v uniformly at random from

2. With probability p stay at v; with probability I — p take
a 1-step walk to a random neighbor ofv.

3. Add an edge from vt to the current node.

In the directed version, the edges added are directed from vt

into the existing graph. In the undirected version, edges are
undirected.

Our next model is a walk of the form given in the
Introduction: instead of taking one step, we keep walking
until we find a node of interest and then connect there. In
order to make the model easier to think about, for the case
k > 1 we imagine after each connection we re-start at a new
random start node when performing the next walk.

MODEL 2. (RANDOM WALK WITH COIN FLIPS) In this
model, we are again given parameters k and p. At time
t, vertex vt makes k connections to the existing graph by
repeating the following process k times:

2. Flip a coin of bias p

3. If the coin comes up heads add an edge from Vt to the
current node and stop.

4. If the coin comes up tails, move to a random neighbor
of the current node and go back to (2).

In the directed version, the edges added are directed from vt

into the existing graph. In the undirected version, edges are
undirected.

3 Theoretical results

3.1 Directed Walk with Self-Loop. Our first (simple)
result is that the directed version of Model 1 with p = 1/2 is
exactly the preferential attachment model.

THEOREM 3.1 . The directed version of Model 1, with p =
1/2, has the same distribution as preferential attachment.

generally, with high probability, the number of non-leaf vertices remains
small and the expected degree of the initial node is f2(n) See Section 3.3.

Proof. First, notice that the graph is necessarily a DAG, with
all edges pointing backwards in time, and each vertex has an
out-degree of k. Now, consider some vertex u in the existing
graph with in-degree du. An edge from the new vertex vt will
connect to u if either the process chooses u as the start node
of its walk and does not take a step, or else it chooses one
of w's in-neighbors u' as the start node and does take a step,
selecting the edge from u' to u. The first case has probability
p/t, and the second case has probability (1 —p}duf(ki). For
p — 1/2, the sum of these two quantities is (A; + du)/(2kt)
which is exactly proportional to the total degree k + du of u.

One implication of Theorem 3.1 is that for p > 1/2, the
model is a mixture of preferential-attachment and uniform-
random connections. That is, the case p > 1/2 can be
viewed as: with probability 1p — 1 choose a neighbor uni-
formly at random, and with the remaining probability choose
a neighbor with probability proportional to degree. This pro-
cess is known to produce power-law degree distributions.
For general p (0,1), we now give an argument for power-
law degree distributions from first principles.

Let di (i) be the number of nodes with in-degree i at step
t, and Di(t) be the expectation of di(i). We now analyze
Di (t) via the following equation.

/. Pick an existing node v uniformly at random from

Observe that the number of nodes with in-degree i
increases if the new node connects to an existing node of
degree i — I and decreases if the new node connects to one
of degree i. The term in (3.2) is due to the fact that with
probability p the new node is connected to an existing node
picked uniformly at random. The term in (3.3) corresponds
to the case when with probability 1 — p, the new node
connects to a random out-going neighbor of a randomly
picked node. The factor k appears in both (3.2) and (3.3)
because each new node makes k connections to the existing
nodes. The factor l/k appears only in (3.3) because in the
case where a random out-going neighbor is chosen, there are
A: possible choices. We require for large enough t, a new
node does not make more than one connection to an existing
node.

THEOREM 3.2. There exists a constant C > 0 such that as
2-p

t tends to infinity, Di(t) ~ Ci 1~pt.

Proof. Using the above equations, the proof follows directly
from the techniques of Kumar et al. [13], Cooper and Frieze

239

[10], and Mitzenmacher [16], which allow one to determine
the asymptotic behavior of Di(t).

In particular, for each i, we make the substitution
Di(i) = Cit in (3.1) - (3.3) to obtain the following equation.

Rearranging (3.4), we have

3.2 Directed Walk with Coin Flipping. We now consider
the directed case of Model 2, for the case k = 1. That is, we
connect a new node to the existing graph by picking a start
node u uniformly at random, and then performing a random
walk, where at each step we halt the walk with probability
p. Since k = 1, we can view the random graph constructed
as a tree, in which the initial node is the root and every other
node has an edge directed to its parent.

To analyze this walk, we define a notion of the virtual
degree of a node that is related to the node's actual degree,
but also contains terms for the local neighborhood of the
node as well. We then prove that for this definition, at each
step the expected increase in virtual degree of any given
node is proportional to the virtual degree itself. (The virtual
degree itself is a fractional quantity, and at each step will
change by at most some constant.) Using this, we can show
that the expected virtual degrees follow a power-law, and we
can also give some bounds on their concentration about their
means. Moreover, we can give a crude lower bound on the
expected real degree of a given node, which is comparable
to its expected virtual degree.

However, our concentration bounds are not sharp
enough to give a true proof that the virtual degrees, or the
real degrees, follow a power law.

DEFINITION 1. Suppose u is a node in the tree. For i > 0,
denote Ll(u) to be the set of level i descendants of u and
li(u] = \Li(u)\. For instance, LQ(U) is the set of children,
LI(U) is the set of grandchildren, and so on. Let (3 —
{A}i>o be a sequence of real numbers such that 0o = I.
The virtual degree ofu with respect to (3 is

In the definition of virtual degree v(u], the leading term
1 corresponds to the parent of u. We require /3o = 1, for
each child of u should contribute 1 towards the degree of
v. We would like the virtual degree to reflect the actual
degree of a node, and hence ideally, for i > 1, we would
like fa to be small. On the other hand, we also want that
the expected increase in the virtual degree v(u] of node u in
each step to be proportional to its current virtual degree. The
following theorem states we can satisfy these requirements
simultaneously.

THEOREM 3.4. Suppose we consider the directed walk with
coin flipping probability p (0,1). Then, there exists
0 — {Pk}k>o> dependent on p, with fio = 1 such that for
each node u, the expected increase in v(u] from step t to
step t + 1 isp/t • v(u}. Moreover, for k > 0, \f3k\ < 1, and
as k tends to infinity, 0k tends to zero exponentially, i.e. there
is some C > 0 and 0 < p < 1 such that \fik\ < Cpk.

Proof. We fix the coin flipping probability p and find some
sequence (3 that satisfies the requirements.

For convenience, we denote q = 1 — p and L-i(u] =
{u}. Then, for i > 0, if a new connection is made to a node
in Li-i(u), then the increase in v(u) is fa.

Fix i > 0. We first calculate the probability that a new
connection is made to a node in LJ_I(M). Recall that we
first pick a node uniformly at random to start the directed
random walk. If we end up making a new connection to a
node in LJ_I (W) , we must have begun the random walk at
some node in Li-i+j(u), for some j > 0.

We fix some j > 0 and calculate the probability that
the random walk starts at some node in Li-i+j(u} and ends
up at some node in LJ_I (W) . Note that there are I j_i+ J(w)
nodes to start and there are j hops to be made. Hence, the
probability is li-i+j(u)/t • qi • p.

It follow that the probability that a new connection is
made to some node in Li-\(u) is j Yl,j>o (l^i-i+j(u)-

Hence, the expected increase in i/(u) from step t to step
i + l i s

240

for large values of i. Using the fact that
we have

for some

Moreover, using Theorem 4 of [10], one can also show
that di(i) is concentrated around its mean, as stated in the
following theorem.

THEOREM 3.3. For any

Recall we wish that the above quantity to be equal to

Hence, it suffices to find a sequence j3 such that the
corresponding coefficients of lk(u) are equal.

For k — —1, we require /?o = 1; for k — 0, we have
0oq + fii =0o, which implies that f3\ = p. In general, for
k > 0, we have

THEOREM 3.5. For any node u and step t > tu, the
expectation

Proof. For any we have from Theorem 3.4 that

Hence,

We next give an intuition, similar in spirit to [3], of how
Theorem 3.5 suggests that the virtual degrees of the random
graph should follow a power law. Suppose the random
process is run for n steps to form a random graph with n
nodes. Then, from Theorem 3.5, the expected virtual degree
of the ith node joining the graph is Q((n/i)p). If we let
K w 9((n/i)p), we would have i w 6(n/t~1/p). Observing
that nodes joining later should probably have smaller virtual
degrees, one might expect that the proportion of nodes
having virtual degrees smaller than K to be 1 — 6(«;~1/p).
Differentiating this quantity with respect to «, we conjecture
that the proportion of nodes having degree K should be
K-WP+D.

Unfortunately, we do not have a strong enough concen-
tration bound that would allow us to make the above intu-
ition rigorous. However, using martingale techniques, we
can show that the virtual degree cannot be too much larger
than its mean for the case when the coin flipping probability
p > l / 2 .

THEOREM 3.6. There exists a constant C > 0 such that for
coin flipping probability p > 1/2 and any p > 1,

Now, suppose k > 0. Then, we have

Hence, the sequence (3 can be determined by the recurrence
A) = 1, A = P and for k > 0, fa+2 - (3k+i + qfa = 0.

We show inductively that \fa \ < 1- We first observe that
this is true for k = 0,1,2. Assume that the result is true for
integers up to k + 1. In the first case, suppose fa and fa+\
have the same sign. Then, \0k+2 = | \ fa+\\ -q\fa\\ < 1, by
the induction hypothesis. In the second case, suppose fa and
0k+i have different signs. Hence, \0k+2\ = \/3k+i - qfa\ <
\/3k+i ~ fa\ = Q\fa-\\ < 1» by me induction hypothesis.

For p — 3/4, we have fa = ^T. Otherwise, for
other values of p in (0,1), let AI = (1 — >/l — 4g)/2 and
A2 = (1 + x/1 - 4g)/2 and fa = A\{ + BX%, for some
constants A and B. Observe that since 0 < p < 1, the
magnitudes of AI and A2 are both strictly less than 1. Hence,
in any case, as k tends to infinity, fa tends to 0 exponentially.

Proof. Consider a node u and recall that tu is the time when
it first appears. Define Oj = 1 + p/i. Recall from the proof
of Theorem 3.5 that E[vt(u)\ = njl^a* = Q((t/tu}

p].
Define Yi = Vi(u)/E[vi(u}}, for i > tu. Then, it

follows that {Yi} is a martingale. Define DI :=Yi — Yl-\.
Recall that the sequence {fa} tends to zero. Hence,

it follows that \Vi(u) — z/j_i(u)| = B(l), and we have
| A| = \Yi - Yi-i = l/E[vi(u)] • \Vi(u) - a
l/E[^(u}} • |0(1) - -^ • !/<_!(«)! = Q(l/E[Vi(u)}),
since I/J_I(M) = O(i — 1). Hence, we can let Ki =
9 (1 IE \Vi (u)}), and so | Dl < Ki. By the Azuma-Hoeffding
martingale inequality, we have for any x > 0,For the rest of the discussion, we consider the virtual

degree defined with respect to some sequence 0 that satisfies
Theorem 3.4. We next explore how the virtual degree of a
particular node changes with time. Define i>t(u) to be the
virtual degree of node u at step t and tu to be the time when
node u first appears. Then, it follows that vtu(u) = 1, since
each new node is a leaf when it first appears. Observe that for p > 1/2, we have

241

Hence, for some large enough , if we put
we have Observing that

and taking we have

where C > 0 is a constant large enough to absorb the 1.

3.3 Undirected Walk without Self-loop. We now con-
sider the model mentioned when motivating Model 1 in
which a new connection is made to a random neighbor of
a randomly selected node. We show that there is a node,
namely the initial node, that in expectation has degree linear
in the size of the random tree produced. Thus, the self-loop
in Model 1 is crucial for producing natural graphs.

THEOREM 3.8. Under the undirected walk without self-
loop model, the expected number of leaves connected to the
initial node in the random tree produced is fi(n), where n is
the number of nodes.

Proof. Let Ln be number of leaves connected to the initial
node VQ at step n and Dn be the degree of the initial node VQ
at time n.

Suppose we are at step n. With probability at least
I/n/n, a leaf of VQ would be picked and after one jump, a
new connection would be made to VQ, causing the number of
leaves connecting to VQ to increase by 1. On the other hand,
with probability ^ • j=f-, the initial node VQ is picked and
after one jump a new connection is made to an existing leaf,
causing the number of leaves connected to VQ to decrease by

3.2.1 A Crude lower bound for the expected real degree.
Recall that for a given node u in the tree and i > 0, LI (u)
is the set of level i descendants of u and li(u) — \Li(u}\. In
particular, IQ(U) is the number of children node u has. We
can give a crude lower bound for IQ(U) for any given node u.

THEOREM 3.7. For any node u and step the
expectation

Proof. Let the number of level i descendants of node u at
time step t be ll(u). It follows that

Hence,
with the last inequality holding because

Hence, if we let Zn = Ln — 1, we have
Observe that

Hence, and so

Suppose that for some constant A > 0, for some t > 0,
and a, we have E[IQ(U)] > Ata. Observing that for t > 1,

we have

4 Experimental results

All experiments were the average of 100 runs with a size n —
100,000 nodes and k — 1, i.e. the random graph produced
is a tree. In each case, we investigate how the average
proportion P& of nodes having degree d varies with d. Since
we wish to observe whether the degree distribution follows
a power law, we plot Iog10 Pd against Iog10 d, for d up to
40. All four models exhibits power-law like phenomena.
Figure 5 shows the degree distribution for the four models
and they behave similarly, although the maximum degree
seen is much larger for the directed models than for the
undirected ones.

4.1 Directed walk with self-loops. Figure 1 shows exper-
imentally that the power-law phenomenon exhibited by the
degree distribution becomes more apparent as the probabil-
ity p decreases and the degree d increases. Notice that for
p = 1, this is just the Erdos-Renyi random graph model,
which does not obey the power law. Moreover, the maximum
degree seen for p = 1 is only about 20. As p gets smaller the
graph can be fitted better with a straight line. Note that even
for p = 0.75, power law phenomenon is exhibited for large
degrees d.

if we set a = p(l — p).
Note that Hence, it

follows that

242

Figure 2: Directed walk with coin flips: (Left) p = 0.5 (Right) p = 0.25

243

Figure 1: Directed walk with self-loops: (Top-Left) p = I , (Top-Right) p = 0.75, (Bottom-Left) p = 0.5, (Bottom-Right)
p = 0.25

4.2 Directed walk with coin flips. We do not have a
proof, but Figure 2 is very similar to Figure 1, which
indicates that in this case the degrees appear to be following
a power law.

4.3 Undirected walk with self-loops. We do not know
how to analyze this model yet. As seen in Figure 3, there
are indications that a power law phenomenon is exhibited by
large degrees. On the other hand, the distribution of degrees
may follow some other nice distribution that is not very far
from power law (e.g. log-normal distribution).

4.4 Undirected walk with coin flips. Like the previous
model, this model is not easy to analyze. But Figure 4
shows that the degree sequence does not look too different
from the undirected walk with self-loops model. We know
theoretically that if p is very small the degree sequence will
tend closer to a power law. Figure 4 indeed shows that for
p — 0.05, the graph can be better fitted with a straight line.

5 Conclusions and Open Questions

In this paper we present some initial analysis and experi-
mental results for several simple random-surfer models for
web-graph construction. The models are similar in spirit to
the copying model of [13], and in fact the directed case of
Model 1, for k = I is identical to both the copying model
and preferential-attachment. There are many open questions
including:

1. In the case of the directed walk with self-loops, we can
analyze the expected virtual degrees and provide some
concentration bounds, but do not have a formal proof
that the virtual degrees necessarily follow a power-law.
Furthermore, even assuming this is the case, we do not
have a proof that this implies that the actual degrees
must be power-law, though our experimental results
show this appears to in fact be the case. Thus, can
one give a formal proof that the degrees indeed follow
a power law for this model?

2. For the case of the undirected walk with self-loops,
we know that as p goes to 0, this walk approaches the
preferential-attachment distribution. However, experi-
mentally, even for p = 0.5 the degrees follow some
heavy-tailed distribution. Can one give a formal analy-
sis of the degree distribution in this case?

3. Finally, another issue brought out by this work is that
differences between degrees of nodes in the (real) web
graph may not necessarily be due to a distinction in
quality, but rather just the result of a random walk
process. Thus, if one is using degree as a measure of
quality, one may just be picking out nodes that have
been around the longest. Instead, some measure that

Figure 3: Undirected walk with self-loops: p = 0.5

Figure 4: Undirected walk with coin flips: (Top) p = 0.5,
(Bottom) p = 0.05

244

Degree

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Max degree seen
in 100 runs

Directed walk
with self-loops
0.6670
0.1669
0.06662
0.03333
0.01900
0.01195
0.007902
0.005547
0.004048
0.003046
0.002332
0.001832
0.001452
0.001187
0.0009853
0.0007938
0.0007005
0.0005839
0.0005009
0.0004400
0.0003731
0.0003280
0.0003001
0.0002559
0.0002188
0.0002020
0.0001860
0.0001643
0.0001545
0.0001382
0.0001221
0.0001116
0.0001039
0.0000972
0.0000904
0.0000789
0.0000735
0.0000649
0.0000602
0.0000543
1623

Directed Walk
with coin-flips
0.6672
0.1862
0.06929
0.03107
0.01607
0.009108
0.005607
0.003662
0.002524
0.001809
0.001322
0.001006
0.0008016
0.0006195
0.0005008
0.0004128
0.0003486
0.0002924
0.0002455
0.0002118
0.0001846
0.0001637
0.0001426
0.0001213
0.0001054
0.0001018
0.0000872
0.0000778
0.0000720
0.0000642
0.0000604
0.0000528
0.0000529
0.0000475
0.0000425
0.0000396
0.0000395
0.0000362
0.0000325
0.0000282
20612

Undirected Walk
with self-loops
0.6136
0.1903
0.08128
0.04137
0.02355
0.01444
0.009301
0.006298
0.004447
0.003242
0.002376
0.001802
0.001405
0.001088
0.0008539
0.0006968
0.0005608
0.0004531
0.0003842
0.0003121
0.0002707
0.0002300
0.0001990
0.0001652
0.0001454
0.0001289
0.0001103
0.0000954
0.0000851
0.0000708
0.0000594
0.0000564
0.0000511
0.0000415
0.0000407
0.0000353
0.0000323
0.0000264
0.0000277
0.0000272
325

Undirected Walk
with coin-flips
0.5840
0.2044
0.09132
0.04652
0.02596
0.01546
0.009703
0.006354
0.004286
0.002992
0.002134
0.001540
0.001131
0.0008657
0.0006553
0.0005115
0.0003950
0.0003122
0.0002471
0.0002031
0.0001653
0.0001355
0.0001082
0.0000956
0.0000750
0.0000639
0.0000520
0.0000511
0.0000395
0.0000354
0.0000313
0.0000240
0.0000219
0.0000184
0.0000162
0.0000131
0.0000136
0.0000118
0.0000103
0.0000086
138

Figure 5: Average proportion of nodes having different degrees under different models with n — 100,000, p = 0.5 and 100
runs

245

examines the degree of a node relative to what one
would expect given the time the node has been in the
system might be more appropriate.

References

[19] D.J. Watts. Small Worlds:They Dynamics of Networks Be-
tween Order and Randomness. Princeton University Press,
Princeton, 1999.

[20] G. Yule. A mathematical theory of evolution based on the
theories of j.c. willis. Philosophical Transactions of the Royal
Society of London (series B), pages 21-87, 1925.

[1] W. Aiello, F.R.K. Chung, and L. LU. A random graph
model for massive graphs. Proc. of the 32nd Annual ACM
Symposium on the Theory of Computing, pages 171-180,
2000.

[2] Reka Albert and Albert-Laszlo Barabasi. Topology of evolv-
ing networks: Local events and universality. Physical Review
Letters, pages 5234-5237, 2000.

[3] Sagy Bar, Mira Gonen, and Avishai Wool. An incremental
super-linear internet topology model. 5th annual Passive and
Active Measurement Workshop, 2004.

[4] A. Barabasi and R. Albert. Emergence of scaling in random
networks. Science, pages 509-512, 1999.

[5] Bollobas and O.Riordan. The diameter of a scale free random
network.

[6] Bollobas and O.Riordan. Handbook of Graphs and Networks.
Wiley VCH, Berln, 2002.

[7] Bollobas, O.Riordan, J.Spencer, and G.Tusanady. The degree
sequence of a scale free random graph process. Random
Structures and Algorithms, pages 279-290, 2001.

[8] F.R.K. Chung, L.LU, and V. Vu. Eigenvalues of random
power law graphs. Annals of Combinatorics, pages 21-33,
2003.

[9] F.R.K. Chung, L.LU, and V. Vu. The spectra of random
graphs with expected degrees. Proceedings of National
Academies of Science, pages 6313-6318, 2003.

[10] C. Cooper and A. M. Frieze. A general model of undirected
web graphs. Random Structures and Algorithms, pages 311-
335, 2003.

[11] P. Erdos and A. Renyi. On random graphs i. Publicationes,
Mathematicae, Debrecen, pages 290-297, 1959.

[12] M. Faloutos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. SIGCOMM, pages
251-262, 1999.

[13] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar,
A. Tomkins, and E. Upfal. Stochastic models for the web
graph. Proc. IEEE Symposium on Foundations of Computer
Science, 2000.

[14] M. Mihail and C. H. Papadimitriou. On the eigenvalue
powerlaw. Randomization and Approximation Techniques,
6th International Workshop, pages 254-262, 2002.

[15] M. Mihail, C. H. Papadimitriou, and A. Saberi. On certain
connectivity properties of the internet topology. Proc. IEEE
Symposium on Foundations of Computer Science, 2003.

[16] M. Mitzenmacher. A brief history of generative models for
lognormal and power law distributions.

[17] H.A. Simon. On a class of skew distribution functions.
Biometrika, pages 425-440, 1955.

[18] Gilbert Strang. Linear Algebra and its Applications. Har-
court Brace Jacanovich, 1988.

246

Asymptotic Optimality of the Static Frequency Caching in the Presence of Correlated
Requests*

Predrag R. Jelenkovic^ Ana Radovanovic*

Abstract

Renewed interest in caching algorithms stems from their ap-
plication to content distribution on the Web. When docu-
ments are of equal size and their requests are independent
and equally distributed, it is well known that static algorithm
that keeps the most frequently requested documents in the
cache is optimal. However, there are no explicit caching
algorithms that are provably optimal when the requests are
statistically correlated. In this paper, we show, maybe some-
what surprisingly, that keeping the most frequently requested
documents in the cache is still optimal for large cache sizes
even if the requests are strongly correlated. We model the
statistical dependency of requests using semi-Markov modu-
lated processes that can capture strong statistical correlation,
including the empirically observed long-range dependence
in the Web access sequences.

Although frequency algorithm and its practical version
least-frequently-used policy is not commonly used in prac-
tice due to their complexity and static nature, our result
provides a benchmark for evaluating the popular heuristic
schemes. In particular, an important corollary of our main
theorem and recent result from [9] is that the widely used
least-recently-used heuristic is asymptotically near-optimal
under the semi-Markov modulated requests and generalized
Zipf's law document frequencies.

Keywords: Web caching, cache fault probability, average-
case analysis, lest-frequently-used caching, least-recently-
used caching, semi-Markov processes, long-range depen-
dence

1 Introduction

One of important problems facing current and future network
designs is the ability to store and efficiently deliver a huge
amount of multimedia information in a timely manner. Web
caching is widely recognized as an effective solution that
improves the efficiency and scalability of multimedia content
delivery, benefits of which have been repeatedly verified in
practice.

Caching is essentially a process of storing information
closer to users so that Internet service providers, delivering

"This work is supported by the NSF Grant No. 0092113.
t Electrical Engineering Department, Columbia University.
* Mathematical Sciences Department, IBM Research.

a given content, do not have to go back to the origin servers
every time the content is requested. It is clear that keeping
more popular documents closer to the users can significantly
reduce the traffic between the cache and the main servers
and, therefore, improve the network performance, i.e., re-
duce the download latency and network congestion. One
of the key components of engineering efficient Web caching
systems is designing document placement/replacement algo-
rithms (policies) that are managing cache content, i.e., select-
ing and possibly dynamically updating a collection of cached
documents.

The main tendency in creating and implementing these
algorithms is minimizing the long-term fault probability, i.e.,
the average number of misses during a long time period. In
the context of equal size documents and independent refer-
ence model, i.e., independent and identically distributed re-
quests, it is well known (see [5], Chapter 6 of [13]) that keep-
ing the most popular documents in the cache optimizes the
long term cache performance; throughout this paper we refer
to this algorithm as static frequency caching. A practical im-
plementation of this algorithm is known as Least-Frequently-
Used rule (LFU). However, the previous model does not in-
corporate any of the recently observed properties of the Web
environment, such as: variability of document sizes, pres-
ence of temporal locality in the request patterns (e.g., see [8],
[12], [2], [6], [7] and references therein), variability in doc-
ument popularities (e.g., see [3]) and retrieval latency (e.g.,
see[l]).

Many heuristic algorithms that exploit the previously
mentioned properties of the Web environment have been pro-
posed (e.g., see [7], [5], [11] and references therein). How-
ever, there are no explicit algorithms that are provably opti-
mal when the requests are statistically correlated even if doc-
uments are of equal size. Our main result of this paper, stated
in Theorem 3.1 of Section 3, shows that, under the general
assumptions of semi-Markov modulated requests, the static
frequency caching algorithm is still optimal for large cache
sizes. The semi-Markov modulated processes, described in
Section 2, are capable of modeling a wide range of statistical
correlation, including the long-range dependence (LRD) that
was repeatedly experimentally observed in Web access pat-
terns; this type of models was recently used in [9] and their
potential confirmed on real Web traces in [8]. In Section 4,
under mild additional assumptions, we show how our result
extends to variable page sizes. Our optimality result pro-
vides a benchmark for evaluating other heuristic schemes,

247

suggesting that any heuristic caching policy that approxi-
mates well the static frequency caching should achieve the
nearly-optimal performance for large cache sizes. In partic-
ular, in conjunction with our result from [9], we show that
a widely implemented Least-Recently-Used (LRU) caching
heuristic is, for semi-Markov modulated requests and gener-
alized Zipf's law document frequencies, asymptotically only
a factor of 1.78 away from the optimal.

2 Modeling statistical dependency in the request
process

In this section we describe a semi-Markov modulated re-
quest process. As stated earlier, this model is capable of cap-
turing a wide range of statistical correlation, including the
commonly empirically observed LRD. This approach was
recently used in [9], where one can find more details and
examples.

Let a sequence of requests arrive at Poisson points
{rn, —oo < n < 00} of unit rate. At each point rn, we use
Rn, Rn £ (!) 2, . . . ,}, to denote a document that has been
requested, i.e., the event {Rn = i} represents a request for
document i at time rn; we assume that the sequence {Rn}
is independent of the arrival Poisson points {rn} and that
p[Rn = i] > 0 for all i and P[Rn < oo] = 1.

Next, we describe the dependency structure of the
request sequence {Rn}- We consider the class of finite-
state, stationary and ergodic semi-Markov processes J,
with jumps at almost surely strictly increasing points
{Tn,-oo < n < oo}, TO < 0 < TI. The process
{</rra, —oo < n < 00} is an irreducible Markov chain with
finitely many states {!,..., M} and transition matrix [pi3,}.
The explicit construction of process Jt, t e M is presented
in Subsection 4.3 of [9]. In addition, Jt is constructed piece-
wise constant and right-continuous modulating process,
where

Let Tiv = P[Jf = r], 1 < r < M, be the stationary
distribution of J and independent of Poisson points {rn}.
To avoid trivialities, we assume that minr 7rr > 0. For each

(r)1 < r < M, let q\ , 1 < i < N < oo, be a probability mass
function; qf' is used to denote the probability of requesting
item i when the underlying process J is in state r. Next, the
dynamics of Rn are uniquely determined by the modulating
process J according to the following equation

i.e., the sequence of requests Rn is conditionally indepen-
dent given the modulating process J. Given the properties
introduced above, it is easy to conclude that the constructed

request process {Rn} is stationary and ergodic as well. We
will use

to express the marginal request distribution, with the as-
sumption that qi > 0 for alH > 1. In addition, assume that
requests are enumerated according to the non-increasing or-
der of marginal request popularities, i.e., q\ > q% > The
preceding processes are constructed on a probability space
CO T P\^i t , *r , K) .

In this paper we are using the following standard no-
tation. For any two real functions a(t) and b(t) and fixed
to G R U {00} we will use a(£) ~ b(t) as t —> to to denote
\imt-+t()[a(t)/b(t)] = 1. Similarly, we say that a(t) > b(t)
as t -» to if liminf t_<() a(t)/b(i) > 1; a(t) < b(i) has a
complementary definition.

Throughout the paper we will exploit the renewal (re-
generative) structure of the semi-Markov process. In this re-
gard, let {Ti}, TQ < 0 < TI, be a subset of points {Tn} for
which JT^ = 1. Then, it is well known that {Ti} is a renewal
process and that sets of variables {Jt,Tj < t < 7?+i} are
independent for different j and identically distributed, i.e.,
{Ti} are regenerative points for {Jt}- Furthermore, the con-
ditional independence of {Rn} given {J^}, implies that {Ti}
are regenerative points for Jn as well.

Next we define Tl(u, t), 1 < r < M, to be a set of
distinct requests that arrived in interval [u , t) , u < t, and
denote by Nr(u,t),l < r < M, the number of requests in
interval [u, t) when process Jt is in state r. Furthermore, let
N(u, t) = NI(U, t) -\ h NM(u, t) representing the total
number of requests in [w, t); note that N(u, t) is Poisson with
mean t — u.

The following technical lemma will be used in the proof
of the main result of this paper.

LEMMA 2.1. For the request process introduced above, the
following asymptotic relation holds:

where

Proof: Given in Section 5.

3 Caching policies and the optimality

Consider infinitely many documents of unit size out of which
x can be stored in a local memory called cache. When an
item is requested, the cache is searched first and we say that
there is a cache hit if the item is found in the cache. In
this case the cache content is left unchanged. Otherwise,
we say that there is a cache fault/miss and the missing item
is brought in from the outside world. At the time of a

248

fault, a decision whether to replace some item from the
cache with a missing item has to be made. We assume that
replacements are optional, i.e., the cache content can be left
unchanged even in the case of fault. A caching algorithm
represents a set of replacement rules. We consider a class of
caching algorithms whose information decisions are made
using only the information of past and present requests and
past decisions.

More formally, let Cl be a cache content at time t
under policy TT. When the request for a document Rn is
made, the cache with content C?n, n — 0,1, . . . , is searched
first. If document Rn is already in the cache (Rn € C*n),
then we use the convention that no document is replaced.
On the other hand, if document Rn is not an element of
C"n, then a document to be replaced is chosen from a set
C*n U{Rn} using a particular eviction policy. At any moment
of request, rn, the decision what to replace in the cache is

based on #1, J?2, • • • , #n, C™ > Cr,»• • • > Crn•
 Note that this

information already contains all the replacement decisions
made up to time rn. This is the same information as the one
used in the Markov decision framework [5].

The set of the previously described cache replacement
policies, say Pc, is quite large and contains mandatory
caching rules (more typical for a computer memory environ-
ment). Furthermore, the set Pc also contains the static algo-
rithm, that places a fixed collection of documents C£ = C in
the cache, and, after this selection is made, the content of the
cache is never changed.

Now, define the long-run cache fault probability corre-
sponding to the policy TT e Pc and a cache of size x as

recall that EAT(0, T) = T. Note that we use the lim sup in
this definition since the limit may not exist in general.

Next, we show that

where 7k are the regenerative points, as defined in the
previous section. To this end, for the lower bound, for any
0 < e < 1, let k = fc(T, e) ̂ [T(l - e)/E[T2 - Ti]J, where
[u\ is the largest integer that is less or equal to u. Then, note

249

Next, using the Weak Law of Large Numbers for P[7fc > T]
(as T —>• oo) and the fact that JV(0, T) is Poisson with mean
T in the preceding inequality, we obtain

that

since the set {k : k = |T(1 - e)/E[T2 - 7i]J,T > 0},
covers all integers. We complete the proof of the lower
bound by passing e —> 0. Upper bound uses similar
arguments and we omit the details.

Next, observe the static policy s, where
{1,2,. . . , x} for every n. Then, due to ergodicity of the re-
quest process

Since the static policy belongs to the set of caching algo-
rithms Pc, we conclude that

Our goal in this paper is to show that for large cache
sizes x there is no caching policy that performs better,
i.e., achieves long-term fault probability smaller than Ps(x).
This is stated in the following main result of this paper.

THEOREM 3.1. For the request process defined in Section
2, the static policy that stores documents with the largest
marginal popularities minimizes the long-term cache fault
probability for large cache sizes, i.e.,

Remarks: (i) From the examination of the following proof
it is clear that the result holds for any regenerative request
process that satisfies Lemma 2.1. (ii) Though asymptotically

long-term optimal, static frequency rule possesses other
undesirable properties such as high complexity and non-
adaptability to variations in the request patterns. However,
its optimal performance presents an important benchmark
for evaluating and comparing widely implemented caching
policies in the Web environment.
Proof: In view of (3.6), we only need to show that
mfnePc P(TT,X) is asymptotically lower bounded by Ps(x)
as x —* oo.

For any set A, let \A\ denote the number of elements in
A and A\B represent the set difference. Then, it is easy to
see that the number of cache faults in [£, u),t < u, is lower
bounded by \R,(t,u) \ C^\ since every item that was not in
the cache at time t results in at least one fault when requested
for the first time; in particular, ift~Tj,u = Tj+i,

This inequality and (3.4) results in

Now, since we consider caching policies where replacement
decisions depend only on the previous cache contents and
requests, due to renewal structure of the request process we
conclude that for every j > 1 and alH > 1, events {i G
K(Tj,Tj+i)} and {i € Clj.} are independent. Therefore, for
every j > 1,

Thus, for any

Next, we show that the cache content [l,x] =
{1,..., x} achieves the infimum in the previous expression
for large cache sizes. This is equivalent to proving that, as

We will justify the previous statement by showing that for
any set C obtained from [l,x] by placing documents from

250

the set {x + 1,... } instead of those in fl, x] can not result
in
for large cache sizes x.

Lemma 2.1 implies that for an arbitrarily chosen e > 0
there exists finite integer io such that for all i > IQ

Thus, using the previous expression and q± [0 as i —> oo,
we conclude that for all k < IQ there exists XQ > IQ large,
such that for alH > XQ

Now, assume that the cache is of size x > XQ and observe
different cache contents C obtained from [l,x] by replacing
its documents with items from {x + 1, x + 2 , . . . }. Next,
using (3.13), we conclude that replacing documents enumer-
ated with {1,..., IQ} can only increase the sum on the left
hand side of (3.11). On the other hand, observe cache con-
tents C that are obtained from [1, x] by replacing documents
enumerated as {^o + 1, • • • , x} with items from {x +1,... }.
Then, it is easy to see that proving inequality (3.11) is equiv-
alent to showing that £ie[io+i,*] Ft* e ^C^+i)] >
Ei6C\[i,t0] Pt* e n(Tj,Tj+1)}. Next, since for any i > iQ

inequalities (3.12) hold, we conclude

where the second inequality in the previous expression fol-
lows from the monotonicity of q^. Then, by passing e —>• 0
we prove inequality (3.11).

Note that after applying the lower bound (3.11) in
(3.10), in conjunction with (3.9), the renewal nature of the
regenerative points and Lemma 2.1, we obtain that as x —>

which completes the proof of the theorem.

4 Further extensions and concluding remarks

In this paper we prove that the static frequency rule mini-
mizes the long term fault probability, for large cache sizes,
in the presence of correlated requests. Although the fre-
quency algorithm and its practical version the LFU policy is
not commonly used in practice due to their complexity and
static nature, our result provides a benchmark for evaluating

the popular heuristic schemes. In order to capture depen-
dency in the request patterns, we use semi-Markov modula-
tion technique, which is capable of modeling a wide range of
statistical correlation, including the LRD that was repeatedly
experimentally observed in Web access patterns.

There are several generalizations of our results that are
worth mentioning. First, the definition of the fault probabil-
ity in (3.4) can be generalized by replacing terms l[Rn &
C*n] with f(Rn)\[Rn i C£J, where f (i) could represent
the cost of retrieving document i, e.g., the delay of fetching
item i. Then, using basically the same arguments as in the
proof of Theorem 3.1, one can easily show that a static policy
which maximizes Y^=i /(*)& ls asymptotically optimal.

Second, in the context of documents with different sizes,
in view of Section 4.1 of [10] and the arguments from the
proof of Theorem 3.1, one can prove the following result:

THEOREM 4.1. Assume that there are D < oo different
document sizes. Then, if marginal request distribution is long
tailed, i.e., ̂ ~ qi+k as i -+ oo for any finite integer k,
the static rule that places documents with the largest ratio
Qi/Si, subject to the constraint]T^ s* < %, is asymptotically
optimal.

Finally, in light of our recent result on the asymptotic
performance of the ordinary LRU caching rule in the pres-
ence of semi-Markov modulated requests and Zipf's law
marginal distributions (qi ~ c/ia as i —> oo, c > 0) ob-
tained in Theorem 3 of [9], asymptotic optimality of the sta-
tic frequency rule implies that the LRU is factor e1 w 1.78
away from the optimal (7 is the Euler constant, i.e. 7 w
0.57721...). Therefore, in view of other desirable proper-
ties, such as self-organizing nature and low complexity, the
LRU rule has excellent performance even in the presence of
statistically correlated requests.

5 Proof of Lemma 2.1

In this section, we prove the asymptotic relation (2.2) stated
at the end of Section 2.

Note that

where Then, since las
it follows that In

addition, for all and for any
there exists
inequality

such that for all
holds, and, therefore, for i large

251

enough

Then, since
enough,

for we obtain, for i large

Next, let Then, we show that
From ergodicity of

the process Jt, it follows

where Tir, 1 < r < M, is the length of time that Jt spends
in state r during the renewal interval (T\, T?) (see Section 1.6
of [4]). Finally, using EN = E[T2-Tl] and ENr = E7ir,
1 < r < M (Poisson process of rate 1), in conjunction with
(5.17), we conclude, for i large

Next, we estimate the lower bound in (5.16). After condi-
tioning we obtain

where Then, note

that for every
In addition, for any there exists

such that for all inequality
holds, and, therefore, for i large enough

such that

Then, since
andas and, therefore, in conjunction with

we obtain, as

Finally, after letting c —»• 0 in the previous expression and
using (5.18), we complete the proof of this lemma.

References

[1] M. Abrams and R. Wooster. Proxy caching that estimates
edge load delays. In Proceedings of 6th Int. World Wide Web
Conf., Santa Clara, CA, April 1997.

[2] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliviera.
Characterizing reference locality in the WWW. In Proceed-
ings of the Fourth International Conference on Parallel and
Distributed Information Systems, Miami Beach, Florida, De-
cember 1996.

[3] M. Arlitt and C. Williamson. Web server workload charac-
teristics: The search for invariants. In Proceedings of ACM
SIGMETRICS, May 1996.

[4] F. Baccelli and P. Bremaud. Elements of Queueing Theory.
Springer-Verlag, 2002.

[5] O. Bahat and A. M. Makowski. Optimal replacement policies
for non-uniform cache objects with optional eviction. In Pro-
ceedings of Infocom 2003, San Francisco, California, USA,
April 2003.

[6] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. Web
caching and Zipf-like distributions: Evidence and implica-
tions. In IEEE INFOCOM, 1999.

[7] P. Cao and S. Irani. Cost-aware WWW proxy caching
algorithms. In Proceedings of the USENIX 1997 Annual
Technical Conference, Anaheim, California, January 1997.

[8] P. R. Jelenkovic and A. Radovanovic. Asymptotic insensitiv-
ity of least-recently-used caching to statistical dependency. In
Proceedings of INFOCOM 2003, San Fransisco, April 2003.

[9] P. R. Jelenkovic and A. Radovanovic. Least-recently-used
caching with dependent requests. Theoretical Computer Sci-
ence, 326:293-327, 2004.

[10] P. R. Jelenkovic and A. Radovanovic. Optimizing LRU
for variable document sizes. Combinatorics, Probability &
Computing, 13:1-17, 2004.

[11] Shudong Jin and Azer Bestavros. GreedyDual* Web Caching
Algorithm. In Proceedings of the 5th International Web
Caching and Content Delivery Workshop, Lisbon, Portugal,
May 2000.

[12] Shudong Jin and Azer Bestavros. Sources and character-
istics of Web temporal locality. In Proceedings of Mas-
cots '2000: The IEEE/ACM International Symposium on Mod-
eling, Analysis and Simulation of Computer and Telecommu-
nication Systems, San Fransisco, CA, August 2000.

[13] E. G. Coffman Jr. and P. J. Denning. Operating Systems
Theory. Prentice-Hall, 1973.

252

Exploring the Average Values of Boolean Functions
via Asymptotics and Experimentation

Robin Pemantle*
Department of Mathematics
University of Pennsylvania

Philadelphia, PA 19104-6395
pemantle@math.upenn.edu

Mark Daniel Ward
Department of Mathematics
University of Pennsylvania

Philadelphia, PA 19104-6395
ward2@math.upenn.edu

Abstract
In recent years, there has been a great interest in studying
Boolean functions by studying their analogous Boolean
trees (with internal nodes labeled by Boolean gates; leaves
viewed as inputs to the Boolean function). Many of these
investigations consider Boolean functions of n variables and
ra leaves. Our study is related but has a quite different
flavor.

We investigate the mean output Xn of a Boolean
function denned by a complete Boolean tree of depth n.
Each internal node of such a tree is labeled with a Boolean
gate, via 2n — 1 IID fair coin flips. The value of the input
at each leaf can be simply fixed at 1/2, so the randomness
of Xn derives only from the selection of the gates at the
internal nodes.

For each n, there are 2*-2 ~l> possible Boolean binary
trees to consider, so we cannot expect to obtain a complete
description of the probability distribution of Xn for large n.
Therefore, we perform a twofold investigation of the Xn,
using both asymptotics and experiments. We prove that,
with probability 1, Xn —> 0 or Xn —» 1. Then we directly
compute the asymptotics of the first four moments of Xn.
Writing Zn = Xn(l — Xn), we also prove that E(Zn) and
E(Zn) are both 6(l/n). Finally, we utilize C++ and a
significant amount of computation and experimentation to
obtain a more descriptive understanding of Xn for small
values of n (say, n < 100).

1 Introduction.

We first outline the construction of a Boolean function
using a binary tree. We utilize complete binary trees
Tn of depth n. The tree Tn has 2n leaves and 2n - 1
internal nodes. At each of the internal nodes, we place
either an AND gate or an OR gate, with probability
1/2 each. Selection of the gates at distinct nodes is
independent, so the gates are essentially chosen by IID
fair coin flips. In other words, we uniformly select a
vector consisting of 2n — 1 AND's and OR's, namely
gn e {ANDjOR}2""1. By labeling the internal nodes
of a complete binary tree of depth n with this collection
gn of 2n — 1 gates, we naturally define a random Boolean
function <pn(gn} '• {051}2" —* {0?1}- The leaves of the
tree, say H, «2, • • • , *2™, are considered as the inputs to

^Supported by NSF grant DMS-0401246.

the Boolean function. The output at the root of the tree
is viewed as the output of the Boolean function. Thus
we write

for each (2n — l)-tuple gn of gates and each 2n-tuple of
inputs i i , Z 2 , • • • , «2»-

In this investigation, we are interested in studying
the behavior of the random variable Xn, which denotes
the mean output of 0n(pn) on 2n Boolean inputs. In
other words,

We observe that Xn is a random variable because the se-
lection of the 2n — 1 gates in gn is performed at random.
Once the selection of the gates gn is determined, then
Xn is completely determined, because Xn is the average
of all possible 22" selections of inputs ii, z 2 , . . . , i-2n to
the Boolean tree described above. So the randomness
of Xn does not stem from a random choice of the inputs
ii , i2, • • • , *2n at all; Xn's randomness only depends on
the random selection of gates at the internal nodes of
the tree. Once the gates at the nodes are chosen, then
we average over all possible inputs to the binary tree.

We will see in (2.6) below that Xn converges in
distribution to the measure (l/2)5o + (l/2)5i that gives
mass one half each to 0 and 1. Intuitively, there will
probably be a sufficient preponderance of AND gates to
drive Xn to 0 or a sufficient preponderance of OR gates
to drive Xn to 1. This is not too surprising (although
it does not occur in the related model of [7], where the
random tree of size n has leaves at distance 6(1) from
the root). A more interesting question is how fast Xn

approaches the set {0,1}, and what this reveals about
the structure of the random Boolean function 4>n(gn).

For each selection gn of gates, we note that
(j)n(gn} is a function with 2n inputs. If the inputs

253

z i , . . . , ij-i, ij+ii • • • , i-2" are all fixed, then 4>n(gn) is a
linear function of ij. Since ij € {0,1} for each j, then
we conclude that Xn can be computed easily, once the
gates gn are chosen, by simply taking 1/2 as the value of
each input ij to the Boolean function (f)n(gn). In other
words, for each selection of #n, we have

in this representation, it is perhaps easiest to see that
the randomness of Xn is due to the random selection of
the gates in the (2n — l)-tuple gn.

An example is useful for clarification. Consider the
selection of #3 given below in this tree of depth 3:

For complete trees of depth 3, we see that X$ denotes
the mean output of a Boolean random function with
gates (73. If the choice of #3 is the one given above, this
results in ^3 having the value 217/256. To see this,
simply evaluate the tree:

Evaluating such a tree with inputs besides the familiar
{0,1} requires a bit of explanation. The evaluation
of expressions such as i\ A i-2 is quite easy. This
expression, for instance, evaluates to 1 if both i\ and
12 have the value 1; otherwise, the expression evaluates
to 0. Unfortunately, this evaluation is useful only
for 11,12 € {0)1}- So we instead use the following
equivalent interpretation (which is quite standard). We
write

This interpretation has the benefit that i\ arid 1-2 can be
any real numbers; in particular, they can each be set to
the value 1/2.

The trees Tn are naturally embedded as increasing
rooted subtrees of the infinite binary tree T. All the
variables Xn may be constructed on a single probability
space (17, J-, P) on which are defined variables {G(v) :
v € V(T)} taking values AND and OR independently
with probability 1/2 each. If T' is any (possibly
random) rooted subtree of T, let QT> be the Boolean
function with inputs at the leaves of T' defined by
having the gate G(v] at each internal node v of T'.

254

Let XT' denote the mean of T' if all input vectors are
equally likely. Thus 4>n(gn} = 9Tn and XT,, = Xn. Let
XT' (v) denote the mean value of the Boolean function
computed by the subtree of T' rooted at v; we may omit
T' from the notation when it is understood. Another
consequence of linearity is that the values XT'(V) are
determined by a recursion. That is, if v is a leaf of T'
then XT'(V) = 1/2 by definition, while for an internal
node v of T' having children w and w',

where

Evaluating a binary tree with inputs of 1/2 at each
of the leaves yields the value of Xn for each particular
selection of gates. Considering all possible selections of
gates, however, is computationally infeasible for even
small trees of small depth. For only the smallest values
of n, say n < 5, can we possible hope to compute
Xn for all of the possible choices of gates. Therefore,
for medium sized values of n, say n < 20, we can
readily compute the value of Xn for one particular
selection of gates for one complete tree of depth n, but
we cannot hope to compute Xn for every selection of
gates. Therefore, we simply compute Xn on a large
number of trees, but we cannot perform an exhaustive
investigation of all trees and their associated Boolean
functions. For large values of n, say n > 30, it
becomes computationally intractable to even compute
the value of Xn for one particular selection of gates on a
complete binary tree of depth n. In such cases, we must
discriminately choose which gates to evaluate, because
we cannot possibly hope to evaluate them all.

In such cases, where we want to approximate the
value of Xn on a complete tree of depth n, but where
we cannot hope to evaluate all gates of the Boolean tree,
we consider a growing tree. We begin simply with the
root of a Boolean binary tree. At every stage, we select
one leaf of the tree and change it into an internal leaf,
by giving it two children and a Boolean gate. Which
leaves should be transformed into parent nodes first?
We utilize the concept of sensitivity of a leaf to select
the next leaf to transform. The leaves that are the most
sensitive, i.e., that have the largest potential effect on
the evaluation of Xn, should be first. We now formalize
this notion.

Let T' be a finite subtree of T and let L be a leaf
of T'. Let gT',L+ be the Boolean function with inputs
at all leaves of T' except L, computed by evaluating
QT> with the input at L set equal to 1. Let gT',L- be
analogous but with the input at L set equal to 0. Let

XT',L+ and XT>,L- denote the respective means of the
functions gr',L+ and gT',L-- Then we formally define
the sensitivity of the leaf L in T' as

Another description of 5(L,T") is quite useful when
computing the sensitivities of the leaves.

We label the root node of T' as VQ. For a leaf L at
depth A; in T', we write VQ, vi, v%,..., v^ = L to describe
the path within the tree, from the root node, to the
leaf L. For i > 1, we note that v^i has two children,
namely, v^ and one other child, which we refer to as Wi.
Thus Vi and Wi are distinct nodes at level i with the
same parent; such nodes are frequently referred to as
siblings.

LEMMA 1.1.

leaves have the same sensitivity, the program selects one
of the candidate leaves uniformly at random; sometimes
the candidate leaves are at different levels, so this is an
important subtlety in the implementation of the pro-
gram. Once a leaf L is selected to be updated, we con-
sider the path VQ, vi,..., v k = L from the root of the tree
to the leaf. Only the X-values X(vo),X(vi),...,X(vk)
must be updated; this is extremely efficient in terms
of the computation required, because at most n nodes
are found on the path from the root to the leaf. The
sensitivities of every leaf in the tree must be updated
afterwards. We note that if v'Q, v{,..., v'k = L' denotes
another leaf, then the sensitivity of L' is exactly

where the Iverson notation \A\ is 1 if event A holds and
is 0 otherwise.

Proof. Induct on T'. When T' is the single vertex
vQ = Vk = L then by definition QT',L+ = 1 and
QT',L- = 0, so 5(L, T') = 1 which is equal to the empty
product in (1.3). If not, then assume the lemma is true
for the subtree T'(v\):

A subtlety here is the observation that only
X(WQ), X(wi),..., X (w j) were changed at this stage in
the growth of the tree. For some value of j (which is,
with high probability, quite small), we note that L and
L' have common ancestors v^ = v(for all i < j, but
Vi ^ v(for all i > j. Thus Wi — w(for all i < j, but
Wi ^ w'i for all i > j. Therefore, only the X-values
X(w'i),... ,X(w'j) need to be updated in the sensitiv-
ity of I/, as written in (1.4). In other words, the only
X(w'i)-values that need updating are those for which
Vi = v\ is a common ancestor of both L and L'.

We wrote several C++ programs to perform the
computations in this project. Some sample output from
the programs is presented graphically at the end of this
paper.

We have computed millions and millions of values of
Xn for various values of n. For instance, when n = 15,
we are able to compute approximately 30 values of Xn

per second on a 1.42 GHz Power Macintosh G4 machine.
We have built a large database that archives all of the
output from these investigations. It has grown so large
that it is unwieldy to distribute all of it publicly on the
Internet, but we summarize some of the results of our
computations at the end of this report.

2 Main results

We were inspired to pursue an analysis of Xn because of
Gardy and Woods' intriguing study [7], in which various
measures on Boolean functions are analyzed. Gardy and
Woods consider trees chosen uniformly among all sub-
binary trees with n leaves; they also place randomly
assigned logical gates at the internal nodes. We note
that a uniformly chosen tree with n leaves is stringy.
The typical random function produced in this way is
therefore dominated by the 0(1) many inputs at leaves

By definition, S(L,T') is the difference of the means
of 9T',L+ and (JT>,L-- By independence, the mean
of $T',L+ is gr>(Vl)iL+X(wi) if G(v0) = AND, and
l-(l-3r>(Vl),L+)(l-X(wi)) = gTl(vi}iL+(l-X(wi)) +
X(wi) if G(VQ) = OR. Subtracting the analogous
representation of the mean of QT',L- (just replace each
L+ in the previous sentence with I/—), it follows that
S(L,T') = SCL,T>i))-f, where £ = X(wi) if G(v0) =
AND and 1 - X(wi) if G(v0) = OR, completing the
induction.

We developed a C++ program to investigate the
growth of Boolean binary trees, using the sensitivity of
the leaves as a guide for which subtrees to explore first.
The program is completely adaptive, according to the
sensitivities of the leaves. At each stage of the execution
of the program, the most sensitive leaf is chosen, using
the definition of sensitivity described above. If several

255

of distance 6(1) from the root. Their model is natural
for some purposes, but we are interested in considering
the model in which, as n —> oo, the distance from the
root to the boundary goes to infinity. For this reason, we
consider the simplest such model, namely, the complete
binary tree. The typical behavior of a random Boolean
function produced by a complete binary tree turns out
to be interesting but in some ways elusive.

Besides the analysis contained in [7], we note that
many attributes of Boolean functions, binary Boolean
trees, and tree recurrences have been analyzed recently.
For instance, consider [1], [2], [3], [6], [8], [10], [11], [12],
and [13]. These papers constitute a starting point from
which readers can delve further into the literature.

We recall that Xn is the mean output of a Boolean
function defined by a complete Boolean tree of depth n.
In this report, we prove the following facts about Xn.

THEOREM 2.1. The sequence {Xn} is a Martingale.
With probability 1, the limit limn_xn exists and is
either 0 or 1. The moments of Xn may all be computed
recursively. In particular, the first four moments of Xn

are

Perhaps, for instance, ^logZn/n has a nondegenerate
distributional limit.

We point out that there are issues in effective
simulation that are bound up with theoretical analyses
of the problem. In particular, exact simulation of Zn

(the study of Zn and Xn is basically interchangeable)
requires a time that is exponential in n. Thus, for
example, we cannot even obtain one sample of ZIQQ
(just one sample of ZIQQ requires the generation of
2100 — 1 Boolean gates). We can only hope to obtain
exact samples of Zn for medium-sized n. For larger n,
say n > 30, our remedy is an extensive experimental
analysis of Zn by repeatedly approximating Zn; we do
this by exploring only nodes of the tree that one expects
to have high impact on the value of Zn. At each stage
in the growth of the tree, there is a well defined most
sensitive remaining node (there may be ties); therefore,
one may define a greedy search algorithm which always
looks next at this node. Revealing the gate will reduce
the variance by the most. If one can then compute how
close one is to Xn then one will know how far to go
in order to simulate a pick from Xn with the desired
precision. If, further, one can analyze the growth of the
exploration tree, then one will know how long it takes to
simulate Xn, and this will have implications directly on
the distribution of Xn. For example, if Xn is typically
well approximated by a tree of depth m < n, then the
distributions of Xn and Xm are close and, if m — o(n),
this precludes a limit law with n in the denominator.

Ample data generated by our various C-|—(- pro-
grams for studying the behavior of Xn when n is small
(say, n < 100) can be obtained from the authors. Our
files of data are too large to distribute on the internet
at present (we have hundreds of megabytes of files, con-
taining millions of samples of various Xn).

At the present time, it suffices to present a few
graphs of sample data concerning Xn at the end of the
paper. In particular, we give plots of values related to
possible limit laws for Xi$ and ^20, using numerical
data from millions of samples of Xi$ and X^Q.

3 Analysis and Proofs.

We establish the fact that {Xn} is a martingale. We
also derive the first four moments of Xn. Using a similar
methodology, one can set up similar recurrences and use
analogous arguments to derive any of the moments of
Xn.

By a sampling scheme we mean a rule for producing
a sequence of vertices y i , ? / 2 , - - - such that for each k
the vertices {2/1, • • • ,y/c} span a rooted subtree W^ of
T and each yk+i is a function of G(yi),... ,G(yk).
Associated with each such rule is the a-field F^ :=
a(G(yi),..., G(yk)} of the first k gates one looks at.

where a = ^7
2
 l . To understand the rate at which a

variable with symmetric distribution on [0,1] converges
to {0 , I } , it is natural to analyze the moments of Zn :=
Xn(l-Xn). We have

It follows that, for some

Left open is whether the rest of the time Zn is typically
of order 1/n or of some smaller order.

Just as the right 1/n-tail of Zn is larger than one
might initially expect, it is also not hard to show that
the left 1/n-tail of Zn is quite small.

256

PROPOSITION 2.1. There are such that

We believe in fact that the distribution of log Zn

is spread over an interval of increasing size as n —> oo.

LEMMA 3.1. The sequence {X\yk} is a martingale with
respect to {JF^}. In particular, it follows from the
breadth-first sampling scheme that the sequence {Xn}
is a martingale with respect to the filtration {Fn} :=
o-(G(v) : v is an internal node ofTn).

Proof. To see that {X^fc} is a martingale, observe that,
conditional on F^, the vertex y^+i is known and its
output in the tree Wk+\ has mean 1/2. By linearity,
E(Xwk+l\F^} is the mean output at the root of W&,
with the input at y^+i set to 1/2; however, the mean
may be computed by setting all the inputs to 1/2, so
this is equal to Xwk.

COROLLARY 3.1. With probability 1, Vm^n^^Xn ex-
ists.

Proof. Since 0 < Xn < I for each n, we have E(\Xn\) <
1 for all n. By Lemma 3.1, we know that {Xn} is a
martingale. Thus, the corollary follows immediately by
the Martingale Convergence Theorem (see [4], [5]).

We now evaluate moments of Xn.

LEMMA 3.2.

Proof. Reversing each gate and each input reverses the
output but preserves the measure on functions of gn.
Thus 1 — Xn and Xn have the same distribution.

We use the following Lemma to aid in the proof of
Theorem 3.2. If we define Zn = Xn(l — Xn), then we
make the following observations.

LEMMA 3.3.

1. E(X%) increases to the limiting value of 1/2.

2. The rate of convergence is given by

3. Asymptotics for Zn are given by

Proof. That E(X%) increases follows from {Xn} being a
martingale. To find the limit, we establish a recurrence
for E(X%). When computing Xn+i, we let X'n :=
XTn+i(vi) and X£ := XT,I+I(WI) denote the outputs
of the Boolean functions for the left and right subtrees
of the root node; note that X'n and X^ are independent,

257

and each is distributed as Xn. Taking expectations
in (1.2), we have

The variables X'n, X%, I - X'n, and 1 - X% all have the
same distribution. Together with independence of X'n
and X'n this gives

Since E(X%) increases and is bounded above by 1, then
a limiting value exists; we take a limit on both sides of
(3.9) to obtain

Thus lim E(X%) = 1/2, which completes the proof of
n—>oo

the first statement of the Lemma.
Now we observe

Thus From (3.9), it follows
immediately that

after simplifying, we obtain

For ease of notation, we write an = E(Zn). So we have
an+i = an — a^. Then we write bn = l/an, and we
compute

Iterating this yields

From (3.13), we observe that bn+i > n, so bk > k — 1 for
all k. Thus, the summation in (3.13) can be bounded
by writing

Returning to (3.13), we conclude that

Again using (3.13), it follows that

the left and right subtrees of the root node, which are
independent. Then we compute

We once again use the fact that X'n, X'^, 1 — X'n, and
1 — X% share a common distribution. Thus,

Recall from (3.9) that

Plugging this result into (3.15) yields

and we conclude that

This proves the final sentence of the lemma. All that
remains to show is E(X%) = 1/2 - l/n + O (*%£ V but

this follows immediately from E(X%) = 1/2 - E(Zn).

and by Lemma 3.3, we conclude that

This establishes the lemma.We recall from Corollary 3.1 that limn-^oo Xn exists
with probability 1. So we define X := limn^ooJCn.
Using Lemma 3.3, we have the following result about
the limiting behavior of Xn.

COROLLARY 3.2.

Proof. By bounded convergence, we have E(X2) =
linin-^oo E(X%) = 1/2. Since X e [0,1] is symmetric
around 1/2, this implies X = 0 or 1 with probability
1/2 each.

Using the lemmas above, we now establish the
following asymptotics for E(Z%).

LEMMA 3.5. The second moment of Z% decays as
where <

Proof. As in several of the above lemmas, we observe
that

The next two lemmas compute the remaining mo-
ments in Theorem 2.1.

LEMMA 3.4. The third moment of Xn is given by

Proof. As in Lemma 3.3, we establish a recurrence for
E(Xn)- When computing Xn+i, we again write X'n and
X'n to denote the output of the Boolean functions for

Simplifying via the same method as in the lemmas and
using the results established in Lemmas 3.3 and 3.4, it
follows that

For ease of notation, we define

258

and

It follows from (3.20) that

The proof of the lemma is finished by the following
identity.

LEMMA 3.6. If dn ~ l/n and hn are positive numbers
satisfying (3.23) then hn ~ a/n for a = (\/l - l)/2.

Proof. Let un — nhn. The recursion (3.23) becomes

One may easily verify that un/n —> 0, which implies

Checking that x — x2 + 3/2 is positive on (0, a) and
negative on (a, oo), we then see that wn+i > un when
un e (0,a — o(l)) and un+i < un when un € (a +
o(l), oo), so un converges. Convergence to something
other than a is not possible because in that case
eventually \f(un) > £ and divergence of the harmonic
sum in (3.24) would contradict convergence of un.

We complete the moment computations with:

COROLLARY 3.3.

where

Proof. We note that
and then the corollary follows immediately

from Lemmas 3.3, 3.4, and 3.5.

Finally, to derive the last statement in Theorem 2.1,
observe that greatest possible second moment for a
random variable in [0, a] with mean fj, is a//. Thus,

259

and hence

This finishes the proof of Theorem 2.1 for any value

Now we prove Proposition 2.1, namely, there are
c,c' > 0 such that P(Zn < exp(-cn2)) > c'/n.

Proof of Proposition 2.1. Let T' C T be the subtree
whose vertices are the vertices of T that can be reached
from the root by a path not containing any OR gate
(if there is an OR gate at the root then T' is empty).
Denote the size and depth of T' by \T and d(T'),
respectively. The event An that d(T'} < n and \T\ > n2

is well known to have probability asymptotic to Cn~l

for some constant C > 0; this follows, for example,
from the convergence of n times the law of the path
that circumnavigates the tree to Brownian excursion
measure [9].

Let F = G(T'} be the information contained in the
value of the random tree T'. Let Sn be the set of vertices
in Tn adjacent to T' but not in T'. Since a subtree of T
with k vertices has k + I neighbors, we see that on An,
the set Sn satisfies s := \Sn\ > n2. Conditional on J7,
the s subtrees from vertices in Sn are independent and
distributed exactly as the gates of T except that the root
is always an OR. Consequently, on An, the output at
any vertex of Sn has conditional mean 3/4 given /", since
all we know about the gates of this subtree is that there
is an OR at the root. Furthermore, E(Xn \ T} = (3/4)s

on the event An, since the root outputs a 1 if and only
if all vertices in Sn output a 1. The result now follows
from P(An) ~ Cn~l and E(Xn \ F] < (3/4)n* on An,
with any c < log(4/3) and c' < C.

4 Further Discussion and Experimental Data

The purpose of the sensitivity-first sampling scheme is
to sample approximately from the distribution of Xn

by sampling the variable Yk := X\yk in the sampling
scheme y\, y-2, • • • which always chooses the leaf of great-
est sensitivity. More precisely, when trying to sample
from Xn, we partition the leaves of Wk into Ak U B^
where Ak is the set of leaves of Wk at level n and B^ is
the set of leaves of Wk at levels less than n; our sampling
scheme then designates yk+i to maximize S(yk+i,Wk)
over yk+i e Bk- This sampling scheme will halt when
k = 2n and produce Yk — Xn, but our hope is that Yk
is close to Xn for k much less than n, for example a
polynomial in log n.

We cannot prove this, though we have some shaky
evidence. The reason the evidence is shaky is that we
have tabulated how great k must be in order to satisfy

criteria appearing to give Yfc near to Xn but cannot
prove that Yfc is actually close to Xn. We conclude the
theoretical discussion with some results giving bounds
on the distance from Yk to Xn.

We will be applying these bounds knowing F^ but
not Tn, so we want bounds measurable with respect to
f(k\ A crude upper bound is:

PROPOSITION 4.1.

Proof. Let X* be the (random) mean of the random
Boolean function obtained from gn by fixing inputs (at
random) at vertices in B^. Then Xn is a conditional
expectation of X* so, conditional on JF^, we know that
E(\Xn - Yk\ | jr(fc)) < E(\XZ - Yk\ | ̂ <*>).

For y e Bk, fixing the inputs at leaves of Tn below
y as independent fair coin flips produces an output
at y; for purposes of computing X*, we may as well
simply fix that output, which will be a 0 half the time
and a 1 half the time, independent of nodes not in
T(y). Thus another way to compute X* is to fix inputs
(independent fair coin flips) at all the leaves of Tfc not
already at level n. Enumerate these as 21 , . . . , 2r, and let
Mj denote the mean of the Boolean function obtained
from gTk by fixing inputs at z\,..., zk. The triangle
inequality gives

which is equal to Y^j=i(^/^)^(zji'^'k) because the sen-
sitivity at Zj as z i , . . . , Zj-i is revealed is itself a mar-
tingale. This proves (4.25).

Based on this, a reasonable time to halt the algo-
rithm and output Yk would be when the right-hand side
of (4.25) is much smaller than the same sum over leaves
of Tfc that are at level n. Unfortunately, based on our
preliminary experiments growing trees with C++ ac-
cording to the sensitivities of the leaves, this does not
seem to happen until too much of Tn is explored to be
efficient. However, the L1 sum in (4.25) is probably an
overestimate of how much Yfc will change on the way
to evaluating Xn. In particular, since {Yfc} is a mar-
tingale, one might expect that summing in L2 yields
sharper estimates.

The incremental variance of the martingale {Yk} is
given by the squared sensitivities:

We would like to conclude that the L2 difference be-
tween Yk and Xn is given by the sum of 5(?/,Tfc)2 over

260

leaves y of Tfc that are not already at level n, but the
problem is that, with Zj,Wj as above, it is no longer true
that E(Wj+i-Wj)2 = (l/4)5(^-,Tfc)

2. This is because
the sensitivity at Zj is a submartingale as the gates at
z\,..., Zj-i are revealed. We conjecture, however, that

for some constant C.
Since we cannot rigorously prove a fast stopping

rule that yields reasonable sample values of Xn, we have
reliable samples of Xn only for n < 20. Various graphs
concerning the distribution of Xi5 and X^Q are given
below.

If we write p = P(Xi§ < x), then the following
chart gives the values of p and the analogous x value.
The data is based upon four million samples of X\$.

We also give similar data for _X~2o, based on 800,000
samples.

We emphasize that each sample of ̂ 15 and ^20 was
produced by computing a complete Boolean binary tree
of depth 15 and 20, respectively.

When simulating Xn for larger n, such as 100,
we used an interactive CH—\- program that allows the
user to sample values from XIQQ, for instance, with
interactions concerning when to stop the simulation.
The CH—h program is trained to stop the simulation
itself if it detects that the sensitivities of the leaf
nodes, collectively, are sufficiently small. The stopping
condition is easily modified by the user, so we continue
to experiment with a variety of stopping conditions.

The CH—|- program has several other features. For
instance, it lets us visualize the data by examining the
profile as the tree grows. The evolution of the profile as
the most sensitive nodes are selected within the tree is
an intriguing phenomenon. Besides further studying the
profile, we also plan to continue investigating stopping
criteria for the growth of large Boolean binary tree when
simulating Xn for large n, for example, n — 100.

All of the graphs below are for the pairs (or, y) where
y = P(Xi5 < x] (based on 4,000,000 samples of Xi5)
and y = P(X2o < x) (based on 800,000 samples of XIQ).

We rescale the x-axis in a variety of ways.

Acknowledgments

We appreciate the input of Svante Janson, who simul-
taneously derived several of the observations presented
here. We also acknowledge Bob Sedgewick's insightful
advice about using randomization in the implementa-
tion of data structures (Finding Paths in Graphs, A of
A 2005).

261

References

[1] C. Banderier, M. Bousquet-Melou, P. Flajolet
A. Denise, D. Gardy, and D. Gouyou-Beauchamps.
Generating functions for generating trees. Discrete
Mathematics, 246:29-55, 2002.

[2] H. Buhrman and R. de Wolf. Complexity measures
and decision tree complexity: a survey. Theoretical
Computer Science, 288:21-43, 2002.

[3] B. Chauvin, P. Flajolet, D. Gardy, and B. Gitteri-
berger. And/or tree revisited. Combinatorics, Prob-
ability and Computing, 13(4-5):475-497, 2004.

[4] R. Durrett. Probability: Theory and Examples.
Duxbury, Belmont, CA, 3rd edition, 2005.

[5] W. Feller. An Introduction to Probability Theory and
Its Applications. Wiley, New York, 1968, 1971.

[6] J. Fill, P. Flajolet, and N. Kapur. Singularity analysis,
hadamard products, and tree recurrences. Journal of
Computational and Applied Mathematics, 174:271-313,
February 2005.

[7] D. Gardy and A. Woods. And/or tree probabilities of
boolean functions. In Conrado Martinez, editor, 2005
International Conference on Analysis of Algorithms,
volume AD of DMTCS Proceedings, pages 139-146.
Discrete Mathematics and Theoretical Computer Sci-
ence, 2005.

[8] H. Lefmann and P. Savicky. Some typical properties
of large and/or Boolean formulas. Random Structures
and Algorithms, 10:337-351, 1997.

[9] J. Neveu and J. Pitman. The branching processes in
a brownian excursion. In Seminaire de Probabilites,
XXIII, volume 1372 of Lecture Notes in Mathematics,
pages 248-257. Springer-Verlag, New York, 1989.

[10] P. Savicky. Bent functions and random Boolean
formulas. Discrete Mathematics, 147:211-237, 1995.

[11] P. Savicky. Complexity and probability of some
Boolean formulas. Combinatorics, Probability and
Computing, 7(4):451-463, 1998.

[12] P. Savicky and A. Woods. The number of Boolean
functions computed by formulas of a given size.
Random Structures and Algorithms, 13(3-4):349-382,
1998.

[13] I. Wegener. The complexity of Boolean functions.
Teubner, Stuttgart, 1987.

262

Permanents of Circulants: a Transfer Matrix Approach^
(Extended Abstract)

Mordecai J. Golin Yiu Cho Leung Yajun Wang

Abstract

Calculating the permanent of a (0,1) matrix is a
complete problem but there are some classes of struc-
tured matrices for which the permanent is calculable in
polynomial time. The most well-known example is the
fixed-jump (0,1) circulant matrix which, using algebraic
techniques, was shown by Mine to satisfy a constant-
coefficient fixed-order recurrence relation.

In this note we show how, by interpreting the
problem as calculating the number of cycle-covers in a
directed circulant graph, it is straightforward to reprove
Mine's result using combinatorial methods. This is a
two step process: the first step is to show that the cycle-
covers of directed circulant graphs can be evaluated
using a transfer matrix argument. The second is to show
that the associated transfer matrices, while very large,
actually have much smaller characteristic polynomials
than would a-priori be expected.

An important consequence of this new viewpoint
is that, in combination with a new recursive decompo-
sition of circulant-graphs, it permits extending Mine's
result to calculating the permanent of the much larger
class of circulant matrices with non-fixed (but linear)
jumps.

1 Introduction

DEFINITION 1.1. Let A = (a^) be annxn matrix. Let
Sn be the set of permutations of the integers [1, . . . , n].
The permanent of A is

If A is a (0,1) matrix, then A can be interpreted
as the adjacency matrix of some directed graph G
and Perm(A) is the number of directed cycle-covers
in G, where a directed cycle-cover is a collection of

* Partially supported by HK CERG grants
HKUST6162/OOE, HKUST6082/01E and HKUST6206/02E.
Dept. of Computer Science, Hong Kong U.S.T., Clear Wa-
ter Bay, Kowloon, Hong Kong. Email addresses are
{golin,cscho,yalding}@cs.ust.hk.

disjoint cycles that cover all of the vertices in the graph.
Alternatively, A can be interpreted as the adjacency
matrix of a bipartite graph G, in which case Perm(A) is
the number of perfect-matchings in G. The permanent is
a classic well-studied combinatorial object (see the book
and later survey by Minc[13, 16]).

Calculating the permanent of a (0, 1) matrix is a
#P-Complete problem [19] even when A is restricted
to have only 3 non-zero entries per row [8]. The best
known algorithm for calculating a general permanent
is a straightforward inclusion-exclusion technique due
to Ryser [13] running in 6(n2n) time and polynomial
space. By allowing super-polynomial space, Bax and
Franklin [1] developed a slightly faster (although still
exponential) algorithm for the (0, 1) case. We point
out, in another direction, that just recently, Jerrum,
Sinclair and Vigoda [11] developed a fully polynomial
approximation scheme for approximating the permanent
of nonnegative matrices.

On the other hand, for certain special structured
classes of matrices one can exactly calculate the perma-
nent in "polynomial time". The most studied example
of such a class is probably the circulant matrices, which,
as discussed in [7] , can be thought of as the borderline
between the easy and hard cases.

An n x n circulant matrix A = (a^) is defined
by specifying its first row; the (i + l)st row is a cyclic
shift i units to the right of the first row, i.e., a^ =
ai)i+(n+J_i) mod n. Let Pn denote the (0, 1) nxn matrix
with Is in positions (i,i + l), i = 1, . . . , n — 1, and (n, 1)
and Os everywhere else. Many of the early papers on
this topic express circulant matrices in the form

The first major result on permanents of (0,1)
circulants is due to Metropolis, Stein and Stein [12].

Let k > 0 be fixed and An^ = Y^i=o PU-> ^e tne n x n

circulant matrix whose first row is composed of Is in
its first k columns and Os everywhere else. Then [12]
showed that, as a function of n, PeYm(An^) satisfies a
fixed order constant-coefficient recurrence relation in n

263

#p-

where and

and therefore, could be calculated in polynomial time
in n (after a superpolynomial "start-up cost" in k for
deriving the recurrence relation).

This result was greatly improved by Mine who
showed that it was only a very special case of a general
rule. Let 0 < s\ < s-2 < • • • < $k < n be any
fixed sequence and set An = AU(SI, ..., s^) = P£l +
P£2+--- + P°k. In [14, 15] Mine proved that Perm(An)
always satisfies a constant-coefficient recurrence relation
in n of order 1Sk — 1. Mine's theorem was proven by
manipulating algebraic properties of An. Note, that as
mentioned by Mine, this result is difficult to apply for
large s^ since, in order to derive the coefficients of
the recurrence relation it is first necessary to evaluate
Perm(An) for n < 1(1Sk — 1) and, using, Ryser's
algorithm, this requires fi (22 *) time.

Later Codenotti, Resta and various coauthors im-
proved these results in various ways; e.g. in [2] showing
how to evaluate sparse circulant matrices of size < 200;
in [4, 5] showing that the permanents of circulants with
only three Is per row can be evaluated in polynomial
time; in [6] showing how the permanents of some special
sparse circulants can be expressed in terms of determi-
nants and are therefore solvable in polynomial time; in
[2] showing that the permanents of dense circulants are
hard to calculate and in [7] that even approximating the
permanent of an arbitrary circulant modulo a prime p
is "hard" unless P#P = BPP.

In this paper we return to the original problem
of Mine. Our first main result will be to show that
if circulant matrix An(si , . . . , s&) is interpreted as the
adjacency matrix of a directed circulant graph Cn, then
counting the number of cycle-covers of Cn using a
transfer matrix approach immediately reproves Mine's
result. As well as reproving Mine's original result this
new technique will then permit us extend the result to
a much larger set of circulant graphs as well as address
other related problems. To explain, we first need to
introduce some notation.

DEFINITION 1.2. See Figure 1. Let C^l>S2>'"'Sk. be
the n-node directed circulant graph with jumps S =
{si, S2> • • • Sfc}- (Note that in this definition we allow
negative Si.) Formally,

them by —1 and get an isomorphic graph. Also, we will often
write Cn as shorthand for c£ l l f l2 ' '"'8fc.

Let G = (V, E) be a graph, T C E and v e V.
Define WT(V) to be the indegree of v in graph (V,T)
and Q!)T(V) to be the outdegree of v in (V, T), T C E is
a cycle-cover of G if

DEFINITION 1.3. Let S = (si, s2 , . . . s^} be given. Set

and

Note that, by the standard correspondence men-
tioned before, An(si,..., Sfc) is the adjacency matrix of
(7«i,«2,-,sfc and T(n) = Perm(An(si,... ,sfc)). So, cal-
culating T(n) is equivalent to calculating permanents of
An(si,.. . , S f c) .

In [9, 10] the authors of this paper were interested
in counting spanning trees and other structures in
undirected circulant graphs. The main tool introduced
there was a recursive decomposition of such graphs. In
Section 2 we describe a related recursive decomposition
of directed circulant graphs. Our technique will be to
use this decomposition to show that for some constant
m there is a m x 1 (column) vector function T(ri) such
that

and

where s is a constant to be defined later (but reduces to
s = Sk for the Mine formulation described previously),
/3 is a 1 x m constant row-vector and A is a constant
mxm matrix. Such an A is known as a transfer-matrix
see, e.g., [181.

Let be any polynomial that
annihilates A, i.e., P(A) = 0. Then it is easy to see
that Vn > 2s,

where

and

Note: we will assume that S contains at least one non-
negative Si since if all the Si were negative we could multiply

264

where 0 denotes the ra x m zero matrix and 0 a scalar;
T(n) thus satisfies the degree-it constant coefficient re-
currence relation T(n + t) = Y^Zo -^r(n + 0 in n- BY

Figure 1: Cn
 1)0)2 : Circulant matrix (a) is the adjacency matrix of circulant graph C6 ' ' in (b). In (b), the

solid edges are Ln and the dashed edges are Hook(n). (c) illustrates C*"1'0'2 (n = 6,7) drawn in lattice graph
representation. The bold edges in Cf1'0'2 are New(n). Note that the Hook(n) edges for n = 6,7 are "independent"
of n.

the Cayley-Hamilton theorem, the characteristic poly-
nomial of A, which has degree < m, must annihilate
A, so such a polynomial exists and T(n) satisfies a re-
currence relation of at most degree m. In our notation,
Mine's theorem is that T(n) satisfies a recurrence rela-
tion of degree 2s — 1. Unfortunately, in our construction,
m = 22f so the characteristic polynomial does not suf-
fice for our purposes. Our next step will involve showing
that even though A is of size 22s x 22s, there is a much
smaller P, of degree 2s — 1, that annihilates A, thus re-
proving Mine's theorem. We point out that this degree
reduction of the transfer matrix (to the square-root of
the original size) is, a-priori, quite unexpected, and does
not occur in the undirected-circulant counting problems
analyzed in [9, 10].

One interesting consequence of this new derivation
is that, unlike in Mine's proof, to derive the recurrence
relation it is no longer necessary to start by spending
£1 (22" J time calculating the first 2s values of T(n) using
Ryser's method. Instead one only has to calculate A,
(3, the polynomial P and the first 2s values of T(n)
which, as we will see later, can all be done in O(s25s)
time, reducing the start-up complexity from doubly-
exponential in s to singularly exponential.

Another, albeit minor, consequence of this new
derivation is that it can also handle non (0,1) circulants.
That is, given any matrix An of the form (1), even when
the a,i are not restricted to be in {0,1} the technique
shows that Perm(An) satisfies a recurrence relation of
degree 2s — 1. This is only a minor consequence, though,
since working through the details of Mine's original
proof it is possible to modify it to get the same result.

A much more important new consequence, and the
major motivation for this paper, is the fact that the
proof can be extended to evaluate the permanents of
non-constant jump circulant matrices, something which
has not been addressed before. To explain this, we

generalize Definition 1.2 to

DEFINITION 1.4. See Figure 2(a). Let p,s,
PiiPz-,- • • ,Pk and §i •, Sz, • • • , $k be fixed integral
constants with such that Vi, 0 < pi < p. Set
S = [p-^n + Si,p2n + s2,---,pkn + sk}. Denote
the (pn + s)-node directed circulant graph with jumps
S by

where

and

Note that Apn+s(pin +si,p2n + S2,- • • ,pkn + sk) is the
adjacency matrix of Cn so, counting the cycle-covers
in Cn is equivalent to evaluating PeTm(Apn+s(pin +
si,p2n + s2, • • • ,pkn + Sfc)). Our method of counting
the cycle covers in Cn will be to derive a new recursive
decomposition of Cn (which might be of independent
interest) and use it to show that an analogue of (1.2)
holds in the non-constant jump case as well; thus T(n)
still satisfies a constant-coefficient recurrence relation
in n. For example, in Table 1, we show the recurrence
relation for the number of cycle covers in Co'""1"1' n and
,rAn,2n-l
°3n

In the next section we describe the new recursive
decompositions of Cn, for both constant and non-
constant jumps, upon which our technique is based. In
Section 3 we show how this permits easily reproving
Mine's result for non-constant circulants. We then
describe the minor modifications that are needed to
extend the proof to non-constant circulants.

Note: Due to space limitations in this extended
abstract only the proof skeleton is given, with many

265

Figure 2: C^"1'2™, a non-constant jump circulant: Dashed edges are Hook(n). Solid edges are Ln. (a) and (b) are
two representations of the graph when n = 4. Note the lattice representation in (b). (c) is is the case n — 5. The
bold solid edges on the right are New(n). The 3 vertices on the right are VN(n). Note that the dashed Hook(n)
edges for both n = 4,5 are "independent" of n.

Table 1: The number of cycle-covers T(ri) in directed circulant graphs with constant jumps Cn
 1>0'1 and C^'1'2,

and with non-constant jumps C3£ ' " and ^WT' "~ > as derived by the technique in this paper. Note that inside
each pair of graphs, the number of cycle covers is the same. This is to be expected, since their adjacency matrices
are just linear circular shifts of each other so the permanents of their adjacency matrices are the same.

of the details omitted. Also, when reproving Mine's
result, we only prove that Perm(An) satisfies a degree
2s recurrence relation and not a 2s — 1 one.

2 A Recursive Decomposition of Directed
Circulant Graphs

The main conceptual difficulty with deriving a recur-
rence relation for T(Cn) is that larger circulant graphs
can not be built recursively out of smaller ones. The
crucial observation, though, is that, there is another
graph, Ln, the lattice graph, that can be built recur-
sively, and Cn can then be constructed from Ln through
the addition of a constant number of edges1. In [9, 10]
the authors of this paper developed such a recursive de-
composition for undirected circulant graphs as a tool for
counting the number of spanning trees in such graphs.
In what follows we develop a corresponding decompo-
sition for directed circulants that will permit counting
cycle-covers.

We first show this for the restricted case in which
S, the set of jumps, is constant (independent of n),
where it is easy to visualize. After deriving the relevant
properties we extend the decomposition to the more

1To put this into context, this is very similar to the definition
of Recursive families for undirected graphs [3, 17].

complicated case in which the set of jumps can depend
upon n.

DEFINITION 2.1. See Figure 1. Let S = {si,s2,.. . S k } ,
where the $i are fixed integers. Define the n-node lattice
graph with jumps S

266

where

Now set

and

Note that this implies

The simple but important observation is that, when n
is viewed as a label rather than as a number, Hook(n)
and New(n) are independent of the actual value of n.

Further set

where

and EC (n) is the set of the union of all edges

where the union is taken over all

such that

f(n;u2,V2) — f(n;ui,vi} mod (pn + s) € S.

Directly from the definition we see Cn is isomorphic
to Cn = c^n

n
++s^p2n+S2'-'pkn+Sk. In particular, cycle-

covers of Cn are in 1-1 correspondence with cycle covers
of Cn so we can restrict ourselves to counting cycle
covers of Cn. We now introduce the generalization of
Definition 2.1.

DEFINITION 2.3. Let p,s, />1 ,P2 , - - • ,pk ana

si, s-2,..., Sk and 5, / be as in Definition 2.2.
Define the pn + s-node lattice graph with jumps S

where the union is taken over all

such that

It is now straightforward to derive an analogue
of Lemma 2.1 showing that Hook(?i) and New(n) are
independent of the actual value of n. Let NV(n) =
Vi(n + 1) — VL(JI). NV(n) will be the new vertices in
VL(H + 1). Note that we did not define this for fixed-
jump circulant graphs since in the fixed-jump case there
is only the one new vertex V^(n+ 1) — V/,(n) = {n} and
NV(n} would be constant.

267

LEMMA 2.1. Set and
Then

and s = maxs€£- s\ (if S = 0 set s = 0).
For later use we define s = s+ + s~. Now define

Then

Important Note: In this section and the next we will
always assume that n>1s since this will guarantee that
(L+(n) U L~(n)) n (R+(n) U R~(n)) = 0. Without this
assumption some of our proofs would fail. Also note
that the {(n, n)} term in New(n) is only needed when
OeS.

We now extend the above definitions and lemmas to
the case of non-constant circulants. This will require a
change in the way that we visualize the nodes of Cn\
until, now, as in Figure l(c), we visualized them as
points on a line with the edges in Hook(n) connecting
the left and right endpoints of the line. In the non-
constant jump case it will be convenient to visualize
them as points on a bounded-height lattice, where
Hook(n) connects the left and right boundaries of the
lattice. We start by introducing a new graph:

DEFINITION 2.2. See Figure 2. Letp,s, pi,pz,... ,pk
and s i ,S2 , . . . ,s/e be given integral constants such that
V«, 0 < pi < p. SetS = {pin+si,p2n+S2,- • • ,Pkn+sk}.
For u, v and integer n, set /(n; w, v) = un + v. Define

where EL(H) is the set of the union of all edges

and

Now set

and

Note that this implies

268

LEMMA 2.2. Set

Then

3 A New Proof of Mine's result
Let CC be a cycle-cover of Cn. Then, in T = CC —
Hook(n), almost all vertices v except possibly those
that have an edge of Hook(n) hanging off of them, have
H>T(V) = ODr(v) = 1. Referring to (2.4) this motivates

DEFINITION 3.1. T C EL(n) is a legal cover of Ln if

Then, from (2.4) we have

LEMMA 3.1.
(a) IfTC Ec(ri) is a cycle-cover of Cn, then
T — Hook(n) is a legal-cover of Ln.

(b) If T C EL(U + 1) is a legal-cover of Ln+i, then
T — New(n) is a legal-cover of Ln.

From the definition of legal covers we can classify
and partition legal covers by the appropriate in/out
degrees of their vertices in L+ (ri), L~ (n), R+ (n),R~(n).

DEFINITION 3.2. A is a binary r-tuple if
A - (A(0), A(l) , . . . , A(r - 1)) where Vi, A(i) e {0,1}.

Let P be the set of 22s tuples (L+,L_,R+,R_)
where Z/_|-,L_,.R-|-, R- are, respectively, binary s+, s~,
s+, s~ tuples.

Let T be a legal-cover of Ln. The classification of T

IfT is not a legal-cover then we will use the convention
that C(T) = 0. Finally, set

so Tx(n) is the number of legal-covers of Ln with
classification X.

The main reason for introducing these definitions is that
checking whether a legal cover T of Ln can be completed
to a cycle-cover of Cn doesn't depend upon all of T
but only on its classification C(T). Furthermore, how a
legal-cover in Ln expands to a legal cover in Ln+i will
also only depend upon C(T).

LEMMA 3.2. See Figures 3 and 4-
(a) LetX = (LX,L*,R%,RX) e P and S C Hook(n).
Let T be a legal cover in Ln with C(T] — X.

Then whether T U S is a cycle cover of Cn depends
only upon X and S (and not at all on n). In particular,
if T is a legal-cover of Ln and T' is a legal cover of Ln>
with C(T] = C(T'} then

T U S is a cycle-cover of Cn

iff

Note: We will write X U S is a cycle cover to denote that

(b)Let T' be a legal cover in Ln with C(T'} = X' e P.
and S C New(n).

Then whether C(T' U S} — X depends only upon
X' and S (and not at all on n). In particular, ifT' is
a legal-cover of Ln and T" is a legal cover of Ln> with
C(T'} = C(T"} then

Note: We will write (X' U S) = X to denote that, when
c(r') = x', c(T'us) = x.

Proof. To prove (a) recall that T U S is a legal-cover of
Ln if and only if,

Figure 3: All of the figures are in C^1'0'2. Dashed edges are Hook(n). The solid plus dashed edges are three
different cycle covers CCj, i = 1,2,3 in CQ. Removing the dashed Hook(n) edges leaves three legal covers Ti,
i = 1, 2, 3, in LQ. Note that s+ = 2 and s~ = 1 so classifications are of the form (L+, LT_, R^., R7!} where L+ and
RT are pairs and LT_ and R? are singletons. Calculation gives C(Ti) = C(T2) = X[= ((1,0), (0), (0,1), (0))
and C(T3) = X^ = ((0,0), (1), (0,0), (1)).

Figure 4: n was increased from 6 to 7 and S — {(4,6)} C New(6) was added to the Tj of the previous figure. Note
that, in L7, C(Ti (J S) = C(T2 U 5) = 0 since they are no longer legal covers. Also, C(T3 U 5) = X3(= X^) =
((0,0), (1), (0,0), (1)). Thus, C (X [\ J S) = 0 and CpCg" U S) = X'z.

From Lemma 2.1 and the definition of a legal cover we
have that this is true if and only if

Now set

and

Note that 0x and QX.X' are constants that can be
mechanically calculated. Then Lemmas 3.1 and 3.2
immediately imply our main technical result, which is
equivalent to (1.2).

LEMMA 3.3.

and

Let m = \P\ = 22s. Take any arbitrary ordering of P
and define the 1 x m constant vector j3 = (flx)x£p and
m x m constant matrix A = (ax,x')x,X'£p- Finally,
set T(n) = co\(Tx(ri))x£p to be a m x 1 column
vector. Then, Lemma 3.3 is exactly equation (1.2)
which immediately implies that T(n) satisfies a fixed-
degree constant coefficient recurrence relation where
the degree of the recurrence is at most the degree of
any polynomial P(x) such that P(A) — 0. By the
Cayley-Hamilton theorem, Q(A) — 0, Q(x) is the degree
m = 22s characteristic polynomial Q(x) = det(IX — A).

We will now see that it is possible to reduce this
degree from 22s down to below 2s.

LEMMA 3.4. Let A = (ax,xr)- Then there is a degree
2s — 1 polynomial P(x) such that P(A) — 0.

Proof. Recall that s = s+ + s~. Suppose X =
(L*,LX,RX,RX} and X' = (L*',L*',R*', R*').

Recall that ax,x' = DscNew(n) <*x,x',s where
<*x,x',s = 1 if and only if C(X' U S) = X, and is
otherwise 0.

Now let L+,L_ be any 2s and 2s binary tuples
and partition P up into 2s sets of size 2s, PL+,L^ =
{X eP : Lf =L+, L f = L _ } .

269

and this is only dependent upon X and S and not upon
n or any other properties of T.

The proof of (b) is similar and omitted here.

DEFINITION 3.3. For X,X' e P, S C Hook(n) and
S' C New(n) set

and

Note that, if S C New(n), none of 5"s edges have
endpoints in L+(n) or L~(ri). Intuitively, this is because
edges in New(n) only connect vertices near the right side
of the lattice and do not touch any vertices on the left
side of the lattice.

Thus, if ax,x',s = 1, then Lf = Lj' and L* =
L* . In particular this means that if &x,X',s — 1 then
X,X' are both in the same partition set PL+,L, •

Now suppose that ax,xf,s — 1- Let Z+, Z_ be any
i

other 2s and 2s binary tuples and set

Then, again using the fact that none of the endpoints of
S are in L+(n) or L~(n) we have that C(X' U S) = X
if and only if C(X' U 5) = X so ax,X' = ^Y,X"

When constructing matrix yl = (ax,x')x,X'^p we
previously allowed any arbitrary ordering of P. Now
order the X G P lexicographically; this groups all
of the X in a particular PL+,L- consecutively. The
observations above imply that A is partitioned into
2s x 2s blocks where each block is of size 1s x 2s. The
non-diagonal blocks correspond to cxx,X' where X, X'
are in different partitions so all of the non-diagonal
blocks are 0. On the other hand, the fact that &x,X' —
ax,X' f°r the X, X1 defined in (3.8), tells us that all the
diagonal blocks are copies of each other.

Let A be one of the 2s x 2s diagonal blocks in A. A
can then be denoted as A = diag(A, A,...,A) where A
contains 2s copies of A on its diagonal. Thus, Vi, A1 =
diag(A% A1,..., A1). In particular, this means that any
polynomial P(x) that annihilates A also annihilates
A. Since A is a 2s x 2s matrix, the Cay ley-Hamilton
theorem says that the characteristic polynomial P(x) of
A, which is of degree 2s, annihilates A.

By a more careful analysis of the structure of A
it is possible to show that P(x) actually has degree
2s —1 but, as mentioned in the introduction, that further
analysis will be omitted here. d

Lemma 3.3 tells us that (1.2) holds while Lemma
3.4 tells us that matrix A is annihilated by polynomial
P(x) of degree 2s — 1. Combining them gives that T(n)
satisfies a degree-(2s — 1) constant coefficient recurrence
relation. In order to actually derive the recurrence
relation, though, it is necessary to calculate the ax,X'i
Px_, f and P as well as the first 1s - 1 values of T(n) =
f3T(n}. It is relatively straightforward (but omitted in
this extended abstract) to see how to evaluate all of

these in O(s25s) time by evaluating O(22s) permanents
of size 2s and 0(24s) of size s.

We just saw how to calculate the number of cycle-
covers in constant-jump circulant graphs. Reviewing
the proof, everything followed directly as a consequence
from the recursive decomposition of circulant graphs
in (2.3) combined with the structural properties of
the decomposition given in Lemma 2.1. But, as also
derived in Section 2, non-constant jump circulants have
exactly the same structural properties, given in (2.5)
and Lemma 2.2. Therefore, the entire proof developed
in Section 3 can be rewritten for non-constant jump
'oirculants. The only difference is in the degree of
the recurrence relation for the number of cycle-covers.
Reviewing the proof for the constant-jump case we can
see that the order of the recurrence relation is really
<2\R+ (n)|+|fl-(n)| whicn worked out to 2s - 1. In the non-
constant case, from Lemma 2.2, we can calculate that
\R+(n)\ + |-R~(n)| = p(\s\ + s+ + s~) + 2s so the order
of the recurrence relation will then be 2p(\s\+s +s)+2s.
Note that in the constant jump case we had p — s = 0 so
this collapses down to 2s +s = 2s which is what we had
previously derived. For an example of such a recurrence
relation, see the second set of graphs in Table 1.

References

[1] E. Bax and J. Franklin. A permanent algorithm with
exp[fi(n1/'3/21nn)] expected speedup for 0-1 matrices.
Algorithmica, 32:157-162, 2002.

[2] A. Bernasconi, B. Codenotti, V. Crespi, and G. Resta.
How fast can one compute the permanent of circulant
matrices? Linear Algebra and its Applications, 292(1-
3):15-37, 1999.

[3] N. L. Biggs, R. M. Damerell, and D. A. Sands. Re-
cursive families of graphs. J. Combin. Theory Ser. B,
12:123-131, 1972.

[4] B. Codenotti, V. Crespi, and G. Resta. On the
permanent of certain (0, 1) toeplitz matrices. Linear
Algebra and its Applications, 267:65-100, 1997.

[5] B. Codenotti and G. Resta. On the permanent of
certain circulant matrices. Algebraic combinatorics and
computer science, pages 513-532, 2001.

[6] B. Codenotti and G. Resta. Computation of sparse
circulant permanents via determinants. Linear Algebra
and its Applications, 355(1-3): 15-34, 2002.

[7] B. Codenotti, J. D. Shparlinski, and A. Winterhof.
On the hardness of approximating the permanent of
structured matrices. Computational Complexity, 11(3-
4): 158-170, 2002.

[8] P. Dagum, M. Luby, M. Mihail, and U. Vazirani.
Polytopes, permanents and graphs with large factors.
In Proceedings of the Twentyninth IEEE Symposium

270

on Foundations of Computer Science, pages 412-421,
1988.

[9] M. J. Golin and Y. C. Leung. Unhooking circulant
graphs: A combinatorial method for counting spanning
trees and other parameters. In Proceedings of the 30'th
International Workshop on Graph-Theoretic Concepts
in Computer Science, pages 296-307, 2004.

[10] M. J. Golin, Y. C. Leung, and Y. J. Wang. Counting
spanning trees and other structures in non constant-
jump circulant graphs. In The 15th Annual Inter-
national Symposium on Algorithms and Computation,
pages 508-521, 2004.

[11] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-
time approximation algorithm for the permanent of a
matrix with nonnegative entries. Journal of the ACM,
51 (4).-671-697, 2004.

[12] N. Metropolis, M. L. Stein, and P. R. Stein. Perma-
nents of cyclic (0, 1) matrices. J. Combin. Theory Ser.
B, 7:291-321, 1969.

[13] H. Mine. Permanents, volume 6 of Encyclopedia of
mathematics and its applications. Addison-Wesley
Pub. Co., 1978.

[14] H. Mine. Recurrence formulas for permanents of
(0,l)-circulants. Linear Algebra and its Applications,
71:241-265, 1985.

[15] H. Mine. Permanental compounds and permanents of
(0,l)-circulants. Linear Algebra and its Applications,
86:11-42, 1987.

[16] H. Mine. Theory of permanents. Linear and Multilin-
ear Algebra, 21 (2): 109-148, 1987.

[17] M. Noy and A. Ribo. Recursively constructible families
of graphs. Advances in Applied Mathematics, 32:350-
363, 2004.

[18] R. P. Stanley. Enumerative combinatorics. Wadsworth
& Brooks/Cole Advanced Books & Software, Monterey,
Calif., 1986.

[19] L. G. Valiant. The complexity of enumeration and
reliability problems. SIAM J. Comput, 8:410-421,
1979.

[20] Q. F. Yang, R. E. Burkard, E. Cela, and G. Woeginger.
Hamiltonian cycles in circulant digraphs with two
stripes. Discrete Math, 176:233-254, 1997.

Appendices

A Worked example for C^'1'2

As discussed in the paper we have that T(n), the
number of cycle covers in C^'1'2, satisfies

Vn > 2s, T(n) = /3T(n) and T(n + 1) = Af(n)

where ft = (ftx)xep and A = (ax,X')x,X'£p-

For CJJ'1'2 we have s+ = 2, s~ = 0 so s = s+ + s~ =
2. Definition 3.2 then says that every X e P is in the
form X = (LX,LX,R*:,RX) where L*,R* € {0,1}2

and L*,R* are empty. We can therefore represent

every X by a four-bit binary vector in which the first
two bits represent L* and the last two R+\ there are
16 such X G P. Ordering the X lexicographically we
calculate that (3 is

(1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1) ,

f (4) is

(1 0 0 0 0 2 1 0 0 3 2 0 0 0 0 1)*

(where the t denotes taking the transpose), and Transfer
matrix A(X) is

As predicted by Lemma 3.4, A is partitioned into 16
4 x 4 blocks where all but the diagonal blocks are 0 and
all of the diagonal blocks are equal to some 4 x 4 matrix
A which in this case is

This means that

the characteristic polynomial of A, annihilates A.
Working through the details we can then solve to

find that Cj1'2 = 2T(n - 1) - T(n - 3) with initial
values T(4) = 9, T(5) = 13, and T(6) = 12.

B Other Applications

In this appendix we quickly mention two other applica-
tions of the technique introduced in this paper.

The first is in analyzing the number of cycles in
certain classes of random restricted permutations. Us-
ing the standard cycle-decomposition of a permuta-
tion there is 1-1 correspondence between permutations

271

Table 2: Ti(n) is the number of cycles in the given graph with n vertices.

TT 6 Sn and cycle-covers of the complete directed graph
on n-vertices. For given parameters p, S,PJ, s^ and 5 as
in Definition 1.4 define

Spn+s(S) = {?r G Spn+s : ?r[i] - i mod (pn + s) G S}
(2.9)
to be the set of permutations in which TT[Z] is restricted
by (2.9). Now suppose that we pick a permutation
TT uniformly at random from Spn+s(S) and set X =
•# of cycles in TT. What can be said about the distribu-
tion of XI

By the 1-1 correspondence between permutations
and cycle-covers, ?r G Spn+s(S) if and only if the
corresponding cycle-cover is in Cn. Thus, the number
of such permutations satisfies |Spn+s(5)| = T(n) where
T(n) is the number of cycle-covers in Cn. Suppose now
that for cycle cover T G CC(n) we define #c(T] to be
the number of cycles composing cover T and set

That is, TCo(n) = T(n) while TCi(n) is the total
number of cycles summed over all cycle-covers in Cn.
Then, again by the correspondence, we have that the
moments of X are given by

The interesting point is that the transfer matrix ap-
proach introduced in this paper can mechanically be
extended to counting the total number of cycles in the
cycle-covers, to show that for every i, TCi(n) satisfies a
fixed-order constant coefficient recurrence relation. For
given, p, s, pi,p2, - - - , P k and si, s 2 , . . . , Sfc this permits,
for example, calculating E(X] and Var(X).

As an illustration recall the results from Table 1
counting the number of cycle covers in C"1'0'1 and
C^'1>2. Even though these two graphs are not isomor-
phic they had the same number of cycle-covers because
the adjacency matrix of the second is just the adjacency

matrix of the first with every row (cyclicly) shifted over
one step. Since permanents are invariant under cyclic
shifts both matrices have the same permanent which is
~ <f>n where </> = (! + v/5)/2.

Using our technique we calculated TC\(n) for both
cases with the results given in Table 2.

In both cases we have that TCi(n] ~ cn0n. This
means that if a permutation on n items is chosen at
random from the corresponding distribution then, on
average, it will have ^ M ~ cn cyc^es- ^ ^s interesting
to note that that c is different for the two cases.

The second application of the technique we note
is that a minor modification permits using it to show
that the number of Hamiltonian Cycles in a directed
circulant graph Cn also satisfies a constant-coefficient
recurrence relation in n. This fact was previously
known for undirected circulant graphs [9, 10] but doesn't
seem to have been known for directed circulants, with
the exception of the special case of in (out)-degree 2
circulants [20].

272

Random partitions with parts in the range of a polynomial5*

William M. Y. Gohf Pawel Hitczenko*

Abstract
Let f2(n, Q) be the set of partitions of n into summands
that are elements of the set A — {Q(k} : k € Z+}.
Here Q G Z[x] is a fixed polynomial of degree d > 1
which is increasing on R+, and such that Q(m) is a non-
negative integer for every integer m > 0. For every A G
fi(n, Q), let Mn(A) be the number of parts, with multiplicity,
that A has. Put a uniform probability distribution on
fi(n, Q), and regard Mn as a random variable. The limiting
density of the random variable Mn (suitably normalized) is
determined explicitly. For specific choices of Q, the limiting
density has appeared before in rather different contexts
such as Kingman's coalescent, and processes associated with
the maxima of Brownian bridge and Brownian meander
processes.

1 Introduction and statement of the result
In research on partitions, there have been great syner-
gies between probabilistic, analytic, and combinatorial
methods. The oldest literature on partition enumera-
tions, dating back to Hardy and Ramanujan [15], has a
purely analytic flavor. But Erdos and Lehner [11] intro-
duced a probabilistic viewpoint that was quite fruitful.
Random partitions were developed by Erdos, Szalay,
Turan and others, [12, 27, 29, 30, 31, 32]. Some authors,
e.g. [5, 16, 17, 22, 25], have studied random partitions
with summands restricted to proper subsets of the set of
positive integers. Increasingly sophisticated probabilis-
tic ideas have been introduced [13, 2], and these ideas
have led to remarkably strong theorems about the joint
distribution of part sizes of random integer partitions
[23].

In this abstract we concentrate on the limiting dis-
tribution of the number of parts in a random partition
whose parts are restricted to the range of a polynomial.
Specifically, let

*The second author was supported in part by NSA Grant
MSPF-04G-054

t Department of Mathematics, Drexel University, Philadelphia,
PA 19104, email: wgoh@math.drexel.edu

•f Department of Mathematics, Drexel University, Philadelphia,
PA 19104, email: phitczenko@math.drexel.edu

be a fixed polynomial of degree d > 2 and we assume
that Q(x) is strictly increasing for x > 0 and that Q(m)
is a non- negative integer for an integer m > 0. Let
fj(n, Q} be the set of partitions of n into summands
that are elements of the set A = {Q(k) : k £ Z+}. For
every A 6 fi(n, Q), let Mn(A) be the number of parts,
with multiplicity, that A has. Put a uniform probabil-
ity measure Pn on fi(n, Q}, and regard Mn as a ran-
dom variable. Note that Mn(A) =]TMa(A), where

a
Afa(A) is the multiplicity of the part size a in the Pn-
random partition A. These random variables Ma are
clearly not independent since they must satisfy the con-
dition]T] aMa = n. Fristedt [13] used a conditioning

device that enables one to cope with this dependence.
It quickly proved to be a powerful tool and has been
used by several authors in the past decade, see e.g.
[1, 2, 5, 8, 23, 24, 26]. Given a parameter q 6 (0,1),
let {Ga} . be mutually independent geometric ran-
dom variables with respective parameters 1 — <?a, i.e.
for all a G .4, and for all non-negative integers k, we
have P(Ga — k) = (I — qa)qak. As was observed by
Fristedt [13] the joint distribution of the random vari-
ables {Ma}a€A (with respect to Pn) is exactly equal to
the conditional distribution of the {Ga\ _ ., where the

for any choice of the parameter q. Hence the parameter
q = qn can be chosen in such a way that asymptotic
estimates as n — > oo are tractable. Analogous methods
have been used (with Poisson distributions in place of
geometric distributions) in the context of random per-
mutations [28]. As a matter of fact, it is quite common
that the distribution of the components of random com-
binatorial structures are independent random variables
conditioned on the sum of the sizes being fixed (see [1]
for more information and references).

We write En for expected values computed using
Pn . We likewise write Pq and Eg for computations with
the independent geometric variables. We use Fristedt 's
device, as well as some additional probabilistic and
analytic arguments to derive a limit theorem for Mn.

For n > 1 we choose the parameter q — qn =
exp[— Cgn~d//d+1], with a specific value of the constant,

273

event conditioned on is that This is true

namely CQ is equal to As follows from an observation by Fristedt [13] (see
also [5]), for any x > 0, and n > 1 we have

Our aim is to sketch a proof of the following:

The argument, whose details we omit here, is to show
that the events in the numerator of (2.6) are asymptot-
ically independent. This is done by arguing that for a
suitably chosen sequence (kn), each of the sums

and whose density is

Our argument will be broken into several steps. We will
first show that the distribution of Mn is close to that of
a sum of independent geometric random variables with
suitably chosen parameters. It then follows that the
limiting distribution has a characteristics function given
by (1.4). This means that WQ is equidistributed with
the infinite sum of independent exponential random
variables with parameters Q(k), k = 1 ,2. . , . We
will carry out the Fourier inversion and, after some
simplifications, will show that the density is given by
(1.5).

Finally, we will point out that specific choices of
Q lead to distributions that have already appeared
in several, quite different, contexts. We will briefly
mention a few such instances in the last section of the
abstract.

2 Reduction to the case of independent
summands

We consider a doubly infinite array {Gn,a : a € A, n >
1}, where Gn>a is a geometric random variable with
parameter ! — </£, and for each n > 1, {Gn,a a 6 A}
are independent.

can be sPnt in two Pieces (J < ^n and j > kn}
so that the dominant contribution to the value of
Z]j>i^n,Q(j) comes from indices j < kn while the
dominant contribution to ̂ j>1 Q(j}Gn,Q(j) comes from. >kn

This can be seen by extending the line of argument
that was originally developed by Fristedt. First, in order
to asymPtotically maximize the denominator in (2.6) we
choose qn so that Eq(]T aGn>a) ~ n. Since G's are

geomet"c this means that we want

274

where WQ is a random variable whose characteristic
function is

i

THEOREM 1.1. For any positive real number x, we have

(A reason for that particular choice will become clear in
Section 2.) We also set the normalizing constants ;/n =

nd+r /CQ. Finally, we let ri, r 2 , . . . , rj be the (complex)
roots of Q(z) and for j = 1, 2 . . . , QJ (j) , . . . , a<i-i(j) be
those (complex) roots of Q(z) — Q(j) that are not equal
to ?'.

After calculations and change of variables y =
Q(x] \n(l/q] we get (the same computations were car-
ried out in the case Q(x) = (x^d) in [13] for d = I and
in [5] for d > 2)

which, using [20, formula 3.411-7] leads to qn =
exp(-CQ/nd/(d+1)), where CQ is given by (1.2).

By the same argument, if , then

which is of lower order than the expected value of the
full sum Y^jLi Q(J}Gn,Q(j)- (Here and throughout the
rest of this abstract c = CQ is an unspecified constant
which depends on Q only. Its value is unimportant and
may change from one use to another.)

Similar reasoning applied to]T G>i,Q(j) gives,

and

Since the jth summand on the right-hand side above
is geometric with parameters 1 - qQW its characteristic
function is

Hence, by independence of the summands, for ji's in our
range, we get

Since knQ
2(kn) = O(k^d+1), for fcn satisfying (2.8), the

"big Oh"term in (2.9) goes to zero. Thus we conclude
that (f)n(t) converge pointwise to (j)Q(t) given by (1.4).

275

when divided by the denominator of (2.6). The gain is
that, unlike the original sums, the truncated sums are
independent and thus can be handled with relative ease.
Since the estimates are very explicit, it is easy to trace
down conditions that fcn's need to satisfy and it turns
out that one may choose

The upshot of all this is that, for any x > 0,

Since
and
further have

using basic approximations we

Hence, as long as kn —-> oo, the expected value of the
sum restricted to j > kn is of smaller order than that
of the full sum. Thus one expects the contribution
of]Cj>fc?l Gn,Q(j) to be negligible. Similarly, (2.7)
suggests that the contribution of the truncated sum
^j<fc« Q(tiGn,Q(j) to the full sum is negligible.

Of course, the very fact that the two pieces have ex-
pectation of lower order than the respective sums over
all of natural numbers, does not by itself suffice to ar-
gue that they may be dropped from the sums without
affecting their magnitude. But both of these expres-
sions, being sums of independent random variables are
heavily concentrated about their expected value. This
can be quantified by using methods based on exponen-
tial inequalities. When these estimates are carried out,
we are left with two truncated sums over the disjoint
sets of indices, plus error terms that are negligible even

3 Fourier Inversion
In this section we derive an explicit representation for
the density of the limit distribution. By inversion
formula, this density is given for x > 0 by

If we regard t as a complex variable, then 0g(t) is
a merornorphic function with simple poles at —iQ(j),
j > I . One may then apply residue theory to evaluate
the integral and deduce that, for x > 0,

where r i , r2 , . . . , r^ are the roots of Q(z) and
a\(j),... ^ a d - i (j) are those roots of Q(z] — Q(j) that
are not equal to j.

To this end we write

We factor both Q(i] and Q(£) — Q(s) as a product of
linear terms

Specifically, for a large natural number n, we let

and we let CN to be a clockwise oriented rectangular
contour in the complex plane with vertices at ±-/V,
±JV — iN. We consider the contour integral

We now use the following formula [33, Chaptex XII, Sec.
12.13]: if ai + ... + ar = 61 + . . . + 6r then

and we show that the integrals along three non-real sides
of CN approach zero as n —> oo. Since the residue of

Applying this to the product in (4.12) we obtain

at t = —iQ(j) is

using the residue theorem (taking into account the
orientation of CN] and passing to the limit with n we
derive (3.10).

4 Simplification

The expression on the right-hand side of (3.10) may be
further transformed by evaluating the product. Specif-
ically, we will show that

We know that exactly one of am(s)'s is equal to s and
we assume without loss of generality that ad(s) = s-
Since

is continuous at s = j we only need to be concerned
with

Since the residue of F(z) at — j is (—l)J/j! this last limit
is (-l)j~llj\ which combined with (4.13) and (4.12)
proves (4.11).

276

5 Further remarks

In this section we briefly discuss a few cases that are of
special interest.

(i) One such case, Q(z) = z(z+l> arises naturally in
the context of iterated functions and the coalescent
[14], [18]. There the characteristic function is

Hence inversion of (5.14) yields the probability
density function

This latter density is well-known in certain circles,
and is generally attributed to Kingman [18], [19].
See the unpublished manuscript [14] for a deriva-
tion that is related to the arguments in this paper.

(ii) Similarly, for the special case Q(x) = x3, we con-
sider the number of parts of random partitions of
n into parts that are cubes. For this particular
class of partitions, Richmond [25] provided asymp-
totic estimates for the moments. Carleman's condi-
tions are satisfied, therefore the limit distribution is
uniquely determined. However Richmond did not
invert, and we are not aware of any previous work
in which the limiting density is calculated. In fact,
the density has an interesting form: for x > 0,

where

(iii) The next case corresponds to Q(x) = (^d^)' ^or

some fixed positive integer d. (Since d = 1 does not
impose any restrictions we will assume d>2. Also,
d = 2 was a special case discussed in (i).) Such
partitions are in bijection with partitions with dth
differences non-negative. Some of their properties
(although the limiting distribution of the number
of parts was not one of them) were studied in [5].
We have rm = —m, m = 1, . . . , d and thus

where Hn is the nth harmonic number. Although
there does not seem to be a simple way of handling
the roots of Q(x) — Q(k,} in the general case, the
case d = 3 can be managed (as can be any other
polynomial of degree 3 since it leads to a quadratic
equation after factoring (x — k}) and gives the
density

If d = 4 then (x+4) - (fc+4) has a real root - fc-5 (in
addition to A:, of course) and the limiting density
for x > 0 is given by

(iv) Finally, we would like to conclude by observing that
the choice Q(x) = x2 corresponds to yet another
interesting situation that arises in quite a different
context. In view of (1.5) and (4.11) the probability
density function corresponding to this choice is

211

In (4.11) we have n = 0,r2 = —1, &i(k) — — k — 1,
and consequently

Further,

so that

where and

where

Up to a scaling this is the density of the maxi-
mum of the Brownian bridge process or the Brow-
nian meandering process (see [7, Section 3] and also
[10, 9] for more details and information). Further
interesting connections along with many more ref-
erences to the literature are discussed in a relatively
recent survey paper [3].

Distribution function corresponding to the last
density is given by

Changing variables, x
gives a density

2x2 and differentiating

which is the density of the Kolmogorov-Smirnov
statistic used to measure the discrepancy between
the true and empirical distribution functions. We
refer the reader to [21] for the translation of the
original work of Kolmogorov and to [4, Chapter 2,
Sec. 13] for a detailed exposition.

Acknowledgment: We would like to thank Eric
Schmutz for several helpful discussions, suggestions, and
comments.

References

[1] R. Arratia, A. D. Barbour, and S. Tavare, Logarithmic
Combinatorial structures: A Probabilistic Approach,
EMS Monographs in Mathematics, EMS (2003).

[2] R. Arratia and S. Tavare, Independent Poisson process
approximations for random combinatorial structures,
Adv. in Math., 104 (1994), pp. 90-154.

[3] P. Biane, J. Pitman, and M. Yor, Probability laws
related to Jacobi theta and Riemann zeta functions,
and Brownian excursions, Bull. Amer. Math. Soc., 38
(2001), pp. 435-465.

[4] P. Billingsley, Convergence of Probability Measures,
Wiley (1968).

[5] E. R. Canfield, S. Corteel, and P. Hitczenko, Partitions
with rth differences non-negative, Adv. in Appl. Math.,
27 (2001), pp. 298-317.

[6] N. R. Chaganty and J. Sethuraman, Strong large
deviation and local limit theorems, Ann. Probab., 21
(1993), pp. 1671-1690.

[7] K. L. Chung, Excursions in Brownian motion, Ark.
Mat., 14 (1976), pp. 155-177.

[8] S. Corteel, B. Pittel, C. D. Savage, and H. S. Wilf, On
the multiplicity of parts in a random partition, Random
Structures Algorithms, 14 (1999), pp. 185-197.

[9] R. T. Durrett and D. L. Iglehart, Functionals of Brow-
nian meander and Brownian excursion, Ann. Probab.,
5 (1977), pp. 129-135.

[10] R. T. Durrett, D. L. Iglehart, and D. R. Miller,
Weak convergence to Brownian meander and Brownian
excursion, Ann. Probab., 5 (1977), pp. 117-129.

[11] P. Erdos and J. Lehner, The distribution of the number
of summands in the partition of a positive integer, Duke
Math. J., 8 (1941), pp. 335-345.

[12] P. Erdos and P. Turan, On some general problems
in the statistical theory of partitions, Acta Arith., 18
(1971), pp. 53-62.

[13] B. Fristedt, The structure of random partitions of large
integers, Trans. Amer. Math. Soc., 337 (1993), pp. 703-
735.

[14] W. M. Y. Goh, P. Hitczenko, and E. Schmutz, Iter-
ating random functions on a finite set, unpublished
manuscript available at arxiv: math.CO/0207276.

[15] G. H. Hardy and S. R. Ramanujan, Asymptotic formu-
lae in combinatory analysis, Proc. London Math. Soc.,
17 (1918), pp. 75-118.

[16] C. B. Haselgrove and H. N. V Temperly, Asymptotic
formulae in the theory of partitions, Math. Proc. Cam-
bridge Philos. Soc., 50 (1954), pp. 225-241.

[17] H. K. Hwang, Limit theorems for the number of sum-
mands in integer partitions, J. Combin. Theory Ser. A,
96 (2001), pp. 89-126.

[18] J. F. C. Kingman, On the genealogy of large popula-
tions. Essays in statistical science. J. Appl. Probab.,
19A (1982), pp. 27-43.

[19] J. F. C. Kingman, The Coalescent, Stochastic Process.
Appl., 13 (1982), pp. 235-248.

[20] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals,
Series, and Products, 4th ed., Academic Press, New
York, 1965.

[21] A. N. Kolrnogorov, On the empirical determination
of a distribution, in: Breakthroughs in Statistics, vol.
II, S. Kotz. and N. L. Johnson, Eds. Springer, 1992,
pp. 106- 113.

[22] D. Lee, The asymptotic distribution of the number of
summands in unrestricted A partitions, Acta Arith., 65
(1993), pp. 29-43.

[23] B. Pittel, On the likely shape of the random Ferrers
diagram, Adv. in Appl. Math., 18 (1997), pp. 432-488.

[24] B. Pittel, Confirming two conjectures about integer par-
titions, J. Combin. Theory Ser. A, 88 (1999), pp. 123-
135.

[25] L. B. Richmond, The moments of partitions II, Acta
Arith., 28 (1975/76), pp. 229-243.

[26] D. Romik, Partitions of n into in1'2 parts, Europ. J.
Combin., 26 (2005), pp. 1-17.

[27] K. F. Roth and G. Szekeres, Some asymptotic formulae
in the theory of partitions, Quarterly J. Math. Oxford

278

Ser., 5 (1954), pp. 241-259.
[28] L. A. Shepp and S. P. Lloyd, Ordered cycle lengths in

a random permutation, Trans. Amer. Math. Soc., 12
(1966), pp. 340-357.

[29] M. Szalay and P. Turan, On some problems of the sta-
tistical theory of partitions with applications to charac-
ters of the symmetric group I, Acta Math. Acad. Sci.
Hungar., 29 (1977), pp. 361-379.

[30] M. Szalay and P. Turan, On some problems of the sta-
tistical theory of partitions with applications to charac-
ters of the symmetric group II, Acta Math. Acad. Sci.
Hungar., 29 (1977), pp. 381-392.

[31] M. Szalay and P. Turan, On some problems of the sta-
tistical theory of partitions with applications to charac-
ters of the symmetric group HI, Acta Math. Acad. Sci.
Hungar., 32 (1978), pp. 129-155.

[32] G. Szekeres, An asymptotic formula in the theory of
partitions II, Quarterly J. Math. Oxford Ser., 4 (1953),
pp. 96-111.

[33] E. T. Whittaker and G. N. Watson, A Course of Mod-
ern Analysis, 4th Ed., reprinted. Cambridge University
Press, 1963.

279

This page intentionally left blank

AUTHOR INDEX

Asgeirsson, E., 75

Blum, A., 238
Brady, A., 119

Chan,T-H, H., 238
Cooper, J., 185
Cowen, L, 119

Daligault, J,,205
Doerr, B., 185

Knessl, C,, 198
Kobourov, S. G., 108
Krivelevich, M., 211

Leung, Y. C., 263

Malewicz, G., 66
Martinez, C., 205
Mitzenmacher, M., 41, 222
Motwani, R,,230
Mount, D., 65

Efrat, A., 108
Erten,C., 108

Navarro, G., 171
Niedermeier, R., 85

Fogel, E.,3
Forrester, D,, 108

Paredes, R,, 170
Pemantle, R.,253

Goh,W. M. Y.,273
Goldberg, A. V., 129
Golin, M. J.,263
Golubchik, L,95
Gramm, J.,86
Guo, J.,86

Halperin, D., 3, 16
Haran, I., 16
Hershberger, J., 26
Hitczenko, P., 273
Holzer, M., 156
Huffner, F,,86
Hugg, J., 51

Iyer, A., 108

Janson, S., 223
Jelenkovic, P. R.,247

Kaplan, H., 129
Kashyap, S.,95
Khuller, S., 95
Kirsch, A.,41

Radovanovic, A., 247
Rafalin, E., 51
Rwebangira, M. R,,238

Sandberg, O., 144
Schulz, F., 156
Seyboth, K.,51
Shrivastava, N., 26
Souvaine, D., 51
Spencer, J., 185
Stein, C., 75
Suri, S,,26
Szpankowski, W,, 198, 223

Tardos, G., 185

VassilvitskilS.,230
Vilenchik, D.,211

Wagner, D., 156
Wan,Y.-C,,95
Wang, Y., 263
Ward, M. D,,253
Werneck, R. R, 129

281

