A Algorithms and Combinatorics 16

Editorial Board

R.L.Graham, Murray Hill B.Korte, Bonn
L.Lovdsz, Budapest A.Wigderson, Jerusalem
G.M. Ziegler, Berlin



Springer
Berlin
Heidelberg
New York
Barcelona
Budapest
Hong Kong
London
Milan
Paris
Singapore
Tokyo

M.Habib C.McDiarmid

J. Ramirez-Alfonsin B.Reed  *»
Editors

Probabilistic

- Methods

for Algorithmic
Discrete Mathematics -




Michel Habib Jorge Ramirez-Alfonsin

LIRMM Equipe Combinatoire
161, rue Ada Université Pierre et Marie Curie,
34392 Montpellier Cedex 5 Paris 6
France Case 189
¢-mail: habib@lirmm.fr 4, place Jussieu
75252 Paris Cedex 5
) France
Colin McDiarmid e-mail: ramirez@ecpé.jussieu.fr
Department of Statistics
University of Oxford Bruce Reed
1 South Parks Road Equipe Combinatoire
Oxford 0X13TG Université Pierre et Marie Curie,
United Kingdom Paris 6
¢-mail: cmed@stats.ox.acuk Case 189
4, place Jussieu
75252 Paris Cedex 5
France

e-mail: reed@ecpé.jussieu. fr

Cataloging-in-Publication Data applied for.

Die Deutsche Bibliothek - CIP-Einheitsautnahme

Probabilistic methods for algorithmic discrete mathematics : M.
Habib. ... - Berlin ; Heidelberg . New York : Barcclona ; Budapes ©
Hong Kung ; Loadon ; Milan ; Pasis ; Singapote ; Tokyo : Springer,
1998

{Nlgorithms aod combigatorks , 16}
ISBN 3-540-p4622-1

Partially supported by DONET EEC program FMRX CT 980202
and by the CNRS.

Mathematics Subject Classification (1991):
68Roz2, 60Cos, 05Co2

185N 0937-5511
ISBN 3-540-64622-1 Springer-Vertag Berlin Heidelberg New York

This workis subject to capyright. All rights are reserved, whether the wholeor part of the material
is concerned, specifically Ihe rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any ather way, and storage in daia banks.
Duplication of this publication or parts thereof is permitted only under the provisions of the
German Copyright Law of September 9, 1965, in its current version, and permission for use must
always be obtained from Springer-Verlag. Violations are fiable for prosecution under the
German Copyright Law.

@ Springer-Verlag Berlin Heidelberg 1998

Printed in Germany

Typesetting: Camera-ready copy produced from the authors’ output file
SPIN 10680161 41/3143 - § 4 321 0 - Printed on acid. free paper

Preface

Leave nothing to chance. This cliché embodies the common belief that ran-
domness has no place in carefully planned methodologies, every step should
be spelled ut, each i dotted and each t crossed. In discrete mathematics at
least, nothing could be further from the truth. Introducing random choices
into algorithms can improve their performance. The application of proba-
bilistic tools has led to the resolution of combinatorial problems which had
resisted attack for decades. The chapters in this volume explore and celebrate
this fact.

Qur intention was to bring together, for the first time, accessible discus-
sions of the disparate ways in which probabilistic ideas are enriching discrete
mathematics. These discussions are aimed at mathematicians with & good
combinatorial background but require only a passing acquaintance with the
basic definitions in probability (e.g. expected value, conditional probability).
A reader who already has a firm grasp on the area will be interested in the
original research, novel syntheses, and discussions of ongoing developments
scattered throughout the book.

Some of the most convincing demonstrations of the power of these tech-
niques are randomized algorithms for estimating quantities which are hard to
compute exactly. One example is the randomized algorithm of Dyer, Frieze
and Kannan for estimating the volume of a polyhedron. To illustrate these
techniques, we consider a simple related problem. Suppose S is some region
of the unit square defined by a system of polynomial inequalities: p;(z ) < 0.
Then the area of § is equal to the probability that a random point is in S,
where the point is chosen uniformly at random from the unit square. Fur-
thermore, we can determine if & point is in § simply by evaluating each
polynomial &t this point. So, we can estimate the area of § by the proportion
of a sufficently large set of-random points which lie in S. For this problem,
choosing a random sample point was straightforward, as was using the sam-
ple to estimate the area. Estimating the volume of a polyhedron is not so
simple.

The central chapter in this volume was written by Jerrum. It discusses
more sophisticated techniques for generating random sample points from a
probability distribution and using them to develop randomized algorithms
for approximate counting. In particular, he discusses techniques for showing
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that random walks of certain types allow us to generate random points in the
sample space efficiently. This is the theory of rapidly mixing Markov chains.
Jerrum uses a toy example (colourings of the empty graph) to illustrate the
basic techniques of the area, He then presents some more interesting appli-
cations of these techniques, including one which has the same flavour as the
result of Dyer, Frieze and Kannan. He rounds out his survey by discqssing two
exciting new developments in the area, Path Coupling and Coupling From
The Past.

Some of the earliest applications of random sampling and epproximate
counting were in percolation theory. As its name suggests, this field is con-
cerned with flow in random medis. One standard model for studying these
flows is an infinite lattice with a supply of fluid at the origin where each edge
allows fluid to pass with some probability p, independently of the other edges.
A classical question is: for a particular lattice L, how big must we make p in
order to ensure that the probability that an infinite number of points get wet
exceeds zero? Indeed, determining this critical value for the 3-dimensional
cubic lattice is an important open problem in statistical physics. A crucial
first step towards solving this problem is to determine how to evaluate a
related polynomial known as the partition function.

Welsh’s article, which follows on from Jerrum's, discusses percolation the-
ory, focussing in particular on three models: the Ising model, the Potts model,
and the random cluster model. Much of the discussion is devoted to methods
for evaluating the partition functions in these models. One intriguing fact is
that these polynomials were already well-known to combinatorialists under
another name. [ndeed they are specific instances of the well-studied Tutte
polynomial of graphs. This permits us to apply & combinatorial analysis to
show that evaluating partition functions is hard but that Markov chain tech-
niques can often be applied to obtain approximate solutions. This strand in
Welsh's chapter runs in counterpoint to the central theme of the book.

Welsh’s chapter is not the only one in which combinatorial analysis is ap-
plied to obtain results in probability theory. An interesting result in the same
vein can be found in the article of Devroye. He describes how McDiarmid,
building on earlier work of Devroye and Reed, uses the simple combinatorial
idea of “leading sequences” to simplify and strengthen much of the central
theory of branching random walks. This is however, only one of the host of
results thet Devroye presents. Most of his article concerns the application
of a probabilistic tool, branching processes, to the analysis of a combinato-
rial structure, trees, The first branching process model is due to Galton and
Watson, who developed it in 1873 to explain the disappearance of certain
family names in England. The process begins with an initial ancestor which
has a random number of children, according to some fixed distribution on
the non-negative integers. Each child then independently has a random num-
ber of children according to the same distribution. The process obviously
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constructs a family tree and it is therefore not surprising that it has many
applications in the analysis of random trees,

Devroye's article presents many extensions of the simple Galton-Watson
process and considers their applications to a wide range of different types
of random trees, tree-like structures, and algorithms on trees. It is the most
comprehensive of the chapters in the volume and contains much that will be
new even to an expert in the field.

The probabilistic analysis of combinatorial structures is not limited to
the study of random trees. In the chapter of Frieze and Reed, we see how
an understanding of the structure of a random object (e.g. graph, linear
programming' problem) permits us to develop algorithms which are usually
efficient. In particular, we discuss algorithms for three difficult problems:
Hamilton Cyclé, Graph Isomorphism, and Edge Colouring. These algorithms
run in polynomial time on the overwhelming proportion of inputs. In con-
trast, we shall see that certain classical branch and bound algorithms, for e.g.
Knapsack, almost always take superpolynomial time.

These are just some of the topics covered in their broad survey of the
probabilistic analysis of algorithms. The goal of the chapter s to carry out as
much of the analysis as possible using only the simplest of tools. Indeed most,
of the discussion requires only the First Moment Method and the Chernoff
Bound. The first of these has a one line proof and the second is a classical
result which bounds the deviation from the mean of the number of heads
observed in n flips of the same coin,

Of course, these two tools are not omnipotent. In particular, the Chernoff
Bound applies only to sums of independent identically distributed (-1 ran-
dom variables. Often, in undertaking the probabilistic analysis of algorithms,
we require extensions of this result which handle functions that depend, in
3 limited way, on a number of independent random variables. One such ex-
tension, the Hoeffding-Azuma Inequality, was first brought to the attention
of the combinatorial community in the mid 80s and gained prominence after
Bollobés used 1t to tie down the asymptoties of the chromatic number of a
random graph. Recently, Talagrand introduced an exciting new method for
bounding deviations (from the median), which seems to be even more widely
applicable.

Inhis chapter, Concentration, McDiarmid provides a thorough overview of
these related concentration inequalities and a number of others. He discusses
& variety of applications, including Bollobés’ tour de force mentioned above,
He also derives these concentration inequalities, sometimes obtaining sharper
results than those known previously. Although these results are of & more
technical nature than most of the other results in this volume, the author
has ensured his trestment is accessible to non-experts. A careful reading of
this paper will be well rewarded.

i
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The tools presented in McDiarmid's chapter have applications outside of
the probabilistic analysis of algorithmns, as we shall see in the very first chap-
ter of the book. One of the topics discussed there is sum-free sets, i.e. sets of
positive integers no two subsets of which sum to the same value. One can ob-
tain bounds on the maximum cardinality of a sum-free subset A of {1,...,n}
using the fact that the sum of the elements of a random subset is highly
concentrated around its expected value. This is an example of the probabilis-
tic method, which is the subject of that chapter. The probabilistic method
consists of proving the existence or non-existence of a combinatorial object
with particular properties ( a sum-free subset of k elements of {1,..,n}) via
a probabilistic analysis.

Molloy begins his chapter by introducing some of the basic tools needed in
such an analysis. He then focuses on a plethora of recent results about graph
colouring obtained by a joint application of various concentration bounds
and a very powerful probabilistic tool, the Lovdsz Local Lemma. This lemma
permits one to prove the existence of structures with certain global properties
via & local analysis. For example, one can prove the existence of colourings
of certain kinds by examining each neighbourhood separately. To see the
advantages of this approach, consider the following result obtained by this
method: If the maximum degree of G, 4, is sufficently large and G has no A-
clique then it has a A— 1 colouring. Clearly the existence of 8 A-1 colouring
of a neighbourhood ( which has at most A+1 vertices) is easy to demonstrate.
The fact that many problems are easier to resolve locally than globally is what
gives the Local Lemma its power. Further, as Molloy discusses, not only does
the lemma prove the existence of the desired colourings, it may also yield
efficient randomized algorithms for constructing them.

As we have seen, many of the chapters in this volume discuss randomized
algorithms. Raghavan's chapter is devoted to the topic. Informally, a random-
ized algorithm is one whose behaviour is influenced by a number of random
coin flips. The expected running time of the algorithm on a given input is the
average over all possible sequence of coin flips. Its expected running time on
inputs of size n is the maximum of its expected running time over all inputs
of size n. There are many problems for which the expected running time of
some randomized algorithm is better than the running time of any possible
deterministic algorithm. Raghavan presents one example. He also discusses
a duality result which links the running times of randomized algorithms for
a problem with the expected running times of deterministic algorithms over
random inputs, thereby linking his chapter to that of Frieze and Reed. The
bulk of Raghavan's chapter is devoted to a discussion of randomized algo-
rithms for electronic fingerprinting, This area is of particular importance due
to the current developments in electronic communication. [t seems appro-
priate to end our brief introduction with this demonstration that the field
discussed here is evolving in step with the world around it (probably!).
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A Weyl sequence for 8 is given by {6},{26},{36}.... where 6 € (0, 1)
is an irrational number and {'} denotes 'mod 1'. Weyl showed that for all
irrationsl © the sequence is equi-distributed. A Weyl iree, T,(6), is the
binary search tree based upon the first 7 numbers in the Weyl sequence for
2. Each datum is associated with a node of 7,(6), and each node has the
search tree property, that is, all nodes in its left subtree have smaller values,
and all nodes in its right subtree have larger values. T,,(r) is presented on
the front cover with height 36 where the branches are drawn according to
the following predetermined properties. Firstly, the branches are randomly
rotated with respect to their parent branches. Secondly, they are forced to
be oriented towards the north, facing the sun and finally, the branches are
assigned random lengths. This was done by a postscript program written by
Luc Devroye.

' A sequence zn, n 2 1, is equi-distributed if for all 0 < a < b < 1,
liml i Z Izlg[a,b] =b-a.
= =1

? Wey trees are a fundamental tool for the analysis of algorithms involving Weyl
sequences in the input stream.



The Probabilistic Method

Michael Molloy

Department of Computer Science
University of Toronto
Toronto, Canada

Erdds is usually credited as being the pioneer of the probabilistic method,
beginning with his seminal 1947 paper {21], although the probabilistic method
had been used in at least two previous occasions by Turdn in 1934{66] and
by Szele in 1943(63). By now, it is widely recognized as one of the most
important techniques in the field of combinatorics. In this short survey, we
will introduce a few of the basic tools and describe some of the aress in which
the method has had impact.

The basic idea behind the probabilistic method is that in otder to prove
the existence of & combinatorial object satisfying certain properties {eg. a
graph with neither a large clique nor a large stable set, or & proper colouring
of the vertices of a graph) we choose our object at random and prove that
with positive probability it satisfies the desired properties. The two most
fundamental tools used to show that this probability is positive are the First
Moment Method and the Lovész Local Lemma. In order to apply these, we
often need a few extra tools, most notably concentration bounds.

A common misperception regarding the probabilistic method is that one
requires a deep knowledge of probability to use it. This is far from the truth
- in fact, a very elementary knowledge of probability along with a familiarity
with a handful of tools and some clever combinatorial reasoning will suffice.
Thus, we do not assume that the readers have a strong background in prob-
ability, but we do assume that they are familiar with the basics, such as
expected values, We also assume that the reader has a basic understanding
of graph theory. We usually omit round-up and round-down signs when there
is 1o chance of confusion. As is common with the probabilistic method, we
rarely provide the best constant terms in our proofs, opting rather to present
a simple proof. The reader may often find it instructive to try to modify the
proofs to obtain a stronger result.



2 Michael Molloy
1. The First Moment Method

The first tool that we will see is the First Moment! Method which is the most
fundamental tool of the probabilistic method. The essence of the First Mo-
ment Method lies in these two simple and surprisingly powerful statements:

The First Moment Principle If E(X) <t then Pr(X <) > 0.

Proof. Intuitively, the expected value of X can be viewed as the average value
of X over all possible outcomes of the random experiment. If every outcome
is greater than ¢, then this average must be greater than ¢.

More formally, since E(X) = 3¢ x Pr(X = 4), then if Pr(X < t) =0
we have E(X) =Y, ixPr(X =4)>tx ). Pr(X =1)=t. 0

Markov's Inequality For any non-negative random variable X,

Pr(X>1)< @

Proof. Again using E(X) = Y, ixPr(X =), we have that since X is always
non-negative, E(X) 2 Y5, i x Pr(X =) 2t x Pr(X > t). 0

Applying the First Moment Method requires a judicious choice of the ran-
dom variable X, along with a (usually straightforward) expected value com-
putation. Most often X is non-negative integer-valued and E(X) is shown to
be less than 1, thus proving that Pr(X = 0) is positive. Markov's Inequality
is frequently used when X is non-negative integer-valued and E(X) is less
than 1, in which case we have Pr(X > 0) = Pr(X > 1) < E(X).

Recalling that E(X) = 3,4 x Pr(X = 1), it may seem at first glance
that one cannot compute E(X) without first computing Pr(X = 1) for every
value of 4, which s in itself at least as difficult a task as computing Pr(X <1)
directly. The following fact allows us to compute E(X) without computing
Pr(X = {) for any value of i, in effect by computing & different sum which
has the same total!

Linearity of Expectation:

E(X) +..+ X;) = E(X)) + .. + E(X)).

! The kth moment of a random variable X is E(X "), and so the first moment
is simply the expected value. We will examine the second moment in the next
section.

The Probabilistic Method 3

Proof. For any outcome w of our random experiment, we denote by X;(w) the
corresponding value of X;. For this proof, it is more convenient to express the
expected value of X; as 3~ Pr{w) x Xi(w). Linearity of Expectation follows
immediately from this formulation as

ZPr(w) (X1 (w)+ ..+ Xi(w) = Z (Z Pr{w) x X,(w)) .
w i=1

w

1.1 Satisflability Problems

We first illustrate the First Moment Method with an application to Satisfia-
bility problems.

A boolean variable is & variable which can take a value of either True
or False. For any boolean variable z, there are two cotresponding literals: z
and %, where 7 means “NOT 2" and has the opposite value of z. A boolean
formula in Conjunctive Normal Form (CNF) consists of a sequence of clauses
joined by “A™ (AND), where each clause consists of a set of literals joined by
“y" (OR). The formula is satisfiable if there is some assignment of values to
its variables such that the entire formula equates to True, i.e. an assignment
such that every clause contains at least one literal with the value True. For
positive integer £, an instance of k-SAT is 8 CNF-formula where every clause
has exactly k literals.

Theorem 1.1. Any instance of k-SAT with fewer than 2 clauses is satisfi-
able.

Note that this theorem is best possible for every k, since it is straightfor-
ward to construct an unsatisfiable instance of k-SAT by taking each of the
2* possible clauses on a fixed set of k variables.

Prosf. Consider & random truth assignment generated by setting each vari-
able to be True with probability } and False with probabilty §. (Note that
each truth assignment is equally likely to be chosen.) Let X be the number
of unsatisfied clauses.

We will use Linearity of Expectation to compute E(X). To do this, we
must express X as the sum of several variables, each of whose expected value
is easy to compute. The standard way to do this is as follows. For each clause
C, set X, = 0if C, is satisfied, and X, = 1if C, is unsatisfied. Note that
X =Y. Xi. Furthermore, for each 7 the expected value of X; is simply the
probability that C; is unsatisfied, which is 2%, Since we have m < 2* clauses,
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E(X)= iE(Xl) =mx27% <1,

i=]

Therefore, by the First Moment Principle, with positive probability X < 1,
i.e. with positive probability the boolean formula is satisfied, and so there
must be at least one satisfying assignment. 0

More generally, the same argument proves the following;

Theorem 1.2. Consider any CNF-fomuls F = C{ACy A .. ACp. If
Y 27100 < 1 then F is satisfiable.

It is well-known that Satisfiability is an NP-complete problem. However,
a simple corollary to the results of this section shows that any instance of
Satisfiability where every clause is big enough can be solved in polytime. This
may have been first noticed by Edmonds.

Corollary 1.3. For any € > 0 there is o simple polytime algorithm which
will solve Satisfiablity for any CNF-formula on n variables such that each
clause has size ol least en.

Proof. If the number of clauses is less than 2", then by Theorem 1.2 the
formula must be satisfiable. Otherwise, an exhaustive search of all 2 possible
truth assignments can be carried out in a time which is polynomial in the
size of the input. 0

1.2 Graphs with High Girth and High Chromatic Number.

One of the earliest triumphs of the probabilistic method, was Erdés' proof
that there are graphs with both no short cycle and arbitrarily high chromatic
number [22]:

Theorem 1.4, For any g,k > 1 there ezist graphs with no cycles of length
at most g and with chromatic number greater than k.

Erds proved the existence of such graphs using a random construction.
{The fact, that no one was able to produce a non-probabilistic construction
of such graphs for more than 10 years (46, 54] is a testament to the power
of the First Moment Method.) In presenting his proof here, we simplify the
calculations a little by considering only the case where g = 3. The proof
of the general case is nearly identical, and the calculations are only slightly
more involved,

Theorem 1.5. Foranyk > 1 there exist triangle-free graphs with chromatic
number greater than k.

The Probabilistic Method 5

Remark. Zykov [70] was the first to prove this special case of Theorem 1.4
(and in fact did so without relying on the probabilistic method) . However,
his proof technique does not generalize to the more general case of arbitary
girth.

Proof of Theorem 1.5. Choose a random graph G on n vertices b{ placing
each of the () potential edges into E(G) with probability p =n~% (where,
of course, these (;) random choices are made independently).

In order to prove that x(G) > k, it suffices to prove that G has no stable
sets of size 3. In fact, for a delightful and elegant reason that will soon become
apparent, we will show that with high probability, G does not even have any
stable sets of size 7.

We do this with a simple expected number calculation. Let  be the
number of stable sets of size 5. For each subset Sof & verticgs, we define
the random variable 5 to be 1if § is & stable set and 0 otherwise. E(Is) is

nj3
simply the probability that S is a stable set, which is (1 - p)( "), Therefore
by Linearity of Expectation:

E() = ) E(ls)
§

n - nz
<? XE(—TI §§F)
= 2" x B(-0(n*"))

1
<3

for n sufficiently large. Therefore, by Markov’s Inequality, Pr(1 > 0) < .

Our next step should be to show that the expected number of triangles
is also very small. Unfortunately, this is not true. However, as we will see, by
applying a clever trick it will suffice to show that with high enough probability
the number of triangles is at most 3.

To do this, we compute the expected value of T, the number of trian-
gles. Each of the (5) sets of 3 vertices forms a triangle with probability p°.
Therefore, by applying Linearity of Expectation as in the previous example,
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Therefore, by Markov's Inequality, Pr(T > 3) < }.

Since Pr(I > 1) + Pr(T 2 §) <1, the probability that I = 0 and T < }
is positive. Therefore, there exists a graph G for which /=0 and T' < §.

And now for the elegant trick that we promised. Choose a set of at most
3 vertices, with at least one from each triangle of G, and delete them to leave

the subgraph G'. Clearly G is trisngle-free, and |G| > 8. Furthermore, ¢
has no independent set of size 7 < 'GT', and 0 x(G') > k as desired! D

We invite the reader to now try to generalize this argument to prove
Theorem 1.4 The first step should be to determine what p should be (it will
depend on g).

2. The Second Moment Method

The variance of a random variable X is defined to be:
var{X) = E((X - E(X))2) .

Observing that the inner E(X) term can be treated as a constant, some
simple manipulations yield
wn(X) = B(X* - 2XE(X) + E(X)?)
= E(X%) - 2E(X)E(X) + E(X)?
= E(X%) - E(X)?,
and so the varignce of X is intimately related to its second moment. The

second moment method refers to applications of the following, which is the
most fundamental tool regarding the variance of a variable:

Chebyschev's Inequality For any ¢ > 0,

vr(X)
-

Pr(iX - E(X)| 21) <

Proof. |X - E(X)| > ¢ iff (X - E(X))? > #*. The result now follows from
Markov’s Inequality. 0

Chebyschev's Inequality is the simplest example of a concentration in-
equality, which means that it is usually used to imply that with high prob-
ability, a random variable is “concentrated” close to its expected value. We
will see & few more concentration inequalities in & later section.

We illustrate the usefuiness of Chebyschev's Inequality with an example
from combinatorial number theory which can be found in [L1].
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Consider & set A = {a1,...,ax} of positive integers, For any I C A we
define (1) to be the sum of the elements of I, and we define S(I) = {s(I):
1€ (A)} to be the set of all such sums. We say that A has distinct sums if all
such sums are distinct, i.e. if |S(I)| = 2*. For example, 4, = {2,3,6,10} has
distinct sums, since S(4)) = {0,2,3,5,6,8,9,10,11,12,13,15,16, 18,19, 21},
but Az = {2,3,9,10} does not have distinct sums as 2+10=3+9=12.

In terms of n, how large can a subset of {1,...,n} with distinct sums be?
It is not hard to construct one of size k = logyn) +1 by setting a; = 2!
for i = 1,...,.k. On the other hand, a simple counting argument shows that
we cannot have a set of size k much bigger than log, n, since every sum has
size at most kn and so 2° < kn which yields k < log, n + log, logy n + O(1).
Erdos asked whether it is true that in fact we cannot have a set of size larger
than logy 7 +O(1), and this appears to be a very difficult question. Here, we
will see how to apply Chebyschev's Inequality to cut our range of possible
sizes in half.

Theorem 2.1. If A C {1,..,n} has distinct sums then |A| < logyn +
% 1082 ]0g2 n+ 0(1).

Proof. The main idea is this. In order to achieve a set A of size k near the
upper bound yielded by 2¢ < kn, we would require that S(A) be very close
t0 {0,...,kn} and in particular that the sums are spread very evenly amongst
the first kn non-negative integers. In fact, as we will see, for any set A with
distinet sums, most of those sums tend to be clumped together close to the
middle of the range [0, s(A)], which will imply that the number of such sums
must be much smaller than s{A) < kn, and this will improve our upper bound
onk.

Our first step is to formalize what we mean by “most of the sums tend
to be clumped together near the middle of the range”. What we will show is
that if we were to pick & sum uniformly? at random, then with reasonably
high probability it will be close to its expected value.

Since the sums are distinct, picking a uniformly random sum X from
S(A) is equivalent to picking & uniformly random subset J C A and then
taking X = s(I). To do so, we can simply flip a fair coin for each a; to decide
whether to include o; in 1. In order to compute the expected value and the
variance of X, it will be convenient to express X in terms of some indicator
variables, so called because each variable X, indicates whether a; € I. That
is, foreach i =1,....k weset X; = 1if ¢; € ] and X; = 0 otherwise. Thus
X =¥!_, a.X;. By linearity of expectation we have

t

E(X)= ) aB(X)

i=]

% “Tiniformly” means that each sum is equally likely to be chosen.
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1
= 5 E Gj,
i=1

and

E(X) = B() X))

i=]

¢
=E) alxt+2 Y aokX))

i= 18i<<t

i
=Y BN +2 ¥ agE(XX)

i= 1<i<j<t

I, 1
=§Zai+§ Z lZ,‘Oj,

i=1 1<i€)<t

where the last line uses the easily verified fact that E(X?) = E(X;) =
while E(X,X;) = } Using our expression for E(X), we can calculate

Iy, 1
E(X)2=Z§a,2+§ Y o,

1<icj<t

1
2

and so
¢

wr(X) = E(X?) - E(X)* = i Y

(
i=l

Thus we have var(X) < ":—" Applying Chebyschev’s inequality with ¢ =
2,/ver{X) we have
Pr(lX - B(X)) > 2/ < 5,
and so |
Pr(|X - E(X)| 2 nvk) < i

In other words, at least % of the members of S(X) are crammed into an

interval of length less than dnv/k around E(X). Therefore, $2* < 4nvk,
which yields k < log, 7 + § log, logy n + O(1). 0
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3. The Lovész Local Lemma

3.1 The Basic Form

In this section, we introduce one of the most powerful tools of the probab-
listic method: The Lovész Local Lemma. We present the Local Lemma by
reconsidering Satisfiability problems.

Recall that in Section 1. we showed that any instance of k-SAT with fewer
than 2 clauses is satisfible because the expected number of false clauses in
a uniformly random truth essignment is less than 1.

Now suppose that an instance of £-SAT has many more than 2* clauses,
say 22" clauses. Obviously, the First Moment Method will fail in this case.
In fact, at first glance it appears that any attempt to apply the probabilistic
method by simply selecting a uniformly random truth assignment is doomed
since the chances of it being a satisfying assignment would typically be very
remote indeed. Fortunately, we don't require & high probability of success,
just a positive probability of success.

To be more precise, we will choose a uniformly random truth assignment,
and for each clause C, we denote by Ac the event that C is false. Consider
the extreme case where every variable appears in only one clause. In this case,
the events A¢ are independent, and so setting m to be the number of clauses,
the probability that none of the clauses are false is exactly (1 - 27%)™ which
is positive no matter how large m is. Therefore, the formula is satisfiable. (Of
course, there is a much easier way to prove this fact!)

Now for general instances of k-SAT, these events are certainly not inde-
pendent as typically there are many varisbles which each appear in several
clauses. The Lovdsz Local Lemma is a remarkably powerful tool which says
that in such situations, as long as there is a sufficiently limited amount of
dependency, we can still claim a positive probability of success.

Here we state the Lovasz Local Lemma in its simplest and most common
form. Before doing so, we need the following definition.

An event A is mutually independent of a set of events € if conditioning on
whether or not some of the events in & hold does not affect the probability
of A. More formally, for every By, ..., B;,Cy,..,C; € €,

Pr(A|Bi A..A B, ATy A..AC;) = Pr(A).

The Lovész Local Lemma [24): Consider o set £ of (typically bad)
events such that for each A £

a) Pr(4)<p<l, ond
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b) A is mutually independent of o set of all but at most d of the other
events.

if dpd < 1 then with positive probebility, none of the events in € occur.

Our first application of the Lovész Local Lemma is the following, which is
a rewarking of a well-known result of Erdés and Lovész regarding hypergraph
colouring.

Theorem 3.1. If F is an instance of k-SAT such that each variable lies in
ol most 252k clauses, then F is satisfiable.

Note that there is no restriction on the number of clauses here - there can
be arbitrarily many!

Proof. We will select & uniformly random truth assignment; i.e. we set each
variable to be True with probability § and False with probabilty §.

Recall that for each clause C, Ac is the event that C is False. We also
define Nc to be the set of clauses which share a variable with €. Note that

since each variable lies in at most 2¢=2/k clauses, the size of N is less than
k-2,

Claim 3.2. Each event Ac is mutually independent of the set of events
{4 :C ¢ Ne).

Our theorem follows easily from this claim and the Lovész Local Lemma,
asPr{Ac) =2 and 4x 2 F x -2 =1

The claim seems intuitively clear, but we should take care to prove it, as
looks can often be deceiving in this field.

Suppose that the variables are ordered z1, ..., z, where C contains
Z,.., 2k There is a standard one-to-one correspondence between the set
of truth assignments, and the set of n-digit binary sequences, where digit 4
Tepresents the value assigned to z,.

Consider any clauses 0, ..., C; ¢ Ne. Let Y be the set of binary sequences
corresponding to colourings for which the event B= Ac, A... A A, holds.

For any (n - k)-digit sequence p, define T, to be the set of 2* different
n-digit binary sequences which end with p. It is straightforward to verify that
for each p, T contains either all of T, or none of 7. In other words, Y is the
disjoint wnion T, U... UT,, for some py, .., or.

Within each T, exactly 1 of the 2* sequences correspond to colourings
in which C is False, and so Pr(4,|B) = 2-% = Pr(A,) as claimed. 0
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The Claim in the preceding proof is a special case of & very useful principle
concerning mutual independence. In fact, we appeal to the following fact
nearly every time we wish to establish mutual independence.

The Mutual Independence Principle Suppose that X = X;,..., X, is
a sequence of independent random trials. Suppose further that A,, ..., A, is a
set of events, where each A; 1s determined byF CXIENF,,. . F,)=0
then A; is mutually independent of {4, ..., 4, }.

The proof follows along the lines of that of the preceding Claim, and we
leave the details to the reader.

3.2 Disjoint Cycles

We illustrate the Local Lemma in this section by proving a simple result
regarding vertex-disjoint cycles in graphs. This type of application appears
in & few places, such as [7, 3. Here we will prove a simple weakening of the
main Jemma from (10]:

Theorem 3.3. Every k-regular directed graph G has a collection of |k/31Ink|
vertes-disjoint directed cycles.

Proof. We will randomly partition V(G) into ¢ = [k/3Ink| parts W3, ..., Vi,
and show that with positive probability, each part contains 2 cycle. To do so,
we will prove that with positive probability, every vertex has an outneighbour
in the same part. In other words, each V; induces a subgraph with minimum
outdegree at least 1, and it is well known (and easy to prove) that any such
subgraph contains a cycle.

So for each vertex v, we place v into a randomly chosen V;, where each
part is equally likely to be chosen. We let A, be the event that v does not
have any outneighbour in the same part.

Pr(A,)} = (1- 1) <&M < &731nk = k=3, By the Mutual Independence
Principle, each 4, is mutually independent of the events {4, : (xUN*(u)n
(vUN*(v)) =0} which is all but at most (k + 1)? of the events. Therefore,
by the Lovész Local Lemma, with positive probability none of these events
hold as long as 4k%(k + 1)* < 1 which is true for k > 6, while for k < 6 the
theorem is trivial since ¢ = 1. 0

Using the Semirandom Method, described in a later section, Theorem 3.3
can be improved to yield a linear number of vertex disjoint cycles, more pre-
cisely k/2'7 of them (see [10]). In related work, Bermond and Thomassen
|14] conjectured that if a digraph G has minimum outdegree k, then G has
5 £ vertex disjoint cycles. Thomassen |65] showed that such & digraph has r
disjoint cycles so long as k > (r + 1)!. Alon[3] improved this result, show-
ing that any digraph with minimum outdegree k has k/64 vertex-disjoint
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cycles. Note that this also significantly improves the constant term from the
aforementioned result from (10].

3.3 More General Forms

The most general form of the Local Lemma is s follows. We omit the proof
as it is available in many places such as (11, 53].

The General Local Lemma Consider o set £ = {Ay,..., An} of (typi-
cally bed) events such that each A; is mutually independent of €~ (D,UA,), for
some D, C €. If we have reals 1, ..., 2, € [0,1) such that for each 1 <i<n

PI'(A;') S i H (l - 2]')

A,ED;

then the probability that none of the events in & occur is at least [ (1 -
7,)>0.

Most known applications of the General Local Lemma are essentially ap-
plications of either the simple form of the Local Lemma, or one of the fol-
lowing two more general forms.

The Asymmetric Local Lemma Consider a set £ = {A,, ..., A} of
(tyically bad) events such that each A, is mutually independent of & - (D;V
A), Jor some D; CE. If foreach1<i<n

o) Pr(4,) < §; ond

b Taen Prid)) <4

then with positive probability, none of the events in & occur.

The Weighted Local Lemma Consider a set € = {Ay,..., An} of (typ-
ically bad) events such that each A; is mutually independent of € - (D, UA;),
for some D; C £, If we have integers t), .ota > 1 and a real 0 < p < § such
that for each 1 <i<n

o) Pr{4;) <p"; and
b) Taen, () < 3

then with positive probability, none of the events in € occur,

It is straightforward to verify that these both follow from the General
Local Lemma. For example, to prove the Asymmetric Local Lemma, we set
2; = 9Pr(A;) for each 4. Since Pr(4;) < }, then z; < § end 0 (1~ 1) 2
e-l.h.'
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% H 1-z)2 1z H et

AED, A;€D,

-1. P
WPr(A) xe 122AJ€DI2 T(A,)

A proof of the Weighted Local Lemma follows in a similar manner, after
setting z; = (2p)". Clearly, the simple form of the Local Lemma follows
from the Asymmetric Local Lemma (after observing that for the simple case
of the Locsl Lemma we can assume d > 1 and so Pr(4;) < § for each i).
We illustrate each of these latter two forms with an application, the first to
graph colouring, and the second to expander graphs.

A proper vertex-colouring of 8 graph is S-frugal, if for each vertex v and
colour ¢, the number of times that ¢ appears in the neighbourhood of v, is at
most 3. This notion was introduced in [32) and it played an important role
in the bound on the total chromatic number provided in [33].

Consider any constant 3 > 1. Alon (see [32]) has shown that for each 4,
there exist graphs with maximum degree A for which the number of colours
required for a f-frugal colouring is at least of order A% We prove here
that this is best possible as shown by Hind, Molloy and Reed [32).

Theorem 3.4. If G has mazimum degree & > 3° then G has a B-frugal
proper vertex colouring using ot most 1643 colours.

Proof. For § =1 this is easy. We are simply trying to find a proper vertex
colouring of the square of G, i.¢. the graph obtained from G by adding an
edge between any two vertices of distance 2 in G. It is straightforward to
show that this graph has maximum degree less than A% and so by Brooks
Theorem it can be properly 4%-coloured.

For 8 > 2, we need the Asymmetric Local Lemma. Set C = 16413, We
assign to each vertex of G a uniformly random colour from (1,...,C}. For
each edge (u,v) we define the Type A event A, to be the event that u,v
both receive the same colour. For each {v;, ..., 1541} &ll in the neighbourhood
uy,..., g4 all receive the same colour. Note that if none of these events hold,
then our random procedure has successfully found a A-frugal colouring of G.

The probability of any Type A event is at most 1/C, and the probability
of any Type B event is at most 1/C%, By the Mutual Independence Principle,
each event is mutually independent of all events with which it does not have
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any common vertices, which is all but at most (4 + 1)A Type A events and
8+ l)A(j) Type B events.

1 a4 1 A (8414
(ﬂ+1)Ax5+(ﬁ+1)A<ﬁ) X 5 < (52) +(ﬁ 6!2’»”

B+l B4l

= 16? T
1

1

for 4> 8%,
The proof now follows from the Asymmetric Local Lemma. C

Remark. It is instructive to note here that if we hod tried to use the Local
Lemma in its simplest form, we would have had to teke p = 1/C and d =
8+ l)A(‘g). Thus pd would have been much bigger then 1 for large A and
so the Local Lemma would not have applied.

A graph G is & B-ezpander if for any subset § C V(G) with |S] < 3[V(G)],
we have |E(S,5)| > 8|S| (and so we are discussing edge-expansion rather
than vertex-expansion). Expander graphs have many important applications,
for example they can form the basis of good sorting algorithms, good routing
networks and the rate at which many Markov chains converge (see Chapter 4)
is intimately related to the expansion properties of underlying graphs. Many
of the most important types of expander graphs are regular, Here we will
show that the edges of any regular J-expander can be partitioned into Ej, E,
such that each E; is the edgeset of a nearly g-expander on the same vertex
set, as proved by Frieze and Molloy(30] who were answering a question from
(20].

Theorem 3.5. For any ¢ > 0, r > 3, and 3 sufficiently large in terms of
r.¢, i G is an r-regular §-ezpander then there is g partition E(G) = E) UE,
such that each E; induces a (3 - )-ezpander on V(G).

Proof. We leave it to the reader to verify the easy fact that if |E,(S,S)| >
B(3 - €)1S] holds for every connected subset® § C V(G), |S] < 3[V(G)), then
it holds for every § C V(G), |S| < 3IV(G)!.

We will place each edge into E, or Es, each with equal probability, and of
course the choices for different edges being independent. For each connected
subset S of size at most %lV(G)l, we define Ag to be the event that either

Ey(8,5) < B(3 - e)iS], or Ex(S,5) < (3 - €)ISI-

3 L.e. a subset, of the vertices which induces & connected subgraph of G.
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Since £(S,3) > AS), the probability of Ag is at most the probability that
the binomial random variable ¢ BIN(B|3), %) differs from its expected value
by more than 3|S}. By using either classical results regarding BIN(n, %)
or the Chernoff Bound presented in the next section, it is straightforward to
show that this probability is less than %~ 15151 for ¢ sufficiently small

By the Mutual Independence Principle, each As is mutually independent
of all events Ags such that SNS' = 0. It is a standard fact (see for example [6])
that since G is r-regular, every vertex lies in at most () < (er)* connected
subsets of size ¢, for any ¢ > 1. It follows that Dg contains at most (er)!]S)]
events corresponding to a subset of size ¢.

Therefore, setting p = 238 and tg = [S) for each S, we have:
8) Pr(4s) <p*s, and
b) ZAs.eps(ZP)ts‘ Stgx 2131(21’)‘(")! < £45

as long as dre!~1¢'8 ¢ 4, which is true as long as J is sufficiently large (2
little larger than 3—',‘:5—' will do). Thus, the result follows from the Weighted
Local Lemma . 0

Remark. It is instructive to attempt to use the simple version of the Local
Lemma and the Asymmetric Local Lemma to prove Theorem 3.5 using the
same events, to see why they do not apply.

4, Concentration

The ultimate goal of nearly every application of the probabilistic method is
to show that a particular “good event” occurs with positive probability, or
equivalently to show. that the probability of a particular “bad event” is less
than 1. However, frequently an intermediate step requires us to prove that
the probability of an intermediate bad event is very small, not merely less
than 1. For example, in applications of the Local Lemma, in order to show
that the probability of the union of a set of bad events is less than 1, we must
show that each individual bad event has very small probability.

Concentration bounds are amongst the most important tools for sHow-
ing that the probability of an event is extremely small. We have already
seen Markov’s Inequality, which is, in a sense, a one-sided concentration
bound as it bounds the probability that X is much larger than E(X),
and Chebyschev’s Inequality which is the most basic of the true concen-
tration bounds. The strength of these two inequalities is that they are

% BIN(n,p) is the number of heads obtained from a sequence of n coin flips where
each coin comes up heads with probability p.
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widely applicable, requiring only that X is non-negative. Unfortunately they
provide relatively weak bounds. For example, Markov's Inequality yields
Pr(X > 2E(X)) < %, and Chebychev's Inequality, while usually & little
stronger, is often not nearly powerful enough. We frequently require the very
strong bound Pr(X > 2E(X)) < e*B(X) for which we need more powerful
tools.

In this section, we will briefly list a few of the most useful concentration
bounds in their simplest forms.

A more detailed discussion appears in Chapter 6 of this book.

Recall that BIN(n, p) is the sum of n independent variables, each equal
to 1 with probability p and 0 otherwise. Qur first tool, the Chernoff Bound
bounds the probability that BIN(n, p) is far from np, its expected value.

The Chernoff Bound® For any 0 <a < np:

Pr{[BIN(z,p) - np| > a) < %™/,

For example, in the proof of Theorem 3.5, we needed to bound the prob-
ability that BIN(B|S], ;) differs from its expected value by more than ¢g)|S].
By applying the Chernoff Bound with n = f|S],p = § and @ = €f)S], we
see that this probability is at most 2e™(A1SD*A81SI = 9e=3"3151 45 long as
€<

Note: For a > np, it is usually a good enough bound to simply take

Pr(|BIN(n, p)-np} > a) < Px(|BIN(z, p) -np| > np) and apply the Chernoff
Bound.

The shortcoming of the Chernoff Bound is that it only applies to binomia!
random variables. The next tool gives a similar bound on the concentration
of a wider class of random variables.

Simple Concentration Bound Let X be o random variable determined
by n independent trials T, ..., T,,, and satisfying
changing the outcome of any one trial can affect X by at most ¢, (4.1)

then 2
Pr{|X - E(X)| > ) < 275,

Typically, we take ¢ to be a small constant.

3 This is somewhat of a misnomer, as this bound is actually a common strength-
ening of Chernoff’s original bound. For a more detailed histoty of this result,
see Chapter 6 of this book. Qur bound follows easily from Theorem 2.3 (b} and
(c) in that chapter.
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Clearly, if X = BIN(n,p) then X satisfies the conditions of this theorem
with ¢ = 1. Note furthermore, that in the case that p is a constant the
bound provided by the Simple Concentration Bound is almost as tight as
that provided by the Chernoff Bound.

Our next two tools, are the two most powerful concentration bounds
widely used in the probabilistic method. They can both be regarded as vari-
ations of the Simple Concentration Bound.

For the first of these variations, we replace condition (4.1) by & weaker
condition. In particular, instead of requiring that the amount by which the
outcome of any one trial can affect X is bounded, we only require that if we
carry out the the trials in sequence then the amount by which the outcome
of any one trial can affect the conditional ezpected value of X is bounded.
Another feature of this next inequality is that we do not require the random
trials to be independent.

In the following statement, we denote by E(X|Ty, ..., T;} the conditional
expected value of X conditioned on the outcomes of Ty, .., Ti.

The Hoeffding-Azuma Inequality {12, 34] Let X be o random vari-
able determined by n triels Ty, ..., T, end satisfying for each i:

max | B(X |1, To,. . Tint) - EX [ T2, T S0 (42)

(twhere this mazimum is taken over all possible outcomes of I, ..., Tiv1 ), then

Pr(IX - B(X)| > 1) < 2/,

It is straightforward 1o show that condition (4.1) implies condition (4.2),
and thus to verify that The Hoeffding-Azuma Inequality implies the Sim-
ple Concentration Bound. For & more detiled discussion of The Hoeffding-
Azuma Inequality, see Chapter 6 of this book, or (11, 40]. Some appplications
of The Hoeflding-Azuma Inequality can also be found in Chapter 2 of this
book. We will not discuss this inequality further here, as it is not used in the
remainder of this chapter, and we only mention it because it is widely used
in the literature and to compare it to Talagrand's Inequality.

The Simple Concentration Bound and The Hoeffding-Azuma Inequal-
ity perform much more weakly than the Chernoff Bound in the case X =
BIN(n,p), whete p = o(1). More generally, when E(X) = o{n) and we take
each ¢ or ¢; to be a constant then, for example, we obtain that for any con-
stant o > 0, Pr(|X ~E(X)| > aE(X)) < e~*EC0*/) when we often require
that probability to be as small as e*B(X)), (Sometimes, by taking ¢; to be
sufficiently small, we can obtain this tighter bound using The Hoeffding-
Azuma Inequality, but it is usually difficult and in many cases no such proof
is known.) Our next tool is the most recent of our tools, and by generalizing
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the Simple Concentration Bound in a different direction, allows us to replace
n by E(X) in the bound, thus overcoming this problem.

Talagrand’s Inequality I [64] Let X be o random variable determined
by n independent trials T, ..., T,,, and satisfying

1. changing the outcome of any one trial can affect X by at most ¢, and

2 for any s, if X > s then there are s trials T; .., T, whose outcomes
certify that X > 5,

then for eny 0 < t < Med(X),

2
Pr(|X - Med(X)| > ) < 2 "hmam,

More precisely, condition 2 says that changing the outcomes of all trials
other than T, .., T, cannot cause X to be less than s, and so in order to
“prove” to someone that X > s it is enough to show him just the outcomes
of Ti,,..., ;.. For example, if each T; is a binomial variable equal to 1 with
probability p and 0 with probability 1 — p, then if X > 5 we could take
Ti,,.., T, to be s of the trials which came up “1".

Remark. Again, in o typical application ¢ 15 a small constant. Also, as with
the Chemoff Bound, if we wish to apply Talogrand’s Inequality with ¢ >
Med(X), it ususally suffices to apply Pr(|X — Med(X)| > ¢) < Pr(|X -
Med(X)| > Med{X)).

The fact jhat Talagrand’s Inequality proves concentration around the
median rather than the expected value is not a serious problem, as in the
situation where Talagrand's Inequality applies, those two values are very close
together, and so concentration around one implies concentration around the
other:

Fact. Under the conditions of Talagrand’s Inequality,
[E(X) - Med(X)| < 3¢y/E(X).

This fact allows us to reformulate Talagrand’s Inequality in terms of
E(X).
Telagrand'’s Inequality II Let X be o random variable determined by
n independent trials T, ..., T, and satisfying
1. changing the outcome of any one trial can affect X by at most ¢, and

2. for any s, if X > s then there are ¢ trials T, ,.., T;, whose outcomes
certify that X > s,
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then for any 0 < t < E(X),

2
Pr([X - B(X)| > t + 3cy/E(X)) < 2¢” W0,

Remark. In almost every application, ¢ is a small constant and we take ¢
to be asymptotically much larger than \/E(X) and so the 3ey/E(X) term
is negligible. For the cases in which a smeller value of t is required, further
strengthenings of Talagrand’s Inequality will apply, but these go beyond the
scope of this survey.

The reader should now verify that Talagrand’s Inequality yields a bound
on the concentration of BIN(n,p) nearly as good as that obtained from the
Chernoff Bound.

Remark. This statement is probably the simplest useful version of Tale-
grand’s Inequality, but does not express its full power. In foct, the reader
might note that this version does not imply the Simple Concentration Bound.
We refer the reader to Chapter 6 of this book, or to [55] for more power-
Jul versions of Talagrand’s Inequality, including some from which the Simple
Concentration Bound, with some weakening of the constant multiple in the
exponent, s an easy corollary. We also refer the reader o (53] for o derivation
of this form of Talagrand’s Inequality from the statement originelly presented
in (64].

We illustrate Talagrand's Inequality with one of it’s most important sim-
ple applications. This application to random permuations was one of the
original applications in [64].

Let 0 = 2y,...,z, be & uniformly random permutation of 1, ..., n, and let
X be the length of the longest increasing subsequence® of 7. A well-known
theorem of Erdds and Saekeres (26] states that any permution of 1,...,n con-
tains either & monotone increasing subsequence of length [v/a] or a monc-
tone decreasing subsequence of length [\/n]. It turns out that the expected
value of X is approximately 2,/7, i.e. twice the minimum guaranteed by the
Erdds-Szekeres Theorem (see (43, 67)). A natural question is whether X is
highly concentrated. Prior to the development of Talagrand's Inequality, the
best result in this direction was due to Frieze[29] who showed that with high
probability, X is within a distance of roughly E(X)?/® of its mean, somewhat
weaker than our usual target of E(X)"/2.

At first glance, it is not clear whether Talagrand’s Inequality applies here,
since we are not dealing with a sequence of independent random trials. Thus,

é In other words, & subsequence 2., < 2, < ... < zi, where, of course, i) <... <
.



20  Michael Molloy

we need to choose our random permutation in & non-straightforward manner.
We choose n uniformly random real numbers, 4y, ..., yn, from the interval
[0,1). Now arranging y1,..., yn in increasing order induces & permutation o of
1,...,n in the obvious manner".

It is easy to verify that changing the value of any one y; can affect X by at
most one. Furthermore, if X > s, i.e. if there is an increasing subsequence of
length s, then the 8 corresponding random reals clearly certify the existence
of that increasing subsequence, and so certify that X > s. Therefore, Tals-

2
grand'’s Inequality implies that Pr(|X — E(X)| < t +3y/B(X)) < 2%,

5. The Semirandom Method

Suppose that we wished to prove that the vertices of a graph could be par-
titioned into 2* sets satisfying a particular property, P. The most straight-
forward probabilistic approach would be to generate a uniformly random
partition, ie. to individually place each of the vertices into a random part
where each part is equally likely, and then prove that with positive proba-
bility this partition satisfies property P. Unfortunstely, this approach often
does not work, but, in many cases we can succeed by choosing a partition via
a sequence of many random choices,

Our first step is to consider a uniformly random partition of the vertices
into 2 sets, and to prove that with positive probability this partition satisfies
an intermediary property Py. This implies that there is at least one partition
satisfying Py, so we take that partition. Next, we prove that we can find
a 2-partition of each of our parts satisfying property Py, by considering a
uniformly random partition of each part and, using the fact that the first
partition satisfies P;, prove that with positive probability the random refine-
ment satisfies P;. Repeating this process k times, we prove the existence of
a 2*-partition satisfying P, which of course we choose to be property P.
Examples of this technique can be found in (5, 10, 28}.

At first glance, it appears that our argument just reduces to a complicated
way to take a uniformly random 2*-partition. It is important to note that
this is not the case. If we had simply taken a sequence of k uniformly random
2-partitions, then we would have formed a uniformly random 2*-partition.
However, at each step we do not take a uniformly random 2-partition - we
merely consider a uniformly random 2-partition in order to prove the exis-
tence of a particular partition which satisfies our intermediary property. For
example, if we apply the Local Lemma at each step, then the probability that
a uniformly random 2-partition satisfies our intermediary property might be

T Because these are uniformly random real numbers, it turns out that with prob-
ability 1, they are all distinct.
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exponentially small, and so the partition that we take doesn’t resemble a
uniformly random partition at all.

This technique is an example of what is known as the semirandom method,
which is the term used when we prove the existence of something by gener-
ating it through many iterations, applying the probabilistic method at each
iteration. The semirandom method is often referred to as the Radl Nibble,
because many applications were inspired by a series of refinements of the
arguments in [58].

One area of graph theory where the semirandom method has had the
greatest impact is graph colouring. In fact, many of the strongest results in
graph colouring over the past decade are examples of this method, including
(55, 38, 39, 40, 41, 36, 37, 49). In this section, we will briefly discuss some
of these applications. For a more thorough discussion, we refer the reader to
(52] or [53].

In the most basic type of application, we wish to show that a graph
has a proper vertex colouring using only C colours. We prove that such a
colouring exists through several iterations of colouring a few vertices each
time, showing that eventually we can find a proper colouring of the entire
graph. For the first iteration, we consider assigning to each vertex a random
colour. Of course with high probability many pairs of adjacent vertices will
have the same colour. We address this problem as follows: If any vertex
receives the same colour as a neighbour, then we uncolour that vertex, Clearly,
the set of vertices which retain their colours form & proper partial colouring.
During each subsequent iteration, we consider assigning to each uncoloured
vertex a random colour chosen from amongst these colours which were not
retained by any of its neighbours during an earlier iteration, and then we
uncolour some vertices as before. Our goal is to show that after each iteration,
the partial colouring satisfies a particular property with positive probability,
thus showing that we can choose a partial colouring satisfying that property.
After several iterations, the final property will imply that the partial colouring
can be completed to a full proper colouring of the graph.

This method also applies well to list colouring problems . At each it-
eration, we sssign to each uncoloured vertex a colour chosen uniformly at

¥ The basic list colouring problem is to find a proper vertex colouring of a graph G
where every vertex has a list of permissable colours. The tricky part is that the
vertices typically have different lists. If G has the property that we can always
succeed for any set of lists, as long as they each contain at least k colours,
then we say that G is k-choosable. The list chromatic number of G, denoted by
Xe(G) is the smallest k such that G is k-choosable. Note that x¢(G) > x(G) by
considering the case where all the lists are equal. List edge colouring problems
are defined similarly, and the Hst chromatic indez of G, x;(C), is the obvious
ext.e[gsi]on of the chromatic index (also known as the edge chromatic number),
see [38].
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random from its list. If a vertex retains its colour then we delete that colour
from the lists of its neighbours.

At each iteration, our proof usually consists of: (1) computing the ex-
pected values of a few variables, (2) proving that those variables are con-
centrated by applying the tools in Section 4., and (3) applying the Local
Lemma.

5.1 Triangle-free Graphs

It is well-known that the chromatic number of any graph with maximum
degree A is at most A + 1, and in fact such a colouring can be obtained via
a simple greedy colouring algorithm. Johanssen [36) used the semirandom
method to prove that if G is triangle-free and has maximum degree 4, then
x¢(G) = O ), which s best passible up to & constant multiple. (Indepen-
dently, Kim{41] obtained the same bound for the chromatic number of graphs
with girth at least 5.) Johanssen(37] subsequently refined his arguments to
show that for any constant r, if G is K-free and has maximum degree 4
then x¢ = O(Z; X Inln 4).

Here, we will indicate why the semirandom colouring procedure described
eatlier should work so well on triangle-free graphs by describing how, using
only a single iteration of that procedure, one can prove that the chromatic
number of such & graph is a constant multiple less than A. We remark that
this proof is presented mainly to llustrate the technique, and the result is by
no means best possible. In fact, there are much simpler proofs which yield
slightly stronger results (see for example (35, 44]), and as mentioned above,
there are more complicated proofs which yield much stronger results.

Theorem 5.1. If G is triangle-free and has mazimum degree 4 sufficiently
large, then x(G) < (1 - 5)4.

In fact, what we show is that if we carry out a single iteration of our
procedure, using only % colours, then with positive probability the resulting
partial colouring will be such that every vertex v has several colours which
appear at least twice in its neighbourhood, which we call repeated colours
(for v).

Lemma 5.2, If G is triangle-free and has mazimum degree A sufficiently
large, then G has o partial colouring such that for each vertez v, N, contains
at least % + 1 repeated colours.

It is straightforward to show that the partial colouring guaranteed by
Lemma 5.2 can be completed to a (1 - 55 ) A-colouring of the entire graph
using a simple greedy procedure, and so Lemma 5.2 implies Theorem 5.1.
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The outline of the proof is as follows. We can assume that G is A-regular
since it is easy to show that any graph with maximum degree A can be
embedded in & A-regular graph.

For each vertex v, we let Z, denote the number of colours retained by ex-
actly two vertices in N, (the neighbourhood of v). Because G is triangle-free,
10 two vertices in IV,, are adjacent and 5o any such pair is eligible to retain the
same colour (obviously if two vertices are adjacent then they cannot retain
the same colour). The probability that two vertices retain the same colour
and that no other vertex in N, retains is (1 - (2))%3-3 which is at least
<5 and so by linearity of expectation, E(Z,) > (3) % 2 & 4. Using either
a straightforward application of Talagrand's Inequality or & clever application
of Azuma’s Inequality, we can show that Pr(Z, < $E(Z,) + 1) < e7%(4),

We let A, be the event that Z, < %E(Z,,) + L It follows from the Mutual
Independence Principal that each A, is mutually independent of all but at
most A! other events. Thus by the Local Lemma, with positive probability
A, does not hold for any vertex v, and so Lemma 5.2 follows.

To obtain stronger results, such as those in [41, 36, 37), we must apply
several iterations of this procedure, at each step keeping careful track of
the number of neighbours of v which retain a colour, the number of colours
appearing on the neighbourhood of v, and one or two other variables. To
obtain the results in [36, 37), we must use & more sophisticated variant of
this semirandom colouring procedure, but we will not go into such details
here.

5.2 Sparse Graphs

It is straightforward to show that the argument used in the proof of Lemma
5.2 applies to a wider class of graphs than triangle-free graphs. In particular,
it will apply so long as for each vertex v, N, does not have too many edges.
For v > 0, if |E(N,)| € (1-7)(5) then we say that v is ~-sparse. If every
vertex of a graph is y-sparse then that graph is said to be ~-sparse.

Lemma 5.3. If for some constant v > 0, G is y-sparse and has mazimum
degree A sufficiently large, then x(G) < (1 - 5%)4.

This was a key lemma for the bound on the strong chromatic index in
148]. Lemma 5.3 still holds for some values of y = o(A). We leave it s an
exercise for the reader to determine how small ¥ can be. It is not hard to
verify that Lemma 5.3 also holds when we replace y by ye, the list chromatic
number.

Applying the aforementioned theorem of Johanssen concerning triangle-
free graphs, Alon, Krivelevich and Sudakov(8} provided an extension of that
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theorem to graphs which are merely very sparse, showing that for any € > 0,
if G has maximum degree A sufficiently large, and is (1 - A™*)-sparse (i..
if the neighbourhood of any vertex v contains at most 342~ edges), then
x(G) < O(z;). This result does not apply to the list chromatic number.

In general, if a graph is sufficiently sparse then by performing several it-
erations of our semirandom colouring procedure, we can often obtain even
stronger results. The most well-known of these results is probably the follow-
ing theorem of Kahn [38], which proved that the well-known List Colouring
Conjecture (see eg. [18]) that the list chromatic index of & graph is equal to
it's chromatic index, is asymptotically correct.

Theorem 5.4, If G has mazimum degree 4, then x,(G) = 4+ o{4).

Haggkvist and Janssen (31], using a different technique (which involved an
spplication of the Local Lemma) tightened this to A+ 0(A%3poly(log 4)).
By analyzing the semirandom procedure more precisely, Molloy and Reed[50]
improved it further to A+ O(A"?poly(log 4)). The bounds of Kahn and of
Molloy and Reed also apply to hypergraphs, yielding for example that for
any constant k, the list chromatic index of & linear k-uniform hypergraph
with maximum degree k is at most A + O(A'~"/*poly(log 4)). For similar
bounds regarding non-linear hypergraphs, see [38, 50).

5.3 Dense Graphs

I a graph is not very sparse, for example if for some vertex v, N, is very
close to being a A-clique, then it is easy to see that our basic semirandom
procedure will not work very well, as with high probability N, will not contain
many repeated colours. Suppose for example that G is & (4 + 2)-clique with
a perfect matching removed. Here, x(G) = %*—2, but our argument will only
yield the far from satisfactory bound x(G) < A - d for some d = o{4).

Reed developed a variation of our procedure which works well in such
situations, The main step is to show that a graph can be partitioned into a
sparse region and several dense regions such that there are very few edges
between any two regions. This allows us to essentially colour each region
seperately.

The Reed Decompostion[14]: For any ¢ > 0 and any groph G with
mazimum degree A, G can be decomposed into S, Dy, ..., Dy such that

a) each vertez in S 15 e-sparse;
b) each D; very closely resembles a clique;
¢) for each i, the number of edges from D; to G - D; is ot most 4eAl.
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It can also be shown that each D; satisfies a handful of other conditions
which often differ slightly by application, as does the precise sense in which
each D; resembles a clique.

Given this decompesition, we modify our semirandom procedure as fol-
lows. We assign to each vertex of S a random colour as usual. For each D;,
we take a specific proper colouring of D; and permute the colours at random.

Reed’s first application was the following:

Theorem 5.5. There exists some constant ¢ > 0 such that for every graph
G with mazimum degree A and mazimum clique size
@, X(G) < few+ (1 -e)(A+1)].

Reed conjectures that for A sufficiently large, this theorem holds with
€= % (he shows that it does when w is sufficiently close to 4). It cannot hold
for any ¢ < §.

By applying the Reed Decomposition with ¢ = o(1), Reed[57) proved the
similar theorem:

Theorem 5.8. If G has mazimum degree A sufficiently large and no clique
of size A then x(G) < A-1.

This was conjectured to be true for 4 > 9 by Borodin and Kostochka(35]
and for A sufficiently large by Beutelspacher and Hering [16].

Another application of the Reed decomposition is the following bound on
the totel chromatic number due to Molloy and Reed[49], which is the best
progress thus far to the conjecture of Vizing|68] and Behzad[15] that the total
chromatic number of & graph is at most its maximum degree plus two.

Theorem 5.7. If G has mazimum degree A sufficiently large then x7(G) <
A4+ 500.

6. Ramsey Theory

The Probabilistic Method has arguably had a greater impact on Ramsey
Theory than on any other field of combinatorics, with the possible excep-
tions of graph colouring and combinatorial number theory. Erdds’ proof that
R(k,k) > 6(k x 25/%) is probably the best known classical result of the First
Moment Method. (We invite the reader to try to prove this, and then having
done so, to improve the constant term by using the Local Lemma). More
recently, some exciting new work has been done towards establishing the
asymptotic value of R(3, k). We outline three of the milestones here,
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6.1 An Upper Bound

Using what is probably the earliest application of the semirandom method,
Ajtai, Komlés and Szemerédil, 2] were the first to show that R(3,k) <
O(k®/Ink). Shearer[59, 60} reduced the constant term and simplified the
proof significantly. We present here a refinement of Shearer’s proof due to
Alon [4]. The main step is the following:

Theorem 6.1. If G is triangle-free and has mazimum degree A, then G has
a stable set of size of least |V(G)| x 122

Corollary 6.2. R(3,k) < 4i7.

Proof. Set n = 4%. We wish to show that any graph G on n vertices has
either a triangle or & stable set of size k. If G has a vertex of degree greater
than k, then clearly this must hold. Otherwise, apply Theorem 6.1 with A <
k. 0

Proof of Theorem 6.1 Let I be a stable set chosen uniformly at random
from amongst all stable sets of G. Unlike most other random choices dis-
cussed in this survey, there is no obvious efficient way to actually choose I.
Nevertheless, we will be able to show that E(|I]) > |V(G)| x %%, thus
proving our theorem.

For each vertex v, define Z, as follows. Z, = Aifv € I, and Z, = |N,N]|
otherwise. Since Zv&V(Gi Z, <2Ax|]), it will suffice to show that E(Z,) >
11n 4 for every v.

Set I' = In(V(G) - (vUN,)). We will show that for any possible choice

of I', the conditional expected value B(Z,|I) is at least LIn A, which clearly
establishes that E(Z,) > 11n4.

Upon speafymg I',set N' tobe the nelghbours of v which are not adjacent
to any vertex of I'. Any independent set of vU N’ is equally likely to be the
completion of /' to 1. Since G is triangle-free, N contains no edge, and so

there are 1+ 2% | such independent sets - one which only contains v, and

the 2V'| subsets of ' Clearly, the average size of the latter group of sets is
3IN'{. Therefore,

A+ §|N [ x ¥l
142
which one can compute to be at least 1 InA for any 0 € |N'| <A To
do this, if §Ind < IN| € 4, then we can apply ( V) 2 2|N |, while if
IN'| < §In A then we can apply E(2,) > 4/(1 FN), 0

E(Z|[)=

1
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6.2 A Weak Lower Bound

Erds[23] was the first to prove that R(3,k) was at least 8(;r; ) Subse-
quently, the proof was simplified and/or the constant term was 1mproved in
[61, 17,27, 43]. We present here a short proof of Krivelevich[43), showing:

Theorem 8.3. For k sufficiently large, R(3,k) > (soooﬁf

Remark. The constont term can be improved significantly by using e stronger
version of the Chernoff Bound, amongst other things.

Proof. Our goal is to prove that there exists & triangle-free graph on n =

(mﬁf vertices with no independent set of size k. We will do so by con-
structing such a graph randomly.

We first choose & random graph G on n vertlces where each of the (3)
edges is chosen to be present with probability p = ‘/- Next, we choose any

maximel set T of edge-disjoint triangles in G and we let G’ be the graph
formed by removing the edges of T from G. Clearly, G hes no triangle, and
so it will suffice to show that with positive probablhty G’ has no stable set
of size at least k.

Consider any set S of k vertices. Let X be the number of G-edges within
S, and let Y be the number of triangles of 7 which have at least one edge in
S. Since deleting T from G removes at most 3¥ edges from S, the probability
that § is a stable set in G is at most the probability that X < 3Y, which
we will show is very small.

First, we bound the probability that X is small. E(X) = ()p =

_(_1/ TwonE = S00(k - 1)Ink. Therefore, it follows from the Chernoff
Bound that Pr(X < 400kInk) < e~3!nk = k=3,

Now we bound the probability that ¥ is large. For any ¢, if Y > ¢ then
there must be some collection of ¢ triples of vertices (a1,b1,¢1), ..., (a1, 1,¢)
such thst (1) no pair of vertices lies in two triples, (2) for each ¢ we have
a,,b, € S, and (3) each triple forms a triangle in G. The expected number of
such collections is at most

k t
((i))(n-2)‘p3‘ < (30kt1!“k) _

Thus, by Markov's Inequality, Pr(Y > t) < (30kInk)!/t!, and it follows
that
mwzuﬁmmngwu<r%

Therefore, the probability that S is a stable set in G is at most 2k~%,
and so the expected number of stable sets of size k is at most
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(:) X 2k < K% x 2k~ < 1
for k sufficiently ]a.rlge. Therefore, by the First Moment Principle, with pos-
itive probability, G has no stable sets of size k, thus proving the theorem.
O

6.3 A Tight Lower Bound

One of the most celebrated combinatorial results of the last few years was
Kim’s proof that R(3,k) > 0(1%) 42), thus establishing the correct asymp-
totic value of A(3,k) up to a constant multiple. This was inspired in part
by Spencer's proof[62] that R(3, k) is asymptotically of a higher order than
ﬁ,’T‘. Kim's proof consisted of a very delicate application of the semirandom
method, which we briefly outline here.

Our goal is to construct a triangle-free graph G on n = wgﬁ vertices
with no stable set of size k. We actually build two graphs, G and H, and we
keep track of a set E of permissable edges.

Initially, G = H-= 0, and E is the set of all possible edges on the n
vertices. At each iteration, each edge e € E is added to H with probability
1. We call these added edges new edges. We remove from E every new edge,
along with any edge e such that e forms a triangle with two edges from H.

Note that this does not ensure that H is triangle-free, as it is possible
that 2 or 3 edges of a triangle could enter H during the same iteration. In
this case, we call such & pair or triple of edges bad. From the set of new edges,
we remove a maximal edge-disjoint collection of bad pairs and triples, and
we add the remaining edges to G. Note that G will remain triangle-free.

The reader might have noticed that this procedure is slightly wasteful.
For example, it was not neccessary to remove from £ any edge which formed
a trisngle with two edges from H - it would have sufficed to remove an edge
only if it did so with two edges from G. However, by being wasteful in this
way, the analysis is simplified significantly.

The main work lies in bounding the stability number of G. We do this
using the First Moment Method. Consider any set I of k vertices. Kim shows
that the probability of / being a stable set in G is smeller than (2)_1, and
so with positive probability G does not have & stable set of size k.

To do so, he shows that after each iteration, with very high probability,
several parameters remain close to their expected values, including & few
which contro} the number of potential edges from I which are in G, f and E.
Unlike other applications of the semirandom method that we have discussed,
at each step he uses the First Moment Method, not the Local Lemma. For
details, see [42] or [53).
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7. Algorithms

In its purest form, the probabilistic method merely proves the existence of
a combinatoriel object, such as a satisfying assignment or a colouring of 8
graph, without indicating how to find the object efficiently. An application
of the First Moment Method will often prove that if we choose the object
at random, it will meet our requirements with high probability, and this
generally yields a simple efficient randomized algorithm (a formal definition
of a randomized algorithm is given in Chapter 3 of this book, we will not
need it here). On the other hand, when applying the Local Lemms, usually
the object meets our requirements with exponentially low probability and so
there is no obvious algorithm to construct it, not even a randomized one.

In this section, we will discuss general procedures to obtain deterministic
algorithms from applications of the First Moment Method and both randor-
ized and deterministic algorithms from applications of the Local Lemma.

7.1 The First Moment Method

The most common technique for derandomizing an application of the First
Moment Method is the so called Method of Conditional Probabilities due to
Erdés and Selfridge (26]. We begin by presenting & deterministic algorithm
for finding the satisfying assignment guaranteed by Theorem 1.2.

Recall that we are given a boolean formula F in conjunctive normal form
on the variables z,, ..., 2y, such that if we were to set each z; to be True with
probability % and False with probability %, then the expected value of X,
the number of unsatisfied clauses in F is less than 1. We will use this fact to
deterministically assign truth values to each variable in sequence.

First, we consider x,. Suppose that we assign z; = True. This reduces
F to a smaller boolean formula Fr as follows: (i) every clause in F which
contains the literal 2, is removed from F since that clause is now satisfied,
and (ii) every clause which contains the literal 77 is shrunk by removing that
literal since that clause can no longer be satisfied by setting 2, = False (if
a clause shrinks to size ( then Fr is unsatisfiable). Similarly, if we assign
1) = False, then F reduces to Fr.

Now consider taking a random truth assignment of x5,..., 2, where each
variable is set to True with probability % and False with probability % Itis
easy to deterministically calculate the expected number of unsatisfied clauses
in Fr orin F. Note that these expected values are equal to the conditional
expected values E(X|z; = True) and E(X|z; = False) respectively, The
important idea is that one of these two values is no bigger than E(X), since
E(X) = $E(X|z) = True) + JE(X |z, = Felse). Therefore, at least one of
these expected values is less than 1, and we set 2, accordingly.
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We now repeat this process, setting each variable one at a time, so that
at each step the resulting formula has the property that if we were to take a
random truth assignment on the remaining variables, the expected number
of unsatisfied clauses is less than 1. After ail variables have been set, this
expected value is simply the number of unsatisfied clauses in the truth as-
signment that we have formed. Since it is less than 1, it must be equal to 0
and so we have found a satisfying assignment!

This technique generalizes in an obvious manner. It's general setting is
as follows; X is a random variable determined by a sequence of random
trials 7}, ..., T Our problem is to find a set of outcomes ¢;,...,t, such that
X <EX).

Of all the possible outcomes of Ty, at least one of them, ¢;, must be
such that the conditional expected value E(X|T; =1,) is at most E(X). We
select this outcome, and then repeat this step on each T; in order, each time
choosing ; such that

E(X|Ty =t,..,Ti = ;) <E(X). (1)

By the time we have selected ¢,,, there are no more random choices to be
made, and so E(X|T} = 1),..., T, = ;) is just the value of X determined
by t1,...,ts. Thus we have found & set of outcomes for which X < E(X), s
desired.

In order for this approach to succeed, we simply require that (a) the
number of trials is not too large, and (b) at each step we can choose an out-
come satisfying (7.1) efficiently. For example, it will suffice that the following
conditions hold:

1. The number of trials is a polynomial in the size of the input.

2. The number of possible outcomes of each trial is a polynomial in the size
of the input.

3. We can compute any conditional expected value in polytime.

If these three conditions hold, then the running time of this deterministic
algorithm will be at most the product of these three polynomials.

7.2 The Lovész Local Lemma

Beck(13| introduced & constructive version of Theorem 3.1 (actuslly of a
varient of Theorem 3.1) with some weakening of the constant terms (see
also [6}). In particular, he provided & polynomial expected time randomized
algorithm to find a satisfying assignment for any instance of k-SAT in which
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each variable lies in at most 2¢/4¢ clauses. We will briefly outline his algorithm
for the case where k is a large constant.

Suppose that we are given such a CNF formula F with n variables and
m clauses.

During Phase 1 of the algorithm, we assign a random value to each vari-
able, one at & time. Naturally, we expect that most clauses will be satisfied.
However, if there are an enormous number of clauses, it is inevitable that a
few might have all of their literals set the wrong way. If a clause ever has § of
its literals set without first becoming satisfied, then we call that clause dan-
gerous and we freeze its remaining literals; i.e. we will not assign any values
to them until after the end of Phase 1, at which time they can be dealt with
more carefully.

At the end of Phase 1, with high probability most of the clauses will be
satisfied. The only unsatisfied clauses are the dangerous clauses along with
some clauses which did not become dangerous but which had some of their
literals frozen because they intersect dangerous clauses. For example, it is
possible that every variable in a clause appears in some other clause which
becomes dangerous, and so that clause might not have any of its variables
set at all, It is important to note that, dangerours or not, every unsatisfied
clause contains at least § frozen variables.

Thus, if we consider the formula F; induced by the unsatisfied clauses and
the frozen variables, every clause will have size at least § Since 4 x 273 x
(5 x k x 24/%) < 1, the Local Lemma guarantees that F is satisfiable. Note
that a satisfying assignment for 7y will complete the partial assignment made
during Phase 1 into a satsifying assignment of F.

The main part of the proof is to show that with high probability £, is the
union of many disjoint formulas, each containing at most O{logn) clauses.
Therefore, we can process each of them seperately, and in fact we can do
s0 by using exhaustive search of all the possible 200%™ = poly(n) truth
assignments to find the one guaranteed by the Local Lemma.

If we wish to speed this algorithm up, we can repeat Phase 1 on F). By
a similer analysis, with high probability this will reduce JF, to a set of dis-
joint formulas each of size O(log log n) which can be processed by exhaustive
search in poly(logn) time each, thus yielding a O(npoly(logn)) time ran-
domized algorithm. Every property which we have claimed to hold with high
probability can be shown to do so by the First Moment Method, thus the
Method of Conditional Probabilities described in the previous section applies
to produce a polytime deterministic algorithm.

For details of the proof that the components of , are all small with high
probability, we refer the reader to [13], [6], (51] or [53]. The intuition is as
follows. As long s each clause intersects at most d = k x 23 other clauses,
one can show that any connected subformula of F, on X variables must
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contain at least X/d? disjoint dangerous clauses, all relatively close together
(we do not define this precisely here). The probability that any particular set
of X/d* disjoint clauses all become dangerous is at most 2713 For each
variable v, one can show that there are at most (44%)/%" sets of disjoint
clauses which are relatively close together and such that at least one of them
contains v. Applying the First Moment Method with X = d?logn yields the
desired result.

More generally one can apply this approach whenever our underlying
probability space is a sequence of independent random trials (now p and d
are probability and dependency bounds as before}. It works well provided
that d is constant, and p,d satisfy pd® < § (for details see [51]). If d is not
constant then we can often show that the algorithm still works. We can also
lower the constant “9" somewhat. However, this procedure will not work
when p is of order near .

Recall that the Local Lemma only requires that pd < 1. However, in
many applications, the stronger condition pd® < % still applies. Consider, for
example, the case where every bad event is determined by exactly ¢ random
trials for some ¢, and where each trial helps to determine at most r bad
events. In this case, it follows from the Mutual Independence Principle, that
each event is independent of all but at most d = ¢ x r other events. Frequently,
the probability of each bad event is at most p = e~ for some constant a, for
example when we bound this probability by using one of the concentration
inequalities of Section 4.. Thus, as long as  is not much bigger than ¢, for
example if r s a polynomial in ¢, then pd’ << { for any constant ¢ as long
as t is sufficiently large.

Molloy and Reed[51] modified Beck's procedure to work on & wider class
of problems which seems to cover almost all applications of the Local Lemma,
including the General Local Lemma, so long as d does not grow very large
with the size of the input and so long as some of the parameters are sufficiently
large. This includes applications where p is of order i, for which Beck's
technique does not apply. Again, in many cases when d does grow quickly,
the technique of [51) will still apply. For more details, see [51] or [53].

It should be noted that with both of these techniques, the running time of
the algorithm is polynomial in the number of random trials and the number
of bad events. Thus, in applications of the Local Lemma where the number
of bad events is not polynomial in the size of the input, for example Theorem
3.5, this does not always result in & polytime algorithm.
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1. Introduction

Rather than analyzing the worst case performance of algorithms, one can
investigate their performance on typical instances of a given size. This is the
approach we investigate in this paper. Of course, the first question we must
answer is: what do we mean by a typical instance of a given size?

Sometimes, there is a natural answer to this question. For example, in
developing an algorithm which is typically efficient for an NP-complete op-
timization problem on graphs, we might assume that an n vertex input is

equally Tikely to be any of the 2(2) labelled graphs with n vertices. This al-
lows us to exploit any property which holds on almost all such graphs when
developing the algorithm.

There is no such obvious choice of a typical input to an algorithm which
sorts n numbers z1,..., 2, for, eg., it is not clear how big we want to permit
the 7, to become. One of many possible approaches is to impose the condition
that each number is & random element of [0,1), where each such element is
equally likely. Another is to note that in analyzing our algorithm, we may not
need to know the values of the variables but simply their relative sizes. We can
then perform our analysis assuming that the z; are a random permutstion
of yy <y <... <y with each permutation equally Likely.

More generally, we will choose some probability distribution on the inputs
of a given size and analyze the performance of our algorithm when applied
to a random input drawn from this distribution. Now, in general, probability
distributions are complicated objects which must be formally described and
analyzed using much messy measure theory. Fortunately, we will be concerned
only with relatively simple distributions which will be much easier to deal
with.

We often consider finite distributions in which our probability space is a
finite set S, and for each z € S there is & p, such that the y¢sp, = 1 and
the probability that the outcome is z is p,. If all the p, are the same then

* Supported in part by NSF grant CCR9330974.
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we are choosing & uniform member of S. For example, we discussed above
choosing uniformly a random labelled graph on n vertices.

We may also consider choosing reals uniformly in [e,b). Thus the probs-
bility our random real is between c and d fora < ¢ < d<bis g_;:

Alternatively, we may consider analyzing probability distributions by im-
posing conditions on the random objects chosen without specifying any fur-
ther the underlying distribution. One example of such a distribution inde-
pendent analysis was mentioned earlier when we suggested studying sorting
under the assumption that all n! permutations of n numbers are equally likely
to be the input.

Finally, we may consider combining the above three possibilities. For ex-
ample, we may consider a uniformly chosen graph on n vertices whose edges
have been assigned uniform random weights from (0, 1), or a set § of random
vectors in R™ where each vector consists of m independent uniform elements
of [0,1].

Focusing on these simple distributions allows us to dispense with the de-
velopment of a rigorous measure theoretical foundation of probability theory.
It is also quite natural.

One of our goals in this paper is to develop exact algorithms which work
efficiently on the overwhelming majority of random inputs. A related goal is to
try and find algorithms whose expected running time is small. We examine
these approaches in Sections 2 and 3. A different technique is to consider
algorithms which are guaranteed to run quickly but do not necessarily find the
optimal solution, and show they are typically optimal, very close to optimal,
or at least reasonably close to optimal. This is the approach taken in Sections
4and 5.

Alternatively, we can show that an algorithm almost always behaves
poorty on random instances. For example, we might prove that sn algorithm
almost always takes exponential time. This is a much more damning con-
demnation of its performance than the pathological examples constructed to
provide lower bounds on worst-case complexity. We discuss this approach in
Section 6. Finally, we note that how an algorithm performs on a random
input depends heavily on the probability distribution we are using. In Sec-
tion 7. we compare the analysis of various probability distributions for some
specific problems.

We stress that we are interested in providing the reader with a gentle
introduction to some of the most important topics in thig area. Qur survey is
neither comprehensive nor up to date. Readers may turn to the survey articles
(53],(80], [76] and the books [34], (99],(104] for more in-depth discussions of
this area.
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Finally, we remark that from the third section on, the subsections are
essentially independent so a reader who lacks the necessary background for
one may safely skip it.

1.1 Some Basic Notions

We begin with two simple but powerful probebilistic tools.

The First Moment Method/Markov Inequality. If X is & random
non-negative integer valued variable then

Pr(X > 0)<E(X)
(Proof. Pr(X >0) = 5%, Pe(X = i) < £2,iPr(X =i) =E(X).  O)

i=]
Moreover, E(X) is often easier to compute than Pr(X > 0). If this is the
case, then we may compute E(X) and use it as a bound on Pr(X > 0). This

technique is known as the First Moment Method.

The Chernoff Bound. Suppose X is the sum of n independent random
variables each of which is 1 with probability p and 0 with probability 1 - p
(hence E(X) = pn). Then:

Pr(|X - E(X)| > a) < 2™/,

This is one of many inequalities which bound the extent to which a vari-
able deviates from its expected value. Chapter 6 of this volume is dedicated
to the study of such inequalities and contains a proof of the above result
(obtained by combining Theorem 2.3 (b) and (c) of that chapter).

We recall that we use BIN(n,p) to denote a random variable which is
the sum of n random 0 - 1 variables each of which is 1 with probability p
and 0 with probability 1 - p.

We say that a property defined in terms of n holds whp if it holds with
probability 1 - o1) as n - co.

By G, we mean a random graph with vertex set Vy, = {1,...,n} where
each edge is present with probability p independently of the presence of the
other edges. Thus, for each graph H with vertex set V,, and m edges the prob-
ability that Gup = H is p™(1 - p)(g)'"‘. In particular, G"-i is a uniformly
chosen random graph with vertex set V;,.

We note that the expected number of edges in G, , is p(7). Further, the
Chernoff Bound can be used to show that unless p = O(1/n%), |E(Ga )| is
whp (1-0(1))p(3). Thus, if we analyze Gy, », then typical graphs have about
p(;) edges. Grm is the random graph on n vertices whose edge set Ey m is
2 uniformly chosen random set, of m of the (3) unordered pairs contained
within {1,...,n}.
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Finally, we note that if we have an algorithm A for an optimization prob-
lem and we run it on a random instance / of size n drswn from some proba-
bility distribution, then the running time of this algorithm on this instance,
R .»(]), is a random variable which depends on 1. We let its expected value
be 74 ». The expected running time of algorithm A with respect to the spec-
ified distribution is a function ER4 such that ERa(n) =74 .

2. Exact Algorithms for Hard Problems

NP-complete problems ate natural candidates for probabilistic analysis, as
the traditional worst-case approach has failed to provide efficient algorithms
for such problems. In this section, we focus on two such problems, Edge
Colouring, and Hamilton cycle. We shall also discuss Graph Isomorphism,
another problem which although not known to be NP-complete, also is not
known to be solvable in polynomial time. As we shall see, it makes little sense
10 speak of appraximation algorithms for any of these problems, as they are
essentially yes-no questions. Thus, the failure to find efficient algorithms to
solve them means that from a traditional viewpoint we are completely at
sea. Qur first step is to find efficient algorithms which solve these problems
whp on uniform random instances, we then present algorithms which have
polynomial expected running time.

Some may criticise as untealistic the assumption that a typical input is
a uniformly chosen graph. However, this is no more unrealistic than the be-
lief that studying the pathological examples constructed in NP-completeness
proofs yields information about typical instances. Furthermore, & standard
paradigm for constructing algorithms which run in polynomial time whp
(though by no means the only one), is to provide an algorithm which works
provided that the input graph has a certain structure and then prove that
G,.1 has the required structure whp. Such proofs are valuable because they
add to our understanding of what it is that makes the problem difficult. For
example, Arora’s famous (1 + ¢) approximation scheme for the Euclidean
TSP({7)) stemmed from Karp’s analysis of the Euclidean TSP for random
inputs which we present in Section 4.2,

2.1 Algorithms Which Almost Always Succeed

2.1.1 Hamilton Cycles. A Hamilton cycle in a graph G is one passing
through all its vertices. Determining if 2 graph has a Hamilton cycle was one
of the first six NP-complete problems reduced to SAT by Karp in his seminal
paper (75]. In this section we show that G|, , has a Hamilton cycle whp and
present a polynomial-time algorithm which whp constructs such a cycle.
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Definition. We call & graph, tractable, if the following conditions hold:

(i) every vertex has between 3 ~ & and § + 5"—0 neighbours,

(i) for every pair {u,v} of vertices, we have - & <INWUNE) <

3n + 8 £,

(i) for every triple {1, v, w} of vertices, we have:
n

F'_ <IN UN@E)UN(w) < _+5_0

We need:
Lemma 2.1. G, i trecteble whp.

Proof. For each pair of vertices {u,v} of G, ), [N(v) UN(u) - u - v| is the
sum of n-2independent random variables ihof which is 1 with probability
1 3 and 0 with probability & 7 Thus, applying the Chernoff Bound, we obtain
that with probability at least 1~2¢~(%-2"/62=2) (ii) holds. Thus, (ii) holds
whp. Similar techniques apply for (i) and (iif), we leave the details to the
reader. 0

We now present a polynomial-time algorithm for constructing a Hamilton
cycle in & tractable graph, which by the above lemma works whp on G,
The algorithm has three phases. Whilst discussing it, we sometimes find it
convenient to confound a path and its reverse.

Phase 1: Path Construction

Construct a path P by iteratively applying the following two rules, until
this is no longer possible.

(i) If some vertex z not on P sees an endpoint v of P, add the edge zv to

Fig. 2.1

(ii) if there are vertices z & P,y, z € P such that P = vP'yzP” and zy,v2 €
E(G) then replace P by the path ryP'v2P".
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Fig. 2.2
We leave it as an exerclse for the reader to show that in a tractable graph,
the final path has at least 22 § — § vertices.

Phase 2: Cycle Construction
Construct a path C by applying one of the following two rules,

(i) If there are vertices z,y € P, such that P = vP'zyP"w and vy, uz €
E(G) then let C be the cycle wzP'vyP"w,

Pn

Fig. 2.3

(ii) if there are vertices z,y € P,such that P = vP'zyP"w'v and vy, w'z €
E(G) then let C be the cycle w'zP'uyP"v'.

Fig. 24
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We leave it as an exercise for the reader to show that in a tractable graph,

this phase is always possible. We note that |C] > %" &L

Phase 3: Cycle Extension

We add the vertices of V - C to C, one or two at a time, until V(C) =V,
according to the following three rules.

(i) If some vertex x not on P sees two consecutive vertices y and z of C
then replace C by C - yz +yz + 12,

>
»~

Fig. 2.5

(i) if there are adjacent vertices z,y ¢ P, and consecutive vertices u,v of C
such that uz, yv € E(G) then replace C by the cycle C-wv+uz+zy+y,

Fig. 2.6

Fig. 2.7

(iii) if there are vertices £ ¢ C and vertices y,z,a,b6 € C such that
C = abP'yzP"¢ and za,1y,b2z € E(G) then replace C by the cycle
azyP'bzPla.
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We leave it as an exercise for the reader to show that in a tractable graph,
this step is always possible {(Hint: If V - C is not & stable set (i.e., if there
are any edges with both endpoints in this set) then we can apply (i) or (ii}).

It is easy to see that each phase of the algorithm can be implemented in
O(n?) time, 50 it is indeed a polynomial-time algorithm as claimed.

Exercise: Show that the above algorithm can actually be implemented
in O(n?) time on tractable graphs (which is linesr in the number of edges).

2.1.2 Edge Colouring. An edge colouring of a graph G is an assignment
of colours to its edges so that no two edges which share an endpoint receive
the same colour, i.e., each colour class is a matching, that is, a graph all of
whose vertices have degree st most one. Clearly, if & graph has maximum
degree A then every edge colouring uses at least A colours. Vizing proved
that every such graph has a 4 + 1 colouring. So determining the chromatic
index of a graph G, i.e. the minimum number of colours used in an edge
colouring, boils down to determining if G has & A colouring. Vizing (109
also proved that if the maximum degree vertices of G form a stable set, then
G has a A colouring. Berge snd Fournier [46] developed a polynomial time
algorithm for constructing a A+ 1 colouring of G. The algorithm provides a
4 colouring provided the vertices of maximum degree in G form a stable set.
In contrast Holyer|66) has shown that determining the chromatic index of a
graph is NP-complete.

In this section, we present the following result due to Erdés and Wilson
44).

Theorem 2.2. Gn‘* has a unigue vertez of mazimum degree whp.
Thus, we obtain:

Corollary 2.3. Berye and Fournier’s algorithm is a polynomial-time algo-
rithm which edge colours G, ; whp.

Proof of Theorem 2.2. To prove the theorem, we need to analyze the
probability distribution on the degrees of the vertices in G,,%. Now, the
degree of a vertex in G, } is the sum of n — 1 variables each of which is 0
with probability ; and 1 with probability §. Thus, the expected degree of 8
vertex of G, y is 254 and

n-1
Pr(d(y) =i) = L), (2.1)

It follows easily (e.g. from the Chernoff Bound) that if we let ¢ = ¢(n) be
the smallest integer such that Pr(d(v) > t} < n~%/5 then provided n is large
enough, 3 <t < 3 +/nlogn, so using (2.1) we obtain:

m
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Pr(dls) > 1) > %Pr(d(v) St=1)> 2, 22)

Thus, we expect at least ’% vertices of G, yto have degree greater than .
So, the following result, which we prove in the next section is not surprising.

Whp there is a vertex of G, | whose degree exceedst.  (2.3)

Now, & simple but tedious First Moment calculation, using (2.1) will allow
us to show:
Whp there is no ¢ > ¢ such that two vertices of G, ; have degree i. (24)

Combining (2.3) with (2.4) vields the theorem, it remains only to prove
(24).

To do so, we note that, by (2.1), for i between ¢ and ¢ + 5 osn , we have:
Pe(d(v)=1) ti{n-1-2)!
= = l - 1 .
Prid)=t) n-1-1) ofl)
Thus,
+5(| un) \/h-
Pr(d(v) >t)> Pr{d( 7 Pr(d(v)=1¢
@9>0> L Prd)=1)> i bld) =0

So, we obtain that Pr(d(v) = t) = O(n~/"%(logn)?).
We can now bound the expected number of pairs of vertices N in G, ;

both of which have the same degree i which exceeds ¢. Let d(v) denote the
degree of uin G,  ~ u. Let d(u) denote the degree of u in G, = . Then

Pr(d(u) = d(v) = 1) < Pr(d(v) € {i - 1,})Pr(d() € {i - L,i})

=Pr(d(u) € {i - 1,i})? < Pr(d(v) € {i - 1,4,i + 1})?
< 9Pr(d(u) =i - 1),
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Hence,
n-1
B()<1() Y (Pra) =
. t4(3y/nlogn)-1 RS
ay) T et} L =0
=t i=t+|3y/nlogn)
n-1l
530(),/111037;(?: )2+9(2) Y (Pr(df)> )
:=t+[3\/ngn;

Applying, our bound on the probability that d(v) = t to the first term
and the Chernoff Bound to the second, we obtain

E(N) = 0(n"(logn)*} + O(n~%) = o(1).

Thus, the probability that for some ¢ > ¢ there are two vertices of degree
1 is also o(1), i.e. (2.4) holds. C

A similar but messier First Moment computation yields the following
result which we state without proof as we need it later:

For j < /n, the probability that there are j disjoint pairs of vertices
{211}, {2;,9;} such that for some d; > ¢,
d, = d(z)) < dly;) < dj + 4is OnI/0), (25)

As we discuss in Section 2.2.3, Frieze, Jackson, McDiarmid and Reed [52]
showed that the probability that G,, ) does not have a A edge colouring
is between (n~“™) and (n~*") for some positive constants ¢, and ¢, (and
n23).

2.1.3 Graph Isomorphism. The input to the decision problem Graph Iso-
morphism is two graphs G) and Gs. The problem is to determine if there is
an isomorphism between them. That is, a bijection [ from V(G;) to V(Go)
such that zy is an edge of G} if and only if f(z)f(y) is an edge of G5. This
problem is neither known to be in P nor known to be N P-complete.

In a probabilistic analysis of Graph Isomorphism, we do not want to
consider an input consisting of two random graphs, as they will whp be
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obviously non-isomorphic because, e.g., they have a different number of edges
or different degree sequences. There are (at least) two ways of dealing with
this problem. The first is to assume that the input consists of & graph G
drawn from the uniform distribution on the n vertex graphs and a second
graph H about which we have no information (the reader may wish to think
of H as chosen by an adversary who has seen G). The second (more studied)
approach is to consider canonical labelling algorithms. A canonical labelling
algorithm assigns to a graph G on vertex set {1,...,n}, a permutation g such
that if two graphs G and H are isomorphic then T, T is an isomorphism
from G to H. That is, & canonical labeling algorithm relabels graphs so that
if the original graphs were isomorphic then the relabelled graphs coincide.

As an example, a canonical labelling algorithm might choose to order the
vertices of the graph so that if /T(4) < [I(j) then i is in more triangles than
7. We note that if no two vertices of G are in the same number of triangles
than there is a unique [T satisfying this condition. Furthermore, if H is
isomorphic to G then there is a unique [Ty satisfying this condition and
[(G) and Iy (H) are the same graph. Of course our canonical labelling
algorithm must also have a way of dealing with graphs in which some pairs
of vertices are in the same number of triangles.

We invite the reader to show that there is a canonical labelling algorithm
that runs in O(n®2") time. We also discuss canonical labelling algorithms
which relabel some but not all graphs. In this case, if the algorithm relabels
G it should also relabel all graphs isomorphic to G.

In this section, we prove a result of Babai, Erdds, and Selkow [§] (for
strengthenings see Karp [72)).

Theorem 2.4. There is & canonical labelling olgorithm which labels G"‘i
whp.

One such canonical labelling algorithm is to order the vertices in non-
increasing order of degree and to order the vertices of the same degree so
that vertices in more triangles come first. We shall not treat this algorithm
here (however, the reader is invited to show that it succeeds whp by showing
that the expected number of pairs of vertices with the same degree and in
the same number of triangles is o(1)). Instead, we treat an algorithm which
orders the vertices in non-increasing order of degree but chooses the order in
the set of vertices of the same degree in a slightly different way.

We need:

Definition. We call a degree unigue if there is precisely one vertex with
this degree. We call a vertex solitary if it has unique degree.
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Lemma 2.5. Whp, the highest [3logn] degrees of G,‘& are unique and no
two vertices have the same neighbourhood on the [3log n] vertices of highest
degree.

Now, the canonical labelling algorithm we consider orders vertices of the
same degree so that if #(4) < n(7) then the highest degree vertex which sees
exactly one of {4, j} sees i but not j. Lemma 2.5 ensures that this algorithm
succeeds whp. Thus the lemma implies the theorem. We prove the lemma
below.

Proof of Lemma 2.5. Let | = [3logn). The key to proving the lemma is
to show:

Whp the [ +1 highest degrees in G,,V; are unique and the difference

between two consecutive degrees is at least five. (26)

We prove this result below. Combining it with the following result proves
the lemma.

The probability that the { + 1 highest degrees in G,,’% are unique and
differ by at least five and two vertices have the same neighbourhood
on the { vertices of highest degree is o(1). 27)

To prove {2.7), we compute the expected number of sets wy, ..., w;, vy, v
inG, ) such that (i) wy, ..., w are solitary vertices with the highest degrees,
the I +1 highest degrees all differ by at least five, and (ii) v; and vy have
the same neighbourhood on W = {w, ..., w;}. We show that the expected
number of such sets is o(1) hence the probability one exists is o(1) and (2.7)
holds.

Now, there are (7)("; I) choices for W, vy, vs. For each choice, we deter-
mine the edges of Gy = G, ; - vy — v. That is, we take a copy of Gﬂ-%
with vertex set V - vy ~ v, élf the [ vertices of highest degree in G are not
distinct then (i) cannot hold, for adding vy and v changes each degree by
at most two and the difference between two degrees by at most four. If the
{ vertices of highest degree in this graph are unique, then for (i) to hold the
vertices with these degrees must be those in W which by symmetry occurs
with probability (',‘)-l. Given that W is the set of high degree vertices in this
graph we see, by considering the edges from v; and vy, that the probability
that (i) holds is 2~/ < . Thus, the expected number of W, vy, vp such that
(i) and (i) holds is (3)(";)(") "n=2) = o(1). So, (2.7) holds as claimed,
we turn now to (2.6).

To prove (2.6), we consider the ¢(= ¢(n)) defined in our discussion of edge-
colouring, As promised in that discussion, we will show that whp, G, 4 has
a vertex of degree greater than ¢. In fact, we will prove that whp it has at
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least 1+ 1 such vertices, which combined with (2.5) for j=1, proves (2.6). We
actually prove 2 much stronger result which we will need later, to wit:

The probability that there are fewer than n vertices of degree greater
than tis O2~"""). (28)

To prove this result, we use “the method of deferred decisions” as de-
scribed in Knuth, Motwani and Pittel (81]. Imagine that we have an assistant
and when we want to know whether an edge uv exists, he flips a fair coin
and if it comes down heads the edge exists, otherwise it does not. We only
do this at most once for each possible pair u,v. The order in which we flip
the edges is as described in the following procedure.

(1) Set i = 1, choose some vertex vy. Determine which edges incident to v;
are present.

(2) ¥4 =n-1stop, otherwise choose the vertex vy in V - vy,..., t; which
has the most neighbours in V; = {vy,...,v;} and determine which edges
between v;41 and V - V; - v,41 are present.

(3) Increment i and return to Step 2.

By analyzing this procedure, we can show:

The probability that there is some i < § such that v;,) has
fewer than § ~ v/ neighbours in ¥, is O(2/7), (29)

Proof. By our choice of v;41, if this occurs, then there are fewer than ﬂ"—{—il -
(n - i)y/n edges between V; and V - V;. However, we expect 1("2—"-2 edges
between the two sets. Using the Chernoff Bound, it is easy to show that
expected number of sets 5 of i < § vertices such that there are fewer than
o) _ (n - 1)y/m edges between S and V - S is O(27"0) ( we leave the
details to the interested reader). The result follows. O

The probability that there are fewer than nth values of i which are less
than 2 such that vy has more than 2 4 (¢ = § + /n) neighbours

inV -Vi-uy 50@Q"). (2.10)

Proof. Fori <, let E; be the event that vi41 has more than M(t-5+
v/n) neighbours in V - V; - ;4. In the first { iterations, we fip coins only
for edges from Vi. Thus, after we choose v;,, the coins for the edges from v;,
to V = V; - v, which determine the edges of E;, are yet to be fipped, an(%
in fact are those flipped in the next iteration. It follows that for distinct ¢
and j, E; and E; are independent for they are determined by disjoint sets of
edges (the coins for which are flipped in different iterations of our procedure
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for generating Gy, ) ). Furthermore, by the Chernoff Bound, the probability
of the event E; is close to n=%/5 and is certainly greater than p = n~%/8,
Applying the Chernoff Bound once more, we obtain that the number of i for
which E; holds is less than %" with a probability which is o(2~"")

Combining (2.9) and (2.10) yields (2.8) thereby completing the proof of
the lemma. 0

We close this section by remarking that combining (2.5) and (2.8) yields
the following result, which we shall find useful:

The probability that there are fewer than % solitary vertices of G with

degree greater than ¢ is 0(2'"'“"). (2.1])

2.2 Polynomial Expected Time

2.2.1 Graph Isomorphism. We now present & polynomial expected time
algorithm for graph isomorphism. The input to the algorithm is & graph G
drawn from uniform distribution on n-vertex graphs and & graph H about
which we have no informetion.

As a last resort, our algorithm uses the brute force O(n*n!) procedure of
testing each of the n! bijections between V(G) and V(H).

Our algorithm also uses two sub-algorithms both of which are reminis-
cent of the canonical labelling procedure in the last section. In the canonical
labelling procedure, we essentially knew the bijection on some subset § of V
(the high degree solitary vertices) and this allowed us to determine the rest
of the bijection, simply by considering N(v)n § foreach v € V - §.

To ease our discussion of extending partial bijections in this manner, we
need some definitions. Let § C V/(G), we say a vertex vin V - § is determined
by S if there isno w € V - § with N(v)n§ = N{w)n §. We let det($)
be the set of vertices determined by S. We need the following deterministic
result:

Lemma 2.6. If § C V(G) and | is a bijection from § to some subset of

V(H), then for any isomorphism f' extending f and for any v € det(S), we

have only one candidate for f'(v) and in O(n?) time, we can either

(i) determine that there is no isomorphism from G to H extending f, or

(i) find o Mjection g from det(S)U S to o subset of V(H) such that any
isomorphism f' extending f corresponds with ¢ on det(S)U 5.

Proof. We leave this as an exercise for the reader. 0
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We need to take this idea one step further. To this end, we say a vertex
vinV - s fized by  if v € det(S) Udet(det(S)). W let fiz(5) be the set
of vertices fixed by S. Applying Lemma 2.6 twice, we obtain:

Lemma 27. If S C V(G) and f is a bijection from § to some 'subset of
V(H), then for any isomorphism f' extending f and Jor anyv € fix(8), we
hae only one candidate for f'(v) and in O(n?) time, we can either

(i) determine that there is no isomorphism from G to H extending f, or

(ii) find o bijection g from fiz(S)U S to a subset of V(H) such that any
isomorphism f' extending { corresponds with g on fiz(§)us.

The probabilistic results we need are:
Lemma 2.8. With probability 1 - O(Z'"mo), the solitary vertices fiz V.

Lemma 2.9. With probabilty 1 - 0(22"6"), every set S of {20log n]
vertices fizes all but at most [20log n] vertices of G.

We prove these results in a moment. First, we show that they imply the
existence of the desired polynomial expected time algorithm.

We will use an algorithm A; which computes the degree sequence of G
and H, ensures that these coincide, sets S to be the set of solitary vertices of
G. sets § to be the set of solitary vertices of H, and lets [ be the bijection
from S to §' such that dg(v) = dg(f(v)). It then determines if S fixes
V(G). If not it halts. Otherwise, applying the algorithm of Lemma 2.7, it
ither determines and outputs that G is not isomorphic to H or extends f
to a bijection ¢ from V(G) to V(H ) such that the only possible isomorphism
from G to H is g. If it returns such a bijection g, it then checks whether or
not g is in fact an isomorphism. 1f s, it cutputs this isomorphism, otherwise
it outputs the fact that G and H are not isomorphic. By Lemma 2.7,. &
answer returned by the algorithm is correlc/tl;, By Lemma 28, the probablhlty
that A, does not give an answer is 02™" ). Itis straightforward to verify
that the algorithm can be implemented in O(n?) time.

We will also use an algorithm Az which first chooses an arbitrary set S
of [20log n] vertices of G. The algorithm then checks if § fixes all buF at
most [20log n] vertices of G. If not it halts. The algorithm next determines
for each set §' of |S| vertices of H and bijection f from 5 to 5’ whether
or not there is isomorphism extending f. If it finds for some 5’ and f that
there s an isomorphism extending f, it returns with the information th'at G
and H are isomorphic. If it determines that for each S and [ there is o
isomorphism extending f then it outputs that G and H are not isomorphic.

For a given §' and f, applying the procedure of Lemma 2.7, A either
determines and outputs that no isomorphism from G to H extends f or

Probabilistic Analysis of Algorithms 51

extends f to & bijection ¢ from fiz(S) U S to 2 subset of V(H) such that
the only possible isomorphisms from G to H extending f also extend g. If
it returns such & bijection g, it then checks whether or not any of the at
most |V - fiz(§) - §]! < [20log ]! extensions of g to bijections from V(G)
to V{H) are isomorphisms. If any of these are isomorphisms, the algorithm
returns that there is an isomorphism extending f, otherwise it returns that no
such isomorphism exists. By Lemma 2.7, an answer returned by the algorithm
is correct. By Lemma 2.9, the probability that A; does not give an answer
is O(22loe m), Tt is straightforward to show that the algorithm can be
implemented so that it spends O(n*[20log n]!) time on each pair (', f) and
hence takes at most O(n/2%€ *12[20log n]!) = o(n®€ %) time in total.

Now, our global algorithm applies A;, then applies A if A; terminates
without a response, and finally applies our brute force algorithm if A, fails
1o provide an answer. By the above remarks, the expected running time of
this algorithm is O(n?) + 02" nfb8 ™) 4 022w np2pl) = O(n?).
Since  random graph has O(n?) edges clearly this algorithm has optimal ex-
pected running time.. We can actually create a canonical labelling algorithm
whose expected running time is O(n?) using similar techniques, see Babai
and Kucera(9] fot a result in this vein.

With our description of the algorithm complete, it remains only to prove
our two probabilistic lemmas

We need the following suxiliary results, all of which can be proven using
simple First Moment calculations:
The probability that there is a set S of [20loga] vertices which
determines fewer than 5 vertices is O(2-7"8"), (2.12)

The probability that there is a set S of %" vertices which
determines fewer than § - 20log n vertices is O(2-1%8™).  (2.13)

The probability that there is a set S of %” vertices which does not
determine V — § is o(2-™/10), (2.14)

Now, Lemma 2.9 follows from (2.12) and (2.13). Lemma 2.8 follows from
(2.12) and (2.14), and (2.11).

2.2.2 Hamilton Cycles. We now present an algorithm DENSEHAM for
Hamilton Cycle that has expected running time which is O(n®). The algo-
rithm uses two sub-algorithms. One, Az, solves Hamilton cycle on any graph
in O(n®2") time and actually finds the cycle if it exists. It is the Dynamic
Programming algorithm of Held and Karp 64]. The other, A; runs in O(n?)
time. It attempts to construct a Hamilton cycle in the input graph. The
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probability that it fails to return 3 Hamilton cycle when applied to Gn.*
is 0(2-"n?). DENSEHAM first applies A, and then applies Az if Ay fails
to find a Hamilton cycle. Clearly, DENSEHAM does indeed solve Hamilton
Cycle, and in fact outputs & Hamilton cycle if one exists. F\mhern?ore, its
expected running time is O(n) + 0(2~"n?)0(2"n’) = 0(n%), as claimed. It
remains only to describe and analyse A; and A;.

A is & simple dynamic programming algorithm which determines for
each subset 5 of V with |S) > 2, and for each pair of vertices {u,v} of §,
whether or not there is a Hamilton path through § with endpoints u and v.
To determine if G has a Hamilton cycle we need then only check if for any
edge uv of G there is a Hamilton path through § = V' with endpoints u and v.
Aq considers the subsets of V i increasing order of size. To determine if there
is & Hamilton path of S with endpoints u and v, it simply checks whether
there is some neighbour v/ of v in S such that there is a Hamilton path of
§ - v with endpoints u and v'. Since the algorithm has already considered
S - v, this can be done via a simple table lookup. We spend O(n) time on
each triple S, 4, v 0 the the claimed running time bound on A holds. With
a little extra bookkeeping we can also construct the Hamilton cycle, we omit
the details.

A, is reminiscent of the algorithm for Hamilton Cycle presented in the
last section. We will show:

Lemma 2.10. Let G te o sufficiently large graph such that

(i) there ezists a set S of af most 12000 vertices such that G- S s tractable,
(i1) the minimum degree of G is af least 2, and
(iii) at most one vertex of G has degree less than 40000.

Then G has a Homilion cycle. Furthermore, given § we can find the Hamilton
eycle in O(nf) time.

We will also show that the probability that G,, , satisfies conditions (1)-

(i) of Lemma 2.10 is 0(3—,2.). Actually we will prove a slightly stronger result
which permits us to use a greedy procedure for finding S.

Definition. A bad sequence of length Lis & sequence {X,, ..., Xi} of dis-
joint subsets of G such that letting G* = G - Uj<; X, we have that for each
i between 0 snd | - 1, either

(a) Xiyy is & vertex v such that |dg: (v) - MQG—'MI > ‘15.,%'“,
' (s
(b) Xiyy i & pair 4, such that [N (1) U Ngs(o)] - 242 > SN,
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(¢) Xiy1isatriple u,v,w such that {|Ng: (w)UNG. (v)UNG: (w)] - ﬂgﬂl >
V(e

50 -

Lemma 2.1, With probability 1~ O(%), G, | has minimum degree 2, has
at most one verter of degree less than 40000, and has no bad sequence of
length §000.

Now, algorithm A; proceeds as follows. It first ensures that G has maxi-
mum degree at least two and at most one vertex of degree less than 40000. If
this is not true, the algorithm terminates with no output. Otherwise, it gen-
erates 8 maximal bad sequence {X,..., X;} of length at most 4000 (i.e. the
sequence either has length 4000 or cannot be extended). This can be done in
O(n*) time because having found {X, ..., X;} we can search for X, simply
by checking whether any of the (3) + () + n sets of size at most 3 in G
satisfy one of conditions (a)-(c) in the definition of bad sequence. If the bad
sequence A; finds has length 4000, it terminates without output. Otherwise,
it sets § = ULIX;, and applies the algorithm of Lemma 2.10 to construct
& Hamilton cycle in G in O(n*) time (we note that G - § is tractable by
the meximality of the bad sequence). By Lemma 2.1, the probability that
A; fails to return a Hamilton cycle is 0(;‘—:) 45 claimed. This completes our
description of A, and DENSEHAM, it remains only to prove the two lem-
mas.

Proof of Lemma 2.11. The probability that a vertex v of G, ! has degree
Dorlis %*,,—‘ Thus, the probability that the minimum degree of G,, yis0or
lis O("T:). The probability that there are two vertices of G, y of degree less

n‘D(i(K)

than 40000 is O((3)(%5—)%) = of27™).

Finally, the probability that some {X,..., X400} i8 & bad sequence is, via
an application of the Chernoff Bound, O((e~"/35)4%0), Hence, the expected
number of bad sequences of length 4000 is o(27"). The result follows, O

Proof of Lemma £.10. The key to the proof is the following auxiliacy
result,

Let H be a graph which is the union of a tractable graph G and a
matching M C G with fewer than 12000 edges. Then provided H is

sufficiently large it has a Hamilton cycle C such that M C E(C).
Furthermore, we can find such a Hamilton cycle in O(n*) time. (2.15)

Proof. The first step in the proof of (2.15) is to find a path Q in H with
M C E(Q) and such that Q has at most 3| M| edges. This can be done greedily
because every two vertices of G have more than § common neighbours. We
then apply Phases 1-3 of the algorithm for constructing a Hamilton cycle
presented in the last section initializing with P = Q, and ensuring that we
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never delete an edge of Q from the path or cycle we create ( this is possible
because Q has only a bounded number of edges; we note that in Phese 2 we
will Yet w be an endpoint of P which is not in Q). |

We turn now to the proof of Lemma 2.10. We enumerate § as 81,..., 5
(with k < 12000) so that s, is the lowest degree vertex of S. We first consider
the case in which 8; has exactly one neighbour z in V - §. In this case, we
know that s, must have a neighbour in S, w.Lo.g. 8;. Since for 1 > 1, s; hes
at least 40000 neighbours, we can find distinct vertices £2,..,Z0, %2, ¥t of
V- such that for i > 3, 8z,, 8 € E(G), 22 = 2, and 833 € E(G). We set
M = {z230, ...z} and apply the algorithm of 2150 H=(G-S)UM.
We let C be the output Hamilton cycle in H with M C E(H). We let C'
be the Hamilton cycle in G with edge set B(H) - M U (Ui_g{zis:, sits}) U
{281,818, $an}-

The cases in which s; has 0 or more than 2 neighbours in V - § are
similar, we omit the details. o

Exercise: Combine this algorithm with our earlier algorithm to develop
an algorithm for Hamilton cycle whose expected running time on G, ) runs
in O(n?) time (and hence is linear in the size of the input).

2.2.3 Edge Colouring, Perkovic and Reed [95] recently developed a poly-
nomial expected time algorithm for edge colouring. Their algorithm is much
too complicated to explain in detail here. The complexity is due to the fact
that the fastest known edge colouring algorithm whigh succeeds on all graphs
has & worst-case running time bound which is O(2™ } on n vertex graphs for
some ¢ > 0. We will briefly outline their algorithm, to do so we need a few
auxiliary results.

We use A(G) for the maximum degree in G.

Definition. H is an l-reduction of G if A(H) = A(G) - | and there ezist
matchings My, ..., M, in G such that H = G - Uf=1M,-. H is o reduction of
G if it is on l-reduction for some |.

Remark. If o reduction H of G has o A(H) edge colouring then G has ¢
A(G) edge colouring.

Definition, A subgraph H of G is over-full if [V(H)| is odd and |E(H)| >
A(G)HL,

Fact. If G contains an over-full subgraph then it has no A edge colouring.
Proof. If H has 2% + 1 edges then the largest matching in H hes k edges. O

Theorem 2.12. [Padberg and Rao] (94] There is a polynomial time algo-
rithm which determines if G has an over-full subgraph.
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Theorem 2.13. [52] The probability that G, | has a reduction H whose ver-
tices of mazimum degree form ¢ stable set is 1 - O(n=") for some ¢; > 0.
Purthermore, there is a polynomial time algorithm which finds such o reduc-
tion and corresponding matchings My, .., My with this probability.

Corollary 2.14. There is a polynomial time algorithm which A edge colours
G,,y% with probability 1 — O(n“*) for some ¢, > 0.

Proof. We attempt to find a reduction H of G whose vertices form a stable
set using the algorithm of the theorem. If we succeed, we apply Berge and
Fournier’s algorithm to edge colour H and then use the matchings M, ..., M;
to colour the remaining edges of G. O

As an aside, we mention the following complementary result:

Theorem 2.15. (52] There exists a c; > 0 such that for n > 3, the probe-
bility that G, } has an over-full subgraph is af least n™c".

Definition. A graph is bipartite if it can be partitioned into two stable sets.
A graph G is near-bipartite if for some vertex v, G - v is bipartite.

Theorem 2.16. (97) A near bipartite graph G is A edge colourable if and
only if # contains no over-full subgraph. Furthermore, there is a polynomial
time algorithm which given o near-bipartite groph either finds en over-full
subgraph or a A edge colouring.

Perkovic and Reed’s algorithm first applies the polynomial time algorithm
of Corollary 2.14 which fails with probability O(n~*") for some constant ¢, .
They then apply the algorithm of Theorem 2.12 to determine if the input
graph has an over-full subgraph. If it does they use the algorithm of Berge
and Fournier to optain a {optimal) A + 1 colouring. There are two more
algorithms which might be applied. The first Cleanup; runs in O(2*) time
and attempts to find & A edge colouring of & graph with no over-full subgraph.
It fails with probability 0(2'”‘1) for some ¢. The second Cleanup is a
dynamic programming algorithm which optimally colours every graph and
has running time which is smaller than the inverse of the probability that
Cleanup, fails. It follows that applying the four algorithms in the given
order yields a polynomial expected time algorithm. We omit the description
of Cleanups. Cleanup, more or less finds a near-bipartite reduction H of the
input graph, and applies the algorithm of Theorem 2.16 to find a A(H) edge
colouring of H. Actually, the algorithm finds a reduetion of a graph which
is derived from the input graph and may have multiple edges. We omit any
further description.
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2.3 Further Results

Hamilton Cycles for Sparse Graphs. As we have seen, finding a Hamil-
tonian cycle in a dense graph is relatively easy. The analysis for sparse graphs
is more intricate but still based on the two procedures used in Phase 1 of our
algorithm for tractable graphs. That is, estension of the path by adding a
neighbour of an endpoint, and rotation of the path P = vP'yP" to obtain
P'vyP". By iteratively applying rotations before extending, Bollobés, Fenner
and Frieze (16] develop a polynomial time algorithm HAM with the property
that for all m = m(n)

lim Pr(HAM finds a Hamilton cycle) = nl'i‘ngo Pr(G,, m is Hamiltonian).

n=00

Frieze [49] proved a similar result for random digraphs.

Research Problem: Develop an algorithm which runs in polynomial
expected time on G, r, for every m.

Graph Colouring. As we shall see in Section 5.1, there is no known
polynomial time aigorithm which optimally vertex colours G,, ; with high
probability. There has been some success in designing elgorithms that whp
optimally vertex colour randomly generated -coloursble graphs, for small
k. The strongest current results stem from the spectral approach of Alon
and Kshale [5). Chen and Frieze (28] used this approach to colour random
hypergraphs. The k-colouring algorithm of Dyer and Frieze (38] optimally
colours in polynomiel expected time.

Min Bisection. We are given a graph G and asked to divide the vertices
into two sets of equal size so as to minimise the number of edges between
them. Most analysis has been concerned with the case where there is a fixed
planted bisection with many fewer edges than expected. Bui, Chaudhuri,
Leighton and Sipser [4] considered random regular graphs and showed how
to find the planted cut in polynomial time whp. Dyer and Frieze [38] did the
same for G, ,, p constant. The strongest results on this problem have been
obtained by Boppana [17] using spectral techniques. Jerrum and Sorkin (68]
analysed 3 version of simulated annealing on G, .

3. Faster Algorithms for Easy Problems

In this section, we discuss the probabilistic anelysis of algorithms for which
polynomial time algorithms are known to exist. Typically, we analyze a simple
algorithm for the problem and show that its expected running time is much
better than its worst case running time. Our three representative examples,
shortest paths, matchings, and linear programming, are the foundations on
which the field of combinatorial optimization is built.

Probabilistic Analysis of Algorithms 57

3.1 Perfect Matchings

Recall that a matching is a set of edges no two of which are incident. A
vertex v is covered by a matching M if it is in an edge of M, otherwise it
is uncovered. A matching is perfect if it covers all the vertices. The fastest
algorithm for determining if a graph with n vertices and m edges has a perfect
matching has & worst case running time of O(n!/*m)[90]. In this section we
describe an algorithm which runs in linear expected time on G, y o, 7 even.
There are two phases. Phase 1 greedily chooses edges and finds a matching of
size n/2 - O(logn) whp. Phase 2 uses augmenting paths of length 3 (that
is repeatedly replaces an edge zy of the matching by two edges wz and y2
where w and z were previously uncovered) to produce a perfect matching
whp.

Recall that V(G, ;) = {1,..,n}.

Phase 1
In this procedure S will denote the vertices not covered by the matching M
produced so far.

In iteration 4, we choose the minimum z; of S and find the smallest
numbered vertex y; it can be matched to (i.e. the smellest y; which is still
uncovered and is adjacent to ;). If there is no such y, € S we terminate
Phase 1, else we add z;y; to M and repeat.

Suppose Phase 1 produces M = {2131, 2232, ., Zp¥p} 8nd that M leaves
Z= {2, 0} 0= %n - p unmatched. Note that for each 4, z; < #.
We set X = {11,..,2,}. We set 2° = min Z.

Phase 2
In this phase we take the members of Z in pairs 231,23, i =1,2,...,¢ and
try to find 2, such that 251z, and 22y are both edges. In which case we
delete edge 2,3, from M and add the edges 25;_;%;, z0iy. For each i we go
sequentially through values of t, starting the ith search at zyy;. If we fail for
some { then the whole algotithm fails.

We now discuss the probability that we fail to find a perfect matching
in Gy, 1/2 this way. Our analysis fits the notion of “the method of deferred
decisions” described in Section 2.1.3.

First consider Phase 1. We claim that in this phase we need only examine
the presence of each edge once. To see this note that in iteration , we only
examine edges from z, to §-z;. But any edge examined in a previous iteration
hes an endpoint z; with § < i and z, is no longer in S, the claim follows.
Furthermore, if we flip the coin for an edge uv incident to some vertex v in
this iteration and find it exists then we add wv to M and will flip no more
coins for edges incident to v in this Phase. Thus if we test for the presence of
t edges incident to v and find none of them exist then these must be the first
t edges incident to v examined, and 5o this occurs with probability (%)l For

P
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£€ 20X and K > 0 we define the event

€ = {{{jle; < € <y}l > Knlogan}.
Then we have:

1. Pr (Ueezw( S() <otk
Proof. For for each § with 2; < £ <y;, we failed to find the edge 2,§. O
2. Pr(3i<p: 4 - > 2K logyn) < 201K,

Proof. For each such 4, either £, occurs or the first X log, n edges examined
in the ith iteration are not present. ]

3. Pr(z* < n-2Klogyn) < 21K,

Proof, If this occurs then either £,- occurs or the first K log, n edges exam.
ined in the final iteration are not present.

Assume next that none of the events described in 1,2,3 above occur and
consider Phase 2. We observe that for any edge ;3 of M we have not flipped
the coin for the edges zik, gk for k >, s0 if g < z* we have not flipped
the coin for z;z or gz for any z € Z. Since 2; < 2, it follows from 2
and 3 that we have not flipped the coins for £,z or yz where 2 € Z and
t < n/3. So when we search for an alternating path of length 3 for the
pair 2y, 25, the probability that we need 3K log, » attempts is (%)SK -
o(n~*). Similarly, the probability that when patching 21, 22i, We need to
examine more than 3K log,, pairs {;, %} is o{n~X). Thus Phase 2 fails with
(conditional) probability o(n~X K logy ).

In summary, this algorithm finds a perfect matching with probability at
least 1 - O(n'~¥) after flipping at most 3Knlogy n coins.

3.2 Linear Programming

It was observed early on that the simplex algorithm and its variants worked
remarksbly well in practice. A theoretical explanation was sought for this
through probabilistic analysis, especially as Klee and Minty (80] had shown
that a standard variant did not run in worst-case polynomial time.

The first average-case results were due to Borgwardt (18 and Smales
(101, 102). The model chosen in (18] is not the most obvious and (101, 102]
requires that the number of constraints be small. Blair [12] later gave a simpli-
fied explanation for the results of {101, 102) — see Section 3.2.1. Further work
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on this problem came through another change of probabilistic model where
randomness is introduced through a random choice of < or > for a particu.
lar constraint. See Haimovich (21], Adler and Megiddo [2], Adler, Karp and
Shamir (1] and Adler, Megiddo and Todd [3]. A recent book by Borgwardt
(19] covers this subject in detail.

There are still unanswered questions in this area: For example, can one
find a reasonable model plus & proof that the algorithm which always chooses
a variable of largest reduced cost to enter the basis runs in polynomial ex-
pected time.

3.2.1 Blair’s Analysis. In this section we prove a simple result based on
the ideas of Blair [12]. The result given here is not as strong but has a much
simpler analysis.

In Blair’s model we have a linear program
Maximise ¢z

Subject to Az > b
z 20

Here A is an (m - 1) X n matrix.

We use the following notation: for a matrix M, My denotes its ith row
and MU denotes its jth column.

It is assumed that b is non-positive but arbitrary (x=0 is & feasible so-
lution) and A,¢ are produced as follows: let A = [ &} have rows indexed by
{0,2,..,m - 1}. We have an m x n matrix B in which no two elements in
the same row are the same. Ay, is an independent random permutation of

the corresponding row B(,-).

Column AY) dominates column A® if A(3, j) > A(3, k) fori =0,1,...,m~
1. It is easy to see that no optimal solution will have z;; > 0 if A is
dominated by some other column.

Several versions of the simplex algorithm have the following property:
No variable corresponding to a dominated column of A enters the basis at
any iteration.

As examples:

- Try to choose a surplus variable to enter, otherwise choose the entering
variable with the largest reduced cost.

- Delete dominated columns at the start.
~ The path following algorithm of {101, 102].

So, if we let L be the number of undominated columns of A, then these

algorithms require at most (“I™ 1) iterations. Below, we sketch a proof of
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Lemma 3.1. whp L < m®mislgn+1é,

If this bound on L holds then
(L +m-1

<M< m.’im2 log log n+17Tm
m-1 /" -
So if m is small i.e. O{(logn)"/?/loglogn) the algorithms take a polynomial
number of iterations whp.

Proof. We actually prove:

E(L) < m2m loglogn+16_ (3'1)

im
From which the result follows. Let & = (”’%) Consider i = 0 and Jet

I, be the index set of the [an] largest elements of Ay, Let I = Moo L.
Then
E(|11) 2 [o™n] 2 2logn.

Exercise: show that Pr(|I| = 0) < L (this is easy if n is m is 2, the gen-
eral case requires iteractives applications of the Hoeffding-Azuma Inequality,
discussed in Chapters 6 and 1).

Any column not in JoUI}U-- Ui,y is dominated by & column with index
in 1. So, using the result of the exercise, the expected number of undominated
columns exceeds the sum of the number of undominated columns in each I; by
at most 1. Letting f(m, n) be the expected number of undominated columns
in & matrix with n columns and m rows each of which is uniformly randomly
permuted, we obtain:

fm,n) < mf(m,on}) + 1.

Checking inductively that f(m,n) < m?™1o8187+1€ yields the desired result
( the 16 in the exponent allows us to assume n is at least 2'%).

3.3 Shortest Paths

Most work in this area has been restricted to that of finding shortest paths
between all pairs of nodes in & complete digraph with independently cho-
sen random non-negative edge weights. More generally, one considers dis-
tributions which are endpoint independent. Loosely, this means that if the
edges leaving a vertex are sorted according to their cost, then the associated
endpoints occur in random order. Spira (103] showed that using a heap in
& version of Dijkstra’s slgorithm [37) gave & solution in O(n}(logn)?) ex-
pected time. This was improved by Bloniarz {13] and Frieze and Grimmett
[51). Moffatt and Taksoka [93) subsequently reduced the expected running
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time to O{n? log n). Recently, Mehlhorn and Priebe 89| show this algorithm
runs in time O(n?logn) whp and not just in expectation. They also give
an O(nlogn) lower bound for the single source problem under & class of
distributions.

Luby and Ragde (85] consider the problem of finding a single shortest
path between a source s and a sink ¢. They show that searching simultane-
ously from both s and ¢ can be efficient on average. For example they give a
©(y/nlogn) time bound assuming sorted edge lists and edge lengths chosen
independently from “reasonable” distributicns.

Spira's Algorithm
For each v € V we keep a list L, of the edges (v,w), w # v sorted in
incressing order of length. It takes O(n? log n) time to produce these lists.
By the assumption of endpoint independence these orderings are random and
independent of each other. We keep pointers p,,v € V which are initialised
to point to a dummy element preceding the first real element of L,.

The algorithm consists of n single source shortest path problems, one
for each v € V. Consider one such problem for some s € V. As usual the
algorithm incrementally produces a set S (initially § = {s}) containing those
vertices v for which a shortest path from s to v has been calculated. For each
v € 5 we keep & value d{v). When v is added to S we have

&(v) = dist(s,v) + meig b, w). (3.2)

We do not immediately update d(v) each time we update S. This saves time
on average.

The algorithm needs a subsidiary data structure Q called a priority queve.
Q admits the following operations: insert an item, delete an item and deter-
mine the item of minimum value. Each such operation takes O(logn) time.

An iteration of Spira's algorithm consists of
1. a) Determine the minimum value d(v) = dist(s, v) + {(v,w) in Q;
Ifw ¢S then
i. Addwto S;
il. dist(s, w) = d(v);
jii. goto 2.
b) Otherwise: move p, one position to the next vertex w' on L,;
¢} Replace d(v) by dist(s,v) + {(v,%’) and update Q; goto 1

2. Currently p,, is pointing to a dummy element of L. Let z be the first
element of L.

3. Put d(w) = dist(s,w) + {(,z) and insert this value into Q.
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It is straightforward to show that this algorithm solves the all-pairs shortest
path problem.

Time Analysis. '
We argue that if || = k then the expected number of times we find w € Sin

Step 1is O(n/(n — k)). Thus the total expected running time for each single
source shortest path problem is of the order

n-1

Z ;‘T_l— logn = O(n{logn)?).
k=1

To explain the bound O(n/(n - k) we need to apply the method of deferred
decisions. In particular, for each vertex v we expose the n — 1 distances
from v without exposing the other endpoints. By the endpoint independent
assumption, every bijection between the other endpoints and the distances
is equally likely. Now, in Step 2 (resp. 1(b)), we do not actually expose the
vertex  (resp. w'), we simply expose the next distance. It s only in Step 1(a)
that we expose the actual vertex name associsted with the distance. Suppose
in Step 1(2) p, points to the tth member of L,. We have already exposed
the names of the first ¢ — 1 vertices on L, and they are all in §. By the
endpoint independent assumption the #th vertex is equally likely to be any
of the remaining 1 - ¢ vertices. Thus, the probability that the ith vertex is in
§ is at most %, conditional on the history of the process so far. The next
iteration of Step 1(a) may involve a different value for v, but this probability
bound remains true. Thus if X is the random number of moves needed to
find a vertex not in S, then

Pr(X >1)< (%)‘

o k T n_l
E(X)Sz_:l(m) REE

The are only a few papers we know of that deal with arbitrary, as opposed
to non-negative weights. Kolliopoulos and Stein (82| modify the Bellman-Ford
dynamic programming algorithm and show that a single source problem can
be solved in O(n?logn) expected time when the distribution is endpoint
independent. Their model allowed negative cycles. Cooper, Frieze, Mehlhorn
and Priebe [35] consider a model in which the arc costs ¢, are generated
from

Cij = —Ui T U+
where v;; > 0. It is assumed that the v;'s are independent, identiFally
distributed, bounded and their common probability function F satisfies
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F'(0) > 0. The ;s are arbitrary and of size O(n/(logn)?). The algorithm
does not see the u's and v's, only the values ¢; ;. They show that & single
source shortest path problem can be solved in O(n?) expected time and an
all pairs shortest path problem can be solved in O(n? logn) expected time.

4. Asymptotic Optimality and Approximation

In this chapter, we change the focus of our probabilistic analysis. We examine
polynomial time algorithms which do not necessarily return optimal solutions
and examine how well they perform on typical instances. We discuss Bin
Packing, the Euclidean and Asymmetric TSP, and disjoint paths problems.

4.1 Bin Packing

In its simplest form we are given z, 23, ..., 2, € [0,1] and are asked to parti-
tion {1,2,....,n} into §y,8s, ...., i such that ZiGS, r,<1forj=12, ..k
and such that k is as small as possible. The elements i € S, are thought of
as being placed in bin j which has capacity 1. Then k is the number of bins
used.

The analysis of bin packing algorithms has proved to be very challenging,
There are many deep results and the reader is referred to a survey by Coffman
and Johnson [33] for further reading.

We now give an accessible result essentially due to Frederickson [47]. Sup-
pose that 11,15, ..., Z, are independent uniform [0,1] random variables. It is
clear that the expected number of bins required is at least E(Z;;l z,) which
is 3. We describe an algorithm FOLD for which the expected number of bins

used is at most 3 +O(y/nlogn} (Fredericson proved the bound 2 + 2n} with
a similar analysis; we make no attempt to optimize the constants).

Leta=1- “%ﬂ
1. Place each element z; > o into a bin on its own. Suppose there are B,
such,
2. Let N =n - By be the number of bins remaining to be packed.
3. Order the items so that 7, <2, < - <zy <@
4 Fori=12,..,|N/2
{8) Put z;,zy .4y imto one binif 2, + Zy_j4y < 1.
{b) Put z;,2x-441 into separate bins if z; + zy_,31 > 1.
Put item [N/2] into a separate bin if N is odd.



64 Alan M. Frieze and Bruce Reed

The desired bound on the expected number of bins used by FOLD is
implied by:

Theorem 4.1. For n sufficently large, the ezpected number of bins packed by
FOLD is at most § + Tlogny/n.

Proof. Each item hes size greater than a with probability 6'% s E(By) =
61og ny/n. We show that for i =1,2,...., |N/2:

(41)

e

Pr(z;+zy-in1 > 1) €

Thus, the expected number of bins used in step 4 is less than % 42 and the
theorem follows. To prove (4.1), we show that:

i+3lognyn, 1
At 20d A Pl g
Pr(z; > — )< ” (42)
and
n-i-3lognyn, 1
Pr(ay-in > L0 L w

To prove (4.2) we note that z; > p = L:”%;m@ if and only if there are
al most 1 items of size less than p. But each item has size less than p with
probability p and so we can apply the Chernoff Bound to obtain the desired
result. We obtain (4.3) via a similar but slightly messier computation. O

4.2 Euclidean Travelling Salesman Problem

One of the earliest and most influential results in the probabilistic analysis
of combinatorial optimization problems was Karp's partitioning algorithm
[73] for the travelling salesman problem in the unit square € = [0, 1)%. Here
we have n points Xy, X2, ..., Xn chosen uniformly at random in C' and the
problem is to find the minimum length tour (ie. Hamilton cycle) through
them, using Euclidean distance to define the distance between points.

We let £(T) be the length of & tour T and let &* = (X, Xz, Xn)
be the minimum length of a tour. We give an outline of a simplified ver-
sion of Karp's algorithm. First we mention the equally important results of
Beardwood, Halton and Hammersley (10}, Their results are stronger and more
general, but in any case they imply that there exists an (unknown) constant
> 0 such that for any e > 0

¢
7 8l > e) =0.

In other words we expect that &* ~ fy/n. Consider the following heuristic:

lim Pr(

n=00
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S

Patch by adding broken edges and deleting edges marked with an x
Fig. 41

Partitioning Algorithm

(a) Divide C into M = m? squates Cy,Cy,....,Cy of size £ x 1 where
m = ey/n for some small € > 0.

(b) Find an optimal tour T; through the points A4; in each C;.

(c) Patch these tours togather to make a tour T as indicated in Figure 4.1.
Let T* be the optimum tour and let £ be the length of the edges and

parts of edges of T* which lie in C;. One can patch these edges to a tour

of A;, see Figure 4.2, at an additional cost of 8t most the perimeter of C..
Therefore

E2O-1 1gich m

The length of the tour T obtained by the patching satisfies
AT <Y UT) +6m. (45)

It follows from (4.4) and (4.5) that



6 Alan M. Frieze and Bruce Reed

——  Edge of optimal tour
Fig. 42
¢ <{T) <€+ 0ey/n.

Since £* ~ By/n whp we see that T is asymptotically optimal.

How long does it take to compute T? Each tour T; can be computed
in time O(|4;*2*') by dynamic programming. Now |4;| has distribution
B = BIN(n,1/M) and so the expected running time for computing all the
T}s is of order

(ZM |22"") ME(B*2%)
(e -g)”
52M(1-All)n§(k)k(k 1)(M2 1) +2'n

n-2 2\ —e?
k_zn("'l)(kd) (M__l) Hen

%n - 1) 2\
() e

A

B
=

-
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This consmut& the main amount of work and so in expected time
0(¢%< ") we can find & solution which is likely to be within 1 + O(e)
of optimal.

Since the appearance of (73] and (10] there has been a great amount of
research effort devoted the analysis of optimization problems in Euclidesn
space. A recent book by Steele {104] is an excellent source for this material.

4.3 Asymmetric Travelling Salesman Problem

The Assignment Problem (AP} is the problem of finding & minimum.weight
perfect matching in an edge-weighted bipartite graph. An instance of the AP
can be specified by an n x n matrix M = (my;); here m,; represents the
weight of the edge between , and y;, where X = {2;,2, ..., z,} is the set
of “left vertices” in the bipartite graph, and ¥ = {1, 3, ..., 4} is the set of
“right vertices."The AP can be stated in terms of the matrix M as follows:
find a permutation o* = o°(M) of {1,2,....,n} that minimizes 5, m; ;5.
Let AP(M) be the optimal value of the instance of the AP specified by M.

The Asymmetric Travelling-Salesman Problem (ATSP) is the problem of
finding a Hamiltonian circuit of minimum weight in a1 edge-weighted directed
graph. An instance of the ATSP can be specified by an n x n matrix M =
(mi;) in which m;; denotes the weight of edge < 4,j >. The ATSP can be
stated in terms of the matrix M as follows: find a cyclic permutation 1* =
(M) of {1,2,...,n} that minimizes Y\ m; ,); here the cycle structure
of a permutation is just the set of cycles formed by the ares < i,7(f) > and a
cyclic permutation is one whose cycle structure consists of a single cycle. Let
ATSP(M) be the optimal value of the instance of the ATSP specified by M.

It is evident from the parallelism between the above two definitions that
AP(M) < ATSP(M). The ATSP is NP-hard, whereas the AP is solvable in
time O(n?).

Karp (74] studied the relationship between AP and ATSP when entries

of the matrix M are independent [0,1] uniform random variables. He proved
the rather surprising result that

E(ATSP(M)) < E(AP(M)) +o(1).

The proof was quite involved and later on Karp and Steele [78] simplified the
argument and improved the error term. Subsequently, Dyer and Frieze [40]
reduced the error term to O((logn)?/loglogn). We give an outline of the
approach from (78]. The first important observation is that the solution o*
of AP(M) will be a random permutation.

Pr(o* (M) = 1) = Pr(0*(02M) = 0301) = Pe(0" (M) = 030,
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where oM is the matrix obtained by permuting the columns of M by o. Note
that M and oM have the same distribution. Thus whp the optimal solution
o* will have O(logn) cycles. See e.g. Bollobds [14].

Karp and Steele then argue that whp the optimal solution to AP(M)
does not contain any edges of length greater than A = K(logn)?/n for some
suitably large constant K > 0. Thus if we remove the edges of length greater
than A from the problem before solving AP(M) then whp we will get the
same solution. This means that we can pessimistically consider the edges not
in the optimal assignment solution to independently have length uniform in
[\,1] as we defer specifying their exact length until after solving the AP.

Suppose that the solution to AP(M) consists of cycles C,Cy,...,Cx
where |Cy| > [Cal > -+ 2 |Ci| where [Cy[ = {n/ logn). The idea is to iter-
atively patch Ci. into a cycle C; formed on the vertices of C,UC, U UG,

A patch involves deleting an edge zy of Ci41 and an edge uv of C; and
replacing them by the edges v, uy to create a single cycle. The algorithm
chooses the patch which minimises the cost my + My If |Ci| = 6 and
|Cis1| = b and Z; denotes the cost of the best patch, then for any £ > 0

Pr(Z,> 2% + ) < (1- €8,

This is because if Z; > 2 + 2 then for every relevant z,y,u, it is not the
case that my, < £+ ) and my, < €+ . In our pessimistic model these events
can be considered independent as they deal with disjoint sets of edges. Now
by assumption ab = 2(n/ logn) and so

Pr(3i: Z; > (logn)/n'’?) = o{1).

Whp there are O(logn) cycles and so whp the total patching cost is
O{(logn)?/n'/%)

4.4 Disjoint Paths

Suppose we are given a graph G = (V, E) and a set of pairs (a;,8:), 1 < £ < K
of vertices. In the Edge Disjoint Paths Problem (EDPP) we want to find
paths P, joining source a; to sinkb; for 1 < < K which are edge disjoint, or
prove it is not possible. In the Vertex Disjoint Paths Problem (VDPP), the
vertices are all distinct and we want vertex disjoint paths. Both problems are
solvable in polynomial time if K is fixed, independent of the input, Robertson
and Seymour (98], but NP-hard if X varies. The problem is interesting for
theoretical and practical reasons; the latter interest comes from its use as a
model for some communications problems.

For random graphs Gy the VDPP was considered by Shamir and Upfal

(100] who gave a linear time algorithm which whp succeeds in finding paths
provided m > 2nlogn and K = O(/n). It should be remarked that here
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the two sets of vertices are fixed before the random graph is constructed.
The problem was also considered by Hochbaum (65 who gave a o{m) time
algorithm when K = O(y/d/ log n), where here and in what follows d = 2m/a
is the average degree. Both algorithms are based on growing disjoint forests
rooted at the sources and sinks until the corresponding trees are large enough
s0 that for each ¢ the tree rooted at a; can be joined to the tree rooted at b;.

The above approach is simple and efficient, but does not address the
problem when the random graph is constructed first and then the sources
and sinks are chosen by an adversary. Suppose 2m/n - logn — o¢ 5o that
Gnm is connected whp. Let D be the median distance between pairs of
vertices in G, m. Then D = O(logn/ log d) whp. Clearly it is not possible
to connect more than O(m/D) paits of vertices by edge-disjoint paths, for
all choices of pairs, since some choice would require more edges than all the
edges available. Also, some restriction on the number of times a vertex can be
a source or sink is necessary. Thus the following theorem of Broder, Frieze,
Suen and Upfal [22] is optimal up to constent factors.

Theorem 4.2. Suppose 2m/n — logn — co. Then there ezist positive con-
stants a and § such that whp, for all A = {a),0s,...,ax},
B = {by,bay . bi} € ] satisfying

(1) K = [amlogd/ logn],
(ii) for each vertez v, |{i : 6, = v}| +|{i : b = v}| < min{dg(v), 8d},

there exist edge-disjoint paths in G, m, joininga; tob;, for eachi=1,2,.... K.
Purthermore, there is an O(nm?) time randomized algorithm for constructing
these paths.

The strategy for proving Theorem 4.2 is quite different from [100] and [65).
First of all the sources and sinks are joined, by a network flow algorithm, to
randomly chosen d;,b;, 1 <1 < K. This has a spreading out effect, similar
to that achieved by the method of Valiant and Brebner [108] for routing
messages in the n-cube. The new sources and sinks are then joined up by
utilizing random walks.

Frieze and Zhao [57) have extended the above ideas to deal with random
r-regular graphs where r is considered to be constant.

The VDPP is discussed in (23]. Using similar idees to those above it is
shown that:

Theorem 4.3. Suppose 2m/n - logn — 0. Then there exist positive con-
stants o, B such that whp, for oll 4 = {ay,03,....,6x},
B ={by,by, ..., b} C [n] satisfying

i) AnB =0,
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(i) |4 = |B| = K < %psd,
(i) [N()N (AUB)| < BIN(), WeeV,

there are vertez disjoint paths P, from o, to b, for 1 < i < K. Furthermore,
there is an O(nm?) time randomized olgorithm for constructing these paths.

Here N(v) is the neighbour set of vertex v. This is again optimal up to the
constant factors a, .

5. Greedy Algorithms

In this chapter, we continue to focus on the average performance guarantees
of algorithms which are sure to run in polynomial time. In particular, we
focus on the expected behaviour of greedy algorithms. These algorithms are
appealing because they are usually fast and easy to implement. we consider
three examples, a greedy algorithm for constructing a stable set, a greedy
algorithm for constructing a matching, and a greedy algorithm for the Knap-
sack Problem.

5.1 Cliques, Stable Sets, and Colourings

We consider the following greedy algorithm for constructing a stable set. Pick
a vertex 7, determine which vertices are not adjacent to z, recursively apply
the algorithm to find a stable set S in the graph induced by these vertices,
and return § + z.

We prove:
Whp the above algorithm finds a stable set of size at least
logy .~ 3logy logyn in G, 4. (5.1)
Proof. The algorithm terminates with  stable set § such that every vertex
of G - S sees a vertex of 5. But it is easy to compute that the number of

such sets (stable or otherwise) with fewer than the given number of vertices
iso(1). 0

For & sharper analysis, see [61]. Now, a classic result, see (14}, states that
Whp the largest stable set in G, | has og, n - 2loglogn - O(1)
elements. (5.2)

Thus the algorithm typically constructs a stable set which is about half
the size of the largest stable set.
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We can analyze our algorithm using the method of deferred decisions. We
note that in constructing the stable set we need only examine edges which
have an endpoint in the stable set. It follows that Gn,i - § is a uniformly
chosen random graph on vertex set V;, - S. So, we can re-apply our algorithm
to rip out a stable set disjoint from S. Repeating this procedure allows us to
colour G with (1+ o(l))@ colours. A besutiful analysis due to Bollobas
(18] which can be found in the third section of the sixth chapter of this book
shows:

Whp the chromatic number of Goyis(1+ o)) g (63

Thus our colouring algorithm uses about twice the optimal number of
colours. To close this section, we mention two open problems.

Research Problem Develop a polynomial-time algorithm which finds 2
stable set of size (} + €)log; n in G, 4 whp, for some constant ¢ > 0.

Research Problem Develop a polynomial-time algorithm which finds a

colouring of G, } using (1~ e)ﬁ colours whp, for some constant ¢ > 0.

5.2 Greedy Matchings

In this section we consider finding large matchings in sparse random graphs.
Recall that the random graph G, ,, has vertex set {1,2,....,n} and m random
edges. The graph is considered to be sparse if m = |cn| for some constant
¢ > 0. In this case Gy, has no perfect matching whp. We leave it as an
exercise to show that, in fact, whp there are a large number of isolated
vertices. This is an interesting case, because &s we have seen, it is easy to find 2
perfect matching when there are many more edges. For such a sparse random
graph the interest is in using a simple heuristic to find 2 large matching which
is close to optimal whp. Researchers have concentrated in the main on the
analysis of greedy heuristics:

GREEDY

begin
Mg
while E{G) #0 do
begin
A: Choose e={u,v} € E
G -G\ {ur}
Me—Mule
end,
Output M
end
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(G \ {u,v} is the graph obtained from G by deleting the vertices u,v
and all edges incident with them, together with any vertices which become
isolated.)

The average performance of GREEDY when the input is random was
first analysed by Tinhofer [35]. He considered its petformance on the random
graph G, , in the dense case where p is fixed independent of n. In this case
it is fairly easy to show that the algorithm produces a matching of size n/2 -
O(logn) whp. In fact the analysis in Section 3.1 essentially yields this result.

Let X = X(n,m) be the random number of edges in the matching pro-
duced by GREEDY applied to G, when the edge choice in statement A
is uniformly random. Dyer, Frieze and Pittel [43] were able to establish the
asymptotic distribution of this variable when m = |cn). In particular they
showed that E(X) = ¢(c)n, where ¢(c) = ﬂﬁ? (and that this variable is
asymptotically normal).

It is possible to modify this algorithm without considerable complications,
30 s to improve its likely performance. Perhaps the simplest modification is
to first choose a vertex v at random and then to randomly choose an edge
incident with ». We refer to this as MODIFIED GREEDY. Dyer, Frieze
and Pittel also analysed the performance of MODIFIED GREEDY in the
same setting as for GREEDY. Let X = X(n,m) be the random number of
edges in the matching produced by MODIFIED GREEDY on G, . Now
the asymptotic expectation increases to E(X) ~ 8(c) where §(c) = 1-
log!g:c"' S ¢(C)

GREEDY and MODIFIED-GREEDY both find matchings which are less
than the maximum by a constant factor. Karp and Sipser [77] considered
a similar greedy type of algorithm which we will call KSGREEDY. Their
algorithm (a) chooses an edge incident to a vertex of degree 1 while there
is one and otherwise (b) chooses a random edge. The algorithmic change is
tiny, but the improvement in performance is spectacular. They show that this
algorithm is asymptotically optimal in the sense that with high probability it
finds & matching which is within o(r) of the optimum size! They also prove
that if ¢ < e then KSGREEDY spends almost all of its time in case (a). The
algorithm is considered to run in two phases, Phase 1 ends when the minimum
degree of the graph that remains is at least two. Note that during Phase 1
the algorithm makes correct choices in the sense that the edges chosen are a
subset of some maximum matching.

Aronson, Frieze and Pittel [6] have undertaken a further analysis of this
algorithm.

- If ¢ < e then at the end of Phase 1, all that is left of the graph is a few
vertex disjoint cycles.
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~If¢> e then in Phase 2, KSGREEDY will match all but about !/® of
those vertices which remain at the end of Phase 1. More precisely, there
exist positive constants ¢y, ¢, 6,b such that if L denotes the number of
vertices which become isolated in Phase 2, then

ein'/*(logn)™® < B(L) < eyn'/*(logn)’. (54)

~ Analysis of the algorithm gives an asymptotic expression for the size of the
maximum matching in Gy, .

Another possible version of GREEDY is MINGREEDY where in Step
4 one chooses a (random) vertex of minimum degree and then a random
neighbour of this vertex. Frieze, Radcliffe and Suen (34] considered the per-
formance of MINGREEDY on random cubic graphs (s graph is cubic if every
vertex has degree three). They proved

Theorem 5.1. Let L, denote the number of vertices left ezposed by the
matching constructed by running MINGREEDY on a random cubic graph
with n vertices. Then there ezist constants dy,dy > 0 such that

din'® <E(Ly) < don'Slogn. (55)

We note that a random cubic graph has a perfect matching whp, see for
example Bollobds [14].

Thus MINGREEDY wusually does very well. Note the common exponent
1/5 in (5.4) and (5.5). This can be explained to some extent by the fact
that near the end of KSGREEDY, when most avoidable vertex isolations are
made, the maximum degree is bounded whp.

In computational experiments MINGREEDY left an average of just over
10 vertices unmatched when run on random cubic graphs with 108 vertices.

5.3 Knapsack Problems

In this section we consider the 0-1 Knapsack problem in which we have n items
1, ..., I, some subset of which we shall put in a knapsack. Each item I; has
an associated weight w; and profit p;. Our restriction is that the knapsack
can hold total weight at most W and our objective is to maximize the profit.
That is, we solve:

n
Maximise Zp,x, {5.6)
1=l

n

Subject to Ew,xj <W (5.7)
1=l
z;=0/1 1<j<n
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Here we analyze a random instance in which the coefficients py, ..., pn,
W}, Uy 8re independently chosen from the unit interval [0,1]. For the
constraint (5.7) to be active but not too strong we let W = fin where
0 < § < 1/2. The following greedy algorithm is likely to have a good asymp-
totic average performance..

Greedy
begin
Order the variables in increasing order of value p; /w;.
§:=0;z; =0forj=1ton;
Forj=1tondo
begin
Ifw <W-Stheng;:=15:=5+w
end
end

The algorithm is known to produce at least a 1/2-optimal solution, but is
likely to do much better. Let Z* denote the optimal value in (5.6), Zyp the
optimal solution to the Linear Programming relaxation and Zg the value of
the solution produced by Greedy. It is easy to see that to obtain an optimal
solution to the linear programming relaxation, we simply take the solution
obtsined by Greedy and put into the knapsack as much as we can of the item
not in the knapsack which maximizes ﬁf Thus,

22262 21p-122"-1. (5.8)

It is easy to derive, as the reader may wish to do, that Zg is £2(n) and hence
by the above equation is a very good approximation to Z* (by e.g. using the
Chernoff Bound to show that there are about % items whose profit is greater
than } and whose weight is less than 1). We present a more complicated
analysis which allows to calculate Z; more precisely. Assuming w; + w; +
“+-+uwy > W (and this is true whp)

[
Zip= ZP; + Py
=l
where 0 < a < 1 and

t+1

t
Zw, towe =W« Zw,.
3=l 1=1

there is a geometric interpretation:

The pairs (w;,p;) are chosen uniformly from the unit square OABC. We
sweep the line OX clockwise starting at OA until we have swept over points
whose w sum exceeds W. Then we stop with OX through a point (wy,py)
where 2; = .
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A X B
¢
¢ . ¢ °
¢ ¢
¢
» O
¢
[ ] ° [ ]
8 ]
° [ ]
0 C
Fig. 5.1

Now consider & fixed 8 and let Ay denote the area of the region Ty to the
left of 0X.
Ag= { # 0<0<r/d
1-<bl r/4<h<n)2
Next let wp denote the expected w coordinate of 8 point chosen uniformly at
random within Ty and let py be the corresponding expected p coordinate.

) wd 0<h<r/d
W = %%nﬂfﬂﬁﬂ/? C = cothd

L 0<h<n/d
Po= 20;;{0713 ”/4 < 9 < 7r/2

The expected weight w(Tp) of points falling in Ty is nAgwp. Define f, by
Ag,uwg, = §. Applying a simple standard concentration result (e.g, the
Hoeffding-Azuma Inequality, see Chapter 6) we obtain that for any §

Pr(fu(Ty) - nAgup| 2 1) < 271"

and
2
Pr(|p(Ty) - nAgpe] > t) < 2e72/
It follows that whp
Z1.p = ndg,pg, + Ofwn'/?) (5.9)
for any w — 0.
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It follows from (5.8) and (5.9) that whp 2 is a good approximation to
2.
This is fairly simple. Lueker [86] proved a much deeper result.
E(Zip - 2°) = O{llogn?/n).

He did this basically by showing that whp there exists a good integer so-
Jution obtainable by changing a few (O(logn)) values of z; in the optimal
linesr program. Goldberg and Marchetti-Spaccamela (18] used this to define
a simple enumerative search with the following property: for any ¢ > 0 there
is an O(n®) time algorithm which solves this model of a knapsack problem
ezactly with probability at least 1 - ¢.

Subsequently Dyer and Frieze [39, 41] extended this approach to multi-
dimensional knapsack problems and generalised assignment problems with a
bounded number of constraints.

Mamer and Schilling [87) established probabilistic approximation results
for multi-dimensional knapsack problems with the number of constraints
growing with n.

Related problems
In the Subset-Sum problem we are given a;,a3, ..., 4, b and asked to decide
if there exists a subset § C {1,2,...,n} such that a($) = ¥, cca = b.
This has some cryptographic applications. Lagarias and Odlyzko [83] gave
a lattice based algorithm for solving this problem when the a; are chosen
independently from {1,2, ....,2"'} and b = ;¢ a; for some unknown set
S*. Frieze [50] gave & simplified analysis of their result.

In the Partition problem we are given ¢, 6, ...., 8, and asked to find the
set S which minimises [a(S) - a(S)|. Assume that @)@, ..., 8, are chosen
independently and uniformly from [0,1]. It is known that whp this minimum
is of order n2™", see Karmarkar, Karp, Lueker and Odlyzko (71]. On the
other hand, Karmarkar and Karp [70] gave an algorithm which whp finds 8
set $ with |a($) - a(3)| < (logn)~c18™ for some constant ¢ > 0. They gave
another more elegant and natural algorithm and conjectured that it had the
same performance. This was recently verified in  lovely paper by Yakir (110].

6. Negative Results

In this chapter, we focus on results which show that algorithms are typically
inefficient or that problems are usually hard. Actually, we devote almost all
of our discussion to the first of these topics. To begin we present a proof that
2 certain branch and bound algorithm for the knapsack problem takes super-
polynomial time whp on a random example drawn from a specific probability
distribution. We then present less detailed discussions of similar results for
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the quadratic assignment problem and the k-median problem. Finally, we
survey some other results in this vein.

Showing that problems are difficult on average is much harder than show-
ing that a certain algorithm is typically inefficient. In particular, if we show
that an NP-complete problem is difficult on average then we can deduce that
P # NP. The best we can hope for is to prove “on-average” completeness
results analogous to those developed for NP. This theory is outside the scope
of this paper, and uses a very different notion of “average”. For these reasons,
we content ourselves with giving the address of a web-site dedicated to the
theory, and s quote from some introductory material posted on the web-site.
The web-site is:

http:/ /www.uncg.edu/mat/avg.html
The quote is:

Despite many years of intensive effort, there are no known efficient al-
gorithms for NP-complete problems, where by efficient we mean algo-
rithms that are fast in the worst case. Due to this striking gap in our
knowledge, the search for algorithms that are “efficient” according
to various more modest criteria has attracted increasing attention.

One particularly interesting criterion is that of requiring problems be
solvable quickly “on average." That is, one can solve NP-complete
problems via algorithms that, although possibly very slow on some
inputs, are fast on average with respect to some underlying proba-
bility distributions on instances. Algorithms that are fast on aver-
age have been found for several NP-complete problems, such as the
vertex colouring problem and the Hamiltonian path problem, under
commonly used distributions on graphs.

However, there also are NP-complete problems that have so far re.
sisted such “average case” attacks. Are these problems difficult on
average? What does it mean for a problem to be difficult on average,
and how is one to know whether a problem is difficult on average? In
his seminal paper [84] , Levin initiated the study of these questions.
Two fundamental and robust notions were defined along lines similar
to (standard, worst-case) NP-completeness theory. Namely, he intro-
duced the notion of average polynomial time for messuring “easiness”
on average and the notion of average-case NP-completeness for mea-
suring “hardness” on average. Levin then showed that a tiling prob-
lem i3 average-case NP-complete if each parameter of an instance is
randomly selected. This framework has been studied and enhanced by
2 number of researchers and several more average-case NP-complete
problems have been found. Such average-case completeness results,
as indicated by Levin [84), may not only save misguided “positive”
efforts-such as trying to find fast-on-average algorithms for problems
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that probably lack them-but might also be used in aress (like cryp-
tography) where hardness on average of some problems is & frequent
assumption,

6.1 Knapsack

The simplest method for solving & 0-1 Knapsack problem is to compute the
weight and profit of each subset of the items and choose the highest profit
subset that fits in the knapsack. We can enumerate all these possible solutions
in a systematic way with the aid of a complete binary tree of height 1 as shown
in Figure 6.1 Each path of the tree from the node to the route corresponds
to a partial solution where if we branch right at height i then item i is in the
solution and if we branch left at height i it is not.

0 (Y (R} (B} {0} {hB) k) {hdnis)

Fig. 6.1
A complete enumeration tree.

More generally, we cau construct an enumeration tree T which is a com-
plete binary tree of height n such that

(i) every node s corresponds to a partial solution consisting of a subset Sy
of the items and a partition of S, into two sets P,, those which we intend
to put into the knapsack, and @, those which we do not intend to put
in the knapsack.

(ii) If r is the root of the tree S, is empty, and for each non-leaf node ¢ with
right child 5" and left child s' there is an item I, not in §, such that
Sp=84=8+1;, Pa=P, Pr=P+1I.

See Figure 6.2 for an example: Thus, in our original enumeration tree e
insisted that if two nodes s and ¢ have the same level then J, = I, & condition
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we now drop without losing the bijection between the leaves and the subsets
of the items.

0 {12} {ht {253} (h}  {hda} (i) {hofs)

Fig. 6.2

Now, in generating all the candidate solutions, we do not need to construct
the whole tree. For example, if there is a node s such that Zycp w(l) > B
then for every leaf ! in the subtree T, underneath s, since P, C P, P, does not
fit in the knapsack, so there is no point exploring T,. More generally, there is
1o point in exploring the subtree underneath a node if we know there is no
optimal solution underneath this node.

In & branch and bound algorithm for the 0-1 knapsack problem, we gen-
erate some partial subtree of a complete enumeration tree whilst ensuring
that one of its leaves corresponds to an optimal solution. We begin with the
root, and repeatedly branch out from the tree constructed so far by adding
two children at some leaf {. Throughout the algorithm, we have a set of ac-
tive leaves of the current tree, which are those underneath which we intend
to search. We must ensure that at all times, there is some optimal solution
lying in & subtree underneath an active leaf. Initially, the toot is active, and
when we branch (from an active leaf), the two new leaves become active. We
may make a leaf | inactive for either of the following two reasons:

(i) An already explicitly computed solution has at least as good a solution
value as the best solution in 7j, or

(if) there is another active leaf !’ such that for any solution corresponding to
@ leaf of T there is a leaf of Ty which corresponds to a solution which is
at least as good.

We continue growing the partial enumeration tree, as long as there are
any active leaves which are not also leaves of the complete enumeration tree,
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making leaves inactive whenever we can. Obviously, the best solution corre-
sponding to a leaf of our partial tree is an optimal solution to the knapsack
problem. Qur hope is that the pruning due to (i), (ii), and a clever choice
of the items on which we choose to branch, will restrict the partia] tree to a
reasonable size.

13 in

Iy out Ihin I7 out {7 in

Fig. 6.3
A partiel enumeration tree.

We remark that this technique clearly generalizes to other optimization
problems. In particular, it is often applied to (-1 programming problems, in
which case to compute a bound on the best possible solution in T we usually
consider the fractional relaxation of the integer program. For example, we
remark that in our knapsack problems, for any node s of the partial tree, a
solution corresponding to a leaf of T, hes profit at most B, = 3, .p pi +

(B~ ¥y ¢p, wi)mazsgp, () , because any fractional solution with 2; = 1
for each I1 € P, will generate at most this much profit. Thus, if By is less
than the profit of the optimal solution found so far, then we can make s
inactive. The results in Section 5.3 can be reinterpreted as stating that using
this pruning procedure, and always branching so as to maximize 2 for the
item I; on which we branch, for sufficiently small ¢, we obtain the optimal
solution in polynomial time with probability 1 - €.

We turn now to a specific 0-1 knapsack problem and a refinement of this
branch and bound algorithm. We insist that the weights and costs and B are
ll integers. We note that in this case, we can improve the above remark and
obtain:

For any node & of the partial tree, let d be the greatest common divisor of

the weights of the items not in P,. Then a solution corresponding to 8 leaf
(B- Z wi

of Ty, has profit at most: C, = ). pi+d {—i

B) (6]
Py max(G) 1)
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We denote by OPT the best solution found to date by the algorithm. We
will make a node { inactive if:

(A) Zrepwi> Byor
(B) Gi<OPT, ox

(C) there is an active leaf I" such that §; = Sy, £y epw; 2 £y ¢p,w;, and
Eierd S Tiendy

We remark that for any |,/ asin B, if P, + X is the set of items put in
the knapsack for some feasible solution corresponding to a leaf of T}, then
Py + X is at least as good a solution and corresponds to a leaf of 7. This
justifies our making [ inactive.

We apply this algorithm to knapsack problems in which the costs and
weights are equal and B is the sum of the weights divided by two and rounded
down. Thus, we are considering a generalization of the partition problem.,
and an optimal solution can have profit at most B. Now, since & = [ for
all 1, we only apply (B) at 2 node if the corresponding d exceeds 1, or we
find a solution of value B. Further we only apply (C) at a node ! if there is
another node I such that: §; = Sy, and Liepwj = Lrep,w; (note that by
construction if §; = Sy, we must have P, # Py).

We choose o random knapsack instance of this type by choosing each
w; = p; to be a uniform integer between 1 and 10%, and then setting B =

{—'g‘ij. We prove a theorem of Chvatal, originally proven in (30).

Theorem 6.1. Whp none of the 27"/'" nodes in the first I layers of the
tree are made inactive. Hence, whp the algorithm takes e:cponenttal time.

Proof. Whp the following properties hold:

Property 1. there does not exist a set of 3 items the sum of whose weights
exceed B,

Property 2. there do not exist two distinct sets of items with the same weight,

Property 3. there does not exist a set of items the sum of whose weights is
B,

Property 4. no integer d greater than 1 divides more than % of the items.

Now, if Property 1 holds then we never apply (A) to 8 node in the first
{5 Jevels. Similarly, if Properties 3 and 4 hold then we never apply (B) to a
node in the first J levels. Finally, if Property 2 holds then we never apply
(C) to a node in the first & levels. So, this result implies the theorem, we
leave its proof as an exercise in applying the First Moment Method. 0
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6.2 k-Median

We have a set X of n points {X1,Xy,..., X, } with distance d;; between
X, and X;. The k-median problem is to find a set § C X, |X| = k which
minimises 3, 4(X;, S) where d(X;, $) is the minimum of d, ; over j € S.
As an integer program this can be expressed

Minimise Yo, 37, di j%i; |

Subject to Yomg=1 1<ign

i;ﬂ/j =k

0S5, Syl 1<hiSn
ye{0l} 1<j<n

The strong linear programming relaxation is obtained by removing the inte-
grality constraint on the y;'s. In practise this has been very useful a linear
programming relaxation for branch and bound algorithms. Nevertheless a
probabilistic analysis in Ahn, Cooper, Cornuéjols and Frieze (4] shows that
in severa) probabilistic models, including points chosen uniformly in the unit
square, the number of branches needed in such a branch and bound algo-
rithm is whp at least n°* for some constant a, provided k/ logn — o0 and
k = o{(n/logn)"/?). Thus in this case & probabilistic analysis does not gel
with computational experience.

6.3 Quadratic Assignment

Here we have n items which have to be placed in n positions, one item to
a position. There is a cost 8; j 5., associated with placing item i in position
p and item j in position g. The total cost is the sum of these costs and the
problem is to

Minimise 37_; 11 Ypt Loct Gripatiatia

Subject to Egﬂz,_, =1 1<ign
Z,=1x,-,p =1 1<psn
Tup =0/1 1<ip<n

This is & rather difficult problem and many branch and bound algorithms
are based on (i) replacing the terms z, ;¢ by new 0/1 variables ; ; , o and
adding suitable linear constraints to make a linear integer program, and then
(ii) relaxing the integrality of the y; ;5.4 to give a linear program (often this
is only done approximately).

Assume that the g ; ., are independent uniform [0,1] random variables.
The expected optimum value then becomes ~ n?/2 - see Section 7.2. Dyer,
Frieze and McDiarmid [42) show that the expected value of the linear relax-
ation described above is at most 5n + O(1), i.e. there is a severe duality gap
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problem. Not unexpectedly, they go on to show that as a consequence, any
branch and bound algorithm based on using the LP relaxation for & bound
will whp require an exponential number of branches to solve the problem.

6.4 Further Results

The first result giving bounds on the average-case complexity of branch and
bound type algorithms are due to Chvatal and concern the maximum stable
set problem {29]. Further results on this problem are given in Jerrum {67) and
in Pittel (96]. McDiarmid |88 obtained difficulty results for vertex colouring.
Perhaps the most impressive result of this type concerns the well-known
resolution rule for Satisfiability. Chvatal and Szemeredi [32) showed that it
will take exponential time whp for an appropriate probability distribution.

7. Non-Algorithmic Issues

The performance of some of our algorithms may be highly sensitive to the
probability distribution which we use. We present two examples here, con-
cerning the asymmetric TSP and SAT. We also present results in the opposite
direction, which show that for some problems, an algorithm’s performance
is essentially independent of which input it is given. Le. we may show that
under some probability distributions, the algorithm will get close to the same
answer on all but a tiny fraction of the inputs. As an example we consider
the quadratic assignment problem.

7.1 Thresholds

7.1.1 Satisfiability. Given a boolean formula w in conjunctive normal form,
the satisfiability problem (SAT) is to determine whether there is a truth as-
signment that satisfies w (see Chapter 1 for a longer definition). Since saT
is NP-complete, one is interested in efficient heuristics that perform well “on
average,” or with high probability. The choice of the probabilistic space is
crucial for the significance of such a study. In particular, it is easy to decide
SAT in probabilistic spaces that generate formulas with large clauses [39. To
circumvent this problem, recent studies have focused on formulas with ex-
actly k literals per clause (the k-SAT problem). Of particular interest is the
case k = 3, since this is the minimal k for which the problem is NP-complete.

Let Vy be & set of n variables. We define & uniform probability space

8 on the set of all m = |en] clause formulae over the variables which
have exactly k literals per clause.
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Most practical algorithms for the satisfiability problem (such as the well-
known Davis-Putnam algorithm [36]) work iteratively. At each iteration, the
algorithm selects a literal and assigns it the value 1. All clauses containing this
literal are erased from the formula, and the complement of the chosen literal
is erased from the remaining clauses. Algorithms differ in the way they select
the literal for each iteration. The following three rules are the most common
ones:

1. The unit clause rule: If a clause contains only one literal, that literal must
have the value 1;

9. The pure literal rule: If a formula contains a literal but does not contain
its complement, this literal is assigned the value 1;

3. The smallest clause rule: Give value 1 to a (random) literal in & (random)
smallest clause.

Broder, Frieze and Upfal (21] analysed an algorithm based entirely on the
pure literal rule. They showed that when & = 3 the pure literal rule alone is
sufficient to find, with high probability, a satisfying assignment for a random
formula w € .Q,(,?_)n, for ¢ = m/n < 1.63. On the other hand, if ¢ > 1.7, then
the pure literal rule by itself does not suffice. The gap between 1.63 and 1.7
has been closed by Brightwell, Broder, Frieze, Mitzenmacher and Upfal [20].
In fact if ¢ is the solution to

-1
{1 —!)1/2 + exp (m) -1=0,

1
R T
then then the pure literal rule is sufficient whp when ¢ < ¢ and the pure
literal rule will almost surely be insufficient when ¢ > cp.

Chao and Franco [26],[27), Chvétal and Reed [31] and Frieze and Suen
156) analysed based on the small clause rule:

and

begin
repeat
choose a literal z;
remove all clauses from w that contain z and remove Z from any
remaining clause;
if a clause becomes empty - HALT, FAILURE;
until no clauses left;
HALT, SUCCESS
end
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In particular, in the case of 3-SAT Frieze and Suen showed that if ¢; &
3.003 is the solution to the equation

3c - 2logc =6 - 21og(2/3),

then a small clause rule combined with some limited backtracking is enough
to find a satisfying assignment whp whenever ¢ < ¢;. From the other end
it is easy to show that if ¢ is sufficiently large then then whp there is no
satisfying assignment. There have been several attempts to estimate how
large is large. Kamath, Motwani, Palem and Spirakis [69] showed that 4.758
is large enough for 3-8AT and subsequently Kirousis, Kranakis and Krizanc
[79] reduced this to 4.598. Experimental evidence [92} strongly suggests that
there exists a threshold 4, such that formulas are almost surely satisfiable for
¢ < v and almost surely unsatisfiable for ¢ > +y, where 7 is about 4.2, This
has not been proven rigorously, but such a threshold (namely ¢=1) is known
to exist for 2-CNF formulas (58, 31]. On the other hand, Friedgut 48] has
shown that there is a sharp threshold c,, for each n. We refer the reader to
the paper for an explanation of what this means. Basically, the question now
is as to whether ¢, tends to a limit as n — o,

7.1.2 The Asymmetric TSP. In this section, we consider the ATSP where
each cost is 8 uniform integer between 0 and k, for some integer k,. If k, <
7@ then a variant of Karp and Steele’s algorithm can be used to show
that some optimal AP solution can be patched to an optimal ATSP solution
using only zero cost edges. Frieze, Karp and Reed [55] using a more involved
argument, showed:

0 whp ifLy/n—0
ATSP-AP=1(0 withprob.>e>0if L,=en
>0 whp if Ly/n— oo

Their work wes partially motivated by computational results of Miller
and Plekny[91).

Research problem: Determine the relationship between the optimal
solutions for AP and ATSP when k,, = cn.

Research Problem: Show that for k, sufficiently large, the Branch and

Bound procedure of Miller and Plekny which is based on Karp and Steeles
algorithm, takes exponential time whp.

7.2 Concentration

Concentration inequalities generalizing the Chernoff Bound are discussed in
Chapter 6 (particularily useful is the Hoeflding-Azuma Inequality). They can
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be used to show that for many optimization problems, the optimal solution
values of the instances of size n are heavily concentrated around the expected
value of the optimal solution. In Section 3 of Chapter 6, such a result is pre-
sented for Bin Packing, Section 4 of that chapter presents similar results for
the Euclidean TSP and another geometric problem: Minimum Cost Steiner
Tree.

There are cases where such an analysis can lead to counter-intuitive results
which make near optimization a trivial exercise whp. We close this chapter
with one such result.

Consider the Quadratic Assignment Problem (QAP) defined in Section
6.3. As we have seen any branch and bound algorithm based on a natural
linear programming relaxation will take exponential time whp. On the other
hand, we see next that whp one cannot avoid finding a solation which is near
optimal.

Fix an assignment x = (z; ;) and let

an n N

I = z z Z Z 8ipa%ip%50

i=1 j=1p=l =1

The values a;;,, are independent uniform 0,1]. Hence, for a fixed x, the
random variable Z, has mean

n n 2
E(Z,) - %Zzzznmq =%

i=] j=1p=1¢=1

Z, is the sum of n? independent random variables (6;;p.q : p = 234 =
1) and so a standard analysis (in fact a straightforward application of the
Hoeffding-Azuma inequality) yields:

Pr{|Zy-n}/2 2 1) <e X%

for any ¢ > 0. In particular, if ¢t = wn®\/logn where w = w(n) — oo then

we have 2
Pr(lzx - n2/2| > wn3/2 logn) < e-?w nlogn.

Now there are only n! solutions to QAP and so
Pr(:'lx: |ZJl - 2/2' > wnd/?, /logn) < n!e-wznlogn -0,

Our conclusion therefore is that whp everysolution to QAP has an objective
value in the interval [n?/2 -wn®?y/logn, n?/2+wn®? /logn| and taking any
w = o{(n/ logn)!/?) we see that anysolution is within 1+0(1) of the optimum,

This was first observed by Burkard and Fincke [24]. More recent examples
of this phenomenon are given by Barvinok [11] and Szpankowski [105}.
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1. Introduction and Terminology

A randomized slgorithm makes random choices during its execution. The
behavior of such an algorithm may thus be random even on a fixed input.
The process of designing and analyzing a randomized algorithm focuses on
establishing that it is likely to behave “well” on every input. The likelihood
in such a statement depends only on the probabilistic choices made by the
algorithm during execution and not on any assumptions about the input. It is
especially important to distinguish a randomized algorithm from the average-
case analysis of algorithms, where one analyzes an algorithm assuming that
its input is drawn from a fixed probability distribution. With a randomized
algorithm, in contrast, no assumption is made about the input.

Two benefits of randomized algorithms have made them popular: sim-
plicity and efficiency. For many applications, a randomized algorithm is the
simplest algorithm available, or the fastest, or both. Below we make these
notions concrete through a number of illustrative examples. We assume that
the reader has had undergraduate courses in Algorithms and Complexity, and
in Probability Theory. A comprehensive source for randomized algorithms is
the book by the authors [51]. The articles by Karp [19], Maffioli, Speranza,
and Vercellis [23] and Welsh [45] are good surveys of randomized algorithms.
The book by Mulmuley (27] focuses on randomized geometric algorithms.

Throughout this chapter we assume the RAM model of computation, in
which we have a machine that can perform the following operations involving
registers and main memory: input-output operations, memory-register trans-
fers, indirect addressing, branching and arithmetic operations. Each register
or memory location may hold an integer which can be accessed as a unit, but
an algorithm has no access to the representation of the number. The arith-
metic instructions permitted are +,—, x, /. In addition, an algorithm can

* Supported by an Alfred P. Sloan Research Fellowship, an IBM Faculty Part-
nership Award, an ARO MURI Grant DAAH04-96-1-0007, and NSF Young In-
vestigator Award CCR-9357849, with matching funds from IBM, Schlumberger
Foundation, Shell Foundation, and Xerox Corporation.
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compare two numbers, and evaluate the square root of a positive oumber. In
this article E(X) will denote the expectation of a random variable X, and
Pr(A) will denote the probability of an event A.

1.1 Organization of This Survey

One of the principal ways of classifying randomized algorithms is to think of
them as either Monte Carlo algorithms or as Las Vegas algorithms . A Las
Vegas algorithm must terminate with the correct answer on every instance;
the random choices it makes only influence its running time. We consider a
Las Veges algorithm to be efficient if its expected running time is polynomial
in the size of the input. A Monte Carlo algorithm, on the other hand, can err
on a given execution. Typically, we are interested in Monte Carlo algorithms
that run for a number of steps that is polynomial in the size of the input.
The key is to give an upper bound on the probability that the Monte Carlo
algorithm errs; this bound should hold for every input. Thus, a Monte Carlo
algorithm errs only because of “unlucky” random choices it makes. Moreover,
independent repetitions of a Monte Carlo algorithm can be used to make the
probability of error on all repetitions be very small

The sorting algorithm of Section 2, as well as the game-tree evaluation al-
gorithm of Section 3, are Las Vegas algorithms. The fingerprinting algorithms
of Section 6, on the other hand, are Monte Carlo algorithms. Section 4 consid-
ers the issue of proving lower bounds for randomized algorithms; the general
technique introduced there borrows from game theory. A common technique
for proving the existence of combinatorial objects with desired properties is
the probabilistic method ; this is described in Section 5.

2. Randomized Sorting

Consider sorting a set S of n numbers. The main idea behind these algorithms
is the use of random sampling: a randomly chosen member of S is unlikely to
be one of its largest or smallest elements; rather, it is likely to be “near the
middle.”

Algorithm RandomQ$ is inspired by the Quicksort algorithm due to
Hoare [14]. We assume that the random choice in Step 1 can be made in unit
time. We now analyze the ezpected number of comparisons in an execution of
RandomQS. Comparisons are performed in Step 2, in which we compare 2
randomly chosen element to the remaining elements. For 1 < i < n, let §,

An Qverview of Randomized Algorithms 95

Algorithm RandomQS$:

Input: A set of numbers S.
Output: The elements of S sorted in increasing order.

1. Choose an element y uniformly at random from $: every element in S has
equal probability of being chosen.

2. By comparing each element of S with y, determine the set S; of elements
smaller than y and the set S; of elements larger than y.

3. Recursively sort $) and . Output the sorted version of $y, followed by 4,
and then the sorted version of S.

denote the element of rank (the ith smallest element) in the set 5. Define X;;
to assume the value 1 if ;) and S are compared in an execution, and the
value 0 otherwise. Thus the total number of comparisons is 3°0_, 1., Xij.
By linearity of expectation the expected number of comparisons is

E(). ) Xy)=) ) E(Xy) 21

=l §>i i=] j>i

Let p;; denote the probability that S and S;) are compared during an
execution. Then

E(X;)=pi x 14+ (1 -p;;) x0=p. (22)

To compute p;; we view the execution of RandomQS ss a labeled binary
tree T. Each node of T is labeled with a distinct element of §. The root of
the tree is labeled with the element y chosen in Step 1, the left subtree of y
contains the elements in S) and the right subtree of y contains the elements
in $3. The structures of the two subtrees are determined recursively by the
executions of RandomQ8 on 5 and 5;. The root y is compared to the
elements in the two subtrees, but no comparison is performed between an
element of the left subtree and an element of the right subtree. Thus, there
is a comparison between S;) and S if and only if one of these elements is
an ancestor of the other.

Consider the permutation 7 obtained by visiting the nodes of T in in-
creasing order of the level numbers, and in & left-to-right order within each
level; recall that the ith level of the tree is the set of all nodes at distance

exactly ¢ from the root. The following two observations are the core of the
analysis:

1. There is a comparison between Sy and S if and only if S, or §;)
occurs earlier in the permutation 7 than any element Sy, such that i <
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€ < j. To see this, let Sy be the earliest in 7 from among all elements
of rank between i and 7. If k ¢ {1, }, then S, will belong to the left
subtree of Sy while Si;) will belong to the right subtree of Sy, implying
that there is no comparison between Si;) and ;). Conversely, when
k € {i, }, there is an ancestor-descendant reltionship between 5 and
S;)» implying that the two elements are compared by RandomQS.

2. Any of the elements S, i1y, -, Syj) is equally likely to be the first
of these elements to be chosen as a partitioning element and hence to
appear first in 7. Thus, the probability that this first element is either
S ot Sgj) is exactly 2/(j - i +1).

Thus, pi; = 2/(j - i+1). By (21) and (2.2), the expected number of
comparisons is given by

n n

2
Yl =LY
i=] 1>t i=] J>zJ

n-1n-i

It follows that the expected number of comparisons is bounded above by
2nH,, where H, is the nth Harmonic number, defined by H, = ¥,_, 1/k.

Theorem 2.1. The expected number of comparisons in an eecution of Ran-
domQS is at most 2nH,.

Now H,, = Inn+6(1), so that the expected running time of RandomQ$
i8 O(nlogn). Note that this expected running time holds for every input. It
is an expectation that depends only on the random choices made by the
algorithm, and not on any assumptions about the distribution of the input.

3. Foiling an Adversary

A common paradigm in the design of randomized algorithms is that of foling
an adversery. Whereas an adversary might defeat a deterministic algorithm
with a carefully constructed “bad” input, it is difficult for an adversary to
defeat a randomized algorithm in this fashion. The random choices made
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by the randomized algorithm prevent the adversary, while constructing the
input, from predicting the precise behavior of the algorithm. An alternative
view of this process is to think of the randomized algorithm as first picking
a series of random numbers which it then uses in the course of execution
as needed. In this view, we may think of the random numbers chosen at the
start as “selecting” one of a family of deterministic algorithms. In other words
a randomized algorithm can be thought of as a probability distribution on
deterministic algorithms. We illustrate these ideas in the setting of AND-OR
tree evaluation; the following algorithm is due to Snir (39).

An AND-OR tree is a rooted complete binary tree in which internal nodes
at even distatice from the root are labeled AND and internal nodes at odd
distance are labeled OR. Associated with each leaf is a Boolean value. The
evsluation of the game tree is the following process. Each leaf refurns the
value associated with it. Each OR node returns the Boclean oR of the values
returned by its children, and each AND node returns the Boolean AND of the
values returned by its children. At each step an evaluation algorithm chooses
a leaf and reads its value. We do not charge the algorithm for any other
computation. We study the number of such steps taken by an slgorithm for
evaluating an AND-OR tree, the worst case being taken over all assignments
of boolean values to the leaves.

Let T denote an AND-OR tree in which every leaf is at distance 2k from
the root. Thus, any root-to-leaf path passes through k AND nodes (including
the root itself) and k OR nodes, and there are 2%* leaves. An algorithm begins
by specifying a leaf whose value is to be read at the first step. Thereafter, it
specifies such a leaf at each step, based on the values it has read on previous
steps. In & deterministic algorithm, the choice of the next leaf to be read is a
deterministic function of the values at the leaves read so far. For a randomized
algorithm, this choice may be randomized. It is not hard to show that for
any deterministic evaluation algorithm, there is an instance of T} that forces
the algorithm to read the values on all 2% leaves.

We now give a simple randomized algorithm and study the expected num-
ber of leaves it reads on any instance of T;. The algorithm is motivated by
the following simple observation. Consider a single AND node with two leaves.
If the node were to return 0, at least one of the leaves must contain 0. A de-
terministic algorithm inspects the leaves in a fixed order, and an adversary
can therefore always “hide” the 0 at the second of the two leaves inspected
by the algorithm. Reading the leaves in a random order foils this strategy.
With probability 1/2, the algorithm chooses the hidden 0 on the first step, so
its expected number of steps is 3/2, which is better than the worst case for
any deterministic algorithm. Similarly, in the case of an OR node, if it were
to return a 1 then a randomized order of examining the leaves will reduce the
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expected number of steps to 3/2. We now extend this intuition and specify
the complete algorithm.

To evaluate an AND node v, the algorithm chooses one of its children
(a subtree rooted at an OR node} at random and evaluates it by recursively
invoking the algorithm. If 1 is returned by the subtree, the algorithm proceeds
to evaluate the other child (again by recursive application). If 0 is returned,
the algorithm returns 0 for v. To evaluate an OR node, the procedure is the
same with the roles of 0 and 1 interchanged. We establish by induction on k
that the expected cost of evaluating any instance of T} is at most 3.

The basis (k = 0) is trivial. Assume now that the expected cost of evalu-
ating any instance of T is at most 3*~". Consider first & tree T whose root
is an OR node, each of whose children is the root of a copy of Tj,—,. If the
root of T were to evaluate to 1, at least one of its children returns 1. With
probability 1/2 this child is chosen first, incurring (by the inductive hypoth-
esis) an expected cost of at most 31 in evaluating T. With probability 1/2
both subtrees are evaluated, incurring a net cost of at most 2 x 3", Thus
the expected cost of determining the value of T is

1
x#4+§x2x?4=gx§*. (3.1)

If on the other hand the OR were to evaluate to 0 both children must be
evaluated, incurring a cost of at most 2 x 3¢,

Consider next the root of the tree Ty, an AND node. If it evaluates to
1, then both its subtrees rooted at OR nodes return 1. By the discussion in
the previous paragraph and by linearity of expectation, the expected cost of
evaluating Ty to 1is at most 2 (3/2) x 3¢~! = 3¢. On the other hand, if the
instance of T}, evaluates to 0, at least one of its subtrees rooted at OR nodes
returns 0. With probability 1/2 it is chosen first, and so the expected cost of
evaluating T, is at most

2x3k’l+%xgx3k"$3".

Theorem 3.1. Given any instance of T, the expected number of steps for
the above randomized algorithm is at most 3.

Since n = 4* the expected running time of our randomized algorithm
is n1o8:3, which we bound by n®™. Thus, the expected number of steps is
smaller than the worst case for any deterministic algorithm. Note that this
is a Las Vegas algorithm and always produces the correct answer.
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4. The Minimax Principle and Lower Bounds

The Las Vegas randomized algorithm of the preceding section has an expected
running time of n®™ on any uniform binary AND-OR tree with n leaves.
Can we establish that no randomized algorithm can have a lower expected
running time? We first introduce a standard technique for proving such lower
bounds. The technique draws from classical game theory; its application to
lower bounds for randomized algorithms is due to Yso [46). This technique
applies only to algorithms that terminate in finite time on all inputs and on
all random choices.

The key idea is to relate the running times of randomized algorithms for
a problem to the running times of deterministic algorithms for the prob-
lem when faced with rendomly chosen inputs. Consider a problem where the
number of distinct inputs of a fixed size is finite, as is the number of dis-
tinct (deterministic, terminating and always correct) algorithms for solving
that problem. Let us define the distributional complexity of the problem at
hand as the expected running time of the best deterministic algorithm for
the worst distribution on the inputs. Thus we envision an adversary choosing
a probability distribution on the set of possible inputs, and study the best
deterministic algorithm for this distribution. Let p denote a probability dis-
tribution on the set T of inputs. Let the random variable C(Ip, A) denote the
running time of deterministic algorithm A € A on an input chosen according
to p. Viewing a randomized algorithm as & probability distribution ¢ on the
set A of deterministic algorithms, we let the random variable C(J, Aq) denote
the running time of this randomized algorithm on the worst-case input.

Proposition 4.1 (Yao’s Minimax Principle ). For alf distributions p
over T and q over A,

minE(C(Ip, A)) < maxE(C(], Ag))

Stated alternatively, the expected running time of the optimal determin-
istic algorithm for an arbitrarily chosen input distribution p is & lower bound
on the expected running time of the optimal (Las Vegas) randomized algo-
rithm for /T. Thus, to prove a lower bound on the randomized complexity it
suffices to choose any distribution p on the input and prove & lower bound on
the expected running time of deterministic algorithms for that distribution.
The power of this technique lies in the flexibility in the choice of p and, more
importantly, the reduction to a lower bound on deterministic algorithms. It is
important to remember that the deterministic algorithm “knows” the chosen
distribution p.
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The above discussion dealt only with lower bounds on the performance
of Las Vegas algorithms. We briefly discuss Monte Carlo algorithms with er-
ror probability € € (0,1/2). Let us define the distributional complexity with
error ¢, denoted min4e 4 E(C,(/p, A)), to be the minimum expected running
time of any deterministic algorithm that errs with probability at most e un-
der the input distribution p. Similarly, we denote by max;ez E(C,(1, 4q))
the expected running time (under the worst input) of any randomized algo-
rithm that errs with probability at most ¢ (again, the randomized algorithm
is viewed as a probability distribution q on deterministic algorithms). Anal-
ogous to Proposition 4.1, we then have:

Proposition 4.2, For all distributions p over T and q over A and any e €
[0,1/2),

1 .
5(min E(Cac(lp, A)) < maxE(C(, Aq)).

4.1 Lower Bound for Game Tree Evaluation

We now apply the Minimax Principle to the AND-OR tree evaluation prob-
lem. A randomized algorithm for AND-OR tree evaluation can be viewed as
a probability distribution over deterministic algorithms, because the length
of the computation as well as the number of choices at each step are both
finite. We may as well imagine that all of these coins are tossed before the
beginning of the execution.

The tree Ty, is equivalent to a balanced binary tree all of whose leaves are
at distance 2k from the root, and all of whose internal nodes compute the
NOR function: a node returns the value 1 if both inputs are 0, and 0 otherwise.
We proceed with the analysis of this tree of NORs of depth 2k.

Let p = (3 - /5)/2; each leaf of the tree is independently set to 1 with
probability p. If each input to a NOR node is independently 1 with probability
p, its output is 1 with probability

V5-1 2_3-\6_
R

Thus the value of every node of the NOR tree is 1 with probability p, and
the value of a node is independent of the values of all the other nodes on
the same level. Consider a deterministic algorithm that is evaluating a tree
furnished with such random inputs; let v be a node of the tree whose value the
algorithm is trying to determine. Intuitively, the algorithm should determine
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the value of one child of v before inspecting any leaf of the other subtree.
An alternative view of this process is that the deterministic algorithm should
inspect leaves visited in a depth-first search of the tree, except of course that it
ceases to visit subtrees of a node v when the value of v has been determined.
Let us call such an algorithm a depth-first pruning algorithm, referring to
the order of traversal and the fact that subtrees that supply no additional
information are “pruned” away without being inspected. The following result
is due to Tarsi [41).

Proposition 4.3. Let T be a NOR tree each of whose leaves is independently
set 10 1 with probability q for  fized value g € (0,1]. Let W(T) denote the
minimum, over ol deterministic algorithms, of the expected number of steps
to evaluate T. Then, there is o depth-first pruning algorithm whose ezpected
number of steps to evaluate T is W(T).

Proposition 4.3 tells us that for the purposes of our lower bound, we may
restrict our attention to depth-first pruning algorithms. Let W (k) be the
expected number of leaves inspected by a depth-first pruning algorithm in
determining the value of a node at distance h from the leaves, when each leaf
is independently set to 1 with probability (3 - v/3)/2). Clearly

Wh)=Wh-1)+(1-p) xW(h=1),

where the first term represents the work done in evaluating one of the subtrees
of the node, and the second term represents the work done in evaluating the
other subtree (which will be necessary if the first subtree returns the value 0,
an event occurring with probability 1 - p). Letting h be logyn and solving,
we get W(h) > n0¥,

Theorem 4.4. The expected running time of any randomized algorithm that
alueys evaluates an instonce of Ty correctly is at least n®%%, where n = 2%

18 the number of leaves.

Why is our lower bound of n®% less than the upper bound of n®7*® that
follows from Theorem 3.17 The reason is that we have not chosen the best
possible probability distribution for the values of the leaves. Indeed, in the
NOR tree if both inputs to a node are 1, no reasonable algorithm will read
leaves of both subtrees of that node. Thus, to prove the best lower bound
we have to choose & distribution on the inputs that precludes the event that
both inputs to & node will be 1; in other words, the values of the inputs are
chosen at random but not independently. This stronger (and considerably
harder) analysis can in fact be used to show that the algorithm of Section 3
is optimal; the reader s referred to the paper of Saks and Wigderson [34) for
details.
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5. The Probabilistic Method

As we saw in the last chapter, the probabilistic method is a technique for prov-
ing the existence of combinatorial objects satisfying a set of desired proper-
ties. The idea is to set up a probability space and show that an object drawn
from this space will satisfy all the specified properties with non-zero prob-
ability. We exemplify this technique using a result on conference scheduling
due to Blum and Raghavan {3].

Consider a conference in which n talks are organized into two “parallel
sessions” of n/2 talks each. An sttendee wishing to see an random talks is
likely to encounter a number of conflicts - times at which the two concurrent
talks are both of interest to her - whose expectation is a®n. When a is 8
constant, this represents a loss of a constant fraction of talks of interest to
the attendee. Consider instead the following alternative proposal. Suppose
instead of two parallel sessions we have four sessions, with each talk given
twice. We show (using the probsbilistic method) that for any number of
attendees up to n®, each wishing to see up to an talks (for a > 0 2 sufficiently
small constant), there is a scheduling of talks into four sessions such that every
attendee will be able to see ol! their desired talks.

Suppose in fact that we have as many as n® attendees, each with a list of
an talks they wish to see. Now consider & random conference schedule with
four parallel tracks, designed as follows. Sessions 1 and 2 each have n/2 talks
(and thus contain one rendition of each of the # talks) and are designed by
the Program Committee in any manner at all (even adversarially, knowing
what the attendees want to see). Session 3 is a random permutation of session
1, and session 4 is a random permutation of session 2. (So, the n talks are still
being given over a period of n/2 time slots.) We argue that with probsbility
1 - o{1), for this schedule, every one of the n® attendees will be able to see
all their desired talks. Since a random schedule is good by this measure with
positive probability, we conclude that for any set of up to n* attendees, there
is a schedule that is good by this measure. Indeed, since this probability is
close to 1, it follows that almost all schedules from our probability space are
good.

A convenient, way to view a conference schedule is as a bipartite graph .
Each talk is represented by a node on the left, each time-slot is represented
by a node on the right, and there is an edge between & talk and a time-slot
if that talk is being presented in that time-slot.

We will say that a set of talks § suffers a compression if [N(S)| < |8,
where N(S) represents the neighborhood of the nodes in S. Note that by
Hall's Theorem, & set of talks § has no conflicts if and only if no § C §
suffers & compression. We state our main theorem in more general terms
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than above; the number of attendees in the statement is only bounded by
some polynomial function of n. The specialization to the case of n® attendees
is straightforward, and yields a concrete lower bound on the constant a. We
leave its calculation as an exercise for the reader.

Theorem 8.1, For any polynomial p(n) there ezists a constent a > 0 such
that if p(n) attendees each went to see am talks, then with probability 1-o(1),
the randomized scheduling method described above allows all attendees to see
oll their desired talks.

The analysis proceeds in two steps. We first consider small sets of talks,
showing that with “reasonably” high probability, all sets of at most %lnn
talks can be seen without conflict. We then consider large sets, and show
that for any fized set of at most an talks, with high probability no non-small
subset of it suffers a compression. These together give our desired result.

Lemma 5.2, Let By, be the event that some set of at most k talks suffers o
compression. Then Pr(By) < 4[e?*2%+1),

Proof. Consider a fived set § of k talks, with k) talks in session 1 and k, =
k - ky talks in session 2. Let ky be the number of time-slots occupied by these
talks in sessions 1 and 2 combined. (So, k) + ky > ky > max(k;, ko). Then,

n \fk=1y (k-1
Pr($ is compressed) < %ﬁi(“)
(k])(kz)
o (meflk = 1= k)" (k - /)" ((k - De/ko)
= (nfk1)er(n k)2

1 e2k-1-kg(k_ l)k
T kst [(k-l—kg)*-l-ka ' )

The number of different sets of talks S occupying k3 time-slots in sessions
1and 2is at most (; )22t Therefore (using that for a given kg our bound
is increasing with k),

2k-192k: k
PI‘(B;‘)S Z € 27 (k—])
o n (k—l—ks)k_l_k3k§3

e?k -1 2k+2k3

1

ka<k

where the last step uses the inequality a%b® > ((a +5)/2)°*%. This gives us
our desired bound. 0
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Lemma 5.3. For a fized set S of an talks, the probability that some subset of
o k/2
§ of size at least k suffers ¢ compression is at most :(16ae?) / (l—_llT“-;)

Proof. The probability that a fixed set ' C § of k talks suffers a compression,
given that the talks of &’ use up k3 time-slots in sessions 1 and 2, is at most
the quantity given in Equation (5.1). The number of sets &' C S using ks
time-slots in sessions 1 and 2 is at most (}")2". Therefore, the probability
that some set 3’ C S using ks time-slots in sessions 1 and 2 (and having at
most 2k talks total) suffers a compression is at most £ (a- 1t">e‘)kJ . Thus,
the probability that any §' C 5 with at least k talks suffers a compression is
at most

& (1haet)” < (162¢!) "

1
n (l-lﬁae‘)'

Proof of Theorem 5.1. Lemma 5.2 implies that with probability 1 - o(1), no
set, of size < §Inn is compressed. Now, say p(n) = O(n’) for some constant
8. Choose a = Le~4-12% 5o that (16e¢*)("™/1? <n~?. Lemma 5.3 implies
that with probability 1 o(1), no subset of size > 1 Inn any of the p(n) sets
of desired talks suffers a compression either. 0

ka=k/2

One might hope to improve on Theorem 5.1 (and Lemma 5.2) by pro-
ducing a schedule such that every set of k talks can be seen without conflict
for k > logn. However, the following simple argument shows that this is not
possible.

Theorem 5.4. For any schedule of n talks into § sessions such that each
talk is given twice, there ezists a set § of Ologn) talks that conflict (suffer
6 compression,).

Proof. Consider a graph with & vertex for each time slot, and where a talk
scheduled in time-slots 4 and j is represented 2s an edge from i to j. This
graph has degree 4. Pick some arbitrary vertex in the graph and grow a
breadth-first search tree from that node until at least two back-edges are
observed. (An edge from a node to itself — i.e., a talk given in only one
time-slot — counts as a back-edge.) This must occur by the time the tree has
grown to depth lgn because the degree of the graph is at least 3. Consider
now the two cycles induced by these two back edges. If the cycles touch (or
overlap) then the union of the two cycles is our desired set S. If the cycles
do not touch, then the two cycles together with the path in the tree between
them (which has length at most 21gn) is our desired set. ]
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What if we allow each talk to be given 3 times? In this case, standard
arguments (along the lines of the proof of Lemma 5.2) show that the bipartite
graph will with high probability be an expander, and therefore all sets of an
talks have the property that they can be seen without conflict. Once we have
created a schedule at random, how do we verify whether it is good for a set
of attendees? And how does each attendee decide which of the two renditions
of each interesting talk to see, in order to ensure that she sees all the talks of
interest to her? These questions, and other extensions, can be found in [5].

6. Algebraic Methods and Randomized Fingerprints

We now turn to a discussion of the randomized fingerprinting technique, due
to Freivalds (12), for the verification of identities involving matrices, poly-
nomials, and integers. We also describe how this generalizes to the so-called
Schwartz-Zippel technique for identities involving multivariate polynomials
(independently due to Schwartz [36] and Zippel [47]; see also DeMillo and
Lipton [8]). Finelly, following Lovsz [22], we apply the technique to the
problem of detecting the existence of perfect matchings in graphs .

The fingerprinting technique has the following general form. Suppose we
wish to check the equality of two elements z and y drawn from some “large”
universe U, Under any reasonable model of computation, this problem has
a deterministic complexity £(log|U]). Employing randomization, an alterna-
tive approach is to choose a random function from U into & smaller space V
such that with high probability z and y are identical if and only if their images
in V are identical. These images of z and y are said to be their fingerprints,
and the equality of fingerprints can be verified in time O(log|V|).

The obvious problem with the fingerprinting technique is that the average
number of elements of I/ mapped to an element of V is |U/|/|V|. Given this,
it seems difficult, if not impossible, to find good fingerprint functions that
work for arbitrary or worst-case choices of z and y. However, as we will show
below, when the identity-checking is only required to be correct for z and y
chosen from a small subspace S of U/, particularly a subspace with some well-
defined algebraic structure, it is possible to choose good fingerprint functions
without any a priori knowledge of the subspace, provided the size of V is
chosen to be comparable to the size of S.

Throughout this section we will be working over some unspecified field 7.
Since the randomization will involve uniform sampling from a finite subset
of the field, we do not even need to specify whether the field is finite or not.
The reader may find it helpful in the infinite case to assume that F is the
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field Q of rational numbers, and in the finite case to essume that F is 25,
the field of integers modulo some prime number p.

6.1 Freivalds’ Technique and Matrix Product Verification

We begin with the problem of verifying the correctness of matrix product
identities. Currently, the fastest slgorithm for matrix multiplication (Copper-
smith and Winograd [7]) has running time O(n?%), improving significantly
on the obvious O(n’) time algorithm; however, the fast matrix multiplication
algorithm has the disadvantage of being extremely complicated. Supposg we
have an implementation of the fast matrix multiplication algorithm and, given
its complex nature, are unsure of its correctness. Since program verification
appears to be an intractable problem, we consider the more reasonable gqal of
verifying the correctness of the output produced by executing the a]gopthm
on specific inputs. This notion of verifying programs on specific inputs is the
basic tenet in the theory of program checking recently formulated by Blum
and Kannan (4],

Suppose we are given three n X . matrices X, Y and Z over a field F,
and would like to verify that XY = Z. Clearly, it does not make sense to
use & simpler but slower matrix multiplication algorithm for the verification,
as that would defeat the whole purpose of using the fast algorithm in the
first place. In fact, there is no need to re-compute Z; indeed, we are @erdy
required to verify that the product of X and Y is equal to Z. F\‘elva.]ds’
technique gives an elegant solution that leads to an O(n?) time randomized
algorithm with bounded error probability.

We choose a random vector r € {0,1}", i.e., each component of r is chosen
independently and uniformly at randem from the set {0, 1} consisting of the
additive and multiplicative identities of the field . Then, in O(n?) time,
we can compute ¥ = Yr, z = Xy = XYr, and 2 = Zr. We would like
to claim that the identity X¥ = Z can be verified by merely checking that
z = 2. Quite clearly, if XY = Z then 2 = z; unfortunately, the converse
is not true in general. However, given the random choice of , we can show
that for XY # Z, the probability that ¢ # 2 is at least 1/2. Note that the
fingerprinting algorithm errs only if XY # Z but z and z turn out to be
equal, and this has a bounded probability.

Theorem 6.1. Let X, Y and Z be n x n matrices over some field F such
that XY # Z; further, let 7 be chosen uniformly ot random from {0,1}"
and define @ = XYr and 2 = Zr. Then,

Pr(z=2)<1/2
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Proof. Let W = XY - Z and note that W is not the all-zeroes matrix.
Since Wr=XYr-2r=z-z theevent z =2 is equivalent to the event
that Wr = 0. Assume, without loss of generality, that the first row of W
has & non-zero entry and that the non-zero entries in that row precede all
the zero entries. Define the vector w as the first row of W, and assume that
the first & > 0 entries in w are non-zero. Since the first component of Wr is
w'r, giving an upper bound on the probability that the inner product of w
and r s zero will give an upper bound on the probability that & = z.

Clearly, w”r = 0 if and only if

k
- Zi=g wiry
w ’

n= (61)
Assume, without loss of generality, that in choosing the random vector r,
we select r9,...,r, before picking r). Once the values for ry,...,r, have
been determined, the right hand side of (6.1) is fixed at some value v € £,
Ifv ¢ {0,1}, then ry will never equal v; conversely, if v € {0,1}, then the
probability that r; = v is 1/2. Clearly, the probability that w"r = 0 is at
mogt 1/2, which gives us the desired result. d

In essence, the fingerprinting technique reduces the matrix multiplication
verification problem to that of verifying the equality of two vectors. The re-
duction itself can be performed in in O(n?) time and vector equality can be
checked in O(n) time, giving an overall running time of O(nzz for this Monte
Carlo procedure. The error probability can be reduced to 1/2* via k indepen-
dent iterations of the Monte Carlo algorithm. There was nothing sacrosanct
about choosing the components of the random vector  from {0, 1}, since any
two distinct elements of F would have done equally well. This suggests an
alternative approach towards reducing the error probability, as follows: each
component of 1 is chosen independently and uniformly at random from some
subset § of the field F; then, it is easily verified that the error probability is
no more than 1/|3).

In general, Freivalds’ technique can be applied to the verification of any
matrix identity A = B. Of course, given A and B, just comparing their
entries takes only O(n’) time. But there are many situations where, just as
in the case of matrix product verification, computing A explicitly is either
t00 expensive or possibly even impossible, whereas computing Ar is easy.
The random fingerprint technique is an elegant solution in such settings.
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6.2 Extension to Identities of Polynomials

Freivalds' fingerprinting technique is quite general and can be applied to
many different versions of the identity verification problem. We show that
it can be applied to identity verification for symbolic polynomials, wlfere
two polynomials P} (z) and Py(x) are deemed identical if they have identical
coefficients for corresponding powers of z. Observe that verifying integer or
string equality is a special case, since we can represent any string of length
n as a polynomial of degree n by using the kth element in the string to
determine the coefficient of the kth power of a symbolic variable.

We define the polynomial product verification problem as follows: given
three polynomials Py(z), Py(x), Ps(z) € Flz], we are required to verify that
Py(z) x Py(z) = Py(z). We will assume that Py(z) and Py(z) are of degree
at most 7, implying that Py(z) has degree at most 2n. It is well-known that
degree n polynomials can be multiplied in O(nlog n) time via Fast Fourier
Transforms, and that the evaluation of a polynomial requires only O(r) time.

We present & randomized algorithm for polynomial product verification
which s similar in spirit to the matrix product verification algorithm. First,
fix a set S C F of size at least 2n + 1 and chooses r € § uniformly at
random. Then, after evaluating Pi(r), Pa(r) and Py(r) in O(n) time, our
algorithm declares the identity P;(z)Py(z) = Ps(z) to be correct if and only
if Py{r)Py(r) = Py(r). This algorithm errs only in the case where the poly-
nomial identity is false but the value of the three polynomials at r indicates
otherwise. We establish that the error event has bounded probability.

Let us define & degree 2n polynomial Q(z) = Py(z)Py(z) - Pa(x). We say
that & polynomial Q(z) is identically zero, denoted by Q(z) = 0, if each of its
coefficients equals zero, The polynomial identity Py(z)Py(z) = Py(z) is velid
if and only if Q(z) = 0. It remains to establish that if Q(z) # 0, then with
high probability Q(r) = Py(r)Py(r) - Ps(r) # 0. By elementary algebra we
know that Q(z) has at most 2n distinct roots. Clearly, unless Q(z) = 0, no
more that 2n different choices of r € § will cause Q(r) to evaluate to 0. Thus,
the error probability is at most 2a/|S|. We may reduce the error probability
either by using independent iterations of this algorithm, or by choosing a
larger set .

It turns out that the above verification technique can be easily ex-
tended to a generic procedure for testing any polynomial identity of the form
Py(z) = Py(z) by converting it into the identity Q(z) = Pi(z) - Pyz)=0.
Certainly, when P, and P are explicitly provided, the identity can be de-
terministically verified in O(n) time by comparing corresponding coefficients.
Our randomized technique will take just as long to merely evaluate P, () gnd
Py(z) at a random value. But, as in the case of verifying matrix identities,
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the randomized algorithm is very useful in situations where the polynomials
are implicitly specified, e.g., when we only have a “black box” for computing
the polynomials with no information about their coefficients, or when they
are provided in a form where computing the actual coefficients is expensive.
One example of the latter situation is provided by the following problem in-
volving the determinant of a symbolic matrix. As will soon become obvious,
the determinant problem will in fact require a technique for the verification of
polynomial identities of multivariate polynomials and therefore we will need
to provide a generalization to that setting,

Let M be an n x n matrix. The determinant of the matrix M is defined

as follows: .

det(M) = Z sgn(ﬂ]HM,-',(,), (6.2)
€S, i=1

where S, is the symmetric group of permutations of order n, and sgn(r) is
the sign' of a permutation 7. While the determinant is defined as a sum-
mation with n! terms, it turns out that it is easily evaluated in polynomial
time provided the matrix entries M;; are explicitly specified. The situation is
more complicated when the matrix entries are not explicit constants, as we
illustrated next.

Consider the Vandermonde matrix M(zy,...,2,) which is defined in
terms of the indeterminates ), ..., 7, such that M;; = z{'l, ie,

2 n-1
15 I% :t}l :
112 x2 ..-1'2

2 n-1
lza a5 ... 2p

It is known that for the Vandermonde matrix, det(M) = [, (z: - ;).
Consider the problem of verifying this identity without actually devising a
formal proof for a fixed value of n. Computing the determinant of a symbolic
matrix is infeasible as it requires dealing with a summation over n! terms,
However, we can formulate the identity verification problem as the problem
of verifying that the polynomial Q(z1,...,2,) = det(M) - [, S(@i-1;) is
identically zero. Based on our discussion of Freivalds' technique, it is natural
to consider the substitution of random values for each z;. Since the deter-
minant can be computed in polynomial time for any specific assignment of
values to the symbolic variables 7y,...,z,, it is easy to evaluate the polyno-
mial Q for random values of the variables. The only issue is that of bounding
the error probability for this randomized test.

! The sign function is defined to be sgu(r} = (~1)", where ¢ is the number of
pairwise exchanges required 1o convert the identity permutation into 7.
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We now turn to the extension to the multivariate case of the analysis
of Freivalds’ technique as applied to univariate polynomials. Note that in a
multivariate polynomial Q(zZ1,...,2,), the degree of a term is the sum of Lh.e
exponents of the variable powers that define it, and the total degree of @ is
the maximum over all terms of the degrees of the terms.

Theorem 6.2. Let Q(xy,...,,) € Flz1,...,2a] be o multivariate polyno-
mial of total degree m. Let S be a finite subset of the field F, andletry,...,mm
be chosen uniformly and independently from S. Then,

PrQir 1 =01 Qi 2 0/ T

Proof. The proof involves an induction on the number of variables n. The
base case of the induction is n = 1, which reduces to verifying the theorem
for a univariate polynomial Q(z,) of degree m. But we have already seen for
Q(z)) # 0, the probability that @(r)) = 0 is at most m/|8|, taking care of
the basis.

Suppose now that the induction hypothesis holds for multivariate po!y-
nomials with at most n — 1 variables, where n > 1. In the polynomial
Q(z1,. .., Zn) We can factor out the variable z, and thereby express @ as

k
Qlz1,--,2n) = ZIiP,-(xg,...,x,,),

i=0

where k < m is the largest exponent of z; in Q. Given our choice of k, the
coefficient Py(z3,...,2,) of =% cannot be identically zero. Note that the total
degree of P is at most m — k. Thus, by the induction hypothesis, we conclude
that the probability that Py(ra,...,7) = 0 is at most (m - k)/|Sl.

Let us now turn to the case where Py(ry,..., ™) is not equal to 0 C?n-
sider the following univariate polynomial over z; obtained by substituting
the random values for the other variables in Q:

k

Q(Il) = Q(.I],Tz,fa, sen ,Tn) = Ext]Pl(T% con ,T,,).
i=0

The resulting polynomial g(z;) has degree k and is not identically zero (since
the coefficient of z} is assumed to be non-zero). As in the base case, e
conclude that the probability that g(ry) = Q(r1,2,...,7a) eveluates to 0 is
bounded by /(S].

We have established the following two inequalities:
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m-k
vy Ty)=0) < ——;
Pr(Pi(ry,...,15) = 0) < §

and

L]

ISl

Observe that for any two events £, and £, Pr(€;) < Pr(&) | &) + Pr(&y).
Consequently, we obtain that the probability that Q(ry,r, .. \Ta) =018 no

more than the sum of the two probabilities on the right hand side of the two
inequalities displayed above, and this turns out to be m/|S|. O

PT(Q(TI,TQ,,..,T") =0|Pk(T2,...,T,‘)#O] S

There is one major disadvantage in the randomized verification proce-
dure just discussed: in large (or possibly infinite) fields, the evaluation of the
polynomials could involve large intermediate values, leading to inefficient im-
plementation. To deal with this problem in the case of integers, we perform
all computations modulo a random prime mumber chosen from & suitable
range, It is easy to verify that this does not have any adverse effect on the
error probability.

8.3 Detecting Perfect Matchings in Graphs

We now present an interesting application of the techniques from the pre-
ceding section. Consider a bipartite graph G(U, V, E) with two independent
sets of vertices U = {u1,...,un} and V = {vy,...,1,}, such that the edges
in E have one end-point each in U and V. A matching in G is a collection
of edges M C E such that each vertex is an end-point of at most one edge
in M. A perfect matching is a matching of size n, i.e., where each vertex
occurs as an end-point of exactly one edge in M. Perfect matchings are in
a I-to-1 correspondence with the permutations in §,, where the matching
corresponding to & permutation 7 € 8, is given by the collection of edges
{(u;,v25) | 1 <4 < n}. Tt turns out that there is an intimate relationship
between matchings in a graph and the determinant of a matrix obtained from
the graph.

Theorem 8.3. For any bipartite graph G(U,V, E), define o corvesponding
nxn matric A as follows:

A‘- I.'J (U,,Uj)EE
v O(UuUJWE‘

Let the multivariate polynomial Q(z11,213,...,2nn) denole the determinant
det(A). Then, G has a perfect matching if and only if Q # 0.
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Proof. The determinant of A may be represented as follows:

det(A) = Y sgn(m)Ay 1) Agae) - Anto)
%€

There cannot be any cancellation of the terms in the summation since each
z,j occurs 8t most once in A. It follows that the determinant is not iden-
tically zero if and only if there exists some permutation 7 for which the
corresponding term in the summation is non-zero. The term corresponding
to & permutation 7 is non-zero if and only if A; 7y # 0 for eachi, 1 <ign
this is equivalent to the presence in G of the perfect matching corresponding
ton.

The matrix of indeterminates is the Edmonds matriz of a bipartite graph.
The above Tesult can be extended to the case of non-bipartite graphs, and the
corresponding matrix of indeterminates is called the Tutte matrix. Tutte (42]
was the first to point out the relationship between matchings and determi-
nants, while the simpler relation between bipartite matchings and determi-
nants was given by Edmonds [9].

The result described above leads to & simple randomized procedure for
testing the existence of perfect matchings in a bipartite graph (due to
Lovisz {22]): using the algorithm from Section 6.2, determine whether the
determinant is identically zero or not. The running time of this procedure
is dominated by the cost of computing a determinant, which is essentially
the same s the time required to multiply two matrices. Of course, there are
algorithms for constructing a maximum matching in a graph with m edges
and n vertices in time O(my/m) (see Hopcroft and Karp |15}, Micali and
Vazirani {24, 44), and Feder and Motwani (10]). Given that the time required
to compute the determinant exceeds my/n for small m, the benefit in us-
ing this randomized decision procedure appears marginal at best. But this
technique was extended by Rabin and Vezirani (32, 33] to obtain simple al-
gorithms for the actual construction of meximum matchings; although their
randomized algorithms for matchings are simple and elegant, they are still
slower than the deterministic O(my/n) time algorithms known earlier. Per-
haps more significantly, this randomized decision procedure proved to be an
essential ingredient in devising fast parallel algorithms for computing maxi-
mum matchings (20, 28].

7. Further Reading

We conclude by giving some pointers to the (large) number of randomized
algorithms not covered here. It should be noted that the examples we dis-
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cussed are but & mere sampling of the many randomized algorithms for each
of the problems considered. The algorithms covered were chosen to illustrate
the ideas rather than to represent the state of the art for these problems
The interested reader is referred to the book (51] for & discussion of other
algorithms for these problems.

Rendomized algorithms have found application in a large number of ar-
eas: in load-balancing [43], approximation algorithms and combinatorial op-
timization [13, 18, 25), graph algorithms [1, 17), data structures (2], counting
and enumeration (38], parallel algorithms (20, 1), distributed algorithms [31],
geometric algorithms [27], online algorithms {3, 6} and number-theoretic l-
gorithms (30, 4], The interested reader should consult these articles or the
book [51).
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ary. The Markov chain Monte Carlo (MCMC) method exploits the idea
tshl:tnimnfornation about a set of combinatorial objects may pe obtained by per-
forming an appropriately defined random walk on those objects. In the area of
statistical physics, MCMC algorithms have been in use for many years flor the
purpose of estimating various quantities of physical interest, often expectations of
random variables on “configurations” of a statistical model. The running time of
MCMC algorithms depends on the rate at which .the random walk.converges te
equilibrium; only when & condition of near-equilibrium has been achieved can the
algorithm discover what “typical” objects are like. In the past decade of 0, it .has
become possible to derive a priori bounds on the rate of convergence to equilibrium
of random walks underlying MCMC algorithms of practn?al interest. In cages where
o priori bounds cannot be derived, it may still be possnblg to conduct rigorously
grounded experiments. Many of the main ideas and techniques are set out here,
with the recent developments being discussed at greater length.

1. Introduction

The classical Monte Carlo method is an approach to estimating quantities
that are hard to compute exactly. The quantity z of interest is expressed as.the
expectation z = E(Z) of a random variable (rv.) Z for which some efficient
sampling procedure is available. By taking the mean of some sufficiently large
set of independent samples of Z, one may obtain an approximation to z. For
example, suppose

§={(=zy el 1 ple,y) <O, foralli)

is some region of the unit square defined by a system of p(?lynomiallinequal-
ities pi(2,y) < 0. Let Z be the r.v. defined by the following ex;;enment or
trial: choose a point (z, y) uniformly at random (v.a.r.) from [0,1)% le.t Z=1
if pi(z,y) < 0 for all §, and Z = 0 otherwise. Then the area @ of § is equal
to E(Z), and an estimate of ¢ may be obtained from the sample mean of
a sufficiently long sequence of trials. In this example, the use of the Monte
Carlo method is perhaps avoidable, at the expense of a mare complex al-
gorithm; for more essential uses, see, for example, Knuth's proposal (48] for

* Supported in part by Esprit Working Group No. 21726, “RAND2”
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estimating the size of a tree by taking a random path from the root to a leaf,
or Rasmussen's [35] for estimating the permanent of a 0,1-matrix.

The Markov chain Monte Carlo (MCMC) method is & development of
the foregoing approach, which is sometimes applicable when Z cannot be
sampled “directly” Computer scientists approaching this subject with only
the most basic probabilistic tools can, for the moment, think of a Markov
chain M as being a kind of finite automaton, in which the transitions from
any state are labelled, not by letters from some alphabet, but by non-negative
rea] numbers (probabilities) summing to 1. The Markov chain 9 starts in
a distinguished state 7y at time 0, and makes a sequence of transitions at
successive time-steps, resulting in IR passing through a sequence of states
Xo = 29,X1,Xs,.... The transitions are guided by the specified probabil-
ities; if X; = 1y, i.e, M is in state z, after the {th transition, then the
probability that X, = 7,4, is just the number assigned to the transition
from state x; to state zy4).

Suppose {2 denotes the (finite) state space of M. The Markov chain M
will be completely specified if we give the matrix of transition probabilities
(P(z,y) : 2,y € 12), where, for all pairs of states 7, € 12,

Plz,y)=Pr(Xis1 =y| X =1)

is the probability that the Markov chain is in state y at time ¢+ 1, conditioned
on it being in state T at time ¢. Note the crucial “forgetting property” of
Markov chains: the state at time ¢+ 1 depends probabilistically on the state
at time ¢, but not on the state at any earlier time.

Provided a certain technical condition—let's call it ergodicity--is met, M
will converge to a well-defined stationary distribution 7 . More precisely, there
is a probability distribution 7 on 2 such that Pr(X, = y | X¢ = z) — n(y),
as t — oo, for all pairs of states z,y € f2. Note that the initial state z is
“forgotten” by M over a sufficiently large number of states.

So suppose we have a r.v. Z for which no obvious direct sampling pro-
cedure exists. The idea behind MCMC is to construct an ergodic Markov
chain T whose state space is the range of Z (or at least includes the range
of Z) and whose stationary distribution matches the probability distribution
of Z. Then the required samples are obtained by simulating M for suffi-
clently many steps 7 from some fived initial state, and returning the final
state. Of course, what we obtain is not a perfect sample from the probability
distribution of Z, but if 7 is large the error will be negligible. Naturally, the

determination of a suitable r is a significant concern in rigorous applications
of MCMC,

As an example of the approach, we consider the problem of estimating the
number of (vertex) ¢-colourings of a graph G . In Section 2 we consider how
¢
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sample g-colourings of G, generated independently and u.a.r., can be used
to obtain an estimate for the number of g-colourings of . This step of the
MCMC programme—how samples are used—is often (though not always)
rathet routine. We therefore leave graph colouring as our one representative
example, and turn from the use of samples to their generation. In Section 3,
we show how to design a simple Markov chain on colourings that, given &
certain condition on the graph G and the number of colours g, is ergodic
and has uniform stationary distribution. Again, this step -the design of the
Markov chain - s often rather routine.

We then turn to what is the crux, often the sticking point, of the method,
namely determining good upper bounds on the “mixing time” 7, i.e., the
number of steps before the Markov chain is “close” to the stationary distri-
bution. Section 4 presents three methods for bounding the mixing time in
the context of a toy example, namely a Markov chain on g-colourings of the
empty graph. Obviously, the toy example is of no practical value, but its very
simplicity brings the various techniques into sharp relief. Section 5 applies
the same three methods to some more realistic and challenging applications.
Most of the material of Sections 2 to 5 can be followed in greater detail
(though sometimes with different examples) in the survey article of Jerrum
and Sinclair (37).

The remainder of the article deals in greater depth with a topic, namely
the coupling method, which has grown in perceived importance since the sur-
vey article (37] was written. Coupling is a classical (and elementary) technique
for bounding the convergence rate of a Markov chain, but some of us working
in the analysis of MCMC algorithms had been guilty of thinking it too weak
in practice to be applied to interesting examples. Two recent developments -
“coupling from the past” and “path coupling”--are beginning to correct that
perception.

2. Approximate Counting, Uniform Sampling and Their
Relationship

What do we mean precisely by (efficient) approximate counting and uniform
sampling?

Suppose N : £* — N is a function mapping problem instances {encoded
a5 words over some convenient alphabet Z) to natural numbers. For exam-
ple, N might map (encodings of) a graph G to the number N(G) of perfect
matchings in G. It should be clear that any combinatorial enumeration prob-
lem can be csst in this framework. A randomised approzimation scheme for N
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is a randomised algorithm that takes as input & word (instance) w € Z" and
and an error bound & > 0, and produces as output a number Y (a random
variable) such that!

Pr((1-)N(w) <Y < (1+6)N(w) > 2. (1)

o= | o

A randomised approximation scheme is said to be fully polynomial 43] if it
runs in time polynomial in n (the input length) and ¢!, We shall abbrevi-
ate the rather unwieldy phrase “fully polynomial randomised approximation
scheme” to FPRAS.

Suppose now that § C £* x Z* is a relation between (encodings of} prob-
lem instances and (encodings of) feasible solutions to that instance. Thus,
S5 might assign to each graph G the set S(G) of perfect matchings in G.
We insist that the set S(w) is finite for all w. (The relationship we envisage
between § and the counting function N discussed earlier is, of course, that
N(w) = |S(w)| for all meaningful encodings w € Z* of problem instances.)
For any probability distribution # on a finite sat (2, we define the total vari-
ation distance between 7 and the uniform as

Al 1
BE)

Dtvu(”) ‘= max ‘K(A) -
ml €0

ACD

n(x)-l%ll.

An almost uniform sempler for S is a randomised algorithm that takes
as input & word (instance) w € Z™ and a tolerance § > 0, and produces
a feasible solution Z € 5{w) (a random variable) such that the probability
distribution of Z is within variation distance § of the uniform distribution on
S(w). An almost uniform sampler is said to be fully polynomdal if it runs in
time polynomial in n (the input length) and logd~".

There is a close connection between almost uniform sampling and approx-
imate counting, which has been discussed at some length by Jerrum, Valiant,
and Vazirani [38]. In brief, provided a certain technical condition known as
self-reducibility is met, almost uniform sampling is possible in polynomial
time if and only if approximate counting is. Here is a possible way to make
the connection concrete in the case of graph colourings.

Proposition 2.1. Suppose we have an almost uniform sempler for g-colour-
ings of e graph, which works for graphs G with mazimum degree bounded

' There is no significance in the constant 3 gppearing in the definition, beyond
its lying strictly between ; and 1. Any success probability greater than | may
be boosted to 1 - & for any desired § > 0 by performing a small numf:ter of
trials and taking the median of the results; the number of trials required is
O(lnd™") [38).

[
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by A < g; and suppose that the sampler has time complezity T(n,5), where n
is the number of vertices in G, and & the allowed deviation from uniformity
in the sampling distribution. Then we may construct o randomised approz-
imation scheme for the number of g-colourings of a graph, which works for
graphs G with mazimum degree bounded by A, and which has time complezity

o{570:)

where m is the number of edges in G, and ¢ the specified error bound,

At this point we merely indicate the key algorithmic technique underlying
Proposition 2.1. A full proof, including a detailed statistical analysis, can be
found in the last section.

Denote by 2(G) the set of all g-colourings of G. Let G = Gy > G- >
~.-> Gy > Gy = (V,) be any sequence of graphs in which each graph G-
is obtained from the previous graph G; by removing a single edge ¢;. We may
express the quantity we wish to estimate as a product of ratios:

|2Gn) 1G]] 1G]]

= x |R(Go)|, (22
oy R R R
where, it will be observed, |£2(Go)| = ¢". Our strategy is to estimate the ratio
, - 196)
C G

for each i in the range 1 < ¢ < m, and by substituting these quantities into
identity (2.2), obtain an estimate for the mumber of ¢-colourings of G:

120 =q"01. om-

To estimate the ratio g; we use the almost uniform sampler to obtain 2
sufficiently large sample of g-colourings from 2(G;-) and compute the pro-
portion of samples that lie in (G;) (i.e., for which the end points of ¢; have
different colours). The analysis presented in the last section places a bound
on the sample size required.

For background material on approximate counting, refer to Welsh’s survey
article [58).

3. Sampling by Markov Chain Simulation

Let G be an undirected graph on vertex set V = [n} = {0,1,....,n - 1} whose
maximum degree is bounded by A = A(G), and let Q = [g] be & set of
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g colours. Let Xg: V — ( be a proper colouring of the vertices of G, i.¢., one
in which every edge has endpoints of different colours. Such a colouring always
exists if ¢ > A+ 1, as can be appreciated by considering a simple sequential
colouring algorithm. Indeed Brooks’ theorem asserts that a colouring exists
when ¢ 2 A, provided A > 3 and G does not contain K44 as a connected
component (7, 9].

For a discussion of strengthenings of Brook's Theorem via the probabilis-
tic method, see Chapter 1 of this book, in particular Section 1.5.

Consider the Markov chain (X;) whose state space ) = (G, ¢) is the
set of all g-colourings of G, and whose transition probabilities from state
(colouring) X; are given by the following procedure:

(1) Select a vertex v € V uniformly at random (u.2.r.), and then a colour
¢ € Q ua.r. from the set of legal colours for v. (A colour is legal if it is
different from the colour of any neighbour of .)

{2) Recolour vertex v with colour ¢, and let the resulting colouring be X;4;.

This procedure describes what would be termed, by the statistical physics
community, the “heat-bath” dynamics of an antiferromagnetic ¢-state Potts
model at zero temperature. Readers unfamiliar with this terminology, need
not worry, we do not use it in the sequel.

Fort €N, let P: 2% — [0,1] denote the t-step transition probabilities®
arising from this procedure, so that P*(z,y) = Pr(X; =y | Xo = z) for all
z,y€ef

Assume now that g > A + 2. As we now verify, the Markov chain (X,)—
which we refer to in the sequel as Meo)(G,q) or simply Mey—is (a) irve-
ducible, i.e., for all 2,y € {2, there is a ¢ such that P!(z,y) >0, and (b) ape-
riodic, ie., ged{t : P'(z,y) > 0} = 1 for all z,y € 0. Irreducibility of My
follows from the observation that any colouring z may be transformed to any
other colouring y by sequentially assigning new colours to the vertices V in
ascending sequence; before assigning a new colour ¢ to vertex v it is nec.
essary to recolour all nieighbouring vertices v > v that have colour ¢, but
there is always at least one “free” colour to allow this to be done, provided
q 2 A+ 2. Aperiodicity follows from the fact that the loop probabilities
P(z, ) are non-zero for all z € 2, thus if P'(z,) > 0 s0 is P*+!(z,y).

A finite Markov chain that is irreducible and aperiodic is ergodic; i.e.,
there is a unique stationery distribution 7 : 2 — [0,1] such that for all

% We drop the superscript ¢ in the case £ = 1.
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1,y € 2, limi_oo P(z,y) = 7(y). The use of the word “stationary” is justi-
fied by the fact that o #(z)P(z,y) = (y), for all y € £; loosely speak-
ing, a Markov chain that is started in the stationary distribution remains in
the stationary distribution for all time. In the case of M, this stationary
distribution is actually the uniform distribution on 2, which can be derived
from the fact that P(z,y) = P(y,z) for all z,y using the following simple
but useful fact.

Lemma 3.1, Let M be an ergodic Markov chain with finite state space 12
and transition probabilities P(:, ). If ' : 2 — [0,1] 15 any function satisfying
“Qetatled balance”

7(2)P(z,y) =7 (y)P(y.2), forallz,ye N, 31

and the normalisation condition ¥, 7'(z) = 1, then ' ds indeed the sta-
tionary distribution of M.

Proof, Forall y € 2,
Y @)Py) = Y PPy =7 (W)

€N €

i.e., 7 is a stationary distribution of M. But T is ergodic, so 7" is the unique
stationary distribution of IN. a

A Markov chain whose stationary distribution satisfies the detailed bal-
ance condition is said to be time-reversible.

In Section 5.3 we demonstrate that My is “rapidly mixing,” ie., the
t-step distribution closely approaches to the stationary distribution in time
polynomial in n, provided g > 24 + 1. To make this statement precise we
need to explain what is meant by “closely” here.

To do so, we must generalize our definition of total variation distance.
To wit, for any probability distributions 7 and 7’ on a countable set £2, we
define the total variation distance between 7 and 7’ to be

Dy(n 1) = maxlfrA) | == Z|7r

zE!I

(this definition extends to uncountable probability spaces with the maximum
replaced by & supremum over measurable sets A, or the sum by an integral).

It seems natural to measure closeness to stationarity in terms of the vari-
ation distance. For ¢ € N define
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b:(¢) := Dy (P'(z, ), 7) 1= Tf:élP'(:,A) -7(4)],

where  is the initial state and P'(z,A) = 1, ¢ 4 P'(z,y). The rate of con-
vergence to stationarity from initial state z may be measured by the mizing
time, i.e., the function

7;(8) = min{t : 6,(t) < & for all ¢' > 8}

When making statements about rate of convergence that are independent of
the initial state, the appropriate version of mixing time is 7(d) = max, 7,(J),
where the maximum is over all z € £2. By rapid mizing, we mean that 7(é) <
poly(n, log§71).

The rapid mixing result of Section 5.3 provides us with a simple almost
uniform sampler for g-colourings in G: simulate the Markov chain M., start-
ing at an arbitrary state, for a sufficiently large (but polynomial) number of
steps, and return the current state as result. As a corollary we obtain, via
Proposition 2.1, an FPRAS for the number of g-colourings of & graph in the
caseq>24+1.

As a warm up we consider first the rather trivial case of an empty graph
(ie, A=0).

4. A Toy Example: Colourings of the Empty Graph

In this section we survey those techniques for proving rapid mixing that have
shown themselves to have some degree of general applicability. The three tech-
niques described here- which might be titled “canonical paths,” “geometric”
and “coupling”—cover the majority of applications. Nevertheless, some in-
genious special techniques have been introduced to handle specific problems,
most notably Feder and Mihail's inductive argument to demonstrate rapid
mixing of the basis-exchange random walk on a “balanced” matroid (27).

The three techniques will be illustrated by applying each in turn to the
graph-colourings Markov chain Mey(G,q) of Section 3, specialised to the
empty graph O, := (V,8), where, as usual, V = [n]. Since the state space in
this case is simply 2 = @, it would be a trivial matter to sample from £
directly. On the other hand, the very triviality of the situation will allow us
to concentrate on the methods without getting bogged down in calculation
or technical detail. Section 5 will consider some more realistic applications,

Sections 4.1 - 4.3 are largely independent of one another, as are Sections
5.1 - 5.3. Readers whose main goal is to follow the newer developments in

(1]
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coupling need only read Sections 4.3 and 5.3 before progressing to Sections 6
and 7. In particular, an understanding of the geometric notions introduced in
Section 4.2 is not required in the later sections. However, geometric arguments
are of wider importance, particularly in the all-important application of the
MCMC to volume estimation (see the discussion at the end of Section 5.2).

4.1 Canonical Paths

Let M be an ergodic Markov chain with finite state space {2, transition
probabilities P(-,-), and stationary distribution 7. Any description of the
canonical path argument is considerably simplified if we assume IR to be
time-reversible. In the light of the detailed balance condition (3.1), we may
view 9 as an undirected graph (12,T) with vertex set (2 and edge set

T={{zy}¢ o9 P(ry) > 0}, (41)

where .
P(z,y) = 7(2)P(z,y) = 7{y)Ply2). (42)

For each (ordered) pair (z,y) € £2%, we specify a canonical path 4z, from
z to y in the graph (2, T); the canonical path 7, corresponds to a sequence
of legal transitions in 9 that leads from initisl state z to final state y. Denote
by I' = {1z, : 7,y € ) the set of all canonical paths. For the method to
vield good bounds, it is important to choose a set of paths I" that avoids the
creation of “hot spots:” edges of the graph that carry a particularly heavy
burden of canonical paths. The degree to which an even loading has been
achieved is measured by the quantity

b=l = max Ttt— Y rl@)ny)hy,
ey 3t

where the maximum is over oriented edges (transitions) ¢ of (2, T), and |z |
denotes the length of the path 7z,

If a Markov chain is to be rapidly mixing then clearly there is no small
subset § of the state space such that the probability that we leave S after &
transition, given we begin & randomly chosen element of S, is very small. In
order to prove that a reversible ergodic chain is rapidly mixing we essentially
have to prove that no such obstruction exists (s precise statement of this
result is given in the next section). In this section, we discuss doing so using
canonical paths. Intuitively if a Markov chain has an obstruction § then the
canonical paths between § and 2\ S will overlosd the edges of T leaving 5.
Thus, we expect & Markov chain to be rapidly mixing if it contains no “bot-
tlenecks” i.e., if it admits a choice of paths I" for which (") is not too large.
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This intuition is formalised in the following result derived from Sinclair [56],
which is a development of 2 theorem of Diaconis and Stroock [19].

Theorem 4.1, Let M be a finite, time-reversible, ergodic Markov chain with
loop probabilities P(z,z) > 1 for all states z. Let I be a set of canonical paths
with mazimum edge loading § = 3(I'). Then the mizing time of M satisfies
7,(€) < alln7(z) ™1 + Ine™t), where z is the initial state.?

Proof. Combine [56, Prop. 1] and (56, Thm 5). D

We demonstrate the canonical path method by applying it to the toy
example. For convenience, we shall work with a slightly modified version of
the Markov chain M., of Section 3. The transitions will be defined as before,
except for the addition a preliminary step:

(0) with probability % let X4 equal X; and halt this transition; otherwise,
progress to step (1).

This modification has the effect of adding ar additional loop probability % to
every state (and reducing all other transition probabilities by a similar factor).
Let us refer to the modified Markov chain with increased loop probabilities
as T ;. Note that M. ;(Ox, ) satisfies the conditions of Theorem 4.1.

Let z = (2o, 1,...,Zn—1) a0d ¥ = (Y0, 41, ., Yn-1) be arbitrary colour-
ings in £2 = @™. Yo obtain the canonicel path v, from £ to y, first consider
the path obtained by composing the n edges (transitions) £;, for 0 <1 < n-1,
where

= ((901--'vyl-—lazuzﬁl,'“xn-l)a (yOv“wyl-layuziﬂs"'xn-l)),

i.e,, t; is the transition that changes the ith colour from z; to y;. Now erase
any loop. To compute g, fix attention on a particular (oriented) edge

t=(w,w) = ((wo,..., Wiy Wamt), (W0, 0y Wy ),

and consider the number of canonical paths 4, that include ¢. The number
of possible choices for  is g, as the final n - i positions are determined by
;= w, for j > i; and by a similar argument the number of possible choices
for y is ¢"~*~". Thus the total number of canonical paths using a particular
edge t is ¢"~; furthermore, P(t) = 7(w)P(w,w") > ¢~*(2qn)™!, and the
length of every canonical path is at most n. Plugging all these bounds into
the definition of § yields § < 2n®. Thus, by Theorem 4.1, the mixing time

3 This Theorem also has  suitably stated converse; see {56, Thm §].

(1)
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of M.,(0n,q) is 7(€) < 2n*(nlng + lne™"). Note that the mixing time of

M. 1(On,q) grows only polynomially with the input size n, even though the
size of the state space is exponential in n, i.e., M (Oy, ¢) is “rapidly mixing®
in the sense of Section 3. The bound on mixing time we have derived is some
way off the exact answer {17], which is () = O(n(logn +loge™")), and the
slackness we see here is typical of the method.

On reviewing the canonical path argument, we perceive what appears to
be a major weakness. In order to compute the key quantity g, we needed
in turn to compute quentities such as P(t] that depend crucially on the
size of the state space £. In the current example this does not present &
problem, but in more interesting examples we do not know the size of the state
space: indeed, our ultimate goal will often be to estimate this very quantity.
Fortunately, it is possible to finesse this obstacle by implicit counting using a
carefully constructed injective map. The idea will be illustrated by application
to the Markov chain M., (Oy, ).

Let edge ¢ = (,w') be as before, and denote by cp(t) = {(z,4) : 12y 3 t}
the set of all (endpoints of) canonical paths that use edge ¢. Define the map
7 eplt) — 9 as follows: if (z,4) = (2o, %n-1), B0, - 1 Yn-1)) € cp(t)
then

”t(Ivy) = (uO! o 1“7]-1) = (IOY s Ti= 1y Wi Yitly - 1yn-l)~

The crucial feature of the map 7, is that it is injective. To see this, observe
that z and y may be unambiguously recovered from (up, ..., Un-1) = M(%, )
through the explicit expressions

I = (uOv' coy Uiy Wiy Wikl .o 7wn—l)
and
/
Y= (W, Wimgy W)y Uigt, oy Un1)-

Using the injective map 1 it is possible to evaluate § without recourse to
explicit counting. Noting* that m(z)m(y) = n(w)r(ni(z,y)), we have

= Z (el = m Z ”(w)”(nl(zny))l71y|

‘uﬁt Try3t

% This is a trivial observation when the stationary distribution is uniform, as it is
here, but it is sometimes possible, by judicious choice of n:, to contrive such an
identity even when the stationary distribution is non-uniform. See Section 5.1
for an example.

Mathematical Foundations of MCMC 127

where the penultimate inequality follows from the facts that 7, is injective,
and that 7 is a probability distribution. Since the above argument is valid
uniformly over the choice of ¢, we deduce § < 2qn®. The factor of g as
compared with the direct argument was lost to redundancy in the encoding:
the map 7; was not a bijection.

4.2 Geometry

As before, suppose M is a finite, time-reversible, ergodic Markov chain with
stationary distribution =, and recall definitions (4.2) and (4.1) of P and T
from the previous section. The conductance [35] of T is defined by

- PLS,
¢ =3(M) = min 7(r(S) ) (4.3)
0<n(S)<1/2

where ﬁ(S,?) denotes the sum of }S(z,y) over edges {z,y} € Twithz e §
and y € § = 2\ 5. The conductance may be viewed as a weighted version
of edge expansion of the graph (2, T) associated with 9. Alternatively, the
quotient appearing in (4.3) can be interpreted as the conditional probability
that the chain in equilibrium escapes from the subset S of the state space in
one step, given that it is initially in S; thus ¢ measures the readiness of M to
escape from any small enough region of the state space, and hence to make
rapid progress towards equilibrium. This intuitive connection can be given
a precise quantitative form as follows. (Related results may be found in the
work of Aldous (2] and Alon [4).)

Theorem 4.2. [Sinclair] Let M be 6 finite, reversible, ergodic Markov chain
with loop probabilities P(z,z) > 5 L for all states . Let & be the conductance
of M es defined in (4.3). Then the mizing time of M satisfies 7,(e) < 2672 x
(Inm(z)~ +Ine~Y), where 1 is the initial state.

Proof. Combine (56, Prop. 1] and {56, Thm 2]. O

Our approach in this section to bounding the conductance of a Markov
chain M is to give M a geometric interpretation, in which states of M are
identified with certain polytopes, and transitions with their common facets.
A lower bound on conductance then follows from an *isoperimetric inequal-
ity.” This was the approach pioneered by Dyer, Frieze and Kannan in the anal-
ysis of 2 random walk in a convex body [22], and Karzanov and Khachiyan in
the context of a Markov chain on linear extensions of a partial order (44] (see

also Section 5.1). The following isoperimetric inequality of Dyer and Frieze,
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is particularly well suited to the purpose. To state the inequality, we need
the concept of the dual of a norm. If || || is a norm, then the norm |- |* dual
to |- | is defined by

lz]* = sup{a- 2 : jjafl = 1}-
The symbol 8 denotes “boundary of”

Theorem 4.3. [Dyer and Frieze] Suppose K C R" is a convez body and
£ a log-concave function on intK. For a set § C K such that 0 = a5\
9K s o piecewise smooth surface, define p(S) = [ flz)dz ond ¢/(5) =
[, §(2) fu(z)||* dz, where u(z) is the Euclidean unit normal tog atz € 0. If
u(S) < 3u(K) then u(S)/'(S) < § diam K., where the diameter diam K is
measured with respect to the (primal) norm (|- .

Proof. See 20, Thm 3] and preliminary lemmas. a

We illustrate the utility of Theorem 4.3 by applying it to the toy example.
We again work with the modified Markov chain M(0r,g), with inflated
loop probabilities, applied to the empty graph O,. We view states {colourings
of G) as functions V — Q, where V = [n] and Q = [g]. For each colouring
¢ € 02, define a corresponding polytape (a closed, bounded region formed by
the intersection of halfspaces) in R™? by

R(e) = {z = (z;) € RV :0< 1y <1 and 2,5 2 333 for all ,7}.

For any § C 2, let R(S) = UJ¢5 Rlc), and observe that K := R() =
1B where By, denotes the l.-ball of radius 3, or unit cube. Clearly,
diamK = 1, where diameter is measured with respect to lo-norm. Note
that, by symmetry, vol, R(c) = [2]" for any ¢ € £, and hence

15|

vol,, R(S) = a {44)

Recall the definitions of P (4.2) and of conductance (4.3). A transition
is available between colourings ¢ and ¢’ (we say the colourings are adjacent)
if they differ at exactly one vertex; equivalently, if R(c) and R(c') share a
common facet (i.e., (ng - 1)-dimensional face). By calculus the area (ie.,
(ng - 1)-dimensional volume) of such a facet is

V2
volng-1(R(e) NR()) = PP (45)
(See the last section for a proof of this claim.) Thus the number of transitions
(¢,¢) € (3, 5) from a state in S to one in 5 is
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Vol (R(S) \ K) x L‘/"é")

and, since the I?’(c, ¢) = (2ng|f2])~" for any pair of adjacent states c,c’,

oz g 1) voh(ORIS)\OK)
PSS)= il |

Furthermore the unit vector u normal to any facet has }-norm |Juf, = v2.
Taking f identically 1 in Theorem 4.3, we have, for |S} < §/12,

vol,, R(S) < diam K
V2 Vol (OR(S\OK) = 2

which, in the light of (4.4), is equivalent to

(4.6)

volug-1(OR(S)\ 0K) > %

Combining this inequality with (4.6) yields

553> 0=
PS3)2 e

whence, by definition of conductance (4.3),

g-1
> —.
¢'2an

Thus, by Theorem 4.2, the mixing time of M (O, ) is
7(€) < 8n%g* (- 1) *(nlng + e 7).

Again, we have demonstrated that T (On, ) is rapidly mixing, though the

bound is worse by a factor of order ¢® than the one we had already obtained
using the canonical paths argument.

4.3 Coupling

Suppose M is & countable, ergodic (though not necessarily time-reversible)
Markov chain with transition probabilities P(:,-) and stationary distribu-
tion 7. As usual, the assumption of countability is for expositional conve-
nience only, and the ideas easily extend to uncountably infinite state spaces.
In its basic form, the coupling technique was introduced by Doeblin in the
1930s. The word “coupling” in probability theory is applied to & variety of
related notions, and it would be difficult to provide a general definition. In
the current context, we mean by coupling a Markov process (X,, ;) on 2x 0

S
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such that each of the processes (X;) and (V;), considered in isolation, is &
faithful copy of M. More precisely, we require that

Pr(Xiy =1 | X, =2 A Y, =y) = P(z,1) {47)

and
Pr(Yin =v' | Xe=2 A Yi=y) = P(yy), (48)

for all z,y,2",y € £2. This condition is consistent with (X;) and (Y;) being
independent evolutions of M, but does not imply it. In fact, we shall use the
possibility that

Pr(X =2 A Y=y | Xi=z A Y, =y) # Pz,2) P(y.¥)

to encourage (X;) and (Y;) to coalesce rapidly, so that X, = Y, for all suff-
ciently large t. (Note that it is easy to design the coupling so that, if ¢ is the
first time step such that X; =Y, then Xy =Y, forall ¢ > ¢.)

If it can be arranged that coalescence occurs rapidly- -independently of
the initial states X and Yy—we may deduce that M is rapidly mixing. The
key result we use here is the “Coupling Lemma,” which apparently makes
its first explicit appearance in the work of Aldous [1, Lemma 3.6] (see also
Diaconis (17, Chap. 4, Lemma 5)).

Lemma 4.4. Suppose that T 1s a countable, ergodic Markov chain with tran-
sition probobilities P(-,"), and let ((X,,Y;) : t € N) be o coupling, ie., @
Markov process satisfying (4.7) and (4.8). Suppose further thatt: (0,1) - N
is o function such that Pr(Xy) # Vi) < € for all € € (0,1), uniformly
over the choice of initial state (Xo, Yo). Then the mizing time 7(¢) of M is
bounded above by t(c).

Proof. Let Xy = £ € {2 be arbitrary, and choose ¥} according to the station-
ary distribution 7. Fix £ € (0, 1] and for convenience abbreviate ¢(¢) to t. Let
A C 2 be an arbitrary event. Then

PrX,c A)>Pr(Y,eAn X, =Y)
2 1-Pr{Yi ¢ A)-Pr(X, # Y))
>PrYied)-¢
=7(4) -¢,
with a similar inequality holding for the complementary event 2\ A. Since A
was chosen arbitrarily, Dy (P'(z, -),7) < ¢, i.e., the total variation distance

between the t-step distribution and the stationary distribution is bounded
by . 0
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For the toy example, the coupling may be very simple indeed. The tran-
sition (X;,Y;) = (X141, Y241) in the coupling is defined by the following
experiment:

(1) Select a vertex v € V, uar.

(2) Select a colour ¢ € Q u.a.r., and recolour vertex v in X, (respectively ¥;)
with colour ¢ and let the resulting colouring be X¢. (respectively ¥i.,).

Note that (X,) and () are both faithful copies of 97; specifically, (4.7)
and (4.8) are satisfied. Nevertheless it is also clear that (X;) and (V:) are
“highly coupled” and we can expect rapid coalescence.

As before, regard states (colourings) as functions V — Q. Denote by D,
the random variable

D, ={veV.X{v)#Yi(v)},

i.e., the set of vertices on which the two colouring X and Y, disagree. If
step (1) of the colouring selects a vertex v in D, then D,y = Dy \ {v};
otherwise Dy,; = D;. Since v is selected u.a.r,

1
B(1Deal| Dy = (1- 21D,
and hence N
B(Dd | o) = (1- -) Dol
Since |Dy| is a non-negative integer r.v., we obtain
Pr(|D,| > 0| Do) < E{|Dy| | Dy)

1 t
< n(l——)
n
<ne

which is bounded by ¢, provided t > nlnne=". Invoking the Coupling Lemma
we obtain 7,(¢) < n{lnn + Ine™"), independent of the starting state z, the
correct asymptotic result.

5. Some More Challenging Applications

We now reprise the three techniques for proving rapid mixing in the context
of three more realistic problems. In each case, the chosen solution technique
will be “natural” for the spplication. Indeed, for our first example, we are
forced to use the canonical paths method, as it provides the only known
solution technique.
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5.1 Monomer-Dimer Coverings Via Canonical Paths

The presentation of this topic is condensed from Jerrum and Sinclair [37),
which in turn is an improved version of the original source [34]. See also
Sinclair [57).

We shall be concerned with the classical monomer-dimer mode} from sta-
tistical physics. A monomer-dimer system is defined by a graph G = (V, E)
and & positive real parameter X. A configuration of the system is just a
matching in G, that is to say, a subset M C E such that no two edges in M
share an endpoint. In physica! terms, the pairs of matched vertices are dimers
and the uncovered vertices monomers. Thus a matching of cardinality k, or
k-matching, corresponds precisely to a monomer-dimer configuration with
k dimers and 2(n - k) monomers, where 2n = |V/| is the number of vertices
in G. (The assumption that the number of vertices in G is even is inessential
and is made for notational convenience.) Typically, G is a regular lattice in
some fixed number of dimensions, but we shall make no such assumption what
follows. For a detailed account of the history and significance of monomer-
dimer systems, the reader is referred to the seminal paper of Heilmann and
Lieb (32| and the references given there.

To each matching M, & weight w(M) = N/ is assigned; thus the param-
eter ) reflects the contribution of a dimer to the energy of the system. The
partition function of the system is defined as

2=26,N:=) u(M)= imk)"‘, (5.)
M k=0

where my = my(G) is the number of k-matchings in G. For a physical inter-
pretation of (5.1), see [32]. The partition function may be efficiently approxi-
mated (in the FPRAS sense) using the method of Section 2, provided we can
efficiently sample matchings from the distribution that assigns probability

(M) = —— (5.2)

to matching M (see [37) for details). We therefore concentrate on the sampling
problem.

Following an idea of Broder [8], we construct a Markov chain Myqeen =
Mematcn(G, A), parameterised by the underlying graph G and the edge weight
A The state space, 12, is the set of all matchings in G, and the transitions
are constructed so that the chain is ergodic with stationary distribution 7
given by (5.2). In other words, the stationary probability of each matching
{monomer-dimer configuration) is proportional to its weight in the partition
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function (5.1). The Markov chain Maren, if simulated for sufficiently many
steps, provides a method of sampling matchings from the distribution 7.

It is not hard to construct a Markov chain Mpaeen with the right asymp-
totic properties. Let the state of My at time ¢ be X;. The probability
distribution of the next state X, is defined by the following experiment:

(1) With probability } let X,41 := X, and halt.

(2) Otherwise (with the remaining probability }), select an edge e = {u, v} €
E, uar., and set

M-e ifeeM;
M+e if both  and v are unmatched in M;
M:={M+e-¢ ifexactly oneof u and v is matched in M
and ¢’ is the matching edge;
M otherwise.

(3) With probability min{1,7(M")/x(M)} let X,;, := M’; otherwise (with
the complementary probability) let X4y .= M.

It is helpful to view this chain as follows. There is an underlying graph de-
fined on the set of matchings 2 in which the neighbours of matching M
are all matchings M’ that differ from M via one of the following local per-
turbations: an edge is removed from M (a |-transition); an edge is added
to M (a 7-transition); or a new edge is exchanged with an edge in M (2
«~-trangition ). Transitions from M are made by first selecting a neighbour M’
T, and then actually making, or accepting the transition with probability
min{1,n(M')/x(M)}. Note that the ratio appearing in this expression is easy
to compute: it is just A%, A or 1 respectively, according to the type of the
transition.

As the reader may easily verify, this acceptance probability is constructed
30 that the transition probabilities P(M, M) of Mmaeen satisfy the detailed
balance condition (3.1) for the distribution  of (5.2). Furthermore Mpatey
is irreducible (i.e., all states communicate via the empty matching) and ape-
riodic (by step (1), the self-loop probabilities P(M, M) are all non-zera), and
hence ergodic. Thus, by Lemma 3.1, the distribution 7 defined in (5.2} is
indeed the stationary distribution of Mpypch 5

¥ The device of performing random walk on a connected graph with acceptance
probabilities of this form is well known in computational physics under the name
of the “Metropolis process” [52]. Clearly, it can be used to achieve any desired
stationary distribution = for which the ratio #(u)/m(v) for neighbours v, v can
be computed easily.
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Proposition 5.1. The miring time of the Markov chain Mmarch satisfies
7(¢) < 4iE|ad(n(lnn + In§) + Ine™?),

where A = max{1,A}.

Proof (sketch). Our strategy will be to carefully choose a collection of canon-
ical paths I' = {yxy : X,Y € 0} in the Markov chain Mpqyep, for which the
“hottleneck” measure §(I") of Section 4.1 is small. We can then appeal to
Theorem 4.1 to bound the mixing time. Specifically, we shall show that our
paths satisfy

a(r) S 4|E|nh. (53)

Since the number of matchings in G is certainly bounded above by (2a)!,
the stationary probability #(X) of any matching X is bounded below by
7(X) > 1/A*(2n)!. Using (5.3) and the fact that Inn! < nlnn, the bound on
the mixing time in Proposition 5.1 can now be read off Theorem 4.1.

It remains for us to find a set of canonical paths I' satisfying (5.3). For
each pair of matchings X, Y in G, we construct a canonical path yxy from
X t0Y as indicated in Figure 5.1. (A rigorous description of the canonical
paths together with all other details missing from this sketch proof may be
found in [37).)

The interpretation of Figure 5.1 is as follows. Consider the symmetric
difference X ©Y. A moment’s reflection should convince the reader that this
consists of & disjoint collection of paths in G (some of which may be closed
cycles), each of which has edges that belong alternately to X and to Y. Now
suppose that we have fixed some arbitrary ordering on the set of all simple
paths in G, and designated in each of them a so-called “start vertex,” which is
arbitrary if the path is a closed cycle but must be an endpoint otherwise. This
ordering induces a unique ordering Py, Py, ..., P, on the paths appearing in
X QY. The canonical path from X to ¥ involves “unwinding” each of the P,
in turn, In Figure 5.1 the path P; (which happens to be a cycle) is the one
currently being unwound the paths Py, ..., P,y to the left have already been
processed. while the ones P;,, ..., P, are yet to be dealt with.

Unwinding a cycle is done by removing the edge adjacent to the start
vertex using & |-transition; then moving round the cycle using «-transitions
to swap Y-edges for X-edges; and finally completing the cycle with a single
1-transition. A path is processed similarly, working from one end to the other
using & sequence of «-transitions to swap Y-edges for X-edges, starting or
finishing with the job with single 1- or |-transitions as required.

We now proceed to bound the “bottleneck” measure §(I") for these paths,
using the injective mapping technology introduced in Section 4.1. Let ¢ be
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-: ---P,I : : --~P.
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Fig. 5.1, A transition ¢ in the canonical path from X to Y

an arbitrary edge in the Markov chain, i.e., a transition from M to M’ # M,
and let cp(t) = {(X,Y) : 7xy 3t} denote the set of all canonical paths that
use t. Just as in Section 4.1, we shall obtain a bound on the total weight of all
paths that pass through ¢ by defining an injective mapping 7, : cp(t) — 2. By
analogy with the toy example in Section 4.1, what we would like to do is to
set (X,Y) = XOY G(MUM'); the intuition for this is that n (X, Y) should
agree with X on paths that have already been unwound, and with ¥ on paths
that have not yet been unwound (just as n,(z, y) agreed with z on positions
1,...,i~ 1 and with y on positions i + 1,...,n — 1). This will not quite do,
since the set of edges n,(X,Y) defined in this way may fail to be a matching;
however, the problem is a small one, and can be rectified by removing a single
offending edge. Figure 5.2 illustrates the encoding 7,(X, ') that would result
from the transition ¢ on the canonical path sketched in Figure 5.1.

We now have to check that n, is injective, which amounts to demonstrating
that X and Y can be unambiguously reconstructed from a knowledge of
t = (M,M’) and n(X,Y). Roughly, the way this is done is to note that,
modulo the single offending edge,

XoY=n(XY)o(MUM)
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ln | : / ] /P.H\ PmI

AT BENURERN !

Fig. 5.2. The corresponding encoding n:(X,Y)

so that, given ¢ = (M, M') and n,(X,Y), we may compute the path decom-
position P,..., Pn. The path P; being unwound during the transition ¢ is
immediately apparent from an examination of M & M’. From there, it is 2
straightforward matter to apportion edges in PyU---U Py to X or Y as
appropriate. Finally, edges in 7,(X,¥) 0 M are the ones which are common
to X andY.

We are almost done. However, the fact that n, is injective is not sufficient
in this case because, in contrast to the toy example, the stationary distri-
bution  is highly non-uniform. What we require in addition is that n: be
“weight-preserving,” in the sense that P(t)r(n(X,Y)) is reasonably close to
(X)n(Y). Roughly speaking, this occurs because each edge ¢ € E (with
a couple of exceptions) contributes an equal factor- -1, A or X’—to the two
terms 7(M)(n(X,Y)) and 7(X)(Y). Specifically it can be shown that

r(X)(Y) < 2B A BE)n(n(X.Y)) (54)

It is not too difficult to achieve a looser variant of (5.4) with 3? replacing A
on the right hand side, but the inequality &s given requires a little care. The
full caleulation can be found in [37).

A bound on § follows easily from (5.4). We have

Iy = I»{T),,;a,"‘x)”(” - (55)

<2ENR Y aln(X,Y )y
Txy3t

< 4jEin ) a(n(X.Y))
xy 3t

< 4|E|n), (86)

where the second inequality follows from the fact that the length of any
canonical path is bounded by 2n, and the last inequality from the facts that
i is injective and  is a probability distribution. The claimed bound on
mixing time follows quickly from (5.6) and Theorem 4.1, s described at the
outset. O
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Aside from the monomer-dimer example presented in this section, ap-
plications of the canonical path method include: counting dimer coverings
(perfect matchings) of lattice graphs (Kenyon, Randall and Sinclair [47)),
evaluating the partition function of the ferromagnetic Ising model (Jerrum
and Sinelair [36]) and counting configurations in the “six-point ice model”
(Mihail and Winkler [53]). All these applications share similarities with the
monomer-dimer one. The reader will learn more about Monte Carlo methods
for computing partition functions for statistical physics models in the next
chapter.

An gpplication which is further removed from the monomer-dimer exam-
ple is to the “basis-exchange” random walk for graphic matroids. The state
space here is the set of spanning trees of a graph, and a transition from
tree T to T' is possible iff the symmetric difference of T and T” consists of
just two edges. The canonical paths argument for spanning trees has not,
as far as | am aware, appeared explicitly in the literature, but Cordovil and
Moreira have presented a construction (see (16, Thm 1.6]) for paths between
pairs of spanning trees that is ideally suited to this purpose. However, there
are many other approaches to proving rapid mixing in this instance (see Al-
dous (3], Dyer and Frieze [21) and Feder and Mihail (27]). Refer to Section 8
for a related open problem.

5.2 Linear Extensions of a Partial Order Via Geometry

In this example, we essentially follow Karzanov and Khachiyen [44], though
we achieve a sharper bound by invoking an enhanced isoperimetric inequality
due to Dyer and Frieze 20].

We are given a partially ordered set (V,<), where V = [n]. Denote by
SymV the symmetric group on V. We are interested in sampling, u.a.r., a
member of the set

Q={geSymV :g(i)<g(j) =i <}, foralli,jeV}

of linear extensions of <. In forming a mental picture of the state space 2,
the following characterisation may be helpful: g € 2 iff the linear order

y0)Ce()C-CTyln-1) (5.7)
extends, or is consistent with, the partial order <.

As usual, we propose to sample from {2 by constructing an ergodic Markov
chain on state space {2, whose stationary distribution is uniform. Transitions
from a linear extension g € {2 are generated by composing ¢ with a random
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transition (p, p+1):® equivalently, by swapping adjacent elements in the linear
order {5.7). Formally, transition probabilities from state X, € {2 are defined
by the following experiment:

(1) Select p€[n -1 and 7 € {0,1}, v.ar.

(2) Ifr=1and X; 0 (p,p+1) € 2 then X4y := X, 0 (p,p + 1); otherwise
X¢+1 = Xt. .

Here, the operator o denotes function composition (read right to left). Let us
refer to this Markov chain as M. As in Section 4.2, the loop probabilities
are artificially raised to permit convenient application of Theorem 4.2,

Proposition 5.2. The mizing time of the Markou chain My, sotisfies

r(e) <8n*n -1 (00" +1ne”") = O(n*(nlnn + e ™).
We shall see in Section 6 that this bound can be tightened considerably.

Proof. We adopt the notation introduced in Section 4.2. To each permutation
g € SymV, associate the simplex

Rig) = {I =(z:) ER" 0 < ay0) S xy € € Tgin) £ l}.

For sny S C SymV, let R(S) = U, Rlg), and observe that R(SymV) =
1B, where § By denotes the l.-ball of radius 3, or unit cube. Define K :=
R(£1), and observe that K is a convex set. (Take any two points in K and join
them by a straight line segment. It is routine to check that every intermediate
point is contained in a simplex R(g), where g is a linear extension of <.)
Clearly, diam K < diam(R(SymV)} < 1, where diameter is measured with
respect t0 ly,-norm. Note that, by symmetry, vol, R{g) = |SymV|™! = 1/n!
for any g € {2, and hence

vol, R(S) = 'ni,' (58)

A transition is available between linear extensions g and g’ (we say that g
and ¢ are adjocent) if they differ in an adjacent transposition; equivalently,
if R(g) and R(¢') share & common (n — 1)-dimensional face. By an argument
very similar to that used in Section 4.2 (see also the last section), if g and ¢'

are adjacent, /i
2
VOln—l(R(g) n R(gl)) = (n - 1)"

® The transposition is to be performed first, followed by the permutation g.
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so the number of transitions (g,9") € (S,5) from a state in S to one in S is

volu_1(BR(S)\ 6K) x ("J;)!,
nd (7= 1)t voby_1 (FR(S) \ OK)
- _(n-1)! vol,-y
e (9

Furthermore the unit vector u normal to any facet has {;-norm |[u], = v2.
Taking f identically 1 in Theorem 4.3, we have, for |$] < 1|0,

vol, R(S) < dism K
Vivol1(QR(S)\OK)~ 2

which, in the light of (5.8), is equivalent to

voln_1(QR(S)\ 0K} > @

Combining this inequality with (5.9) yields

50715 1S
> M
P$3)2 (n-1)|0|'
whence 1
o> .
“ nfn-1)
The claimed bound on mixing time now follows from Theorem 4.2. a

By far the most important application of the techniques deployed here and
in Section 4.2 is to the analysis of random walks in convex bodies. The ground-
breaking work on this topic was done by Dyer, Frieze and Kannan [22], who
showed that a certain natural random walk in a convex body K C R* is
rapidly mixing. As a consequence, they were able to exhibit the first FPRAS
for approximating the volume of a convex body. (The significant point here
is that the running time of the algorithm is polynomial in the dimension n,
whereas all previous approaches were exponential in n.) In this application,
the state space comes ready equipped with a geometric interpretation, so the
conductance argument is a natural candidate.

The random walk employed in [22] was akin to a traditional unbiased
random walk on a (sufficiently fine) n-dimensional lattice, but restricted to
the interior of the body. The time complexity of the resulting sampling proce-
dure was a high-degree polynomial in the dimension n. The perceived impor-
tance of the volume estimation problem spurred various authors to improve
on Dyer et al’s proposal in various directions: widening the range of ap-
plicability refining the algorithmic techniques and sharpening the analyticsl



140 Mark Jerrum

tools. Applegate and Kannan [5] extended the method to cover integration
of log-concave functions; Lovész and Simonovits [50] replaced the grid walk
with a kind of discretised Brownian motion known as the “ball walk”; and
Dyer and Frieze {20] introduced an improved isoperimetric inequality. Re-
fer to Kannan [41] for an overview of the topic, and Kannan, Lovdsz and
Simonovits [42] to learn the state of the art.

5.3 Colourings of a Low-Degree Graph Via Coupling

We return to the Markov chain My (G, g) of Section 3, and use the coupling
method to analyse its mixing time for graphs G of low degree.

Lemma 5.3. Let G be a graph of mazimum degree A on n vertices. Assum-
ing g > 2A +1, the mizing time 7(¢) of the Markov chain Meq(G,q) is
bounded above by

7(e) € :_'ZAA nln(g) < Anln(g).

In order to define an appropriate coupling in this instance, the following
easy technical lemma is useful.

Lemma 5.4, Let U be o finite set, A, B be subsets of U, and X4, X be
random variables, toking values in U, such tha!

i) Jorallze A PT(XA=1)=ﬁ
i) for a2 € B, Pr(Xp=2) = 15y

Then there 4 a joint sample space for X4 and Xp such that

Pr(Xa(w) = Xp(w)) = ﬁ%ﬁ

The proof of Lemma 5.4 is left as an easy exercise.

Proof of Lemma 5.3. The proof is adapted from (33, (note however that
the proof there applies to 2 Metropolis-style Markov chain rather than the
heat-bath dynamics version considered here).

We construct a coupling, as in section 4.3, but now taking account of the
constraints imposed by the edges of G. For all v € V denote by I'(v) C V
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the set of all neighbours of v in G, and by X,(v) (respectively, Y,(v)) the
colour of vertex v in colouring X, (respectively, ¥;). Further, for all U C V,
let Xe(U) = {X;(u) : u € U}. The transition (X,,Y;) = (X¢41, ¥i41) in the
coupling is defined by the following experiment:

(1) Select & vertex v € V, nar.

(2) Choose a colour cx € @\ X,(I(v)) and a colour ¢y € Q\Y,(I'(v)) vaur,
using the joint sample space of Lemma 5.4.

(3) In the c?loming Xy (respectively ;), recolour vertex v with colour cy
(respectively cy ) to obtain a new colouring X, (respectively Yi,).

Let A= A, CV be the set of vertices on which the colourings X, and ¥,
agree, and D = D, CV be the set on which they disagree. Let d'(v) denote
the number of edges incident at vertex v that have one endpoint in A and
one in D. Observe that

Y=Y do)=m, (5.10)

vEA veD

where m’ is the number of edges of G that span A and D.

It s clear that |Dyyq| - |D;| € {-1,0,1}. Consider first the probability
that | Dy41 = [Dy|+1. For this event to occur, the vertex v selected in step (1)
must lie in A, and the new colours cx and cy selected in step (2) must be
unequal. Fix a vertex v € A, and denote by £ = |Q\ X, (I'(v))| (respectively,
n =@\ Y:(I(¢v))]) the number of possible values for cx (respectively, ey ),
and by ¢ = @\ (Xu(T'(v)) U Yi(I'(v)))| the number of possible common
values. By Lemma 5.4, conditional on vertex v being selected in step (1), the
i)’robability that the same colour is selected for vertex v in both X,,; and

1+1 18

Pr(cx =cy) (5.11)

I

max{§, 7}
A moment’s reflection reveals that the quantities £, n and ¢ satisfy the fol-
lowing linear inequalities:

§-¢ < d(v), (5.12)
n-¢<dv) (8.13)
and
(2q-4-d(v). (5.14)
Thus, starting from (5.11),
Pr{cx =¢y) 2 d’(v§+( 21- ;l_(_vi’ {5.15)
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where the first inequality is from (5.12) and (5.13), and the second from (5.14).

Hence,
5 1)
vEA - 4
ml

- 516
(g-4n (10

Pr(|Dsi| = D] +1) <

S|

where the equality is by equation (5.10).

Now consider the probability that |Dy,| = [Dy| - 1. For this event to
oceur, the vertex v selected in line (1) must lie in D, and the new colours cx
and ¢y selected in step (2) must be equal. Equation (5.11) cgntinues to hold,
with £, 7 and  defined as before. The analogues of inequalities (5.12)-(5.14)
for the case v € D are

and
(>q-24+d(v)

By reasoning similar to that leading to (3.13),

> { > 24 + Li0)
P02 g - e
conditional on v being selected in step (1). Hence

I~ (g-24  d()
Pr{|Depa| = 1D - 1) 2 - > (TA t-a

veD ¢
g-24 m
_B e )
w—an P
Define ¢
q—QA n_ m
=——— and b=bm)=———,
0= an ) =TT

so that Pr(|Dy1| = |Di| + 1) <band Pr{|Dy1| = D] - 1) a|D,[ +b.
Provided o > 0, i.e., ¢ > 24, the size of the set D, tends to decrease with ¢,
and hence, intuitively at least, the event D, = @ should occur with high
probability for some ¢ < T with 7' not too large. Since D; = @ is precisely the
event that coalescence has occurred, it only remains to confirm this intuit.ion,
and quantify the rate at which D; converges to the empty set. From equations
(5.16) and (5.17),

E(|Desa | Di) < 8(D:| +1) + (alDe] +)(1Dil - 1)
+(1-a|Dy| - 26)|Dif
= (l - a)|D1|
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Thus E(|D| < (1 - a)f|Dyl) < (1 - a)t, and, because |Dy| is an non-
negative integer random variable, Pr(|D,| # 0) < n(1 - a)* < ne~°. Note
that Pr(D; # 0) < ¢, provided ¢ > a~' In(ne 1), establishing the result. [

Observe that this result, combined with Proposition 2.1, implies the exis-
tence of an FRPAS for g-colourings in graphs of maximum degree A, provided
¢ 2 24+1. With a little care, the argument can be pushed to g > 24, though
the bound on mixing time worsens by a factor of about n2.

The (direct) coupling technique described here has been used in & number
of other applications, such as approximately counting independent sets in &
low-degree graph (Luby and Vigoda [51]), and estimating the volume of a
convex body (Bubley, Dyer and Jerrum [14))." In practice, the versatility of
the approach is limited by our ability to design couplings that work well in
situations of algorithmic interest. The next section reports on a new technique
that promises to extend the effective range of the coupling argument by
providing us with a powerful design tool.

6. A New Technique: Path Coupling

The coupling technique described and illustrated in Sections 4.3 and 5.3 is
conceptually very simple and appealing. Unfortunately, it may be very diff-
cult or indeed virtually impossible to design couplings appropriate to specific
situations of practical interest. The problem, which began to surface even
in Section 5.3, is one of engineering: how do we encourage (X,) and (Y)) to
coalesce, while satisfying the demanding constraints (4.7) and (4.8)? Path
coupling is an engineering solution to this problem, invented by Bubley and
Dyer (10, 11]. Their idea is to define the coupling only on pairs of “adjacent”
states, for which the task of satisfying (4.7) and (4.8) is relatively easy, and
then to extend the coupling to arbitrary pairs of states by composition of
adjacent couplings along a path. The approach is not entirely distinet from
classical coupling, and the Coupling Lemma (Lemma 4.4) still plays  vital
role.

We illustrate path coupling in the context of the Markov chain M, of
Section 5.2, on linear extensions of a partial order. Our treatment will closely
follow that of Bubley and Dyer [12]. For convenience, we work with a slightly
modified version of M. The transitions from cne linear extension to another
are still obtained by pre-composing with & random transition {p,p+1); how-
ever, instead of selecting p € [n ~ 1] uniformly, we select p from & probability

7 The latter application draws inspiration from Lindvall and Rodgers's [49] idea
of coupling diffusions by reflection.
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distribution f on [n - 1| that gives greater weight to values near the centre
of the range. It is possible that this refinement actually reduces the mixing
time; in any case, it leads to  simplification of the proof. Formally, transition
probabilities from state X; are defined by the following experiment:

(1) Select p € [n - 1] according to the distribution f, and r € {0,1} uar.

(2) Iir=1and X; o (p,p+1) € 2, then X,y := X; 0 (p,p + 1); otherwise,
XH-I = X!.

Let us refer to this Markov chain as M/ . Provided the probability distribu-
tion f is supported on the whole interval [n — 1], the Markov chain m{, is
irreducible and aperiodic. It is easy to verify, for example using Lemma 3.1,
that the stationary distribution of EUI{; is uniform. As in Section 5.2, the ex-
plicit loop probability of % is introduced mainly for convenience in the proof.
However, some such mechanism for destroying periodicity is necessary in any
case if we wish to treat the empty partial order consistently.

To apply path coupling, we need first to decide on an adjacency structure
for the state space 2. In this instance we decree that two states g and ¢/
(linear extensions of <) are adjacent iff ¢" = g o (4, j) for some transposition
(i,j) with 0 € i < j € n—1; in this case, the distance d(g,¢") from g
to ¢' is defined to be j - 1. Note that the notions of adjacency and distance
are symmetric with respect to interchanging g and ¢', so we can regard this
imposed adjacency structure as a weighted, undirected graph on vertex set {2;
let us refer to this structure as the adjacency graph. It is easily verified that
the shortest path in the adjacency graph between two adjacent states is the
direct one using a single edge. Thus 4 may be extended to a metric on {2 by
defining d(g, h), for arbitrary states g and h, to be the length of a shortest
path from g to & in the adjacency graph.

Next we define the coupling. We need to do this just for adjacent states,
as the extension of the coupling via shortest paths to arbitrary pairs of states
will be automatic. Suppose the current pair of states is (X;,Y;) and that
Y, = X, 0 (i, ) for some transposition (i, 5} with 0 €4 < j < n - 1; then the
transition to (X;41, Y1) is defined by the following experiment:

(1) Select p € [n - 1] according to the distribution f, and ry € {0,1} var.
Ifj-i=1andp=4 set ry :=1-7x; otherwise, set ry :=rx.

() Hry =1and Xy0(p,p+1) € 2 then set Xp4y := Xyo(pp+1);
Othel'WiSE, set XH—l = Xg.

(3) Ifry = L and Y;o(p,p+1) € 2 then set Y, := Y;o(p,p+1); otherwise,
set Vs =Y
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We need to show:

Lemma 6.1, For adjacent states X, and Y,
E(d(XH'bYt-H) | tht) S gd(xhyl)’ (61)

where ¢ < 1 is o constant depending on f. For o sustable choice for f, one
has 9= 1-a, where a = 6/(n? - n).

Before proceeding with the proof of Lemma 6.1, let us pause to consider why
it is sufficient to establish (6.1) just for adjacent states.

Lemma 6.2. Suppose o coupling (X,,Y:) hos been defined for 9]1{e on od-
Jacent pairs of states, and suppose that the coupling satisfies the contraction
condition (6.1) on adjacent pairs. Then the coupling can be extended to oll
pairs of states in such o way that (6.1) holds unconditionally.

Proof (sketch). For notational convenience set X := X, and Y := ¥;, where
X:,Y; € (2 are now arbitrary. Denote by P(-, ) the transition probabilities
of!m{f Let X = 2y, Z;,...,2; =Y be a shortest path from X to Y in the
adjacency graph. (Assume a deterministic choice rule for resolving ties.) First
select X' = Zj € 12 according to the probability distribution P(X, - ). Now
select Z] according to the distribution induced by the pairwise coupling of
the adjacent states Zy and Z), conditioned on the choice of Z{; then select
Z; using the pairwise coupling of Z, and Z5, and s0 on, ending with Z = Y".
Let X4, := X' and Yy, :=Y'. It is routine to verify, by induction on path
length |, that Y4, has been selected according to the (correct) distribution
P(Y,, -). Moreover, by linearity of expectation and (6.1),

-1
B{d(Xo1, Vo) | X0 %) € Y E(d(Z0,2001) | 23 Ziva)
=0
-1
<o) d(Z L)
i=0
= gd(xlel)'

Proof of Lemma 6.1. 1 p ¢ {i - 1,4,§ - 1,7} then the tests made in steps
(2) and (3) either both succeed or both fail. Thus Yi4) = X;4y 0 (1,5) and
d(X141,Yie1) =5 - i = d(X,, Y}). Summarising:

X Vi) =d(X ), ifpg{i-1ij-15) (62
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Next suppose p = i - 1 or p = j. These cases are symmetrical, so e
consider only the former. With probability at least %, the test made in
steps (2) and (3) both fail, since Pr(rx = ry = 0) = . If this hzfp'pens,
clearly, d(Xy41,Ye41) = § =i = d(X, ;). Otherwise, with probability at
most 3, one ot other test succeeds. If they both succeed, then

Yir =Yo(i-1,4)
= Xyo(i)oli-1,9)
= XH-] o4 (l - 1,1) 4 (2,]) [} (2 - 1,2)
=Xiofi- L,3)
and d(Xis1,Yin)) = § -1+ 1 =d(X,, 1}) + 1; if only one (say the one in

step 2) succeeds, then Yy = Yo = X0 (i) = Xpa 0 (-1,d)o(i,j), and
d(Xps1, Yepr) € § - i+ 1=d(X,,Y;) + 1. Summarising:

) 1
E(d(Xurs,Yor) | X Yop=i=1Vp=j) SdX Y +5. (63)

Finally suppose p = i or p = j - 1. Again, by symmetry, we need pnly
consider the former. There are two subcases, depending on the value of j - i.
The easier subcase is j —i=1. 1 ry = 1thenry =0 and

Xun=Xo(hi+)=Yio[i+1)oi+l) =Y, =Yy,

with & similar conclusion when ry = 0, Thus d(X¢ 41, Yi41) = 0= (X, V1) -
1. The slightly harder subcase is the complementary j - i > 2. The crucial
observation is that X; o(i,i+1), Y 0(i,i+1) € 2 and hence the tests in steps
(2) and (3) either both succeed or both fail, depending only on the value of
ry = ry. To see this, observe that

Xi(i) # Xifi +1) = Yifi + 1) ¥ 1o(j) = X,(3),

from which we may read off the fact that X,(i) and X, (i +1) are incomparable
in <. The same argument applies equally to ¥,(i) and ¥(i + 1). T rx = 0
there is no change in state; otherwise, if ry =1,
Xiv1 = Xio(ii41)

=Yo(ij)ofiit])

=Yo(ii+l)ofij)efii+])

= Yt+1 0 (l + l!j)r
and d(XH-l!YlH) = j—i—l = d(Xg,Yt)—l Summm'lsing both thej-i =1
and j - i > 2 subcases:

E(d(XH'llYlH.) | Xh}’hp =va = ] - 1) Se(xhyt)' (6'4)

where
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_ 0, if d(Xg,Yt) =1
(XY = {d(X,.Y,) -4, otherwise.

Note that, in the case j — i = 1, inequality (6.4) covers just one value of
p namely p = i = j -1, instead of two; however, this effect is exactly
counterbalanced by an expected reduction in distance of 1 instead of just %
Combining (6.2)-(6.4) we obtain

E(d(xH—la Yt+l) | Xh Yt)

- L0 16-0-1)

Specialising the probability distribution f(')to be (i) := a{i++1)(n—i~1)—
where o := 6/(n® - n) is the appropriate normalising constant—we have, by
direct caleulation, - f(i — 1) + f(3) + f(j - 1) - f(j) = 2a(j - ). Since
d(X:,Y;) = j - i, we obtain (6.1) with p=1-a. O

From Lemmas 6.1 and 6.2 it is now a short step to:

Proposition 8.3. The miting time of the Markov chain 9]!{, i8 bounded by

7(€) < (n* - n)(2lnn + Ine~Y)/6.

Proof. By iteration, E(d(X,,Y,) | Xo.Ys) < o'd(Xo,Yo). For any pair of
linear extensions g and h, there is a path in the adjacency graph using only
adjacent transpositions (i.e., length one edges) that swaps each incomparable
pair at most once. Thus d(Xp, ¥p) < (3) < n?, end

Pr(X, #Y,) <E(d(X,.Y,) < (1 - a)'n?,

The latter quantity is less than ¢, provided ¢ 2 (n® - n)(2lnn + Ine~1)/6.
The result follows directly from Lemma 4.4,

David Wilson hes recently derived a similar O(n®logn) bound on mixing
time when f is uniform, i.e, when the transpasition (p, p-+1) is selected u.a.r.

New applications of path coupling are regularly being discovered. Bubley,
Dyer and Greenhill [13] have presented an FPRAS for g-colourings of a low
degree graph that extends the range of applicability of the one described
earlier. They were able, for example, to approximate in polynomial time the
number of 3-colourings of a graph of maximum degree 3, thus “beating the 24
bound” that appeared to exist following the result described in Section 5.3. It
is fair to say that this improvement would not have been possible without the
aid of path coupling. Dyer and Greenhill have also considered independent
sets ina low degree graph (23], and obtained a result similar to, but apparently
incomparable with, that of Luby and Vigoda (51). One further example must

a8
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suffice: Cooper and Frieze (15} have applied path coupling to ana]yse.the
“Swendsen-Wang process,” which is commonly used to samplg cqnﬁguratl_ons
of the “random cluster” or ferromagnetic Potts model in statistical physics.

7. Exact Sampling by Coupling From the Past (CFTP)

The previous section perhaps struck an overly optin.xistic note. In the m.ajor-
ity of cases, we do not have good a priori bounds, using any of Fhe techqnquw
in the previous sections, on the mixing time of the Markov chains used.m ac-
tual MCMC applications. When analytical bounds are weak or non-existent,
we can sometimes use coupling as an algorithmic (as opposed to proof) tec!l-
nique. Propp and Wilson's remarkable contribution is to demonstrgte that in
certain circumstances, “algorithmic coupling” may be used to obtain san?ples
from the ezact stationary distribution, rather than just a t-step approxima-
tion. This section is based on Propp and Wilson's seminal artic.le on exac.t
sampling [54], and a paper of Kendall’s that describes an extension to their

technique [45].

Suppose M is an ergodic (irreducible, aperiodic) Markov chain on finite
state space {2 and with transition probabilities P : @ x 2 — (0,1 (T'he
finiteness assumption is for ease of presentation only, and plays no crqcxal
role in what follows.) Suppose ¥ is a probability distribution on functions
f: 02— 0 that is consistent with P is the sense that

Pr#(f(z) = Y= P(z,y), forallz,ye Q2 (1.1)

A special example of this situation arises when F is constructed as & prod-
uct distribution from P. Thus, to sample f € F: (i) sample, independently
for each z € £, a state y, from the distribution P(z, -), and then (ii) let
f: 2 = 12 be the function mapping z to y; for all z € 2. But jpst s v.:ith
the vanilla coupling in Section 4.3, we are in practice interested in dlsmbl‘l-
tions F that strongly couple evaluations of f at different states (elements in
the domain).

Ifs <t and fi,..., fo1 : 2 = s a indexed sequence of functiOfls
(usually the f; will be sampled independently from F), we denote by F; :
2 > (2 the iterated function composition

Fi=fiyofigorofuiofe (7.2)

We may perform a rather petverse t-step simulation of T frox.n some initial
state 7q € 12 by the following procedure: (i) select fo,..., fi-1 independently
from distribution , (ii) compute the composition F§ = fr-0fe-20---0 fioke
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85 in (7.2), and (iii) return F(zo) as the required sample from the t-step
distribution. Of course, this would be a very inefficient way of simulating M,
requiring about | (2] times the work of a direct simulation of a single trajectory.
However, this view of proceedings will be convenient to bear in mind in what
follows.

As hinted at earlier, for fixed transition probabilities P(- ), there is con-
siderable fexibility in the choice of the distribution ¥, allowing us to en-
code uniform couplings over the entire state space. The Coupling Lemma—at
least an important special case of it--can be stated in this setting, Suppose
for s fi-1 ate sampled independently from F, and let F} be as before. If
there exists a funetion ¢ : {0,1) ~ N such that

Pr(F:() s not a constant function) < ¢,

then the mixing time 7(¢) of I is bounded by ¢(¢). In principle, this obser-
vation permits us to estimate the mixing time of 9 empirically, by observing
the coalescence time of the coupling defined by F. We could then obtain sam-
ples from an approzimation to the stationary distribution of 9 by simulating
T for & number of steps comparable with the empirically observed mixing
time. In practice, as we have already observed, the explicit evaluation of F
would be computationslly infeasible.

The first of the two ideas that underlie Propp and Wilson's proposal is
completely original and surprising: by working with F?, in place of F}, ie.,
by “coupling from the past,” (CFTP) it is possible to obtain samples from
the ezact stationary distribution.

Theorem 7.1. Suppose that f_y, f_3,... 15 a sequence of independent sam-
ples from F. Let the stopping time T be defined as the smallest number ¢
for which F2,(-) is o constant function, and assume that B(T) < oc. Denote
by O, the unique value of FO. (which is defined with probability 1 ). Then
f?m is distributed according to the stationary distrébution of M.

Note that the constant function F°, is the same constant function for all
sufficiently large ¢, specifically for all ¢ > T. Thus, coupling from time -T is
equivalent to “coupling from time —oc,” which is the rationale behind both
the choice of notation F? and the CFTP method itself,

_ Proof of Theorem 7.1. Let 7 be the distribution of the random varisble
F°_,. Take one further independent sample fo from F, and let 7' < T be the

smallest number such that FZ;. is & constant function. Let F! _ denote the
unique value of F 7., and let m; denote the distribution of the random vari-

able F! -+ B translational symmetry, 7 = . But ﬁlm = fo(f?m), which
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implies that #o = m; is & stationsry distribution for M. (ﬂm is obtained
from F2__ by effecting a single transition of 9M.) But M is ergodic. 0

Note that we did not really need to assume that T is ergodic, since the
condition E(T) < oc implies the existence of & stationary distribution mp—-
we constructed it!—and it is essily verified that this stationary distribution
must be unique.

The second idea underlying Propp and Wilson’s proposal—independently
discovered by others, e.g., Johnson [40)—is that in certain circumstances,
specifically when the coupling F is “monotone,” it is possible to eveluate
F®; without explicitly computing the function composition fiofao-o
fr+10 f-7. Suppose that the state space {2 is partially ordered by <, with
2 unique maximal element T and a unique minimum element L. We say
that the coupling ¥ is monotene if, for every z,y € Qand f: 2 —» @
in the support of F, the condition z < y entails f(z) < f(y). When F is
monotone, the test for F°, being a constant function is equivalent to the test
F9,(L) = FY,(T). Moreover, if equality holds between F%,(1) and F2,(T)
then their common value is just fﬂm. Roughly speaking, rather than tracking
|12] trajectories of 7, in the monotone case we just need to track two, namely
the ones starting at L and T.

Te1;
repeat
lower — L;
upper < T,
fort~-Tto-1:
lower « fi(lower);
upper + fi(upper);
T<2T
until lower = upper;
return Jower

Fig. 7.1. Coupling from the past: the monotone case

Note that to compute P 5 it is not necessary to know T exactly, only an
upper bound. Rather than iteratively computing Fo fort=0,1,234,.,
until convergence, it is much more efficient to iterate according to the dou-
bling scheme ¢ = 1,2,4,8,16, ..... A general procedure for (monotone) CFTP,
incorporating this algorithmic refinement, is presented as Figure 7.1.
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7.1 A Monotone Example: the Random Cluster Model

The random cluster model arises in statistical physics as & dual {in some
sense) of the ferromagnetic Potts model, (this model is delved into in great
detail in the next chapter). An instance of the random cluster model is defined
by an undirected graph G = (V, E), and real numbers 0 < p<land g > 0.
A configuration (state) of the model is & subset X C E; denote by {2 =
2% the set of all configurations. Each configuration X is assigned a weight
w(X) := pXI(1 - p)"W¥1g®), where m = |E| and ¢(X) is the number of
connected components of the graph H = (V,X). Let Z := L ycpw(X).
Then the random cluster model specifies a probability distribution (Gibbs
distribution) 7 : 2 = [0, 1) on the set of configurations, where

7(X) = w(X)/Z, (7.3)

for all X C E. In the special case g = 1 and G = K,, (the complete graph
on 71 vertices), the random cluster model reduces to the standard random
graph model G, , [7). When g is a positive integer, the random cluster model
is equivalent (in a strong sense) to the ferromagnetic g-state Potts model, as
was first observed by Fortuin and Kasteleyn [29]. For more on this, see, e.g,,
Edwards and Sokal [26].

Suppose we wish to obtain random samples from the Gibbs distribu-
tion with the aim, for example, of estimating the average size of a “cluster”
(connected component of the graph (V, X)). We construct a Markov chain
M, = Mc(G,p,9) on the set of configurations 2 by defining transition
probabilities according to the following trial.

(1) Suppose the current state is X C E. Select ¢ € E, u.ar., and let

w(X +¢)

Gl Sy )

(2) Select & € [0,1), var fa < Ox., set X' := X +¢ otherwise, set
X' := X - e. The next state is X'.

It is easily to verify that My is ergodic and, using Lemma 3.1, that its
stationary distribution is the Gibbs distribution (7.3).

The threshold fx . can be interpreted as the probability, in the Gibbs
distribution, that edge e is present in a random configuration X', conditioned
on the event X' —e= X —e, i, that X" and X agree except perhaps on ¢.
The transition probabilities defined above are another example application of
the heat-bath dynamics. Note that 0 . is easy to compute from the explicit
expression
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={h ifefX +e)=e(X -e);
e = {P/ (p+(1-pq), otherwise. (74)

The trial just described is easily extended to a (uniform) coupling, simply
by ruling that the same choice of random edge ¢ and number o are used
independently of X Specifically, the probability distribution F is defined by
the following trial:

(1) Select e€ Eand @ € [0,1) uar.

(2) Define the function f : 2 — 2 by

jo={

The function f is & random sample from F.

X+e, fla<tye;
X ~e¢, otherwise.

This coupling is monotone with respect to the inclusion ordering on configura-
tions (states), provided ¢ > 1; i.e., for any two states X,Y € Qwith X C Y,
and any function f in the support of F, it is the case that f(X) € f(Y). To
see this, simply observe that for any such pair of states, 8y, < 8y, for all
13

For any integer ¢ > 3, Gore and Jerrum [30] have shown that the mixing
time of “M,.(G,p,¢) may be exponential in n, the number of vertices in the
graph G. The important special case g = 2, equivalent to the celebrated
(ferromagnetic) Ising mode! in statistical physics, is completely apen: it may
be the case that the mixing time of M,.(G, p,q) is bounded by poly(n,e~1)
uniformly over G, but there is little evidence either way. Nevertheless, the
point about coupling from the past is exactly that we don’t need a priori
analytical bounds on the mixing time: we can just implement the coupling
suggested above and proceed empirically.

Figure 7.2 illustrates the result of one such experiment. Here we see Propp-
Wilson CFTP applied to the random cluster model on a 10x 10 square grid, at
g=2and p=v2/(1+v2). (The chosen values for p and g correspond to the
Ising model at the critical temperature for the infinite 2-dimensional square
lattice.) To save space, not all the doubling steps demanded by the proce-
dure of Figure 7.1 are illustrated. Salient features to note are that F%,(1)
(respectively, FO,(T)) is monotonically increasing (respectively decreasing)
with ¢, and that FO,(1) < Fo, < FO,(T) for all ¢ > 0. As ¢ incresses,
we learn more about the identity of F2,,. Convergence in this case is sur-
prisingly rapid when one considers that the expected number of steps before
all 180 edges in the grid have been selected is about 1039 (c.f. the “coupon
collector” problem) . Note that after 1024 steps the lower and upper bounds
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(L) Fo\(T:

xS

Fe(L):

|
Foull): oo

Fem(l)i

Fopa(L):

Fgme(l):

Fig. 7.2. A sample run of coupling from the past

differ in just five edges, and that convergence proper occurs in at most twice
that many steps.

7.2 A Non-Monotone Example: Random Forests

When ¢ < 1, the coupling just devised for the random cluster model ceases
to be monotone; worse still, no monotone coupling exists. (The existence of a
monotone coupling when ¢ > 1 is connected to the “FKG inequality,” which
fails when ¢ < L.} Fortunately, Kendall [45] has shown how to extend the
Propp-Wilson framework to encompass many non-monotone situations. In
the original Propp-Wilson proposal, the two extreme trajectories of a Markov
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chain Pi—starting from the extreme states L and T- are known to bound all
the others, so we can be certain that once those two extreme trajectories have
converged then so have all the others. Kendall's idea is that the two bounding
trajectories do not have to be honest simulations of 2%, it is enough that the
upper one remains above all of the actual trajectories (in the specified partial
order), while the lower one remains below.

In general, the situation is as follows. Recall that {2 is endowed with a
partial order <. An intervel I of 2 is defined by two endpoints l,u € 2
with | < u, and consists of all points lying between ! and v, thus: ] =
{z€f:12z 2 u} Denote by T = Z(f2) the set of all intervals of .
The probability distribution F is extended to s distribution F' on pairs
(f.g), where f : 2 — R and g : T — I. As before, we stipulate that the
component | satisfies (7.1), which roughly says that the coupling defined by
F has the correct marginals. The condition that replaces monotonicity is

z € I entals f(z) € g(I), for all ] € T and (f,g) € suppF’.  (75)
By analogy with (7.2), define
Gy= 109200954109y, (76)

where (fs.gs),-- -+ (ft-1,9¢-1) are random samples from F'. It follows from
condition (7.5) that G®,(1,T) = (y0, o) implies that FC,(-) is the con-
stant function yo, which in turn implies F’?w = yn. So we have the following
extension to Theorem 7.1:

Theorem 7.2. Suppose that (f_1,9-1),(f-2,9-2),... 5 & sequence of inde-
pendent samples from F'. Let the stopping time T be defined as the smallest
number ¢ for which G%,(L,T) = (y,%), for some yo € £, end assume
that B(T) < 0o. Then yo (which is defined with probability 1), is distributed
acconding to the stationary distribution of M.

Note that the samples f_,, f-3, ..., are a conceptual convenience only, having
no algorithmic significance. The algorithm for the Kendall variant of CFTP
is & simple modification of the monctone one presented in Figure 7.1: simply
replace the lines

lower — f,{lower);
upper — fy(upper);

(lower, upper) — g,{lower, upper);
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As an illustrative example, let us consider how CFTP might be applied
to the random cluster model with 0 < ¢ < 1. The probsbility distribution F*
is specified by the following trial:

(1) Selecte€ Eand a € [0,1) uar.
(2) Define the function f: 2 = 2 by

_JX+e ifa<tyx,
/ (X)-{X —e, otherwise;

where fx .is defined as in (7.4).
(3) Define the function g: T — I by

(L+eU+e), ifa<ly,;
dLU)={ (L-¢U+e), fly.<a<iy,;
(L-eU-¢), ifa20,.

{4) The pair (£, ) is a random sample from F'.

Informally, the function g updates its first or “lower” argument using
the threshold 8;;, appropriate for its second or “upper” argument, and vice
versa. This artifice ensures that g preserves intervals—that is to say, L C U
and (L', U} = ¢(L,U) entail L' C U'—even though f itself is not monotone.
Indeed it is routine to verify that condition (7.5) holds with F' defined as
above.

The picture to have in mind is that the iterates £§ of f define coupled
sample paths of My, starting at all possible initial states. When g > 1 (the
monotone case) these paths behave in an orderly fashion, and their joint
evolution is summarised by the lower and uppermost sample paths F{(L) and
F§(T). When g < 1 the sample paths are unruly, crossing and recrossing each
other; nevertheless, the iterates G§(L, T) continue to provide conservative
lower and upper bounds on their joint evolution.

The set of forests (acyclic, spanning, not necessarily connected subgraphs)
of & graph G endowed with the uniform distribution can be regarded as the
set of configurations of the limit of the random cluster model as p,q — 0%
with p/g = 1. Explicitly, the threshold 8 . in this limit is

by = 0, ife(X +e)=c(X -e¢);

XeZ14, otherwise.
Plugging this threshold into the non-monotone coupling for My(G, p, q) with
g <1, we obtain (in principle) an exact sampler for forests in a graph G. As
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Fig. 7.3. Exact sampling: a random forest in a 20 x 20 square grid

an experiment, ten runs of this sampler were conducted, with G being the
20 x 20 square grid. Figure 7.3 illustrates the end result of a typical run.
All ten runs terminated within 2 steps (about 12 minutes on a Sun Ultrs-
SPARC E150), with an average run time of about 7 minutes. This seems to
be the limit of the method; the run time degrades rapidly beyond the 20 x 20
grid, and the 30 x 30 grid appears to be inaccessible. Nevertheless, it is per-
haps surprising that the apparently very conservative lower and upper bounds
provided by G®,(L, T) should converge in any realistic time bound. It cer-
tainly seems worth experimenting further with this approach. See Haggstrom
and Nelander [31] for some more extensive experiments with non-monotone

CFTP.

7.3 Further Applications

Exact sampling by CFTP and other methods is a thriving research topic, and
only a small sample of the burgeoning literature will be mentioned here. Refer
to Wilson's online biblicgraphy [59] for a much wider selection. Sempling
from Markov random fields was covered (in the monotone case) in Propp
and Wilson's origina! article [54], and (more generally) by Haggstrom and
Nelander [31]. A further twist was introduced by Kendall [45] in applying
CFTP to a situation—area interaction point processes where there is no
natural “top state” T.

In statistical physics, one is concerned with infinite Markov random fields,
the Ising model on the infinite 2-dimensional square lattice being a prime
example, In & remarksble development, van den Berg and Steif [6] point
out that is possible in some cases to sample exactly from infinite random
fields, even though the configurations are unbounded in extent. The sense
in which infinite configurations may be “sampled” is the following: given an
positive integer N, the sampler produces, with probability 1, a configuration
on the [-N,N| x [-N,N| grid which is a (2N +1) x (2N + 1) “window”
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onto a perfectly sampled infinite configuration. The rough idea is that, with
probability 1, the spin (= state = colour) at & given lattice site (= vertex)
at time 0 can be computed by coupling from a point in time only finitely
many steps before and within a region of the lattice stretching only finitely
far from the site in question. To get a picture of this, think of “light cones” of
relativistic physies, which if bounded temporally must be bounded spatially
too. See also Kendall [46).

CFTP & la Propp and Wilson requires a simultaneous coupling on all
states {2—encapsulated in the probability distribution F—rather than the
more familiar and less demanding pairwise coupling. Fill's version of exact
sampling (28] Tequires only pairwise coupling, and deals with the (at least
philosophically significant) problem of bias induced by “user impatience.”
Since the running time of the Propp-Wilson sampler is unbounded, there is
a danger that an impatient user will abort a run, leading to a biased sample.
Fill's proposal has the property that if the user decides to abort & run after
some number of steps have elapsed, the samples obtained are not biased.

8. Key Open Problems

There are many unresolved questions in the area of rapid mixing and ap-
proximate counting. A few of the most pressing are collected together in this
section.

8.1 Matroid Bases

Perhaps the major open problem in this area, and one that would be very
rich in terms of consequences, is to determine useful bounds on the mixing
time of the basis-ezchange Markov chain for a general matroid. (A matroid is
an algebraic structure that provides an abstract treatment of the concept of
linear independence.) The states of this Markov chain are the bases (maxi-
mum independent sets) of a given matroid, and 8 transition is available from
base B to base B’ if the symmetric difference of B and B’ consists of precisely
two elements of the ground set. All transition probabilities are equal, so the
chain is ergodic and reversible with uniform stationary distribution.

A concrete example is provided by the graphic matroid associated with
an undirected graph G. In this case, the bases are spanning trees of G, and
a transition from a given tree T is effected by adding a single edge (selected
uar) to T, thus creating a cycle, and then breaking the cycle by deleting
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one of its edges (selected u.a.r.). The basis-exchange Markov chain is known
10 be rapidly mixing for graphic matroids, and, somewhat more generally, for
matroids satisfying & certain “balance condition” (see Feder and Mihail [27)).
A proof of rapid mixing in the general case would imply the existence of an
FPRAS for a number of important problems in combinatorial enumeration,
all of which are #P-complete, including counting connected spanning sub-
graphs of a graph (network reliability), forests of given size in a graph, and
independent subsets of vectors in a set of n-vectors over GF(2).

8.2 Permanent of a 0,1 Matrix

Is there an FPRAS for the permanent of 8 general 0,1 matrix? Equivalently,
is there an FPRAS for the number of perfect matchings in a bipartite graph?
Note that this problem is not phrased as a question about the mixing time
of a specific Markov chain, and certainly the chain My, described in Sec-
tion 5.1 is not directly applicable. To have a good chance of observing perfect
matchings (or “dimer covers”) the parameter A must be of order m,_1/mp;
however, it is possible to construct graphs where this ratio is exponential
in n. Nevertheless, the Markov chain Monte Carlo method seems to offer
the best hope for a positive resolution of this question. Essentially, the is-
sue is whether the Markov chain Mpmatch can be suitably adapted to provide
a general solution, or perhaps used as a “black box” following some inge-
nious preprocessing of the input matrix. (This latter idea has been used in
a weaker way by Jerrum and Vazirani {3] to obtain a randomised approxi-
mation scheme for the general 0,1 permanent whose running time, while still
not polynomial, is asymptotically significantly faster than that of more naive
methods.)

8.3 Contingency Tables

Consider the following task: given m + n positive integers ry,...,7y, and
€1, -+, Cn, SaMple, v.a.x., from the set of m x n non-negative integer matrices
(“contingency tables”) with row-sumsry,..., 7, and column-sums ¢y, . .., .
This problem arises in the interpretation of the results of certain kinds of
statistical experiment; see, for example, Diaconis and Efron [18].

An elegant direct approach to sampling contingency tables has been pro-
posed by Diaconis. Consider the Markov chain M., whose state space is the
set of all matrices with specified row and column sums, and whose tran-
sition probabilities are defined as follows. Let the current state (matrix)
be 4 = (a;;). Select a pair of rows (i, 1) with i # {', and a pair of columns
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(7,4) with j # 7', both wa.r. Form a new matrix A’ from A by incrementing
by one the array elements a;;, 844, and decrementing by one the elements
aijr, 6. Note that A’ has the same row- and column-sums as A. If 4’ is
non-negative then we accept it as the next state; otherwise the chain remains
at state A. It is easy to verify that My, is ergodic and reversible with uni-
form stationary distribution. Moreover, it appears to work well in practice
as & uniform sampling procedure for contingency tables. However, its mix-
ing time is not known to be bounded by any polynomial in the size of the
input. (We assume that the row- and column-sums are expressed in unary
notation when defining the input size, otherwise even the direct path between
two states may be exponentially long.) Dyer, Kannan and Mount [25) have a
partial result.

To deal with tables with large entries, a natural idea is to use a kind of
heat-bath dynamics. As before, select a pair of rows (4,1) with i # ¢/, and &
pair of columns (j, j') with j # 5. Now choose the new matrix 4’ wa.r. from
those which agree with A except at the four entries a5, ¢, 615, and ay
{and have the correct row and column sums). Again, little is known about
the mixing time in general, but see Dyer and Greenhill [24] for a special case.

9. Details

Proof of Proposition 2.1. The techniques we employ are standard in the
area [37). Recall from Section 2. {refer to equation (2.2)) that we have ex-
pressed the number of ¢-colourings of G as a product

1AC)=q"a1 .. om, (9.1)
where
o= 12(G)]
" G,)l

Suppose that the graphs G; and G-, differ in the edge {u,v}, which
is present in G; but absent from Gi.y. Clearly, 2(G;) C 2(G;-1). Any
colouring in {X(G,_;)\ £(G;) assigns the same colour to u and v, and may
be perturbed to a colouring in {G;) by recolouring vertex  with one of at
least g— 4 > 1 colours. (To resolve ambiguity, let u be the smaller of the two
vertices.) On the other hand, each colouring in f(G,) can be obtained in at
most one way as the result of such a perturbation; hence |2(G,-1)\ (G))| €
((G,)| and

IN

g

IN
—

92)

b2 —
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To avoid trivialities, assume 0 < € < 1 and m > 1. Let Z; € {0,1} denote the

random variable which results from running the postulated almost uniform

sampler on the graph G;_ and returning one if the resulting g-colouring

is also a colouring of G; and zero otherwise. Denote by p; = E(Z;) the

expectation of Z;. By setting § = ¢/6m, we may ensure
£

P (9.3)

€
[ tm <msot
ot, noting inequality (9.2),
£ 3
(l - 3_m) oispi (1 + 3—7!!) 0i; (94)

so the mean of a sufficiently large (but still polynomial) number of indepen-
dent copies of Z; will provide a good estimate for ;. Note that, by inequali-
ties (9.2) and (9.3), i > .

So let Z",..., 21" be a sequence of s = [7dc~*m] < 75e~*m inde-
pendent copies of the random variable Z;, obtained from independent trials
using the postulated almest uniform sampler, and let Z; = s7' Y3, 79 be
their mean. Since Z; is a random variable taking values from {0, 1}’, it follows
easily that g, 2var(Z;) = g7 =1 <2, and hence iy 2var(Z;) < 27", As our
estimator for |2(G)|, we use the random variable ¥ = ¢" Z,Z;... Z . Note
that E(Y) = ¢"pipa. . i

The performance of this estimator is characterised by its variance, which
may be bounded as follows:

wr(Z12s..2m) T wr(Z)\
(l‘ll-‘?w-#m)2 -H(l+ ; ) :

i

i=1
<
)

37

¢t

< Pyl
~ 36
since ¢*/37 < 1+2/36 provided 0 < z < 1. Thus, by Chebychev's inequality,
€ €
N b <Y <142 ) gy .
(1 3)ﬂw2 P $qY (1+ 3)#xm fim

with probability at least 3. But from inequality (9.4), we have

3 €
(l—a)gm...gm Spapia. . pm £ (1+§)0192~-9m,
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which, combined with the previous inequality and (9.1), implies that the
estimator Y satisfies the requirements of 2 randomised approximation scheme
for the number of colourings |2(G)|.

To estimate each ratio g; we need 75¢~*m samples from the almost uni-
form sampler, and there are m such ratios in all to estimate. The claimed
time complexity for approximate counting follows. 0

Proof of eguation (4.5). Consider a facet R(c) N R(c), where ¢ and ¢
are adjacent states (colourings). Up to symmetry, such a facet is & (ng - 1)-
dimensional polytope defined by inequalities

12 200 = 201 2 202,203, +»T0g-1 2 0 (9.5)
122102 211,312, 1210-1 20 (96)
12210 2 Za-11yZa-121++ 1 En-19-1 2 0. {97

This particular facet corresponds to the boundary between the all-0 state and
the and adjacent state in which vertex 0 acquires colour 1; the facet clearly
lies in the plane defined by zog = 2o,

We wish to compute volg-1(R(c) N R(c')), the srea (e, (ng - 1)-
dimensional volume) of the facet R{c) N R(c'). Each line of the above display
relates a different set of ¢ variables, so the required volume is the product
of the volumes of the polytopes defined by each line. The polytope defined
by (9.5) is of dimension g - 1, and all the others, namely (9.6)-(9.7), are of
dimension ¢. The ¢-dimensional volume of the polytope defined by any of

(9.6)-(9.7) is simply 1 1
/ # e = {ﬁ] L (9.8)
0 9l 9

To calculate the volume of the polytope defined by (9.5), project it onto the
plane zy = 0 to obtain the polytope

122012 202,203+ -+, 304-1 2 0,

which, by comparison with (9.8), has (g — 1)-dimensional volume (g - 1),
Projecting from the plane zg = 29,1 to the plane 2y = 0 contracts volume
by a factor v/2 (the scalar product of the normals to the two planes) so the
actual volume before projection is v2(g - 1)1,

Multiplying the n factors just computed together, we obtain

volng-1(R(¢) N R(C)) = %

as claimed. 0



162 Mark Jerrum

Acknowledgement. Two colleagues merit special acknowledgement for their con-
tribution 1o this survey. Some of the results presented here were products of an
extended period of collaboration with Alistair Sinclair, and in describing them I
have freely plundered and adapted material from our joint articles. The experiment
described in Section 7.2 was jointly undertaken with Vivek Gore, and is published
here for the first time.

I also thank Bruce Reed and an anonymous referee for carefully reading and
providing helpful comments on a draft of this chapter.

References

1. Aldous D. {1986): Random walks on finite groups and rapidly mixing Markov
chains, Séminaire de Probabilités XVII 1981/82 (A. Dold and B. Eckmann,
eds), Springer Lecture Notes in Mathematics 986, 243-297.

2. Aldous ). (1987): On the Markov chain simulation method for uniform combi-
natorial distributions and simulated annealing, Probability in the Engineering
and Informational Sciences 1, 33-46.

3. Aldous D. (1990): The random walk construction of uniform spanning trees and
uniform labelled trees, SIAM Journal of Discrete Mathematics 8, 450-465.

4. Alon N. (1986): Eigenvalues and expanders, Combinatorica 8, 83-96.

5. Applegate D. and Kannan R. (1991): Sampling and integration of near log-
concave functions, Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing (STOC), ACM Press, 156-163.

6. van den Berg J. and Steif J.E. (1998): On the existence and non-existence of
finitary codings for & class of random fields, Preprint.

7. Bollobds B. (1978): Extremal Graph Theory, Academic Press.

8. Broder A.Z. (1988): How hard is it to marry at random? (On the approximation
of the permanent), Proceedings of the 18th Annual ACM Symposium on Theory
of Computing (STOC), ACM Press, 1986, 50-58. Erratum in Proceedings of
the 20th Annual ACM Symposium on Theory of Computing, p. 351.

9. Brooks R.L. (1941): On colouring the nodes of a network, Proceedings of the
Cambridge Philosophical Society 37, 194-197.

10. Bubley R. and Dyer M. (1997): Path coupling, Dobrushin uniqueness, and ap-
proximate counting, Report 97.04, School of Computer Studies, University of
Leeds.

11. Bubley R. and Dyer M. (1997): Path coupling: a technique for proving rapid
mixing in Markov chains, Proceedings of the 38th IEEE Symposium on Foun-
dations of Computer Science, IEEE Computer Society Press, 223- 231.

12, Bubley R. and Dyer M. (1998): Faster random generation of linear extensions,
Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), ACM/SIAM, 350-354.

13. Bubley R., Dyer M.E. and Greenhill C. (1398): Beating the 24 bound for ap-
proximately counting colourings: & computer-assisted proof of rapid mixing,
Proceedings of the Ninth Annual ACM-SIAM Sympaosium on Discrete Algo-
rithms (SODA), ACM/SIAM, 355 363.

14 Bubley R., Dyer M. and Jerrum M. (1998): An elementary analysis of a pro-
cedure for sampling points in a convex body. Random Structures and Algo-
rithms 12, 213-235.

Mathematical Foundations of MCMC 163

15. Cooper C. and Frieze A.M. (1998): Mixing Properties of the Swendsen-Wang
Process on Classes of Graphs, Preprint.

16. Cordovil R. and Moreira M.L. (1993): Bases-cobases graphs and polytopes of
matroids, Combinatorica 13, 157-165.

17. Diaconis P. (1988): Group representations in probability and statistics, Institute
of Mathematical Statistics, Hayward CA.

18. Diaconis P. and Efron B. {1985): Testing for independence in a two-way table:
new interpretations of the chi-squared statistic, Annals of Statistics 13, 845-913.

19. Diaconis P. and Stroack D. (1991): Geometric bounds for eigenvalues of Markov
chains, Annals of Applied Probability 1, 36-61.

20. Dyer M. and Frieze A. (1991): Computing the volume of convex bodies: a case
where randomness provably helps, Probabilistic Combinatorics and its Appli-
cations, Proceedings of AMS Symposia in Applied Mathematics 44, 123-170.

21. Dyer M. and Frieze A. (1994): Random walks, totally unimodular matrices and
a randomized dual simplex method, Mathematical Programming 64, 1-16.

22. Dyer M., Frieze A. and Kannan R. (1991): A random polynomial time algorithm
for approximating the volume of convex bodies, Journal of the ACM 38, 1-17.

23. Dyer M. and Greenhill C. (1997): On Markov chains for independent sets.
Preprint. (Visit bttp://www.8cs.leeds. ac.uk/rand/acg.htal)

24. Dyer M. and Greenhill C. (1998): A genuinely polynomial-time algorithm for
sampling two-rowed contingency tables, 25th EATCS International Colloquium
on Automata, Languages and Programming, Aalborg, Denmark, Springer-
Verlag LNCS Series.

25. Dyer M., Kannan R. and Mount J. (1997): Sampling contingency tables, Ran-
dom Structures and Algorithms 10, 487 506.

26. Edwards R.G. and Sokal A.D. (1968): Generalizations of the Fortuin-Kasteleyn-
Swendsen-Wang representation and Monte Carlo algorithm, Physical Review
D 38, 2009-2012.

27. Feder T. and Mihail M. (1992): Balanced matroids, Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, ACM Press, 26-38.

28.Fill J.A. (1997): An interruptible algorithm for perfect sampling via Markov
chains, Proceedings of the 20th Annual ACM Symposium on Theory of Com-
puting (STOC), ACM Press, 688-695.

29. Fortuin CM. and P.W. Kasteleyn P.W. (1972): On the random cluster model I
introduction and relation to other models, Physica 87, 536-564.

30. Gore V. and Jerrum M. (1997): The Swendsen-Wang process does not always
mix rapidly, Proceedings of the 20th ACM Symposium on Theory of Compu-
tation, ACM Press, 674-681.

31. Haggstrsm O. and Nelander K. (1997): Exact sampling from anti-monotone
systems, Preprint. To appear in Statistica Neerlandica.

32. Heilmann .J. and Lieb E.H. (1972): Theory of monomer-dimer systems, Com-
munications in Mathematical Physics 25, 190-232.

33. Jerrum M. (1995): A very simple algorithm for estimating the number of k-
colourings of a low-degree graph, Random Structures and Algorithms 7, 157-
165.

34. Jerrum M.R. and Sinclair A.J. (1989a): Approximating the permanent, SIAM
Journal on Computing 18, 1149-1178.

35. Jerrum MR. and Sinclair A.J. (1989b): Approximate counting, uniform gen-
eration and rapidly mixing Markov chains, Information and Computation 82,
93-133.

36. Jerrum M. and Sinclair A. (1993): Polynomial-time approximation algorithms
for the Ising model, SIAM Journal on Computing 22, 1087-1116.



164  Mark Jerrum

47. Jerrum M. and Sinclair A. (1996): The Markov chain Monte Carlo method: an
approach to approximate counting and integration. In Approximation Alge-
rithms for NP-hard Problems (Dorit Hochbaum, ed.), PWS, 482-520.

38. Jerrum M.R., Valiant L.G., and Vazirani V.V. (1986): Random generation of
combinatorial structures from a uniform distribution, Theoretical Computer
Science 48, 169-188.

39. Jerrum M. and Vagirani U.V. (1996): A mildly exponential approximation al-
gorithm for the permanent, Algorithmica 16, 392-401.

40. Johnson V.E. (1996): Studying convergence of Markov chain Monte Carlo algo-
tithms using coupled sample paths, Journal of the American Statistical Associ-
ation 91, 154-166.

41, Kannan R. (1994): Markov chains and polynomial time algorithms, Proceedings
of the 35th Annual IEEE Symposium on Foundations of Computer Science
{FOCS), Computer Society Press, 656-671.

42. Kannan R., Lovész L. and Simonovits M. (1996): Random Walks and an 0°(n®)
Volume Algorithm for Convex Bodies. Preprint, January.

43. Karp RM. and Luby M. (1983): Monte-Carlo algorithms for enumeration and
reliability problems, Proceedings of the 24th Annual IEEE Symposium on Foun-
dations of Computer Science, Computer Society Press, 56-64.

44, Karzanov A. and Khachiyan L. (1990): On the conductance of order Markov
chains, Technical Report DCS 268, Rutgers University.

45, Kendall W.S. (1996): Perfect simulation for the area-interaction point process,
University of Warwick, Department of Statistics Research Report 292. To ap-
pear in Probability Perspective (C. C. Heyde and L. Accardi, editors), World
Scientific Press, Singapore.

46. Kendall W.S. (1997): Perfect simulation for spatial point processes, University
of Warwick, Department of Statistics Research Report 308, 1997. To appear in
Proceedings of ISI 51st session, Istanbul, August, 1997,

47 Kenyon C., Randall D. and Sinclair A. (1993): Matchings in lattice graphs,
Proceedings of the 25th Annual ACM Symposium on Theory of Computing
(STOC), ACM Press, 738-746.

48. Knuth D.E. (1975): Estimating the efficiency of backtrack programs, Mathe-
matics of Computation 29, 121-136.

49. Lindvall T. and Rogers L.C.G. {1986): Coupling of Multidimensional Diffusions
by Reflection, Annals of Probability 14, 860-872.

50. Lovész L. and Simonovits M. (1993): Random walks in & convex body and an
improved volume algorithm, Random Structures and Algorithms 4, 359-412.

51, Luby M. and Vigoda E. (1997): Approximately counting up to four, Proceedings
of the 29th Annual ACM Symposium on Theory of Computation (STOC), ACM
Press, 682 -687.

52, Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. and Teller E.
(1953): Equation of state calculation by fast computing machines, Journal of
Chemical Physics 21, 1087-1092.

53. Mihail M. and Winkler P. (1992): On the number of Eulerian orientations of
a graph, Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), ACM Press, 138-145.

54. Propp J.G. and Wilson D.B. (1996): Exact sampling with coupled Markov chains
and applications to statistical mechanics, Random Structures and Algorithms 8,
203-252.

55. Rasmussen L.E. (1994): Approximating the permanent: a simple approach,
Random Structures and Algorithms 5, 349-361.

56, Sinclair A.J. (1992) Improved bounds for mixing rates of Markov chains and
multicommodity flow, Combinatorics, Probability and Computing 1, 351-373.

Mathematical Foundations of MCMC 165

57. Sinclair A.J. (1993): Randomised algorithms for counting and generating com-
gmatorial structures, Advances in Theoretical Computer Science, Birkhauser,
oston.
58, Welsh D. (1997): Approximate Counting. In Surveys in Combinatorics, London
Mathematical Society Lecture Note 241, Cambridge University Press, 287-323.
59. Wilson D. (1998): Annotated Bibliography of Perfectly Random Sampling with
Markov Chains, http://dinacs. rutgers.edu/"dbvilson/exact .htwl/



Percolation and the Random Cluster Model:
Combinatorial and Algorithmic Problems

Dominic Welsh*

University of Oxford

1. Introduction

In 1961 Harty Frisch, John Hammersley and I (13] carried out what were
in those days massive Monte Carlo experiments attempting to determine
the critical percolation probabilities of the various standard lattices. The
constraints at that time were, as today, machine induced. The programmes
were written in machine code on & computer which was the size of a large
room with less power than a modern day calculator. Today the situation has
radically changed. Several of these critical probabilities which we were trying
o estimate are now known exactly. However the problems posed then have
been replaced by problems of just as much charm and seeming intractability
and it is some of these that I shall address in these lectures.

The plan of this article is as follows. In the first section 1 shall review
classical percolation theory and then discuss from & combinatorial point of
view the Ising, Potts and random cluster models . In §5 [ shall survey proper-
ties of the Tutte polynomial and in particular highlight its relationship with
the previous three models. In §6 I shall return to the random cluster model.
The remaining sections are concerned with the difficulties involved in obtain-
ing good approximation schemes for the partition function of the Potts and
random cluster models.

The graph terminology used is standard. The complexity theory and nota-
tion follows Garey and Johnson (14]. Further details of many of the concepts
treated here can be found in [37].

2. Classical Percolation Theory

As its name suggests, percolation theory is concerned with flow in random
media. Its origin, in 1957 in the work of Broadbent & Hammersley (5], was

* Supported in part by Esprit Working Group No. 21726, “RAND?".
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as a model for molecules penetrating & porous solid, electrons migrating over
an atomic lattice, a solute diffusing through a solvent or disease infecting a
community. Here we shall attempt to introduce the main concepts of classical
percolation theory and also to relate it with other topics such as the Ising
model of ferromagnetism, the reliability problem in random networks, the
Potts model of statistical physics and the random cluster model of Fortuin
and Kasteleyn (11}.

For illustrative purposes we shall be principally concerned with the two
dimensional square lattice L. However the basic ideas apply to any regular
lattices in arbitrary dimensions.

Suppose that there is & supply of fluid at the origin and that each edge
of L allows fluid to pass along it with probability p, independently for each
edge. Let P,(p) be the probability that at least n vertices of L get wet by
the fluid. Thus

Pp) =1
Pap) =1-(1-p)"

and in theory Px(p) can be calculated for any integer N. However, the reader
will rapidly find it prohibitively time consuming, Obviously

Py(p) 2 Py a(p)
and hence we know that P{p) exists where

P)= lim Py (1)

and it represents the probability that fluid spreads an infinite distance from
the origin.

Broadbent and Hammersley (5] showed that (for a wide class of lattices)
there exists & crifical probability py such that

p<pu = Plp)=0 (2.2)
p>py = P(p) >0,

and Monte Carlo simulations suggest that for all the well-known lattices the
behaviour of P(p) is roughly the same in the qualitative sense.

Historically, the subject of percolation had statistical mechanics over-
tones, and in this area ‘bond’ is usually used to denote an ‘edge’ of a graph,
similarly ‘site’ or ‘atom’ denotes a ‘vertex'. We shall use these terms inter-
changeably.

In atom percolation on L instead of each edge of L being randomly blocked
with probability 1-p or open with probability p the vertices of L are blocked
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with probability 1 - p or open with probability p. Again we are interested in
the probability of fuid spreading locally or an infinite distance.

Exactly analogous results hold for atom percolation as for bond percols-
tion, though of course the numerical values of the eritical probabilities and
percolation probabilities P(p) differ.

It can be argued that atom percolation is the more important, on the
grounds that any bond percolation problem on a lattice L can be turned
into an atom percolation problem on a related lattice L, got by letting each
edge of L be a vertex in L and joining two vertices of L if and only if the
corresponding edges of L are incident.

For any regular lattice, if P4(p), PB(p) represent respectively the atom
and bond percolation probabilities then it has been known from Hammersley
[19] that

PAR)<PP(p) 0<p<l. (23)

Very recently, stronger versions of this inequality have been announced
by Grimmett and Stacey [18].

Another way of looking at percolation theory is to regard it as the study
of the distribution of white and black clusters when the edges (or vertices)
of a graph are painted white with probability p and black with probability
q = 1-p. A white cluster is 8 maximal connected subset of white edges where
isolated vertices are regarded ss clusters. Two quantities of obvious physical
interest are: (a) the average number of white clusters; (b) the average number
of vertices in a white cluster.

The Critical Probability or Probabilities

As stated earlier, py, the critical probability, is defined to be the critical
value below which there is zero probability that fluid from a source at the
origin spreads to infinitely many points. At least two other ‘critical probabil-
ities’ oceur in the literature and there is still confusion about the relationship
between them. The first, pr, is defined to be the critical value of p above
which the expected number of points wet by fluid from the origin becomes
infinite, Now if there is a positive probability that infinitely many points are
wet then a fortiori the average number of points wet is infinite. Thus for any
lattice,

pr < pu- (24)

Essam and Sykes{10] in & very ingenious paper, obtained some precise
results about a quantity pg which they call the critical probability but which
is defined in terms of singularities of functions giving the mean number of
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clusters on the lattice. For example, for bond percolation on the square lattice
L, they proved that

1
pe(l) = 7 (25)
and for the triangular lattice T and hexagonal lattice H they showed that
pe(T) = 2sin(n/18) = 1 ~ pg(H). (26)

It seems to be extremely difficult to relate pg with either of the other two
critical probabilities py and pr, and physically it does not appear (from its
definition at legst) to be as natural an object as py or pr. Exact rigorous
bounds for pyy and pr on general lattices seem difficult to obtain. However,
for the bond percolation problem on the square lattice, Kesten [27) showed
that pr = py and that this common value was 1/2. Wierman [41] extended
Kesten's argument and proved a similar result for the hexagonal and trian-
gular lattices thus verifying the earlier result of Essam and Sykes.

For rigorous elegant accounts of the very considerable progress made on
percolation problems see the monographs of Kesten (28] and Grimmett {15].
We close this section by stating two outstanding open problems.

Problem. Find good bounds or better still, exact values for the critical prob-
abilities of a) site percolation on the square lattice and b) bond or site perco-
lation on the 3 dimensional cubic lattice.

3. The Ising and Q-State Potts Models

We first consider two classical models of statistical physics, namely the Jsing
model and the Q-state Potts model.

In the Q-state Potts model @ is 2 positive integer and the sites of the
underlying lattice or graph are assigned spins, from the set {1,2,...,Q}.
These spins then change according to the probabilistic rules to be specified
later and the full spin configuration can be regarded as a Markov chain on
a very large state space, of size Q" where n is the number of vertices of the
underlying lattice or graph.

The limiting behaviour as time increases may vary quite considerably
depending of the parameters of the model. Clear qualitative differences in
behaviour constitute what is called a phase transition and deciding whether
such phenomens occur, and if so when, is a major area of study in statistical
physics. The Ising model, which was introduced in 1925 is & mathematical
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model used to study such systems. It has a huge literature and is relatively
well understood. The Potts model, introduced in 1952, contains the Ising
mode! as a special case and is less well understood. This in turn is contained
in the random cluster model which we describe in the next section and which
is also a reasonably natural extension of the percolation model described
earlier. However, in order to motivate the random cluster model we need first
to describe the Ising and Potts models.

In the general Ising model on a graph or lattice G each vertex i of G is
assigned a spin o; which is either +1 (called ‘up’) or -1 (called ‘down’). An
assignment of spins to all the vertices of G is called a configuration or state
and is denoted by 0.

In addition each edge ¢ = (¢, j) of G has an associated interaction energy
Jij, which is constant, but may vary from edge to edge. It measures the
strength of the interaction between neighbouring pairs of vertices.

For each state o = (01, ...,0,) define the Hamiltonion H = H{o) by
H("):‘ZJUUWJ"EMU;‘. 3.1
(1) i
where M is the external field.

The Hamiltonian H{c) measures the energy of the state ¢.

In a ferromagnet the J;; are positive; this means, that a configuration of
spins in which nearest neighbour pairs have parallel spins (o; = 0;) has a
lower energy than a state in which spins are arbitrary.

The external fild M has an effect of aligning spins with the direction of
the field, thus again favouring states of low energy.

The partition function Z = Z(G. 8, J, M) is defined by

7=y &P, (32)
¢

where the sum is over all possible spin configurations o with o, € {-1,1},
and § = 1/kT is a parameter determined by the temperature T (in abso-
lute degrees) and where k is Boltzmann’s constant. The importance of Z is
that it is assumed that the probability of finding the system in a state or
configuration ¢, is given by

Pr(g) =¢*H#9/2. (3.3)
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Thus we see that

(i) High temperature = low value of § = probability distribution of states
becomes more flat.

(ii) Low temperature = high § = greater probability to low energy states.

The quantity

3
U=-g5l082

is called the internal energy, and the free energy F is defined to be log Z.

A major problem with the Ising model on a given lattice is to find a closed
expression for
lim ' log Z(G,) (34)
n—

where G, is a sequence of graphs approaching (in some reasonable sense) the
infinite lattice graph. There is no guarantee that the limit is well defined or
even when well defined will exist though there are important classes when
this has been rigorously proved. On the assumption that it does, it is called
the free energy per lattice site.

The pair or two-point correlation function is

Z UinC-BH(O)
[

This is & natural measure of disorder in the lattice and as we shall see later
is closely related to percolatory behaviour in the random cluster model.

{0:,00) = /Z.

There is o straightforward generalisation of the Ising model in which each
atom can be in ¢ different states (Q > 2). In this model introduced by Potts
[32] the energy between two interacting spins is taken to be zero if the spins
are the same and equal to a constant if they are different. If we now denote
the constant associated with an edge (i7) by Ki; then in state o, provided
we assume 2 zero external magnetic field, the Hemiltonian H(o) is defined
by

H(s)= Y K,(1-§0;,0;)

(1)
where § is the usual Kronecker delta function defined by

L b
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The partition function Z is again defined by
Z=Y et (35)
¢

where the sum is over all possible spins .

Suppose now that we partition the edge set E into E+ U E~ where E*
(E-) respectively denotes the set of edges whose endpoints are the same
(different) under a given state o.

Then the contribution of o to the Hamiltonian will be 2K (E™) where
KE)= Y, Ky
ij:0,#0;

If we now assume J;; = J is constant, o that we can write K = 26, then
Z(G)Pous = Ze-ﬂ(a)

B ! (86)

An excellent, accessible review of the Potts model can be found in (42].

4. The Random Cluster Model

The general random cluster mode! on & finite graph G was introduced by
Fortuin and Kasteleyn [11] and is a correlated bond percolation model on
the edge set E of G defined by the probability distribution,

wa)=2" ([1 pc) (H(l-pc)) Q¢W (ACE), ()

€A cgA

where k(A) is the number of connected components (including isolated ver-
tices) of the subgraph G : A = (V,4), p. (0 < p. < 1) are parameters
associated with each edge of G, Q > 0 is a parameter of the model, and Z is
the normalising constant introduced so that

Y uA)=1

ACE

We will sometimes use w{(G) to denote the random configuration produced
by , and P, to denote the associated probability distribution.
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Thus, in particular, u{4) = P.{w(G) = A}. When Q = 1, p is what
Fortuin and Kasteleyn call a percolation model and when each of the p, are
made equal, say to p, then p(A) is clearly seen to be the probability that the
set of open edges is A in bond percolation.

For an account of the many different interpretations of the random cluster
model we refer to the original paper of Fortuin and Kasteleyn.

Here we shall be concentrating on the percolation problem when each of
the p, are equal, to say p, and henceforth this will be assumed.

Thus we will be concerned with a two parameter family of probability
measures
4#=p(p.Q) where 0<p<1 and Q>0

defined on the edge set of the finite graph G = (V, E) by
u(d) = pIAIqIE\AIQk(A)/Z
where Z is the appropriate normalising constant, and ¢ = 1 -p.

The reason for studying percolation in the random cluster model is its
relation with phase transitions via the two-point correlation function. This
was pointed out first by Fortuin and Kasteleyn and given further prominence
recently by Edwards and Sokal [§] in connection with the Swendsen-Wang
algorithm [34] for simulating the Potts model. We describe briefly the con-
nection.

Let Q be a positive integer and consider the Q-state Potts model on G.

The probability of finding the system in the state o is given by the prob-
ability
Pr(o) = ¢~ H1C)Z,

The key result is the following:

Theorem 4.1.  For any pair of sites (vertices) 1, j, and positive integer Q,
the probability that 0; equals o; in the Q-state Potts model is given by
@-1)

7+ R i) w

where P, is the rendom cluster measure on G given by taking po = 1 -
&% for each edge ¢ = (i), and {i - j} is the event that under P, there is
an open path from i to 4.
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The attractive interpretation of this is that the probability in (4.2) can
be regarded as being made up of two-components.

The first term, 1/Q, is just the probability that under a purely random
Q- colouring of the vertices of G, i and j are the same colour. The second
term measures the probability of long range interaction. Thus we interpret
the above as expressing an equivalence between long range spin correlations
and long range percolatory behaviour.

Phase transition (in an infinite systerm) occurs at the onset of an infinite
cluster in the random cluster model and corresponds to the spins on the
vertices of the Potts model having a long range two-point correlation, Thus
the random cluster model can be regarded as the extension of the Potts model
to non integer (.

5. The Tutte Polynomial

The Tutte polynomial is & polynomial in two variables z,y which can be
defined for a graph, matrix or even more generally a matroid. For example
each of the following is a special case of the general problem of evaluating
the Tutte polynomial of & graph (or matrix) along particular curves of the
(,y) plane: (i) the chromatic and flow polynomials of a graph; (ii) the all
terminal reliability probability of a network; (iii) the partition function of &
Q-state Potts model; (iv) the Jones polynomial of an alternating knot; (v)
the weight enumerator of a linear code over GF(g).

Our study of the Tutte polynomial in what follows is motivated principally
by its intimate relationship with the Ising, Potts and random cluster model.

First consider the following recursive definition of the function T{(G;z,y)
of & graph G, and two independent variables z,y.

If G has no edges then T(G;,y) = 1, otherwise for any ¢ € E(G);
(8.0) T(G;z,y) = T(G.;z,y) + T(GY;, ), where G. denotes the deletion
of the edge e from G and G, denotes the contraction of ¢ in G,

(8.2) T(G;z,y) = 2T(G.; z,y) if e an isthmus or equivalently a coloop in &
matroid,

(5.3) T(G; z,y) = yT(G": 2,y) if ¢ a loop.
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From this, it is easy to show by induction that T is a 2-variable polynomial
in z,y, which we call the Tutte polynomial of G.

In other words, T may be calculated recursively by choosing the edges
in any order and repeatedly using (5.1-5.3) to evaluate T. The remarkable
fact is that T is well defined in the sense that the resulting polynomial is
independent of the order in which the edges are chosen.

Example. If G is the complete graph K then
T(G,z,y) =2 + 322 + 2+ dey + 2y + 3 + 95,

Alternatively, and this is often the easiest way to prove properties of T,
we can show that T has the following expansion.

If AC E(G), the rank of A, r(A) is defined by
7(4) = V(G)] - K4), (54)

where k(A) is the number of connected components of the graph G : A having
vertex set V = V(G) and edge set A.

It is now straightforward to prove:

(5.5) The Tutte polynomial T(G;z,y) can be expressed in the form
T(Giz,g)= ) (o~ 7 &0y -4,

ACE

It is easy and useful to extend these ideas to matroids.

A matroid M is just a generalisation of a matrix and can be simply defined
8s a pair (E,7) where E is a finite set and r is a submodular renk function
mapping 2 — Z and satisfying the conditions

0<r()<I4 ACE, (55)
ACB=r(A)<r(B), (5.7)
rAUB)+r(ANB)<r(A)+7(B) A,BCE. (5.8)

The edge set of any graph G with its associated rank function as defined

by (5.4) is a matroid, but this s just a very small subclass of matroids:-known
as graphic matroids.
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A much larger class is obtained by taking any matrix B with entries in
a field F and letting E be its set of columns and for X C E defining the
rank r{X) to be the maximum size of a linearly independent set in X. Any
abstract matroid which can be represented in this way is called representable
over F.

A basic fact which we shall need is the following

(5.9) A matroid M is representable over every field iff it has & represen-
tation over the reals by a matrix B which is totally unimoduler, that is the
value of every subdeterminant is 0, 1 or -1. Such a matroid is called regular.
Every graphic matroid is regular.

Given M = (E,r) the dual matroid is M* = (E,r*) where r* is defined
by
r*(E\A) = |E| - r(E) - |A| + r(A).

We now just extend the definition of the Tutte polynomial from graphs
10 matroids by,

Ty = Y, (- 1yEWy-1)A®  (510)
ACE(M)

Much of the theory developed for graphs goes through in this more general
setting,

We close this section with what I call the “recipe theorem” from {31). Its
crude interpretation is that whenever a function f on some class of matroids
can be shown to satisfy an equation of the form f(M) = af(M.) +b(M_) for
some ¢ € E(M), then f is essentially an evaluation of the Tutte polynomial.

Here M), is the restriction of M = (E,r) to the set E\{e} with r un-
changed. The contmaction M” can be defined by M, = (M"), and is the
exact analogue of contraction in graphs. For matrices it corresponds to pro-
jection from the column vector e. A minor of M is any matroid N obtainable
from M by a sequence of contractions and deletions.

The recipe theorem can now be stated as follows:

Theorem 5.1. LetC be a class of matroids which i closed under direct sums
and the taking of minors and suppose that f is well defined on C and satisfies

(M) =of(M) +bf(M,) e€ E(M) (5.11)
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f(M & M) = f(M1)f(M2) (512)
where My © My denotes the direct sum then f is given by

fiM) = T ETg, 2 1)

where 2q and yo are the values f takes on coloops and loops respectively,

Any invariant f which satisfies (5.11)-(5.12) is called a Tutte-Grothendieck
(TG)-inveriant.

Thus, what,we are saying is that any TG-invariant has an interpretation
as an evaluation of the Tutte polynomial.

Example. The Ising model

It is not difficult to show that in the absence of an external magnetic field,
and with J, = J for all edges e, then whenever ¢ is not a loop or coloop of
G|

Z(G) = € 2(G,) + 2sinh(8J)Z(GY).

Also consider the graphs C consisting of a single edge and L consisting of
a single loop. Then
Z(C) = 2% +2¢7% = 4cosh(BJ)
2(L) = 2%%.
Thus, applying the recipe theorem we get the result

2(6) = (2~ YE1-"®) (g sinh §J)" EVT(G: coth 47, €).

Example. The Potts model

Let b;(A) be the number of A-colourings of the vertex set V of a graph G,
in which there are § monochromatic or bad edges, that is they have endpoints
of the same colour,

Consider the generating function

IE]

B{GA8) =Y s'h(h).
i=0

Clearly by(2) is the chromatic polynomial of G and like Py(}) we see that
the following relationships hold.
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(5.13) If G is connected then provided e is not & loop or coloop,
B(G;\,8) = B(G.; \,s) 4 (s - 1)B(G2; A, ).

(5.14) B(G;A,8) = sB(G,) if e is a loop.
(5.15) B(G;\,8) = (s + A= 1)B(G,) if ¢ is & coloop.

Combining these, we get by using the recipe theorem

(5.16) B(G; \,8) = Ms - )VIIT(G; 2251, s).

Consider now the relation with the Potts model. From (3.6) we can write
Zrou(6) = Y 7K1 0
4
= ¢ KIE@)! Zeklﬁ*ml
[

=B Y h(QUERY

@-colourings
= ¢~ KIEIB(G; Q, eX).

Then using the relationship (5.16) we get,

L -KIE eK4Q-1
Zpon(G) = Qe - Vit KT (G; K1 1eK) . (617)

Tt is net difficult (with hindsight) to verify that T(G; z,y) can be recovered
from the monochrome polynomial and therefore from the Potts partition
function by using the formula

1

T(Gz.y) = G-"E-1)

B(Gi(z - 1)(y-1),y)- (5.18)

The relation of the random cluster model with T is that it is not hard to
check that ol
2(G:p.Q) =" PIT(G 1+ Iy (5.19)
where r* is the dual rank, and g=1-p.

It follows that for any given @ > 0, determining the partition
function Z reduces to determining T along the hyperbola Hy given by
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(z - 1)(y - 1) = Q. Moreover, since in its physical interpretations, p is a
probability, the reparametrisation means that Z is evaluated only along the
positive branch of this hyperbala. In other words, Z is the specialisation of
T to the quadrant 2 > 1, y > 1.

The antiferromagnetic Ising and Potts models are contained in T along
the negative branches of the hyperbolse Hg, but do not have representations
in the random cluster model. For more on this model and its relation to T
see (37, Chapter 4.

We now collect together some of the other naturally occurring interpre-
tations of the Tutte polynomial.
(5.20) The chromatic polynomial P(G; ) is given by
P(G;)) = (-1) OWOT(G: 1 - ),0)
where k(G) i3 the number of connected components,
{5.21) The flow polynomial F(G; }) is given by
F(G;\) = (-1)£-"E)7(G,0,1 - A).

(5.22) The (all terminal) reliability R(G : p) is given by
R(G:p) = ¢F O OIT(G;1, 1/g)
where g=1-p.
In each of the above cases, the interesting quantity (on the left hand side)
is given (up to an easily determined term) by an evaluation of the Tutte

polynomial. We shall use the phrase “specialises {o" to indicate this. Thus
for example, along y = 0, T specialises to the chromatic polynomial.

It turns out that the hyperbolae H,, defined by
Ho={(z,3):(z-1)y-1) =0}

seem to have a special role in the theory. We note several important special-
isations below,

(5.23) Along Hy, T(G;,) = 218! (¢ - 1)r(E)-1A1

(5.24) Along Ha; when G is a graph T specialises to the partition function
of the Ising model.
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(5.25) Along H,, for general positive integer ¢, T specialises to the partition
function of the Potts model.

(5.26) Along Hy, when g is & prime power, for 8 matroid M of vectors over
GF(q), T specialises to the weight enumerator of the linear code over
GF(g), determined by M.

(5.27) Along H, for any positive, not necessarily integer, ¢, T specialises to
the partition function of the random cluster model discussed in §4.

{5.28) Along the hyperbola zy = 1 when G is planar, T specialises to th.e
Jones polynomial of the alternating link or knot associated with G. This
connection was first discovered by Thistlethwaite (35].

Some more recent applications are obtained in Welsh [40] which give new
interpretations as the expected value of classical counting functions.

Given an arbitrary graph G and p € [0,1] we denote by G, the ran-
dom subgraph of G obtained by deleting each edge of G independently with
probability 1 - p.

(5.29) For any connected graph G and 0 < p < 1, the random subgraph
G, has chromatic polynomial whose expectation is given by

(PG X)) = (-p)"1IAT(G 1 - M1 - )

For the flow polynomial there is a similar, but more complicated evalua-
tion, namely

(5.30) For any graph G the flow polynomial F(Gy;A) has expectation
given by

(a) if pe (0,3)U(3,1) then
. _ Ap
(FGuX) =7 (g-p) T(Gigp™, 1+ q—_p)
whereg=1-p,

b} if p=1, then
(b)ifp=3 (PG} ) = NEIIVIsKOI-
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A very recent new specialisation of T concerns a version of chip firing as
in [4] and gives a specific relationship between evaluations of T along the line
2 =1 and the generating function of critical configurations in the chip firing
game, we refer to [30] for details.

Other more specialised interpretations can be found in the survey by
Brylawski and Oxley (6] and Welsh (37].

6. The Random Cluster Model Again

In order to be able to calculate or even simulate the state probabilities in
the random cluster model it seems to be necessary to know (or be able to
approximate) the partition function Z. In the case of ordinary percolation,
Q=1,and Z = 1, but in general, determining Z is equivalent to determining
the Tutte polynomial, as it follows from (5.19) that the following holds.

{6.1) For any finite graph G and subset 4 of E(G), the random cluster
measure g is given by

? |4l
wA) = ((Z)

Q4
(&) e+ 2y

where T is the Tutte polynomial of G, where g = 1 - p, and where r is given
by k(4) = |V(G)| - (4),

A first consequence of this is that, as we see later, determining the measure
4 is an intractable problem for most Q) and most graphs.

An obvious quantity of interest is the probability that & particular set is
open, that is, that every edge in the set is open. We call this the distribution
function, denote it by A, and note that it is given by

A= Y ux)
X:X2JA

The sort of questions we need to be able to answer are, how does A vary with
p and € and how difficult is it to calculate A?

Two very useful inequalities in working with the random cluster model are
the FKG inequality of Fortuin, Kasteleyn and Ginibre {12] and an extension
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of this due to Holley{21|, both of which we present below in Theorems 6.1
and 6.2.

The FKG inequality can be stated as follows.

Let E be a finite set and 2 = {0,1}. Write Fg for the set of all subsets
of & and call a probability measure p on ({25, Fg) positive if p(A) > 0 for
all A€ .

Theorem 6.1. Let i be a positive probability measure on (2, Fg) such that
#(AUB)W(ANB) 2 p(AJu(B)
for all A, B € 0g. Then for oll increasing random functions f,g: Qg - R,

(fohu 2 (Flulaha

where we use (f) to denote expectation with respect to the measure p. That

’ (=Y FA(A)

ACE
Holley's inequality s the following

Theorem 6.2. [Holley’s inequality] Let y1 and py be positive probability
measures on ({g, Fg) such that

u1(AUB)ua(AN B) 2 py(A)pa( B)
Jor all A, B € Fg. Then for oll increasing functions f: g — R,

(D 2 Fua-

Using this we almost immediately get

Proposition 6.3. Provided 1 < Q1 < Qs, for any firedp, 0 < p < 1 and
any nondecreasing function f : 25 - R,

(P 2 s

where iy and py are the random cluster measures induced by p and Q1, Qs
respectively.

A special case of this gives
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Corollary 6.4, For fized p, the distribution function X is a monotone non-
increasing function of Q, for @ > 1.

A fundamental question which seems difficult is the following.

(6.2) Problem. How does  vary with Q when 0< Q <17

We now look at more combinatorial questions and consider a random
cluster model p = u(p,Q) on E the edge set E of a planar graph G. We
follow the treatment given in (3], see also [16]. Let G* be the dual plane
graph with edge set also E identified in the natural and obvious way.

Now define the dual measure ji of u = p(p, Q) to be the random cluster

measure (g, Q) where

. 99 5o
Por =0

4= (q_pq) " / (A;E (?)w Q‘rm) |

Proposition 6.5. For any plane graph G and random cluster measure p
P {w(G) = A} = P{w(G") = E\A}.

Thus

Corollary 6.8. If G,G* are dual planar graphs, ji on G* produces white
configurations with ezactly the seme probability distribution as p produces
black configurations on G.

We now turn to the specific case of the square lattice. We adopt the
terminology of ordinary (Q = 1) percolation as much as possible.

Let A, denote the box on the square lattice having corners (+n, tn).
Let p, @ be fixed and let s, = pn (p, @) be the sequence of random cluster
measures induced by A, as m runs through the positive integers.

The events in which we have a particular interest sre of type {0 ~ 8,}
denoting the event that there is an open path from 0 to 3, the boundary of
the box 4,.

(63) ForQ>1andm>n,

#m41{0 + Ba} > pm{0 +» Ba}.
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This is just & special case of the following:

Proposition 6.7. Let G be ¢ finite graph and let H be o subgraph of G
on the seme vertez set. If pc and py denote the random cluster measures
induced by G, H respectively for any firedp and Q > 1, then for any monotone
nondecreasing f on the edge set of G, if the value of f is determined by the
state of the edges of H, then

(D £ Pluc-

Since the quantities in (6.3) are probabilities and thus bounded, we can

therefore define .

bn(p,Q) = mh_l‘nooﬂm{o ~ 0y}
Now for m > n, it is trivial that

I-‘m{0 had an} < I»‘m{o had 0n—1}~

Consequently
an(P, Q) S on- 1 (pv Q)

and we define

0(p.Q) = lin 6.(p.0)
to be the percolation probability of the model.

Note that when Q = 1, 8(p, Q) is essentially the same quantity as P(p)
defined in (2.1). Accordingly, for @ > 1, we can define the critical probability

pu(Q) by
! pu(Q) =infp:8(p,Q) > 0.
It is easy to see that:

(6.4) For Q > 1, both critical probsbilities py(Q) and pr(Q) ere mono-
tone nondecreasing in Q. In this pr(Q) is defined analogously to pr in §2.

In [39] it is shown that the following is true.
(6.5) For Q > 1, the critical probabilities py(Q) end pr(Q) satisfy

(@) < %Q <pilQ).

In the same paper I also conjecture that the following Q-extension of
Kesten’s Theorem is true.
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Conjecture 6.8. For Q > 1, the critical probability p.(Q) equals v3/(1 +
V).

I originally made this conjecture following on from a seminar on the ran-
dom cluster model by G.R. Grimmett in Oxford in the summer of 1992. Its
motivation was the duality formula above and since this duality was widely
known to physicists working on the Potts model I suspect that many physi-
cists believe Conjecture 6.8 to be a proved theorem, at least for integer Q. As
far as T am aware the first explicit consideration of the problem in connection
with the random cluster model is in [39], see for example {17]. At the same
time [ readily acknowledge that, for reasons given below, this may have been
a folklore conjecture (7 theorem) in the world of Potts modellers where @ is
integral.

There is also a note of warning. Provided one works with finite graphs this
combinatorial approach described above is fine. However moving to the infi-
nite does pose serious problems of rigour. Grimmett {17] gives a very detailed
and nice account of the “latest technology” and in particular discusses the
existence of, perhaps a countably infinite, set of distinct critical probabilities

p(Q).

Despite this worrying aspect of the advanced theory, a rigorous definition
of p.(Q) can be given for @ > 1 and d > 2 and is according to [17], pp.275,
“widely believed” to equal v@/(1 + V@), for @ > 1and d =2,

When Q = 1 the conjecture is certainly true by Kesten’s theorem that
the critical probability of the square lattice is % It is also true when @ =2
because using the relation p = 1 - e/, when Q = 2, this corresponds to a
critical value of sinh™" 1 = (.88137 for the critical exponent J, agreeing with
the Onsager solution to the Ising model.

For integer Q > 3 the critical value of p,(Q) given by the conjecture
agrees with the critical points of the Potts model located by singularity based
arguments see for example [20]. However it does not appear easy to make these
arguments rigorous in this context, and the situstion seems not dissimilar
from that in ordinary percolation when it took 16 years before Kesten [27]
and Wierman [41] were able to give rigorous justifications of the exact values
obtained by Essam and Sykes(10].

A remarkable paper by Laanit et al. [29] shows that Conjecture 6.8 is
true for sufficiently large Q, certainly Q = 26 suffices, see [17) pp. 276. This
survey also gives an excellent account of the probabilistic background.
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7. Approximation Schemes

The main result of [22] is the following:

Theorem 7.1. The problem of evoluating the Tutte polynomial of o groph
ot o point (a,b) i #£P-hard except when (a,b) is on the special hyperbola

H=(-ly-1)=1

or when (a,b) is one of the special points (1,1),(-1,-1),(0,-1), (-1,0),(3, -1},
(=4,4), (3, 12) and (47, j), where j = €™/%. In each of these exceptional cases
the eveluation can be done in polynomial time.

Since for any graph G, Z(p, Q) in the random cluster model is essentially
T(G;1+ %‘1, %) it follows that we have:

Corollary 7.2. When Q # 1, determining Z(p, Q) for o general graph is
#P-hard for ell pe (0,1).

As far as planar graphs are concerned, there is a significant difference.
The technique developed using the Pfaffian to solve the Ising problem for the
plane square lattice by Kasteleyn [26] can be extended to give a polynomial
time algorithm for the evaluation of Z(p,2) for any planar graph along the
special hyperbola. However, this seems to be the limiting point for we have
the following extension of Theorem 7.1 due to Vertigan and Welsh (36).

Theorem 7.3. The evaluation of the Tutte polynomial of bipartite planer
graphs at a point (a,b) is #P-hard ezcept when

(a, b) € Hl UH2 U {(lv 1)‘('1"1)' (jrj2)»(jza.j)},

in which cases it 45 computable tn polynomial time.

Corollary 7.4. Even for the class of bipartite planar graphs, evaluating
Z(p,Q) for general p,Q is #P-hard unless Q =1 or 2.

We are thus led to approximate or Monte Carlo methods. For positive
numbers 2 and r > 1, we say that a third quantity & approzimates ¢ within
Tatio 7 or is an r-approzimation to e, if

rle<é<ra.

In other words the ratio 4/a lies in [r~!,7].
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We now consider a randomised approach to counting problems and make
the following definition.

An ¢-3-approzimation scheme for a counting problem f is a Monte Carlo
algorithm which on every input {z,¢,6), ¢ > 0, § > 0, outputs a number ¥
such that B

Pr((1-¢)f(z) SY<(1+f(z)) 21-4.

Now let f be a function from input strings to the natural numbers. A
randomised approzimation scheme for f is a probabilistic algorithm that takes
as an input a string « and a rational number ¢, 0 < ¢ < 1, and produces as
output a random variable Y, such that Y approximates f(z) within ratio
1+ ¢ with probability > 3/4.

In other words,
1 Y 3
—_— L > -,
Pr(1+e 1@ _1+c> 27

A fully polynomiol rendomised approzimation scheme FPRAS for a func-
tion f: £* — N is a randomised approximation scheme which runs in time
which is a polynomial function of n and ¢!,

Suppose now we have such an approximation scheme and suppose further
that it works in polynomial time. Then we can boost the success probability
up to 1 - § for any desired § > 0, by using the following trick of Jerrum,
Valiant and Vazirani (24, This consists of running the algorithm O(logd™")
times and taking the median of the results.

The existence of an FPRAS for a counting problem is a very strong result,
it is the analogue of an RP algorithm for a decision problem and corresponds
to the notion of tractability. However we should also note

Proposition 7.5. If f : £* — N is such that deciding if f is nonzero is
NP-hard then there cannot ezist an FPRAS for f unless NP is equal to
random polynomial time RP.

Since this is thought to be unlikely, it makes sense only to seek out &n
FPRAS when counting objects for which the decision problem is not NP-
hard.

In an important paper Jerrum and Sinclair [23] have proved:
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(7.1) There exists an FPRAS for the partition function of the ferromagnetic
Ising model.

However it seems to be difficult to extend the argument to prove a similar
result for the Q-state Potts model with Q > 2 and this remains one of the
outstanding open problems in this area.

A second result of Jerrum and Sinclair s the following:

(7.2) There is no FPRAS for estimating the antiferromagnetic Ising partition
function unless NP = RP.

In the context of its Tutte plane representation this can be restated as
follows.

(7.3) Unless NP = RP, there is no FPRAS for estimating T along the curve
{wy):@-)y-1=2 o0<y<i}

The following extension of this result is proved in [38]. It implies similar
results about the antiferromagnetic versions of the Q-state Potts model

{7.4) On the assumption that NP # RP, the following statements are true.

(a) Even in the planar case, there is no fully polynomial randomised ap-
proximation scheme for T' along the negative branch of the hyperbola Hs.

(b) For Q = 2,4,5,..., there is no fully polynomial randomised approxi-
mation scheme for T along the curves

HQﬂ{I(O}.

The reader will also note that all the ‘negative results’ are about evalua-
tions of T in the region outside the quadrant z > 1,y > 1. In [39] I conjecture
that the following is true:

Conjecture 7.6. There ezists an FPRAS for evaluating T at all points of
the quadrant £ > 1, y > 1. This implies and s almost equivalent to the
statement that there i an FPRAS for Z(p,Q) in the random cluster model
for alip,Q > 0.
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Some evidence in support of this is the following.

If we let G, be the collection of graphs G = (V, E) such that each vertex
has at least o |V| neighbours then we call & class C of graphs dense if C C G,
for some fixed a > 0.

Annan (2] showed that:
(7.5) There exists an FPRAS for counting forests in any class of dense graphs.

Now the nufaber of forests is just the evaluation of Z at a point on @ =0
and a more general version of this is the following result, also by Annan .

{7.6) For any class of dense graphs, there is an FPRAS for evaluating
T(G;z,1) for positive integer .

The natural question suggested is about the matroidal dual - namely, does
there exist an FPRAS for evaluating T at (1,2)? This is the reliability ques-
tion, and in particular, the point (1,2) enumerates the number of connected
subgraphs. It is impossible to combine duality with denseness so Annan’s
methods don’t seem to work. .

What can be proved is the following. The main result of Alon, Frieze and
Welsh (1] can be stated as

Theorem 7.7. There ezists a fully polynomial randomised scheme for eval-
uating Z(p,Q) for allp >0, Q 2 0 for any dense class of graphs.

Even more recently Karger [25) has proved the existence of a similar
scheme for the class of graphs with no small edge cut set. This can be stated
as follows.

For ¢ > 0 define the class §¢ by G € §¢ iff its edge connectivity is at least

clog|V(G)|. A class of graphs is well connected if it is contained in G° for
some fixed c.

Theorem 7.8. For any fized (x,y), y > 1, there ezists c, depending on (z,y),
such that for any class C C G°, there is an FPRAS for evaluating T(G;2,y).

Notice that though the properties of being well connected and dense are
very similer neither property implies the other.
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Thus Conjecture 7.6 has been proved for classes of dense and well con-
nected graphs. There is also no “natural impediment” to it being true for
all graphs. However for the d-dimensional hypercubical lattice it is known
that there exists Q(d) such that the random cluster model has a first-order
discontinuity for @ > Q(d). Indeed it is believed that

a={; &6

It is not unreasonable  1ssociate a first order discontinuity with an inability
to approximate. There s no proof of such a general statement but there
are persuasive argume! 's to suggest that such discontinuities would prevent
an approximation scheme based on sampling by the Markov chain method.
Hence a major open question must be whether or not, there exists an FPRAS
for the ferromagnetic random cluster model for hypercubical lattices. These
are neither dense nor well connected so the above results do not apply.

8. A Geometric Approach

Two simple but key questions in much of the work that has been done in this
area are the following.

(8.1) Problem, Does there ezist an FPRAS for estimating either the
number of forests or the number of acyclic orientations of o general graph?

A new approach to approximation at these points is proposed by Bartels,
Mount and Welsh [3]. This is based on the interpretation of T as the Ehrhart
polynomial of a unimodular zonotope Z(A). Counting the number of forests
is the problem of counting lattice points contained in the zonotope Z(A).
Counting the number of acyclic orientations is the problem of counting the
vertices of this zonotope. The latter is a much more difficult problem and
goes some way to explaining the total lack of success with it.

We now sketch this ipproach.

Let Z denote the n-dimensional integer lattice in R” and let P be an n-
dimensional lattice polytope in R™, that is a convex polytope whose vertices
have integer coordinates. Consider the function i(P;¢) which when ¢t is a
Positive integer counts the number of lattice points which lie inside the dilated
polytope tP. Ehrhart (9] initiated the systematic study of this function by
proving that it was always a polynomial in ¢, and that in fact

P =xP)+ert+... +cuat™ + vol(P)".
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Here
¢ = x(P) is the Euler characteristic

of P and vol(P) is the volume of P.

Until recently the other coefficients of 3(P,t) remained a mystery, even
for simplices, see for example (7).

However, in the special case that P is a unimodular zonotope there is
a nice interpretation of these coefficients. First recall that if Aisanr x n
matrix, written in the form A = [ay,...,6,), then it defines a zonotope Z[4|
which consists of those points p of R” which can be expressed in the form

P=E)\iai; 0<hgl
i=l
In other words, Z(A) is the Minkowski sum of the line segments [0,a;], 1 <
1<n.

It is a convex polytope which, when A is a totally unimodular matrix, has
all integer vertices and in this case it is described as a unimodular zonolope.
For these polytopes a result from Stanley [33] shows that

i(2(A);t) = iskt*
k=0

where 1, is the number of subsets of columns of the matrix A which are
linearly independent and have cardinality k.

In other words, the Ehrhart polynomial #(Z(A);?) is the generating func-
tion of the number of independent sets in the matroid M(A). But we also
know that for any matroid M, the evaluation of T(M;z,y) elong the line
y = 1 also gives this generating function. Hence, combining these observa-
tions we have the result

Theorem 8.1, If M s o regular matroid and A is any totally unimoduler
representation of M then the Ehrhert polynomial of the zonotope Z(A) is
given by

i(Z(A);A) = N"T(M;1+ %,1)
where r is the rank of M.

The approximation scheme proposed by Bartels, Mount and Welsh (3],
works as follows. For any graph G the win polytope Wy is the convex polytope
defined by
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Yagel) UCV, 220,
i€l
where e(U) is the number of edges incident with U.

It has the property that its bounding base face is combinatorially equiva-
lent to Z{A) where A is any totally unimodular representation of the graphic
matroid determined by G. Now carry out simple random walk X in a slightly
dilated version of W, call it ;. Associate with each lattice point a bax of
equal volume, ensuring that the boxes are disjoint but otherwise as large as
possible. Now let ¢ be large enough, say t =T s0 that the stopping point X7
is almost uniform in W, and map X7 to the lattice point associated with
the box containing it. Accept the output as an almost uniform point of We if
it lies inside it. Repeat N times, where N is large enough to ensure we have a
good estimate of the number of lattice points inside W Ideally this process
would work successfully enough to enable us also to get a good estimate of
the number of lattice points in the bounding face and hence in Z(A).

Curiously, and somewhat depressingly, in order for the method to work in
polynomial time we need exactly the same density condition on the underly-
ing graph as did Annan [2]. Put alongside the remarks at the end of §7 this
suggests that it might be more profitable to look for a mathematical Teason
why good approximation schemes should not exist for Z (p,Q) for general p
and Q.

Acknowledgement. 1 am grateful for very helpful comments from Geoffrey Grim-
mett and one of the referees.
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Concentration

Colin McDiarmid
Department of Statistics, University of Oxford

Summary. Upper bounds on probabilities of large deviations for sums of bounded
independent random variables may be extended to handle functions which depend
in a limited way on a number of independent random variables. This ‘method of
bounded differences’ has over the last dozen or so years had a great impact in
probabilistic methods in discrete mathematics and in the mathematics of opera-
tional research and theoretical computer science. Recently Talagrand introduced
an exciting new method for bounding probabilities of large deviations, which often
proves superior to the bounded differences approach. In this chapter we introduce
and survey these two approaches and some of their applications.

1. Introduction

What do we mean by ‘concentration’ here and why should we be concerned
with it?

Suppose that a random variable X has expected value E(X) = p and
variance E((X - u)?) = o®. Then Chebychev's inequality states that

Pr(|X - 4l 2t) < a*/t*

for any ¢t > 0. Thus for ¢ >> o the probability of deviating by more than
t from p is small. However, we shall often want or need the probability of
large deviations to be very small, that is, we want to know that X is strongly
concentrated around p. The archetypical concentration result is Chernoff’s
bound on the tails of the binomial distribution (1], in other words on the
tails of the sums of independent identically distributed binary (that is, {0,1}-
valued) random variables.

Theorem 1.1, Let X\, Xa,..., Xn be independent binary rendom veriables,
withPr(X; = 1) = p and Pr{X, = 0) = 1-p for each k, end let S, = ¥ X
Then for any t > 0,

Pr()S, - np| > nt) < 272",

Typically we shall be interested in a random variable like S,, and not in the
corresponding ‘bounded differences’ X that make it up. The variance of S,
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here is np(1 -p) = n/4 when p = 1/2, and then Chebyshev's inequality yields
only that Pr(|S, - np| > n) < 1/(4nt?), which will often not be a small
enough bound for us. In some cases we shall want good bounds for their own
interest, and sometimes as tools within some larger endeavour.

As an example of the former case, consider quicksort. Quicksort is one
of the most important sorting algorithms, and its value rests entirely on its
good typical behaviour. It is well known that it has good average time com-
plexity. Further, the variance of the time taken is not too large, and so large
deviations from the average are not very likely - see for example (36, 59).
However, one would hope that large positive deviations are very unlikely,
and the bounds that can be obtained from the variance and Chebychev's
inequality are weak. It turns out [49] that the method of bounded differences
shows that indeed large deviations are exceedingly unlikely (and the method
yields essentially best possible bounds). We shall meet several further exam-
ples below, including the study of isoperimetric inequalities.

There are also many cases when we need to know concentration results
as & step towards something else. One example concerns the behaviour of the
chromatic number of a random graph - see Section 3.1 below. Concentra-
tion inequalities have become essential tools in the probabilistic analysis of
algorithms [16, 25, 63] and the study of randomised algorithms (51}, and in
probabilistic methods in discrete mathematics (in particular when we wish
to use the Lovész Local Lemma) (3. Some have reached standard undergrad-
uate text books in probability - see for exemple (28] section 12.2, or [57]
section 6.3.

We shall introduce the two main approaches for proving concentration
results, namely the bounded differences or martingale method and the re-
cent method of Talagrand, and give several applications of each. We shall
also mention briefly how some such results can be proved using ideas from
information theory.

The natural starting point is to consider sums of independent random
variables, starting with the classical Chernoff bound, introduced above. We
do this in Section 2, where we give full proofs in a form which is intended to
be widely accessible, and to generalise for the next section.

Section 3 is devoted to the martingale method. We shall not use anyresults
about martingales beyond understanding the definition, and indeed the first
two subsections do not even mention the word martingale. We first present the
‘independent bounded differences inequality’. This is a special case of various
more powerful inequalities which we develop later, but it is easy to grasp and
has proved to be very useful. We give applications to bin packing, colouring
random graphs, and isoperimetric inequalities involving Hamming distances.
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After that we present closely related extensions of the independent bounded
differences inequality, namely Theorems 3.7, 3.8 and 3.9, and illustrate these
extensions by describing an early application concerning permutations and
a recent application to finding matchings in hypergraphs. These extensions
include some results that have been presented very recently, though they can
be traced back to earlier work.

In these first two subsections of Section 3 which we have just discussed,
the applications are proved but not the concentration inequalities, as it is
most natural to prove the concentration results in the framework of martin-
gales. The third subsection introduces martingales onto the scene. Following
that, the next subsection starts by paralleling the earlier treatment of sums
of independent random variables but now considering martingale difference
sequences: we find that we can mainly re-use the earlier proofs. Then we
give a pair of more general results, Theorems 3.14 and 3.15, which include
(nearly) all the previous results, and prove them in the following subsection.
Thus Theorems 3.14 and 3.15 could be regarded as the most important of all
the results discussed so far, but often a more focussed special case, such as
Theorem 3.1 or 3.9, is sufficient for an application, and is then the best tool
to use. We end the section on the martingale method with a brief discussion
on ‘centering’ sequences.

The final part, Section 4, introduces Talagrand's inequality (or rather,
what seems to be the most useful of his many inequelities!). We give appli-
cations to incressing subsequences and common subsequences, to travelling
salesman tours and Steiner trees, and to minimum spanning trees. While pre-
senting these applications we deduce from Talagrand's inequality two useful
‘packaged’ results, Theorems 4.3 and 4.5, which in fact handle all the appli-
cations in this chapter. These ‘packaged’ results, which are tailored to our
applications, are in fact rather easy deductions from Talagrand's inequality,
which itself is proved afterwards. Finally, we discuss briefly how results from
information theory may be used to derive concentration results.

We shall stick throughout to bounded discrete ‘time’, typically 1,...,n.
Thus there are two major related topics that we shall not discuss: for anal-
ogous martingale results in continuous time see for example [39)], and for
an introduction to the asymptotic theory of large deviations see for exam-
ple [20, 19, 28. Both these topics are harder work than the discrete case
we consider, and seem to be of much less use in discrete mathematics and
theoretical computer science.
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2, Inequalities for Sums of Bounded Independent
Random Variables .

We restate from above the 1952 Chernoff [14] bound on the tails of the
binomial distribution.

Theorem 2.1, Let 0 < p < 1, let X1, Xs,..., X, be independent binary
random veriables, with Pr(Xy = 1) =p and Pr(Xy =0) = 1-p for each k,
and let Sp = ¥ X. Then for anyt >0,

Pr(S, - np| > nt) < 2675,

The sum above is over k running from 1 to n. Throughout the chapter,
when we write an unadored sum ¥ or product [] the index k runs from
1 to n. The above result will be proved below by bounding the moment
generating function M(h) = E(e"+) and using Markov's inequality, following
the method introduced by Bernstein. Indeed, all the results of this section
and the next section use this method. (See (58] for a variant of this method
which yields similar results, but assuming only limited independence, and see
also 64].)

Recall that Markov's inequality states that for a non-negative random
variable X, Pr(X > t) < E(X)/t for each t > 0. To prove this, we use the
indicator function 14 for an event A, and note that, since X > t1(x>y), we
have

E(X)> tE(l(,Zg)) =tPr(X > ).

Proof of Theorem 2.1.
Let m = n(p+1). Let A > 0. Then
Pe(S, > m) = Pr(e" > ¢t™) < e hmE(ehSh), (2.1)

by Markov's (or Bernstein's) inequality. By the independence of the random
variables X,

E(M (H hxk) HE (eMe) = (1 - p+pet)".

Hence, for any h >0,

Pr(S, > m) <e™™(1-p+pe’)"

+t){(1-p)

L,y to minimise the above

If0 <t <1-pthen we may set e" =
bound, and we obtain
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Pr(S, —np2nt) < (22)

This implies by a continuity argument that the inequality holds also for ¢ =
1 - p. But the inequality is trivial for t = 0 or t > 1 - p, and thus it holds
forallt>0.

Now let Y = 1= X; for each k. Then by the above result (2.2),
Pr(S,-np < -nt) = Pr(} Yi - n(1 - p) 2 nt) <™’
for any ¢ > 0. 0

Hoefiding [29] ;)resents extensions of the above theorem which can be based
on the following lemma.

Lemma 2.2. Let the random variables Xy, Xy, ..., X be independent, with
0< X <) foreach k. Let S, = 5 Xy, let p = E(S,), let p = /n ond let
g=1-p. Then forany0<t < g,

s[5 )

Proof. We follow the lines of the proof of Theorem 2.1. Let pi = E(X})
for each k. Let m = u + at, and let k > 0. Note that, by the convexity
of the function ¢* for 0 < z < 1, we have ¢** < 1 -1 + zeb, and s0
E(¢"*+) < 1-py + pre*. Thus, since S, is the sum of the independent
random variables S,_; and X;,,

( hS,.) ( hSu-1 ) (
E(e)(1- Pn+Pn e)

<TI0 -pe + i),

l/\ II

on iterating. Hence,

E(e"™) < (1-p+pef),
by the arithmetic mean - geometric mean inequality. But by Markov’s in-
equality,

Pr(S, > m) e *E() <em(1-p+pet)”
Thus, for any & >0,
Pr(S,-p2nt) < (e'(”“)"(l -p+ pe"))n : (2.3)

The desired inequality now follows on setting e* = ‘ﬁl—'_ﬂ:—_'t‘fl, as in the proof
of Theorem 2.1 O
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Our interest is in large deviations and the above bound is good in this case,
{though inequalities closer to the normal approximation of DeMoivre-Laplace
are naturally better for small deviations - see for example [9]). From the above
result we may deduce weaker but more useful bounds, which generalise the
Chernoff bounds in Theorem 2.1 or improve on them when p is small.

Theorem 2.3. Let the random varichles Xy, Xs,..., X, be independent,
with0 < Xy <1 foreach k. Let S, = Y Xy, let p = E(S,), let p= p/n and
letg=1-p.

(a) For any t > 0, )
Pr(|S, - u| 2 nt) < 272
(b} For any e >0,

Pr(S, 2 (1+ ) < e ((40M040-0n ¢ =it

(c) For any e >0, .
Pr(S, < (1- ) <eHx

Part (a) is due to Hoeflding [29], who also discusses relationships between
that result and other similar inequalities. Results similar to parts (b) and (c)
appear in (4] (in the binomial case). For similar results in the binomial case
based on Stirling’s approximation to n! see (9] Chapter 1. In order to prove
Theorem 2.3 we need one technical lemma.

Lemma 2.4. Forallz >0,
(1+2)ln(1+2) - 2> 32%/(6 + 22).

Proof. Let
filz) = (6482 +22%) In(1 + 2) - 62 - 52°.

We want to show that fi(z) > 0 for all £ > 0. Now f1(0) = 0, and fi{2) =
4fy(x) where fo(z) = (2+2)In(1+ ) - 2. It suffices to show that fo(z) 2 0
for all z > 0. Now £»(0) = 0, and fj(z) = (1+2)™" +1n(1 + z) - 1. Now

2(0) = 0, so it suffices to show that f(z) > 0 for all z > 0. But f3(z) =
z{1+12)7% > 0, and so we are done. 0

Proof of Theorem £.3.

(a) Consider p fixed, let g=1-p, and for 0< ¢ < glet

(G5 G5))
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Then P (M) |

(r+tg
and .
f'&)=-(p+0-(p+t))" <-4

Now £(0) = f'(0) = 0 and so it follows by Taylor’s theorem that for 0 < t < g,
ft) = (*/2)f"(s) for some s with 0 < s < ¢. Hence f(t) < -2t*. Hence by
Lemma 2.2, ,

Pr(S, - u>nt) <e2, (24)
By applying this result to n - §,, we obtain

Pr(S, - 1 < —-nt) <e . (25)

(b) To prove part (b) it is simpler to use the inequality (2.3) in the proof of

Lemma 2.2 rather than the lemma itself. If we set t = ep and e* = (1 +¢)
there, and use the inequality 1 + z < €%, we obtain

n np

Pr(S, 2 (1+6) < (1 +707(1+g)) < (1+4706) 7,

and this gives the first inequality in (b) (see also Appendix A of [3]). The
second inequality in (b) follows from Lemma 2.4.

(c) Let the function f be as in (a) sbove, and let h(z) = f{-zp) for
0 <z <1. Then ¥(z) = -pf'(~zp) and

h”l‘ =P2f” ) =‘—p—S‘P-

e=p /e (1-2)(g +2p)

Thus we may use Taylor's theorem as sbove to see that h(z) < —pz?/2, and
then Lemma 2.2 completes the proof. 0

The first inequality in part (b} yields useful results for very large devia-
tions. In particular,
Pr(S, 2 2u) < e (26)

Also,
Pr(S,. > ‘5#) < e—&(ln&-&i—l)y < e-Jln(&/e)u,

and so, if § > 2e, then
Pr(S, > ) <27, 27)

The second inequality in part (b) yields immediately that
Pr(Sh 2 (1+ 6} S e (28

for 0 < € < 1, which is often a sufficiently precise inequality in applications,
see for example [4]. Hoeflding also gives the following extension of part (a)
above to the case when the ranges of the summands may differ.
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Theorem 2.5. Let the random varigbles Xi,...,X, be independent, with
ar € X < by for each F, for suitable constents ay,be. Let $n = ¥ Xx and
let p=E(S,). Then for anyt >0,

P18 - ul 2 1) < 2672 loanl
To prove this result we need one lemma, from [29].

Lemma 2.8. Let the random variable X satisfy E(X) =0 anda < X <),
where o and b ere constants. Then for eny h >0

E(th ) < eihﬂ(b—n)’.

Proof, Since " gives a convex function of z, fora <z < b

b-2
hzsx ahb+ I T ha
b-a b-a

and so
b a
hXy ¢ he_ %
E(e )'b ¢ b-ae
= (1-ple pv+pe(l-p)y
= P(1-ptpel) = ¢/
where p= -a/(b-a), y= (b-a)h and f(z) = —pz +In(1 - p+ pe*). But
pet 4
)= -pt T =Pt ———
fler=-p T-p+e 7 ptl-pe

and so

" pl-pe? 1
)= pr=per <1

(since the geometric mean is at most the srithmetic mean). Also f(0) =
f'(0) = 0, and hence by Taylor’s theorem

1, 1. o9
f(y)Sgyz—s(b a)’h’,

which gives the desired inequality. N

Proof of Theorem 2.5. By Lemma 2.6, for h > 1
E(5w) (H eh(Xu- E(x«)))
- H E (eh(x,,—E(X,, )

< T
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Hence by Markov’s inequality,

Pr(Sy - p 2 ) < € ME(eH5w)
& e~ hHR L0

Now set h = 4t/ (b - ax)? to obtain
Pr(S, - u 2 1) e X/ Dbemes),
Finally, replace X by -X to obtain
Pr(S, - < ~1) g e Leas)
and thus complete the proof. g

Much work has also been done on tail bounds for the sum 5, when, as well
as knowing bounds on the ranges of the summands X}, we know bounds on
their variances var(X) - see for example [7, 29]. The following result builds
on work of Bernstein (see (7] and [29] equation (2.13)). We shall develop more
general results along these lines later. The reader may notice the similarity
to part (b) of Theorem 2.3,

Theorem 2.7. Let the random variables X|,..., X, be independent, with
Xy ~E(Xi) <b for each k. Let S, = ¥ Xy, and let S, have expected value
o and variance V' (the sum of the variances of the Xi). Then for anyt > 0,

Pl‘(sn -p2 t)
< e VINAHIB04I-0)  yhory ¢ = b1V (29)
< ¢ W, (210)

In typical applications of the inequality (2.10), the ‘error’ term bt/3V will
be negligible. Suppose for example that the random variables X; have the
same bounded distribution, with positive va.rim’lce 0%, and so V = no®. Then
for ¢ = o{n), the bound in (2.10) is e=(+¢()4v (thig is the natural ‘target’,

since by the Central Limit Theorem S, — p is asymptotically normal with
mean ( and variance V).

In the proof of Theorem 2.5 above we used Lemma 2.6 to give a bound
on the moment generating function e* for a bounded random variable z with
expected value 0. In order to prove Theorem 2.7, we now need a related result,
see [65].
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Lemma 2.8. Let

2

1
g(z)=-+£+:§|-+-~=(e’—1-1)/:r2

23

if 2 # 0. Then the function g is increasing; and, if the random variable X
satisfies E(X) =0 and X < b, then

E(Cx) < Iwanx)

Proof. To show that ¢ is increasing, note that for z # 0,
gz =17z -2 +2+1),

and so it suffices to show that h(z) = (-2)¢” +2+ ¢ satisfies h(z) > 0 for all
7. Now h(0) = 0 and #'(z) = (x - 2)¢* + 1. Then #(0) = 0 and 2" (z) = z¢°,
50 0'(z) <0 for £ < 0 and A'(z) > 0 for £ > 0, and thus indeed h(x) > 0 for
all T as required.

For the second part of the lemma, note that
E=1+r+1%(r) <142 +2%0)
for 2 < b. Hence, if E(X) = 0 and X < b, then
E(e¥) < 1+ g{b)uan(X) < eSO,
as required. ]

Proof of Theorem 2.7.  The proof follows the lines of the proof of Theo-
rem 2.5 above. By Lemma 2.8, for any h

E(eh(s..—u)) - HE (eh(x;-zs(xk ))) < ARV
Hence by Markov's inequality, for any k > 0
Pr(S, - > 1) < e ME(S ) g hHaBRY 91y

To minimise this bound we set k= } In(1 + ), and then we obtain (2.9),
and finally Lemma 2.4 yields (2.10).

Inequalities for maxima

All the theorems above on sums of independent random variables can be
strengthened to refer to maxima. Since we have no natural applications in the
Present context for these strengthenings, we restrict ourselves to a comment
here and then say a little more at the end of subsection 3.5.
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Each of the theorems is based on the elementary Bernstein iequality
Pr(Z > t) < e ME(e"?) foreachh> 0.

Consider for example the Chernoff Theorem, Theorem 2.1, where S, = ¥ X
and p, = B(S,): to prove this result we may apply the above inequality with
Z =S, - i, where p, = E(S;,) = np, that is we use the inequality

Pr(S, — iy 2 t) e ME(MSo ) for each h > €.

However, a stronger inequality holds, Let S = Z:;l X, and & = E(5;):
then

-

Pr{max(S; - u) > t) < e ME(e"S )} for each h > 0.

Here the maximum is over k = 1,...,n. Thus the same proof as before shows
that, for any t > 0,

Pr(max(|S} - kpl) > nt) < 26,

However, in typical applications of concentration inequalities in discrete
mathematics or theoretical computer science, we do not start with the X
and then wish to investigate the sums S, 55,.... we start with a random
quantity Z of interest and then define further random variables X; such that
Z =Y X, inorder to investigate Z, so that we are not interested for example
in Sn_1.

Not only may the theorems above on sums of independent mndom vari-
ables be strengthened to refer to maxima, but also this holds for many of
the more general results in the next section, as they are also tased on the
Bernstein inequality - see the comment at the end of subsection 3.5.

3. Martingale Methods

We shall make some introductory comments about martingales in subsec-
tion 3.3 below. No knowledge of martingales will be required in :he first two
subsections below! Indeed, they will not be mentioned, though we shall see
later that the inequalities presented in these subsections are most naturally
understood in the context of martingales, and indeed they could be called
closet martingale results.
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3.1 The Independent Bounded Differences Inequality

In this subsection, we introduce and give several applications for the ‘inde-
pendent bounded differences inequality’, Theorem 3.1 below, from [45). This
result is a special case of Theorem 3.7 below (and thus also of Theorem 3.14),
but it has proved very useful and is immediately accessible and so we dis-
cuss it first. (We should insist below that the function f be appropriately
integrable: we ignore such details here and throughout the chapter.)

Theorem 3.1. LetX = (X, Xa,..., X)) be o family of independent random
variables with X, taking values in a set Ay for each k. Suppose that the real-
valued function f defined on [] Ax satisfies

|flx) - J0)| < e (31)

whenever the vectors X and %' differ only in the kth co-ordinate. Let i be the
ezpected value of the random variable f(X). Then for anyt >0,

Pr(f(X)-p2t) e/ Lk, ()

The inequality (3.2) is ‘one-sided'. If we apply it to - f we obtain
Pr{/(X)- u g -4 <114, (33
and so we have deduced the ‘two-sided’ inequality
Pr(f(X) - 4 28 <27/ 2, (349
A similar comment helds for most of the one-sided results we present.

1f we let each set A = {0,1} and let f{x) = ¥ z we obtain Theorem 2.1
above; and if each set Ay is a bounded set of numbers we obtain Theorem 2.5,
We consider a variety of applications below. We do not prove Theorem 3.1
at this point, as the proof is most naturally set in the framework of martin-
gales and we shall shortly develop more general results - see in particular
Theorem 3.7 below.

3.1.1 Bin Packing. Our first application is quick and easy. Given an n-
vector X = (ty,...,2,) where 0 < 2 <1 for each k, let B(x) be the least
number of unit size bins needed to store items with these sizes. We assume
that the items have independent random sizes. Let X = (X),...,X,) be a
family of independent random variables each taking values in [0,1]. Then the
bounded differences condition (3.1) holds with each ¢ = 1, and so (as noted
in 45, 54]) it follows from Theorem 3.1 that
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Pr{IB(X) - 4| 2 t) < 2%/, (35)

where . is the expected value of B(X). Thus if w(n) — co as n — o, then the
probability that B(X) deviates from its mean by more than w(n)\/n tends
to 0 as n — oo. We may say that B(X) is concentrated within width O(y/n).
For a similar result on random knapsacks see [43]. (For finer concentration
results on bin packing that use also the variance of the random variables X
see [68, 42))

3.1.2 Random Graphs. In Theorem 3.1 we may take Ay as a set of edges
in a graph, as jn the results below - see for example [10, 12]. Recall that
the random graph Gy, , has vertices 1,...,n and the possible edges appear
independently with probability p.

Lemma 3.2. Let (A),...,Am) be o partition of the edge set of the com-
plete graph K, into m blocks; and suppose that the graph function f satis-
fies |£(G) - f(G')] € 1 whenever the symmetric difference E(G)AE(G') of
the edge-sets is contained in ¢ single block Ax. Then the random varighle
Y = f(G,p) satisfies

Pr(Y - E(Y) > ) <e /™ for £ 0.
This result follows directly from Theorem 3.1 with each ¢, = 1. The next
two results are immediate consequences of Lemma 3.2: for the former let 4,
be the set of edges {5, k} where j < k, and for the latter let the blocks Ay

be singletons. We may think of ‘exposing’ the random graph step-by-step: at
step k we expose which edges in the set Ay are present.

Lemma 3.3. Suppose that the graph function f satisfies |f(G) - f(G")| <1
whenever G' can be obtained from G by changing edges incident with @ single
verter. Then the corresponding random varishle ¥ = f(G,,) satisfies

Pr(Y -E(Y) 2 t) < e/ for £ >0,
When we consider the chromatic number x(G) and let ¥ = x(G,, ;) (and use
the two-sided version of the last lemma), we find that
Pr(Y - E(Y)| 2 ) < 27", (36)

which is (a slight sharpening of) the early result of Shamir and Spencer [60]
which was important in introducing martingale methods into this area.

3
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Lemma 3.4. Suppose that the graph function f satisfies |f(G) - f(G')[ < 1
whenever G and G' differ in only one edge. Then the corresponding random
variable Y = f(Gr p) satisfies

Pr(Y - E(Y) 2 ) Se™/7" for £ 20.

Perhaps the most exciting application of the bounded differences method
uses this lemma. It is the proof by Bollobds (11] of what was a long-standing
conjecture about the chromatic number x(Gyp) of random graphs. Consider
a constant edge probability p with 0 < p < 1 and let g = 1-p. Then for any
> Oa

n

n
- < < —a—— .
Pr((l 6)2Iogqn'X(G"‘p)'(lﬁ)ﬂogqn)-’l a n = 0c

(For a more precise result see [46].)

The lower bound part of the proof is easy: the interest is in establishing
the upper bound for x(Gn,p). The key step in the proof is to show that the
probability 5(r) that Gy, fails to contain a stable (independent) set with
8(n) = [(2 - €)log, n] vertices is very small, say

3 = 0e™?). (37)

To see how this will yield the upper bound on x(G, ), let # = [/ log?n)
and call 2 set W of at least 7 vertices in Gy, bad if it contains no stable
set of size at least s(fi). The probability that there is a bad set is at most
2"5(R) = o{1). But if there is no bad set W, then we can repeatedly colour a
stable set of size at least s(7) and delete it, until there remain fewer than #
vertices, which may each get a new colour. The total number of colours used
by this procedure is then at most

n/s(f) + = (2—1; +of1))n/log, .

Thus we wish to see that (3.7) is true. The clever idea is to consider not
just big stable sets but packings of such sets. Given a graph G on n vertices,
define f(G) to be the maximum number of stable sets of size s(n) which
pairwise contain at most one common vertex. If graphs G and G’ differ in
only one edge then f(G) and f(G") differ by at most 1. Let X, = f(G,,). It
is not hard to check that p = E(X,) is large, say at least nd for n sufficiently
large. Hence by (the other one-sided version of) Lemma 3.4, the probability
#(n) that Gy, has no stable set of size s(n) equals

Pr(X, = 0) = Pr(X, - o € —pin) < ™93/ < o700},
for n sufficiently large.
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3.1.3 Hamming Distances and Isoperimetric Inequalities. Next let
us consider an application of the independent bounded differences inequal-
ity Theorem 3.1 involving Hamming distances in product spaces, and cor-
responding isoperimetric inequalities. This application will link in with our
discussion later on Talagrand’s inequality and on the use of ideas from infor-
mation theory to prove concentration results.

Let £2,,..., 12, be probability spaces, and let {2 denote the product space
[T Let X = (X1,...,X,) be a family of independent random variables
with Xj taking values in {2;. Recall that for points x = (z),...,2,) and
Y = (f1,...,¥) in 2, the Hamming distance dy(x,y) is the number of
indices ¢ such that z; # y;. We can use the independent bounded differences
inequality to show that for any subset A of £2 such that Pr(X € A} is not
too small, the probability that a random point X is ‘close’ to A is near 1.
Recall that the Hamming distance from a point x to a set A is defined by
setting dy(x, A) to be inf{dy(x,y) : y € A}.

Theorem 3.5. Let X = (X,...,Xs) be o famdly of independent random
variables and let A be a subset of the product space. Then for anyt >0,

Pr(X € A) Pr(dy(X, 4) > ) e/, (38)

Let us rephrase this result before we prove it. Define the t-fattening of a
subset 4 of 12 to be the set of points x € /2 such that dy(x, A) < ¢, and let
the measure v(A) be Pr(X € A). Then (3.8) says that

VA1 - v(A)) S,

Thus if (4) > § then v(4,) > 1- 2¢~t'/4, In particular, when each random
variable Xj is uniformly distributed on the set 2 = {0,1} we obtain an
isoperimetric inequality for the n-cube - see for example [37, 45, 63).

Proof of Theorem 8.5.  Let p=Pr(X € A} and let ¢ = E(dy (X, 4)). We
meay assume that p > 0. By the independent bounded differences inequality,
fort>0

Pr{dy(X, A) - p > 1) <2, (39)

and \
Pr(dy(X,A) - p < ~t) Ce ¥/, (3.10)

Now dy(x,A) = 0 if and ouly if x € A, s0 if we take ¢ = p in the inequal-
ity {3.10) above, we obtain

p=Pr(X € A)=Pr(dy(X,A)-p<-p)< e-?u’/n,
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and so .
#< (3nin(1/p)2, =to say.
Now use this bound in the inequality (3.9) above, to find
Pr(dy(X,4) 2t +1g) <7,
Thus for t > to we have
Pr(dy(X, 4) > t) < e M-wIm, (3.11)

Now (¢ - a)2 > %/ for ¢ > 2a, 50 if we take t > 2t in the inequality (3.11)

we obtain ,
Pr(dy(X,4) 2 1) <e™t /™

But for 0 < t < 21y, the right hand side above is at least g-2/n = p=Pr{A).
Thus \

min (Pr(X € 4), Pr(dy(X, 4) 1)) ce™* /™
for any t > 0, O

We may generalise the above discussion. Let & = (ay,...,@,) 2 0 be an
n-vector of non-negative real numbers. Recall that the (L) norm is given by

lol= (T e,

and we call o a unit vector if it has norm flof|= 1. For points x = (x1,...,2a)
and y = (y1,...,9a) in £, the o-Hamming distance d,(x,y) is the sum of
the values a; over those indices ¢ such that z; # . Thus when a is the
all 1's vector, it has norm /2 and a-Hamming distance is just the same as
Hamming distance. Also, for a subset 4 of 2, we define

da(x, 4) = inf{do(x,y) : y € 4}.

Exactly the same proof as for Theorem 3.5 yields the following extension of
it.

Theorem 3.6. Let X = (Xy,..., X,) be a fomily of independent random
variables, let o be @ non-negative unit n-vector, and let A be a subset of the
product space. Then for any t > 0,

Pr(X € A) Pr(do(X, 4) 2 ) < 7.
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Similar results appear in (30, 68, 69]. The central result of Section 4, namely
Talagrand's inequality Theorem 4.1, looks rather similar to Theorem 3.6 but
is in fact far more powerful, since it refers not just to one unit vector o but
simultaneously to all such vectors.

The above result will give us back a result like Theorem 3.1, centered
around a median rather than the mean. Let us see how to do this. Consider a
function f defined on [] A as there, and let ¢ be the vector (¢y,...,¢,). Then
the bounded differences condition (3.1), that |f(x) - f(x')| < cx whenever
the vectors x and x’ differ only in the kth co-ordinate, is equivalent to the
condition that | f(x) - f(x')| < de(x, x’). Now assume that the condition (3.1)

holds. Let
A=y e[4S <o)
Consider an x € [] Ag. Foreach y € 4,,
flx) < fly) +delx,y) Sa+ defx,y),
and so, minimising over such y,
flx) £a+di(x,4,).
Let ¢ =|c|}, and let a be the unit vector c/c along c. If f(x) > 6 + ¢ then
da(X, Ao) = de(x, Aa) /e 2 (f(x) - 6) e 2 t/e.
Hence by Theorem 3.6, for any t > 0,

Pr(f(X) < o) Pr(f(X) 2 6 +1) < Pr(X € &) Pr(da(X, Ao) 2 t/c)

<
< e—t’/Zc"
Now let m be & median of f(X), that is Pe(f(X) < m) > } and
Pr(f(X) >m) > 1. Taking a = m above gives
Pr{f(X)>m+1) <212 (3.12)
and taking a = m - ¢ we have
Pr(f(X) <m-1) <27 (3.13)
The above two inequalities are like the conclusion of Theorem 3.1, at
Jeast if we are not too bothered about constants. They refer to concentration

about the medisn m rather than the mean y = E(f(X)), but that males little
difference since the concentration inequalities themselves imply that |z — m|
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is small. Indeed, the inequalities (3.12) and (3.13) together with Lemma 4.6
in subsection 4.2 below show that

|u—m| £ Vare. (3.14)

So it is not important whether we refer to median or mean, and Theorem 3.6
and Theorem 3.1 are quite similar.

3.2 Extensions

In this subsection we refine the independent bounded differences inequality,
Theorem 3.1, and the Bernstein inequality, Theorem 2.7, to obtain more
widely applicable results, namely Theorems 3.7, 3.8 and 3.9, but at the cost of
some added complication. We shall deduce these theorems later as immediate
consequences of martingale theorems (though they do not themselves mention
martingales!). Theorems such as these have recently proved useful when the
random variables X correspond to answering questions such as whether two
given vertices are adjacent in a random graph, and the question asked at time
k may depend on the answers to previous questions - see for example (32,
9, 26]. We shall give part of an argument from [2] concerning hypergraph
matchings at the end of this subsection.

Let X = (Xy,...,X») be 2 family of random variables with X taking
values in a set Ay, and let f be a real-valued function defined on [ A
Typically the random variables X will be independent but we shall not
assume this here. We define quantities which measure the variability of the
random variable f(X) when the random veriables X1,..., Xk are fixed.
These quantities correspond to deviation, range and variance. It is convenient
to note first an easy bound on variance. If the random variable X satisfies
E(X)=0anda< X <, then

ver(X) = E(X%) = E(X(X - a)) S E(b(X - ) = Jabl < (b-0)*/4. (315)

Let z; € A for each i = 1,...,k - 1, and let B denote the event that
X, =1 foreachi=1,.... k-1 Let the random variable ¥’ be distributed
like X conditional on the event B (so if k = 1 then ¥ is distributed like X,
with no conditioning, and if the random variables Xj are independent then
for each k the random variable Y is distributed like X). For x € Ax let

9(z) =E(f(X) | B, X, =2) ~E(f(X) | B).
If the random variables X, are independent then we may write g(x) as

B(f(1 s 8k-1.% Xkptr o X)) = B{ (21, 2ot K Xkats o X))

Concentration 213

The function g(z) measures how much the expected value of f(X) changes
if it s revealed that X takes the value . Observe that E(g(Y)) = 0.

Let dev*(x),...,25-1) be sup{g(z) : z € Ai}, the positive deviation of
9(Y), and similarly let dev(zy,...,74-)) be sup{lg(z)| : = € A}, the devia-
tion of g(Y). (If we denote E(f(X)) by g, then for each x = (zy,...,2,) €
[1Ax we have

Fx) - 4 Y deniay, .., Beon). (316)

This inequality may be combined (or ‘interpolated’) with other inequalities
like Theorem 3.1 - see [35, 38].) Let ran(z),...,2¢-,) denote sup{|g(z) -
9(y)| = 2,y € Ay}, the range of g(Y). Also, denote the variance of g(Y) by
Nz, .y Tg-1)-

For x € [] A, let the sum of squared ranges be

n

Bx)= Y (ran(z,...,z)),

k=1

and let the magimum sum of squared ranges 7 be the supremum of the values
R(x) over all x € [] Ax. Similarly let the sum of variances be

n

Vix)=) verlon,..., 55-1),

k=1

and let the mazimum sum of variances 9 be the supremum of the values V(x)
over all x € [] Ax. Observe that V(x) < R*(x)/4 for each x by (3.15), and
30 § < #2/4. 1t is also of interest to note that

vor{ f{X}) = E(V(X)) <3,

as i shown just before Theorem 3.14 below. Finally here, let maxdevt be
the maximum of all the positive deviation values dev(xy,...,z¢-,), over all
choices of k and the z;, and similarly let max dev be the maximum of all the
deviation values dev(zs,..., 24_1).

Example Define the function f : {0,1}* — {0,1} by letting f(x) be 0
on (0,0,0),(0,1,0),(1,0,1) and be 1 otherwise. Let X = (X1, Xy, X3) be &
family of independent random varisbles with Pr(X, = 0) = Pr(X, = 1) = }
for each k. Thus E(f(X)) = 5/8, and var{ (X)) = 5/8 - (5/8)* = 15/64.

At the ‘root’, g(0) = E(f(0, X2, X3)) - E(f(X)) = 1/2-5/8 = -1/8,and

similarly g(1) = 3/4-5/8 = 1/8. Th = - -
aﬁvarl{/)gi 2/64./ /8 = 1/8. Thus ran() = 1/4, dev() = dev() = 1/8
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What happens if Xy = 1? We have E(f(X) | X; = 1) = E(f(1, X3, X3)) =
3/4, and 50 g(0) = E(f(1,0,Xs)) - 3/4 = ~1/4 and (1) = E(f(1,1, X)) -
3/4 = 1/4. Thus ran(1) = 1/2, dev*(1) = den(1) = 1/4, and ven(1) = 1/16.
Similarly, ren(1,0) = 1 and ver(1,0) = 1/4.

Now let x = (1,0,1) (or (1,0,0)). The corresponding sum of squared
ranges R}(x) is ran()? + ran(1)? + ran(1,0)? = 1/16 +1/4 +1 = 21/16,
which in fact equals 2. The corresponding sum of variances V/(x) is ver() +
var(1) + var(1,0) = 15/64 + 1/64 + 1/4 = 1/2, which in fact equals 9.

We are now ready to state the first of our more general results, which
extends the independent bounded differences inequality, Theorem 3.1.

Theorem 3.7. Let X = (X1,...,Xx) be o family of random variables with
X, taking values in a set Ay, ond let f be o bounded real-valued function
defined on [[ Ax. Let u denote the mean of £(X), and let % denote the
mazimum sum of squared ranges. Then for any ¢ > 0,

Pr(f(X)-u2t) <eHF,

More generally, let B be any ‘bad” subset of [] Ar, such that R*(x) <72 for
each x ¢ B. Then

Pr(f(X) - p 21) < e/ + Pr(X € B).

The first inequality above of course yields
Pr(f(X)-p < - <N

by considering — (as in the comment after Theorem 3.1), and thus
Pr(|f(X) - 4l > 1) < 2677, (317)

Ifforeach k = 1,...,n we let 7 be the supremum, over all choices of the z;, of
the values ran(zy,..., Zx-1) then of course 7 is at most 3 2. This bound
for 2 yields Corollary 6.10 of [45]. Further, it yields also the independent
bounded differences inequality, Theorem 3.1 For suppose that f satisfies the
bounded differences condition (3.1) in that theorem. Let 1 < k < n and
let z; € 4, fori=1,...,k— 1. We shall see that ran{Ly, ... Zx-1) < Cky
072 < T# < ¢, and then Theorem 3.1 follows. To see this, for each
7 € Ay let Z, be the random variable f(z1,..., Zt-1, Xes1,-- -, Xn). Then
1Z; = Z,| < cx. Hence, in the notation introduced before the statement of
the last theorem, for any 7,y € Ak

lo(z) - 9(v)l = IE(Z) - E(2,)| S E(|2: - Z,) < e
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Thus ran(zy,. .., Zx-1) < ¢k, 88 required.

Observe that the above argument will in fact yield a slightly stronger form
of Theorem 3.1. Denote Y ¢f by ¢*. The theorem will still hold if we weaken
the assumption on f to the condition that for each x there exists a € (possibly
depending on x) such that & < &, and |f(x) - f(x)| < & whenever
the vectors x and x’ differ only in the kth co-ordinate. The inequality of
Talagrand that we shall meet later has a similar favour.

Let us give one application of the above result, Theorem 3.7, before we go
on to give extensions of the Bernstein theorem, Theorem 2.7. This application
is from Maury (4], and was, together with [1], one of the first uses of a
concentration inequality outside probability theory.

Permutation graphs

Let S, denote the set of all ! permutations or linear orders on {1,...,n}.
The permutation graph Gy, has vertex set S,, and two vertices o and 7 are
adjacent when 07! is a transposition, that is when 7 can be obtained from
o by swapping the order of two elements. We are interested in isoperimetric
inequalities for this graph. Given a set A C S, and ¢ > 0, the t-fattening 4,
of A consists of the vertices in G, at graph distance less than ¢ from some
vertex in A. Thus, we want lower bounds on |4,| in terms of |A|, or upper
bounds on 1 - |4;|/n!. We shall show that

(1Al/a) (1 - |Ayl/nl) S 7, (3.18)

Think of a linear order in S, as an n-tuple x = (zy,...,2n) where the z;
are distinct. Let ay,...,ax be distinct and let B be the set of linear orders
x € S, such that z; = ay,..., 2% = a. For x distinct from the a; let B, be
the set of x € B with 241 = z. Let  be any function on S, satisfying the
Lipschitz or unit change condition |f(x) - f(y)] € 11if x and y are adjacent
in Gn.

Now let X be uniformly distributed over §,. In the notation introduced
before the last theorem above, consider

9(z) = B(f(X) | X € B;) - E(f(X) | X € B).

For any relevant distinct x and y, there is a bijection ¢ between B, and B,
such that x and ¢(x) are adjacent in G,. (We simply swap the positions of
zand y.) Thus E(f(X} (X € B,) = E{f(¢(X)) | X € B,). It follows that

l9(2) - 9()| = [E(f(X} - f(¢(X)) | X € B)]|
SE(f(X) - fleX)) [X€B:) < 1.

Hence by Theorem 3.7,

2!
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Pr(f(X) - E(f(X)) 2 t) < eI,

Now let us specialise to the case when f(x) is the graph distance between x
and the set A. We may proceed exactly as in the proof of Theorem 3.5 above
(after the first two inequalities) to show (3.18) as required. For related results
and extensions see for example [50, 10, 45, 37, 68).

The next result extends the Bernstein theorem, Theorem 2.7.

Theorem 3.8. Let X = (Xi,...,X,) be a fomily of random variables with
X, taking volues in a set Ay, and let f be o real-valued function defined on
[ A Let i denote the mean of f(X). Let b = mazdev* and let 9 be the
mazimum sum of varignces, both of which we assume to be finite. Then for
enyt >0, .

Pr(f(X) - 2 1) < & T,

More generally, let B be any ‘bad” subset of [] Ax such that V(x) < v for
each x € B. Then

Pr{f(X) - 4 > ) < & T 4 Pr(X ¢ B),

As with Theorem 2.7 above, in typical applications of this result the ‘error
term' bt/3v is negligible. Also, the ‘bad set’ B if present at all is such that
Pr(X € B) is negligible. If we use the bounds V'(x) < R%(x)/4 for each x and
% < #2/4, we can nearly obtain the bound in Theorem 3.7 for small £. If for
each k = 1,...,n we let 9 be the maximum of the values var{zy,..., Z4_1)
over all choices of the z;, then  is at most Y x. If we use this bound for 4
together with the discussion below, we obtain a result related to inequalities
used by Kim [35] in his marvellous R(3,t) paper. However, the present more
general result is needed for certain applications - see for example 32, 2, 26]
and the example below.

Observe that if a random variable X has mean 0 and takes only two values,
with probabilities p and 1 —p, then the two values are —pr and (1-p)r where
 is the range of X, and var(X) = p(1 - p)r? < pr - see also (3.15) above,
Thus if p is small so is van{X) and we can get tight bounds on deviations. Let
us state one corollary of Theorem 3.8, which is a tightening of the martingale
inequality in [2).

Theorem 3.9. Let X = (X),...,X) be o fomily of random variables with
Xy taking values in a set Ay, and let f be o bounded real-valued function
defined on [] Ax. Let p denote the mean of f(X), let b denote the mazimum
deviation mazdev, and let #2 denote the mazimum sum of squared ranges.
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Suppose that, for any given values taken by X1,..., Xx—1, the rendom veri-
able Xy takes at most two values, and if it can take bwo values then the
smaller of the probabilities is at most p, where p < §. Then for anyt >0,

2
Pr{If(X) - 4] > t) < 2" TP

As with Theorems 2.7 and 3.8 above, we hope to be able to ignore the
‘error term’ bt/3pf2. The important term in the bound is e'?#’, which is

2
significantly better (smaller) than the corresponding term ¢ from The-
orem 3.7 whem p = o(1). In the next subsection we describe an application
where this difference is crucial.

3.2.1 An Application to Hypergraph Matchings. A matchingin H is
a set of pairwise disjoint edges. Let k > 3 be a fixed integer, and consider
a k-uniform d-regular simple hypergraph H on n vertices. (Thus each edge
contains exactly k vertices, each vertex is contained in exactly d edges, and
each pair of distinct edges meet in at most one vertex.) It is shown in (2] that
such a hypergraph H contains a matching covering all but a vanishing pro-
portion of the vertices as n — co. (Earlier results showed that the proportion
of vertices that could not be covered tended to zero, but perhaps slowly.)

The idea of the proof is to find such a matching by repeatedly taking
random ‘bites’ (like large ‘Ridl nibbles' - see for example [3]). We take such
2 bite as follows. Form & set X of edges by choosing the edges independently
with probability 1/d. Call an edge ‘isolated’ if it meets no other edge in X.
Let M consist of the isolated edges in X - these will form part of the final
matching. Now delete from H all the vertices in the edges in M and all the
edges meeting these vertices, forming a hypergraph H* on the vertex set V*,
and take the next bite from H*. We must show that H* is approximately
regular of appropriately smaller degree. (Many details have been omitted, in
particular a neat degree stabilisation technique, but they do not affect the
idea that we wish to illustrate.) A key part of the proof is to check that each
vertex degree in H* is close to its expected value with high probability, and
that is what we now proceed to do. (We need the probability of a significant
deviation to be very small since the next step in the proof is to use the
Lovisz Local Lemma: when using a ‘Rodl nibble’ often a second moment
bound suffices - see for example (3].)

For each vertex v € V let Z, be the number of edges £ € H containing
v such that E\ {v} C V*. Observe that if v € V* then Z, equals the degree
of v in H*. (By defining Z, in this way we need not worry about whether
or not the vertex v is in V*.) It turns out that it suffices to consider a fixed

1
vertex v € V, and show that for ¢ = o(d2) we have
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Pr{|Z, - E(Z.)| > td) < ™,

(See Claim 2 in [2].) Let us see how we can obtain this result from Theo-

Ly

2
rem 3.9. Recall that Theorem 3.9 gives a bound of roughly e % as long as

the deviation ¢ is not too large.

For each edge E € H, let the random variable Xg = 1 if E appears in
the random set X and let Xg = 0 if not. Thus Pr(Xg = 1) = p = 1/d,
and we shell be in business as long as the maximum sum of squared ranges
# = maxy RY(x) is O(¢*). (In order to use Theorem 3.7 we could tolerate
only # = O(d), which is no use here.)

Call an edge in H primary if it contains the vertex v, secondary if it
not primary but meets a primary edge, and tertiery if it is not primary or
secondary but meets a secondary edge. Let &;, &3 and &3 denote the sets of
primary, secondary and tertiary edges respectively, and note that |&| = d,
62| < (k- 1)d* and |€3] < (k - 1)?d°. Let £ be the union of the sets &;.

The random variable Z, is determined by the values of the random vari-
ables X for E € £. Let 12 be the set of binary vectors x indexed by £. For
each x € 2let f(x) be the corresponding value of the degree Z, Let x,y €
differ only in co-ordinate F, where F € €. If F € & then |f(x) - f(y)| < 1
If F € & then |f(x) - f(y)| < k2. So far the contribution to the term R¥(x)
is at most

161] + 121k < Kd® = O(d%),
which as we saw above is small enough. Similarly, if F € £ then |f(x) -
£(y)| < k. However, we cannot tolerate a contribution to RZ(x) of order &,
5o we must do better.

Let x € 2. Call an edge F' € & important if zp = 1 and F' meets no
other edges F" € £, with zpv = 1. There are at most (k - 1)d important
edges, and so at most k%d? tertiary edges can meet an important edge. Fur-
ther, if y € 12 differs from x only in co-ordinate F for some tertiary edge F
which meets no important edge then f(x) = f(y). Thus we can bound R%(x)
by kSd? + (Kd?)k* < 2k%4?, and so the maximum sum of squared ranges
7% < 23, Since each Pr(Xp = 1) = 1/d we may now use Theorem 3.9 to
show that

2
Pri[Z, - E(Z.) > ) < 2exp (_ t_ )
2(2KEA)(1 + (K24d2)/(6kSd))

= 29xp (—__tz_l.—) ,
4K5(1 + 1/ (6k4d2))

L
and this bound is at most ¢~¢") for ¢ = O(d?).
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3.3 Martingales

We give here a brief introduction to the theory of martingales, focussing
on the case when the underlying probability space is finite. For much fuller
introductions see for example (28] or [72].

The starting point is a probability space (£2,F,Pr). Thus 2 is the non-
empty set of all ‘elementary outcomes’, F is the set of ‘events’, and Pr is
the probability measure. The collection F of events must be suitably closed
under unions, intersections and complements, and is assumed to be a o-field.
A o-field on £2 is & collection § of subsets of 2 which contains the empty
set, and is closed under complementation (if A € G then 2\ 4 € G) and
under countable unions (if 45, 4,,... € G then their union is in G). It follows
that such a collection § is also closed under countable intersections. In many
applications the underlying set {2 is finite, and the o-field F of events is the
collection of all subsets of £2. Let us assume in the meantime that (2 is finite,
though what we say is either true in general or at least tells the right story.

Cortesponding to any o-field G on 2 there is a partition of {2 into non-
empty sets, the blocks of the partition, such that the ¢-field G is the collection
of all sets which are unions of blocks. Corresponding to the o-field of all
subsets of 2 is the partition of {2 into singleton blocks. Suppose that we
have a o-field G contained in F. Any function on £ which is constant on the
blocks of G is called G-measurable. A random variable is an F-measurable
real-valued function X defined on £, so that in the case when F consists of
all subsets of {2 any real-valued function defined on {2 is a random variable.

The expectation of X conditional on G, E(X | §), is the G-messurable
function where the constant value on each block of G is the average value of X
on the block. This is a very important notion. We may see that E(X | F) = X
(that is, B(X | F){w) = X(w) for each w € 2) ; and if G is the trivial o
field {9, 2} corresponding to the trivial partition of £2 into one block, then
E(X | ) is the constant function with constant value E(X). Key properties
of conditional expectations that we shall need are that if Gy C G, then

E(E(X|G)) =E(X|6) (3.19)

and so in particular
E(E(X | §)) = E(X), (3.20)
and
E(XY |G)=XE(Y |§) if X is G-measurable. (3.21)

The supremum of X in G, sup(X | ), is the G-measurable random variable
which takes the value at w equal to the maximum value of X over the block
containing w. Clearly



20  Colin McDiarmid

E(X|6) <sup(X|0), (3.22)

and if G; C Gy then
sup(X | G2) < sup(X | G1). (3.23)

Note that each of the above results holds for each w € Q. It is time for an
example!

Example Let 2 = {0,1}", let F be the collection of all subsets of 2, let
0<p<1,and for each w = (wy,...,wy) let Pr({w}) =p'(1-p)""? where
3= ¥ wi. This defines our probability space. For each k = 1,...,n define
Xi(w) = wy for each w € 2. Then X;,..., X, are independent random
variables with Pr(X; = 1) = 1- Pr(X; = 0) = p for each k. Also, let §; =
Xi+- 4 Xy Let Fi be the o-field corresponding to the partition of 2 into
the 2* blocks {w € 0 :w; = 11,..., wk = 7} for each (z),...,:) € {0, 1}F.
Then the random variable E(S,, | i) satisfies (for each w € 2)

ESa | F)=Sc+(n-kip=w +-- +wr +(n-klp,

and E(Sn I ]'-n) = §,, E(Sn | -FO) = E(sn) =np and E[E(Sn | fk)) =
E(Sk) + (n - k)p = np. Also for example

E(SkSn | Fe) = SkE(Sa | Fi) = 5} + (n - K}sSi.
Further
sup(Sy | Fi) = Sk + (n — k) € Sy + (n = k + 1) = sup(Sy | Fe-1).

Another important ides is that of a filter. A nested sequence (6, 12) =
FoC F C - of o-fields contained in F is called a filter. This corresponds
(in the finite case) to a sequence of increasingly refined partitions of 2, start-
ing with the trivial partition into one block. We may think of the filter as
corresponding to acquiring information as time goes on: at time k, we know
which block of the partition corresponding to F contains our random el-
ementary outcome w. Given & filter, a sequence Xp, Xi, Xa,... of random
variables is called a martingole if E(X41 | Fi) = X foreach £ =0,1,....
This implies that X is Fi-measurable (‘at time k we know the value of Xi').
It also implies that E(X;) = E(X) for each k. A sequence 1}, ¥, ... of ran-
dom variables is called a martingale difference sequenceif ¥y is Fy-measurable
and E(Y} | Fi_1) = 0 for each positive integer k.

From & martingale Xo, X, X3,... we obtain a martingale difference se-
quence by setting Yi = Xi - Xx—1; and conversely from Xo and a mar-
tingale difference sequence we obtain a martingale Xo, X1, X3, ... by setting
Xe=Xo+ Zfﬂ Y;. Thus we may focus on either form.
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We shall be interested here only in finite filters (§,2) = £y C £, C--. C
Fn where F, C F. Let X be a random variable and define X, = E(X | 7)
for k= 0,1,...,n. Then Xo,X3,..., X, is & martingale, with Xy = E(X)
and X, = X if X is F,-measurable. This is called Doob's martingale process,
and for finite Slters all corresponding martingales may be obtained in this
way. If ¥;,..., Y, is the corresponding martingale difference sequence then
we have X -E(X) =} V.

Example (continued) There is & natural filter here, namely
{00 =FRCAHC - CR=F

which corresponds to learning the values of the co-ordinates of w one by one.
The o-field F is the o-field genernted by the random variables X),..., Xy;
that is, the smallest o-field § such that each of X,..., X is G-measurable.
Foreach £ =1,...,7 let T be the random variable Sg—kp = (X;-p)+ -+
(Xx - ). Then E(T) | Fi-1) = Ti-1, and s0 the random variables T, form
a martingale, with corresponding martingale difference sequence X - p.

When the underlying set {2 is infinite we need to be  little more careful.
In particular, the results discussed above hold with probability 1 (also called
‘almost surely’) rather than for every w € 2, and we need to assume that
various expectations are finite. However, the sketch introduction above should
give the right ideas.

The most basic inequality for a bounded martingale difference sequence
is the following lemma of Hoeffding (1963) (29], Azuma (1967) [6], which we
shall refer to as ‘The Hoeffding-Azuma Inequality'.

Theorem 3.10. Let ¢y,...,c, be constants, and let ¥y,...,Y, be a martin-
gale difference sequence with |Yy| < cx for each k. Then for anyt >0,

Pr( Y %24 <225,

Suppose that X),..., X, are independent, with Pr(X; = 1) = p and
Pr(X; =0)=1-p. Set ¥y = Xi - pand ¢x = max(p, 1 - p). We may then
apply the above lemma to obtain the Chernoff bound in Theorem 2.1, except
that the bound is weakened if p # % All our applications will be based on less
symmetrical forms of the above result, and will thus avoid gratuitous factors
less then 1 in the exponent in the bounds. In particular, Theorem 3.10 is a
special case of Theorem 3.13 below.
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3.4 Martingale Results

The results in this subsection extend all the earlier results. In particular, the
next result extends Lemma 2.2 on independent random variables.

Lemma 3.11. Let Y1, Y3,.... Y, be o martingale difference sequence with
—ag < Yi <1-a for each k, for suitable constants ay. Leta =1 Y ay and
letd=1-a. Then for any0<t <8,

rErews () (&) ) o

Proof. Since 8, = 8,1 +Y, and S, is F,_)-measurable (and hence so is
¢5"-), we may use (3.20) and (3.21) to show that for any h,

E(e*) =B (M 1) =B (Bl | o).
Thus ss in the proof of Lemma 2.2, for any £ > 0,
E(e*5") = BB | F,y))
<E (e"s"“) ((1 —ay)ehon +a,.e"(1""‘))
< H ((l ~ap)e o 4 ake"“"‘*)) .

on iterating, and we may complete the proof exactly as for Lemma 2.2. O

We may deduce more useful inequalities from this lemmes, just as we obtained
Theorem 2.3 from Lemma 2.2,

Theorem 3.12. Let Y1,13,...,Y, be o martingole difference sequence with
—ay < Vi < 1-a; for each k, for suitable constants ai; end let a = }‘ Ya.

{a) For anyt > 0, X
Pr(|) Vi 2) <2670
{b) For any ¢ > 0,
Pr(z Y, > ean) < g~ ((+0)nll+e)=clan ¢ e'ﬂ%’ﬂ.
{c) For any e > 0,

1
Pr(z Y, < —ean) < ¢m3eon
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To deduce Theorem 2.3 from Theorem 3.12, let o). = E(X}) and Y = Xi~ay,
sothst —ap <Yy <1-opthenp=3 op=ng,p=aand LY =5, -
The next result extends both the independent bounded differences inequality,
Theorem 3.1, and the Hoeffding-Azuma Inequality, Theorem 3.10.

Theorem 3.13. Let 1,,...,Y, be o martingale difference sequence with
o, < Vi S by for each k, for suitable constants ag,by. Then for anyt > 0,

Pr( Y Yyl 21) g 23/ Do, (3.25)

The next pair of results, Theorems 3.14 and 3.15, are the most powerful of the
martingale results we present, and include all the previous theorems (except
for the first inequality in part (b) of Theorem 2.3 and of Theorem 3.12),
In particular, Theorem 3.13 will follow immediately from Theorem 3.14. In
order to state the two results we need some more definitions and notation.
We postpone their proofs to the next subsection.

Let X be a bounded random variable and let ¢ be a o-field contained
in the o-field F of all events. The conditional range of X in G, ran(X | G),
is the G-measurable function sup(X | G) +sup(-X | G). The conditional
variance of X in G, ven(X | G), is E({(X - Y)? | G), where Y = E(X | §).
In the example in the last subsection, the conditional range of $, in %,
ran(Sy | Fi), is the constant function n - k, and the conditional variance
var{Sy | Fr) is the constant function (n — k)p(1 - p).

Now let (§,2) = Fo C F C .- C F, be a filter in F. Let the bounded
random variable X be F,-measurable, and let Xo, X1, ..., X, be the martin-
gale obtained by setting X = E(X | i) Further,let Y}, ..., Y, be the corre-
sponding martingale difference sequence obtained by setting ¥ = Xy~ Xi_1.
For 1 < k < n, we define four F,_,-messurable functions rany, dev;, devy
and vary as follows. We let ran, denote ran(Yy | Fi—1) ( = ran(X | Fi-1));
let dev} denote sup(Yx | Fi-y), let dev, denote sup(|Yy| | Fi-,), and fi-
nally we let ver, denote ver(Yy | Fi-1), ( = var{Xi | Fi-1)). Note that
devf < devy < rany, < 2devy, and vany < (1/4)ran? by (3.15).

Finally we define two random variables R* and V' and four constants
#*, 9, maxdev* and maxdev. Let the sum of squared conditional ranges
R? be the random variable 3" ran?, and let the mazimum sum of squared
conditional ranges 7% be the (essential) supremum of the random variable
R?. Let the sum of conditional variances V be the random variable Y vary,
and let the mazimum sum of conditional variances  be the supremum of the
random variable V. Finally let the mazimum conditional positive deviation
max dev* be the supremum over all & of the random variables dev}, and let
the mazimum conditional deviation maxdev be the supremum over all & of
the random variables dev;.

2
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The random varisble V' is also called the ‘predictable quadratic variation’
of the martingale (X}, see for example [61], or the ‘increasing sequence’
associated with (Xy), see for example (20]. Note that

E(V)=E (zﬂ:E ((Xk - Xe-1)*| fk-1))

k=1

=E (Z(E(X,f | Fe-1) —Xi-l))

k=

= Y (B(X}) - B(XE_))

k=l
= B(X2) - E(X}) = wr(X).

Theorem 3.14. Let X be o bounded random variable with E(X) = p, and
et (0,0)=Fo CFC.- CF, beafilterinF. Then for anyt >0,

PrX-p2t)<e (3.28)

where 7 i the mazimum sum of squared conditional ranges. More generally,
for any ¢ > 0 and any value r*,

Pr((X -2 A (R S r¥) <0, (37)

where the random variable R? is the sum of squared conditional ranges.

The earlier result Theotem 3.7 is essentially this result when the o-field F
in the filter is the o-field generated by Xi,..., X Suppose that for each
k=1,...,n, we let #; be the supremum of the values ran(zy,.. ., 2,1 ) over
all choices of the z,. (This corresponds to our earlier use of the notation
immediately after Theorem 3.7.) Then #* is at most ¥"72. If we use this
bound for #2 in Theorem 3.14 above we obtain Theorem (6.7) of [45), which
extends Theorem 3.13 above. The next result extends the earlier results that
use bounds on the variance, namely Theorems 2.7 and Theorem 3.8 (and thus
Theorem 3.9), and is close to Theorem 4.1 in [21] - see also (32, 2, 26].

Theorem 3.15. Let X be o random varighle with E(X) = p, and let
@,9) = Fy CFy C oo C Fy be o filter in F. Let b = maxdev?, the
mazimum conditional positive deviation (and assume that b is finite). Then
foranyt 20, X

Pr{X - p > 1) < ¢ FHTIm (3.8)

where 4 i the mazimum sum of conditional variances (which is assumed to
be finite). More generclly, for any t > 0 and eny value v 2 0,

Concentration 225

Pr{(X - 4 2 ) A(V <)) < ¢t (5.29)

where the random variable V is the sum of conditional veriances.

As with the earlier results of this form, we think of the term (b¢/3v) a5 a
negligible error term. To complete the proofs of all the results given above it
suffices to prove the last two results. We do this in the next subsection.

3.5 Remaining Proofs for Martingale Results

-

The following lemma is partly based on Lemma 3.4 of Kahn [32]. The lemma
itself (in a special case) is used, rather than one of the theorems derived
from it, in the proofs in [49} concerning the concentration of the number of
comparisons used by quicksort. We shall always take Fy as the trivial o-field
(0, 12) when we use the lemma, but we allow any Fy to give an easy induction,

Lemma 3.16. Let Fy CFL C---CF  beafiterinF, and let V3,...,Y,
be a corresponding martingale difference sequence, where each Yy is bounded
above. Let the random variable Z be the indicator of some event. Then for
any b,

B2 |7) <oup (2 ][ B 1 7)1 5)-

Proof. We use induction on n. The case n = 0 is trivial, since it asserts that
E(Z | Fo) < sup(Z | Fo) as in (3.22). Now let n > 1 and suppose that the
result holds for n - 1. Let

A= Zeh Vi

and a
B=2 H E(" | Fiea).
k=2
Then by the induction hypothesis, E(4 | Fy) < sup(B | F1); and sup(B |
F1) <sup(B | Fo) as in (3.23). Hence
E(Z¢'Zin ™ | 7)) = E (M E(A| F) | )
< E(e" sup(B| Fo) | Fy)
= sup(B | Fp)E(e"" | Fo) esin (3.21)
n
= sup (z [[EE" | A} }'o) ,
k=1
which completes the induction step. a
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Proof of Theorem 3.14.  Let 1j,...,Y; be the corresponding martingale
difference sequence. Let the random variable Z be the indicator of the event
that R? < 12, so that 0 < ZR? < 2. For any h, by Lemma 26,

B | Fioy) < b,

Hence by Lemma 3.16,
E(Zeh(x-u)) < sup (Zneih?rl)
= sup(ZeWR’)
< eW sup(ZR?)
< e*hirﬁ'

Thus for any h > 0, by Markov's inequality,

Pr((X - p > ) A (R < 7)) = Pr(Ze"X-H > )
< e ME(ZeMX-H)
e-hz+§h“r’

IA

= e-2t2/r7
when h = 4¢/r%. |

Proof of Theorem 3.15.  Let Yi,..., Yy be the corresponding martingale
difference sequence. Note that ¥} < b for each k. Let the random variable Z
be the indicator of the event that V < v, so that 0 < ZV < v. Now as in
the proof of Theorem 2.7 we use Lemma 2.8, and the function ¢(z) defined
there. We find that, for any h > 0,

E(ehYk | Fiy) < (halhdev; 001 < halkbyver.
Hence by Lemma 3.16,
E(2e") < sup (2]] 4
= sup (Ze"zg“‘bw)
< ¢Mathb)sup (2V)
< halhil,
But now as in the proof of the last theorem,

—htE(Zeh(X-u))

Pr{(X-p2t)n(V <o) <e
< e-ht+h“g(hb)v‘

and we may complete the proof as for Theorem 2.7. g
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Inequalities for maxima

We now amplify the comment at the end of Section 2. on maxima. Let
Yi,..., Y, be 2 martingale difference sequence and let Sy =Y + .- + Y, as
usual. Let b > O and let Ty, = . Then T}, ..., T, form a submartingale (as
long as the T are integrable), so we may apply Doob's maximal inequality
for submartingales - see for example (28] section 12.6 or (72] section 14.6. We
find that for any t 2 0,

Pr(max S > t) = Pr(max T} > &) < e ME(T,) = ¢ ME(h*).

Thus all the martingale results based directly on the Bernstein inequality may
be strengthened immediately to refer to maxima, just like those in Section 2.,
as noted on [29] (see also [64, 63, 66]).

This comment applies to Lemma 3.11 and Theorems 3.12 and 3.13 (and
thus also to Theorem 3.10), and to the inequalities (3.26) and (3.28) In partic-
ular for example, in Theorem 3.13 the inequality (3.25) may be strengthened
to read that for any ¢ > 0,

k
Prilmax()_¥)20) 2 I )

i=1

where the maximum is over k=1,...,n.

3.6 Centering Sequences

Given a sequence X), X, ... of random variables the corresponding difference
sequence is ¥7,Y2,... where ¥, = X; - X) (and where we set Xj = 0).
Let pi(z) = E(Yx | Xi-1 = 2). We call the distribution of the sequence
centering if for each k = 2,3,... px(z) is 8 non-increasing function of z - see
[47). Observe that a martingale is trivially centering, since p(2) =0.

The basic inequalities discussed above for a martingale difference sequence
may be extended to centering sequences with bounded differences. The most
fundamental example for the martingale inequalities involves the binomial
distribution, as in Theorem 2.1. Now we can include the hypergeometric
distribution naturally in the same inequalities - see also (29, 15].

Let (z1,...,2,) € {0,1}" with Y ax =7, Let (24,..., Z,) be a random
linear order on the set {1,...,n}, where all n! such orders are equally likely.
Let Y =2z and Xy = ZLI Y;. Then X has the hypergeometric distribu-
tion, corresponding to counting the red elements in a random sample picked
without replacement from the set {1,...,n} with r elements painted red. We
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are interested in the concentration of X. Note that E{X) = rk/n. But the
sequence X7, Xj,..., Xy is centering, since
r-z
= E -1 = = ——-,
pela) = Btk | X1 =2) = ——=
which is a decreasing function of . From the centering version in [47) of
Theorem 2.3(c) above, it follows for example that, if i denotes E{X}), then
for any ¢ > 0, .
Pr(X, < (- ) <edx,

If we try to apply here the inequalities for martingales with bounded differ-
ences in the natural way (that is, with 7}, as the o-field generated by revealing
the first k elements picked), we obtain an unwanted factor < 1 in the expo-
nent in the bound. Centering sequences also arise naturally in occupancy or
‘balls in boxes’ problems - see [33, 47).

4. Talagrand’s Inequality

4.1 The Inequality

Let f2;,..., 9, be probability spaces, and let £ denote the product space.
Let X = (Xi,...,Xy) be a family of independent random variables with X
taking values in f2.. We saw earlier that for any subset A of 2 such that
Pr(X ¢ A} is not too small, with high probability a random point X is close
to A, when we consider Hamming distance or generalised Hamming distance.
It turns out to be very fruitful to consider a related notion of distance.

Let a = (ay,...,ax) > 0 be an n-vector of non-negative real numbers.
Recall that for points x = (z3,...,2,) and ¥ = (¥y,...,¥s) in £2, the a-
Homming distance d(x,¥) is the sum of the values o, over those indices i
such thet z; # y; and for a subset A of 12, do(x, 4) = inf{d,(x,y) : y € 4}.
Talagrand's conves distance dr(x, A) is defined to be sup(dq(x, A)) where
the supremum is over all choices of non-negative unit n-vector o (that is,
with ||a]= 1).

By considering the n-vector ¢ with each co-ordinate 1/y/n, we see that
dr(x, 4) > dy(x, 4) = (1/y/n)du(x, A), so upper bounds on dr(x, 4) give us
upper bounds on dj(x, A), but we shall see that they will tell us much more.
The reason for the name ‘convex distance’ will emerge later. Talagrand [68]
in fact considers also other notions of distance (see also [70]), but we shall
focus only on the convex distance. We call the following fundamental result
‘Talagrand’s inequality’.

Concentration 229

Theorem 4.1. Let X = (Xy,...,X,) be o family of independent random
variables and let A be o subset of the product space. Then for anyt > 0,

Pr(X € A) Pr(dr(X, 4) > t) < e/ (41)

If we consider a single non-negative unit vector @, then dy > d, and the
above result yields a form of Theorem 3.6, but it is in fact far more powerful
since it refers simultaneously to all possible generalised Hamming distances,
as will be evident from the applications below. We shall see that this power
is most evident when we consider the concentration of a function f(X) where
an inequality f(x) > b typically can be verified by examining only a few of
the co-ordinate values z;, and for different vectors x we may examine differ-
ent co-ordinates. In some applications we profit greatly from the flexibility
of choosing an appropriate unit vector a for each x, rather than having to
consider say Hamming distance. Note that we must assume that the random
variables X). are independent, in contrast to the situation with the martin-
gale results (but see the recent paper of Marton [42], which gives an extension
of Talagrand's inequality in which a limited dependence is allowed). Theo-
rems 4.3 and 4.5 below are useful specialisations of Talagrand’s inequality,
on which we base all the applications here. We shall prove Theorem 4.1 later,
but before that let us consider some applications.

4.2 Some Applications

4.2.1 Subsequences and Configuration Functions. Given 8 sequence
x=(z1,...,2n) of real numbers, we let inc(x) denote the length of a longest
incressing subsequence. Thus ine(x) is the maximum value of |K] over all
subsets K of {1,...,n} such that the corresponding subsequence (z; : ¢ € K)
is increasing, that is z; < z; whenever 4, j € K with ¢ < j.

Let X = (Xi,...,X,) be 2 family of independent random variables each
taking real values. We are interested in the concentration of the random
variable inc(X). Let p be the mean of inc(X). It follows directly from the
independent bounded differences inequality, Theorem 3.1, that for any ¢ > 0,

Pr(jinc(X) - ¢ > 1) < ¥, (42)

This shows that for large n, with high probability ine(X) is confined within
an interval of length O(y/n). Using Talagrand's inequality we can deduce a
much improved result. Let m be a median for ine(X).

Theorem 4.2, For anyt > 0,

Pr(inc(X) > m+¢) < ¢~ /4m+0) (43)
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end \
Pr(inc(X) < m-t) < 274 /4m, (44)

With ingenuity and endeavour, the bounded differences method will give
nearly as good results - see [13]. It is known (see for example [63]) that,
when the random variables X;. all have the same continuous distribution, the
median m ~ 2y/n as n — co. Thus the above result shows that with high
probability inc(X) is confined within an interval of length O{nt), which is
the best bound known. (In particular, the mean y and the median m must
be within O(n*) of each other - see Lemma 4.6 below.)

It turns out that the approach based on Talagrand’s inequality to the
longest increasing subsequence problem will handle s general class of prob-
lems. Observe that the function f(x} = inc(x) has the following property.
For each x € £2 there is a subset K = K(x) of the index set {1,...,n} such
that f(x) = |K]|, and for each y € £ we have

fy 2llie K y=a}l=j)-[licK:y#a}

Thus for each x € 2 there is a non-negative unit n-vector a (namely the
incidence vector of the set K(x) scaled by dividing by \/f(x)) such that, for
each y € 12 we have

1) 2 §x) = VFx)dulx, ).

This is the key property. We call a function f defined on a set 2 of n-vectors
a c-configuration function if it has the following property: for each x € 2
there is 2 non-negetive unit n-vector « such that, for each y € 2 we have

f(y) 2 f{x) - e f(x)da(x,y).

Thus ine(x) gives a 1-configuration function, and so the next result extends
the last one. (We shall give & related example below concerning common
subsequences. Also we shall discuss concentration around the mean rather
than the median in the next subsection - see Lemma 4.6.)

Theorem 4.3. Let f be a c-configuration function, and let m be o median
Jor (X). Then for anyt >0,
Pr{f(X) > m+t) < 2™t /4clmtt (45)

and
Pr(f(X) S m 1) < 2et/4em, (46)
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Proof. Let x € 12, and let o be a non-negative unit n-vector such that, for
any y € 0,
f(x) € f(y) + Vef(x)da(x,y).
Let A, ={y € 22: f(y) < a}. Then by the above
f(x) e+ Vef(x)da(x,y)

for each y € A, and so by minimising over such y we have

(%) S a4 Vef(x)da(x, 4a) < 0 + Vel (K)dr(x, Ao).
Thus if f(x) > a +1 then

fix)-a 5 |
Veyf(x) ~ Vevakt

since the function g(t) = (t - a)/v/t is increasing for ¢ > a. Thus for any
120,

dr(x, 4.) 2

Pr(f(X) 2a+1)<Pr (dT(x:Aa) 2

t
,/c{a+z))'

Hence by Talagrand's inequality, for any t > 0
Pr(f(X) < aPr(f(X) 2 a+1)

t
S Pr(X € 4,)Pr (dT(x’A") 2 o+ t))

2
i
< ¢ e,

Now we may complete the proof by appropriate choices of a in this last
inequality. If we let a = m, then since Pr(f(X) < m) > 1, we obtain (4.3);
and if we let a = m — ¢ then since Pe(f(X) > m) > §, we obtain (46). O

Now let us consider a related problem concerning common subsequences of
two sequences. Given two sequences x = (Zy,...,2,,) 80d ¥ = (1, -, Yn,),
let com(x, y} denote the maximum length of a common subsequence of x and
y LetX=(Xi,...,X;,) and Y = (¥},...,Ya,) be independent families of
independent random variables. We are interested in the concentration of the
random variable com(X, Y). Let 4 be the mean of com(X,Y).

As for the longest increasing subsequence problem, it follows directly from
the independent bounded differences inequality, Theorem 3.1, that, for any
t20,

Pr(jeom(X, Y) - p] 2 ¢) € 272"/ m), )
This shows that, when say ) = np = n and n is large, with high probability
com(X,Y) is confined within an interval of length O(n2). Using the above
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result on ¢-configuration functions we may obtain a similar result. For, if we
regard com(x, ) as a function of (n; +nz) variables in the natural way, then
it is a 2-configuration function. So, if we let m be a median for com(X, Y),
we obtain

Theorem 4.4. For anyt >0,
Pricom(X, Y) > m +1) < 2¢~F /80 (48)

and ,
Pr(com(X,Y) Sm - 1) < 2674 /™, (49)

Consider the case when n; = ny = n and n is large, and when the random
variables X; all have the same (fixed) discrete distribution F. It is easy to
see (using superadditivity) that there is a constant &5 > 0 (depending on the
distribution F) such that

E(com((xlv'-'vxn)!(yh [ vYn))/n - ‘SF»

and the corresponding result holds for the median. But if say F is the uniform
distribution on the set {1,..., N} whete N is large, then the constant §r will
be very small, and then the theorem above improves on (4.7).

4,2.2 Two Geometric Applications. We now consider applications to
the lengths of travelling salesman tours and Steiner trees in the unit square.
We shall use the following general result, which is derived from Talagrand’s
inequality, Theorem 4.1, and which is similar to Theorem 4.3.

Theorem 4.5. Let X = (X1,...,Xs) be a fomily of independent random
variables with X taking values in o set (2, and let @ = [[ Oy. Let the real-
valued function f on 12 satisfy the condition that, for each x € §, there exists
@ non-negative unit n-vector & such thet

F(x) < fly) +eda(x,y) for eachy €12, (4.10)

Then -
Pr(|f(X)-m| 2 1) Sde7t /%,

where m is a median of f(X). The same conclusion holds if the condi-

tion (4.10) is replaced by

fly) € f(x) +cds(x,y) for eachy € 2. (4.11)

Part of the power of this result arises from the ssymmetry, that we do not re-
quire that both conditions (4.10) and (4.11) hold - either one will do. Observe
that if both hold then we have a bound on |f{x) - f(y), and thus on the
sum of squared ranges A* when the random veriables X are independent.
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Proof. For each real number a, let 4, = {y € 2 f(y) < a}. Consider any
point x € §2. There is a non-negative unit n-vector a such that for each

yen
f(x) < f(y) + cda(x,y),
and so
.f(x) <a+edafx,y)

for each y € A,. By minimising over such y we see that
fx) a+edy(x,40) € 6+ edr(x, 4q).
Thus if f(x) > o+ then dp(x, 4,) > t/c. Hence
Pr(f(X) < a)Pr(f(X) > a+t) < Pr(X € A,)Pr(dp(X, 4,) 2 t/c)
<ee
by Talagrand’s inequality, Theorem 4.1. If we let ¢ = m we obtain
Pr(f(X) 2 m+1) < 2704
and similarly if we let a = m — t we obtain
Pr((X) Sm - 1) <24,
which completes the proof for the case when condition (4.10) holds.

Suppose now that condition (4.11) holds (but not necessarily condi-
tion (4.10)). Let g(x) = - f(x). Then g satisfies condition (4.10), and (-m)
is & median of g(X), and so by the above

Pr(|f(X) - m| 2 t) = Pr(|g(X) - (-m)| 2 t) < 41
48 required. a

Before we consider the geometric applications, let us check that indeed,
as we mentioned earlier, it does not much matter that Theorems 4.3 and 4.5
concern concentration around the median m rather than the mean p, since
the concentration inequalities themselves imply that |z - m)| is small.

Lemma 4.6. Let the random variable Y have mean y end median m, and
leta,b> 0.

(6) If Pr(Y - m 2 t) Sae™""” for anyt >0, then p—m < (y7/2)avh:
and 5o if also Pr(Y - m < —1) < ae™"/® for any ¢ > 0, then |u-m| <

(/2o
) I Pe(Y -m > t) < ae”AH) forany ¢ > 0, then p-m <

V/1/2Vbm + 2abe™™% (uhich is O(/m) as m — 0, assuming that o
and b are constants).

Iy
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Proof. We have
y-m=E(Y - m) SE((Y -m)*) = /prr(y _m>fd (419
In case (a)
fn ” Pr(Y -m>t)dt<a /0 " ety (va/2)avh,

and so the first part of (a) follows from (4.12). For the second part, note that
(-m) is 8 median for (-Y) and Pr((=Y) = (-m) > t) =Pr(Y -m < -1).
Soif Pr(Y -m< -t) < ae~t'" for any ¢ > 0, then by what we have just
proved

m=p=E(-Y) - (-m) < (V/Davh.

In case (b), we again use (4.12). Now we have
00 0 2
/ Pr(Y -m>t)dt < / ae™" /Am gy
0 0

m 2 00
<a / et /Mgt 4 / P
0

< oV + abem2,

We shall consider & family X = (X,...,Xn) of independent random
variables where each X takes values in the unit square [0,1)°. Thus here
2= (017

Travelling salesman tours

Given 2 point x € 12, let tsp(x) be the minimum length of 8 travelling
salesman tour through these points. Much effort has been devoted to inves-
tigating the random variable tsp(X), and to investigating its concentration
in particular - see for example (56). Telagrand's inequality effortlessly yields
results which previously took great ingenuity.

We need to know one deterministic result, namely that there is a con-
stant ¢ such that the following holds. For every n and every x € 2, there
is & tour T(x) through the points in x such that the sum of the squares of
the lengths of the edges in this tour is at most ¢. This may be proved for
example by considering ‘space-filling curves’ - see {53, 63). We shall use T'(x)
to define an appropriate vector ¢, where the co-ordinate o corresponds to
the ‘awkwardness' of the point x;.
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Given x € 12, we let B be the sum of the lengths of the two edges
incident to the point =y, in the tour T(x). Thus ¥ 4% < 4c (using the fact
that (e + b)? < 2a% 4 25%). We shall see that for any y € 92,

tsp(x) < tsply) + da(x,y) < tsply) + (2vVe)da(x,y), (413)

where « is the unit vector 3/ || 8. Thus the function tsp(x) satisfies the
condition (4.10) in theorem 4.5 {with the value ‘c’ there being 2,/c), Hence,
for any ¢ > 0,

Pr{jtsp(X) - m| > t) < det"/18¢, (4.14)

where m is median for tsp(X). A result of this form was first proved by
Rhee and Talsgtand [56], by @ much more involved argument based on the
martingale approach.

It remains then to prove (4.13). Let z, y denote the sets of points corre-
sponding to x, y respectively. If 2Ny = 0 then dy(x,y) is twice the length
of the tour T(x), and so certainly the inequality (4.13) holds. Suppose then
that 2Ny # 0. We pick a multiset F' of edges between the points of z as
follows. For each segment in the tour T(x) of the form a,v;,...,v;,b where
e,b€zNyandvy,...,v; € £\ y (note that a = bif [z Ny| = 1), we put into
F each of the edges v,v,41 doubled fori =1,...,5 -1, and the shorter of the
edges av; and by, also doubled. Thus corresponding to each such segment
we obtain a cycle, containing exactly one point in y, and with the sum of
the lengths of the edges in it at most the sum of the co-ordinates of 3 corre-
sponding to the points v,. These cycles between them cover all the points in
2\ y, and the sum of the lengths of all the edges in F is at most dg(x, y).

Now let T*(y) be an optimal tour for y. Consider the (multi)graph G
with vertex set z Uy and with edge set consisting of the edges in T*(y)
together with the edges in F. The graph G is connected and each vertex
degree is even, and so G has an Eulerian tour. This tour can be shortcut to
give a travelling salesman tour, which by the triangle inequality has length
no more than the sum of the lengths of the edges in G, and this sum is at
most tsp(y) + da(x,¥). This completes the proof of (4.13), as required.

Steiner trees

A Steiner tree for a set z of points in the unit square is a tree with vertex
set some set of points in the plane containing z. Given x € 12, we let st(x)
denote the minimal length of a Steiner tree for the corresponding set z. We
may use the tour T(x) exactly as above to define a corresponding vector f.

Now let y € £, and let §*(y) be an optimal Steiner tree for the corre-

sponding set of points y. Consider the set E of edges consisting of the edges
in §*(y) together with those edges in T(x) with at least one end in z\ y. The

Iy
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total length of these edges is at most st(y) + da(x,y), and we have already
seen that Y 62 < 4c. The key observation is that the graph G on zUy with
edge set E is connected; for, since T(x) is connected each point in £ is in the
same component as some point in y, and since 5*(y) is connected each point
in  is in the same component. It follows that st(x) is at most the sum of
the lengths of the edges in E, and thus st(x) < st(y) + ds(x,y). Hence by
Theorem 4.5, for £ > 0

Pr(jst(X) - m| > ) < de”0/1%, (4.15)

where m is & median for s¢(X).

4.2.3 Random Minimum Spanning Trees. Consider the complete graph
K, with random independent edge lengths X, each uniformly distributed on
(0,1). Let L, be the corresponding random length of & minimum spanning
tree. It is known ({23]) that the expected value of L, tends to ((3) &s n — o0,
where "
(@)=Y it ~1202

J=1
It is shown in [24] that L, is quite concentrated around {(3), using the method
of bounded differences; and this result is improved in 8] using Talagrand's
method. (Also, it is shown in [30] that y/n(Ly - ((3)) is asymptotically nor-
mally distributed.)

Both the bounded differences method and Talagrand’s method can in
fact be used to prove that Ly, is very highly concentrated around the value
((3) - see [48], but the latter method is far easier and will be described
below. (In fact the bounded differences approach seems to yield a slightly
stronger result.) Both approaches depend on the fact that long edges are not
important. For 0 < b < 1, let Lﬁ,b) be the minimum length of & spanning
tree when the edge lengths X, are replaced by min{X,,b). For simplicity
we consider here the case of a fixed deviation ¢ > 0. We need the following
lemma.

Lemma 4.7. /48] For anyt > 0 there erist constants ¢; > 0 end v > 0 such
that if we let b= ey /n then

Pr(l,- LY >t)<e™.

We shall prove the following concentration result for the minimum spanning
tree length Ly

Theorem 4.8. For anyt > 0 there exists § > 0 such that
P(L. - (@) 2t <™ foralin.
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It is easy to see that the bound above is of the right order. For example, for
each n > 5 the probability that L, > 2 is at least the probability that each
edge incident with the first four vertices has length at least 1/2, and this
probability is at least (1/16)".

Proof. Let N = (), and let Y = (¥1,...,Yy) be a family of independent
random varisbles with each ¥; uniformly distributed on (0, 1), corresponding
to the edge lengths in the graph K. We may write the random variable L,
as mst(Y).

Let 0 < b.< 1, and let 2 = (0,)". For each ¢ = 1,...,N let
X; = min(;,b). Then X = (X,...,Xn) is a family of independent ran-
dom varigbles each taking values in (0,b), and L% = mst(X).

Now consider the random variable mst(X). Let 2 = (0,b)" and let x ¢
2. Denote the set of edges in a corresponding minimum spanning tree by
T =T(x). Let 3 = f(x) be the N-vector with §; =bfors € T and §; = 0
othe;zwise, and let & = a(x) be the unit vector 3/(by/n = 1). Then for any
yel,

mst(y) <Y u

€T

< in + Z(yi -z,)*

€T i€T
< mst(x) +dg(x,y)
< mst(x) + bv/n do(x,¥).

Thus the function mst(x) satisfies condition (4.11) in Theorem 4.5 with ¢ =
by/n, and so for any ¢ > 0

Pr{mst(X) - m| > t) < de™"/4'n,

where m is a median for mst(X). We may use Lemma 4.7, together with this
last inequality with & = ¢ /n, to obtain

Pr(jmst(Y) - m| > 2) < Pr{mst(Y) - mst(X) > t) + Pr(jmst(X) - m| > 1)
<e My 4e—t2n/4c?_

It follows that for any ¢ > 0 there exists ) = §,(t) > 0 such that
Pr(lL,-m|>1t)<edm

It remains to tidy up, by replacing the m here by ¢(3) (in the spirit of
Lemma 4.6). By the above

'y
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1E(L) - m| < E(Ln - m]) < 4£+nPr(|L,, —mi> 4 <t

for n sufficiently large. Also we saw earlier that for n sufficiently large,
IE(Ln) - ¢(3)] < t/3, and so {m - {(3)| < 2t/3 for n sufficiently large. Hence
for n sufficiently large

Pr(|Ln - ((8)] 2 t) < Pr(lLo - m| 2 ¢/3) e™"
where &) = 6;(t/3), and the theorem follows. 0

4.3 Proof of Talagrand’s Inequality
In this subsection we shall prove an extended form of theorem 4.1.

Theorem 4.9. Let X = (X),...,Xy,) be o family of independent random
variables where X; takes values in o set 2, ond let A be o subset of the
product space 2 = [[ 2. Then

Pr(X ¢ A)E (e*dﬂ"-f"’) <1, (426)

and so, for anyt 2 0,
Pr(X ¢ A) Pr(dp(X,4) 2 ) < el (417)

The latter inequality (4.17) (which is Theorem 4.1) follows immediately
from the former (4.16) by Markov's inequality. The scheme of the proof
of (4.16) is as follows. We first develop an equivalent definition of Talagrand’s
distance dy. Then after two technical lemmas we start the main proof by in-
duction on n. We prove a claim relating the distance dr(x, 4) in dimension
n+ 1 to certain distances involving only the first n co-ordinates. This claim
involves s parameter A, The induction hypothesis yields bounds for the dis-
tances in dimension n. We then optimise over A and average over the last
co-ordinate. The whele proof is neither long nor hard, but it is one of those
proofs by induction from which it is not easy to get 2 good feel about why the
result really is true. For a brief discussion of an alternative approach based
on idees from information theory see the next (final) subsection.

In order to prove (4.17) we first develop the alternative characterisation
of Talagrand’s convex distance dr (x, A). Fix a point x and a set A in "
Let U = U{x, A) be the set of all binary vectors u such that starting from
x we may reach a vector y € A by changing only co-ordinates z; such that
u; = 1 (and not necessarily changing all of them). Thus 0 € U if and only if
x € A. Further let V = V(x, 4) be the convex hull of the set U. The following
lemma explains the term ‘convex distance’.
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Lemma 4.10.
dr(x, A) = min{|}v|}: v € V}. (4.18)

Proof. If x € A then both sides above equal 0. So we may assume that x ¢ 4,
and then both sides are positive. Denote the right hand side above by p. Let
a = (ay,...,a,) 2 0 be a unit vector. We write a.u to denote the inner
product ) agug. Then

do(x,4) = ;neigdn(y,/i) mina.u = ‘r/neiga.v, (4.19)

- uel

since the minimum of a linear functional over the convex hull V of the finite
set U must be achieved at a point of U, But by the Cauchy-Schwarz inequality,

e Sl V=M -

Thus d (x, A) < p, and since this holds for every choice of & we deduce that
dT(xl A) < P

For the converse result, note that the minimum in (4.18) is achieved, that
is there is a point ¥ € V with norm equal to p, since V' is compact. Let o be
the unit vector ¥/p. Consider any point v € V. Since V is convex, the point
V+Mv-v)isinV foreach0 <A<1;and 50

T+ M- +Mv-¥)) > ¥.5.

This yields
NV -9+ X (v-¥)(v-¥) 20,

and by considering small A we see that ¥.(v-¥) > 0. Thusa.v > a¥=p
for all v € V. Hence by (4.19),

dr(x, A) 2 do(x,4) = meil[/la,v =p,

and we are done. a

We need two further lemmas before we start the main proof of Talagrand'’s
inequality. The first is from (31, 68).

Lemma 4.11. Forall0<r<]1,

. - Y
inf red=-N' g _p
0<A<1

t
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1
Proof. For the case 0 < r < €72 we may consider A =0 and check that

1 1
el <2-¢72. Sosuppose that e 2 <r<1.LetA=1+2lnr (00 <A <1).
We want to show that f(r) > 0, where f(r) is the logarithm of the ratio of
the right side of the inequality to the left side. Now

(7)== 1)+ Alnr = (1~ )24 =In(2 - 1) + Inr + (ln)2.
Since f(1) = 0, it suffices to show that g(r) = rf'(r) < 0. Note that
1 1 2hr r
9(r) =T(—E+;+T) =3 +1+2nr.
Since g(1) = 0, it suffices now to show that ¢'(r) > 0. But ¢'(r) =
21~ k) and 1 212 gk thus ndeed ') 2 0, which completes

r

the proof. a

The last preliminary result we need is a form of Holder's inequality (see for
example [20] page 465) which we state and prove here for completeness, in a
form useful for us.

Lemma 4.12. For any (appropriately integrable) functions f and g, and any
0<t<],

t

E (etf(XJe(l-t)om) < (E(e/(x)))' (E(eﬂ")))l' '

Proof. Let a,b > 0, and for 0 < ¢ < 1let h{t) = a'¥~". Then k(t) =
h(t)(In(a/b))? > 0, s0 h is convex, and thus a'b'~* < ta + (1 - t)b. Now let
F = E(e/®)) and G = E(¢™). Then

(" FHEG)'~ < (fF)E™ + (1 - )/G)e™.
Taking expected values,
E (eumeu-mm) /(F'G*) =E ((eﬂm [P} (o) /G)l-e)

< (¢/FIEE™) + (1 - 1)/G)EE™)
=t+(1-t) =1,

which yields the required inequality. ]
We may now start the main proof of the inequality (4.16). Let us write

va(A) for Pr(X € A). We use induction on n. Consider first the case n = 1.
Now dr(x, A) equals 0 if x € A and otherwise equals 1. So
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E (eidT(x'A)g) = V|(A) + ei (1 - VI(A))
Butfor0<p<l,

pp+et(l-p) <plp+2(1-p) =p2-p) <1,

which completes the proof of the case n=1.

Now let n > 1, suppose that the inequality (4.16) holds for n, and consider
the case n-+ 1. Denote [T5_, /2, by ). Write [T11) 2 as 2+D) = o)
41, with typical element written as z = (x,w), where x € ") and w €
Dnpr. Let ACQHY For w € Ny, the w-section A, of A is defined by

Ao={xe 0™ (xw)e 4).
The projection of A is the set B defined by
B=u,A, ={x¢ [ (x,w) € Afor somew € 41 }.

We next prove an inequality relating dr(z,4) to corresponding distances
between x and the w-section and projection of A. The inequality involves a
parameter A which we shall later choose appropriately.

Claim. Let 2= (x,w) € 2 x 2,41 and let 0 < A < 1. Then

dr(z, A < Mr(x AP +(1-Ndr(x B +(1-07. (420)

Proof of Claim. By Lemma 4.10 above, there is 8 vector vy € V(x,A,)
with norm equal to dr(x, A, ), and a vector v; € V(x, B) with norm equal to
dr(x,B). Now if u € U(x, A, then (u,0) € U(z, 4}, and so if v € V(x, A.)
then (v,0) € V(z, 4). Similatly, if u € U{x, B) then (u,1) € U(z, 4), and s0
if v € V(x,B) then (v,1) € V(z, 4). Hence both (v;,0) and (v, 1) are in
the convex set V/(z, A), and so if we let

V3= )‘(V],O) + (1 - A)("2)1) = (’\vl + (1 - ’\)V2)1 - A]v

then v3 € V(z,A). By Lemma 4.10 again, dr(z, A) is at most the norm of
v3. Now the function f(t) = ¢ is convex, and so

(Ma+(1- B < AP+ (1= A%
Hence

M7 = 0wy + (1= Nwa)l? +(1 - A2
Al +1= M) flvall® +(2 - A
= Mr(x, A)* + (1 - Ndr(x, B + (1 - A

This completes the proof of the claim.
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We are now ready to tackle the induction step. For each fixed w, let E(w)
denote
E (eid1(<x.u).m’) -E (eidr((x,x"+.).A>’ | Xos1 = w) ,

We shall first give an upper for E(w), and then average over w. Fix w, and
note that the claim gives

(X7 ¢ pH0-N A dr(XA ) 1-N(hr (KB,

Hence by Lemma 4.12 (Holder’s inequality), we obtain
-
E(w) < e“l(l-A)aE (C*dT(vau)z))‘ E (e}dT(XvBP)l ‘

By the induction hypothesis applied to the two expectations above, we find
that
~{1-3)

EW) < etV (1,(4.)) (va(B)

Thus forall 0< AL,
B(w) < (n(B) e
where r = v,{A,)/vn(B), and s0 0 < r < 1. By Lemma 4.1, we find
Ew) < (va(B))™!(2 ~ val(Au)/¥a(B))-

Now va{Ay) = Pr((X,Xat1) € A | Xn41 = w). We can average over the
values w taken by X4 to obtain

bt B (410K 0) €y (4) B2 v (A) (B
=1(2-12) <1,

where 7 = V41 (A)/va(B). We have now completed the proof of the induction
step, and thus of the theorem. 0
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4.4 Ideas from Information Theory

There is a third main approach to proving general concentration results,
which uses ideas from information theory. Indeed, the first general concentra-
tion result seems to have been proved and used in this context, by Ahlswede,
Gées and Korner {1] in 1976. Their concentration result, the ‘blowing-up
lemma’, was sharpened by Csiszdr and Kérner [17], and then in 1986 Mar-
ton (40| gave a simple and elegant proof. This result resembled Theorem 3.5
above, though with a worse constant in the exponent. The optimal constant
was obtained in 1996 by Marton [41), using the same elegant information-
theoretic approach. Dembo (18] showed that the method is strang enough
to recover all of the inequalities of Talagrand in {88] (including Theorem 4.9
above), where it is assumed that the random variables involved are inde-
pendent. The method is extended in [42] to handle certain cases of weak
dependence. For other recent work see [43, 71].

It is not clear if these ideas will lead to further new applications in dis-
crete mathematics and theoretical computer science. However, they are very
elegant and powerful, and so we try here to give a flavour of the method.
We shall show how they give a very different proof of Theorem 3.5, follow-
ing |40, 41].

Let My,..., 12y be finite sets, and let  denote their product [] 2. Let
p=(p, :we ) and q={g,: w € N) specify probability distributions on
2. Let X = (X1,..., &) be a family of random variables, with X taking
values in f; and let Y = (Y},...,Y;) be another such family. We shall be
interested in joint distributions for X and Y which have marginals p and q;
that is, such that

Pr(X=w)= ) Pr((X,Y)=(ww))=p,
wER

for each w € 12, and similarly for Y and q. We shall define a notion of dis-
tance between the distributions p and q based on the expected Hsmming
distance between random points X and Y. Observe that the expected Ham-
ming distance between X and Y is given by

E(dy(X,Y)) = ) Pr(Xi # ;).
k

We define dys(p, q) to be the minimum value of E(dy (X, Y)), over all choices
of joint distribution for X and Y with marginals p and q. It turns out that
we may obtain concentration results by giving an upper bound on dy(p,q)
when the distribution q is a product distribution (that is, corresponds to
independent random variables).
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For the key lemma, we need one last definition. The informationa! diver-
gence of p with respect to q is

D(plla)= Y pu Infpu/a)-

w€s?

Lemma 4.13. If q is o product distribution, then
du(p,qf < (0/)D(pllq).

Using this information-theoretic lemma we shall prove the following ele-
gant symmetrical inequality, closely related to Theorem 3.5. Recal.ll that t.he
Hamming distance d;(A, B) between two subsets A and B of 12 is the min-
imum value of dy(z,y) over all choices of z € A and y € B.

Theorem 4.14. Let q be a product distribution. Then

dH(A,B)g(gln@)%Jr(’-;ln-(l'T)) .

Proof Let p denote the distribution with p,, = ¢,/g(4) for w.e Aandp, =0
otherwise; and define the distribution r similarly corresponding to B. Then

Diplla) = Y poln(p./q.)

well

= ¥ pin(1/g(4)

wEN

< In{1/q(4).

Similarly, D(rfla) < In(1/g(B)). Next we use the observation that, si'nce
dy(p,r) is the expected Hamming distance between certain random points
in A and in B, it must be at least the minimum value dy;(4, B). Hence, by
a triangle inequality and the above lemma,
du(4,B) < du(p,t)
< du(p,q) +duir,q)

c(3e)+ (3my)

as required. ]

Ot

-
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Finally let us see that Theorem 3.5 follows directly from the last result.
Let ¢ > 0 and let B = 2\ A, the complement of the ¢-fattening of A -
see the comments immediately after Theorem 3.5. We shall take {A) to be
Pr(X € A), in the notation there. Since dy(A, B) > t, by Theorem 4.14

above we have .
n 1 \2?
(5 In FB)) 2t-t
where 1
to= (’-‘ In L) g
. 2 q(4)
and so

Pr{dy(X,4) 2t) = ¢(B) > 1 -~ At-win

But this is exactly the inequality (3.11) in the proof of Theorem 3.5, and so
the theorem follows.

Acknowledgement. T am pleased to acknowledge very helpful comments from the
referees.
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Branching Processes and Their Applications
in the Analysis of Tree Structures and Tree
Algorithms

Luc Devroye
School of Computer Science, McGill University, Montreal, Canada.

Summary. We give a partial overview of some results from the rich theory of
branching processes and illustrate their use in the probabilistic analysis of algo-
rithms and data structures. The branching processes we discuss include the Galton-
Walson process, the branching random walk, the Crump-Mode-Jagers process, and
conditional branching processes. The applications include the analysis of the height
of random binary search trees, random m-ary search trees, quadtrees, union-find
trees, uniform random recursive trees and plane-oriented recursive trees. All these
trees have heights that grow logarithmically in the size of the tree. A different be-
havior is observed for the combinatorial models of trees, where one considers the
uniform distribution over all trees in a certain family of trees. In many cases, such
trees are distributed like trees in a Galton-Watson process conditioned on the tree
size. This fact allaws us to review Cayley trees (random labeled free trees), random
binary trees, random unary-binary trees, random oriented plane trees, and indeed
many other species of uniform trees. We also review a combinatorial optimization
problem first suggested by Karp and Pear]. The analysis there is particularly beau-
tiful and shows the flexibility of even the simplest branching processes.

1. Branching Processes

1.1 Branching Processes

Around 1873, Galton and Watson came up with a model for explaining the
disappearance of certain family names in England (see the historical survey
by Kendall, 1966). Their model, now known as the Galton-Watson process , is
extremely simple: in a population, we begin with one pater familias, or root.
The root has Z; children, where Z; has a fixed distribution (the reproduction
distribution): it is convenient to let Z denote a prototypical random variable
with this distribution, and to set

pi=Pr{Z=14),i>0.

Each child in turn reproduces independently according to the same distribu-
tion, and so forth. This leads to a random tree, the Galton-Watson tree, and
a random process, the Galton-Watson process. Let Z; denote the number of
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particles in the i-th generation, with Zg = 1. Only one of two possible situ-
ations can oceur: either the population survives forever (Z; > 0 for all 4, or
it becomes extinct after a finite time. To analyze the Galton-Watson process
it is convenient to use the RGF (the reproduction generating function), or
simply generating function

L4
fls)=) ms* =E(s™), se01].
k=0
This is & function of 8 that contains exactly the same information as the
vector (pg,py, ). It is strictly convex (if py # 1) and increases from py at
s =0to 1 at s = 1. Different RGF's define different Galton-Watson branching
processes. Intuitively, it should be clear that a population explodes if the
expected number of children per particle is greater than one, and that it is
bound to shrink if it is less than one. An important parameter thus is the
expected number of children (or Malthusian parameter)

o0
m=E(2) =E(Z)=) kn=1(1).
k=0
We will prove that this intuition s partly correct. In fact, whether a popule-
tion explodes or becomes extinct depends solely on the value of m, and not
on the individual probabilities of the RGF! Consider the RGF for Zy, the size
of the n-th generation:

fuls) EB(s™), 0<s <1,

With this notation, we clearly have f1(s) = f(s), and fo(s) = 5. Conditional
expectations help us in relating 7, to f. To this end, let Z,_; be the number
of particles in generation n — 1. These have offspring of sizes Y,(1), ...,
Y,(Za-1), and these form an independently identically distributed (iid.)
sequence distributed as Z; (i, all the Y(j) have the same distibution as
Z, and the choices of the ¥, () are made independently). Therefore,

fa(s) = E(E(s”|Z,-1))
= E (E (sYn(l)f“"f’Yu(Zn—l)lZn_l))
=E ﬂf:i 'B(shV ]Izn-l)) (by independence)
=E ﬂf:{ ’E(szl)) (identical distributions)
=B((f(s)%)
= fa-1(f(s))
) n times

e e,
= fFUCD) -

When m < 1, the graph of f(s) lies above s and f(s) =sonlyat s=1 It is
not difficult to see that f(s) — 1 for any s. In particular, fo(0) = Pr(Z, =
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Fig. 1.1 The two possible behaviours

0) — 1. When m > 1, there is a unique solution g of f(s) = s that is less
than one. See the figure above.

Tt is easy to see that for any s € [0,1), fu(s) — ¢. In particular, Pr(Z, =
0)—g¢

We now show that ¢ is the probability that the process becomes extinct.
The point [ am making here is subtle, but important, as the event “extinc-
tion” relates to the entire history of the process, not a particular n. Note the
following:

Pr(extinction) = Pr(Z, =0 for some n)
=Pr(U%,(Z = 0)
= limy o Pr(UL, (2 = 0))
= limnoo Pr(Z, = 0)
= q .
Therefore, g is the extinction probability. We have thus shown the fundamen-
tal property of Galton-Watson processes:

Theorem 1.1. In a Galton-Watson process, if m > 1, then
q="Pr(Z, =0 for some n) = nlingoPr(Zn =0)<l1.

When m < 1, the process becomes extinct with probability one, unless
we have the degenerate case py = 1, in which case every generation contains
one particle.

Processes are called supercritical, critical and subcritical when m > 1,
m=14and m < 1 respectively. We also introduce the hypercritical processes,
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which have m = o, and the exploding processes (which may be of any of
the four types above) which have E(Z; log 2;) = 0. The last two terms are
non-standard, but will be convenient to work with. It is worth noting that in

all cases,
E(2) = (B(Z,))" = m"

(by induction and conditioning, as E(Z,|Z,-1) = mZy-1). In the critical
case, the expected size of the population remains constant, while the popu-
lation becomes extinct with probability one.

1.2 Some Limit Results

Theorem 1.2. Assume that py < 1. In a Galton- Watson branching process,
Pr(limpoe 2, € {0,00}) = 1.

Proof. Clearly,
oo
Pr(lim 2, ¢ {0,00}) < Y Pr(Z, = k infinitely often)
n—-o P

and this is zero if every term is zero. Thus, it suffices to show that for every
finite k,
Pr(Z, = k infinitely often) =0 .

We say that the population is in state k if Z, = k. Let ry be the probability
that the population returns to state k given that we are in state k now, so
that 1-r; is the probability that we wander off forever (2, # k for all j > n).
If pg =0, then

n <Pr(Z =kZ=k)=pi <.

If py > 0, then
e <PrZ >0Zp=k)=1-pf<1.
Therefore, ry < L.
If X is the number of visits to state k, then
Pr(X 2n) < r,'c"1

because we need to have at least n — 1 transitions from state k to state k in
the process driven by the transition probability y. Note that

s

B =Y P 20)<

1
n
T, = —
k l—rk
n=l

0

3
[1]

Branching Processes 253

Take M arbitrary. Finally,
Pr(Z, = k infinitely often)

which is as small as desired by our choice of M. We conclude that
Pr(Z, = k infinitely often) =0 .
0

Theorem 1.2, which is valid for any m € [0, 00), shows that it is impossible
to have oscillating populations, that is, populations in which the size drops
below some finite level infinitely often when m > 1: in fact, with probability
one, the limit of Z,, is zero or infinity. The remainder of this section is more
advanced and rather technical. It can be skipped without harm (except for
the definition of convergence in distribution and the statement of Fatou's
Lemma, which can be returned to when and if required).

We can improve on Theorem 1.2 by using that Z, behaves roughly speak-
ing as m" (recall that E(Z,) = m"), and its behavior is best captured in
Doob’s limit law:

Theorem 1.3. [Doob’s limit law] Let m be finite. The random variables
W, = Z,/m" form o martingale sequence with E(W,) =1, and W, = W
almost surely as n — 0o, where W is a nonnegative random variable.

For readers not familiar with martingales, we refer to the chapter on
concentration inequalities by McDiarmid in the present volume.

We use the symbol 5 for convergence in distribution. For random vari-
ables (X,,), and X, and a distribution function F, we say that X, EXor

X, L F when for all = € R at which F(z) = Pr(X < z) is continuous,
Pr(X, <z} - F(z).

While we don’t know the limit distribution of W, in general, we know a
lot about it: in case m < 1, py < 1, we have Pr(W =0) = 1, an uninteresting
case. If m > 1 and ¢® = 1ar(Z) < oo, then Pr(W = 0) = ¢, EW) = 1,
var (W) = o%/(m? - m), and E(W, - W) = 0. In fact, the second moment
condition on Z is too strict, as the following result shows:

Theorem 1.4. [Kesten-Stigum theorem, 1966) For ¢ supercritical Galton-
Watson process , the following properties are equivalent:

at
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A lim, o E(W, - W) =0;
B. B(Zlog(1 + 2)) < o0;

C EW)=1;

D.PrW=0)=¢

When m > 1, then the above results imply

% - logm
n
almost surely on non-extinction. Note that in general, by Fatou’s lemma
(which in & special form states that for positive sequences of functions f,
with liminfy— fo = f, liminf_o [ fo 2 [ £), we have (as expected values
are just integrals)
E(W)< liﬂigng(W,,) =1

but we cannot conclude that E(W) = 1. Indeed, when m < 1and py < 1,
W = 0 almost surely, and when m > 1, there exist distributions for Z for
which W = 0 almost surely as well! In the critical case, Z, — 0 almost surely,
50 finer results are needed.

We can avoid the extinction problem by studying the branching process
conditional on survival at time n (Z, > 0). Some results for the critical case
are provided in the following theorem:

Theorem 1.5. [Kesten, Ney and Spitzer, 1966 Assume that m = 1 and
0% = var(Z) < oo. Let E be an exponentially distributed random variable
(that is, a random veriable with density e on [0,0)). Then

! 2
nl_l{lgo nPr(Z, >0) = R

Furthermore, if 0 < oc, 2. jn % 62E/2, uhere 2. is distributed as Z,, given
Z,>0. If6® = oc, then Z' /n — o0 in probability, and
lim, oo nPr(Z, > 0) = 0.

Under the stronger condition E(Z®) < oo, the theorem above is referred
to as the Kolmogorov-Yaglom theorem after Kolmogorov (1938) and Yaglom
(1947). The conditional random variable 2 is also useful to understand sub-
critica) branching processes . The main results in this respect are again pro-
vided by Yaglom (1947) and Heathcote, Seneta and Vere-Jones (1967) (see
also Asmussen and Hering, 1983 and Lyons, 1997):
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Theorem 1,6. (Yaglom-Heathcote-Seneta-Vere-Jones theorem] Jf m < 1,

then Z, LV, uhere Pr(V < oo} = 1. Purthermore, Pr(Z, > 0)/m" is
nonincreasing (for any m). Finally, the following properties are equivalent:

A limy oo Pr(Z, > 0)/m"* > 0;
B. sup, E(Z}) = sup, E(Z,|Z, > 0) < x0;
C. E(Zlog(Z + 1)) < 0.

Proof. We willnot give a complete proof here. However, it is worthwhile to
note Lyons’ proof of the equivalence of A and B. We know that for any m,
E(Z, m"
Pr(Z,>0)= = s
10020 i, >0 " B2

Thus, Pr(Z;, > 0)/m™ | if E(Z}) 1. Thus, A is equivalent to B if we can prove
that E(Z;) 1. Let Y, be the size of the n-th generation in the subtree rooted
at the leftmost child of the root with a descendant in the n-th generation,
and let I, be the index of this child (counted from left to right). Then, as
Z,>Y, foranyk>1

Pr(Z, > k|Z, > 0) > Pr(Y, 2 k|2, >0)
= Zj Pr(Yn >kl = jIZn > 0)
= EJ- Pr(Ya 2 klln =, 2, > 0)Pr(l, = 3|12, > 0)
= Zj Pr(Zn_y 2 k|Zp-1 > 0)Pr(l, = j|Z, > 0)
= Py 2 HZpey > )

1.3 Bibliographic Remarks

For an account of the theory of branching processes, see Athreya and Ney
(1972), Grimmett and Stirzaker (1992), Harris (1963), Jagers (1975), or
Asmussen and Hering (1983). Kendall {1966) gives an enjoyable historical
overview. Neveu (1986) provides a rigorous background for studying ran-
dom trees in general and Galton-Watson trees in particular. A modern proof
of the Kesten-Stigum, Kolmogorov-Yaglom and Heathcote-Seneta-Vere- Jones
theorems based on Galton-Watson processes with immigration and/or trees
with distinguished paths may be found in Lyons, Pemantle and Peres (1993,
1995). In these papers, size-biased trees are introduced that scale probabili-
ties of events in the n-th generation by Z,/m", which turns out be equivalent
to looking at limy..., Pr(.|Z, > 0). The idea of size-biasing is also due to
Hawkes (1981) and Joffe and Waugh (1982).
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For critical processes, Weiner (1984) showed that there exist positive con-
stants ¢ < b such that E(max, i, 2;) € [alogn, blogn| and
var(maxls,-s,, Z,‘) € [an, bn].

For a supercritical process, Heyde (1970) shows that if Z has a finite vari-
ance o, and Z,/m — W almost surely, then (W — Z,/m")m"/? converges
in distribution a random variable Y. Thus, Z,/m™ is rather concentrated
around W. Conditional on Z,, >0,

m (W - W, Wm? -m Ly
VZyo '
where A’ denotes the normal distribution (Heyde, 1971). A Berry-Esseen type
inequality to quantify this convergence is given by Heyde and Brown (1971).
Again on the non-extinction set W > 0, we have almost surely
limsu mW -2 =1

o V/20¥(m? - m)12, logn
and a similar statement for the limit infimum with 1 replaced by 1 on the
right-hand side.

The tail behavior of W was investigated by Bingham (1988), who showed
faster than exponential drop-offs. For finite n, super-exponential tail inequal-
ities for Pr(Z, > ¢E(Z,)) and Pr{Z, < E(Z,)/c) for large ¢ were derived
by Karp and Zhang (1995). See also Biggins and Bingham (1993) sbout the
description of W.

Darling (1970) describes the behavior when Z has very large tails, so that,
in fact, log(Z, +1)/b™ tends to a limit law for some b > 1. Here, Z,, increases
as & doubly exponentially quickly. This sort of transformation is necessary,
because, as shown by Seneta (1969), if m = oo, then no constants ¢, can
exist such that Zy /c, converges in distribution to & non-degenerate random
variable.

2. Search Trees

2.1 Height of the Random Binary Search Tree

A binary search tree for distinct real numbers ,,...,2, is a binary tree
in which z; is the root, whose left subtree is a binary search tree for
{£2,...,2} 0 (~00,2;)} and whose right subtree is a binary search tree
for {z3,-..,2,} N (21,00)} (thus the structure of the search tree depends
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heavily on the order in which the real are presented). If the left subtree has
k points (nodes), then the rank of the root in the total ordering of the z;’s
is k + 1. We can grow the tree incrementally: if 2,4, is to be added (in-
serted), we start at the root and recursively find the subtree to which 2,4,
must belong by comparing Z,+1 to the current root and choosing the left or
right subtree as appropriate. Eventually, we locate an empty subtree, which
is then formally replaced by a one-node subtree having 4, as its root. The
insertion time is equal to the distance in the tree (path length) between the
root (z1) and the inserted node (z,+1), this distance is referred to as the
depth of z,,1. The height of a binary search tree is the maximal depth of a
node, and it measures the worst-case insertion time, an important quantity
if we are to maintain a binary search tree when new data arrive.

By a random binary search tree, we mean a binary search tree on a set
of random variables {z,...,2,} which is obtained by taking a permutation
of {1,...,n} with each permutation equally probable. It is easy to see that
the structure of the tree we obtain will be the same if we pick the , in-
dependently, all from the same distribution f provided the probability that
we choose the same number twice in n trials under f is zero, e.g., if the z;
are uniformily chosen elements of (0,1]. The depth D, of the last node to
be inserted satisfies E(D,) ~ 2logn (Lynch, 1965; Knuth, 1973), (further
(Dy, - 2logn)/v2logn LYY (0,1) {Mahmoud and Pittel, 1984; Devroye,
1988)). For the height H,,, the maximal path distance between any node and
the root, Robson (1979) showed that for all ¢ > 0,

lim Pr(H, 2 (y+¢)logn) =0,
n—0

where 4 = 4.31107... is the unique solution greater than 2 of the equa-
tion clog(2e/c) = 1. To actuslly show that H,/logn — v in probabil-
ity (we recall that X, — ¢ in probability means that for any positive ¢
limy o0 Pr{|Xn - ¢| > €) = 0.), branching processes were the first successful
methodology (Devroye, 1986, 1987). Drmota (1997) was the first to prove
this result by generating function analysis. The theorem below will be con-
siderably generalized further on in the chapter.

Theorem 2.1. (Devroye, 1986, 1987| In o random binary search iree on n
nodes, H,/logn — v = 4.31107... in probability.

Proof. We briefly show here that the height can be studied with the aid of
(Galton-Watson branching processes. To make the connection, we introduce a
new representation of a binary search tree. Cell the (random) binary search
tree T. Augment the tree T by associating with each node the size of the
subtree rooted at that node, and call the augmented tree T". The root of
T’ has value n. Since the rank of the root element of T is equally likely to
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be 1,...,n, the number N of nodes in the left subtree of the root of T is
uniformly distributed on {0,1,....,n~1}. A moments thought shows we can
choose U by setting N = |nl/| , where U/ is uniformly distributed on [0,1).
Also, the size of the right subtree of the root of Tisn—1- N, which is
distributed as |n(1 - U)]. All subsequent splits can be represented similarly
by introducing independent uniform (0, 1] random variables. This is a typical
embedding argument: we have identified a new fictitious collection of random
variables Uy, Uy, ..., and we can derive all the values of nodes in T’ from it.
This in turn determines (the shape of) T. More precisely, the rule is simply
this: in an infinite binary tree, give the root the value n. Also, associate with
each node an independent copy of U If a node has value V', and its assigned
copy of U is U’ (say), then the value of the two children of the node are
VU] and V(1 - U')] respectively. Thus, the value of any node at distance
k from the root of " is distributed &s

|-+ ([nUsJUa) -+ Ui s

where U, ..., Uk arei.id. uniform [0, 1). We have just described a second way
of generating 8 random tree with exactly the same distribution as a random
binary search tree. This second method of generating the trees s much more
amenable to analysis.

The above representation has a myriad of applications. One of them in-
volves the study of the height. Let H, be the height of T when |T| = n. Then
H, > k if and only if one of the 2* values V; of nodes at distance k from the
root of T" is at least equal to one; which we write as

|Ha 2 K= max V; 21].
1<ig2*

This is & beautiful duality indeed. Some care must be exercised when manip-
ulating it though, as the V;'s are very dependent—just consider the values Vi
and V; for nodes that are near one another in the tree. To steer around this,
we will derive separate upper and lower bounds for H.

In doing so, we need to be able to analyze the distribution of the V;
which boils down to snalyzing the distribution of the product of I uniform
[0,1] random varables for various /. To do so, we pass to the logarithm. It
turns out the logarithms we are interested in studying are drawn from a very
well studied class of distributions, the Gamma distributions. To be precise,
a uniform random variable is distributed as e~£ where E is exponentially
distributed (i.e., has density % on R*) and & gamma k random variable Gy
is distributed as the sum of k independent exponentials (see Grimmett and
Stirzaker, 1092). Thus the product of k uniforms is e C*.
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The upper bound. By the dual relationship shown above, we see that

Pr(dy 2 K = Pr (U1 2 1]
<FPr(Vi 21)
(by the union bound (Bonferronis inequality)
and symmetry)
<2pr(afl, Ui 21)
{U1,...,Ux are i.id. uniform [0,1])
{omit the |.| in the definition of V)
=2Pr (ne’c* > 1)
{Gy is & gamma (k) random variable)
= 2*Pr(Gy < logn) .

-~

The point here is to find the smallest k such that the upper bound tends
to zero. Recall that a Gy random variable has mean k. Thus, if k = logn, the
upper bound is ©(2¢), which is obviously useless. In fact, k will have to be
much larger than logn in order that the effect of the 2* term be canceled. Let
us try the next best thing: k ~ clogn for some ¢ > 1. The whole enterprise
now focuses on the probability in the left tail of the gamma distribution. We
provide the details as they explain the choice of ¢. Let Gy be a gamma (k)
random variable. We have
Pr(Gi <y) < !

ke- 1'?‘1“

1<

—_]

oI

where the lower bound is valid for all y > 0, and the upper bound is applicable
when 0 <y < k+ 1. In particular,

1 k
(logn)* 1

Pr(G < logn) < o

valid for logn < k + 1. Thus, we have, taking k = [clogn], and using k! >
(k/e)k (which follows from Stirling’s formula),

Pr(Hy 2 ) < 24 « el
< n'1(2elo;gn/kj“ X %‘—)
n ol
<G (G))™ x B

-0

if (1/€)(2e/c)° < 1. Let ¥ = 4.31107... be the only solution greater than one
()
-1{=)] =1
e/\¢

'y
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We conclude that lim—oo Pr(Hs > clogn) = 0, forallc > y. A more
careful use of Stirling’s inequality shows that limg_oc Pr(Hx > Ylog n)=0.

The lower bound. We know now that Hy, is very likely less than ylogn.

Pick ¢ > 0. To show that it is more than k = [(y - ¢)logn] with higl? prob-

ability, all we have to do is exhibit a path in the augmented tree. with the

property that at distance k from the root, the augmented value is at least

one. Now, you will say, this is a piece of cake. Why don’t we just fO“O\T«’ the
path dictated by the largest split, that is, when we are at a node with umfon?l
split value U, we go left if U > 1 /2 and right otherwise? It turns out that if
we do 5o, the augmented value drops below 1 for k near clogn, with ¢~ 3.25
only. So, this is not a good way to prove the existence of a node far frorp
the root. Instead, we will use branching processes to show that the height is
greater than clogn with probability tending to one, when ¢ < . Thus, we
need to track down nodes with large values in the augmented tree. For now,
we define V = nl/,Us... U for a node at distance k from the root, where the
U's are the uniform [0, 1) random variables describing the splits on the path
1o the root. The purpose is to construct a surviving Galton-Watson process.
The root of T becomes the pater familias of the branching process. Consider
oll descendants in T L levels away, and declare these nodes Galton-Watson
children if the product of uniform splitting random variables encountered on
the path from the root to the possible child is > d" for a given constant d.
The number of Galton-Watson children per node is bounded between 0 and
9% Clearly, all nodes in the Galton-Watson process reproduce independently
according to identical reproduction distributions. If T were infinite, the corre-
sponding Galton-Watson process would survive with probability 1 - ¢ > 0if
the expected number of Galton-Watson children per node were greater than
one. But this expected number is

2Pr(Uy...U > db) = 2'Pr (G, < Llog(1/d)}
(G, is a gamma (L) random variable)
S {2Ldlog(1/d)"
2 1
(by an inequality for the tail of the
gamma distribution)
., (edlog1/d)"
L
(by Stirling’s approximation, as L — 00)
>1

for L large enough, when Zedlog(1/d) > 1. We choose d = e-V/¢, recall that
¢}(2¢/c)° > 1 and obtain 26'~1//e > 1.

So, with probability 1 - g > 0, there exists a node at distance kL from
the root, with value V > ndt? = ne~*%/¢. I we take truncations into account
to get the real sugmented value of that node, it takes only & minute to v?rify
by induction that it is at least equal to V - kL as we can lose one unit at
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worst in every truncation. In conclusion,
Pr(H,2kL)21-¢

if ne~kt/c — kL > 1. Take for example kL = ¢'logn - 8L for ¢’ < c, where
8 € [0,1) is possibly dependent upon n. Then the last condition is verified as

ne ™ kL >l _ ¢ logn > 1

for all n large enough. As ¢’ is arbitrarily close to ¢, which in turn is arbitrarily
close to 7, we have liminfn_o Pr(H, > (y-¢)logn) > 1-gforalle > 0
and some ¢ < 1. But we are not finished yet! Indeed, what if 1 - g = 0.00001?
Clearly, we want the latter probability to be 1-o(1). So, we take ¢ such that
tL s integer-valued. The 2! nodes at distance ¢L from the root of T are roots
of subtrees each of height kL (in T height k in the Galton-Watson tree): each
of the subtrees leads to an independent run of a Galton-Watson process. If tL
is large enough, the probability that at least one of these processes survives
is close to one. Let a € (0,1/2) be another constant, and let A be the event
that the 2~ - 1 uniform (0, 1] random variables associated with the top tL
levels of nodes take values in (a, 1 - a). We see that

Pr(A9) =2a x (2" - 1) <a2!

and this is as small as desired by our choice of a. If A is true, then the
augmented values V' associated with the nodes at distance tL from the root
are all at least na'l. Let B be the event that one of the 2* Galton-Watson
processes defined with the aid of the parameters ¢ and L, and rooted at
one of the given 2'* nodes survives. From the previous discussion, using
independence,
Pr(B)=¢",

which is as close to zero as desired by choice of ¢. If A and B happen simul-
taneously, then there exists a node at distance ¢L + kL from the root whose
augmented value at least equal to

natLe—kL/c _ (t + k)L )
Take for example kL = ¢’ logn - 8L as above. Then the augmented value is
at least equal to ,
a'tat=cle _dlogn-tL.
This is greater than one for n large enough. Therefore,
"Igralo Pr(H, >c'logn~ L +tL) > Pr(ANB) > 1 - Pr(A%) - Pr(B*) .

The lower bound is as close to one as desired by the choice of ¢ and ¢. Also,
¢ is arbitrarily close to . Hence, for all e > 0,

nan;gPr(H,, >(v-¢)logn)=1.

This concludes the proof of the result that H,/logn — v in probability. O

ra
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2.2 Quadtrees

We round off this section by showing the universality of the above methodol-
ogy with the aid of quadtrees. The point quadtree in R? (Finkel and Bentley,
1974; see Samet (1990) for a survey) generalizes the binary search tree. Each
data point is a node in a tree having 24 subtrees corresponding to the quad-
rants formed by considering this data point as the new origin. Insertion into
point quadtrees is as for binary search trees.

We assume that a random quadtree is constructed on the basis of an i.id.
sequence with a given distribution in the plane. If this distribution is uniform
in the unit square, we call it a uniform random quadtree. In the latter case, the
root s easily seen to induce splits into 4 sections of sizes approximately equal
to n times the products of two independent uniform [0, 1) random variables.

The height Hn of a random quadtree has a distribution which depends
upon the distribution of the data points. For this reason, we look only at
uniform random quadtrees. It is easy to show that

dk
Pr(H, > k) < 2*Prin [ Ui 21),
i=1
where the U's are i.id. uniform [0,1) random varisbles. We deduce that
Pr(H., > (¢/d)logn) — 0 whenever ¢ > v. Furthermore,

Pr(H, 2 k) > Pr(lg;gdk V2 1+4),

where V, is a product of independent products of two uniform (0, 1] random
variables along the i-th path of length k down the quadtree (Devroye, 1977).
We deduce that Pr(H,, < (¢/d)logn) — 0 whenever ¢ < y by mimicking the
proof of Theorem 2.1. We conclude that H,,/logn — %/d in probability. This
result still requires appropriate generalization to non-uniform distributions.

2.3 Bibliographic Remarks

The use of branching processes in the study of binary search trees was advo-
cated in Devraye (1986, 1987). A nice account of this approach can be found
in Mahmoud (1992). One can also prove that E(HE)/log" n < 7 + o(1) for
all p> 0 and find a positive number & such that

lirr;oPr(H,1 > vlogn - dloglogn) =0.
ne

By mimicking the proof of the latter fact, show that F,/logn — 0.3711...
in probability, where F, is the fill level, i.., the maximal depth at which the
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binary search tree truncated to that depth is complete—thus, level F,, has 2
nodes. The constant 0.3711... is the only solution < 1 of (2¢/c)°(1/e) = 1.
See Devroye (1986, 1987).

3. Heuristic Search

3.1 Introduction

9

In this section we present two other beautiful applications of the theory of
branching processes. Both involve heuristics for finding the optimal path in
a tree with random costs. The tree model studied here was first proposed
and analyzed by Karp and Pearl (1983), who decided to look at the simplest
possible nontrivial model so as to make the greatest didactical impact.

Consider an infinite complete binary tree in which we associate with every
edge ¢ an 0 - 1 random variable X, which is 1 with probability p and 0 with
probability 1 - p. The value of a node is the sum of the values of the edges
on the path from the root to that node. The object is to find the best node
at distance n from the root, that is, the node of minimal value. Interestingly,
for p < 1/2, we can discover one of the optima in O(n) expected time. This
is largely due to the fact that there are many more zeroes than ones in the
tree, allowing us to use simple yet fast search algorithms (see section 3.2).
In section 3.3, we deal with the much more difficult case p > 1/2. Rather
than trying to reach the optimum, Karp and Pearl propose looking for a
near-optimum that would be reachable in O(n) expected time. The heuristic
proposed by them employs bounded lookahesd and backtrack search.

3.2 Depth First Search

The infinite subtree rooted at a node v is called T;,. All the nodes in this
subtree that can be reached via 0-valued edges form a subtree called Z,. The
heuristic we consider here simply performs a series of depth first searches of
trees Z,. We can also think of 1-valued edges as blocked pipes, and 0-valued
edges as open pipes. When we pour water in the root, it trickles down and
makes all the O-valued nodes wet. If we reach level n in this manner, we stop.
Otherwise, we open one blocked pipe and start all over from there. During
the depth first search of & given Z,, the nodes u with the property that edge
(v,u) is 1-valued and w € Z, are collected in a set B,. Since the method
consists of always going for the easiest bait, we will call it depth first search.
Note that the above procedure first visits all nodes with value 0, then all

el
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nodes with value 1, and so forth. This guarantees that an optimum will be
returned. The question we have to answer is how long the algorithm runs on
the average.

In order to analyze this algorithm, we offer the following crucial result of
Karp and Pearl (1083):

Theorem 3.1. [The family tree traversal theorem| Consider ¢ Galton- Watson
branching process with reproduction probabilities po, ..., pm (uhere M is o de-
terministic bound on the number of children of a node). Consider the (possibly
infinite) famly tree T thus generated. Let Dy be the number of nodes encoun-
tered in the depth first search of T, stopped as soon as level n is reached. Then
E(D,) = O(n).

Proof. We consider three cases. In case 1, we assume that m, the mean
number of children per node, is < 1. Let Zy,Z;,... denote the generation
sizes in T. We bound D, by the total size of T. We recall that

E(Z)=m*<1.

Therefore,
E(Dn) <Y B(Z)=) m<n+l.
k=0 k=0

In case 2, we assume that m > 1, yet T is finite. This corresponds to a pro-
cess that becomes extinct. We introduce the notation E* for the conditional
expectation given that T is finite. We also introduce g, the probability of
eventual extinction, and f(s), the RGF (reproduction generating function).
Once again, we bound

oo
D.<Y Z.
k=0
Note first that for k > 0,
_ o Pr(Zy=KPo(T finite (2 =K) _ped* _ 4
Pr(Z; = k|T finite) = Pr(T fute) = =pd

Note that ©
E'(%)=Y knd*'=£(g).
k=0

Thus, the derivative of f at ¢ tells us the expected number of children of
the root of an extinct tree: note that this is less than one. But this formuls
should be universally valid for all generation sizes. Therefore,
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k times

————
B'(Zy) = | f(fC--(@) )

k-liimes k-2£imes
= f R @) [ I LG | - x fhg)
= (f@) .

Thus,

x
D)< L0 =
This concludes the proof of case 2. (Note that for supercritical Galton-Watson
processes, the branching process given T finite is an unconditional branching
process with RGF f(sg)/q.) Finally, in case 3, we assume that m > 1 and
that T is infinite. Nodes in the search are designated as mortal or immortal
according to whether their subtrees are finite or not. Note that the search at
a given node at worst visits all the nodes in the subtrees with mortal nodes as
roots. The expected size of each such subtree is not more than 1/(1 - f'(g))
by case 2. When the search visits the first immortal child, it will never return
to visit another child, as an infinite tree is bound to have at least one node
at level n. As each node has not more than M mortal children, we have the
following recurrence:

o e M
E(D,|T infinite) <1 + E(D,-1|T infinite) + —ra

This recurrence leads trivially to

E(D,|T infinite) <n + (n - l)l_ll;(q),

Cases 2 and 3 may be combined easily, as

E(D,) = Px(T finite) E{D,|T finite)
+ Pr(T infinite) E(D,|T infinite)
< max{E(Dy|T finite), E(D,|T infinite)}

This concludes the proof of the family tree traversal theorem. 0

Next, we claim that the expected running time of iterated depth first
search is O(n) when p < 1/2. A depth first search trial is one iteration of this
process: at a node, all the nodes in its subtree reachable via 0-valued edges
are visited. We call this collection of nodes the expansion tree of the node,
A node with an infinite expansion tree is called immortal. The other ones
are mortal. Consider the branching process defined by zero edges only. The



266  Luc Devroye

reproduction distribution has py = (1 - p)? (two zero edges), p1 = 2p(1 - p),
and po = p*. The expected number of children per node is

m=21-p+2(1-p)=21-p)>1.

Thus, the extinction probability for this branching process is g < 1. ¢ is also
the probability that a given node is mortal.

The running time is conveniently decomposed as follows: any trial started
at any node takes expected time bounded by cn (Theorem 3.1). Thus, the
total expected time before halting is not more than the expected number of
trials times en. The total number of trials in turn is not more than the total
number of trials started at mortal nodes plus one. Therefore,

en
E(total time) < —
since the probability of having an immortal node is 1 -¢, and a search started
at an immortal node surely reaches level n. This concludes the proof of the
linear expected time claim.

Remark 3.1. The case p = 1/2. When p = 1/2, the given iterated depth-first-
search procedure takes quadratic expected time.

We conclude this section with another analysis; what is the velue C, of the
minimal node at distance » from the root? Clearly, C, is a random variable
sandwiched between 0 and n. When n grows, C,, increases as well {on a given
tree). As all monotone sequences have a (possibly infinite) limit, we may call
our limit C. Interestingly, when p < 1/2, C'is finite with probability one!
This means that we can find an infinite path in almost every tree with only
2 finite number of nonzero edges. We have the following:

A. For every k, Pr(C, > k) < Pr(C > k). (Obvious, since C,, 1 C')

B. limyoo Pr(C, > k) = Pr(C > k). (Thus, C really matters, as it de-
scribes the situation for all n large enough.)

C. Forp<l1/2,

PrC>K <@ k=012....
Proof. Consider a branching process in which we keep only the 0-valued edges
in the complete binary tree. As the number of children per node is binomially

distributed with parameters 2 and 1 - p, the expected number of children is
2(1-p) > 1. Let ¢ be the extinction probability. Then
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Pr{C> k) < ¢

since [C > k| implies that each of the 2% subtrees rooted at the nodes at
depth k must fail to have an infinite path of zero-cost branches (that is, each
of the 2* branching processes spawned at these nodes must become extinct).
Since the RGF of this branching process is £(s) = (p+ (1-p)s)?, it is easy to
see that g < (2p)2. To prove this, we need only show that £((2p)?) < (2p)%,
or that
p+(1-p)) <2,

or that 4p(1 - p) < 1. But the last inequality is obviously true. O

-

3.3 Bounded Lookahead and Backtrack

In the case of a majority of 1-valued edges (p > 1/2), depth first search yields
exponential expected time. In fact, it seems impossible to concoct any kind of
polynomial expected time algorithm for locating the optimal value. We can
do the next best thing, that is, we can try to find an almost optimal solution.
To set the stage, we first define Cy, the optimum value of a solution found
by an algorithm, and C7;, the value of the true optimum in the random tree.
Clearly, C;; < Ch,. For a given algorithm, two issues have to be dealt with:

A. What is the expected time E(T) taken by the algorithm?

B. How close is G, to C;, (in some probabilistic sense)?

The bounded-lookahead-and-backtrack (or: BLAB) algorithm proposed by
Karp and Pear! (1983) introduces three design parameters, d, & and L, where
d> 1is an integer, a € (0,1) is a real number, and L > 1 is an integer. If v
is a node in our tree and u is & descendant of v such that the path distance
from v to u is L, then we say that u is an {a, L) son of v if the sum of the
edge values on the linking path is < aL. To make things more readable, we
will simply say that v is a good child of v.

We now construct & fake branching process as follows: start with a given
node and meke it the root of the branching process. Declare all the good
sons to be its offspring; So, this process jumps L levels at & time. (This is
iMustrated in the first figure of this section.} Repeat this definition for all
the nodes thus obtained. The Malthusian parameter for this process is the
expected number of good sons per node, or

m & 9 Pr(BIN(L, ) < al) .

The fake branching process is supposed to help us locate near-optimal nodes
at level n. If it is to work for us, we surely would like the process to survive



268 Luc Devroye

forever, thus leading to the condition m > 1. From the properties of the
binomial distribution, we retain that if & < p is fixed, then, as L — o,

L
6() L_ 80 ((pye(1=p\"”
w13 ()

where the function R(a,p) increases monotonically from 1 -pat a =0to
1 8t a = p. Thus, it takes the value 1/2 somewhere in the interval (0,p),
at a place we will call a*. We have the freedom to choose a and L. So, we
first pick a € (o*,1). Then we choose L so large that m > 1. This fixes
the branching process. We let the probability of extinction be g. The BLAB
algorithm proceeds as follows: we select d in some way (to be specified later),
such that n — d is a multiple of L. Repeat for each of the 24 nodes at level
d until suceessful the following process: traverse the “good sons” branching
process in a depth-first-search manner until 2 node is found at level n or until
the subtree is exhausted without ever reaching level . If a node at level n is
reached, then its value is guaranteed to be no more than d + a(n - d). But
the probability of a given depth-first-search succeeding is at least 1 " Thus,
the overall procedure returns a failure with probability less than ¢ . In that
case, if & node has to be returned, we might as well return the leftmost node
in the tree, with value < n. Putting this together, we see that

E(C,) < nPr(search fails) + d + a(n - d)
<ngt +d+a(n-d).

For fixed ¢ > 0, this s less than a*(14¢)n by choice of & (e.g., a < a*(1+¢/2)
will do), L (as above) and d (large, but fixed). We also see that

lirrol° Pr(Cn > a*(1+€¢)n) =0

for all ¢ > 0 if we choose @ and L as above and d — oo while d/n — 0
(example: d ~ logn).

The second thing we need to prove is that E(C}) > a’n or something
close to that. Note the following;

Pr(C. < o™n) < Pr(3 at least one {a*,n) good son of the root)
< 2°Pr(BIN(n,p) < a*n)
=2 (R p))'
o

Thus, Pr(C;, > a*n) = 1. Also,
E(C}) 2 E(CR)lc; 20
> a'nPr(C; > a*n)
>a'n(1-6(1)/Vn)
>a'n-6(/n).
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For given ¢ > 0, we can design an algorithm that guarantees the following:

limsup E(C.)
n-o E(C3)

<l+e.

Or, if one wants it,
lim Pr(ﬁ>1+e) =0,

n—oo C;
(The last event implies either Cy, > a*(1+¢)n or C:, < a*n, and the proba-
bilities of both of these events tend to zero with n.)

We conclude this section with a proof of the linear expected time com-
plexity: E(T) = O(n). When finding a good son of a node in the branching
process, an effort not exceeding 2° is spent. Then, by the family tree traver-
sal lemma, each depth-first-search takes time not exceeding cn, where ¢ is
& constant depending upon the branching process parameters, The expected
number of depth-first-searches until a node is encountered that is the root
of a surviving branching process is not more than 1/(1 - g). Thus, the total
expected time does not exceed

o
E =O(n).

REMaRK. McDiarmid and Provan (1991) pointed out that bounded looka-
head without backtrack is also feasible. Assume that we find the optimal
path from the root to a node at depth L. Make this node the new starting
point and repeat. L is & large integer constant. For p > 1/2, and ¢ > 0,
one can show that there exists an L such that this algorithm runs in linear
expected time, and that the best value found by the algorithm (C,,) satisfies
the inequality
Ca S (144C

with probability tending to one.

3.4 Bibliographic Remarks

The problem dealt with here was proposed and analyzed by Karp and Pearl
(1983). An alternate short proof of Theorem 3.1 is given by McDiarmid
(1990), where additional information about the problem may be found as
well. The analysis of the optimal value C;, in the case p < 1/2 s due to Me-
Diarmid and Provan (1991). Consider now depth first search in a complete
b-ary tree in which the probability of a “one” edge is p, and bl-p)>1
The following inequality is due to McDiarmid and Provan (1991):if C, is the
optimal value of a node at distance n from the root, then

2l
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bk+l

bp
Pr(C, > k) < (b-l) ,k20.

Karp and Zhang (1995) analyze random AND/OR trees, where internal nodes
at even (odd) distances from the root are AND (OR) nodes and each node
has a boolean value 0 or 1. The value of & node is the outcome of the logical
operation of the node on its children's values. The evaluation problem is to
determine the root’s value by examining the leaf values (which are randomly
and independently assigned), while keeping computation to a minimum. This
is Pearl’s minimax tree model (1984). Karp and Zhang propose and analyze
various algorithms using tail bounds on generation sizes in Galton-Watson
processes. For minimex trees, Devroye and Kamoun (1996) analyze the value
of the root in a random minimax tree, in which the leaf values in the n-
th generation are those of a branching random walk, and intermediate level

values are obtained by alternating the operations minimum and maximum.

4. Branching Random Walk

4.1 Definition

In  branching random walk, we superimpose a random walk on each path
from the root down in a Galton-Watson tree. More specifically, we associate
with each individual % in 3 Galton-Watson tree a value V;,, the value of
the root being zero. If u has N offspring (where N follows the model of
the Galton-Watson process), then the values of the offspring relative to the
value V,, of the parent u jointly have a given distribution. In the simplest
model, for every child v of v, we have ¥, = V, + X,, end all displacements
X, are independent (this will be called the independent branching random
walk). However, in general, if the children have displacements Xu, .., Xuy,
then the joint distribution of (N, X,,,..., X,y) is quite arbitrary. What is
important is that each parent produces children (and their values) in the
same manner.

The analysis of branching random walks is greatly facilitated by the fol-

lowing function: .
1=1

where v;,..., vy are the children of the root. We assume throughout that
m(#) < oo for some 0. This function may be considered as the Laplace-
Stieltjes transform of F(t) = E(Zy(t)), the expected number of individual in
the first generation, with value less than or equal tot. In general, we introduce
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the notation Zn(t), the number of individuals in the n-th generation, with
value < t. Note that Z,, = Z,(00), so that this definition generalizes that of
the previous section. Let Z" be the point process with atoms V, for all « in
the n-th generation. Then, following Kingman (1975), introduce

Wn(0)=m(]0)n Yy et

u in generation n

This is a martingele for F,, the o-field generated by all events in the first
n generations. There is an almost sure limit, W(d) (as W, () > 0), and by
Fatou's lemma, E(W(8)) < 1. The study of W,, and W reveals that there
may be severalmodes of behavior, and this was studied by Biggins (1977) in
more detail. In this section, we do not wish any distractions due to extinction
of the underlying Galton-Watson process, and assume therefore that N, the
number of children per perent, is a fixed positive integer: N = b. For more
general theorems, we refer to the cited papers.

In subsection 4.2, for N = b, we survey the main results on the first
birth in the n-th generation, or B, = min{V; : u in n-th generation}, and
on Z,(t), the distribution of values in the n-th generation. A straightforward
application in the study of the height of trees then concludes this section.

4.2 Main Properties

Let X be a random variable equal to the value V,, of a randomly picked child
of the root. Since N = b, the earlier definition of m(d) specializes to

mi8) £ o (%) .
Then, if X > 0 is nondegenerate, we define the u-function by

ia) = ;gfo {em(8)} = ;,E,g E (89(0-)()) ‘

Theorem 4.1. [Biggins, 1977) If p(a) < 1, then with probability one,
Zn(na) =0 for oll but finitely many n. If o € int{a: u(a) > 1}, then

lim (Z,(na))"/" = (o)

n—oo

almost surely.

. This theorem shows that u(a)" is about equal to the number of individuals
in the n-th generation with value < na. Its simple proof is not given here,
but it follows the lines of the proof of Theorem 2.1. In fact, Theorem 4.1 is

I
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nothing but a refined large deviation theorem, as along any path from the
toot, the values form a standard random walk.

As a corollary of the above result, we have:

Theorem 4.2. [Kingman, 1975; Hammersley, 1974; Biggins, 1977] Assume
mi{B) < 00 for some 8 > 0. Let B, =min{V, : u is in the n-th generation }.
Then, 5

lm = =y % inf{a: pla) > 1)

n—oe N

almost surely, and v is finite.

Interestingly, B, gows linearly with n, while the n-th generation size (5")
grows exponentially with n. As the p-function has an impact on both results,
it is useful to have its properties at hand.

Lemma 4.3. Let X > 0 be a nondegenerate rendom variable. Then ils y-
Junction satisfies the following properties:

(i) 1 1s an incressing function on 0, 00).

(i) 1 is continuous on int{a : p(a) > 0}.

(i) log p is concave on int{a: p(e) > 0}.

(t) sp,nle) <.

{v) IFE(X) < o0, then gla) = b for a > E(X).

(1) limapoo () = b.

(vii) FX>c>0, thenpa) =0 fora<c.

(viti) Let s = sup{t : Pr(X < t) =0}, end define p=Pr(X = ). Then p is
continuous on (s,00), u(s) = bp, end p(a) = 0 fora < s.

(ig) Iftp <1, andy=inf{a: p(a) > 1}, then p(v) = 1.

1f all displacements with respect to a parent are identical, then we speak
of a Bellman-Harris branching random walk. McDiarmid (1995) calls this a
common branching random walk. Of course, all theorems above also apply
to this situation. It is of interest to pin down the asymptotic behavior of B,
beyond Theorem 4.2, Consider for example an infinite b-ary tree on which
we superimpose a branching random walk, with all displacements Bernoulli
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(1/b), that is, they are 1 with probability 1/b and 0 otherwise. The case
b= 2 is easiest to picture, as all displacements are independent equiprobable
bits. Joffe, LeCam and Neveu (1973) showed that B,/n — 0 almost surely,
and this also follows from Theorem 4.2, which was published later. Bramson
(1978) went much further and showed that there exists a random variable W
such that ) [loglogn - log{W + o(1))]
lim B, -
n—o log 2

almost surely, where the o(1) term is stochastic. In the binary case, each in-
dividual in the n-th generation has a binomial (, 1/2) distribution. If these
2™ binomials had been independent, we would have had liminf,_q B, = 0
almost surely and limsup, _, B, = 1 almost surely. This follows from the
fact that Pr(B, = 0) > 1-1/e asn — 00 and Pr(B, > 2) < e~(#+1),
Thus, Bramson's result exposes a crucial property of branching random walks.
Dekking and Host (1990) consider the general branching random walk with
nonnegative integer-valued displacements. Thus, By, 1. Let N(k) be the num-
ber of children of the root with displacement k. Let N = Y72, N(j) be the
number of offspring of the root. Again, we assume N = ) with probability
one, although the results of Dekking and Host treat the general case. Some
of their results can be summarized as follows:

=0

Theorem 4.4. {Dekking and Host, 1980] If y denotes the constant of The-
orem 4.2, then v =0 if and only {f E(N(0)) > 1.

Assume now Pr(N(0) = 1) < 1. Then Pr(B,, — o0) € {0,1}, and the
zero case happens if and only if E(N(0)) > 1. Also,

A. If E{N{0}) > 1, then there exists a proper random variable W such that
B, — W almost surely.

B. T E(N(0)) = 1, E(N?) < 00, and ¢ = inf{i > 0 : E(N(3)) > 0}, then
By, log2/loglogn ~ g almost surely.

If y = E(N(1)) > 0 and 7 = (1/2)var(N(0}), then for integer k > 0,

u
Pe(B, < k)~ 68N —00.
) r(un)*

McDiarmid (1995) extends the results of Dekking and Host in some cases.
Consider only nonnegative displacements, and recall that the branch factor
is b. Then, if by, is the median of B,, McDiarmid establishes the existence of
positive constants ¢,¢’ such that for all n,

Pr(|B, - byf > 2) < ce™*

11
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for all = € [0,n). This implies that almost surely, for all n large enough,
B, - b, = O(logn). Cleatly, by Theorem 4.2, b, should be near yn. The
following result describes the closeness of B, to yn. We give only the version
for the case that the underlying Galton-Watson tree is the complete infinite

b-ary tree.

Theorem 4.5. [McDiarmid, 1995] Consider o common branching random
walk in which every individual has b children, and all displacements ere on
[a, o), where a is the leftmost point of the support of the displacement random
variable X, and bPr(X = a) < 1. Let 7 > 0 be the (necessarily unique)
solution of e”'m(r) = 1, and let m be finite in a neighborhood of . Then
there are positive constants ¢,¢',¢" such that

Pr(B, <yn+clogn-1) < et 220,

and ’
Pr(B,>m+c'logn+a)Se™®, 0<zm.

McDiarmid's proof does not imply ¢ = ¢, but it strengthens earlier re-
sults, such as 8 result by Biggins (1977), who showed that under the stated
conditions, B, -y — 0o almost surely. Interestingly, his argument is based
on the second moment method, and the idea of leading sequences. A sequence
(z1,...,,) is leading if forall j = 1,...,n - 1,

Zl‘,‘ > %Zri.

i=] i=l
If (Xy,..., X,) are exchangeable random variables, then indeed,

Pr((X1,...,Xn) is leading ) > 1/n.

Given an individual v in the n-th generation, we denote by ¥3,...,Yx
be the displacements encountered on the path from the root to v. We call v
leading if this displacement sequence is leading, that is, if W; > (i/n)Wa,
where W,.. .., W, are the values of the ancestors of v in generations 1 through
n. Clearly, Z,(t) > Z2(t), where Z3(t) is the number of leading individuals
in the n-th generation with value < £. It should be clear that Z}(t) is about
Z,(t)/n when Z,(t) is large, and not much is lost by considering Z;(t), or
by considering the minimum value B; among leading individuals, instead of
just B,,. A careful application of the second moment method {Pr(X>0)2
(E(X))2/E(X?) for any random verisble X with finite mean E(X) 2 0) then
yields Theorem 4.5.
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4.3 Application to Analysis of Height of Trees

One may use Theorem 4.2 in the study of the height of a large class of random
trees. These trees can be modeled indirectly by the size tree, a tree in which
we associate with each node u the size of its subtree $,. For the root, we
have S, = n, and for each leaf, S, = 1. Often, these size trees are close to a
split tree T in a manner to be made precise. A split tree T starts with a root
u of value ¥, = 1. It is an infinite b-ary tree, and the values of the children
v, v are VX o VX, . Furthermore, ELI Xy, =1land X, > 0for
all 4. In other words, considering the value as mass of a subtree, the mass 1
at the root is partitioned into smaller masses that again add up to one, This
process continues forever, each particle splitting in the same manner. The
distribution of values in the split tree is governed by the joint distribution of
the b child values of the root. If we consider V] = —log V,,, then the above
model describes a branching random walk. Let m() and p() be defined as for
that random walk, that is, if X is the value of a randomly picked child of the
root {s0, 0 < X < 1), then

m(8) = (¢4 = b (x7)

Define . g
o) = juf {e"*m(#)} = BB (X"¢) .

Finally, let Na(t) be the number of n-th generation individuals with value
exceeding ¢ in the split tree. The following is a corollary of Theorem 4.1:

Theorem 4.8. If p(a) < 1, then with probability one, N,, (™) =0 for all
but finitely many n. If ¢ € int{a: p(a) > 1}, then lim,_o (N, (e"‘"))]/ "=
p(6) almost surely. Furthermore, if By, is the mazimal value of any individual
in the n-th generation of the split tree, then

- 108 B, def
n

im =522 =9 ¥intfo: o) > 1)

n—oo

almost surely.

The above results may be applied in the study of Kolmogorov’s rock (see
Athreya and Ney, 1972), which is subjected to many rounds of breaking, and
each break results in two rocks with uniform size. If the initial rock has mass
one, then Theorem 4.6 describes the maximal rock size among 2" shattered
rocks in the n-th generation, The random variables that govern the splitting
are (U,1 - U), where U is uniformly distributed on [0,1]. In this case, we
have

m(f) = (") = % ,

'y
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Also,

R 260“ l-a

From this, we determine 7 85 the solution of 2ae!™® = 1, and obtain
4 =02319.... As a consequence, the size B, of the largest rock is almost
surely ¢"(7+o(1)), For comparison, if we were to break the rocks evenly, then
B, =27 = ¢~"**85L- almost the third power of the maximal rock in the

random model!

However, the way Tree splits are used is different. A search tree holding
n nodes has mass  at the root, so we define our split tree in such a way that
each node has n times the value of the corresponding node in the original split
tree. These (typically non-integer) roughly represent the sizes of the subtrees.
Nodes with value (after multiplication with n) less than 1 correspond to
nothing and wil be cut. In this manner, the size tree is finite. For example,
in a random binary search tree, the sizes of the left and right subtrees of
the root are distributed as |2U| and |n(1 - U)] respectively, where U is
uniform [0, 1]. These sizes are jointly smaller than (nU,n(1 - U)), and thus,
by embedding, we can say that the values in the size tree are jointly (over
the infinite tree!) smaller than the values in a split tree with multiplicative
factor n and with root child values (U, 1 - U). Furthermore, the sizes of the
left and right subtrees are jointly larger than (e - 1,n(1-U )= 1), If we
repeat this sort of bounding for k generations, then it is easy to see that all
values in the size tree at generation k are jointly larger than the values in the
split tree just defined, minus k. The connection between size trees and split
trees is thus established. In particular, what interests us most is that if H,
is the height of the binary search tree with n nodes, then

Pr(H, > k) = Pr(maximum value in generation k of size tree > 1)
< Pr(nB; 21)

where B, is the maximum value of a k-th generation node in the original
split tree (n is the multiplicative factor). Similarly,

Pr(H, < k) = Pr(maximum value in generation k of size tree < 1)
<PrinB -k <1).

As B, = e~*0r+o1) glmost surely as k ~» oo, where 7y is precisely as in the

example of Kolmogorov's rock, it is easy to conclude from these inequalities
the following (essentially Theorem 2.1): for € > 0,

lim Pr(—H—">l+e)=0
now’ \logn ™ v

and
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lim Pr(i <1—e) =0.
now  \logn v

Thus, Ha/logn — 1/y = 431107... in probability, where v is defined in
Theorem 4.6. For the random binary search tree, we thus have a second
proof of Theorem 2.1,

The technique above consists in describing the sizes of the subtrees of a
random tree by an embedding argument, and to relate these sizes to those of
a split tree by suitable inequalities. This has been done in the literature for
a number of random trees, and rather than dwelling on the details, we will
review the known results. The remainder of this section is rather specialized
and may be skipped upon first reading,

EXAMPLE 1: THE RANDOM b-ARY SEARCH TREE. Let ni.i.d. random variables
with a common density be used to construct a random b-ary search tree,
where each physical node holds up to b— 1 elements. As soon as a node is
full, new nodes reaching it on the path down from the root are sent down
to one of the b child trees by a comparison of values of the b1 (sorted)
elements in the node. Here the tree size is measured in number of elements,
not number of nodes. The first b — 1 elements occupy the roct. Without loss
of generality, they are i.id. uniform [0,1). Thus, ss the other elements are
independent, we see that the subtree sizes (Ny,..., Ny) are distributed a5 a
multinomial random vector with count n - b+ 1 and probabilities given by
81, Sy, the spacings determined on [0, 1] by a uniform sample of size b~ 1.
Now, the relationship between the size tree and the split tree is only slightly
more intricate, but the split tree clearly should have multiplicative factor n
and split random vectors (S),...,5) (see Devroye, 1990, for the details). In
particular, the §;'s are beta (1,5 - 1) distributed (Pyke, 1965), and we can
thus easily compute

Io+)r@+1)
rb+o)

Unfortunately, the expression for 4 is in general not simple. We have H,,/n —
¢ in probability, where

m(f) = bE(X°) = BE(S]) = b f A= 1)1 =
0

b b-1
£= inf{c) I/Z(l/j) tt+clogh! -chog(tJri) < 0}
j=2 j=1

and t > 0 is the unique solution of
b-1

1 &l

¢ St
(Devroye, 1990). Particular values of £ include £ = 4.31107... (b= 2), £ =
24699... (0= 3),§ = 09979... (b=9) and £ = 0.3615... (b = 100). The



978 Luc Devroye

depth of the last node, Dy, is in probability asymptotic to logn/ Z';:;_,(l 3
(Mahmoud and Pittel, 1984). Devroye (1997) showed that if A = 1/ Yol
and o? = £, 1/, then

Dy, - AMogn iN(O 1),

Vvotilogn
where N denotes a normal random variable. As an example, if b = 3,

D, - (6/5)logn 5 N0 .
(78/125)logn '

EXAMPLE 2: THE RANDOM QUADTREE. The point quadtree in RY (Finkel
and Bentley, 1974; see Samet (1990b) for a survey) generalizes the binary
search tree. Defined in the previous chapter, we only consider uniform data
in [0,1]%. Note that if the root is X = (Xy,..., Xa), Ithen the grobabiliti&
(volumes) of the 24 quadrants are given by the identically distributed (but
dependent) random variables

d
[[xia-x)-*,
i=]

where by,...,by is a vector of d bits identifying one of the 2¢ quad.rants.
Devroye (1987) establishes probability inequalities between the values in the
size tree and the values in the split tree, which imply for first order results
that it suffices to study the split tree. Then we note that

d d 9 d
m(8) = E (]‘[ xf) =2"[[E(x}) = (a‘ﬁ) ,
i=l =1

thus generalizing the binary search tree (obtained when d=1). Thus,

8y d d
; 2 _ E 1—a/d)
“(“)=é§f){—o+1} —(de .

Therefore, by simple inspection, u(dy) = 1, where « is the parameter for
the binary search tree . As & result, the height Hy of a random qua.dtree
is in probability asymptotic to (1/dy)logn, where 1/y = 4.31107... is the
constant in the height of the random binary search tree (Devroye, 1987). Let
D, be the depth of the last node. It is also known that

D - 2 in probability ,
logn d

a result first noted by Devroye and Laforest, 1990. See also Flajolet, Gonnet,
Puech and Robson (1991). Furthermore,
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Dy~ (2/d)logn £

(2/d%) logn No.,

valid for any d > 1. This result was obtained via complex analysis by Flajo-
let and Lafforgue (1994) and by standard central limit theorems by Devroye
(1997). EXAMPLE 3: THE RANDOM MEDIAN-OF-(2K+1) BINARY SEARCH
TREE. Bell (1965) and Walker and Wood (1976) introduced the following
method for constructing a binary search tree. Take 2k 4 1 points at random
from the set of n points on which a total order is defined, where & is integer.
The median of these points serves as the root of a binary tree. The remain-
ing points are thrown back into the collection of points and are sent to the
subtrees. Following Poblete and Munro (1985), we may look at this tree by
considering internal nodes and external nodes, where internal nodes hold one
data point and external nodes are bags of capacity 2k. Insertion proceeds
as usual. As soon as an external node overflows (i.e., when it would grow
to size 2k + 1), its bag is split about the median, leaving two new external
nodes (bags) of size k each, and an internal node holding the median. After
the insertion process is completed, we may wish to expand the bags into bal-
anced trees. Using the branching process method of proof (Devroye, 1986b,
1987, 1990; see also Mahmoud, 1992) the almost sure himit of H,/logn for
all k may be obtained (Devroye, 1993). For another possible proof method,
see Pittel (1992). The depth D, of the last node when the fringe heuristic is
used has been studied by the theory of Markov processes or urn models in
8 series of papers, notably by Poblete and Munro (1985), Aldous, Flannery
and Palacios (1988). See also Gonnet and Baeza-Yates (1991, p. 109). Poblete
and Munro (1985) showed that

D, 1 g
ono,_- A(k)
gy

IOgn Zi=k+2 %

in probability. It should be clear by now that the height of this tree may be
studied via a split tree with split vector distributed as (B,1 - B), where B
is beta (k+ 1,k +1). That is, B is distributed as the median of 2k + 1 i.id.
uniform [0, 1] random variables. This representation is obtained by associating
with each point in the data an independent uniform [0, 1] random variable.
Equivalently, if the U, are independent uniform [0, 1] random variables, then

B is distributed as
%+1

I v’
i=k+1
Note that in this case
D(%+2+8)I(k+1)
)= 2EB)= o "
) =28 = T I+ 0+ D)

The computation of 4 is a little bit more tedious, but the result can be
phrased indirectly:
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Theorem 4.7. [Devroye, 1993] A random binary search tree constructed with
the aid of the fringe heuristic with parometer k has the following property:
. — o{k) in probability where c(K) is the unigue solution greater than M(K)
of the equation

%He+1
Plc)-c E log(1+¢—£c—)) +clog2=0,
i=k+1

and ¥(c) 1s defined by the equation
L L
c il Ak .
In particular, A0) = 4.31107... (the ondinary binary search tree), A1) =

3,192570..., A(3) = 2.585539..., A(10) = 2049289. .. and
A(100) = 1.623695 ...

With %2

02= Z j—?‘

j=k+2
Devroye (1997) obtained a central limit theorem for D, for all :

D, - Alogn —LvN'(O 3.

VatXlogn

As an example, for k = 1, we obtain

D, - (12/7)l°gn £0N‘(0 1) i
(300/343) log n ‘

EXAMPLE 4: RANDOM SIMPLEX TREES. Triangulating polygons and objects
in the plane is an important problem in computational geometry. Arkin, Held,
Mitchell and Skiena (1994) obtained a simple fast O(n logn) expected time
algorithm for triangulating any collection of » planar points in general posi-
tion. We look more specifically at their triangulation and its d-dimensional
extension to simplices, and ask what the tree generated by this partitioning
looks like if the points are uniformly distributed in the unit simplex. Given
are n vectors Xy, ..., X, taking values in a fixed simplex § of RY. It is as-
sumed that this is an i.i.d. sequence with a uniform distribution on S for the
purposes of analysis. X; is associated with the root of a d + l-ary tree. It
splits § into d+1 new simplices by connecting X, with the d+ 1 vertices of §.
Associate with each of these simplices the subset of X»,..., X, consisting of
those points that fall in the simplex. Each nonempty subset is sent to a child
of the root, and the splitting is applied recursively to each child. As every
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split takes linear time in the number of points processed, it is clear that the
expected time is proportional to nE(D,), where D,, is the expected depth of
a random node in the tree. The partition consists of dn + 1 simplices, each
associated with an external node of the tree. There are precisely n nodes in
the tree and each node contains one point. If |S| denotes the size of a simplex
S, then the following crucial property is valid.

Lemma 4.8. [Devraye, 1997] If simplez S is sphit into d + 1 simphices
S1y++, 8441 by a point X distributed uniformly in S, then (|S],. .., [Sg1])
s jointly distributed as (|S|V1,...,|SIVas1), where WA,..., Viy: are the spac-
ings of {0,1] induced by d 5.4.d. uniform [0,1] rendom variables.

1t is immediate that the random simplex tree is & split tree with split
vector distributed as the spacings defined by d i.i.d. uniform [0, 1] random
variables on (0,1] and branch factor d + 1. Therefore, H, (and also Dj)
behave precisely as for the random d+1-ary tree discussed earlier. Thus, if
o= Zf::l 1/,

in probability
sad Dn - Mogn ¢
VoiXiloga
As an example, if d = 2, then and
D, - (6/5)logn £ 0.1)
V(78/125) logn '

We also know that H,,/logn — ¢(d) in probability for a function ¢ of d that
may be computed via the recipe described in the example on b-ary search
trees.

N@©).

4.4 Refinements for Binary Search Trees

The results of the previous section permit fundamentally only first order
asymptotic analysis of H,,. For the study of the depth of the last node D,
or the depth of a typical node, branching processes are really not necessary,
although they could be used. Devroye (1997) derives & general central limit
theorem for D, illustrated in the previous examples, based on a split tree
model as in the previous section. By allowing n balls to drop according to a
certain process down an infinite b-ary tree in which nodes may hold zero, one,
or more balls, the model is rich enough to encompass both search trees and

'y
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tries or digital search trees. Recall that 7 = 4.31107..... the unique solution
greater than 2 of clog(2e/c) = 1. Theorem 2.1 implies that the height H,
of the random binary search tree satisfies H,/logn — 7 in probability. In
fact, convergence is in the almost sure sense as well, 8 fact first noted by
Pittel (1984). Using elementary inequalities and essentially the bounds found
in this survey, Devroye (1987) showed that Hy —7logn = 0(lognloglogn)
in probability. Robson (1979) reported that Hy, was much more concentrated
than that, and conjectured even var(H,) = O(1). There have been three
attempts to crack this conjecture.

Michael Drmota (1997) uses generating functions to prove that E(Hy) ~
ylogn, and his proof is the first one based on this approach. This method
may have two benefits: first of all, it may provide detailed behavior on the
exact behavior of E(H,) (the lower order terms may be useful elsewhere),
and the method may perhaps one day be extended to treat var(Hy) in
similar manner.

Devroye and Reed (1995) provided the first analysis of the height that did
ot require any results from the theory of branching processes. Instead, they
mark certain paths to leaves in the split tree that corresponds to the binary
search tree, and apply the second moment method to compute bounds on
probabilities. Interestingly, the marked leaves are sufficiently spread out to
make this method work. This method was later generalized, via the notion
of leading sequences, to common branching random walks, by McDiarmid
(1995) (see Theorem 4.5). They were able to show that

. 157 _
nllr};Pr (lHn -7logn| > logzloglogn) =0.

(Note that 13y/log2 = 92.2933.....) Using & surprisingly elementary recur-
sive argument, Robson (1997) showed that for any ¢ > 0, infinitely often, we
have

8y
E(|H, - E(H))) < g —dte.

In fact, if
sup (E(Hon) - E(Ha)) < 00,

then his method allows one to conclude that
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supE(|H, - E(H,)|) < cc .
n

If we knew E(H,,} down to O(1) terms, we would be done, at least for first
moment deviations.

Finally, we just learned from Jean Jabbour (1998) at the University of
Versailles that he has a proof of Theorem 2.1 based solely on martingales.
This may be yet another path along which to proceed.

4.5 Bibliographic Remarks

For general background information see, for example, Asmussen and Hering
(1983), Athreya and Ney (1972), and Harris (1963). Lemma 4.3 takes elements
from Kingman (1975), Biggins (1977}, and Devroye and Zamora (1997). The
minimal displacement B, was compared by Durrett (1979) with that of the
independent tree model, in which all n-th generation individuals have inde-
pendent values of their common distribution. Bramson (1978) also worked out
the finer behavior of B, when the displacements are gaussian, or in general
when particles describe Brownian motion and split at random times. Biggins
(1990) derives a central limit theorem for Z,(.) when E(N)log N < 00, where
N is the number of offspring, Lemma 4.8 is implicit in many older references,
such as Rubinstein (1982), Smith (1984) or Devroye (1986s)

5. Crump-Mode-Jagers Process

8.1 Introduction

The Crump-Mode-Jagers (or cMP) branching (Crump and Mode, 1968) starts
with a single ancestor born at time ¢ = 0. Z;(t), the number of children
born to the ancestor before time ¢ is an arbitrary counting process. The
children of the ancestor, from their births, behave independently of one an-
other and of their parent, producing children at random according to random
processes with the same joint distribution as Z,(.). Their children produce
children in the same way, and so on. We speak of a Poisson CMP branching
process if the between-birth intervals are exponentially distributed with pa-
rameters Ag, Ay,... respectively. Thus, births occur at intervals distributed
as o/, Er/Xy, ..., where the E;'s are independent and exponentially dis-
tributed random variables. Note that if A; = 0, for some ¢, then the number
of offspring of an individual can never exceed i.

'y
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If we link each individual with its parent, then we obtain a tree, and the
notion of & generation becomes meaningful again. Several random variables
are of interest here:

A. 1, the time at which the tree has exactly n nodes.
B. B, the time of the first birth in the n-th generation.
C. Hy, the height of the tree at time t,.

D. Z,, the number of individusls in generation k.

E. 2(t), the number of individuals at time .

F. H(t), the height of the tree at time .

The reason CMP processes are important to us is because of the following
connection with random trees that can be grown in an incremental manner.
The random trees are grown one edge at a time, starting from the root. If
the degrees of the current nodes are denoted by D, then node i is selected
with probability proportional to Ap,. This node becomes the parent of a new
node. Observe that the order of the births in the Poisson CMP process follows
exactly that of the incremental random trees just described. Also, both are
probabilistically equivalent if we are only interested in studying depths and
heights of nodes. The last remark is rooted in the observation that if we
have a number of birth processes with rates A;, then process i gives the next
birth with probability proportional to A;. The model described above and the
continuous time embedding ides are due to Pittel (1984).

EXAMPLES.

A. The uniform random recursive tree (URRT) has A; = 1 for all i. It is grown
by choosing a parent with equal probability from among all possible
parents.

B. The random m-ary pyramid withm > 2 has \; =1 fori <mand }; =0
for i > m. Here we choose a parent uniformly at random from among
those parents with less than m children. See Mahmoud (1994).

C. In the random binary search tree, we have Ay = 2, , = 1 and A=
0. To see quickly why this incremental tree model corresponds to the
standard random binary search tree, consider a random binary search
tree constructed on the basis of an ii.d. sequence of uniform [0, 1) random
variables U;, U, ... Given that the tree has n - 1 nodes, the n-th node
has a rank that is uniformly distributed on {1,2,...,n}. That is, it falls
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in one of the n intervals on [0, 1] defined by the first n - 1 uniform random
variables. But each such interval corresponds uniquely to a potential new
node (these are called external nodes), and there are two external nodes
for a node with no children, and one for a node with one child.

D. The linear recursive tree has ); = 1 + b for some positive constant b.
To visualize this, consider b = 1. To grow a tree, we pick a parent with
probability proportional to one plus the number of children, For b = 1,
this is called a plane-oriented recursive tree by Mahmoud (1993) and
Mahmoud, Smythe and Szymariski (1993) (see also Szymaniski, 1987, and
Bergeron, Flajolet and Saivy, 1992). The last name is selected because of
the followig planar visualization: draw the tree in the plane, and place a
new edge uniformly st random as any possible child of any possible rank.
In this manner, a plane-oriented tree is defined.

There are three recent papers that provide an analysis of the height of
these random trees using Crump-Mode processes, Pittel (1994) for the URRT
and linear recursive tree, Mahmoud (1994) for random pyramids, and Biggins
and Grey (1996) in the more general setting followed in this chapter. The
height H,, can be analyzed using the Biggins-Hammersley-Kingman theorem
(Theorem 4.2). We conclude by working out the details for the various tree
models mentioned above.

5.2 The Main Result

The relationship between the CMP process and the branching random walk
is clear, if we let the displacements in the branching random walk be the
inter-birth times. As the branch factor may be unbounded (as for the URRT
case), we need to follow a general set-up. For simplicity, to ensure survival, we
assume throughout that Z){0c) > 1. For & general branching walk process,
we define the Laplace transform of the mean reproduction measure,

m(8) = E (Z e-"-)

where the Y;'s are the realizations of Z;(.), and the sum ranges over all
children of the root.

Example. For a Poisson CMP process, we have
Y1 =Ey/h, Y2 =Yi 1 Ey /), and so forth, so that
m(f) = Z;’: E (e—ﬂ(Eo/Ao+--~+E./A.))
=i n}=o E(e"*5/%)
= E:u n;=o flﬂ_;' :



286 Luc Devroye

Assuming that m(8) < oo for some 8 > 0, we note that s § — o,
m(f) - 0. Qbserve that a sufficient condition for this is that A; = O(j) as
j = o in the Poisson CMP case). Define

w(a) = inf {e"m(8): 9 >0} ,

and observe that logu(e) is concave (the infimum of a family of lines is
concave) and pi(a) is continuous on the interior of {a : u(a) > 0}.

Define Z,(t), the number of individuals in generation k with value at most
t. Biggins (1977) uses classical large deviation results by Bahadur and Rao
(1960) and Chernoff (1952) to prove the following;

Theorem 5.1. [Biggins, 1977; Hammersley, 1974; Kingmen, 1975|
I m{f) < o for some 8 > 0, then (E(Za(na)))* — u(e) as n = oo.
Furthermore, if s(a) < 1, then with probability one, Z,(a)(na) = 0 for all but
finitely many n. If o € int{e : p(a) > 1}, then lim, oo (Z,,(na))” " = pu(a)
almost surely. Finally,

lim 5 = 7d~—°-r sup{e : u(a) < 1}

n—=w n

almost surely, and v is finite.

We must relate B, to H,. Observe that at the moment t,, the family
tree is of size n and of height H, and that B(H.) and B(H, + 1) are the
first moments when the height becomes equal to H,, and H, + 1 respectively.
Therefore,

B(H,) <ty < B(Ha+1).
Since t, — 0o almost surely, we have H, — oo almost surely as well. Thus,
B(H,)/H, - 7 almost surely, and ¢,/H, — 7 almost surely. Therefore it
suffices to study t,.. This can be done on a case by case basis, s is routinely
done in the literature. However, there is & universal theorem:

Theorem 5.2. [Nerman, 1981; Biggins, 1995] If m(8) < co for some 6 > 0,
and Z(t) denotes the number of births up to time ¢, and

o« ¥ inf{g:m(p) < 1)
(which is positive and finite, as m(0+) > 1 and m(f) — 0 s § = 00), then
log Z(t)

T -0
almost surely as t — oo. Equivalently,
ta 1
I

logn «a

almost surely as n — 0.
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From this, we have:

Theorem 5.3. [Biggins and Grey, 1996] Under the conditions of Theorem

58,
H, 1

logn - oy

almost surely asn — x.

5.3 Application to Various Tree Models

In & few special cases, we have very refined information about ¢,,. This occurs
principally when we can describe the spacings between consecutive births
quite accurately. Consider first a branching process with one child per node,
and the inter-birth times are exponential of unit parameter, then ¢, is the sum
of n independent standard exponential random veriables, so that ¢,/n — 1
almost surely. Also, H, =n -1, m(6) = 1/(1 +6) and

600

820) .
148~ 0}
The minimum occurs at § = max(1/e - 1,0), so that

_fael™® (0<a<]);
“(“)'{1 (a>1).

ula) = inf {

Since u(1) = 1, we have ¥ = 1. This was just a (stupid) roundabout way
of checking what we already knew, that H,/n — 1 almost surely (as H,, =
n-1).

In the second example, let Y),Y;, the children of the root, be born at
independent standard exponential times. In this case,

2

m(t) = m

Clearly,

289"
= 1 M > .
u(a) mf{1+0 0_0}
The minimum occurs at § = max(1/a - 1,0), so that

- {1

Thus, 7 is the solution less than one of 2ae!~® = 1. To study ¢, note that we
have inter-birth times that are distributed as E,/2, Ea/3,..., Ey /n, where

'3



288 Luc Devroye

the E;’s are independent exponential random variables. From this, it is easy
to show that ;
n

g~
almost surely. Therefore, H,,/logn — 1/ almost surely. This may be cast
in the Poisson CMP model, as the first birth to the ancestor occurs at a time
distributed as E, /2, and the second at a time distributed as E; /2 + Ey, where
the E;'s are exponential random variables. Thus, o =2, A\, =1, and }; =0
for § > 2. This, of course, yields the same results,

In 2 third example, let the root have children whose times of birth are
distributed like a Poisson point process of unit rate. Thus,

m(o)=i(li+o)1 -3

j=l
Therefore,
eOa
wla) =inf{7 :020} .
The minimum occurs at § = 1/a, so that
plo)=ea.

Thus, 7 = 1/e. The study of t, is equally simple, as ¢, is distributed as
E/l+E/2+ -+ Ey_yf(n - 1). To see this, note that if k elements are
alive, the time until the next birth is distributed as Ey/k, as the minimum of
k independent exponentiual random variables. Thus, as before, t,,/logn — 1
almost surely. It is easily seen that Hy,/logn — 1/ = e almost surely, This
result for the uniform random recursive tree was first obtained in Devroye
(1987).

Our fourth example involves the plane-oriented recursive tree. In this
case, if a node v has degree d(u), then its probability of making a child is
proportional to 1+ d(u). This is like saying that the children of the root are
born with inter-birth times distributed like Ey, Eo/2, Es/3, and so forth. A
simple computation shows that

The computation of y is & bit more complicated (see Pittel (1994) or Mab-
moud (1994)). However, the inter-birth times are easy to deal with. Indeed,
the sum of the intensities of the birth process is ¥ (1 + d(v)} = 2u| - 1,
where {u| denotes the number of nodes. Therefore, the inter-birth times for
the tree are distributed like Ey /1, E3/3, .... Hence, it is not hard to show
that £,/ logn — 1/2 almost surely, so that H,,/logn — 1/(2y) almost surely.
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In the random m-ary pyramid, we have m(6) = {1 - (1+6)~™}/6. One
can easily see that for m = 2, a = (v/5 - 1)/2 (Theorem 5.3), but y requires
numerical computation. See Mahmoud (1994).

Finally, for the linear recursive tree, Pittel (1994) and Biggins and Grey
(1995) show that m(f) = 3#/& for 0> b, 80 a = 14, u(a) = ae'**, and
4 is the unique root of ae* = 1. Thus, Hy/logn — 1/(y(b + 1)) slmost
surely as n — 00.

1n 2 Bellman-Harris set-up, the whole litter is born simultaneously at time
T. 1 there are b children per parent, then we have m(6) = bE(e*T). When
T is exponential and b = 2, this is the celebrated Yule process. Clearly,
m(6) = 2/(1 + 6), exactly as for the binary search tree discussed earlier.
Thus, the height behaves in a manner similar to that of the binary search
tree, even though the CMP processes are very different indeed. When T is
not necessarily exponential, and the litter size follows a general distribution,
we obtain the Bellman-Harris branching process, which is the subject of the
next section.

5.4 The Bellman-Harris Branching Process

In 1952, Bellman and Harris described a generalization of the Galton-Watson
branching process by embedding it in continuous time. The (so-called age-
dependent branching) process is described by two parameters, a discrete dis-
tribution {p;,i > 0} for the number of children, as in a standard Galton-
Watson process, and a distribution of a strictly positive random variable T,
the time between birth and reproduction. With each edge in the Galton-
Watson tree, we associate an independent copy of 7. The process is started
with a single root at time 0. The elements are still grouped in generations.
The root element produces a litter of size determined by {p;} after a time T}
distributed as 7. Each individual in the litter reproduces in the same manner
and independently.

This model can also be used for deseribing the growth of the random
binary search tree. We take the point of view that we let the random binary
search tree grow by at each iteration picking an external node uniformly
and at random. This node becomes an internal node, gets removed from the
pool of external nodes, and produces two new external nodes, its potential
children. At any moment, there are n internal nodes if and only if there are
n+1 external nodes. If T is standard exponential, then given that there are
k external nodes at time t, by the memoryless property of the exponential
distribution, we in fact pick as our next node any external node with equal
probability. Thus, the order in which the nodes are chosen is identical to

'y
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that for growing the random binary search tree. In notation of the previous
section, the tree obtained at the time ¢ when there are exactly n +1 external
nodes is a random binary search tree on n internal nodes. Recall that the
process in which T is exponential and the number of offspring is always two
is the Yule process, or binary fission (Athreya and Ney, 1972, p. 109). For
different distributions of T, we obtain different kinds of random binary trees.
We will not explore the Yule process construction of random binary search
trees any further, except for the mention of the following theorem below,
valid when T is standard exponential.

Theorem 5.4. Assume that {p;} hos finite second moment and that T is
standard ezponential. Let Z(t) be the number of particles alive ot time t in
o Bellman-Harris process. Then Z(t)e" tends almost surely to o random
variable W,
Z(t)-ew £
()

where 0% = var(W). Finally, conditioned on W, U(t) < Z(log(1 + /W) is
a unit rate Poisson process in t. That is, for any 0 < {; < -+ <tk < 20, and
integers n; 2 0, 2 < i < k, and Borel subset B C [0, 00),

Pr(U(ts) - Ult)) =nz,..., U(te) = Ulti1) =, W€ B)
= Pr(W € B[, Pr(P{t: - i-1) =)
where P(s) is a Poisson () random variable. Furthermore, U(0) = Z(0) = 1.

For the Yule process, the random variable W has the standard ezponential
distribution.

N(0,0%)

The Poisson representation in the theorem above is due to Kendall (1966).
If T is standard exponential, then in the Yule process, Z(0) = 0 and Z(t)
increases by one each time a particle gets replaced (as one dies but two
are born). Two interesting properties of the exponential distribution are the
following: if Ey, Es, ... ate i.id. exponential random variables, then
A. For any n, min(Ey, ..., E;) L %1
B. (The memoryless property.) For any ¢t > 0, Ey - ¢, given By > ¢, is
distributed as Ey.

Thus, the intervals between times of birth in a Yule process are distributed
like By, Ea/2, Es/3, ... Using these two properties repeatedly, we have

Pr(Z(t) > k) = Pr(Ey + Eo/2 + E3/3+ -+ + Byfk <)

=Pr(max(Ey, By, ..., Ex) < t)
=(1-¢Y)f
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s0 that everything is known about the distribution of Z(2). For example,

E(Z(t) =) Pr(Z(t) > ) =¢".

k20

In fact, at any ¢, Z{t) has the geometric distribution with parameter e~

6. Conditional Branching Processes

-

6.1 Introduction

Of particular interest is the conditional Galton-Watson process, or condi-
tional branching process, or simply CBP, in which we condition on N = n,
where N = Y, Z is the total size of the population, Z; is the size of
the population in generation i, and Zy = 1. These processes were studied
by Kennedy (1975) and Kolchin (1978, 1985), who made key connections be-
tween them and so-called simply generated random trees, introduced by Meir
and Moon (1978). These trees are uniformly picked in given collections such
as, for example, all binary trees on n nodes.

Several examples will be given in the next section. In the other sections,
we review some results for the distribution, size and height of the trees in
this model,

Consider a multiset of trees, that is, a set in which repetitions are allowed.
Let the weight £2(t) of a tree t be the number of occurrences of 2. Let |¢] denote
the size of ¢, i.e., the number of nodes contained in £. Then

=Y )

tit|=n
is the number of trees in this multiset with n nodes. The generating function
for {a,} is denoted by
y(z) = Z an2" .

n>0

We define a random tree T, of size n by

Pr(Ty =)= i = 2

where ¢ is & normalization constant. Thus, each of the a, occurrences of
elements in the multiset of trees of size 7 has the same probability. Therefore,
it is appropriate to speak of & uniform model if we can somehow distinguish
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between all £(t) copies of ¢ thrown into the multiset. This is illustrated in
the next section.

A particularly interesting multiset of trees is the simply generated family
of trees (Meir and Moon, 1978), which requires a descriptor

hud .
=Y ey,
i=0

where ¢ > 0, and the ¢;'s are nonnegative integers (usually, but not neces-
sarily, uniformly bounded in ). The notation ¢, y and c; is by now standard,
so we will adopt it as well. Consider ordered trees, that is, trees in which
the order of the children matters. For each ordered tree ¢, let D;(t) be the
number of nodes in ¢ with i children (successors). Then define

def TT ,Du(8)
an < i]Z'E'c,. :
The family of trees is aperdodic if ged{i > 0 : ¢; > 0} = 1, and periodic
otherwise. We define a random simply geneated tree T, of size n by
Pr(Th = t) = () fjy=n
where ¢ is 3 normalization constant. We note here that because we have

ordered trees,
y(2) = 26(y(2)) -
A proof is given in Theorem 6.4.

Next, we define a Galton-Watson branching process with parameter § > 0
with offspring distribution

oft

= —,120.
)
Here we assume that ¢{6) < oo. It is easy to verify that (po,,...) 8 in-
deed a probability vector. Furthermore, the expected number of offspring, an
increasing function of 4, is

To-T =
i 9(6) ¢

Let 7 be the smallest positive root of ¢(r) = 7¢'(r). Then for § = 7, the
branching process is critical, while for 0 < @ <, it is subcritical. We now

define CBP with parameter 1 as the above Galton-Watson process conditioned
on the total population size n, and let T, denote a realization of CBP.

The crucial properties of the two random trees defined above are captured
in Theorem 6.1, which states that the conditioned Galton-Watson tree T, has
the same distribution as the random simply generated tree!

Branching Processes 203

Theorem 6.1, [Kennedy, 1975 The distribution of T, is independent of
8¢ (0,7]. Furthermore, T, £ T/, where £ denotes equalty in distribution.

Proof. The first statement follows from the second one. Let t be an arbitrary
fixed ordered tree with |t| = n. Let T* be a family tree produced by the
(unconditioned) Galton-Watson process. Then

Pr(T" = t) = [[i59 (Pr(Z, = 1)) )P0

i\ Di(t)
= Hizo (%'(%S)
= oo (p) 2P0 x oL 40
= 0(t) x (9(8)) " x 6!
= 0t) x (¢(8) " x 671 .
Also,
Pr(T*|=n) =}, |z|-n P" =t)
= Lrigen (¢(9) )" x
= aq(6(8) " x 6",

where ¢, is the number of trees in the multiset of size n. Therefore, with

it =

. (T' = i) _ o)
=tT"|=n) = .= .
But this is proportional to £2(¢), so that T, is indeed distributed as T* con-
ditional on [T*| =n, that is, as T, 0

Trees are used in symbolic computations to represent formulas, with in-
ternal nodes representing operators or functions, and leaves operands. These
are also called expression trees in the literature on parsing and the evalua-
tion of expressions in higher level languages. In the analysis of such objects,
it is natural to assume that all objects are equally likely. For example, in
ordinary trigonometric expressions on three operands, z, y and z, there are
internal nodes with two children (+ and -), internal nodes with one child
(sin, cos, tan, cot), and leaves with zero children (z, y and 2). The nodes
are thus labeled, with a different number of labels according to the type of
tree. In the formalism of the previous section, we have ¢y = 3, ¢4 = 4 and
¢y = 2. As y(2) = z4(y(2)), we may get exact or asymptotically accurate
expressions by analytic methods: see Vitter and Flajolet (1990} for & survey
of such methods, based on Lagrange inversions and singularity analysis. For
expected values of various additive parameters, this is indeed a natural route
to follow.

I3
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6.2 Examples of Trees in the Uniform Random Tree Model

(1,1). Several choices of descriptors lead to various types of trees. Consider
first the choice (1, 1). The weight of a tree ¢ is one for every tree consisting of
just leaves and one-child nodes. Thus, the multiset will contain one of each
of these trees, which in fact are just linked chains. The CBP has probability

b
vecior _1_— _0_
140'14+6/°

But clearly, conditioned on the size of the tree being n, we see that it does
1ot matter which @ we picked. The tree has height exactly n - 1. One can
easily verify that the same result would have been obtained if we had selected
the descriptor (e,b) for any a,b > 0. Therefore, interesting trees only occur
when ¢, > 0 for some i > 1.

(1,0,1). The next simplest choice is (1,0, 1). Here we place in our multiset
trees with only leaves and two-child nodes. Such trees must have an odd
cardinality. If |t] = 2k + 1, there are necessarily  + 1 leaves and k two-child
nodes. The weight of each tree of size n = 2k + 1 is thus identical and equal
to 1 (as all nonzero ¢,'s are one). Hence, each tree in the multiset is different,
and all possible trees of the type described above are present. The family is
the family of full binary trees. Again, all such trees occur equally often in the
multiset.

(1,0,m). If we take (1,0,m), then the weight of each tree of size n = 2k+1
is mt, and within this class, all trees occur equally often in the multiset.
Therefore, there is no difference between random simply generated trees for
{1,0,m) for any m > 0.

(1,2,1). The next member on the ladder of complexity is (1,2,1). Here
we have trees with nodes having up to two children, and the weight of a tree
with 1 nodes of which there are | leaves is given by 2*~(%~1), g3 the number
of nodes with two children is [ - 1. Interestingly, not all trees with n nodes
have equal representation. We can however force a distinction on them by
additionsl ways of distinguishing between trees. For example, for each node
with one child, we may make the child a left child or a right child of its
parent. For a tree with n — (2 - 1) such nodes, there are 2"~*'=1) possible
combinations of left/right distinctions. Let us attach exactly one of these
combinations to each of the 2%~ trees with n nodes and { leaves in our
multiset. Then, each tree in the multiset is distinct, and is in fact an ordinary
binary tree. And all binary trees on n nodes are indeed in the multiset. An
equivalent multiset (for our purposes) would have been obtained with the
choice (1, 2m,m?) for any m > 0. We will also refer to these trees as Catalan
trees.
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(1,m,1). If we pick (1,m,1), then it is necessary to create a designation
for each single child, and we could associate a label between 1 and m with
each such lone child. This assures a bijection between all such “labeled”
trees with up to two children per node and the trees in the multiset. With
m = 1, labeling is superfluous, and one obtains the so-called unaty-binary
trees, which are the ordered trees with up to two children per node.

(1,m,m?). If we pick (1,m,m?), then we color esch child in one of m
colors, and note that with all possible colorings, all trees in the multiset occur
only once, and that there is a bijection. The family is that of trees with up
to two children per node, and all nodes except the root are colored in one
of m colors. In the CBP, we may set 6 = 1/m to obtain the reproduction
distribution (1/3,1/3,1/3). Thus, the shape properties of all these trees are
identical, regardless of the choice of m.

Binomial. Position trees of branch factor b are trees in which each node
has up to b children, and each child is given a position, and only one child can
occupy each position. With b = 2, this yields the binary trees. For general
b, it is not hard to see that the descriptor must be binomial of the form

(1, 0,0 (), (:)) Ternary trees are obtained by using the descriptor
(1,3,3,1), for example.

(1,1,1,...) or geometric. All ordered trees without restrictions on the
number of children are obtained by the infinite descriptor (1,1,1,...). These
are also called unlabeled rooted ordered trees or unlabeled planted plane
trees, or unlabeled rooted plane trees, or just planted plane trees. For the
CBP, we must take § < 1,50 that ¢(8) = 1/(1-8), and the basic reproduction
distribution is given by (1/(1 - 8),6/(1 ~6),...,8*/(1 - 6),...), that is, &
geometrically decreasing probability vector. From Theorem 6.1, we note that
eny 8 € {0,1) yields the same random tree in the conditioned branching
process model. We might thus as well take 8 = 1/2. It takes just a moment
to verify that all unlabeled rooted plane trees with non-root nodes colored
in one of m colors are obtained from (1,m,m? m?,...). For the CBP, we
require therefore § < 1/m. But then the CBP is exactly as in the casem =1
(geometric), and thus this choice of descriptor is equivalent to (1,1,1,...) if
we want to study shape properties of the trees, unrelated to color choices.

(1,0,0,....,1). If the only nonzero coefficient are the 0-th and the ¢-th, with
t >0, we obtain the so-called t-ary trees of Flajolet and Odlyzko (1982).

(1,1,2,3,4,5,...). A node with  children gets a label between 1 and k,

which may indicate which of its children (in the ordered tree) is “best’. We
will call these trees favorite son trees.
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If we remove structure in the order, by removing the order of the children
altogether, or by replacing the total order by a circular order or a partial
ordering, we in fact allow ¢;'s to take values Jess than one. This will not be
pursued here. See, however, the section on Cayley trees, where & connection
is made with Poisson-distributed CBP's.

6.3 Catalan Trees and Dyck Paths

There are specially pretty derivations of the equivalence between a CBP and a
uniform random Catalan tree. We first consider 8 nonnegative random walk
in which all steps are +1 or -1, we start at X =0, and have Xpq = 0. If we
replace +1 and -1 by ¢ and b respectively, then the sequence of 2n symbols
thus obtained is a Dyck word. The walk is also called a Dyck path. If a, is
the number of different Dyck paths of length 2n, by conditioning on the place
2p of the first return to the origin, we have

n-1
= E Gpln-1-p
p=0

and g, = 1, ap = 1. It is well-known that

the n-th Catalan number. There is a bijection between a Dyck path of length
2n and a binary tree on n nodes. Draw the binary tree in the standard manner.
Write an a to the left of every node, and a b underneath each node. Then
start at the root and walk around the tree by following edges just like a boat
would follow the shoreline, and note the sequence of as and b's. The order
of visit is called preorder. The sequence forms a Dyck word as the number of
a's at any point must exceed the number of b's. This bijection is useful for
many purposes but for the study of parameters as the height of the random
binary tree, some extra work is needed. We just note that the rooted binary
trees were correctly counted as far back as Cayley (1858).

Another bijection may be considered, but now with rooted ordered trees
with n+ 1 nodes (and thus » edges), by placing next to each edge an a to the
left and a b to the right, and forming a Dyck word by the walk of the former
bijection. This walk will be referred to as a Harris walk. The correspondence
with a CBP can be seen as follows. Let Xj, Xa,... be Lid. random variables
taking the values +1 and ~1 with equal probability. Let §, = ¥.,., Xi be
the partial sums. Consider only X; = 1. Define p as the time of the first
return to zero: p = inf{n : S, = 0}. Let py,..., pn be the times less than p
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with S, = 1. We set py = 1, and note that py = p - 1. Define ¢, = p; ~ py,
ta = pg — p1, and 50 forth. Note that

1

Pr(N=k)=W‘

where Pr() denotes always conditional probability given X; = 1. This is
best seen by noting that at each passage at one, the random walk has exactly
50% probability of returning to the origin. Thus, N is indeed geometrically
distributed of parameter 1/2. Furthermore, given N =k > 1, the excursions
above one of lengths ),...,¢y are independent and have the same distribu-
tion as the original positive excursion Sy, ..., S,. This is just a manifestation
of the strong Markov property applied to the ordinary random walk. We now
construct the corresponding ordered tree explicitly: take a root, and give it
N children, and associate with the children the positive excursions of lengths
ti,-..,tn tespectively. Constructed in this manner, we note that the corre-
sponding tree is nothing but a critical Galton-Watson tree with reproduction
distribution Pr(Z = k) = 1/2*1,k > 0. The bijection is formidable as it not
only yields the desired connection, but it also is rather direct: for example,
the maximum of an excursion corresponds to the height of the Galton-Watson
tree, and the length of an excursion is twice the size of the Galton-Watson
tree.

One may use the well-known bijection between rooted ordered trees on
n + 1 nodes and binary trees on n nodes: first copy all # + 1 nodes from
the ordered tree to the binary tree; then associate each parent-oldest child
edge in the ordered tree with a parent-left child edge in the binary tree,
and associate with each node-next sibling relationship in the ordered tree a
parent-right child edge in the binary tree. Finally, remove the root and its left
edge from the binary tree. This yields yet another (but slightly more indirect)
bijection between Dyck paths and binary trees. The CBP relationship follows
easily: if N is the number of children of the root in the ordered tree, then
the binary tree’s root (before removal) has a left child if N > 0. A node in
the ordered tree regarded as a child in & family has a number Y of younger
siblings that is again geometric (1/2) by the memoryless property of the
geometric distribution. Thus, it has a right child in the binary tree if Y > 0.
To make a Galton-Watson process, place in the ordered tree a pair (U, V) =
(Ins0,{y>0), and observe that all these pairs in the tree are independent,
and that U and V are also independent. Thus, the binary tree with a random
number of nodes and after removal of the root is indeed a Galton-Watson
tree with reproduction distribution (py, p1,2) = (1/2,1/4,1/2).

We should also mention that for symmetric random walks with zero mesn
having continuous distributions, Le Gall (1989) has proposed & beautiful
tree construction that leads once again to a binary Galton-Watson tree with
(PO,P],?Z) = (1/2r1/41 1/2)
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6.4 Cayley Trees

The uniform random labeled tree £y, is the tree picked uniformly from the
17~ trees on vertices {1,2,...,n}. The uniform random rooted labeled tree
(or rooted nonplanar tree) Ry, is the tree picked uniformly from the n”~!
trees on vertices {1,2,...,n} in which one vertex is declared to be the root.
Cayley (1889) studied £, and Riordan (1960) counted various related species
of trees , including Ro. Rényi and Szekeres (1967) showed that the expected
height Hy of Ry is ~ /2. They also showed that the limit distribution
of H,/\/m is the theta distribution (see further on). Rényi (1059) showed
that the number of leaves is asymptotic to n/e, while Meir and Moon (1970}
showed that the expected distance between two nodes taken at random is
asymptotic to /n/2.

Kolchin (1986), just Like Meir and Moon (1978) and Moon (1970}, studies
L, end Ry, via generating functions, establishing a tight relationship with
cBP's. More probabilistic approaches may be found in Grimmett (1980) and
Aldous (1988, 1991). The purpose of this section is to point out the key results

in the latter papers.

Consider a Poisson (1) Galton-Watson tree P. Make P a labeled tree by
randomly labeling the vertices 1,..., [P{. 1f ¢ is a specific rooted labeled tree
(having |t] vertices), then

e'l”
Pr(P=t)= W ,
To see this, order all the sets of siblings in ¢ by increasing labels, and let
Ny,..., Ny be the number of children of all nodes, listed in preorder. Then,

[T,

1 e

1t

PriP=1)= [ 17, =0
i=1

where the first factor accounts for matching the geometrical layout of the
tree (it uses the independence of the number of offspring, as well as the
Poisson property), and the second factor is the probability of getting the
random labels just right. Therefore, conditional on |P| = n, we see that P is
uniform on labeled trees of size n, and is thus distributed as Ry This property
allows us to study the CBP with Poisson (1) offspring. The calculation above
establishes the connection and may be made into a construction of R The
theorems about CBP's then provide information on random Cayley trees.

There is a second construction due to Aldous (1988). It requires iid.
random variables Uy, ..., U uniformly distributed on {1,...,n}. First we
make 1 the root. Then with i varying from 2 to n, we add edge (i, min(i -
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1,U4)). Then we remove the labels to obtain a random rooted (nonuniform)
uniabeled tree. It can be made in & tree distributed as R, by randomly
assigning labels.

Grimmett (1980) proposes yet another related process, and Aldous (1991)
builds on it to derive a tool for studying local properties of such trees, For
each k =0,1,2,..., we create independent Poisson (1) Galton-Watson trees,
regarded as trees with root r, and other vertices unlabeled. Then we connect
T0:T1,72, .- 83 & path, make rg the root, and delete the labels. For fixed &,
the vector of k i.1.d. copies of P is close in total variation distance to a random
rooted unlabeled tree with a distinguished path of length  ~ 1 attached to
it. This connection will not be explored here.

Finally, we mention the Priifer codes that are so useful in the generation
and counting of all labeled trees (rooted or unrooted). The properties that
may be deduced based on these codes are not directly linked to branching
processes, and will thus not be studied here.

6.5 Fringe Subtrees

Following Aldous (1990), for a finite rooted ordered tree T we call T* the
subtree rooted at & randomly and uniformly picked vertex from T. Aldous
observed that in many (random or non-random) tree models, T* tends in dis-
tribution to a certain random tree as {T| — oo. This has of course immediate
consequences for the parameters of T*. For example, we have the following,
(see Aldous, 1990):

Theorem 6.2, Let ¢ be an offspring distribution of a Galton-Waison pro-
cess, with E(¢) = 1, Pr(f = 1) < 1, E(¢%) < 00 and ¢ non-lattice. Let T
be the Galton-Watson tree (note |T| < 00 almost surely), and let T, be T
conditional on |T| = n. Let T, be a tree rooted at a random verte of T,,.
Then for all trees t,

Jim Pe(T; =1) = Pr(T=1).

Discussion. In this remarkable result, note that the limit distribution of a
fringe tree of the CBP is the unconditional Galton-Watson tree! As a result,
we may immediately deduce properties of local parameters from this. For
example, the degree of a random vertex in a CBP tends in distribution to
the degree of the root of T, that is, €. Also, |T%| 5 |T]. Note also that the
number of vertices in a CBP within distance k of a uniform random vertex
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tends in distribution to the number of vertices within distance k of the root
of T, that is, g+ 2y +- -+ + 2y, where Zg, Zy,--- are the population sizes in
the tree T.

6.6 Size of a Galton-Watson Tree

Let T be a Galton-Watson tree that is either critical or suberitical. We know
that if £ is the offspring distribution and Pr(¢ = 1) < 1, then [T] < o0
almost. surely. In fact, it is remarkable that the distribution of [T| can be
solely deduced from the distribution of £ by a simple device discovered by
Dwass (1969) and rediscovered by Kolchin (Kolchin, 1977, 1978, 1980; see
1986, p. 104).

Theorem 6.3. Forn> 1,

Pr(Tj=n)= Dt th=no ]

n

where 1,6y, -+ are i.i.d. and distributed as §. Let T\, Ts,... be independent
and distributed a5 T. Then, forn2m20,n2 1,
_mPrfy 4+ +éa=n-m)

Pr(T\[+---+|Tw| =1) = " .

Proof. It suffices to prove the more general statement. Clearly, if 2) is the
number of offspring of the root of T}, assuming m > 1, we have

Pr(Ty/ ++ + [Tl =) = LyqnPr(Til + -+ [Tn| =021 = )
= 2.?;[;"p.7pr(|Tll +.0 4 IT""H‘II =N- l) ,

where p; = Pr(¢ = j) and Z; = ¢ is the number of children of the root.
We easily verify the Lemma form =0 andm=1,n=1asPr(|T| = 1) =
Pr(£, = 0). The remainder is by induction on n (for all 0 < m < n), and we
have

Pr(Til+-4[Tnl = n) = Ty 2P|+ Dol 4o+ g =2 - 1)

=Y S PG G bt =M -))
{by the induction hypothesis)
=BPr(f +igt b =n-m)
A Pl th b b =)
= (B4 ) Pttt =nom)
(see below)
=8PrE +i+ +a=n-m).

We are done if we can explain the last step. But clearly,
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PR=E {6+ tb=n-m)
Loy IPHE=HPIHE 4 fa=0-m-))
Pr{f1+-a=n-m)

This concludes the proof of Theorem 6.3. ]

Theorem 6.3 makes a crucial connection with sums of independent random
variables, and for this, all is known. For example, following Kolchin (1986,
p- 105), we note that if £ has mean one (as in a critical branching process),
variance o2 and maximal span d, when n - 1 tends to infinity over multiples
of d,

Pr({T] = 1)~ ———
V2n3i%g
It is easily seen that E{|T]) = 00, a result that also follows by noting that
IT| = Yicg Z: and E(Z;) = 1 for all 4.

Finally, the size of a Galton-Watson tree may also be determined by
analytic methods. Let y(s) be the generating function of |T|. Then we have

Theorem 6.4. The generating function y(s) = E(s'"') of |T| satisfies

y(s) = sf(y(s))
where f is the generating function of € in the Galton-Watson process.

Proof.
y(s) = B(sT)
=sE (3|Tx|+---+|T(|
=sE ((E (sm)¢

=B ((y(s))¢)
= sf(y(s)).

The asymptotic form of yn, the n-th coefficient of y(s), and thus y, =
Pr{[T| = n), may be obtained by singularity analysis (Meir and Moo, 1978;
Pélya, 1937). For exact formulas, one may apply Lagrangian inversion and
note that

Yo = % x coefficient of u™~*(f(u))" .

See Vitter and Flajolet (1990) for more on this method, and for additional
references.
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6.7 Height of a Galton-Watson Tree

Let H,, be the height a Galton-Watson tree T conditional on |T| = =. By
equivalence, we will refer to these trees by the names used in the combinatorial
literature, based on the equiprobable equivalent trees thus obtained.

It is known that E(H,) ~ v/ for the planted plane trees (Debruijn,
Knuth and Rice, 1072), E(H,) ~ v/27n for the raoted labelled trees (Cay-
ley trees) (Rényi and Szekeres, 1967), E(H,) ~ v3mn for the equiprobsble
unary-binary trees (Flajolet and Odlyzko, 1982), and B(H,) ~ Vdrn for the
equiprobable binary trees (Flajolet and Odlyzko, 1982). For the last model,
the expected depth of a random node is asymptotic to J/mn (Vitter and Fls-
jolet, 1090). Rényi and Szekeres (1967) also computed a limit law for H,/ I

. i, _
nlgrchr (—\ﬁ—; < z) =H(z),

a2 oo g —ntityet
H()= TZJ‘:]]C b 2‘12
2 1=

j=-w

where

We will call H the theta distribution function. The theta distribution hes first
moment /7, variance 7(x — 3)/3 and general s-th moment w(1+3/ 2.)(.9 -
1)¢(s). Interestingly, the theta distribution describes the limit for all simply
generated random trees. This result, due to Flajolet and Odlyzko (1982),
who used analysis of singularities of generating functions in their proofs, may
be formulated as follows. Let ¢, cy, - - - define the simply generated family of

ordered trees, and let
y(2) = 28(yl2))

where y(z) = 3,5, yn2" and gy is the total number of trees of size n, and
¢(y) = Zrzo oy

Theorem 6.5. [Flajolet and Odlyzko, 1982| For simple families of trees
corresponding to the equation y = 26(y) ond for n = 1 mod d with
d = ged{r : ¢, # 0}, if we set
_ %)

ErTe
with 7 the smallest positive root of the equation §(r) - 7¢/(7) =0, we have

LY

Vin
Furthermore, all the moments of Hy//3n tend to those of H. In particular,

lim Eg{_—") =\ur.

n—00 n
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The above result also applies to Cayley trees, even though their gen-
erating functions do not satisfy the required equality. However, if y(z) =
Yous) Wn2" /!, then y(2) = 2¢(y(2)) with ¢(y) = e¥, which corresponds to
the choices ¢, = 1/r!. Combinatorists know that ye™¥ = z has & formal

solution
n-2

> n
- n
”‘Z(n-l)!’ )

n=]

when |2| < 1/e (Riordan, 1960). From this, we also obtain the number of
unlabeled trees on n nodes.

By the connection of the previous section, we note that indeed, the limit
law given above is applicable to random Cayley trees. In this case, we have
112
= 2¢ (TI] =2
o(r)¢"(r)
for any value of 7. Hence, E(H,) ~ V21, a result due to Rényi and Szekeres
{1967).

6.8 Components in Random Graphs

We conclude with Karp's (1990) construction of a branching process for
studying the components of random graphs. We place this material here,
as it relates to sizes of extinct branching processes. Random graphs were in-
troduced by Erdds and Rényi in 1960: we have an edge probability p, possibly
depending upon n, and call G;, , the graph on = labeled vertices obtained
by independently adding each of the (3) possible edges with probability p.
Palmer (1985) gives & great account of the growth of Gy, as p increases,
At least in the study of the behavior of G, for p < 1/n, thus for sparse
graphs, branching processes come in handy. So we set p=¢/n, ¢ < 1. Around
p=1/n, Gy, , undergoes a dramatic metamorphosis, as one giant component
emerges which has size &(n) when ¢ > 1. Karp's method is reconsidered
in Alon, Spencer and Erdds (1992), where it is used to analyze the giant
component in some detail (the case ¢ = 1). We will fix ¢ < 1 for simplicity.

Consider a fixed vertex u. We declare all other vertices alive, dead, or
neutral. Originally, at discrete time ¢ = 0, only u is alive, and all other nodes
are neutral. Let ¥ be the number of live nodes at time . We set ¥y = 1. Each
time unit, we take & live vertex w, and check all pairs (w, w') with w' neutral
for membership in G. If (w,%') is indeed an edge, then we make w’ live. after
all such v’ are awakened, w dies, and we declare Y, the new number of live
vertices. When there are no live vertices (¥; = 0), the process terminates,
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and we equate C(u), the component of 1, as the collection of dead vertices.
Clearly, we have

Yt = Yt-[ + Zg -1.
Each neutral u’ has independent probability p of becoming live, and no pair
(w,w') is ever examined twice, so that the conditional probability of the
existence of edge (w, u/) is always p. As t = 1 vertices are dead and ¥;. live,
it is easy to see that

2. £Bn-(t-1)-Yi0p)

where B(.,.) denotes the binomial distribution. Let T be the smallest ¢ for
which Y; = 0, the time of extinction. Also, T = |C{u)}. We continue this
definition recursively, and note that for all ¢,

VEBm-11-(1-p))+1-t.

Proof. Define N, = n - t - Y, the number of neutral vertices at time ¢. We
will show that N, £ B(n - 1,(1 - p)t). Clearly, Ny = n - 1. We argue by
induction, and note that

N=n-t-Y
=n-t-Bn-(t-1)-Y1.p)- V-1 +1
= Ni-y - B(Ni-y,p)
= B(Ni-1,1-1) .

The property above is valid for all p. For p = ¢/n, when ¢ and ¥, are
small, the binomial law is close to a Poisson law with mean ¢. So, 2, is close
to B(n, c/n), which s close to P(c),  Poisson random variable with mean c.
Thus, roughly spezking, the component grows at u like a branching process
with offspring distributed as P(c). For fixed ¢, let Yg, Y7',..., T*, 2}, 2.,
refer to the P{c) branching process, and let the unstarred random variables
refer to the random graph process. More precisely, the branching process
starts with one live individual, so that Yy = 1, and at each time unit, one
live individual is selected at random. It produces & P(c) number of children,
and then dies, so that

Y=Y, +%-1
where Z;,Z;,... are 1i.d. P(c) random variables. Let T* be the least ¢ for
which Y* = 0. If no such ¢ exists, we say that 7* = 0. From Theorem 1.1, if
E(P(¢)) = ¢ < 1, with probability one, the process dies out, so that T* < 00
almost surely.

Let H,H" denote the histories of the processes up to time ¢, that is,
H=(Z,...,2) edd H* =(Z;,...,Z;). Then
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t

Pr(H' = (z,...,4)) = HPr(P(c) =z)

i=1

and
t
Pr(H=(n,...,) = [[ Pr(Zi=2),
i=l
where Z; is binomial B(n =1-2 -+ - z_1,¢/n). fm~nand cand i
are fixed, we have

=Cut
Pr(B{m,¢/n) = i) - e—z,—°

8s 1 — 0o, This may be used to show that
n]i_{r;Pr(H =(z,...,5)) =Pr(H" = (%,...,4)).

Thus, for any fixed ¢, lim,.,, Pe(T =t} = Pr(T” = t). This may be used
naively in two ways. First of all, T* is the total size of a P(c) Galton-Watson
process. Therefore, 8s n — o,

Cw)| 57"

From Theotem 6.4, the generating function for P(c) is f(s) = e“*~Y), while
the generating function y(s) for T* is the solution of y = f(sy), i.., of

y=elo
This describes the asymptotic distribution of the size of C(u) in its entirety.

Secondly, if we consider C,, = max, |C{u)| over the nodes u of G,, /s,
then we can easily prove the known result (see Palmer, 1985) that Pr(C, >
Blogn) = o(1) for some 3 > 0. To see this, observe that for any ¢, and for
A > 0, by Chernof’s bounding method,

Pr(T > ¢) <Pr(¥, > 0)=Pr(B(n-1,1- (1-p)}) > t)
< Pr(B(n,te/n) > t) < E (ehBinte/n)-ht)
=eM(1+(eh- l)tc/n)" < ¢ th(e"-1)0
= ¢~tlog1/e)=(1-6)  (take b = log(1/c))
def -at
=™,

Thus,
Pr(C, > Blogn) < ne2818n = pl-o8 _, ¢
if we pick 8> 1/a = 1/(log(1/c} - (1 - ¢)).
We leave it as an interesting exercise to show that the P(c) branching

process of this section, with ¢ > 1, conditional on extinction, has the same
distribution as the (unconditional) P(c') branching process, where ¢’ = cg,



306  Luc Devroye

and g is the extinction probability of the P(c) branching process, that is,
g = el (Note that ce™ = ¢'e™¢".) This fact is used in Alon, Spencer
and Erdés (1992) to show for example that the structure of Gy o/ With the
giant component removed is fundamentally that of Gy /m (Without any
removels), where m, the number of vertices not in the giant component,

satisfies m ~ ny.

6.9 Bibliographic Remarks

Meir and Moon (1978) studied the expected depth E(D,) from root to nodes
in simply generated random trees, and showed that E(D,)/vn — ¢, where
¢ is again a constant only depending upon the species of tree. The work of
Flajolet and Odlyzko (1982) is continued by Gutjahr (1993), who derives
asymptotics for expected values of various other tree parameters such as the
number of nodes at level k and the total path length. Even tree models with
trees of given size and height are considered there. The branching process
approach was used by Kennedy (1975) (see also Kolchin, 1986) to obtain
the limit law for Z) 7 /(y/nt) conditional on N =n 85 n = X, where Zj
is the size of the k-th generation. Thus, the bulk of the points is indeed at
distance ©(/n) from the root. Finally, one might study the height of random
binary trees, where each edge has an independent length drawn from & fixed
distribution on the positive halfiine, Height is then defined as the maximal
sum of edge lengths of any path to the root. For the exponential distribution,
Gupta, Mesa and Waymire (1990) showed that this height satisfies the same
limit law as the standard height modulo a constant multiplicative factor,
Their proof uses convergence of all moments.
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