
Proceedings in Adaptation, Learning and Optimization 3

Proceedings of ELM-2014
Volume 1

Jiuwen Cao · Kezhi Mao
Erik Cambria · Zhihong Man
Kar-Ann Toh Editors

Algorithms and Theories

Proceedings in Adaptation, Learning
and Optimization

Volume 3

Series editors

Yew Soon Ong, Nanyang Technological University, Singapore
e-mail: asysong@ntu.edu.sg

Meng-Hiot Lim, Nanyang Technological University, Singapore
e-mail: emhlim@ntu.edu.sg

Board of editors

Hussain Abbas, University of New South Wales, Australia
Giovanni Acampora, Nottingham Trent University, Nottingham, UK
Enrique Alba, University of Málaga, Málaga, Spain
Jonathan Chan, King Mongkut’s University of Technology Thonburi (KMUTT),

Bangkok, Thailand
Sung-Bae Cho, Yonsei University, Seoul, Korea
Hisao Ishibuchi, Osaka Prefecture University, Osaka, Japan
Wilfried Jakob, Institute for Applied Computer Science (IAI), Germany
Jose A. Lozano, University of the Basque Country UPV/EHU, Spain
Zhang Mengjie, Victoria University of Wellington, Wellington, New Zealand
Jim Smith, University of the West of England, Bristol, UK
Kay-Chen Tan, National University of Singapore, Singapore
Ke Tang, School of Computer Science and Technology, China
Chuang-Kang Ting, National Chung Cheng University, Taiwan
Donald C. Wunsch, Missouri University of Science & Technology, USA
Jin Yaochu, University of Surrey, UK

About this Series

The role of adaptation, learning and optimization are becoming increasingly essential
and intertwined. The capability of a system to adapt either through modification of its
physiological structure or via some revalidation process of internal mechanisms that
directly dictate the response or behavior is crucial in many real world applications. Op-
timization lies at the heart of most machine learning approaches while learning and
optimization are two primary means to effect adaptation in various forms. They usually
involve computational processes incorporated within the system that trigger parametric
updating and knowledge or model enhancement, giving rise to progressive improve-
ment. This book series serves as a channel to consolidate work related to topics linked
to adaptation, learning and optimization in systems and structures. Topics covered under
this series include:

• complex adaptive systems including evolutionary computation, memetic comput-
ing, swarm intelligence, neural networks, fuzzy systems, tabu search, simulated
annealing, etc.

• machine learning, data mining & mathematical programming
• hybridization of techniques that span across artificial intelligence and computa-

tional intelligence for synergistic alliance of strategies for problem-solving
• aspects of adaptation in robotics
• agent-based computing
• autonomic/pervasive computing
• dynamic optimization/learning in noisy and uncertain environment
• systemic alliance of stochastic and conventional search techniques
• all aspects of adaptations in man-machine systems.

This book series bridges the dichotomy of modern and conventional mathematical and
heuristic/meta-heuristics approaches to bring about effective adaptation, learning and
optimization. It propels the maxim that the old and the new can come together and
be combined synergistically to scale new heights in problem-solving. To reach such a
level, numerous research issues will emerge and researchers will find the book series a
convenient medium to track the progresses made.

More information about this series at http://www.springer.com/series/13543

Jiuwen Cao · Kezhi Mao
Erik Cambria · Zhihong Man
Kar-Ann Toh
Editors

Proceedings of ELM-2014
Volume 1
Algorithms and Theories

ABC

Editors
Jiuwen Cao
Institute of Information and Control
Hangzhou Dianzi University
Zhejiang
China

Kezhi Mao
School of Electrical and Electronic

Engineering
Nanyang Technological University
Singapore
Singapore

Erik Cambria
School of Computer Engineering
Nanyang Technological University
Singapore
Singapore

Zhihong Man
Faculty of Engineering and Industrial

Sciences
Swinburne University of Technology
Hawthorn Victoria
Australia

Kar-Ann Toh
School of Electrical and Electronic

Engineering
Yonsei University
Seoul
Korea, Republic of (South Korea)

ISSN 2363-6084 ISSN 2363-6092 (electronic)
Proceedings in Adaptation, Learning and Optimization
ISBN 978-3-319-14062-9 ISBN 978-3-319-14063-6 (eBook)
DOI 10.1007/978-3-319-14063-6

Library of Congress Control Number: 2014957491

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Contents

Algorithms and Theories on ELM

Sparse Bayesian ELM Handling with Missing Data for Multi-class
Classification . 1
Jiannan Zhang, Shiji Song, Xunan Zhang

A Fast Incremental Method Based on Regularized Extreme Learning
Machine . 15
Zhixin Xu, Min Yao

Parallel Ensemble of Online Sequential Extreme Learning Machine
Based on MapReduce . 31
Shan Huang, Botao Wang, Junhao Qiu, Jitao Yao, Guoren Wang, Ge Yu

Explicit Computation of Input Weights in Extreme Learning Machines 41
Jonathan Tapson, Philip de Chazal, André van Schaik

Subspace Detection on Concept Drifting Data Stream 51
Lin Feng, Shenglan Liu, Yao Xiao, Jing Wang

Inductive Bias for Semi-supervised Extreme Learning Machine 61
Federica Bisio, Sergio Decherchi, Paolo Gastaldo, Rodolfo Zunino

ELM Based Efficient Probabilistic Threshold Query on Uncertain Data 71
Jiajia Li, Botao Wang, Guoren Wang

Sample-Based Extreme Learning Machine Regression with Absent Data . . . 81
Hang Gao, Xinwang Liu, Yuxing Peng

Two Stages Query Processing Optimization Based on ELM in the Cloud . . . 91
Linlin Ding, Yu Liu, Baoyan Song, Junchang Xin

Domain Adaptation Transfer Extreme Learning Machines 103
Lei Zhang, David Zhang

VI Contents

Quasi-Linear Extreme Learning Machine Model Based Nonlinear System
Identification . 121
Dazi Li, Qianwen Xie, Qibing Jin

A Novel Bio-inspired Image Recognition Network with Extreme Learning
Machine . 131
Lin Zhang, Yu Zhang, Ping Li

A Deep and Stable Extreme Learning Approach for Classification and
Regression . 141
Le-le Cao, Wen-bing Huang, Fu-chun Sun

Extreme Learning Machine Ensemble Classifier for Large-Scale Data 151
Haocheng Wang, Qing He, Tianfeng Shang, Fuzhen Zhuang, Zhongzhi Shi

Pruned Annular Extreme Learning Machine Optimization Based on
RANSAC Multi Model Response Regularization . 163
Lavneet Singh, Girija Chetty

Learning ELM Network Weights Using Linear Discriminant Analysis 183
Philip de Chazal, Jonathan Tapson, André van Schaik

An Algorithm for Classification over Uncertain Data Based on Extreme
Learning Machine . 193
Ke-yan Cao, Guoren Wang, Donghong Han

Training Generalized Feedforword Kernelized Neural Networks on
Very Large Datasets for Regression Using Minimal-Enclosing-Ball
Approximation . 203
Jun Wang, Zhaohong Deng, Shitong Wang, Qun Gao

An Online Multiple-Model Approach to Univariate Time-Series
Prediction . 215
Koshy George, Sachin Prabhu, Prabhanjan Mutalik

A Self-Organizing Mixture Extreme Leaning Machine for Time Series
Forecasting . 225
Hou Muzhou, Chen Ming, Zhang Yangchun

Ensemble Extreme Learning Machine Based on a New Self-adaptive
AdaBoost.RT . 237
Pengbo Zhang, Zhixin Yang

Machine Learning Reveals Different Brain Activities in Visual Pathway
during TOVA Test . 245
Haoqi Sun, Olga Sourina, Yan Yang, Guang-Bin Huang, Cornelia Denk,
Felix Klanner

Contents VII

Online Sequential Extreme Learning Machine with New Weight-Setting
Strategy for Nonstationary Time Series Prediction . 263
Jinwan Wang, Wentao Mao, Liyun Wang, Mei Tian

RMSE-ELM: Recursive Model Based Selective Ensemble of Extreme
Learning Machines for Robustness Improvement . 273
Bo Han, Bo He, Mengmeng Ma, Tingting Sun, Tianhong Yan,
Amaury Lendasse

Extreme Learning Machine for Regression and Classification Using
L1-Norm and L2-Norm . 293
Xiong Luo, Xiaohui Chang, Xiaojuan Ban

A Semi-supervised Online Sequential Extreme Learning Machine
Method . 301
Xibin Jia, Runyuan Wang, Junfa Liu, David M.W. Powers

ELM Feature Mappings Learning: Single-Hidden-Layer Feedforward
Network without Output Weight . 311
Yimin Yang, Q.M. Jonathan Wu, Yaonan Wang, Dibyendu Mukherjee,
Yanjie Chen

ROS-ELM: A Robust Online Sequential Extreme Learning Machine for
Big Data Analytics . 325
Yang Liu, Bo He, Diya Dong, Yue Shen, Tianhong Yan, Rui Nian,
Amaury Lendasse

Deep Extreme Learning Machines for Classification . 345
Migel D. Tissera, Mark D. McDonnell

C-ELM: A Curious Extreme Learning Machine for Classification
Problems . 355
Qiong Wu, Chunyan Miao

Review of Advances in Neural Networks: Neural Design Technology
Stack . 367
Stanisław Woźniak, Adela-Diana Almási, Valentin Cristea, Yusuf Leblebici,
Ton Engbersen

Applying Regularization Least Squares Canonical Correlation Analysis
in Extreme Learning Machine for Multi-label Classification Problems 377
Yanika Kongsorot, Punyaphol Horata, Khamron Sunat

Least Squares Policy Iteration Based on Random Vector Basis 397
Lei Zuo, Xin Xu

Identifying Indistinguishable Classes in Multi-class Classification Data
Sets Using ELM . 407
Felis Dwiyasa, Meng-Hiot Lim

VIII Contents

Effects of Training Datasets on Both the Extreme Learning Machine and
Support Vector Machine for Target Audience Identification on Twitter 417
Siaw Ling Lo, David Cornforth, Raymond Chiong

Extreme Learning Machine for Clustering . 435
Chamara Kasun Liyanaarachchi Lekamalage, Tianchi Liu, Yan Yang,
Zhiping Lin, Guang-Bin Huang

Author Index . 445

Sparse Bayesian ELM Handling with Missing

Data for Multi-class Classification

Jiannan Zhang, Shiji Song�, and Xunan Zhang

Department of Automation, Tsinghua University
Beijing 100084, China

shijis@mail.tsinghua.edu.cn

Abstract. Extreme learning machine (ELM) is a successful machine
learning approach for its extremely fast training speed and good gener-
alization performance. The sparse Bayesian ELM (SBELM) approach,
which is a variant of ELM, can result in a more accurate and compact
model. However, SBELM can not deal with the missing data problem
in its standard form. To solve this problem, we design two novel meth-
ods, additive models for missing data (AMMD) and self-adjusting neuron
state for missing data (SANSMD), by adjusting the calculation of out-
puts of the hidden layers in SBELM. Experimental results on several
data sets from the UCI repository indicate that the proposed modified
SBELM methods have significant advantages: high accuracy and good
generalization performance compared with several other existing meth-
ods. Moreover, the proposed methods enrich ELM with new tools to solve
missing data problem for multi-class classification even with up to 50%
of the features missing in the input data.

Keywords: ELM, SBELM, Missing data, Multi-class classification.

1 Introduction

Missing data problem [1,2,3] widely exists in many different application fields
of science such as in the areas of social, behavioral and medical sciences. Many
explanations can be made for why a feature value is unavailable: the data values
are simply not measured, human or machine failures during the data acquisi-
tion process, or error in transmitting or saving data values into their respective
records. Types for missing data are commonly classified as: missing completely
at random (MCAR), missing at random (MAR), and missing not at random
(MNAR) [3,4]. The missing data for a random variable X are MCAR means
that the probability of having missing values doesn’t rely on the values of X or
any other variables in the data set. We assume the data are MCAR here, and
under this assumption, the reason for missing data can be ignored.

The methods for solving missing data problem can be group into four types
according to the differences of solutions both on handling missing values and

� Corresponding author.

c© Springer International Publishing Switzerland 2015 1
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_1

2 J. Zhang, S. Song, and X. Zhang

learning procedures [5]. One is deleting the cases with missing values and utiliz-
ing the left complete data portion to learn. The second one is imputing missing
data with existing information and then learning the models by using the com-
plete data set, e.g., replacing the missing values of one feature with its mean
value or values calculated by multiple imputation methods. The third approach
is using model-based procedure, such as the expectation-maximization (EM) al-
gorithm [6]. The last one is learning procedures that are designed for handling
with missing data without a previous estimation of missing values. Cases dele-
tion and simple imputation may cause bias. Multiple imputation may lead to
additional bias in multivariate analysis and model-based procedures are very
time consuming when they come up against large data sets.

Nowadays, data sets produced in many fields become very large and it is time
consuming for some classic machine leaning methods such as neural networks,
support vector machine, etc. [7,8,9,10]. Recently, Huang et al. [11,12,13] pro-
posed an efficient algorithm called extreme learning machine (ELM) which is an
elegant learning algorithm for single hidden layer feedforward neural networks
(SLFN). This method chooses the input weights and biases of the hidden neurons
randomly and calculates the output weights in closed form. Hence, the overall
computational time can be reduced by several orders of magnitude, compared
to the above-mentioned classical methods.

However, it has been mentioned in [14] and [15] that the ELM algorithm
has three drawbacks: 1) it can have some issues when encountering irrelevant
or correlated data, 2) the method of obtaining the output weights, a kind of
least squares minimization learning, can easily suffer from overfitting and 3)
the accuracy of ELM is influenced by the number of hidden neurons. Moreover,
ELM or its existing modifications can not handle with missing data for multi-
class classification until now.

In this paper, we propose to extend the sparse Bayesian ELM (SBELM) [15]
approach, which is a sparse Bayesian learning approach for ELM, to solve the
missing data problem for multi-class classification. SBELM retains the advan-
tages of ELM like fast computational speed and universal approximation capa-
bility. Moreover, the method can overcome the shortcomings of ELM. SBELM
has higher generalization performance with lower computational cost and pro-
duces a more compact model than OP-ELM [16] and TROP-ELM [17] which
are only for regression problems. In order to deal with missing data for multi-
class classification with SBELM, we propose two different methods, which are
additive model for missing data (AMMD) and self-adjusting neuron state for
missing data (SANSMD) to calculate the output of the hidden neurons . These
two methods have respective advantages so that we can choose either one to deal
with certain problems.

The rest part of this paper is organized as follows. The following section
introduces the details of ELM and SBELM. Into Section 3, we propose two
methods to modify SBELM for handling with missing data. Section 4 reports
the experimental results obtained on a number of benchmark data sets, and
followed by a short conclusion in Section 5.

Sparse Bayesian ELM Handling with Missing Data 3

2 Sparse Bayesian ELM: SBELM

Recently, Luo et al. [15] proposed the sparse Bayesian ELM (SBELM) approach,
which uses a sparse Bayesian learning (SBL) method for ELM to find sparse
representatives for the output weights assumed with priori distribution. The
approach is introduced briefly in this section.

2.1 Extreme Learning Machine (ELM)

Extreme learning machine (ELM) [11,12,13] was originally proposed as a solution
for the single hidden layer feedforward neural network (SLFN). The essence of
ELM is that all the hidden node parameters are randomly generated without
tuning. Thus it is possible to calculate the hidden-layer output matrix and then
the output weights.

Consider a given data set of N distinct samples SN = {x, ti}Ni=1 with xi ∈ R
D

and ti ∈ R. An SLFN with m hidden nodes can be modeled as follows
m∑

i=1

βig (ωixj + bi) , (1)

for 1 ≤ j ≤ N where ωi are the input weights, bi the hidden layer biases, βi the
output weights and g(·) is an activation function.

If there was an SLFN with activation function g can approximate the N
samples perfectly, the model can be written as follows

m∑

i=1

βig (ωixj + bi) = tj , (2)

The above N equations can be written compactly as

Hβ = t , (3)

where

H =

⎛

⎜⎝
g (ω1x1 + b1) · · · g (ωmx1 + bm)

...
. . .

...
g (ω1xN + b1) · · · g (ωmxN + bm)

⎞

⎟⎠ , (4)

β = (β1, . . . , βm)T and t = (t1, . . . , tN)T. In the ELM approach, random values
have been assigned to the input weights ωi and the hidden layer biases bi in
the beginning of learning. Hence the hidden layer output matrix H remains
unchanged during the learning procedure. For fixed ωi and bi, to train an SLFN
is simply equivalent to finding a least-squares solution β̂ to minimize the cost
function

E =

N∑

j=1

∥∥∥∥∥

m∑

i=1

βig (ωixj + bi)− tj

∥∥∥∥∥ . (5)

By using a Moore-Penrose generalized inverse of the matrix H, denoted as
H†[18], the output weights β can be calculated from the knowledge of ωi and
bi. Therefore the solution mentioned above to the equation Hβ = t is denoted
as β̂ = H†t.

4 J. Zhang, S. Song, and X. Zhang

2.2 Sparse Bayesian ELM (SBELM) for Multi-class Classification

The SBELM approach, proposed by Luo et al. [15], uses a sparse Bayesian learn-
ing (SBL) method for ELM. The new model, which is benefit from the SBL
method, can overcome the shortcomings of ELM by maximizing the marginal
likelihood of network outputs and automatically pruning most of the redundant
hidden neurons during learning phase. Moreover, as having been verified in [15],
SBELM shows remarkable performance on accuracy, model size and general-
ization ability, compared to other approaches such as relevance vector machine
(RVM) [19], support vector machine (SVM) [20], TROP-ELM, and Bayesian
ELM (BELM) [21]. When dealing with binary classification problem, SBELM
treats it as an independent Bernoulli event with the probability defined as follows

p (t|β,H) =

N∏

i=1

σ(hiβ)
ti [1− σ (hiβ)]

1−ti , (6)

where σ(·) is sigmoid function and hj = (g (ω1xj + b1) , . . . , g (ωmxj + bm)) for
j = 1, . . . , N . Then, the SBELM approach makes the assumption that βi are
modeled probabilistically as independent zero-mean Gaussian distribution, with

variance α−1
i , so p (β|α) =

m∏
i=1

N
(
βi|0, α−1

i

)
. Note that α = (α1, . . . , αm)T arem

independent ARD hyperparameters [22,23]. The values of α can be determined
by maximizing ln{p (t|β,H) p (β|α)} for the reason that the marginal likelihood
p (t|α,H) =

∫
p (t|β,H)p (β|α) dβ, which cannot be integrated out analytically,

is proportional to p (t|β,H) p (β|α). Using the Laplace approximation approach
which is simply a quadratic approximation to the log-posterior around its mode,
ARD approximates a Gaussian distribution for the marginal likelihood. Thus
ln{p (t|β,H) p (β|α)} is wrote as follows

ln {p (t|β,H) p (β|α)}

=

N∑

i=1

{ti ln yi + (1− ti) ln (1− yi)} − 1

2
βTAβ + const , (7)

where A = diag (α) and yi = σ (hiβ).
According to the Laplace approximation approach, we can find the Laplace’s

mode β̂ by using Newton-Raphson method iterative reweighted least squares
(IRLS). β̂ is obtained by

βnew =
(
HTBH+A

)−1
HTBt̂ , (8)

where t̂ = Hβold + B−1 (t− y), B = diag ({y1 (1− y1) , ..., yN (1− yN)})N×N

and y = (y1, . . . , yN)
T
. And we obtain p (t|β,H) p (β|α) ∼ N

(
β̂,Σ

)
, where

β̂ = ΣHTBt̂ and Σ =
(
HTBH+A

)−1
.

Sparse Bayesian ELM Handling with Missing Data 5

The log marginal likelihood is as follows:

L (α) = ln p (t|α,H)

= −1

2

[
N ln (2π) + ln

∣∣B+HAHT
∣∣+

(
t̂
)T (

B+HAHT
)
t̂
]
. (9)

The derivative of the marginal likelihood with respect to αi is set to zero and
αnew
i is obtained by

αnew
i =

1− αold
i Σi,i

β̂2
i

. (10)

Through the iterations of (8) and (10) after setting initial values to β and α
in the beginning, the operation continues to maximize the marginal likelihood
function until reaching the convergence criteria. As analyzed in [15], with the
iteration’s going on, partial αi’s tend to grow to infinity and the correspond-
ing βi’s approximate to zero concomitantly, which implies that their associated
hidden neurons are pruned and maintains the sparsity of the model.

Furthermore, on the basis of SBELM for binary classification problem, the
model is extended to multi-class classification by using the state-of-the-art
method pairwise coupling [24]. The method was also adopted and elaborated
in the well-known toolbox LIBSVM [10]. So we do not repeat it here.

3 Improved SBELMs for Dealing with Missing Data

Since missing data happen in almost every field of research and the standard
SBELM cannot handle with missing data, we introduce two methods, addi-
tive model and self-adjusting neuron state model, to solve the problem for the
SBELM in this section.

3.1 Additive Models for Missing Data (AMMD)

Pelckmans et al. proposed a SVM algorithm [25] for handling with missing data
in which there was no attempt to recover the missing values in data sets. The
key idea of the algorithm is to modify the cost function by using additive models
proposed by Hastie and Tibshirani in [26]. It gives us a great illumination for
how to handle with the data set with missing values.

Additive models are described as follows:
An input vector x ∈ R

D can be written as a combination of Q components of
dimensionDq for q = 1, . . . , Q, which means x = (x(1), . . . ,x(Q)) with x(q) ∈ R

Dq

for q = 1, . . . , Q. The additive models is defined as

FD = {f : RD → R|f(x) =
Q∑

q=1

f (q)(x(q)) + b,

f (q) : RDq → R, b ∈ R, ∀x = (x(1), ...,x(Q)) ∈ R
D} . (11)

6 J. Zhang, S. Song, and X. Zhang

Furthermore, X(q) is denoted as the random variable (vector) corresponding
to the qth components for q = 1, . . . , Q.

We define the sets Aq and Bi as follows

Aq =
{
i ∈ {1, . . . , N}|x(q)

i is complete
}

, ∀q = 1, . . . , Q , (12)

Bi =
{
q ∈ {1, . . . , Q}|x(q)

i is complete
}

, ∀i = 1, . . . , N , (13)

and define Āq = {1, . . . , N} \Aq, B̄i = {1, . . . , Q}\Bi.
For the purpose of coping with the notational inconvenience caused by the

different dependent summands, the index sets Ui ∈ N
Q are defined as follows

Ui = {(j1, . . . , jQ)|jq = i if q ∈ Bi or jq = l, ∀ l ∈ Aq if q ∈ B̄i} . (14)

According to the assumption of the probabilistic model for missing values in
[25], the U-statistics of ti can be obtained as follows

t∗i =
1

|Ui|
∑

(j1,...,jQ)∈Ui

[
Q∑

q=1

βqg
(
ωqx

(q)
jq + bq

)]

=

Q∑

q=1

⎧
⎨

⎩
∑

q∈Bi

βqg
(
ωqx

(q)
i + bq

)
+

∑

q∈B̄i

βq
1

|Aq|
∑

j∈Aq

g
(
ωqx

(q)
j + bq

)
⎫
⎬

⎭

=

Q∑

q=1

βqg
q,∗
i , (15)

where gq,∗i is equal to g
(
ωqx

(q)
i + bq

)
for q ∈ Bi and

1
|Aq|

∑
j∈Aq

g
(
ωq · x(q)

j + bq

)

for q ∈ B̄i.
Thus, the marginal likelihood in the standard SBELM can be rewritten as

follows

ln {p (t|β,H∗) p (β|α)}

=

N∑

i=1

{ti ln y∗i + (1− ti) ln (1− y∗i)} −
1

2
βTAβ + const , (16)

where y∗i = σ (t∗i), H
∗ =

(
(h∗

1)
T
, . . . , (h∗

N)
T
)T

and h∗
i =

(
g1,∗i , . . . , gQ,∗

i

)
.

Finally, we can get the estimation of β with H∗, t and y∗ by utilizing SBELM.
In addition, it is easy to be proved that the modified SBELM reduces to the
standard SBELM when no observation is missing.

3.2 Self-adjusting Neuron State for Missing Data (SANSMD)

Recently, Viharos et al. proposed a method for learning artificial neural networks
(ANNs) models with missing data [27,28]. So we extend the standard SBELM
for missing data by using this method.

Sparse Bayesian ELM Handling with Missing Data 7

The method is based on the main idea of setting protected state to the neurons
corresponding to the missing part of certain data vectors and unprotected state
to the others. One of the neurons, if having protected state, is not involved
in any calculation of the network during the learning procedure. Namely, the
neuron is excluded from the network with all of its links to others. However,
being protected does not mean the neuron is pruned. If the part of another data
vector corresponding to the neuron is complete, the neuron’s state will be reset
to unprotected state. During the learning process, a flag called validity (binary)
is used for indicating whether a value in the data vector is valid or not, that’s to
say, a validity vector is attached to the data vector to mark the data values valid
states in the data. The neurons of the input layer being protected or not depends
on the validity vector of the input data vector, namely if a data value is valid
in the input vector, the corresponding neuron is set to unprotected, otherwise
the corresponding neuron will be protected. Considering an sample (x, t) and its
validity vector v, we denote that vj = 1 if the jth value is complete, otherwise
vj = 0. Than we redefine the output of hidden layers as

g(·) = g

⎛

⎝
D∑

j=1

vj (ωjxj + bj) + b0

⎞

⎠ , (17)

where bj = cj/
√
sum(v) + 1 and cj are randomly generated from the same

Gaussian distribution for j = 0, . . . , D. The basic reason for the new definition
is that no matter which part of the data vector is missing, the bias bj has the same
probability distribution. However, they have different values corresponding to the
different missing situations, which means the change of the network structure as
illustrated in Fig. 1.

Fig. 1. The network for SANSMD method

Hence, by using the method handing with missing data, the output of hidden
layers H̃ can be computed. Then we can compute the estimation of β with H̃
and t by using SBELM. The proposed method is also equivalent to the standard
SBELM when no missing data occurs.

8 J. Zhang, S. Song, and X. Zhang

4 Performance Evaluation

In this section, five data sets are chosen to evaluate the performance of the
two methods proposed in this paper, for multi-class classification problem with
missing data. We start by introducing the characteristics of the data sets and the
method of generating missing data. Then we describe the experimental setup.
Finally, the experimental result will be given and analyzed in detail.

4.1 Data Sets

The experiments are performed using five benchmark data sets chosen from
the UCI machine learning repository [29]. The characteristic set of data sets
contains: name, the number of data samples, attributes and classes. Table 1
shows the description of the selected data sets. Because all the benchmark data
sets are complete, it is need to generate missing data artificially. Missing data
are generated by using the MCAR mechanism in accordance of the assumption
on the type for missing data in Section 1. The percentage of the missing data in
the training set ranges from 0% to 50% with a step size of 2%.

Table 1. Properties of training data set

Data sets Samples Attributes Classes

Blood Transfusion Service 747 5 2

Pima Indians Diabetes 767 8 2

Iris 149 4 3

Balance Scale 624 4 3

Seeds 209 7 3

4.2 Experiment Setup

In general, the experiments are performed as follows. In each experiment, each
data set is first randomly divided into a training and test subset for five-fold cross
validation. During each validation process, the missing values are generated from
the training subset with the certain missing percentage corresponding to the ex-
periment. Next, the modified training subset is used to train with the classifiers:
the SBELMs combined with AMMD, SANSMD, mean imputation (Mean), 1-
nearest neighbor (1-NN) [30,31] and case deletion (CD) [3]. Specifically, in the
mean imputation method, the mean of corresponding feature is computed based
on the existed feature values to replace the missing values; in the 1-NN imputa-
tion method, the missing values are replaced by the corresponding feature of its
first nearest neighbor whose value is not missing; and in the case deletion, the
samples that have missing values for any feature are omitted from the data set.

Sparse Bayesian ELM Handling with Missing Data 9

Finally, the classification accuracy and root-mean-square error (RMSE) of the
classifiers is evaluated by applying the corresponding classification model on the
test subset.

Some notes for the experiments are as follows.
1) All the features of each data set are linearly scaled to [-1, 1].
2) The active function of hidden nodes for the SBELMs combined with AMMD,

Mean, 1-NN and CD is sigmoid g(x) = 1/(1 + exp (
∑D

j=1 ωjxj + b0)), where ωj

are the input weights randomly generated from uniform distribution within [0,
1] and b0 from Gaussian distribution N(0, 0.5) respectively. The active function
for the SBELM with SANSMD is defined in equation (17), where ωj are ran-
domly generated from uniform distribution within [0, 1] and bj from Gaussian
distribution N(0, 0.5) for j = 0, . . . , D.

3) The samples of the data set are randomly re-ordered and split into five
folds in advance and kept fixed in each experiment in which the five classifiers
are trained and tested with an identical missing percentage. Because the seed
of generating the uniform distribution and Gaussian distribution in 2), so we
randomly choose 10 seeds for each data set before training. On each missing
percentage, we calculate the generalized accuracy using different combination
of the 10 seeds and 6 initial number of hidden neurons chosen from the set
[50,70,90,...,150]. Therefore, for each missing percentage, all the five classifiers
are trained and tested for 300 (10×6×5) times in consideration of the repeating
times in the five-fold cross validation process.

4.3 Experimental Result

The mean accuracies of the SBELMs combined with AMMD, SANSMD, Mean,
1-NN and CD are compared under different percentage of the missing data. For
each given percentage, each data set is trained and tested on the 10 seeds with
6 initial numbers of hidden neurons. On each seed with 6 initial numbers, the
best accuracy is chosen as the final result of the seed. The mean and RMSE of
the classification accuracies based on the seeds are chosen for analysis as shown
in Fig. 2 and Fig. 3. Observed from Fig. 2, the SBELMs combined with AMMD
and SANSMD have higher accuracy and better generalization performance on

Table 2. Comparison of classification accuracy on Iris data

Missing percentage (%) 0 10 20 30 40 50

Accuracy (%)

AMMD 96.8 96.5 96.7 96.5 96.2 96.0
SANSMD 96.8 96.3 96.2 95.6 95.3 95.0
Mean 96.8 95.8 94.9 92.8 90.0 86.3
1-NN 96.8 96.5 96.3 95.7 94.7 93
CD 96.8 96.3 96.0 94.8 × ×

10 J. Zhang, S. Song, and X. Zhang

0 0.1 0.2 0.3 0.4 0.5
86

89

93

97
Iris

A
cc

ur
ac

y
(%

)

0 0.1 0.2 0.3 0.4 0.5
0

1.9

3.8

The percentage of Missing features (%)

R
M

S
E

 (
10

−
2)

AMMD SANSMD Mean 1−NN CD

Fig. 2. The classification accuracy and RMSE for the data set

Iris data than those combined with the other methods. All the methods show
nearly the same result of accuracy and RMSE at 0% missing percentage which
confirms that all the methods are equivalent to the standard SBELM when no
missing data occurs from one aspect. From the result in Fig. 2, it shows that when
missing percentage is small, all the methods show similar classification results
with no significant difference. However, as missing percentage increasing high,
the distinction of result becomes significant. When missing percentage is high,
case deletion (CD) method is not reliable. One reason is that all the samples
of one class may be omitted from the data set. For example, if the samples of
one data set have 10 attributes, all the samples nearly have missing values when
the missing percentage exceeds 10% which means there will be few samples left
by using case deletion method. As the same reason for case deletion, a large
proportion of one attribute with high missing percentage will be filled with the
same value by using mean imputation. When missing percentage achieves 50%,
the classification accuracies of AMMD and SANSMD have a 0.8% decrease and a
1.8% decrease as shown in Table 2, which are superior to the left three methods,
compared to the accuracies when no missing occurs. Furthermore, the RMSEs
have only a slight rise, which shows the good generalization performance of
the proposed two methods. The performance of AMMD is slightly higher than
SANSMD, however, which is not significant.

Fig. 3 shows the results for the other data sets. The results are similar, and
also, there are some differences. In general, the SBELMs combined with AMMD
and SANSMD have higher accuracy except that 1-NN method is better than
AMMD on Seeds data when the missing percentage is low. However, when the
missing percentage is higher than 36%, the SBELM model is empty in the train-
ing process. Therefore, AMMD is more reliable than 1-NN method.

Sparse Bayesian ELM Handling with Missing Data 11

0 0.1 0.2 0.3 0.4 0.5
75

76

77

79
Blood Transfusion Service

A
cc

ur
ac

y
(%

)

0 0.1 0.2 0.3 0.4 0.5
0

0.7

1.3

The percentage of Missing features (%)

R
M

S
E

 (
10

−
2)

AMMD SANSMD Mean 1−NN CD

0 0.1 0.2 0.3 0.4 0.5
67

70

74

78
Pima Indians Diabetes

A
cc

ur
ac

y
(%

)

0 0.1 0.2 0.3 0.4 0.5
0

1.4

2.9

The percentage of Missing features (%)

R
M

S
E

 (
10

−
2)

AMMD SANSMD Mean 1−NN CD

0 0.1 0.2 0.3 0.4 0.5
81

86

91

96
Balance Scale

A
cc

ur
ac

y
(%

)

0 0.1 0.2 0.3 0.4 0.5
0.1

1.1

2.1

The percentage of Missing features (%)

R
M

S
E

 (
10

−
2)

AMMD SANSMD Mean 1−NN CD

0 0.1 0.2 0.3 0.4 0.5
88

90

93

96
Seeds

A
cc

ur
ac

y
(%

)

0 0.1 0.2 0.3 0.4 0.5
0.2

1.2

2.4

The percentage of Missing features (%)

R
M

S
E

 (
10

−
2)

AMMD SANSMD Mean 1−NN CD

Fig. 3. The classification accuracy and RMSE for the data sets

5 Conclusions

In this paper, we proposed two methods to modify SBELM, a state-of-the-art
variant of ELM, to handle missing data for multi-class classification. The stan-
dard SBELM can find sparse representatives for the output weights of ELM by
utilizing the sparse Bayesian learning approach. The improved SBELMs utilize
two different ways to calculate the output of hidden layers on incomplete data
with little additional computation. In details, the first method utilizes additive
models for missing data (AMMD), and the second method utilizes self-adjusting
neuron state model for missing data (SANSMD) to change the input neuron state
when encountering missing data. Hence the two methods retain the advantages of
SBELM such as fast computational speed, high generalization performance and
sparsity. Moreover, the two methods help SBELM to gain the ability of solving
the missing data problems. From the experimental results over five benchmark
data sets, the proposed methods have better generalization performance than
other methods. It is also worth noting that our methods have reliability and
good performance even half of the data values are missing. Hence, our methods
completes ELM with two new methods to solve missing data problem for multi-
class classification. Future work may focus on applying them for multi-output
regression.

12 J. Zhang, S. Song, and X. Zhang

References

1. Baraldi, A.N., Enders, C.K.: An introduction to modern missing data analyses.
Journal of School Psychology 48(1), 5–37 (2010)

2. Schafer, J.L., Graham, J.W.: Missing data: our view of the state of the art. Psy-
chological methods 7(2), 147 (2002)

3. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data (2002)
4. Rubin, D.B.: Inference and missing data. Biometrika 63(3), 581–592 (1976)
5. Garca-Laencina, P.J., Sancho-Gmez, J.L., Figueiras-Vidal, A.R.: Pattern classifi-

cation with missing data: a review. Neural Computing and Applications 19(2),
263–282 (2010)

6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal statistical Society 39(1), 1–38
(1977)

7. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural networks 2(5), 359–366 (1989)

8. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press
(1995)

9. Rasmussen, C.E.: Gaussian processes for machine learning (2006)
10. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)
11. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning

scheme of feedforward neural networks. In: 2004 IEEE International Joint Confer-
ence on Neural Networks Proceedings, vol. 2, pp. 985–990. IEEE (2004)

12. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and appli-
cations. Neurocomputing 70(1), 489–501 (2006)

13. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental
constructive feedforward networks with random hidden nodes. IEEE Transactions
on Neural Networks 17(4), 879–892 (2006)

14. Miche, Y., Bas, P., Jutten, C., et al.: A Methodology for Building Regression Mod-
els using Extreme Learning Machine: OP-ELM[C]. ESANN, pp. 247–252 (2008)

15. Luo, J., Vong, C.M., Wong, P.K.: Sparse Bayesian Extreme Learning Machine
for Multi-classification. IEEE Transactions on Neural Networks and Learning Sys-
tems 25(4), 836–843 (2014)

16. Miche, Y., Sorjamaa, A., Bas, P., et al.: OP-ELM: optimally pruned extreme learn-
ing machine. IEEE Transactions on Neural Networks 21(1), 158–162 (2010)

17. Miche, Y., Van Heeswijk, M., Bas, P., et al.: TROP-ELM: A double-regularized
ELM using LARS and Tikhonov regularization. Neurocomputing 74(16), 2413–
2421 (2011)

18. Rao, C.R., Mitra, S.K.: Generalized inverse of matrices and its applications. Wiley,
New York (1971)

19. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. The
Journal of Machine Learning Research 1, 211–244 (2001)

20. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

21. Soria-Olivas, E., Gomez-Sanchis, J., Jarman, I.H., et al.: BELM: Bayesian extreme
learning machine. IEEE Transactions on Neural Networks 22(3), 505–509 (2011)

22. Bishop, C.M.: Pattern recognition and machine learning. springer, New York (2006)
23. MacKay, D.J.C.: Bayesian methods for backpropagation networks. Models of neural

networks III, pp. 211–254. Springer, New York (1996)

Sparse Bayesian ELM Handling with Missing Data 13

24. Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification
by pairwise coupling. Journal of Machine Learning Research 5(975-1005), 4 (2004)

25. Pelckmans, K., De Brabanter, J., Suykens, J.A.K., et al.: Handling missing values
in support vector machine classifiers. Neural Networks 18(5), 684–692 (2005)

26. Hastie, T.J., Tibshirani, R.J.: Generalized additive models. CRC Press (1990)
27. Viharos, Z.J., Kis, K.B.: Diagnostics of Wind Turbines Based on Incomplete Sen-

sor Data. XX IMEKO World Congress C Metrology for green growth, TC10 on
Technical Diagnostics 644 (2012)

28. Viharos, Z.J., Monostori, L., Vincze, T.: Training and application of artificial neural
networks with incomplete data. In: Hendtlass, T., Ali, M. (eds.) IEA/AIE 2002.
LNCS (LNAI), vol. 2358, p. 649. Springer, Heidelberg (2002)

29. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
30. Chen, J., Shao, J.: Nearest neighbor imputation for survey data. Journal of Official

Statistics 16(2), 113–132 (2000)
31. Van Hulse, J., Khoshgoftaar, T.M.: Incomplete-case nearest neighbor imputation

in software measurement data. In: IEEE International Conference on Information
Reuse and Integration, IRI, pp. 630–637. IEEE (2007)

A Fast Incremental Method

Based on Regularized Extreme Learning
Machine

Zhixin Xu and Min Yao

School of Computer Science and Technology, Zhejiang University
Zhejiang, Hangzhou, China, 310007

Abstract. Extreme Learning Machine(ELM) proposed by Huang et al
is a new and simple algorithm for single hidden layer feedforward neural
network(SLFN) with extreme fast learning speed and good generaliza-
tion performance.When new hidden nodes are added to existing network
retraining the network would be time consuming, and EM-ELM is pro-
posed to calculate the output weight incrementally.However there are still
two issues in EM-ELM:1.the initial hidden layer output matrix may be
nearly singular thus the computation will loss accuracy;2.the algorithms
can’t always get good generalization performance due to overfitting.So
we propose the improved version of EM-ELM based on regularization
method called Incremental Regularized Extreme Learning Machine(IR-
ELM).When new hidden node is added one by one,IR-ELM can update
output weight recursively in a fast way.Empirical studies on benchmark
data sets for regression and classification problems have shown that IR-
ELM always get better generalization performance than EM-ELM with
the similar training time.

Keywords: Extreme Learning Machine, Regularization, Incremental
Learning, Neural Networks.

1 Introduction

Recently,a novel and efficient learning method for single hidden layer feedfor-
ward neural networks(SLFNs) called Extreme Learning Machine(ELM) has been
proposed by Huang et al in [1] [2] [3].Compared with conventional learning al-
gorithms for neural networks(e.g. Back propagation (BP) method [4]) which
need adjust learning parameters iteratively,ELM generates parameters of the hid-
den nodes randomly and then determines the output weights analytically,which
makes ELM extremely fast.A number of real world applications [3] [5] [6] [7] [8]
have shown the efficiency of ELM algorithm with respect to its good generaliza-
tion performance and fast learning speed.

Benefiting from its simplicity of structure,ELM can also be applied to incre-
mental learning problem efficiently.Huang et al [9] proposed Incremental Ex-
treme Learning Machine(I-ELM) which add hidden node one by one,and Feng

c© Springer International Publishing Switzerland 2015 15
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_2

16 Z. Xu and M. Yao

et al [10] proposed another algorithm called Error Minimized Extreme Learning
Machine(EM-ELM) that can add node one by one or group by group(with vary-
ing group size) which is more flexible and efficient in some cases.However,there
are still some issues in EM-ELM.Firstly,in some applications,the initial hidden
layer output matrix is nearly singular,thus the computation of its inverse matrix
may loss accuracy.Secondly,the incremental algorithm is based on the original
ELM,therefor EM-ELM inherits the problem of overfitting and sometimes can’t
achieve the expected testing accuracy.

In this paper, to avoid the issues mentioned above, we propose a modified ver-
sion of EM-ELM called Incremental Regularized Extreme Learning Machine(IR-
ELM) based on regularized extreme learning machine(R-ELM) [11]. Under the
consideration of structural risk minimization(SRM) principle [12] [13],Deng et
al [11] apply regularization method to ELM and get some enhancement of gen-
eralization performance. However, when the hidden nodes increase, R-ELM has
the same problem as original ELM encountered, which needs much time to re-
train the new networks and to recalculate the output weights.In IR-ELM,we
firstly initial a SLFN with random hidden nodes of proper size,then we calculate
the output weight using R-ELM algorithm,when new hidden node is added,we
update the output weights recursively with IR-ELM algorithm which needn’t
retrain the networks thus can reduce the time complexity efficiently. The exper-
iments are conducted for regression and classification problems on benchmark
data sets obtained from UCI Machine Learning Repository [14]. The results have
shown that the advantages of EM-ELM and R-ELM can both to a great extent
be made use of.

The rest of this paper is organized as follows.Section 2 briefly introduces
the original ELM and R-ELM.The details of proposed algorithm are described
in Section 3.The experimental results of our proposed algorithm are shown in
Section 4.Finally we present the discussions and conclusions in Section 5.

2 Preliminaries

In this section,we briefly introduce the original ELM by Huang et al [1] [2] and R-
ELM by Deng et al [11], respectively.In the following,the construction of SLFNs
and the theory of ELM are shortly reviewed.

2.1 Extreme Learning Machine

The ELM algorithm was proposed by Huang et al in [1] [2] [3].As a tuning-
free learning algorithm,ELM makes full use of the SLFN architecture,and the
essence of ELM lies in the random initialization of hidden nodes’ weights and
biases,then the output weights can be determined analytically.In the following,we
first introduce the basic concepts of SLFN.

A Fast Incremental Method Based on R-ELM 17

For N arbitrary input samples (xi, ti) , where xi = [xi1, xi2, . . . , xin]
T ∈

Rn and ti = [ti1, ti2, . . . , tim]T ∈ Rm,and given activation function g(x),the
standard mathematical model of SLFN with Ñ hidden nodes is as follows:

Ñ∑

i=1

βig(wi · xj + bi) = oj , j = 1, . . . , N (1)

where wi = [wi1, wi2, . . . , win]
T is the input weight vector connecting input

nodes and the ith hidden node. βi = [βi1, βi2, . . . , βim]T is the output weight
vector connecting the ith hidden node and the output nodes,bi is the basis of
ith hidden node.wi · xj is the inner product of wi and xj .

SLFNs with Ñ hidden nodes can approximateN samples with zero error,which
means that

∑N
j=1 ‖oj − tj‖ = 0,so there exists βi,wi, bi that:

Ñ∑

i=1

βig(wi · xj + bi) = tj , j = 1, . . . , N (2)

Above N equations can be rewritten compactly as:

Hβ = T (3)

where:

H =

⎡

⎢⎣
g(w1 · x1 + b1) · · · g(wÑ · x1 + bÑ)

... . . .
...

g(w1 · xN + b1) · · · g(wÑ · xN + bÑ)

⎤

⎥⎦

N×Ñ

(4)

β =

⎡

⎢⎣
βT
1
...

βT
Ñ

⎤

⎥⎦

Ñ×m

,T =

⎡

⎢⎣
tT1
...
tTN

⎤

⎥⎦

N×m

(5)

According to Huang [1],H is called hidden layer output matrix of SLFN.

To train SLFN,we need find the special ŵi, b̂i, β̂i(i = 1, 2, . . . , Ñ) that satisfy:

‖H(ŵ1, . . . , ŵÑ , b̂1, . . . , b̂Ñ)β̂ −T‖ = min
wi,bi,β

‖H(w1, . . . ,wÑ , b1, . . . , bÑ)β −T‖
(6)

which is equivalent to minimizing the cost function:

E =
N∑

j=1

∥∥∥∥∥∥

Ñ∑

i=1

βig(wi · xj + bi)− tj

∥∥∥∥∥∥

2

(7)

Traditionally,SLFN is trained by gradient based method,which need determine
three parameters iteratively.There are some drawbacks in traditional method
such as slow convergence speed,local minimum,and overfitting,so Huang et al
[1] [2] proposed a novel learning algorithm for SLFNs referred to as Extreme
Learning Machine(ELM).

18 Z. Xu and M. Yao

Unlike conventional method,ELM generates weight vectors wi and basis bi of
hidden nodes randomly,then determine the output weight β analytically,which
is equivalent to find the least square solution β̂ of linear equation Hβ = T
according to equation 7:

‖H(w1, . . . ,wÑ , b1, . . . , bÑ)β̂ −T‖ = min
β

‖H(w1, . . . ,wÑ , b1, . . . , bÑ)β −T‖
(8)

If the number of hidden nodes Ñ is equal to the number of input samples
N ,then H is square matrix and is invertible with probability one,therefor SLFN
can approximate the input samples with zero error.However,in most real world
applications,the number of hidden nodes Ñ is much less than the number of input
samples N ,so H is not square matrix and there are no parameters wi, bi,βi(i =
1, . . . , Ñ) that satisfy the equation Hβ = T.Huang et al [1] gives the following
solution:

β̂ = H†T (9)

where H† is Moore-Penrose generalized inverse of matrix H.
ELM algorithm can be summarized as follows.The inputs of algorithm are

training data,testing data,number of hidden nodes and activation function;the
outputs of algorithm are training time,testing time,training accuracy and testing
accuracy.

Algorithm 1. ELM.

For a given training data set ℵ = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, . . . , N},the
number of hidden nodes Ñ,and activation function g(x):

1. Assign the input weight vectors wi and basis bi, i = 1, . . . , Ñ randomly;
2. Calculate the hidden layer output matrix H;
3. Calculate the output weight β:β = H†T,where T = [t1, . . . , tN]T.

2.2 Regularized Extreme Learning Machine

In this subsection,we briefly introduce the regularized extreme learning machine
(R-ELM) [11].In 1963,Tikhonov proposed a new method for solving ill-posed
problems called regularization,and since then regularization theory has been at
the core of many neural network and machine learning algorithms [16].

Deng et al [11] applied regularization method to ELM,and it is pointed out
that ELM algorithm is based on ERM principle and tends to overfit.According
to statistical learning theory [12] [13],a learning machine with good generaliza-
tion performance should consider Structural Risk Minimization(SRM) instead
of Empirical Risk Minimization(ERM),which need a term that controls the com-
plexity of learning machine.It’s proven in [17] that networks tend to have better
generalization performance with small norm of output weight β.Without loss of

A Fast Incremental Method Based on R-ELM 19

generality,we assumem = 1,thus the objective function is considered to minimize
as follows:

f(β) = ‖Hβ −T‖2 + C‖β‖2
= (Hβ −T)T (Hβ −T) + CβTβ

(10)

Differentiating with respect to β and we obtain:

∂f(β)

∂β
= −2HT (T−Hβ) + 2Cβ (11)

Let the derivative to be zero and we get:

2HTHβ − 2HTT+ 2Cβ = 0 (12)

It is easy to get the following solution:

(CI +HTH)β = HTT (13)

The term CI makes the (CI+HTH) term nonsingular,so we can get:

β = (CI+HTH)−1HTT (14)

It is obvious that ELM is just the special case of R-ELM when C → ∞.In
[5],Huang et al give more thorough and profound demonstration about regular-
ization method combined with ELM.Other theory and applications [15] [18] [19]
show that regularization method is efficient.Our proposed algorithm referred to
as IR-ELM which updates the output weight β recursively is based on R-ELM.

3 Incremental Regularized Extreme Learning Machine

Incremental learning is necessary in the following two situations:1.for a given
error ε,to determine the least number of hidden nodes that satisfies testing error
≤ ε;2.for given data set,to find the best testing performance that the neural
network can achieve,which need also determine the number of hidden nodes.In
both these two situations,we need add new hidden nodes to the original networks
one by one or group by group sequentially as demonstrated in figure 1,thus we
may need retrain the networks and recalculate the output weight which is time-
consuming.

In [10],Feng et al proposed a fast incremental learning algorithm referred to as
error minimized extreme learning machine(EM-ELM).During the growth of net-
works,the output weight can be updated incrementally.The experimental results
have shown that this new approach is faster than other sequential/incremental
algorithms with good generalization performance.However there are some draw-
backs in EM-ELM:1.the initial hidden layer output matrix may be nearly sin-
gular thus the computation will loss accuracy;2.the algorithm can’t always get
good generalization performance due to overfitting.So we propose the improved
version of EM-ELM based on R-ELM.

20 Z. Xu and M. Yao

1 i− 1 i i+ 1 Ñ

1 n

1 m
β

xj

tj

Fig. 1. We add new hidden nodes generated randomly to the original networks one by
one or group by group sequentially

The essence of our proposed IR-ELM lies in calculating the output weight in
a fast way without losing generalization ability.In the first step of IR-ELM,an
initial network with Ñ random hidden nodes is assigned,then we calculate the
output weight using R-ELM algorithms.After new hidden node is add to the
existing network one by one,we update the output weight recursively until testing
accuracy satisfies our requirement.

Assuming there are already s − 1 hidden nodes in the network,so we can
get the output weight βs−1 = (CI + HT

s−1Hs−1)
−1HT

s−1T,where Hs−1 is the
hidden layer output matrix and the subscript s − 1 indicates the number of
hidden nodes.When new node is added,the output weight becomes βs = (CI +
HT

s Hs)
−1HT

s T,where Hs = [Hs−1,vs] is the hidden layer output matrix of new
network and vs is the hidden layer output vector associated to the ith hidden
node.Let Ds−1 = (CI+HT

s−1Hs−1)
−1HT

s−1 and Ds = (CI+HT
s Hs)

−1HT
s .The

left part of Ds can be rewritten as:

(CI+HT
s Hs)

−1 =

(
CI+

[
HT

s−1

vs

]
[Hs−1,vs]

)−1

=

[
HT

s−1Hs−1 + CI HT
s−1vs

vT
s Hs−1 vT

s vs + C

]−1 (15)

because CI +HT
s Hs is symmetric,the inverse matrix is symmetric too,thus we

denote:

(CI+HT
s Hs)

−1 =

[
A B
BT E

]−1

=

[
A

′
B

′

B
′T E

′

]
(16)

A Fast Incremental Method Based on R-ELM 21

where: ⎧
⎨

⎩

A = HT
s−1Hs−1 + CI

B = HT
s−1vs

E = vT
s vs + C

(17)

So,

I =

[
A B
BT E

]−1 [
A

′
B

′

B
′T E

′

]

=

[
AA′ +BB

′T AB′ +BE′

BTA′ +EB
′T BTB′ +EE′

] (18)

It is not difficult to get the solution for A′,B′ and E′:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A
′
=

A−1B(A−1B)T

E−BT (A−1B)
+A−1

B
′
=

A−1B

BTA−1B−E

E
′
=

1

E−BTA−1B

(19)

The following result is obvious:

Ds =

[
A

′
B

′

B
′T E

′

]
·
[
HT

s−1

vT
s

]
=

[
A

′
HT

s−1 +B
′
vT
s

B
′THT

s−1 +E
′
vT
s

]
(20)

Denote:

Ds =

[
L
M

]
(21)

Substituting equation 19 and 17 to equation 20 and we can get:

M =
BTA−1HT

s−1

BTA−1B− E
+

vT
s

E−BTA−1B

=
vT
s (I−Hs−1Ds−1)

vT
s (I−Hs−1Ds−1)vs + C

(22)

and

L =
A−1B(A−1B)THT

s−1

E−BT (A−1B)
+

A−1BvT
s

BTA−1B− E
+A−1HT

s−1

=
Ds−1vsv

T
s (Hs−1Ds−1 − I)

vT
s (I−Hs−1Ds−1)vs + C

+Ds−1

= Ds−1(I− vsM)

(23)

Given a set of training data,the number of initial hidden nodes,the maximum
number of hidden nodes and the expected learning accuracy,our proposed IR-
ELM algorithm can be summarized as follows.

22 Z. Xu and M. Yao

Algorithm 2. IR-ELM.

For a given training data set ℵ = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, . . . , N},the initial
number of hidden nodes N0,the maximum number of hidden nodes Nmax and the
expected learning accuracy ε:

I Initial the neural network:

1. Assign the input weight vectors wi and basis bi, i = 1, . . . , N0 randomly;
2. Calculate the hidden layer output matrix H0;
3. Calculate the output weight β0:β0 = D0T = (HT

0 H0 + CI)−1HT
0 T,where

T = [t1, . . . , tN]T;
4. Let s = 0,calculate the learning accuracy εs = ε0.

II Update the networks recursively.While Ns < Nmax and εs > ε:

1. Let s = s+ 1, Ns = Ns−1 + 1;
2. Add a new hidden node generated randomly to the existing network and

calculate the corresponding output matrix Hs = [Hs−1,vs];
3. The output weight is updated as follows:

Ms =
vT
s (I−Hs−1Ds−1)

vT
s (I−Hs−1Ds−1)vs + C

(24)

Ls = Ds−1(I− vsMs) (25)

βs = DsT =

[
Ls

Ms

]
T (26)

4. Calculate the new learning accuracy εs.

Remark 1:Compared with the original ELM whose time complexity is O(N ×
Ñ2),our algorithm need only O(N × Ñ) time complexity to update the output
weight recursively,where N is the number of training samples and Ñ is the
number of hidden nodes.

Remark 2:Similar to the phenomenon we have pointed out in section 2.2 that
ELM is just the special case of R-ELM when C → 0,while the hidden node is
added one by one EM-ELM [10] is the special case of IR-ELM when C → 0.

Remark 3:In [10],the author is able to add new hidden nodes to existing net-
work group by group,which is not available for IR-ELM in a efficient way due to
the presence of the regularization term.

4 Performance Verification

In this section,experiments of our proposed IR-ELM are conducted on bench-
mark data sets for regression and classification problems.In order to investi-
gate the improvement of training time and learning accuracy of the IR-ELM

A Fast Incremental Method Based on R-ELM 23

Table 1. Specifications of benchmark problems

Datasets Attributes Class Training Data Testing Data Types

SinC 1 - 5000 5000 Regression

Abalone 8 - 2177 2000 Regression

Boston Housing 13 - 256 250 Regression

Yacht Hydro 6 - 200 108 Regression

Servo 4 - 80 87 Regression

Concrete 8 - 530 500 Regression

Vehicle 18 4 446 400 Classification

Glass 9 7 130 84 Classification

Iris 4 3 100 50 Classification

Blood 4 2 500 248 Classification

Wine 13 3 100 78 Classification

Image Segmentation 19 7 1500 810 Classification

method,original ELM algorithm [1] and EM-ELM algorithm [10] are also eval-
uated.The experimental environment is Matlab 7.14 running on a desktop PC
with Intel 3.2 GHz CPU and 4GB RAM.The activation function of SLFNs is
sigmoid function:g(x) = 1/(1 + exp(−λx)),where λ is 0.5.All the network in-
puts have been normalized into the range [−1, 1] and the outputs have been
normalized into the range [0, 1].

For regression problems,the performance of these three algorithms is eval-
uated on artificially synthetic data set (SinC function) and benchmark data
sets.The benchmark data sets include Abalone,Boston Housing,Yacht Hydrody-
namics,Servo and Concrete Compressive Strength,as shown in Table 1.For clas-
sification problems,the benchmark data sets are Vehicle, Glass,Iris,Blood,Wine
and Image Segmentation,as shown in Table 1.The benchmark data sets are ob-
tained from UCI Machine Learning Repository [14].

As shown in equation 14 and 22,the parameter C has a great influence on
the learning accuracy,the choice of C can enhance the accuracy or reduce the
accuracy.To see how C affect the network performance,first we evaluate the test-
ing accuracy of R-ELM on Boston Housing data set with varying C value.The
neural network has 100 hidden nodes and C takes value in the set {2−20, 2−19,
· · · , 20, · · · , 219, 220} which has 41 elements.The final results are averaged by 20
trials.Figure 2 shows the training and testing Root Mean Square Error(RMSE)
in comparison with original ELM.The red solid line stands for training accuracy
of R-ELM,and red dotted line stands for training accuracy of ELM.The blue
solid line is testing accuracy of R-ELM,the blue dotted line is ELM.We can see
that larger the C is,poorer training performance the network gets.As for testing
accuracy,the R-ELM dominates when C takes value around 2−10.In the following
experiments,we choose a proper C of IR-ELM for different data sets.

In the following,we compare the time complexity of ELM,EM-ELM and IR-
ELM on SinC and Boston Housing data sets.The initial number of hidden nodes
for SinC and Boston Housing are 5 and 30,respectively.The hidden node is added
one by one,and we retrain the networks for ELM algorithm and update the

24 Z. Xu and M. Yao

0

5

10

15

20

25

30

35

40

45

50

R
M
S
E
(×

10
−
2)

−20 −15 −10 −5 0 5 10 15 20
log2C

Training RMSE

Testing RMSE

Fig. 2. The result comparison of training and testing accuracy of R-ELM and ELM
with 100 hidden nodes on Boston Housing data set,parameter C takes values in
{2−20, 2−19, · · · , 20, · · · , 219, 220}

network output weight recursively for EM-ELM and IR-ELM each time.The
average results are obtained by 50 trials.From Figure 3 we can see that EM-ELM
and IR-ELM have the similar time updating the output weight in accordance
with the fact that EM-ELM is a special case of IR-ELM while C → 0 and IR-
ELM only has one more operation of scalar addition.Compared with EM-ELM
and IR-ELM,the original ELM spends more time retraining the network and
recalculating the output weight.And this gap is more obvious when the network
has more hidden nodes.

0

5

10

15

20

25

30

35

T
ra
in
in
g
T
im

e(
×1

0−
3)

5 10 15 20 25 30
Hidden Nodes

ELM
EM-ELM
IR-ELM

(a) Time comparison on SinC function

0

5

10

15

T
ra
in
in
g
T
im

e(
×1

0−
3)

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Hidden Nodes

ELM
EM-ELM
IR-ELM

(b) Time comparison on Boston Housing

Fig. 3. Time comparison of ELM,EM-ELM and IR-ELM on regression data sets while
hidden node is added one by one

Next we explore the improvement of learning accuracy of IR-ELM in compar-
ison with EM-ELM.To see this we conduct experiments from two aspects:

1. When hidden node is added one by one,how the learning accuracy of EM-
ELM and IR-ELM changes;

A Fast Incremental Method Based on R-ELM 25

Table 2. The settings of IR-ELM and EM-ELM for regression problems

Datasets Algorithm Initial Nodes End Nodes Stop RMSE C

Abalone
IR-ELM 15 60 0.078 2

-12

EM-ELM 15 60 0.078 -

Boston Hou
IR-ELM 30 100 0.09 2

-10

EM-ELM 30 100 0.09 -

Yacht Hydro
IR-ELM 40 70 0.035 2

-30

EM-ELM 40 70 0.035 -

Servo
IR-ELM 5 60 0.1 2

-17

EM-ELM 5 60 0.1 -

Concrete
IR-ELM 80 130 0.095 2

-20

EM-ELM 80 130 0.095 -

2. For a given learning accuracy ε and the maximum number of hidden nodes,
how many hidden nodes are necessary for EM-ELM and IR-ELM to satisfy
the expected accuracy.

For the first question,we illustrate the results by averaging 50 trials.For the
second question,sometimes the random generated networks can’t achieve the
expected accuracy no matter how many hidden nodes it has,and we call this
”FAIL”.We will record the frequency of ”SUCCESS”,say not ”FAIL”,out of 50
trials and obtain the average number of hidden nodes for ”SUCCESS” case.To
eliminate the oscillation of learning accuracy caused by randomness as much as
possible,we use the same input weights and bias for both EM-ELM and IR-ELM
each time.

As for regression problems,settings of IR-ELM and EM-ELM are listed in
Table 2.The total ”SUCCESS” number out of 50 trials and the average val-
ues(number of hidden nodes,training time,and testing RMSE) when the testing
RMSE is exactly satisfied are shown in Table 3.From the results we can see that
for a given testing RMSE,IR-ELM gets more ”SUCCESS” than EM-ELM in all
cases.What’s more,for ”Abalone” and ”Servo” data sets the number of hidden
nodes are more than EM-ELM while for the other three cases IR-ELM domi-
nates.In general,IR-ELM can always get better generalization performance than
EM-ELM for regression problems in incremental learning scenario.

When the number of hidden nodes ranges from ”Initial Nodes” to ”End
Nodes”,the average testing RMSE of IR-ELM and EM-ELM are illustrated in
Figure 4,Figure 5 and Figure 6 for ”Abalone” data set,”Boston Housing” and
”Yacht Hydrodynamics” data sets,”Servo” and ”Concrete” data sets,respectively.
From the figures we can conclude that in general IR-ELM can always get lower
testing RMSE than EM-ELM.When the number of hidden nodes increase,the
generalization performance of IR-ELM enhances,however the performance of
EM-ELM might get worse,say overfitting which is specially severe for ”Servo”
data set.In ”Abalone”,”Boston However” and ”Servo” cases,the RMSE curve
of IR-ELM are smooth,but in ”Yacht” and ”Conclude” cases oscillation occurs

26 Z. Xu and M. Yao

Table 3. The average number of hidden nodes for EM-ELM and IR-ELM to satisfy
the learning accuracy ε

Datasets Algorithm Hidden Nodes Time(s) Testing RMSE SUCCESS

Abalone
IR-ELM 20.0 0.0222 0.0773 47
EM-ELM 17.9 0.0177 0.0772 45

Boston Housing
IR-ELM 54.5 0.0406 0.0886 35
EM-ELM 57.8 0.0390 0.0885 28

Yacht Hydro
IR-ELM 53.8 0.0217 0.0336 46
EM-ELM 54.1 0.0176 0.0336 46

Servo
IR-ELM 28.1 0.0203 0.0981 23
EM-ELM 27.3 0.0193 0.0960 17

Concrete
IR-ELM 94.6 0.0449 0.0938 41
EM-ELM 95.1 0.0569 0.0937 34

0

5

10

T
es
ti
n
g
A
cc
u
ra
cy
(×

10
−
2)

15 20 25 30 35 40 45 50 55 60
Hidden Nodes

IR-ELM
EM-ELM

Fig. 4. The average testing RMSE of IR-ELM and EM-ELM on Abalone data set

0

5

10

15

T
es
ti
n
g
A
cc
u
ra
cy
(×

10
−
2)

30 40 50 60 70 80 90 100
Hidden Nodes

IR-ELM
EM-ELM

(a) Boston Housing data set

0

5

10

T
es
ti
n
g
A
cc
u
ra
cy
(×

10
−
2)

40 45 50 55 60 65 70
Hidden Nodes

IR-ELM
EM-ELM

(b) Yacht Hydro data set

Fig. 5. The average testing RMSE of IR-ELM and EM-ELM on Boston Housing and
Yacht Hydro data sets

when the network is small.And the same phenomenon(even more obvious) hap-
pens on EM-ELM in ”Yacht”,”Servo” and ”Concrete” cases.

For classification problems,the settings of IR-ELM and EM-ELM are listed
in Table 4.The number of ”SUCCESS” out of 50 trials and some average val-

A Fast Incremental Method Based on R-ELM 27

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70
T
es
ti
n
g
A
cc
u
ra
cy
(×

10
−
2)

5 10 15 20 25 30 35 40 45 50 55 60
Hidden Nodes

IR-ELM
EM-ELM

(a) Servo data set

0

5

10

15

20

T
es
ti
n
g
A
cc
u
ra
cy
(×

10
−
2)

80 85 90 95 100 105 110 115 120 125 130
Hidden Nodes

IR-ELM
EM-ELM

(b) Concrete data set

Fig. 6. The average testing RMSE of IR-ELM and EM-ELM on Servo and Concrete
data sets

Table 4. The settings of IR-ELM and EM-ELM for classification problems

Datasets Algorithm Initial Nodes End Nodes Stop Accuracy(%) C

Vehicle
IR-ELM 70 180 82 2

-12

EM-ELM 100 180 82 -

Glass
IR-ELM 20 70 65 2

-14

EM-ELM 20 70 65 -

Iris
IR-ELM 5 40 95 2

-19

EM-ELM 5 40 95 -

Blood
IR-ELM 10 50 80 2

-25

EM-ELM 10 50 80 -

Wine
IR-ELM 10 50 98.2 2

-7

EM-ELM 10 50 98.2 -

Image Segmentation
IR-ELM 150 200 95 2

-15

EM-ELM 150 200 95 -

ues when the testing accuracy is exactly satisfied are shown in Table 5.We can
see that for ”Blood” data set,EM-ELM get more ”SUCCESS”(25) than IR-
ELM(23),but the number of hidden nodes of IR-ELM(10.8) is smaller than that
of EM-ELM(13.5).For ”Glass” and ”Iris” data sets,IR-ELM and EM-ELM get
the same frequency of ”SUCCESS”(43 and 48 respectively),however the numbers
of hidden nodes of IR-ELM are smaller than those of EM-ELM(25.3 versus 27.0
for ”Glass” and 11.5 versus 11.6 for ”Iris”).For ”Vehicle”,”Wine” and ”Image
Segmentation” data sets,IR-ELM get more ”SUCCESS” than EM-ELM with the
similar numbers of hidden nodes.Totally IR-ELM performs better than EM-ELM
for classification problems for incremental learning.

The average testing accuracy of IR-ELM and EM-ELM when the networks
have different number of hidden nodes are shown in Figure 7(for ”Vehicle”
and ”Glass”),Figure 8(for ”Iris” and ”Blood”) and Figure 9(for ”Wine” and
”Image Segmentation”), respectively.From the figures we can see that IR-ELM

28 Z. Xu and M. Yao

Table 5. The average number of hidden nodes for EM-ELM and IR-ELM to satisty
the learning accuracy ε

Datasets Algorithm Hidden Nodes Time(s) Testing Acc(%) SUCCESS

Vehicle
IR-ELM 105.4 0.1759 82.21 29
EM-ELM 105.4 0.1776 82.21 26

Glass
IR-ELM 25.3 0.0069 66.83 43
EM-ELM 27.0 0.0087 67.05 43

Iris
IR-ELM 11.5 0.0033 96.58 48
EM-ELM 11.6 0.0036 96.58 48

Blood
IR-ELM 10.8 0.0061 81.14 23
EM-ELM 13.5 0.0137 81.06 25

Wine
IR-ELM 16.6 0.0041 98.89 38
EM-ELM 16.3 0.0069 99.02 34

Image Seg
IR-ELM 159.5 0.2860 95.28 39
EM-ELM 157.2 0.2211 95.29 35

70

75

80

85

T
es
ti
n
g
A
cc
u
ra
cy
(%

)

70 80 90 100 110 120 130 140 150 160 170 180
Hidden Nodes

IR-ELM
EM-ELM

(a) Vehicle data set

40

45

50

55

60

65

70

75

T
es
ti
n
g
A
cc
u
ra
cy
(%

)

20 25 30 35 40 45 50 55 60 65 70
Hidden Nodes

IR-ELM
EM-ELM

(b) Glass data set

Fig. 7. The average testing accuracy of IR-ELM and EM-ELM on Vehicle and Glass
data sets

85

90

95

100

T
es
ti
n
g
A
cc
u
ra
cy
(%

)

5 10 15 20 25 30 35 40
Hidden Nodes

IR-ELM
EM-ELM

(a) Iris data set

65

70

75

80

85

T
es
ti
n
g
A
cc
u
ra
cy
(%

)

10 15 20 25 30 35 40 45 50
Hidden Nodes

IR-ELM
EM-ELM

(b) Blood data set

Fig. 8. The average testing accuracy of IR-ELM and EM-ELM on Iris and Blood data
sets

A Fast Incremental Method Based on R-ELM 29

75

80

85

90

95

100

105
T
es
ti
n
g
A
cc
u
ra
cy
(%

)

10 15 20 25 30 35 40 45 50
Hidden Nodes

IR-ELM
EM-ELM

(a) Wine data set

80

85

90

95

100

T
es
ti
n
g
A
cc
u
ra
cy
(%

)

150 155 160 165 170 175 180 185 190 195 200
Hidden Nodes

IR-ELM
EM-ELM

(b) Image Segmentation data set

Fig. 9. The average testing accuracy of IR-ELM and EM-ELM on Wine and Image
Segmentation data sets

gets higher testing accuracy than EM-ELM for different hidden nodes in all
cases.With the increasing of hidden nodes,testing accuracy of IR-ELM enhances
or remains unchanged,but that of EM-ELM always decreases,this phenomenon
is obvious for ”Glass”,”Iris” and ”Blood” data sets.What’s more,the accuracy
curves of IR-ELM keep smooth,however curves of EM-ELM have some fluctua-
tion in ”Iris”,”Blood” and ”Image Segmentation” cases.

5 Conclusions

In this paper,we propose a novel algorithm for incremental learning called In-
cremental Regularized Extreme Learning Machine(IR-ELM).IR-ELM combines
EM-ELM [10] with Regularized Extreme Learning Machine(R-ELM) [11],when
new hidden node is added one by one,IR-ELM update the output weight
recursively in a very fast way.It has overcome two main issues existing in EM-
ELM:1.the regularization term makes the hidden layer output matrix nonsin-
gular thus to obtain more accurate computation results;2.regularization method
can control the norm of output weight and prevent the network from overfitting.

The performance of IR-ELM is evaluated for regression and classification prob-
lems on benchmark data sets obtained from UCI Machine Learning Repository
[14].We have conducted the experiments from two aspects:1.for a given test-
ing accuracy ε,to see how many hidden nodes are necessary to meet ε;2.when
the number of hidden nodes increases,to see how the testing accuracy changes.
Empirical studies have shown that IR-ELM performs better than EM-ELM for
both questions with a similar training time as EM-ELM. What’s more,when the
number of hidden nodes changes, the testing accuracy curves of IR-ELM is more
smooth than those of EM-ELM which indicates that IR-ELM gets more stable
results than EM-ELM.

30 Z. Xu and M. Yao

References

1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme Learning Machine: a new Learning
Scheme of Feedforward Neural Networks. In: Proceedings. 2004 IEEE International
Joint Conference on Neural Networks, vol. 2. IEEE (2004)

2. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme Learning Machine: Theory and Ap-
plications. Neurocomputing 70, 489–501 (2006)

3. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Real-time Learning Capability of Neural
Networks. IEEE Transactions on Neural Networks 17(4), 863–878 (2006)

4. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Representations by Back-
propagating Errors. MIT Press, Cambridge (1988)

5. Huang, G.B., Zhou, H., Ding, X.: Extreme Learning Machine for Regression and
Multiclass Classification. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics 42(2), 513–529 (2012)

6. Sun, Z.L., Choi, T.M., Au, K.F.: Sales Forecasting Using Extreme Learning Ma-
chine with Applications in Fashion Retailing. Decision Support Systems 46(1),
411–419 (2008)

7. Nizar, A.H., Dong, Z.Y., Wang, Y.: Power Utility Nontechnical Loss Analysis with
Extreme Learning Machine Method. IEEE Transactions on Power Systems 23(3),
946–955 (2008)

8. Zhang, R., Huang, G.B., Sundararajan, N.: Multicategory Classification Using
an Extreme Learning Machine for Microarray Gene Expression Cancer Diagno-
sis. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(3),
485–495 (2007)

9. Huang, G.B., Chen, L., Siew, C.K.: Universal Approximation Using Incremental
Constructive Feedforward Networks with Random Hidden Nodes. IEEE Transac-
tions on Neural Networks 17(4), 879–892 (2006)

10. Feng, G., Huang, G.B., Lin, Q.: Error Minimized Extreme Learning Machine with
Growth of Hidden Nodes and Incremental Learning. IEEE Transactions on Neural
Networks 20(8), 1352–1357 (2009)

11. Deng, W., Zheng, Q., Chen, L.: Regularized Extreme Learning Machine. Compu-
tational Intelligence and Data Mining. In: IEEE Symposium on. IEEE CIDM 2009,
pp. 389–395 (2009)

12. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, 2000
13. Vapnik, V.N.: An Overview of Statistical Learning Theory. IEEE Transactions on

Neural Networks 10(5), 988–999 (1999)
14. Frank, A., Asuncion, A.: UCI Machine Learning Repository. Univ. California, Sch.

Inform. Comput. Sci., Irvine, CA (2011), http://archive.ics.uci.edu/ml
15. Martnez-Martnez, J.M., Escandell-Montero, P., Soria-Olivas, E.: Regularized Ex-

treme Learning Machine for Regression Problems. Neurocomputing 74(17), 3716–
3721 (2011)

16. Haykin, S.S.: Neural Networks and Learning Machines. Pearson Education, Upper
Saddle River (2009)

17. Bartlett, P.L.: The Sample Complexity of Pattern Classification with Neural Net-
works: the Size of the Weights is More Important than the Size of the Network.
IEEE Transactions on Information Theory 44(2), 525–536 (1998)

18. Girosi, F., Jones, M., Poggio, T.: Regularization Theory and Neural Networks
Architectures. Neural Computation 7(2), 219–269 (1995)

19. Jin, Y., Okabe, T., Sendhoff, B.: Neural Network Regularization and Ensem-
bling Using Multi-objective Evolutionary Algorithms. In: Congress on Evolutionary
Computation, CEC 2004, vol. 1, pp. 1–8. IEEE (2004)

http://archive.ics.uci.edu/ml

Parallel Ensemble of Online Sequential Extreme

Learning Machine Based on MapReduce

Shan Huang, Botao Wang, Junhao Qiu, Jitao Yao, Guoren Wang, and Ge Yu

College of Information Science and Engineering,
Northeastern University, Liaoning, Shenyang, China 110004

huangshan.neu@gmail.com,{wangbotao,wanggr,yuge}@ise.neu.edu.cn,

lqqiujunhao@163.com,tao00800@126.com,

Abstract. In this era of big data, analyzing large scale data efficiently
and accurately has become a challenge problem. Online sequential ex-
treme learning machine is one of ELM variants, which provides a method
to analyze data. Ensemble method provides a way to learn data more
accurately. MapReduce provides a simple, scalable and fault-tolerant
framework, which can be utilized for large scale learning. In this paper,
we propose an ensemble OS-ELM framework which supports ensemble
methods including Bagging, subspace partitioning and cross validating.
Further we design a parallel ensemble of online sequential extreme learn-
ing machine (PEOS-ELM) algorithm based on MapReduce for large scale
learning. PEOS-ELM algorithm is evaluated with real and synthetic data
with the maximum number of training data 5120K and the maximum
number of attributes 512. The speedup of this algorithm can reach as
high as 40 on a cluster with maximum 80 cores. The accuracy of PEOS-
ELM algorithm is at the same level as that of ensemble OS-ELM running
on a single machine, which is higher than that of the original OS-ELM.

Keywords: Parallel learning, Ensemble, Extreme Learning Machine,
MapReduce, Sequential Learning.

1 Introduction

In this era of big data, analyzing large scale data efficiently and accurately
has become a challenge problem. There are often hidden noises behind large
scale data. Ensemble methods are proposed to eliminate the influence of the
noises. Generally, ensemble methods can reach higher accuracy dealing with the
same data set [9]. Ensemble methods usually train several ensemble members
and combine the output of these ensemble members to generate the final result.
However, this approach would lead in more calculations, and it is hard to analyze
large scale data efficiently. Extreme learning machine (ELM) was proposed based
on single-hidden layer feed-forward neural networks (SLFNs) [5], and has been
verified to have high learning speed as well as high accuracy [3]. It has also been
proved that ELM has have universal approximation capability and classification
capability [4]. Online sequential extreme learning machine (OS-ELM) [7] is one

c© Springer International Publishing Switzerland 2015 31
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_3

32 S. Huang et al.

of ELM variants that supports online sequential learning. OS-ELM can learn
data chunk by chunk with fixed or varying sizes instead of batch learning. There
are works researching on combining ensemble methods and ELM [6], [8], [12].
However, these algorithms mainly focus on the accuracy, but they are inefficient
to learn large scale data.

MapReduce framework is a well-known framework for large scale data pro-
cessing and analyzing on a large cluster of commodity machines. There are works
research on parallelizing ELM and OS-ELM to improve learning speed [2], [11],
[10]. However, ensemble methods are not taken into consideration in these works,
so these works are not suitable for large scale data learning due to the accuracy
limitation.

In this paper, we present a parallel ensemble of online sequential extreme
learning machine (PEOS-ELM) algorithm based on MapReduce for large scale
data processing and analyzing. This algorithm supports the most common en-
semble methods such as Bagging, subspace partitioning and cross validating.
This algorithm splits data according to user customization and calculates hidden
layer output matrix of OS-ELM in Map phase. In Reduce phase, the ensemble
members finish the remaining training work in parallel. We also test PEOS-ELM
algorithm real and synthetic data, and the results show that PEOS-ELM has
good scalability and the accuracy of this algorithm is at the same level with that
of ensemble OS-ELM running on a single machine.

The remainder of this paper is organized as follows. Section 2 introduces an
ensemble OS-ELM framework. Section 3 proposes parallel ensemble of online
sequential learning machine algorithm. Section 4 evaluates the PEOS-ELM al-
gorithm with real data and synthetic data, and section 5 concludes the paper.

2 Ensemble OS-ELM Framework

Figure 1 shows the ensemble OS-ELM framework. This framework considers en-
semble methods (Bagging, subspace partitioning and cross validation) as well
as training phase and testing phase of OS-ELM. (Xm,k, Tm,k) represents data
chunks for ensemble member m, where Xm,k represents the attributes set and
Tm,k represents the set of tags in which class the instances belong to corre-
sponding to Xm,k. There are two ways of using the training data, one is used for
training OS-ELM and the other is used for validating OS-ELM. The superscript
of (Xm,k, Tm,k) in the figure, marks these two ways of use.

In the framework, data are processed in the following steps.

1. The (Xm,k, Tm,k) used for training and validating are generated by taking
with replacement from training data. This procedure is needed by Bagging.

2. The subspace sets of (Xm,k, Tm,k) are generated. This procedure is needed
by subspace partitioning.

3. All OS-ELMs are sequentially trained using the subspace sets. This phase
follows the way of OS-ELM.

4. Data generated for validating are used to valid the trained OS-ELMs. This
procedure is needed by cross validating.

Parallel Ensemble of Online Sequential Extreme Learning Machine 33

(Xvalid
m,k , T valid

m,k) (Xvalid
m,k , T valid

m,k)

(Xtrain
m,k , T train

m,k) (Xtrain
m,k , T train

m,k)

Training
Data

(Xtrain
0,k , T train

0,k) (Xtrain
0,k , T train

0,k)

(Xvalid
0,k , T valid

0,k) (Xvalid
0,k , T valid

0,k)

Bagging Subspace
Partitioning

OS-ELMm

OS-ELM0

Testing
Data

Testing
Data

Cross
Validation

OS-ELMV alid
m

OS-ELMV alid
0

T test
m

T test
0

T test

V

o

t

e

Sequential
Learning
Phase

Testing
Phase

Voting
Phase

Fig. 1. Ensemble OS-ELM Framework

5. T test
m are generated by OS-ELMs with testing data. This phase follows the

way of testing phase of OS-ELM.
6. The T test

m are processed by vote procedure to generated the final T test. This
procedure is needed by Bagging, subspace partitioning and cross validating.

The ensemble OS-ELM algorithm can be divided into three mainly phases,
initialization phase, sequential learning phase and testing phase. In initialization
phase, the initial parameters of OS-ELM and subspace for each ensemble mem-
ber are generated. In sequential learning phase, several ensemble members are
trained in the same way with OS-ELM [7]. In testing phase, the final result is
created according to all the results from the ensemble members.

3 Parallel Ensemble of OS-ELM

3.1 Basic Idea

The goal of the parallel ensemble of online sequential extreme learning machine
(PEOS-ELM) is to improve the performance of sequential learning phase in
EOS-ELM using parallel techniques for large scale learning.

Figure 2 shows the matrix calculation dependency relationships among the
matrices in sequential learning phase of EOS-ELM. One dependency is denoted
as ”→”, which means the matrix at arrow side depends on the matrix at the
other side. That is to say, the calculation of matrix at the arrow side cannot start
until the calculation of matrix at the other side finished. The matrices which do
not depend on any other matrices can be calculated in parallel. Based on the
above observations, our basic ideas can be summarized as follows:

34 S. Huang et al.

Fig. 2. Dependency relationships of matrix calculations in EOS-ELM

1. The calculation of Hm,k ((0 ≤ m ≤ M), (0 ≤ k ≤ K)) depends on none of
Tm,k+1, Pm,k+1 and βm,k, besides this matrix can be calculated immediately
when its related training data are available. This means that Hm,k can be
calculated in parallel when K train data chunks are available for M ensemble
members. This can be done in Map phase of MapReduce framework.

2. The calculation of βm,k+1 is dependent on the calculation ofHm,k+1,Tm,k+1,
Pm,k+1 and βm,k, but not dependent on matrix calculations for another en-
semble member j(0 ≤ j �= m ≤ M). So the calculation of βm,k+1 for different
ensemble members can also be executed in parallel. This can be done by Re-
duce phase of MapReduce framework.

3.2 Parallel EOS-ELM

It is preferred to execute sequential learning phase of EOS-ELM in parallel on
MapReduce framework as it is the most time consuming phase. The parallel en-
semble of online sequential extreme learning machine algorithm uses one MapRe-
duce job to train ensemble members.

Procedure 1 shows the map() procedure of PEOS-ELM. For each ensemble
member, the input sample is possibly used for normal calculation (line 2-11) and
validating (line 12-13).

When the sample is chosen for normal calculation, a buffer is used to store
samples and a counter is used to count the number of samples in buffer (line
3-5). There are several data processing steps (line 6-11) when buffer is full to
extract subspace, calculate Hm,k, calculate Tm,k, generate key-value pair, clear
the counter and increase k. In the key-value pair, the key is composed with
ensemble member ID m, blockID k and Tag while the value is made up of Hm,k

and Tm,k.

Parallel Ensemble of Online Sequential Extreme Learning Machine 35

Procedure 1. PEOS-ELM map()

Input: (Key, Value): Key is the offset in bytes, Value is a sample pair
(xi, ti) ∈ (Xtrain

k , T train
k) where 0 ≤ i ≤| (Xtrain

k , T train
k) |;

Result: m: Ensemble member ID;
k: blockID;
tag: marks whether output is used for normal calculation or validating;
Hm,k: Output weight;
Tm,k: Observation value vector;

1 for m=0 to M do
2 if chooseForThisMember() then
3 add to blockm;
4 countm ++;
5 if countm ≥ BLOCK then
6 blockm=GetSpace(blockm);
7 Hm,k=calcH(blockm);
8 Tm,k=calcT(blockm);
9 output((m,km,NormalTag), (Hm,k,Tm,k));

10 countm = 0;
11 km++;

12 if chooseForValid() then
13 calucateForValid();

When the sample is chosen for normal calculation, similar operations are
applied with those for normal calculation except that the output key is marked
with V alidTag instead of NormalTag to facilitate distinguishing them later in
Reduce phase. We briefly express it as calucateForV alid().

Procedure 2 shows the reduce() procedure of PEOS-ELM. The output results
of Map which belong to the same ensemble member are partitioned to the same
Reducer and then sorted by tag and k. When the set of key-value pairs reaches
to reduce() procedure, the parameters composed in key are firstly resolved (line
1-2) Then the key-value pair is processed differently according to the tag. If the
tag is NormalTag, the parameters for ensemble member m are initialized if it
has not been initialized (line 4-6) and then Hm,k+1 and Tm,k+1 composed in
value are resolved (line 7-8). After that, the Pm,k+1 and βm,k+1 are updated
according to the equations (line 9-10). If the tag is V alidTag, it means that this
key-value pair is used for validating. The Hvalid

m,k and Tvalid
m,k are firstly resolved

from value (line13-14) and then used for cross validating (line 15).

3.3 Cost Model

The cost of PEOS-ELM algorithm mainly has four parts, (1) cost of starting a
MapReduce job, (2) cost of Map procedure, (3) cost of Reduce procedure and
(4) cost of data transmitting between Map and Reduce.

As the number of cores in cluster increases while the other parameters keep
the same, the cost of Map procedure and cost of Reduce procedure would be

36 S. Huang et al.

Procedure 2. PEOS-ELM reduce()

Input:
Set of (key, value): key is a combination of m, k and tag . value is a vector pair
(Hkb, Tkb);
Result: βm: output weight vector (corresponding to βm,k).

1 m = getm(key);
2 tag = gettag(key);
3 if tag=NormalTag then
4 if firstRun=true then
5 initMember(m);
6 firstRun=false;

7 Hm,k+1 = getH(value);
8 Tm,k+1 = getT (value);

9 Pm,k+1 = Pm,k −Pm,kH
T
m,k+1(I+Hm,k+1Pm,kH

T
m,k+1)

−1Hm,k+1Pm,k;

10 βm,k+1 = βm,k +Pm,k+1H
T
m,k+1(Tm,k+1 −Hm,k+1βm,k);

11 if tag=V alidTag then
12 for k = 0 to K do

13 Hvalid
m,k = getH(value);

14 Tvalid
m,k = getT (value);

15 CrossValid(Hvalid
m,k ,Tvalid

m,k);

significantly reduced, the cost of starting a MapReduce job and cost of data
transmitting between Map and Reduce are all fixed for MapReduce applications.
The reason is that all the calculations are equally distributed to the cores and
be executed in parallel. So the PEOS-ELM has good scalability.

4 Experimental Evaluation

4.1 Experimental Setup

In this section POS-ELM indicates parallel online sequential learning machine
algorithm in our previous work [10] that train each ensemble member one by
one. PEOS-ELM-B, PEOS-ELM-S and PEOS-ELM-C represent PEOS-ELM al-
gorithm for Bagging, subspace partitioning and cross validating, respectively.

PEOS-ELM algorithm is evaluated with real data and synthetic data. The
real data sets (gisette1, mnist1) are mainly used to test training accuracy and
testing accuracy. The specification of real data is shown in Table 1.

The synthetic data are only used for scalability test, which are generated by
extending based on Flower2. The volume and attributes of training data are
extended by duplicating the original data in a round-robin way. The parameters
used in scalability test are summarized in Table 2. In the experiments, all the
parameters use default values unless otherwise specified.

1 Downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
2 Downloaded from http://www.datatang.com/data/13152

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.datatang.com/data/13152

Parallel Ensemble of Online Sequential Extreme Learning Machine 37

Table 1. Specifications of real data

Data Set #attributes #class
#training #testing Size of test

data data data (KB)

gisette 5000 2 6000 1000 128137.240

mnist 780 10 60000 10000 176001.138

Table 2. Specifications of synthetic data and running parameters for scalability test

Parameter Value range Default value

#training data 640k, 1280k, 2560k, 5120k 640k

#attributes 64, 128, 256, 512 64

#cores 10, 20, 40, 80 80

#ensemble member 10, 20, 40, 80 80

In scalability test, all of the data are pushed to each of the ensemble member.
That is to say the largest data set in Tabel 2 is as large as 640 instances *
(80*512) attributes or (80*5120)instances *64 attributes for normal use. For
PEOS-ELM-C, we randomly choose 80% of data for training and another 20%
are used for validating.

PEOS-ELM algorithm is implemented in Java 1.6. The universal java matrix
package (UJMP) [1] versioned 0.2.5 is used for matrix storage and processing,
and Hadoop versioned 0.20.2 is chosen as our MapReduce platform. A Hadoop
cluster deployed on 5 servers is used in our experiment. Each server has two Xeon
E5-2620 CPUs (6 cores *2 threads), 32G memory, 4*2T hard disk. The servers
are connected with Gigabit network. The servers are all running Centos6.4 64
bits Linux operating system. The number of hidden layer node is 25 and the
activation function is g(x) = 1

1+e−x .

4.2 Evaluation Results

Accuracy Test

Table 3 shows the results of accuracy and performance tests with real data. It can
be found that the training accuracy and testing accuracy of EOS-ELM are higher
than those of OS-ELM. This verifies that ensemble method is useful to increase
the learning accuracy. Compared with EOS-ELM, training time of PEOS-ELM
reduces while keeps the accuracy at the same level. This result demonstrates
that PEOS-ELM can learn large scale data accurately and efficiently.

Scalability Test

Figure 3 shows the scalability (speedup) of PEOS-ELM and POS-ELM. The
speedup of PEOS-ELM can reach to as high as 40 whereas the speedup of POS-
ELM can only reach to 1.3. The reason for this is that the there are several reduce

38 S. Huang et al.

Table 3. Evaluation results with real data

Data Set Algorithm
Training Training Testing
time (s) accuracy accuracy

gisette

OS-ELM 175.796 0.682 0.643

EOS-ELM 311.6 0.87 0.869
PEOS-ELM-B 66.745 0.882 0.87
PEOS-ELM-S 36.793 0.876 0.881
PEOS-ELM-C 64 0.767 0.773

mnist

OS-ELM 188.765 0.621 0.634
EOS-ELM 178.3 0.764 0.78

PEOS-ELM-B 56.988 0.789 0.798
PEOS-ELM-S 34.633 0.761 0.778
PEOS-ELM-C 70.753 0.784 0.796

 1

 10

 100

 10 20 30 40 50 60 70 80

Sp
ee

dU
p

Number of Cores

PEOS-ELM-B
PEOS-ELM-S
PEOS-ELM-C

POS-ELM

Fig. 3. Speedup of PEOS-ELM with re-
gard to different number of cores

 100

 1000

 10000

 100000

640 1280 2560 5120

T
ra

in
in

g
tim

e(
s)

Number of training data(k)

PEOS-ELM-B
PEOS-ELM-S
PEOS-ELM-C

POS-ELM

Fig. 4. Scalability of PEOS-ELM with
regard to the number of training data

tasks running in parallel to sequentially calculate βm,k for different ensemble
members whereas there is only one reduce task to calculate β in POS-ELM
algorithm. The high speedup is consistent with the cost model.

The speedup decreases as the number of cores increases. This is due to the
task scheduling cost and the bottleneck of memory and I/Os.

Figure 4 shows the scalability of PEOS-ELM and POS-ELM algorithm with
regard to the number of training data. It can be found that PEOS-ELM has
good scalability with regard to the number of training data. This is because the
calculations are equally distributed to different map tasks and reduce tasks.

It also can be found from Figure 4 that the performance of PEOS-ELM for
different ensemble methods outperforms that of POS-ELM. There are several
reasons for this. First, for PEOS-ELM, the calculation of βm,k are running in
parallel in Reduce phase, while in POS-ELM this calculation is running on one
reduce task. Second, the sequential learning data sets are read once and push to
each ensemble member in memory, while the POS-ELM read data many times.
Third, as there is trade off to run a MapReduce job, the cost of running several
MapReduce jobs for POS-ELM is higher than that of running one MapReduce
job for PEOS-ELM.

Parallel Ensemble of Online Sequential Extreme Learning Machine 39

 100

 1000

 10000

 100000

64 128 256 512

T
ra

in
in

g
tim

e(
s)

Number of Dimensions

PEOS-ELM-B
PEOS-ELM-S
PEOS-ELM-C

POS-ELM

Fig. 5. Scalability of PEOS-ELM with
regard to the number of attributes

 100

 1000

 10000

 10 20 30 40 50 60 70 80

T
ra

in
in

g
tim

e(
s)

Number of Machines

PEOS-ELM-B
PEOS-ELM-S
PEOS-ELM-C

POS-ELM

Fig. 6. Scalability of PEOS-ELM with
regard to the number of ensemble mem-
bers

Figure 5 shows the scalability of PEOS-ELM with regard to the number of
attributes. It can be found that the training time of PEOS-ELM increased slowly
as the number of attributes increases. On reason for this is the equally distributed
calculations among map tasks and reduce tasks, while another reason is that the
cost for transmitting data between Map phase and Reduce phased does not
increases with the number of attributes.

It can also be found from Figure 5 that the training time of PEOS-ELM
algorithms for different ensemble methods are nearly the same. This shows that
the PEOS-ELM algorithm is suitable for different ensemble methods to analyze
large scale data.

Figure 6 shows the scalability of PEOS-ELM with regard to the number of
ensemble members. It can be found that the training time scales linearly as the
number of ensemble members increases. The reason for this is that all of the
matrix calculations are evenly distributed to tasks that running in parallel. This
also shows that PEOS-ELM is efficient to train many ensemble members.

5 Conclusions

In this paper, a parallel ensemble of online sequential extreme learning machine
(PEOS-ELM) algorithm has been proposed for large scale learning. The basic
idea of this algorithm is to parallelize the calculation of Hm,k in Map phase and
βm,k in reduce phase for different ensemble members.

The algorithm is implemented on MapReduce framework. PEOS-ELM algo-
rithm for Bagging, subspace partitioning and cross validating are evaluated with
real and synthetic data with the maximum number of training data 5120k and
the maximum number of attributes 512 for each ensemble member. The exper-
imental results show that the accuracy of PEOS-ELM for different ensemble
methods are at the same level as that of EOS-ELM, and it has a good scala-
bility with the number of training data and number of attributes. The speedup
of PEOS-ELM can reaches as high as 40 on a cluster with maximum 80 cores.

40 S. Huang et al.

Compared with EOS-ELM and POS-ELM, PEOS-ELM can be used to learn
large scale data efficiently and accurately.

Acknowledgments. This research was partially supported by the National
Natural Science Foundation of China under Grant No. 61173030, 61272181,
61272182; and the Public Science and Technology Research Funds Projects
of Ocean Grant No. 201105033; and the National Basic Research Program of
China under Grant No. 2011CB302200-G; and the 863 Program under Grant
No.2012AA011004.

References

1. Arndt, H., Bundschus, M., Naegele, A.: Towards a next-generation matrix library
for java. In: 33rd Annual IEEE International Computer Software and Applications
Conference, COMPSAC 2009, vol. 1, pp. 460–467. IEEE (2009)

2. He, Q., Shang, T., Zhuang, F., Shi, Z.: Parallel extreme learning machine for re-
gression based on mapreduce. Neurocomput. 102, 52–58 (2013)

3. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. Neurocom-
puting 70, 3056–3062 (2007)

4. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for re-
gression and multiclass classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 42(2), 513–529 (2012)

5. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine. In: Technical
Report ICIS/03/2004. School of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore (January 2004)

6. Lan, Y., Soh, Y.C., Huang, G.-B.: Ensemble of online sequential extreme learning
machine. Neurocomputing 72(13), 3391–3395 (2009)

7. Liang, P.N.-Y., Huang, G.-B., Saratchandran, Sundararajan, N.: A fast and accu-
rate online sequential learning algorithm for feedforward networks. IEEE Transac-
tions on Neural Networks 17(6), 1411–1423 (2006)

8. Liu, N., Wang, H.: Ensemble based extreme learning machine. IEEE Signal Pro-
cessing Letters 17(8), 754–757 (2010)

9. Rokach, L.: Ensemble-based classifiers. Artificial Intelligence Review 33(1-2), 1–39
(2010)

10. Wang, B., Huang, S., Qiu, J., Liu, Y., Wang, G.: Parallel online sequential ex-
treme learning machine based on mapreduce. In: The International Conference on
Extreme Learning Machines (ELM 2013), Beijing, China, October 15-17 (2013)

11. Xin, J., Wang, Z., Chen, C., Ding, L., Wang, G., Zhao, Y.: Elm*: distributed
extreme learning machine with mapreduce. In: World Wide Web, pp. 1–16 (2013)

12. Zhai, J.-h., Xu, H.-y., Wang, X.-z.: Dynamic ensemble extreme learning machine
based on sample entropy. Soft Comput. 16(9), 1493–1502 (2012)

© Springer International Publishing Switzerland 2015
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,

41

Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_4

Explicit Computation of Input Weights in Extreme
Learning Machines

Jonathan Tapson, Philip de Chazal, and André van Schaik

The MARCS Institute, University of Western Sydney, Penrith NSW, Australia 2751
{j.tapson,p.dechazal,a.vanschaik}@uws.edu.au

Abstract. We present a closed form expression for initializing the input
weights in a multilayer perceptron, which can be used as the first step in syn-
thesis of an Extreme Learning Machine. The expression is based on the stand-
ard function for a separating hyperplane as computed in multilayer perceptrons
and linear Support Vector Machines; that is, as a linear combination of input
data samples. In the absence of supervised training for the input weights, ran-
dom linear combinations of training data samples are used to project the input
data to a higher dimensional hidden layer. The hidden layer weights are solved
in the standard ELM fashion by computing the pseudoinverse of the hidden
layer outputs and multiplying by the desired output values. All weights for this
method can be computed in a single pass, and the resulting networks are more
accurate and more consistent on some standard problems than regular ELM
networks of the same size.

Keywords: Extreme learning machine, machine learning, computed input
weights.

1 Introduction

The Extreme Learning Machine has proven its usefulness as a fast and accurate meth-
od for building classification and function approximation networks [1]. Its usefulness
stems in large part from the fact that it requires no incremental or iterative learning,
and has no free parameters which need to be tuned to get the optimal results. Naïve
application of a standard ELM to most benchmark problems produces results which
are significantly better than most results from highly-tuned iterative methods. In all
but a few applications, the ELM can only be outperformed by time-consuming and
expertly-applied techniques such as multiple layer deep-learning networks, and recent
extension of the ELM to multiple layers suggests that they have the potential to
outperform deep learning networks too [2].

One area which has been identified as offering some potential for improvement in
ELM is the specification of the input weights, which connect the input neurons to the
hidden layer neurons. In a standard ELM these are generally initialized to random
values from a uniform distribution on some appropriate range, and thereafter they
remain fixed throughout the use of the ELM.

The random input layer projection implemented in ELM is a contrast to almost all
other machine learning techniques, which use supervised learning to arrive at explicit

42 J. Tapson, P. de Chazal, and A. van Schaik

values for the projections at all layers (or in the case of support vector machines
(SVM), to choose the support vectors [3]). In this report we proceed from the
knowledge that for both multi-layer perceptrons (MLP) trained by standard
backpropagation techniques (backprop), and for SVM, the weights produce a projec-
tion which is a linear combination of training data samples [3, 4]. We suggest a tech-
nique in which randomized linear combinations of input data samples can be system-
atically produced to provide the input layer weights for ELM, and demonstrate that in
some traditionally difficult classification problems, this method results in a superior
performance to standard ELM.

2 Weights and Training Samples

The standard ELM is often described as an MLP with an input layer, a hidden layer of
neurons with nonlinear activation functions, and an output layer with linear activation
functions. The outputs can be described by: ݕ௡,௧ = ∑ ௡௝ݓ (ଶ)݃൫∑ ௝௜ݓ (ଵ)ݔ௜,௧௞௜ୀଵ ൯ௗ௝ୀଵ (1)

where yt is the output layer vector corresponding to input data xt, and t is the sample
index (t would be the time step index for time series data). The output yt is a linear sum
of hidden layer outputs weighted by wnj. There are k input neurons and d hidden layer
neurons; i is the input layer index, j the hidden layer index and n the output layer index.
The hidden layer neurons have a nonlinear activation function g(·) which acts on the
sums of linearly weighted inputs wjixi. The superscripts indicate the layer. If the outputs
yn,t were also to be acted on by a nonlinear activation function like g(·), this would be a
conventional three-layer MLP. Note that in the development here we are assuming that
any bias term would be present in the training data as an input data element.

In a standard ELM the input layer weights are initialized to random values, uni-
formly distributed in some sensible range – say (-1, 1). In this report we describe a
closed-form solution for determining these weights.

Consider the conventional backpropagation of error algorithm in MLPs [4]. The
training algorithm contains two phases. In the forward phase, the error for each training
sample is calculated. In the backward phase, the weights for each layer are updated by
multiplying the error for that layer by the activations of that layer (which produces an
error gradient) and subtracting a fraction of the gradient from the weights. So, in the
network given above, the update for the input layer weights would be of the form ∆ݓ௝,௧(ଵ) = ߙ ∙ ௧(ଵ)ܧ ∙ ௧ (2)ݔ

where α is the learning rate (which defines the fraction of the gradient used in up-
dates), and E is the error gradient. It can be seen that each update consists of adding
or subtracting some fraction of an input training sample to the weights. If the weights
are initialized to zero (which is not unreasonable) then the final value of the weights
will be some linear combination of the input samples; for h training samples, after one
pass through all training data, ݓ௝(ଵ) = ߙ ∑ ௧(ଵ)ܧ ∙ ௧௛௧ୀଵݔ (3)

 Explicit Computation of Input Weights in Extreme Learning Machines 43

We find a similar result for the support vector machine [3]. In the linear case, an
SVM classifier is designed to find the maximum-margin separating hyperplane be-
tween two classes of training data. This optimization problem is generally expressed
as follows: given that the separating hyperplane can be expressed as an inner product
in the input space such that ݓ ∙ ݔ − ܾ = 0 (4)

where b is a bias term, so that the hyperplane does not have to pass through the origin
(note that here w is a generic weight vector, not related to w in (1) - (3); we persist
with the notation in order to emphasize the commonality in these expressions). The
classification margins to this separating hyperplane can be expressed as two parallel
hyperplanes at ݓ ∙ ݔ − ܾ = ±1 (5)

We need to maximize the distance 2/ԡݓԡ between these two planes, subject to
the constraint that ݕ௧(ݓ ∙ ௧ݔ − ܾ) ≥ 1 (6)

for all t. This constraint requires that all samples remain outside the margins, as is
implicit in their meaning. According to the Karush-Kuhn-Tucker condition [5], the
solutions can be expressed as a linear combination of input samples ݓ = ∑ ௧ߙ ∙ ௧ݕ ∙ ௧௛௧ୀଵݔ (7)

Note that α here is not the same as the learning rate in the MLP expression above,
but is a multiplication factor (a Lagrange multiplier in the optimization process). We
have used the same symbol α as this symbol is conventional in both usages in MLP
and SVM and serves to emphasize the point of this development, which is that in both
MLP and linear SVM cases the weight vectors are linear weighted sums of the input
training samples (note the similarities between (3) and (7) above). This should come
as little surprise given the acknowledged equivalences between perceptrons and linear
SVMs, and MLPs and SVMs (see for example Collobert and Bengio [6]). Similarly, it
is consistent with the intuition that the dot product between vectors (such as a training
sample and a testing sample) is a measure of their similarity.

Given that the optimal input layer weights in MLPs and the support vectors in SVMs
are linear functions of the training samples, it might be the case that an ELM in which
the input layer weights were biased towards linear combinations of the input training
samples would perform better than one in which the input layer weights were uniformly
distributed random weights. There are a number of questions to be addressed here:

• Does an ELM in which the input layer weights are biased towards the input
training samples perform better than one with uniformly distributed random
values?

• How would we achieve the biasing of the input layer without any of the tedi-
ous incremental or stochastic learning of weights which ELM so successfully
avoids?

• Is there a rigorous theoretical basis for the belief that an ELM would perform
better with appropriately biased weights?

44 J. Tapson, P. de Chazal, and A. van Schaik

In the work reported here we propose some answers to the first two points, by sug-
gesting a fast closed-form expression for generation of weights biased towards the
input training samples, and showing that in some important cases it consistently out-
performs a conventional ELM.

3 Methodology

In the method described here, which we refer to as Computed Input Weights ELM
(CIW-ELM), we want to generate input weights which have the form of (3) or (7)
above; that is to say, they must be (random) weighted sums of the training data sam-
ples. The input data are generally normalized to have zero mean and unity standard
deviation, and weights are normalized to unity magnitude. ELM hidden layers are
often specified in terms of number of neurons, or as a multiplier of the size of the
input layer. We divide the number of hidden layer neurons d by the number of classes
C, and generate weights for each group of p = d/C hidden layer neurons from input
vectors of a single class (we can reasonably define d so that d/C gives an integer
number of neurons). We then produce random weights biased to the training samples
for the class, by summing the inner products of random binary-valued vectors with
the training samples, according to the formula ݓ(ଵ) = ܴ ∙ (8) ݔ

where ݔ௛×௞ is the full set of training data for the class, and ܴ௣×௛ is a matrix of ran-
dom binary values (random sign values), i.e. with elements having values in {-1, 1}.
Should repeatable weight generation be required, the elements of R could be generat-
ed from well-known pseudorandom sequences such as Gold codes, thereby enabling a
deterministic weight generation schema. Use of orthogonal pseudorandom codes
would also guarantee orthogonality of the input weights, which has been identified to
improve the generalization of ELM networks [2, 7].

The outcome of this method is that the weight wji
(1) connecting input i with hidden

layer neuron j is the sum of the input sample elements xi (where i is the vector index,
i.e. xi is the ith element of any training sample x), for all the training samples of one
class, where each individual element has had its sign flipped or preserved with ran-
dom probability.

The columns of weight matrix w(1) are then normalized to unit vectors: ݓ௔(ଵ) = ோೌ|ோೌ| (9)

where a is the column index.
In practical terms, the weights are computed according to the following algorithm:

1. Normalize all training data, so as to avoid use of scaling factors.
2. Divide the d hidden layer neurons into C blocks, one for each of C output

classes; for data sets where the number of training data samples for each
class are equal, the block size is B = d/C. We denote the number of training
samples per class as K. Where the training data sets for each class are not of
equal size, the block size can be adjusted to be proportional to data set size.

 Explicit Computation of Input Weights in Extreme Learning Machines 45

3. For each block, generate a random matrix RB×K of signs.
4. Multiply the input training data set for that class, xK×k, by R to produce B× k

summed inner products, which are the weights for that block of neurons.
5. Normalize the weights to unity magnitude as shown in (9).
6. Concatenate these C blocks of weights for each class, each B× k in size, into

one weight matrix wd×k.
7. Solve for the hidden layer weights of the ELM using standard ELM methods

such as singular value decomposition on the computed hidden layer outputs.

4 Results

We have used the CIW-ELM method on several benchmark problems in machine
learning. Its performance is perhaps best illustrated in terms of the well-known
MNIST handwritten digit recognition (OCR) problem [8]. MNIST is a particularly
challenging data set for classification as the dimensionality of the data is high (784
pixels for input, 10 classes for output, and 60000 training samples). We have previ-
ously reported good results with conventional ELM on MNIST [9]. Here we show
that the use of CIW-ELM gives significantly greater accuracy for similar-sized net-
works than conventional ELM (see Fig. 1).

Fig. 1. Accuracy of standard ELM (white squares) and CIW-ELM (black squares) on the
MNIST data set, for various hidden layer sizes. It can be seen that CIW-ELM consistently
produces more accurate results for a given hidden layer size. Input data were not deskewed or
centered, or in any way preprocessed except for normalization. The pseudoinverse solution was
not regularized. The points indicated by the two crosses are MLP results from LeCun et al. [8]
for 784-300-10 and 784-1000-10 networks, which represent the best results likely for
backpropagation on equivalent networks (backpropagation is of course much more time-
consuming than either ELM technique here).

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0 2000 4000 6000 8000

Er
ro

r %

Hidden Layer Size

46 J. Tapson, P. de Chazal, and A. van Schaik

One of the most significant advantages of the ELM method is in speed of imple-
mentation, because there is no incremental learning or optimization required. The
most time-consuming computation in ELM is the calculation of the Moore-Penrose
pseudoinverse solution to output weights, and this computation generally scales as d2
where d is the hidden layer size. For very large datasets, such as MNIST and in mod-
ern “big data” problems, the size of the pseudoinverse computation can become prob-
lematic. As such, the potential to use CIW-ELM to obtain high accuracy with smaller
hidden layers has real benefits. This is illustrated in Figure 2 which compares execu-
tion times for the ELM and CIW-ELM; note that these were carried out on a very
modest computational platform, illustrating the high speed of ELM implementation.

Fig. 2. Computation time required to reach a particular degree of accuracy on the MNIST OCR
problem, for regular ELM (white squares) and CIW-ELM (black squares). The computation
involves implementation (training) and testing of the network, including computation of input
layer weights in CIW-ELM, and pseudoinverse solution of output weights for all 60 000 train-
ing cases. The reduction in time for CIW-ELM is a function of the smaller network size for a
given accuracy; for example, ELM requires a 784-3000-10 network to achieve 96% accuracy,
whereas CIW-ELM achieves this with a 784-700-10 network. Times were measured for a
MATLAB R2012B implementation running on a 2010 MacBook Air 4 with an Intel dual core
i5 processor clocked at 1.6GHz.

We have also used CIW-ELM on other standard classification problems, such as
the well-known abalone, iris, and wine data sets [10]. The performance of CIW-ELM
was superior to ELM for small network sizes in wine and iris, with convergence be-
tween the two methods at larger network sizes. There was no clear difference between
the two methods for the abalone classification problem, but both methods produced
results similar to the state of the art. Results for these data sets are illustrated in
Figures 3-5.

0

100

200

300

400

500

600

700

80.0 85.0 90.0 95.0 100.0

Co
m

pu
ta

tio
n

Ti
m

e
[s

]

Accuracy %

 Explicit Computation of Input Weights in Extreme Learning Machines 47

Fig. 3. Comparison of ELM (white squares) and CIW-ELM (black squares) on the iris classifi-
cation problem. It can be seen that CIW-ELM shows more accuracy at all network sizes. There
is some suggestion of overfitting for network sizes above 5-900-3, which is not surprising
given the low dimensionality of the data (150 × 5 training data elements).

5 Discussion

The results illustrated in Figs. 1-5 suggest that for certain problems, the method may
offer considerable improvement in performance over standard ELM. In cases where
the data dimensionality is small, the performance of standard ELM converges rapidly
onto the CIW-ELM result (however, it is for large data sets, where computation time
becomes an issue, that the method shows the most promise). It is not yet clear wheth-
er the CIW-ELM method will improve results in function approximation tasks, as the
algorithm as currently specified is intrinsically based on class information; we could
in principle treat all input data as a single case for the purpose of a regression imple-
mentation. It is significant that the only problem so far on which CIW-ELM has not
convincingly outperformed standard ELM is the abalone problem, which is really a
regression problem (estimate the age of the abalone) recast as a classification problem
(bin the abalone into one of three age bins). We note that Huang has demonstrated
that SVM intrinsically requires the bias term b in (4) – (6) and that this forces optimi-
zation within a more constrained space than standard ELM, which was designed from
the beginning for regression or function optimization [11]. Our use of expressions (3)
and (7) as models for the input weights will similarly have constrained the solution
space, and this may also contribute to a lack of improvement in regression problems,
although this may be difficult to evaluate.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 500 1000 1500

Er
ro

r %

Hidden Layer Size

48 J. Tapson, P. de Chazal, and A. van Schaik

Fig. 4. Comparison of ELM (white squares) and CIW-ELM (black squares) performance on the
wine classification benchmark. It can be seen that CIW-ELM performs extremely well for small
networks, with both methods showing overfitting for larger network sizes.

Fig. 5. Comparison of ELM (white squares) and CIW-ELM (black squares) performance on the
abalone classification benchmark. It can be seen that there is little difference in performance
(note the fineness of the vertical scale). This is well–known to be an underdetermined problem
with the best results for all standard classification methods being no lower than 34%.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30

Er
ro

r %

Hidden Layer Size

34.5

35

35.5

36

36.5

37

37.5

38

0 20 40 60 80 100 120

Er
ro

r %

Hidden Layer Size

 Explicit Computation of Input Weights in Extreme Learning Machines 49

6 Conclusions

We have presented a schema for generation of input layer weights in ELM which
offers reduced computation time and increased accuracy on some standard classifica-
tion problems. The method is quick to implement and can be used in a deterministic
and repeatable fashion. It still remains to evaluate this method on a wide range of
benchmark problems and establish the circumstances under which it is a good choice
for machine learning.

References

1. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme Learning Machine: Theory and Applica-
tions. Neurocomputing 70, 489–501 (2006)

2. Kasun, L.L.C., Zhou, H., Huang, G.-B., Vong, C.M.: Representational Learning with Ex-
treme Learning Machine for Big Data. IEEE Intelligent Systems 28(6), 31–34 (2013)

3. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20, 273–297 (1995)
4. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-

propagating errors. Nature 323, 533–536 (1986)
5. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of 2nd Berkeley

Symposium, pp. 481–492. University of California Press, Berkeley (1951)
6. Collobert, R., Bengio, S.: Links between perceptrons, MLPs and SVMs. In: Proc. ICML

2004: Proceedings of 21st International Conference on Machine Learning, p. 23 (2004)
7. Widrow, B., Greenblatt, A., Kim, Y., Park, D.: The No-Prop algorithm: a new learning al-

gorithm for multilayer neural networks. Neural Networks 37, 182–188 (2013)
8. LeCun, Y., et al.: Gradient-Based Learning Applied to Document Recognition. Proc.

IEEE 86(11), 2278–2324 (1998)
9. Tapson, J., van Schaik, A.: Learning the pseudoinverse solution to network weights. Neu-

ral Networks 45, 94–100 (2013)
10. Data sets from the UCI Machine Learning Repository,

http://archive.ics.uci.edu/ml/
11. Huang, G.-B.: An Insight into Extreme Learning Machines: Random Neurons, Random

Features and Kernels. Cognitive Computation (in press 2014), doi:10.1007/s12559-014-
9255-2

Subspace Detection on Concept Drifting Data

Stream

Lin Feng1,2,�, Shenglan Liu1,2, Yao Xiao1, and Jing Wang1

1 School of Computer Science and Technology, Faculty of Electronic Information and
Electrical Engineering, Dalian University of Technology, Dalian, China, 116024

2 School of Innovation Experiment, Dalian University of Technology,
Dalian, China, 116024
fenglin@dlut.edu.cn

Abstract. In recent years, data stream mining has become a hot spot in
machine learning. Network data and sensor data are both data stream.
However, there is concept drift problem in data stream so that traditional
machine learning methods no longer work. Meanwhile, real-time learning
is required in data stream and most of concept detection methods can’t
support real-time demand. For solving this problem, this paper proposes
a data stream learning framework which improves the classical Linear
Discriminant Analysis (LDA) method based on a robust subspace learn-
ing method. It can not only detect concept drift in data stream quickly,
but also classify data stream in real-time. The experimental results of
sensor data and UCI repository validate the effectiveness of our method.

Keywords: Concept Driftingsubspace learning, data stream.

1 Introduction

In recent years, with the rapid development of internet and multimedia technolo-
gies, data stream mining has becoming a hot topic in the domain of data mining.
The domains of the applications of data stream mining include sensor networks,
social networks, Web logs and Web pages click streams, network monitoring and
traffic engineering, telecommunication calling records, etc. Comparing with tra-
ditional static data sets, data stream has a few new characteristics. For example,
the data in data stream is dynamic in real-time and in overwhelming volume;
the labels and distribution of data may change in trends over time known as
concept drift. Researchers have proposed many algorithms to construct differ-
ent kinds of learning models to detect concept drift and classify data. These
methods can be roughly divided into two categories: (1) Adjust the learning
strategies to adapt the new data at the position which is detected when concept
drift happens. (2) Retrain the learning machine in real-time without considering
the concept drift to deal with the new data. Referece[1-11] proposed some effi-
cient methods for learning concept drifting data streams. With the motivation

� Corresponding author.

c© Springer International Publishing Switzerland 2015 51
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_5

52 L. Feng et al.

of learning from concept drifting data streams with unlabeled data, Reference
[12] proposes a semi-supervised method based on decision tree algorithm—SUN.
For detecting a concept drift, SUN produces concept clusters at leaves based on
a concept set. It searches the decision tree from bottom to up to evaluate the
deviation and distance between history concept and current concept by setting
a variable. Reference [13] analyzes the statistical meaning of Bayes formula in
data stream applications from statistical aspect. Through analyzing the rela-
tionship between the input distribution P (X) and the posterior probabilities of
the classes P (ωi|X), they find the concept drift can be detected by detecting
the change of P (X), thus we can detect the concept drift in the case of unla-
beled data by calculating the posterior probability and the probability density
functions.

When processing the problem of concept drift, using ensemble learning meth-
ods is usually a reasonable option. Thence, many researchers design data stream
learning methods based on learning machine ensembles. Reference [14] discusses
the advantages of building classifier ensembles for non-stationary environments
where the classification task changes during the operation of the ensembles. The
methods with multi classifier ensembles exceed that with one classifier. Reference
[15] and [16] deal with concept drift by adjusting the weight of sub-classifier and
process new concepts by adding and deleting sub-classifiers dynamically. But
classifier ensembles are based on the prior knowledge in most cases, while not
based on the basic characteristics of data. So it is not robust for new classes
detecting. Moreover, traditional incremental and online learning methods learn
with a single model. To solve this problem, reference [17] proposes improved
learning machine ensembles. They integrate the clusters and the classifiers. And
then they utilize the cluster methods to reduce the amount of calculation in
processing labels. Through giving a weight to classifiers, they can update the
learning machine ensembles dynamically and process the concept drift.

Detecting concept drifts in high dimensional data streams is also an impor-
tant subject in data stream learning; the curse of dimensionality brought by high
dimensional data makes the traditional machine learning method to be not ap-
propriate. One classical detecting concept drifts method is proposed by Dasu et
al. in [18]. They take an information-theoretic approach to the high dimensional
data concept changes detection problem. The method measures the differences
between two given distributions with Kullback-Leibler (KL) distance. However,
this method needs a procedure of discretization to get the probability density.
Moreover, it can only detect two concepts and after a discretization the time
complex is relative high in the bootstrap step.

All methods mentioned above are time consuming as detecting concept drift.
Concept drift detection is often an independent step without considering the ef-
fects on classification of data stream. Subspace learning is a hot topic in machine
learning, such as classical manifold learning methods [19-23]. For handling the
problem of classification some researchers propose supervised dimension reduc-
tion methods. For example, LDA[24] considers minimizing within-class scatter
and maximizing between-class scattersimultaneously.However, small size sample

Subspace Detection on Concept Drifting Data Stream 53

(SSS) problem is hard to solve in LDA. For solving SSS problem, MaximumMar-
gin Criterion (MMC)[25] constructs a new optimization function to avoid SSS
problem based on LDA. This paper designs an Angle Robust LDA(ARLDA)
learning method which is motivated by classical to detect the concept drift.
ARLDA is a geometry detection method; it detects the concept drift based on
the changes of projection variances and projection angles in current window
which is needless knowing the distribution of current data and has a better time
complex. Moreover, when the concept drift is detected, ARLDA will recalculate
the projection subspace. Subspace data can be more effective learning (classifica-
tion). Meanwhile, this paper proposes a robust supervised dimension reduction
method which can calculate the subspace in ARLDA to reduce the dimension
of current window data for adapting the learning in current window and later
windows.

2 A Brief of LDA and MMC

The dataset is denoted as X = [x1, · · · , xN] ∈ RD×N which satisfies N =
c∑

i=1

Ni, where Ni is the sample size of each class, c is the number of class. Linear

projection is denoted as W = [w1, w2, · · · , wd] ∈ RD×d, where d is the dimension
of target subspace. The optimal process can be realized with the optimization
function below:

WLDA
opt = argmax

W

tr(WSbW
T)

tr(WSwWT)
(1)

Where Sb = XbX
T
b is the within-class scatter matrix, Xb =

1√
N
[
√
N1μ̂1, · · ·,

√
Ncμ̂c]μ̂i = μi − μ, μ is the global mean vector; Sw =

1
N

c∑
i=1

Ni∑
j=1

(xij − μi)(xij − μi)
T = XwX

T
w ,Xi = [xi1, · · ·, xiNi] is the samplematrix

of the i-th class,Xw = 1√
N
[X1 −μ1e1, · · ·, Xc −μcec]ei = [1, ..., 1] ∈ R1×NiWLDA

opt

can be got from eigenvectors corresponding to the d largest eigenvalues through
the eigendecomposition of S−1

w Sb.
In MMC, define the distance of two different classes d(ci, cj) as:

d(ci, cj) = d(μi, μj)− (S(ci) + S(cj)) (2)

Where d(μi, μj) is the distance between μi and μj , S(ci) and S(cj) are scatter
matrix trace of each class. According to formula (2), the low-dimension subspace
WMMC

opt of MMC can be get through the optimization function as follows:

WMMC
opt = argmax

W
tr
(
W (Sb − Sw)W

T
)

(3)

WMMC
opt can be got from eigenvectors corresponding to the d largest eigenvalues

through the eigendecomposition of Sb−Sw. Details can be seen in reference [25].

54 L. Feng et al.

3 A New Dimensionality Reduction Method-ARLDA

In LDA, for any point x, the minimum scatter is equal to Wopt =

argmin
W

∥∥WWT (x− μ)
∥∥2
2
, where WWT (·) is orthogonal projection of (·), (·)e

is the unitization form of vector (·), we have:

cos2 α =

[
(x− μ)

T ·WWT (x− μ)
]2

‖x− μ‖22 ‖WWT (x− μ)‖22

=
(x− μ)

T

‖x− μ‖2
WWT (x− μ)

‖x− μ‖2
= (x− μ)

T
e ·WWT (x− μ)e (4)

From formula (4) we can know that the minimum within-class scatter is equal
to min

W
cos2 α in geometry. For the same reason maximum between-class scatter

max
W

db (fig. 5(c)) is equal to max
W

cos2 β in geometry.

If utilizing the thought of LDA, we can get Wopt from optimization function

max
W

cos2 β
cos2 α with constraint conditionWTW = I to construct the optimal function

of ARLDA. Make Co-Angle αij = αij(W) =
〈
xij − μi,WWT (xij − μi)

〉
βi =

βi(W) =
〈
μi − μ,WWT (μi − μ)

〉
where i = 1, 2, · · · , cj = 1, 2, · · · , Ni. The

within-class scatter can be written as follows:

c∑
i=1

[
Ni

N
1
Ni

Ni∑
j=1

cos2 αij

]
= 1

N

[
c∑

i=1

Ni∑
j=1

(xij−μi)
TWWT (xij−μi)

‖xij−μi‖2
2

]

=
1

N

⎡

⎣
c∑

i=1

Ni∑

j=1

(xij − μi)
T
e WWT (xij − μi)

⎤

⎦

= tr

⎡

⎣ 1

N
WT

⎡

⎣
c∑

i=1

Ni∑

j=1

(xij − μi)e (xij − μi)
T
e

⎤

⎦W

⎤

⎦

= tr
[
WTS′

wW
]

(5)

Where S′
w = 1

N

c∑
i=1

Ni∑
j=1

(xij − μi)e(xij − μi)
T
e = XweX

T
weXwe

= 1√
N
[(x11 − μ1)e , · · ·, (x1N1 − μ1)e , · · · , (xc1 − μc)e , · · ·, (xcNc − μc)e]

Subspace Detection on Concept Drifting Data Stream 55

The between-class scatter can be written as follows:

c∑
i=1

(
Ni

N cos2 βi

)
= Ni

N

c∑
i=1

(μi−μ)TWWT (μi−μ)

‖μi−μ‖2
2

=
Ni

N

c∑

i=1

(μi − μ)
T
e WWT (μi − μ)

= tr

[
Ni

N
WT

c∑

i=1

(μi − μ)e (μi − μ)
T
e W

]

= tr
[
WTS′

bW
]

(6)

Where S′
b =

1
N

c∑
i=1

Ni(μi − μ)e(μi − μ)Te = XbeX
T
be,Xbe =

1√
N
[
√
N1(μ1−μ)e, · · ·,

√
Nc(μc − μ)e]
The optimization function of ARLDA can be written as: J (W) =

tr
(

WT S′
bW

WTS′
wW

)
.

So, ARLDA can be transformed into an optimization problem with con-
straints:

max
W

tr
WT S′

bW
WTS′

wW

s.t. W TW = I

The optimization problem above can be transformed into a generalized eigen-
value problem.

S′
bW = λS′

wW (7)

The optimal low-dimension subspace of ARLDA can be got from eigenvectors
w1, · · · , wd corresponding to the d largest eigenvalues λ1 ≥ λ2 · · · ≥ λd through
the eigendecomposition of S

′
bS

′
w−1 .

4 A New Concept Drift of Data Stream Learning Method

In this section, we propose a novel concept drift detection method for data stream
learning. When there is concept drift in data stream, generally researchers will
design an independent detection method, and then according to detection results
they adjust learning strategy. Concept drift detection is time consuming and has
no positive effects on subsequent classification of data stream. It only retrains
the classifier (such as SVM) or makes some adjustment.

For example, utilizing KL distance to detect concept drift is an effective
method, but there are some shortcomings: 1) it needs discretization to calcu-
late probability density. 2) It can only handle concept drift between two classes;
multiclass can only be decided based on results of two classes. 3) The process of
bootstrap and discretization is time consuming. The time complex of MMD in

56 L. Feng et al.

concept drift detection is close to cubic class. However, data stream needs real-
time processing, so MMD is not appropriate to calculate stream data. Generally,
we can use statistics of samples to judge concept drift quickly. For example, if
the variance of dataset changes, we can say there is a concept drift. However,
there is a significant drawback: it only describes the dispersion degree of data
with size but without direction. So variance cannot detect the rotational con-
cept drift of dataset. For solving this problem, we consider to combine variance,
angle and mean of projected data in subspace to detect concept drift. Obviously,
index above can detect changes in geometric distribution simply. The framework
of concept drift detection in data stream can be seen in Fig. 1 as follows:

Fig. 1. The learning framework of subspace data stream

We can conclude that learning method using subspace not only detects con-
cept drift, but also reduces the dimension of data stream. Thus we will have a
better classification performance.

5 Experiment

In this section, we will perform the experiment on the synthetic and real-word
datasets. To evaluate the performance of ARLDA, we compare it with a No-
Detection method. SVM[26] and ELM[27] classification methods are used in our
experiments.

Subspace Detection on Concept Drifting Data Stream 57

In this section, we conduct experiments with the Sensor (The sensor data is
available in reference [28]), Gas, Forest and Mnist datasets which are commonly
used in data streams. The description of datasets and experiment setting is as
follows (Table 1).

Table 1. The description of datasets and the experiment parameters setting

Sample size Dimension Class number Window size d

Sensor 1017676 4 4 2000 2
Gas 10310 128 6 600 2

Forest 369168 54 7 1000 5
Mnist 56102 784 9 1000 6

We set the window size according to the classification results and the sample
size. The d is set based on the dimension of datasets and the dimension reduction
performance.

The classification accuracy on three datasets are as follows(table 2,3).

Table 2. The average classification accuracy (%) on different datasets and classification
methods

No-Detection ARLDA
SVM ELM SVM ELM

Sensor 42.97±14.78 41.98±17.15 67.56±18.15 57.74±16.84
Gas 21.26±5.59 45.80±24.86 39.54±21.12 70.18±17.21

Forest 61.72±19.81 69.40±17.60 77.05±9.02 81.20±6.46
Mnist 79.13±6.38 67.75±11.56 84.54±2.86 84.13±2.96

Table 3. Specification of tested binary classification problems

No-detection ARLDA
SVM ELM SVM ELM

Sensor 0.73102 0.061174 0.098332 0.080314
Gas 0.19343 0.031013 0.051049 0.023345

Forest 0.10213 0.012175 0.029078 0.022987
Mnist 2.6698 0.18812 0.033689 0.16412

From the results above we can see that, ARLDA outperforms No-Detection
method in 3 datasets. ARLDA detects the concept drift with angle-cosine and
projection variance, when the drift is detected, it will train the model again and
classify with the new model to get a good result.

Comparing with low-dimensional data, it costs more time in calculation of
high-dimensional data. In this paper, ARLDA conducts dimensionality reduction

58 L. Feng et al.

first and then detects concept drifts; therefore, it costs less time than methods of
no dimensionality reduction. Besides, ELM is an efficient classification method
and costs less time than SVM.

In Forest dataset, we divide the data into two parts and construct obvious
concept drift. In the first part, we remove the samples of the first class, and in
the second part, remove samples of the third class. Both ARLDA and KLLDA
detect drifts more than real drifts. Comparing with KLLDA, ARLDA detects
drift 42 times which is far less than 99 times of KLLDA.

6 Conclusion

This paper utilizes subspace learning to realize concept drift detection. Experi-
mental results in different datasets demonstrate the effectiveness of our method.
Subspace learning can not only detect concept drift, but also reduce the dimen-
sion of data stream. The time complex of our method is mainly on searching low-
dimension subspace. In future research, searching fast and stable low-dimension
subspace method will be the focus.

References

[1] Ouyang, Z.-Z., Gao, Y.-H., Zhao, Z.-P., Wang, T.: Study on the Classification
of Data Streams withConcept Drift. In: 2011 Eighth International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD), vol. 3, pp. 1673–1677 (2011)

[2] Gama, J., Castillo, G.: Learning with Local Drift Detection. Advanced Data Min-
ing and Applications 4093, 42–55 (2006)

[3] Ikonomovska, E., Gama, J., Sebasti, R., Gjorgjevik, D.: Regression trees from
data streams with drift detection. Discovery Science 5808, 121–135 (2009)

[4] Stanley, K.-O.: Learning Concept Drift with a Committee of Decision Trees, In-
forme tcnico: UT-AI-TR-03-302, Department of Computer Sciences. University of
Texas at Austin, USA (2003)

[5] Klinkenberg, R.: Using labeled and unlabeled data to learn drifting concepts.
In: Workshop notes of the IJCAI-01 Workshop on Learning from Temporal and
Spatial Data, pp. 16–24 (2001)

[6] Lindstrom, P., Delany, S.-J., Namee, B.-M.: Handling concept drift in a text data
stream constrained by high labelling cost. In: FLAIRS Conference (2010)

[7] Dries, A., Ruckert, U.: Adaptive Concept Drift Detection. Analysis and Data
Mining 2(5-6), 311–327 (2009)

[8] Ross, G.-J., Adams, N.-M., Tasoulisand, D.-K., Hand, D.-J.: Exponentially
weighted moving average charts for detecting concept drift. 33(2), 91–198 (2012)

[9] Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection.
Advances in Artificial Intelligence(SBIA) 3171, 286–295 (2004)

[10] Baena-Garcira, M., del Campo-Avila, J., Fidalgo, R., Bifet, A., Gavalda, R.,
Morales-Bueno, R.: Early Drift Detection Method. Knowledge Discovery from
Data Streams (2006)

[11] Sobhani, P., Beigy, H.: New Drift Detection Method for Data Streams. Adaptive
and Intelligent Systems 6943, 88–97 (2011)

Subspace Detection on Concept Drifting Data Stream 59

[12] Wu, X.-D., Li, P.-P., Hu, X.-G.: Learning from concept drifting data streams with
unlabeled data. Neurocomputing 92, 145–155 (2012)

[13] Zliobaite, I.: Change with delayed labeling when is it detectable. In: Data Mining
Workshops (ICDMW), pp. 843–850 (2010)

[14] Kuncheva, L.-I.: Classifier ensembles for changing environments. Multiple Classi-
fier Systems 3077, 1–15 (2004)

[15] Kolter, J.-Z., Maloof, M.-A.: Dynamic Weighted Majority: A New Ensemble
Method for Tracking Concept Drift. Data Mining, 123–130 (2003)

[16] Wang, H.-X., Fan, W., Yu, P.-S., Han, J.-W.: Mining Concept Drifting Data
Streams Using Ensemble Classifiers. In: Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 226–235
(2003)

[17] Zhang, P., Zhu, X.-Q., Tanand, J.-L., Guo, L.: Classifier and Cluster Ensembles for
Mining Concept Drifting Data Streams. Data Mining (ICDM), 1175–1180 (2010)

[18] Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K.: An Information-
Theoretic Approach to Detecting Changes in Multi-Dimensional Data Streams.
In: Proc. Symp. on the Interface of Statistics, Computing Science, and Applica-
tions (2006)

[19] Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear
embedding. Science 290, 2323–2326 (2000)

[20] Zhang, Z., Zha, H.: Principal Manifolds and Nonlinear Dimensionality Reduction
via Tangent Space Alignment. SIAM Journal of Scientific Computing 26(1), 313–
338 (2004)

[21] He, X., Cai, D., Yan, S., Zhang, H.: Neighborhood preserving embedding. In:
2010 The 2nd IEEE International Conference on Information Management and
Engineering (ICIME), pp. 1208–1213 (2005)

[22] Pang, Y.-W., Zhang, L., Liu, Z.-K., Yu, N.-H., Li, H.-Q.: Neighborhood preserv-
ing projections(NPP): a novel linear dimension reduction method. Advances in
Intelligent Computing 3644, 117–125 (2005)

[23] Min, W.-L., Lu, K., He, X.-F.: Locality pursuit embedding. Pattern Recogni-
tion 37(4), 781–788 (2004)

[24] Zheng, W.-M., Zhao, L., Zou, C.-R.: An efficient algorithm to solve the small
sample size problem for LDA. Pattern Recognition 37(5), 1077–1079 (2004)

[25] Li, H., Jiang, T., Zhang, K.: Efficient and Robust Feature Extraction by Maximum
Margin Criterion. IEEE Trans. on Neural Networks 17(1), 157–165 (2006)

[26] Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20(3), 273–297
(1995)

[27] Guangbin, H., Zhuqin, Y.: CheeKheongSiew. Extreme learning machine-Theory
and applications. Neurocomputing 70(1-3), 489–501 (2006)

[28] Zhu, X., Ding, W., Philip, S.Y., Zhang, C.: One-class learning and concept sum-
marization for data streams. Knowledge and Information Systems 28(3), 523–553
(2011)

© Springer International Publishing Switzerland 2015
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,

61

Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_6

Inductive Bias for Semi-supervised Extreme
Learning Machine

Federica Bisio1, Sergio Decherchi2, Paolo Gastaldo1, and Rodolfo Zunino1

1 Dept. of Electric, Electronic and Telecommunications Engineering and Naval Architecture
(DITEN), University of Genoa, Genova, Italy
federica.bisio@edu.unige.it,

{paolo.gastaldo,rodolfo.zunino}@unige.it
2 Istituto Italiano di Tecnologia, IIT, Morego, Genova, Italy

sergio.decherchi@iit.it

Abstract. This research shows that inductive bias provides a valuable method
to effectively tackle semi-supervised classification problems. In the learning
theory framework, inductive bias provides a powerful tool, and allows one to
shape the generalization properties of a learning machine. The paper formalizes
semi-supervised learning as a supervised learning problem biased by an unsu-
pervised reference solution. The resulting semi-supervised classification
framework can apply any clustering algorithm to derive the reference function,
thus ensuring maximum flexibility. In this context, the paper derives the biased
version of Extreme Learning Machine (bELM). The experimental session in-
volves several real world problems and proves the reliability of the semi-
supervised classification scheme.

Keywords: Extreme Learning Machine, semi-supervised learning, inductive
bias.

1 Introduction

Inductive bias is of fundamental importance in learning theory, as it influences heavi-
ly the generalization ability of a learning system [1]. From a mathematical point of
view, the inductive bias can be formalized as the set of assumptions that determine the
choice of a particular class of functions to support the learning process. Therefore, it
represents a powerful tool to embed the prior knowledge on the applicative problem at
hand.

In literature, modifications to the original Extreme Learning Machine (ELM) [2]
scheme have been proposed [3, 4]. This paper addresses the advantages and the issues
of introducing an inductive bias in the ELM when semi-supervised classifications
problems are being tackled. In semi-supervised classification, one exploits both unla-
beled and labeled data to learn a classification rule/function empirically [5]; the semi
supervised approach should improve over the classification rule that is learnt by only
using labeled data. The interest in semi-supervised learning has increased recently,

62 F. Bisio et al.

especially because application domains exist (e.g., text mining, natural language pro-
cessing, image and video retrieval, and bioinformatics) [6, 7], in which large datasets
are available but labeling is difficult, expensive, or time consuming.

The research presented here shows that semi-supervised learning can benefit from
biased regularization, which provides a viable approach to implement an inductive
bias in a kernel machine, as confirmed by the generalized 'Representer Theorem' [8].
Biased regularization of Support Vector Machines (SVMs) has been adopted in [9]
for a malware detection system. The research presented here shows that semi-
supervised learning can benefit from biased regularization, too. First, a novel, general
biased-regularization scheme is introduced that encompasses the biased version of
ELM. Then, the paper proposes a semi-supervised learning model, which is based on
that biased-regularization scheme and follows a two-step procedure. In the first step,
an unsupervised clustering of the whole dataset (including both labeled and unlabeled
data) obtains a reference solution; in the second step, the clustering outcomes drive
the learning process in a biased ELM (bELM) to acquire the class information provid-
ed by labels. The ultimate result is that the overall learned function exploits both la-
beled and unlabeled data. The integrated framework applies to both linear and non
linear data distributions: in the former case, one works under a cluster assumption on
data; in the latter case, one works under a manifold hypothesis [10]. As a conse-
quence, for a successful semi-supervised learning, unlabeled data are assumed to car-
ry some intrinsic geometric structure, e.g., in the ideal case, a low-dimensional, non-
linear manifold.

The proposed biased semi-supervised approach exhibits several features, such as
modularity in the procedure that generates a biasing solution, convexity of the cost
function, predictable complexity, and out-of-sample extension.

The experimental verification of the method involved the USPS [12] dataset. Ex-
perimental results confirmed the effectiveness of bELM and proved that the proposed
semi-supervised learning scheme compares positively with state-of-the-art algorithms,
such as LapRLS [10], LapSVM [10], Transductive SVM (TSVM) [13], and SS-ELM
[11].

The paper is organized as follows. Section 2 gives a brief theoretical background
on regularization based learning. Section 3 formalizes the biased regularization based
learning scheme, and introduces biased ELM. Section 4 presents the semi-supervised
classification framework based on biased regularization. Section 5 discusses experi-
mental results and proposes a comparison with LapRLS, LapSVM, TSVM, and SS-
ELM. Finally, Section 6 gives some concluding remarks.

2 Theoretical Background

2.1 Regularization-Based Learning

Modern classification methods often rely on regularization theory, which was initially
introduced in [14] and generalized to the non linear case by kernel methods [15].
In a regularized functional, a positive parameter, λ, rules the tradeoff between the

 Inductive Bias for Semi-supervised Extreme Learning Machine 63

empirical risk, Remp[f], (loss function) of the decision functions f (i.e., regression or
classification) and a regularizing term. The cost to be minimized can be expressed as:

 Rreg = Remp[f] + λΩ[f] (1)

where the regularization operator, Ω[f], quantifies the complexity of the class of func-
tions from which f is drawn. When dealing with maximum-margin algorithms, Ω[f]
is implemented by the term || f ||, which supports a square norm in the feature space.
The Representer Theorem [8] proves that, when Ω[f] = || f ||, the solution of the regu-
larized cost (1) can be expressed as a finite summation over a set of labeled training
patterns T = {(x,y)i; i = 1,…,P}, with y ∈ {-1,1}.

The ELM framework indeed belongs to the class of regularized learning methods.
In principle, the ELM model implements a single-hidden layer feedforward neural
networks (SLFN) with Nh mapping neurons. The neuron's response to an input stimu-
lus, x, is implemented by any nonlinear piecewise continuous functions a(x,ζ), where
ζ denotes the set of parameters of the mapping function. The overall output function
is then expressed as

 ∑
=

=
Nh

j
jj hwf

1
)()(xx (2)

where wj denotes the weight that connects the jth neuron with the output, and hj(x) =
a(x,ζj). In ELM the parameters ζj are set randomly. As the training process reduces
to the adjustment of the output layer, training ELMs is equivalent to solving a
regularized least squares problem. Hence, the minimization problem can be expressed
as

 ()
⎭
⎬
⎫

⎩
⎨
⎧ +−∑

=

P

i
ii

f
ffy

1

2
)(min λx (3)

The vector of weights w is then obtained as follows:

 yHIHHw tt 1)(−+= λ (4)

Here, H is a P × Nh matrix with hij = hj(xi).

3 A Unifying Framework for Biased Learning

The general biased regularization model consists in biasing the solution of a regulari-
zation-based learning machine by a reference function (e.g., a hyperplane). The nature
of this reference function is a crucial aspect that concerns the learning theory in gen-
eral. This section discusses two main aspects, that is, the formal definition of a gen-
eral biased-regularization scheme, and the formalization of the biased ELM (bELM)
within this scheme.

64 F. Bisio et al.

3.1 Biased Regularization

In the linear domain one can define a generic convex loss function, L(X, Y, w), and a
biased regularizing term; the resulting cost function is:

2

02
1

2
),,(www λλ

−+YXL (5)

where w0 is a “reference” hyper-plane, λ1 is the classical regularization parameter that
controls smoothness (i.e., λ in (1)), and λ2 controls the adherence to the reference
solution w0. Expression (3) is a convex functional and thus admits a global solution.
From (3) one gets:

 021
212

02
1

2
),,(

2
),,(wwwwwww λλλλλ

−+=−+ YXYX LL (6)

The role played by parameter λ2 is of fundamental importance both from the theo-
retical and the practical point of view. This parameter allows the cost function (6) to
implement the model discussed in [16], which analyzed the implication of using a
strong bias or a weak bias on the hypothesis space. In this regard, Figure 1 explicates
the role played by parameter λ2 by illustrating two different examples; for the sake of
clarity, and without losing generalization, all the examples assume that λ1 is set to a
fixed value (i.e., λ1 = 1).

Both Fig. 1(a) and Fig. 1(b) sketches an ideal space of hypothesis, where w is set
as the origin, 0 and a grey square indicates the 'true' optimal solution w*. Fig. 1(a)
refers to the situation in which the reference w0 is closer to the true solution w* than
wλ2=0; the black line connecting these two points actually shows where λ2w0 would
lie, as a function of λ2 ∈ [0,1]. In this figure, a bold dashed line limits the portion of
the space, Fλ1,1, to be explored to include w* when λ2 = 1; a thin dashed line limits the
portion of the space, Fλ1,0, to be explored to include w* when λ2 = 0. The example
clarifies that under the assumption “w0 closer to w* than wλ2=0” one can take full ad-
vantage of biased regularization, as the portion of space to be explored would shrink
as long as λ2 →1 (i.e., strong bias).

Fig. 1(b) illustrates the opposite case: the reference w0 is more distant from the true
solution w* than wλ2=0 (it is worth to note that the relative position of w* and wλ2=0
with respect to the origin w=0 remain unchanged when compared with Fig. 1(a)). In
this situation, one would obtain the best outcome by setting λ2 = 0, thus neutralizing
the contribution of the biased regularization. Hence, as w0 does not represent a helpful
reference, one would benefit from a weak bias.

 Inductiv

 (a)

Fig. 1. The role played by par
tions are analyzed: (a): the re
reference w0 is more distant fro

In practice, the limit cas
adjusting λ2 one can modu
(6). Hence, one can take ad
solution is not optimal. Th
space to be explored to ge
reduce the complexity of t
ELM model, thus obtaining

3.2 Biased ELM (bELM

The following theorem for
squares problem.

Theorem 1. Given a refer
biasing constant λ2, the pro

 ⎨
⎧

min
w

has solution

 w =

Proof
Equation (7) can be conven

⎩
⎨
⎧

min X
w

ve Bias for Semi-supervised Extreme Learning Machine

 (b)

rameter λ2 in the proposed problem setting. Two different si
eference w0 is closer to the true solution w* than wλ2=0; (b):
om the true solution w* than wλ2=0.

es addressed in Fig. 1 (a) and (b) show that, in general,
ulate the contribution provided by w0 to the cost funct
dvantage of biased regularization even when the refere

he crucial aspect is represented by the ability to shrink
et the optimal solution, which in turn means the ability
the hypothesis space. The next section extends (6) to
g the biased ELM (bELM).

M)

rmalizes the linear biased version of a regularized le

rence hyperplane w0, a regularization constant λ1, an
oblem:

⎭
⎬
⎫

⎩
⎨
⎧ −+− 2

02
12

2
wwyXw λλ

()021
1

1)(wyXIXX λλλ ++ − tt

niently rewritten as:

⎭
⎬
⎫−+− 021

212

2
wwwyXw λλλ

65

itua-
 the

, by
tion

ence
the

y to
the

east

nd a

(7)

(8)

66 F. Bisio et al.

The associated derivative is

 0211)(2)(wwyXwXww λλλ −+−=∇ tL

Setting ∇wL(w)=0 one obtains

 0211 2)2(wyXXXw λλλ +=+ tt

As a result

 ()021
1

1)(wyXIXXw λλλ ++= − tt

where I is an identity matrix Nh × Nh. □

Theorem 1 set the basis to obtain the model of the biased ELM, which only re-

quires one to substitute X with H in (7). As a result, the solution w of the bELM mod-
el can be expressed as follows:

 ()021
1

1)(wyHIHHw λλλ ++= − tt (9)

4 Semi-supervised Learning by Using bELM

This Section formalizes the semi-supervised classification scheme, and discusses the
appealing advantages provided by adopting the bELM model as a learning machine in
that framework.

4.1 A Semi-supervised Learning Scheme Based on Biased Regularization

The proposed formalization of the semi-supervised learning scheme applies the fol-
lowing notation:

• G is a dataset composed by P patterns; the first l patterns are labeled, the remaining
u patterns are unlabeled.

• GL is the subset of G composed by the labeled patterns; thus, GL = {(x,y)i; i =
1,…,l}

• GU is the subset of G composed by the remaining unlabeled patterns; thus, GU = {xi;
i = l +1,…,u}

The semi-supervised learning scheme requires one to apply a four-step procedure:

1. Clustering. Complete an unsupervised clustering (bi-partite in the simplest case) of
the dataset G by adopting any algorithm supporting that task.

2. Calibration. For each cluster: first, set the cluster label by adopting a majority vot-
ing scheme that exploits the labeled samples; second, assign that label to each
sample belonging to the cluster. Let y0 denote this new vector of labels.

 Inductive Bias for Semi-supervised Extreme Learning Machine 67

3. Mapping. Obtain w0 as the result of the training of a standard ELM on the dataset
G0 = {(x,y0)i; i = 1,…,P)} (as per (4)).

4. Biasing. Obtain w as the result of the training of a bELM biased by w0 on the da-
taset GL. The solution w eventually endows information from both the labeled da-
ta GL

 and the unlabeled data GU.

In this procedure, Step 4, ‘Biasing,’ is fully supported by the biased-regularization
scheme introduced in Sec. 3. The procedure has similarities to that adopted in deep
learning architectures [17]. In that case the training algorithm performs a preliminary
unsupervised stage, then uses labels only to adjust the network for the specific classi-
fication task; the eventual representation mostly reflects the outcome of the learning
process completed in pre-training phase. Likewise, in the proposed framework, a pre-
training phase builds w0 and a final adjustment derives the final w.

Overall, the proposed semi-supervised learning scheme possesses some interesting
features. First, the semi-supervised learning task is tackled by separating the two ac-
tions: clustering, and biasing. As a result, one can control and adjust each specific action
separately, e.g., by adopting a particular solution or by designing a new algorithm. This
may be the case for the clustering task: every clustering method can be used to build the
reference solution. Therefore, one may take advantage from methodologies that address
effectively complex, non linear domains. Second, a global solution is granted, as the
framework preserves the convexity of the original ELM cost function.

5 Experimental Results

The experimental section aims at evaluating the accuracy performances of the pro-
posed method on unseen data, i.e. to assess induction performances. Sec 5.1 proposes
a comparison between bELM and state-of-the-art methods for semi-supervised learn-
ing: LapRLS [10], LapSVM [10], TSVM [13], and SS-ELM [11].

5.1 Comparison with State-of-the-Art Methods

The experimental session was designed to compare the proposed semi-supervised
scheme with LapRLS, LapSVM, TSVM, and SS-ELM. To perform a fair comparison,
the experiments involved a dataset already addressed by those approaches: USPS [12].

As publicly available Matlab code is provided for LapRLS, LapSVM and TSVM
[19], experiments involving the proposed semi-supervised learning scheme were de-
veloped by embedding the both bELM and SS-ELM into those routines. As a result,
the experiments also exploited the data preprocessing designed by the authors of those
approaches. SS-ELM has been implemented in Matlab according to the algorithm
presented in [11]; the corresponding graph Laplacian has been computed by exploit-
ing the dedicated routine already provided in [19]. A publicly available Matlab ver-
sion of spectral clustering [18] has been used to support the clustering step in bELM.
The Matlab code of bELM is freely available at: http://www.sealab.dibe.unige.it/
biased_learning.

68 F. Bisio et al.

The experiment addressed the USPS dataset, which is an OCR dataset collecting
digits images. The experiment involved all the 45 bi-class problems that can be gen-
erated from the dataset. For each problem, the experimental set up followed that
adopted in [10]: the first 400 images are inserted in the training set and pre-processed
by PCA, which is exploited to obtain a feature space with dimension 100; the remain-
ing images compose the test set. For each class, 2 samples randomly selected were
labeled, while the others were left unlabeled. Results have been averaged over 10
random choices of labeled examples.

Fig. 2. Inductive accuracy on the USPS binary problems: (a) comparison between bELM and
TSVM; (b) comparison between bELM and LapSVM; (c) comparison between bELM and
LapRLS; (c) comparison between bELM and SS-ELM

 (a) (b)

(c) (d)

 Inductive Bias for Semi-supervised Extreme Learning Machine 69

Polynomial kernel was used of degree ‘3’ in LapSVM, LapRLS, and TSVM. The
parameters setting in [10] denotes that geometry information is very important to
correctly address this problem, as a 9:1 ratio in the regularizers settings results in a
predominance of the geometric term induced by the Graph Laplacian. Therefore, pa-
rameters λ1 and λ2 were set accordingly in all the experiments involving bELM: λ1 =
0.1 (i.e., C = 10 in SS-ELM) and λ2 = 1. These settings result in a configuration that
gives high confidence to the reference solution provided by clustering. The number of
neurons was set as Nh = 2000 both in bELM and SS-ELM.

Figure 2 compares the performances of bELM with those attained by LapRLS,
LapSVM, TSVM and SS-ELM. In particular: fig. 2(a) compares bELM with LapRLS;
fig. 2(b) compares bELM with LapSVM; fig. 2(c) compares bELM with TSVM; fig.
2(d) compares bELM with SS-ELM. All the results refer to the accuracy values ob-
tainable at the break-even points in the precision-recall curves; such set up follows the
one adopted in [10] and allows a fair comparison between the different approaches.
Numerical results show that in several cases the proposed semi-supervised scheme
improves over the other methods. Indeed, in a few cases the gain in classification
error obtained with bSVM and SS-ELM is significant.

6 Conclusions

The present research proves that using biasing techniques in regularization-based
learning can lead to an effective, yet simple learning scheme for semi-supervised
classification. The eventual framework is characterized by several appealing features.
First, the semi-supervised learning task is tackled by separating the two actions: clus-
tering, and biasing. Therefore, one can control and adjust a specific action separately,
e.g., by adopting a particular solution or by designing a new algorithm. This may be
the case for the clustering task, which can take advantage from methodologies that
address effectively complex, non linear domains. Second, if the employed learning
machine supports a convex optimization problem, the learning scheme preserves con-
vexity. In this paper, the proposed biased ELM indeed preserves the convexity of the
original ELM cost function.

Empirical evidence showed that bELM compares favorably with state-of-the-art
semi-supervised learning schemes. In particular, bELM can attain reliable perfor-
mance even when the number of labeled samples is very small (i.e., five samples or
less).

References

1. Mitchell, T.M.: The need for biases in learning generalizations, CBM-TR 5-110. Rutgers
University, New Brunswick (1980)

2. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme Learning Machine for Regression
and Multiclass Classification. IEEE Transactions on Systems, Man, and Cybernetics - Part
B: Cybernetics 42(2), 513–529 (2012)

70 F. Bisio et al.

3. Decherchi, S., Gastaldo, P., Zunino, R., Cambria, E., Redi, J.: Circular-ELM for the re-
duced-reference assessment of perceived image quality. Neurocomputing 102, 78–89
(2013)

4. Gastaldo, P., Zunino, R., Cambria, E., Decherchi, S.: Combining ELM with Random Pro-
jections. IEEE Intelligent Systems 28(6), 46–48 (2013)

5. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press (2006)
6. Poria, S., Gelbukh, A., Hussain, A., Bandyopadhyay, S., Howard, N.: Music genre classi-

fication: A semi-supervised approach. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F.,
Rodríguez, J.S., di Baja, G.S. (eds.) MCPR 2012. LNCS, vol. 7914, pp. 254–263. Spring-
er, Heidelberg (2013)

7. Poria, S., Gelbukh, A., Cambria, E., Das, D., Bandyopadhyay, S.: Enriching senticnet po-
larity scores through semi-supervised fuzzy clustering. In: 2012 IEEE 12th International
Conference on Data Mining Workshops (ICDMW), pp. 709–716. IEEE (December 2012)

8. Schölkopf, B., Herbrich, R., Smola, A.J.: A Generalized Representer Theorem. In:
Helmbold, D.P., Williamson, B. (eds.) COLT 2001 and EuroCOLT 2001. LNCS (LNAI),
vol. 2111, pp. 416–426. Springer, Heidelberg (2001)

9. Bisio, F., Gastaldo, P., Zunino, R., Decherchi, S.: Semi-supervised machine learning ap-
proach for unknown malicious software detection. In: Proceedings of the 2014 IEEE Inter-
national Symposium on Innovations in Intelligent Systems and Applications (INISTA), pp.
52–59. IEEE (June 2014)

10. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework
for learning from labeled and unlabeled examples. Journal of Machine Learning Re-
search 7, 2399–2434 (2006)

11. Huang, G., Song, S.D., Gupta, J.N., Wu, C.: Semi-Supervised and Unsupervised Extreme
Learning Machines. IEEE Trans, on Cybernetics, in print (accepted)

12. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multi
class.html

13. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience Pub (1998)
14. Tikhonov, A.N., Arsenin, V.Y.: Solution of Ill-posed Problems. Winston & Sons, Wash-

ington (1977)
15. Schlkopf, B., Smola, A.J.: Learning With Kernels. MIT Press (2001)
16. Utgoff, P.E.: Shift of bias for inductive concept learning. PhD Dissertation (1984)
17. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why Does

Unsupervised Pre-training Help Deep Learning? Journal of Machine Learning Re-
search 11, 625–660 (2010)

18. Chen, W.Y., Song, Y., Bai, H., Lin, C.J., Chang, E.Y.: Parallel Spectral Clustering in Dis-
tributed Systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(3),
568–586 (2011)

19. http://manifold.cs.uchicago.edu/
manifold_regularization/data.html

ELM Based Efficient Probabilistic Threshold

Query on Uncertain Data

Jiajia Li, Botao Wang, and Guoren Wang

College of Information Science & Engineering, Northeastern University, P.R. China
jiajia4487@gmail.com, {wangbotao,wangguoren}@ise.neu.edu.cn

Abstract. The probabilistic threshold query (PTQ), which returns all
the objects satisfying the query with probabilities higher than a prob-
ability threshold, is widely used in uncertain database. Most previous
work focused on the efficiency of query process, but paid no attention to
the setting of thresholds. However, setting the thresholds too high or too
low may lead to empty result or too many results. For a user, it is too
difficult to choose a suitable threshold for a query. In this paper, we pro-
pose a new framework for PTQs based on threshold classification using
ELM, where the probability threshold is replaced by the number range
of results which is more intuitive and easier to choose. We first intro-
duce the features selected for the probabilistic threshold nearest neigh-
bor query (PTNNQ), which is one of the most important PTQ types.
Then a threshold classification algorithm (TCA) using ELM is proposed
to set a suitable threshold for the PTNNQ. Further, the whole PTNNQ
processing integrated with TCA are presented, and a dynamic classifica-
tion strategy is proposed subsequently. Extensive experiments show that
compared with the thresholds those the users input directly, the thresh-
olds chosen by ELM classifiers are more suitable, which further improves
the performance of PTNNQ. In addition, ELM outperforms SVM with
regards to both the response time and classification accuracy.

Keywords: Probabilistic threshold query, Nearest neighbor query, Clas-
sification, Extreme learning machine.

1 Introduction

Uncertain data are inherent in numerous emerging applications due to limita-
tions of measuring equipment, delayed data updates, or privacy protection. As
pointed out in [1], queries based on these imprecise data may produce erroneous
results. In order to provide more accurate and informative answers for queries
on these uncertain data, the idea of probabilistic threshold query (PTQ) is pro-
posed, which returns all the objects satisfying the query with probabilities higher
than some probability threshold. The probability threshold nearest neighbor query
(PTNNQ) [1–3], as one of the most important types of PTQs, has attracted a lot
of research attention in the past decade. Though many interesting and efficient
pruning strategies are designed to answer the PTNNQ in previous work, PTQ
has inherent problems in choosing a suitable threshold. Particularly, setting the

c© Springer International Publishing Switzerland 2015 71
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_7

72 J. Li, B. Wang, and G. Wang

threshold too high may lead to empty result, and hence the query needs to be
restarted with a lower threshold. And setting the threshold too low may produce
too many results and increase query time. As far as we know, there is no previous
work paying attention to the threshold setting problem as done in this paper.

We observed that for a user, setting a suitable threshold is difficult, while
directly setting the number of results which they want is more intuitive and
easier. Therefore, we propose a transformation method, which transforms the
number range input by a user to a suitable threshold. That is, given a query
and a number range, the transformation method chooses a suitable probabilistic
threshold such that the number of results based on this threshold is located in
the number range. The relationship between number range and threshold is very
complex, so the classification method is utilized to realize this transformation.
Since most queries require real-time processing, one of the main challenges for the
classification method is the speed. Both the learning and classification process
should be fast enough. To suit our needs of speed, Extreme Learning Machine
(ELM) [4, 5] is adopted for classifying queries into their respective threshold
classes, because that ELM has more fast learning speed and better generalization
performance than neural networks and Support Vector Machines (SVMs) [6].

The main contributions in this paper are: (1) A new framework based on
threshold classification is proposed for PTQs (Sec. 4.1). It only needs a param-
eter of the required number of results, and the user doesn’t have to input the
probabilistic threshold which is difficult to choose. (2) Some useful features are
selected for the PTNNQ and a threshold classification algorithm (TCA) using
ELM is proposed(Sec. 4.2). (3) The whole PTQ processing integrated with the
proposed TCA for NN query is presented, and a dynamic classification strat-
egy is proposed (Sec. 4.3). (4) Extensive experiments are devised to study the
performance of the classification and query algorithms (Sec. 5).

2 Related Work

In recent years, a number of studies have been focused on the processing of NN
query on uncertain data. The probabilistic queries [7, 8] return all the objects
with non-zero probabilities of being NN query results, as well as their probabil-
ities. The top-k probable queries [9] return k objects with the highest probabil-
ities of being query results. Our work concentrate on the probabilistic threshold
queries, which return objects whose probabilities exceed a given threshold. In
this section, the existing work on PTNNQ are briefly reviewed.

Cheng et al. [1] first used the probability threshold as an answering criterion
for NN queries on uncertain data. Efficient verification methods, which utilized
an object’s uncertainty information and its relationship with other objects, were
proposed for deriving lower and upper bounds of an object’s probability being
query result. Later, the probabilistic threshold kNN (k > 1) query was studied
by Cheng et al. [2]. Since the evaluation of kNN faces the additional problem
of examining a large number of k-subsets, new methods to reduce the number
of candidate k-subsets were proposed. Yang et al. [3] studied the probabilistic

ELM Based Efficient Probabilistic Threshold Query on Uncertain Data 73

threshold kNN query in symbolic indoor space. The minimal indoor walking
distance (MIWD) metric was proposed and used to prune objects that have no
chance to be query results.

It can be seen that, although many pruning techniques were proposed for
probabilistic threshold NN query, there is no work paying attention to the prob-
abilistic threshold setting problem as done in this paper.

3 Background

3.1 Problem Definition

The definition of the suitable threshold is given below. Subsequently, the uncer-
tain model and the definition of PTNNQ are introduced.

Definition 1 (Suitable Threshold, s-threshold). Given a set of uncertain
objects U = {U1, ..., Un}, a query object q of any type, and a user-specified num-
ber range [nlb, nub], the probabilistic threshold λ is called a s-threshold iff the
number of objects that satisfy q with probabilities greater than λ is in [nlb, nub].

There are two common ways in describing an uncertain object, either contin-
uously which uses a probability density function (pdf) [1, 9] or discretely which
uses a discrete set of alternative values associated with assigned probabilities
[10–12]. In this paper, we adopt the discrete one.

Definition 2 (Probabilistic Threshold Nearest Neighbor Query,
PTNNQ). Given a set of n uncertain data objects U = {U1, ..., Un}, an un-
certain query object q = {q1, ..., qm} and a probabilistic threshold λ ∈ (0, 1], a
PTNNQ retrieves objects Ui ∈ U , such that they are expected to be the nearest
neighbor of query q with a probability higher than λ , that is,

PTNNQq = {Ui|
∑

ω∈Ω,qj∈q

P (ω) · δ(NNω
qj (Ui)) ≥ λ} (1)

where δ(NNω
qj (Ui)) is 1 if Ui is the NN of qj in possible world ω and 0 otherwise.

3.2 Review of Extreme Learning Machine (ELM)

ELM [4, 5] has originally been developed based on Single-hidden Layer Feedfor-
ward Neural Networks (SLFNs) and then extended to the “generalized” SLFNs,
where the hidden layer need not be neuron alike [13, 14]. ELM is less sensitive
to user specified parameters, and can be deployed faster and more conveniently
than conventional learning algorithms for classification [15, 16].

For N arbitrary distinct samples (xj , tj), where xj = [xj1, xj2, ..., xjn]
T ∈

Rn and tj = [tj1, tj2, ..., tjm]T ∈ Rm, standard SLFNs with hidden nodes L

and activation function g(x) are mathematically modeled as:
∑L

i=1 βigi(xj) =∑L
i=1 βig(wi · xj + bi) = oj , where L is the number of hidden layer nodes, wi is

74 J. Li, B. Wang, and G. Wang

the input weight vector, βi is the output weight vector, and bi is the threshold
of the ith hidden node, and oj is the jth output vector of the SLFNs [5].

The standard SLFNs can approximate these N samples with zero error. The
error of ELM is

∑L
j=1 ||oj − tj || = 0 and there exist βi, wi and bi such that

∑L
i=1 βig(wi · xj + bi) = tj , where j = 1, 2, . . . , N .
The equation above can be expressed compactly by: Hβ = T, where
H(w1,w2, . . . ,wL, b1, b2, . . . , bL,x1,x2, . . . ,xL)

=

⎡

⎢⎢⎢⎣

h(x1)
h(x2)

...
h(xN)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

g(w1 · x1 + b1) g(w2 · x1 + b2) . . . g(wL · x1 + bL)
g(w1 · x2 + b1) g(w2 · x2 + b2) . . . g(wL · x2 + bL)

...
...

...
...

g(w1 · xN + b1) g(w2 · xN + b2) . . . g(wL · xN + bL)

⎤

⎥⎥⎥⎦

N×L

(2)
with β = [βT

1 , . . . , β
T
L]

T
m×L and T = [tT1 , . . . , t

T
L]

T
m×N . The smallest norm least-

squares solution of the above multiple regression system is: β̂ = H†T, where H†

is the Moore-Penrose generalized inverse of matrix H. Then the output function
of ELM can be modeled as: f(x) = h(x)β = h(x)H†T

4 Probabilistic Threshold Query (PTQ)

In this section, the threshold classification based framework for PTQ is described
firstly. Then the features used to classify the threshold for PTNNQ are intro-
duced, and the ELM based threshold classification algorithm (TCA) is proposed.
Finally, the whole PTNNQ processing integrated with TCA are presented.

4.1 Framework and Basic Idea

The general framework for a PTQ on uncertain data usually consists of three
phases: filtering, verification and refinement, which is widely adopted in process-
ing probabilistic NN query [1, 2]. In this paper, a new framework is proposed,
which contains another phase named setting before the verification phase.

Figure 1 shows the details of the new framework for PTQs based on threshold
classification. The gray parts are new proposed in this paper, and the rest parts
are compatible with traditional algorithms. The main four phases are: (1) The
filtering phase is mainly to remove all objects who have no chance to be a query
result. The objects can’t be removed are inserted into cndSet. (2) The setting
phase is to set a s-threshold λ for query q based on the threshold classification,
which is the main work of this paper. Firstly, the useful feature values of q are
selected and computed. Then the corresponding threshold class of q is predicted
by ELM classifiers, and the predicted threshold of q is transferred to the next
phase. (3) The objective of the verification phase is to decide which objects
satisfy or fail the PTQs. Some probabilistic pruning algorithms may be proposed
and the objects that can’t be accepted or rejected are inserted into rfnSet. (4)
The last phase is refinement, in which the exact probability of each object in

ELM Based Efficient Probabilistic Threshold Query on Uncertain Data 75

Fig. 1. Framework of PTQ based on threshold classification

rfnSet is computed to decide the final results set rstSet. If the number of rstSet
is acceptable, the query is finished; or else, the threshold should be modified and
recall the third phase. In addition, if the dynamic environment is detected based
on a counting method, ELM classifiers should be retrained.

4.2 Feature Selection and Threshold Classification Algorithm

Feature selection plays an important role in the process of classification and
affects the accuracy to some exten. In this subsection, we discuss the problem
that which features should be selected for PTNNQ and the ELM based threshold
classification algorithm (TCA).

According to Definition 2, the probabilities of objects being PTNNQ results
may be affected by the attributes of the query q, the attributes of objects in
cndSet and the spatial relationship between q and these objects. The attributes
of q contain the coordinate of the center of uncertain region, the number of
instances contained in q, the user’s required number range of the results and
the difference between them. The attributes of the objects in cndSet contain
the number of objects, the sum number of the instances and the average radius
of the uncertain regions of the objects. The spatial relationship between q and
these objects contains the number of objects around q, and the sum number of
instances around q. In order to collect the information about the objects around
q, we use the regular grid decomposition method [17] to divide the region into

76 J. Li, B. Wang, and G. Wang

many cells. And then count the number of objects which located in the 9 cells
around q. And the length of each grid are also considered as the features.

Since ELM requires less training time and provides better performance than
traditional learning machines, it is adopted to classify the thresholds. Algorithm
1 shows the details of the proposed TCA based on ELM. The ELM classifier is
pre-computed using different training data based on ELM. When a query q is
issued, its corresponding feature values are first computed based on the informa-
tion of cndSet and q (line 1). Then the class is predicted by the ELM classifier
(line 2). And the threshold of q is set to the value of class divided by ten (line
3), that’s because the class is an integer between 1 and 10.

Algorithm 1. TCA(q, cndSet, classifier)

Input: query q, the candidate objects cndSet, the produced ELM
classifier in advance;

Output: the s-threshold λ for q
1 compute the feature values x of q based on cndSet;
2 predict the class of x using ELM classifier;
3 λ = class÷ 10;

4.3 Threshold Classification Based Query Processing

Since the data objects are not static in most applications for NN query, the
ELM classifier based on the old training data may bring incorrect classification.
Therefore, a dynamic classification strategy of ELM is proposed. And the whole
PTNNQ processing integrated with the proposed TCA is presented.

Dynamic classification means collecting training data dynamically and re-
training ELM classifiers dynamically. Each time the modification threshold
method is called, it’s means that a classification error occurs, a new sample
training data based on this query can be obtained. It is known that the retrain-
ing ELM processing is also a kind of overhead here. And there’s no need to
retrain the new data once a classification error occurs. To balance the trade-
off between the cost of retraining ELM and recomputing the query results, a
counting method is required to detect this dynamical environment. If the num-
ber of times that error occurs is up to some specified number, ELM classifiers
are retained immediately using these new sample training data. And the need
of online retraining is another motivation for us to adopt ELM as our classify
method, due to that ELM has more fast training time than other classifiers.

The pseudo code of the overall algorithm (namely FSVR) for PTNNQ is
shown in Algorithm 2, which mainly consists of four phases: filtering, setting,
verification, refinement. As introduced in Sec. 4.1, the setting phase is the focus
of our work. Therefore, the details of other three phases are omitted, and it is
worth noting that any spatial pruning algorithm, probabilistic pruning algorithm
and refinement algorithm can be applied to FSVR. Firstly, some variants are
initialized which will be used in the query processing (lines 1-3). Next, FSVR first
executes the corresponding algorithms of the four phases one by one (lines 4-7).

ELM Based Efficient Probabilistic Threshold Query on Uncertain Data 77

Algorithm 2. FSVR(q, nlb, nub)

Input: query q, the given number range [nlb, nub];
Output: the results set rstSet being NN query of q

1 pre-compute the classifier using ELM;
2 set the amount of error tolerance etNum;
3 bool errorF lag = 0;
4 execute the spatial pruning algorithms on q and get cndSet;
5 λ = TCA(q, cndSet, classifier);
6 execute the probabilistic pruning algorithms on cndSet using λ and get rfnSet

and a subset of rstSet;
7 compute the exact probability of each object in rfnSet, and put the results into

rstSet;
8 rstNum = Length(rstSet);
9 if (rstNum > nub) | | (rstNum < nlb) then

10 if rstNum > nub then
11 λ = λ + 0.1;

12 else
13 λ = λ - 0.1;

14 errorF lag = 1;
15 goto Line 3;

16 if errorF lay==1 then
17 insert the corresponding feature values and s-thresholdλ of q into the

errorList;
18 if the error number of the errorList > etNum then
19 retrain the ELM classifier with the new samples in errorList;

Then, if the number of results is unacceptable, the threshold will be modified and
the probabilistic pruning and refinement algorithms will be re-executed (lines 8-
15). At last, if the classification of the current query generates a non-s-threshold,
FSVR will check whether the ELM classifiers should be retrained (lines 16-19).

5 Experimental Evaluation

5.1 Experiment Setup

In this section, we compare our ELM classification based algorithm with other
probabilistic threshold query algorithms in a simulated environment[12]. The
examined algorithms are: (1) TPT, which is the traditional PTNNQ algorithm
that the thresholds are input by users. (2) TCSVM, which follows our framework
but using different classier SVM. (3) TCELM, which is our proposed algorithm as
illustrated in Algorithm 2. (4) sTCELM, which is the static version of TCELM.
That is, ELM classifier are never retrained even if a number of errors occur.

It’s worth mentioning that the three phases, filtering, verification and refine-
ment, are required by all the above algorithms. And the algorithms proposed

78 J. Li, B. Wang, and G. Wang

in [2] are applied. All the algorithms are implemented in C++ and complied
with GNN GCC. The hardware platform is a IBM X3500 server with 2 Quad
Core 1.3GHz CPUs and 16GB memory under linux (Red Hat 4.1.2-42). The
parameters used in our experiments are: (1) The number of uncertain objects.
The values are 20k, 40k, 60k, 80k, 100k, and 60k is the default one. (2) The
maximum number of instances per object. The values are 50, 100, 200, 400, and
100 is the default one. (3) The number of updates (deleted, added or moved).
The values are 200, 400, 600, 800, and 600 is the default one. For each setting,
2000 PTNNQs are issued, and the response time are averaged. In addition, data
objects are updated randomly and the length of the grid index is set to 200. The
size of training data set is 2000 and 50 hidden layer nodes are used for ELM.

5.2 Evaluation Results

Figure 2 illustrates the total numbers of modifications, that made by algorithms
for 2000 NN queries under different numbers of uncertain objects. It is interesting
to see that the number of objects has little effect on the number of modifications.
This’s because that for the TPT algorithms, the threshold and the number range
are both input randomly, so whether the threshold is a s-threshold or not is in-
dependent on the number of objects. And for the threshold classification based
TCSVM and TCELM, their classification accuracy have high stability with the
growth of the number of objects, which makes the number of the required modi-
fications keep invariable. It can also be seen that the numbers of modifications of
TCSVM and TCELM are far smaller than TPT, which shows that the threshold
classification based algorithms have more greater advantage in the threshold set-
ting problem. TCELM needs more smaller modifications than TCSVM, which
shows that the classification accuracy of ELM is higher than SVM.

Figure 3 illustrates the response time of the algorithms with different number
of uncertain objects. The response time increases as the number of objects gets
larger, this’s because more objects mean more required calculation operations
on distances and probabilities, which brings more expensive cost. The response
time of TCSVM and TCELM is far less than TPTs, this’s because the required
modifications of TCSVM and TCELM are far smaller than TPT, such that the
numbers of recalling verification and refinement are smaller. So, a large amount
of recalling time is saved in the query process.

Figure 4 illustrates the response time with regard to the maximum number
of instances per object. It can be seen that the response time increases as the
number of instances gets larger. Though the number of instances has little effect
on the threshold classification algorithm, the larger number of instances may
bring more calculations of distances and probabilities, which leads to the increase
of the whole response time. The response time of TCSVM and TCELM increase
more smoothly than TPT, due to that the smaller number of modifications save
a large amount of recalling time.

Figure 5 investigates the effect of the number of updates of objects within
2000 queries on sTCELM and TCELM. It can be seen that the modifications
of sTCELM increase as the number of updates gets larger, while TCELM is

ELM Based Efficient Probabilistic Threshold Query on Uncertain Data 79

 0

 400

 800

 1200

 1600

 2000

20 40 60 80

M

od
if

ic
at

io
ns

Number of objects (k)

TPT
TCSVM
TCELM

Fig. 2. Number of modifications vs. Num-
ber of objects

 0

 300

 600

 900

 1200

 1500

20 40 60 80

R
es

po
ns

e
tim

e
(m

s)

Number of objects (k)

TPT
TCSVM
TCELM

Fig. 3. Response time vs. Number of ob-
jects

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

50 100 200 400

R
es

po
ns

e
tim

e
(m

s)

Maximum number of instances

TPT
TCSVM
TCELM

Fig. 4.Response time vs. Maximum num-
ber of instances per object

 250

 300

 350

 400

 450

 500

200 400 600 800

M

od
if

ic
at

io
ns

Number of updates

sTCELM
TCELM

Fig. 5. Number of modifications vs. Num-
ber of updates of objects

not sensitive to the updates. This’s because when a larger number of updates
occur, the ELM classifier may not be applicable to the new environment any
longer. sTCELM never retrains the ELM classifier and the classification accuracy
decreases as updates increase, while TCELM retrains the ELM classifier based
on a counting method which increases the classification accuracy.

6 Conclusion

In this paper, we address the threshold setting problem for the widely used
probabilistic threshold queries (PTQs). A new framework, which is based on
threshold classification method and can be used to answer any type of PTQs,
is proposed. In particular, a threshold classification algorithm using ELM is
proposed to set a suitable threshold for queries. Additionally, in order to adapt
to the changes of environment, a dynamic classification strategy is proposed to
retrain ELM classifier dynamically. The results show that the thresholds set by
ELM classifier needs smaller modifications than those the user input directly.

For future work, we will study the evaluation of other PTQs utilizing the
proposed framework, e.g., reverse nearest neighbor query.

80 J. Li, B. Wang, and G. Wang

Acknowledgement. This research was partially supported by the National
Natural Science Foundation of China under Grant No. 61173030, 61272181,
61272182; and the Public Science and Technology Research Funds Projects
of Ocean Grant No.201105033; and the National Basic Research Program of
China under Grant No.2011CB302200-G; and the 863 Program under Grant
No.2012AA011004.

References

1. Cheng, R., Chen, J., Mokbel, M., Chow, C.Y.: Probabilistic verifiers: Evaluating
constrained nearest-neighbor queries over uncertain data. In: ICDE, pp. 973–982.
IEEE (2008)

2. Cheng, R., Chen, L., Chen, J., Xie, X.: Evaluating probability threshold k-nearest-
neighbor queries over uncertain data. In: EDBT, pp. 672–683. ACM (2009)

3. Yang, B., Lu, H., Jensen, C.S.: Probabilistic threshold k nearest neighbor queries
over moving objects in symbolic indoor space. In: EDBT, pp. 335–346. ACM (2010)

4. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning
scheme of feedforward neural networks. In: Proceedingsof the 2004 IEEE Interna-
tional Joint Conference on Neural Networks, vol. 2, pp. 985–990. IEEE (2004)

5. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and
applications. Neurocomputing 70(1), 489–501 (2006)

6. Schölkopf, B.: Support Vector LearningPhD thesis, Technischen Universität Berlin.
Published by: R. Oldenbourg Verlag, Munich (1997)

7. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in moving
object environments. TKDE 16(9), 1112–1127 (2004)

8. Cheng, R., Xie, X., Yiu, M.L., Chen, J., Sun, L.: Uv-diagram: A voronoi diagram
for uncertain data. In: ICDE, pp. 796–807. IEEE (2010)

9. Beskales, G., Soliman, M.A., IIyas, I.F.: Efficient search for the top-k probable
nearest neighbors in uncertain databases. VLDB 1(1), 326–339 (2008)

10. Cheema, M.A., Lin, X., Wang, W., Zhang, W., Pei, J.: Probabilistic reverse nearest
neighbor queries on uncertain data. TKDE 22(4), 550–564 (2010)

11. Bernecker, T., Emrich, T., Kriegel, H.P., Renz, M., Zankl, S., Züfle, A.: Effi-
cient probabilistic reverse nearest neighbor query processing on uncertain data.
VLDB 4(10), 669–680 (2011)

12. Li, J., Wang, B., Wang, G.: Efficient probabilistic reverse k-nearest neighbors query
processing on uncertain data. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W.,
Song, W. (eds.) DASFAA 2013, Part I. LNCS, vol. 7825, pp. 456–471. Springer,
Heidelberg (2013)

13. Huang, G.-B., Chen, L.: Letters: Convex incremental extreme learning machine.
Neurocomputing 70(16-18), 3056–3062 (2007)

14. Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learn-
ing machine. Neurocomputing 71(16-18), 3460–3468 (2008)

15. Huang, G.-B., Ding, X., Zhou, H.: Optimization method based extreme learning
machine for classification. Neurocomputing 74(1-3), 155–163 (2010)

16. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for re-
gression and multiclass classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 42(2), 513–529 (2012)

17. Nievergelt, J., Hinterberger, H., Sevcik, K.C.: The grid file: An adaptable, sym-
metric multikey file structure. TODS 9(1), 38–71 (1984)

Sample-Based Extreme Learning Machine

Regression with Absent Data

Hang Gao, Xinwang Liu, and Yuxing Peng

Science and Technology on Parallel and Distributed Processing Laboratory
National University of Defense Technology, Changsha, China, 410073

{hanggao1821,1022xinwang.liu}@gmail.com,
pengyuxing@aliyun.com

Abstract. Regression is of great importance in machine learning com-
munity. As one of state-of-the-art algorithms on this regard, extreme
learning machine (ELM) has been received intensive attention and suc-
cessfully applied into regression tasks. However, existing ELM regression
algorithms cannot effectively handle the problem of absent data, which
is relatively common in practical applications. In this paper, we propose
a sample-based ELM regression algorithm to tackle this issue. The cor-
responding optimization problem is reformulated as a convex one, which
can be readily implemented via off-the-shelf optimization packages. We
conduct comprehensive experiments on synthetic and UCI benchmark
datasets to compare the proposed algorithm with the widely used impu-
tation approaches, including zero-filling and mean-filling. As shown, our
algorithm demonstrates superior performance over the compared ones,
especially when the absent ratio is relatively intensive.

Keywords: Extreme learning machine, Absent data regression,
ε-insensitive regression.

1 Introduction

As a promising unified learning framework, extreme learning machine (ELM) has
been an active research topic in the last few years[1]. It was originally developed
for single hidden-layer feedforward neural networks (SLFNs), and achieves bet-
ter generalization than conventional neural networks[2]. With the advantage of
high efficiency, easy-implementation and universality, ELM has been successfully
applied in many real world applications[3–5]. As for regression, a fundamental
problem in machine learning, ELM provides general model for standard setting,
it achieves better predictive accuracy than traditional SLFNs[6]. In addition,
many variants and extensions were proposed. Following is a brief review. New
Fuzzy ELM (NF-ELM) takes the difference of data importance into account,
makes ELM less sensitive to outliers[7]. Considering irrelevant and correlate
data, optimally pruned ELM (OP-ELM) using pruned neurons leads to a more
robust algorithm[8]. Systematic two-stage algorithm (TS-ELM) was introduced
for regression to determine the network structure of basic ELM[9]. MapReduce-
based Parallel ELM was designed for large scale regression[10]. Based on the

c© Springer International Publishing Switzerland 2015 81
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_8

82 H. Gao, X. Liu, and Y. Peng

basic ELM, multiple regression machine system(MRMS) algorithm is aim to
establish the soft sensor for overcoming shortage of soft sensors in practical pro-
duction process[11]. Although there are many progress and extensions for ELM
regression, ELM cannot be applied directly in absent data regression. Nowadays,
due to equipment corruption or limit, missing values and unobserved data are
ubiquitous in regression analysis[12]. Widely used treatments are imputation
and omitting. Both of them preprocess the absent data and eliminate incom-
pleteness, then use standard regression algorithms in complete dataset. This can
be harmful when some useful information be deleted or inaccurate value be intro-
duced by imputation[13]. In this paper, we propose Sample-based ELM (S-ELM)
algorithm. As an extension of ELM, it can be directly applied in absent data re-
gression. We compare S-ELM and common imputation approaches in synthetic
and real world datasets. As experiments show, S-ELM achieves better predictive
accuracy, especially when absent ratio is relatively intensive. This paper is or-
ganized as follows. Section 2 discuss the absent data problem in regression and
gives a brief review of ELM regression. Section 3 proposed sample-based ELM re-
gression algorithm to handle absent data in regression. Performance evaluations
are presented in Section 4. Conclusions are given in Section 5.

2 Related Works

In this section, we give a brief explanation of absent data problem and illus-
trate its consequences in regression. Then, ELM for ε-insensitive regression is
introduced for the preliminary of latter proposed algorithm.

2.1 The Problem of Absent Data in Regression

Nowadays, with ever increasing data velocity and volume, absent data are com-
monly encountered in practice[14]. Absence means that there are some unob-
served value in datasets. In general, there are two types of absence, namely
absent feature and absent target. In this paper, we focus on the former one.
Besides, both training and testing phase are in our considerations. Absence can
occur when data collecting equipment malfunction. For example, sensors in a
remote sensor network may be damaged and cease to transmit data. Certain
regions of a gene microarray may fail to yield measurements of the underlying
gene expressions due to scratches, finger prints or dust[14]. Regression is widely
used for estimating the relationships among variables. Standard regression as-
sumes estimation are based on complete dataset (i.e. all the samples’ feature are
complete). Unfortunately, this kind of completeness is not always guaranteed
in real application. Standard regression algorithms cannot be directly applied
on absent datasets[15]. For dealing with this problem, there are three types of
treatments[13]. First is simply omitting the samples with absent features, then
carrying out standard regressions. Although the absent sample are not complete,
its remaining features contain some useful information for regression. So omit-
ting leads to error ignorance[16]. The second type of treatmeant is imputation,

Sample-Based Extreme Learning Machine Regression with Absent Data 83

which is also conducted before standard regression. Imputation can be done in
several ways[12]. A simple way is filling the absent features with some default
value such as zero or mean value of other samples. Another complex way is
using some probabilistic generative models to find most reasonable completion.
Obviously, imputation methods introduce extra processing steps before regres-
sion and worse still the estimation deviation may result in a certain degree of
prediction error and have side effect on regression accuracy. The third type of
treatment is extending standard regression algorithm[13]. Different from first
two, this elegant approach neither fill absent features with hypothetical value
nor delete incomplete samples. It makes sure no useful information lost and no
extra error introduced before regression. Our way follows last approach.

2.2 ELM for ε-Insensitive Regression

ELM, proposed by Huang, was originally invented for single hidden layer feed
forward neural networks (SLFNs). ELM tends to reach the minimum training
error as well as the minimum generalization error[2]. It has been successfully ap-
plied in many domains including regression and classification[3, 17]. Its’ general
optimization formula is as

min
β

||β||σ1
p + C × ||h(x)β − y||σ2

q , (1)

where β is output weight vector, σ1 > 0, σ2 > 0, p,q=0,1/2,1,2, h(.) is mapping
function, C is the regularization parameter which trades off the training error
and the norm of output weight. With different types of constraints (i.e. equality
and inequality constraints) and different value of parameters in Eq.(1), ELM has
variety of formulations. Inspired by Vapnik’s epsilon insensitive loss function, [18]
proposed ε-insensitive ELM. Its’ optimization formula is as follows,

min
β

(
1

2
× ||β||2 + C

2
∗ ||h(x)β − y||2ε

)
, (2)

where ε is insensitive factor and the error loss function is calculated by Eq.(3)

||h(x)β − y||ε2 =
n∑

i=1

|f(xi)− yi|ε2,

with |f(xi)− yi|ε = max{0, |f(xi)− yi| − ε}
(3)

Compared with the basic ELM regression, ELM with ε-insensitive loss func-
tion is less sensitive to different levels of noise[18]. It uses margin ε to measure
the empirical risk. ELM not only minimizes the training error but also controls
the sparsity of the solution. Meanwhile, with ε-insensitive loss function, regres-
sion are not so sensitive to noisy data and outliers[18]. However, ELM with
ε-insensitive loss function cannot handle the issue of absent data. In specific,
as can be seen in Eq.(2), sample vectors are assumed complete and required to
have corresponding components with output weight vector. Next, we present our
extension of ELM to tackle this issue.

84 H. Gao, X. Liu, and Y. Peng

3 Proposed Sample-Based ELM Regression

In this section, we start by explaining the sample-based subspaces. Based on
this, we define the Sample-based ELM for ε-insensitive regression and explain
its rationality in specific. After that, we reformulate its optimization formulation
as a convex one and solved it.

3.1 S-ELM Formulation

In basic ELM regression, each sample can be seen as a vector. Each component
of vector is correspondent to a sample feature[2]. In the standard setting, all
samples’ vectors have complete components and lie in the same space. While in
the case of absent data, sample vectors with absent components lie in their own
relevant subspaces. Considering the absent case in standard ELM optimization,
absence only affects the optimization through inner product with β. Intuitively,
the intuitive way is merely skipping the absent components. However, the dif-
ference of sample-based output weight vector is not considered. Referring to
Eq.(4), this method is equivalent to consider minimizing output weight in full
space while constraints are in subspaces.

In this paper, we propose that the output weight vectors in optimization are
sample-based and should be normalized in their own relevant subspaces. The core
of our proposed S-ELM is that the generalization performance is guaranteed by
the minimization of βi rather than β. Then, the S-ELM’s optimization formula
can be derived as Eq.(4). In this paper, we use 1-norm constraint ε-insensitive.
Actually, 2-norm formulation can be induced similarly.

min
β(i),ξi,ξ∗i

1

2
‖β(i)‖2 + C

n∑

i=1

(ξi + ξ∗i)

s.t. yi − β(i)T xi ≤ ε+ ξi

β(i)T xi − yi ≤ ε+ ξ∗i

(4)

In Eq.(4), different from basic ELM, it substitutes the basic output weight
vector β with sample-based output weight vector βi. The components of βi are
taken from β and its norm is calculated by Eq.(5).

||β(i)|| =
mi∑

p=1

β2
p, (5)

where βp is the pst component of β(i), mi is the number of features sample i
contains. In line with basic ELM, samples without absent feature reside in full
space and their corresponding β(i) are actually β.

Sample-Based Extreme Learning Machine Regression with Absent Data 85

3.2 S-ELM Optimization

Since the variance of different β(i)s, it is not feasible to solve Eq.(4) by using

standard method. With the observation of relation between β and β(i), we man-
age to remove this variance. First, with the observation that minimizing all β(i)

is equal to minimizing the maximum of all β(i), we change the formulation of
Eq.(4) as follows,

min
β(i),ξi,ξ∗i

(max
i

1

2
||β(i)||2 + C

n∑

i=1

(ξi + ξ∗i))

s.t. yi − β(i)T xi ≤ ε+ ξi

β(i)T xi − yi ≤ ε+ ξ∗i

(6)

Next, we introduce an absent matrix S. Each of its element S(i, p) represents
whether the xi’s pst component is absent or not. 0 represents absent while 1
represents not absent. Then, we use an auxiliary variable θ as follows,

θ = max
i

1

2
||β(i)||2 = max

i

1

2

m∑

p=1

S(i, p)βp. (7)

where m is the number of complete features. Then, Eq.(6) is rewritten as Eq.(8).

min
β(i),ξi,ξ∗i

θ + C

n∑

i=1

(ξi + ξ∗i)

s.t. yi − β(i)T xi ≤ ε+ ξi

β(i)T xi − yi ≤ ε+ ξ∗i

θ ≥ max
i

1

2

m∑

p=1

S(i, p)βp

(8)

Finally, S-ELM formulation is a convex optimization. It can be conveniently
solved by off the shelf convex optimization tools. In this paper, we use cvx[19].

3.3 Discussion

To further explain S-ELM, we discuss the differences among the proposed S-ELM
and a widely used imputation method zero-filling. The main difference is the way
of minimizing output weight vector. Zero-filling impute the absent value with
zero and optimizes β for all samples. Obviously, if the unobserved value of absent
feature is seriously derived from zero, zero-filling introduces considerable error.
While S-ELM take into account the variance of output weights, it minimize the
maximum of sample-based β(i). This way will not introduce extra error and make

86 H. Gao, X. Liu, and Y. Peng

training and prediction more accurate. For the same reason, S-ELM is different
from other imputation methods. Next, we demonstrate it in our experiments.

4 Experiments

All our simulations are implemented on MATLAB 2013b environment running
in Core(TM) 3.0 GHz CPU and 8 GB RAM. Before each algorithm run, there
are some preprocessing. The UCI benchmark datasets are normalized to [0, 1].
For synthetic datasets, all independent variables’ domain are in [0, 1], and their
intervals are randomly different. Both the synthetic datasets and UCI datasets
are permutated randomly and were spitted into training data and testing data
(#train

#test equals to 3
2). For each algorithm and each dataset, ε is set to be 0.01

empirically. The regularization factor C is chosen by five folds cross validations
for each dataset. Root mean square error (RMSE) is used as the criterion to
evaluate to prediction accuracy of algorithms. It is calculated as Eq.(9).

RMSE =

2

√√√√
n∑

t=1
(ŷt − yt)

n
(9)

In order to eliminate randomness, final RMSEs are the average of fifty times
repetitions. We also calculate the standard deviation to show the stability of
algorithms.

In the end of this subsection, we explain how to generate the absent matrix
S in Eq.(4). At first, S is a matrix with all its elements are set to be one. The
dimension of S is the same with X on the training data. Then, according to
absent ratio, we randomly choose the absent elements and set them to zero.
Note that there is no single row or column to be set all zeroes. Besides, absent
matrix on testing data are generated similarly.

4.1 Synthetic Dataset

To illustrate performance of S-ELM, we considered four synthetic datasets pro-
duced by four basic math functions list as Table. 1. As Fig.1 shows, It can be
observed that S-ELM achieves better prediction accuracy in different absent ra-
tio. Specifically, S-ELM performs better than ZF-ELM, which proofs that S-ELM
reduces generalization error by using sample-based output weight vector norm.
Compared with MF-ELM, S-ELM wins in most cases. A small case is MF-ELM
predicts more accurate than S-ELM. The reason is mean value sometimes close
to absent value. However, in case of higher absent ratio, S-ELM beats other two
methods.

4.2 Realworld Benchmark Dataset

To further illustrate the advantage of S-ELM, we use UCI benchmark datasets
for comparison. Table 2 specifies the UCI benchmark datasets used in our

Sample-Based Extreme Learning Machine Regression with Absent Data 87

Table 1. Synthetic datasets and corresponding functions

Dataset Function

Synthetic dataset1 f1(x) = x1 + x2 + x3 + x4 + x5 + x6

Synthetic dataset2 f2(x) = x1 × x2 × x3 + x2 × x3 × x4 + x3 × x4 × x5 + x4 × x5 × x6

Synthetic dataset3 f3(x) = 2x1 + 2x2 + 2x1 + 2x4 + 2x1 + 2x6

Synthetic dataset4 f4(x) =
x1+x2+x3
x4+x5+x6

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.06

0.08

0.1

0.12

0.14

0.16

0.18

absent ratio

R
M

S
E

Synthetic dataset 1

ZF−ELM
MF−ELM
S−ELM

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

absent ratio

R
M

S
E

Synthetic dataset 2

ZF−ELM
MF−ELM
S−ELM

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

absent ratio

R
M

S
E

Synthetic dataset 3

ZF−ELM
MF−ELM
S−ELM

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.25

0.3

0.35

0.4

0.45

0.5

absent ratio

R
M

S
E

Synthetic dataset 4

ZF−ELM
MF−ELM
S−ELM

Fig. 1. RMSE comparisons on the synthetic datasets

experiments. Those four datasets are varied in the number of samples and fea-
tures. Mean RMSE and standard dev are reported in Table 3. We can see S-ELM
performs better than zero-filling and mean-filling imputation methods in mean
RMSE and dev over different absent ratio. As Fig.2 shows, with the absent ratio
increasing, S-ELM’s prediction accuracy decreases mildly. Especially in Pyrim
dataset, when the number of samples is relatively small, imputation methods
are more inaccurate.

88 H. Gao, X. Liu, and Y. Peng

Table 2. The UCI benchmark datasets used in our experiments

Dataset # train # test # features

Bodyfat 152 100 14

Housing 304 202 13

Pyrim 45 29 27

Abalone 2507 1670 8

Table 3. Performance comparisons with UCI benchmark datasets. The two value of
each cell represents mean RMSE over different absent ratios and standard deviation.

S-ELM ZF-ELM MF-ELM

Bodyfat 0.1299 ± 0.0905 0.1781 ± 0.1007 0.1457 ± 0.1088
Housing 0.2229 ± 0.1019 0.3234 ± 0.1697 0.2511 ± 0.1261
Pyrim 0.3816 ± 0.0842 0.5603 ± 0.2253 0.4537 ± 0.1396
Abalone 0.2336 ± 0.1083 0.3004 ± 0.1537 0.2643 ± 0.1193

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.05

0.1

0.15

0.2

0.25

0.3

absent ratio

R
M

S
E

Bodyfat

ZF−ELM
MF−ELM
S−ELM

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

absent ratio

R
M

S
E

Housing

ZF−ELM
MF−ELM
S−ELM

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.3

0.4

0.5

0.6

0.7

0.8

absent ratio

R
M

S
E

Pyrim

ZF−ELM
MF−ELM
S−ELM

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

absent ratio

R
M

S
E

Abalone

ZF−ELM
MF−ELM
S−ELM

Fig. 2. RMSE comparisons on the UCI benchmark datasets

Sample-Based Extreme Learning Machine Regression with Absent Data 89

5 Conclusion

In this paper, we propose S-ELM algorithm in order to address the problem of
absent data in regression. Specifically, we extend the ε-insensitive ELM regression
by sample-based way and transform its formulation to a convex optimization.
As the experiments show, S-ELM achieves better performance than widely used
imputation methods, especially when the absent ratio is relatively intensive.
Many following work are worth exploring. Next, we are going to extend S-ELM
with kernel method or some mapping space.

Acknowledgement. This work is supported by the Major State Basic
Research Development Program of China (973 Program) under the Grant
No.2014CB340303, and the National High Technology Research and Develop-
ment Program of China (863 Program) under Grant No.2013AA01A213.

References

1. Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Inter-
national Journal of Machine Learning and Cybernetics 2(2), 107–122 (2011)

2. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning
scheme of feedforward neural networks. In: Proceedings. 2004 IEEE International
Joint Conference on Neural Networks, vol. 2, pp. 985–990. IEEE (2004)

3. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and
applications. Neurocomputing 70(1), 489–501 (2006)

4. Liu, Q., Yin, J., Leung, V.C., Zhai, J.-H., Cai, Z., Lin, J.: Applying a new localized
generalization error model to design neural networks trained with extreme learning
machine. Neural Computing and Applications, 1–8 (2014)

5. Xie, P., Liu, X., Yin, J., Wang, Y.: Absent extreme learning machine algorithm
with application to packed executable identification. Neural Computing and Ap-
plications, 1–8 (2013)

6. Huang, G.-B., Zhou, H., Ding, X., Zhang Extreme, R.: learning machine for re-
gression and multiclass classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 42(2), 513–529 (2012)

7. Zheng, E., Liu, J., Lu, H., Wang, L., Chen, L.: A new fuzzy extreme learning ma-
chine for regression problems with outliers or noises. In: Motoda, H., Wu, Z., Cao,
L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013, Part II. LNCS, vol. 8347,
pp. 524–534. Springer, Heidelberg (2013)

8. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: Op-elm:
optimally pruned extreme learning machine. IEEE Transactions on Neural Net-
works 21(1), 158–162 (2010)

9. Lan, Y., Soh, Y.C., Huang, G.-B.: Two-stage extreme learning machine for regres-
sion. Neurocomputing 73(16), 3028–3038 (2010)

10. He, Q., Shang, T., Zhuang, F., Shi, Z.: Parallel extreme learning machine for re-
gression based on mapreduce. Neurocomputing 102, 52–58 (2013)

11. Chang, Y., Wang, S., Tian, H., Zhao, Z.: Multiple regression machine system based
on ensemble extreme learning machine for soft sensor. Sensor Letters 11(4), 710–
714 (2013)

90 H. Gao, X. Liu, and Y. Peng

12. Royston, P.: Multiple imputation of missing values. Stata Journal 4, 227–241 (2004)
13. Chechik, G., Heitz, G., Elidan, G., Abbeel, P., Koller, D.: Max-margin classification

of data with absent features. The Journal of Machine Learning Research 9, 1–21
(2008)

14. Marlin, B.M.: Missing data problems in machine learning. Thesis (2008)
15. Horton, N.J., Lipsitz, S.R.: Multiple imputation in practice: comparison of soft-

ware packages for regression models with missing variables. The American Statis-
tician 55(3), 244–254 (2001)

16. Yuan, Y.C.: Multiple imputation for missing data: Concepts and new development
(version 9.0). SAS Institute Inc., Rockville (2010)

17. Wang, Y., Cao, F., Yuan, Y.: A study on effectiveness of extreme learning machine.
Neurocomputing 74(16), 2483–2490 (2011)

18. Balasundaram, S.: On extreme learning machine for -insensitiive regression in the
primal by newton method. Neural Computing and Applications 22(3-4), 559–567
(2013)

19. Inc. CVX Research. CVX: Matlab software for disciplined convex programming,
version 2.0 (August. 2012), http://cvxr.com/cvx

http://cvxr.com/cvx

Two Stages Query Processing Optimization

Based on ELM in the Cloud

Linlin Ding1, Yu Liu1, Baoyan Song1, and Junchang Xin2

1 School of Information, Liaoning University, Shenyang Liaoning, China, 110036
{dinglinlin,bysong}@lnu.edu.cn

2 College of Information Science & Engineering, Northeastern University,
Shenyang Liaoning, China, 110819

Abstract. As one variant of MapReduce framework, ComMapReduce
adds the lightweight communication mechanisms to improve the per-
formance of query processing programs. Although the existing research
work has already solved the problem of how to identify the communi-
cation strategy of ComMapReduce, there are still some drawbacks, such
as relative simple model and too much user participation. Therefore, in
this paper, we propose a two stages query processing optimization model
based on ELM, named ELM to ELM (E2E) model. Then, we develop
efficient sample training strategy, predicting and execution algorithm to
construct the E2E model. Finally, extensive experiments are conducted
to verify the effectiveness and efficiency of the E2E model.

Keywords: ELM, MapReduce, ComMapReduce, Prediction Model.

1 Introduction

Nowadays, MapReduce [1] has emerged as a famous programming framework
for big data analysis. MapReduce and its variants are used for big data appli-
cations, such as Web indexing, data mining, machine learning, financial analy-
sis [2–5]. As one of a successful improvements of MapReduce, ComMapRedcue
[2, 3] adds simple lightweight communication mechanisms to generate the certain
shared information and executes the query processing applications with large
scale datasets in the Cloud. In ComMapReduce framework, three basic and two
optimization communication strategies are proposed to illustrate how to com-
municate and obtain the shared information of different applications. During
further analyzing ComMapReduce execution course and the abundant experi-
ments, we find out that different communication strategies of ComMapReduce
can substantially affect the performance of query processing applications.

The existing work [6] proposes a query processing model named ELM CMR
based on ELM [7] which has the classification performance at an excellent per-
formance. ELM CMR can identify the communication strategy of ComMapRe-
duce according to the characteristics of query processing programs. However,
ELM CMR still has the following drawbacks. First, to the MapReduce or

c© Springer International Publishing Switzerland 2015 91
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_9

92 L. Ding et al.

ComMapReduce, a program only consists of black box Map and Reduce func-
tions, without knowing the distributed details about the framework. But the con-
figuration parameters of the framework can fully influence the performance of
query processing. Finding the most suitable configuration parameters setting it-
self is difficult. Second, ELM CMR only adopts simple training method to gain
the classification model.

Therefore, in this paper, for solving the above drawbacks, we propose the
two stages query processing optimization model based on ELM, named ELM to
ELM (E2E) model. The first stage gains the feature parameters according to the
program of users by using ELM algorithm. After that, according to the results
of the first stage, the second stage can identify the final classification result by
ELM too. Furthermore, an efficient training strategy, predicting and execution
algorithm are presented. The contributions of this paper can be summarized as
follows.

– We propose an efficient two stages query processing optimization model
based on ELM, E2E model, which can realize the most optimal executions
of query processing programs in MapReduce or ComMapReduce framework.

– We develop a sample training strategy, predicting and execution algorithm
to construct the E2E model.

– The experimental studies using synthetic data show the effectiveness and
efficiency of the E2E model.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the background, containing the ELM and ELM CMR. Our E2E model is
proposed in Section 3. The experimental results to show the performance of E2E
model are reported in Section 5. Finally, we conclude this paper in Section 6.

2 Background

2.1 Review of ELM

Nowadays, Extreme Learning Machine (ELM) [7] and its variants [8–18] have the
characteristics of excellent generalization performance, rapid training speed and
little human intervene, which have attracted increasing attention from more and
more researchers. ELM is originally designed for single hidden-layer feedforward
neural networks (SLFNs [19]) and is then extended to the “generalized” SLFNs.
ELM algorithm first randomly allocates the input weights and hidden layer biases
and then analytically computes the output weights of SLFNs. Contrary to the
other conventional learning algorithms, ELM reaches the optimal generalization
performance with a very fast learning speed. ELM is less sensitive to the user
defined parameters, so it can be deployed fast and convenient.

ForN arbitrary distinct samples (xj , tj), where xj = [xj1, xj2, . . . , xjn]
T ∈ R

n

and tj = [tj1, tj2, . . . , tjm]T ∈ R
m, standard SLFNs with hidden nodes L and

activation function g(x) are mathematically modeled as

L∑

i=1

βigi(xj) =

L∑

i=1

βig(wi · xj + bi) = oj (j = 1, 2, . . . , N) (1)

Two Stages Query Processing Optimization Based on ELM in the Cloud 93

where L is the number of hidden layer nodes, wi = [wi1, wi2, . . . , win]
T is

the weight vector between the ith hidden node and the input nodes, βi =
[βi1, βi2, . . . , βim]T is the weight vector connecting the ith hidden node and
the output nodes, bi is the threshold of the ith hidden node, and oj =
[oj1, oj2, . . . , ojm]T is the jth output vector of the SLFNs.

The standard SLFNs can approximate these N samples with zero error. The
error of ELM is

∑L
j=1 ||oj − tj || = 0 and there exist βi, wi and bi such that

L∑

i=1

βig(wi · xj + bi) = tj (j = 1, 2, . . . , N) (2)

Equation (2) can be expressed compactly as follows:

Hβ = T (3)

where H(w1,w2, . . . ,wL, b1, b2, . . . , bL,x1,x2, . . . ,xL)

=

⎡

⎢⎢⎢⎣

h(x1)
h(x2)

...
h(xN)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

g(w1 · x1 + b1) g(w2 · x1 + b2) . . . g(wL · x1 + bL)
g(w1 · x2 + b1) g(w2 · x2 + b2) . . . g(wL · x2 + bL)

...
...

...
...

g(w1 · xN + b1) g(w2 · xN + b2) . . . g(wL · xN + bL)

⎤

⎥⎥⎥⎦

N×L

(4)

β =

⎡

⎢⎢⎢⎣

βT
1

βT
2
...
βT
L

⎤

⎥⎥⎥⎦

L×m

and T =

⎡

⎢⎢⎢⎣

tT1
tT2
...
tTN

⎤

⎥⎥⎥⎦

N×m

(5)

H is set as the hidden layer output matrix of the neural network. The ith column
of H is called the ith hidden node output with respect to inputs x1,x2, . . . ,xN .
The smallest norm least-squares solution of the above multiple regression system
is shown as follows:

β̂ = H†T (6)

whereH† is the Moore-Penrose generalized inverse of matrixH. Then the output
function of ELM can be modeled as follows.

f(x) = h(x)β = h(x)H†T (7)

2.2 ELM CMR Model

ComMapReduce [2, 3] is an improved MapReduce framework with lightweight
communication mechanisms. A new node, named the Coordinator node, is added
to store and generate the certain shared information of different applications.
In ComMapReduce, three basic communication strategies, LCS, ECS and HCS,
and two optimization communication strategies, PreOS and PostOS are proposed

94 L. Ding et al.

to identify how to receive and generate the shared information. In short, with-
out affecting the existing characteristics of the original MapReduce framework,
ComMapReduce is a successful parallel programming framework with global
shared information to filter the unpromising data of query processing programs.

Figure 1 shows the architecture of ELM CMR model. The four components of
ELM CMR are respectively the Feature Selector, the ELM Classifier, the Query
Optimizer and the Execution Fabric.

Training
Data

Feature Selector ELM Classifier

Query
Collector

Query Optimizer

Coordinator

Mapper

Mapper

Mapper

Reducer

Reducer

Split

Split

Split

Output

Output

...

...

... ...

Execution Fabric

Fig. 1. Architecture of ELM CMR Model

The Feature Selector mainly examines the training query processing programs
and selects the configuration parameters that can wholly affect the query per-
formance by the job profiles. Naturally, the parameters of program p can be di-
vided into three types, parameters that predominantly affect Map task execution;
parameters that predominantly affect Reduce task execution and the cluster pa-
rameters. Then, in each cluster, we adopt the minimum-redundancy-maximum-
relevance (mRMR) [20] feature selection to find the optimal parameters sharply
affecting the performance. And then, we generate the globally optimal configu-
ration parameter settings by combining the results of each subspace. Therefore,
the near-optimal configuration parameter setting can be generated.

After selecting the features of training data, the Feature Selector sends the
extracted training data to the ELM Classifier. It uses the training data to con-
struct the ELM model by the traditional ELM algorithm. After that, when there
are one or multiple queries to be processed, the ELM Classifier can rapidly ob-
tain the classification results of the queries, and then sends them to the Query
Optimizer.

The Query Optimizer applies the classification results of the ELM Classifier
and combines the implementation patterns to choose an optimized execution

Two Stages Query Processing Optimization Based on ELM in the Cloud 95

order. After gaining the execution order, the query is sent to the Execution
Fabric.

The Execution Fabric implements the program in ComMapReduce framework.
When there is one query to be processed, the Execution Fabric implements the
query according to the classification result of the Query Optimizer in ELM CMR.
When there are multiple queries to be processed, the multiple queries can be
classified by ELM Classifier and gain the best communication strategy of each
program. Then, a Task Scheduler Simulator is used to simulate the execution
time of queries. According to the execution time and the classification results
of the queries, the Query Optimizer designs an execution order following the
common principle of Shortest Job First (SJF) to implement multiple queries.

3 E2E Model

3.1 Overview of E2E Model

Our E2E model can identify the optimal communication strategies of query pro-
cessing programs in MapReduce or ComMapReduce, which contains three main
phases, respectively the training phase, the prediction phase and the execution
phase. Figure 2 shows the whole workflow of query processing in the E2E model.
The main workflow is as follows.

Classifications

Sample isolated &
pairwise

interactions

Higher
multiprogramming

level

ELM

Configuration
Parameters

ELM
Sample

E2E Model

Training Phase

Prediction Phase

Execution Phase

Fig. 2. Workflow of E2E Model

First, the training phase is responsible for extracting the training query pro-
cessing programs that have a large affect on the E2E model. In the training

96 L. Ding et al.

phase, we use sample-based training strategies to run our workload, in isola-
tion, pairwise and at several higher multi-programming levels. After gaining the
training samples, they can be used to generate the E2E model in the prediction
phase.

Second, in the prediction phase, by using the training samples from the train-
ing phase, the two stages E2E model can be generated based on the traditional
ELM algorithm. According to the user’s programs, the first stage can obtain
the most optimal feature parameters of the programs by ELM. And then, us-
ing the feature parameters of the first stage, the second stage can identify the
classification results of the query processing programs by ELM.

Third, after gaining the E2E model, for the query processing program sub-
mitted to MapReduce or ComMapReduce, we can predict the optimal commu-
nication strategy in the execution phase.

3.2 Training E2E Model

To obtain the prediction model more accurately, we need to train the E2E model.
Different from the simple training course of ELM CMR model, the training phase
of our E2E model consists of running the queries in isolation, pairwise as well
as at several higher multi-programming levels.

The E2E model realizes the training phase by sampling approach, containing
isolation, pairwise and higher degree of concurrency, which allows us to approx-
imate the running of queries in MapReduce or ComMapReduce. The course of
the training phase is displayed in Figure 2. First, we sample the workload in
isolation to gain how each query behaves, which can be seen as the baseline of
training. Second, according to the query types in our experiments, we build a ma-
trix of interaction by running all unique pairwise combinations. Pairwise sample
can help us to simply estimate the degree of concurrency. Here, Latin hypercube
sampling approach (LHS) can uniformly distribute our samples throughout our
prediction space, which can be realized by creating a hypercube with the same
dimension as the multi-programming level. We adopt LHS to sample at pairwise
or several higher multi-programming levels, and then select the samples that
every value on every plane gets inter selected exactly one. A simple example of
two dimensional LHS is shown in Table 1.

Table 1. An example of LHS

Query 1 2 3 4

1
√

2
√

3
√

4
√

Two Stages Query Processing Optimization Based on ELM in the Cloud 97

3.3 Predicting E2E Model

Then, we introduce the details of the prediction phase. A MapReduce job j
can be expressed by a MapReduce program p running on input data d and
cluster r, which can be expressed as j=< p, d, r, c > in short. We call the d, r,
c the feature parameters of p. The users only submit their jobs to MapReduce
or ComMapReduce without knowing the internal configuration details of the
system.

However, a number of choices can be made in order to fully specify how the
job should be executed. These choices, represented by c in < q, d, r, c >, stand
for a high dimensional space of configuration parameter settings, such as the
number of Map and Reduce task, the block size, the amount of memory, and so
on. The performance changes a lot in different configuration parameters. For any
parameter, its value is not specified explicitly during job submission, either the
default values shipped with the system or specified by the system administrator.
However, the normal users don’t understand the running details of MapReduce.
That is to say, finding good configuration settings for MapReduce job is time
consuming and requires extensive knowledge of system internals. Because the
users have little information of the parallelization details of MapReduce, it is
necessary to gain the suitable configuration parameters. The first stage of our
E2E model is to generate the model for identifying the suitable configuration pa-
rameters of query processing programs by ELM. The main goal of the first stage
is to construct a black box feature parameters of queries, containing < d, r, c >.
The configuration parameters wholly affecting the performance adopted by E2E
are the same as our ELM CMR approach. The corresponding information of the
job can be obtained from sampling a few tasks of the job. After the first stage,
the feature parameters setting can be obtained by ELM algorithm. After gain-
ing the configuration parameters, the second stage is to use them to predict the
communication strategy of ComMapReduce or MapReduce by ELM algorithm
too, and then generates the classification results.

4 Execution of E2E Model

When there is one new query being submitted, the E2E model generates its
classification result as soon as possible. According to the characteristics of the
coming query, the first stage of E2E model can generate the feature parameters
of this query based on ELM. After that, the user can make a decision that
whether adopting ComMapReduce or adopting which communication strategy
by the second stage of E2E model, and then implement the query processing
application.

The course of execution is shown in Algorithm 1. First, the most optimal
feature parameters of query processing job j are extracted in the first stage
of E2E model (Line 1). Second, after obtaining the feature parameters of job
j, the E2E generates the classification result of j (Line 2). Third, according
to the classification of j, the E2E ensures how to implement the query and

98 L. Ding et al.

Algorithm 1. Execution of E2E Model

1: Generate the feature parameters of j by the first stage of E2E model;
2: Generate the execution plan of j by the second stage of E2E model;
3: Execute j with its communication strategy;

sends it to MapReduce or ComMapReduce framework. The framework uses the
optimization result to execute the query program (Line 3).

For example, for a submitted skyline query, the first stage of E2E can obtain
the most optimal feature parameters of this skyline query. After abstracting its
feature parameters, the E2E can generate its classification and then identifies
the communication strategy of this skyline query, such as PostOS. After that,
the skyline query will be implemented in ComMapReduce with PostOS.

5 Performance Evaluation

5.1 Experimental Setup

The experimental setup is the same as ELM CMR model as follows. The exper-
imental setup is a Hadoop cluster running on 9 nodes in a high speed Gigabit
network, with one node as the Master node and the Coordinator node, the oth-
ers as the Slave nodes. Each node has an Intel Quad Core 2.66GHZ CPU, 4GB
memory and CentOS Linux 5.6. We use Hadoop 0.20.2 and compile the source
codes under JDK 1.6. The ELM algorithm is implemented in MATLABR2009a.

The data in our experiments are synthetic data. The classification results of
E2E model contains 7 types, respectively ECS, HCS-0.5, HCS-1, HCS-2, PreOS,
PostOS and MapReduce (MR). HCS-0.5 means the preassigned time interval of
HCS is 0.5s. We evaluate the performance of E2E model by comparing with
ELM CMR. Four typical query processing applications are adopted to evaluate
the peformance, respectively top-k, kNN, skyline and join.

5.2 Experimental Results

Figure 3 shows the performance of top-k queries (k=1000), with the data size is
2G, 4G, 6G and 8G in uniform distribution. We can see that the performance of
top-k queries in the classification results of E2E model is better than ELM CMR.
The reason is that E2E model can effectively evaluate the optimal configuration
parameters of the queries than ELM CMR model. When k is much smaller than
the original data, the global shared information of ComMapReduce can reach
the most optimal one quickly, so the Mappers can retrieve the shared information
in the initial phase to filter the unpromising data.

Figure 4 shows the performance of kNN queries with different data size of
uniform distribution. The performance of E2E is also optimal to ELM CMR
model, where the reason is that E2E model can gain the suitable classification
results.

Two Stages Query Processing Optimization Based on ELM in the Cloud 99

 20

 40

 60

 80

 100

 120

 2 4 6 8

R
un

ni
ng

 T
im

e
(s

)

Data Size (G)

E2E
ELM_CMR

Fig. 3. Performance of top-k Query

 0

 100

 200

 300

 400

 2 4 6 8

R
un

ni
ng

 T
im

e
(s

)

Data Size (G)

E2E
ELM_CMR

Fig. 4. Performance of kNN Query

Figure 5 shows the performance of skyline queries in anti-correlated distri-
bution with different data size. We can see that the performance of different
execution plans is not obviously different, but PostOS is a little better. The
reason is that the original data are skewed to the final results in anti-correlated
distribution. The percentage of filtering is low, so the performance difference
is not obvious. In this situation, although E2E and ELM CMR can obtain the
classification, it can also choose the other communication strategies.

Figure 6 shows the performance of join queries in different data size of small-
big tables, with the same data size of the small table 2G, and the different data

100 L. Ding et al.

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8

R
un

ni
ng

 T
im

e
(s

)

Data Size (G)

E2E
ELM_CMR

Fig. 5. Performance of Skyline Query

 0

 3200

 6400

 9600

 12800

 16000

 5 10 15 20

R
un

ni
ng

 T
im

e
(s

)

Data Size (G)

E2E
ELM_CMR

Fig. 6. Performance of join Query

sizes of big table are shown in Figure 6. The performance of E2E is much better
than ELM CMR. In ComMapReduce, the join attributes of the small table can
be set as the shared information to filter the unpromising intermediate results.

6 Conclusions

In this paper, we propose an efficient query processing optimization model based
on ELM, E2E model. Our E2E can effectively analyze the query processing

Two Stages Query Processing Optimization Based on ELM in the Cloud 101

applications, and then generates the most optimized executions of query pro-
cessing applications. After analyzing the problems of the former ELM CMR
model, we use two stages model to classify the query processing applications in
ComMapReduce framework. Then, we propose an efficient training approach to
train our model. We also give the predicting and query executions. The exper-
iments demonstrate that the E2E model is efficient and the query processing
applications can reach an optimal performance.

Acknowledgement. This research is supported by National Natural Science
Foundation of China (NO. 60873068, 61003003), Talent Projects of the Educa-
tional Department of Liaoning Province (NO. LR201017), the National Natural
Science Foundation of China under Grant Nos. 61100022.

References

1. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

2. Ding, L., Xin, J., Wang, G., Huang, S.: ComMapReduce: An improvement of
mapReduce with lightweight communication mechanisms. In: Lee, S.-g., Peng, Z.,
Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part II. LNCS,
vol. 7239, pp. 150–168. Springer, Heidelberg (2012)

3. Ding, L., Wang, G., Xin, J., Wang, X., Huang, S., Zhang, R.: Commapreduce:
an improvement of mapreduce with lightweight communication mechanisms. Data
Knowledge Engineering 88, 224–247 (2013)

4. Deng, D., Li, G., Hao, S., Wang, J., Feng, J.: Massjoin: A mapreduce-based method
for scalable string similarity joins. In: ICDE, pp. 340–351. IEEE (2014)

5. Qin, L., Yu, J.X., Chang, L., Cheng, H., Zhang, C., Lin, X.: Scalable big graph
processing in mapreduce. In: SIGMOD Conference, pp. 827–838. ACM (2014)

6. Ding, L., Xin, J., Wang, G.: An efficient query processing optimization based on
elm in the cloud. Neural Computing and Applications (2014)

7. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning
scheme of feedforward neural networks. In: Proceedings of the 2004 IEEE Interna-
tional Joint Conference on Neural Networks, vol. 2, pp. 985–990. IEEE (2004)

8. Lendasse, A., He, Q., Miche, Y., Huang, G.-B.: Advances in extreme learning
machines (elm2012). Neurocomputing 128, 1–3 (2014)

9. Zong, W., Huang, G.-B.: Learning to rank with extreme learning machine. Neural
Processing Letters 39(2), 155–166 (2014)

10. Basu, A., Shuo, S., Zhou, H., Lim, M.-H., Huang, G.-B.: Silicon spiking neurons
for hardware implementation of extreme learning machines. Neurocomputing 102,
125–134 (2013)

11. Xi-Zhao, W., Qing-Yan, S., Qing, M., Jun-Hai, Z.: Architecture selection for net-
works trained with extreme learning machine using localized generalization error
model. Neurocomputing 102, 3–9 (2013)

12. Zong, W., Huang, G.-B., Chen, Y.: Weighted extreme learning machine for imbal-
ance learning. Neurocomputing 101, 229–242 (2013)

13. He, Q., Shang, T., Zhuang, F., Shi, Z.: Parallel extreme learning machine for re-
gression based on mapreduce. Neurocomputing 102, 52–58 (2013)

102 L. Ding et al.

14. Zhang, R., Lan, Y., Huang, G.-B., Xu, Z.-B., Soh, Y.C.: Dynamic extreme learning
machine and its approximation capability. IEEE T. Cybernetics 43(6), 2054–2065
(2013)

15. Zhai, J.-H., Xu, H.-Y., Wang, X.-Z.: Dynamic ensemble extreme learning machine
based on sample entropy. Soft Computing 16(9), 1493–1502 (2012)

16. Sun, Y., Yuan, Y., Wang, G.: An os-elm based distributed ensemble classification
framework in p2p networks. Neurocomputing 74(16), 2438–2443 (2011)

17. Zhao, X.-g., Wang, G., Bi, X., Gong, P., Zhao, Y.: Xml document classification
based on elm. Neurocomputing 74(16), 2444–2451 (2011)

18. Jun, W., Shitong, W., Chung, F.-l.: Positive and negative fuzzy rule system, ex-
treme learning machine and image classification. International Journal of Machine
Learning and Cybernetics 2(4), 261–271 (2011)

19. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and
applications. Neurocomputing 70(1), 489–501 (2006)

20. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on
Pattern Analysis and Machine Intelligence 27(8), 1226–1238 (2005)

© Springer International Publishing Switzerland 2015
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,

103

Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_10

Domain Adaptation Transfer Extreme Learning
Machines

Lei Zhang1,2 and David Zhang2

1 College of Computer Science, Chongqing University, No.174 Shazheng Street,
ShapingBa District, Chongqing, China

leizhang@cqu.edu.cn
2 Department of Computing, The Hong Kong Polytechnic Unviersity, Hung Hom, Hong Kong

csdzhang@comp.polyu.edu.hk

Abstract. Extreme learning machines (ELMs) have been confirmed to be effi-
cient and effective learning techniques for pattern recognition and regression.
However, ELMs primarily focus on the supervised, semi-supervised and unsu-
pervised learning problems in single domain and the generalization ability in
multiple domains based learning issues is hardly studied. This paper aims to
propose a unified framework of ELMs with domain adaptation and improve
their transfer learning capability in cross domains without loss of the computa-
tional efficiency of traditional ELMs. We integrate domain adaptation into
ELMs and two algorithms including source domain adaptation transfer ELM
(TELM-SDA) and target domain adaptation transfer ELM (TELM-TDA) are
proposed. For insight of the difference among ELM, TELM-SDA and TELM-
TDA, two remarks are provided. Experiments on the popular sensor drift big
data with multiple batches in machine olfaction, the results clearly demonstrate
the characteristics of the proposed domain adaptation transfer ELMs that they
can not only copy with sensor drift efficiently without cumbersome measures
comparable to state-of-the-art methods but also bring new perspectives for
ELM.

Keywords: Extreme learning machine, domain adaptation, transfer learning,
semi-supervised learning.

1 Introduction

Extreme learning machine (ELM), proposed for solving a single layer feed-forward
network (SLFN) by Huang et al [1, 2], has been proven to be effective and efficient
algorithms for pattern classification and regression in different fields. ELM can ana-
lytically determine the output weights between the hidden layer and output layer
using Moore-Penrose generalized inverse by adopting the square loss of prediction
error, which then turns into solving a regularized least square problem efficiently in
closed form. The output of the hidden layer is activated by an infinitely differentiable
function with randomly selected input weights and biases of the hidden layer. Huang
[3] rigorously prove that the input weights and hidden layer biases can be randomly

104 L. Zhang and D. Zhang

assigned if the activation function is infinitely differentiable, who also showed that
single SLFN with randomly generated additive or RBF nodes with such activation
functions can universally approximate any continuous function on any compact sub-
space of Euclidean space [4].

In recent years, ELM has witnessed a number of improved versions in models, al-
gorithms and real-world applications. ELM shows a comparable or even higher pre-
diction accuracy than that of SVMs which solves a quadratic programming problem.
In [3], their differences have been discussed. Some specific examples of improved
ELMs have been listed as follows. As the output weights are computed with prefixed
input weights and biases of hidden layer, a set of non-optimal input weights and hid-
den biases may exist. Additionally, ELM may require more hidden neurons than con-
ventional learning algorithms in some special applications. Therefore, Zhu et al [5]
proposed an evolutionary ELM for more compact networks that speed the response of
trained networks. In terms of the imbalanced number of classes, a weighted ELM was
proposed for binary/multiclass classification tasks with both balanced and imbalanced
data distribution [6]. Due to that the solution of ELM is dense which will require
longer time for training in large scale applications, Bai et al [7] proposed a sparse
ELM for reducing storage space and testing time. Besides, Li et al [8] also proposed a
fast sparse approximation of ELM for sparse classifiers training at a rather low com-
plexity without reducing the generalization performance. For all the versions of ELM
mentioned above, supervised learning framework was widely explored in application
which limits its ability due to the difficulty in obtaining the labeled data. Therefore,
Huang et al [9] proposed a semi-supervised ELM, in which a manifold regularization
with graph Laplacian was set, and under the formulation of semi-supervised ELM, an
unsupervised ELM was also explored.

In the past years, the contributions to ELM theories and applications have been
made substantially by researchers from various fields. However, with the rising of big
data, the data distribution obtained in different stages with different experimental
conditions may change, i.e. from different domains. It is also well know that collec-
tion of labeled instances is tedious and labor ineffective, while the classifiers trained
by a small number of labeled data are not robust and therefore lead to weak generali-
zation, especially for large-scale application. Though ELM performs better generali-
zation in a number of labeled data, the transferring capability of ELM may be reduced
with very little number of labeled training instances from different domains. Domain
adaptation methods have been proposed for classifiers learning with a few labeled
instances from target domains by leveraging a number of labeled samples from the
source domains [10-14]. Domain adaptation methods have also been employed for
object recognition and sensor drift compensation [15, 16]. It is worth noting that do-
main adaptation is different from semi-supervised learning which assumes that the
labeled and unlabeled data are from the same domain in classifier training.

In this paper, we extend ELMs to handle domain adaptation problems for improv-
ing the transferring capability of ELM between multiple domains with very few
labeled guide instances in target domain, and overcome the generalization disad-
vantages of ELM in multi-domains application. Inspired by domain adaptation theory,
two domain adaptation ELMs with similar structures but different knowledge

 Domain Adaptation Transfer Extreme Learning Machines 105

adaptation characteristics are proposed for domain adaptation learning and knowledge
transfer. The proposed domain adaptation ELMs are named as source domain adapta-
tion transfer ELM (TELM-SDA) and target domain adaptation transfer ELM (TELM-
TDA), respectively. Specifically, TELM-TDA learns a classifier using the very few
labeled instances from target domain, while the remaining numerous unlabeled data
are also fully exploited by approximating the prediction of the base classifier which
can be trained in the source domain by regularized ELM or SVM. TELM-SDA is a
more instinct framework which learns a classifier by using the large number of la-
beled data from the source domain, and very few labeled instances from target do-
main as regularization. From the learning mechanism of both domain adaptation
ELMs, TELM-TDA has larger computation than TELM-SDA, due to the base classi-
fier training and the numerous unlabeled data from target domain considered in learn-
ing. It is worth noting that both TELM-TDA and TELM-SDA can be formed into a
unified ELM framework which refers to two stages including random feature map-
ping and output weights training.

The rest of this paper is organized as follows. In Section 2, a brief review of ELM
is presented. In Section 3, the proposed TELM-SDA is illustrated in principle and
algorithm. In Section 4, the proposed TELM-TDA is presented with its principle and
algorithm. In Section 5, we present the experiments and results on the popular sensor
drift data with multiple batches collected by electronic nose with 3 years for gas
recognition. The conclusion of this paper is given in Section 6.

2 Related Work: A Brief Review of ELM

Given N samples [ܠଵ, ,ଶܠ ⋯ , ,ଵܜ]ே] and their corresponding targetܠ ,ଶܜ ⋯ , ௜ܠ ே], whereܜ = ,௜ଵݔ] ,௜ଵݔ ⋯ , ௜௡]Tݔ ∈ ℝ௡ and ܜ௜ = ,௜ଵݐ] ,௜ଵݐ ⋯ , ௜௠]Tݐ ∈ ℝ௠ . The output of the
hidden layer is denoted as ℎ(ܠ௜) ∈ ℝଵ×௅, where L is the number of hidden nodes and ℎ(∙) is the activation function (e.g. RBF function, sigmoid function). The output
weights between the hidden layer and the output layer being learned is denoted as ઺ ∈ ℝ௅×௠, where O is the number of output nodes.

Regularized ELM aims to solve the output weights by minimizing the squared loss
summation of prediction errors and the norm of the output weights for over-fitting
control, which results in the following formulation

 ቊmin઺ ℒா௅ெ = ଵଶ ԡ઺ԡଶ + ܥ ∙ ଵଶ ∙ ∑ ૆௜ଶே௜ୀଵ .ݏ ઺(௜ܠ)h .ݐ = ௜ܜ − ૆௜, ݅ = 1, … , ܰ (1)

where ૆௜ denotes the prediction error w.r.t. the i-th training pattern, and C is a penalty
constant on the training errors.

By substituting the constraint term in (1) into the objective function, an equivalent
unconstrained optimization problem can be obtained as follows

 min઺∈ℝಽ×೘ ℒா௅ெ = ଵଶ ԡ઺ԡଶ + ܥ ∙ ଵଶ ∙ ԡ܂ − ۶઺ԡଶ (2)

where ۶ = [ℎ(ܠଵ); ℎ(ܠଶ); … ; ℎ(ܠே)] ∈ ℝே×௅ and ܂ = ,ଵܜ] ,ଶܜ … , .ே]Tܜ

106 L. Zhang and D. Zhang

The optimization problem (2) is a well known regularized least square problem.
The closed form solution of ઺ can be easily solved by setting the gradient of the sub-
jective function (2) w.r.t. ઺ to zero.

There are two cases when solving ઺, i.e. if the number N of training patterns is
larger than L, the gradient equation is over-determined, and the closed form solution
can be obtained as

 ઺∗ = ቀ۶T۶ + ۷ಽ஼ ቁିଵ ۶T(3) ܂

where ۷௅ denotes the identity matrix with size of L.
If the number N of training patterns is smaller than L, an under-determined least

square problem would be handled. In this case, the solution of (2) can be obtained as

 ઺∗ = ۶T ቀ۶۶T + ۷஼ಿ ቁିଵ (4) ܂

where ۷ே denotes the identity matrix with size of N.
Therefore, in classifier training of ELM, the output weights can be computed by

using (3) or (4) which depends on the number of training instances and the number of
hidden nodes.

3 Proposed Domain Adaptation Transfer ELM

3.1 Source Domain Adaptation Transfer ELM (TELM-SDA)

Suppose that the source domain and target domain are represented DS and DT. In this
paper, we assume that all the samples in the source domain are labeled data. The pro-
posed TELM-SDA aims to learn a classifier ߚௌ using a number of labeled instances
from the source domain, and set the very few labeled data from the target domain as
an appropriate regularizer for adapting to the source domain. The TELM-SDA can be
formulated as

 minఉೄ,కೄ೔ ,క೅೔ ଵଶ ԡߚௌԡଶ + ௌܥ ଵଶ ∑ ൫ߦௌ௜ ൯ଶேೄ௜ୀଵ + ்ܥ ଵଶ ∑ ൫ߦ௝் ൯ଶே೅௝ୀଵ (5)

 s. t. ቊ ௌ௜ܪ ௌߚ = ௌ௜ݐ − ௌ௜ߦ , ݅ = 1, … , ௌܰܪ௝் ௌߚ = ௝்ݐ − ௝்ߦ , ݆ = 1, … , ்ܰ

where ܪ௦௜ ∈ ℝଵ×௅, ௦௜ߦ ∈ ℝଵ×௠, ௦௜ݐ ∈ ℝଵ×௠denote the output of hidden layer, the predic-
tion error and the label with respect to the i-th training instance ݔௌ௜ from the source
domain, ܪ௝் ∈ ℝଵ×௅, ௝்ߦ ∈ ℝଵ×௠, ௝்ݐ ∈ ℝଵ×௠ denote the output of hidden layer, the

prediction error and the label with respect to the j-th guide samples ݔ௝் from the target
domain, ߚௌ ∈ ℝ௅×௠ is the output weights being solved, NS and NT denote the number
of training instances and guide samples from the source domain and target domain,
respectively, CS and CT are the penalty coefficients on the prediction errors of the

 Domain Adaptation Transfer Extreme Learning Machines 107

labeled training data from source domain and target domain, respectively. Note that we
call the very few labeled samples in target domain as “guide samples” in this paper.

From (5), we can find that the very few labeled guide samples from target domain
can assist the learning of ߚௌ and realize the knowledge transfer between source do-
main and target domain by introducing the third term as regularization with the se-
cond constraint, which makes the feature mapping of the guide samples from target
domain approximate the labels with the output weights ߚௌ learned by the training
data from the source domain. The structure of the proposed TELM-SDA algorithm is
illustrated in Fig.1.

To solve the optimization (5), the Largange multiplier equation is formulated as

,ௌߚ൫ܮ ௌ௜ߦ , ௝்ߦ , ,ௌߙ ൯்ߙ = ଵଶ ԡߚௌԡଶ + ௌܥ ଵଶ ∑ ൫ߦௌ௜ ൯ଶேೄ௜ୀଵ + ்ܥ ଵଶ ∑ ൫ߦ௝் ൯ଶே೅௝ୀଵ ௌߚௌ௜ܪௌ൫ߙ− (6) − ௌ௜ݐ + ௌ௜ߦ ൯−்ߙ൫ܪ௜் ்ߚ − ௜்ݐ + ௜்ߦ ൯

By setting the partial derivation with respect to ߚௌ, ௌ௜ߦ , ௝்ߦ , ,ௌߙ ்ߙ as zero, we have

ەۖۖۖ
۔ۖ
ۓۖۖ ப௅பఉೄ = 0 → ௌߚ = ௌߙௌTܪ + ப௅பకೄ்ߙT்ܪ = 0 → ௌߙ = ௌப௅பక೅ߦௌܥ = 0 → ்ߙ = ப௅பఈೄ்ߦ்ܥ = 0 → ௌߚௌܪ − ௌݐ + ௌߦ = 0ப௅பఈ೅ = 0 → ௌߚ்ܪ − ்ݐ + ்ߦ = 0

 (7)

where HS and HT are the output matrix of hidden layer with respect to the labeled data
from source domain and target domain, respectively.

To solve ߚௌ ௌߙ , and ்ߙ should be solve first. For the case that the number of
training samples NS is smaller than L (NS<L), we substitute the 1st, 2nd, and 3rd equa-
tions into the 4th and 5th equations in (7), there is

 ቐܪ்ܪௌTߙௌ + ቀܪ்ܪT் + ூ஼೅ቁ ்ߙ = ்ߙT்ܪௌܪ்ݐ + ቀܪௌܪௌT + ூ஼ೄቁ ௌߙ = ௌݐ (8)

Let ܪ்ܪௌT = ,ܣ T்ܪ்ܪ + ூ஼೅ = ,ܤ T்ܪௌܪ = ,ܥ ௌTܪௌܪ + ூ஼ೄ = then eq.(8) can be , ܦ

written as

 ൜ߙܣௌ + ்ߙܤ = ்ߙܥ்ݐ + ௌߙܦ = ௌݐ → ൜ିܤଵߙܣௌ + ்ߙ = ்ߙܥ்ݐଵିܤ + ௌߙܦ = ௌ (9)ݐ

Then ߙௌ and ்ߙ can be solved as

 ൜ ௌߙ = ܣଵିܤܥ) − ்ݐଵିܤܥ)ଵି(ܦ − ்ߙ (ௌݐ = ்ݐଵିܤ − ܣଵିܤܥ)ܣଵିܤ − ்ݐଵିܤܥ)ଵି(ܦ − ௌ) (10)ݐ

108 L. Zhang and D. Zhang

According to the 1st equation in (7), we can obtain the output weights as ߚௌ = ௌߙௌTܪ + ்ߙT்ܪ

 = ܣଵିܤܥ)ௌTܪ − ்ݐଵିܤܥ)ଵି(ܦ − (ௌݐ +

்ݐଵିܤ]T்ܪ − ܣଵିܤܥ)ܣଵିܤ − ்ݐଵିܤܥ)ଵି(ܦ − ௌ)] (11)ݐ

where ܣ = ,ௌTܪ்ܪ ܤ = T்ܪ்ܪ + ூ஼೅ , ܥ = ,T்ܪௌܪ ܦ = ௌTܪௌܪ + ூ஼ೄ, I is the identity ma-

trix with size of NS.
For the case that the number of training samples NS is larger than L (NS>L), we can

obtain from the 1st equation in (7) that ߙௌ = ௌߚௌܪ)ଵି(ௌTܪௌܪ) − which is ,(்ߙT்ܪௌܪ
substituted into the 4th and 5th equations, then we calculate the output weights ߚௌ as
follows

൜ ௌߚௌܪ + ௌߦ = ௌߚ்ܪௌݐ + ்ߦ = ்ݐ → ۔ە
ۓ ௌߚௌܪ + ௌܥܫ ௌߙ = ௌߚ்ܪௌݐ + ்ܥܫ ்ߙ = ்ݐ → ۔ە

ௌߚௌܪௌTܪۓ + ௌܥܫ ௌߙௌTܪ = ௌߚ்ܪௌݐௌTܪ + ்ܥܫ ்ߙ = ்ݐ

 → ቐܪௌTܪௌߚௌ + ௌܥܫ ௌߚௌܪ)ଵି(ௌTܪௌܪ)ௌTܪ − (்ߙT்ܪௌܪ = ்ߙௌݐௌTܪ = ்ݐ)்ܥ − (ௌߚ்ܪ

 → ቐ൤ܪௌTܪௌ + ௌܥܫ ௌ൨ܪଵି(ௌTܪௌܪ)ௌTܪ ௌߚ − ௌܥܫ ்ߙT்ܪௌܪଵି(ௌTܪௌܪ)ௌTܪ = ்ߙௌݐௌTܪ = ்ݐ)்ܥ − (ௌߚ்ܪ

 → ൬ܪௌTܪௌ + ௌܥܫ + ௌܥ்ܥ ൰்ܪT்ܪ ௌߚ = ௌݐௌTܪ + ௌܥ்ܥ → ்ݐT்ܪ ௌߚ = ܫ) + ௌܪௌTܪௌܥ + ௌݐௌTܪௌܥ)ଵି(்ܪT்ܪ்ܥ + (்ݐT்ܪ்ܥ
 (12)

where I is the identity matrix with size of L.
In fact, the optimization (5) can be reformulated an equivalent unconstrained opti-

mization problem in a matrix form by substituting the constraints into the objective
function as minఉೄ (ௌߚ)ா௅ெିௌ஽஺்ܮ = ଵଶ ԡߚௌԡଶ + ௌܥ ଵଶ ԡݐௌ − ௌԡଶߚௌܪ + ்ܥ ଵଶ ԡ்ݐ − ௌԡଶ (13)ߚ்ܪ

By setting the gradient of ்ܮா௅ெିௌ஽஺ with respect to ߚௌ as zero, there is ∇்ܮா௅ெିௌ஽஺ = ௌߚ − ௌݐ)ௌTܪௌܥ − (ௌߚௌܪ − ்ݐ)T்ܪ்ܥ − (ௌߚ்ܪ = 0 (14)

Then, we can easily solve the ߚௌ as formulated in (12).

 Domain Adaptation Transfer Extreme Learning Machines 109

For recognition of the numerous unlabeled data in target domain, we calculate the
final output using the following ்ݕ௨௞ = ௨௞்ܪ ∙ ,ௌߚ ݇ = 1, … , ்ܰ௨ (15)

where ்ܪ௨௞ denote the hidden layer output with respect to the k-th unlabeled vector in
target domain, and ்ܰ௨ is the number of unlabeled vectors in target domain.

In terms of the above discussion, the TELM-SDA algorithm is summarized as
Algorithm 1.

Fig. 1. Structure of TELM-SDA algorithm with M target domains (M tasks). The solid arrow
denotes the training data from source domain ܦௌ and the dashed arrow denotes the tiny labeled
guide data from target domain ܦ௟் for classifier learning. The unlabeled data from ܦ௨் are not
used.

Algorithm 1. TELM-SDA algorithm
Input:

Training samples { ௌܺ, {ௌݐ = ௌ௜ݔ} , ௌ௜ݐ }௜ୀଵேೄ of the source domain S;

Labeled guide samples {்ܺ, {்ݐ = ௝்ݔ} , ௝்ݐ }௝ୀଵே೅ of the target domain T;

The tradeoff parameter CS and CT for source and target domain T.
Output:

The output weights ߚௌ;
The predicted output ்ݕ௨ of unlabeled data in target domain.

Procedure:
1. Initialize the ELM network of L hidden neurons with random input

weights W and hidden bias B.
2. Calculate the output matrix ܪௌ and ்ܪ of hidden layer with source

and target domains as ܪௌ = ℎ(ܹ ∙ ௌܺ + ்ܪ and (ܤ = ℎ(ܹ ∙ ்ܺ + .(ܤ
3. If NS<L, compute the output weights ߚௌ using (11);

Else, compute the output weights ߚௌ using (12).
4. Calculate the predicted output ்ݕ௨ using (15).

Return The output weights ߚௌ and predicted output .௨்ݕ

 ௌܦ

ଵ௟,்ܦ ଵ௨,்ܦ ଶ௟,்ܦ ଶ௨,்ܦ ெ௟,்ܦ ெ௨,்ܦ

ௌெߚ ௌଶߚ ௌଵߚ

110 L. Zhang and D. Zhang

3.2 Target Domain Adaptation Transfer ELM (TELM-TDA)

In the proposed TELM-SDA, the classifier ߚௌ is learned on the source domain with
the very few labeled guide samples from the target domain as regularization. Study
demonstrates that unlabeled data can also improve the performance of classification
[17]. While the proposed TELM-TDA aims to learn a classifier ்ߚ on the very few
labeled guide samples from the target domain, and fully explore the numerous unla-
beled data in the target domain with a base classifier ߚௌ trained in source domain. As
illustrated, the proposed TELM-SDA is formulated as minఉ೅ (்ߚ)ா௅ெି்஽஺்ܮ = 12 ԡ்ߚԡଶ + ்ܥ 12 ԡ்ݐ − ԡଶ்ߚ்ܪ + ௨்ܥ 12 ԡ்ܪ௨ߚௌ − ԡଶ்ߚ௨்ܪ

(16)

where ்ߚ denotes the learned classifier, ்ܥ, ,்ܪ ்ݐ are the same as that in TELM-
SDA, ்ܥ௨, -௨ denote the regularization parameter and the output matrix of the hid்ܪ
den layer with respect to the unlabeled data XTu in target domain DT, where ்ܦ = ்ܺ ∪ ்ܺ௨. The first term is to against the over-fitting, the second term is the
least square loss function, and the third term is the regularization which means the
domain adaptation between source domain and target domain. Note that ߚௌ is a base
classifier trained in source domain. In this paper, regularized ELM is used to train a
base classifier ߚௌ by solving minఉೄ (ௌߚ)ா௅ெି்஽஺்ܮ = ଵଶ ԡߚௌԡଶ + ௌܥ ଵଶ ԡݐௌ − ௌԡଶ (17)ߚௌܪ

where ܥௌ, ,ௌݐ .ௌ denote the same meaning as that in TELM-SDAܪ
The structure of the proposed TELM-SDA is described in Fig.2, from which we

can see that the unlabeled data in target domain have also been explored. To solve the
optimization (16), by setting the gradient of ்ܮௗ௔்ா௅ெ with respect to ்ߚ as zero, we
then have ∇்ܮா௅ெି்஽஺ = ்ߚ − ்ݐ)T்ܪ்ܥ − (்ߚ்ܪ − ௨T்ܪ௨்ܥ ௌߚ௨்ܪ) − (்ߚ௨்ܪ = 0 (18)

If the number of training samples NT>L, then we can have from (18) ்ߚ = ܫ) + ்ܪT்ܪ்ܥ + ௨T்ܪ௨்ܥ ்ݐT்ܪ்ܥ)௨)ିଵ்ܪ + ௨T்ܪ௨்ܥ ௌ) (19)ߚ௨்ܪ

where I is the identity matrix with size of L.
If the number of training samples NT<L, we would like to obtain ߚௌ of the pro-

posed TELM-TDA by a unified ELM framework. Let ்ݐ௨ = ௌ, the model (16)ߚ௨்ܪ
can be re-written as minఉ೅,క೅೔ ,క೅ೠ೔ ଵଶ ԡ்ߚԡଶ + ்ܥ ଵଶ ∑ ൫ߦ௜் ൯ଶே೅௜ୀଵ + ௨்ܥ ଵଶ ∑ ൫்ߦ௨௝ ൯ଶே೅ೠ௝ୀଵ (20)

s. t. ቊ ௜்ܪ ்ߚ = ௜்ݐ − ௜்ߦ , ݅ = 1, … , ௨௝்ܪ்ܰ ்ߚ = ௨௝்ݐ − ௨௝்ߦ , ݆ = 1, … , ்ܰ௨

 Domain Adaptation Transfer Extreme Learning Machines 111

The Lagrange multiplier equation of (20) can be written as

,்ߚ൫ܮ ௜்ߦ , ௨௜்ߦ , ,்ߙ ௨൯்ߙ = 12 ԡ்ߚԡଶ + ்ܥ 12 ෍൫ߦ௜் ൯ଶே೅
௜ୀଵ + ௨்ܥ 12 ෍൫்ߦ௨௝ ൯ଶே೅ೠ

௝ୀଵ

௜்ܪ൫்ߙ− ்ߚ − ௜்ݐ + ௜்ߦ ൯−்ߙ௨൫்ܪ௨௜ ்ߚ − ௨௜்ݐ + ௨௜்ߦ ൯ (21)

By setting the partial derivation with respect to ்ߚ, ௜்ߦ , ௨௝்ߦ , ,்ߙ ௨்ߙ as zero, we
have

ەۖۖۖ
۔ۖ
ۓۖۖ ப௅பఉ೅ = 0 → ்ߚ = ்ߙT்ܪ + ௨T்ܪ ௨ப௅பక೅்ߙ = 0 → ்ߙ = ப௅பక೅ೠ்ߦ்ܥ = 0 → ௨்ߙ = ௨ப௅பఈ೅்ߦ௨்ܥ = 0 → ்ߚ்ܪ − ்ݐ + ்ߦ = 0ப௅பఈ೅ೠ = 0 → ்ߚ௨்ܪ − ௨்ݐ + ௨்ߦ = 0

 (22)

To solve ்ߚ , let ்ܪ௨ܪT் = ܱ, ௨T்ܪ௨்ܪ + ூ஼೅ೠ = ܲ, ௨T்ܪ்ܪ = ܳ, T்ܪ்ܪ + ூ஼೅ = ܴ ,

with similar calculation of (8), (9), and (10),we can get ൜ ்ߙ = (ܳܲିଵܱ − ܴ)ିଵ(ܳܲିଵ்ݐ௨ − ௨்ߙ (்ݐ = ܲିଵ்ݐ௨ − ܲିଵܱ(ܳܲିଵܱ − ܴ)ିଵ(ܳܲିଵ்ݐ௨ − (23) (்ݐ

Therefore, the output weights if NT<L can be obtained as ்ߚ = ்ߙT்ܪ + ௨T்ܪ = ௨்ߙ T்(ܳܲିଵܱܪ − ܴ)ିଵ(ܳܲିଵ்ݐ௨ − ௨T்ܪ + (்ݐ [ܲିଵ்ݐ௨ − ܲିଵܱ(ܳܲିଵܱ − ܴ)ିଵ(ܳܲିଵ்ݐ௨ − (24) [(்ݐ

where ்ݐ௨ = ,ௌߚ௨்ܪ ܱ = ,T்ܪ௨்ܪ ܲ = ௨T்ܪ௨்ܪ + ூ஼೅ೠ , ܳ = ௨T்ܪ்ܪ , ܴ = T்ܪ்ܪ + ூ஼೅, I

is the identity matrix with size of NT.
For recognition of the numerous unlabeled data in target domain, we calculate the

final output using the following ்ݕ௨௞ = ௨௞்ܪ ∙ ,்ߚ ݇ = 1, … , ்ܰ௨ (25)

where ்ܪ௨௞ denote the hidden layer output with respect to the k-th unlabeled vector in
target domain, and ்ܰ௨ is the number of unlabeled vectors in target domain.

In terms of the above discussion, the TELM-TDA algorithm is summarized as
Algorithm 2.

112 L. Zhang and D. Zhang

Fig. 2. Structure of TELM-TDA algorithm with M target domains (M tasks). The solid arrow
connected with ௌ denotes the training for base classifierܦ ௌߚ , the dashed line connected
with ܦ௨் denotes the tentative test of base classifier using the unlabeled data from target do-
main, the solid arrow connected with ܦ௟் denotes the terminal classifier learning of ்ߚ, and the
dashed arrow connected between ߚௌ and ்ߚ denotes the regularization for learning ்ߚ.

Algorithm 2. TELM-TDA algorithm
Input:

Training samples { ௌܺ, {ௌݐ = ௌ௜ݔ} , ௌ௜ݐ }௜ୀଵேೄ of the source domain S;

Labeled guide samples {்ܺ, {்ݐ = ௝்ݔ} , ௝்ݐ }௝ୀଵே೅ of the target domain T;

Unlabeled samples {்ܺ௨} = ௨௞்ݔ} }௞ୀଵே೅ೠ of the target domain T;
The tradeoff parameters CS, CT and CTu.

Output:
The output weights ்ߚ;
The predicted output ்ݕ௨ of unlabeled data in target domain.

Procedure:
1. Initialize the ELM network of L hidden neurons with random input

weights W1 and hidden bias B1.
2. Calculate the output matrix HS of hidden layer with source domain as ܪௌ = ℎ(ଵܹ ∙ ௌܺ + .(ଵܤ
3. If NS<L, compute the output weights ߚௌ of the base classifier using (4);

Else, compute the output weights ߚௌ of the base classifier using (3).
4. Initialize the ELM network of L hidden neurons with random input

weights W2 and hidden bias B2.
5. Calculate the output matrix ்ܪ and ்ܪ௨ of hidden layer with labeled

and unlabeled data in target domains as ்ܪ = ℎ(ଶܹ ∙ ்ܺ + (ଶܤ and ௨்ܪ =ℎ(ଶܹ ∙ ்ܺ௨ + .(ଶܤ
6. If NT<L, compute the output weights ்ߚ using (24);

Else, compute the output weights ்ߚ using (19).
7. Calculate the predicted output ்ݕ௨ using (25).

Return The output weights ்ߚ and predicted output .௨்ݕ

 ௌܦ

ଵ௟,்ܦ ଵ௨,்ܦ ଶ௟,்ܦ ଶ௨,்ܦ ெ௟,்ܦ ெ௨,்ܦ

ଵ்ߚ ெ்ߚ ଶ்ߚ ௌெߚ ௌଶߚ ௌଵߚ

 Domain Adaptation Transfer Extreme Learning Machines 113

Remark 1: From the proposed source domain adaptation transfer ELM (TELM-
SDA) and target domain adaptation transfer ELM (TELM-TDA), we can observe that
two stages are included namely feature mapping with random selected weights and
biases and output weights learning which are the main parts in ELM. For ELM, the
only information in source domain is considered. However, for domain adaptation
transfer ELM, very few labeled samples from target domain are explored without
changing the unified ELM framework. The common differences of the ELMs lie in
the calculation of output weights. The unified framework for TELM-SDA and
TELM-TDA might draw some new perspectives for developing the ELMs.

Remark 2: We can observe that the TELM-SDA and TELM-TDA have similar
structure in model and algorithm, except for the base classifier learning in TELM-
TDA. However, the essential difference lies in that the numerous unlabeled data
which may be useful for improving generalization performance are also explored in
TELM-TDA. Specifically, TELM-SDA trains a classifier using the information of
source domain but draw some knowledge with labeled guide samples from the target
domain. In this way, the knowledge from target domain can be effectively transferred
to source domain through appropriate models. Instead, TELM-TDA aims to train a
classifier using the guide data from target domain but introduce a regularizer through
exploring the unlabeled data and a base classifier trained from source domain.

4 Experiments

In this section, we will employ the proposed TELM-SDA and TELM-TDA algo-
rithms on olfactory data collected by electronic nose for sensor drift compensation.
Electronic nose is an artificial olfaction system, which is developed for gas recogni-
tion [18, 19], tea quality assessment [20, 21], medical diagnosis [22], environmental
monitor and gas concentration estimation [23, 24], etc. by using pattern recognition
and gas sensor array with cross-sensitivity and broad spectrum characteristics. How-
ever, gas sensor drift will be caused due to the change of internal component and
aging, which would reduce the generalization performance of well trained classifier
[25]. Therefore, researchers have to retrain the classifier using a number of new sam-
ples in a period regularly. The tedious work for classifier retraining and acquisition of
new labeled samples regularly seems to be impossible, due to the complicated exper-
iments of electronic nose. Though researchers have paid more attention to sensor drift
and aim to find some effective ways for drift compensation through classifier ensem-
bles and drift prediction [16, 26-29], sensor drift is still a challenging issue in machine
olfaction community and sensory field. To our best knowledge, there are no very
effective methods for dealing with sensor drift. Therefore, we aim to enhance the
adaptive performance of classifiers to drifted data with very low complexity and little
work. It would be very meaningful and interesting to train a classifier using very few
labeled new samples (target domain) as guide samples without giving up the recog-
nized “useless” old data (source domain), and make the new trained classifier adapt to
the new patterns in target domain.

114 L. Zhang and D. Zhang

4.1 Experimental Data

For verification of the proposed TELM-SDA and TELM-TDA algorithms, the long-
term sensor drift big data of three years which was released in UCI Machine Learning
Repository [31] by Vergara et al. [26, 30] has been explored in this paper.

This dataset contains 13,910 measurements (observation samples) from an elec-
tronic nose system with 16 gas sensors exposed to 6 kinds of pure gaseous substances
including acetone, acetaldehyde, ethanol, ethylene, ammonia, and toluene at different
concentration levels. The sensor drift big dataset was gathered during the period of
January 2008 to February 2011 with 36 months in a gas delivery platform. For each
sensor, 8 features were extracted, and results in a 128-dimensional feature vector (8
features × 16 sensors) for each measurement. We refer readers to [26] for specific
technical details on how to select the 8 features for single sensor. Totally, 10 batches
of data are included in the dataset which was divided according to months. The details
of the dataset have been presented in Table 1.

Table 1. Number of samples for each subject in the sensor drifted big data

Batch ID Month Acetone Acetaldehyde Ethanol Ethylene Ammonia Toluene Total

Batch 1 1, 2 90 98 83 30 70 74 445

Batch 2 3-10 164 334 100 109 532 5 1244

Batch 3 11-13 365 490 216 240 275 0 1586

Batch 4 14, 15 64 43 12 30 12 0 161

Batch 5 16 28 40 20 46 63 0 197

Batch 6 17-20 514 574 110 29 606 467 2300

Batch 7 21 649 662 360 744 630 568 3613

Batch 8 22, 23 30 30 40 33 143 18 294
Batch 9 24, 30 61 55 100 75 78 101 470

Batch 10 36 600 600 600 600 600 600 3600

4.2 Experimental Setup

We follow the experimental setup in [26] to evaluate the proposed domain adaptation
transfer ELM models. The number of hidden neurons L is set as 1000. The features
are scaled appropriately to lie between -1 and +1. The RBF function is used as the
activation function in the hidden layer (i.e. feature mapping function) in which the
kernel width is set as 1. In TELM-SDA model, the penalty coefficients CS and CT are
set as 0.01 and 10 throughout the experiments, respectively. In TELM-TDA model,
the penalty coefficient CS for base classifier is set as 0.001, CT and CTu are set as 0.001
and 100 throughout the experiments, respectively. For effective verification of the
proposed methods, two experimental settings according to [16] are given as follows:

Setting 1: Take batch 1 (source domain) as fixed training set and tested on other 9
batches (target domains);

Setting 2: The training set (source domain) is dynamically changed with batch K-1
and tested on batch K (target domain), K=2,…,10.

 Domain Adaptation Transfer Extreme Learning Machines 115

For studying the relation between the number k of labeled samples in target domain
and the recognition accuracy, k is tried in the set of {5, 10, 15, 20, 25, 30, 35, 40, 45,
50}. In addition, for comparisons, we have compared with multi-class SVM with RBF
kernel (SVM-rbf), the geodesic flow kernel (SVM-gfk), and the combination kernel
(SVM-comgfk). Besides, we also compared with the semi-supervised methods such
as manifold regularization with RBF kernel (ML-rbf) and manifold regularization
with combination kernel (ML-comgfk), which have been presented in [16, 26] for the
same sensor drift data. Additionally, the regularized ELM with RBF function in hid-
den layer (ELM-rbf) from [29] is also compared in our experiments. In experiments,
we run the ELM-rbf, TELM-SDA and TELM-TDA 10 times, and the average value
for each item is provided.

4.3 Results

Under the consideration above, we employ the experiments on Setting 1 and Setting 2,
respectively. The comparisons under setting 1 with recognition accuracy of 9 batches
for different methods are presented in Table 2. We have shown two conditions of
TELM-SDA with 20 labeled guide samples and 30 labeled guide samples. For
TELM-TDA, 40 and 50 labeled samples from the target domain are used, respective-
ly, considering that TELM-TDA trains a classifier using the labeled samples from the
target domain, therefore, more labeled samples would be necessary which is slightly
different from TELM-SDA. From Table 2, it can be obviously seen that the proposed
TELM-SDA and TELM-TDA are much better than other existing methods including
SVM with different kernels, manifold regularization with different kernels. For
TELM-SDA and TELM-TDA, the testing accuracies on batch 2-10 with a training
classifier using the data in batch 1 can still be feasible without performance reduction.
This means that the sensor drift can be compensated very well with domain adaptation
knowledge transfer. For visually observing the change of performance with sensor
drift, we show the recognition accuracy on batches successively as Fig. 3. Through
the results of the regularized ELM, we can see that the generalization performance
and knowledge transfer capability have been well improved by the proposed TELM-
SDA and TELM-TDA with domain adaptation. Comparison between TELM-SDA
and TELM-TDA, the latter needs more labeled samples than the former. From the
computational complexity, due to that there is a base classifier in TELM-TDA,
TELM-SDA would be more appropriate in real-world applications which considers
the data in source domain and very few labeled guide samples from target domain for
classifier learning. The specific comparisons between TELM-SDA and TELM-TDA
will be employed later.

116 L. Zhang and D. Zhang

Table 2. Comparisons of recognition accuracy (%) under the experimental Setting 1, i.e.
trained on batch 1 and tested on other successive 9 batches

Batch ID Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10

SVM-rbf 74.36 61.03 50.93 18.27 28.26 28.81 20.07 34.26 34.47

SVM-gfk 72.75 70.08 60.75 75.08 73.82 54.53 55.44 69.62 41.78

SVM-comgfk 74.47 70.15 59.78 75.09 73.99 54.59 55.88 70.23 41.85

ML-rbf 42.25 73.69 75.53 66.75 77.51 54.43 33.50 23.57 34.92

ML-comgfk 80.25 74.99 78.79 67.41 77.82 71.68 49.96 50.79 53.79

ELM-rbf 70.63 66.44 66.83 63.45 69.73 51.23 49.76 49.83 33.50

TELM-SDA(20) 87.57 96.53 82.61 81.47 84.97 71.89 78.10 87.02 57.42

TELM-SDA(30) 87.98 95.74 85.16 95.99 94.14 83.51 86.90 100.0 53.62

TELM-TDA(40) 83.52 96.34 88.20 99.49 78.43 80.93 87.42 100.0 56.25

TELM-TDA(50) 97.96 95.34 99.32 99.24 97.03 83.09 95.27 100.0 59.45

Fig. 3. Comparisons of different methods in Setting 1

From the experimental results in Setting 1, the proposed methods perform better
results, and the sensor drift can be well compensated. We have also employed the
experiments by following Setting 2 i.e. trained on batch K-1 and tested on batch K, for
which the results are presented in Table 3. We can find that the proposed domain
adaptation transfer ELM performs much better than other baseline methods for sensor
drift big data. The visual insight of these methods in setting 2 has been described in
Fig.4 which shows the robust performance of the proposed methods in sensor drift
compensation and knowledge transfer.

1 2 3 4 5 6 7 8 9
10

20

30

40

50

60

70

80

90

100

Batch number

R
ec

og
ni

ti
on

 a
cc

ur
ac

y
(%

)

SVM-rbf
SVM-gfk
SVM-comgfk
ML-rbf
ML-comgfk
ELM-rbf
TELM-SDA(20)
TELM-SDA(30)
TELM-TDA(40)
TELM-TDA(50)

 Domain Adaptation Transfer Extreme Learning Machines 117

Table 3. Comparisons of recognition accuracy (%) under the experimental Setting 2. i.e.
trained on batch K-1, and tested on batch K (2≤K≤10).

Batch ID 1→2 2→3 3→4 4→5 5→6 6→7 7→8 8→9 9→10

SVM-rbf 74.36 87.83 90.06 56.35 42.52 83.53 91.84 62.98 22.64

SVM-gfk 72.75 74.02 77.83 63.91 70.31 77.59 78.57 86.23 15.76

SVM-comgfk 74.47 73.75 78.51 64.26 69.97 77.69 82.69 85.53 17.76

ML-rbf 42.25 58.51 75.78 29.10 53.22 69.17 55.10 37.94 12.44

ML-comgfk 80.25 98.55 84.89 89.85 75.53 91.17 61.22 95.53 39.56

ELM-rbf 70.63 40.44 64.16 64.37 72.70 80.75 88.20 67.00 22.00

TELM-SDA(20) 87.57 96.90 85.59 95.89 80.53 91.56 88.71 88.40 45.61

TELM-SDA(30) 87.98 96.58 89.75 99.04 84.43 91.75 89.83 100.0 58.44

TELM-TDA(40) 83.52 96.41 81.36 96.45 85.13 80.49 85.71 100.0 56.81

TELM-TDA(50) 97.96 95.62 99.63 98.17 97.13 83.10 94.90 100.0 59.88

Fig. 4. Comparisons of different methods in Setting 2

5 Conclusion

In this paper, two ELM based algorithms, TELM-SDA and TELM-TDA have been
proposed to extend the ELMs for learning tasks with multi-domains, respectively.
Through the sensor drift big data analysis in machine olfaction, the proposed domain
adaptation transfer ELMs consistently outperform the existing methods such as
SVMs, semi-supervised manifold regularizations and ELMs for sensor drift compen-
sation. For dealing with large scale sensor drift data collected by an electronic nose,
the proposed methods have also the advantages of ELMs including high efficiency of

1 2 3 4 5 6 7 8 9
10

20

30

40

50

60

70

80

90

100

batch K

R
ec

og
ni

ti
on

 a
cc

ur
ac

y
(%

)

SVM-rbf
SVM-gfk
SVM-comgfk
ML-rbf
ML-comgfk
ELM-rbf
TELM-SDA(20)
TELM-SDA(30)
TELM-TDA(40)
TELM-TDA(50)

118 L. Zhang and D. Zhang

classifier/predictor learning and straightforward implementation of multi-class classi-
fication. The adaptation of multi-domain sensor drift big data can be efficiently and
effectively implemented by using the proposed domain adaptation transfer ELMs.
More importantly, the proposed methods can also provide new perspectives for ex-
ploring ELM theory. Experimental results demonstrate that the proposed methods can
obvious improve the transfer capability of ELMs in real-world applications.

Acknowledgement. This work was supported by National Natural Science Founda-
tion of China (61401048), Hong Kong Scholar Program (No.XJ2013044) and also
funded by China Postdoctoral Science Foundation (No. 2014M550457).

References

1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: Theory and applications.
Neurocomputing 70, 489–501 (2006)

2. Feng, G., Huang, G.B., Lin, Q., Gay, R.: Error minimized extreme learning machine with
growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 20, 1352–
1357 (2009)

3. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme Learning Machine for Regression
and Multiclass Classification. IEEE Trans. Systems, Man, Cybernetics: Part B 42, 513–
529 (2012)

4. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental construc-
tive feedforward networks with random hidden nodes. IEEE Trans. Neural. Netw. 17, 879–
892 (2006)

5. Zhu, Q.Y., Qin, A.K., Suganthan, P.N., Huang, G.B.: Evolutionary extreme learning ma-
chine. Pattern Recognition 38, 1759–1763 (2005)

6. Zong, W., Huang, G.B., Chen, Y.: Weighted extreme learning machine for imbalance
learning. Neurocomputing 101, 229–242 (2013)

7. Bai, Z., Huang, G.B., Wang, D., Wang, H., Brandon Westover, M.: Sparse Extreme Learn-
ing Machine for Classification. IEEE Trans. Cybernetics (2014)

8. Li, X., Mao, W., Jiang, W.: Fast sparse approximation of extreme learning machine.
Neurocomputing 128, 96–103 (2014)

9. Huang, G., Song, S., Gupta, J.N.D., Wu, C.: Semi-Supervised and Unsupervised Extreme
Learning Machines. IEEE Trans. Cybernetics (2014)

10. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural correspondence
learning. In: Proc. Conf. Emp. Methods Natural Lang. Process, pp. 120–128 (2006)

11. Yang, J., Yan, R., Hauptmann, A.G.: Cross-domain video concept detection using adaptive
SVMs. In: Proc. Int. Conf. Multimedia, pp. 188–197 (2007)

12. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component
analysis. IEEE Trans. Neural Netw. 22, 199–210 (2011)

13. Duan, L., Tsang, I.W., Xu, D., Chua, T.S.: Domain adaptation from multiple sources via
auxiliary classifiers. Proc. Int. Conf. Mach. Learn., 289–296 (2009)

14. Duan, L., Xu, D., Tsang, I.W.: Domain Adaptation from Multiple Sources: Domain-
Dependent Regularization Approach. IEEE Trans. Neur. Netw. Learn. Syst. 23, 504–518
(2012)

15. Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: An unsuper-
vised approach. In: Proc. ICCV, pp. 999–1006 (2011)

 Domain Adaptation Transfer Extreme Learning Machines 119

16. Liu, Q., Li, X., Ye, M., Sam Ge, S., Du, X.: Drift Compensation for Electronic Nose by
Semi-Supervised Domain Adaptation. IEEE Sensors Journal 14, 657–665 (2014)

17. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework
for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434
(2006)

18. Zhang, L., Tian, F.C.: A new kernel discriminant analysis framework for electronic nose
recognition. Analytica Chimica Acta 816, 8–17 (2014)

19. Zhang, L., Tian, F., Nie, H., Dang, L., Li, G., Ye, Q., Kadri, C.: Classification of multiple
indoor air contaminants by an electronic nose and a hybrid support vector machine. Sens.
Actu. B. 174, 114–125 (2012)

20. Brudzewski, K., Osowski, S., Dwulit, A.: Recognition of coffee using differential electron-
ic nose. IEEE Trans. Instru. Meas. 61, 1803–1810 (2012)

21. Tudu, B., Metla, A., Das, B., Bhattacharyya, N., Jana, A., Ghosh, D., Bandyopadhyay, R.:
Towards Versatile Electronic Nose Pattern Classifier for Black Tea Quality Evaluation: An
Incremental Fuzzy Approach. IEEE Trans. Instru. Meas. 58, 3069–3078 (2009)

22. Gardner, J.W., Shin, H.W., Hines, E.L.: An electronic nose system to diagnose illness.
Sens. Actu. B. 70, 19–24 (2000)

23. Zhang, L., Tian, F., Kadri, C., Pei, G., Li, H., Pan, L.: Gases concentration estimation us-
ing heuristics and bio-inspired optimization models for experimental chemical electronic
nose. Sens. Actu. B. 160, 760–770 (2011)

24. Zhang, L., Tian, F.: Performance Study of Multilayer Perceptrons in a Low-Cost Electron-
ic Nose. IEEE Trans. Instru. Meas. 63 (2014)

25. Di Carlo, S., Falasconi, M.: Drift Correction Methods for Gas Chemical Sensors in Artifi-
cial Olfaction Systems: Techniques and Challenges. Advances in Chemical Sensors, pp.
305–326 (2012)

26. Vergara, A., Vembu, S., Ayhan, T., Ryan, M.A., Homer, M.L., Huerta, R.: Chemical gas
sensor drift compensation using classifier ensembles. Sens. Actu. B. 167, 320–329 (2012)

27. Romain, A.C., Nicolas, J.: Long term stability of metal oxide-based gas sensors for e-nose
environmental applications: An overview. Sens. Actu. B. 146, 502–506 (2010)

28. Zhang, L., Tian, F., Liu, S., Dang, L., Peng, X., Yin, X.: Chaotic time series prediction of
E-nose sensor drift in embedded phase space. Sens. Actu. B. 182, 71–79 (2013)

29. Arul Pon Daniel, D., Thangavel, K., Manavalan, R., Chandra, S., Boss, R.: ELM-Based
Ensemble Classifier for Gas Sensor Array Drift Dataset. Computational Intelligence,
Cyber Security and Computational Models. Advances in Intelligent Systems and Compu-
ting 246, 89–96 (2014)

30. Lujan, I.R., Fonollosa, J., Vergara, A., Homer, M., Huerta, R.: On the calibration of sensor
arrays for pattern recognition using the minimal number of experiments. Chemometrics
and Intelligent Laboratory Systems 130, 123–134 (2014)

31. http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drif
t+Dataset+at+Different+Concentrations

© Springer International Publishing Switzerland 2015
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,

121

Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_11

Quasi-Linear Extreme Learning Machine Model Based
Nonlinear System Identification

Dazi Li, Qianwen Xie, and Qibing Jin

Institute of Automation, Beijing University of Chemical Technology,
Beijing 100029, China

Abstract. A regression algorithm of quasi-linear model with extreme learning
machine (QL-ELM) and its applications for nonlinear system identification are
presented. The distinctive feature of the proposed method is that the Quasi-
linear model is constructed as a linear ARX model with a complicate nonlinear
coefficient. It not only has various linearity properties but also shows some
good approximation ability. The complicated coefficients are separated into two
parts. The linear part is determined by recursive least square, while the nonline-
ar part is identified through extreme learning machine. The whole methodology
is presented in detail. The effectiveness and accuracy of the proposed method is
extensively verified in two nonlinear system identification, including a chemi-
cal continuously stirred tank reactor (CSTR) process.

Keywords: Quasi-linear model, Extreme learning machine (ELM), Nonlinear
process, Identification, Recursive least squares (RLS).

1 Introduction

Nonlinear process is very common in actual industrial processes. However, in many
cases it is difficult to obtain a dynamic model via the physical processes [1-2]. There-
fore, nonlinear black-box structure is often considered to describe an uncertainly non-
linear system.

In recent years, some block-oriented models have been proposed and applied wide-
ly, such as Wiener model [3] and Hammerstein model [4-6]. Both of them are quite
simple structures, but they have limitation in systems which cannot be easily separat-
ed into a linear dynamic block and a memoryless nonlinear one. Volterra model [7]
provides an elaborate mathematical description for a great many of nonlinear systems.
But the obvious shortcoming is its high complexity to identify the kernel function.
Meanwhile, many methods combining the nonlinear nonparametric models with some
conventional statistical models have achieved some great results. McLoone et al. [8]
proposes an off-line hybrid training algorithm for feed-forward neural networks. Peng
et al. [9-10] proposes hybrid pseudo-linear RBF-AR, RBF-ARX models, and Marjan
Golob et al.[11] proposes a decomposed neuro-fuzzy ARX model supported by a
neural network-based learning algorithm with reduced number of rules in the rule
base.

122 D. Li, Q. Xie, and Q. Jin

However, these models show highly nonlinear characteristics, which are difficult to
analysis in theory. Linear expression will be more convenient and valuable for control
design as well as the control law derivation. Hu et al. [12-13] proposes a quasi-linear
model, which is constructed as a linear structure from a macro standpoint with non-
linear coefficients. Such model has a great flexibility to deal with the nonlinearity of
the system.

The model represents as a linear one with a nonlinear hybrid structure, which often
utilizes diversity and flexibility of neural networks to identify. In the past years, some
artificial neural networks such as feed-forward [14-15] and feedback [16-17] are used
in nonlinear system modeling. Furthermore, it is known that the neural network and
support vector regression (SVR) [18] have some criticisms on their slow learning
speed and parameters adjustment problem. To deal with the above problems, extreme
learning machine (ELM) proposed by Huang et al. [19-20] shows great advantages.
With the input layer weights and hidden biases chosen randomly, it can also obtain a
smaller training error via a canonical equation. The advantage of ELM is its low com-
putational effort and high generalization. It has been successfully applied to pattern
recognition [21], fault diagnosis [22], function approximation [23] and reinforcement
learning [24].

In this paper, a novel quasi-linear ELM (QL-ELM) structure is proposed, which is
capable of effective identification of nonlinear dynamic systems. The model uses not
only the easy-to-express feature of the linear model, but also the ELM incorporated to
the nonlinear part which increases the flexibility and the learning speed for a better
generalization performance. Furthermore, this identification method has less human
interference.

2 Extreme Learning Machine

Unlike other traditional implementations, extreme learning machine is a single hidden
layer feed-forward neural networks (SLFNs) which randomly choose the input
weights and biases. For the input nodes 1 2[, ,...,]i i i inx x x x= and output nodes

1 2[, ,...,]i i i imy y y y= ((1, 2,...,))i N∈ SLFNs with M hidden nodes and activation

function ()g x are expressed as

1

()
M

i i i i i
i

g w x b yβ
=

⋅ + =∑ (1)

where 1 2[, ,...,]T
i i i inβ β β β= are the weights between hidden layer and the output

nodes. 1 2[, ,...,]T
i i i inw w w w= are the weights between input vectors and hidden layer.

In addition, ib are the biases of the hidden nodes. The output of the hidden layer is

written as a matrix H , Eq. (1) can be rewritten as

 H Yβ = (2)

Quasi-Linear Extreme Learning Machine Model Based Nonlinear System Identification 123

where
1 1 1 1

1 1

() ... ()

...

() ... ()

M M

N M N M N M

g w x b g w x b

H

g w x b g w x b
×

+ +⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 .

With these theorems proposed in [23-24], the main idea of the ELM is that training
problem is simplified to find a least square solution. According to the Moore-Penrose
generalized inverse theory, the output can be calculated in one step using the equation

 †ˆ H Yβ = (3)

This one step algorithm can produce fast speed. It also avoids producing local op-
timum results, and poor generalization.

3 The Quasi-Linear ELM Model Treatment

A quasi linear model can be seen as a neural network embedded in the coefficients of
a linear model. For a nonlinear SISO described as

 () (()) ()Ty t f X t e t= + (4)

where () [(1), (2),..., (), (), (1),..., ()]T
a bX t y t y t y t n u t u t u t n= − − − − − , ()X t is the re-

gression vector. an , bn are the order of the system , d
a bn n d Rϕ+ = ∈ . ()e t is stochas-

tic noise with zero-mean. Using Taylor equation expands the (())Tf X t around the

zero region

1

() (0) '(0) () () ''(0) () ...
2

T
ny t f f X t X t f X t δ= + + + + (5)

Set 0 (0)y f= ;
1

(()) ('(0) () ''(0) ...)
2

T TX t f X t fΘ = + + .

Eq. (5) can be rewritten as

 0() () (()) () ()((())) ()T Ty t y X t X t e t X t X t e tθ= + Θ + = + Θ + (6)

The quasi-linear has a linear structure which can be processed as a functional-
coefficient ARX model. It can be separated into a nonlinear and a linear part
described as

 () () () ()L Ny t y t y t e t= + + (7)

 () T
Ly t X θ= (8)

 () () (())T
Ny t X t X t= Θ (9)

with 1 2 1 2[, ,..., , , ,...,]T
n ma a a b b bΘ = .

124 D. Li, Q. Xie, and Q. Jin

For near linear cases, nonlinear part is supplement for nonlinear feature, so linear
part can achieve a good regression result. For the nonlinear cases, using nonlinear part
as interpolated coefficient expends the regression space.

The coefficient in Eq. (9) can be seen as a multi-dimensional input space X to a
one-dimensional scalar space (())X tΘ .Using ELM to estimate nonlinear part parame-

ters will be more convenient and concise. The model is rewritten as

 2 1

1

() () (()) ()
M

T T
i i

i

y t X t W W X t B X b e tθ
=

= Γ + + + +∑ (10)

define 2 1() (())T t W W X t B= Γ + .

In fact, θ is seen as the biases vector of the output nodes, and 1W , 2W , B as the

nonlinear parameters which present the input, output weights and the node biases
respectively. Γ is the activation function. The proposed QL-ELM model is shown in
Fig. 1, where ()X t is the input of the ELM. The QL-ELM model partially disperses

the complexity of the model using its linear properties, so it needs not have many
centers to achieve similar prediction accuracy. It means that the QL-ELM model may
require a smaller number of hidden nodes than normal ELM model.

Γ

T(t)

Ө

Σ

X(t)

...

W1

Γ

Γ

W2

y(t)

Fig. 1. The structure of quasi linear-ARX model

4 Quasi Linear-ELM Model Learning Algorithm

The whole process is described in Fig. 2. n and m are the orders of the input and out-
put. The parameters are updated during each iterative process until the ultimate goal
to make the error between the output of actual model and the QL-ELM model mini-
mum. The nonlinear part is updated by the deviation between ()y t and ()Ly t .The line-

ar part is updated by the deviation between ()y t and ()Ny t .

Quasi-Linear Extreme Learning Machine Model Based Nonlinear System Identification 125

Fig. 2. The identification process

Linear part: at each iteration, RLS is used to estimate linear parameters.
Nonlinear part: fixing the weights of input layer and biases, the training error

2

2e HW T= − is minimized by ELM. Where the activation function is chosen as:

1
()

1 x
x

e−Γ =
+

 .

{((), ()); 1,.., }y i u i i N∈ is the training set. The QL-ELM learning algorithm is im-
plemented by the following steps:

Step1. Initialization: Choose the order of the regression vector ,m n . Set θ to zero,

the number of nodes in hidden layer M , and nonlinear parameters 1 2, ,W W B to some

small values randomly. The number of iterations is set to n=1.
Step2. Calculate the linear part and estimate Lθ using Eq. (8).

Step3. Calculate the nonlinear part and estimate 2(,)N W tθ using Eq. (9)
Step4. Turn to step 2, set n=n+1 until the conditions satisfied.

5 Simulation Study

In this section, two simulation examples are used to evaluate the nonlinear system
identification power of the QL-ELM model. The proposed method is compared with
other identification methods, such as the linear and RBF kernel SVR, Quasi linear
SVR [13] and back propagation (BP) neural network. Performance is measured by the
Root Mean Square Error (RMSE), the indicator is expressed by

1

1
(() (|))

N

k

P y k y k
N

θ
=

= −∑ (11)

5.1 Case 1. Numerical Experiments

Consider a nonlinear system with 7 input vectors, ()e t is the white noise range from
0 to 0.5.

126 D. Li, Q. Xie, and Q. Jin

2 2 2

2 2 2 2

2 2 2 2

exp((2) (1)) exp(0.5((2) (3))
()

1 (3) (2) 1 (2) (1)

sin((1) (3)) (3) sin((1) (2)) (4)
(1) ()

1 (1) (3) 1 (2) (2)

y t y t u t y t
y t

u t y t u t y t

u t y t y t u t y t y t
u t e t

u t y t u t y t

− − − − + −= +
+ − + − + − + −
− − − − − −+ + + − +

+ − + − + − + −

 (12)

Using 1000 random uncorrelated persistent excitation signal which range from 1 to
-1 as the input. The 800 set of test data are generated by the following equation

sin(2 / 250) 500

()
0.8sin(2 / 250) 0.2sin(2 / 25)

t if t
u t

t t otherwise

π
π π

<⎧
= ⎨ +⎩

 (13)

Then proposed method is used to identify the model. Obtaining the optimal param-
eters of SVR via cross-validation methodology, the scale parameter (The variance
in RBF kernel function) is set to 0.01 and the penalty factor is set to 800. Fig. 3 indi-
cates the testing result of different methods. The red solid line is the output of the
proposed method. It can be seen that it has better approximation ability in unsmooth
section. In addition, it can be seen from Table. 1 that the proposed QL-ELM obtains a
smaller test error and faster convergence speed.

Fig. 3. The identification results with different methods

Table 1. A comparison performance of different methods in case 1

Algorithm Hidden Nodes Times(seconds) RMSE
ELM 60 0.541496 0.0739

QL+ELM 10 0.581019 0.0427

Linear-SVR None 9.336846 0.1503

RBF-SVR None 13.652457 0.0876

Quasi-SVR None 0.582523 0.0615

σ

0 100 200 300 400 500 600 700 800
-0.5

0

0.5

1

1.5

2

2.5

Times

O
ut

pu
t(

y)

original series

proposed method

ELM

Quasi-SVR

Linear-SVR

RBF-SVR

Quasi-Linear Extreme Learning Machine Model Based Nonlinear System Identification 127

5.2 Case 2. CSTR Process

A typical nonlinear system in chemical processes is CSTR process. In this study, the
dynamic behavior is described by the following equation [25].

2
1 1 1 1

2

2
2 2 2 2

2

1

(1) exp() .
1

(1) (1)exp() .
1

.

a

a

x
x x D x d

x

x
x x B D x u d

x

y x

ϕ

δ δ
ϕ

= − + − +
+

= − + + ⋅ − + ⋅ +
+

=

 (14)

where 1x and 2x represent the dimension-less reactant concentration and reactor

temperature; 1d and 2d denote the system's disturbances. The input u is the cooling

jacket temperature. The physical parameters in the CSTR model is B=8, δ
=0.3,Da=0.072,ϕ =20.

Under the initial condition 1 2[(0), (0)] [0.1,0.1]x x = − , () 0.4* (1)u t randn= and the in-

tegral step size 0.1tΔ = , it generates 3000 groups of samples, 501-1800 groups of
data as training samples and 1801-2200 as test samples. Firstly, we use the AIC value
[26] to decide the order of the regression vectors. From Fig.4 below, it can be seen
that in order to reduce the redundant feature vector, we choose the smallest AIC value
as the order of the system, so 4, 5n m= = .

Fig. 4. Values of the order determination based on AIC

The result of identifying the model above with the QL-ELM and its corresponding
error are shown in Fig. 6(a). Comparative method ELM and the result are shown in
the Fig. 6(b). It shows that there is a smaller error and a more stable test result in the
proposed method.

1 2 3 4 5 6 7 8
-6500

-6000

-5500

-5000

-4500

-4000

-3500

-3000

-2500

Model order

A
IC

 v
al

ue

(2,1)

(2,2)

(3,2)

(3,3) (4,3) (5,4)

(4,4)

(1,1)

128 D. Li, Q. Xie, and Q. Jin

 (a) (b)

Fig. 5. Identification results and error of CSTR

Fig. 6 shows the convergence of the linear part in different interaction. (a)- (d) rep-
resent convergence of the linear parameters when the number of iterations n = 1, 3, 5,
10, respectively. With the increasing number of iterations, the parameters can get a
faster convergence to the true value ultimately.

The different identification methods of CSTR system are compared in items of the
number of nodes in the hidden layer, training and learning times, identification meas-
urable indicator, which is listed in Table. 2. It is easy to see that the proposed meth-
od is the trade-off in terms of time and accuracy compared with BP neural network
and SVR. It needs less time and gains higher accuracy.

Fig. 6. The convergence of the linear part parameters

0 50 100 150 200 250 300 350 400
1.15

1.2

1.25

1.3

1.35

Times

O
ut

pu
t(

y)

Original Series
Proposed Method

0 50 100 150 200 250 300 350 400
0

1

2

3

4
x 10

-3

Times

E
rr

or

0 50 100 150 200 250 300 350 400
1.15

1.2

1.25

1.3

1.35

Times

O
ut

pu
t(

y)

Original Series
ELM Method

0 50 100 150 200 250 300 350 400
0

0.005

0.01

0.015

Times

E
rr

or

0 500 1000 1500 2000
-1

0

1

2

Times (a)

T
he

 li
ne

ar
 p

ar
am

et
er

s

0 500 1000 1500 2000
-0.5

0

0.5

1

1.5

Times (b)

0 500 1000 1500 2000
-1

0

1

2

Times (c)

T
he

 li
ne

ar
 p

ar
am

et
er

s

0 500 1000 1500 2000
-0.5

0

0.5

1

Times (d)

Quasi-Linear Extreme Learning Machine Model Based Nonlinear System Identification 129

Table 2. A comparison performance of different methods for CSTR

Algorithm Hidden
nodes

Times(seconds) RMSE

ELM 80 0.255673 0.0041

QL+ELM 10 0.342147. 0.0015

Linear-SVM None 2.192229 0.0019

RBF-SVM None 9.698744 0.0038

BP 40 19.094721 0.0071

RLS+BP 40 26.127525 0.0043

6 Conclusion

In this paper, a novel QL-ELM algorithm is proposed, which is computationally effi-
cient for identifying some nonlinear systems. In the QL-ELM structure, the nonlinear
SLFN expends the space of the regression results. In two examples of nonlinear sys-
tems identification, the advantages of QL-ELM are its reduction of computational
complexity, improvement of convergence rate and identification accuracy. The itera-
tive learning process speeds up the convergence of parameters. It also has less
unknown parameters to adjust. Simulation results indicate that performance of the
QL-ELM is superior to the conventional BP neural networks, SVR with linear and
RBF kernel.

References

1. Madár, J., Abonyi, J., Szeifert, F.: Genetic programming for the identification of nonlinear
input-output models. Industrial & engineering chemistry research 44, 3178–3186 (2005)

2. Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.-Y.,
Hjalmarsson, H., Juditsky, A.: Nonlinear black-box modeling in system identification: a
unified overview. Automatica 31, 1691–1724 (1995)

3. Savaresi, S.M., Bittanti, S., Montiglio, M.: Identification of semi-physical and black-box
non-linear models: the case of MR-dampers for vehicles control. Automatica 41, 113–127
(2005)

4. Tang, Y.G., Li, Z.H., Guan, X.P.: Identification of nonlinear system using extreme learn-
ing machine based Hammerstein model. Communications In Nonlinear Science And Nu-
merical Simulation 199, 3171–3183 (2014)

5. Wills, A., Schön, T.B., Ljung, L., Ninness, B.: Identification of Hammerstein–Wiener
models. Automatica 49, 70–81 (2013)

6. Wang, D., Ding, F.: Extended stochastic gradient identification algorithms for Hammer-
stein–Wiener ARMAX systems. Computers & Mathematics with Applications 56, 3157–
3164 (2008)

7. Pearson, R., Ogunnaike, B.A.: Identification and control using Volterra models. Springer
(2002)

130 D. Li, Q. Xie, and Q. Jin

8. McLoone, S., Brown, M.D., Irwin, G., Lightbody, G.: A hybrid linear/nonlinear training
algorithm for feed forward neural networks. IEEE Transactions on Neural Networks 9,
669–684 (1998)

9. Peng, H., Ozaki, T., Haggan-Ozaki, V., Toyoda, Y.: A parameter optimization method for
radial basis function type models. IEEE Transactions on Neural Networks 14, 432–438
(2003)

10. Peng, H., Ozaki, T., Toyoda, Y., Shioya, H., Nakano, K., Haggan-Ozaki, V., Mori, M.:
RBF-ARX model-based nonlinear system modeling and predictive control with application
to a NOx decomposition process. Control Engineering Practice 12, 191–203 (2004)

11. Golob, M., Tovornik, B.: Input–output modelling with decomposed neuro-fuzzy ARX
model. Neurocomputing 71, 875–884 (2008)

12. Hu, J., Kumamaru, K., Inoue, K., Hirasawa, K.: A hybrid quasi-ARMAX modeling
scheme for identification of nonlinear systems. Transactions-Society of Instrument and
Control Engineers 34, 977–985 (1998)

13. Cheng, Y., Hu, J.: Nonlinear system identification based on SVR with quasi-linear kernel.
In: The International Joint Conference on Neural Networks (IJCNN) (IEEE 2012), pp. 1–8
(2012)

14. Wu, X.-J., Huang, Q., Zhu, X.-J.: Thermal modeling of a solid oxide fuel cell and micro
gas turbine hybrid power system based on modified LS-SVM. International Journal of Hy-
drogen Energy 36, 885–892 (2011)

15. Cisse, Y., Kinouchi, Y., Nagashino, H., Akutagawa, M.: Identification of homeostatic dy-
namics for a circadian signal source using BP neural networks. ITBM-RBM 21, 24–32
(2000)

16. Atencia, M., Joya, G., Sandoval, F.: Identification of noisy dynamical systems with pa-
rameter estimation based on Hopfield neural networks. Neurocomputing 121, 14–24
(2013)

17. Wei, H.-L., Billings, S.A., Zhao, Y., Guo, L.: An adaptive wavelet neural network for
spatio-temporal system identification. Neural Networks 23, 1286–1299 (2010)

18. Lu, Z., Sun, J.: Non-Mercer hybrid kernel for linear programming support vector regres-
sion in nonlinear systems identification. Applied Soft Computing 9, 94–99 (2009)

19. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applica-
tions. Neurocomputing 70, 489–501 (2006)

20. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine.
Neurocomputing 70, 3056–3062 (2007)

21. Song, Y., Zhang, J.: Automatic recognition of epileptic EEG patterns via Extreme Learn-
ing Machine and multiresolution feature extraction. Expert Systems with Applications 40,
5477–5489 (2013)

22. Wong, P.K., Yang, Z., Vong, C.M., Zhong, J.: Real-time fault diagnosis for gas turbine
generator systems using extreme learning machine. Neurocomputing (2013)

23. Han, F., Huang, D.-S.: Improved extreme learning machine for function approximation by
encoding a priori information. Neurocomputing 69, 2369–2373 (2006)

24. Escandell-Montero, P., Martínez-Martínez, J.M., Martín-Guerrero, J.D., Soria-Olivas, E.,
Gómez-Sanchis, J.: Least-squares temporal difference learning based on an extreme learn-
ing machine. Neurocomputing (April 5, 2014)

25. Chen, C.T., Peng, S.T.: Intelligent process control using neural fuzzy techniques. Journal
of Process Control 9, 493–503 (1999)

26. Akaike, H.: A new look at the statistical model identification. IEEE Transactionson Auto-
matic Control 19(6), 716–723 (1974)

© Springer International Publishing Switzerland 2015
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,

131

Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_12

A Novel Bio-inspired Image Recognition Network
with Extreme Learning Machine

Lin Zhang1, Yu Zhang1,*, and Ping Li1,2

1 School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China
2 Department of Control Science and Engineering, Zhejiang University, Hangzhou, China
{zhanglin0123,zhangyu80}@zju.edu.cn, pli@iipc.zju.edu.cn

Abstract. This paper presents a novel bio-inspired network for image recogni-
tion. The HMAX model and the extreme learning machine (ELM) are com-
bined, to construct a five-layer feed-forward network: S1-C1-S2-C2-H. The
previous four layers, originating from HMAX, provide robust feature represen-
tation of specific object, and the feature classification stage at the H layer is im-
plemented with ELM. The HMAX model simulates the hierarchical processing
mechanism in primate visual cortex, to calculate feature representation. As a bi-
ological learning algorithm for SLFNs, ELM learns much faster with good gen-
eralization, and performs well in classification applications. Our experimental
results show effective accuracy performance with fast learning speed.

Keywords: Image recognition, Extreme learning machine, HMAX, Feature
representation.

1 Introduction

Object recognition has been a popular area of intense research, and is also a very chal-
lenging task in computer vision, while human vision with unique processing mecha-
nism has the ability to recognize objects rapidly, accurately, and effortlessly. The
difficulty of object recognition in images is due to different illumination, viewpoints,
occlusions, scale and shift transforms. Thus achieving robust object recognition
would be beneficial for many fields and applications, such as security surveillance,
robot navigation, clinical image understanding and many others.

Many research works have been done for object recognition. Mohan [1] built Haar
wavelets parts detector to represent the image, and then use a support vector machine
(SVM) for classification. Lowe [2] developed the scale-invariant feature transform
(SIFT). Bio-inspired features based on Gabor filters and MAX operations have been
developed [3, 4]. Although the performance of object recognition increases, none of
the existing algorithms available today can surpass the performance of the human
brain. Object recognition in human brain is largely invariant to changes of the object,
which may give us inspirations to design algorithms for object recognition. A hierar-
chical cortical based model, named HMAX [5, 6], focuses on designing simple
and complex operations inspired by the visual cortex, and it can provide robust

* Corresponding author.

132 L. Zhang, Y. Zhang, and P. Li

representations of specific images, outperforming SIFT under various invariance tasks
[7]. Recently, a novel learning algorithm for single hidden layer feed-forward net-
works (SLFNs), namely, extreme learning machine (ELM), proposed by Huang et
al.[8], can be applied to classification problems [9]. Also it has been successfully
applied in the face recognition [10], which improves the recognition accuracy.

This paper brings together two bio-inspired algorithms, HMAX and ELM, and in-
sights to construct a novel bio-inspired network for image recognition. Since the
HMAX features have better scale and translation invariance, the four-layer HMAX
model, is employed for providing robust feature representation of specific object im-
age. As it has better performance than traditional methods, such as SVM, and it learns
extremely fast, which is akin to the fast learning mechanism of the higher cortical
areas, ELM is introduced for feature representation classification. Several experi-
ments will be performed to demonstrate the superiority of our proposed network.

The rest of the paper is organized as follows. In Section 2, preliminary information
about HMAX and ELM are presented. Section 3 details the proposed ELM-based
image recognition algorithm. In Section 4, several experiments are performed, and
followed by results and discussions. The paper is concluded in Section 5.

2 Preliminaries

2.1 Brief of the HMAX

The HMAX model, proposed by Riesenhuber and Poggio [5], summarizes the basic
facts about the ventral visual stream, a hierarchy of brain areas thought to mediate
object recognition in cortex. Serre et al.[6] extend the original HMAX model by add-
ing multi-scale representations as well as more complex visual features. The general
HMAX follows a basic alternating convolution/pooling scheme. Each convolution
step yields a set of feature maps and each pooling step provides robustness to varia-
tions in these feature maps. And the operations of each layer are detailed in [6]. The
lowest levels correspond to orientation-selective cells in primary visual cortex, while
the highest levels correspond to object-selective cells in inferotemporal cortex. Many
researchers have improved the HMAX in different aspects [4, 11, 12].

2.2 Brief of Extreme Learning Machine

Extreme learning machine (ELM) [8] was originally developed for the SLFNs and
then extended to the “generalized” SLFNs which may not be neuron alike [13]. Here,
take SLFNs with L hidden nodes as an example. The output function of ELM for
generalized SLFNs is

1 1

(x) (x) (, , x) (x)
L L

L i i i i i
i i

f h G bβ β
= =

= = =∑ ∑ a h β (1)

where G(ai,bi,x) is the activation function of the ith hidden node, ai and bi are the
parameters which are randomly generated and fixed. β = [β1, β2,..., βL]T represents the

 A Novel Bio-inspired Image Recognition Network with Extreme Learning Machine 133

vector of the output weights between the hidden layer and the output node. h(x) =
[h1(x), h1(x),…, hL(x)]T is the output vector of the hidden layer with respect to the
input x. h(x) actually maps data from the M-dimensional input space to the L-
dimensional hidden-layer feature space H, and thus, h(x) is indeed a feature mapping.

ELM does not only aim at reaching the minimum training error but also the small-
est norm of the output weights, which yields better generalization performance [9].
So the cost function is expressed as

 Minimize : and H - Tβ β (2)

where T = [t1, t2,…, tN]T contains the training target value and H is the hidden-layer
output matrix.

1 1 1 1

1

(x) (x) (x)

(x) (x) (x)

L

N N L N N L

h h

h h
×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

h

H

h

 (3)

The minimal norm least square method [5] instead of the standard optimization
method was used in the original implementation of ELM [4, 18].

 †= H Tβ (4)

where †H is the Moore–Penrose generalized inverse of matrix H.

3 A Novel ELM Based Image Recognition Algorithm Design

With the study of the primate visual cortex in great detail, some facts about the object
recognition are known to us. Core object recognition is well described by a largely
feed forward cascade of nonlinear filtering operations and we humans can recognize
objects in about 100~200 ms [14]. That is to say, a remarkable aspect of primate visu-
al system is that the recognition process can be very fast. In accordance with the fact,
we design a feed-forward image recognition network, which utilizes the ELM for
classification using high-level feature representation that is generated though the
HMAX scheme. The architecture of our proposed network is shown in Fig. 1. The
feed-forward network consists of five layers: S1-C1-S2-C2-H. And two main stages
of the network are the feature representation with HMAX, simulating the biological
feature building mechanism, and the feature classification with ELM, focusing on the
biological learning mechanism.

3.1 Feature Representation with HMAX

The HMAX model is employed to calculate the image feature representation, which
exhibits a better trade-off between invariance and selectivity than template-based or
histogram based approaches. The image layer is the input layer, where the color im-
age is converted to the grayscale image. And then, the feature construction, selection,

134 L. Zhang, Y. Zhang, and P. Li

and extraction are performed along the hierarchy from the S1 layer to C2 layer. The
S1 layer extracts the simple features with Gabor filters. The C1 layer selects the local
maximum value of S1 simple features, which increases the invariance and reduces the
dimension. The S2 layer combines the C1 features into more complex features using a
Radial Basis Filter or a Normalized Dot Product, where the prototypes are defined
during a training phase which impacts the type of complex features representation. At
the C2 layer, the final feature vector is computed by selecting the maximum output of
S2 across all positions and scales, to gain global invariance. The high-level C2 feature
is a feature vector with M dimensions, which is shown in Fig 1. And the M elements
of the C2 feature vector are defined as M input nodes of the ELM for classification.

1 2[, , ,]Mf f f…

Fig. 1. The architecture of our proposed image recognition network

Fig. 2. The schematic diagram of the image recognition system

3.2 Feature Classification with ELM

The biologically inspired classification algorithm ELM is selected as the proper clas-
sifier with good generalization, in conjunction with the HMAX feature representation
for object recognition. The output of the ELM classifier h(x)β can be as close to the
class labels in the corresponding regions as possible, m-class of classifiers have m

 A Novel Bio-inspired Image Recognition Network with Extreme Learning Machine 135

output nodes. The predicted class label of a given testing sample is the index number
the output node which has the highest output value for the given testing sample [9].
The size of the hidden layer matrix H is only decided by the number of training ex-
amples N and the number of hidden nodes L, which is irrelevant to the number of
output nodes (number of classes). ELM has better scalability, faster learning speed,
and smaller training error than traditional SVM. Thus, ELM can be utilized easily and
effectively without tedious and time-consuming parameter tuning.

The input of the ELM classifier is the HMAX C2 feature vector, and its output is
the predicting category index. If the feature mapping is unknown to users, kernels can
be applied in ELM [9]. Thus whether the feature mapping is known or unknown, we
can always use the ELM for feature classification, to perform the image recognition.
And Fig. 2 demonstrates the schematic diagram of our proposed image recognition
procedure, including data preparation, S2 dictionary generation, C2 feature represen-
tation calculation, ELM classifier training, and category index predicting.

4 Experiments and Results

4.1 Datasets and Settings

In order to evaluate our proposed network, several experiments were performed on
two image datasets: (1) Fifteen Scenes [15]: It is composed of 15 natural categories of
urban and rural scenes for a total of 4885 images. (2) Still Actions [16]: There are
about 1200 images in total for six action queries. Some sample images are shown in
Fig. 3. All the following experiments are carried out in MATLAB 2010b environment
running in the Core i5-3470 3.20GHz CPU with 4-GB RAM computer.

4.2 Results and Discussions

For validating the performance of our proposed network, the non-kernel based ELM
classifier and the kernel based ELM classifier were implemented, to compare with the
SVM classifier. For non-kernel based ELM classifier, in which the feature mapping
is known to us, the number of hidden nodes L and the stable scalar C are the tunable
parameters. The output function in our experiment, is the Sigmoid function, define in
Eq.(5). For kernel based ELM classifier, in which the feature mapping is unknown
to us, the radial basis function (RBF), define as in Eq.(6), where u and v are feature
vectors, is used as the corresponding kernel in our experiment. Thus, the tunable pa-
rameters of RBF-kernel based ELM classifier are the parameter γ of the kernel and the
stable scalar C. In the SVM, we also use the RBF as the kernel function, as in Eq.(6).
The parameter γ of the kernel and the soft margin parameter C can be tuned via evalu-
ating the generalization performance of each pair (C, γ) on the training data.

 1
(x) (, , x)

1 exp(+x)i i i
i i

h G b
b

= =
+ ⋅

a
a

 (5)

 2(,) (| |)K u v exp γ= − −u v (6)

136 L. Zhang, Y. Zhang, and P. Li

Fig. 3. Sample images from two datasets (Left: Fifteen Scenes, Right: Still Actions)

Table 1. The tunable parameters of SVM(C, γ), ELM(C, L), and k-ELM(C, γ)

k 1 2 3 4 5 6 7 8 9 10

C(k) 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10

γ(k) 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1

L(k) 10 30 50 70 100 200 300 400 500 600

11 12 13 14 15 16 17 18 19 10 21

20 50 100 200 500 700 1000 1200 1500 2000

2 5 10 20 50 100 200 500 700 1000 1500

700 800 900 1000 1500 2000 2500 3000 3500 4000 4500

* C(k) and γ(k) are the same for SVM, k-ELM.

 (a) (b) (c)

Fig. 4. Parameters selection effect on the predicting accuracy rate of Fifteen Scenes dataset (a)
C2+SVM (C, γ), (b) C2+ELM (C, L), (c) C2+k-ELM (C, γ)

1) Fifteen Scenes
On the Fifteen Scenes dataset, we randomly select 10 sample images from each cate-
gory, and then extract one feature per image, to generate the S2 dictionary. Therefore,
the dimension of the feature representation is 150. The average time for S2 dictionary
generation is 0.4360s per feature and the average time for C2 feature representation
calculation is 1.0757s per image. Then, the feature representation is passed into the
ELM for classification, and the number of input nodes is 150. As stated above, non-
kernel based ELM (ELM) and kernel based ELM (k-ELM) are implemented for task,
while the SVM for comparison.

The relationship of the predicting accuracy rate and parameter selection for the
above three approaches is shown in Fig. 4, with 60 training examples and 30 testing
examples per category. Totally 420 different pairs of (C, γ) for SVM and k-ELM, and

0

10

20

0

10

20
0

20

40

60

L(k)elm

C2 + ELM

C(k)elm

P
re

di
ct

in
g

A
cc

ur
ac

y
(%

)

0
10

20

0

10

20
0

20

40

60

Gamma(k)elm

C2 + k-ELM

C(k)elm

P
re

di
ct

in
g

A
cc

ur
ac

y
(%

)

0

10

20

0

10

20
0

20

40

60

Gamma(k)svm

C2 + SVM

C(k)svm

P
re

di
ct

in
g

A
cc

ur
ac

y
(%

)

 A Novel Bio-inspired Image Recognition Network with Extreme Learning Machine 137

420 different pairs of (C, L) for ELM, which can be seen from Table 1, were tried to
evaluate the sensitivity of parameter. The C2+ELM may less sensitive to the parame-
ters when the number of the hidden nodes L, that is, the dimension of the feature
space, is becoming larger. Although the kernel of the SVM and the k-ELM are both
the RBF kernel, the tunable parameter C may have different meanings. Thus, the sen-
sitivity of the parameters of SVM and k-ELM are different, and the k-ELM performs
better than the SVM.

Next, we carried out three tests. The optimal parameters of each case are listed in
Table 2. Also the average recognition results of each case were obtained based on 20
trials, and in each trial, the training data and testing data are randomly generated from
the beginning and the end of each category in the dataset, respectively. And three
approaches are employed on the same training set and testing set. From Table 2, the
average predicting accuracy of three approaches increases when the rate Tr/Ts is
becoming larger. Meanwhile, the average predicting accuracy rate of the C2+ELM
and the C2+k-ELM is higher than that of the C2+SVM. And the average predicting
accuracy rate of C2+k-ELM is a little higher than C2+ELM, because the ELM always
randomly generates the coefficients according to the Sigmoid function in each trail
while in k-ELM, the RBF kernel coefficients is determined. The key advantage of the
C2+ELM and the C2+k-ELM is the small training time, and the average training time
of the C2+k-ELM is much smaller than that of the C2+ELM, which indicates the
C2+ELM and the C2+k-ELM learns quite fast. Comparing with SVM, the average
predicting time of the C2+k-ELM is also small, which is benefical for fast image
recognition.. Hence, the C2+ELM and the C2+k-ELM are quite appealing approaches
with their less learning time and higher average predicting accuracy rate.

2) Still Actions
For this dataset, our goal to recognize the human actions in the still web images.
When generating the S2 dictionary, 10 sample images are randomly selected from
each category with 10 features per image. Thus the dimension of the feature vector is
600. We use the C2+ELM and C2+k-ELM to recognize the actions. The results of
confusion tables are shown in Fig 5. With the techniques in [16], the mean accuracy is
86.67%. And we acheieve the average accuracy rate about 85% with our proposed
network. Although it doesn’t match the performance of theirs, our algorithm learns
fast, and the dimension of feature vector is 600, which is much smaller than theirs.

Finally, the results of our proposed bio-inspired networks, the C2+ELM and the
C2+k-ELM, on the two datasets for image recognition, demonstrate different average
predicting accuracy performances. And what they have in common is the small aver-
age training time, and less sensitivity to parameters. Meanwhile, the factors that affect
the average predicting accuracy performance, includes the Tr/Ts rates, the dimension
of the feature vector, the parameters of the previous layers, and so on. For the Fifteen
Scenes dataset, the results show that our proposed network is suitable for general
scene recognition, and it manages to match the algorithm in [12], while achieving fast
learning performance. For the Still Actions dataset, it is seen that our proposed

138 L. Zhang, Y. Zhang, and P. Li

Table 2. Average performance and optimal parameters of three tests on Fifteen Scenes dataset

Case
Tr/Ts

Approach Predicting
Accuracy/%

Standard
Deviation

Training
Time/s

Predicting
Time/s

C L/γ

15/30

C2+SVM 42.12 0.0219 0.1201 0.0301 1000 0.01

C2+ELM 43.10 0.0221 0.0292 0.0302 0.02 2000

C2+k-ELM1 43.13 0.0179 0.0064 0.0088 50 500

30/30

C2+SVM 47.11 0.0239 0.3502 0.0516 1000 0.01

C2+ELM 48.72 0.0206 0.0532 0.0300 0.02 2000

C2+k-ELM 49.16 0.0225 0.0159 0.0100 5 1000

60/30

C2+SVM 52.17 0.0235 1.0540 0.0940 1000 0.01

C2+ELM 53.34 0.0263 0.1494 0.0312 0.02 2000

C2+k-ELM 54.02 0.0226 0.0683 0.0222 2 50

*Tr/Ts = training examples/testing examples per category, L for ELM, γ for SVM and k-ELM

 (a) (b)

Fig. 5. Confusion tables for Still Actions dataset (a) C2+ELM (C, L) = (0.02, 2000), (b) C2+k-
ELM (C, γ) = (20, 50)

network can be used for recognize the human actions in the images, although the dif-
ferent backgrounds of the human actions may introduce some redundancy infor-
mation. These results showcase that our proposed bio-inspired image recognition
networks can be practical in many applications, with impressive predicting accuracy
and fast learning speed.

5 Conclusion

In this paper, we have proposed a novel bio-inspired image recognition network based
on the HMAX and the extreme learning machine. The network consists of five layers:
S1-C1-S2-C2-H, to complete the object recognition task. It can potentially benefit
both military and industrial applications because of its fast learning, fast processing
and high precision. Our proposed network, combining two bio-inspired mechanisms
together, seems a little step towards human brain alike recognizing and learning.

1 The k-ELM is short for kernel based ELM, for distinguishing with non-kernel based ELM.

0.90

0.05

0.00

0.00

0.00

0.00

0.00

0.75

0.00

0.00

0.00

0.00

0.00

0.00

0.80

0.05

0.05

0.05

0.10

0.00

0.05

0.85

0.00

0.05

0.00

0.05

0.15

0.05

0.90

0.00

0.00

0.15

0.00

0.05

0.05

0.90

C2 + ELM

Phoning PlayingGuitarRidingBike RidingHorse Running Shooting

Phoning

PlayingGuitar

RidingBike

RidingHorse

Running

Shooting

0.90

0.05

0.00

0.05

0.05

0.00

0.00

0.80

0.00

0.00

0.00

0.05

0.05

0.00

0.85

0.05

0.00

0.05

0.05

0.00

0.05

0.80

0.00

0.05

0.00

0.00

0.10

0.05

0.90

0.00

0.00

0.15

0.00

0.05

0.05

0.85

C2 + k-ELM

Phoning PlayingGuitarRidingBike RidingHorse Running Shooting

Phoning

PlayingGuitar

RidingBike

RidingHorse

Running

Shooting

 A Novel Bio-inspired Image Recognition Network with Extreme Learning Machine 139

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (Grant No. 61005085) and Fundamental Research Funds for the
Central Universities (2012QNA4024).

References

1. Mohan, A., Papageorgiou, C., Poggio, T.: Example-based object detection in images by
components. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 349–
361 (2001)

2. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Jour-
nal of Computer Vision 60, 91–110 (2004)

3. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex.
In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition
CVPR 2005, pp. 994–1000. IEEE (2005)

4. Mutch, J., Lowe, D.G.: Object class recognition and localization using sparse features with
limited receptive fields. International Journal of Computer Vision 80, 45–57 (2008)

5. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature
Neuroscience 2, 1019–1025 (1999)

6. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition
with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 29, 411–426 (2007)

7. Pinto, N., Barhomi, Y., Cox, D.D., DiCarlo, J.J.: Comparing state-of-the-art visual features
on invariant object recognition tasks. In: 2011 IEEE workshop on Applications of comput-
er vision (WACV), pp. 463–470. IEEE (2011)

8. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme
of feedforward neural networks. In: Proceedings of the 2004 IEEE International Joint Con-
ference on Neural Networks, pp. 985–990. IEEE (2004)

9. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and
multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 42, 513–529 (2012)

10. Zong, W., Huang, G.-B.: Face recognition based on extreme learning machine.
Neurocomputing 74, 2541–2551 (2011)

11. Huang, Y., Huang, K., Tao, D., Tan, T., Li, X.: Enhanced biologically inspired model for
object recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cyber-
netics 41, 1668–1680 (2011)

12. Theriault, C., Thome, N., Cord, M.: Extended coding and pooling in the HMAX model.
IEEE Transactions on Image Processing 22, 764–777 (2013)

13. Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learning ma-
chine. Neurocomputing 71, 3460–3468 (2008)

14. Hung, C.P., Kreiman, G., Poggio, T., DiCarlo, J.J.: Fast readout of object identity from
macaque inferior temporal cortex. Science 310, 863–866 (2005)

15. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching
for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 2169–2178. IEEE (2006)

16. Li, P., Ma, J., Gao, S.: Actions in still web images: Visualization, detection and retrieval.
In: Wang, H., Li, S., Oyama, S., Hu, X., Qian, T. (eds.) WAIM 2011. LNCS, vol. 6897,
pp. 302–313. Springer, Heidelberg (2011)

A Deep and Stable Extreme Learning Approach

for Classification and Regression�

Le-le Cao, Wen-bing Huang, and Fu-chun Sun

Tsinghua National Laboratory for Information Science and Technology (TNList),
Department of Computer Science and Technology, Tsinghua University,

Beijing 100084, P.R. China
{caoll12,huangwb12}@mails.tsinghua.edu.cn,

fcsun@mail.tsinghua.edu.cn

Abstract. The random-hidden-node based extreme learning machine
(ELM) is a much more generalized cluster of single-hidden-layer feed-
forward neural networks (SLFNs) whose hidden layer do not need to
be adjusted, and tends to reach both the smallest training error and
the smallest norm of output weights. Deep belief networks (DBNs) are
probabilistic generative modals composed of simple, unsupervised net-
works such as restricted Boltzmann machines (RBMs) or auto-encoders,
where each sub-network’s hidden layer serves as the visible layer for the
next. This paper proposes an approach: DS-ELM (a deep and stable ex-
treme learning machine) that combines a DBN with an ELM. The perfor-
mance analysis on real-world classification (binary and multi-category)
and regression problems shows that DS-ELM tends to achieve a better
performance on relatively large datasets (large sample size and high di-
mension). In most tested cases, DS-ELM’s performance is generally more
stable than ELM and DBN in solving classification problems. Moreover,
the training time consumption of DS-ELM is comparable to ELM.

Keywords: extreme learning machine (ELM), deep belief networks
(DBNs), classification, regression, deep-and-stable ELM.

1 Introduction

In the research field of machine learning, the capability of classification and
regression is often evaluated from perspectives such as accuracy, time cost, sta-
bility, and statistical significance. The research introduced in this paper will
focus on the performance of learning machines with respect to accuracy and
stability of both classification and regression tasks. In particular, the neural net-
works approaches are our major focus. On one hand, Extreme Learning Machine
(ELM) [1–3] is within our scope because of its simple architecture with proven
potential in solving classification and regression problems [1, 4]; on the other
hand, we emphasize deep neural networks, specifically on deep belief networks

� This work was supported by grants from China National Natural Science Foundation
under Project 613278050 and 61210013.

c© Springer International Publishing Switzerland 2015 141
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_13

142 L.-l. Cao, W.-b. Huang, and F.-c. Sun

(DBNs) composed of several layers of restricted Boltzmann machines (RBMs),
which “seek to learn concepts instead of recognizing objects” [5].

Both ELM and DBNs have gained widespread popularity these years; and
many sound and successful applications built upon ELM and DBNs have been
reported. Generally speaking, ELM has high scalability and less computational
complexity, while DBNs are known to have good modeling ability for higher-
order and highly non-linear statistical structure in the input [6]. It is commonly
accepted that the first layers of DBNs are expected to extract relatively low-level
features out of the input space while the upper layers are expected to gradually
refine previously learnt concepts to generate more abstract ones. Hence, it is
natural to think of the possibility of combining ELM and DBNs, so we can have
advantages from both methodologies in one.

Because the output of the higher DBN layers can easily be used as the input
of a supervised classifier, Ribeiro et al. [5] used an ELM classifier for classify the
deep concepts and lower the training cost of DBNs by applying adaptive learn-
ing rate technique and Graphics Processing Units (GPU) implementation of
DBNs [7]. The recognition rate of their proposed approach (named DBN-ELM)
is competitive (and often better) than other successful approaches in well-known
benchmarks. The so called DBN-ELM approach is making use of full unsuper-
vised learning power of DBN (as an auto encoder), the output of which is fed into
a typical ELM classifier with randomly generated hidden neurons. This method
tends to consume noticeable more time than a standalone ELM classifier; and
the performance is not stable, meaning the test accuracy of a single trial (given
exactly the same training and testing split) might very well likely be different
from others trials. Although this kind of performance fluctuation is acceptable
and limited within a certain interval, this phenomenon makes it mandatory to
carry out multiple trials and perform statistical significance analysis.

The authors of [8] proposed a method called multilayer ELM (ML-ELM)
using ELM as an auto encoder for learning feature representations. ML-ELM
is composed of ELM auto encoders (ELM-AE) which performs layer-by-layer
unsupervised learning like a typical DBN. ELM-AE can be regarded as a special
case of ELM, where the input is equal to output. In a nutshell, the proposed
method [8] initialize ELM-AE hidden layer weights within a deep structure in a
random manner, adjust the weights using layer-wise unsupervised training, and
finally fine-tune the entire network with BP algorithm. Although the reported
testing accuracy of ML-ELM outperforms DBNs and ELMs, the problem of
performance fluctuation still exists as in DBN-ELM [5].

In short, DBN-ELM [5] concatenates a DBN with an ELM (on top layer as
a supervised classifier), while ML-ELM [8] stacks multiple ELM-AE together to
form a deep network. Because of the random hidden nodes in both approaches,
the performance (testing accuracy) is not stable. One of our objectives is to
propose a new way of assembling DBN and ELM together, obtaining an ELM
learning machine with deep structure, which is expected to have a relatively
stable performance. DBN-ELM was only tested towards image reconstruction
and classification tasks in [5]. ML-ELM was tested merely on MINIST data

The DS-ELM Approach for Classification and Regression 143

set which is commonly used for testing deep network performance. The other
objective of our research is testing our approach on classification (binary and
multiple class) and regression datasets to obtain a full picture of its performance.

2 Extreme Learning Machine

Extreme learning machine (ELM) [1–3] was developed specifically for single-
hidden-layer feed-forward neural networks (SLFNs) at the very beginning. Huang
et al. then “generalized” it to a kind of SLFN which may not be neuron alike
[9, 10]. ELM was also extended to kernel learning in [4] showing that ELM can
make use of various feature mappings such as random hidden nodes and kernels.
ELM tends to reach both the smallest training error and the smallest norm
of output weights [1, 4, 11]. It has been proved in [4] that ELM can achieve
fast learning speed and good generalization performance on both regression and
classification tasks. ELM is fast, which may be attributed to its single-hidden-
layer structure requiring no iterative process. ELM also requires less human
intervention and supervision, which makes it an efficient algorithm especially
when facing large datasets where training time and easy parameter tuning are
critical.

The decision function of ELM for generalized SLFNs is shown in the following
equation. For simplicity, we take the case of one output node as an example.

fL(x) =
L∑

i=1

βiG(ai, bi, x) = β · h(x) (1)

where L denotes the number of hidden-layer node; βi represents the weight con-
necting the i-th hidden node and the output; notation G(ai, bi, x) is the acti-
vation function of the i-th hidden node; h(x) = [G(a1, b1, x), · · · , G(aL, bL, x)]

T

is the output vector of the hidden layer with respect to the input x [11]. h(x)
maps the feature dimension(s) from N to L. It is worth mentioning that parame-
ters for hidden node (i.e. {ai, bi}i=1···L) can be randomly generated obeying any
continuous probability distribution [4, 11]. As a result, ELM could generate the
hidden node parameters before seeing the training data. As long as the output
functions of hidden neurons are nonlinear piecewise continuous, neural networks
with random hidden neurons attain both universal approximation and classi-
fication capabilities, and the changes in finite number of hidden neurons and
their related connections do not affect the overall performance of the networks.
Equation (1) is equivalent to Hβ = T , where

H =

⎡

⎢⎣
G(a1, b1, x1) · · · G(aL, bL, x1)

... · · · ...
G(a1, b1, xN) · · · G(aL, bL, xN)

⎤

⎥⎦ , β =

⎡

⎢⎣
βT
1
...
βT
L

⎤

⎥⎦ , T =

⎡

⎢⎣
tT1
...
tTN

⎤

⎥⎦ (2)

As a result, the hidden layer output matrix H is also called ELM feature
space [4] mapped from input layer to hidden layer. The i-th column of H is the

144 L.-l. Cao, W.-b. Huang, and F.-c. Sun

output of the i-th hidden node with respect to inputs x1, x2, · · · , xN . Given a
training set ℵ = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, · · · , N}, hidden node output
function G(a, b, x), and the number of hidden nodes L, the output weight β can
be calculated by equation (3) [4]:

β = H†T =

{
HT (I

C +HHT)−1T, when training set is not huge
(I
C +HTH)−1HTT, when training set is huge

(3)

whereH† is the Moore-Penrose generalized inverse of hidden layer output matrix
H [1]. The positive value I

C is added to the diagonal ofHTH orHHT to make the
resulting solution stabler and obtain better generalization performance [4, 12].
Unlike traditional gradient-based learning algorithms facing several issues like
local minima, improper learning rate and overfitting, etc, ELM tends to reach
the solutions straightforward without such trivial issues [13].

3 Deep Belief Networks

DBNs are probabilistic generative modals, or alternatively a kind of deep neu-
ral network, composed of multiple latent variables (hidden units). DBNs were
initially introduced in [14], addressing three problems that exist in traditional
deeply layered neural networks: (1) large demand for training examples; (2) time
consuming to reach convergence; (3) prone to local optima [15]. Recent key find-
ings on neocortex of mammal brain such as [16] motivated the emergence of
deep learning machine even further. Many researchers have affiliated the fact
that DBNs can reach an equivalent modeling capability as SLFNs using a lot
less nodes in each hidden layer.

DBNs can be viewed as a composition of simple, unsupervised networks such
as restricted Boltzmann machines (RBMs) [14] or autoencoders [17], where each
sub-network’s hidden layer serves as the visible layer for the next. As is illustrated
in Fig. 1 (a), each layer tries to model the distribution of its input. Every RBM
has a layer containing visible nodes v that represent the data and a layer contain-
ing hidden nodes h that learn to represent input features capturing higher-order
correlations in the data. [5] The topology of DBNs depicts a joint distribution
based on observation input v and multiple hidden units h1, h2, · · · , hL:

P (v, h1, h2, · · · , hL) = (
L−2∏

k=0

P (hk|hk+1))P (hL−1, hL) (4)

The key idea behind DBNs is that the weights,W , connecting two layers have
no connections within a layer. This matrix of symmetrically weighted connections
is learned by an RBM which defines both p(v|h,W) and the prior distribution
over hidden vectors, p(h|W) , so the probability of generating the visible vector,
v, can be written as:

p(v) =
∑

h

p(h|W)p(v|h,W) (5)

The DS-ELM Approach for Classification and Regression 145

By starting with the data vector on the visible units and alternating several
times between sampling from p(h|v,W) and p(v|h,W), it is easy to get the
learning weights W. The learning algorithm for DBNs proposed by Hinton et al.
[14, 18] has two training phases: (1) a greedy learning algorithm for transforming
representations (unsupervised learning), and (2) Back-Fitting with the up-down
algorithm (fine-tune). The term “epochs” is used to represent iterations or sweeps
of unsupervised pre-training (per layer) and supervised fine-tune.

4 Proposed Approach

This section presents a new machine learning approach named deep and stable
extreme learning machine (DS-ELM) inspired by the ELM and DBN methodol-
ogy. Our overall intention is to use a quick-and-dirty DBN to generate a relatively
stable feature space H that is fed into an ELM to calculate the output weights.
The details of DS-ELM approach are explained in two steps below (Fig. 1):

Step 1. Setup a DBN structure fed with input vector x; and perform a quick-
and-dirty training based on the pre-defined DBN structure [cf. Fig.
1(a)]. The term “quick-and-dirty” means that both “unsupervised pre-
training” and “supervised fine-tune” are accomplished within only a
few iterations rather than sufficient iterations. Because the separating
hyper-plane of ELM feature space goes through the origin in theory
[4, 11]; hence bias b is not needed in training this quick-and-dirty DBN.

Step 2. The nodes in the top hidden layer can be viewed equal to hidden nodes
in a typical ELM network; those hidden layer output matrix H is feature
space of the input vector. the feature space H initiated via Step 1 with
help of a DBN is then fed into a typical ELM solver to calculate the
output weights β with equation (3). [cf. Fig. 1(b)]

By integrating a DBN with an ELM in this manner, DS-ELM adds the fol-
lowing potential advantages to a standalone ELM:

• Auto-abstraction of deep concepts. Most of the classification and regres-
sion problems have input examples which are usually represented by a set
of manually extracted features. In many cases, the challenging nature of
many problems lie on the difficulty of extracting features such as “behav-
ioral characteristics like mood, fatigue, energy, etc.” [5] A typical example
is object image classification problem which is especially challenging due to
the fact that same object might appear differently because of pose and illu-
mination conditions; the low level visual features are far detached from the
semantics of the scene, making it problem-prone when used to infer object
presence. [19] Human-crafted features [20] is very hard to embody complex
functions hidden in input data, but the unsupervised pre-training of DBNs
allows learning those complex functions by mapping the input to the output
directly. Specifically speaking, the bottom layers are expected to extract and
represent low-level features from the input data while the upper layers are
expected to gradually refine previously learnt concepts [5].

146 L.-l. Cao, W.-b. Huang, and F.-c. Sun

Fig. 1. An example (three hidden layers) of two-step training process of DS-ELM.
(a) Step 1: initialize ELM feature space H with a quick-and-dirty DBN. (b) Step 2:
calculate output weights β from H with a typical ELM solver.

• Stable feature space and performance. The parameters for ELM hidden
node (i.e. {ai, bi}i=1···L) are randomly generated obeying any continuous
probability distribution [4, 11]. Hence the ELM feature space H (or called
feature mapping matrix) defined in equation (2) does not stays the same
even for the same input data. According to ELM universal approximation
capability (of approximating any target continuous function) theorems [9, 3],
we can prove the classification capability of ELM [4]; but the performance
of ELM with random hidden nodes is not quite stable. The most straightfor-
ward impact is on the test accuracy of a single trial (given exactly the same
training and testing split) which might very likely be different from others
trials. Although this kind of performance fluctuation is acceptable and con-
trolled within certain limits, this behavior makes it necessary to carry out
groups of trials and perform statistical significance analysis. DS-ELM, on
the other hand, stabilize the ELM performance (test accuracy) by initialize
ELM feature space H with a quick-and-dirty DBN.

5 Experiments and Analysis

In order to extensively verify the performance of DS-ELM, a variety type of
real-world data was chosen for each problem category (regression, binary clas-
sification, and multi-category classification). Seen from Table 1, the simulations
involve 17 datasets ranging from small to large data size; and from low to high
dimension. Fixed training/testing division is applied for all datasets.

The DS-ELM Approach for Classification and Regression 147

Most of the simulated experiments of DS-ELM, ELM1, and DBN2 are carried
out with Matlab 2012b (maci64) run on Intel Core i7, 2.3-GHz CPU with 16-GB,
1333-MHz RAM and 250-GB, SATA 6GB/s SSD. A few datasets (i.e. Shuttle,
CTslice [21], and Protein [22]) require larger memory, so we have to execute algo-
rithms for these datasets with a Matlab 2013a installation on a high-performance
server with dual Xeon E7-4820 2.266GHz CPU and 4x64G RAM.

Table 1. Dimension and size of selected benchmark data sets: binary classification
problems (noted as “bincls”), multiple-category classification problems (noted as “mul-
ticls”), and regression problems (noted as “reg”)

Dim.
Size

Small Large

Low
bincls: Diabetes, Liver [21] bincls: Mushroom, Musk2 [21]

multicls: Iris, Segment [21], Vowel [23] multicls: Shuttle [21]
reg: Pyrim, Housing [21] reg: Abalone [21]

High
bincls: Leukemia [24] bincls: Gisette [25]
multicls: DNA [21] multicls: Protein [22]
reg: Crime [21, 26] reg: CTslice [21]

The code of ELM classifier is originally obtained from [4]. The source code is
then adjusted to fit in the needs of data pre-processing and feature preparation.
The toolbox containing DBN implementation is retrieved in accordance with
[27]. Our implementation of DS-ELM approach is a combination of ELM [4]
and DBN [27] based on the procedure explained in section 4. In all simulations,
Sigmoidal hidden layer activation function is used, and 20 trials are executed for
each dataset.

The experimental results for classification problems and regression problems
are put together in Table 2 and 3 respectively. The best results among the
three tested approaches are highlighted in bold. Generally speaking, the three
approaches are capable of achieving similar generation performance for most
tested datasets.

Table 2 shows the performance comparison of ELM, DBN, and DS-ELM for
classification problems. It can be seen from binary classification tests that (1)
DS-ELM tends to obtain the lowest standard deviation for five out of six datasets;
(2) although ELM achieved best testing rate for four out of six datasets, DS-
ELM has the best testing rate for Mushroom and Gisette datasets which contain
the biggest number of training/testing samples. Observed from multi-category
classification simulations, we found that (1) the performance of DS-ELM is more
stable (with the smallest “Dev” value) than the other two approaches in all tested
datasets; (2) for DNA (high dimension and medium size) and Protein (high
dimension and large size) datasets, DS-ELM method achieved better testing
rate compared to the other two methods.

1 ELM: http://www.ntu.edu.sg/home/egbhuang/elm_random_hidden_nodes.html
2 DeepLearnToolbox: https://github.com/rasmusbergpalm/DeepLearnToolbox

http://www.ntu.edu.sg/home/egbhuang/elm_random_hidden_nodes.html
https://github.com/rasmusbergpalm/DeepLearnToolbox

148 L.-l. Cao, W.-b. Huang, and F.-c. Sun

Table 2. Performance comparison of ELM (random hidden nodes), DBN, and DS-ELM
approaches: classification problems

Datasets
ELM DBN DS-ELM

Tesing
Rate(%)

Training
Time(s)

Dev
(%)

Tesing
Rate(%)

Training
Time(s)

Dev
(%)

Tesing
Rate(%)

Training
Time(s)

Dev
(%)

Diabetes 76.85 0.14 2.16 73.33 1.2436 6.83 75.88 0.369 1.07

Liver 71.12 0.189 3.28 68.06 1.739 5.42 70.1 0.2501 1.83

Mushroom 99.82 2.23 0.28 88.83 214.34 1.69 99.9 2.6515 0.03

Musk2 95.34 27.231 0.32 85.08 57.103 0 93.81 29.281 0.16

Leukemia 81.25 3.56 3.97 79.81 32.192 4.53 80.78 3.166 1.95

Gisette 92.5 98.199 1.12 90.6 3041.5 2.49 93.04 127.08 0.32

Iris 100 0.0031 0 97.91 0.1969 2.36 100 0.0093 0

Vowel 90.74 0.018 1.89 88.45 0.2093 1.9 89.7 0.0602 0.24

Segment 98.07 0.84 0.94 96.52 139.26 0.92 97.88 2.69 0.91

Shuttle 99.75 2.8303 0.03 98.99 1894.9 0.02 99.7 9.592 0.01

DNA 92.86 1.495 0.4 92.79 2207.8 0.36 93.61 13.119 0.21

Protein 83.13 20.26 0.65 84.03 1511.3 0.75 84.78 30.81 0.2

Table 3. Performance comparison of ELM (random hidden nodes), DBN, and DS-ELM
approaches: regression problems

Datasets
ELM DBN DS-ELM

RMSE
Training
Time(s)

Dev
(%)

RMSE
Training
Time(s)

Dev
(%)

RMSE
Training
Time(s)

Dev
(%)

Pyrim 0.1317 0.089 0.0332 0.2023 1.592 0.2916 0.1091 0.159 0.0346

Housing 0.0802 0.239 0.0103 0.0838 11.042 0.0599 0.084 0.5753 0.0164

Abalone 0.073 1.4166 0.0031 0.0785 87.08 0.0438 0.0775 1.7391 0.0099

Crime 0.1381 0.719 0.0642 0.1418 116.37 0.1094 0.1368 1.7729 0.06

CTslice 3.3055 232.28 0.0125 3.8021 2092.8 0.2665 3.278 562.31 0.0083

For regression problems (Table 3), DS-ELM also showed a slight advantage
over ELM on relatively large datasets (i.e. Crime and CTslice). However, we do
not observe an obvious pattern of better standard deviation. It should also be
noted that parameter tuning for DBN is a time-consuming task comparing to
ELM; it is probably one of the reasons that DBN test results seems sub-optimal
than the other approaches. In order to achieve good results, DBN need more care-
ful and data-centric parameter tuning activities. All simulation results showed
that ELM uses least training time while DBN tends to consume a lot more time
(over hundreds of times more in many situations) to train. DS-ELM approach
often has a comparable training time consumption to ELM; of course, the scale
of its training time depends on the level of “quick-and-dirty”-ness (number of
epochs) of the embodied deep network. Our parameter tuning activities also jus-
tify the fact that DS-ELM is not sensitive to the network structure; but it is not
quantitatively measured yet in our research.

The DS-ELM Approach for Classification and Regression 149

6 Conclusions

DS-ELM is a training schema that combines DBN and ELM. The essence of
DS-ELM is using a quick-and-dirty DBN to generate a relatively stable feature
space H which is, in turn, fed into an ELM to calculate the output weights. From
our experimental results, we summarize the three key findings below:

(1). DS-ELM tends to achieve better testing rate over ELM and DBN on rela-
tively large datasets (i.e. large number of samples and high dimension).

(2). DS-ELM is generally more stable (with smaller standard deviation value)
than ELM and DBN in solving classification problems (for both binary and
multiple category cases).

(3). DS-ELM approach often has a similar training-time cost as ELM, as long
as its embodied deep network merely requires a few (usually one or two)
epochs for unsupervised pre-training (per layer) and supervised fine-tune.

References

1. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and
applications. Neurocomputing 70(1), 489–501 (2006)

2. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning
scheme of feedforward neural networks. In: Proceedingsof the 2004 IEEE Interna-
tional Joint Conference on Neural Networks, vol. 2, pp. 985–990. IEEE (2004)

3. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental
constructive feedforward networks with random hidden nodes. IEEE Transactions
on Neural Networks 17(4), 879–892 (2006)

4. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for re-
gression and multiclass classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 42(2), 513–529 (2012)

5. Ribeiro, B., Lopes, N.: Extreme Learning Classifier with Deep Concepts. In: Ruiz-
Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013, Part I. LNCS, vol. 8258,
pp. 182–189. Springer, Heidelberg (2013)

6. A.-r. Mohamed, G., Hinton, G.: Understanding how deep belief networks perform
acoustic modelling. In: 2012 IEEE Int’l Conf. on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4273–4276. IEEE (2012)

7. Lopes, N., Ribeiro, B.: Gpumlib: An efficient open-source gpu machine learning
library. International Journal of Computer Information Systems and Industrial
Management Applications 3, 355–362 (2011)

8. Kasun, L.L.C., Zhou, H., Huang, G.-B., Vong, C.M.: Representational learning
with extreme learning machine for big data. IEEE Intelligent Systems (2013)

9. Huang, G.-B., Chen, L.: Convex incremental extreme earning machine. Neurocom-
puting 70(16), 3056–3062 (2007)

10. Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learn-
ing machine. Neurocomputing 71(16), 3460–3468 (2008)

11. Huang, G.-B., Ding, X., Zhou, H.: Optimization method based extreme learning
machine for classification. Neurocomputing 74(1), 155–163 (2010)

12. Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Inter-
national Journal of Machine Learning and Cybernetics 2(2), 107–122 (2011)

150 L.-l. Cao, W.-b. Huang, and F.-c. Sun

13. Li, M.-B., Huang, G.-B., Saratchandran, P., Sundararajan, N.: Fully complex ex-
treme learning machine. Neurocomputing 68, 306–314 (2005)

14. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief
nets. Neural computation 18(7), 1527–1554 (2006)

15. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning-a new frontier in
artificial intelligence research [research frontier]. IEEE Computational Intelligence
Magazine 5(4), 13–18 (2010)

16. Lee, T.S., Mumford, D.: Hierarchical bayesian inference in the visual cortex. JOSA
A 20(7), 1434–1448 (2003)

17. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.: Greedy layer-wise
training of deep networks. Greedy layer-wise training of deep networks 19, 153
(2007)

18. Hinton, G.: A practical guide to training restricted boltzmann machines. Momen-
tum 9(1), 926 (2010)

19. Wang, G., Hoiem, D., Forsyth, D.: Building text features for object image classifi-
cation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2009, pp. 1367–1374. IEEE (2009)

20. Bengio, Y.: Learning deep architectures for AI. Foundations and trends in Machine
Learning 2(1), 1–127 (2009)

21. Bache, K., Lichman, M.: UCI repository of machine learning repository. Univer-
sity of California, Irvine, School of Information and Computer Sciences (2013),
http://archive.ics.uci.edu/ml

22. Shevade, S.K., Keerthi, S.: A simple and efficient algorithm for gene selection using
sparse logistic regression. Bioinformatics 19(17), 2246–2253 (2003)

23. Duarte, M.F., Hen Hu, Y.: Vehicle classification in distributed sensor networks.
Journal of Parallel and Distributed Computing 64(7), 826–838 (2004)

24. Xing, E.P., Jordan, M.I., Karp, R.M., et al.: Feature selection for high-dimensional
genomic microarray data. ICML 1, 601–608 (2001)

25. Guyon, I., Gunn, S.R., Ben-Hur, A., Dror, G.: Result analysis of the nips 2003
feature selection challenge. In: NIPS, vol. 4, pp. 545–552 (2004)

26. Redmond, M., Baveja, A.: A data-driven software tool for enabling cooperative
information sharing among police departments. European Journal of Operational
Research 141(3), 660–678 (2002)

27. Palm, R.B.: Prediction as a candidate for learning deep hierarchical models of data.
Technical University of Denmark, Palm (2012)

http://archive.ics.uci.edu/ml

Extreme Learning Machine Ensemble Classifier

for Large-Scale Data

Haocheng Wang1,2, Qing He1, Tianfeng Shang3,
Fuzhen Zhuang1, and Zhongzhi Shi1

1 Key Lab of Intelligent Information Processing of Chinese Academy of
Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
{wanghc,heq,zhuangfz,shizz}@ics.ict.ac.cn

3 School of Information Systems, Singapore Management University, Singapore
tfshang@smu.edu.sg

Abstract. For classification problem, extreme learning machine (ELM)
can get better generalization performance at a much faster learning
speed. Nevertheless, a single ELM is unstable in data classification. The
Bagging-based ensemble classifier, i.e., Bagging-ELM has been studied
popularly and proved to improve the performance of ELM significantly
in terms of accuracy, however, it is inappropriate to deal with large-scale
datasets due to the highly intensive computation. In this study, we pro-
pose a novel ELM ensemble classifier, namely b-ELM, which leverages the
Bag of Little Bootstraps technique to obtain a scalable, efficient means of
classification for large-scale data. Efficiency of classification is achieved
as it only requires repeated training under consideration on quantities
of data that can be much smaller than the original training data. Fur-
thermore, b-ELM is suited to implementation on modern parallel and
distributed computing platforms. The experimental results demonstrate
that b-ELM can efficiently handle large-scale data with a good perfor-
mance on prediction accuracy.

Keywords: extreme learning machine, bag of little bootstraps, large-
scale data, classification.

1 Introduction

Extreme learning machine (ELM) was proposed as a powerful machine learning
technique for single-hidden-layer feedforward neural networks (SLFNs) [8,9,6],
and has been studied popularly for its fast learning speed and good generalization
performance [3,5,11,4,7]. The essence of ELM is that the hidden layer of SLFNs
need not be tuned. Concretely, the hidden neuron parameters are randomly
generated which may be independent of the training data, and the output weights
are analytically resolved by using Moore–Penrose generalized inverse. Therefore,
ELM can overcome the difficulties that the traditional classic gradient-based
learning algorithms have to face, such as local minima, learning rate, stopping
criteria, and overfitting, etc. Additionally, a wide range of activation functions

c© Springer International Publishing Switzerland 2015 151
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_14

152 H. Wang et al.

including all piecewise continuous functions can be used as activation functions
in ELM.

However, a single ELM is unstable in data classification. To improve the stabil-
ity and boost the accuracy, more and more researchers consider using ensemble
of ELMs. One popular ensemble learning method is Bagging [1], which takes
different bootstrap resamples from the original training set and trains a clas-
sifier or predictor on each resample to build its constituent members. Several
studies have demonstrated that Bagging-ELM is generally more accurate than
the individual members [12,14,13].

Bagging-ELM, despite its favorable accuracy of predictability, has high or even
prohibitive computational costs. Therefore, its usefulness is severely blunted by
the large-scale datasets increasingly encountered in practice. In Bagging-ELM,
training in question is repeatedly applied to the bootstrap resamples of the
original training set. Because these resamples have size on the order of that
of the original training data, with approximately 63.2% of data points appear-
ing at least once in each resample [2], classification on large-scale data can be
prohibitively costly. To reduce the computational complexity, one might spon-
taneously attempt to employ the modern trend toward parallel and distributed
computing, i.e., different processors or compute nodes are used to process dif-
ferent bootstrap resamples independently in parallel. However, the large size of
bootstrap resamples in the large-scale data setting renders this approach prob-
lematic.

For the sake of alleviating the aforementioned problem, we present b-ELM,
a novel ELM ensemble classifier which utilizes the Bag of Little Bootstraps
(BLB) [10] technique to obtain a scalable, efficient means of classification for
large-scale data. The b-ELM algorithm constructs an ensemble of the predictors
of bootstrapping multiple small subsets of a larger original training set, and then
makes decisions for testing samples through majority voting with the ensemble.
It is worth noting that b-ELM has a more favorable computational profile than
Bagging-ELM, as it only requires repeated training under consideration on quan-
tities of data that can be much smaller than the original training dataset. More-
over, b-ELM is suited to implementation on modern parallel and distributed
computing architectures which are often used to process large datasets. As we
show empirically, our procedure possesses superior ability to scale computation-
ally to large-scale datasets, typically incurring less total computation to reach
comparably high accuracy.

The remainder of this paper is arranged as follows. In Section 2, preliminary
knowledge is described. Subsequently, we introduce b-ELM in full detail in Sec-
tion 3. Our experimental results to demonstrate the efficiency and effectiveness
of b-ELM are given in Section 4. Finally, we conclude in Section 5.

2 Preliminaries

This section will briefly introduce the techniques related to b-ELM.

Extreme Learning Machine Ensemble Classifier for Large-Scale Data 153

2.1 Extreme Learning Machine

ELM was originally developed for the single-hidden-layer feedforward neural net-
works (SLFNs) [8,9,6] and then extended to the “generalized” SLFNs where the
hidden layer need not be neuron alike. ELM typically applies random computa-
tional nodes in the hidden layer, which may be independent of the training data.
It increases learning speed by means of randomly generating weights and biases
for hidden nodes rather than iteratively adjusting network parameters which is
commonly adopted by gradient-based methods. Different from traditional learn-
ing algorithms, ELM tends to reach not only the smallest training error but also
the smallest norm of output weights.

The output function of ELM with L hidden nodes for generalized SLFNs is

fL(x) =

L∑

i=1

βigi(x) =

L∑

i=1

βiG(ai, bi,x), x ∈ R
d, βi ∈ R

m (1)

where ai is the weight vector connecting the input nodes to the ith hidden
node, bi is the bias of the ith hidden node, gi denotes the output function i.e.
activation function G(ai, bi,x) of the ith hidden node, and βi is the weight
vector linking the ith hidden node to the output nodes. For N arbitrary distinct
samples (xj , tj) ∈ R

d×R
m, SLFNs with L hidden nodes can approximate these

N samples with zero error means that there exist (ai, bi) and βi such that

L∑

i=1

βiG(ai, bi,xj) = tj , j = 1, · · · , N. (2)

The above N equations can be written compactly as

Hβ = T (3)

where

H =

⎡

⎢⎣
h(x1)

...
h(xN)

⎤

⎥⎦ =

⎡

⎢⎣
G(a1, b1,x1) · · ·G(aL, bL,x1)

...
. . .

...
G(a1, b1,xN) · · ·G(aL, bL,xN)

⎤

⎥⎦

N×L

β =

⎡

⎢⎣
β�
1
...

β�
L

⎤

⎥⎦

L×m

, T =

⎡

⎢⎣
t�1
...
t�N

⎤

⎥⎦

N×m

H is the hidden layer output matrix of the SLFN, and the ith column of H
is the ith hidden node output with respect to inputs x1,x2, · · · ,xN . While the
jth row of H , i.e., h(xj) is the hidden layer feature mapping with respect to the
jth input xj . As the hidden node parameters (ai, bi) can be randomly generated
and remain fixed, the only unknown parameters in ELM are the output weights
vectors βi between the hidden layer and the output layer, which can simply

154 H. Wang et al.

be resolved by ordinary least-square directly. Since ELM aims to minimize the
training error ‖ Hβ − T ‖ and the norm of weights ‖ β ‖, the smallest norm
least-squares solution of the above linear system is

β̂ = H†T (4)

where H† is the Moore–Penrose generalized inverse of matrix H [6]. Hence, the
prediction value matrix Y can be expressed by

Y = Hβ̂ = HH†T (5)

The error matrix can be described as

e =‖Y − T ‖2=‖HH†T − T ‖2 (6)

2.2 Bag of Little Bootstraps

The Bag of Little Bootstraps (BLB), similar to the classical bootstrap, quantifies
uncertainty on a statistical estimate, but is better suited for implementation on
modern parallel and distributed computing platforms due to its structure. From
the input data of size n, it samples without replacement subsamples of size
b = nγ for typically 0.5 < γ ≤ 0.9, which results in a relatively small number
of distinct points per subsample compared to the total input size n. From each
subsample, resamples of size n are sampled with replacement, and the statistical
estimator function is computed on each resample. The differences between the
estimates made on the resamples for each subsample are quantified, typically
with a standard deviation or variance calculation. The algorithm’s output is the
average of the error measurements on each of the subsamples.

Obviously, BLB only requires repeated computation on small subsets of the
original dataset and avoids the bootstrap’s problematic need for repeated com-
putation of the estimate on resamples having size comparable to that of the
original dataset. A standard and straightforward calculation reveals that each
bootstrap resample contains approximately 0.632n distinct data points, which
is large if n is large [2]. On the contrary, as previously mentioned, each BLB
resample contains at most b distinct data points, and b can be chosen to be
much smaller than n or 0.632n. As a result, the cost of computing the estimate
on each BLB resample is commonly substantially lower than the cost of comput-
ing the estimate on each bootstrap resample, or on the full dataset. Moreover,
BLB typically requires less total computation (across multiple data subsets and
resamples) than the bootstrap to reach comparably high accuracy.

3 b-ELM Classifier

In this section we introduce our ELM ensemble classifier, i.e., b-ELM. Our goal
is to obtain a scalable, efficient means of classification for large-scale data. b-
ELM employs the Bag of Little Bootstraps technique owing to its significantly

Extreme Learning Machine Ensemble Classifier for Large-Scale Data 155

Fig. 1. The workflow of b-ELM. Subsamples are subsampled without replacement,
while resamples are drawn with replacement.

computational gains and effective scalability. BLB can capture the diversities of
base classifiers from relatively small subsets of data. More concretely, b-ELM is
a method of generating training sets for ELM base classifiers by bootstrapping
multiple small subsets of a larger original training dataset, subsequently con-
structing an ensemble of the predictors trained on those training sets, and then
making decisions for testing samples through majority voting with the ensemble,
i.e., the class that obtains the highest votes is considered as the predicted label.
The workflow of b-ELM can be seen in Fig. 1.

The pseudo-code of b-ELM is described in Algorithm 1. There are two pairs
of nested loops in the algorithm: the first pair of nested loops is to find the best
parameters (e.g., the hidden node number L) for those base classifiers based on a
k-fold cross-validation (CV); the other pair is to train the base classifiers and get
their predictions for testing dataset. The aggregation phase includes a majority
vote to obtain the final decision. The parameter b = nγ in the algorithm is the
size of subsamples sampled without replacement from the entire original training
dataset. According to prior knowledge, we might take b = nγ for typically 0.5 <
γ ≤ 0.9. Obviously, b-ELM has a more favorable space profile than Bagging-
ELM. The parameter s indicates the number of subsamples, while r represents
the number of resamples bootstrapped from each subsample. In addition, both
s and r determine the total number of predictions for the testing dataset.

Owing to its much smaller subsample and resample sizes, b-ELM is notably
more amenable than Bagging-ELM to distribution of different subsamples and
resamples and their associated computations to independent compute nodes;
thus, b-ELM allows for simple parallel and distributed implementations, enabling
additional large computational gains.

In the large-scale data setting, training on the entire training dataset often
requires simultaneous distributed training across multiple compute nodes, among
which the observed dataset is partitioned. Given the large size of each bootstrap
resample, training on even a single such resample in turn also requires the use of
a comparably large cluster of compute nodes; Bagging-ELM requires repetition

156 H. Wang et al.

Algorithm 1. b-ELM

Input:
T : training dataset {x1, x2, . . . , xn}
yT : labels of training dataset
S: testing dataset
yS : labels of testing dataset
P : parameters of ELM
b: subset size
s: number of sampled subsets
r: number of Monte Carlo iterations
Output: the aggregated prediction results ŷS

1. for each P do
2. for each fold in k-fold CV do
3. M = elm train(T ,yT ,P)
4. end for
5. end for
6. Save the best-performed parameters Pbest

7. for i = 1 to s do
8. //Subsample the data
9. Randomly sample a subsetBi of b indices from {1, 2, . . . , n} without replacement

10. for j = 1 to r do
11. Draw a random pseudo-sample Dj of size n from Bi with replacement
12. //Training
13. M (i−1)×r+j = elm train(Dj ,yDj ,Pbest)
14. //Testing

15. ŷ
(i−1)×r+j
S = elm test(M (i−1)×r+j,S,yS)

16. Store prediction ŷ
(i−1)×r+j
S

17. end for
18. end for
19. //Aggregation
20. Majority Vote ŷk

S ⇒ ŷS , k = 1, 2, . . . , s× r
21. return ŷS

of this training process for multiple resamples. Each training process is thus
quite costly, and the aggregate computational costs of this repeated distributed
training process are quite high. Indeed, the training for each bootstrap resample
requires use of an entire cluster of compute nodes and incurs the associated
overhead.

Conversely, b-ELM straightforwardly allows to train on multiple (or even all)
subsamples and resamples simultaneously in parallel: because subsamples and re-
samples of b-ELM can be significantly smaller than the original training dataset,
they can be transferred to, stored by, and processed on individual (or very small
sets of) compute nodes. For instance, we could naturally utilize modern hierar-
chical distributed architectures by distributing subsamples to different compute
nodes and subsequently using intra-node parallelism to train across different

Extreme Learning Machine Ensemble Classifier for Large-Scale Data 157

resamples generated from the same subsample. Hence, compared with Bagging-
ELM, b-ELM both decreases the total computational cost of classification and
allows more natural use of parallel and distributed computational resources.

4 Experiments

In this section, the performance of the proposed b-ELM is compared with the
single ELM and Bagging-ELM. Simulations are conducted on simulated data
and real data. All experiments are implemented and executed using MATLAB
on a single processor. More specifically, the current version of basic ELM is
employed here, and the sigmoid function g(x) = 1/(1 + e−λx) is selected as the
activation function. Motivated by the need for good performance, 5-fold cross-
validation is performed to select meta-parameters of basic ELM on each training
set, i.e., one fold is used as testing set for a classifier built on the remaining four
in each cross. The grid search is implemented once for each dataset in advance
to avoid overfitting, and the parameter tuning time is not considered here. For
each dataset, fifty trials are conducted for all the algorithms and the average
results are reported in this paper.

4.1 Datasets

The experiments are performed on several datasets, including a simulated dataset
(“3-Covers”), and nine other classical datasets from the UCI Machine Learning
repository which has been extensively used in testing the performance of differ-
ent kinds of classifiers. The basic information of the datasets is given in Table 1.
The training and testing data of these 10 datasets are fixed for all trials of
simulations. Moreover, all the attributes have been normalized into the range
[0, 1].

Table 1. Specifications of classification datasets

Datasets # Classes # Attributes # Training data # Testing data

Balance 3 4 400 225
Car 4 6 1,200 528
Waveform 3 21 3,000 2,000
Mushroom 2 22 4,000 4,124
Digits 10 16 7,494 3,498
Letter 26 16 16,000 4,000
3-Covers 3 7 10,000 7,895
Adult 2 14 10,000 38,842
Covertype 7 54 15,120 565,892
Poker 10 10 25,010 1,000,000

4.2 Evaluation Metrics

Considering that the accuracy measure may be vulnerable to the class unbalance,
we employ both the standard F1 and accuracy metrics to evaluate the prediction

158 H. Wang et al.

performance of different classifiers on each dataset. Accuracy is the proportion
of true results in the population. For each known class we calculate F i

1 as follows,

F i
1 =

2× precisoni × recalli
precisoni + recalli

, i ∈ {1, · · · , k}, (7)

where precisoni and recalli are the precision and recall on the i-th known class.
Then,

F1 =

k∑

i=1

F i
1/k, (8)

where k is the number of known classes.

4.3 Simulated Data

We first utilize the simulated 3-Covers dataset to evaluate the performance char-
acteristics of b-ELM. More concretely, we study the prediction and computa-
tional properties of b-ELM as well as Bagging-ELM. To maintain consistency
of notation, we henceforth refer to the basic ELM as Single-ELM. Moreover, we
consider b = nγ where γ ∈ {0.6, 0.7, 0.8, 0.9} in runs of b-ELM. For both b-ELM
and Bagging-ELM, identical evaluation criterions have been used to evaluate the
classification quality in the experiments.

From Fig. 2, we can see that b-ELM succeeds in converging to high accuracy
value significantly more quickly than Bagging-ELM for all values of b considered.
When computing on a single processor, b-ELM generally requires less time, and
hence less total computation, than Bagging-ELM to attain comparably high clas-
sification accuracy. Those results only hint at b-ELM’s superior ability to scale
computationally to large-scale data. As seen in Fig. 3, b-ELM also outperforms
Bagging-ELM in terms of achieving higher F1 value with less time on 3-Covers
dataset.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(sec)

A
c
c
u

ra
c
y

Bagging-ELM

b-ELM-0.6

b-ELM-0.7

b-ELM-0.8

b-ELM-0.9

Fig. 2. Accuracy vs. processingtime for
both b-ELM and Bagging-ELM classifi-
cation on 3-Covers dataset. For b-ELM,
b = nγ with the value of γ for each tra-
jectory are given in the legend.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(sec)

F
1

Bagging-ELM

b-ELM-0.6

b-ELM-0.7

b-ELM-0.8

b-ELM-0.9

Fig. 3. F1 vs. processingtime for both b-
ELM and Bagging-ELM classification on
3-Covers dataset. For b-ELM, b = nγ with
the value of γ for each trajectory are given
in the legend.

Extreme Learning Machine Ensemble Classifier for Large-Scale Data 159

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(sec)

A
c
c
u

ra
c
y

Bagging-ELM

b-ELM-0.6

b-ELM-0.7

b-ELM-0.8

b-ELM-0.9

Fig. 4. Accuracy vs. processingtime for
both b-ELM and Bagging-ELM classifica-
tion on Poker dataset. For b-ELM, b = nγ

with the value of γ for each trajectory are
given in the legend.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(sec)

F
1

Bagging-ELM

b-ELM-0.6

b-ELM-0.7

b-ELM-0.8

b-ELM-0.9

Fig. 5. F1 vs. processingtime for both b-
ELM and Bagging-ELM classification on
Poker dataset. For b-ELM, b = nγ with
the value of γ for each trajectory are given
in the legend.

4.4 Real Data

We now present the results of applying b-ELM along with Bagging-ELM to
several different real datasets from the UCI Machine Learning repository. As
expected, the performances of b-ELM, remain substantially better than those of
Bagging-ELM. Figs. 4 and 5 show accuracy or F1 vs. processingtime for both
b-ELM and Bagging-ELM classifications on Poker dataset, respectively. For b-
ELM, b = nγ with the value of γ ∈ {0.6, 0.7, 0.8, 0.9} for each trajectory are
given in the legend. Notably, the outputs of b-ELM for all values of b considered,
and the output of Bagging-ELM, are tightly clustered around the same value;
additionally, as expected, b-ELM converges more quickly than Bagging-ELM.
Furthermore, We have obtained qualitatively similar results on other additional
datasets from the UCI dataset repository.

Table 2. Prediction performance comparisons among b-ELM, Bagging-ELM, and
Single-ELM

Datasets Accuracy (%) F1 (%)

Single-ELM Bagging-ELM b-ELM Single-ELM Bagging-ELM b-ELM

Balance 90.24 91.26 91.27 88.93 89.76 89.83
Car 91.45 94.23 94.61 85.31 88.14 88.17
Waveform 84.79 86.73 86.75 82.27 85.13 85.17
Mushroom 88.82 89.31 89.38 87.93 88.78 88.81
Digits 95.31 97.18 97.21 94.14 96.87 96.86
Letter 93.54 97.18 97.24 92.83 95.75 95.79
3-Covers 87.94 93.54 93.61 86.67 89.91 89.97
Adult 84.12 85.23 85.24 79.57 80.87 80.91
Covertype 79.23 85.37 85.41 69.92 78.53 78.55
Poker 50.77 83.87 84.23 52.31 86.82 87.93

160 H. Wang et al.

Table 2 gives a summary of prediction properties of b-ELM compared to
Bagging-ELM and Single-ELM. Here, we use b = n0.7 in all runs of b-ELM.
For each dataset, both b-ELM and Bagging-ELM are repeated for 50 times as
well as reaching relatively high accuracy or F1 value under appropriate settings.
Then, for each dataset, the average accuracy or F1 are recorded. The average
performance of Single-ELM is also recorded for comparison with the same pa-
rameter settings. Obviously, the classification performances of both b-ELM and
Bagging-ELM are much better than that of an individual ELM. Also, b-ELM
is more scalable than Bagging-ELM while maintaining favorable classification
performance.

5 Conclusions

In this paper, the b-ELM algorithm is proposed, which employs the Bag of Lit-
tle Bootstraps technique to attain a scalable, efficient means of classification
for large-scale data. b-ELM typically has markedly better space and computa-
tional profiles than Bagging-ELM. Experimental results confirm the efficiency
and effectiveness of the proposed algorithm. Moreover, b-ELM is suited to im-
plementation on modern parallel and distributed computing platforms. We will
deploy and demonstrate our procedure over a cluster of compute nodes in the
future.

Acknowledgments. This work is supported by the National Natural Science
Foundation of China (No. 61035003, 61175052, 61203297), National High-tech
R&D Program of China (863 Program) (No. 2012AA011003, 2013AA01A606,
2014AA015105).

References

1. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
2. Efron, B., Tibshirani, R.J.: An introduction to the bootstrap, vol. 57. Chapman

and Hall (1993)
3. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. Neurocom-

puting 70(16), 3056–3062 (2007)
4. Huang, G.-B., Ding, X., Zhou, H.: Optimization method based extreme learning

machine for classification. Neurocomputing 74(1), 155–163 (2010)
5. Huang, G.-B., Li, M.-B., Chen, L., Siew, C.-K.: Incremental extreme learning ma-

chine with fully complex hidden nodes. Neurocomputing 71(4), 576–583 (2008)
6. Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Inter-

national Journal of Machine Learning and Cybernetics 2(2), 107–122 (2011)
7. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for re-

gression and multiclass classification. IEEE Transactions on Systems, Man, and
Cybernetics–Part B: Cybernetics 42(2), 513–529 (2012)

8. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning
scheme of feedforward neural networks. In: Proceedings of the International Joint
Conference on Neural Networks (IJCNN 2004), vol. 2, pp. 985–990. IEEE (2004)

Extreme Learning Machine Ensemble Classifier for Large-Scale Data 161

9. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and
applications. Neurocomputing 70(1), 489–501 (2006)

10. Kleiner, A., Talwalkar, A., Sarkar, P., Jordan, M.I.: The big data bootstrap. In:
Proceedings of the 29th International Conference on Machine Learning (ICML-
2012), pp. 1759–1766 (2012)

11. Lan, Y., Soh, Y.C., Huang, G.-B.: Ensemble of online sequential extreme learning
machine. Neurocomputing 72(13), 3391–3395 (2009)

12. Tian, H., Meng, B.: A new modeling method based on bagging elm for day-ahead
electricity price prediction. In: IEEE Fifth International Conference on Bio-Inspired
Computing: Theories and Applications (BIC-TA), pp. 1076–1079. IEEE (2010)

13. Xu, R.-z., Geng, X.-f., Zhou, F.-y.: A short term load forecasting based on bagging-
elm algorithm. In: Lu, W., Cai, G., Liu, W., Xing, W. (eds.) Proceedings of the 2012
International Conference on Information Technology and Software Engineering.
LNEE, vol. 211, pp. 507–514. Springer, Heidelberg (2013)

14. Ye, R., Suganthan, P.N.: Empirical comparison of bagging-based ensemble classi-
fiers. In: 15th International Conference on Information Fusion, pp. 917–924. IEEE
(2012)

© Springer International Publishing Switzerland 2015
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,

163

Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_15

Pruned Annular Extreme Learning Machine
Optimization Based on RANSAC Multi Model Response

Regularization

Lavneet Singh and Girija Chetty

Faculty of ESTEM, University of Canberra, Australia

Abstract. The accuracy and performance of machine learning and statistical
models are still based on tuning some parameters and optimization for generat-
ing better predictive models of learning is based on training data. Larger da-
tasets and samples are also problematic, due to increase in computational times,
complexity and bad generalization due to outliers. Using the motivation from
extreme learning machine (ELM), we proposed annular ELM based on
RANSAC multi model response regularization to prune the large number of
hidden nodes to acquire better optimality, generalization and classification ac-
curacy of the network in ELM. Experimental results on different benchmark da-
tasets showed that proposed algorithm optimally prunes the hidden nodes, better
generalization and higher classification accuracy compared to other algorithms,
including SVM, OP-ELM for binary and multi-class classification and regres-
sion problems.

Keywords: Extreme Learning Machine, RANSAC, Regularization, Classifica-
tion, Regression.

1 Introduction

1.1 Extreme Learning Machine (ELM)

Fortunately, due to exponential expansion in the technology, the improvement in
machine learning and optimizing the parameters of statistical models improved by
availability of large datasets and abundance of information of a studied phenomenon
with maximum number of variables and samples. But, on the other hand, increase in
number of variables with respect to samples in large dataset increases the redundancy
and create ill posed problems. Currently, most of the machines learning models are
based on deterministic learning algorithms rather than non-deterministic approach
which narrow down its learning applications in real time datasets.

(Huang, Zhu, & Siew, 2006) proposed a new novel algorithm as Extreme Machine
Learning (ELM) for single hidden layer feed forward neural network which has less
computational time and faster speed even on large datasets. The main working core of
ELM is random initialization of weights rather than learning through slow process via
iteratively gradient based learning as back-propagation (Abid, Fnaiech, & Najim,
2001). In Extreme machine learning, the number of hidden nodes and their weights
are randomly assigned, which distinguishes the linear differentiable between the

164 L. Singh and G. Chetty

output of hidden layer and output layer. The output weights can be determined by
linear least square solution of hidden layer output through activation function and the
data samples targets. For N arbitrary distinct samples (xi, ti), where xi= [xi1 xi2,...,
xin]

T∈ Rn and ti, = [ti1, ti2,...,tim]T ∈ Rm, standard SLFNs with N hidden nodes and
activation function g(x) are mathematically modelled as

() ()
1 1

0,
N N

i i j i i j i
i i

g x g w x bβ β
= =

= ⋅ + =∑ ∑ (1), 1, ..., ,j N= (1)

where []1 2, ,...,
T

i i i inw w w w= is the weight vector connecting the fth hidden node

and the input nodes, []1 2, ,...,
T

i i i inβ β β β= is the weight vector connecting the fth

hidden node and the output nodes, and bi is the threshold of the ith hidden node.

i jw x⋅ denotes the inner product of iw and jx . The output nodes are chosen linear

in this paper.
That standard SLFNs with N hidden nodes with activation function g(x) can ap-

proximate these N samples with zero error means that
1

0,
N

j jj
o t

=
− =∑ i.e.,

there exist iβ , iw and ib such that

()

1

, 1,..., .
N

i i i j i j
i

g w x b t j Nβ
=

⋅ + = =∑

(2)

The above N equations can be written compactly as

,H Tβ =

Where ()1 1 1,..., , ..., , ,..., NN N
H w w b b x x

() ()

() ()

1 1 1 1

1 1

N N

N NN N
N N

g w x b g w x b

g w x b g w x b
×

⎡ ⎤⋅ + ⋅ +
⎢ ⎥

= ⎢ ⎥
⎢ ⎥⋅ + ⋅ +⎢ ⎥⎣ ⎦

 (3)

1
T

T
N N m

β
β

β
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and

1
T

T
N N m

t

T

t
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (4)

H is called the hidden layer output matrix of the neural network; the ith column of

H is the ith hidden node output with respect to inputs 1 2, ..., .Nx x x .

 Pruned Annular Extreme Learning Machine Optimization 165

As named in (Huang et al., 2006), H is called the hidden layer output matrix of the
neural network; the ith column of H is the ith hidden node output with respect to inputs.
(Huang, Wang, & Lan, 2011) presented a comprehensive survey on extreme learning
machines and it applications. Optimally pruned extreme leaning machine (OP-ELM)
algorithm which is an extension of original ELM algorithm with pruning of neurons
using ranking multi-response sparse regression (MRSR) method to design optimal
neural architecture removing irrelevant variables was proposed by (Yoan et al., 2010).
(Martínez-Martínez et al., 2011) proposed a new strategy to prune the ELM networks
using regularized regression methods to acquire optimal tuned parameters. The algo-
rithm can acquire optimal tuned parameters by identifying the degree of relevance of
the weights that connects the k-th hidden element with the output layer using lasso
and ridge regression. Regularized version of least squares regression with several
penalties on coefficient vector are used to remove the irrelevant or low relevance
hidden nodes to achieve compact neural networks.(Singh & Chetty, 2012) proposed
LDA-ELM for classification of brain abnormalities in magnetic resonance images
using pattern recognition and machine learning. (Lavneet Singh, 2012) proposed a
Novel Approach for protein Structure prediction Using Pattern Recognition and Ex-
treme Machine Learning.

To overcome the drawbacks of regularization or penalty method, using sparse
model and removing reductant variables for better generalization an prediction accu-
racy, we proposed RANSAC multi model response regularization which implements a
L1 penalty or the output weights by performing RANSAC multi model response re-
gression between the hidden and output layer.

1.2 Regularized Extreme Learning Machine.

To resolve these limitations of ELM, constructive and heuristic approaches have pro-
posed in the literature. In most recent years, regularization or penalty approach seems
to be significant in resolving the ELM limitations. As in extreme machine learning,
there is linear behaviour between hidden layer and output layer, thus as a problem of
linear regression, regularization helps to reduce the number of predictors in hidden
layer by using sparse model.

Significant work have been done in past for better generalization, faster learning
and rate of convergence. But, unfortunately, ELM also suffers with some limitations
as outliners, irrelevant variables and number of hidden nodes. To resolve these limita-
tions of ELM, constructive and heuristic approaches have proposed in the literature.

In most recent years, regularization or penalty approach seems to be significant in
resolving the ELM limitations. As in extreme machine learning, there is linear behav-
ior between hidden layer and output layer, thus as a problem of linear regression,
regularization helps to reduce the number of predictors in hidden layer by using
sparse model. Least square solution with regularization is fitted to the model to find
the nonzero coefficients as output weight of output layer. Using regularized sparse
model, most of the predictors are move to zero with increase in lambda. Thus, it cre-
ates a sparse model of output of hidden layer of finding the beta coefficients with
respect to lambda with minimum deviance or minimum convergence with respect to
Mean square error. Regularization is applied to regression problems to select the

166 L. Singh and G. Chetty

relevant hidden units, by addressing over fitting trade off with respect to network size.
The big architectures are selected for the network because regularization approach
prunes the network with optimal hidden neurons. In regularized based ELM, the
weights of the input layer connected to the hidden layer are chosen randomly. The
output weights of the output layer are determined through regularized regression re-
moving hidden units with a optimized size network. The approach used for regulariza-
tion for ELM stated as

1. Lasso regularization as L1 penalty
2. Ridge Regression or L2 penalty
3. Elastic net combining both L1 and L2 penalty

To define the general case of regularization, as a single output regression repre-
sented as –

 Y= Xw + Ɛ (5)

with X = (X1, X2,……..Xn)
T are the inputs of a dataset and Y = (Y1, Y2,…….Yn)

T are
the output and W = (w1,w2,…….wp)

T are the regression weights of the hidden layer.
As discussed, the model possess a linear regression between input layer and output
layer, thus the simple least square solution (OLS) is a heuristic approach to solve
single output regression formulated as

min

ˆ ˆ() ()ˆ Ty Xw y Xww − − (6)

Or in least square form

min
2

1

ˆ()ˆ
n

i i
i

y x ww
=

−∑ (7)

with T
1 nˆ ˆ ˆw = (w ,w) the estimated regression weights.

The solution of equation (7) is then obtained by a pseudo inverse (Moore- Penrose) as

T -1 T

OLSŵ = (X X) X y (8)

Moore Penrose is not useful in every numerical problem if X in equation 8 is not
full rank.

To improve better generalization and prediction accuracy, OLS doesn’t provide a
complete solution to remove irrelevant variables. OLS doesn’t use sparse models to
get related variables with respect to output.to resolve the mentioned issues with sim-
ple OLS, regularization factors or penalty approach added to minimization cost func-
tion in equation 8 to get sparse model of OLS to acquire sparse model which try to
shift most of the irrelevant variables to zero. Regularization or penalty term lambda
with its weights added to minimization problem with its nonzero coefficients to get
beta coefficients of particular model.

 Pruned Annular Extreme Learning Machine Optimization 167

1.3 The L1 Penalty : LASSO

The minimization problem with L1 penalty is formulated as

min
2

1 1

ˆ ˆ()ˆ,
pn

i i j
i j

y x w ww λλ
= =

⎡ ⎤
− +⎢ ⎥

⎣ ⎦
∑ ∑ (9)

Taking an example of simple linear regression with a output as dependent variable

y Ɛ R and independent vector S Ɛ RQ to approximate the regression function. As

 [0,]λ ∈ ∞ increases from minimum to maximum λ, more SW predictors moves
towards becoming zero tracing out the path with respect to beta coefficients exhibit-
ing sparsity. The computation of equation 9 is a classic quadratic programming prob-
lem intensively finding the nonzero coefficients of variable correlated to output exhib-
iting sparsity to less correlated variables. The number of predictors in a regression
model reduces using lasso regularization. Lasso regularization identifies the important
predictors among the redundant predictors and produce shrinkage estimates with po-
tentially lower predictive errors than ordinary least squares.

Fig. 1. Lasso plot of lambda on diabetes data-
set with respect to its Mean Square Er-
ror(MSE) using regularization approach of L1
penalty on output of Hidden Layer to calcu-
late shrinkage estimates with potentially low-
er predictive errors than ordinary least squares
with least predictors as hidden units.

Fig. 2. lasso plot of lambda parameter using
regularization approach of L1 penalty on
output of Hidden Layer for all predictors as
hidden units.

Fig 1 and 2 shows Lasso plot of lambda on diabetes dataset with respect to its
Mean Square Error(MSE) and lambda values for each predictors as hidden units using
regularization approach of L1 penalty on output of Hidden Layer. Lasso Regulariza-
tion calculates shrinkage estimates with potentially lower predictive errors than ordi-
nary least squares with least predictors as hidden units with the nonzero coefficients
in the regression for various values of the Lambda regularization parameter. Larger
values of Lambda appear on the left side of the graph, meaning more regularization,
resulting in fewer nonzero regression coefficients.

10
-4

10
-3

10
-2

10
-1

10
-0.8

10
-0.7

10
-0.6

10
-0.5

10
-0.4

Lambda

M
S

E

Cross-validated MSE of Lasso fit

MSE with Error Bars
LambdaMinMSE
Lambda1SE 1601149580533621161092

df

10
-4

10
-3

10
-2

10
-1

-8

-6

-4

-2

0

2

4
x 10

4

Lambda

Trace Plot of coefficients fit by Lasso

168 L. Singh and G. Chetty

The dashed vertical lines represent the Lambda value with minimal mean squared
error (on the right), and the Lambda value with minimal mean squared error plus one
standard deviation. This optimal value of Lambda is estimated by performing cross
validation up to 5 folds. The upper part of the plot shows the degrees of freedom (df),
meaning the number of nonzero coefficients in the regression, as a function of Lamb-
da. On the left, the large value of Lambda causes most of the coefficient to be 0 pro-
ducing sparsity. On the right are all five coefficients are nonzero, though the plot
shows only four clearly. For small values of Lambda (toward the right in the plot), the
coefficient values are close to the least-squares estimate.

A common drawback of the L1 penalty as Lasso regularization is that it tends to be
produce more sparse model with respect to increasing lambda, where wj = 0. Thus,
using lasso regularization, reduce the number of predictors much more with increas-
ing sparse estimates which quite challenging to tune the model.

1.4 The L2 Penalty:- Tikhonov Regularization

Tikhonov regularization is same as almost same as Lasso regularization only the dif-
ference is in minimization problem, it involve a penalty of square of regression coef-
ficients formulated as

min
22

1 1

ˆ ˆ()ˆ,
pn

i i j
i j

y x w ww λλ
= =

⎡ ⎤
− +⎢ ⎥

⎣ ⎦
∑ ∑ (10)

The L2 venality provides lower MSE and outperforms the Lasso regularization in
achieving better prediction accuracy. The major drawback of this regularization
method is similar to the ordinary least square solution, since all variables are filtered
due to L2 penalty, it does not give any unique solution. The computation times is also
a concern while applying L2 penalty regularization, as it use cross validation to find
the lambda weight with minimum MSE specially when the number of predictors are
large enough.

To resolve the limitation and overcomes the drawbacks of both two regularization
approaches, hybrid penalties are proposed using both L1 and L2 penalty in same min-
imization problem as

min
2 1

2
1 1

ˆ ˆ()
1

ˆ
n p p

i i j
i j

y x w ww
λ

λ

+

= =

⎡ ⎤
− +⎢ ⎥

+⎣ ⎦
∑ ∑ (11)

The above minimization equation is also termed as elastic net which creates great
shrinkage effect on the regression coefficients than original lasso regularization. Since
elastic net are effective way of implementing shrinkages estimates on regression coef-
ficients, but still two parameter λ1 and λ2 need to be optimize and tuned using cross
validation (CV) which is costly search in two dimensional matrix. This is hardly fea-
sible if computation times of ELM are taken under consideration. To overcome the
drawbacks of regularization or penalty method, using sparse model and removing

 Pruned Annular Extreme Learning Machine Optimization 169

reductant variables for better generalization an prediction accuracy, we proposed mul-
ti Ransac based regularization which implements a L1 penalty or the output weights
by performing multi Ransac response regression between the hidden and output layer.

2 Annular ELM

Circular Back Propagation (CBP) networks [12] improve over the basic formulation
of MLP; the CBP model augments the input vector by one additional dimension,
which is computed as the norm of the input vector itself. In a classic set-up involving
a single layer network, the estimation process supported by the enhanced, CBP net-
work is expressed as

,

2

,0 ,
1 1

ˆ ˆ ˆ() 1
h

j k

N M

CBP j k j M
j k

y x b wj b w x w xξ ξ
= =

⎛ ⎞⎡ ⎤⎛ ⎞
⎜ ⎟= + + + +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

∑ ∑ (12)

Based on circular back-propagation network, we proposed a new architecture network
for extreme learning machines known as Annular ELM. The first formation of the
annular ELM augments by adding one more dimension in both training and testing
data which is computed as

Training dataij = Training dataij +1
Where i = {1……m} as number of observation and j = (1…….n) as number of fea-

tures. Thus,
Similarly
Testing datapj = Testing datapj+1
As the annular topology is implemented to the input layer and feeded into the hid-

den layer in ELM network, the random weights and of the hidden layer and the bias is
redefined as

()ˆ ˆˆ ˆ(, ,) (.)j j j jAj x w b w x bξ= + (13)

which could be rewritten as

2ˆˆ(, ,) (.)j j j jAj x w bj z x c bξ= − + (14)

Where

 , 1
ˆj j MZ w

+
= (15)

,1 ,

, ,

ˆ ˆ
,..........,

ˆ ˆ2 1 2 1

j j M

j M j M

w w
cj

w w

⎡ ⎤
= −⎢ ⎥+ +⎢ ⎥⎣ ⎦

 (16)

170 L. Singh and G. Chetty

2

,

1, 1 , 1

ˆ1 ˆ
ˆ ˆ4

M
j k

j j
kj M j M

w
b b

w w=+ +

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ (17)

Input data (Xij) = [Xij,………Xij+1]

Fig. 3. Architectural Design of Annular ELM based on RANSAC Multi Model Response Regu-
larization

The annular based ELM able to map both linear and circular separation boundaries
by boosting the ability of ELM network. In annular based ELM, the initial hidden
weights are chosen randomly only along with the bias too as similar like ELM. But,
later new random weights and bias are approximated by applying proposed annular
functions to estimate the output of hidden layer known as hidden matrix.

Later, proposed RANSAC multi response regularization is applied to the output of
hidden layer using annular ELM topology to prune the hidden units for better general-
ization and higher accuracy.

3 RANSAC

The RANSAC (Random Sample Consensus) algorithm was proposed by (Fischler &
Bolles, 1981) to estimate the parameters of a certain model from a set of data with
large number of outliners. RANSAC take out the outliners from a data if it doesn’t fit
with a set of parameters within the error threshold with respect to maximum devia-
tion. RANSAC can handle outlier’s greater than 50% of the entire dataset known as
breakdown point.

RANSAC first hypothesize minimum sample sets MSSs) randomly selected from
the input dataset and the parameters of the model are estimated using MSS. To test
the estimated parameters of the model using MSS, RANSAC checks which element
of the entire dataset are consisted with the defined model known as consensus set
(CS). RANSAC rank the consensus with a set of iterations with respect to estimated
probability at certain threshold. RANSAC is extensively used in computer vision,
motion detection and features matching of images and is optimized using different
parameters (Raguram, Frahm, & Pollefeys, 2008),(Nistér, 2005),(Chum, Matas, &
Kittler, 2003).

 Pruned Annular Extreme Learning Machine Optimization 171

3.1 RANSAC Multi Model Response Regularization

3.2 RANSAC Multi Model Response Regularization for Regression Problems

To implement the RANSAC on regression problems, we proposed a RANSAC multi
model response regularization which implements the sequential RANSAC on multiple
models. To implement RANSAC, which in our case, are the irrelevant hidden nodes
as predictor variables, and H is the hidden matrix as input from equation. In our case,
the output weights follow a linear regression between hidden and output layer defined
as

 Y= mx + ϵ (18)

Where Y is the output of instances of data, m is the predictor’s weights or slope
and x is the input data and c is the constant. The output weights follow a linear regres-
sion between hidden and output layer defined as

Y= Output weights*H + ϵ

Where

() ()

() ()

1 1 1 1

1 1

N N

N NN N
N N

g w x b g w x b

H

g w x b g w x b
×

⎡ ⎤⋅ + ⋅ +
⎢ ⎥

= ⎢ ⎥
⎢ ⎥⋅ + ⋅ +⎢ ⎥⎣ ⎦

(19)

() ()

() ()

1 1 1 1

1 1

_ *
N N

N NN N
N N

g w x b g w x b

OutputWeights Multi RANSAC T

g w x b g w x b
×

⎡ ⎤⋅ + ⋅ +
⎢ ⎥

= ⎢ ⎥
⎢ ⎥⋅ + ⋅ +⎢ ⎥⎣ ⎦

 (20)

 CS=
1 1

m n

W j
W j

RANSAC D
= =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ (21)

Dxwj = {x11, x12…….xwj} be the sets of data H with wth observations in rows and jth
as hidden nodes predictors in columns of D matrix. For regression problems, sequen-
tial RANSAC implements on the set of all inliners, D that are generated by W differ-
ent models where Wm = rand(HM) . The numbers of models are randomly generated
using 20 % of the input data.

Multi Models are selected from hidden matrix and RANSAC is implemented by
bootstrapping so as to get maximum sparse coefficients of CS for hidden nodes. Multi
models from hidden matrix are randomly selected as 20 % of data so as to get maxi-
mum sparse CS coefficients to prune the hidden nodes. CS ranking help to determine
zero and non-zero coefficients of hidden nodes which is efficiently determine by
bootstrapping of RANSAC on selected multi models.

To estimate the parameters of W models, each one is represented by k dimensional
parameter vector θw at each iteration iter. CS is estimated using MSS of each W mod-
el. The iteration run M times which is calculated before after removing the inliners

172 L. Singh and G. Chetty

from data D. the total number of inliners at iteration iter is less than total number of
inliners at iteration iter-1. The whole formulation of multiple RANSAC response is
defined in equation 20

The set of all inliners D is generated by W different models has cardinality CS as

,1 ,2 ,(...........)I I I I WN N N N= + +

As RANSAC is a parametric model, thus, set of parameters need to be defined be-
fore implementing RANSAC. These set of parameters are defined as

• Epsilon = False alarming rate as the probability of the algorithm throughout all the
iterations will never sample a MSS containing only inliers

• Probability of inlier = the probability that a point whose fitting error is less or equal
than is actually an inlier

• Sigma = Gaussian noise
• Estimate function = function that returns the estimate of the parameter vector start-

ing from a set of data.
• Mean square function = function that returns the fitting error of the data.
• CS ranking Algorithm = Algorithm to rank the CS of data
• Minimum number of iterations
• Maximum number of iterations
• W = 20% of the training data

Let ()w wM θ defines the manifold of dimension kw of all points with respect to pa-

rameter kw
w Rθ ∈ for the specified model for 1 w W≤ ≤ with a subset Sw from D

of kw elements at iteration i called minimal sample set (MSS). To estimate the param-
eters of W models, each one represented parameter vector θw. At each i iterations,
MSS for each W model is defined and CS is estimated removing all outliners.

To combine and fuse the estimated CS computed from i(W) iterations, the whole
RANSAC multi model response algorithm can be summarize as follows

3.3 RANSAC Multi Model Response Regularization Algorithm

Sw
(i)= S(i) (θw) be the CS of wth model at ith iteration.

The all combined updated CS of S (i) (θw) is updated as
M(iter) = 100; i = 0
For i ≤ Miter(maximum number of iterations)
Do i= i + 1
{Sw

(i-1)},{Sw
(i)}

While 1 w W≤ ≤
() (1)

()
i iiS S Sθ θ θ

−

= ∪

W=w+1
Return {Sw

(i)}

 Pruned Annular Extreme Learning Machine Optimization 173

To reduce the number of hidden units with respect to ranked CS estimated using
RANSAC multi-response algorithm is calculated as

 Hidden Layer Output (H1) = S(i)θ*H (22)

which reduces the hidden matrix as hidden layer output H1 into zero and nonzero
coefficients of ranked elements with respect to estimated CS. Nonzero coefficients are
extracted from sparse matrix which reduces the no of hidden units to which are
ranked less giving the hidden units coefficients highly correlated. Thus

 Output weights =
T T-1

1 1 1(H H) H T (23)

3.4 RANSAC Multi Model Response Regularization for Binary and
Multiclass Problems

The proposed RANSAC multi model response regularization for binary and multi-
class problems for ELM is implemented using one against all (OAA) method. As in
OAA method, j binary classifiers will be constructed in which all the training exam-
ples will be used a teach time of training. The training data having the original class
label jn = (1………n) have each jn elements of positive one class and the remaining
training data will be of zero class, creating jn models implementing proposed
RANSAC multi model response regularization on (jn) binary classes. Finally, CS

defined as ()iS θ of j(n) classes is computed as

() (1)

1

()
i

n
i i

j j
j j

S S Sθ θ θ−

=
= ∪∑ (24)

() ()

1

()
i i

n
i

j n
j

S S Sθ θ θ
=

= ∪∑ (25)

For this, consider the ELM for multi-class classification problem, formulated as k
binary ELM classification problem with the following form:

Hw1=y1…Hwj =yj;

Where for each j, wj is the output weights from the hidden layer to the output layer

with output vector 1(,......)t
j j mj my y y R= ∈ . Thus the output of the hidden layer

as H hidden matrix defines with respect to multiclass binary classifiers as

 1

1
*

n
j

j
j

Y
H H Y

o=

=⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ (26)

where H is the hidden layer output matrix and Y is the j binary classes with mth obser-
vations of training data and n binary classes as columns vectors. Thus, we get Hj

174 L. Singh and G. Chetty

hidden matrix where each Hj belong to each binary class and RANSAC multi re-

sponse regularization is implemented to acquire CS for each binary class as ()i
jS θ .

It can be concluded that RANSAC multi response regularization for binary and mul-
ticlass problems work in similar fashion as OAA-ELM with j binary classes with a
difference of jth label with positive class and rest other classes with -1 class.

To improve better generalization and prediction accuracy, OLS doesn’t provide a
complete solution to remove irrelevant variables. OLS doesn’t use sparse models to
get related variables with respect to output.to resolve the mentioned issues with sim-
ple OLS, regularization factors or penalty approach added to minimization cost func-
tion in equation 20 to get sparse model of OLS to acquire sparse model which try to
shift most of the irrelevant variables to zero.

X = LSQR (A, B) attempts to solve the system of linear equations A*X=B for X if A
is consistent, otherwise it attempts to solve the least squares solution X that minimizes
norm (B-A*X). LSQR is an iterative method to find Ordinary Least Squares solution for
large sparse matrix which is analytically equivalent to the standard equation of conju-
gate gradients, but possess more favourable numerical properties.

Section 4 defines the experimental results comparative analysis between proposed
algorithm and with different other algorithms on benchmark datasets in term of test-
ing accuracy, RMSE and number of hidden nodes.

4 Experimental Results

To justify the proposed algorithm, the performance of proposed algorithm will be
investigated by comparing it with original ELM, SVM and other machine learning
methods using public available benchmarks datasets of regression, binary and multi-
class classification.

In the proposed algorithm, different activation functions were used as G(a,b,x)
along with existing algorithms like ELM< MLP and SVM. The different activation
functions of hidden layer is defined as

1. Sigmoid Function

t

1
(, ,)

1 + exp(-(a x+b))
G a b x =

2. Radial Basis Function

2 2 1/ 2

2
(, ,) ()G a b x x a b= − +

For simulations of experimental results, the input weights and the hidden nodes are
chosen randomly at the beginning of the iterations and were fixed in rest of the itera-
tions. The optimal values average training and testing accuracy, number of hidden
nodes of different algorithms with proposed algorithm were determined by using 10-
fold- cross validation on both training and testing datasets.

 Pruned Annular Extreme Learning Machine Optimization 175

All experiments were conducted in MATLAB R2010 platform running on win-
dows 7-64 bit operating system with 3.0 GHz Intel® core 2 i5 processor having 8 GB
of RAM. LIBSVM is used for the implementation of SVM in matlab and weka plat-
form. OP-ELM toolbox is used for implementation of OP-ELM(Miche, Sorjamaa, &
Lendasse, 2008). RANSAC toolbox is used for implementation and making proposed
changes in sequential RANSAC(Zuliani, 2008). In our experiments, several bench-
mark datasets were chosen. The data sets were collected from the University of Cali-
fornia at Irvine (UCI) Machine Learning Repository (Blake & Merz, 1998) and they
all been processed using 10 different random permutations are taken with- out re-
placement; for each permutation, two thirds are taken for the training set, and the
remaining third for the test set by using cross validation function in MATLAB (cross-
valind). Training sets are then normalized (zero-mean and unit variance) and test sets
are also normalized using the very same normalization factors than for the corre-
sponding training set.

4.1 Datasets

In our experiments, several benchmark problems were chosen. The data sets were
collected from the University of California at Irvine (UCI) Machine Learning Reposi-
tory [11] and their different attributes for the data sets are summarized in Table 1 and
2. The data sets have all been processed using 10 different random permutations are
taken with- out replacement; for each permutation, two thirds are taken for the train-
ing set, and the remaining third for the test set (see Table 1) by using cross validation
function in MATLAB (crossvalind). Training sets are then normalized (zero-mean
and unit variance) and test sets are also normalized using the very same normalization
factors than for the corresponding training set. The 10 fold cross validation also en-
ables to obtain an estimate of the standard deviation of the results presented (see Ta-
ble 2).

Table 1. Classification datasets attributes and classes

Dataset Attributes Classes Training
data size

Testing
data size

WDBC 30 2 427 142
Wincosin_BC 10 2 525 174

Cleveland 13 2 228 75
Australian Credit 14 2 518 172

Ionosphere 34 2 264 87
diabetes 8 2 576 192

Liver Disorders 6 2 259 86
Iris 4 3 113 37

Wine 13 3 134 44
Glass 9 6 161 53

Auto Vehicle 18 4 635 211
Page Blocks 10 5 4105 1368
Image Seg 19 7 1733 577
Satellite 36 6 4827 1608

176 L. Singh and G. Chetty

Table 2. Regression datasets attributes and classes

Dataset Attrib-

utes

Training

data size

Testing

data size

Auto-MPG 8 294 98

Machine-CPU 7 157 52

Servo 5 126 41

Forest-Fires 13 388 129

Boston 14 380 126

Concrete-CS 9 773 257

Abalone 8 3133 1044

Wine-(white) 12 3674 1224

Wine-(Red) 12 1200 399

Parkinson 22 4407 1468

Kin-8 9 6144 2048

Demo 5 1536 512

Ailerons 40 5366 1788

5 Results

5.1 Classification

Table 3 depicts the comparative analysis of proposed RANSAC multi model response
regularized ELM with support Vector Machine (SVM) and other ELM variants. For
each dataset, training data is trained with higher number of hidden nodes so as to
prune the network with optimal hidden nodes with better classification accuracy. For
binary classification, it can be seen from table 3 using sigmoid function; most of the
binary datasets shows the higher testing accuracy compared to SVM, ELM and OP-
ELM. Using the RBF function in table 4, the proposed model didn’t showed better
testing accuracy results compared to other algorithms. But in both activation function,
RANSAC multi model response regularized ELM prune the number of hidden nodes
improving the optimality of the ELM network.

Table 5 depicts the comparative analysis of proposed algorithm with SVM and
other variants for multi-class classification. As can be seen from table 5 using sigmoid

Table 3. Experimental results in terms of testing accuracy for binary classification using
Sigmoid kernel

Datasets HN Testing(sigmoid)
 SVM OP-ELM ELM RANSAC-

ELM`
WDBC 200 95.77 90.85 95.39 95.81
Win-BC 200 94.82 89.66 96.53 96.97

Cleveland 200 76.00 78.67 90.40 83.31
Aus-credit 200 83.72 84.88 81.40 86.03
Ionosphere 200 78.16 79.31 79.45 88.92
Diabetes 200 69.79 77.60 71.26 76.21

Liver Disorders 200 58.13 54.65 57.81 65.88

 Pruned Annular Extreme Learning Machine Optimization 177

and RBF kernel,, RANSAC multi model response ELM shows the significant higher
testing accuracy results compared to other algorithms for wine, glass, auto and
segmentation datasets. Table 6 defines the number of hidden nodes pruned using
RANSAC multi model response ELM with optimal higher testing accuracy. As can be
seen from table 6, for binary and multi-class datasets, the RANSAC multi model
response ELM significantly prune the number of hidden nodes from higher number of
hidden nodes maintaining the higher testing accuracy, faster implementation and
better generalization performance for most of the binary and multiclass classification.

Table 4. Experimental results in terms of testing accuracy for binary classification using RBF kernel

Datasets HN Testing(RBF)
 SVM OP-ELM ELM RANSAC-

ELM`
WDBC 200 97.18 90.14 83.20 93.20
Win-BC 200 96.55 97.13 90.74 95.78

Cleveland 200 76.00 78.61 90.55 81.25
Aus-credit 200 83.72 86.63 73.84 84.72
Ionosphere 200 89.65 95.40 78.41 92.90
Diabetes 200 75.00 79.69 69.20 77.30

Liver Disorders 200 74.41 68.60 57.47 67.30

Table 5. Experimental results in terms of testing accuracy for multiclass classification

Datasets HN Testing(sigmoid) Testing(RBF)
 SVM ELM RANSA

C-ELM`
SVM ELM RANSA

C-ELM
Iris 200 91.89 78.32 83.89 97.29 85.24 89.46

Wine 200 93.18 92.77 95.45 97.72 84.85 94.36
Glass 500 39.62 41.85 51.81 41.50 50.60 48.79
Auto 500 43.60 67.39 79.68 56.39 58.23 79.94
Page 500 91.30 94.85 92.96 92.17 89.47 91.43

Segment 500 83.88 94.55 95.33 87.17 94.67 94.75
Satellite 500 83.64 89.60 88.66 83.70 90.25 88.20

Table 6. Experimental results in terms of number of hidden nodes pruned by proposed method
using sigmoid and radial basis functions for binary and multi-class classification

Dataset ELM
Hidden
Nodes

RANSAC-
ELM hidden
nodes(sig)

RANSAC-
ELM hidden
nodes(RBF)

WDBC 200 40 48
Wincosin_Breast_cancer 200 34 30

Cleveland 200 52 53
Australian Credit 200 33 36

Ionosphere 200 90 92
diabetes 200 29 30

Liver Disorders 200 61 70
Iris 200 94 71

Wine 200 60 58
Glass 200 65 123

Auto Vehicle 500 90 118
Page Blocks 500 97 230

Image Segmentation 500 232 245
Satellite 500 250 252

178 L. Singh and G. Chetty

5.2 Regression

Table 7 depicts the training accracy for differnt regression problem datasets using
ELM and proposed algorithm with respect to different kernel function. In both
activation function, for regression problems, RANSAC multi model response regular-
ized ELM prune the number of hidden nodes improving the optimality of the ELM
network and least RMSE compared to other algorithms.

For regression problems, table 8 and 9 depicts the comparative analysis of pro-
posed RANSAC multi model response regularized ELM with ELM and other ELM
variants using various kernels.. As can be seen from table 8 and 9, RANSAC multi
model response annular ELM shows the significant higher testing accuracy results
compared to other algorithms on different datasets. Table 10 defines the number of
pruned hidden nodes using RANSAC multi model response annular ELM with opti-
mal higher testing accuracy.

Table 7. Experimental results in terms of training root mean square accuracy for regression
using sigmoid kernel

 ELM RANSAC-
ELM

ELM RANSAC-
ELM

AutoMPG 200 1.4316 1.4339 1.5571 1.6019
CPU 200 72.1778 48.2834 75.2482 34.5921
Servo 200 1.7221e-23 4.5645e-05 7.0477e-28 0.0172
Forest 200 0.9071 1.2545 0.9449 1.2358
Boston 200 2.7443 3.0085 8.6816 3.6345

Concrete 200 20.3213 14.9237 40.3428 16.3896
Abalone 200 3.8052 3.8399 3.9294 3.8636
Wine-W 200 0.4576 0.4440 1.3107 0.4724
Wine-R 200 0.2943 0.3011 0.9455 0.2865

Parkinson 200 0.0012 0.0011 0.0061 0.0011
Kin-8 200 0.0176 0.0211 0.0337 0.0225
Demo 200 1.1882 1.1902 1.1867 1.2408

Ailerons 200 3.4750e-08 2.3821e-08 1.8721e-07 2.4917e-08

Table 8. Experimental results in terms of testing root mean square accuracy for regression
using Sigmoid kernel

Datasets HN Testing(sigmoid)
 OP-ELM ELM RANSAC-ELM`

Auto-MPG 200 11.7282 91.2388 11.9512
Machine-CPU 200 2.0269e+04 6.2133e+08 1.4293e+03

Servo 200 0.5501 11.4059 0.2861
Forest-Fires 200 4.6637 5.5861 1.9943

Boston 200 29.8807 36.5606 8.7404
Concrete-CS 200 223.4046 58.5347 28.3328

Abalone 200 6.1798 10.6831 4.1517
Wine-(white) 200 0.5494 0.5251 0.4637
Wine-(Red) 200 0.4698 0.4738 0.3627
Parkinson 200 0.0025 0.0014 0.0012

Kin-8 200 0.0481 0.0189 0.0219
Demo 200 1.7995 54.3682 1.4459

Ailerons 200 0.7569 3.9234e-08 2.5698e-08

 Pruned Annular Extreme Learning Machine Optimization 179

Table 9. Experimental results in terms of testing root mean square accuracy for regression
using RBF kernel

Datasets HN Testing(RBF)

 OP-ELM ELM RANSAC-ELM`

Auto-MPG 200 41.4800 49.6352 8.0027

Machine-CPU 200 9.5348e+03 6.8199e+07 1.4612e+03

Servo 200 0.5550 2.1920 0.3258

Forest-Fires 200 2.4981 4.0079 1.8157

Boston 200 33.7665 60.3066 10.3812

Concrete-CS 200 227.5232 95.1963 31.114

Abalone 200 5.9829 4.9659 3.9806

Wine-(white) 200 0.6074 1.4766 0.4808

Wine-(Red) 200 0.5203 1.4369 0.3837

Parkinson 200 0.0031 0.0065 0.0012

Kin-8 200 0.0426 0.0361 0.0224

Demo 200 1.7991 2.5114 1.3197

Ailerons 200 0.8324 2.0346e-07 2.6605e-08

Table 10. Experimental results in terms of number of hidden nodes pruned by proposed method
using sigmoid and radial basis functions for regression

Dataset ELM Hidden
Nodes

RANSAC-ELM
hidden

nodes(sig)

RANSAC-ELM
hidden

nodes(RBF)
Auto-MPG 200 164 132

Machine-CPU 200 96 102
Servo 200 110 87

Forest-Fires 200 93 81
Boston 200 78 113

Concrete-CS 200 139 138
Abalone 200 118 97

Wine-(white) 200 96 79
Wine-(Red) 200 113 97
Parkinson 200 148 127

Kin-8 200 62 147
Demo 200 133 100

Ailerons 200 87 125

180 L. Singh and G. Chetty

Fig. 4. ROC Curve using Extreme Learning
Machine Algorithm of Auto Dataset for Mul-
ticlass Classification

Fig. 5. Confusion Matrix depicting true
positive and false positive rate using Extreme
Learning Machine Algorithm of Auto Dataset
for Multiclass Classification

Fig. 6. ROC Curve using Proposed Extreme
Learning Machine Algorithm of Auto Dataset
for Multiclass Classification

Fig. 7. Confusion Matrix depicting true
positive and false positive rate using Extreme
Learning Machine Algorithm of Auto Dataset
for Multiclass Classification

Figure 4 represents the ROC curve using extreme learning machine algorithm of auto
dataset for multiclass classification. As can be seen in the figure, the ROC curve between
true positive and false positive rate is linear at least true positive rate for different classes.
Figure 5 depicts the confusion matrix using ELM of auto dataset for multiclass classifica-
tion. As we can see from the figure 5, the false positive rate is higher of output class with
respect to target class. Compared with figure 6 showing ROC curve using proposed ELM
algorithm of auto dataset for multiclass classification, the true positive rate is higher with
respect to false positive rate for multi classes. As can be seen in figure 7, the true posi-
tive rate is higher of output class with respect to target class.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

o
si

tiv
e

R
at

e
ROC Curve using Extreme Learning Machine Algorithm of Auto Dataset for Multiclass Classification

Class 1
Class 2
Class 3
Class 4

1 2 3 4

1

2

3

4

43
20.4%

0
0.0%

2
0.9%

2
0.9%

91.5%
8.5%

6
2.8%

28
13.3%

2
0.9%

22
10.4%

48.3%
51.7%

2
0.9%

2
0.9%

52
24.6%

5
2.4%

85.2%
14.8%

3
1.4%

14
6.6%

0
0.0%

28
13.3%

62.2%
37.8%

79.6%
20.4%

63.6%
36.4%

92.9%
7.1%

49.1%
50.9%

71.6%
28.4%

Target Class

O
u

tp
u

t C
la

ss

 Confusion Matrix

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

o
si

ti
ve

 R
at

e

ROC Curve using Proposed Extreme Learning Machine Algorithm of Auto Dataset for Multiclass Classificatio

Class 1
Class 2
Class 3
Class 4

1 2 3 4

1

2

3

4

44
20.9%

0
0.0%

1
0.5%

1
0.5%

95.7%
4.3%

3
1.4%

33
15.6%

3
1.4%

13
6.2%

63.5%
36.5%

2
0.9%

0
0.0%

60
28.4%

0
0.0%

96.8%
3.2%

2
0.9%

14
6.6%

3
1.4%

32
15.2%

62.7%
37.3%

86.3%
13.7%

70.2%
29.8%

89.6%
10.4%

69.6%
30.4%

80.1%
19.9%

Target Class

O
u

tp
u

t C
la

ss

 Confusion Matrix

 Pruned Annular Extreme Learning Machine Optimization 181

Thus, from above experiments, it can be stated that proposed method based on
RANSAC regularization performs very well in terms of training and testing accuracy
compared to traditional ELM and its variants. The above experiment also reduces the
size of network to optimal decreasing computation time and faster performance of the
network.

6 Conclusions

In this paper, we proposed an annular ELM based on RANSAC multi model response
regularization to optimally prune the hidden nodes in a network and improve better
generalization and classification accuracy. Experimental results were conducted using
comparative analysis of proposed RANSAC multi model response regularization
based annular ELM network on different benchmark datasets for binary and mul-
ticlass classification and regression problems.

It can be concluded that from experimental results that proposed RANSAC multi
model response regularized based annular ELM works significantly well in higher
classification accuracy with optimally pruned hidden units. The proposed algorithm
implements faster compared to other algorithms in the study as it implements the
ELM with less pruned hidden units without scarifying the higher generalization capa-
bility of ELM network. Further work will be conducted by testing the proposed algo-
rithm in problems and datasets with images datasets such as bio-medical images, and
images from videos.

References

1. Abid, S., Fnaiech, F., Najim, M.: A fast feedforward training algorithm using a modified
form of the standard backpropagation algorithm. IEEE Transactions on Neural Net-
works 12(2), 424–430 (2001), doi:10.1109/72.914537

2. Blake, C., Merz, C.J.: UCI Repository of machine learning databases. In: Department of
Information and Computer Science, vol. 55, University of California, Irvine (1998),
http://www.ics.uci.edu/mlearn/MLRepository.html

3. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G.
(eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003)

4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Commun. ACM 24(6), 381–
395 (1981), doi:10.1145/358669.358692

5. Huang, G.-B., Wang, D., Lan, Y.: Extreme learning machines: a survey. International
Journal of Machine Learning and Cybernetics 2(2), 107–122 (2011), doi:10.1007/s13042-
011-0019-y

6. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: Theory and applica-
tions. Neurocomputing 70(1–3), 489–501 (2006),
http://dx.doi.org/10.1016/j.neucom.2005.12.126

7. Lavneet Singh, G.: A Novel Approach for protein Structure prediction Using Pattern
Recognition and Extreme Machine Learning. In: Proceedings of International Conference
of Neuro Computing and Evolving Intelligence, NCEI (2012)

182 L. Singh and G. Chetty

8. Martínez-Martínez, J.M., Escandell-Montero, P., Soria-Olivas, E., Martín-Guerrero, J.D.,
Magdalena-Benedito, R., Gómez-Sanchis, J.: Regularized extreme learning machine for
regression problems. Neurocomputing 74(17), 3716–3721 (2011), doi:
http://dx.doi.org/10.1016/j.neucom.2011.06.013

9. Miche, Y., Sorjamaa, A., Lendasse, A.: OP-ELM: Theory, Experiments and a Toolbox. In:
Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp.
145–154. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-
540-87536-9_16

10. Nistér, D.: Preemptive RANSAC for live structure and motion estimation. Machine Vision
and Applications 16(5), 321–329 (2005), doi:10.1007/s00138-005-0006-y

11. Raguram, R., Frahm, J.-M., Pollefeys, M.: A Comparative Analysis of RANSAC Tech-
niques Leading to Adaptive Real-Time Random Sample Consensus. In: Forsyth, D., Torr,
P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 500–513. Springer,
Heidelberg (2008)

12. Singh, L., Chetty, G.: Review of classification of brain abnormalities in magnetic reso-
nance images using pattern recognition and machine learning. In: Proceedings of Interna-
tional Conference of Neuro Computing and Evolving Intelligence, NCEI (2012)

13. Yoan, M., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: Optimally
Pruned Extreme Learning Machine. IEEE Transactions on Neural Networks 21(1), 158–
162 (2010), doi:10.1109/TNN.2009.2036259

14. Zuliani, M.: RANSAC toolbox for Matlab (2008)

© Springer International Publishing Switzerland 2015
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,

183

Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_16

Learning ELM Network Weights
Using Linear Discriminant Analysis

Philip de Chazal, Jonathan Tapson, and André van Schaik

The MARCS Institute, University of Western Sydney, Penrith NSW 2751, Australia
{p.dechazal,j.tapson,a.vanschaik}@uws.edu.au

Abstract. We present an alternative to the pseudo-inverse method for determin-
ing the hidden to output weight values for Extreme Learning Machines
performing classification tasks. The method is based on linear discriminant
analysis and provides Bayes optimal single point estimates for the weight
values.

Keywords: Extreme learning machine, Linear discriminant analysis, Hidden to
output weight optimisation, MNIST database.

1 Introduction

The Extreme Learning Machine (ELM) is a multi-layer feedforward neural network
that offers fast training and flexible non-linearity for function and classification tasks.
Its principal benefit is that the network parameters are calculated in a single pass dur-
ing the training process [1]. In its standard form it has an input layer that is fully con-
nected to a hidden layer with non-linear activation functions. The hidden layer is fully
connected to an output layer with linear activation functions. The number of hidden
units is often much greater than the input layer with a fan-out of 5 to 20 hidden units
per input frequently used. A key feature of ELMs is that the weights connecting the
input layer to the hidden layer are set to random values. This simplifies the require-
ments for training to one of determining the hidden to output unit weights, which can
be achieved in a single pass. By randomly projecting the inputs to a much higher di-
mensionality, it is possible to find a hyperplane which approximates a desired regres-
sion function, or represents a linear separable classification problem [2].

A common way of calculating the hidden to output weights is to use the Moore-
Penrose pseudo-inverse applied to the hidden layer outputs using labelled training
data. In this paper we present an alternative method for hidden to output weight calcu-
lation for networks performing classification tasks. The advantage of our method over
the pseudo-inverse method is that the weights are the best single point estimates from
a Bayesian perspective for a linear output stage. Using the same network architecture
and same random values for the input to hidden layer weights, we applied the two
weight calculation methods to the MNIST database and demonstrated that our method
offers a performance advantage.

184 P. de Chazal, J. Tapson, and A. van Schaik

2 Methods

If we consider a particular sample of input data 1L
k

×∈x where k is a series index

and K is the length of the series, then the forward propagation of the local signals
through the network can be described by:

 (2) (1)
, ,

1 1

M L

n k nm ml l k
m l

y w g w x
= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ∑ (1)

Where 1N
k

×∈y is the output vector corresponding to the input vector kx , l and

Lare the input layer index and number of input features respectively, m and M are
the hidden layer index and number of hidden units respectively, and n and N are the
output layer index and number of output units respectively. (1)w and (2)w are the

weights associated with the input to hidden layer and the hidden to output layer linear

sums respectively. ()g is the hidden layer non-linear activation function.

With ELM, (1)w are assigned randomly which simplifies the training requirements

to task of optimisation of the (2)w only. The choice of linear output neurons further

simplifies the optimisation problem of (2)w to a single pass algorithm.

The weight optimisation problem for (2)w can be stated as

 (2)
, ,

1

M

n k nm m k
m

y w a
=

=∑ where (1)
, ,

1

L

m k ml l k
l

a g w x
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ . (2)

We can restate this as matrix equation by using N M×∈W with elements (2)
nmw ,

and M K×∈A in which each column contains outputs of the hidden unit at one instant
in the series 1M

k
×∈a , and the output N K×∈Y where each column contains out-

put of the network at one instance in the series as follows:

 =Y WA . (3)

The optimisation problem involves determining the matrix W given a series of
desired outputs for Y and a series of hidden layer outputs A .

We represent the desired outputs for ky using the target vectors 1N
k

×∈t where

,n kt has value 1 in the row corresponding to the desired class and 0 for the other N-1

elements. For example []0,1,0,0
T

k =t indicates the desired target is class 2 (of four

classes). As above we can restate the desired targets using a matrix N K×∈T where
each column contains the desired targets of the network at one instance in the series.
Substituting T in for the desired outputs for Y , the optimisation problem involves
solving the following linear equation for W :

 =T WA . (4)

 Learning ELM Network Weights Using Linear Discriminant Analysis 185

2.1 Output Weight Calculation Using the Pseudo-inverse

In ELM literature W is often determined by the taking the Moore-Penrose pseudo-
inverse K M+ ×∈A of A [3]. If the rows of are A are linearly independent (which
normally true if K>M) then W maybe calculated using

 +=W TA where ()-1T T+ =A A AA . (5)

This minimises the sum of square error between networks outputs Y and the de-
sired outputs T , i.e.

 +A minimises ()2

, ,2
1 1

K N

n k n k
k n

y t
= =

− = −∑∑Y T (6)

We refer to the pseudo-inverse method for output weight calculation as PI-ELM.
We note that in cases where the classification problem is ill-posed it may be necessary
to regularise this solution, using standard methods such as Tikhonov regularisation
(ridge regression).

2.2 Output Weight Calculation Using Linear Discriminant Analysis

In this paper we develop an alternative approach to estimating W based on a maxi-
mum likelihood estimator assuming a linear model. We refer to it as the LDA-ELM
method as it is equivalent to applying linear discriminant analysis to the hidden layer
outputs. Our presentation is based on the notation of Ripley [4].

For an N-class problem Bayes’ rule states that the posterior probability of the nth
class np is related to its prior probability kπ and its class density function

(),n nf d θ by

()

()
1

,

,

n n n
n N

z z z
z

f
p

f

π

π
=

=
∑

d θ

d θ
 (7)

where d is the input data vector (in our case the hidden layer output), and nθ are the

parameters of the class density function.
The class densities are modelled with a multi-variate Gaussian model with com-

mon covariance Σ and class dependent mean vectors kμ . Given an input vector ka

the class density is

 () () () ()
1

2 2 11
2, , 2 exp

M T

n k n n k n k nf π − − −⎡ ⎤= = − − −⎣ ⎦a θ μ Σ Σ a μ Σ a μ (8)

We set the dimension of the Gaussian model equal to the number of hidden units
so that ka is as defined above for the hidden unit output and hence M M×∈Σ and

1M
n

×∈μ .

186 P. de Chazal, J. Tapson, and A. van Schaik

To begin with, the training data is partitioned according to the class membership so

that we have
1

N

n
n

K K
=

=∑ labelled data vectors of hidden unit outputs,

(n) 1, 1..M
k nk K×∈ =a where all members (n)a belong to class n .

For a given set of hidden unit output data and class membership a likelihood func-

tion ()l θ is formed using

 () () ()()
1 2

1 1

, ,..., ,
nKN

n
N n n k n

n k

l l fπ
= =

= = ∏∏θ θ θ θ a θ (9)

Our aim is to find values of nθ that maximise ()l θ for given set of training data.

Equivalently we can maximise the value of the log-likelihood:

 () ()() ()() ()()
1 2 1 2

1 1 1

, ,..., log , ,..., log , log
nKN N

n
N N n k n n n

n k n

L l f K π
= = =

= = +∑∑ ∑θ θ θ θ θ θ a θ (10)

Substituting our multi-variate Gaussian model for (),n k nf a θ we get

() ()

() () () ()() ()

1 2 1

() 1 ()1 1
2 2 2

1 1 1

, ,..., ,..., ,

log 2 log log .
n

N N

KN NTn nM
k n k n n n

n k n

L L

Kπ π−

= = =

= =

− − − − − +∑∑ ∑

θ θ θ μ μ Σ

Σ a μ Σ a μ
 (11)

This is maximised when

 ()

1

nK
n

n k n
k

K
=

=∑μ a , and () ()() ()

1 1

nKN Tn n
k k k k

n k

K
= =

= − −∑∑Σ a μ a μ . (12)

Having determined the nμ ’s andΣ from the training data we now need to find the val-

ues for W . We begin by substituting (8) into (7), bringing the nπ into exponential func-

tion and removing the common numerator and denominator term ()
1

2 22
M

π − −Σ , giving us

() () ()

() () ()

11
2

11
2

1

exp log

exp log

T

k n k n n

n N
T

k z k z z
z

p
π

π

−

−

=

⎡ ⎤− − − +⎣ ⎦=
⎡ ⎤− − − +⎣ ⎦∑

a μ Σ a μ

a μ Σ a μ
. (13)

After expanding the () ()11
2

T

k n k n
−− − −a μ Σ a μ terms and removing the

11
2

T
k k

−− a Σ a from the numerator and denominator we get

()

()
1

exp

exp

n
n N

a
a

y
p

y
=

=
∑

 (14)

 Learning ELM Network Weights Using Linear Discriminant Analysis 187

where

 () 1 11
2log T T

n n n k n ny π − −= + −μ Σ a μ Σ μ . (15)

Classification is performed by choosing the class with the highest value of np . As

np in (14) is a monotonic function of ny in (15) we can use either function when

deciding our final class. We choose to use ny defined in (15) as it is a linear function

of the input data vector ka and it can be used to determine W for our network as fol-

lows:

()
()

()

1 11
1 1 1 12

1 11
2 2 2 22

1 11
2

log

log

log

T T

T T

T T
N N N N

π
π

π

− −

− −

− −

⎡ ⎤−
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

μ Σ μ μ Σ
μ Σ μ μ Σ

W

μ Σ μ μ Σ

. (16)

Note that 1N M× +∈W , as a constant term has been introduced into the hidden to
output layer weights (the first column of W). If we want to determine the posterior
probabilities then we use (14) applied to the network outputs.

Summary of Method

In summary calculating W proceeds as follows

(i) Partitioned the hidden unit output data according to the class membership

so that we have
1

N

n
n

K K
=

=∑ labelled data vectors, (n) 1, 1..M
k nk K×∈ =a

where all members (n)a belong to class n .

(ii) Calculate ()

1

nK
n

n k n
k

K
=

=∑μ a and () ()() ()

1 1

nKN Tn n
k k k k

n k

K
= =

= − −∑∑Σ a μ a μ .

(iii) Set the prior probabilities nπ .

(iv) Calculate

()
()

()

1 11
1 1 1 12

1 11
2 2 2 22

1 11
2

log

log

log

T T

T T

T T
N N N N

π
π

π

− −

− −

− −

⎡ ⎤−
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

μ Σ μ μ Σ
μ Σ μ μ Σ

W

μ Σ μ μ Σ

To classify new data we
(i) Calculate the network output y in response to the hidden layer output a is

1⎡ ⎤= ⎢ ⎥
⎣ ⎦

y W
a

.

188 P. de Chazal, J. Tapson, and A. van Schaik

(ii) (Optional) Calculate the posterior probabilities

()
()

1

exp

exp

n
n N

a
a

y
p

y
=

=
∑

.

(iii) The final decision of the network is the output with the highest value of ny

or, equivalently, np .

Combining Classifiers
Equation (14) provides an easy way to combine the outputs of multiple classifiers.
Once the posterior probabilities are calculated for each class for each classifier we can
form a combined posterior probability and choose the class with the highest combined
posterior probability. There are many schemes for doing this [5] with unweighted
averaging across the posterior probability outputs being one of the most simple
schemes.

3 Experiments

We applied the LDA-ELM and PI-ELM weight calculation method to the MNIST
handwritten digit recognition problem [6]. Authors JT and AvS have previously re-
ported good classification results using ELM on this database [2]. The database has
60,000 training and 10,000 testing examples. Each example is a 28*28 pixel 256 level
grayscale image of a handwritten digit between 0 and 9. The 10 classes are approxi-
mately equally distributed in the training and testing sets.

The ELM algorithms were applied directly to the unprocessed images and we
trained the networks by providing all data in batch mode. The random values for
the input layer weights were uniformly distributed between -0.5 and 0.5. The prior
probabilities for the 10 classes for LDA-ELM were each set to 0.1.

In order to perform a direct comparison of the two methods we used the following
protocol:

For fan-out of 1 to 20 hidden units per input, repeat 200 times

(i) Assign random values to the input layer weights and determine the hidden
layer outputs for the 60,000 training data examples.

(ii) Determine PI-ELM network weights using data from (i).
(iii) Determine LDA-ELM network weights using data from (i).
(iv) Evaluate both networks on the 10,000 test data examples and store results.

We averaged the results for the 200 repeats of the experiment for each fan-out and
compared the misclassification rates. These results are shown in Fig. 1 and Table 1.

 Learning ELM Network Weights Using Linear Discriminant Analysis 189

Fig. 1. The error rate of the LDA-ELM and the PI-ELM on the MNIST database for fan-out
varying between 1 and 20. All results at each fan-out are averaged from 200 repeats of the
experiment.

The results show that the LDA-ELM outperforms the PI-ELM at every fan-out
value. The average performance benefit was a 3.1% decrease in the error rate of
LDA-ELM with a larger benefit at smaller fan-out values. Table 2 below shows that
there is little extra computational requirement for the LDA-ELM method.

Table 1. The error rate (%) and percentage improvement of the LDA-ELM over the PI-ELM on
the MNIST database. Results averaged from 200 repeats.

 Fanout
 1 2 3 4 5 6 7 8 9 10 12 15 20

PI-ELM 7.20 5.21 4.32 3.80 3.45 3.20 3.00 2.86 2.74 2.63 2.49 2.31 2.15
LDA-ELM 6.84 5.03 4.17 3.68 3.35 3.11 2.92 2.78 2.66 2.55 2.42 2.25 2.08

% improvement 4.9 3.5 3.3 3.1 2.9 3.0 2.6 2.9 2.8 2.7 2.6 2.6 3.3

Table 2. Computation times (in seconds). The elapsed time is shown for training the PI-ELM
and LDA-ELM networks on the 60,000 images from MNIST database and testing on the
10,000 images using MATLAB R2012a code running on 2012 Sony Vaio Z series laptop with
an Intel i7-2640M 2.8GHz processor and 8GB RAM.

 Fan-out

 1 2 3 4 5 6 7 8 9 10 12 20 15 20

PI-ELM 6.2 13.9 24.9 37.8 53.3 68.5 88.2 111 136 162 228 630 339 630

LDA-ELM 6.2 13.9 25.2 38.1 54.0 69.5 90.6 113 140 167 238 702 357 702

2

3

4

5

6

7

0 5 10 15 20

Er
ro

r (
%

)

Fan-out

LDA-ELM

PI-ELM

190 P. de Chazal, J. Tapson, and A. van Schaik

Fig. 2. The error rate of the LDA-ELM on the MNIST database at a fan-out of 20 with the
ensemble number varying between 1 and 20. The result at each ensemble number is averaged
from 10 repeats of the experiment.

The last experiment we performed investigated combining multiple networks using
the LDA-ELM by averaging posterior probabilities. We investigated using an ensem-
ble number between 1 and 20 and repeated the training and testing 10 times at each
ensemble number. The following protocol was adopted.

For a fan-out of 20 hidden units per input, repeat 10 times

i. With an ensemble number between 1 and 20 then for each classifier of the
ensemble we performed the following:
a. Assign random values to the input layer weights and determine the hid-

den layer outputs for the 60,000 training data examples.
b. Determine LDA-ELM network weights using data from (a).
c. Evaluate the network on the 10,000 test data examples and store the

output probabilities.
ii. Determine the combined network output by averaging the posterior proba-

bilities of the individual networks.
iii. Evaluate network performance of the combined network.

The final results are shown in Fig. 2.
The results shown in Fig. 2 demonstrate the benefit of combining multiple LDA-

ELM networks on the MNIST database. Combining two networks reduced the error
rate from 2.08% to 1.86% and adding more networks further reduced the error. The
best error rate was 1.69% achieved when 20 networks were combined.

1.5

1.6

1.7

1.8

1.9

2.0

2.1

0 5 10 15 20

Er
ro

r (
%

)

Ensemble

 Learning ELM Network Weights Using Linear Discriminant Analysis 191

4 Discussion

The results on the MNIST database shown in Fig. 1 suggest that there is a perfor-
mance benefit to be gained by using the LDA-ELM output weight calculation over the
PI-ELM method. As there is only a small extra computation overhead we believe it is
a viable alternative to the pseudo-inverse method especially at small fan-out values.

Another benefit of the LDA-ELM is the ability to combine outputs from networks
by combining the posterior probabilities estimates of the individual networks. When
we applied this to the MNIST database we were able to reduce the error rate to 1.7%.
This result is comparable to the best performance of most other 2 and 3 layer neural
networks processing the raw data [7]. Further work will include comparing the two
weight calculation methods on other publicly available databases such as abalone and
iris data sets [8].

5 Conclusion

We have presented a new method for weight calculation for hidden to output weights
for ELM networks performing classification tasks. The method is based on linear
discriminant analysis and requires a modest amount of extra calculation time com-
pared to the pseudo-inverse method (<12% for a fan-out ≤ 20). When applied to the
MNIST database the average misclassification rate improvement was 3.1% in
comparison to the pseudo-inverse method for identically configured and initialised
networks.

References

1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme Learning Machine: Theory and Applications.
Neurocomputing 70, 489–501 (2006)

2. Tapson, J., van Schaik, A.: Learning the pseudoinverse solution to network weights. Neural
Networks 45, 94–100 (2013)

3. Penrose, R., Todd, J.A.: On best approximate solutions of linear matrix equations. Mathe-
matical Proceedings of the Cambridge Philosophical Society 52, 17–19 (1956)

4. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press
(1996)

5. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley Press
(2004)

6. LeCun, Y., Cortes, C.: The MNIST database of handwritten digits,
 http://yann.lecun.com/exdb/mnist

7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-Based Learning Applied to Docu-
ment Recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

8. Data sets from the UCI Machine Learning Repository,
 http://archive.ics.uci.edu/ml/

An Algorithm for Classification over Uncertain

Data Based on Extreme Learning Machine�

Ke-yan Cao, Guoren Wang, and Donghong Han

Key Laboratory of Medical Image Computing
(Northeastern University), Ministry of Education, China

College of Information Science and Engineering,
Northeastern University, Liaoning, Shenyang 110819

Abstract. In recent years, along with the generation of uncertain data,
more and more attention is paid to the mining of uncertain data. In
this paper, we study the problem of classifying uncertain data using
Extreme Learning Machine(ELM). We propose UU-ELM algorithm for
classifying uncertain data which are uniform distribution. Finally, the
performances of our methods are verified through a large number of
simulation experiments. The experimental results show that our method
is effective way to solve the problem of uncertain data classification.

Keywords: Extreme Learning Machine, classification, uncertain data,
single hidden layer feedforward neural networks, weighted.

1 Introduction

In recent years, a large amount of uncertain data are generated and collected
due to new techniques of data acquisition, which are widely used in many real-
world applications, such as wireless sensor networks[1, 7], moving object detec-
tion [4, 5, 20], meteorology and mobile telecommunication. However, since the
intrinsic differences between uncertain and deterministic data, it is difficult to
deal uncertain data with traditional data mining algorithms for deterministic
data. Therefore, many researchers put efforts in developing new techniques of
data processing and mining on uncertain data [2, 3, 18, 19, 22].

Classification is one of the key problems in data mining area which can find in-
teresting patterns, and has signification application merits in many fields. There
are many published works on classification [9]. Inclusion of uncertainty to the
data makes the problem far more difficult to tackle, as this will further limit the
accuracy of subsequent classification. Therefore, how to effectively classify over
uncertain data is greatly importance. There are many challenges raised ahead
to affect uncertain data classification.
� The work is supported by the National Natural Science Foundation of China under
Grant Nos. 61025007, 61328202, 61173029, 61100024, 61332006, and 61073063, the
National High Technology Research and Development 863 Program of China under
Grant No. 2012AA011004, and the National Basic Research 973 Program of China
under Grant No. 2011CB302200-G.

c© Springer International Publishing Switzerland 2015 193
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_17

194 K.-y. Cao, G. Wang, and D. Han

In the remainder of this paper, we first introduce the ELM in Section 2. After
that, we formally define our problem in section 3. We analyze the challenge
of classification over uncertain data, and develop the algorithm respectively in
section 4. Section 5 presents experimental results of our method. In Section 6,
we conclude this paper with directions for future work.

2 Brief of Extreme Learning Machine

In this section, we present a brief overview of ELM, developed by Huang et
.al.[10, 11, 14–16]. In ELM, the hidden-layer node parameters are mathemati-
cally calculated instead of being iteratively tuned, providing good generalization
performance at thousands of times higher speeds than traditional popular learn-
ing algorithms for feedforward neural networks [12]. The output function can be
represented by

fL(x) =

L∑

i=1

βigi(x) =

L∑

i=1

βiG(ai, bi, x), x ∈ Rd, βi ∈ Rm

where gi denotes the output function G(ai, bi, x) of the ith hidden node [17]. For
additive nodes with activation function g, gi is defined as

gi = G(ai, bi, x) = g(ai · x+ bi), ai ∈ Rd, bi ∈ R

For Radial Basis Function (RBF) nodes with activation function g, gi is de-
fined as

gi = G(ai, bi, x) = g(bi‖x− ai‖), ai ∈ Rd, bi ∈ R+

For the multiclass classifier with single output, ELM can approximate any
target continuous function and the output of the ELM classifier h(x)β can be as
close as possible to the class labels in the corresponding regions [13]. The clas-
sification problem for the proposed constrained-optimization-based ELM with a
single-output node can be formulated as

Minimize : LPELM = 1
2 ‖β‖2 + C 1

2

N∑
i=1

ξ2i

Subject to : h(xi)β = ti − ξi, i = 1, · · · , N

where C is user-specified parameter. Based on the KKT theorem [8], training
ELM is equivalent to solve the following dual optimization problem:

LDELM =
1

2
‖β‖2 + C

1

2

N∑

i=1

ξ2i −
N∑

i=1

αi(h(xi)β − ti + ξi)

An Algorithm for Classification over Uncertain Data 195

3 Problem Definition

Uncertain Data Model. Let us assume that uncertain data set consists of un-
certain objects x1, x2, · · · , xi, · · · , xn. Each object is described by a continuous
probability density function (pdf), xi denotes the i-th object in data set. Prob-
ability density function of the xi is denoted by f(xi). Meanwhile, xj

i is any one

instance of object xi. Let S(xi) denote the set of all instances of xi. f(x
j
i) > 0

for any instances xj
i in set S(xi), and

∫
x∈S(xi)

f(xi)dx = 1.

As an example, xa, xb and xc are three uncertain objects, each object is de-
scribed by a continuous probability density function. Figure 1 maps some uncer-
tain objects into a 2D coordinate. For simplicity, we only consider two attributes
in the example in Figure 1. Let the shaded area and the white area represent two
classes respectively, and the range of uncertain object is to be classified into the
corresponding category. When the range of the uncertain objects is classified into
the same class, then the uncertain object should belong to that particular class,
as xa, xb. However, when the instances of uncertain object are classified into
different classes, then we will consider probability of each instance, as xc. For an
uncertain dataset, we need to consider all possible classes which the uncertain
object belongs to, the class with max probability is chosen.

0
10987654321

10

9

8

7

6

5

4

3

2

1

0.7

0.3

Fig. 1. Example of classification over uncertain data

The decision function of multiclass classification of ELM is as follows:

f(x) = sign(h(x)HT (
1

C
+HHT)−1T) (1)

196 K.-y. Cao, G. Wang, and D. Han

The expected output vector is:

T =

⎡

⎢⎢⎣

t1
...

tL

⎤

⎥⎥⎦

For multiclass cases, S(class) denotes the set of classes, |S(class)| is the num-
ber of classes and output nodes of hidden layer.

The predicted class label of a given testing sample is the index number of the
output node which has the highest output value for the given testing sample.
Let fk(x

j
i) denote the output function of the k-th (1 ≤ k ≤ |S(class)|) output

node, i.e., f(xj
i) = [f1(x

j
i), · · · , f|S(class)|(x

j
i)], then the predicted class label of

sample xj
i is:

label(xj
i) = arg max

τ∈(1,··· ,|S(class)|)
fτ (x

j
i)

Due to the nature of classification over uncertain data [17], the Theorem 1
cannot be applied to uncertain multiclass classification. If the uncertain object
is classified into three categories, and all probabilities in three classes are smaller
than 0.5, then Theorem 1 cannot be used for multiclass classification. For this
case, Theorem 1 is modified as follows:

Definition 1. Probability of a classification over instance. Let xj
i denote

any one instance of uncertain object xi, f(x
j
i) is probability associated with xj

i

based on the pdf function f(xi) of xi. Given a number of classes |S(class)|, ELM
can classify the instance xj

i into |S(class)| classes. If the instance xj
i belongs to

the class cl, (1 ≤ l ≤ |S(class)|), pcl(xj
i) is probability of instance xj

i belonging

to the class cl, then pcl(xj
i) = f(xj

i).

Definition 2. Probability of classification over uncertain object. We as-
sume that xi is an uncertain object, that is described by a continuous probability
density function f(xi). Let S(xi) be the set of instances of uncertain object xi,
|S(xi)| is the number of instances of object xi, xj

i is any one instance of xi.
S(class) is the set of classes, |S(class)| is number of classes. pcl(xi) is proba-
bility of object xi belonging to the class cl, 1 ≤ l ≤ |S(class)|, pcl(xi) is sum of
probabilities the instances which belong to class cl, then

pcl(xi) =
∑

xj
i∈cl

f(xj
i)

Definition 3. Classification of uncertain data. Let S(class) be the set of
classes, |S(class)| is number of classes. cl is the class label, (1 ≤ l ≤ |S(class)|).
xi is an uncertain object,that is described by a continuous probability density
function f(xi). p

cl(xi) is probability of objects xi belonging to the class cl, 1 ≤
l ≤ |S(class)|. If pcl(xi) ≥ ∀pcj(xi) (1 ≤ j ≤ |S(class)|, j �= l), then uncertain
object xi belongs to class cl.

An Algorithm for Classification over Uncertain Data 197

4 Classification Algorithm

We proposed a grid-based method, named UU-ELM (uniform distribution un-
certain data classification based on ELM) to classify uncertain data which are
uniform distribution by using grid framework. We first describe UU-ELM algo-
rithm for classifying uncertain data. In order to present the pruning approach for
uncertain data, we first review the structure of the grid. For simplicity and limi-
tation of space, we only discuss the case that uncertain objects in 2-dimensional
space.

Given an uncertain database U , we divide its domain by grid G, which can be
viewed as a 2-dimensional array of cells. the area of any one grid is s. Let g(m,n)
be a cell in G, as shown in Figure 2. Each cell is square. Let SS(xi) be the set of
cells that are covered by object xi, area of xi is denoted by area(xi). The cells
which are covered by xi are divided two categories: complete coverage cells and
partially covered cells, denoted by c-cell and p-cell respectively. Let Si(c) denote
the set of all c-cells and Si(p) denote the set of all partially covered cells of xi,
then Si(c) ∪ Si(p) = SS(xi) and Si(c) ∩ Si(p) = ∅.

All cells are classified by ELM, and the results are available. Let pclg(m,n) denote

the probability of cell g(m,n) belonging to class cl.

Theorem 1. Let |c|-cells denote the number of c-cells that are covered by object
xi, Si(c) denote the set of all c-cells of xi, the probability of any one c-cell
belonging to class cl is pclc , the probability of all c-cells of xi belong to class cl is
as follows:

pclc−cell(xi) =

∑
g(m,n)∈Si(c)

pclg(m,n)

|c| − cell
× s× |c| − cell =

∑

g(m,n)∈Si(c)

pclg(m,n) × s

if we can get:

pclc−cell(xi) ≥ 1

2
area(xi)

then object xi belongs to class cl

If we can not judge which class that object xi belongs to, based on Theorem
1, we need consider the p-cells of xi. Partially covered cells are divided into four
categories, as shown in Figure 3. In figure 3(a), cell g(m,n) is a partially cell
of object xi, xi and cell g(m,n) in a, b and c points. We define a minimum
bounding rectangle (MBR) outside which the object has zero (or negligible)
probability of occurrence,denoted by s(a, b, c, d), i.e. s(a, b, c) ≤ s(xi∩g(m,n)) ≤
s(a, b, c, d). Let smin and smax denote the minimum and maximum value of
s(xi ∩ g(m,n)) respectively. In figure 3(b), art tangent to the grid at point e, f
point, makes the area of s(a,b,e,f) be minimum value, then smin = s(a, b, c, d),
smax = s(a, b, e, f). According to the same principle, in figure 3(c), we can know
that smin = s(a, b, c, d), smax = s(a, b, e, f). In figure 3(d), smin = s(a, b, c, d, e),
smax = s(a, b, f, g, e).

198 K.-y. Cao, G. Wang, and D. Han

Fig. 2. Uncertain objects on grid

Theorem 2. Let smin and smax denote the minimum and maximum value of
area that object xi and g(m,n) interssection, g(m,n) is a p-cell of object xi,
the area of g(m,n) is denoted by s, pclg(m,n) denote the probability of cell g(m,n)

belonging to class cl. p
cl
smin denote the upper bound and lower bound of probability

of instances in range Smin belonging to class cl respectively. if

smin

s
≥ pclg(m,n)

then
pclsmin = pclg(m,n)

we need to consider the relationship between smin

s and pclg(m,n) to determine the

lower bound of pclsmin
: if

smin

s
≥ 1− pclg(m,n)

then
pcls(min) =

smin

s
− (1− pclg(m,n)) =

smin

s
− 1 + pclg(m,n)

otherwise
pcls(min) = 0

if
smin

s
< pclg(m,n)

then
pclsmin =

smin

s

the lower bound of pclsmin
is based on the relationship between smin

s and pclg(m,n):

if
smin

s
≥ 1− pclg(m,n)

An Algorithm for Classification over Uncertain Data 199

then

pcls(min) =
smin

s
− 1 + pclg(m,n)

otherwise
pcls(min) = 0

The upper bound and lower bound of pclsmax
are obtained based on the same

method as smin. The detail is not given in this section.

Theorem 3. Let pclc−cell denote the probability of all c-cells of xi belonging to

class cl, p
cl
xi and pclxi

are upper bound and lower bound of pclxi
respectively, then

pcl(xi) = pclc−cell +
∑

g(m,n)∈Si(p)

pclsmax

pcl(xi) = pclc−cell +
∑

g(m,n)∈Si(p)

pclsmin

(a) case 1 (b) case 2

(c) case 1 (d) case 2

Fig. 3. Uncertain object on grid

200 K.-y. Cao, G. Wang, and D. Han

Table 1. Example of probability of xi

class c1 c2 c3 c4 c5
upper bound 0.28 0.5 0.26 0.2 0.21
lower bound 0.1 0.3 0.25 0.05 0.15

Table 2. Example of list L

L t1 t2 t3 t4 t5
probability pc2

xi
pc3
xi

pc5
xi

pc1
xi

pc4
xi

5 Performance Verification

This section compares the performance of several algorithms (Support Vector
Machine (SVM) [6], Dynamic Classifier Ensemble (DCE) [21] and UU-ELM,) in
the real-world benchmark regression and multiclass classification data sets.

5.1 Efficiency Evaluation

In order to prove the efficiency of our proposed algorithms, we first evaluate the
efficiency of our methods. Table 3 shows the training time among SVM, DEC
and UU-ELM. We can see that training time of UU-ELM is shorter than SVM
and DEC. Table 4 shows the testing time for SVM, DEC and UU-ELM. As we
expect, UU-ELM is faster than DEC.

Table 3. Training time comparison of SVM, DEC and UU-ELM

UU-ELM
Datasets SVM DEC sig hardlim sin

Time(s) Time(s) Time(s)
Magic 04 1.9832 2.3245 1.5325 1.6260 1.6992
Waveform 1.6956 1.6206 1.6701 1.5603 1.5009
Pendigits 2.0692 2.0865 1.9500 1.9698 1.9506
Letter 2.8616 2.8703 2.3165 2.5682 2.1345

Pageblocks 1.6503 1.6352 1.5682 1.5103 1.5243

5.2 Accuracy Evaluation

Table 5 shows the accuracy rate for SVM, DEC and UU-ELM with five data sets.
We adopt the traditional learning principle in the training phase. We compare
the accuracy among SVM, DEC, and UU-ELM as shown in Table 5. It can be
seen that ELM can always achieve comparable performance as SVM and DEC.
Seen from Table 5, different functions of ELM can be used in different data sets
in order to have similar accuracy in different size of data sets, although any
output function can be used in all types of data sets. We can see that UU-ELM
and DEC performs are as good as SVM.

An Algorithm for Classification over Uncertain Data 201

Table 4. Testing time comparison of SVM, DEC and UU-ELM

UU-ELM
Datasets SVM DEC sig hardlim sin

Time(s) Time(s) Time(s)
Magic 04 2.3262 2.6591 1.9562 1.8623 1.8965
Waveform 2.0132 2.1656 1.6852 1.6503 1.5230
Pendigits 2.9538 2.8215 1.9520 1.7659 2.0291
Letter 2.9654 2.8659 2.0356 2.3016 2.1530

Pageblocks 1.7925 1.8560 1.1034 1.0362 0.3560

Table 5. Accuracy comparison for SVM, DEC and UU-ELM

WEC-ELM
Datasets SVM DEC sig hardlim sin

TR(%) TR(%) TR(%) TR(%) TR(%)
Magic 04 76.89 78.65 76.82 75.98 78.01
Waveform 73.56 73.01 72.98 74.23 74.08
Pendigits 68.52 67.98 98.29 70.08 69.86
Letter 68.02 39.56 69.31 68.95 69.55

Pageblocks 70.12 72.35 72.52 71.56 70.91

6 Conclusions

In this paper, we studied the problem of classification based on ELM over uncer-
tain data. We proposed UU-ELM algorithm based on ELM, which is suitable for
uniform distribution. Finally, experiments were conducted on real data, which
showed that the algorithms proposed in this paper are efficient and are able to
deal with uncertain data in a real-time fashion.

References

1. Aggarwal, C.C.: On density based transforms for uncertain data mining. In: IEEE
23rd International Conference on Data Engineering, ICDE 2007, pp. 866–875
(2007)

2. Aggarwal, C.C.: Managing and mining uncertain data. Advance in Database Sys-
tems 35 (2009)

3. Aggarwal, P.S.Y.C.C.: A survey of uncertain data algorithms and applications.
IEEE Transactions on Knowledge Data Engineering (2009)

4. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object
trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data (2005)

5. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in mov-
ing object environments. IEEE Transactions on Knowledge and Data Engineer-
ing 16(9), 1112–1127 (2004)

6. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 10(3), 273–297
(1995)

7. Faradjian, A., Gehrke, J., Bonnett, P.: Gadt: A probability space adt for repre-
senting and querying the physical world. In: Proceedings of the 18th International
Conference on Data Engineering (2002)

202 K.-y. Cao, G. Wang, and D. Han

8. Fletcher, R.: Practical methods of optimization. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics (1987)

9. Liu, L.Y.H.: Toward integrating feature selectional gorithms for classification and
clustering. IEEE Trans. Knowl.Data. Eng. (2005)

10. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental
constructive feedforward networks with random hidden nodes. IEEE Transactions
on Neural Networks 17, 879–892 (2006)

11. Huang, G.-B., Siew, C.-K.: Extreme learning machine: RBF network case. In: Pro-
ceedings of the Eighth International Conference on Control, Automation, Robotics
and Vision (ICARCV 2004), Kunming, China, December 6-9, vol. 2, pp. 1029–1036
(2004)

12. Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Inter-
national Journal of Machine Learning and Cybernetics 2(2), 107–122 (2011)

13. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regres-
sion and multiclass classification. Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics 42(2), 513–529 (2012)

14. Huang, G.-B., Zhu, Q.-Y., Mao, K.Z., Siew, C.-K., Saratchandran, P., Sundarara-
jan, N.: Can threshold networks be trained directly? IEEE Transactions on Circuits
and Systems II 53(3), 187–191 (2006)

15. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: Theory and
applications. Neurocomputing 70, 489–501 (2006)

16. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: A new learning
scheme of feedforward neural networks. In: Proceedings of International Joint Con-
ference on Neural Networks (IJCNN2004), Budapest, Hungary, July 25-29, vol. 2,
pp. 985–990 (2004)

17. Han, D., Ning, J., Zhang, X., Cao, K., Wang, G.: Classification of uncertain data
streams based on extreme learning machine. Cognitive Computation (2014)

18. Leung, C.K.S.: Mining uncertain data. Wiley Interdiscovery Rewind: Data Mining
and Knowledge Discovery (2011)

19. Liu, J., Deng, H.: Outlier detection on uncertain data based on local information.
Knowledge-Based Systems (2013)

20. Ljosa, V., Singh, A.K.: Apla: Indexing arbitrary probability distributions. In: IEEE
23rd International Conference on Data Engineering, ICDE 2007 (2007)

21. Pan, S., Wu, K., Zhang, Y., Li, X.: Classifier ensemble for uncertain data stream
classification. Advances in Knowledge Discovery and Data Mining (2010)

22. Zhang, C., Gao, M., Zhou, A.: Tracking high quality clusters over uncertain data
streams. In: IEEE 25th International Conference on Data Engineering, ICDE 2009
(2009)

© Springer International Publishing Switzerland 2015
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,

203

Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_18

Training Generalized Feedforword Kernelized Neural
Networks on Very Large Datasets for Regression

Using Minimal-Enclosing-Ball Approximation

Jun Wang1,*, Zhaohong Deng1, Shitong Wang1, and Qun Gao2

1 School of Digital Media, Jiangnan University, Wuxi, Jiangsu, China
2 Library and Archives of Jiangnan University, Wuxi, Jiangsu, China

wangjun_sytu@hotmail.com,
{dzh666828,wxwangst}@aliyun.com

Abstract. Training feedforward neural networks (FNNs) on very large datasets is
one of the most critical issues in FNNs studies. In this work, the connection
between FNNs and kernel methods is investigated and, HFSR-GCVM, a scalable
learning method for GFKNN on large datasets, is proposed. In HFSR-GCVM,
the parameters in the hidden nodes are generated randomly independent of the
training data. Moreover, the learning of parameters in its output layer is proved
equivalent to a special CCMEB problem in GFKNN hidden feature space. As
most CCMEB approximation based machine learning algorithms, the proposed
HFSR-GCVM training algorithm has the following merits: The maximal training
time of the HFSR-GCVM training is linear with the size of training datasets and
the maximal space consuming is independent of the size of training datasets. The
experiments on regression tasks confirm the above conclusions.

Keywords: generalized feedforward kernel neural networks, minimal enclosing
ball, scalable learning, hidden feature space learning.

1 Introduction

Neural networks have strong ability to approximate complex nonlinear functions from
the input samples and can provide accurate models for a large class of natural and
artificial phenomena. Out of many kinds of neural networks, feedforward neural net-
works (FNNs) play an important role in practical applications and have been fully
investigated in recent years. Among various investigation works on FNNs, the training
of the FNNs is one of the critical issues [1-8]. However, most of the training algorithms
for FNNs are designed for datasets of small and middle size, and little work was ad-
dressed for the training of FNNs on large datasets, which has commonly emerged in
real world applications.

In recent years, a variety of approaches for large datasets have been proposed in the
context of kernel methods, whose main learning feature is that the data in the original

* Corresponding author.

204 J. Wang et al.

feature space are mapped nonlinearly into the kernel space in which they can be sep-
arated by a hyperplane. By applying the criterion of maximizing the separating margins
of two different classes, the learning problem can be formulated as a quadratic pro-
gramming (QP in abbreviation) problem which has the important computational ad-
vantage of not suffering from the problem of local minima. However, given training N
patterns, a naive implementation of the QP solver takes O(N3) training time. In order to
scaling up QP and find QP solutions on large datasets effectively, many methods have
been proposed in recent years [9]-[17]. Among these works, the generalized core vector
machine (GCVM) proposed by Tsang et al. [14][15] achieves an asymptotic time
complexity that is linear in N and a space complexity that is independent of N by uti-
lizing an approximation algorithm for the center-constrained minimum enclosing ball
(CCMEB) problem in computational geometry. Experiments on large datasets for both
classification and regression tasks demonstrate that GCVM is as accurate as existing
kernel methods implementations, but is much faster and can handle much larger da-
tasets than existing scale-up methods.

In order to solve the learning problems for FNNs on large datasets, in this work, we
first build the connection between kernel methods and FNNs, and present generalized
feedforward kernelized neural networks (GFKNN in abbreviation) as a unified frame-
work for current kernel methods and FNNs. Then we show the virtues of GFKNN, i.e.
the parameters of hidden nodes can be generated randomly, the rigorous Mercer’s con-
dition for kernel functions is not required and its learning criterion is able to take more
various forms besides least squared error. As a special case of GFKNN, a novel learning
algorithm called HFSR-GCVM is developed, in which the merits of generalized CVM
are integrated to solve the QP problem for training GFKNN on large datasets.

2 Generalized Feedforward Kernel Neural Networks: A Unified
Framework for Kernel Methods and Feedforward Neural
Networks

Fig. 1 shows the structure of GFKNN, which includes input layer, hidden layers and
output layer. Like traditional FNNs, all the nodes in GFKNN are connected to the nodes
in the adjacent layers through unidirectional branches and the connection between
nodes within one layer is not allowed. The input layer does not perform any computa-
tions, only serves to transmit input signal to the first hidden layer and the output nodes
in the output layer construct the response vector of GFKNN. Each node in hidden
layers is combined with a linear combiner and an activation function, whose output is
the response of the nodes. Notice that in GFKNN, the activation function can takes any
infinite differentiability functions such as sigmodial functions, decaying RBF func-
tions, Mexican Hat wavelet function, Morlet wavelet function and fuzzy basis func-
tions. Besides, it can also take any nonlinear mapping function φ(x) that maps the data x
from the original feature space to the Reproducing Kernel Hilbert Space. In this way,
kernel methods such as SVM, PSVM and LS-SVM can be considered as specific types
of single-hidden-layer GFKNN (the so-called support vector network termed by Cortes
and Vapnik [18]).

 Training Generalized Feedforword Kernelized Neural Networks 205

In general, there can be any number of hidden layers in GFKNN. However, from a
practical perspective, one hidden layer with sufficient number of nodes is enough to
estimate a nonlinear function. On the other hand, a deep architecture [21] can also be
developed by adding more hidden layers into GFKNN.

In order to train GFKNNs, an efficient learning mechanism is needed to adjust all the
weights of the connections from the hidden layer to the output layer. Based on the
structure in Fig.1, there are three main approaches in the training of GFKNNs. (1)
gradient-descent based (e.g. backpropagation (BP) method for multi-layer GFKNN [1];
(2) least square error based (e.g. extreme learning machines (ELMs) [19] for the sin-
gle-hidden-layer feedforward networks (SLFNs), hidden-feature-space ridge regres-
sion for the multiple-hidden layer feedforward networks (HFSR)) [8]; (3) standard
optimization method based (e.g. support vector machines (SVMs) [18] for the so-called
support vector network).

Fig. 1. Network Structure of Generalized FKNN

3 Fast Learning of Single-Hidden-Layer GFKNN on Large
Datasets

Due to the simplicity of single-hidden-layer feedforward neural networks, in this work,
we investigate single-hidden-layer GFKNN, in which there is only one hidden layer.
The output of single-hidden-layer GFKNN can be represented by

()() T df R= ∈x β h x x (1)

2α
mα

y

2x
1x dx

Hidden layer n

Hidden layer 2

Hidden layer 1

Output

input layer

206 J. Wang et al.

where β=[β1,…, βL]T are the weights connecting the ith hidden node to the output node
and L is the nodes’ number in the hidden layer, h = [g(x, θ1), g(x, θ2), …, g(x, θL)]T,
g(x,θi) is the activation function of the ith hidden node and its value denotes the re-
sponse of the ith hidden node with respect to the input x. In the following, we will
develop a novel learning criterion to show that single-hidden-layer GFKNN can be
scaled to handle large scaled datasets.

3.1 CCMEB in GFKNN Hidden Feature Space

By defining the mapping function explicitly, the GFKNN kernel function can be
defined as

() () (), T

GFKNN i j i j=K x x h x h x

() () () ()1 1, ... , , ... ,

T

i i L j j Lg g g gθ θ θ θ⎡ ⎤= ⎡ ⎤⎣ ⎦ ⎣ ⎦x x x x (2)

where ()g i is a nonlinear piecewise continuous function satisfying universal ap-
proximation capability theorems [4] and θis, i=1,…,L, are randomly generated param-
eters according to any continuous probability distribution.

Recently, Tsang et al. extended the MEB problem to the center-constrained
minimal enclosing ball (CCMEB) and then built the bridges connecting more kernel
methods with the CCMEB problems [14]. In this way, the CCMEB problem was
extended to kernel space, which is utilized to finds the minimal enclosing ball con-
taining all data points in the kernel space. Similarly, in the hidden feature space of
GFKNN, the primal formulation of the CCMEB problem can be expressed as

2

,
arg min

R
R

c

. .s t ()() ()() 2 2T

i i i Rδ− − + ≤h x c h x c , i∀ (3)

Its dual is the following QP problem

()arg max ()T T
GFKNN GFKNNdiag + −

α
α K Δ α K α

 s.t. 1, 0,T
i iα= ≥ ∀α 1 (4)

where 2 2
1 ... 0

T

Nδ δ⎡ ⎤= ≥⎣ ⎦Δ . Because of the constraint αT1=1 in Eq. (4), an arbitrary

multiple of αT1 can be added to the objective function without affecting its α solution.

In other words, for an arbitrary η∈R, Eq. (4) yields the same optimal α as

()arg max ()T T
GFKNN GFKNNdiag η+ − −

α
α K Δ 1 α K α

s.t. 1, 0,T
i iα= ≥ ∀α 1 (5)

 Training Generalized Feedforword Kernelized Neural Networks 207

3.2 HFSR-GCVM and Its Relationship with CCMEB in Hidden Feature Space

Given a set of training data (xi, yi), i=1, …, N, where d
i R∈x and iy R∈ , our goal is

to find a function f(·) in hidden feature space so that it deviates least from the training
data according to the ε -insensitive function

0, ()
()

() ,

y f
y f

y f otherwiseε

ε
ε

⎧ − ≤⎪− = ⎨ − −⎪⎩

x
x

x
 (6)

while at the same time as flat as possible (i.e. ||β|| is as small as possible). In order to
find the function, the following convex optimization problem is formulated:

Minimize: ()2 2 *2

1

2
m

i i
i

C
C

m
ξ ξ ε

μ =

+ + +∑β

s.t. ()T
i i iy ε ξ− ≤ +β h x

()T
i i iy ε ξ− ≤ +β h x (7)

where C is a predefined parameter and provides a tradeoff between the flatness of the
function and the training error, ξis and ξi

*s are slack variables denoting the training error
corresponding to the training sample xi, μ is a parameter that controls the size of ε and it
is analogous to the ν parameter in ν-SVR. By utilizing the standard method of Lagrange
multipliers, we have the following dual:

Maximize

* *
*

2

[' '] [' ']
2HFSR GCVM
C

C

−

⎡ ⎤
⎢ ⎥⎡ ⎤

− + ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

y
λ

λ λ K λ λ
λ y

s.t. *[' ']λ λ 1 =1. ' 0≥λ , * ' 0≥λ . (8)

where y=[y1,…,ym]T, λ=[λ1, …, λm]T, λ*=[λ1
*, …, λm

*]T are the 2m Lagrange multipliers and

GFKNN GFKNN

HFSR GCVM

GFKNN GFKNN

m

C

m

C

μ

μ−

⎡ ⎤⎛ ⎞+ −⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞− +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

K I K

K

K K I

is a 2m×2m kernel matrix. After solving for the dual variables λ and λ*, the primal
variable can be recovered as

() ()*

1

m

i i i
i

C λ λ
=

= −∑β h x

 i i mξ λ μ=

* *
i i mξ λ μ= (9)

208 J. Wang et al.

Then, we have the output of HFSR-GCVM as follows:

() () () ()*

1

()= =
m

T T
i i i

i

f C λ λ
=

−∑x β h x h x h x

() ()*

1

= ,
m

i i GFKNN i
i

C Kλ λ
=

−∑ x x (10)

Now, let us investigate the relationship between HFSR-GCVM formulated in Eq. (8)

and CCMEB problem in hidden feature space. For Eq.(5), let

2

()
2HFSR GCVM
Cdiag

C

η−

⎡ ⎤
⎢ ⎥

= − + + ⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

y

Δ K 1
y

. (11)

We can easily find that they have the same expressions. Thus, we get a significant
conclusion that HFSR-GCVM formulated in Eq.(8) can now be taken as a CCMEB
problem in GFKNN hidden feature space.

3.3 HFSR-GCVM Using Core-Set Based CCMEB Approximation

Given a data set S = {x1, …, xN}∈Rd , the minimal enclosing ball of S, denoted as

MEB(S), is the smallest ball that contains all the data points in S. Given an ε>0, a ball
B(c, (1+ε)r) is an (1+ε)-approximation of MEB(S) if r ≤ rMEB(S) and S⊂B(c, (1+ε)r). A

subset Q of S is a core-set of S if an expansion by a factor (1+ε) of its MEB contains S,

i.e., S⊂B(c, (1+ε)r), where B(c, r)=MEB(Q). It is found that solving MEB problem on
the core-set Q of data points from S, can often give an accurate and efficient approx-

imation [20]. In order to achieve such an (1+ε)-approximation, a simple iterative

scheme was proposed in [20] and further explored in [14][15][22][23]: at the tth itera-
tion, the current estimate B(ct,rt) is expanded by including the farthest point outside the

(1+ε)-ball B(ct, rt). This procedure is repeated until all the points in S are covered by

B(ct,(1+ε)rt). Despite its simplicity, a surprising property is that the maximal number of
iterations and the size of the final core-set depend only on ε but not on dimensional

number or the size of a data set [24].

Based on the above description, we give the following general description of the
training procedure of HFSR-GCVM:

 Training Generalized Feedforword Kernelized Neural Networks 209

Training procedure of HFSR-GCVM

Step 1: Initialize Q0, c0, and R0. Set the iteration number t=1.

Step 2: If there is no training point h(x) which falls outside

the (1+ε)-ball B(ct, (1+ε)rt), go to Step 6.

Step 3: Find h(x) which is farthest away from ct in the hidden

feature space. Set Qt+1 = Qt∪{h(x)}.

Step 4: Find the new CCMEB, i.e., MEB (Qt+1) in the hidden

feature space and then set ct+1=cMEB(Qt+1) and rt+1 = r MEB(Qt+1).

Step 5: Let t=t+1 and go to Step 2

Step 6: Terminate the training procedure and return the

obtained outputs.

HFSR-GCVM is a hidden-feature-space extension of the general core-set based
CCMEB approximation algorithm based on single-hidden-layer GFKNN. Thus, the
conclusions about the core-set based CCMEB approximation algorithm also hold true
for HFSR-GCVM. We can directly give the following conclusions about
HFSR-GCVM with the similar analysis in [14] [15][22].

Property 1: Since it has been proved that SLFNs with randomly generated hidden
nodes have the universal approximation capability [4], the parameters of the hidden
nodes in HFSR-GCVM for single hidden layer can be randomly generated independent
of the training data.

Property 2: Given a fixed ε, the upper bound of the size of the core-set obtained by
HFSR-GCVM is O(1/ε), and thus the upper bound of the size of the reduced set ob-
tained by HFSR-GCVM is not higher than O(1/ε).

Property 3: Given a fixed ε, the upper bound of the time complexity of
HFSR-GCVM is O(N/ε2 +1/ε4). i.e., it is linear with the size N of the data set. Fur-
thermore, with use of probabilistic speedup strategy, this may be further reduced to
O(1/ε8), which is independent of N.

Property 4: Given a fixed ε, the upper bound of the space complexity of GFKNN is
O(1/ε2). Here, the O(N) space for storing the whole data set is ignored since they can be
stored outside the core memory.

Properties 2-4 give the upper bounds of algorithm HFSR-GCVM about its iteration
number, its time and space complexities. In fact, we found from our experimental
results that for large datasets, its real iteration number and its running time and space
are far less than the theoretical upper bounds. Thereby, the proposed algorithm is very
effective and efficient for large datasets.

210 J. Wang et al.

4 Experimental Studies

In this section, the performance of HFSR-GCVM for single-hidden-layer GFKNN is
compared with ELM [3]. The experiments were conducted in Matlab 2010b environ-
ment on a computer with two E5-2620 CPUs and 32 GB memory.

In the experiment, the implementation of HFSR-GCVM is based on MATLAB
platform and the quadprog() function was utilized as the QP solver for CCMEB. We
believe that HFSR-GCVM will become faster if more effective QP solver, such as
SMO, is adopted. The activation function used in both ELM and HFSR-GCVM is
radial basis function g(x)= ()()2

exp a b− +x , in which a and b were generated
randomly.

To evaluate the generalization ability of the comparison algorithms, the root-mean
square error (RMSE) [3] as well as the squared correlation coefficient (SCC) [13] was
adopted, which were computed as follows:

 ()2

1

1
()

n

i i
i

RMSE f y
n =

= −∑ x (12)

2

1 1 1

2 2

2 2

1 1 1 1

() ()

() ()

n n n

i i i i
i i i

n n n n

i i i i
i i i i

n f y f y

SCC

n y y n f f

= = =

= = = =

⎛ ⎞−⎜ ⎟
⎝ ⎠=

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑ ∑

x x

x x

 (13)

4.1 Experimental Results on Sinc

In this section, the performance of HFSR-GCVM as well as ELM [3] was compared on
sinc, a popular choice to illustrate machine learning algorithm for regression tasks.

sin() / 0
()

1 0

x x x
y x

x

≠⎧
= ⎨ =⎩

 (14)

A training set {xi,yi} with 100,000 data and testing set {xi,yi} with 1000 data, re-
spectively, were created where x is are uniformly randomly distributed on the interval
[-10, 10]. In order to make the regression problem ‘real’, large uniform noise distrib-
uted in [-0.2, 0.2] was added to all the training samples while testing data remain
noise-free.

In the first part of the experiment, we investigated the regression performance of
HFSR-GCVM. Fig.1 plots the true and the approximated function of HFSR-GCVM
when the training dataset size was 10,000 and the hidden nodes number was 100. As
can be seen, HFSR-GCVM can obtain satisfactory results on sinc.

 Training Generalized Feedforword Kernelized Neural Networks 211

Fig. 2. Regression results of HFSR-GCVM (The true function was plot in red and the approxi-
mated one was in blue)

In the second part of the experiment, the generalization performance of ELM and
HFSR-GCVM was compared when the number of hidden nodes varied from 500 to
5000. Of course, this problem needn’t so many hidden nodes for training, but it is
convenient for us to illustrate the scaling behavior of each algorithm. The parameter for
HFSR-GCVM was set as ε=1e-10, C=1e5 and μ=1e-3. To visually show the regression
performance of ELM and HFSR-GCVM, Figs.2 plots the regression results on the
datasets when the number of hidden nodes varied from 500 to 5000.

(a) RMSE (b) SCC (c) training time

Fig. 3. Comparison of the performance of ELM and HFSR-GCVM on sinc

As can be seen from Fig.2, both RMSE and SCC performance of HFSR-GCVM was
comparable with those of ELM when the number of hidden nodes varied in a wide
range from 500 to 5000. On the other hand, the running time of HFSR-GCVM in-
creased linearly with the increase of hidden nodes number, which is mainly caused by
features’ increase in GFKNN hidden feature space. On the other hand, the size of the
coreset was immune to the increase of the hidden nodes number, which is an ideal
property for HFSR-GCVM in high dimensional hidden feature space. However, due to
the inverse operation of the matrix in the matrix equation, the running time of ELM
increases sharply with the increase of the number of hidden nodes, which implies that
ELM will take more time in high dimensional hidden feature space.

212 J. Wang et al.

4.2 Regression Tasks on High Dimensional Real World Datasets

In order to further investigate the performance of HFSR-GCVM on real world appli-
cations, we continued to conduct experiments on dataset ailerons, which contains
13750 data and 40 features. As in the real applications, the distribution of the dataset
was unknown and is not noisy-free. In this case, the training dataset contains 13000
data and the testing dataset contains 750 data, which were generated randomly before
each trial of simulation. All the inputs features were normalized into the range [0, 1].

In the experiment, the number of hidden nodes varied from 500 to 5000 and the
training was repeated 20 times for each number of hidden nodes. The parameter for
HFSR-GCVM was set as ε=1e-8, C=1 and μ=1e-5. To visually show the regression
performance of ELM and HFSR-GCVM, Figs.1 plots the regression results on the
datasets when the number of hidden nodes varied from 500 to 5000.

(a) RMSE (b) SCC (c) training time

Fig. 4. Comparison of the performance of ELM and HFSR-GCVM on ailerons

Similar with the experimental results on sinc, when the hidden nodes number in-
creased, HFSR-GCVM on ailerons could obtain better approximation results in shorter
time than ELM did. Although HFSR-GCVM run a little slower than ELM did when the
hidden nodes number is not too large, the training time was acceptable and the ap-
proximation results on testing set were satisfactory. Another observation from the
experimental results was the testing accuracy of ELM on ailerons went down dramat-
ically when the hidden nodes number became larger and larger. This is because
overfitting occurred during the learning process.

5 Conclusions

FNNs play an important role in practical applications and have been fully investigated
in recent years. However, most of studies focused on FNNs performance on small or
middle size datasets. In this paper, based on the connection between FNNs and kernel
methods, a novel fast learning algorithm HFSR-GCVM for GFKNNs is proposed. It
has a novel learning criterion which is equivalent to a special CCMEB problem in
GFKNN hidden feature space while all the parameters in hidden layers can be

 Training Generalized Feedforword Kernelized Neural Networks 213

randomly assigned. Unlike traditional kernel methods, the proposed HFSR-GCVM
does not require the activation functions to be differentiable. Experimental results show
that the proposed algorithm HFSR-GCVM is suitable for large datasets and has better
generalization performance than ELM.

There still exists a big room for us to explore HFSR-GCVM in our future work. One
challenging topic is how to determine optimal parameter combination for
HFSR-GCVM. Another limitation of this work is that HFSR-GCVM was only applied
for single-hidden-layer GFKNNs. When HFSR-GCVM is utilized for training multi-
ple-hidden-layer GFKNNs, the problem of choosing an appropriate architecture, es-
pecially determining the number of hidden nodes in each layer, will become more
complex. In our future work, we will further investigate these problems and report our
latest advance as soon as possible.

Acknowledgements. This work was supported in part by the Hong Kong Polytechnic
University under Grant 1-ZV5V, by the National Natural Science Foundation of China
under Grants 61170122, 61272210, 61300151, the Fundamental Research Funds for
the Central Universities (JUSRP51321B) and by the Natural Science Foundation of
Jiangsu province under Grant BK2011417 and BK20130155.

References

1. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back- propaga-
tion errors. Nature 323, 533–536 (1986)

2. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of
feedforward neural networks. In: Proceedings of International Joint Conference on Neural
Networks, Budapest, Hungary, July 25–29, vol. 2, pp. 985–990 (2004)

3. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.
Neurocomputing 70, 489–501 (2006)

4. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive
feedforward networks with random hidden nodes. IEEE Transactions on Neural Net-
works 17(4), 879–892 (2006)

5. Huang, G.B., Chen, L.: Convex incremental extreme learning machine.
Neurocomputing 70, 3056–3062 (2007)

6. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning ma-
chine. Neurocomputing 71, 3460–3468 (2008)

7. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297 (1995)
8. Wang, S., Chang, F.-L., Wang, J., et al.: A Fast Learning Method for Feedforward Neural

Networks. Neurocomputing (accepted)
9. Williams, C., Seeger, M., Leen, T., Dietterich, T., Tresp, V.: Using the Nyström method to

speed up kernel machines. In: Advances in Neural Information Processing Systems, vol. 13,
pp. 682–688. MIT Press, Cambridge (2001)

10. Smola, A., Schölkopf, B.: Sparse greedy matrix approximation for machine learning. In:
Proceedings of 7th International Conference on Machine Learning, pp. 911–918. Stanford,
CA (2000)

214 J. Wang et al.

11. Achlioptas, D., McSherry, F., Schölkopf, B.: Sampling techniques for kernel methods. In:
Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Pro-
cessing Systems, vol. 14, pp. 335–342. MIT Press, Cambridge (2002)

12. Fine, S., Scheinberg, K.: Efficient SVM training using low-rank kernel representations.
Journal of Machine Learning Research 2, 243–264 (2001)

13. Wang, S., Wang, J., Chung, F.-L.: Kernel density estimation, kernel methods, and fast
learning in large datasets. IEEE Transactions on Cybernetics 44(1), 1–20 (2014)

14. Tsang, I.W., Kwok, J.T., Cheung, P.M.: Core vector machines: Fast SVM training on very
large data sets. Journal of Machine Learning Research 6, 363–392 (2005)

15. Tsang, I.W., Kwok, J.T., Zurada, J.M.: Generalized core vector machines. IEEE Transac-
tions on Neural Networks 17(5), 1126–1140 (2006)

16. Platt, J., Schölkopf, B., Burges, C., Smola, A.: Fast training of support vector machines
using sequential minimal optimization. In: Advances in Kernel Methods – Support Vector
Learning, pp. 185–208. MIT Press, Cambridge (1999)

17. Chu, W., Ong, C., Keerthi, S.: An improved conjugate gradient scheme to the solution of
least squares SVM. IEEE Transactions on Neural Networks 16(2), 498–501 (2005)

18. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20(3), 273–297 (1995)
19. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.

Neurocomputing 70(1-3), 489–501 (2006)
20. Badoiu, M., Clarkson, K.L.: Optimal core-sets for balls. In: DIMACS Workshop on Com-

putational Geometry (2002)
21. Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural

Computation 18, 1527–1554 (2006)
22. Deng, Z., Chung, F.-L., Wang, S.: FRSDE: Fast reduced set density estimator using minimal

enclosing ball approximation. Pattern Recognition 41(4), 1363–1372 (2008)
23. Deng, Z., Choi, K.-S., Chung, F.-L., Wang, S.: Scalable TSK Fuzzy Modeling for Very

Large Datasets Using Minimal-Enclosing-Ball Approximation. IEEE Transactions on
Fuzzy Systems 19(2), 210–226 (2011)

24. Kumar, P., Mitchell, J.S.B., Yildirim, A.: Approximate minimum enclosing balls in high
dimensions using core-sets. ACM J. Exp. Algorithms (J/OL) 8 (2003)

An Online Multiple-Model Approach

to Univariate Time-Series Prediction

Koshy George, Sachin Prabhu, and Prabhanjan Mutalik

Department of Telecommunication Engineering,
PES Institute of Technology,

100 Feet Ring Road, BSK 3rd Stage, Bangalore 560093, India
kgeorge@pes.edu, {sachinprabhuhr,prabhanjanmutalik}@gmail.com

Abstract. Predicting the future of a time-series is important in sev-
eral and diverse applications. Whilst traditional methods are based on
fixed linear models, techniques that use artificial neural networks are
typically trained offline. We propose an online technique for time-series
prediction using a single-layer feedforward neural network trained as an
extreme learning machine, where the weights are updated with each new
observation. The inputs to this machine not only include the actual ob-
servations of the time-series but as well as the predicted values from the
machine. This ensures that feedback is incorporated into the training
process. We demonstrate that such a procedure improves the prediction
accuracy. Moreover, using multiple networks trained in this manner fur-
ther improves the performance.

Keywords: Time-series prediction, Online Sequential ELM, Multiple
Models, Switching and Tuning.

1 Introduction

Predicting the future trend of a collection of observations made sequentially in
time is important in diverse fields, and a number of techniques exist for time-
series prediction; see, for example, [1]. With the introduction of Yule’s autore-
gressive technique, there was a paradigm shift from the earlier techniques which
fit a trend-curve on the data, to modelling the observed phenomena as a dy-
namical system with specified input and output spaces. Once the structure of
the model is fixed, the principal idea is to use the available data with perhaps
exogenous inputs to determine the parameters of the model. Such a model is
then used to extrapolate, and hence obtain an estimate of the future values of
the time series. A major limitation of such techniques is that the chosen models
are linear in nature to ensure mathematical tractability.

In most applications, the exogenous inputs that influence the time series are
not measurable, and hence only past observations can be used for time-series
prediction. Evidently, if one can detect the hidden patterns in the collection of
observations, it is quite likely that one can obtain a better estimate of the future
values. It is well-known that artificial neural networks (ANNs) are powerful to

c© Springer International Publishing Switzerland 2015 215
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_19

216 K. George, S. Prabhu, and P. Mutalik

detect such patterns. Indeed it has been shown by several researchers that ANNs
approximate a time-series better than the Box-Jenkins approach [14,15].

The general approach whilst using an ANN is to use the available data to tune
the synaptic weights so that its output approximates better the time series. The
quality of generalization, the rate of convergence, and the involved computational
complexities depend on the choice of various network parameters such as the
number of layers and the number and type of neurons in each layer. Furthermore,
they also depend on the methodology used to tune the weights. Our interest lies
in two classifications of training procedures — online and offline techniques,
and sequential and batch processes. Offline techniques assume that a sufficient
amount of data that accurately represents the function of interest is available a
priori. On the other hand, online techniques rely on the data available at that
instant. Batch processes try to analyze richness of each data point and segregate
them into training, validation, and testing data. There is a need to store data-
points in a batch process. Sequential processes extract the necessary information
from the incoming data one-by-one.

The classical method to train the weights in ANNs is to propagate the identi-
fication error backwards through the network, and tune the weights based on the
local gradients of that error. This technique is sluggish due to the large number
of computations involved and may not be the best choice for fast applications.
To overcome this problem, Extreme Learning Machines (ELM) was introduced
in [8]. Here, in a single-layer feedforward neural network (SLFNN), the network
parameters are randomly initialized, and only the weights in the linear output
layer are tuned. It is an offline batch process where the weights are updated
via a least-squares approach. The generalization property of such a network is
comparable to a similar one trained with the back propagation algorithm (BPA);
the convergence is, however, a couple of orders faster. Online Sequential ELMs
(OSELM) was proposed in [9] where ELM was extended to suit sequential data
processing applications.

The objective of this paper is to propose an online technique to time-series pre-
diction that admits learning with every new observation. The adopted structure
incorporates feedback during the training process to improve the prediction accu-
racy. The prediction-performance is further improved with the multiple models,
switching, and tuning (MMST) methodology.

This paper is organized as follows: A systems perspective to time-series predic-
tion is presented in Section 2, ANNs for this purpose are examined in Section 3,
and MMST is introduced in Section 4. Simulation experiments with a variety of
time-series data are presented in Section 5.

2 Systems Perspective

Let Σ : U −→ Y be a given dynamical system that maps the input space U to
the output space Y. The general problem of time-series prediction may be stated
as follows: Given ε > 0, determine Σ̂ so that

‖Σ̂u−Σu‖ < ε, u ∈ U (1)

A Multiple-Model Approach to Time-Series Prediction 217

where ‖ · ‖ is a suitably defined norm on Y. The most general approach amongst
the class of univariate techniques is to approximate the time-series by an Au-
toregressive Integrated Moving Average (ARIMA) model described as follows:

p1∑

i=0

αiq
−i(1 − q−1)p2yk =

p3∑

j=0

βjq
−juk (2)

where yk and uk are respectively the observation and exogenous input at instant
k, q−1 is the unit delay operator (i.e., q−1yk = yk−1), p1, p2 and p3 are integers,
and αi and βj are real constants. Without loss of generality, α0 = 1. With p2 = 0,
p1 = p2 = 0, and p2 = p3 = 0, we respectively obtain the Autoregressive Moving
Average (ARMA), Moving Average (MA) and Autoregressive (AR) models. The
goal of time-series analysis for prediction is to determine the parameters αi and
βj so that the model Σ̂ satisfies the inequality (1) for some desired ε.

The issues with such an approach are three-fold: First, the model is obtained
only on off-line data, and once the model is fixed it is not possible to improve it
online. In other words, continuous learning is naturally precluded. Second, such
an approach assumes that the exogenous input uk is available for time-series
analysis. In most applications where prediction is the objective, such an input
is not measurable even if the underlying physical phenomenon admits it. Third,
the models are assumed to be linear in order to guarantee the existence of a
mathematically tractable solution to (1). The focus of this paper is on an online
univariate technique for time-series prediction that allows a nonlinear model to
learn with every new observation.

Researchers argue that if the power spectrum of the time series characterizes
its relevant features, linear models are reasonably good choices [5]. However,
even simple nonlinearities (such as the logistic map) cannot be approximated
by a linear map. The use of multiple linear models was suggested in [16] to
represent the different regions in the underlying state-space of the dynamical
system generating the time-series. Evidently, estimating the required number of
such linear models is an open problem. Besides, the models are linear and the
procedure does not admit learning.

A candidate that admits learning is the so-called artificial neural network
(ANN). It is essentially a computational architecture with massively parallel
interconnections of simple processing elements. Several authors (e.g., [7]) con-
clusively showed ANNs are universal approximators. This result together with
the fact that they have the capability to learn ensured that they were effectively
used in areas such as pattern recognition, control and identification. Naturally,
researchers used ANNs for time-series prediction.

A nonlinear dynamical system can be described by the differential equation:

yk+1 = f(yk, yk−1, . . . , yk−n+1, uk+1, uk, . . . , uk−m+2) (3)

where m and n are constants that have a direct bearing on the input-output
behaviour of the dynamical system. (Several special cases are described in [13].)

218 K. George, S. Prabhu, and P. Mutalik

An ANN can be used to model (3) given the measurements of the input uk and
output yk. Two choices of identification models [13] have been proposed:

ŷk+1 = N (ŷk, ŷk−1, . . . , ŷk−n+1, uk+1, uk, . . . , uk−m+2) (4)

ŷk+1 = N (yk, yk−1, . . . , yk−n+1, uk+1, uk, . . . , uk−m+2) (5)

where ŷk is the estimate of yk given all measurements, andN (·) denotes the ANN
that approximates the nonlinear function f(·). Whilst model (4) mimics (3),
model (5) is a function of the actual observations rather than their estimates;
accordingly, they are respectively described as parallel and series-parallel models.
In the context of time-series prediction, the exogenous input uk is typically not
measurable. Accordingly, (5) reduces to

ŷk+1 = N (yk, yk−1, . . . , yk−n+1) (6)

Such a network is trained in open-loop and the predictions are available directly
as its output. However, it has been argued in [3] that iterated predictions are
better than direct predictions in the context of deterministic chaotic systems.
Accordingly, we propose the following structure that uses as well the predicted
values for training:

ŷk+1 = N (yk, yk−1, . . . , yk−n+1, ŷk, ŷk−1, . . . , ŷk−p+1) (7)

As demonstrated later in the sequel, the introduction of a closed-loop improves
considerably the prediction accuracy for a variety of time-series.

3 Artificial Neural Networks for Time-Series Prediction

Artificial Neural Networks have been used in the past for time-series forecasting.
ANNs are data-driven and no assumptions are made on the function to be ap-
proximated; accordingly, the assumption that the underlying process be linear
can be eliminated. Studies show that ANNs outperform ARIMA models [15,17].
Nonetheless, the usage of ANNs is not without challenges: The choice of the net-
work, the required number of neurons, and their interconnections, the choice of
training method, and the number of data samples required for satisfactory per-
formance are some examples. Although, Support Vector Machines (SVMs) have
been shown to perform better, we use the conventional Feedforward Neural Net-
work (FNN). The training of an SVM requires the solution to a computationally-
intensive optimization problem for each data sample. This may be difficult to
implement in those online applications where data is streaming in rather rapidly.

The network architecture and size are important design parameters in ANNs.
Since single-layer FNN (SLFNN) are universal approximators, the only design
parameter is N , the number of hidden neurons. Although several techniques
have been proposed to choose N , the impact of the number of input nodes
on the quality of predictions is greater [17]; i.e., the size of the regression vector
in (7) is more important than N . Moreover, a recurrent network that implements

A Multiple-Model Approach to Time-Series Prediction 219

an ARMA process with a SLFNN is shown to result in robust predictions in the
face of non-stationary data [2]. An important consideration is that the ANN be
trained in reasonable time to provide satisfactory performance. Classical training
algorithms (e.g., the Back Propagation Algorithm (BPA)) adjust all the weights
based on the local gradients of the error, and their slow convergence is well-
known. The novel idea of adapting only the weights in the linear output layer
resulted in the Extreme Learning Machine (ELM) [8]; the convergence is two
orders faster and the generalization performance is comparable.

In this paper, we consider a SLFNN with N hidden neurons and one output
neuron. In our context, the output at time instant k is given by ŷk = βThk +β0,

where β =
(
β1 β2 · · · βN

)T
is the weight vector connecting the hidden layer to

the output neuron, β0 is the bias at the output, and hk =
(
h1,k h2,k · · · hN,k

)T

is the vector of outputs of the neurons in the hidden layer. The output of the
ith hidden neuron hi,k is given by hi,k = g(wT

i φk + bi), where wi is the vector of
weights connecting the vector of inputs φk to the ith hidden neuron with bi the
corresponding bias, and g(·) is the activation function. Let χ =

(
φ1 φ2 · · · φL

)
,

L ≥ N be a chunk of data. The idea in ELM [8] is to compute the hidden layer

outputs Ω =
(
h1 h2 · · · hL

)T
corresponding to χ and tune only β by seeking a

least-squares approximation to the target sequence of values Y =
(
y1 y2 · · · yL

)
.

We now summarize the ELM algorithm: Given a data sequence χ and an SLFNN,
choose arbitrary initial values for wi, βi, and bi, 1 ≤ i ≤ N , and β0. The outputs
Ω of the hidden layer is calculated, and the least-squares solution to Ωβ = Y
is then computed: β̂ = Ω†Y, where Ω† = (ΩTΩ)−1ΩT is the Moore-Penrose
pseudo-inverse of Ω. To obtain a good approximation of the target vector Y, Ω
must be full ranked. In other words, the rank of Ω must be N , the number of
hidden neurons.

ELM per se does not allow for sequential or online implementation of the
learning process, and the network must be retrained with every new chunk of
data. Thus, ELM caters to those applications where only offline learning is pos-
sible or needed. The Online Sequential Extreme Learning Machine (OSELM) is
an extension of ELM [9], where β and Ω† are updated with every single, or a
set of, new observation(s). In the boosting phase, the ELM algorithm is used to
obtain initial estimates β(0) = Ω†Y and M (0) = (ΩTΩ)−1, given a small set of
data χ. Subsequently, in the sequential phase, the following are computed and
updated:

hi,k = g(wT
i φk + bi) (8)

M (k+1) = M (k) − M (k)hk+1h
T
k+1M

(k)

1 + hT
k+1M

(k)hk+1
(9)

β(k+1) = β(k) +M (k+1)hk+1(yk+1 − hT
k+1β

(k)) (10)

In the context of time-series prediction, the quantities hk+1 and ŷk+1 are com-
puted at the kth time instant whereas yk+1 is available at the (k+1)th instant.

220 K. George, S. Prabhu, and P. Mutalik

4 Multiple Models for Time-Series Prediction

Using multiple models for prediction is not new; e.g., linear models in [16], and
offline-trained ANNs in [6]. Several researchers have combined multiple ELMs
to achieve better performance. Whilst some approaches consider an ensemble of
models where the outputs are combined linearly, a few others select the best one.
A linear combination of ELMs (OSELMs) is essentially a single ELM (OSELM)
as the input weights are never tuned. An additional drawback of multiple ELMs
is that there is little scope for online learning.

In the approach adopted in this paper, diversity in the models is achieved
by initializing different models with different weights. Accordingly, the pre-
dictor consists of M recurrent networks (7), N1, . . . ,NM , operating in paral-

lel. The inputs to each network are the vectors
(
yk yk−1 · · · yk−ni+1

)T
and

(
ŷk ŷk−1 · · · ŷk−pi+1

)T
. The parameters ni and pi and the number of hidden

neurons Ni for each network are chosen at random, and the networks trained
independently. Unlike other approaches, we do not combine the outputs of these
networks. On the contrary, we expect each network to provide an independent
analysis of the time-series and provide its best estimate of ŷk+1. The best of
these M estimates is selected based on the performance at the previous instant.
That is, the M estimates computed at instant k− 1 are compared with the new
observation yk, and the best network is chosen as follows:

j = arg min
1≤i≤M

‖yk − ŷi,k‖2 (11)

Accordingly, the network Nj is chosen as the best predictor at instant k so that
the estimate ŷj,k+1 is taken as the best predicted value of yk+1. This process is
repeated at all instants. Evidently, in our approach there are multiple models
for prediction with each of them being tuned online and the best network chosen
by switching. To the best knowledge of the authors, combining the individual
concepts of multiple models, switching and tuning (MMST) for improving the
prediction performance is novel.

Although the individual concepts of multiple models, switching, and tuning,
have been developed by several researchers, the concept of using them together
for improving tracking performance was first introduced in [11]. This notion has
subsequently been systematically and rigorously developed into a methodology.
The earlier developments together with some examples that required MMST for
effective adaptive control are summarized in [12]. Example applications in other
fields are treated in [4].

5 Results

In this section, we compare the prediction performance of three methods: We
first consider the conventional open-loop structure (6) trained with the OSELM
algorithm; we refer to this as Method A. The second method uses the proposed
closed-loop structure (7) (Method B). Finally, we use the MMST approach to

A Multiple-Model Approach to Time-Series Prediction 221

prediction (Method C). The performance of the three methods are compared
with data from the Sante Fe Time Series Prediction and Analysis Competition
held by the Sante Fe Institute in 1991 [5]. The volume of data is enormous so
that automatic processing of data became essential relative to traditional time-
series analysis [5]. In addition to this, we also consider the classical Mackey-
Glass model of symptoms such as the irregular breathing patterns in adults
with Cheynes-Stokes respiration. The example data considered data here are as
follows: (i) Example I: The laser generated data is based on the fluctuations in
a far-infrared laser which can approximately be modelled by three simultaneous
nonlinear ordinary differential equations. Essentially the laser is in a chaotic state
with the pulsations nearly following the Lorenz model. (ii) Example II: This is
a multivariate data set of a patient with sleep apnea. There are no premature
beats implying that the sudden changes in the heart rate are not artifacts. The
heart rate is to be predicted as its variations provide information about the onset
of sleep apnea. (iii) Example III: This data set corresponds to the observations
of the time variation of the intensity of a variable white dwarf star PG1159-035
during March 1989. These intensity variations are the result of the superposition
of independent spherical harmonic multiplets. (iv) Example IV: The exchange
rate between the Swiss franc and the US dollar was observed for a period of
about eight months from August 1990 to April 1991. (v) Example V: The pri-
mary symptom in a number of chronic and acute diseases is the change in the
periodicity of some observable phenomenon. The irregular breathing patterns
in adults with Cheynes-Stokes respiration and the fluctuations in the peripheral
white blood cell counts in patients with chronic granulocytic leukemia are two ex-
amples. In their seminal paper, Mackey and Glass [10] models such phenomenon
as bifurcations in differential-delay systems

dx(t)

dt
=

α1α
n
2x(t− τ)

αn
2 + xn(t− τ)

− α3x(t) (12)

where α1, α2, α3 and n are constants. This is considered in [9] as a benchmark
problem for time-series prediction with the constants α1 = 0.2, α2 = 1, α3 = 0.1,
n = 10, and the delay τ = 17. For purposes of comparison, we consider the time-
series generated in [9].

As mentioned earlier, the data points are considered one-by-one for training.
For Methods A and B, the chosen number of hidden neurons is 3 for Examples I–
IV and 120 for Example V. For Method C, the chosen number of models is 9 for
Examples I–IV and 2 for Example V. For Example I, the graphs of root-mean-
square error (RMSE) as a function of the number of hidden neurons are shown in
Fig. 1(a). Here, the RMSE obtained for Methods A and B are respectively shown
as a solid line and a dashed line. Evidently, for both techniques there is a decline
in the RMSE with an increase in the number of neurons. However, the RMSE ob-
tained with Method B is smaller than that obtained with Method A regardless
of the number of hidden neurons. The RMSE values for both the techniques ap-
pear to reduce until a certain number of hidden neurons — eight in this case —
after which there is hardly any reduction. The effect of the number of models in
Method C on RMSE is depicted in Fig. 1(b). Evidently, the RMSE continuously

222 K. George, S. Prabhu, and P. Mutalik

1 2 3 4 5 6 7 8 9 10
0.04

0.06

0.08

0.1

Neurons

R
M

S
E

(a)

Method A
Method B

1 2 3 4 5 6 7 8 9

0.04

0.045

0.05

0.055

0.06

Models

R
M

S
E

(b)

Method C

Fig. 1. Example I: (a) Effect of the number of hidden neurons on RMSE with Meth-
ods A and B. (b) Effect of the number of models on RMSE with Method C.

reduce with an increase in the number of models. For this experiment, the num-
ber of hidden neurons is fixed at ten for the first model in Method C due to which
the RMSE value is approximately 0.06 with 1 model in Fig. 1(b). We randomized
the number of hidden neurons in the subsequent models. A noteworthy point is a
further reduction in the RMSE not achievable by increasing the number of hidden
neurons in Methods A or B. On the contrary, this was made possible by increasing
the number of models inMethod C. This is due to the fact that all the networks are
allowed to adapt at every instant, and only the best network, in the sense of (11),
is chosen. Experiments with other examples reveal similar trends; these are not
included here for purposes of brevity.

In order to provide a measure on the training speed of the algorithms, all
experiments were conducted using Matlab 7.14 on a general purpose computer
with Intel Core i5 2.5 GHz processor. A comparison of RMSE and the training
time for the different data sets with different algorithms is presented in Table 1.
As discussed earlier, the RMSE obtained with Method B is observed to be smaller
than that obtained with Method A. Method C outperformed both Methods A
and B in terms of RMSE. On the contrary, Method A took lesser time to process
the data compared to both Methods B and C. This is not surprising as at every
instant k the latter techniques are required to process more inputs relative to
Method A. The time taken for Method C is longer as the weights in all the
models are tuned sequentially in one time instant. Evidently, a purely parallel
implementation of Method C would result in lesser computational time.

A Multiple-Model Approach to Time-Series Prediction 223

Table 1. Comparison of RMSE and training times in seconds for different methods

Single Model Multiple Models
Example Method A Method B Method C

RMSE Time RMSE Time RMSE Time

I 46.6268 0.0313 36.7056 0.0625 28.29 0.3906

II 9.905 0.2813 6.05 0.0313 2.905 0.4063

III 0.1299 0.0156 0.09 0.0313 0.0384 0.3125

IV 0.8231 0.0313 0.0403 0.0469 0.0017 0.4219

V 0.0102 4.2344 0.0083 4.5625 0.0055 4.6719

6 Conclusions

In this paper we presented a technique for online time-series prediction using
single-layer feedforward neural networks. These networks are extreme learning
machines where only the weights in the output layer are updated. These weights
are updated with every new observation so that they continue to learn. The in-
put to these networks consists of both the actual observations and the predicted
values. The prediction performance improved with such an approach. Further
when several such networks are initialized in the parametric space, the best esti-
mate can be chosen. With this multiple models, switching and tuning approach,
an additional improvement in the prediction performance is observed.

References

1. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and
Control. Prentice-Hall, Upper Saddle River (1994)

2. Connor, J.T., Martin, D.R., Atlas, L.E.: Recurrent neural networks and robust
time series prediction. IEEE Transactions on Neural Networks 5, 240–254 (1994)

3. Farmer, J.D., Sidorowich, J.J.: Exploiting chaos to predict the future and reduce
noise. In: Lee, Y.C. (ed.) Evolution, Learning, and Cognition, pp. 277–330. World
Scientific, Singapore (1988)

4. George, K.: Some applications of multiple models methodology. In: Proceedings of
the Fifteenth Yale Workshop on Adaptive and Learning Systems, pp. 81–86. Yale
University, New Haven (June 2011)

5. Gershenfeld, N.A., Weigend, A.S.: The future of time series. In: Weigend, A.S.,
Gershenfeld, N.A. (eds.) Time Series Prediction: Forecasting the Future and Un-
derstanding the Past, pp. 1–70. Addison-Wesley (1993)

6. Hashem, S., Schmeiser, B.: Improving model accuracy using optimal linear com-
binations of trained neural networks. IEE Transactions on Neural Networks 6,
792–794 (1995)

7. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Networks 2, 359–366 (1989)

8. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: A new learning
scheme of feedforward neural networks. In: Proceedings of IEEE International Joint
Conference on Neural Networks, pp. 985–990 (2004)

224 K. George, S. Prabhu, and P. Mutalik

9. Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N.: A fast and accu-
rate online sequential learning algorithm for feedforward networks. IEEE Transac-
tions on Neural Networks 17, 1411–1423 (2006)

10. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems.
Science 197, 287–289 (1977)

11. Narendra, K.S., Balakrishnan, J.: Performance improvement in adaptive control
systems using multiple models and switching. In: Proceedings of the Seventh Yale
Workshop on Adaptive Learning Systems, pp. 27–33. Center for Systems Science,
Yale University, New Haven, USA (May 1992)

12. Narendra, K.S., Driollet, O.A., Feiler, M., George, K.: Adaptive control of time-
varying systems using multiple models. International Journal of Adaptive Control
and Signal Processing 17(2), 87–102 (2003)

13. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems
using neural networks. IEEE Transactions on Neural Networks 1(1), 4–27 (1990)

14. Shabri, A.: Comparison of time series forecasting methods using neural networks
and Box-Jenkins model. Matematika UTM 17, 1–6 (2001)

15. Tang, Z., Fishwick, P.A.: Feed-forward neural nets as models for time series fore-
casting. ORSA Journal of Computing 5, 374–385 (1993)

16. Tong, H., Lim, K.S.: Threshold autoregression, limit cycles, and cyclical data.
Journal of the Royal Statistical Society, B 42, 245–292 (1980)

17. Zhang, P.G., Patuwo, E.B., Hu, M.Y.: A simulation study of artificial neural net-
works for nonlinear time-series forecasting. Computers & Operations Research 28,
381–396 (2001)

© Springer International Publishing Switzerland 2015
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,

225

Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_20

A Self-Organizing Mixture Extreme Leaning Machine
for Time Series Forecasting*

Hou Muzhou**, Chen Ming, and Zhang Yangchun

School of Mathematics and Statistics, Central South University, Changsha 410083, China
houmuzhou@sina.com, hmzw@csu.edu.cn, 383249234@qq.com

Abstract. A novel self-organizing Mixture Extreme Learning Machine (SOM-
LEM) model and algorithm for time series forecasting is proposed in this paper.
As the stock time series is non-stationary stochastic processes which switch
their dynamics from time to time or have different models in different periods,
and the ELM algorithm also has some drawbacks such as when the numbers of
the samples and hidden nodes are very large, the calculation of the Moore-
Penrose generalized inverse of matrix H will become very complicated, and the
corresponding error of the elements in the matrix will become larger, and thus
the generalization performance of the network will be reduced. These imply
that it is not convincing and impractical for a single parametric model to capture
the dynamics of the entire time series. So a SOM competitive layer is added in
front of the ELM network to form the SOM-ELM model, in which, each cate-
gory samples divided by SOM is then handled by a ELM model. The better
generalization performance of the SOM-ELM algorithm are verified through
some experiments with practical stock time series.

Keywords: SOM, ELM, time series, neural network, SOM-ELM.

1 Introduction

Stock indices and price data are always one of the most important information to in-
vestors and stock market forecasting has long been a focus of financial time series
prediction that has attracted attentions of numerous scientists and financial practition-
ers for many years[1-5]. Unfortunately, stock indices and prices are essentially dy-
namic, nonlinear, nonparametric and chaotic in nature. This implies that the investors
must handle the time series which are non-stationary, noisy, and have frequent struc-
tural breaks[4]. In fact, stock prices’ movements are affected by many macro-
economic factors such as political events, company’s policies, movement of other
stock market, general economic conditions, commodity prices index, bank rate, inves-
tors’ expectations, institutional investors’ choices and psychological factors of inves-
tors. Thus forecasting stock index and price and its movement accurately is not only

* This work was supported by the Natural Science Foundation of China under Grants 61375063,

11271378 and 61271355.
** Corresponding author.

226 H. Muzhou, C. Ming, and Z. Yangchun

the most extremely challenging applications of time series prediction but also of great
interest to investors.

Time series modeling and forecasting has received indispensable importance in
various areas of science and engineering. Conventionally time series forecasting (TSF)
has been performed predominantly using statistical-based methods, for example, the
auto-regressive (AR), the moving average (MA), the auto-regressive moving average
(ARMA)[6] and the autoregressive integrated moving average (ARIMA). However,
over the past few decades, NNs, which exhibit superior performance on classification
and regression problems in machine learning domain[7-12], have attracted tremen-
dous attention in the TSF community. Compared to statistical-based forecasting tech-
niques, neural network approaches have several unique characteristics, including: 1)
being both nonlinear and data driven; 2) having no requirement for an explicit under-
lying model (nonparametric); and 3) being more flexible and universal, thus appli-
cable to more complicated models[13].

Artificial neural networks (NNs) have been adopted extensively for time series
forecasting as a powerful modeling technique with its ability to deal with high non-
linearity problems such as stock index and price prediction [3, 14], chaotic time series
forecasting [15], power load forecasting [8], financial and economic forecasting [14],
water resources variables forecasting [16] and sunspot series forecasting [17].
Lapedes and Farber [9] commented that NNs can model and forecast nonlinear time
series with high accuracy by training feed-forward NNs to generate time series. It is
evident that NNs are exhibit better forecasting performances than traditional time
series approaches [5, 10].

There are many types of neural network tools[14, 18-21] that can forecasting stock
time series. And recently, Guang-Bin Huang[22, 23] has proposed a simple and effi-
cient learning algorithm for single-hidden layer feedforward neural networks (SLFNs)
called extreme learning machine (ELM), which has several interesting and significant
features different from traditional algorithm for feedforward neural networks. But it
also has some drawbacks such as: when the numbers of samples N and hidden nodes

M are very large, The calculation of matrix †
N MH × will become very complicated,

then the calculation errors of the elements in †
N MH × will become larger, and thus the

generalization performance of the network will be reduced.
In this paper, adaptive neural networks, in particular self-organizing maps (SOM),

are explored in modeling stock time series in conjunction with extreme learning ma-
chine (ELM). This approach uses SOM to divide a time series into a number of ho-
mogeneous processes and then these processes are then modeled by the Extreme
Learning Machine. The proposed network is termed self-organizing mixture extreme
learning machine (SOM-ELM) model, which uses self-organizing map and extreme
learning machine as component in the construction of the topological mixture model.

This paper is organized as follows. Section 2 provides the literature review about
SOM, ELM and time series forecasting. In Section 3, the proposed SOME-LM meth-
odology is described. Section 4 presents the related numerical experiments. Finally,
conclusions are given in Section 5.

 A Self-Organizing Mixture Extreme Leaning Machine for Time Series Forecasting 227

2 Literature Review

The main difficulty in modeling stock time series is their non-stationary. That is the
mean and variance of the time series are not constant but change over time. This im-
plies that the variables switch their dynamics from time to time or have different
models in different periods. Therefore, it is not convincing and impractical for a
single parametric model to capture the dynamics of the entire time series.

Due to the recent advances in computational intelligence and increased computer
power, nonparametric models have been studied and used extensively in the last few
years with various successes. Stock forecasting by adaptive neural networks provides
strong evidence in terms of out-of-sample forecasting achievements. For example,
Iebeling Kaastra and Milton Boyd[24] designed a neural network for forecasting
financial and economic time series. Guilherme A. Barreto[25] reviewed the time se-
ries prediction with the Self-Organizing Map. He Ni and Hujun Yin[26] have pro-
posed a SOMAR model for time series prediction. Mark van Heeswijk[27] present a
adaptive ensemble models of Extreme Learning Machines for time series prediction.

2.1 The Self-Organizing Map

The SOM is a well-known unsupervised neural learning algorithm. The SOM learns
from examples a mapping from a high-dimensional continuous input space Χ onto a
low-dimensional discrete space (lattice) Α of q neurons which are arranged in fixed

topological forms, e.g., as a rectangular 2-dimensioal array. The map *() :i x Χ → Α ,

defined by the weight matrix 1 2(, , ,), p
q iW w w w w R= ∈ ⊂ Χ , assigns to the current

input vector () px t R∈ ⊂ Χ a neuron index

 *() arg min () ()i
i

i t x t w t
∀

= − , (1)

where . denotes the Euclidean distance and t is the discrete time step associated

with the iterations of the algorithm.
The weight vectors, ()iw t , also called prototypes or codebook vectors, are trained

according to a competitive-cooperative learning rule in which the weight vectors of a
winning neuron and its neighbors in the output array are updated after the presentation
of the input vector:

 *(1) () () (, ;)[() ()]i i iw t w t t h i i t x t w tα+ = + − , (2)

where 0 () 1tα< < is the learning rate and *(, ;)h i i t is a weighting function which

limits the neighborhood of the winning neuron. A usual choice for *(, ;)h i i t is given
by the Gaussian function:

*

2

*
2

() ()
(, ;) exp

2 ()
i i

r t r t
h i i t

tσ

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 , (3)

228 H. Muzhou, C. Ming, and Z. Yangchun

where ()ir t and * ()
i

r t are, respectively, the coordinates of the neurons i and *i

in the output array Α , and () 0tσ > defines the radius of the neighborhood func-
tion at time t . The variables ()tα and ()tσ should both decay with time to guaran-
tee convergence of the weight vectors to stable steady states.

Weight adjustment is performed until a steady state of global ordering of the
weight vectors has been achieved. In this case, we say that the map has converged.
The resulting map also preserves the topology of the input samples in the sense that
adjacent patterns are mapped into adjacent regions on the map. Due to this topology-
preserving property, the SOM is able to cluster input information and spatial relation-
ships of the data on the map. Despite its simplicity, the SOM algorithm has been
applied to a variety of complex problems and has become one of the most important
ANN architectures. The SOM network structure diagram is shown in following Fig.1.

Fig. 1. Stucture model of SOM network

2.2 The Extreme Learning Machine

The Extreme Learning Machine (ELM) model has been proposed by Gung-Bin
Huang et al. in [22, 23, 28, 29]. It is a type of Single-Layer Feedforward Neural Net-
work (SLFN) and it can be used for function approximation (regression) and classifi-
cation. Most traditional algorithms for training a SLFN use some learning rule that
adapts all the weights based on the showing of a single training example or a batch of
training examples.

Extreme Learning Machine on the other hand, rely on certain properties of the
network. Namely, if the weights and biases in the input layer are randomly initialized,
and the transfer functions in the hidden layer are infinitely differentiable, the optimal
output weights for a given training set can be determined analytically. The obtained
output weights minimize the square training error.

 A Self-Organizing Mixture Extreme Leaning Machine for Time Series Forecasting 229

Since the network is trained in very few steps it is very fast to train, and it is there-
fore an attractive candidate model for use in a function approximation problem.
A schematic overview of the structure of the ELM can be seen in Fig. 2.

Fig. 2. A schematic overview of an ELM

Now, we consider a set of M distinct samples (,)i iX y with d
iX R∈ and

iy R∈ ;then, a SLFN with N hidden neurons is modeled as the following sum:

1

(), [1,]
N

i i j i
i

f W X b j Mβ
=

+ ∈∑ , (4)

where f is the activation function, iW are the input weights to the thi neuron in the

hidden layer, ib the biases and iβ are the output weights.

In the case where the SLFN would perfectly approximate the data (meaning the er-

ror between the output iy and the actual iy is zero), the relation is

1

() , [1,]
N

i i j i i
i

f W X b y j Mβ
=

+ = ∈∑ , (5)

which can be written compactly as

 H Yβ = , (6)

where H is the hidden layer output matrix defined as:

1 1 1

1 1

() ()

() ()

N N N

M N M N

f W X b f W X b

H

f W X b f W X b

+ +⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟+ +⎝ ⎠

, (7)

and 1(, ,)T
Nβ β β= , 1(, ,)T

MY y y= .

230 H. Muzhou, C. Ming, and Z. Yangchun

Given the randomly initialized first layer of the ELM and the training inputs
d

iX R∈ , the hidden layer output matrix H can be computed. Now, given H and the

target outputs (. .)iy R i e Y∈ , the output weights β can be solved from the linear

system defined by H Yβ = . This is given by †H Yβ = , where †H is the Moore-
Penrose generalized inverse of the matrix H . This solution for β is the unique
least-squares solution to the equation H Yβ = .

2.3 Neural Networks for Time Series Forecasting

Time series forecasting, or time series prediction, takes an existing series of data

2 1, , ,t p t tX X X− − −
 and forecasts the 1, ,t tX X + data values. The goal is to observe

or model the existing data series to enable future unknown data values to be forecast-
ed accurately. Throughout the literature[30, 31], many techniques have been imple-
mented to perform time series forecasting. Examples of linear model include
Auto-regressive (AR):

 1 1 2 2t t t p t p tX X X X uϕ ϕ ϕ− − −= + + + + , (8)

Moving Average (MA):

 1 1 2 2t t t t q t qX u u u uθ θ θ− − −= − − − − , (9)

and Auto-regressive Moving Average (ARMA)[6, 32]

 1 1 2 2 1 1 2 2t t t p t p t t t q t qX X X X u u u uϕ ϕ ϕ θ θ θ− − − − − −= + + + + − − − − . (10)

But the time series data in practice almost exhibit high non-linearity and chaos. The
above linear model cannot well solve the prediction problems of practical nonlinear
time series data. And neural networks are advanced model and tool capable of extract-
ing complex, nonlinear relationships among variables[7, 33, 34]. A three-layer feed
forward NNs model is usually used to process the time series data.

The neural network forecaster can be described as follows:

 1 2(, ,)t t t t pX NN X X X− − −= . (11)

The corresponding structure is 1p q× × , where p is the number of inputs, q is the
number of neurons in the hidden layer, and one output unit. So the output of the NNs
is given by

0 1

()
q p

t j ij t i j
j i

X c w Xϕ θ−
= =

= +∑ ∑ , (12)

where ijw is the weight that connects the node i in the input layer neurons to the node

j in the hidden layer; jc is the weight that connects the node j in the hidden layer

neurons to the node in the output layer neurons; jθ is the threshold of neuron; and ϕ

is the activation function.

 A Self-Organizing Mixture Extreme Leaning Machine for Time Series Forecasting 231

3 Self-Organizing Mixture Extreme Leaning Machine(SOM-
ELM)

The SOM-ELM neural network, just as what its name implies, is the combination of
the SOM and the ELM. The SOM is a typical kind of unsupervised self-organizing
neural networks, whose core concept comes from the competition and cooperation
nature of biological neurons[35]. The decision of choosing the SOM as the basic
model comes from the need for its special ability, that is, to build the map from high
dimension input space to low dimensional output space and class the time series input
data based on similarity. Then the matrix †H of ELM model for each classification
data will have smaller order. So the SOM-ELM will have smaller errors and better
generalization performance.

This paper combine the characters of SOM and ELM with series. The SOM net-
work is called the primary and ELM called secondary network. SOM network use the
self-learning, needn’t pre-specified the category of the training input vector during the
training or learning process, it can make their own samples for cluster analysis and
conduct the preliminary classification of the input data. Then for each category of
SOM, we build a ELM network to forecasting the time series values. We know that
the algorithm used by the SOM network is “winner takes all”, namely winning neuron
to its neighboring neurons from near and far and gradually becomes inhibited by the
excitement. Take the position of victorious neuron of the SOM network as the input
of ELM network, which will have better generalization ability because of the similari-
ty in data of the same category and the calculation of smaller matrix †H . The combi-
nation of the two to complement each other is a novel and feasible method. The
network structure diagram of SOM-ELM is shown in Fig.3.

Fig. 3. Structure model of SOM-ELM

232 H. Muzhou, C. Ming, and Z. Yangchun

It can be seen from Fig.3, the SOM-ELM complex neural network is add a SOM
competitive layer to a ELM network. First, classify the samples of input automatically
by the SOM network, map the linearly inseparable samples of high-dimensional space
to the linearly separable low-dimensional space, thus complete the preliminary identi-
fication of the samples in order to reduce the stress and difficulty of the prediction by
the ELM network, and then through solving the of ELM for supervise learning
from input to output that finish the nonlinear mapping from input to output.

 (,) (,) (,)
1 1 1 1 1

() ()
pS S N S N

t k X k k X i i j i k X i ij t j i
k k i k i j

X ELM f W X b f w X bγ γ β γ β −
= = = = =

= = + = +∑ ∑ ∑ ∑ ∑ ∑ , (13)

where (,) 0 1k X orγ = is a indicator or weighting factor of the i th− ELM model:

 (,)

0

1k X

if X k th category

if X k th category
γ

∉ −⎧
= ⎨ ∈ −⎩

, (14)

and we have (,)
1

1
s

k X
k

γ
=

=∑ .

Then we can get the following SOM-ELM algorithm:

Algorithm SOM-ELM: Given the training set of time series

{ }1 2, , , , ,p p nx x x x +ℵ = , the number of category for SOM S , acti-

vation function ()f x and the hidden neuron number N for

ELM.
Step 1: Cluster the input samples preliminary by the SOM
network, denoted as 1 2, , , SA A A , S is the number of catego-

ries of initial classification.
Step 2: For each category set 1,2, ,kA k S= , construct the

model kELM , randomly assign input weight kiW and bias kib ,

1,2, ,i N= .

Step 3: Calculate the hidden layer output matrix KH for

each kELM .

Step 4: Calculate the output weight †
k kH Tβ =

Step 5: Do the prediction by the equation (13).

4 Experiments on Stock Data

All stock market trend is fast changing. It is affected by not only the individual inves-
tors and many institutional investors, but also impacted by domestic political,
economic situations and many other factors. Therefore, it is very difficult to build a

†H

 A Self-Organizing Mixture Extreme Leaning Machine for Time Series Forecasting 233

classical parameter model to predict the market movement [2]. But it is easy to build a
SOM-ELM model to fit the stock dataset. In this section, the approximation ability
and the generalization performance of the proposed SOM-ELM compared with ELM
and BP algorithms will be verified through numerical experiments.

We first collected the sample data of Chinese Shanghai Composite closing Index
from internet stock database. The collection period is from 9 September 2011 to 7
November 2012 and the number of data totaled 280 (Fig. 4).

Fig. 4. Chinese Shanghai Composite closing Index in 280 days

We will use 280*85% 238= points of the dataset to train the neural networks and
the other 280*15% 42= points to test the networks. And we take the memory length
of time series 3p = .

In the experiment, the training root mean square error (TRMSE) and testing root
mean square error (TSMSE) are gotten as follows:

0

1
()

1

n

t t
t

RMSE X X
n =

= −
+ ∑ , (15)

All the experiment are carried out in MATLAB 7.12 environment running in a Penti-
um ® G630 CPU with windows 7. Although there many variants of BP algorithm, a
faster BP algorithms called Levenberg-Marquardt algorithm is used in our experi-
ments. The ELM algorithm source codes are downloaded from the homepage of
Extreme Learning Machine[36]. To compare the performance of the algorithms men-
tioned above, in each experiments 50 trials have been conducted for all the algorithms
and the average TRMSE and TSMSE are shown in the following table.

234 H. Muzhou, C. Ming, and Z. Yangchun

Table 1. SOM-ELM Performance comparison with ELM and BP

Performance

Algorithms

average TRMSE average TSMSE Parameters

SOM-ELM 0 0.0037547
S=10,p=3

Hidden nodes=10

ELM 0 0.0066779 Hidden nodes=10

BP 9.22368 0.0700886 Hidden nodes=20

As observed form Table 1, generally speaking, SOM-ELM has better generaliza-

tion performance than ELM and BP algorithms.
Lastly, we built a SOM-ELM with 3 input neurons, 10 competitive neurons, 10

hidden neurons, and trained it with 196 Chinese Shanghai Composite closing Index
validated the NNs with 42 points and predicted and tested the 42 indexes as Fig. 5.

Fig. 5. The application of the SOM-ELM for prediction

 A Self-Organizing Mixture Extreme Leaning Machine for Time Series Forecasting 235

5 Conclusions

In this paper, in order to improve the generalization performance, we proposed a nov-
el SOM-ELM model and algorithm, which is built by adding a SOM competitive
layer in front of the ELM model. Because the proposed SOM-ELM algorithm have used
the similarity in the sample data and reduced the order and the computational complexi-
ty of the Moore-Penrose generalized inverse of matrix †H , so the error of the elements
of the matrix †H and the generalization performance of the network are improved
which are verified through some experiments with practical stock time series.

References

1. Xi, L., Hou, M.Z., et al.: A new constructive neural network method for noise processing
and its application on stock market prediction. Applied Soft Computing 15, 57–66 (2014)

2. Huang, C.J., Chen, P.W., et al.: Using multi-stage data mining technique to build forecast
model for Taiwan stocks. Neural Computing & Applications, 1–7 (2011)

3. Liu, F., Wang, J.: Fluctuation prediction of stock market index by Legendre neural net-
work with random time strength function. Neurocomputing (2012)

4. Oh, K.J., Kim, K.: Analyzing stock market tick data using piecewise nonlinear model. Ex-
pert Systems with Applications 22(3), 249–255 (2002)

5. Yu, S.W.: Forecasting and arbitrage of the Nikkei stock index futures: an application of
backpropagation networks. Asia-Pacific Financial Markets 6(4), 341–354 (1999)

6. Flores, J.J., Graff, M., et al.: Evolutive design of ARMA and ANN models for time series
forecasting. Renewable Energy 44, 225–230 (2012)

7. Adhikari, R., Agrawal, R.K.: Forecasting strong seasonal time series with artificial neural
networks. Journal of Scientific & Industrial Research 71(10), 657–666 (2012)

8. Hippert, H.S., Pedreira, C.E., et al.: Neural networks for short-term load forecasting: A re-
view and evaluation. IEEE Transactions on Power Systems 16(1), 44–55 (2001)

9. Lapedes, A., Farber, R.: Nonlinear signal processing using neural networks: Prediction and
system modelling (1987)

10. Zhang, G.P.: A neural network ensemble method with jittered training data for time series
forecasting. Information Sciences 177(23), 5329–5346 (2007)

11. Huang, G.B.: Learning capability and storage capacity of two-hidden-layer feedforward
networks. IEEE Transactions on Neural Networks 14(2), 274–281 (2003)

12. Soyguder, S.: Intelligent control based on wavelet decomposition and neural network for
predicting of human trajectories with a novel vision-based robotic. Expert Systems with
Applications 38(11), 13994–14000 (2011)

13. Zhang, G., Eddy Patuwo, B., et al.: Forecasting with artificial neural networks: The state of
the art. International Journal of Forecasting 14(1), 35–62 (1998)

14. Huang, W., Lai, K.K., et al.: Neural networks in finance and economics forecasting. Inter-
national Journal of Information Technology & Decision Making 6(01), 113–140 (2007)

15. Han, M., Wang, Y.: Analysis and modeling of multivariate chaotic time series based on
neural network. Expert Systems with Applications 36(2), 1280–1290 (2009)

16. Maier, H.R., Dandy, G.C.: Neural networks for the prediction and forecasting of water re-
sources variables: a review of modelling issues and applications. Environmental Modelling
& Software 15(1), 101–124 (2000)

236 H. Muzhou, C. Ming, and Z. Yangchun

17. Xie, J.X., Cheng, C.T., et al.: A hybrid adaptive time-delay neural network model for mul-
ti-step-ahead prediction of sunspot activity. International Journal of Environment and Pol-
lution 28(3), 364–381 (2006)

18. Hou, M., Han, X.: Constructive approximation to multivariate function by decay RBF neu-
ral network. IEEE Transactions on Neural Networks 21(9), 1517–1523 (2010)

19. Muzhou, H., Xuli, H.: The multidimensional function approximation based on constructive
wavelet RBF neural network. Applied Soft Computing 11(2), 2173–2177 (2011)

20. Muzhou, H., Xuli, H.: Multivariate numerical approximation using constructive $$ L^{2}
(\mathbb{R}) $$ RBF neural network. Neural Computing and Applications 21(1), 25–34
(2012)

21. Muzhou, H., Xuli, H., et al.: Constructive approximation to real function by wavelet neural
networks. Neural Computing & Applications 18(8), 883–889 (2009)

22. Huang, G., Zhu, Q., et al.: Extreme learning machine: Theory and applications.
Neurocomputing 70(1-3), 489–501 (2006)

23. Huang, G.B., Zhu, Q.Y., et al.: Extreme learning machine: a new learning scheme of
feedforward neural networks, vol. 2, pp. 985–990. IEEE (2004)

24. Kaastra, I., Boyd, M.: Designing a neural network for forecasting financial and economic
time series. Neurocomputing 10(3), 215–236 (1996)

25. Barreto, G.: Time series prediction with the self-organizing map: A review. In: Hammer,
B., Hitzler, P. (eds.) Perspectives of Neural-Symbolic Integration. SCI, vol. 77, pp. 135–
158. Springer, Heidelberg (2007)

26. Ni, H., Yin, H.: A self-organising mixture autoregressive network for FX time series mod-
elling and prediction. Neurocomputing 72(16), 3529–3537 (2009)

27. van Heeswijk, M., Miche, Y., Lindh-Knuutila, T., Hilbers, P.A.J., Honkela, T., Oja, E.,
Lendasse, A.: Adaptive ensemble models of extreme learning machines for time series
prediction. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G., et al. (eds.) ICANN
2009, Part II. LNCS, vol. 5769, pp. 305–314. Springer, Heidelberg (2009)

28. Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learning ma-
chine. Neurocomputing 71(16-18), 3460–3468 (2008)

29. Huang, G.B., Chen, L.: Convex incremental extreme learning machine.
Neurocomputing 70(16-18), 3056–3062 (2007)

30. Zevallos, M., Santos, B., et al.: A note on influence diagnostics in AR(1) time series mod-
els. Journal of Statistical Planning and Inference 142(11), 2999–3007 (2012)

31. Cabana, A., Cabana, E.M., et al.: Weak Convergence of Marked Empirical Processes for
Focused Inference on AR(p) vs AR(p+1) Stationary Time Series. Methodology and Com-
puting in Applied Probability 14(3), 793–810 (2012)

32. Song, P.X.K., Freeland, R.K., et al.: Statistical analysis of discrete-valued time series using
categorical ARMA models. Computational Statistics & Data Analysis 57(1), 112–124
(2013)

33. Purwanto, C.E., et al.: An enhanced hybrid method for time series prediction using linear
and neural network models. Applied Intelligence 37(4), 511–519 (2012)

34. Yan, W.Z.: Toward Automatic Time-Series Forecasting Using Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems 23(7), 1028–1039 (2012)

35. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990)
36. http://www3.ntu.edu.sg/home/egbhuang/

© Springer International Publishing Switzerland 2015
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,

237

Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_21

Ensemble Extreme Learning Machine Based on a New
Self-adaptive AdaBoost.RT

Pengbo Zhang and Zhixin Yang*

Department of Electromechanical Engineering
Faculty of Science and Technology

University of Macau, Macau SAR, China
{mb35515,zxyang}@umac.mo

Abstract. Extreme learning machine (ELM) has been well recognized as a new
learning scheme for single-hidden layer feedforward networks (SLFNs) with
extremely fast learning speed and high generalization performance. However,
the stability and accuracy of ELM can be further enhanced. In this paper, a new
hybrid machine learning method called robust AdaBoost.RT based ensemble
ELM (RAE-ELM) for regression problems is proposed, which combined ELM
with the novel self-adaptive AdaBoost.RT algorithm to achieve better approxi-
mation accuracy than using only single ELM network. To enable dynamically
self-adjusting the threshold value during AdaBoost.RT computing without any
empirical suggestion, the statistical parameters of applying ELM networks on
the input dataset are adopted as indicators. The experiment results that applying
the proposed algorithm on wide types of benchmark databases verify that RAE-
ELM not only outperforms the conventional ELM but also achieves a higher
stability and accuracy level than original and modified AdaBoost.RT-based
ELM for regression problems.

Keywords: Extreme learning machine, Single-hidden Layer Feedforward Net-
works, Self-adaptive AdaBoost.RT algorithm, Regression, Ensemble.

1 Introduction

In the past decades, computational intelligence methodologies are widely adopted and
have been effectively utilized in various areas of scientific research and engineering
applications. Recently, Huang et al. introduced an efficient learning algorithm, named
as extreme learning machine (ELM), for single-hidden layer feedforward neural net-
works (SLFNs) [1, 2]. Unlike conventional learning algorithms such as back-
propagation (BP) methods [3] and support vector machines (SVMs) [4], ELM could
randomly generate the hidden neuron parameters (the input weights and the hidden
layer biases) before seeing the training data, and could analytically determine the
output weights without tuning the hidden layer of SLFNs. As the random generated
hidden neuron parameters are independent to the training data, ELM can reach not

* Corresponding author.

238 P. Zhang and Z. Yang

only the smallest training error but also the smallest norm of output weights. ELM
overcomes several limitations in the conventional learning algorithms, such as local
minimal and slow learning speed, etc., and embodies very good generalization
performance.

As a single learning machine, although ELM is quite stable comparing to other
learning algorithms, its classification and regression performance may still be slightly
varied among different trails on big dataset. To seek a better generalization perfor-
mance, many researchers proposed to use integrated network structures which com-
bined ELM with various ensemble methods, and verified that it performed better than
using individual ELM. Lan et al. [5] proposed an ensemble of online sequential ELM
(EOS-ELM), which is comprised of several OS-ELM networks. Liu and Wang [6]
presented an ensemble based ELM (EN-ELM) algorithm, where the cross-validation
scheme was used to create an ensemble of ELM classifiers for decision making. Be-
sides, Xue et al. [7] proposed a genetic ensemble of extreme learning machine
(GE-ELM), which adopted genetic algorithms (GAs) to produce a group of candidate
networks first. More recently, Wang et al. [8] presented a parallelized ELM ensemble
method based on M3-network, called as M3-ELM.

Recently, a novel boosting algorithm, called the adaptive boosting (AdaBoost),
was presented by Schapire and Freund [9]. However, many of the existing investiga-
tions on adaptive boosting algorithms focus on classification problems. These
algorithms on classification problems, unfortunately, cannot be directly applied on
regression problems. To solve regression problems, based on the AdaBoost algorithm
on the classification problem [10-12], Schapire and Freund [9] extended
AdaBoost.M2 to AdaBoost.R. Their work was followed by Shrestha and Solomatione
[13, 14], who proposed a novel boosting algorithm, called as AdaBoost.RT.
AdaBoost.RT projects the regression problems into the binary classification domain
which could be processed by AdaBoost algorithm while filtering out those examples
with the relative estimation error larger than the preset threshold value.

Combing the effective learner, ELM, with the promising ensemble method,
AdaBoost.RT algorithm, could inherent their great intrinsic properties and shall be
able to achieve good generalization performance for dealing with big data. Tian and
Mao [15] presented an ensemble ELM based on modified AdaBoost.RT algorithm
(Modified Ada-ELM) in order to predict the temperature of molten steel in ladle fur-
nace. The novel hybrid learning algorithm combined the modified AdaBoost.RT with
ELM, which possesses the advantage of ELM and overcomes the limitation of basic
AdaBoost.RT by self-adaptively modifiable threshold value. However, the initial
value of Φ is manually fixed to be the mean of the variation range of threshold value,
which make the ensemble ELM hardly to reach a generally optimized learning effect.

This paper presents a self-adaptive and robust AdaBoost.RT based ensemble ELM
(RAE-ELM) for regression problems, which combined ELM with the new self-
adaptive AdaBoost.RT algorithm. The self-adaptive AdaBoost.RT algorithm not
only overcomes the limitation of the original AdaBoost.RT algorithm, but also makes
the threshold value of Φ be adaptive to the input dataset and ELM networks instead of
manually presetting. The main idea of RAE-ELM is as follows. The ELM algorithm
is selected as the ‘weak’ learning machines to build the hybrid ensemble model.

 Ensemble Extreme Learning Machine Based on a New Self-adaptive AdaBoost.RT 239

A new self-adaptive AdaBoost.RT algorithm is proposed to utilize the error statistics
method to dynamically determine the regression threshold value rather than via man-
ually selection which may only be ideal for very few regression cases. The proposed
self-adaptive AdaBoost.RT based ensemble extreme learning machine can avoid
over-fitting because of the characteristic of ELM. Moreover, as ELM is a fast learner
with quite high regression performance, it contributes to the overall generalization
performance of the self-adaptive AdaBoost.RT based ensemble module. The experi-
ment results have demonstrated that the proposed self-adaptive and robust
AdaBoost.RT ensemble ELM (RAE-ELM) has superior learning properties in terms
of stability and accuracy for regression issues, and have better generalization perfor-
mance than other algorithms.

This paper is organized as follows. Section 2 gives a brief of review of basic ELM.
Section 3 introduces the proposed self-adaptive AdaBoost.RT algorithm. The hybrid
self-adaptive AdaBoost.RT ensemble ELM (RAE-ELM) algorithm is then presented
in Section 4. The performance evaluation of RAE-ELM and its regression ability are
verified using experiments in Section 5. Finally, the conclusion is drawn in the last
section.

2 Brief on ELM

Given a set of M random sample{(xi , ti)| (xi , ti)∈Rm×Rn, i= 1, 2, ..., M}, activation
function where xi =[xi1, xi2, ..., xim]T, and ti =[ti1, ti2, ..., tin]T, the mathematical model
of the standard SLFNs with N hidden nodes and activation function f(x). Extreme
learning machine (ELM) can be summarized in three steps as follows:

1. Randomly assign the input weight aj and bias bj (j=1, 2, ..., N);
2. Calculate the hidden layer output matrix H;
3. According to the equation ߚመ = ߚ : calculate the output weight β,ࢀறࡴ = , ࢀறࡴ

where ࢀ = ,૚࢚] … , ்[ࡹ࢚

3 The Proposed Self-Adaptive AdaBoost.RT Algorithm

To overcome the limitations suffered by the current works on AdaBoost.RT, this pa-
per proposes to embed statistics theory into the AdaBoost.RT algorithm. It overcomes
the difficulty to optimally determine the initial threshold value and enables the inter-
mediate threshold values to be dynamically self-adjustable according to the intrinsic
property of the input data samples. The proposed self-adaptive AdaBoost.RT algo-
rithm is described as follows.

The proposed self-adaptive AdaBoost.RT algorithm:
1) Input :

Sequence of m sample (x1, y1), …, (xm, ym), where output y ∈ R;
Weak learning algorithm (Weak Learner);
Maximum number of iterations (machines) T.

240 P. Zhang and Z. Yang

2) Initialize:
Iteration index t=1;
Distribution Dt(i)=1/m for all i;
The weight vector : for all i;
Error rate ɛt=0.

3) Iterate while ݐ ≤ ܶ:
1. Call Weak Learner, WLt, providing it with distribution: ࢖௧ = ௓೟(೟)࢝ .

where Zt is a normalization factor chosen such that p(t) will be
a distribution.

2. Build the regression model: ft (x)→y;
3. Calculate each error: et (i) = ft (xi) - yi;

4. Calculate the error rate: ε௧ = ∑ ௜(௧)௜∈P݌ ,
where ܲ = ൛݅ห|e௧(݅) − eത௧| > σ௧ൟߣ , ݅ ∈ [1, m]. eത௧ stands for
the expected value, λσ௧ is defined as Robust Threshold
(σ௧ stands for the standard deviation, the relative factor λ is de-
fined as λ ∈ (0,1));

If εt >1/2, then set T=t-1 and abort loop.
5. Set ߚ௧ = ௧ߝ 1 − ⁄௧ߝ ;
6. Calculate contribution of ft (x) to the final result: log()t tα β= − ;

7. Update the weight vectors:
 If ݅ ∉ ܲ then (1) ()t t

i i tw w β+ = ,

 else (1) ()t t
i iw w+ =

8. Set t=t+1;

4) Normalize α1, …, αT , such that ∑ ௧ߙ = 1௧்ୀଵ ;
Output the final hypotheses: ௙݂௜௡(ݔ) = ∑ ௧ߙ ௧݂(ݔ)௧்ୀଵ .

4 A Self-Adaptive AdaBoost.RT Ensemble-Based Extreme
Learning Machine

In this paper, a self-adaptive AdaBoost.RT Ensemble-based Extreme Learning Ma-
chine (RAE-ELM), which combines ELM with the self-adaptive AdaBoost.RT
algorithm described in previous section, is proposed to improve the robustness and
stability of ELM. In the training phase, the RAE-ELM utilizes the proposed self-
adaptive AdaBoost.RT algorithm to train every ELM model and assign an ensemble
weight accordingly, in order that each ELM achieves corresponding distribution based
on the training output. The optimally weighted ensemble model of ELMs, is the final
hypothesis output used for making prediction on testing dataset.

A. Initialization
For the first weak learner, ELM1 is supplied with m training samples with the uni-
formed distribution of weights in order that each sample owns equal opportunity to be
chosen during the first training process for ELM1.

 Ensemble Extreme Learning Machine Based on a New Self-adaptive AdaBoost.RT 241

B. Distribution Updating
The relative prediction error rates are used to evaluate the performance of the current
ELM networks, ELMt. The robust threshold is applied to demarcate prediction errors
as ‘accepted’ or ‘rejected’. If the prediction error of one particular sample falls into
the region t tμ λσ± that is bounded by the robust thresholds, the prediction of this

sample is regarded as ‘accepted’ for ELMt, and vice versa for ‘rejected’ predictions.
The self-adaptive AdaBoost.RT algorithm will calculate the distribution for next
ELMt+1.

C. Decision Making on RAE-ELM
The ELMt with relatively superior regression performance will be granted with a larg-
er ensemble weight. The hybrid RAE-ELM model combines the set of ELMs under
different weights as the final hypothesis for decision making.

5 Performance Evaluation of RAE-ELM

In this section, the performance of the proposed RAE-ELM learning algorithm is
compared with other ELM based algorithms on three real-world regression problems
covering different domains from UCI Machine Learning Repository [16], whose spec-
ifications of benchmark data sets are shown in Table 1. The ELM based algorithms to
be compared include basic ELM [2], original AdaBoost.RT based ELM (Original
Ada-ELM), and the modified self-adaptive AdaBoost.RT ELM (Modified Ada-ELM)
[15]. All the evaluations are conducted in Matlab 2012b environment running in a
desktop with 2.20 GHz CPU and 4 GB RAM.

In our experiments, all the input attributes are normalized into the range of [-1, 1],
while the outputs are normalized into [0, 1]. For each trial of simulations, the whole
data set of the application is randomly partitioned into training dataset and testing
dataset with the number of samples shown in Table 1, where 25% of the training data
samples are used as the validation dataset.

For RAE-ELM, basic ELM, original Ada-ELM, and modified Ada-ELM algo-
rithms, the suitable numbers of hidden nodes of them are determined using the
preserved validation dataset respectively. The sigmoid function is selected as the acti-
vation function in all the algorithms. Fifty trails of simulations have been conducted
for each problem, with training, validation and testing samples randomly split for
each trails. The performances of the algorithms are verified using the average root
mean square error (RMSE) in training and testing respectively. The significantly
better results are highlighted in boldface.

Table 1. Specification of real-world regression benchmark datasets

Problems Training data Testing data Attributes
Abalone 3048 1129 7

Computer hardware 100 109 7
LVST 71 54 308

242 P. Zhang and Z. Yang

In the original AdaBoost.RT-based ensemble ELM, the threshold Φ is required to
be manually selected according to an empirical suggestion, which is a sensitive factor
affecting the regression performance. The Original Ada-ELM with the optimal
threshold values could generate satisfied results for all the three regression problems.
The Modified Ada-ELM algorithm needs to select an initial value of Φ0 to calculate
the followed thresholds in the iterations. Tian and Mao suggested to set the default
initial value of Φ0 to be 0.2 [15].

The results comparisons of RAE-ELM, Basic ELM, Original Ada-ELM and Modi-
fied Ada-ELM for real-world data regressions are shown in Table 2.

Table 2. Result comparisons of training and testing RMSE of RAE-ELM, Basic ELM, Original
Ada-ELM and Modified Ada-ELM for real-world data regressions

Problems Algorithms
#Number
of
machines

The
threshold
Φ/initial
value Φ0

#Training
RMSE

#Testing
RMSE #Nodes

Abalone

RAE-ELM 20 0.0175 0.0168 30

Basic ELM 0.0208 0.0196 30

Original Ada-
ELM

20 0.2 0.0184 0.0177 30

Modified Ada-
ELM

20 0.2 0.0182 0.0176 30

Computer
hardware

RAE-ELM 20 0.1353 0.3062 10

Basic ELM 0.1522 0.3288 10

Original Ada-
ELM

20 0.35 0.1366 0.3156 10

Modified Ada-
ELM

20 0.2 0.1407 0.3094 10

LSVT

RAE-ELM 20 0.2326 0.3484 35

Basic ELM 0.3004 0.3673 35

Original Ada-
ELM

20 0.25 0.2521 0.3591 35

Modified Ada-
ELM

20 0.2 0.2493 0.3563 35

The suitable number of hidden nodes of each algorithm is determined through vali-
dation process. It is easy to find that both averaged training RMSE and testing RMSE
obtained by RAE-ELM for all the three cases are always the best among these four
algorithms. The best performed Original Ada-ELM models for different regression
problems own their correspondingly different threshold values. Therefore the manual

 Ensemble Extreme Learning Machine Based on a New Self-adaptive AdaBoost.RT 243

chosen strategy is not good. The generalization performance of Modified Ada-ELM,
in general, is better than Original Ada-ELM. The generalization performance of the
optimized ensemble ELMs using Original Ada-ELM or Modified Ada-ELM can hard-
ly be better than that of the proposed RAE-ELM. The three AdaBoost.RT based en-
semble ELMs (RAE-ELM, Original Ada-ELM, and Modified Ada-ELM) all perform
better than the Basic ELM, which verifies that an ensemble ELM using AdaBoost.RT
can achieve better predication accuracy than using individual ELM as predictor.

6 Conclusion

In this paper, a self-adaptive and robust AdaBoost.RT based ensemble ELM (RAE-
ELM) for regression problems is proposed, which combined ELM with the novel self-
adaptive AdaBoost.RT algorithm. Combing the effective learner, ELM, with the
novel ensemble method, self-adaptive AdaBoost.RT, could construct a hybrid method
that inherit their intrinsic properties and achieve better predication accuracy than us-
ing only individual ELM as predictor. Therefore, selecting ELM as the ‘weak’ learner
can avoid over-fitting. Moreover, as ELM is a fast learner with quite high regression
performance, it contributes to the overall generalization performance of the ensemble
ELM.

The proposed RAE-ELM is robust with respect to the difference in various regres-
sion problems and variation of approximation error rates that do not significantly
affect its highly stable generalization performance. As one of the key parameter in
ensemble algorithm, threshold value, do not need any human intervention; instead, is
able to be self-adjusted according to the real regression effect of ELM networks on
the input dataset. Such mechanism enable RAE-ELM to make sensitive and adaptive
adjustment to the intrinsic properties of the given regression problem. The experi-
mental result comparisons in terms of stability and accuracy among the four ELM
based algorithms (RAE-ELM, Basic ELM, Original Ada-ELM, and Modified Ada-
ELM) for regression issues verify that all the AdaBoost.RT based ensemble ELMs
perform better than the Basic ELM, and more remarkably, the proposed RAE-ELM
always achieves the best performance.

Acknowledgments. The authors would like to thank the funding support by the
University of Macau, Grant numbers: MYRG079(Y1-L2)-FST13-YZX.

References

1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of
feedforward neuralnetworks. In: Proceedings of 2004 IEEE Int. Joint Conf. on Neural
Networks, vol. 2, pp. 985–990 (2004)

2. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.
Neurocomputing 70(1), 489–501 (2006)

3. Ng, S.C., Cheung, C.C., Leung, S.H.: Magnified gradient function with deterministic
weight modification in adaptive learning. IEEE Transactions onNeural Networks 15(6),
1411–1423 (2004)

244 P. Zhang and Z. Yang

4. Cortes, C., Vapnik, V.: Support-vetcor networks. Machine Learning 20(3), 273–297
(1995)

5. Lan, Y., Soh, Y.C., Huang, G.B.: Ensemble of online sequential extreme learning machine.
Neurocomputing 72(13), 3391–3395 (2009)

6. Liu, N., Wang, H.: Ensemble based extreme learning machine. IEEE Signal Processing
Letters 17(8), 754–757 (2010)

7. Xue, X., Yao, M., Wu, Z., Yang, J.: Genetic ensemble of extreme learning machine.
Neurocomputing 129(10), 175–184 (2014)

8. Wang, X.L., Chen, Y.Y., Zhao, H., Lu, B.L.: Parallelized extreme learning machine en-
semble based on min–max modular network. Neurocomputing 128, 31–41 (2014)

9. Schapire, R.E., Freund, Y.: Boosting: foundations and algorithms. MIT Press, Cambridge
(2012)

10. Guruswami, V., Sahai, A.: Multiclass learning, boosting, and error-corretcing codes. In:
Proceedings of the Twelfth Annual Conference on Computational Learning Theory, pp.
145–155. ACM (1999)

11. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predic-
tions. Machine Learning 37(3), 297–336 (1999)

12. Li, L.: Multiclass boosting with repartitioning. In: Proceedings of the 23rd International
Conference on Machine Learning, pp. 569–576. ACM (2006)

13. Solomatine, D.P., Shrestha, D.L.: AdaBoost. RT: a boosting algorithm for regression prob-
lems. Proceedings of 2004 IEEE Int. Joint Conf. on Neural Networks 2, 1163–1168 (2004)

14. Shrestha, D.L., Solomatine, D.: Experiments with AdaBoost. RT, an improved boosting
scheme for regression. Neural Computation 18(7), 1678–1710 (2006)

15. Tian, H.X., Mao, Z.Z.: An ensemble ELM based on modified AdaBoost. RT algorithm for
predicting the temperature of molten steel in ladle furnace. IEEE Transactions on Automa-
tion Science and Engineering 7(1), 73–80 (2010)

16. Bache, K., Lichman, M.: UCI Machine Learning Repository. University of California,
School of Information and Computer Science, Irvine (2014),
http://archive.ics.uci.edu/ml

Machine Learning Reveals Different Brain

Activities in Visual Pathway during TOVA Test

Haoqi Sun1,2,3,4, Olga Sourina3,4, Yan Yang1,4,
Guang-Bin Huang2,4, Cornelia Denk4, and Felix Klanner4

1 Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School,
Nanyang Technological University, Singapore

2 School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore

3 Fraunhofer IDM @ NTU, Nanyang Technological University, Singapore
4 Future Mobility Research Lab, A Joint Initiative of BMW Group & NTU

hsun004@e.ntu.edu.sg,{eosourina,y.yang,egbhuang}@ntu.edu.sg,

{cornelia.denk,felix.klanner}@bmw.de

Abstract. This paper explores the changes in EEG when subjects per-
formed a modified Test of Variables of Attention (TOVA), compared to
open eye resting (baseline) state. To recognize these two different brain
states, two machine learning algorithms, i.e. extreme learning machine
(ELM) and support vector machine (SVM), were applied and compared,
using 3 statistical features and 4 power spectral density per channel. The
results showed that using all 14 channels, ELM and SVM achieved simi-
lar test accuracy of 94.6% and 95.1% respectively (McNemar’s test p =
0.8 > 0.05). Using recursive channel selection, 9 channels (ELM) and 8
channels (SVM) were selected from 14 channels. After channel selection,
ELM outperformed SVM significantly (McNemar’s test p = 0.0005 <
0.01) with average test accuracy of 95.0% and 92.5% respectively. The
channel rank of each subject was weighted and merged using analytic hi-
erarchical process to obtain a cross-subject ranking, which revealed the
close correlation between TOVA and the visual pathway in brain.

Keywords: machine learning, EEG, brain activities, channel selection,
TOVA, extreme learning machine.

1 Introduction

With the development of electrophysiology technologies, electroencephalography
(EEG) has become a well-accepted method to discover brain activities. The EEG
records the electric potential developed in the brain, using electrodes attached to
the scalp [2]. In addition to its advantages of being noninvasive, easy to operate
and low cost, many researches have been made possible due to its high temporal
resolution at millisecond level, which is about the temporal resolution of a single
spike. EEG also allows early detection of brain activity [10], which can be very
important in certain applications such as driving. In this way, EEG provides a
meaningful approach to inspect the activities of living and working brain.

© Springer International Publishing Switzerland 2015 245
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_22

246 H. Sun et al.

Most current researches on EEG focus on finding the most distinct biomarker,
or feature, when performing a particular task. For example, open/closed eyes can
be distinguished from lower/higher α band power (8-15Hz) respectively, and α
spindle can also be used to serve the same purpose [35]. Typically a fixed or
adaptive linear threshold is then set for each subject to classify different brain
states. But obviously such single feature approach cannot fully grasp the complex
pattern of EEG signals due to the high complexity of brain activities. As a result,
multiple features with biological meanings, as well as powerful tools to classify
brain states in high dimension are required to capture more complex activities
such as dynamic and nonlinear changes in the brain. Machine learning is such
a tool which is able to capture and approximate complex landscape of the high
dimensional feature distribution, which can reveal the underlying brain states
efficiently and accurately [25].

Distinguishing brain states from EEG signals, for example, on human oper-
ators’ attentiveness, alertness and workload levels, are directly related to many
real-world applications including the development of advanced driver state model.
As a proof of concept, we designed an experiment to discover whether machine
learning method can distinct the two brain states of relaxing and actively per-
forming a task in a desktop setup, by analyzing EEG brain signals. In the next
stage of the research, we will apply the developed methods to driving-related
tasks, in a simulator scenario. Other data sources, for example, drivers’ visual
behavior will also be implemented to improve the reliability and robustness of
the driver state model.

In this study, we are interested in the following 2 research questions:i) What
are the most relevant brain areas (in term of the EEG channels) when distin-
guishing the patterns in different brain activities? ii) How machine learning can
be applied to efficiently and accurately recognize these patterns? In order to an-
swer these questions, we applied machine learning, i.e. extreme learning machine
(ELM) with sigmoid activation function and support vector machine (SVM)
with sigmoid kernel to the EEG data to recognize different brain activity during
baseline (open eye resting) and task-performing (performing a modified TOVA)
states. The hypothesis is: TOVA can induce measurable changes in brain state
in certain areas, compared to baseline.

This paper is structured as follows. Section 2 outlines the related work in
machine learning regarding to EEG. Section 3 describes the experimental se-
tups. Section 4 describes the algorithm and procedures of our analysis. Results
are described in Section 5. Discussion of experiment insights are presented in
Section 6, followed by conclusions in Section 7.

2 Related Work

Although there is a relationship between brain activities and EEG signals, the
patterns are far from straightforward. Therefore, data-driven methods, e.g. ma-
chine learning, are proposed to mine these hidden patterns in different brain
states [25, 21]. The EEG analysis typically consists of feature extraction, outlier
removal, feature and channel selection, model selection and classification.

Machine Learning Reveals Different Brain Activities 247

Various kinds of features can be extracted from EEG signals including tem-
poral, spectral and spatial features, from both single and multiple channels. For
temporal features, Picard et al. used statistical features of the signals to clas-
sify emotions [30]. For spectral features, power spectral density of each band is
commonly used and has been shown to carry biological meanings. Another bio-
logically plausible and commonly used spectral feature is event-related spectral
perturbation including event-related synchronization (ERS) and event-related
desynchronization (ERD), which “allows one to model neural oscillatory dynam-
ics” [22, 18]. EEG spatial features are less mentioned in the literature because
of low spatial resolution affected by relatively large size of electrodes and the
volume conduction from the cortex to electrode, but there are still methods to
utilize spatial features by factoring multi-channel signals to have maximum dif-
ference in variance for a specific task, e.g. common spatial patterns (CSP) with
application in motor imaginary [19]. In addition to temporal, spectral and spatial
features, inter-channel features are also extracted such as mutual information [13]
and phase synchronization index (PSI) [38]. Another important class of features
comes from nonlinear dynamics theory, where various kinds of fractal dimension
and largest Lyapunov exponent of EEG signal are evaluated with applications
in the recognition of emotions and neurophysiological diseases [36, 9].

After feature extraction, outlier removal is necessary in EEG analysis if linear
classifiers are used, due to the fact that the linear classifiers are more sensitive
to outliers [21]. Nonlinear classifiers also suffer from outliers, but to a less extent
[21]. To identify and remove outliers, it is intuitive that one can project data
along the direction with maximum variance and remove outliers by setting a
quantile [29]. In addition, many other advanced methods are also proposed,
which can be applied to high dimensional data, such as minimum volume ellipsoid
convex peeling [32].

The next step is to select and/or transform features since currently we don’t
have full knowledge of how brain exactly works and have to find the features
which are the best to characterize the patterns. The approaches are catego-
rized into wrapper and filter methods. Wrappers utilize the classifier and use
classification accuracy as the indicator of a certain feature set. It is evident that
wrappers are computationally intractable for large feature set, although for small
feature space, it can find the exactly the best feature combination. Filters are
methods which are independent of classifiers, instead, they use proxy variables
to approximate the classification accuracy. For example, the commonly used
recursive feature selection/elimination first uses filter methods such as Fisher
discriminant ratio (FDR) to rank all the features to get a ranked feature list,
and then a wrapper method is used to recursively evaluate the features according
to classification accuracy by adding or eliminating ranked features one by one
[20, 34].

After feature selection, classifiers are used to train and test the data. Classifiers
are generally from two categories: linear and nonlinear. Mathematically speaking,
a nonlinear classifier can be viewed as a linear one that functions in higher
dimension space projected by kernels. In EEG based brain state recognition,

248 H. Sun et al.

linear discriminant analysis (LDA) is commonly used [6]. For nonlinear classifiers,
support vector machine [31] and neural network, including back-propagation
network [37] and extreme learning machine [39] are widely used in EEG based
classification problems.

3 Experimental Setup

3.1 Subjects

10 subjects attended the experiment (3 females and 7 males), with age from 23
to 35 (mean = 26, SD = 4). All of them are right-handed and healthy with no
history of neurological diseases. They were recruited from Nanyang Technological
University by word of mouth and informed 5 days before the experiment. All
instructions were given and all experiment data were collected by the same
researcher. The experiment time was controlled between 11:00am to 12:00am
before lunch without consuming coffee, tea or alcohol before and during the test
to eliminate extra factors that may affect brain state.

3.2 Modified TOVA Test

A modified TOVA test [1] was used in the experiment to induce different brain
state compared to open eye resting state (baseline). The original TOVA test is
used in particularly to screen attention disorders such as attention deficit hy-
peractivity disorder (ADHD) [1]. The subject was instructed to press the space
key in the keyboard as soon as the target appeared, i.e. a black square appeared
at an upper position on the screen. If the square appeared at the bottom (non-
target), the subject was instructed not to press the space key. Fig. 1 shows a
target appearing. The original TOVA test contains two conditions, i.e. targets
appear in high and low frequency. In the condition with low target frequency,
the target-to-nontarget ratio is about 1:3.5, which is 72 targets and 248 nontar-
gets in PEBL implementation [24], and the ratio is reversed for the high target
frequency condition. The total test time in PEBL is 22.5 minutes.

The purpose of this study is to classify brain states during the task-performing
and baseline. Therefore, we modified TOVA by using only the high target fre-
quency condition, where the task difficulty is higher which results in more distinct
brain state [23] compared to the baseline. The modified TOVA test is about 11.2
minutes.

3.3 Experiment Procedure

The whole experiment consisted of two parts, i.e. baseline and task-performing.
The baseline state is defined as subject sitting in a comfortable chair in front

Machine Learning Reveals Different Brain Activities 249

of the computer with eyes open without large body movements for 10 minutes,
during which the subject was asked to relax and not to pay attention to any
particular objects for long time. Task-performing state is defined as the subject
performing the modified TOVA test (Fig. 1). The sequence of these two parts
was counterbalanced to minimize the effect of ordering, i.e. 5 randomly chosen
subjects took the baseline part first and then performing the modified TOVA
test, while the others took the task-performing part first and baseline second.
There was 1 minute break between these two parts where the subject was allowed
to have minor body movement but cannot leave the seat. Subjects’ EEG data
for 10 minutes of baseline and 10 minutes of task-performing were recorded for
later analysis.

Fig. 1. One of the subjects doing experiment

3.4 EEG Recordings

We used Emotiv EEG headset (Emotiv Systems Inc., San Francisco, CA, USA)
with 14 channels located at AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6,
F4, F8 and AF4 according to the international 10-20 system. The sampling rate
of EEG signals is 128Hz, notch filtered at 50Hz and 60Hz and bandpass filtered
from 0.2Hz to 45Hz.

4 Methods

In Fig. 2 we show the flowchart of how EEG was analyzed from raw data to get
final classification results.

250 H. Sun et al.

raw
data

artifact
removal

feature
extraction

outlier
removal

feature
standardization

channel and model selection
via cross validation

classification

classification result

result

channel and model selection
via cross validation

training test / validation apply parameters

ELM

SVM

Fig. 2. EEG analysis flowchart

4.1 Artifact Removal

EEG data were first pre-processed to remove artifacts. These artifacts include
blink, eyeball movement (horizontal, vertical and saccade), muscular artifacts,
electrocardiogram (ECG) artifacts and loss of electrode contact with scalp. Blink
artifacts usually exhibit peak-like shape in the signal, which is most dominant
in frontal channels. Eyeball movement can bring staircase-like shape into the
signal. Muscular artifacts resemble short burst of high frequency signals. ECG is
represented as rhythmic fluctuation. Loss of electrode contact with scalp leads to
dramatic change in the signal amplitude. It is expected that artifacts are statis-
tically independent from the EEG signal from brain. Independence component
analysis (ICA) was used for the whole data (including training and testing data)
to get 14 components (same with the number of channels), followed by manual
identification of artifact segments. Here, we did not perform a component-wise
identification; instead, linear interpolation was used to replace the artifact seg-
ments contained in each component. This is because generally ICA is not guar-
anteed to extract all artifacts into one component. The artifact removed data
was then stored and used for later processing.

4.2 Splitting Data into Training and Test Sets

We split the EEG recording of each subject into training and test sets. The first
8 minutes of each state were used for the training of classifiers and the last 2
minutes of each state were for testing (Fig. 3). 5-fold cross validation [3] was
used where the optimal classifier hyperparameters and channels were selected
by maximizing the average accuracy obtained on every fifth of training set as
validation set. After this, the classifier was applied on test set to get test accuracy
using the selected optimal hyperparameter and channels.

Machine Learning Reveals Different Brain Activities 251

State: Baseline
10 min

Task performing
10 min

2 min8 min 2 min8 min

validation:
cross-
5-fold

Break
1 min

Training Validation Testing

Fig. 3. Experiment procedure and data splitting

4.3 Feature Extraction

For the training set, EEG signals from each channel were first segmented to over-
lapping windows with length of 4 seconds and overlap of 3 seconds. The features
were extracted from each segment. 3 types of statistical features were generated
in this study for machine learning in next step, the signal mean, standard de-
viation and absolute 1st order difference (mean of absolute different between
adjacent EEG amplitudes) [30].

We also used 4 power spectral density features from θ (4-7Hz), α (7-12Hz),
β (12-30Hz) and γ (30-42Hz) bands, where θ band is associated with awake
but relaxed or drowsy state; α band is related to idle state of brain or closing
the eyes; β band is related to active thinking and alert state; γ band displays
cross-modal sensory processing or short-term memory.

In total, 98 features were generated from all EEG signals (7 features per
channel and 14 channels in total). In training set, features were standardized by
subtracting mean and dividing standard deviation to have zero mean and unit
variance across samples. For features in test set, we standardized in the same
way by eliminating mean and dividing standard deviation from training features.

4.4 Outlier Removal

Before feature selection, outlier removal was applied to training set to reduce
data noise and increase robustness of classification [21]. Outliers were identified
and removed using iterated ellipsoidal peeling [32] due to its numerical stability
and invariance to data scaling or transformation. We used Khachiyan’s algorithm
[17] to estimate the center of the minimum volume ellipsoid. In each peeling step,
the data points with largest distance to the center were removed. We removed
2% of data points, i.e. 20 out of 954 samples are removed for each subject.

252 H. Sun et al.

4.5 Electrode and Model Selection

In order to learn which brain area is most distinguishing during baseline state and
task-performing state, recursive electrode selection via cross validation (RESCV)
is used to serve this purpose. At the same time, the hyperparameters of the
classifier model are also selected to maximize cross validation accuracy.

5-fold cross validation was used to select classifier hyperparameters (i.e. model
selection) to reduce over-fitting. The training dataset, which lasts for 8 minutes’
long, was partitioned into 5 nonoverlapping successive segments (5 folds) with
equal time length, i.e. 1.6 minutes for each segment. 5 times of validation was
performed, with each segment as validation set and the other four segments as
training set in turn. Different combinations of hyperparameters were explored
to find the optimal cross validation accuracy averaged from the 5 folds. For the
ELM classifier (described in Section 4.6) with sigmoid activation function, the
range of hyperparameter C was [10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104];
the range of hidden layer neuron number h was [500, 1000, 2000]. For the SVM
classifier with sigmoid kernel, the range of hyper parameter C was the same
with ELM; the range of γ is [10−3, 10−2, 10−1, 100]; the range of bias term in the
kernel was [−101,−100, 0, 100, 101].

First, the Fisher discriminant ratio (FDR) of each feature f between two
classes was calculated as follows

FDR(f) =
variance between classes

variance within classes
=

(μ1 − μ2)
2

σ2
1 + σ2

2

, (1)

where μ1 and μ2 are the means of feature f in two classes; σ2
1 and σ2

2 are the
variances of feature f in two classes.

The FDR of a channel c was defined as the mean FDR value of the set of
features Fc that belongs to c, according to Recursive Channel Elimination [20],

FDR(c) =
1

|Fc|
∑

f∈Fc

FDR(f) . (2)

Second, we ranked the channels according to their FDR values. Then, follow-
ing the final rank, we calculated the cross validation accuracy by adding one
channel each time. Selected channels and classifier hyperparameters with maxi-
mum cross validation accuracy were applied to the test set to get test accuracy.

4.6 Classification

We used extreme learning machine (ELM) [11, 12] to classify the EEG signals
into baseline and task-performing states. ELM belongs to single hidden layer
feed-forward neural network (SLFN). Unlike conventional neural network us-
ing back-propagation to tune all weights, ELM uses random weight (normally
distributed with zero mean and unit variance) in the input-to-hidden layer to
map input data into ELM feature space with higher dimension which gives a

Machine Learning Reveals Different Brain Activities 253

higher possibility of linear separation in that space according to Cover’s theo-
rem [5]. According to Johnson-Lindenstrauss Lemma [14], the relative distances
between data points in the transformed space are nearly preserved by normally
distributed random weights, therefore the input data structure is preserved after
the transformation. After the random mapping, a nonlinear activation function
such as sigmoid or radius basis function is used. Formally, random mapping and
nonlinear transformation are described as

H = g(XW + 1b�) , (3)

where X is an m×n matrix representing input data; m is the number of samples
and n is the number of features; W is an n × h randomly generated matrix
representing weights from input to hidden layer; b is a column vector with length
h to represent the bias in hidden layer; 1 is a column vector of all ones with length
m in order to apply bias to each sample; the entries of W are random numbers
sampled from any continuous probability distribution [12]; h is the number of
hidden neurons; H is an m×h matrix containing the hidden layer output; g(·) is
a nonlinear activation function which acts on each component of the matrix. In
this paper , we used sigmoid activation function for g because of the non-local
pattern of the data distribution and better data discrimination after nonlinear
transformation. And we generated W and b from normal distribution N(0, 1).

For hidden-to-output layer, we can formulate training procedure to an uncon-
strained convex optimization problem, which is to minimize the error norm and
weight norm simultaneously,

minimize
β

‖Hβ −T‖ + C‖β‖ , (4)

where T is an m × c target matrix and c is class number. Each row of T rep-
resents which class the corresponding input (i.e. the input in the corresponding
row), by making the corresponding column as 1 and other columns as 0. β is
an h × c matrix representing the weights from hidden to output layer. C is a
hyperparameter of ELM model. ‖ · ‖ is a proper norm. The intention of this for-
mulation is to have better generalization ability by limiting the norm of weight
while limiting the errors at a minimum at the same time. When the errors are
relatively small, the smaller weights are, the more robust the model would be.
So the hyperparameter C can be understood as a trade-off between training
accuracy and generalization ability, which is selected by cross validation.

For �2-norm, the optimal weight β∗ has a closed form in terms of H, T and
C,

β∗ =

{
(H�H+ CI)−1H�T if H�H is nonsingular

H�(HH� + CI)−1T if HH� is nonsingular
.

The decision function of ELM is

cx = argmax g(x�W + b�)β , (5)

where x is a feature vector of length n and cx is the estimated class of x. After
models being built after training, we can use formula (5) to predict the class of
new data.

254 H. Sun et al.

4.7 Cross-Subject Weighted Electrode Ranking

Finally, we ranked channels by their contributions to the classifier, and to inter-
pret the results and generate a brain activity pattern across subjects. However,
since there is strong nonstationarity in EEG signal [15], the results tended to
differ across subjects. We need a systematic and quantitative way to objectively
evaluate the importance of each channel (representing corresponding brain area)
across subjects to get an unbiased interpretation of brain activity when inter-
acting with TOVA test.

Suppose we have a ranked channel list for every subject based on their con-
tribution in differentiating the two brain states. An intuitive way is to look at
the occurrence of each channel in the top N ranks, and the higher the ranking,
the higher the channel is likely to represent brain activity related to TOVA.
However, this method gives equal weights to all top N channels without reflect-
ing their relative importance. It is obvious that the FDR value used to rank the
channels could be a weighting scheme which gives the relative importance of each
channel. As a result, we adopt Analytic Hierarchy Process (AHP), a structured
technique which is popularly used in decision making to get a reasonable overall
ranking [33] across all subjects.

To start, we need to define the objective, available alternatives and the weight
of each feature. In our case, the objective is to find an objective channel ranking
across all subjects, by evaluating all channels, which are the available alterna-
tives, using the FDR value as the weight of each channel.

There are 4 steps in total to perform AHP. Firstly we applied same weight to
each subject because the importance of subject was considered as being equal
in our experiment. And we assigned the weights of the channels of each subject
using their corresponding FDR values.

Secondly, for subject s, we formed a matrix X
(s)
14×14 whose entry equals the

ratio of corresponding FDR values of channels of that row and column as follows

X(s) =

⎛

⎜⎜⎜⎝

1 FDR(c1)/FDR(c2) · · · FDR(c1)/FDR(c14)

FDR(c2)/FDR(c1) 1 · · · FDR(c2)/FDR(c14)

...
...

. . .
...

FDR(c14)/FDR(c1) FDR(c14)/FDR(c2) · · · 1

⎞

⎟⎟⎟⎠ . (6)

Thirdly, we computed the eigenvector υ(s) of X(s) with the largest norm of

eigenvalue. The ratio r
(s)
i of each component in υ(s) gives an objective description

of how channel ci weights for subject s.
Lastly, we repeated the step 2 and 3 for all subjects and then summed up the

ratio of each channel across subjects to get an overall score ri for channel ci,
which is an objective measure of the importance of each channel across subjects.

5 Results

In Fig. 4, we plot all cross validation and test accuracy for different numbers
of channels for each subject. The dash lines show the cross validation accuracy.

Machine Learning Reveals Different Brain Activities 255

The solid lines show the test accuracy. And the red and blue lines show the
results from SVM and ELM respectively. The circles indicate the test accuracy
where the cross validation accuracy reaches its maximum, which is the result of
recursive channel selection. The values at the right end of each plot, i.e. with
all 14 channels, indicate accuracy obtained without channel selection. The test
accuracy was calculated using 234 samples where half (117 samples) comes from
the last 2 minutes of baseline and the other half (117 samples) comes from the
last 2 minutes of task-performing state.

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.8

0.9

1

0.85

0.9

0.95

1

0.7

0.8

0.9

1

0.8

0.9

1

0.9

0.95

1

0.8

0.9

1

0.6

0.7

0.8

0.9

1

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

Subject 6

Subject 7

Subject 8

Subject 9

Subject 10

SVM C.V. acc. ELM C.V. acc. SVM test acc. ELM test acc.
channel number channel number

cr
os

s v
al

id
at

io
n

an
d

te
st

 a
cc

ur
ac

y

Fig. 4. Cross validation and test accuracy with increasing channel number for each
subject

The test accuracy of both ELM and SVM with all 14 channels are shown in
Table 1. We achieved 94.6% average test accuracy (SD = 5.0%) for ELM and
95.1% average test accuracy (SD = 4.2%) for SVM. For the average accuracy,
we combined the classification results of all 10 subjects and performed McNe-
mar’s test on combined data, which contained 234 × 10 samples. On average,
the difference between ELM and SVM is not statistically significant confirmed
by McNemar’s test (p = 0.8 > 0.05).

256 H. Sun et al.

Table 1. Test accuracy of ELM and SVM using all 14 channels

subject Id ELM SVM significance

1 96.2% 94.4%
2 95.7% 96.2%
3 97.9% 99.1%
4 97.0% 95.3%
5 88.9% 89.7%
6 92.7% 95.3%
7 100.0% 98.7%
8 83.3% 85.9%
9 96.6% 97.9%
10 97.9% 98.3%

Avg.: 94.6% 95.1%

∗ p < 0.05 ∗∗ p < 0.01

Table 2. Test accuracy of ELM and SVM after channel selection

subject Id ELM # channel SVM # channel significance

1 96.2% 14 86.8% 9
2 94.9% 5 94.0% 4
3 97.9% 14 99.1% 14
4 97.0% 14 73.1% 5 ∗∗
5 89.3% 6 90.2% 7
6 92.7% 14 95.3% 14
7 100.0% 3 99.6% 3
8 91.5% 3 94.0% 3
9 97.0% 12 96.6% 12
10 94.0% 9 96.6% 12

Avg.: 95.0% 9 92.5% 8 ∗∗
∗ p < 0.05 ∗∗ p < 0.01

In Table 2 we list the test accuracy and selected channel number of ELM and
SVM after recursive channel selection. The numbers of test samples are the same
with those in Table 1. We achieved 95.0% average test accuracy (SD = 3.2%)
for ELM and 92.5% average test accuracy (SD = 7.9%) for SVM. On average,
when channel selection was considered, ELM significantly outperformed SVM
(McNemar’s test p = 0.0005 < 0.01). The average selected channel number was
9 for ELM and 8 for SVM. One may argue that the test accuracy of ELM and
SVM are not comparable because of different selected channels. However, as
discussed in Section 4.5, that the test accuracy was obtained using the optimal
channels and hyperparameters in training. Therefore the results are comparable
in terms of each classifier has reached their own optimal, although with different
channels. Comparing the performance of each classifier before and after recursive
channel selection, we observe that the performance of ELM is not affected by

Machine Learning Reveals Different Brain Activities 257

channel selection while SVM deteriorates by 2.6%, which shows ELM’s better
robustness against the existence of irrelevant features. We also notice that the
channel number selected from training set is not always the best one for test
accuracy. And the change of test accuracy with respect to channel number is less
predictable than cross validation accuracy. This could be due to nonstationary
in EEG signal, that the mental state in test set can be different from that in
training set, so the trained model cannot fit test data well.

Table 3 shows the channel rankings of each subject. By this method, it is not
conclusive, but by an overall trend that no single channel is consistently impor-
tant than others across all subjects, which exhibits large subject dependence, for
example, T8 ranks highest in subject 1 but ranks last in subject 2.

Table 3. Channel ranking for each subject

subject 1 2 3 4 5 6 7 8 9 10

rank
1 T8 O2 F7 FC6 T7 P8 O2 P7 T7 AF4
2 P8 O1 AF3 F8 FC6 O2 F7 T8 F4 O1
3 O2 P8 P7 T7 P7 F3 AF4 FC5 O1 T7
4 AF4 F8 P8 AF3 O1 P7 F8 F4 AF4 T8
5 F4 P7 F8 O1 AF3 T8 F4 O1 T8 O2
6 T7 AF4 T7 O2 F4 FC5 P8 F7 F3 F3
7 O1 F4 AF4 F3 F3 FC6 FC6 AF3 P7 FC5
8 F8 AF3 O1 P7 O2 F8 T8 AF4 FC5 P7
9 P7 F3 F4 T8 AF4 O1 FC5 FC6 P8 P8

10 FC6 F7 FC5 AF4 FC5 F4 AF3 F3 O2 F7
11 FC5 FC6 O2 F4 F7 AF3 P7 P8 FC6 FC6
12 F3 FC5 T8 F7 F8 F7 T7 O2 AF3 AF3
13 AF3 T7 F3 P8 T8 AF4 F3 F8 F8 F4
14 F7 T8 FC6 FC5 P8 T7 O1 T7 F7 F8

Although by Table 3, it is not conclusive, but by an overall trend that no sin-
gle channel is consistently important than other subjects, we still want to get an
overall channel ranking using AHP described in Section 4.7 to gain more insights
about the common pattern revealed, as shown in Table 4. The random score was
computed assuming the every channel is equally important for every subject,
so that it is equal to 1

14 × 10. The final ranking of channels from AHP shows
that T8, O1, T7, O2, P7, P8 are the most relevant channels that can distinguish
different patterns in different brain activities. This suggests a major involvement
of occipital and temporal lobes that is correlated with visual processing, working
memory and object recognition. TOVA test is a visual intensive task involving
continuous looking at the screen, memorizing the location of the fast flashing
square and recognizing the associated action. So TOVA test requires visual pro-
cessing, recognition and memory, which supports the “two-stream hypothesis”

258 H. Sun et al.

in visual pathway [7] where there are two streams for the visual processing
pathway in brain, i.e. the ventral stream that is thought to deal with recognition
of visual input and visual memory; and the dorsal stream that is thought to deal
with visually guided behavior and higher layer of processing [26].

Table 4. Overall channels ranking from AHP method

channel AHP Score Rank Remark

T8 0.817268 1
O1 0.81468 2
T7 0.796062 3
O2 0.789472 4
P7 0.77279 5
P8 0.768957 6
FC6 0.767453 7
AF4 0.764949 8 Random score 0.714

F4 0.702232 9
F7 0.638923 10
F8 0.63069 11
AF3 0.616502 12
FC5 0.574029 13
F3 0.545995 14

6 Discussion

It can be seen that different brain activities can be accurately recognized by
machine learning algorithms. However, from Table 3, it is not conclusive, but
by an overall trend that no single channel is consistently important than others
in this experiment, and the channels with the highest score (Table 4) is not far
away from random guess. This phenomenon can have 3 different interpretations.

First, TOVA involves large brain areas that no single channel is significantly
important than others. It requires continuous visual processing along the visual
pathway, including lower level visual processing (channels O1 and O2) and higher
level visual processing i.e. object recognition (channels T7 and T8, the ventral
stream in visual pathway); object position recognition and visual guided behavior
(channels P7 and P8, the dorsal stream in visual pathway). Vigilance (sustained
attention) is also needed here, although the test itself is not difficult and long
enough to induce decrement in reaction time [28]. It is known that vigilance, or
attention, is a global neuronal reaction that propagate to most networks of brain
regions by neuromodulators [27], as a result, most channels are incorporated (9
channels selected by ELM and 8 selected by SVM out of 14 channels).

Second, there is subject dependence in the brain activity between baseline and
task-performing states. Although the test time was controlled, we cannot rule
out other factors such as the biological clock of each subject and their strategy

Machine Learning Reveals Different Brain Activities 259

to deal with the test. During the experiment, we noticed that some subjects
tended to think carefully before making the response, which leaded to less test
error and slower reaction; other subjects tended to make response without too
much thinking, which leaded to more test error and faster reaction. These dif-
ferent strategies leaded to different brain states as seen in the variance in the
channel ranking of each subject. In order to deal with such subject dependence,
there are basically 2 approaches. The first approach is to find the most stable or
reliable features across subjects. Gudmundsson et al. found that power spectral
features have the highest reliability, followed by entropy features and coherence
being least reliable [8]. The second approach originates from the nonstationar-
ity of neurological data by factorizing signal into stationary and nonstationary
components. Bünau et al. introduces stationary subspace analysis (SSA) by as-
suming the linear superposition of stationary and nonstationary sources and
nonstaitonarity are measurable in the first two moments [4].

In this paper, we looked at subject dependence from a different way using
AHP to get an objective common understanding of all subjects. In this way,
the channels were properly weighted according to the mean FDR value of fea-
tures belonging to one channel. We can further extend this hierarchical approach
to count for the signal quality of each subject to get a more objective overall
channel ranking. Possible measures of signal quality include the ratio of artifact
components obtained from ICA or mean/SD value of channel impedance.

Third, artifacts may affect the channel ranking of each subject. Although the
EEG signals were manually screened to remove major artifacts such as blinking
and electrode contact loss with scalp, we still cannot assert the signal is “clean”.
Small amplitude artifacts such as eyeball saccade and muscular movement can
remain. And also the saline solutions could dry out gradually in the experiment,
which leaded to fluctuating impedance and inaccurate signal amplitude.

For the classifiers, in this paper, we compared the performance of ELM and
SVM, both of which were capable of recognizing brain activity patterns accu-
rately. After channel selection, ELM outperformed SVM in average test accuracy
very significantly (McNemar’s test p = 0.0005 < 0.01). The advantage of ELM
over SVM may be more significant in multi-class case [12] because SVM has to
convert multi-class data into binary data by combining all other classes, which
causes distortion in feature space. ELM does not face such distortion problem
where the solution can be calculated from the same formula (4), which could
bring benefits for multi-class classification. Also, the non-iterative nature of ELM
leads to shorter computational time because the complexity of SVM increases
with sample number. For big data problem, ELM can restrict the size of ma-
trix under inverse H�H to h× h, where h is hidden layer neuron number, thus
limiting the most computational demanding step (H�H+ CI)−1.

Another possible improvement lies in the temporal patterns of EEG [16],
which is not utilized in current classifiers. Conventional classification embeds
time series into static spatial feature space, but ignoring the dynamic trajectory
of these feature points during the experiment. Since EEG reflects the dynamic

260 H. Sun et al.

brain activities, it is possible to learn and recognize different brain states from
temporal patterns, as supported by the high temporal resolution of EEG.

7 Conclusion

This paper represented an experiment which tried to recognize brain states dur-
ing open eye resting (baseline state) and performing a modified TOVA test
(task-performing state) using machine learning. We applied and compared two
machine learning algorithms, i.e. ELM and SVM, to classify these two states
and interpreted the biological insights from the resulting accuracy and chan-
nel ranking. 3 statistical and 4 power spectral density features were used per
channel. For the 234 test samples, with all 14 channels, we got 94.6% average
test accuracy for ELM and 95.1% average test accuracy for SVM, which were
not statistically significantly different (McNemar’s test p = 0.8 > 0.05). Using
recursive channel selection, we got 95.0% average test accuracy for ELM and
92.5% average test accuracy for SVM. ELM significantly outperformed SVM in
average test accuracy (McNemar’s test p = 0.0005 < 0.01).

We evaluated the research hypothesis that TOVA can induce measurable
changes in brain state in the visual pathway, compared to the baseline. The
answers to the two research questions in Section 1 arei) The average selected
channel number was 9 for ELM and 8 for SVM. No single channel was consis-
tently important than others in this experiment due to strong nonstationarity in
EEG. Based on overall channel ranking from AHP method, occipital and tempo-
ral lobes were more activated during performing the TOVA test which reflected
the highly different pattern in visual pathway during TOVA test, compared to
baseline. ii) We have shown that machine learning can efficiently and accurately
recognize patterns in different brain states. After recursive channel selection,
ELM outperformed SVM in average test accuracy very significantly (McNemar’s
test p = 0.0005 < 0.01) with accuracy of 95.0% and 92.5% respectively.

Acknowledgments. Special thanks to BMW and NTU to enable the Future
Mobility Research Lab. We also thank Dr. Liu Yisi for her helpful suggestions
during the experiments and detailed suggestion on the analysis procedures, and
Mr. Liyanaarachchi Lekamalage Chamara Kasun for his constructive discussion
on extreme learning machine theories.

References

1. About the t.o.v.a, http://www.tovatest.com/about-the-t-o-v-a/ (accessed:
June 03, 2014)

2. Electroencephalography - mesh - ncbi,
http://www.ncbi.nlm.nih.gov/mesh/68004569

(accessed: June 02, 2014)
3. Breiman, L., Spector, P.: Submodel selection and evaluation in regression. the x-

random case. International statistical review/revue internationale de Statistique,
291–319 (1992)

http://www.tovatest.com/about-the-t-o-v-a/
http://www.ncbi.nlm.nih.gov/mesh/68004569

Machine Learning Reveals Different Brain Activities 261

4. von Bünau, P., Meinecke, F.C., Scholler, S., Muller, K.: Finding stationary brain
sources in eeg data. In: 2010 Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC), pp. 2810–2813. IEEE (2010)

5. Cover, T.M.: Geometrical and statistical properties of systems of linear inequal-
ities with applications in pattern recognition. IEEE Transactions on Electronic
Computers (3), 326–334 (1965)

6. Dornhege, G.: Toward brain-computer interfacing. MIT Press (2007)

7. Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action.
Trends in Neurosciences 15(1), 20–25 (1992)

8. Gudmundsson, S., Runarsson, T.P., Sigurdsson, S., Eiriksdottir, G., Johnsen, K.:
Reliability of quantitative eeg features. Clinical Neurophysiology 118(10), 2162–
2171 (2007)

9. Güler, N.F., Übeyli, E.D., Güler, İ.: Recurrent neural networks employing lyapunov
exponents for eeg signals classification. Expert Systems with Applications 29(3),
506–514 (2005)

10. Haufe, S., Treder, M.S., Gugler, M.F., Sagebaum, M., Curio, G., Blankertz, B.: Eeg
potentials predict upcoming emergency brakings during simulated driving. Journal
of Neural Engineering 8(5), 56001 (2011)

11. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental
constructive feedforward networks with random hidden nodes. IEEE Transactions
on Neural Networks 17(4), 879–892 (2006)

12. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for re-
gression and multiclass classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 42(2), 513–529 (2012)

13. Jin, S.-H., Lin, P., Auh, S., Hallett, M.: Abnormal functional connectivity in focal
hand dystonia: mutual information analysis in eeg. Movement Disorders 26(7),
1274–1281 (2011)

14. Johnson, W.B., Lindenstrauss, J.: Extensions of lipschitz mappings into a hilbert
space. Contemporary Mathematics 26(189-206) 26(189-206), 1 (1984)

15. Kaplan, A.Y., Fingelkurts, A.A., Fingelkurts, A.A., Borisov, S.V., Darkhovsky,
B.S.: Nonstationary nature of the brain activity as revealed by eeg/meg: method-
ological, practical and conceptual challenges. Signal Processing 85(11), 2190–2212
(2005)

16. Kasabov, N., Capecci, E.: Spiking neural network methodology for modelling, clas-
sification and understanding of eeg spatio-temporal data measuring cognitive pro-
cesses. Information Sciences (2014)

17. Khachiyan, L.G.: Rounding of polytopes in the real number model of computation.
Mathematics of Operations Research 21(2), 307–320 (1996)

18. Knyazev, G.G., Slobodskoj-Plusnin, J.Y., Bocharov, A.V.: Event-related delta
and theta synchronization during explicit and implicit emotion processing. Neuro-
science 164(4), 1588–1600 (2009)

19. Koles, Z., Lazar, M., Zhou, S.: Spatial patterns underlying population differences
in the background eeg. Brain Topography 2(4), 275–284 (1990),
http://dx.doi.org/10.1007/BF01129656

20. Lal, T.N., Schroder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer,
N., Scholkopf, B.: Support vector channel selection in bci. IEEE Transactions on
Biomedical Engineering 51(6), 1003–1010 (2004)

21. Lemm, S., Blankertz, B., Dickhaus, T., Müller, K.-R.: Introduction to machine
learning for brain imaging. Neuroimage 56(2), 387–399 (2011)

http://dx.doi.org/10.1007/BF01129656

262 H. Sun et al.

22. Lemm, S., Müller, K.-R., Curio, G.: A generalized framework for quantifying
the dynamics of eeg event-related desynchronization. PLoS Computational Biol-
ogy 5(8), e1000453 (2009)

23. Lindqvist, S., Thorell, L.B.: Brief report: Manipulation of task difficulty in in-
hibitory control tasks. Child Neuropsychology 15(1), 1–7 (2008)

24. Mueller, S.T., Piper, B.J.: The psychology experiment building language (pebl)
and pebl test battery. Journal of Neuroscience Methods 222, 250–259 (2014)

25. Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G.,
Blankertz, B.: Machine learning for real-time single-trial eeg-analysis: From brain-
computer interfacing to mental state monitoring. Journal of Neuroscience Meth-
ods 167(1), 82–90 (2008)

26. Norman, J.: Two visual systems and two theories of perception: An attempt to
reconcile the constructivist and ecological approaches. Behavioral and Brain Sci-
ences 25(01), 73–96 (2002)

27. Noudoost, B., Moore, T.: The role of neuromodulators in selective attention. Trends
in Cognitive Sciences 15(12), 585–591 (2011)

28. Nuechterlein, K.H., Parasuraman, R., Jiang, Q.: Visual sustained attention: Image
degradation produces rapid sensitivity decrement over time. Science 220(4594),
327–329 (1983)

29. Parra, L., Deco, G., Miesbach, S.: Statistical independence and novelty detection
with information preserving nonlinear maps. Neural Computation 8(2), 260–269
(1996)

30. Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: Anal-
ysis of affective physiological state. IEEE Transactions on Pattern Analysis and
Machine Intelligence 23(10), 1175–1191 (2001)

31. Rakotomamonjy, A., Guigue, V., Mallet, G., Alvarado, V.: Ensemble of sVMs
for improving brain computer interface P300 speller performances. In: Duch, W.,
Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp.
45–50. Springer, Heidelberg (2005)

32. Rousseeuw, P.J., Leroy, A.M.: Robust regression and outlier detection, vol. 589.
John Wiley & Sons (2005)

33. Saaty, T.L., Peniwati, K.: Group decision making: drawing out and reconciling
differences. RWS Publications (2013)

34. Shen, K.Q., Ong, C.J., Li, X.P., Hui, Z., Wilder-Smith, E.: A feature selection
method for multilevel mental fatigue eeg classification. IEEE Transactions on Bio-
Medical Engineering 54(7), 1231–1237 (2007)

35. Sonnleitner, A., Treder, M.S., Simon, M., Willmann, S., Ewald, A., Buchner, A.,
Schrauf, M.: Eeg alpha spindles and prolonged brake reaction times during auditory
distraction in an on-road driving study. Accident Analysis & Prevention 62, 110–
118 (2014)

36. Sourina, O., Liu, Y.: A fractal-based algorithm of emotion recognition from eeg
using arousal-valence model. In: BIOSIGNALS, pp. 209–214 (2011)

37. Subasi, A., Erçelebi, E.: Classification of eeg signals using neural network and
logistic regression. Computer Methods and Programs in Biomedicine 78(2), 87–99
(2005)

38. Vinck, M., Oostenveld, R., van Wingerden, M., Battaglia, F., Pennartz, C.: An im-
proved index of phase-synchronization for electrophysiological data in the presence
of volume-conduction, noise and sample-size bias. Neuroimage 55(4), 1548–1565
(2011)

39. Yuan, Q., Zhou, W., Li, S., Cai, D.: Epileptic eeg classification based on extreme
learning machine and nonlinear features. Epilepsy Research 96(1), 29–38 (2011)

Online Sequential Extreme Learning Machine
with New Weight-Setting Strategy for Nonstationary

Time Series Prediction

Jinwan Wang1, Wentao Mao1,�, Liyun Wang1, and Mei Tian2

1 College of Computer and Information Engineering, Henan Normal University,
Henan, Xinxiang, China 453007

2 Management Institute, Xinxiang Medical University,
Henan, Xinxiang, China 453003
maowt.mail@gmail.com

Abstract. Accurate and fast prediction of nonstationary time series is challeng-
ing and of great interest in both practical and academic areas. In this paper, an
online sequential extreme learning machine with new weighted strategy is pro-
posed for nonstationary time series prediction. First, a new leave-one-out(LOO)
cross-validation error estimation for online sequential data is proposed based on
inversion of block matrix. Second, a new weighted strategy based on the proposed
LOO error estimation is proposed. This strategy ranks the samples’ importance
by means of the LOO error of each new added sample, and then assigns various
weights. Performance comparisons of the proposed method with other existing
algorithms are presented based on chaotic and real-world nonstationary time se-
ries data. The results show that, the proposed method outperforms the classical
ELM, OS-ELM in terms of generalization performance and numerical stability.

Keywords: Extreme learning machine, Time series, Nonstationary, Leave-one-
out cross-validation.

1 Introduction

Time series prediction is generally playing an important role in many engineering fields,
e.g., dynamic mechanics, weather diagnostics and so on. The key goal of time series pre-
diction is to mine the inner regular patterns in time data in order to predict future data
effectively[1]. Many traditional methods such as AR, ARMA ARIMA and so on are
well applied to solving stationary time series prediction. However, in practical applica-
tions, time series is almost nonstationary, which restricts the stationary methods above.
From Takens’ phase space delay reconstructing theory[2], this kind of data generally
needs to reconstruct the phase space via delay coordinate at first. Then support vector
machines(SVMs)[3], neural networks(NNs)[4], and other machine learning methods[5]
are successfully introduced to approximate the spatial correlation in nonstationary time
series data.

� Corresponding author.

c© Springer International Publishing Switzerland 2015 263
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_23

264 J. Wang et al.

Generally speaking, there are two main challenges for predicting nonstationary time
series effectively. One is how to choose a proper baseline algorithm which should be
computationally inexpensive and enough accurate. Another is how to distinguish the
importance of different samples in time series. Different with SVMs and NNs, extreme
learning machine(ELM), introduced by Huang[6], have shown its very high learning
speed and good generalization performance in solving many problems of regression
estimate and pattern recognition[7]. As a sequential modification of ELM, online se-
quential ELM(OS-ELM) proposed by Liang[8] can learn data one-by-one or chunk-by-
chunk. In many applications such as time-series forecasting, OS-ELMs also show good
generalization at extremely fast learning speed. Therefore, OS-ELM is a proper solution
for the first challenge. Many researches were devoted to solve the second challenge. As
recent data usually carry more important information than the distant past data, a typical
and effective method is weight-setting. Lin et al.[9] held the first sample in time series
with lowest importance while the most recent sample with highest importance, and then
assigned fuzzy memberships to every sample. Tay et al.[10] used exponential function
to calculate every sample’s importance in financial time series prediction. Very differ-
ent with these stationary weight-setting strategy, Mao et al.[11] established a heurist
algorithm to dynamically choose the optimal weights.

However, although ELM-based methods mentioned above work well in time series
prediction, it still not yet successfully solve the second challenge, i.e., distinguish dif-
ferent samples’ significance. Specifically speaking, as a sample is added sequentially,
it seems not clear whether this sample is most importance, even it is newest. There-
fore, to solve this problem, this paper firstly develops a new leave-one-out(LOO) cross-
validation error estimation for OS-ELM aiming at time series prediction. Based on
inversion of block matrix, this LOO estimation is enough fast for time series data. To
our best knowledge, this LOO error estimation is the first attempt to evaluate the gener-
alization performance of OS-ELM on time series data. Moreover, this paper utilizes this
LOO error estimation of each new added sample to measure its importance. Obeying
this weigh-setting strategy, this paper then proposes a new weighted learning method
for OS-ELM. Experimental results on chaotic and real-life time series data demonstrate
the proposed method outperforms the traditional ELMs in generalization performance
and numerical stable.

2 Brief Review

Given a set of i.i.d. training samples {(x1,y1) , · · · , (xN ,yN)} ⊂ Rd ×Rn, standard
SLFNs with Ñ hidden nodes are mathematically formulated as[6]:

Ñ∑

i=1

βigi(xj) =
Ñ∑

i=1

βigi(wi · xj + bi) = oj , j = 1, ..., N (1)

where g (x) is activation function, wi = [wi1, wi2, ..., wid]
T is input weight vector

connecting input nodes and the ith hidden node, βi = [βi1, βi2, ..., βin]
T is the output

weight vector connecting output nodes and the ith hidden node, bi is bias of the ith
hidden node. Huang[6] has rigorously proved that then for N arbitrary distinct samples

Online Sequential Extreme Learning Machine 265

and any (wi, bi) randomly chosen fromRd×R according to any continuous probability
distribution, the hidden layer output matrix H of a standard SLFN with N hidden nodes
and is invertible and ‖Hβ −T‖ = 0 with probability one if the activation function
g : R �→ R is infinitely differentiable in any interval. Then given (wi, bi), training a
SLFN equals finding a least-squares solution of the following equation:

Hβ = T (2)

where

H(w1, ...,wÑ , b1, ..., bÑ ,x1, ...,xÑ) =

⎡
⎢⎣
g(w1 · x1 + b1) · · · g(wÑ · x1 + bÑ)

... · · ·
...

g(w1 · xN + b1) · · · g(wÑ · xN + bÑ)

⎤
⎥⎦

N×Ñ

β = [β1, ..., βÑ]T

T = [y1, ...,yN]T

Considering most cases that Ñ � N , β cannot be computed through the direct ma-
trix inversion. Therefore, the smallest norm least-squares solution of equation (3) is
calculated as:

β̂ = H†T (3)

where H† is the Moore-Penrose generalized inverse of matrix H. Based the above anal-
ysis, Huang[6] proposed ELM whose framework can be stated as follows:

Step 1. Randomly generate input weight and bias (wi, bi), i = 1, · · · , Ñ .
Step 2. Compute the hidden layer output matrix H.
Step 3. Compute the output weight β̂ = H†T.

Therefore, the output of SLFN can be calculated by (wi, bi) and β̂:

f(xj) =

Ñ∑

i=1

β̂igi(wi · xj + bi) = β̂ · h(xj) (4)

Like ELM, all the hidden node parameters in OS-ELM are randomly generated, and
the output weights are analytically determined based on the sequentially arrived data.
OS-ELM process is divided into two steps: initialization phase and sequential learning
phase[8].

Step 1. Initialization phase: choose a small chunk M0 = {(xi, ti), i = 1, 2, ..., N0} of
initial training data, where N0 ≥ Ñ .

1) Randomly generate the input weight wi and bias bi,i = 1, 2, ..., Ñ . Calculate the
initial hidden layer output matrix H0:

266 J. Wang et al.

H0 =

⎡

⎢⎢⎢⎢⎢⎢⎣

h(x1)
h(x2)

.

.

.
h(xN0)

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

g(w1 · x1 + b1) ... g(wÑ · x1 + bÑ)
g(w1 · x2 + b1) ... g(wÑ · x2 + bÑ)

...

...

...
g(w1 · xN0 + b1) ... g(wÑ · xN0 + bÑ)

⎤

⎥⎥⎥⎥⎥⎥⎦

N0×Ñ

(5)

2) Calculate the output weight vector:

β0 = D0H0
T T0 (6)

where D0 = (H0
T H0)

−1, T0 = [t1, t2, ...tN0]
T .

3) Set k = 0
Step 2. Sequential learning phase

1) Learn the (k + 1)−th training data: dk+1 = (xN0+k+1, tN0+k+1)
2) Calculate the partial hidden layer output matrix:

Hk+1 = [g(w1 · xN0+k+1 + b1) ... g(wL · xN0+k+1 + bL)]1×L (7)

Set Tk+1 = [tN0+k+1]
T .

3) Calculate the output weight vector

Dk+1 = Dk − DkHk
T
+1(I + Hk+1DkHk+1

T)−1Hk+1Dk (8)

βk+1 = βk + Dk+1Hk+1
T (Tk+1 − Hk+1β

k) (9)

4) Set k = k + 1. Go to step 2(1).

3 OS-ELM with LOO Weighted Strategy

3.1 LOO Error Estimation of ELM

The fast LOO error estimation of ELM proposed by Liu[12], derived that the general-
ization error in i− th LOO iteration can be expressed as:

ri = ti − fi(xi) =
ti − HxiH+T
1− (HxiH

+)i
(10)

By the simulation experiment of artificial and real data sets, it has been verified that the
LOO cross-validation algorithm based on ELM is efficient and has good generalization
performance.

Obviously, equation (10) works mainly on offline learning setting rather than on-
line sequential scenario. To avoid complex calculation and make the established model
simple, we follow the idea of block matrix inversion[13], which transforms the com-
plex calculation into linear operation, for decreasing the computation greatly in online
learning stage.

Online Sequential Extreme Learning Machine 267

3.2 Initial Stage of Training

Supposed there are N training samples (xi+1, ti+1), ...(xi+N , ti+N). The hidden
layer output matrix is Hi = [hi+1

T ... hi+N
T]T , and the output vector is Ti =

[ti+1 ... ti+N]T , calculating the output weight vector

βi = Hi
+Ti (11)

where
Hi

+ = Hi
T (HiHi

T)−1 (12)

Let Ai = HiHi
T , equation (12) can be rewritten as Hi

+ = Hi
T Ai

−1.

3.3 Add New Sample

Add the new arrived sample (xi+N+1, ti+N+1) into training set. The output vector be-
comes Ti+1 = [ti+1 ... ti+N ti+N+1]

T = [Ti
T ti+N+1]

T , and the hidden layer matrix
becomes Hi+1 = [Hi

T hi+N+1
T]T . Then we have

Hi+1
+ = Hi+1

T (Hi+1Hi+1
T)−1 (13)

Let Ai+1 = Hi+1Hi+1
T , then

Hi+1
+ = Hi+1

T Ai+1
−1 (14)

Because
Ai+1 = Hi+1Hi+1

T = [Hi
T hi+N+1

T]T [Hi
T hi+N+1

T]

=

[
HiHi

T Hihi+N+1
T

hi+N+1Hi
T hi+N+1hi+N+1

T

]

=

[
Ai Hihi+N+1

T

hi+N+1Hi
T hi+N+1hi+N+1

T

] (15)

For equation (15), according to Block matrix inversion, we have:

Ai+1
−1 =

[
Ai

−1

0T

]
+

1

B

[
Ai

−1C
−1

] [
CT Ai

−1 − 1
]

(16)

where: B = hi+N+1hi+N+1
T − CT Ai

−1C, C = Hihi+N+1
T . So, Ai+1

−1 can be
calculated based on Ai

−1, which reduces computational cost largely. Then we have
Hi+1

+ by substituting equation (16) into (14).

3.4 Calculate the LOO Error

Let Hi+1
+ to set up the online LOO model, then the LOO error in i− th LOO iteration

can be expressed as:

rj = tj − fj(xj) =
tj − HxjHi+1

+T
1− (HxjHi+1

+)j
, j = i+ 1, i+ 2, ..., i+N + 1 (17)

268 J. Wang et al.

Then we can obtain the corresponding LOO error, rj , of each sample from equation
(17). According to the value of rj , where j = i + 1, i + 2, ..., i + N + 1, we set the
relevant weight wj of each sample, where 0.98 ≤ wj ≤ 1. Note that rj is smaller, wj

is bigger. To emphasize the newest sample and make the decision model simple, we
re-set the weight wi+N+1 of newest sample (xi+N+1, ti+N+1) as w′

i+N+1. This article
defines w′

i+N+1 as 1.02. And we set the weight wi+1 of oldest sample (xi+1, ti+1) as
zero, namely we set its contribution to the model is zero.

3.5 Weighted Training

After adding the new sample (xi+N+1, ti+N+1), we set the weight wi+1 of oldest sam-
ple (xi+1, ti+1) is zero, namely excluding this sample. After excluding (xi+1, ti+1),
the output vector becomes Ti+2 = [ti+2 ... ti+N+1]

T , and the hidden matrix becomes
Hi+2 = [hi+2

T ... hi+N+1
T]T . Then we have:

Hi+2
+ = Hi+2

T (Hi+2Hi+2
T)−1 (18)

Let Ai+2 = Hi+2Hi+2
T , then

Hi+2
+ = Hi+2

T Ai+2
−1 (19)

From equation (19), Hi+2
+ contains two parts: Hi+2

T and Ai+2
−1. Because the cal-

culation of Ai+2
−1 involves matrix inversion, we only set weight on Hi+2

T in order to
avoid the huge computational cost in calculating LOO error. Then the hidden matrix

Hi+2 = [hi+2; hi+3; ...; hi+N ; hi+N+1]

becomes

Hi+2 =

⎡

⎢⎢⎢⎢⎣

hi+2

hi+3

...
hi+N

hi+N+1

⎤

⎥⎥⎥⎥⎦
•

⎡

⎢⎢⎢⎢⎣

wi+2

wi+3

...
wi+N

wi+N+1

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

wi+2hi+2

wi+3hi+3

...
wi+Nhi+N

wi+N+1hi+N+1

⎤

⎥⎥⎥⎥⎦

And Hi+2
T becomes

Hi+2
T =

[
wi+2hi+2

T , wi+3hi+3
T , ..., wi+Nhi+N

T , wi+N+1hi+N+1
T
]

(20)

where wi+2, wi+3, ..., wi+N , wi+N+1 are the corresponding weights, 0.98 ≤ wj ≤ 1,
j = i+ 2, i+ 3, ..., i+N , wi+N+1 = w′

i+N+1 = 1.02. Because

Ai+1 = Hi+1Hi+1
T = [hi

T Hi+2
T]T [hi

T Hi+2
T]

=

[
hihi

T hiHi+2
T

Hi+2hi
T Hi+2Hi+2

T

]

=

[
hihi

T hiHi+2
T

Hi+2hi
T Ai+2

] (21)

Online Sequential Extreme Learning Machine 269

From equation (21), there is a relationship between Ai+2 and Ai+1. So Ai+2
−1 can be

calculated on the base of Ai+1
−1 to simplify the calculation. We follow the process of

block matrix inversion[13]. Assume that Ai+1
−1 can be partitioned and expressed as:

Ai+1
−1 =

[
a FT

F G

]
(22)

where a ∈ R,F ∈ RN , G ∈ RN×N .
As in equation (21), let g = hihi

T , P = hiHi+2
T , then equation (21) is equivalent

to

Ai+1 =

[
g P
PT Ai+2

]
(23)

By the definition of matrix inversion: Ai+1Ai+1
−1 = E(N+1)×(N+1), namely

[
g P
PT Ai+2

] [
a FT

F G

]
=

[
0 0
0 EN×N

]
(24)

Through the block matrix multiplication, we have

{
PTa+ Ai+2F = 0

PT FT + Ai+2G = EN×N
(25)

Calculating equations (25), we have

Ai+2
−1 = G − FFT /a (26)

Thus, we have Hi+2
+ by substituting equation (22) and equation (26) into equation

(19).
Then we can update the network weights according to equation (27):

β = Hi+2
+Ti+2 (27)

4 Experimental Results

In this section, we examine one typical nonstationary real-world data set, i.e., air pol-
lutants forecasting in Macau[22]. The goal is to test the generalization performance
on time series data as well as the running speed. In order to further test the stability
and generalization of LW-OSELM, we choose suspended particulate matters (PM10)
to conduct experiment. Due to the limitation of the acquisition data, this paper adopts
the air quality data of Macao meteorological bureau to conduct the simulation experi-
ments[14]. Due to the limitation of paper’s space, the data pre-processing procedure is
omitted here.

For comparison, we choose two baselines: the classical ELM[6] and OS-ELM[8].
The proposed OS-ELM algorithm with fast LOO weighted strategy is named LW-
OSELM. We also check the fixed-weighting OS-ELM (namely WELM). The WELM
will set weight value as 0.98 for all old samples, and 1.02 for the latest sample. We

270 J. Wang et al.

Table 1. Comparative results of LW-OSELM and WELM

LW-OSELM WELM

Training Time(s) 2.9703 0.4056
Test Time(s) 0.0094 0.001

Training Error 0.1767 0.4276
Test error 0.1794 0.431

Table 2. Comparative results of three models

ELM OSELM LW-OSELM

Training Time(s) 0.0125 0.0998 3.3961
Test Time(s) 0.0031 0.0094 0.0012

Training Error 0.1706 0.1721 0.1705
Test error 0.1811 0.1808 0.1739

set hidden neurons as 25. The comparison of LW-OSELM and WELM is illustrated as
Table 1. In each experiment, all results are the mean of 100 trials. RBF activation func-
tion is used in each algorithm. Each variable is linearly rescaled. A method with higher
classification accuracy is better.

From Table 1, compared with WELM, the training error and test error of LW-OSELM
are much smaller, which demonstrates that the dynamic weight-setting strategy, i.e., set-
ting weights on samples according to their online LOO errors, is feasible.

We compare the performance of ELM, OSELM and LW-OSELM. Given the hid-
den layer activation function of RBF kernel function, the mean RMES of 100 trials on
Macao meteorological time series are listed in Table 2. Here the numbers of neurons
are 15.

By contrast, LW-OSELM has little smaller training error and test error while its train-
ing time is a little longer. The reason is quite likely that we didn’t employ embedding
dimension, i.e., reconstructing phase space like in equation (1). Here we merely use the
data in the latest day as input sample, rather than using the data of past few days.

We also examine the effect of hidden neurons. Fig.1 shows the change of training er-
ror and test error with different number of hidden neurons. The training error and test
error of LW-OSELM are both smaller than the others with most hidden neurons. ELM
tends to be most unstable with drastic fluctuation. And LW-OSELM performs similarly
stable with OSELM, which keeps pace with the results in Table 2.

Moreover, we report the generalization performance of three algorithms with differ-
ent prediction step, as in Fig.2. Obviously, LW-OSELM is better than the others. For
further clarification, we also compare the mean and variance of three models. The mean
of ELM, OSELM and LW-OSELM is respectively 0.0726, 0.0617, 0.0605, and the vari-
ance is respectively 3.8340e-004, 3.5584e-004, 3.0809e-004. Obviously, the average
error and variance of LW-OSELM is both the least, which indicates that LW-OSELM
has better accuracy and stronger stability.

Online Sequential Extreme Learning Machine 271

10 12 14 16 18 20 22 24 26 28 30
0.168

0.17

0.172

0.174

0.176

0.178

0.18

0.182

0.184

0.186

0.188

Number of hidden neurons

T
ra

in
in

g
E

rr
or

ELM
OS−ELM
LW−OSELM

(a)

10 12 14 16 18 20 22 24 26 28
0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

Number of hidden neurons

T
es

tin
g

E
rr

or

ELM
OS−ELM
LW−OSELM

(b)

Fig. 1. Performance of three models with different number of hidden neurons in terms of (a)
Training error and (b) Test error

0 20 40 60 80 100 120 140 160 180 200
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Prediction Step

P
re

di
ct

io
n

E
rr

or

ELM
OS−ELM
LW−OSELM

Fig. 2. Accuracy of three algorithms with different prediction step

5 Conclusion and Future Work

In this paper, nonstationary time series prediction is addressed. The key idea is dis-
tinguishing the importance of samples in time series using its LOO cross-validation
error. This idea is a new attempt for weight-setting strategy. To realize this strategy, this
paper utilizes OS-ELM as baseline algorithm, and proposes a new LOO error estima-
tion which is fast and quite applied to time series prediction. Based on this estimation,
this paper proposes a dynamic weight-setting algorithm for OS-ELM. The experimen-
tal results on two benchmark chaotic time series data sets and a real-world data set
demonstrate the effectiveness of the proposed approach.

272 J. Wang et al.

Acknowledgement. We wish to thank the author C.M.Vong of [14] for useful discus-
sion and instruction. This work was supported by the National Natural Science Foun-
dation of China(No. U1204609).

References

1. Gooijer, J.G.D., Hyndman, R.J.: 25 years of time series forecasting. International Journal of
Forecasting 22(3), 443–473 (2005)

2. Takens, F.: Detecting strange attractors in turbulence. Dynamical systems and Turbulence,
Warwick 1980, 366–381 (1981)

3. Mukherjee, S., Osuna, E., Girosi, F.: Nonlinear prediction of chaotic time series using sup-
port vector machines. In: Proceedings of the IEEE Workshop on Neural Network for Signal
Processing (NNSP 1997), pp. 511–520. IEEE Press, Amelia (1997)

4. Du, D., Li, X., Fei, M., Irwin, G.W.: A novel locally regularized automatic construction
method for RBF neural models. Neurocomputing 98, 4–11 (2012)

5. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from im-
balanced datasets. Comput.Intell. 20, 18–36 (2004)

6. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: Theory and applications.
Neurocomputing 70, 489–501 (2006)

7. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme Learning Machine for Regression
and Multiclass Classification. IEEE Transactions on Systems, Man, and Cybernetics - Part
B: Cybernetics 42(2), 513–529 (2012)

8. Liang, N.Y., Huang, G.B.: Fast accurate online sequential learning algorithm for feedforword
networks. IEEE Trans. Neural Networks 17, 1411–1423 (2006)

9. Lin, C.F., Wang, S.D.: Fuzzy support vector machines. IEEE Trans. Neural Networks 13(2),
464–471 (2002)

10. Tay, F.E.H., Cao, L.J.: Modified support vector machines in financial time series forecasting.
Neurocomputing 48, 847–861 (2002)

11. Mao, W., Yan, G., Dong, L.: Weighted solution path algorithm of support vector regression
based on heuristic weight-setting optimization. Neurocomputing 73, 495–505 (2009)

12. Liu, X., Li, P., Gao, C.: Fast leave-one-out cross-validation algorithm for extreme learning
machine. Journal of Shanghai Jiaotong University 45(8), 6–11 (2011)

13. Zhang, X., Wang, H.: Local extreme learning machine and its application to condition on-line
monitoring. Journal of Shanghai Jiaotong University 45(2), 236–240 (2011)

14. Vong, C.M., IP, W.F., Wong, P.K., Chiu, C.C.: Predicting minority class for suspended par-
ticulate matters level by extreme learning machine. Neurocomputing 128, 136–144 (2014)

© Springer International Publishing Switzerland 2015
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,

273

Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_24

RMSE-ELM: Recursive Model Based Selective Ensemble
of Extreme Learning Machines for Robustness

Improvement

Bo Han1, Bo He1,*, Mengmeng Ma1, Tingting Sun1,
Tianhong Yan2,*, and Amaury Lendasse3,4

1 School of Information and Engineering, Ocean University of China,
Shandong, Qingdao, China 266000

2 School of mechanical and Electrical Engineering, China Jiliang University,
Zhejiang, Hangzhou, China 310018

3 Department of Mechanical and Industrial Engineering and the Iowa Informatics Initiative, The
University of Iowa, Iowa City, IA 52242-1527, USA

4 Arcada University of Applied Sciences, 00550 Helsinki, Finland
bhe@ouc.edu.cn, thyan@163.com

Abstract . For blended data, the robustness of extreme learning machine (ELM)
is so weak because the coefficients (weights and biases) of hidden nodes are set
randomly and the noisy data exert a negative effect. To solve this problem, a new
framework called “RMSE-ELM” is proposed in this paper. It is a two-layer
recursive model. In the first layer, the framework trains lots of ELMs in different
ensemble groups concurrently, then employs selective ensemble approach to
pick out an optimal set of ELMs in each group, which can be merged into a large
group of ELMs called candidate pool. In the second layer, selective ensemble
approach is recursively used on candidate pool to acquire the final ensemble. In
the experiments, we apply UCI blended datasets to confirm the robustness of our
new approach in two key aspects (Mean Square Error and Standard Deviation).
The space complexity of our method is increased to some degree, but the results
have shown that RMSE-ELM significantly improves robustness with a rapid
learning speed compared to representative methods (ELM, OP-ELM,
GASEN-ELM, GASEN-BP and E-GASEN). It becomes a potential framework
to solve robustness issue of ELM for high-dimensional blended data in the future.

Keywords: Extreme Learning Machine, Recursive Model, Selective Ensemble,
RMSE-ELM, Robustness Improvement.

1 Introduction

In recent two or three decades, neural networks are increasingly popular in machine
learning community. Especially for recent five years, lots of researchers mainly have
paid their attention on deep structures such as Deep Boltzmann Machine [1],

* Corresponding author.

274 B. Han et al.

Convolution Neural Network [2] and so on. However, the deep networks are hardly
applied into real-time area in big data era because of two reasons: First of all, there is no
free lunch in any algorithms. Though the training accuracy of deep network is pretty
high, the training time is so long that we can hardly bear the computational cost [3].
Secondly, the deep structures tend to fall into the pit called “over-fitting”, which means
that it has a bad generalization. What’s more, the tuning of parameters in deep networks
is very time-consuming [4]. So the shallow structure is naturally our intuition for big
data analysis and real-time application.

Recently, the Extreme Learning Machine (ELM) [5] as an emerging branch of
shallow networks was proposed by Guang-Bin Huang et. al. It was evolved from single
hidden layer feed-forward networks (SFLNs). It has shown the excellent generalization
performance and fast learning speed compared to Deep Belief Networks [6] or Deep
Boltzmann Machines [7]. In essence, the algorithm of ELM has two main steps: In the
first step, the input weights and biases can be assigned randomly, which will definitely
reduce computational cost because they do not need to be tuned manually. In the
second step, the output weights of ELM can be computed easily by the generalized
inverse of hidden layer output matrix and target matrix [8]. In terms of the
computational performance of ELM, it tends to reach not only the smallest training
error but also the smallest norm of output weights with rapid speed. Based on above
merits of ELM, a lot of researchers in machine learning community now increasingly
customize their own frameworks based on ELM for specific issues. For equalization
problems, ELM based complex-valued neural networks are a powerful tool. For
regression or multi-label issues, the kernel based ELM proposed by Huang et. al is
effective [9,10]. For generalization problem, Incremental ELM [11] outperforms many
representative algorithms like SVM [12], stochastic BP [13] and so on. What’s more,
various extended ELMs also attract our attention. For example, online sequential ELM
[14] is an efficient learning algorithm to handle both additive [15] and RBF [16,17]
nodes in the unified framework. In complex dimensional space, the kernel
implementation of ELM is superior to conventional SVM. From the above discussion,
we can conclude that ELM is an excellent algorithm for different issues in machine
learning area.

However, as the keynote given by Guang-Bin Huang indicates, the robustness
analysis is still one of the open problem in ELM community [5,18]. Different
researchers have different research styles to tackle with the same problem. Previously,
Rong et.al presented pruning algorithm called P-ELM to improve the robustness of
ELM [19]. And also Miche and Lendasse, proposed an algorithm called OP-ELM
[20,21] to improve the robustness due to its variable selection mechanism, which
removes the irrelevant variables from blended data efficiently [22,23]. However, for
blended data (namely the raw data is blended with noisy data), they do not work very
well because of two reasons. First, the mechanism of variables pruning is very
time-consuming. What’s more, the standard deviations of training error in above two
models are relatively high, which means that these models are not the top choice for
robustness improvement. If we want to improve the robustness of original ELM, we

 RMSE-ELM for Robustness Improvement 275

should initially clarify why the ELM is so weak for blended data. First of all, we believe
ELM sets its initial weights and biases randomly, which largely reduce the
computational time but cannot guarantee the suitable parameters of hidden nodes for
good robustness. Second, the noisy data exert a negative effect on robustness of ELM.
So for blended data, my initial intuition is that if we train a batch of different ELMs and
then ensemble them averagely, we might improve the robustness because of Hansen
and Salamon’s theory [24]. It proved that the robustness performance of a single
network can be improved by an ensemble of neural networks. Sollich and Krogh [25]
confirmed it later. Thus, based on this theory, Sun et. al proposed the average weighted
ELM ensemble [26], which has a better generalization than original ELM on raw data.
But on blended data, the average weighted ELM ensemble does not work well because
it is negatively affected by noisy data such as Gaussian noise or Uniform noise. Zhou
et. al [27] proposed a new framework called GASEN, which can resist the negative
effect from noisy data. In his theory, the ensemble of several optimal networks may be
better than the ensemble of all networks. The GASEN is fully based on genetic
algorithm and Back-Propagation (BP) neural networks. Therefore, in real-time area, we
should not apply GASEN directly for robustness improvement because of high
computation cost.

Inspired by above observations, for blended data [28], we hope to create a new
computational framework, which not only improves the robustness largely but also
keeps a rapid learning speed. So in this paper, a new approach called “RMSE-ELM” is
proposed. Our tuition can be concluded into two aspects: First, selective ensemble
approach is an effective tool to resist noisy data but the kernel of framework is usually
the BP networks. What’s more, the genetic algorithm itself is a little bit complicated.
Therefore, the training process is so time-consuming [29]. So we hope to employ the
advantage of ELM to speed up the selective ensemble approach. Second, in cognitive
science, the information processing of human brain is constructed hierarchically, and it
can extract different useful information layer by layer. However, the more layers we
construct, the more parameters the algorithm will learn, which will definitely increase
the computational cost. Therefore, we hope to construct a semi-shallow framework for
a good compromise between robustness and computational cost. For technical details, it
is a two-layer recursive model. In the first layer, we concurrently train lots of ELMs in
different groups, then we employ selective ensemble approach to pick out several
ELMs in each group, which can be transmitted into the second layer called candidates
pool. In the second layer, we employ selective ensemble approach recursively to pick
out several ELMs for the average ensemble. In the experiments, we apply UCI blended
datasets [30] to confirm the robustness of new method, which is compared to that of
several methods such as ELM, OP-ELM, GASEN-ELM, GASEN-BP and E-GASEN
in two key aspects: Mean Square Error and Standard Deviation. Though the space
complexity of our method is increased to some degree, the results have shown that the
RMSE-ELM significantly improves the robustness with a rapid learning speed. We will
further explore how many layers can achieve the optimal compromise between the

276 B. Han et al.

robustness and computational cost in our framework. The extended RMSE-ELM has a
great potential to be a trend framework to solve robustness issue of ELM for
high-dimensional blended data in the future.

We organize the rest of the paper as follows. In Section 2, we discuss previous work
on classical ELM and Selective Ensemble. In Section 3 we describe our new method
called RMSE-ELM from structure to theory. In Section 4, for UCI blended datasets,
several experimental results on ELM, OP-ELM, GASEN-ELM, GASEN-BP,
E-GASEN are reported respectively. In Section 5, we present our discussions the
motivation of benchmark selection and other facts revealed by experiments. Finally, in
Section 6, conclusions are drawn and future work and direction are indicated.

2 Previous Works

2.1 Extreme Learning Machine

Extreme learning machine (ELM) has been developed to obtain a much faster learning
speed and higher generalization performance both in the regression and classification
problem. The essence of ELM is the hidden layers of SFLNs need not to be tuned
iteratively [5,31], that is, the parameters of the hidden nodes which include input
weights and biases can be randomly generated, and then it only needs to solve the
output weights. The structure of ELM is shown below.

Fig. 1. The structure of ELM algorithm

()1 1, ,G b xω

Lβ

(), ,t tG b xω (), ,L LG b xω

1β

()xf

1 t

1

L

m

d 1

 RMSE-ELM for Robustness Improvement 277

For the given ܰ learning samples {ݔ௜, ௜}௜ୀଵேݕ , where ௜ݔ = ,௜ଵݔ] … , ′[௜ௗݔ and ݕ௜ ,௜ଵݕ]= … , ௜௠]′ the standard model of the ELM learning with Lݕ hidden neurons and
activation function ܩ(ω௧, ܾ௧, ௜) can be written asݔ

෍ ௧௅ߚ
௧ୀଵ ,ω௧)ܩ ܾ௧, (௜ݔ = ,௜݋ ݅ = 1, ⋯ , ܰ (1)

Where ω୲ = [ω୲ଵ, … ,ω୲ୢ]′ is the weight vector connecting the ݐ_ݐℎ hidden neuron
and the input neurons. ߚ௧ = ,௧ଵߚ] … , .ℎ hidden neuronݐ_ݐ ℎ hidden neuron and the output neurons. ௝ܾ is the bias of theݐ_ݐ ௧௠]′ denotes the weight vector connecting theߚ

ELM can approximate these N samples with zero error means that

෍ ԡ݋௜ − ௜ԡே௜ୀଵݕ = 0 (2)

Namely, there exist (,)j jbω and
j

β such that

෍ ௧௅ߚ
௧ୀଵ ,௧߱)ܩ ܾ௧, (௜ݔ = ,௜ݕ ݅ = 1, ⋯ , ܰ (3)

The activation function ܩ(߱௧, ܾ௧, ௜)can be arbitrarily chosen from the sigmoidݔ
function, the Hard-limit function, the Gaussian function, the Multi-quadric function
and any other function which is infinitely differentiable in any interval so that the
hidden layer parameters can be randomly generated. The above equation can also be
written compactly as: ߚܪ = ܻ (4)

Where

ܪ = ൥ ,ଵ߱)ܩ ܾଵ, (ଵݔ … ,௅߱)ܩ ܾ௅, ,ଵ߱)ܩ⋮(ଵݔ ܾଵ, (ேݔ … ,௅߱)ܩ ܾ௅, ே)൩ே×௅ (5)ݔ

ߚ = ′ଵߚ] , … , ′௅ߚ]௅×௠′ (6)

ܻ = ′ଵݕ] , … , ′ேݕ]ே×௠′ (7)

278 B. Han et al.

Here ܪ is called the hidden layer output matrix of the neural network. When the
training set ݔ௜ is given and the parameters (߱௧, ܾ௧) are randomly generated, matrix ܪ
can be obtained. And then the output weights ߚ can be generated as: ߚ = றܻ (8)ܪ

Where ܪறdenotes the Moore-Penrose generalized inverse of matrix [32,33] ܪ.
In summary, the ELM algorithm can be presented as follows:

Algorithm 1 Extreme Learning Machine

Input: The ܰ training set {ݔ௜, ௜}௜ୀଵேݕ , the activation function ܩ(߱௧, ܾ௧, ௜), andݔ

the number of hidden nodes ܮ.
Steps:

1. Randomly generate input weights ߱௧ and biases ܾ௧,ݐ = 1, … , ܮ

2. Calculate the hidden layer output matrix ܪ.

3. Calculate the output weight vector ߚ = .றܻܪ

2.2 Selective Ensemble

In recent years, ensemble learning has received lots of attention from machine learning
community due to its potential to improve the generalization capability of a learning
system [34,35]. With the increase of size, the prediction speed of an ensemble machine
decreases significantly but its storage increases quickly. Z.H Zhou et. al[36] has proved
that many could be better than all and proposed a new framework called selective
ensemble. The aim of selective ensemble learning is to further improve the prediction
accuracy of an ensemble machine, to enhance its prediction speed as well as to decrease
its storage need. Selective ensemble learning mainly involves three steps [37]:

(1) Training a set of base learners individually generated from bootstrap samples of a

fixed training data.
(2) Selecting right components from all the available learners and excluding the bad

base learners to form an optimal ensemble. Genetic algorithm is used for components
selection. The population of base learners is encoded as real chromosomes so that one
bit represents the average weight of initial learner ensemble. Suppose ݔ is randomly
sampled through a distribution (ݔ)݌, and the expected output is ݕ, and the output of the ݅ݐℎ base ELM is ௜݂(ݔ). The optimum weight ߱∗ is expressed as empirical Eq(9)
which minimizes the generalization error of the ensemble model.

߱∗ = ݃ݎܽ ݉݅݊ఠ ቌ෍ ෍ ߱௜ே
௝ୀଵ

ே
௜ୀଵ ௝߱ܥ௜௝ቍ (9)

 RMSE-ELM for Robustness Improvement 279

 ℎ individual base learner. And theݐ݆ ℎ and theݐ݅ ௜௝ is the correlation between theܥ
definition is as follows. ܥ௜௝ = න (ݔ)݌ݔ݀ (௜݂(ݔ) − ൫(ݕ ௝݂(ݔ) − ൯ (10)ݕ

Therefore, the ݇ݐℎ (݇ = 1 … , ܰ) of optimum weight ߱∗ can be solved by
Lagrange multiplier, which satisfies Eq(11): ߱௞∗ = ∑ ܿ௞௝ିଵே௝ୀଵ∑ ∑ ܿ௜௝ିଵே௝ୀଵே௜ୀଵ (11)

Genetic algorithm based selective ensemble assigns a random weight to every base
ELM first. Then, genetic algorithm is used to evolve those weights so that they can
characterize the fitness of the ELM in joining the ensemble to some extent.

(3) Combining the selected base learner components to get the final predictions.

3 New Method

3.1 The Structure of RMSE-ELM

Inspired by above discussions, for blended data, we hope to create a new computational
framework, which not only improves the robustness performance of ELM largely but
also keeps a rapid learning speed. We naturally have two tuitions below.

First of all, Traditional selective ensemble approach like GASEN algorithm is
definitely an effective tool to resist noisy data because it utilizes fewer but better
individual models to ensemble, which achieves stronger generalization ability. But
both genetic algorithm employed by GASEN and the training process of individual
kernels (BPs) are so time-consuming, which can hardly be used in industry or real-time
situation. So we hope to build our customized selective ensemble based on ELM
kernels because of its rapid learning speed.

Secondly, from the point view of cognitive science, the information processing of
human brain is constructed hierarchically, and it can extract different useful
information layer by layer. However, if we completely construct our networks as our
brain, for example a deep-layer network, we may encounter several training problems.
Firstly, the training time is so long that we can rarely bear the computational cost, not to
mention big data analysis. Secondly, the deep structures tend to fall into the pit called
“over-fitting” which in turn means the weak generalization. Moreover, the tuning of
parameters in deep networks needs large amount of time and personal experience. So
the semi-shallow structure is naturally top choice for big data analysis and real-time
application.

In this paper, we present a framework called “RMSE-ELM” to improve the
robustness of ELM for blended data with acceptable computational cost. The figure of
our framework shows in below.

280 B. Han et al.

Fig. 2. The Framework of RMSE-ELM

Just as the Figure 2, it is a two-layer recursive model, which is a good compromise
between shallow and deep network. In the first layer, we concurrently train lots of
ELMs that belong to the different ensemble groups, then we employ selective ensemble
approach to pick out several ELMs in each group, which can be transmitted into our
second layer – the pool of better candidates. In the second layer, we employ selective
ensemble recursively to pick from selected ELMs and then ensemble an optimal set of
ELMs to acquire the final result.

Although our framework is relatively simple compared with deep structure
networks, we believe that it locates in the right track to solve the robustness issues of
ELM.

3.2 The Theory of RMSE-ELM

Now let’s first analyze our framework in theory. From above discussion, we can clearly
see our framework recursively employ selective ensemble approach. In essence, the

Y

Selective Ensemble

…
. .
.

. .
.

... . .
.

. .
.

. .
.

... . .
.

Selective Ensemble Selective Ensemble

. .
.

. .
.

. .
.

 . . .

. .

.

... ...

... ...

L
ayer

2
L

ayer
1

. .
.

Candidate pools

 RMSE-ELM for Robustness Improvement 281

recursive model algorithm based selective ensemble can be explained as the
hierarchical model based selective ensemble. So if the selective ensemble can work
well, theoretically, the recursive model based selective ensemble can work better.

So firstly we should analyze whether the selective ensemble of extreme learning
machine are good enough. Please note currently the individual networks are ELMs
instead of BP networks. To be honest, it is not an easy task excluding the bad ELMs
from our target group. In order to generate the ensemble ELM with small size but
stronger generation ability, genetic algorithm is used to select the ELM models with
high fitness from a set of available ELMs. Suppose that the learning task is to
approximate a function ݂: ܴ௠ → ܴ௡, it can be represented by an ensemble of ܰ base
ELM learners. The predictions of the base ELM learners are combined by weighted
averaging, where a weight ߱௜(݅ = 1 … ܰ) is assigned to the individual base ELM
learner ௜݂(݅ = 1 … ܰ), and ߱௜ satisfies Eq(12).

0 ≤ ߱௜ ≤ 1, ෍ ߱௜ே௜ୀଵ = 1 (12)

Then the output of ensemble is:

݂ҧ(ݔ) = ෍ ߱௜ ௜݂(ݔ)ே௜ୀଵ (13)

Where ௜݂ is the output of the ݅ݐℎ base ELM learner.
We assume that each base ELM learner has only one output. Suppose ݔ ∈ ܴ௠ is

randomly sampled through a distribution (ݔ)݌. And the target for ݔ is ݀(ݔ). Then the
error ܧ௜(ݔ) of the ݅ݐℎ base ELM learner and the error (ݔ)ܧ of the ensemble on input ݔ are respectively:

(ݔ)௜ܧ = ൫ ௜݂(ݔ) − ൯ଶ(ݔ)݀
 (14)

(ݔ)ܧ = ቀ݂ҧ(ݔ) − ቁଶ(ݔ)݀
(15)

Then the generalization error ܧ௜ of the ݅ݐℎ base ELM learner and the
generalization error ܧ of the ensemble on the distribution (ݔ)݌ are respectively: ܧ௜ = න (16) (ݔ)௜ܧ(ݔ)݌ݔ݀

ܧ = න (ݔ)ܧ(ݔ)݌ݔ݀ (17)

Define the correlation between the ݅ݐℎ and the ݆ݐℎ individual base ELM learner as:

282 B. Han et al.

௜௝ܥ = න (ݔ)݌ݔ݀ ൫ ௜݂(ݔ) − ൯(ݔ)݀ ቀ ௝݂(ݔ) − ቁ (18)(ݔ)݀

Apparently, ܥ௜௝ satisfies: ܥ௜௜ = ௜ܧ ܽ݊݀ ௜௝ܥ = ௝௜ (19)ܥ

According to Eq(13) and Eq(15):

(ݔ)ܧ = ൭෍ ߱௜ ௜݂(ݔ) − ே(ݔ)݀
௜ୀଵ ൱ ቌ෍ ௝߱ ௝݂(ݔ) − ே(ݔ)݀

௝ୀଵ ቍ (20)

Then according Eq(17), Eq(18) and Eq(20):

ܧ = ෍ ෍ ߱௜ே
௝ୀଵ

ே
௜ୀଵ ௝߱ܥ௜௝ (21)

When the base ELM learners are combined by the simple ensemble method, that is ߱௜ = ଵே for every ݅, we have

ܧ = ෍ ෍ ௜௝ܥ ܰଶ⁄ே
௝ୀଵ

ே
௜ୀଵ (22)

Now, we assume that the ݇ݐℎ base learner is omitted, the new generalization
error ܧ෡ :

෠ܧ = ෍ ෍ ܰ)/௜௝ܥ − 1)ଶே
௝ୀଵ௝ஷ௞

ே
௜ୀଵ௜ஷ௞ (23)

According to Eq(16), the generalization error of the ݇ݐℎ base ELM learner: ܧ௞ = න (24) (ݔ)௞ܧ(ݔ)݌ݔ݀

Therefore,

ܧ − ෠ܧ = 2 ∑ ௜௞ܥ + ௞ܧ − (2ܰ − ே௜ୀଵ௜ஷ௞ܧ(1 (ܰ − 1)ଶ (25)

 RMSE-ELM for Robustness Improvement 283

So if

 2 ෍ ௜௝ܥ + ௞ܧ − (2ܰ − ேܧ(1
௜ୀଵ௜ஷ௞ > 0 (26)

Then, ܧ > ෠ܧ (27)

Which means new ensemble omitting the ݇ݐℎ learner is now more robust than

original ensemble.

So we can get a constraint condition from Eq(26) and Eq(27),

(2ܰ − ෠ܧ(1 < (2ܰ − ܧ(1 < 2 ෍ ௜௞ேܥ
௜ୀଵ௜ஷ௞ + ௞ (28)ܧ

If we multiply Eq(28) by (ܰ − 1)ଶ,

(2ܰ − 1)(ܰ − 1)ଶܧ෠ < 2(ܰ − 1)ଶ ෍ ௜௞ேܥ
௜ୀଵ௜ஷ௞ + (ܰ − 1)ଶܧ௞ (29)

According to Eq(23) and Eq(29), the constraint condition can be deduced as follows.

(2ܰ − 1) ෍ ෍ ௜௝ܥ < 2(ܰ − 1)ଶ ෍ ௜௞ܥ + (ܰ − 1)ଶܧ௞ே
௜ୀଵ௜ஷ௞

ே
௝ୀଵ௝ஷ௞

ே
௜ୀଵ௜ஷ௞ (30)

Therefore, it is proved that when using the simple ensemble method and when
constraint condition Eq(30) is satisfied, then omitting the ݇ݐℎ base learner will
improve the ensemble’s generalization ability.

There is a conclusion that after lots of ELMs are trained, ensembling an appropriate
subset of them is superior to ensembling all of them in some cases. The individual
ELMs that should be omitted satisfy Eq(30). This result implies that the ensemble does
not use all the networks to achieve good performance. Therefore, the selective
ensemble of ELM can work well.

According to the above proofs, the recursive model based selective ensemble of
extreme learning machine might be better than the selective ensemble of extreme
learning machine because of three reasons below: firstly, the best result comes from the
better results more easily, so if the first layer of our framework can effectively select an
optimal group of different ELMs, the second layer has a great potential to produce a
better result based on an optimal group of ELMs. Secondly, from the network structure,
the recursive model based selective ensemble can be explained as the hierarchical

284 B. Han et al.

model based selective ensemble. And the RMSE-ELM is a natural extension of
selective ensemble of extreme learning machine. Therefore, if each part can work well,
the whole system can work well at least. Finally, lots of experiments in recent years
have shown that if more neural networks are included, in some cases the generalization
error of the ensemble might be further reduced.

From above theoretical discussion, we see that why the recursive model based
selective ensemble of extreme learning machine can work better. However, we will
further explore how many layers can achieve the optimal compromise between
robustness and computational cost. The pseudo code of our current framework is
organized as follows:

Algorithm 2 RMSE-ELM
Given: training set (ܺ, ଵܰ(the ,(the size of ensemble groups in the first layer)ܯ ,(ܻ

size of each ensemble in the first layer), ଶܰ(the size of candidates pool in
the second layer), ߱∗is defined in Eq(9), threshold ߣ is a pre-set value
(reciprocal value of ଵܰ or ଶܰ).

Steps：
1. for ݃݌ݑ݋ݎ = 1 … ܯ

{ ଶܰ = 0 ;
 for ݈݁݁݉݁݊ݐ = 1 … ଵܰ
 { Training each ELM network;
 Generating a population of weight vector;
 Using selective ensample to get the best weight vector ߱ଵ∗;
 Removing base ELMs that the weights less than ߣଵ = 1/ ଵܰ;
 }
 Calculating the whole remained ELMs of group ݅ are ݊௜; ଶܰ = ଶܰ + ݊௜;
}

2.Training ଶܰ remained ELM;
3.Using selective ensemble to get the best weight vector ߱ଶ∗;
4.Removing base ELMs that the weights less than ଶߣ = 1/ ଶܰ;
5. Getting the final prediction;

4 Experiments

In this section, we present some experiments on 4 UCI blended datasets to verify
whether RMSE-ELM performs better in robustness than other methods such as ELM,
OP-ELM, GASEN-ELM, GASEN-BP and E-GASEN for blended data. At the same
time, computational cost is also a significant parameter to evaluate the usefulness of our
new framework. All simulations are carried out in Matlab environment running in an
Intel Corei5-3470 (3.20GHz CPU).

 RMSE-ELM for Robustness Improvement 285

Table 1. Specification of the 2 tested regression data sets

Task # variables # training # test Abbr.

Boston Housing 13 400 106 BH

Abalone 8 2000 2177 Aba

Red Wine 11 1065 534 RW

Waveform 21 3000 2000 Wav

Four types of datasets are all selected from the UCI machine learning repository [39].
The first one is Boston Housing dataset which contains 506 samples. Each sample is
composed of 13 input variables and 1 output variable. And this dataset is divided into a
training set of 400 samples and a testing set of the rest. The second one is Abalone
dataset. There are 7 continuous input variables, 1 discrete input variable and 1 categorical
attribute in this dataset. It comprises 4177 samples, among which, 2000 samples are used
for training and the rest 2177 samples are used for testing. The third one is Red Wine
dataset which contains 1599 samples. Each sample consists of 11 input variables and 1
output variable, the dataset is divided into two sections: 1065 samples for training set and
the rest samples for testing set. Finally, Waveform dataset with more number of input
variables is selected. This dataset contains 21 input variables and 1 output variable. The
specification of the four types of datasets is shown in table 1.

Firstly, we randomly mix several irrelevant Gaussian noises with the original UCI
data, and all features of data are normalized into a similar scale. Secondly, we train the
different models such as ELM, OP-ELM, GASEN-ELM, GASEN-BP, E-GASEN and
RMSE-ELM on the training set of blended data. Finally, we test the different models on
the testing set of blended data to acquire experimental results including Mean Square
Error (MSE), Standard Deviation (STD) and Computational Cost (CC). In our
experiments, the genetic algorithm employed by RMSE-ELM is implemented by the
GAOT toolbox developed by Houck et al. In the toolbox, the genetic operators (selecting,
crossover probability, mutation probability and stopping criterion) are set to the default
values. The first group of original UCI data is blended with 7 irrelevant variables that all
conform to the Gaussian distributions, such as ܰ(0,2), ܰ(0,1), ܰ(0,0.5), ܰ(0,0.1), ܰ(0,0.005), ܰ(0,0.001), ܰ(0,0.0005).To acquire the convincing result, the second
group of original data is blended with 10 irrelevant Gaussian variables, such as ܰ(0,2), ܰ(0,1) , ܰ(0,0.5) , ܰ(0,0.1) , ܰ(0,0.05) , ܰ(0,0.01) , ܰ(0,0.005) , ܰ(0,0.001) , ܰ(0,0.0005) , ܰ(0,0.0001) . For different ensemble frameworks (GASEN-ELM,
GASEN-BP, E-GASEN and RMSE-ELM), The number of ELMs in each ensemble
group is initially set to 20 [38], so the threshold ߣ used by selective ensemble is set to
0.05 because it is the reciprocal value of the size of each ensemble according to Zhou’s
experiment. For hierarchical models such as E-GASEN and RMSE-ELM, the number of
ensemble groups is set to 4 according to the Zhou’s experiments. In addition, the number
of hidden units in each ELM is set to 50 because it can acquire the better performance at

286 B. Han et al.

this point. Specifically speaking, the testing RMSE curve gradually decreases to a
constant value and also the learning time is still less after this point [40]. For each
algorithm we perform 5 runs and record the average value of MSE, STD and CC. The
experimental results are shown in following tables and figures.

Table 2. MSE for UCI blended datasets(7 irrelevant variables)

Data set ELM OP-ELM GASEN-ELM GASEN-BP E-GASEN RMSE-ELM

BH 5.8564 4.9823 5.0543 4.7869 4.8822 4.7763

Aba 34.5586 31.4742 30.0193 29.5716 28.3969 26.0626

RW 0.4998 0.4946 0.4514 0.5412 0.4488 0.4374

Wav 0.3733 0.3412 0.3429 0.2671 0.3371 0.3276

Table 3. MSE for UCI blended datasets (10 irrelevant variables)

Data set ELM OP-ELM GASEN-ELM GASEN-BP E-GASEN RMSE-ELM

BH 6.3748 5.0672 5.7973 4.8495 5.6263 5.4462

Aba 34.7401 29.5260 29.7477 27.6825 27.5196 26.2389

RW 0.5069 0.4969 0.4613 0.5399 0.4512 0.4422

Wav 0.3750 0.3339 0.3489 0.2747 0.3449 0.3347

Fig. 3. MSE comparison between RMSE-ELM and other methods (x-axis
1:ELM,2:OP-ELM,3:GASEN-ELM,4:GASEN-BP,5:E-GASEN)

1 2 3 4 5

-20

0

20

Boston Housing

methods

M
S

E
 c

om
pa

ris
on

(%
)

7 irrelevant variables

10 irrelevant variables

1 2 3 4 5

-20

0

20

Abalone

methods

M
S

E
 c

om
pa

ris
on

(%
)

7 irrelevant variables

10 irrelevant variables

1 2 3 4 5

-20

0

20

Red Wine

methods

M
S

E
 c

om
pa

ris
on

(%
)

7 irrelevant variables

10 irrelevant variables

1 2 3 4 5

-20

0

20

Waveform

methods

M
S

E
 c

om
pa

ris
on

(%
)

7 irrelevant variables

10 irrelevant variables

 RMSE-ELM for Robustness Improvement 287

There are two important criteria for robustness assessment (MSE and STD). Let’s
first analyze the MSE among different methods on UCI blended datasets. For the
evaluation of MSE, we visualize the experimental results in Table 2 and Table 3 into
Figure 3. We define the difference of MSE between RMSE-ELM and other methods as
MSE comparison. The formula is

MSE comparison = MSE(other methods) − MSE(RMSE_ELM)MSE(other methods) × 100% (31)

Therefore, in Figure 3, positive percentage means the MSE of new method
(RMSE-ELM) is lower than other methods, which in turn proves that the robustness of
new method is better, or vice versa. In four types of UCI blended datasets, the results
show that the MSE of our method is lower than that of other methods in most cases. In
particular, the difference of MSE between our method and ELM is more obvious,
which definitely proves that our framework improves the robustness performance of
original ELM for blended data. However, in some cases, the MSE of GASEN-BP and
OP-ELM is obviously lower than that of RMSE-ELM.

Table 4. STD for UCI blended datasets (7 irrelevant variables)

Data set ELM OP-ELM GASEN-ELM GASEN-BP E-GASEN RMSE-ELM

BH 0.2236 0.1416 0.1024 0.1551 0.0494 0.1109

Aba 3.2644 7.2611 1.3031 1.6831 0.4601 1.3439

RW 0.0191 0.0091 0.0092 0.0270 0.0033 0.0110

Wav 0.0094 0.0187 0.0031 0.0069 0.0020 0.0041

Table 5. STD for UCI blended datasets (10 irrelevant variables)

Data set ELM OP-ELM GASEN-ELM GASEN-BP E-GASEN RMSE-ELM

BH 0.1864 0.1807 0.0923 0.1702 0.0400 0.1047

Aba 3.1029 4.3826 1.7374 1.8569 0.4019 1.4385

RW 0.0168 0.0166 0.0086 0.0216 0.0023 0.0085

Wav 0.0107 0.0233 0.0039 0.0098 0.0016 0.0026

288 B. Han et al.

Fig. 4. STD comparison between RMSE-ELM and other methods (x-axis 1:ELM, 2:OP-ELM,
3:GASEN-ELM, 4:GASEN-BP,5:E-GASEN)

Secondly, for the evaluation of STD, we visualize the experimental results in Table 4
and Table 5 into Figure 4. We define the difference of STD between RMSE-ELM and
other methods as STD comparison. The formula is

STD comparison = STD(other methods) − STD(RMSE_ELM)STD(other methods) × 100% (32)

In Figure 4, positive percentage means the STD of our method is lower than that of
other methods, which proves that the robustness of our new method is better, or vice
versa. In four types of blended datasets, the results show that the STD of our method is
lower than that of other methods, which confirms that our framework really improve
the robustness performance for blended data. However, in some cases, the STD of
E-GASEN is obviously lower than that in RMSE-ELM.

Table 6. CC for UCI blended datasets (7 irrelevant variables, unit: seconds)

Data set ELM OP-ELM GASEN-ELM GASEN-BP E-GASEN RMSE-ELM

BH 0.0920 234.5413 2.5023 574.1617 4.6832 3.7206

Aba 0.0250 25.7682 1.4180 205.4845 7.6893 2.4960

RW 0.0390 189.7191 1.8720 361.7819 3.0015 2.9203

Wav 0.1427 534.6310 2.8408 1534.0000 4.8984 3.8485

1 2 3 4 5
-300

-200

-100

0

100
Boston Housing

methods

S
T

D
 c

om
pa

ris
on

(%
)

7 irrelevant variables

10 irrelevant variables

1 2 3 4 5
-300

-200

-100

0

100
Abalone

methods

S
T

D
 c

om
pa

ris
on

(%
)

7 irrelevant variables

10 irrelevant variables

1 2 3 4 5
-300

-200

-100

0

100
Red Wine

methods

S
T

D
 c

om
pa

ris
on

(%
)

7 irrelevant variables

10 irrelevant variables

1 2 3 4 5
-300

-200

-100

0

100
Waveform

methods

S
T

D
 c

om
pa

ris
on

(%
)

7 irrelevant variables

10 irrelevant variables

 RMSE-ELM for Robustness Improvement 289

Table 7. CC for UCI blended datasets (10 irrelevant variables, unit: seconds)

Data set ELM OP-ELM GASEN-ELM GASEN-BP E-GASEN RMSE-ELM

BH 0.0952 281.5818 2.7363 634.8929 3.8517 3.9226

Aba 0.0250 33.0161 1.4383 229.8675 6.8874 2.7191

RW 0.0406 263.2673 1.7581 431.6392 2.3665 3.0373

Wav 0.1045 559.4664 2.7924 1995.4000 6.2244 3.8454

Finally, according to Table 6 and Table 7, the results show that the CC of our method
is acceptable. However, the CC of GASEN-BP and OP-ELM is too long to apply in the
real-time area or industry.

There are two interesting observations above, and we hope to explain further.
Firstly, although in some cases, the MSE of GASEN-BP and OP-ELM is lower than
that of RMSE-ELM, from the view of statistics, the MSE of RMSE-ELM is lower than
that of GASEN-BP and OP-ELM on the whole. For example, we have 4 types of UCI
datasets and 2 types of Gaussian noisy variants. If we run above 3 algorithms on 8 types
of blended data, for MSE comparison between RMSE-ELM and GASEN-BP, the MSE
of RMSE-ELM is lower on 5 types of blended data while the MSE of GASEN-BP is
lower on 3 types of blended data. For MSE comparison between RMSE-ELM and
OP-ELM, the MSE of RMSE-ELM is lower on 6 types of blended data while the
OP-ELM is lower on only 2 types of blended data. What’s more, the CC of
RMSE-ELM is much shorter than that of OP-ELM and GASEN-BP. Secondly, in some
cases, though the STD of E-GASEN is lower than that of RMSE-ELM, the MSE of
RMSE-ELM is totally lower than that of E-GASEN. Moreover, the CC of RMSE-ELM
is shorter than that of E-GASEN except RW dataset for 10 irrelevant noisy variables.

In conclusion, we believe that our new method in robustness is definitely better than
ELM. We believe that our framework is a good compromise between robustness
performance and learning speed. However, how many groups in the first layer of
RMSE-ELM should we choose for the best robustness performances? It should be
further explored.

5 Discussions

Until now, we are very clear about the structure and performance of RMSE-ELM. In
the design of experiments, for added noises, the Gaussian noises are selected because
they are common in real world. For comparable methods, we select OP-ELM as one of
the benchmark methods because it is almost the first generation of extended ELM to
probe the robustness issue. And both the GASEN-ELM and E-GASEN are also
selected because they have the similar mechanism with RMSE-ELM. However, the
differences in structure and mechanism among them are also obvious. For example,
GASEN-ELM is a one-layer ensemble network using selective ensemble approach.
Though the E-GASEN is a two-layer ensemble network like RMSE-ELM, the
ensemble in the second layer is regarded as the simple ensemble instead of the selective

290 B. Han et al.

ensemble approach employed by RMSE-ELM. According to the selection of UCI
blended data and benchmark approaches, we believe that our experimental results
should be fair and convincing.

In the experiments, we tested new method on four types of UCI datasets, which are
blended with 7-dimensional and 10-dimensional Gaussian noises separately. It is clear
that the MSE of our method is almost lower than that of other methods except for
GASEN-BP in some cases. For GASEN-BP and RMSE-ELM, the CC of GASEN-BP
limit its wide use in industry and real-time area compared with RMSE-ELM. And also
the STD of our method is lower than that of other methods except for E-GASEN. For
E-GASEN and RMSE-ELM, though the E-GASEN is lower in STD, which means that
E-GASEN is more stable in fluctuation of MSE, in the rest aspects (MSE and CC), the
performance of E-GASEN is totally worse than that of RMSE-ELM. In conclusion, the
robustness performance of our method is than that of other methods for blended data
with relatively fast speed. In essence, the ELM has a weak robustness performance for
blended data mainly because of its simple structure, so the hierarchical model like
recursive model inference is our natural consideration.

6 Conclusions

In this paper, we proposed a new method called RMSE-ELM. To be more specific, the
structure of our framework is the two-layer ensemble architecture, which recursively
employs selective ensemble to pick out several optimal ELMs from bottom to top for
the final ensemble. The experiments prove that the robustness performance of
RMSE-ELM is better than original ELM and representative methods for blended data.
Through analysis of experiments, the reasons why our approach works are proposed as
follows. Firstly, the selective ensemble extracts the optimal subset effectively from
each group in the first layer and from candidate pool in the second layer. Secondly, the
kernel of our framework is ELM, which has excellent generalization and rapid learning
speed. Finally, the recursive model in essence is a special case of hierarchical network,
which is a good compromise between shallow network and deep network. However,
analyses presented in this paper are very preliminary. More experiments and principles
still need to be completed in order to modify our framework further. Our future work
will focus on three main directions: First, in the framework of RMSE-ELM, how many
groups in the first layer should we choose to acquire the best robustness. And how
many layers can achieve the optimal compromise between robustness and
computational cost based on our framework. Second, whether the space complexity of
our method can be largely reduced under regularized framework. For example, if the
weight of our framework can be sparse enough under regularization, the complexity of
our framework might be largely reduced. Third, whether the selective ensemble
approach in the top layer can be replaced by other criteria for a better robustness
performance. In general, it may be an interesting work to develop a combination of
ensemble learning and hierarchical model to enhance the robustness performance of
ELM in the future.

Acknowledgments. This work is partially supported by Natural Science Foundation of

China (41176076, 31202036, 51379198 and 51075377).

 RMSE-ELM for Robustness Improvement 291

References

[1] Salakhutdinov, R., Hinton, G.-E.: Deep BoltzmannMachine. In: 12th International
Conference on Artificial Intelligence and Statistics Proceedings (AISTATS), vol. 5, pp.
448–455 (2009)

[2] Han, C.-C., Wang, C.-T., Jenget, B.-S., et al.: The Application of a Convolution Neural
Network on Face and License Plate Detection. In: 12th International Conference on
Pattern Recognition, vol. 3, pp. 552–555 (2006)

[3] Hinton, G.-E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets.
Neural Computation 18, 1527–1554 (2006)

[4] Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine
Learning 2, 1–127 (2009)

[5] Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and
applications. Neurocomputing 70, 489–501 (2006)

[6] Hinton, G.-E., Salakhutdinov, R.: Reducing the dimensionality of Data eith Niural
Networks. Science 313, 504–507 (2006)

[7] Salakhutdinov, R., Larochelle, H.: Efficient learning of deep boltzmann machines.
International Conference on Artificial Intelligence and Statistics (2010)

[8] Huang, G.-B., Wang, D.-H., Lan, Y.: Extreme learning machines: a survey. International
Journal of Machine Learning and Cybernetics 2, 107–122 (2011)

[9] Huang, G.-B., Siew, C.-K.: Extreme learning machine with randomly assigned RBF
kernels. In: Eighth International Conference on Control, Automation, Robotics and
Vision Proceedings, ICARCV (2004)

[10] Frénay, B., Verleysen, M.: Parameter-insensitive kernel in extreme learning for
non-linear support vector regression. Neurocomputing 74, 2526–2531 (2011)

[11] Huang, G.-B., Chen, L., Siew, C.-K.: Universal Approximation using incremental
constructive feedforward networks with random hidden node. IEEE Transactions on
Neural Networks 17, 879–892 (2006)

[12] Schuldt, C., Laptev, I., Caputo, B.: Recognizing human axtions: a local SVM approach.
In: 17th International Conference on Pattern Recognitionproceedings, vol. 3, pp. 32–36
(2004)

[13] Rumelhart, D.-E., Hinton, G.-E., Williams, R.-J.: Learning representations by
back-propagation errors. Nature 323, 533–536 (1986)

[14] Liang, N.-Y., Huang, G.-B., Saratchandran, P., et al.: A fast and accurate on-line
sequential learning algorithmfor feedforward networks. IEEE Transactions on Neural
Networks 17, 1411–1423 (2006)

[15] LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backProp. In: Orr, G.B.,
Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg
(1998)

[16] Huang, G.-B., Saratchandran, P., Sundararajan, N.: An efficient sequential learning
algorithm for growing and pruning RBF (GAPP-RBF) networks. IEEE Transitions Man
Cybernet 34, 2284–2292 (2004)

[17] Huang, G.-B., Saratchandran, P., Sundararajan, N.: A generalized growing and pruning
RBF (GGAP-RBF) neural network for function approximation. IEEE Transitions Neural
Network 16, 57–67 (2005)

[18] Huang, G.-B., Wang, D.-H., Lan, Y.: Extreme learning machines: a survey. International
Journal of Machine Learning and Cybernetics 2, 107–122 (2011)

[19] Rong, H.-J., Ong, Y.-S., Tan, A.-H., et al.: A fast pruned-extreme learning machine for
classification problem. Neurocomputing 72, 359–366 (2008)

292 B. Han et al.

[20] Miche, Y., Sorjamaa, A., Bas, P., et al.: OP-ELM: optimally pruned extreme learning
machine. IEEE Transactions on Neural Networks 21, 158–162 (2010)

[21] Miche, Y., Sorjamaa, A., Lendasse, A.: OP-ELM: Theory, experiments and a toolbox. In:
Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp.
145–154. Springer, Heidelberg (2008)

[22] Miche, Y., Sorjamaa, A., Lendasse, A.: OP-ELM: Theory, experiments and a toolbox. In:
Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp.
145–154. Springer, Heidelberg (2008)

[23] Miche, Y., Bas, P., Jutten, C., et al.: A methodology for building regression models using
extreme learning machine: OP-ELM. In: Proceedings of the European Symposium on
Artificial Neural Networks (ESANN), pp. 247–252 (2008)

[24] Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern
Analysis and Machine Intelligence 12, 993–1001 (1990)

[25] Krogh, A., Sollich, P.: Statistical mechanics of ensemble learning. The American
Physical Society (1997)

[26] Sun, Z.-L., Choi, T.-M., Au, K.-F., et al.: Sales forecasting using extreme learning
machine with applications in fashion retailing. Decision Support Systems 46, 411–419
(2008)

[27] Zhou, Z.-H., Wu, J.-X., Yuan, J., et al.: Genetic algorithm based selective neural network
ensemble. In: IJCAI-2001: Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, Seattle, Washington, August 4-10, p. 797 (2001)

[28] Tang, Y., Biondi, B.: Least-squares migration/inversion of blended data. SEG Technical
Program Expanded Abstracts, pp. 2859–2863 (2009)

[29] Li, N., Zhou, Z.-H.: Selective ensemble under regularization framework Multiple
Classifier Systems, pp. 293–303. Springer (2009)

[30] Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)
[31] Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning

scheme of feedforward neural networks. IEEE International Joint Conference on Neural
Networks 2, 985–990 (2004)

[32] Serre, D.: Matrices: Theory and Applications. Springer, New York (2002)
[33] Rao, C.-R., Mitra, S.-K.: Generalized inverse of a matrix and its applications. Wiley, New

York (1972)
[34] van Heeswijk, M., Miche, Y., Lindh-Knuutila, T., Hilbers, P.A.J., Honkela, T., Oja, E.,

Lendasse, A.: Adaptive ensemble models of extreme learning machines for time series
prediction. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN
2009, Part II. LNCS, vol. 5769, pp. 305–314. Springer, Heidelberg (2009)

[35] Van, H.-M., Miche, Y., Oja, E., et al.: Gpuaccelerated and parallelized ELM ensembles
for large-scale regression. Neurocomputing (2011)

[36] Zhou, Z.-H., Wu, J.-X., Tang, W.: Ensemble neural networks: Many could be better than
one. Artificial Intelligence 137, 239–263 (2002)

[37] Zhao, L.-J., Chai, T.-Y., Yuan, D.-C.: Selective ensemble extreme learning machine
modeling of effluent quality in wastewater treatment plants. International Journal of
Automation and Computing 9, 627–633 (2012)

[38] Opitz, D.W., Shavlik, J.W.: Generating accurate and diverse members of a
neural-network ensemble. Advances in Neural Information Processing Systems, 535–541
(1996)

[39] Arthur, A., Newman, D.: UCI machine learning repository (2007)
[40] Guang-Bin, H., Chen, L., Siew, C.-K.: Universal approximation using incremental

constructive feedforward networks with random hidden nodes. IEEE Transactions on
Neural Networks 17(4), 879–892 (2006)

Extreme Learning Machine for Regression

and Classification Using L1-Norm and L2-Norm

Xiong Luo�, Xiaohui Chang, and Xiaojuan Ban

School of Computer and Communication Engineering,
University of Science and Technology Beijing (USTB), 100083 Beijing, China

xluo@ustb.edu.cn

Abstract. Extreme learning machine (ELM) has been studied exten-
sively in recent years. It is a very simple machine learning algorithm
which can achieve a good generalization performance with extremely
fast speed. Thus, it has practical significance for Big Data analysis. Nor-
mally, it is implemented under the empirical risk minimization scheme
and it may tend to generate a large-scale and over-fitting model. In this
paper, an ELM model based on L1-norm and L2-norm regularizations is
proposed to deal with regression and multiple class classification prob-
lems in a unified framework, and it can reduce the complexity of the
network and prevent over-fitting. We test the proposed algorithm on
eight benchmark data sets. Simulation results have shown that the pro-
posed algorithm outperforms the original ELM and other advanced ELM
algorithm in terms of prediction accuracy and stability.

Keywords: extreme learning machine, ridge regression, elastic net, model
selection.

1 Introduction

More recently, data is being collected at an unprecedented scale. There are in-
creasing demand of effective data analysis for making decisions to fully realize
the potential of Big Data. Single-hidden layer feedforward network (SLFN) based
on extreme learning machine (ELM) [1] is one of the important methods used
in data analysis due to its powerful nonlinear mapping capability and extremely
fast learning speed. However, original ELM solution may tend to generate an
over-fitting model and are less stable in some situations [2]. Moreover, the struc-
ture of the neural network (NN) is still a question in ELM design.

To overcome the problems ELM faced, several schemes have been proposed. In
[3], Rong et al. proposed a fast pruned ELM for classification problems. Mart́ınez-
Mart́ınez et al. proposed a regularized ELM for regression problems in [4]. In [3]
and [4], although those algorithms can generate a spare NN structure, they do not
provide a unified NN framework for both regression and classification problems.

� This work was jointly supported by the National Natural Science Foundation of
China under Grants 61174103, 61174069, and 61004021, and the Fundamental Re-
search Funds for Central Universities under Grant FRF-TP-11-002B.

c© Springer International Publishing Switzerland 2015 293
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_25

294 X. Luo, X. Chang, and X. Ban

Miche et al. proposed an optimally pruned ELM for regression and classification
in [5], which was a regularized ELM by using the least angle regression (LARS)
algorithm, i.e., a L1 penalty, but this algorithm has its limitation while facing a
group of high correlated variables.

Considering those problems in ELM design analyzed above, we propose a
novel ELM algorithm based on L1 penalty and L2 penalty to deal with both
multiple output regression tasks and multiple class classification tasks in a unified
framework. Here, elastic net algorithm is used to solve this mixed penalties [6].
Then separate elastic net algorithm and the Bayesian information criterion (BIC)
[7] are adopted to find the optimal model for each response variable. Thus, the
proposed algorithm tends to reduce over-fitting and provide a more robust model.

This paper is organized as follows. Section 2 analyses the SLFN based on
ELM and classic regularization methods. Section 3 presents the proposed ELM
model based on L1-norm and L2-norm regularizations. Section 4 provides the
simulation results and discussion. Section 5 summarizes the conclusion.

2 Model Description

2.1 SLFN Based on ELM

ELM theories claim that the hidden node learning parameters can be randomly
assigned and the output weights can be determined by solving a linear system [8],
thus the ELM can be implemented with few steps and low computational cost.

For P arbitrary distinct samples (xi, ti), where xi = [xi1, xi2, · · · , xim]T ∈ R
m

and ti = [ti1, ti2, · · · , tin]T ∈ R
n, a standard SLFN with L hidden nodes can be

mathematically modeled as:

oi =
L∑

j=1

βjG(aj , bj , xi), i = 1, 2, · · · , P (1)

where aj and bj are the learning parameters of hidden nodes, βj is the link
connecting the j -th hidden node to the output nodes, G(aj , bj , xi) is the output
of the j -th hidden node with respect to the input xi, and oi is the actual output.

The SLFN with L hidden nodes can approximate these P samples with zero
error, which means that the cost function E=

∑P
i=1 ||oi − ti||2 = 0, i.e., there

exist (aj , bj) and βj such that:

ti =
L∑

j=1

βjG(aj , bj , xi), i = 1, 2, · · · , P (2)

where ‖ · ‖2 represents the L2-norm.
The above P equations can be written compactly as :

Hβ = T (3)

Extreme Learning Machine for Regression and Classification 295

where

H =

⎡

⎢⎣
G(a1, b1, x1) · · · G(aL, bL, x1)

...
. . .

...
G(a1, b1, xP) · · · G(aL, bL, xP)

⎤

⎥⎦

P×L

, β =

⎡

⎢⎣
β1

T

...

βL
T

⎤

⎥⎦

L×n

, T =

⎡

⎢⎣
t1

T

...
tP

T

⎤

⎥⎦

P×n

.

Here, H is called the hidden layer output matrix of the SLFN. Thus, the
system (3) becomes a linear model and the output weights can be analytically
determined by finding a least-square solution of this linear system as follows:

β = H†T (4)

where H† is the Moore-Penrose generalized inverse of matrix H [1].
Although ELM has been developed to work at a much faster learning speed

with the higher generalization performance, it also has some drawbacks:
1) ELM is designed with the empirical risk minimization (ERM) principle and

may tend to generate an over-fitting model.
2) ELM provides weak control capacity and is less stable because it is imple-

mented by using a classical least-square method.
3) Users have to choose the number of hidden nodes through trial-and-error.

2.2 Regularization Methods

Multiple linear regression is often used to investigate the relationship between
the predictor variables and the response variables. Then both the prediction
accuracy and the size of the model should be considered.

Considering the general setup for a single-output regression problem:

y = Hβ + ε (5)

where H is the inputs data set, and it is a P×L matrix. Here y is the actual out-
put, β is the regression weights, and ε is the residuals. The traditional approach
used to solve the above problem is the ordinary least square (OLS) estimates,
which can be formulated as follows:

β̂ = arg min
β

||y −Hβ||22 (6)

where β̂ = [β̂1, β̂2, · · · , β̂L]
T is the estimated regression weights. It is well known

that OLS often performs not well in terms of both prediction accuracy and the
model size [9]. Regularization techniques have been proposed to improve OLS.

The L1-norm, which is also called the least absolute shrinkage and selection
operator (Lasso) [10], represents the most basic augmentation of the OLS solu-

tion. The Lasso estimate β̂ is defined by:

β̂ = arg min
β

{||y −Hβ||22 + λ||β||1
}

(7)

where λ is a positive regularization parameter, ‖ · ‖1 represents the L1-norm. As

λ increases, the number of nonzero components of β̂ decreases.

296 X. Luo, X. Chang, and X. Ban

Due to its nature of both continuous shrinkage and automatic variable selec-
tion simultaneously, the Lasso has shown success in many situations. But it has
some limitations as noted by Zou and Hastie in [6].

To overcome the drawbacks of L1-norm, both the L1 penalty and the L2

penalty are used in the same minimization problem. The mathematic model of
this mixed penalties can be formulated as follows:

β̂ = argmin
β

{||y −Hβ||22 + λ||β||1 + ξ||β||22
}

(8)

where both λ and ξ are tuning parameters. In [11], the elastic net was proposed
to solve (8).

The elastic net simultaneously does automatic variable selection and continu-
ous shrinkage, and it can select group of correlated variables. It has been shown
that the elastic net often outperforms the Lasso in terms of prediction accuracy,
while enjoying a similar sparsity of representation.

3 L1-L2-ELM Model

3.1 Solution of the Elastic Net

The basic idea of solving the elastic net is to reduce the elastic net problem to
an equivalent Lasso problem.

For data set (y,H) and (λ, ξ) defined in (8), an artificial data set (y∗, H∗) is
generated as follows:

⎧
⎪⎪⎨

⎪⎪⎩

H∗
(P+L)×L = 1√

(1+ξ)

(
H√
ξI

)

y∗(P+L)×L =

(
y
0

) (9)

Then the naive elastic net criterion can be written as:

β̂∗ = argmin
β∗

{||y∗ −H∗β∗||22 + r||β∗||1
}

(10)

where r = λ√
1+ξ

and β∗ =
√
1 + ξβ. Thus, β̂ can be represented as follows:

β̂ =
1√
1 + ξ

β̂∗ (11)

However, the above solution may incur a double shrinkage, which may intro-
duce unnecessary extra bias. Then the elastic net estimates β̂ as follows:

β̂ =
√
1 + ξ β̂∗ (12)

Thus the elastic net avoids the ridge shrinkage effect by introducing a scaling
factor (1 + ξ), while still keep the grouping effect feature of ridge regression.
Hence, the solution of elastic net has been successfully transformed into the

Extreme Learning Machine for Regression and Classification 297

lasso problem, and an efficient LARS-EN algorithm was implemented to solve
the elastic net solution paths for any fixed ξ [6] .

For each fixed ξ, the LARS-EN algorithm will produce a set of candidate
models. Then we adopt the BIC to do the model selection to balance the accuracy
and the network size. The BIC was defined as follows:

BIC= −2ln(Q)+M ln(P) (13)

where Q is the value of the likelihood function for the estimated model, M is
the number of hidden nodes to be estimated, and P is the number of samples.

3.2 L1-L2-ELM Model

Both multiple output regression and the multiclass classification tasks can be
implemented using a unified network model in the proposed algorithm. For
multiclass classification problem, it can be transformed into a multiple out-
put regression problem. Assume a set of multiclass training samples (xi, ti)
(i = 1, 2, · · · , P), ti ∈ {1, 2, · · · , n}, each class label is expanded into a label
vector of length n according to the original ELM algorithm. For example, in a
training sample (xi, ti), if xi is the third class, the corresponding output label
vector is ti = [−1,−1, 1,−1, · · · ,−1], i.e, the output node with the largest value
indicates its class label.

Then, for the regression problem with n output nodes, the proposed algo-
rithm uses n separate elastic nets to generate the entire solution paths for each
output node, then adopts the BIC to find the optimal candidate model. Thus,
the output weight of ELM consists of all the optimal candidate models for each
response variable. Overall, the proposed algorithm, namely, L1-L2-ELM, can be
summarized as Algorithm 1.

4 Simulation Results and Discussion

4.1 Experimental Setup

To verify the effectiveness of the proposed algorithm L1-L2-ELM, eight data
sets from the UCI machine learning repository [12] have been used to test this
algorithm, and we compare it with the original ELM and the OP-ELM [13].
The number of hidden neurons L=100 is assigned in ELM, while the OP-ELM
and the L1-L2-ELM use a maximum number of 100 neurons. In L1-L2-ELM
algorithm, the fixed ξ is assigned the value of 10−3. In the experiments, each
data set is normalized to zero mean and unit variance, and 50 trials have been
conducted for all the algorithms. Then the best performance and the standard
deviations (DEV) are recorded. Nodes required by L1-L2-ELM in each data set
can be obtained by calculating the average of the numbers of selected neurons
for each response node.

298 X. Luo, X. Chang, and X. Ban

Algorithm 1. L1-L2-ELM

Input: a training set: {(xi, ti) | xi ∈ R
m, ti ∈ R

n, i = 1, · · · , P};
hidden node activation function: g(x);

the max hidden node number: L;

fixed L2 penalty term: ξ .

Output: the output weight: β.

1 Assign arbitrary learning parameters of hidden nodes aj and bj , 1 � j � L;

2 Calculate the hidden layer output matrix H based on (3);

3 for 1 � i � n do

4 β′= LARS-EN(H,y(i), ξ), where y(i) = [t1i, · · · , tPi]
T ;

5 β′ = (1 + ξ)β′;

6 for 1 � k � size(β′) do

7 Calculate the BIC(k) for every candidate model based on (13) and β′(k).

8 end

9 k∗ = arg min
k

{BIC(k)}size(β′)
k=1 , where k∗ is the index of the minimum value

in vector BIC;

10 β′
optimal = β′(k∗);

11 β = [β β′
optimal].

12 end

Table 1. Information of the regression data sets

Data sets Attributes
Samples

Training Testing

Abalone 8 2000 2177

Delta elevators 6 6300 3217

Machine CPU 6 139 70

Servo 4 110 57

4.2 Real-World Regression Problems

The specifications of the 4 real-world benchmark data sets [12] are listed in Table
1 while the comparison results of algorithms are provided in Table 2. As we can
see from Table 2, the proposed algorithm is better than the OP-ELM and the
original ELM in terms of the testing average root mean square error (RMSE)
and the DEV, which means that the proposed algorithm has a better predicting
accuracy and is more robust than the other two algorithms. And the L1-L2-ELM
algorithm has a better variable selection procedure than the OP-ELM in most
cases.

4.3 Real-World Classification Problems

The specifications of the 4 real-world classification data sets [12] are listed in
Table 3. The comparison results are shown in Table 4. In Table 4, the L1-L2-

Extreme Learning Machine for Regression and Classification 299

Table 2. RMSE and DEV in ELM, OP-ELM, and L1-L2-ELM on regression data sets

Methods Datasets
RMSE DEV

Nodes
Training Testing Training Testing

ELM

Abalone

1.9807 2.1804 0.0071 0.0321 100

OP-ELM 2.0539 2.2042 0.0224 0.0287 55

L1-L2-ELM 2.0744 2.1087 0.0137 0.0123 37

ELM

Delta elevators

0.0014 0.0015 2.5996e-05 3.0653e-05 100

OP-ELM 0.0014 0.0014 8.6406e-06 8.7159e-06 65

L1-L2-ELM 0.0014 0.0014 2.9027e-06 1.7586e-06 30

ELM

Machine CPU

137.7941 235.7793 7.1300 4.1434e+11 100

OP-ELM 19.0124 75.8023 14.5489 27.8916 65

L1-L2-ELM 23.2940 45.2975 1.2069 3.5647 48

ELM

Servo

0.0424 3.5394 0.0155 1.4206 100

OP-ELM 0.2556 0.8962 0.1022 0.1219 60

L1-L2-ELM 0.2631 0.6979 0.0196 0.0393 63

Table 3. Information of the classification data sets

Data sets Attributes/Classes
Samples

Training Testing

Iris 4/3 100 50

Wine 13/3 120 58

Glass Identification 9/6 170 44

Landsat Satellite 36/6 4435 2000

Table 4. Success rate and DEV in ELM, OP-ELM, and L1-L2-ELM on classification
data sets

Methods Datasets
Success Rate DEV

Nodes
Training Testing Training Testing

ELM

Iris

1.0000 0.7800 0.0000 0.1017 100

OP-ELM 0.9800 0.9600 0.0167 0.0341 30

L1-L2-ELM 0.9900 0.9600 0.0045 0.0110 14.667

ELM

Wine

0.8333 0.8276 0.0686 0.0932 100

OP-ELM 0.9917 0.9483 0.0121 0.0294 55

L1-L2-ELM 0.9917 0.9828 0.0035 0.0151 34

ELM

Glass Identification

0.8412 0.6591 0.0214 0.0521 100

OP-ELM 0.8824 0.6818 0.0413 0.0503 10

L1-L2-ELM 0.7353 0.7045 0.0403 0.0412 6.333

ELM

Landsat Satellite

0.7445 0.7320 0.0322 0.0336 100

OP-ELM 0.8397 0.8140 0.0053 0.0066 80

L1-L2-ELM 0.8616 0.8420 0.0039 0.0057 29.166

ELM can achieve a higher success rate for testing samples. And the DEV is much
lower than the other algorithms, which means that the proposed algorithm has
more accurate and stable classification performance.

300 X. Luo, X. Chang, and X. Ban

5 Conclusion

Data analysis plays a guidance role for making future plans in this Big Data era.
In this paper, a novel algorithm called L1-L2-ELM was proposed as an effec-
tive technology in data analysis. It can deal with multiple output regression and
multiple class classification problems in a unified framework. In the proposed al-
gorithm, for W multiple output applications, W separate elastic nets need to be
used to find the optimal candidate model. Simulation results have shown that the
proposed algorithm has a better generalization performance and variable selec-
tion ability than the ELM and OP-ELM especially in multiple class applications.
Meanwhile the L1-L2-ELM is more robust than the other two algorithms.

References

1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme Learning Machine: A New Learning
Scheme of Feedforward Neural Networks. In: IEEE International Joint Conference
on Neural Networks, vol. 2, pp. 985–990. IEEE Press, New York (2004)

2. Horata, P., Chiewchanwattana, S., Sunat, K.: Robust Extreme Learning Machine.
Neurocomputing 102, 31–44 (2013)

3. Rong, H.J., Ong, Y.S., Tan, A.H., Zhu, Z.: A Fast Pruned-Extreme Learning Ma-
chine for Classification Problem. Neurocomputing 2, 359–366 (2008)

4. Mart́ınez-Mart́ınez, J.M., Escandell-Montero, P., Soria-Olivas, E., Martn-Guerrero,
J.D., Magdalena-Benedito, R., Gómez-Sanchis, J.: Regularized Extreme Learning
Machine for Regression Problems. Neurocomputing 74, 3716–3721 (2011)

5. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM:
Optimally Pruned Extreme Learning Machine. IEEE Trans. Neural Networks 21,
158–162 (2010)

6. Zou, H., Hastie, T.: Regularization and Variable Selection via the Elastic Net. J.
R. Statist. Soc. B 67, 301–320 (2005)

7. Burnham, K.P., Anderson, D.R.: Multimodel Inference Understanding AIC and
BIC in Model Selection. Sociological Methods & Res 33, 261–304 (2004)

8. Cao, J., Lin, Z., Huang, G.B., Liu, N.: Voting Based Extreme Learning Machine.
Inf. Sci. 1, 66–77 (2012)

9. Tibshirani, R.: Regression Shrinkage and Selection via the Lasso. J. R. Statist. Soc.
B 58, 267–288 (1996)

10. Jacob, L., Obozinski, G., Vert, J.P.: Group Lasso with Overlap and Graph Lasso.
In: 26th Annual International Conference on Machine Learning, pp. 433–440. ACM
Press, New York (2009)

11. De Mol, C., De Vito, E., Rosasco, L.: Elastic-Net Regularization in Learning The-
ory. J. Complexity 25, 201–230 (2009)

12. Bache, K., Lichman, M.: UCI Machine Learning Repository (2013),
http://archive.ics.uci.edu/ml/

13. Grigorievskiy, A., Miche, Y., Ventelä, A.M., Séverin, E., Lendasse, A.: Long-Term
Time Series Prediction Using OP-ELM. Neural Netw. 51, 50–56 (2014)

http://archive.ics.uci.edu/ml/

A Semi-supervised Online Sequential Extreme

Learning Machine Method

Xibin Jia1,�, Runyuan Wang1, Junfa Liu2, and David M.W. Powers1

1 Beijing Municipal Key Laboratory of Multimedia and Intelligent Software
Technology, Beijing University of Technology, Beijing, 100124, P.R. China

2 Institute of Computing Technology, Chinese Academy of Sciences,
100190, P.R. China

jiaxibin@bjut.edu.cn.

Abstract. Online sequential ELM (OS-ELM) provides a solution for
streaming data application by only learning the newly arrived single or
chunk of observations, and presents outstanding performance for learn-
ing problems. However, the algorithm relies on the labeled data, which
usually involves high cost in labor and time. Moreover, manually labeled
data suffers from inaccuracy caused by individual bias. Considering the
semi-supervised ELM (SS-ELM) provides a way to fully utilize the easily
acquired unlabeled data, the paper proposes a semi-supervised online se-
quential ELM, denoted as SOS-ELM. The proposed SOS-ELM not only
has the advantage of learning in a sequential way, but also makes the
most use of unlabeled data. Experiments have been done on benchmark
problems of regression and classification and the results show that the
proposed SOS-ELM outperforms OS-ELM in generalization performance
with similar training speed and outperforms SS-ELM with much lower
training time cost.

Keywords: Online Sequential ELM (OS-ELM), Semi-supervised ELM
(SS-ELM), Semi-supervised online sequential ELM (SOS-ELM).

1 Introduction

In recent years, Extreme Learning Machine (ELM), proposed by Huang et al. [1–
4], is attracting more and more attention because of its outstanding performance
in training speed, predicting accuracy and generalization ability [5–8]. Especially,
it is shown that ELM tends to outperform support vector machine (SVM) in
both regression and classification applications with much easier implementation
[9]. However, batch ELM is still a time consuming affair, although much faster
than traditional learning algorithms (including SVM). Online Sequential ELM
(OS-ELM) [10] learns the training data chunk-by-chunk and updates the output
weight only by new training data. Thus OS-ELM not only saves storage but also
decreases the computational complexity.

� Corresponding author.

c© Springer International Publishing Switzerland 2015 301
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_26

302 X. Jia et al.

Although OS-ELM has many advantages in learning, it still can’t avoid the
dependency on a large amount of labeled data, which usually involves high cost
in labor and time. To exploit unlabeled data, some semi-supervised ELM variants
[11–14] have been proposed. As typical examples, [12] and [14] propose a kind
of semi-supervised ELM based on manifold regularization, so that the learning
system can balance the empirical risk and the complexity of the learned func-
tion f , where [12] is an improvement of [14] in terms of semi-supervised ELM.
However, the semi-supervised ELM mentioned above learns in a batch way, so
its training speed decreases rapidly as the sample size gets larger.

To solve the manual labeling cost problem and meet the demand of sequential
learning for many real applications, we propose a new type of online sequential
ELM, which we name as semi-supervised online sequential ELM (SOS-ELM). It
inherits not only the training and testing speed of OS-ELM but also the accurate
prediction of SS-ELM. The experiment results show that using the same number
of labeled samples, our proposed SOS-ELM has higher accurate prediction rate
than that of OS-ELM and much faster training speed than that of SS-ELM.

The detail of our proposed SOS-ELM is elaborated in the following part
and the rest of paper is organized as follows. Section 2 gives a brief review
of the related work. Section 3 illustrates the derivation of SOS-ELM. Section 4
presents the experiment results and discussion based on the benchmark prob-
lems in regression and classification. Conclusions based on the study are given in
Section 5.

2 Related Work: ELM, SS-ELM and OS-ELM

This section briefly reviews the batch ELM, OS-ELM and SS-ELM, which are
foundation of our extended algorithm: SOS-ELM.

ELM is a kind of single hidden layer feed-forward neural network (SLFN), and
it is provable that ELM has the universal approximation property [3]. Compared
to ELM, least square support vector machine (LS-SVM) and proximal support
vector machine (PSVM) provide suboptimal solutions and require higher compu-
tational complexity [5]. In order to have SLFNs work as universal approximators,
one may simply randomly choose hidden nodes and then just train the output
weights linking the hidden layer and the output layer.

If an SLFN with L hidden nodes can approximate N samples (xk, tk) with
zero error, where xk ∈ Rd is the input signal feature vector, and tk ∈ Rm is the
output target value or category label, it means that there exists βi,ai, bi such
that

fL(xk) =

L∑

i=1

βiG (ai, bi,xk) = tk, k = 1, ..., N,ai ∈ Rd, bi ∈ R (1)

where βi is the weight vector connecting the ith hidden node to the output
nodes. Equation (1) can be written in a matrix format as

Hβ = T (2)

A Semi-supervised Online Sequential Extreme Learning Machine Method 303

where

H =

⎡

⎢⎣
G (a1, b1,x1) . . . G (aL, bL,x1)

... . . .
...

G (a1, b1,xN) . . . G (aL, bL,xN)

⎤

⎥⎦

N×L

, β =

⎡

⎢⎣
βT
1
...

βT
L

⎤

⎥⎦

L×m

and

T =

⎡

⎢⎣
tT1
...
tTN

⎤

⎥⎦

N×m

(3)

The above equation then can be considered as a linear system and training
the SLFN is simply equivalent to finding a least squares solution of the liner
system. It is proved that equation (4) is the unique smallest norm least squares
solution to learn and obtain output weight β of this linear system [16]:

β = H†T (4)

where H† is the Moore-Penrose generalized inverse of the hidden layer output
matrix, in which the weight and bias parameters ai and bi are randomly assigned.

To enhance learning performance by utilizing unlabeled samples together with
labeled ones, semi-supervised extreme learning machine (SS-ELM) [12] is ex-
tended. It assumes the change of data is generally smooth. In other word, if
treat the data in training dataset as graph, there should not exist too much jump
between neighbor instances. According to the learning theory on structural risk
minimization (SRM) [17, 19], to get high performance on generalization, the
learning system needs to remain balanced between the empirical risk and the
complexity of learnt function f . To meet the requirement, according to [12] the
unique smallest norm least squares solution β can be derived as (5).

β =
(
I +HTJH + λHTLH

)−1

HTJT (5)

where J is a user-defined diagonal matrix of penalty coefficient on the training
errors and L is the graph Laplacian.

The batch ELM described previously assumes that all the training data (N
samples) is available for training at one time. However, in real applications, the
training data may arrive sequentially. If the newly coming data were trained
with the older ones again, it would be wasteful with recalculating old data with
extra computing cost. OS-ELM is developed and learns data chunk-by-chunk or
one-by-one (a special case of chunk) with fixed or varied chunk size. The output
weights are refined based on sequentially arriving data [10]. And the output
weight β under least-squares solution can be written as

Kk+1 = Kk +HT
k+1Hk+1 (6)

β(k+1) = β(k) +K−1
k+1H

T
k+1

(
T k+1 −Hk+1β

(k)
)

(7)

where β(0) = K−1
0 HT

0 T 0, and K0 = HT
0 H0.

304 X. Jia et al.

3 Proposed SOS-ELM

Both SS-ELM and OS-ELM improve the performance of basic ELM from differ-
ent points. However, the SS-ELM does the training with all labeled and unlabeled
data in batch way, whilst OS-ELM only utilizes the labeled data. As we have
known, it is feasible in practical application to process the sequential data and
take most use of unlabeled data. Therefore, this paper proposes to integrate the
both advantage together by modifying SS-ELM algorithm to suit for sequential
learning, which we refer the new algorithm as semi-supervised online sequential
extreme learning machine, viz. SOS-ELM.

Given SS-ELM [12] can balance the empirical risk and the complexity of learnt
function f , which enhances learning performance dramaticlly. We reconsidered
the output weight matrix of SS-ELM shown in (5) and derived the proposed
SOS-ELM. To simplify the form, we let K = I +HTJH + λHTLH, then the
output weight matrix of SS-ELM can be written as (8).

β = K−1HTJT (8)

Given a chunk of initial training set of sequential training instances ℵ0 =
{(xi, ti) or x

′
i}N0

i=1 , in which both labeled data (xi, ti) and unlabeled data x
′
i

are included. Based on the criteria of minimizing the training error, the output
weight matrix of the first chunk of training dataset is calculated as (9).

β(0) = K−1
0 HT

0 J0T 0 (9)

where
K0 = I +HT

0 J0H0 + λHT
0 Lℵ0H0 (10)

Suppose we get another chunk of data ℵ1 = {(xi, ti) or x
′
i}N0+N1

i=N0+1 , which
also includes labeled data and unlabeled data, according to the SS-ELM, the
weight matrix of joint training instances including the initial and new chunk of
data ℵ0 and ℵ1 is calculated as (11).

β(1) = K−1
1

[
H0

H1

]T [
J0 0
0 J1

] [
T 0

T 1

]
(11)

where

K1 = I +

[
H0

H1

]T [
J0 0
0 J1

] [
H0

H1

]
+ λ

[
H0

H1

]T
Lℵ0∪ℵ1

[
H0

H1

]
(12)

and

Lℵ0∪ℵ1 =

[
Lℵ0 +Dℵ0ℵ1 −Wℵ0ℵ1

−W T
ℵ0ℵ1

Lℵ1 +Dℵ1ℵ0

]
(13)

Obviously, the structure relationship among instances from the first and sec-
ond chunks separately may cause the existing of −W ℵ0ℵ1 , Dℵ0ℵ1 and Dℵ1ℵ0

as in (13). This requires to do recalculation upon both the old and new chunk

A Semi-supervised Online Sequential Extreme Learning Machine Method 305

of data. Recalling the theory of SS-ELM in section 2.2, minimizing the com-
plexity of learnt function is an assistant condition to enhance the smoothness of
regression or classification function. So it will have little impact on results but
with less computation cost when we discard counting the structural relationship
among old and new coming instances. Therefore, the graph Laplacian between
different chunks is ignored when calculating the graph Laplacian directly. The
final graph Laplacians is obtained as (14).

Lℵ0∪ℵ1 =

[
Lℵ0 0
0 Lℵ1

]
(14)

Substitute (10) and (14) into (12), we can get the recursive form of K1 as
(15).

K1 = K0 +HT
1 (J1 + λLℵ1)H1 (15)

In addition,

[
H0

H1

]T [
J0 0
0 J1

] [
T 0

T 1

]
= HT

0 J0T 0 +HT
1 J1T 1

= K0K
−1
0 HT

0 J0T 0 +HT
1 J1T 1

= K0β
(0) +HT

1 J1T 1

=
[
K1 −HT

1 (J1 + λLℵ1)H1

]
β(0) +HT

1 J1T 1

= K1β
(0)−HT

1 (J1+ λLℵ1)H1β
(0)+HT

1 J1T 1(16)

Substitute (16) into (11), the output weight matrix is given as in the recursive
form as in (17), viz. training in the online way.

β(1) = β(0) +K−1
1 HT

1

[
J1T 1 − (J1 + λLℵ1)H1β

(0)
]

(17)

The derived output weight β(1) and relative K1 for squential problem with
semi-supervised method in (15) and (17) can be extended to the general situation
of the (k+1)th chunk of training data by updating equation like OS-ELM, so we
get (18) and (19):

Kk+1 = Kk +HT
k+1

(
Jk+1 + λLℵk+1

)
Hk+1 (18)

β(k+1) = β(k) +K−1
k+1H

T
k+1

[
Jk+1T k+1 −

(
Jk+1 + λLℵk+1

)
Hk+1β

(k)
]

(19)

So far we have derived the formula to calculate the output weight in our
proposed SOS-ELM method, which provides an effective solution of make most
use of labeled and unlabeled data for the sequential problem. The algorithm flow
of our proposed SOS-ELM is summarized as follows:

Given a dataset including labeled samples {(xi, ti) |xi ∈ Rn, ti ∈ Rm, i =
1, 2, ..., Nl} and unlabeled samples {x′

i|x
′
i ∈ Rn, i = 1, 2, ..., Nu}, when specified

the hidden nodes L, the constant λ and the activation function g(x) , two training
steps are illustrated as follows.

306 X. Jia et al.

Step 1: Initial phase: Given a small initial training set ℵ0 = {(xi, ti) or x
′
i}N0

i=1

to calculate the the output weight matrix β(0) and K0 through the following
procedure:

(a) Assign random input weight ωi and bias bi or center μi and width σi,
i = 1, 2, ..., L.

(b) Record the number of unlabeled instances nu and labeled instances nl,
calculate the initial J0 and Lℵ0 .

(c) Estimate the initial output weight β(0) = K−1
0 HT

0 J0T 0, where K0 =
I +HT

0 J0H0 + λHT
0 L0H0.

(d) Set k = 0.
Step 2: Sequential Learning Phase: When a new chunk of training data comes,

do
(a) Record the number of unlabeled instances nu and labeled instances nl,

then calculate Jk+1 and Lℵk+1
.

(b) Calculate latest output weight β(k+1) based on the recursive Equation
(19).

4 Experiment Results

In this section, we will systematically evaluate the performance of our proposed
SOS-ELM for regression and classification problems on some benchmark datasets
by comparing with that of SS-ELM and OS-ELM. The benchmark datasets used
in the paper is shown in Table 1. The number of labeled data, unlabeled data
and testing data used in our experiments are also listed in the Table 1.

4.1 The Configuration of Parameters for Related ELM Algorithm

The tradeoff parameter λ and penalty coefficient C0 in SOS-ELM and SS-ELM
learning methods need to be specified in advance, and in our experiments the
former is selected from the linear sequence {0.05, 0.1, ..., 1}, the latter is randomly
selected from the exponential sequence {10−5, 10−4, ..., 105}. To our designed a
2-fold validation in labeled training data, the λ is selected based on the produced
performance. In the initial phase, labeled chunk size N0 in SOS-ELM and OS-
ELM, and unlabeled chunk size M0 in SOS-ELM, also need to be specified before
learning, and referring to the experimental condition reported in [8], we set the
N0 = 1/10 × Nl for regression problems while N0 and M0 are set randomly
within the ranges [50, 200] for classification problems.

In our experiment, the training data are generated randomly for 10 times at
the ratio of those shown in Table 1, and 10 trials are done on every combination
of training data and testing data, the final results are the average of all trials
(10× 10 cross validation).

A Semi-supervised Online Sequential Extreme Learning Machine Method 307

Table 1. Specification of benchmark datasets

Dataset �Attributes �Class �Labeled �Unlabeled �Testing

SinC 1 - 50 2500 2500

Abalone 8 - 50 2500 1627

Auto-MPG 7 - 30 300 62

g241c 241 2 500 500 500

g241n 241 2 500 500 500

Digit1 241 2 500 500 500

USPS(B) 241 2 500 500 500

4.2 Performance Evaluation for Regression Problems

For Regression, three UCI benchmark problems have been studied, namely: SinC,
Auto-MPG, Abalone [15].

The regression performance of SOS-ELM, OS-ELM and SS-ELM in terms of
testing RMSE and training time are shown in Fig.1.

We have a maximum number (shown in Table 1) of labeled and unlabeled
samples in each dataset, and show the effect of increased numbers of unlabeled
data. Fig.1 (a), (c) and (e) explore the training time at different numbers of

500 750 1000 1250 1500 1750 2000 2250 2500
0

2

4

6

8

Additional unlabeled samples

T
ra

in
in

g
 t

im
e

(s
)

SOS−ELM

OS−ELM

SS−ELM

(a) Training time on sinC

500 750 1000 1250 1500 1750 2000 2250 2500
0.08

0.082

0.084

0.086

0.088

Additional unlabeled samples

R
M

S
E

SOS−ELM

OS−ELM

SS−ELM

(b) Testing error on sinC

500 750 1000 1250 1500 1750 2000 2250 2500
0

2

4

6

8

Additional unlabeled samples

T
ra

in
in

g
 t

im
e

(s
)

SOS−ELM

OS−ELM

SS−ELM

(c) Training time on Abalone

500 750 1000 1250 1500 1750 2000 2250 2500
0.16

0.18

0.2

0.22

0.24

Additional unlabeled samples

R
M

S
E

SOS−ELM

OS−ELM

SS−ELM

(d) Testing error on Abalone

150 180 210 240 270 300
0.01

0.015

0.02

0.025

0.03

0.035

0.04

Additional unlabeled samples

T
ra

in
in

g
 t

im
e

(s
)

SOS−ELM

OS−ELM

SS−ELM

(e) Training time on Auto-MPG

150 180 210 240 270 300
1

1.2

1.4

1.6

1.8

2

Additional unlabeled samples

R
M

S
E

SOS−ELM

OS−ELM

SS−ELM

(f) Testing error on Auto-MPG

Fig. 1. Experiments for regression problems

308 X. Jia et al.

unlabeled samples with labeled samples number being fixed and Fig.1 (b), (d)
and (f) explore the corresponding testing error.

We can observe that our proposed SOS-ELMconsistently achieves the best gen-
eralization performance with extremely fast learning speed.The accuracy of SOS-
ELM is almost the same as SS-ELM even higher, while the speed of SOS-ELM is
much faster than SS-ELM. As shown in Fig.1 (a), (c) and (e), as the number of
unlabeled training samples increases, the training time of SS-ELM grows quickly,
while the training time of SOS-ELM almost remain unchanged as OS-ELM.

4.3 Performance Evaluation for Classification Problems

For classification studies, four benchmark problems are considered, including
g241c, g241n, Digit1, USPS(B) [18]. Specially, the USPS(B) classes is one of

0 50 100 150 200 250 300 350 400 450 500
0.2

0.4

0.6

0.8

1

1.2

Additional unlabeled samples

T
ra

in
in

g
 t

im
e

(s
)

SOS−ELM

OS−ELM

SS−ELM

(a) Training time on g241c

0 50 100 150 200 250 300 350 400 450 500
23

24

25

26

27

Additional unlabeled samples

T
e

s
ti
n

g
 E

rr
o

r(
%

) SOS−ELM

OS−ELM

SS−ELM

(b) Testing error on g241c

0 50 100 150 200 250 300 350 400 450 500
0.2

0.4

0.6

0.8

1

1.2

Additional unlabeled samples

T
ra

in
in

g
 t

im
e

(s
)

SOS−ELM

OS−ELM

SS−ELM

(c) Training time on g241n

0 50 100 150 200 250 300 350 400 450 500
22

23

24

25

26

27

Additional unlabeled samples

T
e

s
ti
n

g
 E

rr
o

r(
%

) SOS−ELM

OS−ELM

SS−ELM

(d) Testing error on g241n

0 50 100 150 200 250 300 350 400 450 500
0.2

0.4

0.6

0.8

1

1.2

Additional unlabeled samples

T
ra

in
in

g
 t

im
e

(s
)

SOS−ELM

OS−ELM

SS−ELM

(e) Training time on Digit1

0 50 100 150 200 250 300 350 400 450 500
9.5

10

10.5

11

11.5

Additional unlabeled samples

T
e

s
ti
n

g
 E

rr
o

r(
%

)

SOS−ELM

OS−ELM

SS−ELM

(f) Testing error on Digit1

0 50 100 150 200 250 300 350 400 450 500
0.2

0.4

0.6

0.8

1

Additional unlabeled samples

T
ra

in
in

g
 t

im
e

(s
)

SOS−ELM

OS−ELM

SS−ELM

(g) Training time on USPS(B)

0 50 100 150 200 250 300 350 400 450 500
7.5

8

8.5

9

9.5

Additional unlabeled samples

T
e

s
ti
n

g
 E

rr
o

r(
%

)

SOS−ELM

OS−ELM

SS−ELM

(h) Testing error on USPS(B)

Fig. 2. Experiments for classification problems

A Semi-supervised Online Sequential Extreme Learning Machine Method 309

challenge one which has imbalanced instances between categories with relative
sizes of 1:4.

The classification results using the proposed SOS-ELM, SS-ELM and OS-ELM
respectively are shown in Fig.2. Fig.2 (a), (c), (e) and (g) give the correspond-
ing training time along different number of unlabeled samples, from 50 to 500,
and the labeled samples is fixed as 50 and Fig.2 (b), (d), (f) and (h) give the
corresponding classification errors.

All the results on three balanced datasets and one imbalanced dataset
(USPS(B)) demonstrate that our proposed SOS-ELM outperforms OS-ELM and
SS-ELM with the leverage performance of classification accuracy and training
speed. The accuracy of SOS-ELM is almost similar with that of SS-ELM or even
higher, but the training speed of SOS-ELM is much faster than that of SS-ELM.
And the superiority of our proposed SOS-ELM is much distinct when the train-
ing data size is large. Compared with OS-ELM, SOS-ELM obtained much higher
accuracy especially when the unlabeled data was big enough, while the training
speed was almost at the same level.

5 Conclusions

In this paper, a new algorithm in the ELM family called semi-supervised OS-
ELM (SOS-ELM) is proposed. This algorithm can not only handle data arriv-
ing chunk-by-chunk like OS-ELM, but also reduce the requirement of labeled
data and increases the performance with utilizing the unlabeled data as well.
The performance of SOS-ELM is evaluated by comparing with that of OS-ELM
and SS-ELM on real world benchmark datasets for regression and classification
problems. The results demonstrate that proposed SOS-ELM shows stable good
performance in different applications with less error with fast training speed.

Acknowledgments. This research is partly supported by the Beijing Natural
Science Foundation under Grant (No.4122004), Specialized Research Fund for
the Doctoral Program of Higher Education (20121103110031) and the Impor-
tation and Development of High-Caliber Talents Project of Beijing Municipal
Institutions. The authors also thank A/Prof. Guangbin Huang for his invaluable
suggestions.

References

1. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learn-
ing scheme of feedforward neural networks. In: Proceedings of International Joint
Conference on Neural Networks (IJCNN 2004), vol. 2, pp. 985–990 (2004)

2. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and
applications. Neurocomputing 70(1), 489–501 (2006)

3. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental
constructive feedforward networks with random hidden nodes. IEEE Trans Neural
Netw. 17(4), 879–892 (2006)

310 X. Jia et al.

4. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. Neuro-
computing 70, 3056–3062 (2007)

5. Huang, G.-B., Zhou, H., Ding, X., et al.: Extreme learning machine for regression
and multiclass classification. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B: Cybernetics 42(2), 513–529 (2012)

6. Huang, G.-B., Ding, X., Zhou, H.: Optimization method based extreme learning
machine for classification. Neurocomputing 74(1), 155–163 (2010)

7. Lan, Y., Soh, Y.C., Huang, G.-B.: Constructive hidden nodes selection of extreme
learning machine for regression. Neurocomputing 73(16), 3191–3199 (2010)

8. Lan, Y., Soh, Y.C., Huang, G.-B.: Two-stage extreme learning machine for regres-
sion Neurocomputing 73(16), 3028–3038 (2010)

9. Huang, G.-B.: An insight into extreme learning machines: random neurons, random
features and kernels. Cognitive Computation, pp. 1–15 (2014)

10. Liang, N.-Y., Huang, G.-B., Saratchandran, P., et al.: A fast and accurate on-
line sequential learning algorithm for feedforward networks. IEEE Transactions on
Neural Networks 17(6), 1411–1423 (2006)

11. Li, K., Zhang, J., Xu, H., et al.: A Semi-supervised extreme learning machine
method based on co-training. J Comput. Inf. Syst. 9(1), 207–214 (2013)

12. Huang, G., Song, S., Gupta, J.N.D., et al.: Semi-supervised and unsupervised ex-
treme learning machines. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics (2014)

13. Tang, X., Han, M.: A semi-supervised learning method based on extreme learning
machine. Journal of Dalian University of Technology 50(5), 771–776 (2010)

14. Liu, J.-F., Chen, Y.-Q., Liu, M.-J., et al.: SELM: Semi-supervised ELM with appli-
cation in sparse calibrated location estimation. Neurocomputing 74(16), 2566–2572
(2011)

15. Blake, C., Merz, C.: UCI repository of machine learning databases Dept. Inf. Comp.
Sci. Univ.California, Irvine (1998)

16. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and
applications. Neurocomputing 70(1), 469–501 (2006)

17. Vapnik, V.: The nature of statistical learning theory. Springer (2000)
18. Chapelle, O., Sch, B., Zien, A.: Semi-Supervised Learning. MIT Press (2006),

http://www.kyb.tuebingen.mpg.de/ssl-book

19. Belkin, M., Matveeva, I., Niyogi, P.: Regularization and semi-supervised learning
on large graphs. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI),
vol. 3120, pp. 624–638. Springer, Heidelberg (2004)

http://www.kyb.tuebingen.mpg.de/ssl-book

ELM FeatureMappings Learning: Single-Hidden-Layer
Feedforward Network without OutputWeight

Yimin Yang1,2, Q.M. Jonathan Wu1, YaonanWang3,
DibyenduMukherjee1, and Yanjie Chen3

1 Department of Electrical and Computer Engineering,
University of Windsor, Windsor, N9B 3P4, Canada

2 College of Electric Engineering, Guangxi University,
Nanning, 530004, China

3 College of Electrical and Information Engineering,
Hunan University, Changsha, 410082, China

Abstract. According to conventional neural network theories, the feature of
single-hidden-layer feedforward neural networks(SLFNs) resorts to param-
eters of the weighted connections and hidden nodes. SLFNs are universal
approximatorswhen at least the parameters of the networks including hidden-
node parameter and output weight exist. Unlike above neural network the-
ories, this paper indicates that in order to let SLFNs work as universal ap-
proximators, one may simply calculate only the hidden node parameter and
the output weight is not required at all. In other words, this proposed neural
network architecture can be considered as a standard SLFN without output
weights. Furthermore, this paper presents experiments which show that the
proposed learningmethod tends to extremely reducenetwork output error to a
very small number with only several hidden nodes. Simulation results demon-
strate that the proposed method can provide hundreds times faster learn-
ing speed compared to other learning algorithms including BP, SVM/SVR and
other ELMmethods.

Keywords: Bidirectional extreme learning machine, Feedforward neural net-
work, Universal approximation, Learning effectiveness.

1 Introduction

The widespread popularity of neural networks in many fields is mainly due to
their ability to approximate complex nonlinear mappings directly from the input
samples. In the past two decades, due to their universal approximation capability,
feedforward neural networks (FNNs) havebeen extensively used in classification and
regression problem [1]. According to Jaeger’s estimation, 95% of relevant literature is
mainly on FNNs. As a specific type of FNN, the single-hidden-layer feedforward net-
work (SLFNs) plays an important role in practical applications. For N arbitrary dis-
tinct samples (xi ,ti), where xi = [xi1,xi2, · · · ,xin]T ∈Rn and ti ∈Rm , the input data is
mapped to L-dimensional feature mapping space, and the network output is

fL(x)=
L∑

i=1
βi g (ai ·x j +bi)=H(x)β, j = 1, · · · ,N (1)

© Springer International Publishing Switzerland 2015 311
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_27

312 Y. Yang et al.

where h(ai ,bi ,x) denotes the output of the i th hidden node with the hidden-node
parameters (ai ,bi) ∈ Rn ×R and βi ∈ R is the output weight between the i th hidden
node and the output node. ai ·x denotes the inner product of vector ai and x in Rn .
H is called the feature mapping.

An active topic on the universal approximation capability of SLFNs is on how to
determine the parameters ai ,bi , and βi (i = 1, · · · ,L) such that the network output
fL(x) can approximate a given target (T,T= [t1, · · · ,tN]). The feature of SLFNs resorts
to parameters of the output weight and hidden nodes parameters. According to con-
ventional neural network theories, SLFNs are universal approximators when all the
parameters of the networks including the hidden-node parameters (a,b) and output
weight β are allowed to be adjustable [2].

Unlike above neural network theories claiming that all the parameters in networks
are allowed to be adjustable, other researches proposed some semi-random network
theories [3][4][5]. For example, Lowe [5] focus on a specific RBF network: the centers
a in [5] can be randomly selected from the training data instead of tuning, but the
impact factor b of RBF hidden node is not randomly selected and usually determined
by users.

Unlike above semi-random network theories, in 2006, Huang et. al. [6][7] illus-
trated that iterative techniques are not required in adjusting all the parameters of
SLFNs at all. Based on this idea, Huang et. al. proposed full-random learningmethod
referred to as extreme learning machine (ELM). In [6][7], Huang et al have proved
that SLFNs with randomly generated hidden node parameter can work as univer-
sal approximators by only calculating the output weights linking the hidden layer to
the output nodes. Recent ELM development [8][9] shows that ELM unifies FNNs and
SVM/LS-SVM. Compared to ELM, LS-SVM and PSVM achieve suboptimal solutions
and have a higher computational cost. Also, applications of ELM have recently been
presented in computer vision [10][11], feature selection [12][13], power system anal-
ysis [14], automation control [15], etc.

Above neural network theories indicate that SLFNs canwork as universal approxi-
mation if at least hidden-node parameters1 and output weight should be exist. How-
ever, in this paper we indicate that output weights do not need exist in SLFNs at all.
During the recent 20 years, researchers who are trying to use NNs in their research
are facing following questions [16]: 1) What neural network architecture should be
used? 2) How many neurons should be used? Unfortunately, current neural net-
work theories cannot easy answers these questions. For first question, current neural
network theories indicate that NNs can work as universal approximation if at least
hidden-node parameters and output weight should be exist. For second question,
traditional theories demonstrate that with a correct number of hidden nodes with
correct parameters, any network can approximate a given function to a certain de-
gree of accuracy.

In [15]weproposeda learningalgorithm,calledbidirectionalextreme learningma-
chine (B-ELM) in which half of hidden-node parameters are not randomly selected
and are calculated by pulling back the network residual error to input weight. Our
recent experimental results indicate that in B-ELM[15], output weights play a very

1 Hidden-node parameters can be generated randomly.

ELM FeatureMappings Learning 313

minion role in the network learning effectiveness. Furthermore, recently Huang and
et al indicate that ELM feature mapping can also be used for feature selection and
clustering. Inspired by these results, in this paper, we show that B-ELM feature map-
ping can be used as a universal approximators. We indicate that SLFNs without out-
putweights can approximate any target continuous function and classify any disjoint
region if one pulls back error to hidden-node parameters. Thus different from tradi-
tional network theories, in this paper, we answer these two questions as follow: 1)
output weights do not need exist in SLFN at all; 2) this kind of networkwithm hidden
nodes can still approximate any target continuous function and classify any disjoint
regions. In particular, the following contributions have been made in this paper.

1) The learning speed of proposed learning method can be hundreds times faster
learning speed compared to other learning algorithms including SVM, BP and other
ELMs. Furthermore, it can provide good generalization performance and can be di-
rectly applied to regression and classification applications.

2) Contrary to conventional SLFNs which require the hidden node parameters
and output weights, in this paper, we proved that SLFNs without output weight can
still approximate any target continuous function and classify any disjoint region.
Thus the architecture of this single parameter neural network is considerably sim-
pler compared to traditional SLFNs.

3) One of the major difficulties facing researchers using NNs is the selection of the
proper size of the networks. This paper shows that the proposed learning method
with m hidden nodes can give significant improvements on accuracy instead of
maintaining a large number of hidden nodes2. Experimental results show that the
proposed method with only m hidden nodes can provide comparable or improved
generalization performance in comparison to other networks with thousands of
hidden nodes.

2 Preliminaries and Notation

2.1 Notations and Definitions

The sets of real, integer, positive real and positive integer numbers are denoted by
R,Z,R+ and Z+, respectively. Similar to [6], let �2(X) be a space of functions f on a
compact subset X in the n-dimensional Euclidean space Rn such that | f |2 are inte-
grable, that is,

∫
X | f (x)|2dx <∞. Let �2(Rn) be denoted by�2. For u,v ∈�2(X), the

inner product <u,v > is defined by

<u,v >=
∫

X
u(x)v(x)dx (2)

The norm in �
2(X) space will be denoted as || · ||. L denotes the number of hid-

den nodes. For N training samples, x,x ∈RN×n denotes the input matrix of network,
T ∈ RN×m denotes the desire output matrix of network. H ∈ RN×m is called the hid-
den layer output matrix of the SLFNs; the i th column of H (Hi) is the i th hidden
node output with respect to inputs. The hidden layer output matrix Hi is said to

2 m equal to the desired output dimensionality. Thus in real applications,m is a fixed value.

314 Y. Yang et al.

be randomly generated function sequenceHr
i if the corresponding hidden-node pa-

rameters (ai ,bi) are randomly generated. en (en ∈ RN×m) denotes the residual error
function for thecurrentnetwork fn withnhiddennodes. I isunitmatrix and I ∈Rm×m .

3 SLFNs without Output Weight

Basic idea: For fixed output weight βββ equal to unit matrix or vector (β ∈ Rm×m), to
train an SLFN is simply equivalent to finding a least-square solution a−1 of the linear
systemH(a,x)=T. If activation function can be invertible, to train an SLFN is simply
equivalent to pulling back residual error to input weight. For example, forN arbitrary
distinct samples {x,T}, (x ∈ RN×n ,T ∈ RN×m ,T ∈ [0,1]), if activation function is sine
function, to train an SLFN is simply equivalent to finding a least-square solution â of
the linear system a ·x= arcsin(T):

‖H(â1, · · · , ân ,x)−T‖=min
a

‖H(a1, · · · ,an ,x)−T‖ (3)

According to [16], the smallest norm least-squares solution of the above linear sys-
tem is ân = arcsin(en−1) ·x−1. Based on this idea, we give the following theorem.

Lemma 1. [6] Given a bounded nonconstant piecewise continuous function H : R→
R, we have

lim
(a,b)→(a0,b0)

‖H(a ·x+b)−H(a0 ·x+b0)‖= 0 (4)

Theorem1. Given N arbitrary distinct samples {x,T},x ∈ RN×n ,T ∈ RN×m, given
the sigmoid or sine activation function h, for any continuous desired output T,
limn→∞‖T− (Ĥ1(â1, b̂1,x)βββ1+·· ·+ Ĥn(ân , b̂n ,x)βββn‖= 0 holds with probability one if

He
n = en−1

ân = h−1(u(He
n)) ·x−1 , ân ∈Rn×m

b̂n =
√
mse(h−1(u(He

n))− ân ·x) , b̂n ∈Rm

(5)

Ĥn =u−1(h(ân ·x+ b̂n)) (6)

where if activation function h is sin/cos, given a normalized function u : R → [0,1];
if activation function h is sigmoid, given a normalized function u : R → (0,1]. h−1
and u−1 represent their reverse function, respectively. If h is sine activation function,
h−1(·) = arcsin(u(·); if h is sigmoid activation function, h−1(·) = − log(1

u(·) −1), x−1 =
xT (I+xxT)−1 .

Proof. For an activation function h(x) :R→R,He
n is given by

He
n = h(λn) (7)

In order to let λ2n ∈Rm , here we give a normalized function u(·): u(H) ∈ [0,1] if acti-
vation function is sin/cos; u(H) ∈ (0,1) if activation function is sigmoid. Then for sine
hidden node

λ2n = h−1(u(He
n))= (arcsin(u(He

n)) (8)

ELM FeatureMappings Learning 315

For sigmoid hidden node

λn = h−1(u(He
n))=− log(

1

u(He
n)

−1) (9)

Let λn = an ·x, for sine activation function, we have

ân = h−1(u(He
n)) ·x−1 = arcsin(u(He

n)) ·x−1 (10)

For sigmoid activation function, we have

ân = h−1(u(He
n)) ·x−1 =− log(

1

u(He
n)

−1) ·x−1 (11)

where x−1 is the Moore-Penrose generalized inverse of the given set of training ex-
amples [17]. Similar to [7], we have

1: ân = arcsin(u(He
n)) ·x−1 is one of the least-squares solutions of a general linear

system an ·x=λn , meaning that the smallest error can be reached by this solution:

‖ân ·x−λn‖ = ‖ânx−1x−λn‖=min
an

‖an ·x−arcsin(u(He
n))‖ (12)

2: the special solution ân = h−1(u(He
n)) ·x−1 has the smallest norm among all the

least-squares solutions of an · x = λn , which guarantees that that an ∈ [−1,1]. Al-
though the smallest error can be reached by equation (10)-(11), we still can reduce
its error by adding bias bn . For sine activation function:

b̂n =
√

mse(h−1(u(He
n))− ân ·x)

=
√

mse(arcsin(u(He
n))− ân ·x)

(13)

For sigmoid activation function

b̂n =
√
mse(h−1(u(He

n))− ân ·x)

=
√
mse((− log(1/u(He

n)−1))− ân ·x)
(14)

According to equation (12) and Lemma 1, we have

min
an

‖u−1(h(an ·x))−u−1(h(λn))‖
= ‖u−1(h(ân ·x))−u−1(h(λn))‖
> ‖u−1(h(ân ·x+ b̂n))−u−1(h(λn))‖= ‖σ‖

(15)

We consider the residual error as

�=‖en−1‖2−‖en−1−He
n‖2

=2βn〈en−1,He
n〉−‖He

n‖2

=‖He
n‖2(

2〈en−1,He
n〉

‖He
n‖2

−1)

(16)

316 Y. Yang et al.

Let

Ĥ
e
n =u−1(h(ân ·x+ b̂n))

= en−1±σ

= ên−1

(17)

Because ‖ên−1‖≥ ‖σ‖, we have�≥ 0 still valid for

�= ‖Ĥe
n‖2(

2‖‖〈ên−1±σ, ên−1〉
‖ên−1‖2 −1)

= ‖Ĥe
n‖2(

2(‖ên−1‖2±〈σ, ên−1〉)
‖ên−1‖2 −1)

= ‖Ĥe
n‖2(1±

‖σ · êTn−1‖
‖ên−1‖2)

≥ ‖Ĥe
n‖2(1±

‖σ‖
‖ên−1‖)≥ 0

(18)

Now based on equation (18), we have ‖en−1‖ ≥ ‖en‖, so the sequence ‖en‖ is de-
creasing, bounded below by zero and converges.

Remark 1. According to Theorem 1, for N arbitrary distinct samples (xi ,ti) where
xi = [xi1,xi2, · · · ,xiN]T ∈ Rn and ti ∈ Rm , the proposed network with d ×m hidden
nodes and activation function h(x) is mathematically modeled as

fL(x)=
d∑

c=1

m∑

i=1
u−1(h(ai ·x j +bi)), j = 1, · · · ,N (19)

where u is a normalized function, ai ∈Rn×m ,bi ∈Rm .

Remark 2. Different from other neural network learning methods in which output
weight parameter should be adjusted, in the proposed method, the output weight
of SLFNs can be equal to unit matrix and thus the proposed neural network does
not need output weight at all. Thus the architecture and computational cost of the
proposed method aremuch smaller than other traditional SLFNs.

Remark 3. Experiment show that the proposed method at the early learning stage
can give similar generalization performance as the proposed network with hundreds
of hidden node (see Figure 2). Based on the experimental results, for N arbitrary dis-
tinct samples (xi ,ti) where xi = [xi1,xi2, · · · ,xiN]T ∈ Rn and ti ∈ Rm , the proposed
network is mathematically modeled as

fL(x)=
m∑

i=1
u−1(h(a1 ·x j +b1)), j = 1, · · · ,N (20)

where u is a normalized function, a1 ∈Rn×m ,b1 ∈Rm . Thus algorithm 1 can bemod-
ified as algorithm 2.

ELM FeatureMappings Learning 317

Algorithm1. the proposed method

Initialization: Given a training set {(xi ,ti)}
N
i=1 ⊂Rn ×Rm , the activation functionH(·), con-

tinues target function f . Set number of hidden nodes L =m.
Learning step:
Step 1) setHe

L =T;
Step 2) calculate the input weights a1, · · · ,aL , bias b1, · · · ,bL based on equation (5);

Table 1. Specification of regression problems

Datasets Type #Attri #Train # Test

Auto MPG Regression 8 200 192
Machine CPU Regression 6 100 109

Fried Regression 11 20768 20000
Wine Quality Regression 12 2898 2000

Puma Regression 9 4500 3692
California Housing Regression 8 16000 4000

House 8L Regression 9 16000 6784
Parkinsonsmotor Regression 26 4000 1875
Parkinsons total Regression 26 4000 1875

Puma Regression 9 6000 2192
Delta elevators Regression 6 6000 3000

Abalone Regression 9 3000 1477
A9a Regression 123 32561 16281

colon-cancer Classification 2000 40 22
USPS Classification 256 7291 2007
Sonar Classification 60 150 58

Hill Valley Classification 101 606 606
Protein Classification 357 17766 6621

Covtype.binary Classification 54 300000 280000
Mushrooms Classification 112 4000 4122

Gisette Classification 5000 6000 1000
Leukemia Classification 7129 38 34

Duke Classification 7129 29 15
Connect-4 Classification 126 50000 17557

Mnist Classification 780 40000 30000
DNA Classification 180 1046 1186
w3a Classification 300 4912 44837

4 Experimental Verification

In this section, aimed at examining the performance of our proposed learning
method, we test the proposed method on 27 regression and classification prob-
lems. The experiments are conducted in Matlab 2013a with 32 GB of memory and
an E3-1230 v2 (3.3G) processor. In the experiment, Neural networks are first tested
on some SLFN methods including ELM, B-ELM, I-ELM, EM-ELM, PC-ELM, EI-ELM,
SVR/SVM and BP.

318 Y. Yang et al.

(a) the proposed network architecture

(b) the proposed network withm hidden nodes

Fig. 1. The proposed network architecture: The proposedmethod could be considered to sim-
ply standard feedforward neural networks without output weight β. Further more, the pro-
posed networkwithm hidden nodes (m is the dimensionality of desired output t) can provide
compared performance than other SLFNs with hundreds of hidden nodes.

4.1 Experiment Environment Settings

In order to extensively verify the performance of different algorithms in our experi-
ments, tested datasets are fromwide type including small size, medium dimensions,

ELM FeatureMappings Learning 319

large size, and/or high dimensions. These data sets include 13 regression problems,
14 classification problems and 4 image recognition problems (see Table I and VI).
Most of the data sets are taken fromUCIMachine Learning Repository3 and LIBSVM
DATA SETS4.

In these data sets, the input data are normalized into [−1,1] while the output data
for regression are normalized into the range [0,1]. All data sets have been prepro-
cessed in the same way (held-out method). Ten different random permutations of
the whole data set are taken without replacement, and some(see in tables) are used
to create the training set while the remaining is used for the test set. The average re-
sults are obtained over 10 trials for all problems. For SVMand SVR, in order to achieve
good generalization performance, the cost parameter C and kernel parameter γ of
SVM and SVR need to be chosen appropriately. We have tried a wide range of C and
γ. For each data set, we have used 30 different value of C and γ, resulting in a total
of 900 pairs of (C ,γ). The 30 different value of C and γ are {2−15,2−14, · · · ,214,215}.
For ELM, EM-ELM and our proposed method, the parameter C is selected from
C ∈ {2−15, · · · ,215}. The experimental results between the proposedmethod and these
competingmethods are given inTable II-Table VIII. In these tables, the similar results
obtained by different algorithms are underlined and the apparent better results are
shown in boldface.

Table 2. Performance comparison (mean-mean testing RMSE; time-training time)

Datasets I-ELM (200 nodes) B-ELM (200 nodes) EI-ELM (200 nodes) ELM (200 nodes) EM-ELM (200 nodes) proposedmethod (1 nodes)

Mean time(s) Mean time(s) Mean time(s) Mean time(s) Mean time(s) Mean time(s)

House 8L 0.0946 1.1872 0.0818 3.8821 0.0850 10.7691 0.0718 0.8369 0.0763 7.0388 0.0819 0.0020
Auto MPG 0.1000 0.2025 0.0920 0.3732 0.0918 1.3004 0.0976 0.0156 0.0968 0.0075 0.0996 <0.0001

Machine CPU 0.0591 0.1909 0.0554 0.3469 0.0551 1.2633 0.0513 0.0069 0.0521 0.1385 0.0439 <0.0001
Fried 0.1135 0.8327 0.0857 5.5063 0.0856 7.4016 0.0619 1.3135 0.0618 18.0290 0.0834 0.0051

Delta ailerons 0.0538 0.4680 0.0431 1.3946 0.0417 3.5478 0.0431 0.0616 0.0421 0.1342 0.0453 <0.0001
PDmotor 0.2318 0.4639 0.2241 4.7680 0.2251 3.9016 0.2190 0.2730 0.2196 0.7394 0.2210 0.0037
PD total 0.2178 0.4678 0.2137 4.9278 0.2124 3.7854 0.2076 0.2838 0.2094 0.5944 0.2136 0.0023
Puma 0.1860 0.5070 0.1832 2.1846 0.1830 4.2161 0.1602 0.3725 0.1478 4.8392 0.1808 0.0012

Abalone 0.0938 0.3398 0.0808 1.2549 0.0848 2.6676 0.0824 0.0761 0.0817 0.1638 0.0790 0.0017
Wine 0.1360 0.3516 0.1264 1.7098 0.1266 2.7126 0.1229 0.1950 0.1216 0.3806 0.1250 0.0031

California house 0.1801 1.1482 0.1450 7.2625 0.1505 12.0832 0.1354 0.9753 0.1302 3.5574 0.1420 0.0078

4.2 Real-World Regression Problems

In this subsection, all the incremental ELMs (I-ELM, B-ELM, EI-ELM) increase the
hidden nodes one by one till nodes-numbers equal to 200, while for fixed ELMs
(ELM, EM-ELM), 200-hidden-nodes are used. It can be seen that the proposed
method can always achieve similar performance as other ELMs with much higher
learning speed. In Table II and Table IV, for Machine CPU problem, the the pro-
posed method runs 1900 times, 3400 times and 12000 times faster than the I-ELM,
B-ELM and EI-ELM, respectively. For Abalone problem, the proposed method runs
200 times, 700 times and 1600 times faster than I-ELM, B-ELM and EI-ELM, respec-
tively. In Table V, for Wine problem, the proposed method runs 120 times and 60
times faster than EM-ELM and ELM, respectively. Also the testing RMSE of EI-ELM

3 http://archive.ics.uci.edu/ml/datasets.html
4 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

http://archive.ics.uci.edu/ml/datasets.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

320 Y. Yang et al.

Table 3. Performance comparison (mean-mean testing RMSE; time-training time)

Datasets ELM (1 nodes) the proposedmethod (1 nodes)

Mean time(s) Mean time(s)

House 8L 0.1083 0.0009 0.0819 0.0020
AutoMPG 0.2126 < 0.0001 0.0996 <0.0001

Machine CPU 0.1331 <0.0001 0.0439 <0.0001
Fried 0.2207 0.0031 0.0834 0.0051

Delta ailerons 0.0864 <0.0001 0.0453 <0.0001
PDmotor 0.2620 0.0020 0.2210 0.0037
PD total 0.2548 0.0007 0.2136 0.0023
Puma 0.2856 0.0012 0.1808 0.0012

Delta ele 0.1454 <0.0001 0.1174 <0.0001
Abalone 0.1363 0.0007 0.0828 0.0017
Wine 0.1750 0.0006 0.1250 0.0031

California house 0.2496 0.0027 0.1420 0.0078

Table 4. Performance comparison (mean-mean testing RMSE; time-training time)

Datasets Eplison-SVR BP the proposedmethod (1 nodes)

Mean time(s) Mean time(s) Mean time(s)

House 8L 0.0799 53.6531 0.0790 27.8462 0.0819 0.0020
AutoMPG 0.0985 0.0234 0.0953 1.6034 0.0996 <0.0001

Machine CPU 0.0727 0.0187 0.0843 0.7129 0.0439 <0.0001
Fried 0.0829 197.9534 0.0591 81.8774 0.0834 0.0051

Delta ailerons 0.0402 6.8718 0.0415 12.6735 0.0453 <0.0001
California house 0.1529 35.2250 0.1435 54.3081 0.1420 0.0078

PD total 0.2082 7.2540 0.2120 12.6438 0.2136 0.0023

is 2 times larger than that of B-ELM. The B-ELM runs 1.5 times faster than the I-ELM
and the testing RMSE for the obained I-ELM is 5 times larger than that for B-ELM.

If only 1-hidden-node is used, ELM methods such as I-ELM, ELM, EM-ELM and
B-ELM can be considered as the same as ELM. Thus in Table III, we carry out per-
formance comparisons between the proposed method and ELM. As observed from
Table III, the average testing RMSE obtained by the proposed method are much bet-
ter than that of ELM. For California house problem, the testing RMSE obtained by
ELM is 2 times larger than that of the proposed method. In real applications, SLFNs
with only 1 hidden nodes are extremely small network structures, meaning that after
training this small size networkmay respond to new external unknown stimuli much
faster and much more accurately than other ELM algorithms in real deployment.

ELM FeatureMappings Learning 321

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 46
64

66

68

70

72

74

76

Number of Hidden Nodes

A
ve

ra
g

e
 T

e
st

in
g

 A
cc

u
ra

cy
 f

o
r

co
n

n
e

ct
4

 (
%

)

The Proposed Method
PC−ELM
ELM
I−ELM
EM−ELM
EI−ELM (p=40)

(a) Result on Connect4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
50

55

60

65

70

75

80

85

90

Number of Hidden Nodes

A
ve

ra
g

e
 T

e
st

in
g

 A
cc

u
ra

cy
 f

o
r

L
e

u
 (

%
)

The Proposed Method
PC−ELM
EI−ELM (p=40)
I−ELM
ELM
EM−ELM

(b) Result on Leukemia

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

50

55

60

65

70

Number of Hidden Nodes

A
ve

ra
g

e
 T

e
st

in
g

 A
cc

u
ra

cy
 f

o
r

C
o

va
p

p
 (

%
)

ELM
The proposed method
I−ELM
EI−ELM (p=40)
PC−ELM
EM−ELM

(c) Result on Covtype

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
40

50

60

70

80

90

100

Number of Hidden Nodes

A
ve

ra
g
e
 T

e
st

in
g
 A

cc
u
ra

cy
 f
o
r

D
u
ke

 (
%

)

ELM
EM−ELM
I−ELM
EI−ELM
PC−ELM
The Proposed Method

(d) Result on Duke

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

A
ve

ra
g
e
 T

e
st

in
g
 A

cc
u
ra

cy
 f
o
r

H
ill

y
V

a
lle

y
(%

)

ELM
PC−ELM
EI−ELM
I−ELM
EM−ELM
The Proposed Method

(e) Result on Hill Valley

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
45

50

55

60

65

70

Number of Hidden Nodes

A
ve

ra
g
e
 T

e
st

in
g
 A

cc
u
ra

cy
 f
o
r

P
ro

te
in

 D
a
ta

se
t
(%

)

The Proposed Method
ELM
EM−ELM
I−ELM
EI−ELM
PC−ELM

(f) Result on Protein

Fig. 2. Performance of the proposedmethod with different learningmethods

322 Y. Yang et al.

Table 5. Performance comparison (mean-mean testing RMSE; time-training time)

Datasets SVM ELM the proposedmethod (m nodes)

Mean time(s) Mean time(s) #node Mean time(s) node

Covtype.binary 74.84% 413.5275 77.27% 36.5947 500 76.55% 1.2043 2
Mushrooms 89.10% 38.6247 88.91% 0.9126 500 88.84% 0.0047 2

Gisette 77.68% 309.3968 88.69% 6.4093 500 98.00% 48.2027 2
Leukemia 82.58% 2.3914 77.06% 9.0340 5000 88.24% 20.9915 2

W3a 97.18% 4.5552 97.95% 0.9095 500 97.20% 0.1872 2
Duke 86.36% 0.0156 79.32% 7.8437 5000 92.95% 20.0352 2

Connect-4 66.01% 569.6221 76.89% 7.3757 500 75.40% 0.7597 3
Mnist 70.85% 478.4707 91.60% 8.1651 500 86.70% 8.8858 10
DNA 93.70% 0.4680 91.42% 0.2122 500 93.51% 0.0187 3
A9a 77.39% 295.0603 85.10% 4.5871 500 85.57% 0.5714 2

Colon 81.67% 10.0156 80.67% 11.6283 5000 84.83% 0.9719 2
USPS 94.65% 146.4942 93.54% 2.0639 500 93.86% 0.4898 10
Sonar 86.29% 0.0172 80.86% 0.0686 500 75.69% <0.0001 2

Hill Valley 58.67% 0.1295 76.31% 0.1647 500 98.78% 0.0047 2
Protein 51.18% 253.5796 67.09% 5.0919 500 68.76% 1.9953 3

4.3 Real-World Classification Problems

In order to indicate the advantage of the proposed method on classification perfor-
mance, the testing accuracy of the proposed method and other algorithms have also
been compared. Table V and Figure 2 display the performance comparison of PC-
ELM, EI-ELM, I-ELM, ELM, EM-ELM, SVM and the proposed method. As seen from
these experimental results, the proposed method can always achieve comparable
or better performance in comparison to other methods with much faster learning
speed. For example, we consider Covtype.binary (large number of training samples
with medium input dimensions), Mushroom, Hill Valley (medium number of train-
ing samples with medium input dimensions), Connect-4 (large number of training
samples with medium input dimensions).

1) For Covtype.binary dataset, the proposedmethod provides comparable perfor-
mance and runs 403 times and 35 times faster than SVM and ELM, respectively.

2) For Mushroom dataset, the proposed method provides comparable perfor-
mance and runs 8200 times and 190 times faster than SVM and ELM, respectively.

3) For Hill Valley dataset, the proposed method provides better performance and
runs 27 times and 35 times faster than SVM and ELM, respectively.

4) For Connect-4 dataset, the proposed method provides comparable perfor-
mance and runs 758 times and 10 times faster than SVM and ELM, respectively.

On the other hand, contrary to other learning methods which are sensitive to the
parameter (C) and number of hidden nodes, the proposed method with sigmoid
nodes is not sensitive to the unique user-specified parameters (C and number of
hidden nodes, see Fig.3) and is easy to use in the respective implementations.

ELM FeatureMappings Learning 323

5 Conclusion

Unlike other SLFN learningmethods, in our newapproach, onemay simply calculate
the hidden node parameter once and the output weight is not required at all. Also, it
has been rigorously proved that the proposedmethod can greatly enhance the learn-
ing effectiveness, reduce the computation cost, and eventually further increase the
learning speed. The simulation results on sigmoid type of hidden nodes show that
compared to other learningmethods including SVM/SVR, BP and ELMs, the new ap-
proach can significantly reduce the NN training time several to thousands of times
and can applied to regression and classification problems. Thus this method can be
used efficiently in many applications. Furthermore, experimental results show that
this proposed learning method with m hidden node can achieve similar or better
generalization performance than other learning method with hundreds of hidden
nodes. This phenomenon of this proposed method bring about many advantages,
and it maybe have far reaching consequences on the generalization ability of neural
network.

References

1. Lin, H.T., Liang, T.J., Chen, S.M.: Estimation of battery state of health using probabilistic
neural network. IEEE Transactions on Industrial Informatics 9(2), 679–685 (2013) [311]

2. Zhang, R., Lan, Y., Huang, G.B., Xu, Z.B.: Universal approximation of extreme learningma-
chine with adaptive growth of hidden nodes. IEEE Transactions on Neural Networks and
Learning Systems 23(2), 365–371 (2012) [312]

3. Igelnik, B., Pao, Y.H.: Stochastic choice of basis functions in adaptive function approxima-
tion and the functional-link net. IEEE Transactions on Neural Networks 6(6), 1320–1329
(1995) [312]

4. Pao, Y.H., Park, G.H., Sobajic, D.J.: Learning and generalization characteristics of the ran-
dom vector functional-link net. Neurocomputing 6(2), 163–180 (1994) [312]

5. Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks.
Complex Systems 2, 321–355 (1988) [312]

6. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental construc-
tive feedforward networks with random hidden nodes. IEEE Transactions on Neural Net-
works 17(4), 879–892 (2006) [312, 313, 314]

7. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: Theory and applications.
Neurocomputing 70, 489–501 (2006) [312, 315]

8. Huang, G.B., Zhou, H.M., Ding, X.J., Zhang, R.: Extreme learning machine for regression
and multiclass classification. IEEE Transactions on Systems Man and Cybernetics Part B-
Cybernetics 42(2), 513–529 (2012) [312]

9. Huang, G.B.: An insight into extreme learning machines: Random neurons, random fea-
tures and kernels. Cognitive Computation (2014), doi:10.1007/s12559-014-9255-2 [312]

10. Baradarani, A., Wu, Q.M.J., Ahmadi, M.: An efficient illumination invariant face recogni-
tion framework via illumination enhancement and dd-dtcwt filtering. Pattern Recogni-
tion 46(1), 57–72 (2013) [312]

11. Minhas, R., Mohammed, A.A., Wu, Q.M.J.: Incremental learning in human action recog-
nition based on snippets. IEEE Transactions On Circuits and Systems For Video Technol-
ogy 22(11), 1529–1541 (2012), doi:10.1109/TCSVT.2011.2177182 [312]

324 Y. Yang et al.

12. Huang, G.B., Kasun, L.L.C., Zhou, H., Vong, C.M.: Representational learning with extreme
learningmachine for big data. IEEE Intelligent Systems 28(6), 31–34 (2013) [312]

13. Mohammed, A.A., Minhas, R., Wu, Q.M.J., Sid-Ahmed, M.A.: Human face recogni-
tion based on multidimensional pca and extreme learning machine. Pattern Recogni-
tion 44(10-11), 2588–2597 (2011) [312]

14. Xu, Y., Dong, Z.Y., Xu, Z., Meng, K., Wong, K.P.: An intelligent dynamic security assessment
framework for power systems with wind power. Ieee Transactions on Industrial Informat-
ics 8(4), 995–1003 (2012) [312]

15. Yang, Y.M., Wang, Y.N., Yuan, X.F.: Parallel chaos search based incremental extreme learn-
ing machine. Neural Processing Letters 37(3), 277–301 (2013) [312]

16. Hunter, D., Yu, H., Pukish, M.S., Kolbusz, J., Wilamowski, B.M.: Selection of proper neu-
ral network sizes and architectures-a comparative study. IEEE Transactions on Industrial
Informatics 8(2), 228–240 (2012) [312]

17. Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal prob-
lems. Technometrics 42(1), 80–86 (2000) [315]

© Springer International Publishing Switzerland 2015
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,

325

Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_28

ROS-ELM: A Robust Online Sequential Extreme
Learning Machine for Big Data Analytics

Yang Liu1, Bo He1,*, Diya Dong1, Yue Shen1, Tianhong Yan2,*,
Rui Nian1, and Amaury Lendasse3

1 School of Information Science and Engineering, Ocean University of China,
238 Songling Road, Qingdao 266100, China

2 School of Mechanical and Electrical Engineering, China Jiliang University,
258 Xueyuan Street, Xiasha High-Edu Park, Hangzhou 310018, China

3 Department of Mechanical and Industrial Engineering and the Iowa Informatics Initiative,
3131 Seamans Center, The University of Iowa, Iowa City, IA 52242-1527, USA

bhe@ouc.edu.cn, thyan@163.com

Abstract. In this paper, a robust online sequential extreme learning machine
(ROS-ELM) is proposed. It is based on the original OS-ELM with an adaptive
selective ensemble framework. Two novel insights are proposed in this paper.
First, a novel selective ensemble algorithm referred to as particle swarm opti-
mization selective ensemble (PSOSEN) is proposed. Noting that PSOSEN is a
general selective ensemble method which is applicable to any learning algo-
rithms, including batch learning and online learning. Second, an adaptive selec-
tive ensemble framework for online learning is designed to balance the robust-
ness and complexity of the algorithm. Experiments for both regression and clas-
sification problems with UCI data sets are carried out. Comparisons between
OS-ELM, simple ensemble OS-ELM (EOS-ELM) and the proposed ROS-ELM
empirically show that ROS-ELM significantly improves the robustness and sta-
bility.

Keywords: extreme learning machine, online learning, selective ensemble,
PSOSEN, robustness.

1 Introduction

Due to the advancement of data acquisition, the amount of information in many
fields of sciences increases very rapidly. The world is entering the age of big data.
Large data set is helpful to analyze various phenomena because abundant information
is available. However, it also raises many new problems. First, the computational time
for big data analytics increasing rapidly. Second, various data sets require more robust
learning algorithms.

Feedforward neural networks is one of the most prevailing neural networks, which
is very popular for data processing in the past decades[1-2]. However, all the parame-
ters in the networks need to be tuned iteratively. Moreover, the slow gradient descent

* Corresponding author.

326 Y. Liu et al.

based learning methods are always used to train the networks[3]. Therefore, the learn-
ing speed of the feedforward neural networks is very slow, which limits its applica-
tions.

Recently, an original algorithm designed for single hidden layer feedforward neu-
ral networks (SLFNs) named extreme learning machine (ELM) was proposed by
Huang et al.[4]. ELM is a tuning free algorithm for it randomly selects the input
weights and biases of the hidden nodes instead of learning these parameters. And also,
the output weights of the network are then analytically determined. ELM proves to be
a few orders faster than traditional learning algorithms and obtains better generaliza-
tion performance as well. It lets the fast and accurate big data analytics becomes pos-
sible and has been applied to many fields[5-7].

However, the algorithms mentioned above need all the training data available to
build the model, which is referred to as batch learning. In many industrial applica-
tions, it is very common that the training data can only be obtained one by one or
chunk by chunk. If batch learning algorithms are performed each time new training
data is available, the learning process will be very time consuming. Hence online
sequential learning is necessary for many real world applications.

An online sequential extreme learning machine is then proposed by Liang et al.[8].
OS-ELM can learn the sequential training observations online at arbitrary length (one
by one or chunk by chunk). New arrived training observations are learned to modify
the model of the SLFNs. As soon as the learning procedure for the arrived observa-
tions is completed, the data is discarded. Moreover, it has no prior knowledge about
the amount of the observations which will be presented. Therefore, OS-ELM is an
elegant sequential learning algorithm which can handle both the RBF and additive
nodes in the same framework and can be used to both the classification and function
regression problems. OS-ELM proves to be a very fast and accurate online sequential
learning algorithm[9-11], which can provide better generalization performance in
faster speed compared with other sequential learning algorithms such as GAP-RBF,
GGAP-RBF, SGBP, RAN, RANEKF and MRAN etc.

However, various data sets require more robust learning algorithms. Due to the ran-
dom generation of the parameters for the hidden nodes, the robustness and stability of
OS-ELM sometimes cannot be guaranteed, similar to ELM. Some ensemble based
methods and pruning based methods have been applied to ELM to improve its robust-
ness[12-15]. Ensemble learning is a learning scheme where a collection of a finite num-
ber of learners is trained for the same task[16-17]. It has been demonstrated that the
generalization ability of a learner can be significantly improved by ensembling a set of
learners. In [18] a simple ensemble OS-ELM, i.e., EOS-ELM, has been investigated.
However, Zhou et al.[19] proved that selective ensemble is better a choice. We apply
this idea to OS-ELM. At first, a novel selective ensemble algorithm--PSOSEN, is pro-
posed. PSOSEN adopts particle swarm optimization[20] to select the individual OS-
ELMs to form the ensemble. It should be noted that PSOSEN is a general selective
ensemble algorithm suitable for any learning algorithms.

Different from batch learning, online learning algorithms need to perform learning
continually. Therefore the complexity of the learning algorithm should be taken into
account. Obviously, performing selective ensemble learning each step is not a good
choice for sequential learning. Thus we designed an adaptive selective ensemble frame-
work for OS-ELM. A set of OS-ELMs are trained online, and the root mean square error

 A Robust Online Sequential Extreme Learning Machine for Big Data Analytics 327

(RMSE) will always be calculated. The error will be compared with a pre-set threshold
. If RMSE is bigger than the threshold, it means the model is not accurate. Then

PSOSEN will be performed and a selective ensemble M is obtained. Otherwise, it
means the model is relatively accurate and the ensemble will not be selected. Then the
output of the system is calculated as the average output of the individuals in the ensemble
set. And each individual OS-ELM will be updated recursively.

UCI data sets[21], which contain both regression and classification data, are used to
verify the feasibility of the proposed ROS-ELM algorithm. Comparisons of three
aspects including RMSE, standard deviation and running time between OS-ELM,
EOS-ELM and ROS-ELM are presented. The results convincingly show that ROS-
ELM significantly improves the robustness and stability compared with OS-ELM and
EOS-ELM.

The rest of the paper is organized as follows: In section 2, previous work including
ELM and OS-ELM are reviewed. A novel selective ensemble based on particle swarm
optimization is presented in section 3. An adaptive selective ensemble framework is
designed for OS-ELM referred to as ROS-ELM, is proposed in section 4. Experi-
ments are carried out in section 4 and the comparison results are also presented. In
section 5, we draw the conclusion of the paper.

2 Review of Related Works

In this section, both the basic ELM algorithm and the online version OS-ELM are
reviewed in brief as the background knowledge for our work.

2.1 Extreme Learning Machine (ELM)

ELM algorithm is derived from single hidden layer feedforward neural networks
(SLFNs). Unlike traditional SLFNs, ELM assigns the parameters of the hidden nodes
randomly without any iterative tuning. Besides, all the parameters of the hidden nodes
in ELM are independent with each other. Hence ELM can be seen as generalized
SLFNs. The only problem for ELM is to calculate the output weights.

Given N training samples (), n m
i ix t R R∈ × , where ix is an input vector of

n dimensions and it is a target vector of m dimensions. Then SLFNs with N

hidden nodes each with output function (), ,i iG a b x are mathematically modeled as

 () ()
1

, , , 1, , .
N

j i i i j jN
i

f x G a b x t j Nβ
=

= = =∑ (1)

Where (),i ia b are parameters of hidden nodes, and iβ is the weight vector

connecting the i th hidden node and the output node. To simplify, equation (1) can be
written equivalently as:

 H Tβ = (2)

λ

328 Y. Liu et al.

where

()
() ()

() ()

1 1 1 1

1 1 1

1 1

, , , ,

, , , , , , , ,

, , , ,

N N

N NN

N NN N
N N

G a b x G a b x

H a a b b x x

G a b x G a b x
×

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3)

1
T

T
N N m

β
β

β
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1
T

T
N N m

t

T

t
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦ (4)

H is called the hidden layer output matrix of the neural network, and the i th
column of H is the output of the i th hidden node with respect to inputs

1 2, , , Nx x x
.

In ELM, H can be easily obtained as long as the training set is available and the

parameters (),i ia b are randomly assigned. Then ELM evolves into a linear system

and the output weights β are calculated as:

 †ˆ H Tβ = (5)

where †H is the Moore-Penrose generalized inverse of matrix H .
The ELM algorithm can be summarized in three steps as shown in Algorithm 1:

Algorithm 1
Input:

A training set (){ }, , , 1, ,n m
i i i ix t x R t R i N= ∈ ∈ = , hidden node output

function (), ,i iG a b x , and the number of hidden nodes N

Steps:

1. Assign parameters of hidden nodes (),i ia b randomly, 1, ,i N= .

2. Calculate the hidden layer output matrix H .

3. Calculate the output weight β : †ˆ H Tβ = , where †H is the Moore-Penrose

generalized inverse of hidden layer output matrix H .

 A Robust Online Sequential Extreme Learning Machine for Big Data Analytics 329

2.2 OS-ELM

In many industrial applications, it is impossible to have all the training data available
before the learning process. It is common that the training observations are sequential-
ly inputted to the learning algorithm, i.e., the observations arrive one-by-one or
chunk-by-chunk. In this case, the batch ELM algorithm is no longer applicable.
Hence, a fast and accurate online sequential extreme learning machine was proposed
to deal with online learning.

The output weight β obtained from equation (5) is actually a least-squares solu-

tion of equation (2). Given ()rank H N= , the number of hidden nodes, †H can

be presented as:

 () 1† T TH H H H
−

= (6)

This can also be called the left pseudoinverse of H for it satisfies the equation
†

N
H H I= . If TH H tends to be singular, smaller network size N and larger

data number 0N should be chosen in the initialization step of OS-ELM. Substituting

equation (6) to equation (5), we can get

 () 1ˆ T TH H H Tβ
−

= (7)

which is the least-squares solution to equation (2). Then the OS-ELM algorithm can
be deduced by recursive implementation of the least-squares solution of (7).

There are two main steps in OS-ELM, initialization step and update step. In the ini-

tialization step, the number of training data 0N needed in this step should be equal to

or larger than network size N . In the update step, the learning model is updated with

the method of recursive least square (RLS). And only the newly arrived single or
chunk training observations are learned, which will be discarded as soon as the learn-
ing step is completed.

The two steps for OS-ELM algorithm in general:

a. Initialization step: batch ELM is used to initialize the learning system with a

small chunk of initial training data (){ } 0

0 1
,

N

i i i
x t

=
= from given training set

(){ }, , , , 1,n m
i i i ix t x R t R i= ∈ ∈ = 0N N≥ .

1. Assign random input weights ia and bias ib (for additive hidden nodes)

or center ia and impact factor ib (for RBF hidden nodes), 1, ,i N= .

2. Calculate the initial hidden layer output matrix:

330 Y. Liu et al.

() ()

() ()
0 0

0

1 1 1 1

0

1 1

, , , ,

, , , ,

N N

N NN N N N

G a b x G a b x

H

G a b x G a b x
×

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (8)

3. Calculate the initial output weight ()0
0 0 0

TP H Tβ = , where

() 1

0 0 0
TP H H

−
= and []0 1 0, ,

T

NT t t= .

4. Set k=0. Initialization is finished.
b. Sequential learning step:

The ()1k + th chunk of new observations can be expressed as:

 (){ } ()
1

0

0

1 1
,

k
jj

k
jj

N

k i i i N
x t

+

=

=
+ = +

∑=
∑

 (9)

where 1k + represents the number of observations in the (k+1)th chunk newly

arrived.

1. Compute the partial hidden layer output matrix 1kH + for the ()1k + th chunk.

() ()0 0

1 1

0 0

1

1 1 1 1

1

1 1

, , , ,

, , , ,

k k
j jj j

k k
j jj j

k

N NN N

k

N NN N

N N

G a b x G a b x

H

G a b x G a b x

= =

+ +

= =
+

+ +

+

×

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟∑ ∑⎝ ⎠ ⎝ ⎠⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎢ ⎥∑ ∑⎝ ⎠ ⎝ ⎠⎣ ⎦

 (10)

2. Set
() 1

00

1 1
, , kk

jj jj

T

k NN
T t t +

==
+ +

⎡ ⎤
= ⎢ ⎥∑∑⎣ ⎦ . And we have

 1 1 1
T

k k k kK K H H+ + += +
 (11)

 () () ()()1 1
1 1 1 1

k k kT
k k k kK H T Hβ β β+ −

+ + + += + − (12)

To avoid calculating inverse in the iterative procedure, 1
1kK −

+ is factored as the fol-

lowing according to Woodbury formula:

 A Robust Online Sequential Extreme Learning Machine for Big Data Analytics 331

()

()

11
1 1 1

11 1 1 1
1 1 1 1

T
k k k k

T T
k k k k k k k k

K K H H

K K H I H K H H K

−−
+ + +

−− − − −
+ + + +

= +

= − +
 (13)

Let 1
1 1k kP K −

+ += .

3. Calculate the output weight ()1kβ +
, according to the updating equations:

 () 1

1 1 1 1 1
T T

k k k k k k k k kP P P H I H P H H P
−

+ + + + += − + (14)

 () () ()()1
1 1 1 1

k k kT
k k k kP H T Hβ β β+

+ + + += + − (15)

4. Set 1k k= + . Go to step b.

3 Particle Swarm Optimization Selective Ensemble

In this section, a novel selective ensemble method referred to as particle swarm opti-
mization selective ensemble (PSOSEN) is proposed. PSOSEN adopts particle swarm
optimization to select the good learners and combine their predictions. Detailed pro-
cedures of the PSOSEN algorithm will be introduced in this section.

Zhou et al.[19] have demonstrated that ensembling many of the available learners
may be better than ensembling all of those learners in both regression and classifica-
tion. The detailed proof of this conclusion will not be presented in this paper. Howev-
er, one important problem for selective ensemble is how to select the good learners in
a set of available learners.

The novel approach--PSOSEN, is proposed to select good learners in the ensemble.
PSOSEN is based on the idea of heuristics. It assumes each learner can be assigned a
weight, which could characterize the fitness of including this learner in the ensemble.
Then the learner with the weight bigger than a pre-set threshold λ could be selected
to join the ensemble.

We will explain the principle of PSOSEN from the context of regression. We use

iω to denote the weight of the i th component learner. The weight should satisfy the

following equations:

 i0 1ω≤ ≤ (16)

1

1
N

i
i

ω
=

=∑ (17)

332 Y. Liu et al.

Then the weight vector is:

 1 2(, ,...,)Nω ω ω ω= (18)

Suppose input variables mx R∈ according to the distribution ()p x , the true

output of x is ()d x , and the actual output of the i th learner is ()if x . Then the

output of the simple weighted ensemble on x is:

1

() ()
N

i i
i

f x f xω
=

=∑ (19)

Then the generalization error ()iE x of the i th learner and the generalization er-

ror ()E x of the ensemble are calculated on x respectively:

 2() (() ())i iE x f x d x= − (20)

 2() (() ())E x f x d x= − (21)

The generalization error iE of the i th learner and that of the ensemble E are

calculated on ()p x respectively:

 () ()i iE dxp x E x= ∫ (22)

 () ()E dxp x E x= ∫ (23)

We then define the correlation between the i th and the j th component learner as
following:

 ()(() ())(() ())ij i jC dxp x f x d x f x d x= − −∫ (24)

Obviously ijC satisfies the following equations:

 ii iC E= (25)

 ij jiC C= (26)

 A Robust Online Sequential Extreme Learning Machine for Big Data Analytics 333

Considering the equations defined above, we can get:

1 1

() (() ())(() ())
N N

i i j j
i j

E x f x d x f x d xω ω
= =

= − −∑ ∑ (27)

1 1

N N

i j ij
i j

E Cω ω
= =

=∑ ∑ (28)

To minimize the generalization error of the ensemble, according to equation (28),
the optimum weight vector can be obtained as:

1 1

arg min()
N N

opt i j ij
i j

C
ω

ω ω ω
= =

= ∑ ∑ (29)

The k th variable of optω , i.e., .opt kω , can be solved by Lagrange multiplier:

1 1 i=1

.

-2* 1

0

N N N

i j ij i
i j

opt k

Cω ω λ ω

ω
= =

∂ −
=

∂

∑ ∑ ∑（ （ ））

 (30)

The equation can be simplified to:

 .
1

N

opt k kj
j
j k

Cω λ
=
≠

=∑ (31)

Taking equation (2) into account, we can get:

1

1
.

1

1 1

N

kj
j

opt k N N

i j ij
i j

C

C
ω

ω ω

−

=

−

= =

=
∑

∑ ∑
 (32)

Equation (32) gives the direct solution for optω . But the solution seldom work

well in real word applications. Due to the fact that some learners are quite similar in

performance, when a number of learners are available, the correlation matrix ijC

may be irreversible or ill-conditioned.
Although we cannot obtain the optimum weights of the learner directly, we can ap-

proximate them in some way. Equation (29) can be viewed as an optimization prob-
lem. As particle swarm optimization has been proved to be a powerful optimization
tool, PSOSEN is then proposed. The basic PSO algorithm is showed in Figure 1.

334 Y. Liu et al.

Fig. 1. Flowchart for particle swarm optimization algorithm

PSOSEN randomly assigns a weight to each of the available learners at first. Then
it employs particle swarm optimization algorithm to evolve those weights so that the
weights can characterize the fitness of the learners in joining the ensemble. Finally,
learners whose weight is bigger than a pre-set threshold λ are selected to form the

ensemble. Note that if all the evolved weights are bigger than the threshold λ , then
all the learners will be selected to join the ensemble.

PSOSEN can be applied to both regression and classification problems for the pur-
pose of the weights evolving process is only to select the component learners. In par-
ticular, the output of the ensemble for regression are combined via simple averaging
instead of weighted averaging. The reason is that previous work [19] showed that
using the weights both in selection of the component learners and combination of the
outputs tends to suffer the overfitting problem.

In the process of generating population, the goodness of the individuals are evalu-

ated via validation data bootstrap sampled from the training data set. We use
V

Eω to
denote the generalization error of the ensemble, which corresponds to individual ω

on the validation data V . Obviously
V

Eω can describe the goodness of ω .

 A Robust Online Sequential Extreme Learning Machine for Big Data Analytics 335

The smaller
V

Eω is, the better ω is. So, PSOSEN adopts () 1/
V

f Eωω = as the
fitness function.

The PSOSEN algorithm is summarized as follows. 1 2, ,..., TS S S are bootstrap

samples generated from original training data set. A component learner tN is trained

from each TS . And an selective ensemble *N is built from 1 2, ,..., TN N N . The

output is the average output of the ensemble for regression, or the class label who
receives the most number in voting process for classification.

PSOSEN
Input: training set S, learner L, trial T, threshold λ
Steps:
1. for t = 1 to T{
 TS =bootstrap sample from S

 TN = ()TL S

}
2. generate a population of weight vectors
3. evolve the population by PSO, where the fitness of the weight vector ω is defined

as () 1/
V

f Eωω = .

4. *ω = the evolved best weight vector

Output: ensemble *N :

*

*() ()
i

tN x Ave N x
ω λ>

= ∑ for regression

*
i

*

, ()

() 1arg max
tN x yy Y

N x
ω λ> =∈

= ∑
 for classification

4 Robust Online Sequential Extreme Learning Machine

In this section, the detailed procedure of the proposed robust online sequential learn-
ing algorithm is introduced. The novel selective ensemble algorithm--PSOSEN is
applied to the original OS-ELM to improve the robustness. In order to reduce the
complexity and employ PSOSEN flexibly, an adaptive framework is then designed.
The new algorithm, which is based on OS-ELM and adaptive ensemble, is termed as
robust online sequential extreme learning machine (ROS-ELM).

The flowchart of ROS-ELM is showed as follows:

336 Y. Liu et al.

Y

OS-ELM(2)

Initialization

OS-ELM(N)OS-ELM(N-1)OS-ELM(1)
...

()2

,
1

N

i L
i

f f
E

N
=

−
=
∑

E λ>

M=PSOSEN of N M=N

, ,
1 1

1 1M M

out j L j j k
j j

Y f H
M M

β
= =

= = ⋅∑ ∑

OS-ELM(2)
update

recursively

OS-ELM(N)
update

recursively

OS-ELM(N-1)
update

recursively

OS-ELM(1)
update

recursively
...

N

Fig. 2. Flowchart for the ROS-ELM algorithm

Online sequential learning is necessary in many industrial applications. In this situ-
ations, training data can only be obtained sequentially. Although OS-ELM is pro-
posed as a fast and accurate online learning algorithm, it still suffers from the robust-
ness problem, which results from the random generation of the input weights and
biases, similar to ELM. Ensemble methods has been investigated in OS-ELM, i.e., the
EOS-ELM algorithm[18]. However, it is only very simple ensemble method, which
just calculates the average of all the N individual OS-ELMs. In this section, selective
ensemble, which is superior to simple ensemble, is adopted to OS-ELM. The novel
selective ensemble method--PSOSEN, proposed in section 3, is chose as the algo-
rithm. Apparently, performing PSOSEN each step is a time consuming process. We
design an adaptive framework to determine whether to perform PSOSEN or simple
ensemble. Thus the robustness and the complexity can be balanced well. The ROS-
ELM algorithm can be explained as follows:

 A Robust Online Sequential Extreme Learning Machine for Big Data Analytics 337

First, N individual OS-ELMs are initialized. The number of nodes is same for each
OS-ELM. While the input weights and biases for each OS-ELM are randomly gener-
ated.

Second, the RMSE error is calculated:

()2

,
1

N

i L
i

f f
E

N
=

−
=
∑

 (33)

where f is the expected output, while ,i Lf is the actual output of the i th individ-

ual OS-ELM.
The RMSE will be compared with a pre-set threshold λ . If E is bigger than λ ,

which means simple ensemble is not accurate, PSOSEN is performed and a selective
ensemble M is obtained. And if E is smaller than λ , which indicates that simple
ensemble is relatively accurate, the ensemble will not be selected.

Third, the output of the system is calculated as the average output of the individual
in the ensemble set:

 , ,
1 1

1 1M M

out j L j j k
j j

Y f H
M M

β
= =

= = ⋅∑ ∑ (34)

where jH is the output matrix of the j th OS-ELM, and ,j kβ is the output weight

calculated by the j th OS-ELM at step k .
At last, each OS-ELM will update recursively according to the update equations

presented in section 2.

5 Performance Evaluation of ROS-ELM

In this section, a series of experiments were conducted to evaluate the performance of
the proposed ROS-ELM algorithm. OS-ELM and EOS-ELM are also compared with
ROS-ELM in this section. All the experiments were carried out in the MatlabR2012b
environment on a desktop of CPU 3.40GHz and 8GB RAM.

5.1 Model Selection

For OS-ELM, the number of hidden nodes is the only parameter needs to be deter-
mined. Cross-validation method are usually used to choose this parameter. Fifty trials
of simulations are performed respectively for classification, regression and time-series
problems. The number of hidden nodes is then determined by the validation error.

For EOS-ELM and ROS-ELM, there is another parameter that needs to be deter-
mined, i.e., the number of networks in the ensemble. The parameter is set from 5 to 30

338 Y. Liu et al.

with the interval 5. Finally, the optimal parameter is selected according to the RMSE
for regression, testing accuracy for classification and standard deviation value. Under
the same problem, the number of OS-ELMs is selected based on the lowest standard
deviation and the comparable RMSE or accuracy compared with OS-ELM. Table 1 is
an example of selecting the optimal number of networks for ROS-ELM with RBF
hidden nodes on New-thyroid dataset. As illustrated by Table 1, the lowest standard
deviation occurs when the number of OS-ELMs is 20. Meanwhile, the prediction
accuracy of ROS-ELM is better than OS-ELM. Hence we set the number of networks
to be 20 for the New-thyroid dataset. The numbers of OS-ELMs for other datasets are
determined in the same way.

Both the Gaussian radial basis function (RBF) () ()2
, , exp /G a b x x a b= − −

and the sigmoid additive () ()()(), , 1 / 1 e x pG a b x a x b= + − ⋅ + are adopted as

activation function in OS-ELM, EOS-ELM and ROS-ELM.

Table 1. Network selection for New-thyroid dataset

Num of
networks

1 5 10 15 20 25 30

Testing
accuracy

90.73 91.25 90.65 90.18 92.24 91.79 91.8

Testing
Dev

0.0745 0.0254 0.0316 0.0276 0.0138 0.024 0.0156

In the experiments, OS-ELM and EOS-ELM were compared with ROS-ELM.

Some general information of the benchmark datasets used in our evaluations is listed
in Table 2. Both regression and classification problems are included.

Table 2. Specification of benchmark datasets

 Dataset Classes Training data
Testing

data
Attributes

Regression
problems

Auto-MPG - 320 72 7
Abalone - 3000 1177 8

California housing - 8000 12640 8

Mackey-Glass - 4000 500 4

Classifica-
tion prob-

lems

Zoo 7 71 30 17
Wine 3 120 58 13

New-thyroid 3 140 75 5
Monks-1 2 300 132 6

Image segmentation 7 1500 810 19

Satellite image 6 4435 2000 36

For OS-ELM, the input weights and biases with additive activation function or the

centers with RBF activation function were all generated from the range [-1, 1]. For

 A Robust Online Sequential Extreme Learning Machine for Big Data Analytics 339

regression problems, all the inputs and outputs were normalized into the range [0, 1],
while the inputs and outputs were normalized into the range [-1, 1] for classification
problems.

The benchmark datasets studied in the experiments are from UCI Machine Learn-
ing Repository except California Housing dataset from the StatLib Repository. Be-
sides, a time-series problem, Mackey-Glass, from UCI was also adopted to test our
algorithms.

5.2 Algorithm Evaluation

To verify the superiority of the ROS-ELM, RMSE for regression problems and testing
accuracy for classification problems are respectively computed. The evaluation results
are presented in Table 3 and Table 4, which are respectively corresponding to the
models with sigmoid hidden nodes and RBF hidden nodes. Each result is an average
of 50 trials. And in every trial of one problem, the training and testing samples were
randomly adopted from the dataset that was addressed currently.

From the comparison results of Table 2 and Table 3, we can easily find that ROS-
ELM and EOS-ELM are more time consuming than OS-ELM, but they still keep
relatively fast speed at most of the time. What’s important, ROS-ELM and EOS-ELM
attain lower testing deviation and more accurate regression or classification results
than OS-ELM. In terms of the comparison between ROS-ELM and EOS-ELM, it can
be observed that ROS-ELM takes a little more time than EOS-ELM, which results
from the selective ensemble by PSOSEN in ROS-ELM instead of simply averaging
the networks in EOS-ELM. It should be noted that the complexity of ROS-ELM is
adjustable, which depends on the threshold λ . Nevertheless, ROS-ELM always
outperforms EOS-ELM in terms of accuracy and testing deviation. Hence with the
adaptive ensemble framework, ROS-ELM tends to generate more accurate and robust
results.

To verify the reliability of the proposed ROS-ELM more convincingly, an artificial
dataset is dissected for instance. The dataset was generated from the function

2y 3 2x x= + + , comprising 4500 training data and 1000 testing data. Figure 3 and 4

explicitly depict the variability of training accuracy of ROS-ELM, EOS-ELM and OS-
ELM with respect to the number of training data in the process of learning. It can be
observed that with the increasing number of training samples, RMSE values of the three
methods significantly decline. As the online learning progressed, the training models are
continuously updated and corrected. We can then conclude that the more training data
the system learns, the more precise the model is. Whether sigmoid or RBF the hidden
nodes is, ROS-ELM always obtains smaller RMSE than EOS-ELM and OS-ELM,
which indicates that the performance of ROS-ELM is considerably accurate and robust
compared with the other methods. Moreover, the smaller testing dev of ROS-ELM in
Table 3 and 4 also confirms the robust performance of ROS-ELM.

340 Y. Liu et al.

Table 3. Comparison of OS-ELM, EOS-ELM and ROS-ELM for sigmoid hidden nodes

Datasets Algorithm #Node

s
#Net-
work

Training
time (s)

RMSE or Accuracy Testing
Dev Training

RMSE
Testing RMSE

Auto-
MPG

OS-ELM 25 0.0121 0.0695 0.0745 0.0087
EOS-ELM 25 20 0.2385 0.0691 0.0751 0.0065
ROS-ELM 25 20 1.9083 0.0683 0.0741 0.0053

Abalone OS-ELM 25 0.1191 0.0758 0.0782 0.0049
EOS-ELM 25 5 0.5942 0.0754 0.0775 0.0023
ROS-ELM 25 5 4.1528 0.0742 0.0758 0.0015

Mackey-
Glass

OS-ELM 120 0.9827 0.0177 0.0185 0.0018
EOS-ELM 120 5 4.8062 0.0176 0.0183 0.0007
ROS-ELM 120 5 25.1608 0.0173 0.0179 0.0006

California
Housing

OS-ELM 50 0.6871 0.1276 0.1335 0.0035
EOS-ELM 50 5 3.2356 0.1280 0.1337 0.0019
ROS-ELM 50 5 15.6326 0.1238 0.1323 0.0014

Zoo OS-ELM 35 0.0042 100% 93.09% 0.0498
EOS-ELM 35 25 0.0986 100% 93.68% 0.0375
ROS-ELM 35 25 0.8768 100% 94.51% 0.0315

Wine OS-ELM 30 0.0053 99.83% 97.24% 0.0251
EOS-ELM 30 5 0.0247 99.79% 97.49% 0.0117
ROS-ELM 30 5 0.1628 99.88% 98.01% 0.0094

New-
thyroid

OS-ELM 20 0.0043 93.18% 89.66% 0.1138
EOS-ELM 20 15 0.0627 94.32% 90.92% 0.02765
ROS-ELM 20 15 0.5012 95.23% 91.78% 0.01986

Monks-1 OS-ELM 80 0.0378 89.34% 78.77% 0.0325
EOS-ELM 80 15 0.5432 89.18% 78.79% 0.0187
ROS-ELM 80 15 4.2804 90.24% 79.85% 0.0138

Image
segmenta-
tion

OS-ELM 180 1.8432 97.07% 94.83% 0.0078
EOS-ELM 180 20 36.2458 97.08% 94.79% 0.0055
ROS-ELM 180 20 254.0721 97.56% 95.21% 0.0043

Satellite
image

OS-ELM 400 42.2503 92.82% 88.92% 0.0058
EOS-ELM 400 20 853.2675 92.80% 89.05% 0.0026
ROS-ELM 400 20 6928.0968 93.96% 90.16% 0.0018

 A Robust Online Sequential Extreme Learning Machine for Big Data Analytics 341

Table 4. Comparison of OS-ELM, EOS-ELM and ROS-ELM for RBF hidden nodes

Datasets Algorithm #Nodes #Net-

work
Training
time (s)

RMSE or Accuracy Testing
Dev Training

RMSE
Testing
RMSE

Auto-
MPG

OS-ELM 25 0.0302 0.0685 0.0763 0.0081
EOS-ELM 25 20 0.5986 0.0681 0.0754 0.0072
ROS-ELM 25 20 4.1862 0.0672 0.0741 0.0063

Abalone OS-ELM 25 0.3445 0.0753 0.0775 0.0027
EOS-ELM 25 25 8.5762 0.0752 0.0773 0.0023

ROS-ELM 25 25 49.3562 0.0741 0.0761 0.0017
Mackey-
Glass

OS-ELM 120 1.6854 0.0181 0.0185 0.0092
EOS-ELM 120 5 8.4304 0.0171 0,0171 0.0028
ROS-ELM 120 5 55.1469 0.0159 0.0156 0.0016

California
Housing

OS-ELM 50 1.8329 0.1298 0.1317 0.0017
EOS-ELM 50 5 9.0726 0.1296 0.1316 0.0011

ROS-ELM 50 5 64.9625 0.1202 0.1243 0.0009
Zoo OS-ELM 35 0.0074 99.91% 91.15% 0.0508

EOS-ELM 35 15 0.1028 99.87% 90.47% 0.0429
ROS-ELM 35 15 0.8543 99.93% 91.26% 0.0315

Wine OS-ELM 30 0.0132 99.73% 97.09% 0.0225
EOS-ELM 30 5 0.6015 99.76% 97.18% 0.0138

ROS-ELM 30 5 4.9028 99.84% 98.14% 0.0087
New-
thyroid

OS-ELM 20 0.0118 93.45% 89.92% 0.0702
EOS-ELM 20 15 0.1682 93.87% 89.86% 0.0428
ROS-ELM 20 15 1.2315 94.68% 91.02% 0.0315

Monks-1 OS-ELM 80 0.1024 94,58% 87.28% 0.0882
EOS-ELM 80 20 2.1567 93.69% 86.34% 0.0324

ROS-ELM 80 20 15.2896 95.71% 88.47% 0.0195
Image
segmenta-
tion

OS-ELM 180 2.6702 94.98% 91.92% 0.0324
EOS-ELM 180 5 13.2174 94.39% 91.35% 0.0148
ROS-ELM 180 5 90.2856 96.02% 953.24% 0.0079

Satellite
image

OS-ELM 400 45.2702 93.62% 89.54% 0.0056
EOS-ELM 400 10 448.1347 93.86% 89.37% 0.0034

ROS-ELM 400 10 3145.8528 94.75% 90.48% 0.0019

342 Y. Liu et al.

Fig. 3. RMSE with respect to the number of training samples for sigmoid hidden nodes

Fig. 4. RMSE with respect to the number of training samples for RBF hidden nodes

 A Robust Online Sequential Extreme Learning Machine for Big Data Analytics 343

Hence, by analyzing the results in Figure 3, Figure 4, Table 3 and Table 4 compre-
hensively, we can draw the conclusion that ROS-ELM improves the accuracy and
robustness of the online sequential learning algorithm significantly for both regression
and classification applications, with a still relative fast speed.

6 Conclusion

In this paper, a robust online sequential extreme learning machine algorithm is pro-
posed. To improve the robustness and stability of the sequential learning algorithm,
we apply the selective ensemble method to OS-ELM. And in purpose of balancing the
complexity and accuracy, an adaptive selective ensemble framework for OS-ELM is
designed, which is referred to as ROS-ELM. In addition, before building the ROS-
ELM system, a novel selective ensemble algorithm is proposed which is suitable for
any learning methods, both batch learning and sequential learning. The proposed se-
lective ensemble algorithm-PSOSEN, adopts particle swarm optimization method to
select individual learner to form the ensemble. Experiments were carried out on UCI
data set. The results convincingly show that ROS-ELM improves the robustness and
stability of OS-ELM, while also keeps balance on complexity.

Acknowledgments. This work is partially supported by Natural Science Foundation
of China (41176076, 31202036, 51075377).

References

1. Haykin, S., Network, N.: A comprehensive foundation. Neural Networks 2 (2004)
2. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal

approximators. Neural Networks 2(5), 359–366 (1989)
3. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error

propagation. California Univ San Diego La Jolla Inst For Cognitive Science (1985)
4. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.

Neurocomputing 70(1), 489–501 (2006)
5. Zhang, R., Huang, G.B., Sundararajan, N., et al.: Multicategory classification using an ex-

treme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (TCBB) 4(3), 485–495 (2007)

6. Xu, Y., Dong, Z.Y., Zhao, J.H., et al.: A reliable intelligent system for real-time dynamic
security assessment of power systems. IEEE Transactions on Power Systems 27(3), 1253–
1263 (2012)

7. Choi, K., Toh, K.A., Byun, H.: Incremental face recognition for large-scale social network
services. Pattern Recognition 45(8), 2868–2883 (2012)

8. Liang, N.Y., Huang, G.B., Saratchandran, P., et al.: A fast and accurate online sequential
learning algorithm for feedforward networks. IEEE Transactions on Neural Net-
works 17(6), 1411–1423 (2006)

9. Uçar, A., Demir, Y., Güzeliş, C.: A new facial expression recognition based on curvelet
transform and online sequential extreme learning machine initialized with spherical clus-
tering. Neural Computing and Applications, 1–12 (2014)

344 Y. Liu et al.

10. Yin, J.C., Zou, Z.J., Xu, F., et al.: Online ship roll motion prediction based on grey sequen-
tial extreme learning machine. Neurocomputing 129, 168–174 (2014)

11. Wang, X., Han, M.: Online sequential extreme learning machine with kernels for
nonstationary time series prediction. Neurocomputing (2014)

12. Liu, N., Wang, H.: Ensemble based extreme learning machine. IEEE Signal Processing
Letters 17(8), 754–757 (2010)

13. Xue, X., Yao, M., Wu, Z., et al.: Genetic ensemble of extreme learning machine.
Neurocomputing 129, 175–184 (2014)

14. Rong, H.J., Ong, Y.S., Tan, A.H., et al.: A fast pruned-extreme learning machine for clas-
sification problem. Neurocomputing 72(1), 359–366 (2008)

15. Miche, Y., Sorjamaa, A., Bas, P., et al.: OP-ELM: optimally pruned extreme learning ma-
chine. IEEE Transactions on Neural Networks 21(1), 158–162 (2010)

16. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern
Analysis and Machine Intelligence 12(10), 993–1001 (1990)

17. Krogh, P.S.A.: Learning with ensembles: How over-fitting can be useful. In: Proceedings
of the 1995 Conference, vol. 8, p. 190 (1996)

18. Lan, Y., Soh, Y.C., Huang, G.B.: Ensemble of online sequential extreme learning machine.
Neurocomputing 72(13), 3391–3395 (2009)

19. Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: many could be better than all.
Artificial Intelligence 137(1), 239–263 (2002)

20. Kennedy, J.: Particle swarm optimization. Encyclopedia of Machine Learning, pp. 760–
766. Springer, US (2010)

21. Blake, C., Merz, C.J.: Repository of machine learning databases (1998)

Deep Extreme Learning Machines

for Classification

Migel D. Tissera and Mark D. McDonnell

Computational and Theoretical Neuroscience Laboratory,
Institute for Telecommunications Research,

University of South Australia, Mawson Lakes, SA 5095, Australia
migel.tissera@mymail.unisa.edu.au, mark.mcdonnell@unisa.edu.au

Abstract. We present a method for synthesising deep neural networks
using Extreme Learning Machines (ELMs) as a stack of supervised au-
toencoders. We show that the network achieves comparable performance
to an ELM with a single hidden layer with a size equal to the total num-
ber of hidden-layer neurons in the deep network. The main advantage of
our method is in its significantly reduced network training time and mem-
ory usage. These favourable properties suggest that our method can be
applied to a resource-constrained hardware implementation to increase
the network performance.

Keywords: Extreme Learning Machine, Supervised learning, Autoen-
coder, MNIST, Classifier.

1 Introduction

In recent years the computational neuroscience field has seen multiple, indepen-
dent and parallel emergence of hardware platforms optimised for neural network
implementation. These implementations range from massively-parallel custom-
built System-on-Chip (SoC) silicon microprocessor arrays (e.g. SpiNNaker [1]),
to analog VLSI processors directly emulating the ion channels of the neurons as
leakage currents in CMOS subthreshold region (e.g. Neurogrid [2]). The emer-
gence of these platforms has been accompanied by a parallel effort to develop
algorithms which mimic the computational capability of the human brain, par-
ticularly in developing synthesised (trained) neural networks.

These algorithms are now widely utilised for both investigating brain function
in computational neuroscience (for example, models of controlling eye position
and working memory [3]), and for implementing computing systems in machine
learning. In machine learning, an emerging algorithm is the Extreme Learning
Machine (ELM) [4], which is fast to train and performs with similar accuracy to
Support Vector Machines (SVMs) [5]. ELM, first introduced in 2006 [6], consists
of a standard three layer feedforward structure. Its first layer acts as the input
layer, and the second (or the hidden) layer projects the input layer to a higher
dimensionality using a very large number of non-linear sigmoid neurons. Its third

c© Springer International Publishing Switzerland 2015 345
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_29

346 M.D. Tissera and M.D. McDonnell

and final layer acts as the output and consists of neurons with linear input-output
characteristics.

In ELM, the connection weights between the input and the hidden layer neu-
rons are randomly set and fixed for the entire duration of the network. That
is, they are not altered during the training phase. In most cases, a distribution
between -0.5 and +0.5 is used for the connection weights. This is analogous with
biology, in the sense that a negative connection weight inhibits the network, and
a positive weight excites the network. After projecting the input to a higher
dimensionality at the hidden layer, a non-linear sigmoid function is used to gen-
erate the outputs of these hidden layer neurons. Then using training data, the
connection weights between this hidden and the output layers is trained in a
single pass by mathematical optimisation. Only this connection weight matrix
is altered during training. It is calculated by a least squares regression method
such as the Moore-Penrose pseudoinverse [7].

The methodology used in the above approach can be summarised as follows:

1. Using random and fixed weights, connect an input layer to a higher dimen-
sional and large hidden layer.

2. Using training data, numerically solve the output weights between the large
hidden layer and the output layer by calculating the pseudoinverse of the
product of the hidden layer values and the desired output.

This class of methods are now referred to as Linear Solutions of Higher Dimen-
sional Interlayer (LSHDI) networks [5]. It denotes a significant deviation from
classical artificial neural network training methods. In classical artificial neural
networks, the input weights are iteratively trained, rather than computing the
output with the above approach. This interesting property can significantly en-
hance the efficiency of training since the full and final solution is obtained by
mathematical optimisation in one single step. This LSHDI method also solves a
significant problem in bio-inspired neural network simulations. Although widely
accepted and very capable models exist at the single neuron level to mimic neu-
robiology, it had been extremely difficult to implement neural networks to model
specific relationships. Until the emergence of LSHDI, there had been no widely
applicable method to synthesise (train) a network to solve a given task. This
class of methods are now emerging as the core of a generic neural compiler for
creating silicon neural systems [8].

However, classical ELMs use a very large number of neurons in its single
hidden layer, hence training the network can be computationally heavy given a
large dataset. It also makes use of batch training, meaning that the network is
trained using the entire dataset at once, which usually requires large memory and
processing power. In [5] the authors have proposed an on-line training method
(as opposed to batch training) to overcome this, but due to the large number of
neurons typically used in the single hidden layer, training still largely depends
on the size of the network.

Here we propose a network structure which takes inspiration from biology and
the recent advances in deep learning architectures. We show that by constructing
a deep ELM network as a stack of supervised autoencoders and training layer-

Deep Extreme Learning Machines for Classification 347

by-layer, the network training time and memory usage can be significantly im-
proved. The system therefore is well suited for a resource-constrained hardware
implementation, since it offers potential for particular hardware components to
be time-multiplexed.

2 Methodology

We start by creating an input layer that takes as input a test or training vector,
I ∈ R

N×1. This input layer is connected to the first hidden layer by an all-
to-all weight matrix Win∈ R

M×N We write the input vector to this layer as
H1 ∈ R

M×1. The output of the hidden layer is given by

out[H1] =
1

1 + exp(−0.5WinI)
(1)

Using training data, we then solve for a weight matrix Wh1 to reconstruct the
input layer, as follows. For k training data, we can form a matrix A ∈ R

M×k in
which each column contains the output of the hidden layer H1 at one training
point. Then using the training data itself as another matrix Y ∈ R

N×k in which
each column contains training vectors, we solve forWh1 ∈ R

N×M that minimises
the mean square error between

Y = Wh1A (2)

and the original training image. We solve this problem numerically by taking the
Moore-Penrose pseudoinverse of A, which is denoted as A+ ∈ R

k×M . Therefore
we have

Wh1 = YA+. (3)

We now use this trained weight matrix Wh1 to create a new vector Î, which is
the autoencoded version of the original data. Then using a new projection weight
matrix Wp ∈ R

L×N , we connect Î to the second hidden layer H2 ∈ R
L×1.

The above explanation provides an intuitive description of the training pro-
cedure. After the network has been trained however, it is natural to combine the
two weight matrices Wh1 and Wp to form one single weight matrix Wh12 ∈
R

L×M , which fully connects the two hidden layers, i.e.

Wh12 = WpWh1. (4)

We then repeat the procedure described by Equations (1) to (4) to obtain
Wh23 ∈ R

Q×L and Wh3, where Q is the number of hidden neurons in the third
hidden layer, and Wh3 represents the connection weight matrix from the third
hidden layer to the output layer vector T ∈ R

N×1. The system is depicted in
Figure 1.

348 M.D. Tissera and M.D. McDonnell

Fig. 1. The first two hidden-layers of our supervised deep extreme learning machine
network are shown. From left-to-right in feedforward: an N dimensional input vector is
projected to the M dimensional first hidden-layer using a random weight matrix Win.
Then using Equation (3), the weight matrix Wh1 is obtained using training data.
This results in a vector Î of the same dimensionality as the input. Then the vector Î
is projected to an L dimensional second hidden-layer using a random weight matrix
Wp1. Next we calculate the hidden-layer-1 to hidden-layer-2 weight matrix Wh12 using
Equation (4).

Deep Extreme Learning Machines for Classification 349

3 Simulation Details

For the purpose of this paper, we have constructed a network with 3 hidden
layers and an output layer. The parameters of the network were chosen to be of
the following form, where d is a real, positive, non-zero integer:

– First Layer: 2d neurons;
– Second Layer: d neurons;
– Third Layer: 5d neurons.

These layer sizes were chosen to illustrate the ability of the network to have
fan-in or fan-out capability. The comparison single layer ELM has a single hidden
layer with 8d neurons.

We train and test our network on the MNIST hand-written digit classification
dataset, and therefore the input layer consist of 784 units. Since we perform
autoencoding, the size of the output layer is the same as the input layer, which
comprises of 784 units.

Our Deep ELM system differs to a deep ELM described previously [9] in two
significant ways:

1. We use supervised autoencoding. We have found that supervised autoencod-
ing performs better than un-supervised autoencoding.

2. We use a hidden-vector (Î) to compute the weight matrix between the hidden
layers. The dimension of this hidden-vector is equal to the dimension of
training vectors, and represents an auto encoding of the input.

Optionally, we have carried out simulations where we add a pre-training step
for the projection weights using Gibbs sampling similar to a Restricted Boltz-
mann Machine (RBM). This has improved the network performance, although
with an added memory and processing power penalty. However, the focus of this
paper is to introduce our Deep ELM method, therefore we have not included the
simulations we have carried out using pre-training.

Before presenting some results, we first describe the supervised aspect of the
autoencoding aspect in more detail.

3.1 Supervised Autoencoding

We use supervised autoencoding to train our weight matrices. To state explicitly,
the training labels are embedded in the training images. We do this the following
way for the MNIST database. We take the first 10 pixels of the training images,
and reset them to zero (if they are not already at zero). Then we use the label of
the respective image, to set the corresponding pixel to 1. For example, for label
‘0’, pixel 1 is set to one; for label 9, pixel 10 is set to one. This is illustrated in
Figure 2.

We use the resulting combined “images + labels” training set as the target
used to train each autoencoding stage in our network. Note that the first layer
receives the images only, without the supervised bits. In the classification step

350 M.D. Tissera and M.D. McDonnell

(i.e. at the output layer), we use the highest valued pixel in the first 10 pixels as
the classified output.

Despite the fact that we use a 3 hidden layer network for the purpose of this
paper, note that the method stated in Section 2 can be repeated for any number
of hidden layers.

Fig. 2. Illustration of the introduction of supervised label bits to training data images.
Left hand side: Examples of the original MNIST Training images. Right hand side:
Combined “image + label” training data. Top Right: Note the 6th pixel has been set
to 1 to indicate the label 5, and similar for the other exempts.

4 Results

We now show the results of applying our Deep ELM network to classifying the
MNIST hand-written digit classification dataset. We vary the parameter d stated
in Section 3 between 750 and 1250 with increments of 50. Therefore the total
number of hidden neurons in the network varied between 6,000 and 10,000 with
increments of 400 neurons.

We trained the network on the full 60,000 training images, and tested the
network on the 10,000 image test-set. Figure 3 shows the network performance
on the test-set, compared to a large single hidden-layer network comprised from
8d neurons.

Deep Extreme Learning Machines for Classification 351

6000 6500 7000 7500 8000 8500 9000 9500 10000
1.5

2

2.5

3

3.5

4

Total number of hidden neurons

P
er

ce
nt

ag
e

of
 c

la
ss

ifi
ca

tio
n

er
ro

s
(%

)

Single ELM − Validating against the Test Set
Deep ELM − Validating against the Test Set

Fig. 3. Illustration of the classification error rate as the number of hidden neurons
increases, averaged over 10 repeats. Our supervised Deep ELM method achieves com-
parable performance to the single-layer ELM.

We compare the network training times in Figure 4. Even though the Deep
ELM network performs slightly below the classification rate of the Single ELM
network (Figure 3), its strongest property is in the reduced network training
time and memory usage. This is potentially highly favourable in time critical
applications where the training time is important, such as for on-line training.

Also, our approach can be applied to a network comprising of many fixed-
size hidden layers where time-multiplexing of hardware can be utilised. In that
case, even though the hardware resources may be limited, the performance of
the network can be greatly enhanced. We illustrate this property of increasing
network performance with added hidden layers of a fixed-size in Figure 5. It
can be clearly seen that the network performance improves with the number of
hidden layers. However, we note that this improvement plateaus after a certain
number of hidden-layers.

352 M.D. Tissera and M.D. McDonnell

6000 6500 7000 7500 8000 8500 9000 9500 10000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Total number of hidden neurons

T
ra

in
in

g
tim

e
(s

ec
on

ds
)

Single ELM − Training Time in seconds
Deep ELM − Training Time in seconds

Fig. 4. Network training times, averaged over 10 repeats, from an implementation
performed on a single-core processor. Hence the training times illustrated here for
Single and Deep ELM is much slower than a modern multicore desktop computer, and
here the point to highlight is the difference between the single and deep ELMs.

1 2 3 4 5 6 7
2

3

4

5

6

7

8

9

10

11

12

Number of fixed−size hidden layers

P
er

ce
nt

ag
e

of
 c

la
ss

ifi
ca

tio
n

er
ro

s
(%

)

Fixed hidden layer size 500
Fixed hidden layer size 750
Fixed hidden layer size 1000
Fixed hidden layer size 1250
Fixed hidden layer size 1500

Fig. 5. Illustration of the change in classification error rate as the number of fixed-size
hidden layers increases. It can be seen that the network performance is enhanced with
added hidden-layers.

Deep Extreme Learning Machines for Classification 353

5 Discussion

Utilising Extreme Learning Machines (ELMs) as layers in a deep network has
attracted recent attention [9]. Here we introduce a novel method for creating such
a network, with comparable performance to a large single hidden-layer network
with equal number of hidden neurons. We list the advantages of our method
below.

1. We use supervised autoencoding, as opposed to unsupervised autoencoding.
We have found that this has increased the performance of our network,
relative to unsupervised autoencoding (data not shown here). A possible
reason for this is that since the network is trained with the label in every
layer, it creates an internal filtered representation of the input at each layer.
This internal filter is enhanced by the subsequent layers. Therefore at the
classification step, (i.e. when the network receives an input it has never seen
before), it automatically creates an internal representation which is similar
to its training data. This can be seen by plotting the outputs of layers, as
shown below in Figure 6.

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

Fig. 6. The leftmost image shows an example the input to the network, taken from
the MNIST test dataset. The three images to the right shows the output of the 1st

hidden-layer, 4th hidden layer and the 7th hidden layer of a 7 layer Deep ELM.

2. Using our method, we have reduced the network training time compared
with a single hidden-layer network of equivalent hidden neurons. This be-
comes apparent as the size of the hidden-layer neurons increases, as shown
in Figure 4.

3. This method of constructing deep neural networks is potentially favourable
for hardware implementations. In resource constrained environments, our
method can be applied to increase the network performance using time-
multiplexed hardware.

References

1. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The SpiNNaker Project. Pro-
ceedings of the IEEE 102, 652–665 (2014)

2. Benjamin, B.V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A.R., Bus-
sat, J.-M., Alvarez-Icaza, R., Arthur, J.V., Merolla, P.A., Boahen, K.: Neurogrid: A
mixed analog-digital multi chip system for large-scale neural simulations. Proceed-
ings of the IEEE 102, 699–716 (2014)

354 M.D. Tissera and M.D. McDonnell

3. Eliasmith, C., Anderson, C.H.: Neural Engineering: Computation, Representation,
and Dynamics in Neurobiological Systems. The MIT Press (2004)

4. Huang, G.-B., Wang, D.H., Lan, Y.: Extreme Learning Machines: A Survey. Inter-
national Journal of Machine Learning and Cybernetics 2, 107–122 (2011)

5. Tapson, J., van Schaik, A.: Learning the pseudoinverse solution to network weights.
Neural Networks 45, 94–100 (2013)

6. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme Learning Machine: Theory and
applications. Neurocomputing 70, 489–501 (2006)

7. Penrose, R.: A generalized inverse for matrices. Mathematical Proceedings of the
Cambidge Philosophical Society 51, 406–413 (1955)

8. Galluppi, F., Davies, S., Eliasmith, C., Stewart, T., Furber, S.: Real Time On-Chip
Implementation of Dynamical Systems with Spiking Neurons. In: The International
Joint Conference on Neural Networks IJCNN, pp. 1–8 (2012)

9. Kasun, L.L.C., Zhou, H., Huang, G.-B.: Representational Learning with ELMs for
Big Data. IEEE Intelligent Systems 28, 31–34 (2013)

C-ELM: A Curious Extreme Learning Machine

for Classification Problems

Qiong Wu and Chunyan Miao

Nanyang Technological University, Singapore
{wuqi0005,ASCYMiao}@ntu.edu.sg

Abstract. In psychology, curiosity is generally known as the critical
intrinsic motivation for learning. It drives human beings to explore for
novel and interesting information that can elicit the feeling of pleasure.
This paper proposes such a curiosity driven algorithm for Extreme Learn-
ing Machine, which is referred to as Curious Extreme Learning Machine
(C-ELM). C-ELM follows the psychological theory of curiosity proposed
by Berlyne and performs curiosity appraisal towards each input data
based on four collative variables: novelty, uncertainty, conflict, and sur-
prise. The collative variables reflect the level of curiosity stimulation in
the input data. Based on the level of curiosity stimulation, the network
decides on the strategies for learning, including neuron addition, neuron
deletion, and parameter update. During neuron addition, a new neuron
is added based on the input data, thereby reducing the randomization
effect of ELM. The parameter update is conducted using recursive least
squares method and neuron deletion aims at deleting the most conflict-
ing knowledge. The empirical performance study of the proposed method
on benchmark classification problems clearly highlights the learning and
generalization ability of C-ELM.

1 Introduction

An extremely fast learning neural algorithm referred to as Extreme Learning
Machine (ELM) has been developed for single-hidden layer feedforward networks
(SLFNs) by Huang et al. [1, 2]. The essence of ELM is that the hidden layer of
SLFNs need not be tuned [3]. ELM randomly assigns hidden neuron parameters
and find the output weights analytically. It has been shown to generate good
generalization performance at extremely high learning speed [1, 2, 4, 5] and has
been successfully applied to many real world applications [4–7].

Although ELM has shown advanced generalization performance with
extremely high learning speed, several major issues still remain in ELM:

1. Manually set the number of hidden neurons: The number of hidden neurons
needs to be set a priori to training [8]. The number of hidden neurons is
usually chosen by trial-and-error.

2. Fixed structure: The network structure is fixed once the number of hidden
neurons is set [9]. It can not evolve, i.e., add or delete hidden neurons, based
on the training data.

c© Springer International Publishing Switzerland 2015 355
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_30

356 Q. Wu and C. Miao

3. Randomization effect: The random assignment of hidden neuron parameters
induces high randomization effect in the generated results.

To address issue 1), several algorithms have been proposed, such as incremen-
tal ELM (I-ELM) [10], enhanced incremental ELM (EI-ELM) [11], pruning ELM
(P-ELM) [9], optimally-pruned ELM(OP-ELM) [12], and error minimized ELM
(EM-ELM) [8]. However, all these algorithms can either add neurons (I-ELM,
EI-ELM, EM-ELM) or delete neurons (P-ELM, OP-ELM) without being able
to adjust network structure based on the incoming data, in other words, the
evolving capability. Recently, a meta-cognitive ELM (McELM) has been pro-
posed [13], which addresses issue 1) and partially issue 2). McELM can decide
network structure based on the training data, but it can only add neurons with-
out pruning capability. To our knowledge, few works have been done towards
issue 3).

To address all the three issues mentioned above, we propose a curious extreme
learning machine (C-ELM) algorithm for classification problems. It is a psycho-
logically inspired algorithm based on the theory of curiosity [14]. In psychology,
curiosity is commonly known as the important intrinsic motivation that drives
human exploration and learning [15]. The psychological concept of curiosity has
been applied in many computational systems to enhance their learning capabil-
ity (e.g., intrinsically motivated reinforcement learning) [16, 17] and believability
(e.g., curious companions) [18–20]. To our knowledge, this is the first attempt
to introduce curiosity in an ELM framework.

C-ELM is inspired by the psychological theory of curiosity by Berlyne [21].
Berlyne interpreted curiosity as a process of stimulus selection, i.e., when sev-
eral conspicuous stimuli are introduced at once, to which stimulus will human
respond. He identified several key collative variables, e.g., novelty, uncertainty,
conflict, and surprise, that govern the stimulus selection process. Based on this
theory, C-ELM classifier treats each training data as a stimulus and decides its
learning strategy based on the appraisal of collative variables. There are three
learning strategies for C-ELM: neuron addition, neuron deletion, and parameter
update.

When a new neuron is added, conventional incremental ELM algorithms will
randomly assign the center and impact factor of the RBF kernel (other kernels
such as the linear kernel can also apply) in the new neuron. However, random
center selection may require more number of hidden neurons to approximate the
decision function accurately [22]. Hence, C-ELM use data-driven center selection
which use the current training data that triggers the neuron addition strategy
as the center of the new neuron. It removes partially the random effect of the
traditional ELM algorithms. Data-driven center selection also allows the class
label of the new neuron to be apparent, which enables further analysis of the
hidden neurons. During neuron deletion, the most conflicting neuron for the
current training data is removed from the network. In literature, various neuron
deletion schemes for ELM have been proposed such as pruning based on relevance
[9] or based on leave-one-out cross-validation [12]. These techniques, although
effective, might render the system slow. Hence, we propose the neuron deletion

C-ELM: A Curious Extreme Learning Machine for Classification Problems 357

strategy based on conflict resolution, which helps the system attain fast and
efficient convergence. The parameter update is conducted using recursive least
squares method.

A simulation study of the C-ELM on several commonly used classification
benchmark problems shows that the proposed approach leads to compact net-
work classifiers that generate fast response and better generalization performance
on unseen data when compared with the popular classifiers such as SVM, the
traditional ELM and its recently enhanced variant McELM [13].

2 C-ELM

In this section, we provide a detailed description of the C-ELM architecture and
the learning algorithm for classification problems. The classification problem is
defined as follows:

Given: a stream of training data
{(

x1, c1
)
, · · · , (xt, ct) , · · ·}, where xt =

[xt
1, · · · , xt

M]
T ∈ �M is a M -dimensional input vector of the tth input data,

ct ∈ [1, 2, · · · , N] is its class label, and N represents the total number of distinct
classes. The coded class label yt =

[
yt1, · · · , ytj, · · · , ytN

] ∈ �N is obtained by
converting the class label (ct) as follows:

ytj =

{
1 If j = ct

−1 otherwise
j = 1, 2, · · · , N. (1)

Find: a decision function F that maps the input features (xt) to the coded class
labels (yt), i.e., F : �M → �N , as close as possible.

To solve this problem, we propose a fast evolving data-driven neural algo-
rithm referred to as curious extreme learning machine (C-ELM). C-ELM has
two components: a unified single layer feed-forward neural network (SLFN) and a
curiosity driven extreme learning algorithm. The curiosity driven extreme learn-
ing algorithm consists of the definitions for four collative variables, i.e., novelty,
uncertainty, conflict, and surprise, and three learning strategies, i.e., neuron
addition, neuron deletion, and parameter update. Next, we will describe these
components in detail.

2.1 Unified SLFN

The architecture of the C-ELM is an SLFN with M input neurons, K hidden
neurons and N output neurons. For RBF hidden neuron with activation function
g(x) : � → � (e.g., Gaussian), the output of the kth hidden neuron with respect
to the input xt is given by:

G(xt, ak, bk) = g(bk||xt − ak||), bk ∈ �+, (2)

where ak and bk are the center and impact factor of the kth RBF neuron. �+

denotes the set of all positive real values.

358 Q. Wu and C. Miao

The predicted output for the input xt is denoted by:

ŷt =
[
ŷt1, · · · , ŷti , · · · , ŷtN

]
. (3)

Here, the output of the ith neuron in the output layer is given by:

ŷti =

K∑

k=1

G(xt, ak, bk)wki, (4)

where wki is the output weight connecting the kth hidden neuron to the ith
output neuron. The output for a chunk of t input data can be written by:

Ŷ = HW, (5)

where H is the hidden layer output matrix and W is the weight matrix connect-
ing the hidden neurons to the output neurons as shown below:

H =

⎡

⎢⎣
G(x1, a1, b1) · · · G(x1, aK , bK)

...
. . .

...
G(xt, a1, b1) · · · G(xt, aK , bK)

⎤

⎥⎦

t×K,

(6)

and

W =

⎡

⎢⎢⎢⎣

w1,1 w1,2 · · · w1,N

w2,1 w2,2 · · · w2,N

...
...

. . .
...

wK,1 wK,2 · · · wK,N

⎤

⎥⎥⎥⎦

K×N.

(7)

With the architecture of C-ELM described above, next, we will introduce the
curiosity driven extreme learning algorithm.

2.2 Definitions of Collative Variables

C-ELM employs an intrinsically motivated learning paradigm transposed from
the psychological theory of curiosity proposed by Berlyne [21]. Learning is reg-
ulated based on the curiosity appraisal of input data. For each input data, the
curiosity appraisal is governed by four collative variables, i.e., novelty, uncer-
tainty, surprise, and conflict. In this section, we will introduce the definitions of
the four collative variables in C-ELM.

Novelty: Novelty reflects how much the input data differs from the network’s
current knowledge. In kernel methods, spherical potential is often used to de-
termine the novelty of data [23]. The spherical potential of an input data xt is
defined by (a detailed derivation can be found in [23]):

ψ(xt) =
1

K

K∑

k=1

G
(
xt, ak, bk

)
. (8)

C-ELM: A Curious Extreme Learning Machine for Classification Problems 359

A higher potential indicates the input data is similar to the existing knowl-
edge, while a smaller potential indicates that the input data is novel. Hence, the
novelty N of an input data xt is determined by:

N (xt) = 1− 1

K

K∑

k=1

G
(
xt, ak, bk

)
. (9)

Uncertainty: Uncertainty reflects how not confident the network is in its pre-
dictions. The confidence of a network is often measured by the posterior proba-
bility of the prediction. It has been proven theoretically that hinge-loss function
can accurately estimate the posterior probability for a classification problem [24].

Hence, we use the truncated hinge-loss error (et =
[
et1, · · · , etj, · · · , etN

]T ∈ �N)
to measure the prediction error, where each element is defined by:

etj =

{
0 if ŷtjy

t
j > 1

min(max(ŷtj − ytj ,−1), 1) otherwise.
(10)

With the truncated hinge-loss error, the estimated posterior probability of
input xt belonging to class c is given by [22]:

p(c|xt) =
etj + 1

2
, c = 1, 2, · · · , N. (11)

Since uncertainty measures how not confident a network is in its predictions,
we define uncertainty U of the prediction to an input data xt by:

U(xt) = 1− p(ĉ|xt), (12)

where ĉ is the predicted class for xt.

Conflict: In psychology, conflict occurs when a stimulus arouses two or more
incompatible responses in an organism [14]. The degree of conflict depends on
the competing strengths of those incompatible responses. For a classifier, conflict
can be reflected by the competing strengths of the most fired two output neurons.

Given an input xt , let ŷtj1 and ŷtj2 be the outputs of the top two highly
activated output neurons. The more closer ŷtj1 is to ŷtj2 , the higher competing
strength is between the two output neurons, which indicates a higher conflict
between the network’s decisions. Hence, the conflict C induced by an input xt is
defined by:

C(xt) =

{
1− |ŷt

j1
−ŷt

j2
|

|ŷt
j1

+ŷt
j2

| if ŷ
t
j1
ŷtj2 > 0

0 otherwise.
(13)

Surprise: In psychology, surprise indicates a violation of expectation [14]. For
a classifier, surprise occurs when the predicted output differs from the true class
label. The degree of surprise is determined by prediction errors for both the

360 Q. Wu and C. Miao

true class and the predicted class. As we adopt hinge-loss error in this work to
measure prediction error, the surprise S induced by an input xt is defined by:

S(xt) =

{ |etc · etĉ| if ĉ �= c
0 otherwise,

(14)

where ĉ and c represent the predicted class and the true class, respectively; and
e is the hinge-loss error calculated according to Eq (10).

It can be analyzed that all the four collative variables are within the range
of [0, 1]. The collative variables determine the level of curiosity arousal and the
learning strategy selection. With the collative variables defined as above, we will
introduce the learning strategies in the following section.

2.3 Learning Strategies

C-ELM has three learning strategies: neuron addition, neuron deletion, and pa-
rameter update. C-ELM begins with zero hidden neurons, add or delete hidden
neurons and update parameters of the existing neurons to achieve an optimal
network structure with optimal parameters. The decision on whether to update
network structure or update parameters is made based on the appraisal of colla-
tive variables. Intuitively, high values of collative variables induce a high level of
curiosity towards the input data, which require more efforts in learning, i.e., up-
dating network structure, to incorporate the new knowledge; otherwise, simply
update parameters of the existing neurons to reinforce the ‘familiar’ knowledge.
Next, we will introduce the three learning strategies of C-ELM in detail.

Neuron Addition Strategy: Intuitively, for an input data, if novelty is high
and uncertainty is high and surprise is high, it indicates that a misclassification
(i.e., surprise high) with high uncertainty in its prediction (i.e., uncertainty high)
is caused by the newness of the knowledge (i.e., novelty high). In this case, the
network should add new neurons to capture this new knowledge. Hence, given
an input xt, the neuron addition condition is:

N (xt) > θNadd AND U(xt) > θU AND S(xt) > θS , (15)

where θNadd , θU , and θS are neuron addition thresholds for novelty, uncertainty,
and surprise, respectively. If these parameters are chosen close to 1, then very
few input data can trigger the neuron addition strategy and the network cannot
approximate the decision function accurately. If these parameters are chosen
close to 0, then many input data can trigger the neuron addition strategy, leading
to poor generalization ability. In general, θNadd is chosen in the range of [0.1,0.5],
θU is chosen in the range of [0.1,0.3], and θS is chosen in the range of [0.2,0.9].

A typical ELM randomly chooses hidden neuron parameters and find the out-
put weights analytically. However, random exploration of the feature space may
need more hidden neurons to accurately approximate the decision function. In
C-ELM, we propose data-driven center selection for the hidden neurons without

C-ELM: A Curious Extreme Learning Machine for Classification Problems 361

compromising the extreme learning capability. When a new neuron is added, in-
stead of randomly assign the center ak, assign the input features of the current
input data as the center, i.e., ak = xt. Since the center selection is data-driven,
we can label the class of the new neuron using the target value of the input data,
i.e., lk = ct. Data-driven center selection allows fast hidden neuron clustering
using their class labels and provides class specific information when deleting
neurons. The values of the impact factors in the hidden neurons are randomly
assigned. Hence, with the new hidden neuron, the dimension of the hidden layer
output matrix H increases from (t − 1)× (k − 1) to t× k. The target values of
the t input data is represented by:

Y =

⎡

⎢⎣
y1

...
yt

⎤

⎥⎦

t×N.

(16)

The output weight for W can be analytically find by:

W = H†Y, (17)

where H† is the Moore-Penrose generalized inverse of the hidden layer output
matrix H.

Neuron Deletion Strategy: Intuitively, for an input data, if surprise is high
and conflict is high and novelty is low, it indicates that a misclassification (i.e.,
surprise high) occurs for a familiar stimulus (i.e., novelty low) due to high com-
peting strengths between two decisions (i.e., conflict). In this case, the network
should adjust its decision making by strengthening the correct decision and weak-
ening the wrong decision, i.e., deleting the most contributing neuron in the wrong
class. Hence, given an input xt, the neuron deletion condition is:

S(xt) > θS AND C(xt) > θC AND N (xt) < θNdel , (18)

where θS , θC , and θNdel are neuron deletion thresholds for surprise, conflict, and
novelty, respectively. When θS and θC are chosen close to 1 and θNdel is chosen
close to 0, then very few input data can trigger neuron deletion, leading to poor
generalization ability. When θS and θC are chosen close to 0 and θNdel is chosen
close to 1, then many input data can trigger neuron deletion and the network
cannot approximate the decision function accurately. In general, θS is chosen in
the range of [0.2,0.9], θC is chosen in the range of [0.1,0.3], and θNdel is chosen
in the range of [0.1,0.8].

When neuron deletion is triggered, C-ELM will remove the most fired hidden
neuron k belonging to the predicted class:

{k|max(G(xt, ak, bk)) AND lk = ĉ}. (19)

After the kth neuron is removed, the network will re-calculate the output
weight W with the t input data.

362 Q. Wu and C. Miao

Parameter Update Strategy: When both the neuron addition strategy and
the neuron deletion strategy are not triggered, it indicates that the new input
data is a ‘familiar’ one. Hence, the network will update the output weight using
recursive least squares to reinforce the familiar knowledge.

For the new input data xt, let the partial hidden layer output be represented
by ht = [G(xt, a1, b1), · · · , G(xt, aK , bK)]. The output weights are updated ac-
cording to [25] by:

Wt = Wt−1 +Ptht((yt)T − (ht)TWt−1), (20)

where

Pt = Pt−1 − Pt−1ht(ht)TPt−1

1 + (ht)TPt−1ht
. (21)

A pseudo-code for the C-ELM learning algorithm is given in Algorithm 1.

Step 1. Present a sample (xt, ct).
Step 2. Perform curiosity appraisal towards the sample:
compute novelty N (xt) using Eq (9), compute uncertainty U(xt) using Eq (12),
compute conflict C(xt) using Eq (13), and compute surprise S(xt) using Eq (14).
Step 3. Select learning strategy based on the collative variables:
if N (xt) > θNadd AND U(xt) > θU AND S(xt) > θS then

add hidden neuron with xt as the center and randomize the impact factor of
the hidden neuron. Update the hidden neuron output matrix H and
compute the output weight W according to Eq (17).

if S(xt) > θS AND C(xt) > θC AND N (xt) < θNdel then
delete the most fired hidden neuron that belonging to the predicted class
following Eq (19).

else
update the network parameter using Eq (20).

end
Step 4. Increment t = t+ 1, go to Step 1.

Algorithm 1. Pseudo-code for C-ELM classifier

3 Performance Evaluation

The performance of C-ELM is evaluated on the benchmark problems described
in Table 1 from the UCI machine learning repository, which contains three multi-
category classification problems (vehicle classification, iris, and wine) and three
binary classifcation problems (liver disorder, PIMA, and breast cancer). The
performance of C-ELM is evaluated in comparison with other popular classifiers
such as SVM, ELM and McELM. The results of SVM, ELM and McELM are
reproduced from [13]. For simulating the results of C-ELM, MATLAB 2014b
with 3.2 ghz and 16gb ram was used. The parameters were optimized using grid
search.

C-ELM: A Curious Extreme Learning Machine for Classification Problems 363

Table 1. Specification of benchmark data sets

Data set # Features # Classes
Training # Testing

Data Data

Vehicle
18 4 424 422

classification
Iris 4 4 45 105
Wine 13 3 60 118

Liver disorder 6 2 200 145
PIMA 8 2 400 368

Breast cancer 9 2 300 383

3.1 Performance Measures

The performance of C-ELM is measured against other popular classifiers using
two types of performance measures:

Average Classification Efficiency: The average classification efficiency ηa is
defined by:

ηa =
1

C

C∑

i

qi
Ni

× 100, (22)

where qi is the number of data in class i that have been correctly classified, and
Ni is the total number of data in class i. It reflects the average ratio of correctly
classified data in each class.

Overall Classification Efficiency: The overall classification efficiency ηo is
defined by:

ηo =

∑C
i qi
NT

× 100 (23)

where NT is the total number of data in the testing data set. It reflects the
overall ratio of correctly classified data in the whole testing data set.

3.2 Performance Study on Multi-category Classification Problems

The performance of the C-ELM on multi-category benchmark classification prob-
lems is shown in Table 2. It can be observed from Table 2 that the generalization
performance of C-ELM is better than other classifiers used for comparison on
all the multi-category classification problems. Also, the number of hidden neu-
rons added during the evolving process is comparable with other algorithms. For
example, C-ELM added 140 hidden neurons for Vehicle classification problem,
6 hidden neurons for Iris problem, and 8 hidden neurons for Wine problem.
Another advantage of C-ELM in comparison with other self-regulated learning
algorithms such as McELM is that it takes a substantially small amount of
time for training. For example, McELM takes 40 seconds to train the Vehicle
classification problem whereas C-ELM only takes 15.2 seconds. Hence, it shows

364 Q. Wu and C. Miao

that C-ELM achieves better performance than other classifiers on multi-category
classification problems due to the intrinsically motivated learning mechanism of
curiosity.

Table 2. Performance study on the multi-category classification problems

Data set classifier # hidden Training Testing
neurons time ηo ηa

Vehicle SVM 340a 550 70.62 68.51
classification ELM 150 0.4 77.01 77.59

McELM 120 40 81.04 81.3
C-ELM 140 15.2 81.99 82.42

Iris SVM 13a 0.02 96.19 96.19
ELM 10 0.01 96.19 96.19

McELM 6 0.03 98.1 98.1
C-ELM 6 0.0001 99.05 99.05

Wine SVM 13a 0.1 97.46 98.04
ELM 10 0.25 97.46 98.04

McELM 9 0.02 98.31 98.69
C-ELM 8 0.015 99.15 99.35

a # support vectors

3.3 Performance Study on Binary Classification Problems

The performance of C-ELM on three binary classification problems is shown in
Table 3. Table 3 shows that C-ELM achieves better generalization performance
than other classifiers used for comparison on all the binary classification prob-
lems. Also, the total number of hidden neurons added during the evolving process

Table 3. Performance study on the binary classification problems

Data set classifier # hidden Training Testing
neurons time ηo ηa

Liver SVM 141a 0.1 71.03 70.21
disorder ELM 100 0.17 72.41 71.41

McELM 50 0.95 74.48 73.83
C-ELM 31 0.73 76.55 76.5

PIMA SVM 221a 0.21 77.45 76.33
ELM 400 0.29 76.63 75.25

McELM 25 0.47 80.43 78.49
C-ELM 33 1.42 81.25 80.31

Breast SVM 24a 0.11 96.6 97.06
cancer ELM 66 0.14 96.36 96.5

McELM 10 0.05 97.39 97.84
C-ELM 9 0.09 97.65 98.04

a # support vectors

C-ELM: A Curious Extreme Learning Machine for Classification Problems 365

is comparable with other algorithms. For example, C-ELM requires 31 hidden
neurons for Liver disorder problem, 33 hidden neurons for PIMA problem, and
9 hidden neurons for Breast cancer problem. For binary classification problems,
the training time of C-ELM is comparable with other self-regulated learning al-
gorithms such as McELM. For example, it requires 0.73 seconds for C-ELM and
0.95 seconds for McELM to train the Liver disorder problem. Hence, it shows
that C-ELM achieves better generalization ability than other classifiers on bi-
nary classification problems without compromising the extreme leaning ability
of ELM, due to the intrinsically motivated learning mechanism of curiosity.

4 Conclusion

In this paper, a curious extreme learning machine (C-ELM) algorithm is pro-
posed based on the psychological theory of curiosity by Berlyne. C-ELM treats
each input data as a curious stimulus and performs curiosity appraisal towards
each input data based on four collative variables: novelty, uncertainty, conflict,
and surprise. Three learning strategies can be chosen from based on the curios-
ity appraisal results, including neuron addition, neuron deletion, and parameter
update. C-ELM enhances traditional ELM algorithms with the evolving capabil-
ity, which determines optimal network structure dynamically based on training
data. Also, C-ELM reduces partially the random effect of traditional ELM algo-
rithms by selecting RBF centers based on data instead of random assignment.
Moreover, C-ELM employs a novel neuron deletion strategy which is based on
conflict resolution. Empirical study of C-ELM shows that the proposed approach
leads to compact network structures and generates better generalization perfor-
mance with fast response, comparing with traditional ELM and other popular
classifiers.

References

1. Huang, G.-B., Zhu, Q.-Y., Mao, K.Z., Siew, C.-K., Saratchandran, P., Sundarara-
jan, N.: Can threshold networks be trained directly? IEEE Transactions on Circuits
and Systems II: Express Briefs 53(3), 187–191 (2006)

2. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and
applications. Neurocomputing 70(1), 489–501 (2006)

3. Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Inter-
national Journal of Machine Learning and Cybernetics 2(2), 107–122 (2011)

4. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Real-time learning capability of neural
networks. IEEE Transactions on Neural Networks 17(4), 863–878 (2006)

5. Liang, N.-Y., Saratchandran, P., Huang, G.-B., Sundararajan, N.: Classification
of mental tasks from EEG signals using extreme learning machine. International
Journal of Neural Systems 16(01), 29–38 (2006)

6. Xu, J.-X., Wang, W., Goh, J.C.H., Lee, G.: Internal model approach for gait model-
ing and classification. In: Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, pp. 7688–7691 (2006)

366 Q. Wu and C. Miao

7. Yeu, C.-W.T., Lim, M.-H., Huang, G.-B., Agarwal, A., Ong, Y.-S.: A new machine
learning paradigm for terrain reconstruction. IEEE Geoscience and Remote Sensing
Letters 3(3), 382–386 (2006)

8. Feng, G., Huang, G.-B., Lin, Q., Gay, R.: Error minimized extreme learning ma-
chine with growth of hidden nodes and incremental learning. IEEE Transactions
on Neural Networks 20(8), 1352–1357 (2009)

9. Rong, H.-J., Ong, Y.-S., Tan, A.-H., Zhu, Z.: A fast pruned-extreme learning ma-
chine for classification problem. Neurocomputing 72(1), 359–366 (2008)

10. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. Neuro-
computing 70(16), 3056–3062 (2007)

11. Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learn-
ing machine. Neurocomputing 71(16), 3460–3468 (2008)

12. Miche, Y., Sorjamaa, A., Lendasse, A.: OP-ELM: Theory, experiments and a tool-
box. In: Kůrková, V., Neruda, R., Koutńık, J. (eds.) ICANN 2008, Part I. LNCS,
vol. 5163, pp. 145–154. Springer, Heidelberg (2008)

13. Savitha, R., Suresh, S., Kim, H.J.: A meta-cognitive learning algorithm for an
extreme learning machine classifier. Cognitive Computation 6(2), 253–263 (2014)

14. Wu, Q., Miao, C.: Curiosity: From psychology to computation. ACM Computing
Surveys (CSUR) 46(2), 18 (2013)

15. Loewenstein, G.: The psychology of curiosity: A review and reinterpretation. Psy-
chological Bulletin 116(1), 75–98 (1994)

16. Barto, A.G., Singh, S., Chentanez, N.: Intrinsically motivated learning of hierar-
chical collections of skills. In: Proc. of International Conference on Development
Learn, 112–119 (2004)

17. Schmidhuber, J.: Formal theory of creativity, fun and intrinsic motivation. IEEE
Transaction on Autonomous Mental Development 2(3), 230–247 (2009)

18. Wu, Q., Miao, C., Shen, Z.: A curious learning companion in virtual learning
environment. In: Proc. of IEEE International Conference on Fuzzy Systems, pp.
1–8 (2012)

19. Wu, Q., Miao, C.: Modeling curiosity-related emotions for virtual peer learners.
Computational Intelligence Magazine 8(2), 50–62 (2013)

20. Wu, Q., Miao, C., An, B.: Modeling curiosity for virtual learning companions. In:
Proc. of the International Joint Conference on Autonomous Agents and Multiagent
Systems (2014)

21. Berlyne, D.E.: Conflict, arousal, and curiosity. McGraw-Hill (1960)
22. Suresh, S., Sundararajan, N., Saratchandran, P.: Risk-sensitive loss functions for

sparse multi-category classification problems. Information Sciences 178(12), 2621–
2638 (2008)

23. Subramanian, K., Suresh, S., Sundararajan, N.: A metacognitive neuro-fuzzy in-
ference system (McFIS) for sequential classification problems. IEEE Transaction
on Fuzzy Systems 21(6), 1080–1095 (2013)

24. Zhang, T.: Statistical behavior and consistency of classification methods based on
convex risk minimization. Annals of Statistics 32, 56–85 (2004)

25. Liang, N.-Y., Huang, G.-B., Saratchandran, P., Sundararajan, N.: A fast and ac-
curate online sequential learning algorithm for feedforward networks. IEEE Trans-
actions on Neural Networks 17(6), 1411–1423 (2006)

Review of Advances in Neural Networks:

Neural Design Technology Stack

Stanis�law Woźniak1,2, Adela-Diana Almási1,3, Valentin Cristea3,
Yusuf Leblebici2, and Ton Engbersen1

1 IBM Research - Zurich, Rüschlikon, Switzerland
{stw,dlm,apj}@zurich.ibm.com

2 Microelectronic Systems Laboratory, EPFL, Lausanne, Switzerland
yusuf.leblebici@epfl.ch

3 Computer Science and Engineering Department, UPB, Bucharest, Romania
valentin.cristea@cs.pub.ro

Abstract. This review provides a high-level synthesis of significant re-
cent advances in artificial neural network research. We assume that a
global view of the field can benefit researchers by providing alternative
viewpoints. Therefore, we present different network and neuron models,
we discuss model parameters and the means to obtain them, and we
draw a quick outline of information encoding, before proceeding to an
overview of the relevant learning mechanisms, ranging from established
approaches to novel ideas. We specifically focus on comparing the clas-
sical artificial model with the biologically-feasible spiking neuron.

Keywords: neural networks, machine learning, spiking neurons, artifi-
cial neurons, neuromorphic systems.

1 Introduction and Background

Recently, we have been witnessing increasing interest in understanding how the
brain functions and how it could be modeled. This momentum is fueled by major
research initiatives, including the Human Brain Project, the BRAIN Initiative,
as well as significant commercial efforts, such as IBM Watson.

In this paper we provide an overview of the state-of-the-art in neural networks,
the main building block of the brain. Computer scientists typically focus on
artificial neural networks; however, numerous alternative models and learning
approaches are studied within various brain-related disciplines. We discuss not
only the most popular and successful approaches, but also niche ideas, which
offer an interesting perspective on the field. We aim to provide the readers with a
global view of the field, in order for them to consider a wider array of possibilities
in neural network design.

2 Neural Network Definitions

The brain consists of a densely interconnected network of neurons and in this
section we present artificial models attempting to recreate this structure.

c© Springer International Publishing Switzerland 2015 367
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_31

368 S. Woźniak et al.

NEURON
LAYER

NETWORK
LAYER

PARAMETERS
LAYER

INPUT-OUTPUT
LAYER

TECHNOLOGY STACK OF NEURAL NETWORK DESIGN

ANN
sigmoid, rectified linear, binary …

SNN
integrate-and-fire, Izhikevitch, …

LAYOUT
layered, sparse, recurrent, …

STRUCTURES
autoencoder, LSTM, soft-max, …

LEARNING STYLE
supervised, unsupervised, …

MODEL PARAMETERS
weights, connections, …

ENCODING TYPE
rate, population, spike-timing, …

EXECUTION TYPE
single pass, stateful, time series, ...

Fig. 1. Neural network designers can choose from a wider variety of neuron models,
network architectures and learning approaches, than they are often aware of

2.1 Neuron Model

The discovery of the principles driving biological neurons has provided the the-
oretical basis for modeling neurons. The complex functionality of the biological
neuron was abstracted to simpler theoretical models. Depending on the level of
simplification, these models have led to spiking neural models - which preserve
more biological behavior, by communicating via spikes. A further abstraction
level are the artificial neurons, such as the perceptron. This development is
schematically represented in figure 2.

COMPUTATIONAL
NEUROSCIENCE

Σ f

b
3iw

2iw

1iw

)(ii sumfy
1x

2x

3x

4x

… … … … … …

NEUROBIOLOGY ARTIFICIAL
NEURAL NETWORKS

simplify simplify

Fig. 2. The transition from neurological to spiking to artificial neurons is achieved
through consecutive model simplifications: a) biological, b) spiking, c) artificial neuron

Review of Advances in Neural Networks: Neural Design Technology Stack 369

Artificial Neuron Model. The basic computational unit for an artificial neu-
ral network (ANN) is the artificial neuron, described by equation (1). It consists
of three main components - firstly, an array of input synapses, through which
the neuron receives input from other neurons. Secondly, the cell body - which
contains the neuron model, the function that the neuron uses to process the
inputs and obtain an output. Thirdly, the output value of the neuron. Each of
these concepts has its corresponding biological counterpart.

f(x) = fact(w · x+ b) (1)

Spiking Neuron Model. A bottom-up approach to functional neuron model-
ing begins with the work of Hodgkin and Huxley [16] and the equation (2) for
the current flowing in and out of the cell through a membrane with a potential
Vm, capacitance Cm and ion channels with conductance gi and potential Vi.

I = Cm
dVm

dt
+

n∑

i=1

gi(Vm − Vi) (2)

Activities of other neurons cause charge accumulation through the ion chan-
nels. Then, if a threshold voltage is reached, the cell will emit a strong uniform
pulse, called spike. Simultaneously the charge of the cell is reset and cell remains
disabled for a time called refractory period.

Besides the description of the flow of the synaptic current, biological neurons
have numerous other properties. Based on the level of detail, dozens of different
models were proposed [14] , which is in contrast to the rather standardized ANN
approach.

Out of this wide variety of models, the most popular implementation is the
simple leaky integrate-and-fire (LIF) neuron. It is an approximation of biological
behavior and its parameters correspond to the properties of real neurons. When
integrated charge surpasses a given threshold a dirac signal, spike, is emitted [8].

Relationship between Artificial and Spiking Neurons. The equation of
the artificial neuron can be derived from the equation of the spiking neuron [7]
under certain assumptions, which include deterministic ion channels operation,
constant stable input and continuous stable network behavior. Then, the floating
point values of the artificial neurons correspond to the averaged spiking rate of
the spiking neurons after their convergence to a stable state.

The response rate characteristics of spiking neurons and artificial sigmoid
neurons are shown in figure 3. The initial shift of the spiking neuron’s plot is
caused by leakage and non-zero current required to reach the threshold and to
actually start emitting spikes. The refractory period of the neuron determines
the maximum spiking frequency. Equation 3 explains the plots of the neuronal
response - spiking rate νspiking [11], where Δabs - absolute refractory period,
τm - membrane time constant, R - membrane resistance, I0 - current input, ϑ -
threshold voltage.

370 S. Woźniak et al.

0.0

0.2

0.4

0.6

0.8

1.0

re
sp

on
se

input magnitude

Spiking LIF model

0.0

0.2

0.4

0.6

0.8

1.0

re
sp

on
se

input magnitude

Artificial sigmoid neuron model

Fig. 3. 0-1 normalized response rate based on the internal neuron’s stimulation rate
of a spiking neuron and artificial neuron. Horizontal axes deliberately omitted, as zero
is determined by a particular neuron’s bias and units are not directly comparable.

νspiking =

(
Δabs + τm ln

R I0
R I0 − ϑ

)−1

, νsigmoid =
1

1 + e−x
(3)

In artificial neurons, the response is defined by an activation function chosen
by the network designer. The function should be non-linear in order to ensure the
expressiveness of the model [22]. Very often, the learning method imposes addi-
tional constraints, such as the monotonous and differentiable function required
by the back-propagation algorithm, which makes sigmoid a popular choice.

2.2 Network Model

An artificial neural network (ANN) is a mathematical and computational model,
which consists of a series of computational units interconnected by uni-directional
communication channels. Each synapse has an associated numerical weight,
which is used to determine the relative influence of each input connection. In or-
der to obtain the desired outputs for given inputs, weights are modified through
an optimization process that we refer to as learning.

From the point of view of connectivity, a very popular approach is to have
a layered feed-forward neural network, with full connectivity between adjacent
layers, an acyclic directed graph. If a network exhibits loops, the model is that
of a recurrent neural network (RNN), which at present are an active field of
research [5] [12].

2.3 Information Encoding

One of the challenges in neurobiological studies is tracking and understanding
the way information is encoded in the brain, analogously to the way it is stored
in an artificial neural network.

The distributed nature of information storage, as well as the difficulty of
obtaining experimental data, have hindered the construction of a unified and
exact model of how information is encoded.

Aspects of information encoding include what the input to a single neuron
is, how information is distributed accross the network, and how the inputs from
the senses are processed by the network.

Review of Advances in Neural Networks: Neural Design Technology Stack 371

Neural Encoding. In the brain, information is encoded via trains of action
potentials. Spikes can be interpreted as Boolean, all-or-nothing values, despite
the variations in voltage of the spike traveling throughout the neuron body.

Depending on the brain region and the neuron type,
this information can be encoded using various types of codes, such as:

– Rate code - In this case, the translation of an analog value into a train of
spikes is done via the frequency of consecutive spikes, the firing rate. This is
the mechanism in the case of motor neurons [1].

– Population code - is a method of representing information by the joint ac-
tivities of a larger number of neurons. [8]

– Spike-time dependent code – Another possible encoding uses a spike-time de-
pendent code in order to translate relative spike positions to numeric values,
as more of a computational solution than a neuroscientific hypothesis [3].

3 Establishing Model Parameters

A neural network is a meta-model for computation. Applying it to solve a con-
crete problem requires tuning of parameters presented in this section.

3.1 Types of Parameters

The term parameters is often used interchangeably with weights, because they
are typically the central focus of ANN researchers. However, looking broader into
the frontier of what constitutes the neural model and what is a human design,
the following aspects may be treated as parameters:

– Weight wij - value controlling the transmission level of synaptic signal be-
tween (i, j) pair of neurons.

– Connection cij - synapses between neurons can be created or removed. One
might argue that this is equivalent to setting a weight to zero, but thinking
in terms of connection removal is more natural for problems such as the
construction of sparse connections in non-layered models, where connections
can form an arbitrary graph.

– Neuron model ni - neuron types are changed more often than one might
expect. For instance, the neurons in the brain are either inhibitory or excita-
tory (Dale’s principle), so a very common change of ANN weight polarity is,
from a biological standpoint, a change of neuron type. In fact, such change
is not feasible in the brain, but this is considered allowable as it is possible
to transform a neural network model with mixed synapses into a network
with inhibitory or excitatory neurons only [25].

– Network model s - the number of neurons and their layout are typically fixed
parameters, defined during the design stage. However, it can be also opti-
mized as a part of the problem, e.g. by using evolutionary genetic algorithms
to construct the network [9].

372 S. Woźniak et al.

3.2 Obtaining Parameter Values

The aforementioned parameters can be obtained using the following methods:

– Discretionary - in this case, the network and the neuron model are cho-
sen based on individual experience, rules of thumb or trial-and-error. This
approach is typically used for most of the parameters, except the weights.

– Analytic - is based on mathematical theories that can potentially provide
explicit solutions quickly and without a need for multiple iterations and
fine-tuning. Early works on neural networks considered calculating all of the
weights from the training examples by solving network equations, but this is
feasible only in very simple cases. However, it is possible to solve the weight
equations for a single layer. ELMs (Extreme Learning Machines) [17] build
on top of a random network and analytically calculate only the weights in
the last layer. Then, a divide-and-conquer approach can be used to stack
them into multiple layers (ML-ELM). For more information see section 4.2.

– Data-driven - learned from the training data, i.e. derived from a certain set
of problem examples using a parameter optimization algorithm, called the
learning algorithm. This approach is the most widely used for weight tuning
and is described in the section 4.

4 Learning

Learning is a data-driven mechanism for obtaining model parameters. Algo-
rithms, in the classic approach, are developed by programmers. The size of the
code and its complexity grow non-linearly with the size of the problem it models,
which constitutes the unpleasant specificity of the software industry.

In contrast, machine learning techniques use relatively compact formulations,
no matter the problem size. The complexity of the problem is converted into the
values of neural network parameters, which are not directly programmed, but
rather determined as a function of a training set used as problem formulation.

4.1 Learning Approaches - Classification

Supervised. This class of learning algorithms comprises of methods that use
labeled training data in order to generalize the relationship between data and
labels to unknown examples. In this case, one specifies a cost function related
to the desired output, and then the learning consists of using a gradient descent
based optimization method in order to minimize this cost function.

The most important method is the backpropagation algorithm [26]. It is a
generalized delta rule , which imposes a set of limitations on the network, as the
activation function of the neuron needs to be monotonous and differentiable.

It is feasible to also use other general supervised approaches, not specifically
designed to be applied in an ANN context, such as simulated annealing [4].

Review of Advances in Neural Networks: Neural Design Technology Stack 373

Unsupervised Learning. Most of the data generally available is not labeled,
as labeling is usually a manual and time-consuming process. Unsupervised ap-
proaches include clustering and hidden Markov models (HMMs), and it has
proven to be useful when it comes to neural networks, especially when used in
conjunction with supervised learning, in the case of deep learning.

Unsupervised clustering occurs in the mammalian brain in the primary visual
cortex. It is therefore possible to develop localized receptive fields, similar to
those found in the primary visual cortex, by using an unsupervised learning
algorithm [24].

Biological Models. There are also alternative bio-inspired algorithms, valuable
from the point of view of simulation insight, with sometimes mixed computa-
tional performance. The application of biologically inspired mechanisms can be
done at different levels of the system:

– whole organism level - In this case, the algorithm is at the level of the whole
system, such as genetic algorithms (GA). It is possible to apply GA to ANNs,
by considering each potential ANN weight/structure configuration as an in-
dividual. Another possibility is to evolve the entire structure of the ANN, as
is the case for evolutionary ANNs (EANNs) [29]. In this case, evolutionary
algorithms are used to evolve the network parameters to obtain an optimal
network architecture for a given problem. By eliminating redundancies, this
often results in a sparser network, which therefore requires less resources
during execution.
This can be used, for instance, for anomaly detection [13], or in a deep
network context, by using a GA-assisted method for a deep autoencoder [6].

– nervous system level or neuron level - These include Hebbian learning, synap-
tic plasticity - more information in section 4.2.

Reinforcement. Reinforcement learning is based on the idea of having an agent
which interacts with its environment. The agent chooses a task from a probability
distribution, and this task will yield a response from the environment. The goal of
the learning is to maximize the total reward function. Applying these principles
to artificial neural networks, an interesting result has been obtained in [23],
where a deep network learned to play several Atari2600 games using as input
only what is visible on video screen.

4.2 Learning Trends

Deep Learning. One of the remarkable advances in recent neural network
research has been the advent of deep learning. In 2006, Hinton et al. [15] proposed
a fast learning algorithm for deep belief networks (DBN), which uses layer-wise
unsupervised learning for each layer of the DBN. It has been proven that this
mechanism of combining supervised learning with unsupervised layer-wise pre-
training yields very good experimental results, and this field has developed into
a very active field of research [27].

374 S. Woźniak et al.

By helping the network to automatically develop features, this approach ad-
dresses some of the the limitations of backpropagation - the results are not so
dependent anymore on the initial random initialization of the weights, which
makes it less likely for the algorithm to get stuck in a local minimum. Using
only backpropagation for a multi-layered network is not computationally effec-
tive, and it does not yield good results for more than 1-2 hidden layers, mainly
due to the higher likelihood of local minima. A comparison of the results obtained
with different flavors of deep learning can be found at [19].

Extreme Learning Machines. ELM (Extreme Learning Machine) is an an-
alytic approach to weight calculation. The equation (4) is the network model
used by an ELM in the neural network case [17]. It is a single-hidden-layer feed-
forward architecture, where βi are the trained weights of the output layer, g
represents the activation function of the nodes in the hidden layer and x is the
input vector.

fn(x) =

n∑

i=1

βi g(ai · x+ bi) (4)

For a set of target labels T , the equation can be rewritten as T = βH . Then,
the core step of the ELM is to calculate the output weights from β = H†T ,
where H† is the Moore-Penrose generalized inverse of matrix H [18].

As an analytic method, it is orders of magnitude faster than an iterative
approach, e.g. for MNIST dataset after 7.5 minutes of training it outperforms
Deep Belief Network trained for 5.7 hours [18].

Other advantages of ELM include lack of additional algorithm parameters and
less constraints on the activation functions than in the case of gradient following
approaches. It is enough to have a bounded nonconstant piecewise continuous
function, which makes it possible to use for instance the threshold function [17].
Alltogether, this makes ELM a very interesting alternative research direction for
neural networks.

STDP. As more insights had been collected from biological neurons, it was
discovered that the relative timing of the spikes in spiking neurons alters the
weights, in a process named Spike-Timing Dependent Plasticity [10] [21].

Synaptic plasticity explains biological learning through the ongoing changes
in synapse strength. [11] If the post-synaptic neuron will spike after the pre-
synaptic neuron, then the synapse between them is strengthened; conversely, if
the post-synaptic neuron will spike before the pre-synaptic one, the connection
is weakened. STDP is therefore a local weight change mechanism.

Is then SDTP a more universal biologically-feasible approach, which could
replace back-propagation? Despite huge hope and effort to refine STDP as the
standard learning mechanism for spiking networks, there are many questions
about the extend of its validity. On one hand, it is intuitively appealing and
confirmed in various experiments, but on the other hand, there are numerous
neuroscientific experiments in which STDP fails. In effect, it is proposed to treat
it as a one dimensional approximation of a high-dimensional learning rule [28].

Review of Advances in Neural Networks: Neural Design Technology Stack 375

5 Summary

In this paper, we have provided a high-level overview of current trends in neural
network research. By starting from the definitions of neural network models,
we compare the artificial neuron model with the biologically-plausible spiking
neuron. Furthermore, we explain the basic concepts behind the encoding and
decoding of information in a neural network model, be it an artificial mathemat-
ical abstraction, or a biological neuroscience model. We continue by presenting
an outline of the main learning approaches in neural network design, starting
from classical methods and ranging all the way to novel promising paradigms.

Recently, neural networks have regained mainstream attention due to break-
throughs in neuroscience research, advances in artificial models, as well as novel
hardware. Firstly, hardware advances have made it possible to verify concepts at
a much larger scale, e.g. by simulating a system with 109 synapses [2], which is
comparable in scale to a cat’s brain. Secondly, the unsupervised feature learning
paradigm offered a logic that could utilize large unpreprocessed datasets provid-
ing results such as a self-emerging cat image detector [20]. Those ideas led to
improvements over many individual computational tasks.

However, there is still much to be done in order to develop a system or an
algorithm that can exhibit human-like cognition and intelligence. The interesting
question now is how to build more versatility into these systems. Disciplines such
as neuroscience and cognitive sciences define foundations and concepts from
which AI researchers could greatly benefit. The key to further progress in neural
networks does not require only incremental changes, but rather a qualitative
change, which is likely to come from a surprising combination of existing work
and insights from one or more of the connected fields.

References

1. Adrian, E.D., Zotterman, Y.: The impulses produced by sensory nerve-endings part
ii. the response of a single end-organ. J. Physiol. 61(2), 151–171 (1926)

2. Ananthanarayanan, R., Esser, S.K., Simon, H.D., Modha, D.S.: The cat is out
of the bag. In: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, pp. 1–12. IEEE (2009)

3. Bohte, S.M., Kok, J.N., La Poutre, H.: Error-backpropagation in temporally en-
coded networks of spiking neurons. Neurocomputing 48(1), 17–37 (2002)

4. Chen, L., Aihara, K.: Chaotic simulated annealing by a neural network model with
transient chaos. Neural Networks 8(6), 915–930 (1995)

5. Cireşan, D., Meier, U., Masci, J., Schmidhuber, J.: Multi-column deep neural net-
work for traffic sign classification. Neural Networks 32, 333–338 (2012)

6. David, O.E., Greental, I.: Genetic algorithms for evolving deep neural networks.
In: Proceedings of the 2014 Conference Companion on Genetic and Evolutionary
Computation Companion, pp. 1451–1452. ACM (2014)

7. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathemat-
ical Modeling of Neural Systems. MIT Press (2005)

8. Eliasmith, C., Anderson, C.H.: Neural engineering: Computation, representation,
and dynamics in neurobiological systems. MIT Press (2004)

376 S. Woźniak et al.

9. Ferreira, C.: Designing neural networks using gene expression programming. Ap-
plied Soft Computing Technologies: The Challenge of Complexity, 517–535 (2006)

10. Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H.: A neuronal learning
rule for sub-millisecond temporal coding. Nature 383(6595), 76–78 (1996)

11. Gerstner, W., Kistler, W.M.: Spiking neuron models: Single neurons, populations,
plasticity. Cambridge University Press (2002)

12. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 6645–6649. IEEE (2013)

13. Han, S.-J., Cho, S.-B.: Evolutionary neural networks for anomaly detection based
on the behavior of a program. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B: Cybernetics 36(3), 559–570 (2005)

14. Hines, M.L., Morse, T., Migliore, M., Carnevale, N.T., Hines, M.L.: ModelDB: A
database to support computational neuroscience. Journal of Computational Neu-
roscience 17(1), 7–11 (2004)

15. Hinton, G., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief
nets. Neural Computation 18(7), 1527–1554 (2006)

16. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and
its application to conduction and excitation in nerve. The Journal of Physiol-
ogy 117(4), 500 (1952)

17. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental
constructive feedforward networks with random hidden nodes. IEEE Transactions
on Neural Networks 17(4), 879–892 (2006)

18. Kasun, L.L.C., Zhou, H., Huang, G.-B., Vong, C.-M.: Representational learning
with ELMs for big data. IEEE Intelligent Systems 28(6), 31–34 (2013)

19. Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for
training deep neural networks. JMLR 10, 10:1–10:40 (2009)

20. Le, Q.V., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G.S., Dean,
J., Ng, A.Y.: Building high-level features using large scale unsupervised learning.
arXiv preprint arXiv:1112.6209 (2011)

21. Markram, H., Lbke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy
by coincidence of postsynaptic APs and EPSPs. Science 275(5297), 213–215 (1997)

22. Minsky, M., Papert, S.: Perceptrons. MIT Press (1969)
23. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

24. Olshausen, B.A., Field, D.J.: Natural image statistics and efficient coding. Network:
Computation in Neural Systems 7(2), 333–339 (1996)

25. Parisien, C., Anderson, C.H., Eliasmith, C.: Solving the problem of negative synap-
tic weights in cortical models. Neural Comput. 20(6), 1473–1494 (2008)

26. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Cognitive Modeling (1988)

27. Schmidhuber, J.: Deep learning in neural networks: An overview. arXiv preprint
arXiv:1404.7828 (2014)

28. Shouval, H.: Spike timing dependent plasticity: a consequence of more fundamental
learning rules. Frontiers in Computational Neuroscience (2010)

29. Yao, X.: Evolving artificial neural networks. P. IEEE 87(9), 1423–1447 (1999)

Applying Regularization

Least Squares Canonical Correlation
Analysis in Extreme Learning Machine

for Multi-label Classification Problems

Yanika Kongsorot, Punyaphol Horata, and Khamron Sunat

Department of Computer Science, Khon Kaen University,
Friendship Road, Khon Kaen, Thailand 40002

yanika k@kkumail.com, punhor1@kku.ac.th, khumron sunat@yahoo.com

Abstract. Multi-label classification is a type of classification where
each instance is associated with a set of labels. Many methods such as
BP-MLL, rank-SVM, and MLRBF have been proposed for multi-label
classification but their learning abilities are too slow. Extreme Learn-
ing Machine (ELM) is a well known algorithm for SLFNs that can
learn faster than the traditional gradient-base neural networks and it
also provides better generalization performance. However, the classifica-
tion performance of ELM involving multi-label classification may not be
good enough despite its advantage in fast training. Therefore, this pa-
per proposes two multi-label classification approaches in ELM. The first
approach uses the 1-norm regularized Least-square for Canonical Corre-
lation Analysis (1-norm LSCCA) to obtain the projection vectors, which
in turn uses the vectors to provide the new information. Then, ELM is
then used to learn this new information in the new space. The second
approach applies the ensemble method to the first approach to reduce
the random effects of ELM. The experimental results show that the two
proposed methods can improve the performance of ELM in multi-label
classification and are also faster than the previous multi-label classifica-
tion methods.

Keywords: Extreme Learning Machine, Canonical Correction Analysis,
A Least Squares Formulation for Canonical Correction Analysis, Multi-
Label Classification.

1 Introduction

Traditional single-label classification is learning from examples that are associ-
ated with one label li from a set of labels L = {l1, l2, ..., lm} ,m > 1. However,
many problems can be associated with more than one category and these are
called multi-label problem [1], [2]. The task for solving the multi-label problem
is called multi-label classification. This task involves learning to map an exam-
ple to a set of labels y ⊂ L [3]. There are three main approaches for solving

c© Springer International Publishing Switzerland 2015 377
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_32

378 Y. Kongsorot, P. Horata, and K. Sunat

multi-label problems [1],[2]: a) Problem Transformation approaches, b) Algo-
rithm Adaptation approaches, and c) Ensemble approaches. Problem transfor-
mation approaches are related to the transformation of the multi-label problem
into a single-label then the binary or multi class learning methods are used for
classifying. Algorithm adaptation approaches are associated with the applica-
tion of the algorithms to handle the multi-label problem directly. The ensemble
approaches are hybrid of the problem transformation approaches and algorithm
adaptation approaches.

The correlation between the examples set X , and labels set L is a matrix
to indicate a characteristic of each data. The Canonical Correlation Analysis
(CCA) is a well known technique for analyzing the correlation between two sets
of variables. The technique is computed to find the pairs of projection vectors
such that the correlation is maximized. CCA is applied to many learning methods
and it is also applied to multi-label classification [4]. CCA can be formulated
to the least-square formulation for very large datasets, which is called LSCCA.
Moreover, CCA and LSCCA can be extended using the regularization technique,
which is a 1-norm and 2-norm of the extension. Research by [4] showed that the
1-norm LSCCA is better than CCA.

Extreme Learning Machine (ELM) was proposed by Huang et al.[5]. The
learning speed of ELM is faster than traditional gradient-based approaches be-
cause its parameters are randomly generated. ELM is used in both binary and
multiclass classification and it has been applied to several applications. In mul-
ticlass classification, ELM uses multi-output nodes instead of a single-output
node [6]. Only the element with the highest output value from the output nodes
is considered as the label of the input. However, ELM has a shortcoming for
multi-label classification. For example, in the Scene multi-label problem, Fig.1
shows that the training times of ELM is still fast but the F-measure of ELM
on every number of hidden nodes is nearly with zero. The research [7] presented
an approach of ELM for working on multi-label classification using CCA but
its performance depended on the random effects of ELM. Also, the random of
generating the parameters is the one cause of the fluctuating performance of
ELM. There are many ways to protect this random effect, as showed by [8].

Therefore, this paper proposes two approaches for multi-label classification in
ELM named as LSCCA1-ELM and LSCCA1-ELM Ensemble. These approaches
are based on the extension of L1-LSCCA [4], [9] and ELM multi-output nodes.
In LSCCA1-ELM, the L1-LSCCA is used to compute the projection vectors and
ELM is adapted to learn the multi-label problem in new space. For LSCCA1-ELM
Ensemble is the ensemble of LSCCA1-ELM for mitigating the random parame-
ters effect in ELM and also obtaining good results from ELM learning.

The remainder of this paper is organized as follows: section 2 reviews back-
ground and related works. Section 3 presents the proposed method, while section
4 describes the experimental results. And the final section is the conclusion of
this work.

Applying 1-Norm LSCCA in ELM for Multi-label Classification 379

2 Related Works

2.1 Multi-label Classification

Multi-label classification is widely used in several real-world problems such as
text categorization, medical diagnosis, biology categorization, music categoriza-
tion, and scene categorization. For example in scene categorization, one scene
could be assigned to many kinds of picture, such as sunset, sea, forest, or moun-
tain. Multi-label learning is concerned with learning from a set of examples,
where each example is related to more than one labels. The task of multi-label
learning is summarized in the following section.

Given the d-dimensional example space X ∈ R
d and label space Y ∈ {0, 1}L ,

where L is number of labels and given a set ofN examples {(xi,yi) | i = 1, ..., N}
⊂ (X × Y), the task of multi-label learning is to learn a function f : X → Y to
find a set of labels ŷ = f (x).

Tsoumakas and Katakis [1] grouped the multi-label approaches into two cat-
egories: a) problem transformation approaches and b) algorithm adaptation ap-
proaches. Problem transformation approaches are related to the transformation
of multi-label problems to one or more single-label classification. Example of
it included, the binary relevance method [1], the classifier chain method (CC)
[10], the label power-set method (LP) [1],[11],[12], HOMER [13], and the pair-
wise method [14],[15]. The algorithm adaptation approaches extended the ma-
chine learning algorithms to handle the multi-label problem directly. Examples
of algorithm adaptation methods include, Adaboost for multi-label data [16],
k-Nearest Neighbor (ML-KNN) [17], ML-C4.5 [18], BP-MLL [19], ML-RBF [20],
and rank-SVM [21].

Madjarove et al. [2] presented the third category, ensemble approaches. The
ensemble approaches are based on the problem transformation methods and
algorithm adaptation methods. RAKEL system [12] is one of the most popular
methods, which learns a single-label classifier to predict each label. Another
popular method is the ensemble of classification chain (ECC) [10], which uses
classifier chains (CC) as base classifiers and applies threshold to select the final
set of labels.

2.2 The 1-Norm Regularized Least-Squares Formulation for
Canonical Correlation Analysis (LSCCA1)

This section, we describe the Canonical Correlation Analysis (CCA), the Least-
Squares Formulation for CCA, and LSCCA1, respectively.

Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis (CCA) [22] is a technique for finding the correla-
tions between two sets of multidimensional variables and it is used for reducing
multidimensional of data to smaller. The computing of CCA is to find the project
vectors, which provide the maximum correlation between the inputs and labels.

380 Y. Kongsorot, P. Horata, and K. Sunat

Given the n samples: (X,Y) = {(xi, yi) | i = 1, ..., n}, where X is a n×d data
matrix and Y is a n × k label matrix. CCA computes two projection vectors,
wx ∈ R

d and wy ∈ R
k, such that the correlation is maximized. The correlation

coefficient r is written as follows:

r =
wT

xXYTwy√
(wT

x XXTwx)(wT
y YYTwy)

. (1)

To get the maximum correlation r in Eq.(1), CCA can be formulated equiva-
lently as

maxwx,wy wT
xXYTwy,

subject to wT
xXXTwx = 1,

wT
y YYTwy = 1.

(2)

Focusing on the projection vector wx, it can be assumed that YYT is a
nonsingular matrix. wx can be obtained by solving the following equation:

maxwx,wy wT
xXYT (YYT)−1YXTwx,

subject to wT
xXXTwx = 1.

(3)

The above formula is solved by using the Largrangian formulation and tends
to be a generalized eigenvalues problem :

XYT (YYT)−1YXTwx = ηXXTwx, (4)

where η is the eigenvalue corresponding to the eigenvector wx. The projection
vectors wx can be obtained by computing the eigendecomposition of matrix
(XXT)−1XYT (YYT)−1YXT and selecting the first l eigenvectors of the pro-
jection vectors as follows:

WCCA = (XXT)−1XYT (YYT)−1. (5)

The Least-Squares Formulation for CCA

The research [4] has shown that CCA can be formulated as a least-squares prob-
lem. The projection vector wx of CCA can be obtained by the least-squares
solution using the following equation:

min
W

f(W) =
∥∥WTX−T

∥∥2

F
. (6)

The matrix W in Eq.(6) is obtained by

W = (XXT)†XTT , (7)

where (XXT)† is the Moore-Penrose generalized inverse of XXT .
The class indicator T is defined as follows:

T = (YYT)−1YT . (8)

Applying 1-Norm LSCCA in ELM for Multi-label Classification 381

The solution to the least-squares problem for T from Eq.(7) is

WLS = (XXT)†XYT (YYT)−1. (9)

Sun and Ji [9],[4] showed an equivalent least-squares formulation for CCA
under a mind condition, which tends to hold for high-dimensional data. They
established that, CCA can work on very large dataset using the least-square
solutions. The equivalent least-squares CCA formulation is called LS-CCA.

The 1-Norm Regularized Least-Squares Formulation for Canonical
Correlation Analysis

The least-square CCA formulation can be extended using the regularization
technique, which is used to control the complexity and prevent the over fitting
of model. Research by [23] showed that L1 norm regularization can produce
sparse model that can then be presented into the least-square formulation; the
resulting model is called lasso. Moreover, L2 norm regularization is the most
common variant, which is often applied in liner models with the resulting model
being called ridge regression.

Both regularized L1 and L2 can be applied in least-square CCA formulation as
named LS-CCA1 and LS-CCA2, respectively. The experimental result in [9],[4]
showed that the performance of LS-CCA1 is better than LS-CCA2 so we used the
LS-CCA1 in this work to find the projection vectors. The minimized objective
function of 1-norm regularized least-square CCA formulation by a target using
matrix TT as follows:

L1(W, λ) =

k∑

j=1

(

n∑

i=1

(xT
i wj −TT

ij)
2 + λ ‖wj‖1). (10)

2.3 Extreme Learning Machine

ELM [5] works on the single hidden layer feedforward neural network (SLFNs),
where the hidden parameters (input weights and biases) are randomly chosen
and the output weights are calculated analytically using the Moore-Penrose gen-
eralized inverse [24], and tend to the smallest norm by the least square solution.

For N arbitrary distinct samples
{
(xi, ti) ∈ R

d × R
m
}
, the SLFNs with Ñ

hidden nodes and an activation function g (x), are mathematically modeled as

˜N∑

i=1

βig (wi · xj + bi) = tj , j = 1, ..., N, (11)

where wi = [wi1, wi2, ..., wid]
T is the weight vector for connecting the ith hidden

node and input node, wi ·xj denotes the inner product between wi and xj , bi is

the bias of the ith hidden node, and βi = [βi1, βi2, ..., βim]
T
is the output weight

382 Y. Kongsorot, P. Horata, and K. Sunat

vector for connecting the ith hidden node and the output node. Eq.(11) can be
rewritten in a compact form as follows:

Hβ = T, (12)

where

H =

⎡

⎢⎣
g(w1 · x1 + b1) · · · g(w

˜N · x1 + b
˜N)

...
. . .

...
g(w1 · xN + b1) · · · g(w ˜N · xN + b

˜N)

⎤

⎥⎦

N× ˜N

, (13)

β =

⎡

⎢⎣
βT
1
...

βT
˜N

⎤

⎥⎦
˜N×m

T =

⎡

⎢⎣
tT1
...
tTN

⎤

⎥⎦

N×m

. (14)

H is the hidden layer output matrix of the neural network. T is the target
matrix of the output layer. Eq.(12) becomes a linear system and the output

weight β̂ can be obtained by a least-square solution of Eq. (12), as follows:

∥∥∥Hβ̂ −T
∥∥∥ = min

β
‖Hβ −T‖ (15)

β̂ = H†T, (16)

where H† is the Moore-Penrose generalized inverse of H.
ELM has been applied in various applications and used in both regression and

classification tasks. Looking at the classification task, ELM can be applied in
both binary and multiclass classification. ELM for multi-categories classification
applications has been reported by Rong et al [25] who presented the study of
multiclass classification problem using ELM. They compared the performance
of a single ELM classifier and an ELM binary classifier (ELM-OAO and ELM-
OAA). Their study results showed that the classification performances of single
ELM, ELM-OAO, and ELM-OAA are similar.

ELM with regression and multiclass classification was proposed by Huang
et al. [6]. The output layer was composed of multi-output nodes. m-class of
classifiers have m output nodes. This means that only the largest output value
is used to represent the predicted class label of the input data. There is the over
view of several applications of ELM in [26].

Fig.1 shows the performance of ELM in the scene multi-label problem with
every number of hidden nodes. It can be seen that ELM has a shortcoming for
multi-label classification but its learning speed is still fast. Our previous work
with CCAELM [7], used a common CCA and ELM for working on multi-label
classification but it provided a lesser measure value and had many steps for
implementation. And also, its performance depended on its input weight and
bias, which were generated randomly.

The random of generating the parameters is the one cause of the fluctuat-
ing performance of ELM. Thus, the ensemble approaches of ELM [27],[28] were

Applying 1-Norm LSCCA in ELM for Multi-label Classification 383

proposed to control and protect the random parameters effect of ELM. The com-
mon structure of ELM consists of P individual ELMs where the input weights
and biases of hidden nodes (wk, bk), k ∈ [1, P] are randomly generated and their
output weights βk are analytically determined through inverse operation of their
hidden layer outputs. Although, many methods exist for obtaining the final out-
put, the common one is the average of each individual ELM’result [27] as follows:

f(xi) =
1

P

P∑

k=1

f (k)(xi), (17)

where f (k)(xi), k = 1, ..., P is the output of each ELM and f(xi) is the output of
the whole system with the input xi. The implementation of Eq. (17) is fast and
easy. Other methods of ensemble ELM are presented in [29],[30],[8], and [28].

80 100 120 140 160 180 200

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of Hidden nodes

va
lu

es

F−measure
Training Times

Fig. 1. The F-measure of ELM in multi-label Scene problems

3 Proposes Methods

An applying 1-Norm Regularization Least-Squares Canonical
Correlation in Extreme Learning Machine

This section presents the extensions of ELM and LS-CCA1 to handle the multi-
label classification. In the multi-label problem, the correlation between dataset
and label set is a key idea in obtaining good information. In this work, LS-CCA1

is used to find the projection vectors, which produce the maximum correlation.
These projection vectors are then used to reduce the dimension of data. Next,
ELM multi-output is used to learn the information from LS-CCA1 and classify
the multi-label problem to predict the label set of input data.

Let (X,Y) = {(xi,yi)|i = 1, ..., N} be the set of N training samples, where

X is a N×d data matrix, Y is a N ×L label matrix and yi = {−1, 1}L. Each xi

can belong to one or more label of yi. In this work we used L output nodes for

384 Y. Kongsorot, P. Horata, and K. Sunat

L labels for constructing the structure of ELM. The proposed methods named
as LSCCA1-ELM and LSCCA1-ELM Ensemble can be summarized as follows:

First, LS-CCA1 is used to compute the projection matrix Wx for X as in
following formula:

Wx = (XXT + λI)†XYT . (18)

Then, X is mapped from the input space to low dimension by the projection
Wx as follows:

Z = XWx, (19)

where Z is a new matrix in low dimension of X and its size is N × L.
Next, ELM with multi-outputs is used for learning in low dimension space

of X. Thus, Z is the input information matrix for feeding into ELM. The ap-
proximation equation of ELM for output target T can be rewritten as follows:

Hzβ = T, (20)

where

Hz =

⎡

⎢⎣
g(w1 · z1 + b1) · · · g(w

˜N · z1 + b
˜N)

...
. . .

...
g(w1 · zN + b1) · · · g(w ˜N · zN + b

˜N)

⎤

⎥⎦

N× ˜N

, (21)

β =

⎡

⎢⎣
βT
1
...

βT
˜N

⎤

⎥⎦
˜N×L

, T =

⎡

⎢⎣
TT

1
...

TT
N

⎤

⎥⎦

N×L

. (22)

When ELM is finished learning,the outputs of ELM output layer are classified
by the decision function and finish the LSCCA1-ELM.

In the case of multi-label classification, we define the decision function of ELM
classifier is

ŷi = sign(ti), (23)

where ti ∈ Ti. The approach of the second proposal, LSCCA1-ELM Ensemble, is
the ensemble of LSCCA1-ELM. The LSCCA1-ELM Ensemble uses the ensemble
approach in [27] and constructs with P individual ELMs. The final output is
obtained by the average of each individual ELM as follows:

f(zi) =
1

P

P∑

k=1

f (k)(zi), (24)

where f (k)(zi), k = 1, ..., P is the output of each ELM and f(zi) is the output
of the whole system with the input zi.

Finally, the decision function Eq.(23) is used to classify ti from Eq.(24).

Applying 1-Norm LSCCA in ELM for Multi-label Classification 385

4 Experimental Results

4.1 Dataset and Configuration of Experiments

Six multi-label data problems were used in the experiments: Scene, Emotion,
Cal500, Yeast, Flags, and Bird dataset. The number of data, feature dimensions,
and labels are shown in Table 1. The training and testing sets of all dataset
were obtained using cross validation technique. The experiments perform 5 runs
of 10-fold cross validation and the averaged performances were reported. All
experiments were derived by MATLAB 2011a and run on a Pentium Core2 Duo
PC, 2G of RAM.

Table 1. Summary of Statistics of the dataset. n is the number of data points, d is
the number of dimensionality, and l is the number of labels.

Dataset n d l

scene 2407 294 6
yeast 2417 103 14
emotion 593 72 6
CAL500 502 68 49
birds 654 260 19
flag 194 19 7

4.2 Evaluations Measure

Precision, Recall, f-Measure, and AUC

In multi-label classification, the most commonly used techniques for performance
measuring are precision, recall, and the average F-measure. The confusion matrix
of them is shown in Table 2.

Table 2. Confusion matrix

Actual Value

P
re
d
ic
te
d
V
a
lu
e 1 -1

1
TP
True

Positive

FP
False

Prositive

-1
FN
False

Nagative

TN
True

Negative

386 Y. Kongsorot, P. Horata, and K. Sunat

Let L be the number of labels in label space, the precision and recall are
defined as follows:

Precision =

∑L
i=1 TPi∑L

i=1(TPi + FPi)
, (25)

Recall =

∑L
i=1 TPi∑L

i=1(TPi + FNi)
, (26)

and

F −meause =
2× Precision×Recall

Precision+Recall
, (27)

where i = 1, ..., L, and Precision is the number of the correct returned labels.
Recall is the number of the positive labels that are returned and F-measure
is a measure of accuracy, which considers both the precision and recall of the
results.

In addition to this, the Receiver Operator Characteristic (ROC) is widely
used to measure the performance of model. ROC [31] [32] [33] is a graphical
plot of the fraction of true positive rate and false positive rate. It is widely used
to estimate the performance of the model. The results of ROC analysis can be
represented as the number of Areas Under the ROC Curve (AUC), which its
value is between 0 and 1. If the AUC score of the specific classifier is close to 1
then its performance is good.

4.3 Experimental Results

The performance of our proposed methods are compared with eight other meth-
ods, namely: ELM [5], Binary ELM [25], ELM Kernel [6], rank SVM [21], BP-
MLL [19], MLRBF [20], CCA-OC [34], and CCA-ELM [7]. The cost parameters
of each method are obtained by searching the value of the parameters for the
best performance score, which shows in Table 3, and we used 5 individual ELMs
for LSCCA1-ELM Ensemble. The performances of all methods are reported as
the average of precision, recall, F-measure and the times scales. Then, the ROC
is employed to evaluate the classification performance. The mean AUC score is
reported as the average Area Under the ROC Curve (AUC) over all labels and
all splitting for each data set.

Applying 1-Norm LSCCA in ELM for Multi-label Classification 387

Table 3. The value of the cost parameter of ELM, ELM-Binary, ELM kernel,
CCAELM, and two proposes methods

Datasets Algorithms Number of Regularization Kernel parameter
hidden nodes value value

Scene ELM 56 - -
ELM-Binary 62 - -
ELM kernel - 24 2−8

CCAELM 102 - -
LSCCA1-ELM 120 2−3 -
LSCCA1-ELM Ensemble 120 2−3 -

Yeast ELM 409 - -
ELM-Binary 421 - -
ELM kernel - 2−2 2−8

CCAELM 78 - -
LSCCA1-ELM 103 2−4 -
LSCCA1-ELM Ensemble 103 2−4 -

Emotions ELM 213 - -
ELM-Binary 217 - -
ELM kernel - 2−2 2−6

CCAELM 36 - -
LSCCA1-ELM 40 2−3 -
LSCCA1-ELM Ensemble 40 2−3 -

CAL500 ELM 257 - -
ELM-Binary 262 - -
ELM kernel - 24 21

CCAELM 123 - -
LSCCA1-ELM 99 2−5 -
LSCCA1-ELM Ensemble 99 2−5 -

Birds ELM 166 - -
ELM-Binary 171 - -
ELM kernel - 21 2−4

CCAELM 33 - -
LSCCA1-ELM 45 2−2 -
LSCCA1-ELM Ensemble 45 2−2 -

Flags ELM 23 - -
ELM-Binary 25 - -
ELM kernel - 21 2−2

CCAELM 29 - -
LSCCA1-ELM 21 2−3 -
LSCCA1-ELM Ensemble 21 2−3 -

388 Y. Kongsorot, P. Horata, and K. Sunat

Comparison Performance on the Precision, Recall, and F-Measure

Table 4 shows the comparative performances of the proposed methods with ELM,
ELM-Binary, ELM kernel, CCAELM on the precision, recall, and F-measure.
The precision of LSCCA1-ELM Ensemble is the highest in the Scene, Emo-
tions, CAL500, Birds, and Flags problem and comparable to ELM-kernel in one
problem as 0.71818 and 0.71822 in Yeast problem. The recall of LSCCA1-ELM
Ensemble is the highest the Scene, Yeast, and Flags problem. Also, the recall
of LSCCA1-ELM and LSCCA1-ELM Ensemble is comparable to ELM-kernel,
ELM-binary, and CCAELM in the Yeast, Emotions, and Flags problem, respec-
tively. It is however, less than ELM in the CAL500 problem. The F-measure of
LSCCA1-ELM Ensemble is the highest in the Scene, Yeast, Emotions, CAL500,
and Flags problem and the F-measure LSCCA1-ELM is comparable to ELM-
kernel in the Yeast problem.

Table 5 shows the comparative performances of the proposed methods with
CCA-OC, RankSVM, MLRBF on the precision, recall, and F-measure. The pre-
cision of LSCCA1-ELM Ensemble provide the highest precision in the Yeast,
Emotions, CAL500, and Flags problem and less than MLRBF in the Scene, and
Birds problem. The recall LSCCA1-ELM Ensemble is the highest in the Scene
problem and the Emotions problem, while the recall of LSCCA1-ELM is the high-
est in Birds problem. Both the LSCCA1-ELM Ensemble and the LSCCA1-ELM
are less than BPML and MLRBF in the Yeast, Flags, and CAL500 problem,
respectively. The F-measure of LSCCA1-ELM Ensemble is the highest in the
Scene, Emotions, CAL500, and Flags problem, while LSCCA1-ELM is the high-
est in the Birds problem. Both the F-measure of the LSCCA1-ELM Ensemble
and the LSCCA1-ELM are less than MLRBF in the Yeast problem.

Fig. 2. Comparison of the average Precision of all algorithms on all dataset

Applying 1-Norm LSCCA in ELM for Multi-label Classification 389

Fig.2 shows the precision performances of all methods in all problems. In this
figure, LSCCA1-ELM Ensemble provides the highest precision in the Emotions,
CAL500, and Birds probles and is also comparable to LSCCA1-ELM in the Flags
problem. Both the LSCCA1-ELM Ensemble and the LSCCA1-ELM are less than
MLRBF in the Scene and Bird problem.

Fig.3 shows the recall of all methods in all problems. In this figure, the recall of
LSCCA1-ELM Ensemble is higher than LSCCA1-ELM in the flags problem and
is also comparable to LSCCA1-ELM in the Scene, Yeast, and Emotion problem.

Fig. 3. Comparison of the average Recall of all algorithms on all dataset

LSCCA1-ELM Ensemble is less than BPML and MLRBF in the Yeast, Flags
and CAL500 problem and is also less than ELM kernel in CAL500 and Birds
problem.

Finally, Fig.4 shows the F-measure performances of all methods in all prob-
lems. The F-measure of LSCCA1-ELM Ensemble is higher than that of LSCCA1-
ELM in the Scene, Yeast, Emotions, CAL500, and Birds problem and compara-
ble to LSCCA1-ELM in the Flags problem. The F-measure of these methods are
highest in most problems and comparable to MLRBF in some problems. The
F-measure of both LSCCA1-ELM Ensemble and LSCCA1-ELM is the highest
in the Emotions, CAL500, and Flags problem and less than that of MLRBF in
Scene and Birds problem. It can be seen that, the LSCCA1-ELM Ensemble can
provide the good performance on the precision and F-measure and provide the
low scores of recall. The LSCCA1-ELM provided a comparable performance to
LSCCA1-ELM Ensemble on the recall and less than LSCCA1-ELM Ensemble
on precision and F-measure.

When comparing LSCCA1-ELM Ensemble with the other eight methods in
the experiment, we can see that LSCCA1-ELM Ensemble is comparable to
LSCCA1-ELM and MLRBF on the precision, recall, and F-measure. More-
over, the experimental results show that both LSCCA1-ELM Ensemble and
LSCCA1-ELM can improve ELM performance in multi-label classification.

390 Y. Kongsorot, P. Horata, and K. Sunat

Fig. 4. Comparison of the average F-measure of all algorithms on all dataset

Comparison Performance on the AUC Score

Table 6 shows the performances on the AUC scores of all methods in all problems,
the highest is the best. In this table, the AUC scores of LSCCA1-ELM Ensemble
of all problem are the highest. The AUC scores of LSCCA1-ELM of all problem
are higher than all of the comparative methods, except for the LSCCA1 -ELM
Ensemble. In Fig.5, the AUC scores of LSCCA1-ELM are much lower than that
of LSCCA1-ELM Ensemble.

Fig. 5. Comparison of the average AUC score of all algorithms on all dataset

Applying 1-Norm LSCCA in ELM for Multi-label Classification 391

It can be seen that, the ensemble approach can reduce the random effect of
ELM in LSCCA1-ELM and provide the best performance in the experiment.
Moreover, the AUC score in both Table 6 and Fig.5 shows that, the proposed
methods outperform the comparative methods (ELM [5], Binary ELM [25],
ELM Kernel [6], rank SVM [21], BP-MLL [19], MLRBF [20], CCA-OC [34], and
CCA-ELM [7]).

Table 4. Comparison of Precision, Recall, and F-measure of ELM, ELM-Binary,
ELM kernel, CCAELM, and two proposes methods in real world problems. The two-
trailed T-test at 0.05 significance level is performed between LSCCA1-ELM Ensemble
and others methods. The plus symbol(+) is indicated that the performance of
LSCCA1-ELM Ensemble is better than the comparative algorithms, while the minus
symbol(-) is indicated that the performance of LSCCA1-ELM Ensemble is lower than
the comparative algorithms and the approx symbol(≈) is means that the performance
of LSCCA1-ELM Ensemble is comparable to the comparative algorithms.

Datasets Algorithms The performance estimators
Precision (sd.) Recall (sd.) F-measure (sd.)

Scene ELM 0.08000(0.09273) + 0.00054(0.00050) + 0.00106(0.00098) +
ELM-Binary 0.78209(0.01029) + 0.40057(0.00875) + 0.52899(0.00894) +
ELM kernel 0.77391(0.01151) + 0.65089(0.00868) + 0.70694(0.01004) +
CCAELM 0.75718(0.00892) + 0.62510(0.00910) + 0.68457(0.00779) +
LSCCA1-ELM 0.80743(0.00696) ≈ 0.65769(0.00310) + 0.72465(0.00420) ≈
LSCCA1-ELM Ensemble 0.81325(0.00803) 0.66003(0.00643) 0.72844(0.00605)

Yeast ELM 0.70114(0.00948) + 0.56016(0.00511) + 0.62258(0.00517) +
ELM-Binary 0.66223(0.00703) + 0.57959(0.00527) + 0.61802(0.00416) +
ELM kernel 0.71822(0.00907) ≈ 0.58165(0.00467) ≈ 0.64259(0.00543) ≈
CCAELM 0.70529(0.00926) + 0.57981(0.00344) + 0.63623(0.00350) +
LSCCA1-ELM 0.71295(0.01027) ≈ 0.58194(0.00456) + 0.64063(0.00488) ≈
LSCCA1-ELM Ensemble 0.71818(0.00910) 0.58202(0.00417) 0.64261(0.00430)

Emotions ELM 0.52788(0.00719) + 0.50695(0.01262) + 0.51600(0.00603) +
ELM-Binary 0.61270(0.00681) + 0.61675(0.00928) ≈ 0.61355(0.00542) +
ELM kernel 0.69513(0.00586) + 0.60538(0.01105) + 0.64716(0.00677) +
CCAELM 0.69982(0.00420) + 0.60045(0.01338) + 0.64560(0.00630) +
LSCCA1-ELM 0.70744(0.00496) + 0.61483(0.01448) ≈ 0.65704(0.00889) ≈
LSCCA1-ELM Ensemble 0.71551(0.00561) 0.61528(0.01522) 0.65954(0.00916)

CAL500 ELM 0.42228(0.00687) + 0.44140(0.00433) - 0.43133(0.00355) +
ELM-Binary 0.42251(0.00524) + 0.40620(0.00320) + 0.41419(0.00520) +
ELM kernel 0.40620(0.00168) + 0.39323(0.00359) + 0.44058(0.00168) +
CCAELM 0.47365(0.00278) + 0.42671(0.00501) + 0.44853(0.00116) +
LSCCA1-ELM 0.51074(0.00580) + 0.41148(0.00427) - 0.45296(0.00149) ≈
LSCCA1-ELM Ensemble 0.52739(0.00365) 0.40293(0.00738) 0.45639(0.00575)

Birds ELM 0.21160(0.01867) + 0.13424(0.00811) + 0.16002(0.00708) +
ELM-Binary 0.48250(0.01118) + 0.38920(0.01274) - 0.42831(0.01005) +
ELM kernel 0.50409(0.00795) + 0.38009(0.01102) - 0.43339(0.01063) +
CCAELM 0.48604(0.01449) + 0.40948(0.01314) - 0.44186(0.00875) +
LSCCA1-ELM 0.50174(0.00580) - 0.41148(0.00427) - 0.45176(0.00149) ≈
LSCCA1-ELM Ensemble 0.62658(0.01909) 0.35540(0.01088) 0.45065(0.01331)

Flags ELM 0.60136(0.01218) + 0.70086(0.01580) + 0.64731(0.01289) +
ELM-Binary 0.65432(0.01895) + 0.71968(0.01436) + 0.68545(0.01541) +
ELM kernel 0.70739(0.00884) ≈ 0.72164(0.00886) ≈ 0.71400(0.00609) +
CCAELM 0.70648(0.00674) ≈ 0.71547(0.00736) ≈ 0.71054(0.00561) +
LSCCA1-ELM 0.71647(0.00830) ≈ 0.72409(0.00974) ≈ 0.71986(0.00772) +
LSCCA1-ELM Ensemble 0.71992(0.01206) 0.72920(0.01103) 0.72404(0.00998)

392 Y. Kongsorot, P. Horata, and K. Sunat

Table 5. Comparison of Precision, Recall, and F-measure of CCAOC, RankSVM, ML-
RBF, and two proposes methods in real world problems. The two-trailed T-test at 0.05
significance level is performed between LSCCA1-ELM Ensemble and other methods.
The plus symbol(+) is indicated that the performance of LSCCA1-ELM Ensemble is
better than the comparative algorithms, while the minus symbol(-) is indicated that
the performance of LSCCA1-ELM Ensemble is lower than the comparative algorithms
and the approx symbol(≈) is means that the performance of LSCCA1-ELM Ensemble
is comparable to the comparative algorithms.

Problems Algorithms The performance estimators
Precision (sd.) Recall (sd.) F-measure (sd.)

Scene CCAOC 0.64000(0.02152) + 0.00496(0.00079) + 0.00984(0.00154) +
RankSVM 0.41770(0.00837) + 0.34556(0.00806) + 0.37767(0.00833) +
MLRBF 0.84685(0.00816) - 0.63756(0.00902) + 0.72712(0.00705) ≈
BPML 0.21978(0.00822) + 0.21961(0.00941) + 0.21962(0.00883) +
LSCCA1-ELM 0.80743(0.00696) ≈ 0.65769(0.00310) + 0.72465(0.00420) ≈
LSCCA1-ELM Ensemble 0.81325(0.00803) 0.66003(0.00643) 0.72844(0.00605)

Yeast CCAOC 0.61487(0.00761) + 0.47804(0.00397) + 0.53789(0.00483) +
RankSVM 0.64757(0.01021) + 0.43405(0.00295) + 0.51934(0.00427) +
MLRBF 0.71457(0.00614) ≈ 0.59153(0.00468) - 0.64711(0.00544) ≈
BPML 0.63874(0.00546) + 0.60915(0.00434) - 0.62344(0.00329) +
LSCCA1-ELM 0.71295(0.01027) ≈ 0.58194(0.00456) + 0.64063(0.00488) ≈
LSCCA1-ELM Ensemble 0.71818(0.00910) 0.58202(0.00417) 0.64261(0.00430)

Emotions CCAOC 0.30840(0.01178) + 0.45407(0.01043) + 0.36732(0.01253) +
RankSVM 0.38248(0.01017) + 0.41023(0.01162) + 0.39563(0.01107) +
MLRBF 0.69744(0.01396) + 0.60498(0.00576) + 0.64793(0.00854) +
BPML 0.59482(0.00840) + 0.61204(0.00727) ≈ 0.60349(0.00360) +
LSCCA1-ELM 0.70744(0.00496) + 0.61483(0.01448) ≈ 0.65704(0.00889) ≈
LSCCA1-ELM Ensemble 0.71551(0.00561) 0.61528(0.01522) 0.65954(0.00916)

CAL500 CCAOC 0.49755(0.00638) + 0.34688(0.00181) + 0.40877(0.00245) +
RankSVM 0.48770(0.06934) + 0.40881(0.03492) ≈ 0.43988(0.05140) +
MLRBF 0.49099(0.00405) + 0.41538(0.00445) - 0.44969(0.00366) +
BPML 0.49899(0.00540) + 0.36599(0.00588) + 0.42226(0.00439) +
LSCCA1-ELM 0.51074(0.00580) + 0.41148(0.00427) - 0.45296(0.00149) ≈
LSCCA1-ELM Ensemble 0.52739(0.00365) 0.40293(0.00738) 0.45639(0.00575)

Birds CCAOC 0.65724(0.02379) - 0.20891(0.01101) + 0.30954(0.01294) +
RankSVM 0.16913(0.01866) + 0.26999(0.01474) + 0.20260(0.01016) +
MLRBF 0.79229(0.03437) - 0.18664(0.00868) + 0.28497(0.01263) +
BPML 0.34110(0.01902) + 0.16602(0.01144) + 0.20669(0.01453) +
LSCCA1-ELM 0.50174(0.00580) - 0.41148(0.00427) - 0.45176(0.00149) ≈
LSCCA1-ELM Ensemble 0.62658(0.01909) + 0.35540(0.01088) 0.45065(0.01331)

Flags CCAOC 0.70020(0.04185) + 0.29350(0.02517) + 0.41362(0.03580) +
RankSVM 0.68093(0.01244) + 0.73096(0.00585) - 0.70506(0.00714) +
MLRBF 0.70112(0.01279) + 0.71949(0.00764) + 0.71019(0.00946) +
BPML 0.65424(0.01044) + 0.74638(0.00900) - 0.69632(0.01044) +
LSCCA1-ELM 0.71647(0.00830) ≈ 0.72409(0.00974) ≈ 0.71986(0.00772) +
LSCCA1-ELM Ensemble 0.71992(0.01206) 0.72920(0.01103) 0.72404(0.00998)

Applying 1-Norm LSCCA in ELM for Multi-label Classification 393

Comparison the Computation Times

Table 7 shows the performance on the computation time of all methods, the
lowest is the best. The training times of LSCCA1-ELM is the lowest because
its number of hidden node is lower than ELM and ELM-Binary which shows
in Table 3. The computation times of LSCCA1-ELM Ensemble are slower than
ELM, Binary ELM, ELM Kernel, and CCA-ELM but much faster than rank
SVM, BP-MLL, MLRBF and CCA-OC.

Table 6. Comparison of all methods on all dataset in terms of average AUC score. (*)
represents the highest of AUC scores.

Datasets Algorithms ROC-AUC Score

Scene CCAOC 0.50298
RankSVM 0.60654
MLRBF 0.81199
BPML 0.52506
ELM 0.50017
ELM-Binary 0.69573
ELM kernel 0.80969
CCAELM 0.79519
LSCCA1-ELM 0.82678
LSCCA1-ELM Ensemble 0.93238 *

Yeast CCAOC 0.54194
RankSVM 0.50418
MLRBF 0.58841
BPML 0.54275
ELM 0.56995
ELM-Binary 0.58581
ELM kernel 0.58429
CCAELM 0.5824
LSCCA1-ELM 0.60718
LSCCA1-ELM Ensemble 0.69323 *

Emotions CCAOC 0.61251
RankSVM 0.50042
MLRBF 0.75529
BPML 0.7461
ELM 0.63648
ELM-Binary 0.71423
ELM kernel 0.74528
CCAELM 0.73344
LSCCA1-ELM 0.7982
LSCCA1-ELM Ensemble 0.83834 *

CAL500 CCAOC 0.52037
RankSVM 0.50067
MLRBF 0.52514
BPML 0.50546
ELM 0.51137
ELM-Binary 0.51439
ELM kernel 0.52962
CCAELM 0.52257
LSCCA1-ELM 0.54705
LSCCA1-ELM Ensemble-Ensemble 0.56551 *

Birds CCAOC 0.49465
RankSVM 0.44147
MLRBF 0.49228
BPML 0.46321
ELM 0.47025
ELM-Binary 0.55896
ELM kernel 0.56917
CCAELM 0.57238
LSCCA1-ELM 0.63906
LSCCA1-ELM Ensemble 0.7149 *

Flags CCAOC 0.58838
RankSVM 0.52201
MLRBF 0.59586
BPML 0.55217
ELM 0.59708
ELM-Binary 0.60822
ELM kernel 0.60704
CCAELM 0.62045
LSCCA1-ELM 0.6349
LSCCA1-ELM Ensemble 0.74222 *

394 Y. Kongsorot, P. Horata, and K. Sunat

Table 7. Comparison of all methods on all dataset in terms of average Training Times.
(*) represents the lowest of Training Times.

Datasets Algorithms Training Times

Scene CCAOC 441.69905
RankSVM 470.04817
MLRBF 1.61773
BPML 2481.0215
ELM 0.03588 *
ELM-Binary 0.06744
ELM kernel 1.96218
CCAELM 0.55505
LSCCA1-ELM 0.1301
LSCCA1-ELM Ensemble 1.56063

Yeast CCAOC 171.07662
RankSVM 3380.37444
MLRBF 9.10578
BPML 2550.62914
ELM 0.6421
ELM-Binary 1.67824
ELM kernel 1.3023
CCAELM 0.14758
LSCCA1-ELM 0.10951 *
LSCCA1-ELM Ensemble 1.55408

Emotions CCAOC 18.17599
RankSVM 114.2414
MLRBF 0.29016
BPML 633.06267
ELM 0.08299
ELM-Binary 0.24742
ELM kernel 0.12199
CCAELM 0.02777
LSCCA1-ELM 0.0078 *
LSCCA1-ELM Ensemble 0.11482

CAL500 CCAOC 116.7942
RankSVM 4558.45468
MLRBF 0.93445
BPML 542.92778
ELM 0.1039
ELM-Binary 0.29887
ELM kernel 0.09641
CCAELM 0.06427
LSCCA1-ELM 0.05023 *
LSCCA1-ELM Ensemble-Ensemble 0.05398

Birds CCAOC 384.75899
RankSVM 196.68887
MLRBF 0.37253
BPML 380.73822
ELM 0.06427
ELM-Binary 0.18068
ELM kernel 0.44055
CCAELM 0.15975
LSCCA1-ELM 0.05023 *
LSCCA1-ELM Ensemble 0.26271

Flags CCAOC 1.64425
RankSVM 49.37588
MLRBF 0.10951
BPML 109.7336
ELM 0.00562
ELM-Binary 0.00753
ELM kernel 0.02465
CCAELM 0.01342
LSCCA1-ELM 0.00281 *
LSCCA1-ELM Ensemble 0.04586

5 Conclusion

This paper proposed an extension to ELM using LS-CCA1 for handling multi-
label classification called LSCCA1-ELM. The LS-CCA1 is used to compute the
projection matrix of input space, which is used to transform the input to new
information in low dimension space. Next, ELM learns this new information and
obtains the predicted label. The ensemble method is then used to reduce the ran-
dom effects of ELM, which is proposed as LSCCA1-ELM Ensemble. The perfor-
mance on the precision, and F-measure reveal that the LSCCA1-ELM Ensemble
outperform ELM, Binary ELM, ELM Kernel, rank SVM, BP-MLL, CCA-OC,

Applying 1-Norm LSCCA in ELM for Multi-label Classification 395

and CCA-ELM and it is comparable to LSCCA1-ELM and MLRBF. The perfor-
mance on recall LSCCA1-ELM Ensemble is comparable to LSCCA1-ELM and
MLRBF. The computation time of LSCCA1-ELM is the fastest in all of prob-
lems. The AUC scores show that the LSCCA1-ELM Ensemble provided the high-
est performance of its model. It can be seen that, both LSCCA1-ELM Ensemble
and LSCCA1-ELM can improve ELM performance in multi-label classification
and also provide good performance for multi-label classification.

Acknowledgment. This work was supported by the Graduate Education of
Computer and Information Science Interdisciplinary Research Grant from De-
partment of Computer Science, Faculty of Science, Khon Kaen University, 2012.

References

1. Tsoumakas, G., Katakis, I.: Multi Label Classification: An Overview. Int. J. Data
Warehousing and Mining. 3, 1–13 (2007)

2. Madjarov, G., Kocev, D., Gjorgjevikj, D., Deroski, S.: An extensive experimental
comparison of methods for multi-label learning. Pattern Recogn. 45, 3084–3104
(2012)

3. Zhang, Y., Schneider, J.G.: Multi-label output codes using canonical correlation
analysis. In: International Conference on Artificial Intelligence and Statistics, USA,
pp. 873–882 (2011)

4. Sun, L., Ji, S., Ye, J.: A Least Squares Formulation for Canonical Correlation Anal-
ysis. In: Proceedings of the 25th International Conference on Machine Learning,
pp. 1024–1031. ACM, New York (2008)

5. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: Theory and ap-
plications. Neurocomputing 70, 489–501 (2006)

6. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for re-
gression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern 42,
513–529 (2012)

7. Kongsorot, Y., Horata, P.: Multi-label classification with extreme learning machine.
In: 6th International Conference on Knowledge and Smart Technology (KST),
Thailand, pp. 81–86 (2014)

8. Dietterich, T.G.: Ensemble methods in machine learning. In: Multiple classifier
systems, pp. 1–15. Springer (2000)

9. Sun, L., Ji, S., Ye, J.: Canonical Correlation Analysis for Multilabel Classifica-
tion: A Least-Squares Formulation, Extensions, and Analysis. IEEE Trans. Pattern
Anal. Mach. Intell. 33, 194–200 (2011)

10. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier Chains for Multi-label
Classification. In: Proceedings of the European Conference on Machine Learning
and Knowledge Discovery in Databases: Part II, pp. 254–269. Berlin (2009)

11. Read, J., Pfahringer, B., Holmes, G.: Multi-label Classification Using Ensembles
of Pruned Sets. In: 8th IEEE International Conference on Data Mining (ICDM
2008), Pisa, pp. 995–1000 (2008)

12. Tsoumakas, G., Vlahavas, I.P.: Random k-Labelsets: An Ensemble Method for
Multilabel Classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R.,
Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701,
pp. 406–417. Springer, Heidelberg (2007)

396 Y. Kongsorot, P. Horata, and K. Sunat

13. Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and Efficient Multilabel Classi-
fication in Domains with Large Number of Labels. In: Proc. ECML/PKDD 2008
Workshop on Mining Multidimensional Data (MMD 2008), Belgium (2008)

14. Fürnkranz, J.: Round Robin Classification. J. Mach. Learn. Res. 2, 721–747 (2002)
15. Wu, T.F., Lin, C.J., Weng, R.C.: Probability Estimates for Multi-class Classifica-

tion by Pairwise Coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)
16. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learn-

ing and an Application to Boosting. J. Comput. System Sci. 55, 119–139 (1997)
17. Zhang, M.L., Zhou, Z.H.: Ml-knn: A lazy learning approach to multi-label learning.

Pattern Recogn. 40, 2038–2048 (2007)
18. Clare, A.J., King, R.D.: Knowledge Discovery in Multi-label Phenotype Data. In:

Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53.
Springer, Heidelberg (2001)

19. Zhang, M.L., Zhou, Z.H.: Multilabel Neural Networks with Applications to Func-
tional Genomics and Text Categorization. IEEE Trans. Knowl. Data Eng. 18, 1338–
1351 (2006)

20. Zhang, M.L.: Ml-rbf: RBF Neural Networks for Multi-Label Learning. Neural Pro-
cess. Lett. 29, 61–74 (2009)

21. Elisseeff, A., Weston, J.: A Kernel Method for Multi-Labelled Classification. In:
Advances in Neural Information Processing Systems, vol. 14, pp. 681–687. MIT
Press (2001)

22. Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)
23. Tibshirani, R.: Regression Shrinkage and Selection Via the Lasso. J. Roy. Statist.

Soc. Ser. B. 58, 267–288 (1994)
24. Penrose, R.: A generalized inverse for matrices. In: Mathematical Proceedings of

the Cambridge Philosophical Society, pp. 406–413. Cambridge Univ Press (1955)
25. Rong, H.J., Huang, G.B., Ong, Y.S.: Extreme learning machine for multi-categories

classification applications. In: IEEE International Joint Conference on Neural Net-
works (IEEEWorld Congress on Computational Intelligence), pp. 1709–1713. IEEE
(2008)

26. Huang, G.B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J
Mach. Learn. and Cyber. 2, 107–122 (2011)

27. Lan, Y., Soh, Y.C., Huang, G.B.: Ensemble of online sequential extreme learning
machine. Neurocomputing 72, 3391–3395 (2009)

28. Liu, N., Wang, H.: Ensemble Based Extreme Learning Machine. IEEE Signal Pro-
cess. Lett. 17, 754–757 (2010)

29. Zhu, Q.Y., Qin, A.K., Suganthan, P.N., Huang, G.B.: Evolutionary extreme learn-
ing machine. Pattern Recogn. 38, 1759–1763 (2005)

30. Freund, Y.: Boosting a weak learning algorithm by majority. Inform. Comput. 121,
256–285 (1995)

31. Fawcett, T.: ROC graphs: Notes and practical considerations for researchers. Mach.
Learn. 31, 1–38 (2004)

32. Brown, C.D., Davis, H.T.: Receiver operating characteristics curves and related
decision measures: A tutorial. Chemometr. Intell. Lab. 80, 24–38 (2006)

33. Zou, K.H., OMalley, A.J., Mauri, L.: Receiver-operating characteristic analysis for
evaluating diagnostic tests and predictive models. Circulation 115, 654–657 (2007)

34. Zhang, Y., Schneider, J.G.: Multi-label output codes using canonical correlation
analysis. In: International Conference on Artificial Intelligence and Statistics, USA,
pp. 873–882 (2011)

© Springer International Publishing Switzerland 2015
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,

397

Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_33

Least Squares Policy Iteration Based on Random Vector
Basis

Lei Zuo and Xin Xu

The College of Mechatronics and Automation,
National University of Defense Technology, Changsha 410073, China

zuo1986lei@163.com, xinxu@nudt.edu.cn

Abstract. Basis functions construction is a fundamental problem in value func-
tion approximation for reinforcement learning. Inspired by extreme learning
machine (ELM), we construct the basis functions by using single-hidden layer
feedforward neural networks (SLFNs) with random input weights and hidden
layer biases. We call such basis function as random vector basis (RVB). The
algorithm of least squares policy iteration based on random vector basis (RVB-
LSPI) is proposed. One advantage of RVB is that it can be constructed
automatically. The performance of the proposed method is compared with the
traditional least squares policy iteration (LSPI) with radial basis functions
(RBFs). The results indicate that RVB-LSPI has better performance.

Keywords: Reinforcement learning, least squares policy iteration, extreme
learning machine, random vector basis.

1 Introduction

Reinforcement learning (RL) has been widely studied in recent years [1]. In rein-
forcement learning, the agent interacts with the environment and modifies its action
policies to maximize its cumulative payoffs. Reinforcement learning is not only re-
ceiving attention from the neural network community, but also from the fields of
decision theory, operations research, and control engineering [2]. Reinforcement
learning has been applied in backgammon [3], job-shop scheduling [4], elevator
scheduling [5], helicopter flight control [6] and so on. However, it is still difficult for
RL to solve MDPs with large or continuous spaces. In such cases, RL has difficulty
with the curse of dimensionality and many RL algorithms cannot converge to an op-
timal or near-optimal policy and require numerous training samples.

Value function approximation (VFA) [7-11] has been widely studied to conquer
the curse of dimensionality and improve the generalization ability of Reinforcement
learning algorithms. Approximate policy iteration (API) is one class of VFA methods.
A model-free API algorithm called least squares policy iteration (LSPI) was presented
in [9]. Xu et al proposed a kernel version of LSPI called KLSPI[10]. Later, a frame-
work for VFA called proto-reinforcement learning (PRL) was proposed in [11]. This
approach yields a control learning algorithm called representation policy iteration

398 L. Zuo and X. Xu

(RPI) where both the underlying representations (basis functions) and policies are
simultaneously learned. However, there are still many parameters in these methods
need to be selected, which is not convenient to construct basis functions.

In the past decades, feedforward neural networks have been widely used in many
different fields. They can approximate complex nonlinear mapping directly from the
input samples. To benefit from the approximation ability of single-layer hidden
feedforward neural networks (SLFNs), Huang et al proposed the ELM algorithm [12],
which is efficient in supervised classification and regression. ELM is slightly different
from traditional SLFNs. In traditional SLFNs, the input weights and hidden layer
biases need to be learned, whereas those in ELM are randomly assigned. ELM has
been widely studied and used in pattern recognition in recent years[13, 14]. But little
work has been done to use this method in reinforcement learning.

Motivated by ELM, we propose least squares policy iteration based on random
vector basis (RVB-LSPI), in which the basis functions are constructed by using sin-
gle-hidden layer feedforward neural networks (SLFNs) with random input weights
and hidden layer biases. One advantage of RVB is that it can be constructed fast and
automatically. The rest of this paper is organized as follows. Section 2 briefly pro-
vides some background information about Markov decision process and value func-
tion approximation in reinforcement learning. Then, the RVB-LSPI is presented
in Section 3. In Section 4, simulations on the mountain-car problem are carried out
and the results illustrate the effectiveness of the proposed method. Section 5 draws
conclusions.

2 Background

2.1 Markov Decision Process

The Markov decision process (MDP) is the underlying formalism for reinforcement
learning algorithms. An MDP is defined as a tuple {S, A, R, P}, where S is the state
space, A is the action space, P is the state transition probability, and R is the reward
function. The policy of the MDP ：is defined as a function π S→Pr(A), where Pr(A) is
a probability distribution in the action space. The quality of a policy π is quantified by
the value function Vπ(s), defined as the expected discounted cumulative reward start-
ing in a state s and then following the policy π

⎥
⎦

⎤
⎢
⎣

⎡ == ∑
∞

=0
0|)(

i
i

i ssrEsV γπ
π (1)

where γ is the discount factor.
Closely related to the value function Vπ(s) is the so-called state-action value func-

tion, which is usually used to improve the policy. The state-action value function
Qπ(s,a) is defined as the expected cumulative reward of performing action a in state s
and then following policy π thereafter:

 Least Squares Policy Iteration Based on Random Vector Basis 399

⎥
⎦

⎤
⎢
⎣

⎡ === ∑
∞

=

aassrEasQ
i

i
i

0
0

0 ,|),(γπ
π (2)

The state-action value function satisfies the following Bellman equation:

[]),(),(),(11 +++= iiiiii asQasrEasQ π
π

π γ (3)

The optimal state-action value function is

),(max),(asQasQ π

π
=∗ (4)

Then, the optimal policy can be obtained by a greedy strategy

),(maxarg)(asQs
a

∗∗ =π (5)

2.2 Approximate Policy Iteration and Basis Functions Construction

For many practical control problems, the transition model and the reward function of
the underlying MDPs are usually unknown. However, relying on information that
comes from interaction with the process, it is still possible to evaluate, or, even better,
find good policies for such problems. Such information includes observations of
states, actions, and rewards, which are commonly known as samples.

Approximate policy iteration (API) is a class of algorithms that learns decision pol-
icies from samples. The samples can be obtained from actual episodes of interaction
with the process or from queries to a generative model of the process. One popular
approximate policy iteration algorithm based on linear value function approximation
is the least-squares policy iteration (LSPI), which has been widely studied in recent
years [10, 11]. In LSPI, the state-action value function Qπ(s,a) can be approximated
using a linearly weighted combination of k basis functions (features):

∑
=

==
k

i
ii

T waswasasQ
1

),(),(),(ˆ φφ ππ (6)

where wπ = (w1, w2, …, wk)
T is the weight vector and),(asφ is the basis function

vector computed at (s, a), denoted by T
k asasasas)),(),...,,(),,((),(21 φφφφ = .

The choice of basis functions is a fundamental problem in LSPI. In [9], the poly-
nomial and radial basis functions were used. The KLSPI algorithm proposed by Xu
et.al [10] describes basis functions by kernel-based features.

ELM has been proven efficient in supervised learning [12-14]. This algorithm is
very fast because the input weights and hidden layer biases in ELM are randomly
assigned rather than learned. Inspired by this, we consider using this method to con-
struct the basis functions in value function approximation for reinforcement learning.
If the input weights and hidden layer biases can be randomly assigned, then the

400 L. Zuo and X. Xu

process of basis functions construction will be fast and there will be fewer parameters
need to be adjusted by hand.

3 Least Squares Policy Iteration Based on Random Vector
Basis

Feedforward neural networks have been extensively used in machine learning due to
their powerful approximation ability from the input samples. The value function
approximator based on random vector basis (RVB) in this paper can be considered as
a single-layer hidden feedforward neural network (SLFN). However, the proposed
method is different from traditional SLFNs. Motivated by ELM [12], the input
weights and hidden layer biases in the proposed method are randomly assigned. The
architecture of the value function approximator based on RVB is shown in Fig. 1.

1s

a

ns

2s
ˆ (,)Q s a

1(,)s aφ

2 (,)s aφ

(,)k s aφ

1β

2β

kβ

11w

12w
1kw

1nw

2nw

nkw

Fig. 1. The architecture of the value function approximator based on RVB

In such a neural network as shown in Fig. 1, it takes states and actions as inputs,
and the output is the approximate state-action value function. The process of basis
functions construction is performed in the input layer and the hidden layer, where the
state-action pairs are mapped to the state-action features. The state basis function can
be written as

)()(iii bswgs +⋅=φ (7)

where wi and bi are random vectors, wi ⋅ s is an inner product of the vector wi and s,
g(⋅) is the activation function. Note that the activation functions in the hidden layer
are assumed infinitely differentiable.

The state-action basis function φ(s, a) can be generated by duplicating the state ba-
ses φ(s) |A| times, and setting all the elements of this vector to 0 except for the ones
corresponding to the chosen action.

 Least Squares Policy Iteration Based on Random Vector Basis 401

Thus, the state-action value function Qπ(s, a) can be approximated as

∑
=

⋅=
k

i
ii asasQ

1

),(),(ˆ φβπ (8)

Because the input weights and hidden layer biases are assigned at random and not
to be learned, the learning in this method is a linear one. If the true values of Qπ(s, a)
are known in advance, then it is easy to compute a set of parameters that makes the
approximate value function close enough to the true one. Unfortunately, the true val-
ues are not known in most reinforcement learning problems, thus, the learning algo-
rithms in supervised learning, like ELM, can not be used directly in reinforcement
learning. However, it is still possible to solve this problem. In this paper, we use the
least-squares fixed-point approximation method.

Algorithm 1: RVB-LSPI
Input : D, π0, ε Output: β , w , b

1 Initialization: A←0, c ←0, β ′← 0β , π ′← 0π ;

 w←random();

 b←random();

2 while || ||β β ε′− < do

3 β ← β ′ ; π ←π ′ ;

4 for each (si, ai, si+1, ri)∈D do

5
1

(,) () ()
k

i i I i j i j
j

s a e a g w s bφ
=

= ⊗ +∑ i ;

6 A← 1 1(,)((,) (, ())T
i i i i i iA s a s a s sφ φ γφ π+ ++ − ;

7 c ← (,)i i ic s a rφ+ ;

8 end for

9 β ′← 1A c− ;

10 return β , w , b ;

One method to learn the parameters is the least-squares fixed-point projection. The
state-action value function is the fixed point of the Bellman operator:

ππ
π QQT = .

Thus, force the approximate value function to be a fixed point under the Bellman
operator:

ˆ ˆT Q Qπ π
π ≈

Then, the solution is to minimize ˆ ˆ|| ||T Q Qπ π
π − :

ˆ ˆmin || || min || ||T Q Q R Pπ π π π π
π πβ β

γ β β− = + Π Φ − Φ (9)

402 L. Zuo and X. Xu

Then, the least-squares fixed-point solution and the corresponding improved policy
can be obtained as follows [9]:

1 1(())

() arg max (,)

T T

T

a A

R A c

s s a

π

π

β γ
π φ β

− −

∈

′= Φ Φ − Φ Φ =
= (10)

where

()TA P πγ= Φ Φ − Π Φ , Tc R= Φ .

Unbiased estimates of the matrix A and vector c can be obtained from samples by
the following updates:

(,)((,) (, ()))

(,)

TA A s a s a s s

c c s a r

φ φ γφ π
φ

′ ′= + −
= +

 (11)

Algorithm 1 specifies the pseudocodes of the RVB-LSPI algorithm.

4 Experimental Results

We explored the effectiveness of RVB-LSPI in the mountain car problem, which has
been viewed as one of the benchmarks in the field. The goal of the mountain car task
is to get a simulated car to the top of a hill as quickly as possible [1]. The car does not
have enough power to get there immediately, and so must oscillate on the hill to build
up the necessary momentum (as shown in Fig. 2). The reward is -1 per step until the
car reaches the goal.

Fig. 2. The mountain-car problem

The state space includes the position and velocity of the car. There are three ac-
tions: full throttle forward (+1), full throttle reverse (-1), and zero throttle (0). Its posi-
tion, pt and velocity vt, are updated by

][

)]3cos(0025.0001.0[

11

1

++

+

+=
−+=

ttt

tttt

vpboundp

pavboundv
 (12)

where the bound operation enforces -1.2 ≤ pt+1 ≤ 0.6 and -0.07 ≤ vt+1 ≤ 0.07. The epi-
sode ends when the car successfully reaches the top of the mountain, defined as posi-
tion pt >= 0.5. In our experiments we allow a maximum of 300 steps, after which the
task is terminated without success. The discount factor was set to 0.95.

 Least Squares Policy Iteration Based on Random Vector Basis 403

Both LSPI and RVB-LSPI were evaluated and the performances of the two algo-
rithms were compared. The same sample sets with different episodes were used for
both algorithms, in which the samples were collected using random walk sampling
policy. We collected six different sample sets to test the performance of the algo-
rithms. Some information about these sample sets is listed in Table 1.

Table 1. Information of sample sets

Sample set
order

Sample
episodes

Max steps per
episode

Number of
samples

#1 50 70 2348
#2 50 70 2569
#3 100 70 3952
#4 100 70 4955
#5 150 70 6080
#6 150 70 7521

In all simulations, the states as inputs have been normalized into the range [0, 1]
and the discount factor was set to 0.95. Every simulation was run for 10 times and
results were median averages over 10 runs.

In the first simulation, we selected sigmoid as the activation function in RVB-LSPI.
Different numbers of hidden nodes were selected, 10 and 15, respectively. The results
are listed in Table 2 and Table 3.

Table 2. Results for 10 hidden nodes and sigmoid activation function

Sample
set

Average
iteration

times

Average con-
vergent time

(s)

Average
steps

Dev Minimum
steps

#1 6.5 4.2609 160.3 5.74 153
#2 7 4.9578 169.9 34.8 149
#3 6 6.1844 165.8 27.3 140
#4 6.9 8.6672 152.6 22.1 114
#5 5.4 8.2828 172.2 2.7 170
#6 5.7 10.7469 158.6 23.9 116

Table 3. Results for 15 hidden nodes and sigmoid activation function

Sample
set

Average
iteration

times

Average
convergent

time (s)

Average
steps

Dev Minimum
steps

#1 6 4.1797 165.3 12.2 152
#2 9 7.0938 216 0 216
#3 18.5 18.8641 234 69.2 160
#4 14.5 18.3359 226 61.9 159
#5 15.1 22.8328 165.5 13.2 149
#6 18.6 34.5453 207.3 49.3 172

404 L. Zuo and X. Xu

As can be seen in the two tables above, the RVB-LSPI algorithm can converge to a
policy based on every sample set. Compare the results in Table 2 with that in Table 3,
we can find that the RVB-LSPI algorithm with 10 hidden nodes has better perfor-
mance than that with 15 hidden nodes.

Then, we tested the performance of traditional LSPI with radial basis functions
(RBFs). In LSPI, 39 basis functions were used, a set of 13 state basis functions for
each of the 3 actions. These 13 basis functions included a constant term and 12 radial
basis functions. The centers were 12 points of the grid {0, 1/3, 2/3, 1} × {0, 0.5, 1}
and the width σ2=0.5. Table 4 shows the results. Then, we changed the width to
σ2=0.1 and the results are shown in Table 5.

Table 4. Results for 13 RBFs with the width σ2=0.5

Sample
set

Average iteration
times

Average conver-
gent time (s)

Average
steps

#1 13.6 8.1281 failed
#2 failed failed
#3 6.1 5.5969 failed
#4 5.9 6.5500 failed
#5 6 8.1063 failed
#6 7.7 12.6422 259

Table 5. Results for 13 RBFs with the width σ2=0.1

Sample
set

Average iteration
times

Average conver-
gent time (s)

Average
steps

#1 failed failed
#2 6.5 4.0922 failed
#3 5.7 5.1703 failed
#4 5.9 6. 4859 202
#5 5.5 7.2484 163
#6 5.4 8.8500 failed

As can be seen in the results listed in Table 4 and Table 5, most policies learned by

the traditional LSPI algorithm with RBFs have failed to move the car to the goal in
300 steps. Compared with traditional LSPI with RBFs, the RVB-LSPI algorithm has
better convergent performance and also the final policies learned by RVB-LSPI have
better control performance.

5 Conculsions

In this paper, we have propose a RVB based LSPI algorithm for reinforcement learn-
ing. In this method, the basis functions are constructed by using single-hidden layer
feedforward neural networks (SLFNs) with random input weights and hidden layer
biases, which are called random vector basis (RVB). One advantage of RVB is that it

 Least Squares Policy Iteration Based on Random Vector Basis 405

can be constructed automatically. The performance of the proposed method is com-
pared with the traditional least squares policy iteration (LSPI) with radial basis func-
tions (RBFs). The results indicate that RVB-LSPI has better performance.

Acknowledgment. This paper is supported by National Natural Science Foundation
of China under Grant 60175072, & 90820302, the Program for New Century Excel-
lent Talents in University under Grant NCET-10-0901.

References

1. Sutton, R., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(1998)

2. Wang, F.Y., Zhang, H., Liu, D.: Adaptive dynamic programming: An introduction. IEEE
Comput. Intell. Mag. 4(2), 39–47 (2009)

3. Tesauro, G.: TD-gammon a self-teaching backgammon program achieves master-level
play. Neural Computing 6(2), 215–219 (1994)

4. Zhang, W., Dietterich, T.: A reinforcement learning approach to job-shop scheduling. In:
Proceedings of the 14th International Joint Conference on the Artificial Intelligence, pp.
1114–1120. San Francisco (1995)

5. Crites, R.H., Barto, A.G.: Elevator group control using multiple reinforcement learning
agents. Mach. Learn. 33(2–3), 235–262 (1998)

6. Ng, A.Y., Kim, H.J., Jordan, M., Sastry, S.: Autonomous helicopter flight via reinforce-
ment learning. In: Advances in Neural Information Processing Systems, vol. 16, MIT
Press, Cambridge (2004)

7. Sutton, R.: Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In: Advances in Neural Information Processing Systems, vol. 8, pp. 1038–
1044. MIT Press, Cambridge (1996)

8. Xu, X., He, H.G.: Residual-gradient-based neural reinforcement learning for the opti-mal
control of an acrobat. In: Proc. IEEE Int. Symp. Intell, pp. 758–763. Vancouver, Canada
(2002)

9. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. J. Mach. Learn. Res. 4, 1107–
1149 (2003)

10. Xu, X., Hu, D.W., Lu, X.C.: Kernel-based least squares policy iteration for reinforcement
learning. IEEE Trans on Nerual Networks 18(4), 973–992 (2007)

11. Mahadevan, S., Maggioni, M.: Proto-Value Functions: A Laplacian Framework for Learn-
ing Representation and Control in Markov Decision Processes. Journal of Machine Learn-
ing Research 8, 2169–2231 (2007)

12. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: Theory and applications.
Neurocomputing 70, 489–501 (2006)

13. Huang, G.B., Chen, L., Siew, C.-K.: Universal approximation using incremental construc-
tive feedforward networks with random hidden nodes. IEEE Transactions on Neural Net-
works 17(4), 879–892 (2006)

14. Huang, G.B., Zhou, H., Ding, X., et al.: Extreme learning machine for regression and mul-
ticlass classification. IEEE Transactions on System, Man, and Cybernetics-Part B: Cyber-
netics 42(2), 513–529 (2012)

Identifying Indistinguishable Classes
in Multi-class Classification Data Sets Using ELM

Felis Dwiyasa and Meng-Hiot Lim

School of Electrical and Electronic Engineering,
Nanyang Technological University,

50 Nanyang Avenue, Singapore 639798
http://www.ntu.edu.sg

Abstract. For many years, various neural network models have been
used to solve regression, binary classification, and multi-class classifica-
tion problems. Their performance has been extensively compared against
each other in terms of testing accuracy and training time. For multi-class
classification problem, testing accuracy does not always give comprehen-
sive information about the performance. It only shows the number of
false detections without any clues on the false detection distribution.
In this work we propose a cross-validation based on Extreme Learning
Machine to identify classes that are found to have high number of false
detections. These classes are treated as indistinguishable classes that
need further processing or information. Our simulation shows that our
proposed method is able to detect indistinguishable classes in three data
sets. We also found that when indistinguishable classes exist, the train-
ing accuracy can be higher if each pair of those classes are marked as
one merged class.

Keywords: ELM, classification, indistinguishable classes,
cross-validation.

1 Introduction

Artificial neural network approach has been widely used to solve various regres-
sion and classification problems. As black box non-parametric model that is able
to adjust its own weights, artificial neural network is easy to use and requires
minimum amount of parameters adjustment.

There are many different architectures of artificial neural networks, including
Radial Basis Function (RBF) [2], Multi Layer Perceptron (MLP) [9], Support
Vector Machine (SVM) [3], etc. With architectures of differing complexity and
performance, there has been extensive works in comparing performances of var-
ious architectures which are generally measured in learning time and testing
accuracy.

Extreme Learning Machine (ELM) introduced by Huang et. al. [5] has been
found to have learning speed up to thousand times faster compared to other
artificial neural network architectures. In contrast to back propagation learning

c© Springer International Publishing Switzerland 2015 407
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_34

http://www.ntu.edu.sg

408 F. Dwiyasa and M.-H. Lim

method, which finds the best weights for its hidden layers and output layer in an
iterative manner, the ELM randomly assigns the weights of hidden layers and
simply solves the output layer weights. Despite its quasi-optimization, ELM has
shown good accuracy in solving various regression and classification problems
[4].

Although ELM has empirically achieved 90 percent accuracy and more in sev-
eral data sets, there are still some data sets that produce training accuracy less
than 90 percent or even much lower. Lower accuracy means higher misclassifi-
cation rates which lessens the reliability of the classification.

We observe that performance comparison tables from previous works [4] [6]
show that the problems in those data sets can be further classified into two
types. Attached to the first type are data sets which have good accuracy for
other neural network algorithms but not for ELM. For the second type are data
sets which have low accuracy for any neural network algorithms including ELM.

Optimally-Pruned Extreme Learning Machine (OP-ELM) [6] addresses low
accuracy which is only experienced by ELM. Being tested on Iris, Wisconsin’s
Breast Cancer, Pima Indian Diabetes, and Wine [1] classification data sets, the
OP-ELM approach shows that removing irrelevant input variables can increase
the accuracy of two data sets so that all four data sets becomes comparable
to MLP, SVM, and Gaussian Process (GP) accuracy. OP-ELM achieves 95.0
and 90.7 percent accuracy for Iris and Wine data sets respectively, which are
significantly higher than 72.2 and 81.8 percent accuracy achieved by the regular
ELM.

As for the second type of problem, we have not found any previous works
which try to handle data sets in which any neural network algorithms experience
low accuracy. In this paper we propose a strategy to handle them by using cross
validation to identify indistinguishable classes in the data.

This approach is not aimed at achieving better classification capability. How-
ever, it allows the system to be more realistic and understand its own limitation,
which are important in practical implementations.

By being alerted that some data are beyond the system capability to classify,
users may try to modify the input data or to feed data that belong to those
classes into other classification systems. It allows users to take further actions
required to handle those data instead of blindly accepting results with high
misclassification rate.

The organization of this paper is as follows. Section 2 explains the concept of
the proposed method. Section 3 describes how the experiments were conducted,
the data sets we were using and the test configurations. Section 4 shows the
results and our brief analysis on the results. Finally we present our conclusions
in Section 5.

2 Methodology

As shown in Fig. 1, we applied ELM training and testing as usually used in the
original algorithm. As indicated by the dashed lines in Fig. 1, our proposed blocks

Identifying Indistinguishable Classes in Multi-class Classification Data Sets 409

ELM basic blocks Proposed blocks

Training

Testing
Indistinguishable

classes
detection

Confusion-
matrix

formation

Accuracy comparison

Accuracy Accuracy

Fig. 1. System Flow and Accuracy Comparison

complement ELM basic blocks by informing if there is any indistinguishable
classes.

The proposed blocks consist of two major parts: 1) confusion-matrix formation
through cross validation, 2) indistinguishable classes detection. There are also
minor changes in how to measure the testing accuracy in case our proposed
blocks exist. The details of the proposed blocks and the accuracy comparison
method are explained in the following subsections.

2.1 Confusion-Matrix Formation through Cross Validation

Our proposed method applies cross validation into the ELM by separating train-
ing data into two parts: training data and validation data, which is common in
other neural network architectures such as MLP and RBF [7]. However, in this
work we do not use cross validation in the same way as how it is usually used
in MLP and RBF. In those architectures, validation data are used to confirm
whether the learning process has found the best weights, which are defined as

410 F. Dwiyasa and M.-H. Lim

Predicted output class

p

q

0 1 2

A
ct
ua

lo
ut
pu

t
cl
as
s

0 α0,0[i] α0,1[i] α0,2[i]

1 α1,0[i] α1,1[i] α1,2[i]

2 α2,0[i] α2,1[i] α2,2[i]

...

...

Fig. 2. Structure of ConfusionMatrix[i] where αp,q [i] represents the number of vali-
dation data having p-th actual output and q-th predicted output, and i represents
repetition index

weights that minimize the error of the validation data [7]. As opposed to MLP
and RBF, the original ELM architecture does not use cross validation. Cross
validation to confirm the choice of ELM weights is found in a work done by
Sovilj et.al. [10], but this is not applicable in our proposed method.

In this work the weights obtained from ELM training are not affected by the
validation data. Instead, we use the validation data to update the confusion
matrix, which is a tool introduced by Provost et. al. [8] for analyzing classifier
systems.

Confusion matrix is a no × no matrix where no is the number of output
classes. Each time we compare the actual output of the validation data against
the predicted output, which is the ELM output when an input vector from the
validation data is being fed into the ELM, we update the value of the confusion
matrix accordingly.

Each element of the confusion matrix αp,q[i] shown in Fig. 2 represents the
number of validation data having p-th actual output and q-th predicted output
in the ConfusionMatrix[i]. Diagonal elements of the matrix show the number
of correct predictions for each output class, whereas the non-diagonal elements
show the number of incorrect predictions.

After all of the input vectors from the validation data have been fed into
the ELM to update the confusion matrix, the procedure above is repeated Nr

times. Therefore we obtain a set of ConfusionMatrix[i], where repetition index
i = 0, 1, ..., Nr − 1. The complete flowchart of this process is shown in Fig. 3.

Identifying Indistinguishable Classes in Multi-class Classification Data Sets 411

Initialize i = 0

Prepare training data
and validation data

Training data Validation data

ELM training Cross-validation

Record ConfusionMatrix[i]
and increment i

i ≥ Nr?

stop

No

Yes

Fig. 3. Flowchart of confusion-matrix formation through cross validation

2.2 Indistinguishable Classes Detection

We analyze the ConfusionMatrix[i] for i = 0, 1, ..., Nr−1 to find whether there is
a tendency that incorrectness often occurs at particular pairs of output classes.

To see incorrectness rate, we normalize each matrix element αp,q[i] by dividing
it with the average of the diagonal elements. For each p = 0, 1, ..., no − 1 and
q = 0, 1, ..., no − 1, the normalization equation is given by

Ap,q[i] =
αp,q[i]

1
no

∑no−1
j=0 αj,j

(1)

where Ap,q[i] is the normalized confusion matrix element representing p-th actual
output and the q-th predicted output.

The upper triangular and the lower triangular elements of the A matrix can
be further simplified by summing Ap,q[i] and Aq,p[i] because they refer to the
same pair of classes: p and q. For example, both A1,4[i] and A4,1[i] refer to how
distinguishable the output class 1 and output class 4. Any values that is greater
than or equal to a certain threshold ε indicates that the particular actual output
class and the particular predicted output class are not easily distinguishable.

412 F. Dwiyasa and M.-H. Lim

Therefore for every p = 0, 1, ..., no−1 and q = p+1, p+2, ..., no−1 we formulate
detection status matrix elements Ψp,q[i] as

Ψp,q[i] =

{
Distinguishable if (Ap,q [i] +Aq,p[i]) < ε

Indistinguishable if (Ap,q [i] +Aq,p[i]) ≥ ε
(2)

For every possible pair of p and q, if at least half of the Ψp,q[i] for each
i = 0, 1, ..., Nr− 1 have "Indistinguishable" status, then there is a tendency that
the data inputs for that pair have high degree of misclassification. Any classes
pairs that fall into this category can be concluded as indistinguishable.

2.3 Accuracy Comparison

Testing accuracy and training time are used to measure the ELM performance.
Testing accuracy represents the percentage of data which have unmatched values
between the actual output and the predicted output, whereas training time shows
the time taken to adjust the ELM weights.

In Fig. 1, Accuracy refers to the testing accuracy of the ELM basic blocks,
whereas Accuracy shows the testing accuracy of the ELM when false detections
at indistinguishable classes are not treated as misclassified data.

3 Experiments

Data sets that we used in our experiments are specified in Table 1. Glass, vehicle,
and satellite data sets are taken from University of California, Irvine (UCI)
Machine Learning Repository [1]. Those data sets are among the data sets that
achieve training accuracy less than 90 percent for either SVM, LS-SVM, and
ELM [4].

Table 1. Specification of Data Sets

Data set # train # validate # test # features # classes
Glass 60 62 72 9 6
Vehicle 364 200 282 18 4
Satellite 3435 1000 2000 36 6
Room 1000 500 16737 2 6

The room data set was gathered from our experimental work in a university
environment by using RFID tags and readers1 which are shown in Fig. 4. We
arranged 2 readers and 16 tags at 6 different rooms, with the room layout as
shown in Fig. 5.

We divided the 16 tags into two groups and moved the groups of tags from
one room to another every 10 minutes. Tags were always facing up and placed
1 Tags and readers are from 1Rwave LLP.

Identifying Indistinguishable Classes in Multi-class Classification Data Sets 413

Fig. 4. RFID Reader (left) and Tag (right)

TR-89 TR-92

TR-95 TR-97 TR-98 TR-100

Fig. 5. Room Layout

in the middle of the room. One reader was placed in TR-95 and another one was
placed in TR-100. The readers measured and recorded signal strength of tags
that transmit ping signal every 3 seconds. After applying moving average to the
recorded data, we fed the data into the ELM and our proposed blocks.

Our simulations used regularization factor and hidden layer size L=1000 as
recommended in [4]. We applied the sigmoid function as we do not see significant
performance difference between the activation functions presented in the previ-
ous work. All input features are normalized to [0,1] range. We set the number of
repetitions in Fig. 1 to be Nr = 4 and detection status threshold in Eq. 2 to be
ε = 1.

4 Results and Discussion

As shown in Table 2, our proposed blocks successfully detect indistinguishable
classes pairs in room, glass and vehicle data sets. There are significant accuracy
improvement on those data sets. The room and vehicle data sets achieve accuracy
more than 90 percent when false predictions on indistinguishable classes are
ignored. As for the glass data set, we achieved 80.50 percent accuracy, which is
much better than the original testing accuracy which is only 57.88 percent.

However, our method could not detect any indistinguishable class in satellite
data set and we have not found any solid reason on why this data set behaves
differently. Our best guess is that the error of satellite data set is uniformly

414 F. Dwiyasa and M.-H. Lim

distributed, or in other words no pair of classes has significantly high error as
compared to the other pairs.

From Fig. 3 we can infer that detection time is affected by the number of
repetitions we chose. This is in line with our result which shows that the detection
time is approximately 4 times that of ELM training time, noting that we chose
Nr = 4 in this experiment. Although the detection time is longer than ELM
training time, we do not see this as a downside. Instead, the fast training time of
ELM allows us to have fast detection time. If we had used slower neural network
algorithms instead of ELM as the base algorithm of the detection, the detection
time would surely be much longer.

Table 2. Performance of ELM and the proposed indistinguishable class detection
blocks

Data sets
ELM ELM and Proposed Blocks

Accuracy Training Indistinguishable Accuracy Detection

Rate (%) Std (%) Time (s) Classes Pairs Rate (%) Std (%) Time (s)

Room 75.01 0.64 0.6084 TR97/TR89 91.08 1.38 2.3868

Glass 57.88 7.18 0.0936 Type 2/Type 1 80.50 3.37 0.4836

Satellite 86.00 0.18 1.7472 - 86.55 0.22 7.1292

Vehicle 74.38 1.77 0.3276 Saab/Opel 95.06 1.51 1.2792

5 Conclusion

This work shows that ELM can be used to identify indistinguishable classes in
data sets. Out of four data sets we have tested, three data sets have a pair of
classes that is detected indistinguishable by our proposed method. We achieved
accuracy improvement on those three data sets when we ignored false predictions
in indistinguishable classes. As a trade-off to the accuracy, we obtained a reduced
number of output classes because each pair of indistinguishable classes is merged
into one class.

Identifying indistinguishable classes informs us the limitation of ELM clas-
sification capability as well as improving the system reliability. For example, if
we are given a task to identify 6 types of glass in glass data set for crime inves-
tigation purpose, a system that are able to classify 5 types with 80.50 percent
accuracy is more reliable than a system that are able to classify 6 types with
57.88 percent accuracy. Furthermore, when we are informed that ELM is not able
to distinguish the Type 2 and Type 1 glass, we can take further actions required
to differentiate those classes, such as applying other methods or collecting more
input features.

Identifying Indistinguishable Classes in Multi-class Classification Data Sets 415

We also had reasonable detection time for all tested data sets, which is always
below 8 seconds. This short detection time is made possible by the fast training
time of ELM.

There are two tunable parameters in our proposed algorithm which have not
been explored in this work: 1) the number of repetitions, Nr, and 2) detection
status threshold, ε. Future works might need to be done to investigate whether
these parameters are data-dependent and how to find their optimum values.

References

1. Asuncion, A., Newman, D.: UCI machine learning repository (2007),
https://archive.ics.uci.edu/ml/datasets.html

2. Broomhead, D.S., Lowe, D.: Radial basis functions, multi-variable functional inter-
polation and adaptive networks. Tech. rep., Defense Technical Information Center
(1988)

3. Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3), 273–297
(1995)

4. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for re-
gression and multiclass classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 42(2), 513–529 (2012)

5. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning
scheme of feedforward neural networks. In: IEEE International Joint Conference
on Neural Networks, vol. 2, pp. 985–990 (2004)

6. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM:
Optimally pruned extreme learning machine. IEEE Transactions on Neural Net-
works 21(1), 158–162 (2010)

7. Poole, D.L., Mackworth, A.K.: Artificial Intelligence: foundations of computational
agents. Cambridge University Press (2010),
http://artint.info/html/ArtInt.html

8. Provost, F.J., Fawcett, T., Kohavi, R.: The case against accuracy estimation for
comparing induction algorithms. In: Proceedings of the Fifteenth International
Conference on Machine Learning, pp. 445–453. Morgan Kaufmann Publishers Inc.
(1998)

9. Rojas, R.: Neural networks: a systematic introduction. Springer (1996),
http://page.mi.fu-berlin.de/rojas/neural/

10. Sovilj, D., Lendasse, A., Simula, O.: Extending extreme learning machine with
combination layer. In: Rojas, I., Joya, G., Gabestany, J. (eds.) IWANN 2013, Part
I. LNCS, vol. 7902, pp. 417–426. Springer, Heidelberg (2013)

https://archive.ics.uci.edu/ml/datasets.html
http://artint.info/html/ArtInt.html
http://page.mi.fu-berlin.de/rojas/neural/

© Springer International Publishing Switzerland 2015
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,

417

Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_35

Effects of Training Datasets on Both the Extreme
Learning Machine and Support Vector Machine

for Target Audience Identification on Twitter

Siaw Ling Lo, David Cornforth, and Raymond Chiong

School of Design, Communication and Information Technology, The University of Newcastle,
Callaghan, NSW 2308, Australia
siawling.lo@uon.edu.au,

{david.cornforth,raymond.chiong}@newcastle.edu.au

Abstract. The ability to identify or predict a target audience from the increasingly
crowded social space will provide a company some competitive advantage over
other companies. In this paper, we analyze various training datasets, which in-
clude Twitter contents of an account owner and its list of followers, using features
generated in different ways for two machine learning approaches - the Extreme
Learning Machine (ELM) and Support Vector Machine (SVM). Various configu-
rations of the ELM and SVM have been evaluated. The results indicate that
training datasets using features generated from the owner tweets achieve the best
performance, relative to other feature sets. This finding is important and may aid
researchers in developing a classifier that is capable of identifying a specific
group of target audience members. This will assist the account owner to spend
resources more effectively, by sending offers to the right audience, and hence
maximize marketing efficiency and improve the return on investment.

Keywords: Extreme learning machine, Support vector machine, Machine learn-
ing, Target audience, Twitter, Social media.

1 Introduction

With the prevalence of social media and openness of information sharing, the ability
to analyze the contents of public social media posts and to uncover the underlying
insights is valuable to any organization. Doing business on social media is becoming
common, when one considers that 77% of the Fortune 500 companies have active
Twitter accounts and 70% have active Facebook accounts [1]. It is understandable
that most companies are making efforts to engage their customers in more than one
social platform, as it can be rewarding to reach out to potential customers from the
huge user base of over 1.28 billion from both Twitter and Facebook [2].

In view of the increasingly crowded social space, it is no longer feasible for a com-
pany to depend on gimmicks (such as incentive referrals) that may only provide short-
term gain. With the growing “sophistication” of social media users, approaches like
mass marketing may not justify the effort and amount of money spent. Furthermore,
there is a thin line between broadcasting a general message and spamming, so instead

418 S.L. Lo, D. Cornforth, and R. Chiong

of attracting a greater audience, there is a high risk of alienating and therefore losing
current customers. Hence, it makes sense to identify a target audience in order to
maximize marketing efficiency and improve the return of investment (ROI).

While there are many guidelines or tips on the web that suggest how to find a
target audience on social media, most of these concentrate on searching specific key-
words related to products or brands. This list of keywords is usually prepared by do-
main experts, and there is a need to ensure that the keywords are “up-to-date” or stay
relevant, due to the dynamism of the business world. Furthermore, deciding which
keywords to use may not be obvious to a non-expert and this may lead to inaccurate
information extraction and hence a misunderstood market analysis. On top of this,
there is a need to manually consolidate the list of members of a social audience found
and to ensure that the contents shared by the audience match the keywords.

Prior work [3][4] has proposed various approaches such as translating both social
networks and semantic information into Resource Description Framework (RDF)
formats and using RDF methods for correlation, or making use of semantic tagging to
correlate the current social tagging approach to make sense of the social media data.
These approaches, however, require additional efforts of translating and tagging of
current social media data, which can be a daunting task considering the huge amount
of data and the possible manual procedure involved.

While the ability to predict a target audience from a list of Twitter followers will
be beneficial to any company or organization, limited studies have investigated the
effects of different training datasets used in supervised machine learning approaches
for this purpose. The most relevant work by Yang et el. [5] used temporal effects of
Twitter contents and a list of category-specific keywords to classify users’ interests in
the sports and politics domains. Both Term Frequency-Inverse Document Frequency
(TF-IDF) [6] and Latent Dirichlet Allocation (LDA) [7] have been used by Yang and
co-workers to generate features in two classification approaches – Naïve Bayes (NB)
[8] and the Support Vector Machine (SVM) [9]. In comparison, our work focuses on
predicting the target audience from a list of followers of a Twitter account owner,
instead of analyzing a domain specific Twitter user interest. In addition, we extract a
set of seed words using the contents of the owner’s tweets, which reflects the key
topics or terms at a specific point of time. This can aid in generating various training
datasets, while eliminating the need for manual tagging.

It is well known that one of the biggest challenges of using a supervised machine
learning approach is the constructing of its training dataset. Due to the vast amount
and diverse nature of the followers’ tweets, it is not feasible to manually annotate the
tweets for training the machine learning model. As such, we reasoned that tweets
from an account owner can be used to build a positive training dataset as the group of
followers who are tweeting similar contents (within a similar period of time) are more
likely to comprise the target audience compared to others who are not sharing similar
contents. This saves us from the need to manually annotate the vast amount of tweets
from the followers and is more practical if the approach is to be adopted in a real-
world application.

Machine learning approaches, especially the SVM, have been used in various text
categorization tasks [9] and are found to have obtained better performances compared

 Effects of Training Datasets on Both the Extreme Learning Machine 419

to other methods [10][11]. As we are analyzing the textual content of tweets, it is of
interest to study how the SVM would perform in predicting the target audience from a
list of followers. Recently, biologically inspired Natural Language Processing (NLP)
[12] has started to gain popularity and a new approach known as the Extreme Learn-
ing Machine (ELM) [13] has achieved good results in unstructured text analysis. This
research will therefore use both the SVM and ELM for target audience classification.
As the performance of a machine learning approach depends heavily on its training
dataset, it is important to construct features that can represent the dataset in an appro-
priate manner. It is logical to consider the suitability of the features according to spe-
cific domain knowledge and human ingenuity. Hence, we derive our training datasets
from the contents of an owner’s tweets. The hypothesis here is based on the idea that
the owner’s tweets will contain the necessary information or features that the follow-
ers are interested and so they choose and take action to follow the account owner.

In this paper, our main objective is to investigate the effects of using different
training datasets on both the ELM and SVM in order to make use of available re-
sources to predict and identify the target audience without utilizing a considerable
amount of human annotation effort. There are three types of training datasets: 1)
tweets from the owner, 2) tweets from followers clustered using statistical topic mod-
eling - Twitter LDA [14], and 3) tweets from followers generated through fuzzy
matching using a list of seed words extracted from the owner’s tweets.

The major contributions of this work are as follows:

• To the best of our knowledge, our work is the first attempt to predict and identify a
target audience from a list of followers (of an account owner) on Twitter using the
ELM with minimum manual annotation required.

• From our observation of the results, features generated using the content of the
owner’s tweets in the training dataset are more useful than training datasets that
use the followers’ tweets.

• We find that it is essential to remove all the duplicates after the data cleaning pro-
cess, in order to improve the classification result.

2 Related Work

The aims of any business are to increase profit, build a long lasting brand name, and
to grow the customer base or engage current customers. It is therefore essential for a
company to understand the needs and behavior of its customers. This understanding
can be achieved through different means and at different levels of detail. Most com-
panies segment their customers according to their traits and behavior so that market-
ing activities are targeted and measured according to the segmentation.

However, this kind of segmentation is typically restricted to customer relationship
management (CRM) or transaction data obtained either through customer surveys or
tracking of product purchases to understand the customer demand. Demographic vari-
ables, RFM (recency, frequency, monetary) and LTV (lifetime value) are the most
common input variables used in the literature for customer segmentation and cluster-
ing [15, 16]. While CRM or organizational transaction data can be coupled with

420 S.L. Lo, D. Cornforth, and R. Chiong

geographical data to obtain additional information, the segmentation remains limited
to a company’s internal system and does not leverage on the sharing and activities on
social media where customers tend to reveal more about themselves such as personal
preferences and perception of brands.

There have been efforts in deriving or estimating demographics information [17,
18] from available social media data, but this set of information may not be suitable to
be used directly in targeted marketing, as temporal effects and types of products are
usually not considered. Besides that, demographic attributes such as age, gender and
residence areas may not be updated and hence may result in a misled conclusion.
Recently, eBay has expressed that, due to the viral campaigns and major social media
activities, marketing and advertising strategies are evolving. Targeting specific de-
mographics through segmentation, although this still has value, is being superseded
by content-based approaches: eBay is focusing on “connecting people with the things
they need and love, whoever they are” [19]. In other words, contents shared by indi-
viduals are more important than demographics for predicting the target audience on
social media. Other research has also shown that using Facebook categories, such as
likes and n-grams, for predicting purchase behavior from social media is better than
using demographic features shared on Facebook [20]. Due to the privacy policy of
Facebook profiles, our work focuses on Twitter, where most of the contents and activ-
ities shared online are open and available.

There are many approaches in understanding the preferences of Twitter users,
which can provide important opportunities for businesses to improve their services
(such as through targeted marketing or personalized services). The majority of these
approaches focus on classifying Twitter users using the textual features (e.g., contents
of the tweets) [21] or network features (e.g., follower/followee network) [22]. How-
ever, there is also work in which the researchers have adopted various sociolinguistic
features such as emoticons and character repetition [22], and they used a SVM to
classify latent attributes such as gender, age, regional origin and political orientation.
Ikeda et al. [23] developed some demographic estimation algorithms for profiling
Japanese Twitter users based on their tweets and community relationships, where
characteristic biases in the demographic segments of users are detected by clustering
their followers and followees.

As most of the Twitter users’ basic demographic information (e.g., gender, age) is
unknown or incomplete (as compared to Facebook), Yang et al. [5] examined the
temporal effect of Twitter contents or tweets in classifying users’ interests. Instead of
using tweets directly, temporal information is derived from the word usage within the
streams to boost the accuracy of the classification. Both binary- and multi-class classi-
fications have been tested and found to outperform other methods within the sports
and politics domains. Another approach by Hong et al. [24] modeled a user’s interest
and behavior by focusing on retweet actions in Twitter, which can be used to model
user decisions and user-generated contents simultaneously. Even though tweets can be
a rich source of information, the huge volume and real-time nature of tweets can
sometimes result in noisy posting about daily lives. Hence, it is essential to extract
relevant information from tweets for user profiling tasks. Michelson and Macskassy
[25] presented work in discovering topics of interest by examining the entities in

 Effects of Training Datasets on Both the Extreme Learning Machine 421

tweets. A “topic profile” is then developed to characterize the users. Besides that,
statistical techniques that extract term- and concept- based user profiles are used to
analyze customers’ conversational data to provide insights on a user’s interest so that
commercial services can use these profiles for targeted marketing [26].

3 Methods

The focus of this work is to understand the effect of using different training datasets
on predicting the target audience from a list of followers via two machine learning
methods, namely the ELM and SVM.

3.1 Data Collection

We use the Twitter Search API [27] for our data collection. As the API is constantly
evolving with different rate limiting settings, our data gathering is done through a
scheduled program that requests a set of data for a given query. The subject or brand
selected for this research is Samsung Singapore or “samsungsg” (its Twitter
username). At the time of data collection, there were 3,727 samsungsg followers. In
order to analyze the content of the account owner’s tweets, the last 200 tweets by
samsungsg have been extracted. The time of tweets ranges from 2 Nov 2012 to 3 Apr
2013. For each of the followers, the API is used to extract their tweets, giving a total
of 187,746 records, and 2,449 unique users having at least 5 tweets in their past 100
tweets of the same period. We reasoned that those with fewer than 5 tweets were inac-
tive in Twitter, as it implied that these user were tweeting an average of less than one
tweet in a month (since the period was of 6 months).

3.2 Data Cleaning and Preparation

Tweets are known to be noisy and often mixed with linguistic variations. It is hence
very important to clean up the tweet content prior to any content extraction:

• Non-English tweets are removed using the Language Detection Library for Java
[28];

• URLs, any Twitter’s username found in the content (which is in the format of
@username) and hashtags (with the # symbol) are removed;

• Each tweet is pre-processed to lower case.

As tweets are usually informal and short (up to 140 characters), abbreviation and
misspelling are often part of the content and hence the readily available Named Entity
Recognition (NER) package may not be able to extract relevant entities properly. Due
to this, we derive an approach called Entities Identification, which uses Part-of-
Speech (POS) [29] tags to differentiate the type of words. All the single nouns are
identified as possible entities. If the tag of the first fragment detected is ‘N’ or ‘J’ and
the consecutive word(s) is of the ‘N’ type, these words will be extracted as phrases.
This approach is then complemented by another process using the comprehensive stop

422 S.L. Lo, D. Cornforth, and R. Chiong

words list used by search engines (http://www.webconfs.com/stop-words.php) in
addition to a list of English’s common words (preposition, conjunction, determiners)
as well as Twitter’s common words (such as “rt”, “retweet”, etc.) to identify any pos-
sible entity. In short, the original tweet is sliced into various fragments by using POS
tags, stop words, common words and punctuations as separators or delimiters. For
example, if the content is “Samsung is holding a galaxy contest!”, two fragments will
be generated for the content as follows: (samsung) | (galaxy contest).

3.3 Extreme Learning Machine (ELM)

The ELM [30] is a single-hidden layer feedforward neural networks (SLFN) where all
the node parameters in the hidden layer are randomly generated without tuning.
Through the replacement of a computationally costly procedure of training the hidden
layer by using random initialization, the method is proven to have both universal ap-
proximation and classification capabilities [31][32].

Consider a set of N distinct samples (xi, yi) with xi ℜ∈ D and yi ℜ∈ d. An ELM
with K hidden neurons is modeled as

 ∑
=

K

k 1

βk ϕ(wk xi + bk), i],1[N∈ (1)

where ϕ is the matrix activation function, w the input weights, b the biases and β the
output weights.

A MATLAB implementation of ELM from http://www.ntu.edu.sg/home/egbhuang/
elm_random_hidden_nodes.html is adopted in this study. A sigmoidal function is
used as the activation function instead of the alternatives, as it has performed better on
the various training datasets mentioned in Section 3.6. A range of numbers from
50-400 are used as the hidden neuron parameters, with an interval of 50.

As the number of tweets shared by each follower is different, an e score is
calculated by aggregating the classification results from each individual tweet of each
follower’s tweet set. The final assignment of the e score is based on the following
representation:

 e = np/nt (2)

where np is the total number of tweets that are classified as positive by the ELM and nt
is the total number of tweets shared by the follower. If 5 tweets out of a total of 50
tweets of a particular follower are classified as positive, then the e score assigned is
5/50 = 0.01. The total number of tweets is used to normalize the score instead of an
average value of all the tweets. This is due to the fact that the resulted score is more
capable of representing the true interest of the follower. For example, if follower1
tweeted 2 related tweets out of a total of 10 tweets, the e score assigned will be 0.2,
while the e score for follower2 is 0.02 if only 2 related tweets are classified as posi-
tive out of a total of 100 tweets. This is in contrast to using an average value, as both
follower1 and follower2 will be assigned the same e score that may not fully represent
the interests of the followers.

 Effects of Training Datasets on Both the Extreme Learning Machine 423

3.4 Support Vector Machine (SVM)

The SVM is a supervised learning approach for two- or multi-class classification and
it has been used successfully in many applications, including text categorization [9]. It
separates a given known set of {+1, -1} labeled training data via a hyperplane that is
maximally distant from the positive and negative samples respectively. This optimally
separating hyperplane in the feature space corresponds to a nonlinear decision bound-
ary in the input space. More details of the SVM can be found in [33].

Consider a set of N distinct samples (xi, yi) with xi ℜ∈ D and yi ℜ∈ d. An SVM is
modeled as

 ∑
i

αi K(x, xi) + b, i],1[N∈ (3)

where K(x, xi) is the kernel function, and α and b are the parameter and threshold of
the SVM respectively.

The LibSVM implementation of RapidMiner [34] is used in this study, and the
sigmoid kernel type is selected as it produces higher precision prediction than other
kernels, such as RBF (Radial Basis Function) and polynomial.

Similar to the e score specified in Section 3.3, a v score is assigned for each fol-
lower according to individual tweet classification based on the SVM. The v score is
generated using the following formula:

 v = ns/nt (4)

where ns is the number of tweets that are classified as positive by the SVM and na is
the total number of tweets shared by the follower.

3.5 Performance Metrics

The typical accuracy metric in statistical analysis of binary classification, which takes
into consideration the true positive (TP) and true negative (TN), does not reflect the
performance of a classifier well [35]. Therefore, we have used the precision, recall
and F1 score as performance metrics when comparing the ELM and SVM.

The formulas of precision, recall and F1 score are as follows:

 precision = TP/(TP + FP) (5)

 recall = TP/(TP + FN) (6)

 F1 score = 2 *
recallprecision

recallprecision

+
* (7)

where TP, TN, FP and FN represent true positive, true negative, false positive and
false negative respectively.

424 S.L. Lo, D. Cornforth, and R. Chiong

3.6 Generation of Training Datasets

As our main intention is to find an approach to predict the target audience from a list
of followers without the need to manually annotate the vast amount of tweet contents
for training purposes, we have designed the following three procedures:

i. Using tweets from the account owner (which logically should be tweeting con-
tents that will attract followers of similar interest) as the positive dataset and
tweets of account owners from other domains as the negative dataset;

ii. Using an unsupervised topic modeling approach to cluster relevant tweets from
all followers as the positive dataset and other clusters as the negative dataset;

iii. Using the Fuzzy match approach with seed words extracted from tweets of the
account owner to identify relevant tweets from all the followers. Those tweets
that are matched with a certain threshold are assigned as the positive dataset and
those below the threshold are assigned as the negative dataset.

Details of the various types of training datasets and their corresponding number of
features can be found in Table 1.

Table 1. Types of training datasets and the number of features

Training datasets Size of the datasets Number of
features

Notation

Tweets of owners 200 positive and 200 negative 245 owner
Tweets of followers gen-
erated using Twitter LDA

13,989 positive and 99,831
negative (7 sets of training
datasets are created)

397 follower
TLDA

Tweets of followers gen-
erated using Fuzzy match
with seed words extracted
from the owner

13,989 positive and 99,831
negative (7 sets of training
datasets are created)

38 follower
FV

3.6.1 Features Generated from the Owner’s Tweets
The positive dataset is generated using processed tweets from the account owner (i.e.,
samsungsg). The negative dataset is randomly generated from account owners of 10
different domains, which include ilovedealssg (online shopping deals),
hungrygowhere (food), joannepeh (celebrity), kiasuparents (parents), MOEsg (educa-
tion), mtvasia (music), tiongbahruplaza (shopping), tocsg (TheOnlineCitizen/politics),
SGnews (Singapore news) and sgdrivers (news on traffic) respectively. These do-
mains are chosen as they represent the main topics discovered based on the analysis
of Twitter LDA using the list of tweets from all the followers. The respective account
owners are selected as they are the popular Twitter accounts in Singapore according
to online Twitter analytic tools such as wefollow.com.

As all the tweets have been cleaned and preprocessed (see Section 3.2), only word
stemming using Porter [36] is done on the tweets before forming a term frequency
word vector. A total of 245 features are identified and used in creating both the train-
ing and testing feature vectors.

 Effects of Training Datasets on Both the Extreme Learning Machine 425

3.6.2 Seed Words Generation
In order to minimize the need to annotate the huge amount of followers’ tweets for
classification, seed words are extracted from the owner’s tweets to assist in identify-
ing relevant topic clusters in the unsupervised topic modeling approach (i.e., Twitter
LDA, see Section 3.6.3) as well as the Fuzzy match approach (see Section 3.6.4).

All the tweets extracted from samsungsg are subjected to the data cleaning and
preparation process described in Section 3.2. Each tweet is now represented by the
identified fragments or words and phrases. This set of data is further processed using
term frequency analysis to obtain a list of seed words (which include “samsung”,
“galaxy s iii”, “galaxy camera”, etc.). The words in a phrase are joined by ‘_’ so that
they can be identified as a single term but the ‘_’ is filtered in all the matching pro-
cesses. A total of 38 words and phrases are identified.

3.6.3 Features Generated Using Twitter Latent Dirichlet Allocation (LDA)
LDA, a renowned generative probabilistic model for topic discovery, has recently
been used in various social media studies [14][37]. LDA uses an iterative process to
build and refine a probabilistic model of documents, each containing a mixture of
topics. However, standard LDA may not work well with Twitter as tweets are typical-
ly very short. If one aggregates all the tweets of a follower to increase the size of the
documents, this may diminish the fact that each tweet is usually about a single topic.
As such, we have adopted the implementation of Twitter LDA [14] for unsupervised
topic discovery among all the followers.

As the volume of the tweet set from all the followers is within 200,000 tweets, only
a small number of topics from Twitter LDA have been used. Specifically, we have
used five topic models from 10 to 50 (with an interval of 10) in this study. We ran
these five different topic models for 100 iterations of Gibbs sampling while keeping
the other model parameters or Dirichlet priors constant: α = 0.5, βword = 0.01, βbackground
= 0.01 and γ = 20. Suitable topics are chosen automatically via comparison with the
list of seed words.

The list of topic words under the selected topics are checked for duplication and a
total of 397 words are identified for creation of training and testing datasets.

3.6.4 Features Generated Using Fuzzy Match with Seed Words Extracted

from the Owner’s Tweets

3.6.4.1 Fuzzy Match
It is not uncommon for Twitter users to use abbreviations or interjections or different
forms of expression to represent similar terms. For example, “galaxy s iii” can be
represented by “galaxy s 3”, which is understandable by a human but cannot be cap-
tured by direct keyword match. As such, fuzzy matching based on the seed words
derived is implemented.

426 S.L. Lo, D. Cornforth, and R. Chiong

The comparison here is based on a Dice coefficient string similarity score [38] us-
ing the following expression

 s = 2*nc /(nx+ny) (8)

where nc is the number of characters found in both strings, nx is the number of charac-
ters in string x and ny is the number of characters in string y. For example, to calcu-
late the similarity between “process” and “proceed”:

 x = process bigrams for x = {pr ro oc ce es ss}
 y = proceed bigrams for y = {pr ro oc ce ee ed}

Both x and y have 6 bigrams each, of which 4 of them are the same. Hence, the Dice
coefficient string similarity score is 2*4/(6+6) = 0.667.

3.6.4.2 Features Generated from Fuzzy Match
As the Fuzzy match method is dependent on the list of seed words extracted from the
owner’s tweets, the total number of features for it is the same as the number of seed
words, which is 38. Each of the tweets from each follower is compared with every
seed word using Fuzzy match. The highest similarity score of each seed word match
for the tweet is used to create the value of the feature for that seed word of the tweet.

3.7 Generation of Testing Datasets

In order to assess the performance of both the ELM and SVM, the contents of a total
of 300 followers (which were randomly sampled) were annotated manually as either a
potential target audience or not a target audience based on the contents shared by the
account owner.

Even though the original tweet contents from the annotated followers were mostly
different, the contents of the testing dataset after the data cleaning and preparation
process (see Section 3.2) resulted in a fair amount of duplication (as shown in Table
2). Hence, it will be of interest to analyze if the duplication in the testing dataset has
any effect on the performance of the classifiers.

Table 2. Types of testing datasets

Testing datasets Size of the datasets Notation
All tweets from annotated followers 21,297 nil
Unique tweets from annotated followers 13,550 noDup

4 Experiments and Results

4.1 Training Accuracy and e Scores of Various ELM Configurations

As all the hidden node parameters are randomly generated in the ELM, 10 runs using
different ranges of hidden nodes or neuron numbers have been carried out. It is observed

 Effects of Training Datasets on Both the Extreme Learning Machine 427

that neuron numbers within the range of 150 and 250 produced better results. The aver-
age training accuracy and time with experiments on 150, 200 and 250 neuron numbers
are listed in Table 3.

Table 3. Training accuracy of various ELM configurations

Training datasets Neuron numbers Training accuracy* Training time (s)*
ELM_owner 150 0.96 0.07
 200 0.99 0.13
 250 0.99 0.19
ELM_followerTLDA 150 0.67 2.38
 200 0.68 4.05
 250 0.69 5.42
ELM_followerFV 150 0.59 2.02
 200 0.60 3.49
 250 0.60 5.36

*The results are based on the average of 10 runs

The training model using 250 neuron numbers has consistently performed well

compared to other configurations and hence we used it for testing the two different
types of testing datasets generated using the tweets of the 300 randomly annotated
followers. As indicated in Table 4, there are two testing datasets for each training
model - the complete set and the no-duplicate set. An e score is generated for each
follower and the top 10 and top 30 e scores are listed in the table. These two sets of
scores have been selected to assess how well the ELM performs in identifying and
predicting a target audience. It is beneficial to know how many of the top 10 follow-
ers as predicted by the ELM are true target audience members in addition to looking
at scores from performance metrics such as precision, recall and F1. Detailed results
of these can be found in Section 4.3 and 4.4.

Table 4. e scores of various ELM configurations

Training – Testing Top 10 e scores Top 30 e scores
ELM_owner 0.50 0.33
ELM_owner_noDup 0.35 0.21
ELM_followerTLDA 0.68 0.43
ELM_followerTLDA_noDup 0.60 0.41
ELM_followerFV 0.72 0.56
ELM_followerFV_noDup 0.70 0.58

4.2 Training Accuracy and v Scores of Various SVM Configurations

The 10 fold cross-validation result for the SVM has yielded an accuracy of 0.88 when
owner contents are used as the training dataset. As shown in Table 5, the other train-
ing datasets are not doing as well as the SVM_owner training dataset.

428 S.L. Lo, D. Cornforth, and R. Chiong

Table 5. Training accuracy of various SVM configurations

Training datasets Training accuracy*
SVM_owner 0.88
SVM_followerTLDA 0.70
SVM_followerFV 0.57
*The results are from 10 fold cross-validation

Similar to the ELM, the top 10 and top 30 v scores were generated for the assess-

ment of various SVM configurations. It is interesting to observe that there is an in-
creasing trend for the v score from using the owner tweets as the training dataset to
followerTLDA and finally followerFV (see Table 6). This observation is consistent
with the results obtained for various ELM configurations (as shown in Table 4) and it
implies that the identification of target audience becomes less specific in other train-
ing datasets as compared to the owner training dataset. Besides that, the scores (both
the e and v scores) are lower when the no-duplicate testing dataset is used.

Table 6. v scores of various SVM configurations

Training – Testing Top 10 v scores Top 30 v scores
SVM_owner 0.42 0.24
SVM_owner_noDup 0.33 0.18
SVM_followerTLDA 0.69 0.42
SVM_followerTLDA_noDup 0.71 0.39
SVM_followerFV 0.80 0.63
SVM_followerFV_noDup 0.75 0.60

4.3 Results of Using Top 10 Scores as Cut Off

Table 7 and Table 8 show the results of using top 10 scores as cut off for the ELM
and SVM respectively. In general, the numbers of true positive (TP) identified de-
crease from using the owner training dataset to the followerFV dataset. However, it is
worth highlighting that using the no-duplicate testing dataset has yielded better results
compared to the complete set of test data here.

Table 7. Results of the ELM (based on the average of 10 runs, using 250 neurons) – top 10
score cut off

Training – Testing Precision Recall F1 score TP identified Accuracy*
ELM_owner 0.40 0.06 0.11 4/10 0.40
ELM_owner_noDup 0.80 0.13 0.22 8/10 0.80
ELM_followerTLDA 0.40 0.06 0.11 4/10 0.40
ELM_followerTLDA_noDup 0.40 0.06 0.11 4/10 0.40
ELM_followerFV 0.30 0.05 0.08 3/10 0.30
ELM_followerFV_noDup 0.36 0.06 0.11 4/10 0.40
*The accuracy is based on the true positive (TP) identified

 Effects of Training Datasets on Both the Extreme Learning Machine 429

Table 8. Results of the SVM – top 10 score cut off

Training – Testing Precision Recall F1 score TP identified Accuracy*
SVM_owner 0.54 0.10 0.16 6/10 0.60
SVM_owner_noDup 0.70 0.10 0.19 7/10 0.70
SVM_followerTLDA 0.40 0.06 0.11 4/10 0.40
SVM_followerTLDA_noDup 0.40 0.06 0.11 4/10 0.40
SVM_followerFV 0.20 0.03 0.05 2/10 0.20
SVM_followerFV_noDup 0.25 0.05 0.08 3/10 0.30
*The accuracy is based on the true positive (TP) identified

4.4 Results of Using Top 30 Scores as Cut Off

Tables 9 and 10 show the results of using top 30 scores as cut off for the ELM and
SVM respectively. From the tables, a similar trend but with higher accuracy can be
observed when using the owner as the training dataset and when no-duplicate test data
is used.

Table 9. Results of the ELM (based on the average of 10 runs, using 250 neurons) – top 30
score cut off

Training – Testing Precision Recall F1 score TP identified Accuracy*
ELM_owner 0.50 0.24 0.32 15/30 0.50
ELM_owner_noDup 0.53 0.29 0.37 18/30 0.60
ELM_followerTLDA 0.39 0.21 0.27 13/30 0.43
ELM_followerTLDA_noDup 0.32 0.16 0.21 10/30 0.33
ELM_followerFV 0.23 0.11 0.15 7/30 0.23
ELM_followerFV_noDup 0.26 0.14 0.19 9/30 0.30
*The accuracy is based on the true positive (TP) identified

Table 10. Results of the SVM – top 30 score cut off

Training – Testing Precision Recall F1 score TP identified Accuracy*
SVM_owner 0.47 0.22 0.30 14/30 0.47
SVM_owner_noDup 0.53 0.25 0.34 16/30 0.53
SVM_followerTLDA 0.43 0.21 0.28 13/30 0.30
SVM_followerTLDA_noDup 0.33 0.16 0.22 10/30 0.33
SVM_followerFV 0.25 0.13 0.17 8/30 0.27
SVM_followerFV_noDup 0.27 0.13 0.17 8/30 0.27
*The accuracy is based on the true positive (TP) identified

4.5 Comparing the ELM and SVM

The following two figures (Fig. 1 and Fig. 2) clearly show that the trend of F1 scores
obtained for both the ELM and SVM is similar. As can be seen in the figures, the
highest scores are found using the same configuration – owner as the training dataset

430 S.L. Lo, D. Cornforth, and R. Chiong

and no-duplicate as the testing dataset. In general, configurations based on owner as
training datasets have yielded better results in predicting the target audience for both
the ELM and SVM.

Fig. 1. F1 scores for the ELM and SVM based on top 10 score cut off. Error bars on the ELM
indicate the 95% confidence intervals based on the Student T distribution of 10 runs.

Fig. 2. F1 scores for the ELM and SVM based on top 30 score cut off. Error bars on the ELM
indicate the 95% confidence intervals based on the Student T distribution of 10 runs.

 Effects of Training Datasets on Both the Extreme Learning Machine 431

5 Discussion

It is interesting to observe that, while traditionally a training dataset of the same
source is often used for testing purposes, the F1 score results from top 10 and top 30
cut offs showed that using tweets from the account owner can yield better perfor-
mances compared to tweets extracted from the list of followers when predicting the
target audience. This finding is important as it eliminates the need to manually anno-
tate the vast amount of tweets from the followers. Using tweets from the owner
(which is well categorized within its domain) is more practical if it is to be adopted in
a real-world application for target audience prediction.

The main objective of this study is to ascertain the effects of using training datasets
built from either the owner or the list of followers for prediction. The results indicate
that the types of training datasets have a clear impact on the outcome of the prediction
process. Also, the preprocessing of the test dataset (i.e., having no duplication) is
equally important in yielding better performances.

We have explored two approaches, namely Fuzzy match and Twitter LDA, for ex-
tracting representative features from the followers’ tweets in this paper. The main
reason of using these two approaches is because of their ability in enabling the anno-
tation of followers’ tweets through minimum manual efforts. Moreover, Fuzzy match
and Twitter LDA (when used in conjunction with seed words extracted from the own-
er’s tweets) have been shown to perform better than other methods in identifying the
potential high-value social audience in our preliminary investigation.

It can be argued that the short list of seed words generated from the owner’s tweets
may not be able to form a feature vector that is representative of the tweets from the
followers under the followerFV training dataset (using Fuzzy match). However, as the
account chosen - “samsungsg” - is a technology and mobile company, its tweet con-
tents tend to share specific terms such as products or events, which are essentially
keywords that can be found in the tweets of the followers. In addition, we have ana-
lyzed both the training and testing datasets during the same period of time. It is there-
fore likely that the target audience who are interested in the content tweeted by the
account owner will be tweeting similar terms or text. Having said that, this may not be
the case for more generic accounts such as parent groups or current affairs, as the
contents shared can be rather diverse and conceptual. As such, a more sophisticated
feature generation approach based on domain-specific and common-sense knowledge
may be required to enrich the bag of words [39] with new, more informative features.

While the results from both the ELM and SVM show similar trends, it is worth-
while to note that the computational time required by the ELM for training and testing
is within the range of seconds. As this work focuses on the effect of using different
training datasets for the prediction, however, we did not do a comprehensive compari-
son on the time spent in generating the model and the result between the two ap-
proaches.

We have compared the performances of the ELM and SVM mainly based on preci-
sion, recall and the F1 score. Considering the fact that companies and organizations
are generally more interested in knowing which followers would more likely be inter-
ested in their products, we also used e scores and v scores generated from both the

432 S.L. Lo, D. Cornforth, and R. Chiong

ELM and SVM to identify the top 10 and 30 followers (see Tables 7, 8, 9 and 10).
The ELM has performed slightly better than the SVM in this regard, as it succeeded
in identifying more top followers by using tweets from the owner as the training da-
taset and no-duplicate data for testing.

6 Conclusion and Future Work

In this paper, we have used various training and testing datasets on both the ELM and
SVM to predict and identify the target audience from a list of followers of a Twitter
account owner “samsungsg”. Our main purpose was to study the effect of using dif-
ferent training datasets to ascertain an approach for classifying the target audience
with minimum annotation efforts.

From the results, we have observed that using the owner’s tweets as the training
dataset can better predict or classify the target audience than using the followers’
tweets. In addition, it is essential to remove all the duplicates from the testing dataset,
as this has shown to be able to improve the classification results. Equipping a compa-
ny or organizer with the ability to predict the target audience enables the Twitter ac-
count owner to devise their marketing or engagement plan accordingly, in order to
maximize the use of allocated budget and successfully reach out to potential custom-
ers in the crowded social media space.

Our future work will concentrate on enriching the features that can be identified
from tweets, as the poor performance of Fuzzy match using the list of seed words
extracted from the owner’s tweets may be due to the limitation of bag of words.
While Fuzzy match is able to identify terms without the need to have an exact match,
it is not able to identify terms that it has not seen before. For example, Fuzzy match
can identify “galaxy s iii” with “galaxy s3” but it is not capable of associating that
“note 2” is also a related product. As such, it is essential to enrich the bag of words by
incorporating online domain knowledge [40] (such as Wikipedia), integrating com-
munity-curated online databases [41] (such as Freebase) or combining entities from e-
commerce sites (such as eBay) in order to form a more comprehensive view and thus
improve on the prediction outcome.

References

1. 2013 Fortune 500 - UMass Dartmouth,
http://www.umassd.edu/cmr/socialmediaresearch/2013fortune500/

2. How Many People Use Facebook, Pinterest, Twitter and 500 of the Top Social Media?,
http://expandedramblings.com/index.php/resource-how-many-
people-use-the-top-social-media/#.U6kUVxAy1vA

3. Breslin, J.G., Passant, A., Vrandečić, D.: Social semantic web. In: Handbook of Semantic
Web Technologies, pp. 467–506. Springer (2011)

4. Torres, D., Diaz, A., Skaf-Molli, H., Molli, P.: Semdrops: A social semantic tagging ap-
proach for emerging semantic data. In: Proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), pp. 340–
347. IEEE (2011)

 Effects of Training Datasets on Both the Extreme Learning Machine 433

5. Yang, T., Lee, D., Yan, S.: Steeler nation, 12th man, and boo birds: classifying Twitter us-
er interests using time series. Presented at the Proceedings of the 2013 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining (2013)

6. Ramos, J.: Using tf-idf to determine word relevance in document queries. Presented at the
Proceedings of the First Instructional Conference on Machine Learning (2003)

7. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3,
993–1022 (2003)

8. Manning, C.D., Schütze, H.: Foundations of statistical natural language processing. MIT
Press (1999)

9. Joachims, T.: Text categorization with support vector machines: learning with many rele-
vant features. In: Nédellec, C., Rouveirol, C. (eds.) Machine Learning: ECML 1998.
LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

10. Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive learning algorithms and repre-
sentations for text categorization. Presented at the Proceedings of the Seventh International
Conference on Information and Knowledge Management (1998)

11. Yang, Y., Liu, X.: A re-examination of text categorization methods. Presented at the Pro-
ceedings of the 22nd Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (1999)

12. Cambria, E., Mazzocco, T., Hussain, A.: Application of multi-dimensional scal-ing and ar-
tificial neural networks for biologically inspired opinion mining. Biol. Inspired Cogn.
Archit. 4, 41–53 (2013)

13. Cambria, E., Huang, G.-B., Kasun, L.L.C., Zhou, H., Vong, C.-M., Lin, J., Yin, J., Cai, Z.,
Liu, Q., Li, K.: Extreme learning machines. IEEE Intell. Syst. 28, 30–59 (2013)

14. Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., Li, X.: Comparing twitter and
traditional media using topic models. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F.,
Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349.
Springer, Heidelberg (2011)

15. Mo, J., Kiang, M.Y., Zou, P., Li, Y.: A two-stage clustering approach for multi-region
segmentation. Expert Syst. Appl. 37, 7120–7131 (2010)

16. Namvar, M., Khakabimamaghani, S., Gholamian, M.R.: An approach to opti-mised cus-
tomer segmentation and profiling using RFM, LTV, and demographic features. Int. J. Elec-
tron. Cust. Relatsh. Manag. 5, 220–235 (2011)

17. Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are who you know: infer-
ring user profiles in online social networks. In: Proceedings of the Third ACM Internation-
al Conference on Web Search and Data Mining, pp. 251–260. ACM (2010)

18. Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from
digital records of human behavior. Proc. Natl. Acad. Sci. 110, 5802–5805 (2013)

19. How Ebay Uses Twitter, Smartphones and Tablets to Snap Up Shoppers,
http://www.ibtimes.co.uk/how-ebay-uses-twitter-smartphones-
tablets-snap-shoppers-1443441

20. Zhang, Y., Pennacchiotti, M.: Predicting purchase behaviors from social media. In: Pro-
ceedings of the 22nd International Conference on World Wide Web, pp. 1521–1532. Inter-
national World Wide Web Conferences Steering Committee (2013)

21. Pennacchiotti, M., Popescu, A.-M.: Democrats, republicans and starbucks afficionados:
user classification in twitter. In: Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 430–438. ACM (2011)

22. Rao, D., Yarowsky, D., Shreevats, A., Gupta, M.: Classifying latent user attrib-utes in
twitter. In: Proceedings of the 2nd International Workshop on Search and Mining User-
generated Contents, pp. 37–44. ACM (2010)

434 S.L. Lo, D. Cornforth, and R. Chiong

23. Ikeda, K., Hattori, G., Ono, C., Asoh, H., Higashino, T.: Twitter user profiling based on
text and community mining for market analysis. Knowl. Based Syst. 51, 35–47 (2013)

24. Hong, L., Doumith, A.S., Davison, B.D.: Co-factorization machines: modeling user inter-
ests and predicting individual decisions in twitter. In: Proceedings of the Sixth ACM Inter-
national Conference on Web Search and Data Mining, pp. 557–566. ACM (2013)

25. Michelson, M., Macskassy, S.A.: Discovering users’ topics of interest on twitter: a first
look. In: Proceedings of the Fourth Workshop on Analytics for Noisy Un-structured Text
Data, pp. 73–80. ACM (2010)

26. Konopnicki, D., Shmueli-Scheuer, M., Cohen, D., Sznajder, B., Herzig, J., Raviv, A.,
Zwerling, N., Roitman, H., Mass, Y.: A statistical approach to mining customers’ conver-
sational data from social media. IBM J. Res. Dev. 57, 14:1–14:13 (2013)

27. Using the Twitter Search API | Twitter Developers,
https://dev.twitter.com/docs/using-search

28. Nakatani, S.: language-detection - Language Detection Library for Java - Google Project
Hosting, http://code.google.com/p/language-detection/

29. Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a max-imum en-
tropy part-of-speech tagger. Presented at the Proceedings of the 2000 Joint SIGDAT Con-
ference on Empirical Methods in Natural Language Processing and Very Large Corpora:
Held in Conjunction with the 38th Annual Meeting of the Association for Computational
Linguistics, vol. 13 (2000)

30. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme
of feedforward neural networks. In: Proceedings of the 2004 IEEE International Joint Con-
ference on Neural Networks, pp. 985–990. IEEE (2004)

31. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental construc-
tive feedforward networks with random hidden nodes. IEEE Trans. on Neural Netw. 17,
879–892 (2006)

32. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for re-gression
and multiclass classification. IEEE Trans. on Syst. Man Cybern. Part B Cybern. 42, 513–
529 (2012)

33. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min.
Knowl. Discov. 2, 121–167 (1998)

34. Predictive Analytics, Data Mining, Self-service, Open source - RapidMiner,
http://rapidminer.com/

35. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-score and ROC: a
family of discriminant measures for performance evaluation. In: Sattar, A., Kang, B.-H.
(eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006)

36. Willett, P.: The Porter stemming algorithm: then and now. Program Electron. Libr. Inf.
Syst. 40, 219–223 (2006)

37. Yang, M.-C., Rim, H.-C.: Identifying interesting Twitter contents using topical analysis.
Expert Syst. Appl. 41, 4330–4336 (2014)

38. Kondrak, G., Marcu, D., Knight, K.: Cognates can improve statistical translation models.
Presented at the Proceedings of the 2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human Language Technology: companion
volume of the Proceedings of HLT-NAACL 2003–short papers-Volume 2 (2003).

39. Harris, Z.S.: Distributional structure. Word (1954)
40. Gabrilovich, E., Markovitch, S.: Feature generation for text categorization using world

knowledge. Presented at the IJCAI (2005)
41. Lo, S.L., Mei, S.D., Liew, V.: Use of Semantic Co-relation in Target Audience Profiling.

Presented at the Fourth Global Congress on Intelligent Systems, GCIS (2013)

Extreme Learning Machine for Clustering

Chamara Kasun Liyanaarachchi Lekamalage1, Tianchi Liu1,�, Yan Yang2,
Zhiping Lin1, and Guang-Bin Huang1

1 School of Electrical and Electronic Engineering, Nanyang Technological University,
Nanyang Avenue, Singapore 639798

{chamarak001,tcliu,ezplin,egbhuang}@ntu.edu.sg
2 Energy Research Institute @ NTU (ERI@N), Nanyang Technological University,

Nanyang Avenue, Singapore 639798
y.yang@ntu.edu.sg

Abstract. Extreme Learning Machine (ELM) is originally introduced
for regression and classification. This paper extends ELM for clustering
using Extreme Learning Machine Auto Encoder (ELM-AE) which learn
key features of the input data. The embedding created by multiplying
the input data with the output weights of ELM-AE is shown to produce
better clustering results than clustering the original data space. Further-
more, ELM-AE is used to find the starting cluster points for k-means
clustering, which produces better results than randomly assigning the
cluster start points. The experimental results show that the proposed
clustering algorithm Extreme Learning Machine Auto Encoder Cluster-
ing (ELM-AEC) is better than k-means clustering and is competitive
with Unsupervised Extreme Learning Machine (USELM).

Keywords: Extreme Learning Machine, Auto Encoders, Clustering, K-
means.

1 Introduction

Supervised learning algorithms such as Extreme Learning Machine (ELM) [1–
6], Support Vector Machines (SVM) and neural networks learn the mapping
between input data and output data by using a training dataset. In contrast,
clustering algorithms learn the mapping between input data and output data by
grouping similar input data points to represent output classes and do not require
a training dataset. Hence, clustering algorithms do not require label information
of the input data which is expensive as it requires a human to assign labels.

ELM [1–6] is initially introduced to train “generalized” single-hidden layer
feedforward neural networks (SLFNs) with fast learning speed and good gener-
alization capability. ELM can approximate any target function [1–3] and can be
used for regression [6], classification [6], clustering [7] and feature learning [8,9].
The hidden parameters of ELM are chosen randomly independent from the input

� Tianchi Lius work was supported by a grant from Singapore Academic Research
Fund (AcRF) Tier 1 under Project RG 80/12 (M4011092).

c© Springer International Publishing Switzerland 2015 435
J. Cao et al. (eds.), Proceedings of ELM-2014 Volume 1,
Proceedings in Adaptation, Learning and Optimization 3, DOI: 10.1007/978-3-319-14063-6_36

436 C.K.L. Lekamalage et al.

data. In contrast to the commonly used Back Propergation (BP) [10] training
algorithm for neural networks which only minimizes the training error, ELM
minimizes the both training error and norm of the output weights. According to
Bartlett’s theory [11], the minimum norm output weights produce better gener-
alization performance.

ELM based clustering algorithm Un supervised Extreme Learning machine
(USELM) [7] uses graph Laplacian for clustering. However, calculating graph
Laplacian for large datasets is computationally expensive. The main objective
of this paper is to show the following: 1) clustering the embedding created by
projecting the input data with the output weights of ELM-AE produces better
results than clustering the input data space; 2) ELM-AE output weights can be
used to find starting points of the clusters.

2 Preliminaries

2.1 Extreme Learning Machine

Extreme Learning Machine (ELM) proposed by Huang, et.al [1,2,5,6] for SLFN
shows that the hidden nodes can be randomly generated independent from input
data. The input data is mapped to L dimensional ELM random feature space
and the network output is given by Equation (1):

fL(x) =

L∑

i=1

βihi(x) = h(x)β (1)

where β = [β1, · · · , βL]
T is the output weight matrix between the hidden nodes

and the output nodes, while h(x) = [h1 (x), · · · , hL(x)] is the hidden node output
(random hidden feature) for the input x, and hi(x) is the output of the i-th
hidden node. In ELM, the input data will be mapped to L dimensional ELM
random feature space h(x). Given N training samples {(xi ,ti)}Ni=1, ELM is to
resolve the following learning problems:

Minimize :||β||σ1
p + C||Hβ −T||σ2

q (2)

where σ1 > 0, σ2 > 0, p, q = 0, 12 , 1, 2, · · · ,+∞, T = [t1, · · · , tN]T consists of
the target labels and H = [hT(x1), · · · ,hT(xN)]T. According to ELM learning
theory, many type of feature mappings such as sigmoid, hard-limit, gaussian
and multi-quadric can be implemented in ELM. Further in theory, ELM can
approximate any continuous target functions [1–3] and the output weights β
can be calculated by Equation (3):

β = H†T (3)

where H† is the Moore-Penrose generalized inverse [12, 13] of matrix H, which
tends to achieve the smallest norm of β while keeping the training error to the
minimum. In theory, the least square solution of minimum norm (β) is supposed

Extreme Learning Machine Clustering 437

to be unique and according to Bartlett’s theory [11], ELM produces a good
generalization performance.

Equality Optimization Constrains based ELM was introduced [6], to achieve
a better generalization performance and a more robust solution. The output
weights β from the ELM hidden layer to the output layer can be calculated as

β =

(
I

C
+HTH

)−1

HTT (4)

or as:

β = HT

(
I

C
+HHT

)−1

T (5)

2.2 Extreme Learning Machine Auto Encoder

Extreme Learning Machine Auto-Encoder (ELM-AE) [9] adopts an unsupervised
learning as follows: input data are used as the output data t=x, random input
weights and random biases of the hidden nodes are chosen to be orthogonal.
ELM-AE can represent features of the input data in three different architec-
tures: 1) compressed architecture; 2) sparse architecture; 3) equal dimension
architecture.

Compressed architecture
The number of input neurons is larger than the number of neurons in the
hidden layer. In this case, ELM-AE learns to capture features from the ELM
feature space, which has a lower dimensionality than the input data space.

Sparse architecture
The number of input neurons is smaller than the number of neurons in the
hidden layer. In this case, ELM-AE learns to capture features from the ELM
feature space, which has a higher dimensionality than the input data space.

Equal dimension architecture
The number of input neurons is equal to the number of neurons in the hidden
layer. In this case, ELM-AE learns to capture features from the ELM feature
space, which has the same dimensionality as to the input data.

The network structure of ELM-AE is shown in Figure 1. For compressed
ELM-AE architecture, the hidden orthogonal random parameters project the
input data to a lower dimension space. The euclidean distances between each
input data points and the euclidean distances between each lower dimension
space data points is equal; as shown by Johnson-Lindenstrauss Lemma [14] and
calculated by Equation (6):

h = g(a · x+ b)

aTa = I,bTb = 1
(6)

The orthogonal hidden random parameters of sparse ELM-AE architecture are
calculated by Equation (7):

h = g(a · x+ b)

aaT = I,bTb = 1
(7)

438 C.K.L. Lekamalage et al.

1

p

d

1

L

1

p x

d

d > L: Compressed architecture

d = L: Equal dimension architecture

d < L: Sparse architecture

Input nodes Output nodes

ELM orthogonal ran-
dom feature mapping

g1

gL

βpx

(a1, b1)

(aL, bL)

Fig. 1. ELM-AE has the same solution as the original ELM except for: 1) The target
output of ELM-AE is the same as input x; 2) The hidden node parameters (ai , bi) are
made orthogonal after randomly generated. gi(x) = g(ai , bi ,x) in the i th hidden node
for input x.

where a = [a1, · · · , aL] is the orthogonal random weight and b = [b1, · · · , bL] is
the orthogonal random bias between the input nodes and the hidden nodes.

The output weights β of ELM-AE is responsible for the transformation from
the feature space to input data. ELM-AE output weights β are calculated by
Equation (8):

β =

(
I

C
+HTH

)−1

HTX (8)

or by Equation (9):

β = HT

(
I

C
+HHT

)−1

X (9)

3 Extreme Learning Machine Auto Encoder for
Clustering

This paper shows that performing k-means clustering [15–17] on the embedding
XβT produces better results than performing k-means clustering in the original
data space X. Furthermore, the embedding XβT is used to determine the initial
cluster centroids of k-means which produces better results than using random
cluster centroids. K-means clustering essentially groups the data points to k
clusters and the objective function is given by Equation (10):

Jk =

k∑

i=1

∑

xj∈Ck

(xj −mk)
2 (10)

Extreme Learning Machine Clustering 439

where mk is the cluster centroid of the k-th cluster CK . K-mean clustering
finds a centroid matrix mk for k clusters and assigns each data point xj to an
centroid vector mi based on the distance. We will consider the Singular Value
Decomposition (SVD) [18] of input data asX = UΣV, whereU = [u1, · · · ,uN],
Σ = [σ1, · · · ,σd] and V = [v1, · · · ,vd]. U are the eigenvectors of the gram
matrix XXT , V is the eigenvectors of the covariance matrix XTX and Σ is the
singular value of X.

3.1 Clustering Embedding XβT

Lemma 1 shows that, projecting the input data X along the eigenvectors of the
covariance matrixVT clusters the data points similar to k-means and performing
k-means on the embedding XVT produces better results than performing k-
means in the original data space X.

Lemma 1. [19] The embedding XVT reduces the distances between the data
points in the same cluster, while the distances between data points in different
clusters are not changed.

It has been shown that ELM-AE learn the variance information [9]. Hence,
Proposition 1 shows that performing k-means clustering on the embedding XβT

produces better results than performing k-means in the original data space X.

Proposition 1. The output weights β of ELM-AE learn the variance informa-
tion of input data X [9]. Then by Lemma 1, the embedding XβT reduces the
distances between the data points belonging to the same cluster, while distances
in different clusters are not changed.

Figure 2(a) shows the output of embedding XIRISβ
T created by multiplying

the IRIS input data XIRIS by ELM-AE output weights β. A ELM-AE with two
hidden neurons was used to create the output weights β. Figure 2(b) shows
the original IRIS data points (output of XIRIS). Figure 2 illustrates that the
embedding XIRISβ

T reduces the intra-cluster euclidean distances but not the
inter-cluster euclidean distances as shown in Proposition 1. Figure 2(a) shows
that performing k-mean clustering in the embedding XIRISβ

T is easier than
performing clustering in the original data XIRIS as the embedding XIRISβ

T

contains three distinct clusters.

3.2 Finding the Starting Cluster Centroids

K-means algorithm assigns the cluster centroids randomly and converges to a
local minimum [20–22]. By assigning the cluster centroids to represent the actual
clusters of the input data it is possible to achieve better performance. Lemma 2
shows that the eigenvectors of the gram matrix ui clusters the data points. Each
eigenvector of the gram matrix ui represents one cluster.

Lemma 2. [19] Ci1 = {j|ui(j) ≤ 0}, Ci2 = {j|ui(j) > 0}, where Ci1 is the
first sub-cluster and Ci2 is the second sub-cluster for the i-th cluster.

440 C.K.L. Lekamalage et al.

(a) Output of embedding XIRISβ
T created by multiplying the input data

XIRIS by ELM-AE output weights β.

(b) Output of IRIS data points XIRIS.

Fig. 2. The embedding XIRISβ
T reduces the intra-cluster euclidean distances but not

the inter-cluster euclidean distances

Extreme Learning Machine Clustering 441

Lemma 2 shows that the positive values of ui represents the data points in sub-
cluster Ci2 while the negative values of ui represents the data points belonging
to sub-cluster Ci1 for the i-th cluster. One sub-cluster (Ci1 or Ci2) represents the
data points belonging to the i-th cluster while the other sub-cluster represents
the data points not belonging to the i-th cluster. Hence, we must decide which
sub-cluster (Ci1 or Ci2) represents the data points belonging to i-th cluster. If
we consider that data points for each class i is equally distributed then each
class will contain N/k data points. Hence for the i-th cluster, the sub-cluster
with the smallest number of data points in Ci1 or Ci2 will represent data points
belonging to cluster i. The mean value of the sub-cluster with the smallest num-
ber of data points represents the initial cluster centroid for the i-th cluster. For
imbalance datasets the ratio of data points belonging to each cluster can be used
to determine the sub-cluster (Ci1 or Ci2).

When d < N , calculating the eigenvectors V of the covariance matrix XTX
is computationally less expensive than the eigenvectors U of the gram matrix
XXT as the covariance matrix is a L × L matrix and the gram matrix XTX
is a N ×N matrix. Proposition 2 shows that the eigenvectors of the covariance
matrix V instead could be used to cluster the data points.

Proposition 2. The SVD decomposition of X = UΣV and U = Σ−1XVT .
By Lemma 2 embedding XVT clusters the data points.

Proposition 2 shows that, as the embedding XVT clusters the data and can be
used determine the initial cluster centroids for k-means.

Proposition 3. As the output weights of ELM-AE β capture the variance of
input data X and by Proposition 2 the projected space XβT represents eigen-
vectors of the gram matrix X.By Lemma 2 the projected space XβT clusters the
data points. Ci1 = {j|XβT

i (j) ≤ 0}, Ci2 = {j|XβT
i (j) > 0}, where Ci1 is the

first sub-cluster and Ci2 is the second sub-cluster of the i-th cluster.

Proposition 3 shows that, the projected space XβT clusters the data it can
be used determine the initial cluster centroids for k-means. Figure 2(a) shows
that the positive values of embedding XIRISβ

T represents one cluster while the
negative values represent the other cluster.

Algorithm 1 describes Extreme Learning Machine Auto Encoder Clustering
(ELM-AEC) algorithm.

4 Experiments

Experiments were carried out in a laptop with 740QM 1.7 Ghz processor and 12
GB RAM. The values of the datasets were normalized in between 0 and 1. Three
UCI datasets (IRIS, WINE, SEGMENT) [23] and face dataset (YALE) [24]
is used to test the performance of the proposed ELM-AEC. The number of
dimensions and number of samples of the datasets are shown in Table 1.

In order to verify whether initializing the cluster centroids of k-means us-
ing the embedding XβT aids in increasing the performance of clustering, two

442 C.K.L. Lekamalage et al.

Algorithm 1. Extreme Learning Machine Auto Encoder Clustering (ELM-
AEC)

Input: Input Data X; k is the number of clusters
Output: The cluster labels T

1 Calculate ELM-AE output weights β for input data X;
2 Normalize the ELM-AE output weights β;

3 Create the embedding XβT ;

4 Normalize the embedding XβT ;
5 Calculate ELM-AE output weights βclass for input data X with k hidden

neurons, where k are the clusters to be found;
6 Normalize the ELM-AE output weights βclass;

7 Create the class embedding XβT
class;

8 Normalize the class embedding XβT
class;

9 For all clusters i of XβT
class(:, i) find the best sub-cluster. The best sub-cluster

among sub-clusters Ci1 and Ci2 of the i-th cluster is the sub-cluster which have
the smallest number of data points in one sub-cluster;

10 Calculate the mean of the data points found in the best sub-cluster;

11 Cluster the embedding XβT using K-means with the calculated cluster
centroids;

Table 1. Specification of the Datasets

Dataset # Dimensions # Samples # Classes

iris 4 150 3

wine 13 178 3

segment 19 2310 7

yale 1024 165 15

versions of ELM-AEC is tested named as ELM-AEC(Initial Cluster) and ELM-
AEC (without Initial Cluster). ELM-AEC(Initial Cluster) algorithm initializing
the k-means initial cluster centroids using the embedding XβT and the ELM-
AEC(without Initial Cluster) algorithm uses random initial cluster centroids for
k-means. ELM-AEC(Initial Cluster), ELM-AEC(without Initial Cluster) algo-
rithm USELM and K-means was executed 100 times and the average clustering
performance is shown in Table 2. Table 2 shows that the performance of ELM-
AEC(Initial Cluster) is better than both k-means and USELM for IRIS, WINE
and SEGMENT datasets. However, for YALE face recognition dataset ELM-
AEC(Initial cluster) performs lower than USELM but better than k-means.
ELM-AEC(Initial Cluster) algorithm performs similar to ELM-AEC(without
Initial Cluster) for IRIS and WINE datasets and performs better for SEG-
MENT and YALE datasets. Hence, initializing the k-mean cluster centroids
using embedding XβT increases the clustering performance. Furthermore, ELM-
AEC(without initial cluster) performs better than k-means for all datasets.

Extreme Learning Machine Clustering 443

Table 2. Clustering Performance of ELM-AEC(Initial Cluster), ELM-AEC(without
initial cluster), US-ELM and K-means

Dataset ELM-AEC (Ini-
tial Cluster)
(std)

ELM-AEC (with-
out Initial Clus-
ter) (std)

USELM (std) K-means (std)

iris 95.94(± 1.16) 95.43 (± 1.33) 89.63(± 12.13) 82.18(± 12.45)

wine 97.26(± 0.52) 97.48 (± 0.28) 96.07(± 0) 94.76 (± 0.48))

segment 71.09(± 3.42) 66.99 (± 5.49) 68.29 (± 4.74) 61.14 (± 5.91)

yale 45.63(± 3.58) 43.53(± 3.82) 47.25 (± 3.75) 38.76(± 3.57)

5 Conclusion

This paper shows that k-means clustering in the embeddingXβT produces better
results than clustering in the original space X. Performance of k-means can be
increased by initializing the initial centroids of k-means to represent the actual
clusters, instead of using random cluster centroids. To this end, this paper shows
that the embedding XβT finds the actual clusters of the input data and can be
used to find the initial cluster centroids for k-means. The results show that the
proposed ELM-AEC is better than USELM.

References

1. Huang, G.-B., Chen, L., Siew, C.-K.: Universal Approximation Using Incremental
Constructive Feedforward Networks with Random Hidden Nodes. IEEE Transac-
tions on Neural Networks 17(4), 879–892 (2006)

2. Huang, G.-B., Chen, L.: Convex Incremental Extreme Learning Machine. Neuro-
computing 70, 3056–3062 (2007)

3. Zhang, R., Lan, Y., Huang, G.-B., Xu, Z.-B.: Universal Approximation of Extreme
Learning Machine With Adaptive Growth of Hidden Nodes. IEEE Transactions on
Neural Networks and Learning Systems 23(2), 365–371 (2012)

4. Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learn-
ing machine. Neurocomputing 71(16-18), 3460–3468 (2008)

5. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme Learning Machine: Theory and
Applications. Neurocomputing 70, 489–501 (2006)

6. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme Learning Machine for Re-
gression and Multiclass Classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part B 42(2), 513–529 (2012)

7. Huang, G., Song, S., Gupta, J.N.D., Wu, C.: Semi-Supervised and Unsupervised
Extreme Learning Machines. IEEE Transactions on Cybernetics 99, 1 (2014)

8. Huang, G.-B.: An Insight into Extreme Learning Machines: Random Neurons,
Random Features and Kernels. Cognitive Computation, 1–15 (2014)

9. Kasun, L.L.C., Zhou, H., Huang, G.-B., Vong, C.M.: Representational Learning
with Extreme Learning Machines for Big Data. IEEE Intelligent Systems 28(6),
31–34 (2013)

10. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533–536 (1986)

444 C.K.L. Lekamalage et al.

11. Bartlett, P.L.: The Sample Complexity of Pattern Classification with Neural Net-
works: The Size of the Weights is More Important than the Size of the Network.
IEEE Transactions on Information Theory 44(2), 525–536 (1998)

12. Serre, D.: Matrices: Theory and Applications. Springer-Verlag New York, Inc.
(2002)

13. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and its Applications. John
Wiley, New York (1971)

14. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert
space. In: Conference in Modern Analysis and Probability, vol. 26, pp. 189–206.
American Mathematical Society (1984)

15. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A K-means clustering algorithm.
Applied Statistics, 100–108 (1979)

16. Lloyd, S.: Least Squares Quantization in PCM. IEEE Trans. Inf. Theor. 28(2),
129–137 (2006)

17. MacQueen, J.B.: Some Methods for Classification and Analysis of MultiVariate
Observations. In: Cam, L.M.L., Neyman, J. (eds.) Proc. of the fifth Berkeley Sym-
posium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University
of California Press (1967)

18. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank.
Psychometrika 1(3), 211–218 (1936)

19. Ding, C., He, X.: K-means Clustering via Principal Component Analysis. In: Pro-
ceedings of the Twenty-First International Conference on Machine Learning, ICML
2004, p. 29. ACM (2004)

20. Bradley, P.S., Fayyad, U.M.: Refining initial points for k-means clustering. In:
Proceedings of the Fifteenth International Conference on Machine Learning, ICML
1998, pp. 91–99. Morgan Kaufmann Publishers Inc., San Francisco (1998)

21. Grim, J., Novovicova, J., Pudil, P., Somol, P., Ferri, F.J.: Initializing normal mix-
tures of densities. In: Proceedings of the Fourteenth International Conference on
Pattern Recognition, vol. 1, pp. 886–890 (1998)

22. Moore, A.W.: Very Fast EM-based Mixture Model Clustering Using Multireso-
lution Kd-trees. In: Proceedings of the 1998 Conference on Advances in Neural
Information Processing Systems II, pp. 543–549. MIT Press, Cambridge (1999)

23. Bache, K., Lichman, M.: UCI machine learning repository (2013)
24. Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face

identification. In: Proceedings of the Second IEEE Workshop on Applications of
Computer Vision, pp. 138–142 (December 1994)

Author Index

AlmÆsi, Adela-Diana 367

Ban, Xiaojuan 293
Bisio, Federica 61

Cao, Ke-yan 193
Cao, Le-le 141
Chang, Xiaohui 293
Chen, Yanjie 311
Chetty, Girija 163
Chiong, Raymond 417
Cornforth, David 417
Cristea, Valentin 367

de Chazal, Philip 41, 183
Decherchi, Sergio 61
Deng, Zhaohong 203
Denk, Cornelia 245
Ding, Linlin 91
Dong, Diya 325
Dwiyasa, Felis 407

Engbersen, Ton 367

Feng, Lin 51

Gao, Hang 81
Gao, Qun 203
Gastaldo, Paolo 61
George, Koshy 215

Han, Bo 273
Han, Donghong 193
He, Bo 273, 325
He, Qing 151

Horata, Punyaphol 377
Huang, Guang-Bin 245, 435
Huang, Shan 31
Huang, Wen-bing 141

Jia, Xibin 301
Jin, Qibing 121

Klanner, Felix 245
Kongsorot, Yanika 377

Leblebici, Yusuf 367
Lekamalage, Chamara Kasun Liyanaarachchi

435
Lendasse, Amaury 273, 325
Li, Dazi 121
Li, Jiajia 71
Li, Ping 131
Lim, Meng-Hiot 407
Lin, Zhiping 435
Liu, Junfa 301
Liu, Shenglan 51
Liu, Tianchi 435
Liu, Xinwang 81
Liu, Yang 325
Liu, Yu 91
Lo, Siaw Ling 417
Luo, Xiong 293

Ma, Mengmeng 273
Mao, Wentao 263
McDonnell, Mark D. 345
Miao, Chunyan 355
Ming, Chen 225
Mukherjee, Dibyendu 311

446 Author Index

Mutalik, Prabhanjan 215
Muzhou, Hou 225

Nian, Rui 325

Peng, Yuxing 81
Powers, David M.W. 301
Prabhu, Sachin 215

Qiu, Junhao 31

Shang, Tianfeng 151
Shen, Yue 325
Shi, Zhongzhi 151
Singh, Lavneet 163
Song, Baoyan 91
Song, Shiji 1
Sourina, Olga 245
Sun, Fu-chun 141
Sun, Haoqi 245
Sun, Tingting 273
Sunat, Khamron 377

Tapson, Jonathan 41, 183
Tian, Mei 263
Tissera, Migel D. 345

van Schaik, AndrØ 41, 183

Wang, Botao 31, 71
Wang, Guoren 31, 71, 193
Wang, Haocheng 151
Wang, Jing 51
Wang, Jinwan 263

Wang, Jun 203
Wang, Liyun 263
Wang, Runyuan 301
Wang, Shitong 203
Wang, Yaonan 311
Wo·zniak, Stanisław 367
Wu, Qiong 355
Wu, Q.M. Jonathan 311

Xiao, Yao 51
Xie, Qianwen 121
Xin, Junchang 91
Xu, Xin 397
Xu, Zhixin 15

Yan, Tianhong 273, 325
Yang, Yan 245, 435
Yang, Yimin 311
Yang, Zhixin 237
Yangchun, Zhang 225
Yao, Jitao 31
Yao, Min 15
Yu, Ge 31

Zhang, David 103
Zhang, Jiannan 1
Zhang, Lei 103
Zhang, Lin 131
Zhang, Pengbo 237
Zhang, Xunan 1
Zhang, Yu 131
Zhuang, Fuzhen 151
Zunino, Rodolfo 61
Zuo, Lei 397

	Contents
	Sparse Bayesian ELM Handling with Missing Data for Multi-class Classification
	1
Introduction
	2
Sparse Bayesian ELM: SBELM
	2.1
Extreme Learning Machine (ELM)
	2.2
Sparse Bayesian ELM (SBELM) for Multi-class Classification

	3
Improved SBELMs for Dealing with Missing Data
	3.1
Additive Models for Missing Data (AMMD)
	3.2
Self-adjusting Neuron State for Missing Data (SANSMD)

	4 Performance Evaluation

	4.1
Data Sets
	4.2
Experiment Setup
	4.3
Experimental Result

	5
Conclusions

	A Fast Incremental Method Based on Regularized Extreme Learning Machine
	1
Introduction
	2
Preliminaries
	2.1
Extreme Learning Machine
	2.2
Regularized Extreme Learning Machine

	3
Incremental Regularized Extreme Learning Machine
	4
Performance Verification
	5
Conclusions

	Parallel Ensemble of Online Sequential Extreme Learning Machine Based on MapReduce
	1
Introduction
	2
Ensemble OS-ELM Framework
	3
Parallel Ensemble of OS-ELM
	3.1 Basic Idea

	3.2
Parallel EOS-ELM
	3.3
Cost Model

	4
Experimental Evaluation
	4.1
Experimental Setup
	4.2
Evaluation Results

	5
Conclusions

	Explicit Computation of Input Weights in ExtremeLearning Machines
	1 Introduction
	2 Weights and Training Samples
	3 Methodology
	4 Results
	5 Discussion
	6 Conclusions
	References

	Subspace Detection on Concept Drifting Data Stream
	1
Introduction
	2
A Brief of LDA and MMC
	3 A New Dimensionality Reduction Method-ARLDA

	4
A New Concept Drift of Data Stream Learning Method
	5
Experiment
	6
Conclusion

	Inductive Bias for Semi-supervised Extreme Learning Machine
	1 Introduction
	2 Theoretical Background
	2.1 Regularization-Based Learning

	3 A Unifying Framework for Biased Learning
	3.1 Biased Regularization
	3.2 Biased ELM (bELM)

	4 Semi-supervised Learning by Using bELM
	4.1 A Semi-supervised Learning Scheme Based on Biased Regularization

	5 Experimental Results
	5.1 Comparison with State-of-the-Art Methods

	6 Conclusions
	References

	ELM Based Efficient Probabilistic Threshold Query on Uncertain Data
	1
Introduction
	2
Related Work
	3
Background
	3.1
Problem Definition
	3.2
Review of Extreme Learning Machine (ELM)

	4
Probabilistic Threshold Query (PTQ)
	4.1 Framework and Basic Idea
	4.2
Feature Selection and Threshold Classification Algorithm
	4.3
Threshold Classification Based Query Processing

	5
Experimental Evaluation
	5.1
Experiment Setup
	5.2
Evaluation Results

	6
Conclusion
	References

	Sample-Based Extreme Learning Machine Regression with Absent Data
	1
Introduction
	2
Related Works
	2.1
The Problem of Absent Data in Regression
	2.2
ELM for -Insensitive Regression

	3
Proposed Sample-Based ELM Regression
	3.1
S-ELM Formulation
	3.2
S-ELM Optimization
	3.3
Discussion

	4
Experiments
	4.1
Synthetic Dataset
	4.2
Realworld Benchmark Dataset

	5
Conclusion
	References

	Two Stages Query Processing Optimization Based on ELM in the Cloud
	1
Introduction
	2
Background
	2.1
Review of ELM
	2.2
ELM_CMR Model

	3
E2E Model
	3.1
Overview of E2E Model
	3.2
Training E2E Model
	3.3
Predicting E2E Model

	4
Execution of E2E Model
	5
Performance Evaluation
	5.1
Experimental Setup
	5.2
Experimental Results

	6
Conclusions
	References

	Domain Adaptation Transfer Extreme LearningMachines
	1 Introduction

	2 Related Work: A Brief Review of ELM
	3 Proposed Domain Adaptation Transfer ELM
	3.1 Source Domain Adaptation Transfer ELM (TELM-SDA)
	3.2 Target Domain Adaptation Transfer ELM (TELM-TDA)

	4 Experiments
	4.1 Experimental Data
	4.2 Experimental Setup
	4.3 Results

	5 Conclusion
	References

	Quasi-Linear Extreme Learning Machine Model BasedNonlinear System Identification
	1 Introduction
	2 Extreme Learning Machine
	3 The Quasi-Linear ELM Model Treatment
	4 Quasi Linear-ELM Model Learning Algorithm

	5 Simulation Study
	5.1 Case 1. Numerical Experiments
	5.2 Case 2. CSTR Process

	6 Conclusion
	References

	A Novel Bio-inspired Image Recognition Networkwith Extreme Learning Machine
	1 Introduction

	2 Preliminaries

	2.1 Brief of the HMAX

	2.2 Brief of Extreme Learning Machine

	3 A Novel ELM Based Image Recognition Algorithm Design

	3.1 Feature Representation with HMAX
	3.2 Feature Classification with ELM

	4 Experiments and Results
	4.1 Datasets and Settings
	4.2 Results and Discussions

	5 Conclusion
	References

	A Deep and Stable Extreme Learning Approach for Classification and Regression
	1
Introduction
	2
Extreme Learning Machine
	3
Deep Belief Networks
	4
Proposed Approach
	5
Experiments and Analysis
	6
Conclusions
	References

	Extreme Learning Machine Ensemble Classifier
for Large-Scale Data

	1 Introduction

	2 Preliminaries
	2.1 Extreme Learning Machine

	2.2 Bag of Little Bootstraps

	3 b-ELM Classifier
	4 Experiments
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Simulated Data
	4.4 Real Data

	5 Conclusions
	References

	Pruned Annular Extreme Learning MachineOptimization Based on RANSAC Multi Model ResponseRegularization
	1 Introduction

	1.1 Extreme Learning Machine (ELM)
	1.2 Regularized Extreme Learning Machine
	1.3 The L1 Penalty : LASSO
	1.4 The L2 Penalty:- Tikhonov Regularization

	2 Annular ELM
	3 RANSAC
	3.1 RANSAC Multi Model Response Regularization
	3.3 RANSAC Multi Model Response Regularization Algorithm
	3.4 RANSAC Multi Model Response Regularization for Binary andMulticlass Problems

	4 Experimental Results
	4.1 Datasets

	5 Results
	5.1 Classification
	5.2 Regression

	6 Conclusions
	References

	Learning ELM Network Weights
Using Linear Discriminant Analysis

	1 Introduction

	2 Methods
	2.1 Output Weight Calculation Using the Pseudo-inverse

	2.2 Output Weight Calculation Using Linear Discriminant Analysis

	3 Experiments

	4 Discussion

	5 Conclusion

	References

	An Algorithm for Classification over Uncertain
Data Based on Extreme Learning Machine

	1
Introduction
	2
Brief of Extreme Learning Machine
	3
Problem Definition
	4
Classification Algorithm
	5
Performance Verification
	5.1
Efficiency Evaluation
	5.2
Accuracy Evaluation

	6
Conclusions
	References

	Training Generalized Feedforword Kernelized NeuralNetworks on Very Large Datasets for RegressionUsing Minimal-Enclosing-Ball Approximation
	1 Introduction

	2 Generalized Feedforward Kernel Neural Networks: A Unified
Framework for Kernel Methods and Feedforward Neural
Networks

	3 Fast Learning of Single-Hidden-Layer GFKNN on LargeDatasets
	3.1 CCMEB in GFKNN Hidden Feature Space

	3.2 HFSR-GCVM and Its Relationship with CCMEB in Hidden Feature Space
	3.3 HFSR-GCVM Using Core-Set Based CCMEB Approximation

	4 Experimental Studies
	4.1 Experimental Results on Sinc
	4.2 Regression Tasks on High Dimensional Real World Datasets

	5 Conclusions
	References

	An Online Multiple-Model Approach to Univariate Time-Series Prediction
	1
Introduction
	2
Systems Perspective
	3
Artificial Neural Networks for Time-Series Prediction
	4
Multiple Models for Time-Series Prediction
	5
Results
	6
Conclusions
	References

	A Self-Organizing Mixture Extreme Leaning Machinefor Time Series Forecasting
	1 Introduction

	2 Literature Review
	2.1 The Self-Organizing Map
	2.2 The Extreme Learning Machine
	2.3 Neural Networks for Time Series Forecasting

	3 Self-Organizing Mixture Extreme Leaning Machine(SOMELM)

	4 Experiments on Stock Data
	5 Conclusions
	References

	Ensemble Extreme Learning Machine Based on a NewSelf-adaptive AdaBoost.RT
	1 Introduction

	2 Brief on ELM
	3 The Proposed Self-Adaptive AdaBoost.RT Algorithm
	4 A Self-Adaptive AdaBoost.RT Ensemble-Based Extreme
Learning Machine

	5 Performance Evaluation of RAE-ELM

	6 Conclusion

	References

	Machine Learning Reveals Different Brain Activities in Visual Pathway during TOVA Test
	1
Introduction
	2
Related Work
	3
Experimental Setup
	3.1
Subjects
	3.2
Modified TOVA Test
	3.3
Experiment Procedure
	3.4
EEG Recordings

	4
Methods
	4.1
Artifact Removal
	4.2 Splitting Data into Training and Test Sets

	4.3
Feature Extraction
	4.4
Outlier Removal
	4.5
Electrode and Model Selection
	4.6
Classification
	4.7
Cross-Subject Weighted Electrode Ranking

	7
Conclusion
	5
Results
	6
Discussion
	References

	Online Sequential Extreme Learning Machine
with NewWeight-Setting Strategy for Nonstationary
Time Series Prediction

	1
Introduction
	2
Brief Review
	3
OS-ELM with LOO Weighted Strategy
	3.1
LOO Error Estimation of ELM
	3.2
Initial Stage of Training
	3.3
 Add New Sample
	3.4
Calculate the LOO Error
	3.5
Weighted Training

	4
Experimental Results
	5
Conclusion and Future Work
	References

	RMSE-ELM: Recursive Model Based Selective Ensembleof Extreme Learning Machines for RobustnessImprovement
	1 Introduction
	2 Previous Works
	2.1 Extreme Learning Machine
	2.2 Selective Ensemble

	3 New Method
	3.1 The Structure of RMSE-ELM
	3.2 The Theory of RMSE-ELM

	4 Experiments
	5 Discussions
	6 Conclusions
	References

	Extreme Learning Machine for Regression
and Classification Using L1-Norm and L2-Norm

	1
Introduction
	2
Model Description
	2.1
SLFN Based on ELM
	2.2
Regularization Methods

	3
L1-L2-ELM Model
	3.1
Solution of the Elastic Net
	3.2
L1-L2-ELM Model

	4
Simulation Results and Discussion
	4.1
Experimental Setup
	4.2
Real-World Regression Problems
	4.3
Real-World Classification Problems

	5
Conclusion
	References

	A Semi-supervised Online Sequential Extreme
Learning Machine Method
	1
Introduction
	2
Related Work: ELM, SS-ELM and OS-ELM
	3
Proposed SOS-ELM
	4
Experiment Results
	4.1
The Configuration of Parameters for Related ELM Algorithm
	4.2
Performance Evaluation for Regression Problems
	4.3
Performance Evaluation for Classification Problems

	5
Conclusions
	References

	ELM FeatureMappings Learning: Single-Hidden-Layer
Feedforward Network without OutputWeight

	1 Introduction

	2 Preliminaries and Notation
	2.1 Notations and Definitions

	3 SLFNs without OutputWeight
	4 Experimental Verification
	4.1 Experiment Environment Settings
	4.2 Real-World Regression Problems
	4.3 Real-World Classification Problems

	5 Conclusion
	References

	ROS-ELM: A Robust Online Sequential ExtremeLearning Machine for Big Data Analytics
	1 Introduction
	2 Review of Related Works

	2.1 Extreme Learning Machine (ELM)
	2.2 OS-ELM

	3 Particle Swarm Optimization Selective Ensemble

	4 Robust Online Sequential Extreme Learning Machine

	5 Performance Evaluation of ROS-ELM
	5.1 Model Selection
	5.2 Algorithm Evaluation

	6 Conclusion
	References

	Deep Extreme Learning Machines for Classification
	1
Introduction
	2
Methodology
	3
Simulation Details
	3.1
Supervised Autoencoding

	4
Results
	5
Discussion
	References

	C-ELM: A Curious Extreme Learning Machine
for Classification Problems

	1
Introduction
	2
C-ELM
	2.1
Unified SLFN
	2.2
Definitions of Collative Variables
	2.3
Learning Strategies

	3
Performance Evaluation
	3.1
Performance Measures
	3.2
Performance Study on Multi-category Classification Problems
	3.3
Performance Study on Binary Classification Problems

	4
Conclusion
	References

	Review of Advances in Neural Networks: Neural Design Technology Stack
	1
Introduction and Background
	2
Neural Network Definitions
	2.1
Neuron Model
	2.2
Network Model
	2.3
Information Encoding

	3
Establishing Model Parameters
	3.1
Types of Parameters
	3.2
Obtaining Parameter Values

	4
Learning
	4.1
Learning Approaches - Classification
	4.2
Learning Trends

	5
Summary
	References

	Applying Regularization
Least Squares Canonical Correlation
Analysis in Extreme Learning Machine
for Multi-label Classification Problems

	1
Introduction
	2
Related Works
	2.1
Multi-label Classification
	2.2
The 1-Norm Regularized Least-Squares Formulation for Canonical Correlation Analysis (LSCCA1)
	2.3
Extreme Learning Machine

	3
Proposes Methods
	4
Experimental Results
	4.1
Dataset and Configuration of Experiments
	4.2
Evaluations Measure
	4.3
Experimental Results

	5
Conclusion
	References

	Least Squares Policy Iteration Based on Random VectorBasis
	1 Introduction

	2 Background

	2.1 Markov Decision Process
	2.2 Approximate Policy Iteration and Basis Functions Construction

	3 Least Squares Policy Iteration Based on Random VectorBasis
	4 Experimental Results
	5 Conculsions
	References

	Identifying Indistinguishable Classes in Multi-class Classification Data Sets Using ELM
	1
Introduction
	2
Methodology
	2.1
Confusion-Matrix Formation through Cross Validation
	2.2
Indistinguishable Classes Detection
	2.3
Accuracy Comparison

	3
Experiments
	4
Results and Discussion
	5
Conclusion
	References

	Effects of Training Datasets on Both the Extreme
Learning Machine and Support Vector Machine
for Target Audience Identification on Twitter

	1 Introduction
	2 Related Work
	3 Methods
	3.1 Data Collection
	3.2 Data Cleaning and Preparation
	3.3 Extreme Learning Machine (ELM)
	3.4 Support Vector Machine (SVM)
	3.5 Performance Metrics
	3.6 Generation of Training Datasets
	3.7 Generation of Testing Datasets

	4 Experiments and Results
	4.1 Training Accuracy and e Scores of Various ELM Configurations
	4.2 Training Accuracy and v Scores of Various SVM Configurations
	4.3 Results of Using Top 10 Scores as Cut Off
	4.4 Results of Using Top 30 Scores as Cut Off
	4.5 Comparing the ELM and SVM

	5 Discussion
	6 Conclusion and Future Work
	References

	Extreme Learning Machine for Clustering

	1
Introduction
	2
Preliminaries
	2.1
Extreme Learning Machine
	2.2
Extreme Learning Machine Auto Encoder

	3
Extreme Learning Machine Auto Encoder for Clustering
	3.1
Clustering Embedding XT
	3.2
Finding the Starting Cluster Centroids

	4
Experiments
	5
Conclusion
	References

	Author Index

