

PRACTICAL OPTIMIZATION
Algorithms and Engineering Applications

PRACTICAL OPTIMIZATION
Algorithms and Engineering Applications

Andreas Antoniou
Wu-Sheng Lu

Department of Electrical and Computer Engineering
University of Victoria, Canada

Spri inger

Andreas Antoniou Wu-Sheng Lu
Department of ECE Department of ECE
University of V ictoria University of V ictoria
British Columbia British Columbia
Canada Canada
aantoniou@shaw.ca wslu@ece.uvic,ca

Library of Congress Control Number: 2007922511

Practical Optimization: Algorithms and Engineering Applications
by Andreas Antoniou and Wu-Sheng Lu

ISBN-10: 0-387-71106-6 e-ISBN-10: 0-387-71107-4
ISBN-13: 978-0-387-71106-5 e-ISBN-13: 978-0-387-71107-2

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

To
Lynne

and
Chi'Tang Catherine

with our love

About the authors:

Andreas Antoniou received the Ph.D. degree in Electrical Engineering from
the University of London, UK, in 1966 and is a Fellow of the lET and IEEE.
He served as the founding Chair of the Department of Electrical and Computer
Engineering at the University of Victoria, B.C., Canada, and is now Professor
Emeritus in the same department. He is the author of Digital Filters: Analysis,
Design, and Applications (McGraw-Hill, 1993) and Digital Signal Processing:
Signals, Systems, and Filters (McGraw-Hill, 2005). He served as Associate
Editor/Editor of IEEE Transactions on Circuits and Systems from June 1983 to
May 1987, as a Distinguished Lecturer of the IEEE Signal Processing Society
in 2003, as General Chair of the 2004 International Symposium on Circuits
and Systems, and is currently serving as a Distinguished Lecturer of the IEEE
Circuits and Systems Society. He received the Ambrose Fleming Premium for
1964 from the lEE (best paper award), the CAS Golden Jubilee Medal from
the IEEE Circuits and Systems Society, the B.C. Science Council Chairman's
Award for Career Achievement for 2000, the Doctor Honoris Causa degree from
the Metsovio National Technical University of Athens, Greece, in 2002, and
the IEEE Circuits and Systems Society 2005 Technical Achievement Award.

Wu-Sheng Lu received the B.S. degree in Mathematics from Fudan University,
Shanghai, China, in 1964, the M.E. degree in Automation from the East China
Normal University, Shanghai, in 1981, the M.S. degree in Electrical Engineer
ing and the Ph.D. degree in Control Science from the University of Minnesota,
Minneapolis, in 1983 and 1984, respectively. He was a post-doctoral fellow at
the University of Victoria, Victoria, BC, Canada, in 1985 and Visiting Assistant
Professor with the University of Minnesota in 1986. Since 1987, he has been
with the University of Victoria where he is Professor. His current teaching
and research interests are in the general areas of digital signal processing and
application of optimization methods. He is the co-author with A. Antoniou of
Two-Dimensional Digital Filters (Marcel Dekker, 1992). He served as an As
sociate Editor of the Canadian Journal of Electrical and Computer Engineering
in 1989, and Editor of the same journal from 1990 to 1992. He served as an
Associate Editor for the IEEE Transactions on Circuits and Systems, Part II,
from 1993 to 1995 and for Part I of the same journal from 1999 to 2001 and
from 2004 to 2005. Presently he is serving as Associate Editor for the Inter
national Journal of Multidimensional Systems and Signal Processing. He is a
Fellow of the Engineering Institute of Canada and the Institute of Electrical and
Electronics Engineers.

Dedication v

Biographies of the authors vii

Preface xv

Abbreviations xix

1. THE OPTIMIZATION PROBLEM 1

1.1 Introduction 1

1.2 The Basic Optimization Problem 4

1.3 General Structure of Optimization Algorithms 8

1.4 Constraints 10

1.5 The Feasible Region 17

1.6 Branches of Mathematical Programming 22

References 24

Problems 25

2. BASIC PRINCIPLES 27

2.1 Introduction 27

2.2 Gradient Information 27

2.3 The Taylor Series 28

2.4 Types of Extrema 31

2.5 Necessary and Sufficient Conditions for

Local Minima and Maxima 33

2.6 Classification of Stationary Points 40

2.7 Convex and Concave Functions 51

2.8 Optimization of Convex Functions 58

References 60

Problems 60

3. GENERAL PROPERTIES OF ALGORITHMS 65

3.1 Introduction 65

3.2 An Algorithm as a Point-to-Point Mapping 65

3.3 An Algorithm as a Point-to-Set Mapping 67

3.4 Closed Algorithms 68

3.5 Descent Functions 71

3.6 Global Convergence 72

3.7 Rates of Convergence 76

References 79

Problems 79

4. ONE-DIMENSIONAL OPTIMIZATION 81

4.1 Introduction 81

4.2 Dichotomous Search 82

4.3 Fibonacci Search 85

4.4 Golden-Section Search 92

4.5 Quadratic Interpolation Method 95

4.6 Cubic Interpolation 99

4.7 The Algorithm of Davies, Swann, and Campey 101

4.8 Inexact Line Searches 106

References 114

Problems 114

5. BASIC MULTIDIMENSIONAL GRADIENT METHODS 119

5.1 Introduction 119

5.2 Steepest-Descent Method 120

5.3 Newton Method 128

5.4 Gauss-Newton Method 138

References 140

Problems 140

6. CONJUGATE-DIRECTION METHODS 145

6.1 Introduction 145

6.2 Conjugate Directions 146

6.3 Basic Conjugate-Directions Method 149

6.4 Conjugate-Gradient Method 152

6.5 Minimization of Nonquadratic Functions 157

6.6 Fletcher-Reeves Method 158

6.7 Powell's Method 159

6.8 Partan Method 168

References 172

XI

Problems 172

7. QUASI-NEWTON METHODS 175

7.1 Introduction 175

7.2 The Basic Quasi-Newton Approach 176

7.3 Generation of Matrix Sk 177

7.4 Rank-One Method 181

7.5 Davidon-Fletcher-Powell Method 185

7.6 Broyden-Fletcher-Goldfarb-Shanno Method 191

7.7 Hoshino Method 192

7.8 The Broyden Family 192

7.9 The Huang Family 194

7.10 Practical Quasi-Newton Algorithm 195

References 199

Problems 200

8. MINIMAX METHODS 203

8.1 Introduction 203

8.2 Problem Formulation 203

8.3 Minimax Algorithms 205

8.4 Improved Minimax Algorithms 211

References 228

Problems 228

9. APPLICATIONS OF UNCONSTRAINED OPTIMIZATION 231

9.1 Introduction 231

9.2 Point-Pattern Matching 232

9.3 Inverse Kinematics for Robotic Manipulators 237

9.4 Design of Digital Filters 247

References 260

Problems 262

10. FUNDAMENTALS OF CONSTRAINED OPTIMIZATION 265

10.1 Introduction 265

10.2 Constraints 266

Xll

10.3 Classification of Constrained Optimization Problems 273

10.4 Simple Transformation Methods 277

10.5 Lagrange Multipliers 285

10.6 First-Order Necessary Conditions 294

10.7 Second-Order Conditions 302

10.8 Convexity 308

10.9 Duality 311

References 312

Problems 313

11. LINEAR PROGRAMMING PART I: THE SIMPLEX METHOD 321

11.1 Introduction 321

11.2 General Properties 322

11.3 Simplex Method 344

References 368

Problems 368

12. LINEAR PROGRAMMING PART II:

INTERIOR-POINT METHODS 373

12.1 Introduction 373

12.2 Primal-Dual Solutions and Central Path 374

12.3 Primal Affine-Scaling Method 379

12.4 Primal Newton Barrier Method 383

12.5 Primal-Dual Interior-Point Methods 388

References 402

Problems 402

13. QUADRATIC AND CONVEX PROGRAMMING 407

13.1 Introduction 407

13.2 Convex QP Problems with Equality Constraints 408

13.3 Active-Set Methods for Strictly Convex QP Problems 411

13.4 Interior-Point Methods for Convex QP Problems 417

13.5 Cutting-Plane Methods for CP Problems 428

13.6 Ellipsoid Methods 437

References 443

Xll l

Problems 444

14. SEMIDEFINITE AND SECOND-ORDER CONE
PROGRAMMING 449

14.1 Introduction 449

14.2 Primal and Dual SDP Problems 450

14.3 Basic Properties of SDP Problems 455

14.4 Primal-Dual Path-Following Method 458

14.5 Predictor-Corrector Method 465

14.6 Projective Method of Nemirovski and Gahinet 470

14.7 Second-Order Cone Programming 484

14.8 A Primal-Dual Method for SOCP Problems 491

References 496

Problems 497

15. GENERAL NONLINEAR OPTIMIZATION PROBLEMS 501

15.1 Introduction 501

15.2 Sequential Quadratic Programming Methods 501

15.3 Modified SQP Algorithms 509

15.4 Interior-Point Methods 518

References 528

Problems 529

16. APPLICATIONS OF CONSTRAINED OPTIMIZATION 533

16.1 Introduction 533

16.2 Design of Digital Filters 534

16.3 Model Predictive Control of Dynamic Systems 547

16.4 Optimal Force Distribution for Robotic Systems with Closed
Kinematic Loops 558

16.5 Multiuser Detection in Wireless Communication Channels 570

References 586

Problems 588

Appendices 591

A Basics of Linear Algebra 591

A. 1 Introduction 591

XIV

A.2 Linear Independence and Basis of a Span 592

A.3 Range, Null Space, and Rank 593

A.4 Sherman-Morrison Formula 595

A.5 Eigenvalues and Eigenvectors 596

A.6 Symmetric Matrices 598

A.7 Trace 602

A.8 Vector Norms and Matrix Norms 602

A.9 Singular-Value Decomposition 606

A. 10 Orthogonal Projections 609

A.l 1 Householder Transformations and Givens Rotations 610

A. 12 QR Decomposition 616

A. 13 Cholesky Decomposition 619

A. 14 Kronecker Product 621

A. 15 Vector Spaces of Symmetric Matrices 623
A. 16 Polygon, Polyhedron, Polytope, and Convex Hull 626

References 627

B Basics of Digital Filters 629

B.l Introduction 629

B.2 Characterization 629

B. 3 Time-Domain Response 631

B.4 Stability Property 632

B.5 Transfer Function 633

B.6 Time-Domain Response Using the Z Transform 635

B.7 Z-Domain Condition for Stability 635

B.8 Frequency, Amplitude, and Phase Responses 636

B.9 Design 639

Reference 644

Index 645

Preface

The rapid advancements in the efficiency of digital computers and the evo
lution of reliable software for numerical computation during the past three
decades have led to an astonishing growth in the theory, methods, and algo
rithms of numerical optimization. This body of knowledge has, in turn, mo
tivated widespread applications of optimization methods in many disciplines,
e.g., engineering, business, and science, and led to problem solutions that were
considered intractable not too long ago.

Although excellent books are available that treat the subject of optimization
with great mathematical rigor and precision, there appears to be a need for a
book that provides a practical treatment of the subject aimed at a broader au
dience ranging from college students to scientists and industry professionals.
This book has been written to address this need. It treats unconstrained and
constrained optimization in a unified manner and places special attention on the
algorithmic aspects of optimization to enable readers to apply the various algo
rithms and methods to specific problems of interest. To facilitate this process,
the book provides many solved examples that illustrate the principles involved,
and includes, in addition, two chapters that deal exclusively with applications of
unconstrained and constrained optimization methods to problems in the areas of
pattern recognition, control systems, robotics, communication systems, and the
design of digital filters. For each application, enough background information
is provided to promote the understanding of the optimization algorithms used
to obtain the desired solutions.

Chapter 1 gives a brief introduction to optimization and the general structure
of optimization algorithms. Chapters 2 to 9 are concerned with unconstrained
optimization methods. The basic principles of interest are introduced in Chap
ter 2. These include the first-order and second-order necessary conditions for
a point to be a local minimizer, the second-order sufficient conditions, and the
optimization of convex functions. Chapter 3 deals with general properties of
algorithms such as the concepts of descent function, global convergence, and

XVI

rate of convergence. Chapter 4 presents several methods for one-dimensional
optimization, which are commonly referred to as line searches. The chapter
also deals with inexact line-search methods that have been found to increase
the efficiency in many optimization algorithms. Chapter 5 presents several
basic gradient methods that include the steepest descent, Newton, and Gauss-
Newton methods. Chapter 6 presents a class of methods based on the concept of
conjugate directions such as the conjugate-gradient, Fletcher-Reeves, Powell,
and Partan methods. An important class of unconstrained optimization meth
ods known as quasi-Newton methods is presented in Chapter 7. Representa
tive methods of this class such as the Davidon-Fletcher-Powell and Broydon-
Fletcher-Goldfarb-Shanno methods and their properties are investigated. The
chapter also includes a practical, efficient, and reliable quasi-Newton algorithm
that eliminates some problems associated with the basic quasi-Newton method.
Chapter 8 presents minimax methods that are used in many applications in
cluding the design of digital filters. Chapter 9 presents three case studies in
which several of the unconstrained optimization methods described in Chap
ters 4 to 8 are applied to point pattern matching, inverse kinematics for robotic
manipulators, and the design of digital filters.

Chapters 10 to 16 are concerned with constrained optimization methods.
Chapter 10 introduces the fundamentals of constrained optimization. The con
cept of Lagrange multipliers, the first-order necessary conditions known as
Karush-Kuhn-Tucker conditions, and the duality principle of convex program
ming are addressed in detail and are illustrated by many examples. Chapters
11 and 12 are concerned with linear programming (LP) problems. The gen
eral properties of LP and the simplex method for standard LP problems are
addressed in Chapter 11. Several interior-point methods including the primal
affine-scaling, primal Newton-barrier, and primal dual-path following meth
ods are presented in Chapter 12. Chapter 13 deals with quadratic and general
convex programming. The so-called active-set methods and several interior-
point methods for convex quadratic programming are investigated. The chapter
also includes the so-called cutting plane and ellipsoid algorithms for general
convex programming problems. Chapter 14 presents two special classes of con
vex programming known as semidefinite and second-order cone programming,
which have found interesting applications in a variety of disciplines. Chapter
15 treats general constrained optimization problems that do not belong to the
class of convex programming; special emphasis is placed on several sequential
quadratic programming methods that are enhanced through the use of efficient
line searches and approximations of the Hessian matrix involved. Chapter 16,
which concludes the book, examines several applications of constrained opti
mization for the design of digital filters, for the control of dynamic systems, for
evaluating the force distribution in robotic systems, and in multiuser detection
for wireless communication systems.

PREFACE xvii

The book also includes two appendices, A and B, which provide additional
support material. Appendix A deals in some detail with the relevant parts of
linear algebra to consolidate the understanding of the underlying mathematical
principles involved whereas Appendix B provides a concise treatment of the
basics of digital filters to enhance the understanding of the design algorithms
included in Chaps. 8, 9, and 16.

The book can be used as a text for a sequence of two one-semester courses
on optimization. The first course comprising Chaps. 1 to 7, 9, and part of
Chap. 10 may be offered to senior undergraduate or first-year graduate students.
The prerequisite knowledge is an undergraduate mathematics background of
calculus and linear algebra. The material in Chaps. 8 and 10 to 16 may be
used as a text for an advanced graduate course on minimax and constrained
optimization. The prerequisite knowledge for thi^ course is the contents of the
first optimization course.

The book is supported by online solutions of the end-of-chapter problems
under password as well as by a collection of MATLAB programs for free access
by the readers of the book, which can be used to solve a variety of optimiza
tion problems. These materials can be downloaded from the book's website:
http://www.ece.uvic.ca/~optimization/.

We are grateful to many of our past students at the University of Victoria,
in particular, Drs. M. L. R. de Campos, S. Netto, S. Nokleby, D. Peters, and
Mr. J. Wong who took our optimization courses and have helped improve the
manuscript in one way or another; to Chi-Tang Catherine Chang for typesetting
the first draft of the manuscript and for producing most of the illustrations; to
R. Nongpiur for checking a large part of the index; and to R Ramachandran
for proofreading the entire manuscript. We would also like to thank Professors
M. Ahmadi, C. Charalambous, P. S. R. Diniz, Z. Dong, T. Hinamoto, and P. P.
Vaidyanathan for useful discussions on optimization theory and practice; Tony
Antoniou of Psicraft Studios for designing the book cover; the Natural Sciences
and Engineering Research Council of Canada for supporting the research that
led to some of the new results described in Chapters 8, 9, and 16; and last but
not least the University of Victoria for supporting the writing of this book over
anumber of years.

Andreas Antoniou and Wu-Sheng Lu

ABBREVIATIONS

AWGN additive white Gaussian noise
BER bit-error rate
BFGS Broyden-Fletcher-Goldfarb-Shanno
CDMA code-division multiple access
CMBER constrained minimum BER
CP convex programming
DPP Davidon-Fletcher-Powell
D-H Denavit-Hartenberg
DNB dual Newton barrier
DS direct sequence
FDMA frequency-division multiple access
FIR finite-duration impulse response
FR Fletcher-Reeves
GCO general constrained optimization
GN Gauss-Newton
IIR infinite-duration impulse response
IP integer programming
KKT Karush-Kuhn-Tucker
LCP linear complementarity problem
LMI linear matrix inequality
LP linear programming
LSQI least-squares minimization with quadratic inequality
LU lower-upper
MAI multiple access interference
ML maximum likelihood
MPC model predictive control
PAS primal affine-scaling
PCM predictor-corrector method
PNB primal Newton barrier
QP quadratic programming
SD steepest descent
SDP semidefinite programming
SDPR-D SDP relaxation-dual
SDPR-P SDP relaxation-primal
SNR signal-to-noise ratio
SOCP second-order cone programming
SQP sequential quadratic programming
SVD singular-value decomposition
TDMA time-division multiple access

Chapter 1

THE OPTIMIZATION
PROBLEM

1.1 Introduction
Throughout the ages, man has continuously been involved with the process of

optimization. In its earliest form, optimization consisted of unscientific rituals
and prejudices like pouring libations and sacrificing animals to the gods, con-
sulting the oracles, observing the positions of the stars, and watching the flight
of birds. When the circumstances were appropriate, the timing was thought to
be auspicious (or optimum) for planting the crops or embarking on a war.

As the ages advanced and the age of reason prevailed, unscientific rituals
were replaced by rules of thumb and later, with the development of mathematics,
mathematical calculations began to be applied.

Interest in the process of optimization has taken a giant leap with the advent of
the digital computer in the early fifties. In recent years, optimization techniques
advanced rapidly and considerable progress has been achieved. At the same
time, digital computers became faster, more versatile, and more efficient. As a
consequence, it is now possible to solve complex optimization problems which
were thought intractable only a few years ago.

The process of optimization is the process of obtaining the ‘best’, if it is pos-
sible to measure and change what is ‘good’ or ‘bad’. In practice, one wishes the
‘most’ or ‘maximum’ (e.g., salary) or the ‘least’ or ‘minimum’ (e.g., expenses).
Therefore, the word ‘optimum’ is taken to mean ‘maximum’ or ‘minimum’ de-
pending on the circumstances; ‘optimum’ is a technical term which implies
quantitative measurement and is a stronger word than ‘best’ which is more
appropriate for everyday use. Likewise, the word ‘optimize’, which means to
achieve an optimum, is a stronger word than ‘improve’. Optimization theory
is the branch of mathematics encompassing the quantitative study of optima
and methods for finding them. Optimization practice, on the other hand, is the

2

collection of techniques, methods, procedures, and algorithms that can be used
to find the optima.

Optimization problems occur in most disciplines like engineering, physics,
mathematics, economics, administration, commerce, social sciences, and even
politics. Optimization problems abound in the various fields of engineering like
electrical, mechanical, civil, chemical, and building engineering. Typical areas
of application are modeling, characterization, and design of devices, circuits,
and systems; design of tools, instruments, and equipment; design of structures
and buildings; process control; approximation theory, curve fitting, solution
of systems of equations; forecasting, production scheduling, quality control;
maintenance and repair; inventory control, accounting, budgeting, etc. Some
recent innovations rely almost entirely on optimization theory, for example,
neural networks and adaptive systems.

Most real-life problems have several solutions and occasionally an infinite
number of solutions may be possible. Assuming that the problem at hand
admits more than one solution, optimization can be achieved by finding the
best solution of the problem in terms of some performance criterion. If the
problem admits only one solution, that is, only a unique set of parameter values
is acceptable, then optimization cannot be applied.

Several general approaches to optimization are available, as follows:

1. Analytical methods
2. Graphical methods
3. Experimental methods
4. Numerical methods

Analytical methods are based on the classical techniques of differential cal-
culus. In these methods the maximum or minimum of a performance criterion
is determined by finding the values of parameters x1, x2, . . . , xn that cause the
derivatives of f(x1, x2, . . . , xn) with respect to x1, x2, . . . , xn to assume zero
values. The problem to be solved must obviously be described in mathematical
terms before the rules of calculus can be applied. The method need not entail
the use of a digital computer. However, it cannot be applied to highly nonlinear
problems or to problems where the number of independent parameters exceeds
two or three.

A graphical method can be used to plot the function to be maximized or min-
imized if the number of variables does not exceed two. If the function depends
on only one variable, say, x1, a plot of f(x1) versus x1 will immediately reveal
the maxima and/or minima of the function. Similarly, if the function depends
on only two variables, say, x1 and x2, a set of contours can be constructed. A
contour is a set of points in the (x1, x2) plane for which f(x1, x2) is constant,
and so a contour plot, like a topographical map of a specific region, will reveal
readily the peaks and valleys of the function. For example, the contour plot of
f(x1, x2) depicted in Fig. 1.1 shows that the function has a minimum at point

The Optimization Problem 3

A. Unfortunately, the graphical method is of limited usefulness since in most
practical applications the function to be optimized depends on several variables,
usually in excess of four.

A

10

f (x , x) = 01 2

f (x , x) = 501 2

1x

2x

20

30

40

50

Figure 1.1. Contour plot of f(x1, x2).

The optimum performance of a system can sometimes be achieved by direct
experimentation. In this method, the system is set up and the process variables
are adjusted one by one and the performance criterion is measured in each
case. This method may lead to optimum or near optimum operating conditions.
However, it can lead to unreliable results since in certain systems, two or more
variables interact with each other, and must be adjusted simultaneously to yield
the optimum performance criterion.

The most important general approach to optimization is based on numerical
methods. In this approach, iterative numerical procedures are used to generate a
series of progressively improved solutions to the optimization problem, starting
with an initial estimate for the solution. The process is terminated when some
convergence criterion is satisfied. For example, when changes in the indepen-
dent variables or the performance criterion from iteration to iteration become
insignificant.

Numerical methods can be used to solve highly complex optimization prob-
lems of the type that cannot be solved analytically. Furthermore, they can be
readily programmed on the digital computer. Consequently, they have all but
replaced most other approaches to optimization.

4

The discipline encompassing the theory and practice of numerical optimiza-
tion methods has come to be known as mathematical programming [1]–[5].
During the past 40 years, several branches of mathematical programming have
evolved, as follows:

1. Linear programming
2. Integer programming
3. Quadratic programming
4. Nonlinear programming
5. Dynamic programming

Each one of these branches of mathematical programming is concerned with a
specific class of optimization problems. The differences among them will be
examined in Sec. 1.6.

1.2 The Basic Optimization Problem
Before optimization is attempted, the problem at hand must be properly

formulated. A performance criterion F must be derived in terms of n parameters
x1, x2, . . . , xn as

F = f(x1, x2, . . . , xn)

F is a scalar quantity which can assume numerous forms. It can be the cost of a
product in a manufacturing environment or the difference between the desired
performance and the actual performance in a system. Variables x1, x2, . . . , xn

are the parameters that influence the product cost in the first case or the actual
performance in the second case. They can be independent variables, like time,
or control parameters that can be adjusted.

The most basic optimization problem is to adjust variables x1, x2, . . . , xn

in such a way as to minimize quantity F . This problem can be stated mathe-
matically as

minimize F = f(x1, x2, . . . , xn) (1.1)

Quantity F is usually referred to as the objective or cost function.
The objective function may depend on a large number of variables, sometimes

as many as 100 or more. To simplify the notation, matrix notation is usually
employed. If x is a column vector with elements x1, x2, . . . , xn, the transpose
of x, namely, xT , can be expressed as the row vector

xT = [x1 x2 · · · xn]

In this notation, the basic optimization problem of Eq. (1.1) can be expressed
as

minimize F = f(x) for x ∈ En

where En represents the n-dimensional Euclidean space.

The Optimization Problem 5

On many occasions, the optimization problem consists of finding the maxi-
mum of the objective function. Since

max[f(x)] = −min[−f(x)]

the maximum of F can be readily obtained by finding the minimum of the
negative of F and then changing the sign of the minimum. Consequently, in
this and subsequent chapters we focus our attention on minimization without
loss of generality.

In many applications, a number of distinct functions ofxneed to be optimized
simultaneously. For example, if the system of nonlinear simultaneous equations

fi(x) = 0 for i = 1, 2, . . . , m

needs to be solved, a vector x is sought which will reduce all fi(x) to zero
simultaneously. In such a problem, the functions to be optimized can be used
to construct a vector

F(x) = [f1(x) f2(x) · · · fm(x)]T

The problem can be solved by finding a point x = x∗ such that F(x∗) = 0.
Very frequently, a point x∗ that reduces all the fi(x) to zero simultaneously
may not exist but an approximate solution, i.e., F(x∗) ≈ 0, may be available
which could be entirely satisfactory in practice.

A similar problem arises in scientific or engineering applications when the
function of x that needs to be optimized is also a function of a continuous
independent parameter (e.g., time, position, speed, frequency) that can assume
an infinite set of values in a specified range. The optimization might entail
adjusting variables x1, x2, . . . , xn so as to optimize the function of interest
over a given range of the independent parameter. In such an application, the
function of interest can be sampled with respect to the independent parameter,
and a vector of the form

F(x) = [f(x, t1) f(x, t2) · · · f(x, tm)]T

can be constructed, where t is the independent parameter. Now if we let

fi(x) ≡ f(x, ti)

we can write

F (x) = [f1(x) f2(x) · · · fm(x)]T

A solution of such a problem can be obtained by optimizing functions fi(x)
for i = 1, 2, . . . , m simultaneously. Such a solution would, of course, be

6

approximate because any variations in f(x, t) between sample points are ig-
nored. Nevertheless, reasonable solutions can be obtained in practice by using
a sufficiently large number of sample points. This approach is illustrated by the
following example.

Example 1.1 The step response y(x, t) of an nth-order control system is re-
quired to satisfy the specification

y0(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

t for 0 ≤ t < 2
2 for 2 ≤ t < 3

−t + 5 for 3 ≤ t < 4
1 for 4 ≤ t

as closely as possible. Construct a vector F(x) that can be used to obtain a
function f(x, t) such that

y(x, t) ≈ y0(x, t) for 0 ≤ t ≤ 5

Solution The difference between the actual and specified step responses, which
constitutes the approximation error, can be expressed as

f(x, t) = y(x, t) − y0(x, t)

and if f(x, t) is sampled at t = 0, 1, 2, . . . , 5, we obtain

F(x) = [f1(x) f2(x) · · · f6(x)]T

where

f1(x) = f(x, 0) = y(x, 0)
f2(x) = f(x, 1) = y(x, 1) − 1
f3(x) = f(x, 2) = y(x, 2) − 2
f4(x) = f(x, 3) = y(x, 3) − 2
f5(x) = f(x, 4) = y(x, 4) − 1
f6(x) = f(x, 5) = y(x, 5) − 1

The problem is illustrated in Fig. 1.2. It can be solved by finding a point x = x∗
such that F(x∗) ≈ 0. Evidently, the quality of the approximation obtained for
the step response of the system will depend on the density of the sampling
points and the higher the density of points, the better the approximation.

Problems of the type just described can be solved by defining a suitable objec-
tive function in terms of the element functions of F(x). The objective function

The Optimization Problem 7

0 1 2 3 4 5

1

2

3

y (x, t)

y (x, t)
0

f (x, t)

t

Figure 1.2. Graphical construction for Example 1.1.

must be a scalar quantity and its optimization must lead to the simultaneous
optimization of the element functions of F(x) in some sense. Consequently, a
norm of some type must be used. An objective function can be defined in terms
of the Lp norm as

F ≡ Lp =

{
m∑

i=1

|fi(x)|p
}1/p

where p is an integer.1

Several special cases of the Lp norm are of particular interest. If p = 1

F ≡ L1 =
m∑

i=1

|fi(x)|

and, therefore, in a minimization problem like that in Example 1.1, the sum of
the magnitudes of the individual element functions is minimized. This is called
an L1 problem.

If p = 2, the Euclidean norm

F ≡ L2 =

{
m∑

i=1

|fi(x)|2
}1/2

is minimized, and if the square root is omitted, the sum of the squares is mini-
mized. Such a problem is commonly referred as a least-squares problem.

1See Sec. A.8 for more details on vector and matrix norms. Appendix A also deals with other aspects of
linear algebra that are important to optimization.

8

In the case where p = ∞, if we assume that there is a unique maximum of
|fi(x)| designated F̂ such that

F̂ = max
1≤i≤m

|fi(x)|

then we can write

F ≡ L∞ = lim
p→∞

{
m∑

i=1

|fi(x)|p
}1/p

= F̂ lim
p→∞

{
m∑

i=1

[|fi(x)|
F̂

]p
}1/p

Since all the terms in the summation except one are less than unity, they tend
to zero when raised to a large positive power. Therefore, we obtain

F = F̂ = max
1≤i≤m

|fi(x)|

Evidently, if the L∞ norm is used in Example 1.1, the maximum approximation
error is minimized and the problem is said to be a minimax problem.

Often the individual element functions of F(x) are modified by using con-
stants w1, w2, . . . , wm as weights. For example, the least-squares objective
function can be expressed as

F =
m∑

i=1

[wifi(x)]2

so as to emphasize important or critical element functions and de-emphasize
unimportant or uncritical ones. If F is minimized, the residual errors in wifi(x)
at the end of the minimization would tend to be of the same order of magnitude,
i.e.,

error in |wifi(x)| ≈ ε

and so
error in |fi(x)| ≈ ε

|wi|

Consequently, if a large positive weight wi is used with fi(x), a small residual
error is achieved in |fi(x)|.

1.3 General Structure of Optimization Algorithms
Most of the available optimization algorithms entail a series of steps which

are executed sequentially. A typical pattern is as follows:

The Optimization Problem 9

Algorithm 1.1 General optimization algorithm
Step 1
(a) Set k = 0 and initialize x0.
(b) Compute F0 = f(x0).
Step 2
(a) Set k = k + 1.
(b) Compute the changes in xk given by column vector ∆xk where

∆xT
k = [∆x1 ∆x2 · · · ∆xn]

by using an appropriate procedure.
(c) Set xk = xk−1 + ∆xk

(d) Compute Fk = f(xk) and ∆Fk = Fk−1 − Fk.
Step 3
Check if convergence has been achieved by using an appropriate crite-
rion, e.g., by checking ∆Fk and/or ∆xk. If this is the case, continue to
Step 4; otherwise, go to Step 2.
Step 4
(a) Output x∗ = xk and F ∗ = f(x∗).
(b) Stop.

In Step 1, vector x0 is initialized by estimating the solution using knowledge
about the problem at hand. Often the solution cannot be estimated and an
arbitrary solution may be assumed, say, x0 = 0. Steps 2 and 3 are then
executed repeatedly until convergence is achieved. Each execution of Steps 2
and 3 constitutes one iteration, that is, k is the number of iterations.

When convergence is achieved, Step 4 is executed. In this step, column
vector

x∗ = [x∗
1 x∗

2 · · · x∗
n]T = xk

and the corresponding value of F , namely,

F ∗ = f(x∗)

are output. The column vector x∗ is said to be the optimum, minimum, solution
point, or simply the minimizer, and F ∗ is said to be the optimum or minimum
value of the objective function. The pair x∗ and F ∗ constitute the solution of
the optimization problem.

Convergence can be checked in several ways, depending on the optimization
problem and the optimization technique used. For example, one might decide
to stop the algorithm when the reduction in Fk between any two iterations has
become insignificant, that is,

|∆Fk| = |Fk−1 − Fk| < εF (1.2)

10

where εF is an optimization tolerance for the objective function. Alternatively,
one might decide to stop the algorithm when the changes in all variables have
become insignificant, that is,

|∆xi| < εx for i = 1, 2, . . . , n (1.3)

where εx is an optimization tolerance for variables x1, x2, . . . , xn. A third
possibility might be to check if both criteria given by Eqs. (1.2) and (1.3) are
satisfied simultaneously.

There are numerous algorithms for the minimization of an objective function.
However, we are primarily interested in algorithms that entail the minimum
amount of effort. Therefore, we shall focus our attention on algorithms that are
simple to apply, are reliable when applied to a diverse range of optimization
problems, and entail a small amount of computation. A reliable algorithm is
often referred to as a ‘robust’ algorithm in the terminology of mathematical
programming.

1.4 Constraints
In many optimization problems, the variables are interrelated by physical

laws like the conservation of mass or energy, Kirchhoff’s voltage and current
laws, and other system equalities that must be satisfied. In effect, in these
problems certain equality constraints of the form

ai(x) = 0 for x ∈ En

where i = 1, 2, . . . , p must be satisfied before the problem can be considered
solved. In other optimization problems a collection of inequality constraints
might be imposed on the variables or parameters to ensure physical realizability,
reliability, compatibility, or even to simplify the modeling of the problem. For
example, the power dissipation might become excessive if a particular current
in a circuit exceeds a given upper limit or the circuit might become unreliable
if another current is reduced below a lower limit, the mass of an element in a
specific chemical reaction must be positive, and so on. In these problems, a
collection of inequality constraints of the form

cj(x) ≥ 0 for x ∈ En

where j = 1, 2, . . . , q must be satisfied before the optimization problem can
be considered solved.

An optimization problem may entail a set of equality constraints and possibly
a set of inequality constraints. If this is the case, the problem is said to be a
constrained optimization problem. The most general constrained optimization
problem can be expressed mathematically as

The Optimization Problem 11

minimize f(x) for x ∈ En (1.4a)

subject to: ai(x) = 0 for i = 1, 2, . . . , p (1.4b)

cj(x) ≥ 0 for j = 1, 2, . . . , q (1.4c)

A problem that does not entail any equality or inequality constraints is said
to be an unconstrained optimization problem.

Constrained optimization is usually much more difficult than unconstrained
optimization, as might be expected. Consequently, the general strategy that
has evolved in recent years towards the solution of constrained optimization
problems is to reformulate constrained problems as unconstrained optimiza-
tion problems. This can be done by redefining the objective function such
that the constraints are simultaneously satisfied when the objective function
is minimized. Some real-life constrained optimization problems are given as
Examples 1.2 to 1.4 below.

Example 1.2 Consider a control system that comprises a double inverted pen-
dulum as depicted in Fig. 1.3. The objective of the system is to maintain the
pendulum in the upright position using the minimum amount of energy. This
is achieved by applying an appropriate control force to the car to damp out
any displacements θ1(t) and θ2(t). Formulate the problem as an optimization
problem.

θ 1

θ 2

Μu(t)

Figure 1.3. The double inverted pendulum.

Solution The dynamic equations of the system are nonlinear and the standard
practice is to apply a linearization technique to these equations to obtain a
small-signal linear model of the system as [6]

ẋ(t) = Ax(t) + fu(t) (1.5)

12

where

x(t) =

⎡
⎢⎢⎣

θ1(t)
θ̇1(t)
θ2(t)
θ̇2(t)

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

0 1 0 0
α 0 −β 0
0 0 0 1
−α 0 α 0

⎤
⎥⎥⎦ , f =

⎡
⎢⎢⎣

0
−1
0
0

⎤
⎥⎥⎦

with α > 0, β > 0, and α �= β. In the above equations, ẋ(t), θ̇1(t), and
θ̇2(t) represent the first derivatives of x(t), θ1(t), and θ2(t), respectively, with
respect to time, θ̈1(t) and θ̈2(t) would be the second derivatives of θ1(t) and
θ2(t), and parameters α and β depend on system parameters such as the length
and weight of each pendulum, the mass of the car, etc. Suppose that at instant
t = 0 small nonzero displacements θ1(t) and θ2(t) occur, which would call for
immediate control action in order to steer the system back to the equilibrium
state x(t) = 0 at time t = T0. In order to develop a digital controller, the
system model in (1.5) is discretized to become

x(k + 1) = Φx(k) + gu(k) (1.6)

where Φ = I + ∆tA, g = ∆tf , ∆t is the sampling interval, and I is the
identity matrix. Let x(0) �= 0 be given and assume that T0 is a multiple of ∆t,
i.e., T0 = K∆t where K is an integer. We seek to find a sequence of control
actions u(k) for k = 0, 1, . . . , K − 1 such that the zero equilibrium state is
achieved at t = T0, i.e., x(T0) = 0.

Let us assume that the energy consumed by these control actions, namely,

J =
K−1∑
k=0

u2(k)

needs to be minimized. This optimal control problem can be formulated ana-
lytically as

minimize J =
K−1∑
k=0

u2(k) (1.7a)

subject to: x(K) = 0 (1.7b)

From Eq. (1.6), we know that the state of the system at t = K∆t is determined
by the initial value of the state and system model in Eq. (1.6) as

x(K) = ΦKx(0) +
K−1∑
k=0

ΦK−k−1gu(k)

≡ −h +
K−1∑
k=0

gku(k)

The Optimization Problem 13

where h = −ΦKx(0) and gk = ΦK−k−1g. Hence constraint (1.7b) is equiv-
alent to

K−1∑
k=0

gku(k) = h (1.8)

If we define u = [u(0) u(1) · · · u(K − 1)]T and G = [g0 g1 · · · gK−1],
then the constraint in Eq. (1.8) can be expressed as Gu = h, and the optimal
control problem at hand can be formulated as the problem of finding a u that
solves the minimization problem

minimize uT u (1.9a)

subject to: a(u) = 0 (1.9b)

where a(u) = Gu − h. In practice, the control actions cannot be made
arbitrarily large in magnitude. Consequently, additional constraints are often
imposed on |u(i)|, for instance,

|u(i)| ≤ m for i = 0, 1, . . . , K − 1

These constraints are equivalent to

m + u(i) ≥ 0
m − u(i) ≥ 0

Hence if we define

c(u) =

⎡
⎢⎢⎢⎢⎢⎣

m + u(0)
m − u(0)

...
m + u(K − 1)
m − u(K − 1)

⎤
⎥⎥⎥⎥⎥⎦

then the magnitude constraints can be expressed as

c(u) ≥ 0 (1.9c)

Obviously, the problem in Eq. (1.9) fits nicely into the standard form of opti-
mization problems given by Eq. (1.4).

Example 1.3 High performance in modern optical instruments depends on the
quality of components like lenses, prisms, and mirrors. These components have
reflecting or partially reflecting surfaces, and their performance is limited by the
reflectivities of the materials of which they are made. The surface reflectivity

14

can, however, be altered by the deposition of a thin transparent film. In fact, this
technique facilitates the control of losses due to reflection in lenses and makes
possible the construction of mirrors with unique properties [7][8].

As is depicted in Fig. 1.4, a typical N -layer thin-film system consists of N
layers of thin films of certain transparent media deposited on a glass substrate.
The thickness and refractive index of the ith layer are denoted as xi and ni,
respectively. The refractive index of the medium above the first layer is denoted
as n0. If φ0 is the angle of incident light, then the transmitted ray in the (i−1)th
layer is refracted at an angle φi which is given by Snell’s law, namely,

ni sinφi = n0 sinφ0

n0

n3

n2

nN

nN+1

layer 1

layer 2

layer 3

x2

x1 n1

Substrate

φ1

φ0

φ2

. . .

layer N xn

φN

Figure 1.4. An N -layer thin-film system.

Given angle φ0 and the wavelength of light, λ, the energy of the light reflected
from the film surface and the energy of the light transmitted through the film
surface are usually measured by the reflectance R and transmittance T which
satisfy the relation

R + T = 1

For an N -layer system, R is given by (see [9] for details)

The Optimization Problem 15

R(x1, . . . , xN , λ) =
∣∣∣∣η0 − y

η0 + y

∣∣∣∣2 (1.10)

y =
c

b
(1.11)[

b
c

]
=

{
N∏

k=1

[
cos δk (j sin δk)/ηk

jηk sin δk cos δk

]} [
1

ηN+1

]
(1.12)

where j =
√
−1 and

δk =
2πnkxk cosφk

λ
(1.13)

ηk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

nk/ cos φk for light polarized with the electric
vector lying in the plane of incidence

nk cos φk for light polarized with the electric
vector perpendicular to the
plane of incidence

(1.14)

The design of a multilayer thin-film system can now be accomplished as follows:
Given a range of wavelenghs λl ≤ λ ≤ λu and an angle of incidence φ0, find
x1, x2, . . . , xN such that the reflectance R(x, λ) best approximates a desired
reflectance Rd(λ) for λ ∈ [λl, λu]. Formulate the design problem as an
optimization problem.

Solution In practice, the desired reflectance is specified at grid points λ1, λ2,
. . . , λK in the interval [λl, λu]; hence the design may be carried out by selecting
xi such that the objective function

J =
K∑

i=1

wi[R(x, λi) − Rd(λi)]2 (1.15)

is minimized, where
x = [x1 x2 · · · xN]T

and wi > 0 is a weight to reflect the importance of term [R(x, λi)−Rd(λi)]2

in Eq. (1.15). If we let η = [1 ηN+1]T , e+ = [η0 1]T , e− = [η0 −1]T , and

M(x, λ) =
N∏

k=1

[
cos δk (j sin δk)/ηk

jηk sin δk cos δk

]

then R(x, λ) can be expressed as

R(x, λ) =
∣∣∣∣bη0 − c

bη0 + c

∣∣∣∣2 =

∣∣∣∣∣e
T−M(x, λ)η

eT
+M(x, λ)η

∣∣∣∣∣
2

(1.16)

16

Finally, we note that the thickness of each layer cannot be made arbitrarily
thin or arbitrarily large and, therefore, constraints must be imposed on the
elements of x as

dil ≤ xi ≤ diu for i = 1, 2, . . . , N (1.17)

The design problem can now be formulated as the constrained minimization
problem

minimize J =
K∑

i=1

wi

⎡
⎣∣∣∣∣∣e

T−M(x, λi)η
eT

+M(x, λi)η

∣∣∣∣∣
2

− Rd(λi)

⎤
⎦2

(1.18a)

subject to: xi − dil ≥ 0 for i = 1, 2, . . . , N (1.18b)

diu − xi ≥ 0 for i = 1, 2, . . . , N (1.18c)

Example 1.4 Quantities q1, q2, . . . , qm of a certain product are produced by
m manufacturing divisions of a company, which are at distinct locations. The
product is to be shipped to n destinations that require quantities b1, b2, . . . , bn.
Assume that the cost of shipping a unit from manufacturing division i to des-
tination j is cij with i = 1, 2, . . . , m and j = 1, 2, . . . , n. Find the quantity
xij to be shipped from division i to destination j so as to minimize the total
cost of transportation, i.e.,

minimize C =
m∑

i=1

n∑
j=1

cijxij

This is known as the transportation problem. Formulate the problem as an
optimization problem.

Solution Note that there are several constraints on variables xij . First, each
division can provide only a fixed quantity of the product, hence

n∑
j=1

xij = qi for i = 1, 2, . . . , m

Second, the quantity to be shipped to a specific destination has to meet the need
of that destination and so

m∑
i=1

xij = bj for j = 1, 2, . . . , n

In addition, the variables xij are nonnegative and thus, we have

xij ≥ 0 for i = 1, 2, . . . , m and j = 1, 2, . . . , n

The Optimization Problem 17

If we let

c = [c11 · · · c1n c21 · · · c2n · · · cm1 · · · cmn]T

x = [x11 · · · x1n x21 · · · x2n · · · xm1 · · · xmn]T

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 0 0 · · · 0 · · · · · · · · · · · ·
0 0 · · · 0 1 1 · · · 1 · · · · · · · · · · · ·

· ·
0 0 · · · 0 0 0 · · · 0 · · · 1 1 · · · 1
1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0

· ·
0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b = [q1 · · · qm b1 · · · bn]T

then the minimization problem can be stated as

minimize C = cT x (1.19a)

subject to: Ax = b (1.19b)

x ≥ 0 (1.19c)

where cTx is the inner product of c and x. The problem in Eq. (1.19) like
those in Examples 1.2 and 1.3 fits into the standard optimization problem in
Eq. (1.4). Since both the objective function in Eq. (1.19a) and the constraints in
Eqs. (1.19b) and (1.19c) are linear, the problem is known as a linear program-
ming (LP) problem (see Sect. 1.6.1).

1.5 The Feasible Region
Any point x that satisfies both the equality as well as the inequality constraints

is said to be a feasible point of the optimization problem. The set of all points that
satisfy the constraints constitutes the feasible domain region of f(x). Evidently,
the constraints define a subset of En. Therefore, the feasible region can be
defined as a set2

R = {x : ai(x) = 0 for i = 1, 2, . . . , p and cj(x) ≥ 0 for j = 1, 2, . . . , q}

where R ⊂ En.
The optimum point x∗ must be located in the feasible region, and so the

general constrained optimization problem can be stated as

minimize f(x) for x ∈ R

2The above notation for a set will be used consistently throughout the book.

18

Any point x not in R is said to be a nonfeasible point.
If the constraints in an optimization problem are all inequalities, the con-

straints divide the points in the En space into three types of points, as follows:

1. Interior points
2. Boundary points
3. Exterior points

Aninterior point is a point for which cj(x) > 0 for all j. A boundary point is a
point for which at least one cj(x) = 0, and an exterior point is a point for which
at least one cj(x) < 0. Interior points are feasible points, boundary points may
or may not be feasible points, whereas exterior points are nonfeasible points.

If a constraint cm(x) is zero during a specific iteration, the constraint is said
to be active, and if cm(x∗) is zero when convergence is achieved, the optimum
point x∗ is located on the boundary. In such a case, the optimum point is said to
be constrained. If the constraints are all equalities, the feasible points must be
located on the intersection of all the hypersurfaces corresponding to ai(x) = 0
for i = 1, 2, . . . , p. The above definitions and concepts are illustrated by the
following two examples.

Example 1.5 By using a graphical method, solve the following optimization
problem

minimize f(x) = x2
1 + x2

2 − 4x1 + 4
subject to: c1(x) = x1 − 2x2 + 6 ≥ 0

c2(x) = −x2
1 + x2 − 1 ≥ 0

c3(x) = x1 ≥ 0
c4(x) = x2 ≥ 0

Solution The objective function can be expressed as

(x1 − 2)2 + x2
2 = f(x)

Hence the contours of f(x) in the (x1, x2) plane are concentric circles with
radius

√
f(x) centered at x1 = 2, x2 = 0. Constraints c1(x) and c2(x) dictate

that
x2 ≤ 1

2x1 + 3

and
x2 ≥ x2

1 + 1

respectively, while constraints c3(x) and c4(x) dictate that x1 and x2 be positive.
The contours of f(x) and the boundaries of the constraints can be constructed
as shown in Fig. 1.5.

The feasible region for this problem is the shaded region in Fig. 1.5. The
solution is located at point A on the boundary of constraint c2(x). In effect,

The Optimization Problem 19

Feasible
region

5

4

3

2

1

-1

-2

-2 -1 0 1 2 3 4 5
x1

c3 (x)x2x

c1 (x) -2 +6x2x1=

c2 (x) - + -1x2x1
2

=

A

B
c4 (x)

1

4

9

Figure 1.5. Graphical construction for Example 1.5.

the solution is a constrained optimum point. Consequently, if this problem is
solved by means of mathematical programming, constraint c2(x) will be active
when the solution is reached.

In the absence of constraints, the minimization of f(x) would yield point B
as the solution.

Example 1.6 By using a graphical method, solve the optimization problem

minimize f(x) = x2
1 + x2

2 + 2x2

subject to: a1(x) = x2
1 + x2

2 − 1 = 0
c1(x) = x1 + x2 − 0.5 ≥ 0
c2(x) = x1 ≥ 0
c3(x) = x2 ≥ 0

Solution The objective function can be expressed as

x2
1 + (x2 + 1)2 = f(x) + 1

20

Hence the contours of f(x) in the (x1, x2) plane are concentric circles with
radius

√
f(x) + 1, centered at x1 = 0, x2 = −1. Constraint a1(x) is a circle

centered at the origin with radius 1. On the other hand, constraint c1(x) is a
straight line since it is required that

x2 ≥ −x1 + 0.5

The last two constraints dictate that x1 and x2 be nonnegative. Hence the
required construction can be obtained as depicted in Fig. 1.6.

In this case, the feasible region is the arc of circle a1(x) = 0 located in the
first quadrant of the (x1, x2) plane. The solution, which is again a constrained
optimum point, is located at point A. There are two active constraints in this
example, namely, a1(x) and c3(x).

In the absence of constraints, the solution would be point B in Fig. 1.6.

c2 (x)

c3 (x)

c1 (x)

x1

x2

a1 (x)

0 1

2

2

-1

-3

A

B

1

3

-2

1

2

-2

0

-1

Figure 1.6. Graphical construction for Example 1.6.

The Optimization Problem 21

In the above examples, the set of points comprising the feasible region are
simply connected as depicted in Fig. 1.7a. Sometimes the feasible region may
consist of two or more disjoint sub-regions, as depicted in Fig. 1.7b. If this is
the case, the following difficulty may arise. A typical optimization algorithm
is an iterative numerical procedure that will generate a series of progressively
improved solutions, starting with an initial estimate for the solution. Therefore,
if the feasible region consists of two sub-regions, say, A and B, an initial estimate
for the solution in sub-region A is likely to yield a solution in sub-region A, and
a better solution in sub-region B may be missed. Fortunately, however, in most
real-life optimization problems, this difficulty can be avoided by formulating
the problem carefully.

(a)

(b)

x1

x1

x2

x2
Feasible
region

Feasible
region A

Feasible
region B

Figure 1.7. Examples of simply connected and disjoint feasible regions.

22

1.6 Branches of Mathematical Programming
Several branches of mathematical programming were enumerated in Sec. 1.1,

namely, linear, integer, quadratic, nonlinear, and dynamic programming. Each
one of these branches of mathematical programming consists of the theory and
application of a collection of optimization techniques that are suited to a specific
class of optimization problems. The differences among the various branches
of mathematical programming are closely linked to the structure of the opti-
mization problem and to the mathematical nature of the objective and constraint
functions. A brief description of each branch of mathematical programming is
as follows.

1.6.1 Linear programming
If the objective and constraint functions are linear and the variables are con-

strained to be positive, as in Example 1.4, the general optimization problem
assumes the form

minimize f(x) =
n∑

i=1

αixi

subject to: aj(x) =
n∑

i=1

βijxi − µj = 0 for j = 1, 2, . . . , p

cj(x) =
n∑

i=1

γijxi − νj ≥ 0 for j = 1, 2, . . . , q

xi ≥ 0 for i = 1, 2, . . . , n

where αi, βij , γij , µj and νj are constants. For example,

minimize f(x) = −2x1 + 4x2 + 7x3 + x4 + 5x5

subject to: a1(x) = −x1 + x2 + 2x3 + x4 + 2x5 − 7 = 0
a2(x) = −x1 + 2x2 + 3x3 + x4 + x5 − 6 = 0
a3(x) = −x1 + x2 + x3 + 2x4 + x5 − 4 = 0

xi ≥ 0 for i = 1, 2, . . . , 5

or
minimize f(x) = 3x1 + 4x2 + 5x3

subject to: c1(x) = x1 + 2x2 + 3x3 − 5 ≥ 0
c2(x) = 2x1 + 2x2 + x3 − 6 ≥ 0

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Optimization problems like the above occur in many disciplines. Their so-
lution can be readily achieved by using some powerful LP algorithms as will
be shown in Chaps. 11 and 12.

The Optimization Problem 23

1.6.2 Integer programming
In certain linear programming problems, at least some of the variables are re-

quired to assume only integer values. This restriction renders the programming
problem nonlinear. Nevertheless, the problem is referred to as linear since the
objective and constraint functions are linear [10].

1.6.3 Quadratic programming
If the optimization problem assumes the form

minimize f(x) = α0 + γTx + xTQ x

subject to: αTx ≥ β

where

α =

⎡
⎢⎢⎢⎣

α11 α22 . . . α1q

α21 α22 . . . α2q
...

...
...

αn1 αn2 . . . αnq

⎤
⎥⎥⎥⎦

βT = [β1 β2 · · · βq]

γT = [γ1 γ2 . . . γn]

and Q is a positive definite or semidefinite symmetric square matrix, then the
constraints are linear and the objective function is quadratic. Such an optimiza-
tion problem is said to be a quadratic programming (QP) problem (see Chap. 10
of [5]). A typical example of this type of problem is as follows:

minimize f(x) = 1
2x2

1 + 1
2x2

2 − x1 − 2x2

subject to: c1(x) = 6 − 2x1 − 3x2 ≥ 0

c2(x) = 5 − x1 − 4x2 ≥ 0
c3(x) = x1 ≥ 0
c4(x) = x2 ≥ 0

1.6.4 Nonlinear programming
In nonlinear programming problems, the objective function and usually the

constraint functions are nonlinear. Typical examples were given earlier as Ex-
amples 1.1 to 1.3. This is the most general branch of mathematical programming
and, in effect, LP and QP can be considered as special cases of nonlinear pro-
gramming. Although it is possible to solve linear or quadratic programming

24

problems by using nonlinear programming algorithms, the specialized algo-
rithms developed for linear or quadratic programming should be used for these
problems since they are usually much more efficient.

The choice of optimization algorithm depends on the mathematical behavior
and structure of the objective function. Most of the time, the objective function
is a well behaved nonlinear function and all that is necessary is a general-
purpose, robust, and efficient algorithm. For certain applications, however,
specialized algorithms exist which are often more efficient than general-purpose
ones. These are often referred to by the type of norm minimized, for example,
an algorithm that minimizes an L1, L2, or L∞ norm is said to by an L1, L2, or
minimax algorithm.

1.6.5 Dynamic programming
In many applications, a series of decisions must be made in sequence, where

subsequent decisions are influenced by earlier ones. In such applications, a
number of optimizations have to be performed in sequence and a general strat-
egy may be required to achieve an overall optimum solution. For example, a
large system which cannot be optimized owing to the size and complexity of
the problem can be partitioned into a set of smaller sub-systems that can be
optimized individually. Often individual sub-systems interact with each other
and, consequently, a general solution strategy is required if an overall optimum
solution is to be achieved. Dynamic programming is a collection of techniques
that can be used to develop general solution strategies for problems of the type
just described. It is usually based on the use of linear, integer, quadratic or
nonlinear optimization algorithms.

References
1 G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton,

N.J., 1963.

2 D. M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, New York, 1972.

3 P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London,
1981.

4 D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed., Addison-Wesley, Reading,
MA, 1984.

5 R. Fletcher, Practical Methods of Optimization, 2nd ed., Wiley, Chichester, UK, 1987.

6 B. C. Kuo, Automatic Control Systems, 5th ed., Prentice Hall, Englewood Cliffs, N.J., 1987.

7 K. D. Leaver and B. N. Chapman, Thin Films, Wykeham, London, 1971.

8 O. S. Heavens, Thin Film Physics, Methuen, London, 1970.

9 Z. Knittl, Optics of Thin Films, An Optical Multilayer Theory, Wiley, New York, 1976.

10 G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, Wiley, New
York, 1988.

The Optimization Problem 25

Problems
1.1 (a) Solve the following minimization problem by using a graphical method:

minimize f(x) = x2
1 + x2 + 4

subject to: c1(x) = −x2
1 − (x2 + 4)2 + 16 ≥ 0

c2(x) = x1 − x2 − 6 ≥ 0

Note: An explicit numerical solution is required.

(b) Indicate the feasible region.

(c) Is the optimum point constrained?

1.2 Repeat Prob. 1(a) to (c) for the problem

minimize f(x) = x2 −
8
x1

subject to: c1(x) = 1
5x1 − x2 ≥ 0

c2(x) = 16 − (x1 − 5)2 − x2
2 ≥ 0

Note: Obtain an accurate solution by using MATLAB.

1.3 Repeat Prob. 1(a) to (c) for the problem

minimize f(x) = (x1 − 12)x1 + (x2 − 6)x2 + 45

subject to: c1(x) = 7
5x1 − x2 − 7

5 ≥ 0

c2(x) = −x2 − 7
5x1 + 77

5 ≥ 0
c3(x) = x2 ≥ 0

1.4 Repeat Prob. 1(a) to (c) for the problem

minimize f(x) = 1
4(x1 − 6)2 + (x2 − 4)2

subject to: a1(x) = x1 − 3 = 0
c1(x) = 80

7 − x2 − 8
7x1 ≥ 0

c2(x) = x2 ≥ 0

1.5 Develop a method to determine the coordinates of point A in Example 1.5
based on the following observation: From Fig. 1.5, we see that there will
be no intersection points between the contour of f(x) = r2 and constraint
c2(x) = 0 if radius r is smaller than the distance A to B and there will be
two distinct intersection points between them if r is larger than the distance
A to B. Therefore, the solution point A can be identified by determining

26

the value of r for which the distance between the two intersection points
is sufficiently small.

1.6 Solve the constrained minimization problem

minimize f(x) = 3x1 + 2x2 + x3

subject to: a1(x) = 2x1 + 3x2 + x3 = 30
c1(x) = x1 ≥ 0
c2(x) = x2 ≥ 0
c3(x) = x3 ≥ 0

Hint: (i) Use the equality constraint to eliminate variable x3, and (ii) use
x = x̂2 to eliminate constraint x ≥ 0.

1.7 Consider the constrained minimization problem

minimize f(x) = −5 sin(x1 + x2) + (x1 − x2)2 − x1 − 2x2

subject to: c1(x) = 5 − x1 ≥ 0
c2(x) = 5 − x2 ≥ 0

(a) Plot a dense family of contours forf(x)over the regionD = {(x1, x2) :
−5 < x1 < 5, −5 < x2 < 5} to identify all local minimizers and
local maximizers of f(x) in D.

(b) Convert the problem in part (a) into an unconstrained minimization
problem by eliminating the inequality constraints. Hint: A constraint
x ≤ a can be eliminated by using the variable substitution x = a−x̂2.

Chapter 2

BASIC PRINCIPLES

2.1 Introduction
Nonlinear programming is based on a collection of definitions, theorems,

and principles that must be clearly understood if the available nonlinear pro-
gramming methods are to be used effectively.

This chapter begins with the definition of the gradient vector, the Hessian
matrix, and the various types of extrema (maxima and minima). The conditions
that must hold at the solution point are then discussed and techniques for the
characterization of the extrema are described. Subsequently, the classes of con-
vex and concave functions are introduced. These provide a natural formulation
for the theory of global convergence.

Throughout the chapter, we focus our attention on the nonlinear optimization
problem

minimize f = f(x)
subject to: x ∈ R

where f(x) is a real-valued function and R ⊂ En is the feasible region.

2.2 Gradient Information
In many optimization methods, gradient information pertaining to the ob-

jective function is required. This information consists of the first and second
derivatives of f(x) with respect to the n variables.

If f(x) ∈ C1, that is, if f(x) has continuous first-order partial derivatives,
the gradient of f(x) is defined as

g(x) =
[∂f

∂x1

∂f
∂x2

· · · ∂f
∂xn

]T
= ∇f(x) (2.1)

28

where
∇ = [∂

∂x1

∂
∂x2

· · · ∂
∂xn

]T (2.2)

If f(x) ∈ C2, that is, if f(x) has continuous second-order partial derivatives,
the Hessian1 of f(x) is defined as

H(x) = ∇gT = ∇{∇T f(x)} (2.3)

Hence Eqs. (2.1) – (2.3) give

H(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n

⎤
⎥⎥⎥⎥⎥⎥⎦

For a function f(x) ∈ C2

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

since differentiation is a linear operation and hence H(x) is an n × n square
symmetric matrix.

The gradient and Hessian at a point x = xk are represented by g(xk) and
H(xk) or by the simplified notation gk and Hk, respectively. Sometimes, when
confusion is not likely to arise, g(x) and H(x) are simplified to g and H.

The gradient and Hessian tend to simplify the optimization process con-
siderably. Nevertheless, in certain applications it may be uneconomic, time-
consuming, or impossible to deduce and compute the partial derivatives of
f(x). For these applications, methods are preferred that do not require gradient
information.

Gradient methods, namely, methods based on gradient information may use
only g(x) or both g(x) and H(x). In the latter case, the inversion of matrix
H(x) may be required which tends to introduce numerical inaccuracies and is
time-consuming. Such methods are often avoided.

2.3 The Taylor Series
Some of the nonlinear programming procedures and methods utilize linear

or quadratic approximations for the objective function and the equality and
inequality constraints, namely, f(x), ai(x), and cj(x) in Eq. (1.4). Such

1For the sake of simplicity, the gradient vector and Hessian matrix will be referred to as the gradient and
Hessian, respectively, henceforth.

Basic Principles 29

approximations can be obtained by using the Taylor series. If f(x) is a function
of two variables x1 and x2 such that f(x) ∈ CP where P → ∞, that is, f(x)
has continuous partial derivatives of all orders, then the value of function f(x)
at point [x1 + δ1, x2 + δ2] is given by the Taylor series as

f(x1 + δ1, x2 + δ2) = f(x1, x2) +
∂f

∂x1
δ1 +

∂f

∂x2
δ2

+
1
2

(
∂2f

∂x2
1

δ2
1 +

2∂2f

∂x1∂x2
δ1δ2 +

∂2f

∂x2
2

δ2
2

)

+O(‖δ‖3) (2.4a)

where
δ = [δ1 δ2]T

O(‖δ‖3) is the remainder, and ‖δ‖ is the Euclidean norm of δ given by

‖δ‖ =
√

δT δ

The notation φ(x) = O(x) denotes that φ(x) approaches zero at least as fast
as x as x approaches zero, that is, there exists a constant K ≥ 0 such that∣∣∣∣φ(x)

x

∣∣∣∣ ≤ K as x → 0

The remainder term in Eq. (2.4a) can also be expressed as o(‖δ‖2) where the
notation φ(x) = o(x) denotes that φ(x) approaches zero faster than x as x
approaches zero, that is, ∣∣∣∣φ(x)

x

∣∣∣∣ → 0 as x → 0

If f(x) is a function of n variables, then the Taylor series of f(x) at point
[x1 + δ1, x2 + δ2, . . .] is given by

f(x1 + δ1, x2 + δ2, . . .) = f(x1, x2, . . .) +
n∑

i=1

∂f

∂xi
δi

+
1
2

n∑
i=1

n∑
j=1

δi
∂2f

∂xi∂xj
δj

+o(‖δ‖2) (2.4b)

Alternatively, on using matrix notation

f(x + δ) = f(x) + g(x)T δ + 1
2δTH(x)δ + o(‖δ‖2) (2.4c)

30

where g(x) is the gradient, and H(x) is the Hessian at point x.
As ‖δ‖ → 0, second- and higher-order terms can be neglected and a linear

approximation can be obtained for f(x + δ) as

f(x + δ) ≈ f(x) + g(x)T δ (2.4d)

Similarly, a quadratic approximation for f(x + δ) can be obtained as

f(x + δ) ≈ f(x) + g(x)T δ + 1
2δTH(x)δ (2.4e)

Another form of the Taylor series, which includes an expression for the
remainder term, is

f(x + δ) = f(x)

+
∑

1≤k1+k2+···+kn≤P

∂k1+k2+···+knf(x)
∂xk1

1 ∂xk2
2 · · · ∂xkn

n

n∏
i=1

δki
i

ki!

+
∑

k1+k2+···+kn=P+1

∂P+1f(x + αδ)
∂xk1

1 ∂xk2
2 · · · ∂xkn

n

n∏
i=1

δki
i

ki!
(2.4f)

where 0 ≤ α ≤ 1 and

∑
1≤k1+k2+···+kn≤P

∂k1+k2+···+knf(x)
∂xk1

1 ∂xk2
2 · · · ∂xkn

n

n∏
i=1

δki
i

ki!

is the sum of terms taken over all possible combinations of k1, k2, . . . , kn that
add up to a number in the range 1 to P . (See Chap. 4 of Protter and Morrey [1]
for proof.) This representation of the Taylor series is completely general and,
therefore, it can be used to obtain cubic and higher-order approximations for
f(x + δ). Furthermore, it can be used to obtain linear, quadratic, cubic, and
higher-order exact closed-form expressions for f(x + δ). If f(x) ∈ C1 and
P = 0, Eq. (2.4f) gives

f(x + δ) = f(x) + g(x + αδ)T δ (2.4g)

and if f(x) ∈ C2 and P = 1, then

f(x + δ) = f(x) + g(x)T δ + 1
2δTH(x + αδ)δ (2.4h)

where 0 ≤ α ≤ 1. Eq. (2.4g) is usually referred to as the mean-value theorem
for differentiation.

Yet another form of the Taylor series can be obtained by regrouping the terms
in Eq. (2.4f) as

f(x + δ) = f(x) + g(x)T δ + 1
2δTH(x)δ + 1

3!D
3f(x)

+ · · · +
1

(r − 1)!
Dr−1f(x) + · · · (2.4i)

Basic Principles 31

where

Drf(x) =
n∑

i1=1

n∑
i2=1

· · ·
n∑

ir=1

{
δi1δi2 · · · δir

∂rf(x)
∂xi1∂xi2 · · · ∂xir

}

2.4 Types of Extrema
The extrema of a function are its minima and maxima. Points at which a

function has minima (maxima) are said to be minimizers (maximizers). Several
types of minimizers (maximizers) can be distinguished, namely, local or global
and weak or strong.

Definition 2.1 A point x∗ ∈ R, where R is the feasible region, is said to be a
weak local minimizer of f(x) if there exists a distance ε > 0 such that

f(x) ≥ f(x∗) (2.5)

if
x ∈ R and ‖x − x∗‖ < ε

Definition 2.2 A point x∗ ∈ R is said to be a weak global minimizer of f(x) if

f(x) ≥ f(x∗) (2.6)

for all x ∈ R.

If Def. 2.2 is satisfied at x∗, then Def. 2.1 is also satisfied at x∗, and so a
global minimizer is also a local minimizer.

Definition 2.3
If Eq. (2.5) in Def. 2.1 or Eq. (2.6) in Def. 2.2 is replaced by

f(x) > f(x∗) (2.7)

x∗ is said to be a strong local (or global) minimizer.

The minimum at a weak local, weak global, etc. minimizer is called a weak
local, weak global, etc. minimum.

A strong global minimum in E2 is depicted in Fig. 2.1.

Weak or strong and local or global maximizers can similarly be defined by
reversing the inequalities in Eqs. (2.5) – (2.7).

32

Figure 2.1. A strong global minimizer.

Example 2.1 The function of Fig. 2.2 has a feasible region defined by the set

R = {x : x1 ≤ x ≤ x2}

Classify its minimizers.

Solution The function has a weak local minimum at point B, strong local minima
at points A, C, and D, and a strong global minimum at point C.

In the general optimization problem, we are in principle seeking the global
minimum (or maximum) of f(x). In practice, an optimization problem may
have two or more local minima. Since optimization algorithms in general are
iterative procedures which start with an initial estimate of the solution and
converge to a single solution, one or more local minima may be missed. If
the global minimum is missed, a suboptimal solution will be achieved, which
may or may not be acceptable. This problem can to some extent be overcome
by performing the optimization several times using a different initial estimate
for the solution in each case in the hope that several distinct local minima will
be located. If this approach is successful, the best minimizer, namely, the one
yielding the lowest value for the objective function can be selected. Although
such a solution could be acceptable from a practical point of view, usually

Basic Principles 33

x 1

strong
local

minimum weak
local

minimum

global
strong

minimum

strong
local

minimum

A B C D

x 2 x

f(x)

feasible region

Figure 2.2. Types of minima. (Example 2.1)

there is no guarantee that the global minimum will be achieved. Therefore, for
the sake of convenience, the term ‘minimize f(x)’ in the general optimization
problem will be interpreted as ‘find a local minimum of f(x)’.

In a specific class of problems where function f(x) and set R satisfy certain
convexity properties, any local minimum of f(x) is also a global minimum
of f(x). In this class of problems an optimal solution can be assured. These
problems will be examined in Sec. 2.7.

2.5 Necessary and Sufficient Conditions for
Local Minima and Maxima

The gradient g(x) and the Hessian H(x) must satisfy certain conditions at a
local minimizer x∗, (see [2, Chap. 6]). Two sets of conditions will be discussed,
as follows:

1. Conditions which are satisfied at a local minimizer x∗. These are the
necessary conditions.

2. Conditions which guarantee that x∗ is a local minimizer. These are the
sufficient conditions.

The necessary and sufficient conditions can be described in terms of a number
of theorems. A concept that is used extensively in these theorems is the concept
of a feasible direction.

Definition 2.4 Let δ = αd be a change in x where α is a positive constant and
d is a direction vector. If R is the feasible region and a constant α̂ > 0 exists

34

such that
x + αd ∈ R

for all α in the range 0 ≤ α ≤ α̂, then d is said to be a feasible direction at
point x.

In effect, if a point x remains in R after it is moved a finite distance in a
direction d, then d is a feasible direction vector at x.

Example 2.2 The feasible region in an optimization problem is given by

R = {x : x1 ≥ 2, x2 ≥ 0}

as depicted in Fig. 2.3. Which of the vectors d1 = [−2 2]T , d2 = [0 2]T , d3 =
[2 0]T are feasible directions at points x1 = [4 1]T , x2 = [2 3]T , and x3 =
[1 4]T ?

x 1

x 2

*

*

-2 0 2 4

4

x1

x 3 x 2*

d3

d1
d2

2

Figure 2.3. Graphical construction for Example 2.2.

Solution Since
x1 + αd1 ∈ R

for all α in the range 0 ≤ α ≤ α̂ for α̂ = 1, d1 is a feasible direction at point
x1; for any range 0 ≤ α ≤ α̂

x1 + αd2 ∈ R and x1 + αd3 ∈ R

Hence d2 and d3 are feasible directions at x1.
Since no constant α̂ > 0 can be found such that

x2 + αd1 ∈ R for 0 ≤ α ≤ α̂

Basic Principles 35

d1 is not a feasible direction at x2. On the other hand, a positive constant α̂
exists such that

x2 + αd2 ∈ R and x2 + αd3 ∈ R

for 0 ≤ α ≤ α̂, and so d2 and d3 are feasible directions at x2.
Since x3 is not in R, no α̂ > 0 exists such that

x3 + αd ∈ R for 0 ≤ α ≤ α̂

for any d. Hence d1,d2, and d3 are not feasible directions at x3.

2.5.1 First-order necessary conditions
The objective function must satisfy two sets of conditions in order to have

a minimum, namely, first- and second-order conditions. The first-order condi-
tions are in terms of the first derivatives, i.e., the gradient.

Theorem 2.1 First-order necessary conditions for a minimum

(a) If f(x) ∈ C1 and x∗ is a local minimizer, then

g(x∗)Td ≥ 0

for every feasible direction d at x∗.

(b) If x∗ is located in the interior of R then

g(x∗) = 0

Proof (a) If d is a feasible direction at x∗, then from Def. 2.4

x = x∗ + αd ∈ R for 0 ≤ α ≤ α̂

From the Taylor series

f(x) = f(x∗) + αg(x∗)Td + o(α‖d‖)

If
g(x∗)Td < 0

then as α → 0
αg(x∗)Td + o(α‖d‖) < 0

and so
f(x) < f(x∗)

36

This contradicts the assumption that x∗ is a minimizer. Therefore, a necessary
condition for x∗ to be a minimizer is

g(x∗)Td ≥ 0

(b) If x∗ is in the interior of R, vectors exist in all directions which are
feasible. Thus from part (a), a direction d = d1 yields

g(x∗)Td1 ≥ 0

Similarly, for a direction d = −d1

−g(x∗)Td1 ≥ 0

Therefore, in this case, a necessary condition for x∗ to be a local minimizer is

g(x∗) = 0

2.5.2 Second-order necessary conditions
The second-order necessary conditions involve the first as well as the second

derivatives or, equivalently, the gradient and the Hessian.

Definition 2.5
(a) Let d be an arbitrary direction vector at point x. The quadratic form

dTH(x)d is said to be positive definite, positive semidefinite, negative
semidefinite, negative definite if dTH(x)d > 0, ≥ 0, ≤ 0, < 0, re-
spectively, for all d �= 0 at x. If dT H(x)d can assume positive as well
as negative values, it is said to be indefinite.

(b) If dTH(x)d is positive definite, positive semidefinite, etc., then matrix
H(x) is said to be positive definite, positive semidefinite, etc.

Theorem 2.2 Second-order necessary conditions for a minimum
(a) If f(x) ∈ C2 and x∗ is a local minimizer, then for every feasible direction

d at x∗
(i) g(x∗)Td ≥ 0
(ii) If g(x∗)Td = 0, then dTH(x∗)d ≥ 0

(b) If x∗ is a local minimizer in the interior of R, then
(i) g(x∗) = 0
(ii) dTH(x)∗d ≥ 0 for all d �= 0

Proof Conditions (i) in parts (a) and (b) are the same as in Theorem 2.1(a)
and (b).

Basic Principles 37

Condition (ii) of part (a) can be proved by letting x = x∗ + αd, where d is a
feasible direction. The Taylor series gives

f(x) = f(x∗) + αg(x∗)Td + 1
2α2dT H(x∗)d + o(α2‖d‖2)

Now if condition (i) is satisfied with the equal sign, then

f(x) = f(x∗) + 1
2α2dTH(x∗)d + o(α2‖d‖2)

If
dTH(x∗)d < 0

then as α → 0
1
2α2dTH(x∗)d + o(α2‖d‖2) < 0

and so
f(x) < f(x∗)

This contradicts the assumption thatx∗ is a minimizer. Therefore, ifg(x∗)Td =
0, then

dTH(x∗)d ≥ 0

If x∗ is a local minimizer in the interior of R, then all vectors d are feasible
directions and, therefore, condition (ii) of part (b) holds. This condition is
equivalent to stating that H(x∗) is positive semidefinite, according to Def. 2.5.

Example 2.3 Point x∗ = [12 0]T is a local minimizer of the problem

minimize f(x1, x2) = x2
1 − x1 + x2 + x1x2

subject to : x1 ≥ 0, x2 ≥ 0

Show that the necessary conditions for x∗ to be a local minimizer are satisfied.

Solution The partial derivatives of f(x1, x2) are

∂f

∂x1
= 2x1 − 1 + x2,

∂f

∂x2
= 1 + x1

Hence if d = [d1 d2]T is a feasible direction, we obtain

g(x)Td = (2x1 − 1 + x2)d1 + (1 + x1)d2

At x = x∗
g(x∗)Td = 3

2d2

and since d2 ≥ 0 for d to be a feasible direction, we have

g(x∗)Td ≥ 0

38

Therefore, the first-order necessary conditions for a minimum are satisfied.
Now

g(x∗)Td = 0

if d2 = 0. The Hessian is

H(x∗) =
[
2 1
1 0

]

and so
dT H(x∗)d = 2d2

1 + 2d1d2

For d2 = 0, we obtain
dTH(x∗)d = 2d2

1 ≥ 0

for every feasible value of d1. Therefore, the second-order necessary conditions
for a minimum are satisfied.

Example 2.4 Points p1 = [0 0]T and p2 = [6 9]T are probable minimizers for
the problem

minimize f(x1, x2) = x3
1 − x2

1x2 + 2x2
2

subject to : x1 ≥ 0, x2 ≥ 0

Check whether the necessary conditions of Theorems 2.1 and 2.2 are satisfied.

Solution The partial derivatives of f(x1, x2) are

∂f

∂x1
= 3x2

1 − 2x1x2,
∂f

∂x2
= −x2

1 + 4x2

Hence if d = [d1 d2]T , we obtain

g(x)Td = (3x2
1 − 2x1x2)d1 + (−x2

1 + 4x2)d2

At points p1 and p2

g(x)Td = 0

i.e., the first-order necessary conditions are satisfied. The Hessian is

H(x) =
[
6x1 − 2x2 −2x1

−2x1 4

]

and if x = p1, then

H(p1) =
[
0 0
0 4

]
and so

dTH(p1)d = 4d2
2 ≥ 0

Basic Principles 39

Hence the second-order necessary conditions are satisfied at x = p1, and p1

can be a local minimizer.
If x = p2, then

H(p2) =
[

18 −12
−12 4

]
and

dTH(p2)d = 18d2
1 − 24d1d2 + 4d2

2

Since dTH(p2)d is indefinite, the second-order necessary conditions are vio-
lated, that is, p2 cannot be a local minimizer.

Analogous conditions hold for the case of a local maximizer as stated in the
following theorem:

Theorem 2.3 Second-order necessary conditions for a maximum
(a) If f(x) ∈ C2, and x∗ is a local maximizer, then for every feasible

direction d at x∗
(i) g(x∗)Td ≤ 0
(ii) If g(x∗)T d = 0, then dTH(x∗)d ≤ 0

(b) If x∗ is a local maximizer in the interior of R then
(i) g(x∗) = 0
(ii) dTH(x∗)d ≤ 0 for all d �= 0

Condition (ii) of part (b) is equivalent to stating that H(x∗) is negative semidef-
inite.

The conditions considered are necessary but not sufficient for a point to be
a local extremum point, that is, a point may satisfy these conditions without
being a local extremum point. We now focus our attention on a set of stronger
conditions that are sufficient for a point to be a local extremum. We consider
conditions that are applicable in the case where x∗ is located in the interior of
the feasible region. Sufficient conditions that are applicable to the case where
x∗ is located on a boundary of the feasible region are somewhat more difficult
to deduce and will be considered in Chap. 10.

Theorem 2.4 Second-order sufficient conditions for a minimum If f(x) ∈ C2

and x∗ is located in the interior of R, then the conditions
(a) g(x∗) = 0
(b) H(x∗) is positive definite

are sufficient for x∗ to be a strong local minimizer.

Proof For any direction d, the Taylor series yields

f(x∗ + d) = f(x∗) + g(x∗)Td + 1
2d

T H(x∗)d + o(‖d‖2)

40

and if condition (a) is satisfied, we have

f(x∗ + d) = f(x∗) + 1
2d

TH(x∗)d + o(‖d‖2)

Now if condition (b) is satisfied, then

1
2d

TH(x∗)d + o(‖d‖2) > 0 as ‖d‖ → 0

Therefore,
f(x∗ + d) > f(x∗)

that is, x∗ is a strong local minimizer.

Analogous conditions hold for a maximizer as stated in Theorem 2.5 below.

Theorem 2.5 Second-order sufficient conditions for a maximum If f(x∗) ∈
C2 and x∗ is located in the interior of R, then the conditions

(a) g(x) = 0
(b) H(x∗) is negative definite

are sufficient for x∗ to be a strong local maximizer.

2.6 Classification of Stationary Points
If the extremum points of the type considered so far, namely, minimizers and

maximizers, are located in the interior of the feasible region, they are called
stationary points since g(x) = 0 at these points. Another type of stationary
point of interest is the saddle point.

Definition 2.6 A point x̄ ∈ R, where R is the feasible region, is said to be a
saddle point if

(a) g(x̄) = 0
(b) point x̄ is neither a maximizer nor a minimizer.

A saddle point in E2 is illustrated in Fig. 2.4.
At a point x = x̄ + αd ∈ R in the neighborhood of a saddle point x̄, the

Taylor series gives

f(x) = f(x̄) + 1
2α2dTH(x̄)d + o(α2‖d‖2)

since g(x̄) = 0. From the definition of a saddle point, directions d1 and d2

must exist such that

f(x̄ + αd1) < f(x̄) and f(x̄ + αd2) > f(x̄)

Since x̄ is neither a minimizer nor a maximizer, then as α → 0 we have

Basic Principles 41

Figure 2.4. A saddle point in E2.

dT
1 H(x̄)d1 < 0 and dT

2 H(x̄)d2 > 0

Therefore, matrix H(x̄) must be indefinite.
Stationary points can be located and classified as follows:

1. Find the points xi at which g(xi) = 0.
2. Obtain the Hessian H(xi).
3. Determine the character of H(xi) for each point xi.

If H(xi) is positive (or negative) definite, xi is a minimizer (or maximizer);
if H(xi) is indefinite, xi is a saddle point. If H(xi) is positive (or negative)
semidefinite, xi can be a minimizer (or maximizer); in the special case where
H(xi) = 0, xi can be a minimizer or maximizer since the necessary conditions
are satisfied in both cases. Evidently, if H(xi) is semidefinite, insufficient
information is available for the complete characterization of a stationary point
and further work is, therefore, necessary in such a case. A possible approach
would be to deduce the third partial derivatives of f(x) and then calculate the
fourth term in the Taylor series, namely, term D3f(x)/3! in Eq. (2.4i). If the
fourth term is zero, then the fifth term needs to be calculated and so on. An
alternative and more practical approach would be to compute f(xi + ej) and
f(xi − ej) for j = 1, 2, . . . , n where ej is a vector with elements

ejk =
{

0 for k �= j
ε for k = j

42

for some small positive value of ε and then check whether the definition of a
minimizer or maximizer is satisfied.

Example 2.5 Find and classify the stationary points of

f(x) = (x1 − 2)3 + (x2 − 3)3

Solution The first-order partial derivatives of f(x) are

∂f

∂x1
= 3(x1 − 2)2

∂f

∂x2
= 3(x2 − 3)2

If g = 0, then

3(x1 − 2)2 = 0 and 3(x2 − 3)2 = 0

and so there is a stationary point at

x = x1 = [2 3]T

The Hessian is given by

H =
[
6(x1 − 2) 0

0 6(x2 − 3)

]
and at x = x1

H = 0

Since H is semidefinite, more work is necessary in order to determine the
type of stationary point.

The third derivatives are all zero except for ∂3f/∂x3
1 and ∂3f/∂x3

2 which
are both equal to 6. For point x1 + δ, the fourth term in the Taylor series is
given by

1
3!

(
δ3
1

∂3f

∂x3
1

+ δ3
2

∂3f

∂x3
2

)
= δ3

1 + δ3
2

and is positive for δ1, δ2 > 0 and negative for δ1, δ2 < 0. Hence

f(x1 + δ) > f(x1) for δ1, δ2 > 0

and
f(x1 + δ) < f(x1) for δ1, δ2 < 0

that is, x1 is neither a minimizer nor a maximizer. Therefore, x1 is a saddle
point.

Basic Principles 43

From the preceding discussion, it follows that the problem of classifying the
stationary points of function f(x) reduces to the problem of characterizing the
Hessian. This problem can be solved by using the following theorems.

Theorem 2.6 Characterization of symmetric matrices A real symmetric n×n
matrix H is positive definite, positive semidefinite, etc., if for every nonsingular
matrix B of the same order, the n × n matrix Ĥ given by

Ĥ = BTHB

is positive definite, positive semidefinite, etc.

Proof If H is positive definite, positive semidefinite etc., then for all d �= 0

dT Ĥd = dT (BTHB)d
= (dTBT)H(Bd)
= (Bd)TH(Bd)

Since B is nonsingular, Bd = d̂ is a nonzero vector and thus

dT Ĥd = d̂T Hd̂ > 0, ≥ 0, etc.

for all d �= 0. Therefore,
Ĥ = BTHB

is positive definite, positive semidefinite, etc.

Theorem 2.7 Characterization of symmetric matrices via diagonalization
(a) If the n × n matrix B is nonsingular and

Ĥ = BTHB

is a diagonal matrix with diagonal elements ĥ1, ĥ2, . . . , ĥn then H
is positive definite, positive semidefinite, negative semidefinite, negative
definite, if ĥi > 0, ≥ 0, ≤ 0, < 0 for i = 1, 2, . . . , n. Otherwise, if
some ĥi are positive and some are negative, H is indefinite.

(b) The converse of part (a) is also true, that is, if H is positive definite,
positive semidefinite, etc., then ĥi > 0, ≥ 0, etc., and if H is indefinite,
then some ĥi are positive and some are negative.

Proof (a) For all d �= 0

dĤd = d2
1ĥ1 + d2

2ĥ2 + · · · + d2
nĥn

44

Therefore, if ĥi > 0, ≥ 0, etc. for i = 1, 2, . . . , n, then

dT Ĥd > 0, ≥ 0, etc.

that is, Ĥ is positive definite, positive semidefinite etc. If some ĥi are positive
and some are negative, a vector d can be found which will yield a positive or
negative dT Ĥd and then Ĥ is indefinite. Now since Ĥ = BTHB, it follows
from Theorem 2.6 that if ĥi > 0, ≥ 0, etc. for i = 1, 2, . . . , n, then H is
positive definite, positive semidefinite, etc.

(b) Suppose that H is positive definite, positive semidefinite, etc. Since
Ĥ = BTHB, it follows from Theorem 2.6 that Ĥ is positive definite, positive
semidefinite, etc. If d is a vector with element dk given by

dk =
{

0 for k �= i
1 for k = i

then
dT Ĥd = ĥi > 0, ≥ 0, etc. for i = 1, 2, . . . , n

If H is indefinite, then from Theorem 2.6 it follows that Ĥ is indefinite, and,
therefore, some ĥi must be positive and some must be negative.

A diagonal matrix Ĥ can be obtained by performing row and column oper-
ations on H, like adding k times a given row to another row or adding m times
a given column to another column. For a symmetric matrix, these operations
can be carried out by applying elementary transformations, that is, Ĥ can be
formed as

Ĥ = · · ·E3E2E1HET
1 ET

2 ET
3 · · · (2.8)

where E1,E2, · · · are elementary matrices. Typical elementary matrices are

Ea =

⎡
⎣ 1 0 0

0 1 0
0 k 1

⎤
⎦

and

Eb =

⎡
⎢⎢⎣

1 m 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

If Ea premultiplies a 3 × 3 matrix, it will cause k times the second row to be
added to the third row, and if Eb postmultiplies a 4 × 4 matrix it will cause m
times the first column to be added to the second column. If

B = ET
1 ET

2 ET
3 · · ·

Basic Principles 45

then
BT = · · ·E3E2E1

and so Eq. (2.8) can be expressed as

Ĥ = BTHB

Since elementary matrices are nonsingular, B is nonsingular, and hence Ĥ
is positive definite, positive semidefinite, etc., if H is positive definite, positive
semidefinite, etc.

Therefore, the characterization of H can be achieved by diagonalizing H,
through the use of appropriate elementary matrices, and then using Theorem
2.7.

Example 2.6 Diagonalize the matrix

H =

⎡
⎣ 1 −2 4
−2 2 0
4 0 −7

⎤
⎦

and then characterize it.

Solution Add 2 times the first row to the second row as⎡
⎣ 1 0 0

2 1 0
0 0 1

⎤
⎦
⎡
⎣ 1 −2 4
−2 2 0
4 0 −7

⎤
⎦
⎡
⎣ 1 2 0

0 1 0
0 0 1

⎤
⎦ =

⎡
⎣ 1 0 4

0 −2 8
4 8 −7

⎤
⎦

Add −4 times the first row to the third row as⎡
⎣ 1 0 0

0 1 0
−4 0 1

⎤
⎦
⎡
⎣ 1 0 4

0 −2 8
4 8 −7

⎤
⎦
⎡
⎣ 1 0 −4

0 1 0
0 0 1

⎤
⎦ =

⎡
⎣ 1 0 0

0 −2 8
0 8 −23

⎤
⎦

Now add 4 times the second row to the third row as⎡
⎣ 1 0 0

0 1 0
0 4 1

⎤
⎦
⎡
⎣ 1 0 0

0 −2 8
0 8 −23

⎤
⎦
⎡
⎣ 1 0 0

0 1 4
0 0 1

⎤
⎦ =

⎡
⎣ 1 0 0

0 −2 0
0 0 9

⎤
⎦

Since ĥ1 = 1, ĥ2 = −2, ĥ3 = 9, H is indefinite.

Example 2.7 Diagonalize the matrix

H =

⎡
⎣ 4 −2 0
−2 3 0
0 0 50

⎤
⎦

46

and determine its characterization.

Solution Add 0.5 times the first row to the second row as⎡
⎣ 1 0 0

0.5 1 0
0 0 1

⎤
⎦
⎡
⎣ 4 −2 0
−2 3 0
0 0 50

⎤
⎦
⎡
⎣ 1 0.5 0

0 1 0
0 0 1

⎤
⎦ =

⎡
⎣ 4 0 0

0 2 0
0 0 50

⎤
⎦

Hence H is positive definite.

Another theorem that can be used to characterize the Hessian is as follows:

Theorem 2.8 Eigendecomposition of symmetric matrices
(a) If H is a real symmetric matrix, then there exists a real unitary (or

orthogonal) matrix U such that

Λ = UTHU

is a diagonal matrix whose diagonal elements are the eigenvalues of H.
(b) The eigenvalues of H are real.

(See Chap. 4 of Horn and Johnson [3] for proofs.)

For a real unitary matrix, we have UTU = In where

In =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

⎤
⎥⎥⎥⎦

is the n × n identity matrix, and hence det U = ±1, that is, U is nonsingular.
From Theorem 2.6, Λ is positive definite, positive semidefinite, etc. if H is
positive definite, positive semidefinite, etc. Therefore, H can be characterized
by deducing its eigenvalues and then checking their signs as in Theorem 2.7.

Another approach for the characterization of a square matrix H is based on
the evaluation of the so-called principal minors and leading principal minors of
H, which are described in Sec. A.6. The details of this approach are summarized
in terms of the following theorem.

Theorem 2.9 Properties of matrices
(a) If H is positive semidefinite or positive definite, then

det H ≥ 0 or > 0

(b) H is positive definite if and only if all its leading principal minors are
positive, i.e., det Hi > 0 for i = 1, 2, . . . , n.

Basic Principles 47

(c) H is positive semidefinite if and only if all its principal minors are nonneg-
ative, i.e., det (H(l)

i) ≥ 0 for all possible selections of {l1, l2, . . . , li}
for i = 1, 2, . . . , n.

(d) H is negative definite if and only if all the leading principal minors of
−H are positive, i.e., det (−Hi) > 0 for i = 1, 2, . . . , n.

(e) H is negative semidefinite if and only if all the principal minors of −H
are nonnegative, i.e., det (−H(l)

i) ≥ 0 for all possible selections of
{l1, l2, . . . , li} for i = 1, 2, . . . , n.

(f) H is indefinite if neither (c) nor (e) holds.

Proof (a) Elementary transformations do not change the determinant of a matrix
and hence

det H = det Ĥ =
n∏

i=1

ĥi

where Ĥ is a diagonalized version of H with diagonal elements ĥi. If H is
positive semidefinite or positive definite, then ĥi ≥ 0 or > 0 from Theorem 2.7
and, therefore,

det H ≥ 0 or > 0

(b) If

d = [d1 d2 · · · di 0 0 · · · 0]T

and H is positive definite, then

dT Hd = dT
0 Hid0 > 0

for all d0 �= 0 where

d0 = [d1 d2 · · · di]T

and Hi is the ith leading principal submatrix of H. The preceding inequality
holds for i = 1, 2, . . . , n and, henceHi is positive definite for i = 1, 2, . . . , n.
From part (a)

det Hi > 0 for i = 1, 2, . . . , n

Now we prove the sufficiency of the theorem by induction. If n = 1, then
H = a11, and det (H1) = a11 > 0 implies that H is positive definite. We
assume that the sufficiency is valid for matrix H of size (n − 1) by (n − 1)
and we shall show that the sufficiency is also valid for matrix H of size n by n.
First, we write H as

H =
[
Hn−1 h
hT hnn

]

48

where

Hn−1 =

⎡
⎢⎢⎢⎣

h11 h12 · · · h1,n−1

h21 h22 · · · h2,n−1
...

...
...

hn−1,1 hn−1,2 · · · hn−1,n−1

⎤
⎥⎥⎥⎦ , h =

⎡
⎢⎢⎢⎣

h1n

h2n
...

hn−1,n

⎤
⎥⎥⎥⎦

By assumption Hn−1 is positive definite; hence there exists an R such that

RTHn−1R = In−1

where In−1 is the (n − 1) × (n − 1) identity matrix. If we let

S =
[
R 0
0 1

]

we obtain

STHS =
[
RT 0
0 1

] [
Hn−1 h
hT hnn

] [
R 0
0 1

]
=

[
In−1 RTh
hTR hnn

]

If we define

T =
[
In−1 −RTh
0 1

]
then

TT STHST =
[

In−1 0
−hT R 1

] [
In−1 RTh
hTR hnn

] [
In−1 −RTh
0 1

]

=
[
In−1 0
0 hnn − hTRRTh

]

So if we let U = ST and α = hnn − hTRRTh, then

UTHU =

⎡
⎢⎢⎢⎣

1
. . .

1
α

⎤
⎥⎥⎥⎦

which implies that
(det U)2 det H = α

As detH > 0, we obtain α > 0 and, therefore, UTHU is positive definite
which implies the positive definiteness of H.

(c) The proof of the necessity is similar to the proof of part (b). If

d = [0 · · · 0 dl1 0 · · · 0 dl2 0 · · · 0 dli 0 · · · 0]T

Basic Principles 49

and H is positive semidefinite, then

dTHd = dT
0 H(l)

i d0 ≥ 0

for all d0 �= 0 where
d0 = [dl1 dl2 · · · dli]

T

and H(l)
i is an i× i principal submatrix. Hence H(l)

i is positive semidefinite for
all possible selections of rows (and columns) from the set l = {l1, l2, . . . , li, }
with 1 ≤ l1 ≤ l2 < . . . < li ≤ n} and i = 1, 2, . . . , n. Now from part (a)

det (Hl
i) ≥ 0 for 1, 2, . . . , n.

The proof of sufficiency is rather lengthy and is omitted. The interested reader
is referred to Chap. 7 of [3].

(d) If Hi is negative definite, then −Hi is positive definite by definition and
hence the proof of part (b) applies to part (d).

(e) If H(l)
i is negative semidefinite, then −H(l)

i is positive semidefinite by
definition and hence the proof of part (c) applies to part (e).

(f) If neither part (c) nor part (e) holds, then dTHd can be positive or
negative and hence H is indefinite.

Example 2.8 Characterize the Hessian matrices in Examples 2.6 and 2.7 by
using the determinant method.

Solution Let
∆i = det (Hi)

be the leading principal minors of H. From Example 2.6, we have

∆1 = 1, ∆2 = −2, ∆3 = −18

and if ∆
′
i = det (−Hi), then

∆
′
1 = −1, ∆

′
2 = −2, ∆

′
3 = 18

since
det (−Hi) = (−1)i det (Hi)

Hence H is indefinite.
From Example 2.7, we get

∆1 = 4, ∆2 = 8, ∆3 = 400

Hence H is positive definite.

50

Example 2.9 Find and classify the stationary points of

f(x) = x2
1 + 2x1x2 + 2x2

2 + 2x1 + x2

Solution The first partial derivatives of f(x) are

∂f

∂x1
= 2x1 + 2x2 + 2

∂f

∂x2
= 2x1 + 4x2 + 1

If g = 0, then
2x1 + 2x2 + 2 = 0

2x1 + 4x2 + 1 = 0

and so there is a stationary point at

x = x1 = [−3
2

1
2]T

The Hessian is deduced as

H =
[
2 2
2 4

]
and since ∆1 = 2 and ∆2 = 4, H is positive definite. Therefore, x1 is a
minimizer.

Example 2.10 Find and classify the stationary points of function

f(x) = x2
1 − x2

2 + x2
3 − 2x1x3 − x2x3 + 4x1 + 12

Solution The first-order partial derivatives of f(x) are

∂f

∂x1
= 2x1 − 2x3 + 4

∂f

∂x2
= −2x2 − x3

∂f

∂x3
= −2x1 − x2 + 2x3

On equating the gradient to zero and then solving the simultaneous equations
obtained, the stationary point x1 = [−10 4 −8]T can be deduced. The Hessian
is

H =

⎡
⎣ 2 0 −2

0 −2 −1
−2 −1 2

⎤
⎦

Basic Principles 51

and since ∆1 = 2, ∆2 = −4, ∆3 = −2, and ∆
′
1 = −2, ∆

′
2 = −4, ∆

′
3 = 2,

H is indefinite. Therefore, point x1 = [−10 4 − 8]T is a saddle point. The
solution can be readily checked by diagonalizing H as

Ĥ =

⎡
⎣ 2 0 0

0 −2 0
0 0 21

2

⎤
⎦

2.7 Convex and Concave Functions
Usually, in practice, the function to be minimized has several extremum

points and, consequently, the uncertainty arises as to whether the extremum
point located by an optimization algorithm is the global one. In a specific class
of functions referred to as convex and concave functions, any local extremum
point is also a global extremum point. Therefore, if the objective function is
convex or concave, optimality can be assured. The basic principles relating to
convex and concave functions entail a collection of definitions and theorems.

Definition 2.7
A set Rc ⊂ En is said to be convex if for every pair of points x1, x2 ⊂ Rc

and for every real number α in the range 0 < α < 1, the point

x = αx1 + (1 − α)x2

is located in Rc, i.e., x ∈ Rc.

In effect, if any two points x1, x2 ∈ Rc are connected by a straight line,
then Rc is convex if every point on the line segment between x1 and x2 is a
member of Rc. If some points on the line segment between x1 and x2 are not in
Rc, the set is said to be nonconvex. Convexity in sets is illustrated in Fig. 2.5.

The concept of convexity can also be applied to functions.

Definition 2.8
(a) A function f(x) defined over a convex set Rc is said to be convex if for

every pair of points x1, x2 ∈ Rc and every real number α in the range
0 < α < 1, the inequality

f [αx1 + (1 − α)x2] ≤ αf(x1) + (1 − α)f(x2) (2.9)

holds. If x1 �= x2 and

f [αx1 + (1 − α)x2] < αf(x1) + (1 − α)f(x2)

52

Convex set

Nonconvex set
x 2

x 1
x 2

x 1

Figure 2.5. Convexity in sets.

then f(x) is said to be strictly convex.
(b) If φ(x) is defined over a convex set Rc and f(x) = −φ(x) is convex,

then φ(x) is said to be concave. If f(x) is strictly convex, φ(x) is
strictly concave.

In the left-hand side of Eq. (2.9), function f(x) is evaluated on the line
segment joining points x1 and x2 whereas in the right-hand side of Eq. (2.9) an
approximate value is obtained for f(x) based on linear interpolation. Thus a
function is convex if linear interpolation between any two points overestimates
the value of the function. The functions shown in Fig. 2.6a and b are convex
whereas that in Fig. 2.6c is nonconvex.

Theorem 2.10 Convexity of linear combination of convex functions If

f(x) = af1(x) + bf2(x)

where a, b ≥ 0 and f1(x), f2(x) are convex functions on the convex set Rc,
then f(x) is convex on the set Rc.

Proof Since f1(x) and f2(x) are convex, and a, b ≥ 0, then for x = αx1 +
(1 − α)x2 we have

Basic Principles 53

x 1 x 2

Convex
f(x)

Nonconvex

x 2x 1

x 2x 1

Convex

(a) (b)

(c)

f(x)

Figure 2.6. Convexity in functions.

af1[αx1 + (1 − α)x2] ≤ a[αf1(x1) + (1 − α)f1(x2)]

bf2[αx1 + (1 − α)x2] ≤ b[αf2(x1) + (1 − α)f2(x2)]

where 0 < α < 1. Hence

f(x) = af1(x) + bf2(x)
f [αx1 + (1 − α)x2] = af1[αx1 + (1 − α)x2] + bf2[αx1 + (1 − α)x2]

≤ α[af1(x1) + bf2(x1)] + (1 − α)[af1(x2)
+bf2(x2)]

Since

af1(x1) + bf2(x1) = f(x1)
af1(x2) + bf2(x2) = f(x2)

the above inequality can be expressed as

f [αx1 + (1 − α)x2] ≤ αf(x1) + (1 − α)f(x2)

that is, f(x) is convex.

54

Theorem 2.11 Relation between convex functions and convex sets If f(x) is
a convex function on a convex set Rc, then the set

Sc = {x : x ∈ Rc, f(x) ≤ K}

is convex for every real number K.

Proof If x1, x2 ∈ Sc, then f(x1) ≤ K and f(x2) ≤ K from the definition of
Sc. Since f(x) is convex

f [αx1 + (1 − α)x2] ≤ αf(x1) + (1 − α)f(x2)
≤ αK + (1 − α)K

or
f(x) ≤ K for x = αx1 + (1 − α)x2 and 0 < α < 1

Therefore
x ∈ Sc

that is, Sc is convex by virtue of Def. 2.7.

Theorem 2.11 is illustrated in Fig. 2.7, where set SC is convex if f(x) is a
convex function on convex set Rc.

Figure 2.7. Graphical construction for Theorem 2.11.

An alternative view of convexity can be generated by examining some the-
orems which involve the gradient and Hessian of f(x).

Basic Principles 55

Theorem 2.12 Property of convex functions relating to gradient If f(x) ∈
C1, then f(x) is convex over a convex set Rc if and only if

f(x1) ≥ f(x) + g(x)T (x1 − x)

for all x and x1 ∈ Rc, where g(x) is the gradient of f(x).

Proof The proof of this theorem consists of two parts. First we prove that if
f(x) is convex, the inequality holds. Then we prove that if the inequality holds,
f(x) is convex. The two parts constitute the necessary and sufficient conditions
of the theorem. If f(x) is convex, then for all α in the range 0 < α < 1

f [αx1 + (1 − α)x] ≤ αf(x1) + (1 − α)f(x)

or

f [x + α(x1 − x)] − f(x) ≤ α[f(x1) − f(x)]

As α → 0, the Taylor series of f [x + α(x1 − x)] yields

f(x) + g(x)T α(x1 − x) − f(x) ≤ α[f(x1) − f(x)]

and so
f(x1) ≥ f(x) + g(x)T (x1 − x) (2.10)

Now if this inequality holds at points x and x2 ∈ Rc, then

f(x2) ≥ f(x) + g(x)T (x2 − x) (2.11)

Hence Eqs. (2.10) and (2.11) yield

αf(x1) + (1 − α)f(x2) ≥ αf(x) + αg(x)T (x1 − x) + (1 − α)f(x)
+(1 − α)g(x)T (x2 − x)

or

αf(x1) + (1 − α)f(x2) ≥ f(x) + gT (x)[αx1 + (1 − α)x2 − x]

With the substitution
x = αx1 + (1 − α)x2

we obtain

f [αx1 + (1 − α)x2] ≤ αf(x1) + (1 − α)f(x2)

for 0 < α < 1. Therefore, from Def. 2.8 f(x) is convex.

56

x1x

f (x)

f(x1)

x1(- x)

x
f

x
f

Figure 2.8. Graphical construction for Theorem 2.12.

Theorem 2.12 states that a linear approximation of f(x) at point x1 based
on the derivatives of f(x) at x underestimates the value of the function. This
fact is illustrated in Fig. 2.8.

Theorem 2.13 Property of convex functions relating to the Hessian A function
f(x) ∈ C2 is convex over a convex set Rc if and only if the Hessian H(x) of
f(x) is positive semidefinite for x ∈ Rc.

Proof If x1 = x+d where x1 and x are arbitrary points in Rc, then the Taylor
series yields

f(x1) = f(x) + g(x)T (x1 − x) + 1
2d

TH(x + αd)d (2.12)

where 0 ≤ α ≤ 1 (see Eq. (2.4h)). Now if H(x) is positive semidefinite
everywhere in Rc, then

1
2d

TH(x + αd)d ≥ 0

and so
f(x1) ≥ f(x) + g(x)T (x1 − x)

Therefore, from Theorem 2.12, f(x) is convex.
If H(x) is not positive semidefinite everywhere in Rc, then a point x and at

least a d exist such that

dTH(x + αd)d < 0

and so Eq. (2.12) yields

Basic Principles 57

f(x1) < f(x) + g(x)T (x1 − x)

and f(x) is nonconvex from Theorem 2.12. Therefore, f(x) is convex if and
only if H(x) is positive semidefinite everywhere in Rc.

For a strictly convex function, Theorems 2.11–2.13 are modified as follows.

Theorem 2.14 Properties of strictly convex functions
(a) If f(x) is a strictly convex function on a convex set Rc, then the set

Sc = {x : x ∈ Rc for f(x) < K}

is convex for every real number K.
(b) If f(x) ∈ C1, then f(x) is strictly convex over a convex set if and only if

f(x1) > f(x) + g(x)T (x1 − x)

for all x and x1 ∈ Rc where g(x) is the gradient of f(x).
(c) A function f(x) ∈ C2 is strictly convex over a convex set Rc if and only

if the Hessian H(x) is positive definite for x ∈ Rc.

If the second-order sufficient conditions for a minimum hold at x∗ as in
Theorem 2.4, in which case x∗ is a strong local minimizer, then from Theorem
2.14(c), f(x) must be strictly convex in the neighborhood of x∗. Consequently,
convexity assumes considerable importance even though the class of convex
functions is quite restrictive.

If φ(x) is defined over a convex set Rc and f(x) = −φ(x) is strictly con-
vex, then φ(x) is strictly concave and the Hessian of φ(x) is negative definite.
Conversely, if the Hessian of φ(x) is negative definite, then φ(x) is strictly
concave.

Example 2.11 Check the following functions for convexity:

(a) f(x) = ex1 + x2
2 + 5

(b) f(x) = 3x2
1 − 5x1x2 + x2

2

(c) f(x) = 1
4x4

1 − x2
1 + x2

2

(d) f(x) = 50 + 10x1 + x2 − 6x2
1 − 3x2

2

Solution In each case the problem reduces to the derivation and characterization
of the Hessian H.

(a) The Hessian can be obtained as

H =
[
ex1 0
0 2

]

58

For −∞ < x1 < ∞, H is positive definite and f(x) is strictly convex.
(b) In this case, we have

H =
[

6 −5
−5 2

]

Since ∆1 = 6, ∆2 = −13 and ∆
′
1 = −6, ∆

′
2 = −13, where ∆i = det (Hi)

and ∆
′
i = det (−Hi), H is indefinite. Thus f(x) is neither convex nor concave.

(c) For this example, we get

H =
[
3x2

1 − 2 0
0 2

]

For x1 ≤ −
√

2/3 and x1 ≥
√

2/3, H is positive semidefinite and f(x) is
convex; for x1 < −

√
2/3 and x1 >

√
2/3, H is positive definite and f(x) is

strictly convex; for −
√

2/3 < x1 <
√

2/3, H is indefinite, and f(x) is neither
convex nor concave.

(d) As before

H =
[−12 0

0 −6

]
In this case H is negative definite, and f(x) is strictly concave.

2.8 Optimization of Convex Functions
The above theorems and results can now be used to deduce the following

three important theorems.

Theorem 2.15 Relation between local and global minimizers in convex func-
tions If f(x) is a convex function defined on a convex set Rc, then

(a) the set of points Sc where f(x) is minimum is convex;
(b) any local minimizer of f(x) is a global minimizer.

Proof (a) If F ∗ is a minimum of f(x), then Sc = {x : f(x) ≤ F ∗, x ∈ Rc}
is convex by virtue of Theorem 2.11.

(b) If x∗ ∈ Rc is a local minimizer but there is another point x∗∗ ∈ Rc which
is a global minimizer such that

f(x∗∗) < f(x∗)

then on line x = αx∗∗ + (1 − α)x∗

f [αx∗∗ + (1 − α)x∗] ≤ αf(x∗∗) + (1 − α)f(x∗)
< αf(x∗) + (1 − α)f(x∗)

Basic Principles 59

or
f(x) < f(x∗) for all α

This contradicts the fact that x∗ is a local minimizer and so

f(x) ≥ f(x∗)

for all x ∈ Rc. Therefore, any local minimizers are located in a convex set,
and all are global minimizers.

Theorem 2.16 Existence of a global minimizer in convex functions If f(x) ∈
C1 is a convex function on a convex set Rc and there is a point x∗ such that

g(x∗)Td ≥ 0 where d = x1 − x∗

for all x1 ∈ Rc, then x∗ is a global minimizer of f(x).

Proof From Theorem 2.12

f(x1) ≥ f(x∗) + g(x∗)T (x1 − x∗)

where g(x∗) is the gradient of f(x) at x = x∗. Since

g(x∗)T (x1 − x∗) ≥ 0

we have
f(x1) ≥ f(x∗)

and so x∗ is a local minimizer. By virtue of Theorem 2.15, x∗ is also a global
minimizer.

Similarly, if f(x) is a strictly convex function and

g(x∗)Td > 0

then x∗ is a strong global minimizer.

The above theorem states, in effect, that if f(x) is convex, then the first-order
necessary conditions become sufficient for x∗ to be a global minimizer.

Since a convex function of one variable is in the form of the letter U whereas
a convex function of two variables is in the form of a bowl, there are no theorems
analogous to Theorems 2.15 and 2.16 pertaining to the maximization of a convex
function. However, the following theorem, which is intuitively plausible, is
sometimes useful.

Theorem 2.17 Location of maximum of a convex function If f(x) is a
convex function defined on a bounded, closed, convex set Rc, then if f(x) has
a maximum over Rc, it occurs at the boundary of Rc.

60

Proof If point x is in the interior of Rc, a line can be drawn through x which
intersects the boundary at two points, say, x1 and x2, since Rc is bounded and
closed. Since f(x) is convex, some α exists in the range 0 < α < 1 such that

x = αx1 + (1 − α)x2

and
f(x) ≤ αf(x1) + (1 − α)f(x2)

If f(x1) > f(x2), we have

f(x) < αf(x1) + (1 − α)f(x1)
= f(x1)

If
f(x1) < f(x2)

we obtain

f(x) < αf(x2) + (1 − α)f(x2)
= f(x2)

Now if
f(x1) = f(x2)

the result
f(x) ≤ f(x1) and f(x) ≤ f(x2)

is obtained. Evidently, in all possibilities the maximizers occur on the boundary
of Rc.

This theorem is illustrated in Fig. 2.9.

References
1 M. H. Protter and C. B. Morrey, Jr., Modern Mathematical Analysis, Addison-Wesley, Read-

ing, MA, 1964.
2 D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed., Addison-Wesley, Reading,

MA, 1984.
3 R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge, Cambridge University Press,

UK, 1990.

Problems
2.1 (a) Obtain a quadratic approximation for the function

f(x) = 2x3
1 + x2

2 + x2
1x

2
2 + 4x1x2 + 3

at point x + δ if xT = [1 1].

Basic Principles 61

Figure 2.9. Graphical construction for Theorem 2.17.

(b) Now obtain a linear approximation.

2.2 An n-variable quadratic function is given by

f(x) = a + bTx + 1
2x

T Qx

where Q is an n×n symmetric matrix. Show that the gradient and Hessian
of f(x) are given by

g = b + Qx and ∇2f(x) = Q

respectively.

2.3 Point xa = [2 4]T is a possible minimizer of the problem

minimize f(x) = 1
4 [x2

1 + 4x2
2 − 4(3x1 + 8x2) + 100]

subject to: x1 = 2, x2 ≥ 0

(a) Find the feasible directions.

(b) Check if the second-order necessary conditions are satisfied.

2.4 Points xa = [0 3]T , xb = [4 0]T , xc = [4 3]T are possible maximizers of
the problem

maximize f(x) = 2(4x1 + 3x2) − (x2
1 + x2

2 + 25)

subject to: x1 ≥ 0, x2 ≥ 0

(a) Find the feasible directions.

62

(b) Check if the second-order necessary conditions are satisfied.

2.5 Point xa = [4 −1]T is a possible minimizer of the problem

minimize f(x) = 16
x1

− x2

subject to: x1 + x2 = 3, x1 ≥ 0

(a) Find the feasible directions.

(b) Check if the second-order necessary conditions are satisfied.

2.6 Classify the following matrices as positive definite, positive semidefinite,
etc. by using LDLT factorization:

(a) H =

⎡
⎣ 5 3 1

3 4 2
1 2 6

⎤
⎦ , (b) H =

⎡
⎣−5 1 1

1 −2 2
1 2 −4

⎤
⎦

(c) H =

⎡
⎣−1 2 −3

2 4 5
−3 5 −20

⎤
⎦

2.7 Check the results in Prob. 2.6 by using the determinant method.

2.8 Classify the following matrices by using the eigenvalue method:

(a) H =
[
2 3
3 4

]
, (b) H =

⎡
⎣ 1 0 4

0 2 0
4 0 18

⎤
⎦

2.9 One of the points xa = [1 −1]T , xb = [0 0]T , xc = [1 1]T minimizes
the function

f(x) = 100(x2 − x2
1)

2 + (1 − x1)2

By using appropriate tests, identify the minimizer.

2.10 An optimization algorithm has given a solution xa = [0.6959 −11.3479]T

for the problem

minimize f(x) = x4
1 + x1x2 + (1 + x2)2

(a) Classify the general Hessian of f(x) (i.e., positive definite, . . ., etc.).

(b) Determine whether xa is a minimizer, maximizer, or saddle point.

2.11 Find and classify the stationary points for the function

f(x) = x2
1 − x2

2 + x2
3 − 2x1x3 − x2x3 + 4x1 + 12

2.12 Find and classify the stationary points for the following functions:

(a) f(x) = 2x2
1 + x2

2 − 2x1x2 + 2x3
1 + x4

1

(b) f(x) = x2
1x

2
2 − 4x2

1x2 + 4x2
1 + 2x1x

2
2 + x2

2 − 8x1x2 + 8x1 − 4x2

Basic Principles 63

2.13 Show that
f(x) = (x2 − x2

1)
2 + x5

1

has only one stationary point which is neither a minimizer or a maximizer.

2.14 Investigate the following functions and determine whether they are convex
or concave:

(a) f(x) = x2
1 + coshx2

(b) f(x) = x2
1 + 2x2

2 + 2x2
3 + x2

4 − x1x2 + x1x3 − 2x2x4 + x1x4

(c) f(x) = x2
1 − 2x2

2 − 2x2
3 + x2

4 − x1x2 + x1x3 − 2x2x4 + x1x4

2.15 A given quadratic function f(x) is known to be convex for ‖x‖ < ε.
Show that it is convex for all x ∈ En.

2.16 Two functions f1(x) and f2(x) are convex over a convex set Rc. Show
that

f(x) = αf1(x) + βf2(x)

where α and β are nonnegative scalars is convex over Rc.

2.17 Assume that functions f1(x) and f2(x) are convex and let

f(x) = max{f1(x), f2(x)}

Show that f(x) is a convex function.

2.18 Let γ(t) be a single-variable convex function which is monotonic non-
decreasing, i.e., γ(t1) ≥ γ(t2) for t1 > t2. Show that the compound
function γ[f(x)] is convex if f(x) is convex [2].

Chapter 3

GENERAL PROPERTIES
OF ALGORITHMS

3.1 Introduction
In Chap. 1, an optimization algorithm has been informally introduced as a

sequence of steps that can be executed repeatedly in order to obtain a series
of progressively improved solutions, starting with an initial estimate of the
solution. In this chapter, a more formal and mathematical description of an
algorithm will be supplied and some fundamental concepts pertaining to all
algorithms in general will be studied.

The chapter includes a discussion on the principle of global convergence.
Specifically, a general theorem that enumerates the circumstances and condi-
tions under which convergence can be assured in any given algorithm is proved
[1]–[3].

The chapter concludes with a quantitative discussion relating to the speed of
convergence of an optimization algorithm. In particular, quantitative criteria
are described that can be used to compare the efficiency of different types of
algorithms.

3.2 An Algorithm as a Point-to-Point Mapping

There are numerous algorithms that can be used for the solution of nonlinear
programming problems ranging from some simple to some highly complex al-
gorithms. Although different algorithms differ significantly in their structure,
mathematical basis, and range of applications, they share certain common prop-
erties that can be regarded as universal. The two most fundamental common
properties of nonlinear programming algorithms are

1. They are iterative algorithms.

2. They are descent algorithms.

66

An algorithm is iterative if the solution is obtained by calculating a series
of points in sequence, starting with an initial estimate of the solution. On the
other hand, an algorithm is a descent algorithm if each new point generated by
the algorithm yields a reduced value of some function, possibly the objective
function.

In mathematical terms, an algorithm can be regarded as a point-to-point
mapping where a point xk in some space, normally a subspace of the En vector
space, is mapped onto another point xk+1 in the same space. The value of xk+1

is governed by some rule of correspondence. In effect, if pointxk is used as input
to the algorithm, a point xk+1 is obtained as output. An algorithm can thus be
represented by a block diagram as depicted in Fig. 3.1. In this representation, x0

is an initial estimate of the solution and the feedback line denotes the iterative
nature of the algorithm. The rule of correspondence between xk+1 and xk,
which might range from a simple expression to a large number of formulas, can
be represented by the relation

xk+1 = A(xk)

x0

xk

xk+1A

Figure 3.1. Block diagram for an iterative algorithm.

When applied iteratively to successive points, an algorithm will generate a
series (or sequence) of points {x0, x1, . . . , xk, . . .} in space X , as depicted in
Fig. 3.2. If the sequence converges to a limit x̂, then x̂ is the required solution.

A sequence {x0, x1, . . . , xk, . . .} is said to converge to a limit x̂ if for any
given ε > 0, and an integer K exists such that

‖xk − x̂‖ < ε for all k ≥ K

where ‖ · ‖ denotes the Euclidean norm. Such a sequence can be represented
by the notation {xk}∞k=0 and its limit as k → ∞ by xk → x̂. If the sequence
converges, it has a unique limit point.

Later on in this chapter, reference will be made to subsequences of a given
sequence. A subsequence of {xk}∞k=0, denoted as {xk}k∈I , where I is a set
of positive integers, can be obtained by deleting certain elements in {xk}∞k=0.
For example, if I = {k : k ≥ 10} then {xk}k∈I = {x10, x11, x12, . . .}, if
I = {k : k even and greater than zero} then {xk}k∈I = {x2, x4, x6, . . .},
and if I = {k : 0 ≤ k ≤ 100}, then {xk}k∈I = {x1, x2, . . . , x100}. In our
notation S = {k : P}, S is the set of elements such that k has property P .

General Properties of Algorithms 67

x 2

x1

x0

x 3

x2

x 1

X
x̂

Figure 3.2. A point-to-point algorithm in E2.

If the sequence of points generated by an algorithm A converges to a limit x̂
as described above, then algorithm A is said to be continuous.

3.3 An Algorithm as a Point-to-Set Mapping
In the above discussion, an algorithm was considered as a point-to-point

mapping in that for any given point xk a corresponding unique point xk+1 is
generated. In practice, this is the true nature of an algorithm only if a specific
version of the algorithm is implemented on a specific computer. Since dif-
ferent implementations of an algorithm by different programmers on different
computers are very likely to give slightly different results, owing to the accu-
mulation of roundoff errors, it is advantageous to consider an algorithm as a
point-to-set mapping. In this way, if any general properties of an algorithm
are deduced, they will hold for all possible implementations of the algorithm.
Furthermore, they may hold for similar algorithms. For these reasons, the fol-
lowing more general definition of an algorithm will be used throughout the rest
of this chapter.

Definition 3.1 An algorithm is a point-to-set mapping on space X that assigns
a subset of X to every point x ∈ X .

According to this definition, an algorithm A will generate a sequence of
points {xk}∞k=1 by assigning a set X1 which is a subset of X , i.e., X1 ⊂ X , to
a given initial point x0 ∈ X . Then an arbitrary point x1 ∈ X1 is selected and

68

a set X2 ⊂ X is assigned to it, and so on, as depicted in Fig. 3.3. The rule of
correspondence between xk+1 and xk is, therefore, of the form

xk+1 ∈ A(xk)

where A(xk) is the set of all possible outputs if xk is the input.

x0

x2

x 1

X1

X2

X3

x 2 x1A()

()x 1 x0A

Figure 3.3. A point-to-set algorithm in E2.

Clearly, the above definition encompasses all possible implementations of
an algorithm and it would encompass a class of algorithms that are based on a
similar mathematical structure. The concept of the point-to-set algorithm can
be visualized by noting that in a typical algorithm

xk+1 = A(xk) + εq

where εq is a random vector due to the quantization of numbers. Since the
quantization error tends to depend heavily on the sequence in which arithmetic
operations are performed and on the precision of the computer used, the exact
location of xk+1 is not known. Nevertheless, it is known that xk+1 is a member
of a small subset of X .

3.4 Closed Algorithms
In the above discussion, reference was made to the continuity of a point-to-

point algorithm. A more general property which is applicable to point-to-point
as well as to point-to-set algorithms is the property of closeness. This property
reduces to continuity in a point-to-point algorithm.

General Properties of Algorithms 69

Definition 3.2
(a) A point-to-set algorithm A, from space X to space X1 is said to be closed

at point x̂ ∈ X if the assumptions

xk → x̂ for xk ∈ X

xk+1 → x̂1 for xk+1 ∈ A(xk)

imply that
x̂1 ∈ A(x̂)

The notation xk → x̂ denotes that the sequence {xk}∞k=0 converges to a
limit x̂.

(b) A point-to-set algorithm A is said to be closed on X if it is closed at each
point of X .

This definition is illustrated in Fig. 3.4. It states that algorithm A is closed at
point x̂ if a solid line can be drawn between x̂ and x̂1, and if a solid line can be
drawn for all x̂ ∈ X , then A is closed on X .

x2

x 1

x̂

X1

xk

Axk+1 ()xk

1x̂ A()x̂

X

Figure 3.4. Definition of a closed algorithm in E2.

Example 3.1 An algorithm A is defined by

xk+1 = A(xk) =

⎧⎨
⎩

1
2(xk + 2) for xk > 1

1
4xk for xk ≤ 1

70

xk

xk+1

1.0

2.0

0 1.0 2.0

Figure 3.5. Graph for Example 3.1.

(see Fig. 3.5). Show that the algorithm is not closed at x̂ = 1.

Solution Let sequence {xk}∞k=0 be defined by

xk = 1 +
1

2k+1

The sequence can be obtained as

{xk}∞k=0 = {1.5, 1.25, 1.125 . . . , 1}

and hence
xk → x̂ = 1

The corresponding sequence {xk+1}∞k=0 is given by

xk+1 = A(xk) = 1
2(xk + 2)

and so
{xk+1}∞k=0 = {1.75, 1.625, 1.5625, . . . , 1.5}

Thus
xk+1 → x̂1 = 1.5

Now
A(x̂) = 1

4

General Properties of Algorithms 71

and since x̂1 = 1.5, we have
x̂1 �= A(x̂)

Therefore, A is not closed at x̂ = 1. The problem is due to the discontinuity of
A(xk) at xk = 1.

Example 3.2 An algorithm A is defined by

xk+1 = A(xk) = x2
k for −∞ < xk < ∞

Show that A is closed.

Solution Let {xk} be a sequence converging to x̂, i.e., xk → x̂. Then {xk+1} =
{A(xk)} = {x2

k} is a sequence that converges to x̂2, i.e., x2
k → x̂1 = x̂2. Since

x̂1 = A(x̂), we conclude that for all x̂ in the range −∞ < x̂ < ∞, A is closed.

3.5 Descent Functions
In any descent algorithm, a specific function D(x) is utilized, which is re-

duced continuously throughout the optimization until convergence is achieved.
D(x) may be the objective function itself or some related function, and it is re-
ferred to as the descent function. A formal definition summarizing the required
specifications for a function to be a descent function is as follows. This will be
used later in Theorem 3.1.

Definition 3.3
Let S ⊂ X be the set containing the solution points, and assume that A is an

algorithm on X . A continuous real-valued function D(x) on X is said to be a
descent function for S and A if it satisfies the following specifications:

(a) if xk �∈ S, then D(xk+1) < D(xk) for all xk+1 ∈ A(xk)
(b) if xk ∈ S, then D(xk+1) ≤ D(xk) for all xk+1 ∈ A(xk)

Example 3.3 Obtain a descent function for the algorithm

xk+1 = A(xk) = 1
4xk

Solution For an arbitrary point x0, the sequence

{xk}∞k=0 = {x0,
x0

4
,

x0

42
, . . . , 0}

72

is generated. Therefore, D(xk) = |xk| satisfies condition (a). The solution
set is a single point at x∞ = 0. Therefore, condition (b) is satisfied. Hence
D(x) = |x| is a descent function for the algorithm.

3.6 Global Convergence
If an algorithm has the important property that an arbitrary initial point x0 ∈

X will lead to a converging sequence of points {xk}∞k=0, then the algorithm is
said to be globally convergent. In practice, even the most efficient algorithms
are likely to fail if certain conditions are violated. For example, an algorithm
may generate sequences that do not converge or may converge to points that
are not solutions. There are several factors that are likely to cause failure in an
algorithm. However, if they are clearly understood, certain precautions can be
taken which will circumvent the cause of failure. Consequently, the study of
global convergence is of particular interest not only to the theorist but also the
practitioner.

A large segment of the theory of global convergence deals with the circum-
stances and conditions that will guarantee global convergence. An important
theorem in this area is as follows:

Theorem 3.1 Convergence of an algorithm Let A be an algorithm on X and
assume that an initial point x0 will yield an infinite sequence {xk}∞k=0 where

xk+1 ∈ A(xk)

If a solution set S and a descent function D(xk) exist for the algorithm such
that

(a) all points xk are contained in a compact subset of X ,
(b) D(xk) satisfies the specifications of Def. 3.3, and
(c) the mapping of A is closed at all points outside S,

then the limit of any convergent subsequence of {xk}∞k=0 is a solution point.

Proof The proof of this important theorem consists of two parts. In part (a),
we suppose that x̂ is the limit of any subsequence of {xk}∞k=0, say, {xk}k∈I ,
where I is a set of integers, and show that D(xk) converges with respect to the
infinite sequence {xk}∞k=0. In part (b), we show that x̂ is in the solution set S.

The second part of the proof relies heavily on the Weierstrass theorem (see
[4]) which states that if W is a compact set, then the sequence {xk}∞k=0, where
xk ∈ W , has a limit point in W . A set W is compact if it is closed. A set W is
closed, if all points on the boundary of W belong to W . A set W is bounded,
if it can be circumscribed by a hypersphere of finite radius. A consequence of
the Weierstrass theorem is that a subsequence {xk}k∈I of {xk}∞k=0 has a limit

General Properties of Algorithms 73

point in set W̄ = {xk : k ∈ I} since W̄ is a subset of W and is, therefore,
compact.

(a) Since D(xk) is continuous on X and x̂ is assumed to be the limit of
{xk}k∈I , a positive number and an integer K exist such that

D(xk) − D(x̂) < ε (3.1)

for k ≥ K with k ∈ I . Hence D(xk) converges with respect to the subsequence
{xk}k∈I . We must show, however, that D(xk) converges with respect to the
infinite sequence {xk}∞k=0.

For any k ≥ K, we can write

D(xk) − D(x̂) = [D(xk) − D(xK)] + [D(xK) − D(x̂)] (3.2)

If k = K in Eq. (3.1)
D(xK) − D(x̂) < ε (3.3)

and if k ≥ K, then D(xk) ≤ D(xK) from Def. 3.3 and hence

D(xk) − D(xK) ≤ 0 (3.4)

Now from Eqs. (3.2) – (3.4), we have

D(xk) − D(x̂) < ε

for all k ≥ K. Therefore,

lim
k→∞

D(xk) = D(x̂) (3.5)

that is, D(xk) converges with respect to the infinite series, as xk → x̂.
(b) Let us assume that x̂ is not in the solution set. Since the elements of

subsequence {xk+1}k∈I belong to a compact set according to condition (a), a
compact subset {xk+1 : k ∈ Ī ⊂ I} exists such that xk+1 converges to some
limit x̄ by virtue of the Weierstrass theorem. As in part (a), we can show that

lim
k→∞

D(xk+1) = D(x̄) (3.6)

Therefore, from Eqs. (3.5) and (3.6)

D(x̄) = D(x̂) (3.7)

On the other hand,

xk → x̂ for k ∈ Ī (from part (a))

xk+1 → x̄ for xk+1 ∈ A(x)

74

and since x̂ �∈ S by supposition, and A is closed at points outside S according
to condition (c), we have

x̄ ∈ A(x̂)

Consequently,
D(x̄) < D(x̂) (3.8)

On comparing Eqs. (3.7) and (3.8), a contradiction is observed and, in effect,
our assumption that point x̂ is not in the solution set S is not valid. That is, the
limit of any convergent subsequence of {xk}∞k=0 is a solution point.

In simple terms, the above theorem states that if

(a) the points that can be generated by the algorithm are located in the finite
En space,

(b) a descent function can be found that satisfies the strict requirements
stipulated, and

(c) the algorithm is closed outside the neighborhood of the solution,

then the algorithm is globally convergent. Further, a very close approximation
to the solution can be obtained in a finite number of iterations, since the limit
of any convergent finite subsequence of {xk}∞k=0 is a solution.

A corollary of Theorem 3.1 which is of some significance is as follows:

Corollary If under the conditions of Theorem 3.1, the solution set S consists
of a single point x̂, then the sequence {xk}∞k=0 converges to x̂.

Proof If we suppose that there is a subsequence {xk}k∈I that does not converge
to x̂, then

‖xk − x̂‖ > ε (3.9)

for all k ∈ I and ε > 0. Now set {xk:∈ I ′ ⊂ I} is compact and hence {xk}k∈I′

converges to a limit point, say, x′, by virtue of the Weierstrass theorem. From
Theorem 3.1,

‖xk − x′‖ < ε (3.10)

for all k ≥ K. Since the solution set consists of a single point, we have x′ = x̂.
Under these circumstances, Eqs. (3.9) and (3.10) become contradictory and, in
effect, our supposition is false. That is, any subsequence of {xk}∞k=0, including
the sequence itself, converges to x̂.

If one or more of the conditions in Theorem 3.1 are violated, an algorithm
may fail to converge. The possible causes of failure are illustrated in terms of
the following examples.

Example 3.4 A possible algorithm for the problem

minimize f(x) = |x|

General Properties of Algorithms 75

is

xk+1 = A(xk) =

⎧⎨
⎩

1
2(xk + 2) for xk > 1

1
4xk for xk ≤ 1

Show that the algorithm is not globally convergent and explain why.

Solution If x0 = 4, the algorithm will generate the sequence

{xk}∞k=0 = {4, 3, 2.5, 2.25, . . . , 2}

and if x0 = −4, we have

{xk}∞k=0 = {−4, −1, −0.25, −0.0625, . . . , 0}

Since two distinct initial points lead to different limit points, the algorithm is
not globally convergent. The reason is that the algorithm is not closed at point
xk = 1 (see Example 3.1), i.e., condition (c) of Theorem 3.1 is violated.

Example 3.5 A possible algorithm for the problem

minimize f(x) = x3

is
xk+1 = A(xk) = −(x2

k + 1)

Show that the algorithm is not globally convergent and explain why.

Solution For an initial point x0 the solution sequence is

{xk}∞k=0 = {x0, −(x2
0+1), −((x2

0+1)2+1), (((x2
0+1)2+1)2+1), . . . , −∞}

Hence the sequence does not converge, and its elements are not in a compact
set. Therefore, the algorithm is not globally convergent since condition (a) of
Theorem 3.1 is violated.

Example 3.6 A possible algorithm for the problem

minimize f(x) = |x − 1|

subject to: x > 0

is
xk+1 = A(xk) =

√
xk

76

Show that the algorithm is globally convergent for 0 < x0 < ∞.

Solution For any initial point x0 in the range 0 < x0 < ∞, we have

{xk}∞k=0 = {x0, x
1/2
0 , x

1/4
0 , . . . , 1}

{xk}∞k=0 = {x1/2
0 , x

1/4
0 , x

1/8
0 , . . . , 1}

Thus
xk → x̂ = 1, xk+1 → x̂1 = 1

Evidently, all points xk belong to a compact set and so condition (a) is satisfied.
The objective function f(x) is a descent function since

|xk+1 − 1| < |xk − 1| for all k < ∞

and so condition (b) is satisfied.
Since

xk → x̂ for xk > 0
xk+1 → x̂1 for xk+1 = A(xk)

and
x̂1 = A(x̂)

the algorithm is closed, and so condition (c) is satisfied. The algorithm is,
therefore, globally convergent.

3.7 Rates of Convergence
The many available algorithms differ significantly in their computational

efficiency. An efficient or fast algorithm is one that requires only a small
number of iterations to converge to a solution and the amount of computation
will be small. Economical reasons dictate that the most efficient algorithm for
the application be chosen and, therefore, quantitative measures or criteria that
can be used to measure the rate of convergence in a set of competing algorithms
are required.

The most basic criterion in this area is the order of convergence of a sequence.
If {xk}∞k=0 is a sequence of real numbers, its order of convergence is the largest
nonnegative integer p that will satisfy the relation

0 ≤ β < ∞

where

β = lim
k→∞

|xk+1 − x̂|
|xk − x̂|p (3.11)

General Properties of Algorithms 77

and x̂ is the limit of the sequence as k → ∞. Parameter β is called the
convergence ratio.

Example 3.7 Find the order of convergence and convergence ratio of the se-
quence {xk}∞k=0 if

(a) xk = γk for 0 < γ < 1
(b) xk = γ2k

for 0 < γ < 1

Solution (a) Since x̂ = 0, Eq. (3.11) gives

β = lim
k→∞

γk(1−p)+1

Hence for p = 0, 1, 2 we have β = 0, γ, ∞. Thus p = 1 and β = γ.
(b) In this case

β = lim
k→∞

γ2(k+1)

γ2kp
= lim

k→∞
{γ2k(2−p)}

Hence for p = 0, 1, 2, 3, we have β = 0, 0, 1, ∞. Thus p = 2 and β = 1.

If the limit in Eq. (3.11) exists, then

lim
k→∞

|xk − x̂| = ε

where ε < 1. As a result

lim
k→∞

|xk+1 − x̂| = βεp

Therefore, the rate of convergence is increased if p is increased and β is reduced.
If γ = 0.8 in Example 3.7, the sequences in parts (a) and (b) will be

{xk}∞k=0 = {1, 0.8, 0.64, 0.512, 0.409, . . . , 0}

and

{xk}∞k=0 = {1, 0.64, 0.409, 0.167, 0.023, . . . , 0}

respectively. The rate of convergence in the second sequence is much faster
since p = 2.

If p = 1 and β < 1, the sequence is said to have linear convergence. If p = 1
and β = 0 or p ≥ 2 the sequence is said to have superlinear convergence.

Most of the available nonlinear programming algorithms have linear conver-
gence and hence their comparison is based on the value of β.

78

Another measure of the rate of convergence of a sequence is the so-called
average order of convergence. This is the lowest nonnegative integer that will
satisfy the relation

γ = lim
k→∞

|xk − x̂|1/(p+1)k
= 1

If no p > 0 can be found, then the order of convergence is infinity.

Example 3.8 Find the average order of convergence of the sequence {xk}∞k=0

(a) xk = γk for 0 < γ < 1
(b) xk = γ2k

for 0 < γ < 1

Solution (a) Since x̂ = 0

γ = lim
k→∞

(γk)1/(p+1)k
= 1

Hence for p = 0, 1, 2, we have γ = 0, 1, 1. Thus p = 1.
(b) In this case,

γ = lim
k→∞

(γ2k
)1/(p+1)k

= 1

Hence for p = 0, 1, 2, 3, we have γ = 0, γ, 1, 1. Thus p = 2.

If the average order of convergence is unity, then the sequence is said to have
an average linear convergence. An average convergence ratio can be defined
as

γ = lim
k→∞

|xk − x̂|1/k

In the above discussion, the convergence of a sequence of numbers has
been considered. Such a sequence might consist of the values of the objective
function as the solution is approached. In such a case, we are measuring the rate
at which the objective function is approaching its minimum. Alternatively, if
we desire to know how fast the variables of the problem approach their optimum
values, a sequence of numbers can be generated by considering the magnitudes
or the square magnitudes of the vectors xk− x̂, namely, ‖xk− x̂‖ or ‖xk− x̂‖2,
as the solution is approached.

In the above measures of the rate of convergence, the emphasis is placed on
the efficiency of an algorithm in the neighborhood of the solution. Usually in
optimization a large percentage of the computation is used in the neighborhood
of the solution and, consequently, the above measures are quite meaningful.
Occasionally, however, a specific algorithm may be efficient in the neighbor-
hood of the solution and very inefficient elsewhere. In such a case, the use of
the above criteria would lead to misleading results and, therefore, other criteria
should also be employed.

General Properties of Algorithms 79

References
1 W. I. Zangwill, Nonlinear Programming: A Unified Approach, Chap. 4, Prentice-Hall,

Englewood Cliffs, N.J., 1969.
2 M. S. Bazaraa and C. M. Shetty, Nonlinear Programming, Chap. 7, Wiley, New York, 1979.
3 D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed., Chap. 6, Addison-Wesley,

Reading, MA, 1984.
4 H. M. Edwards, Advanced Calculus, Houghton Mifflin, Chap. 9, Boston, MA, 1969.

Problems
3.1 Let A be a point-to-set algorithm from space E1 to space E1. The graph

of A is defined as the set

{(x, y) : x ∈ E1, y ∈ A(x)}

(a) Show that algorithm A defined by

A(x) = {y : x/4 ≤ y ≤ x/2}

is closed on E1.

(b) Plot the graph of A.

3.2 Examine whether or not the following point-to-set mappings from E1 to
E1 are closed:

(a)

A(x) =

{
1
x if x �= 0

x if x = 0

(b)

A(x) =

{
1
x if x �= 0

1 if x = 0

(c)

A(x) =

{
x if x �= 0

1 if x = 0

3.3 Define the point-to-set mapping on En by

A(x) = {y : yTx ≥ 1}

Is A closed on En?

3.4 Let {bk, k = 0, 1, . . .} and {ck, k = 0, 1, . . .} be sequences of real
numbers, where bk → 0 superlinearly in the sense that p = 1 and β = 0
(see Eq. (3.11)) and c ≤ ck ≤ C with c > 0. Show that {bkck, k =
0, 1, . . .} converges to zero superlinearly.

Chapter 4

ONE-DIMENSIONAL OPTIMIZATION

4.1 Introduction
Three general classes of nonlinear optimization problems can be identified,

as follows:

1. One-dimensional unconstrained problems
2. Multidimensional unconstrained problems
3. Multidimensional constrained problems

Problems of the first class are the easiest to solve whereas those of the third class
are the most difficult. In practice, multidimensional constrained problems are
usually reduced to multidimensional unconstrained problems which, in turn,
are reduced to one-dimensional unconstrained problems. In effect, most of
the available nonlinear programming algorithms are based on the minimization
of a function of a single variable without constraints. Therefore, efficient one-
dimensional optimization algorithms are required, if efficient multidimensional
unconstrained and constrained algorithms are to be constructed.

The one-dimensional optimization problem is

minimize F = f(x)

where f(x) is a function of one variable. This problem has a solution if f(x) is
unimodal in some range of x, i.e., f(x) has only one minimum in some range
xL ≤ x ≤ xU , where xL and xU are the lower and upper limits of the minimizer
x∗.

Two general classes of one-dimensional optimization methods are available,
namely, search methods and approximation methods.

In search methods, an interval [xL, xU] containing x∗, known as a bracket, is
established and is then repeatedly reduced on the basis of function evaluations
until a reduced bracket [xL,k, xU,k] is obtained which is sufficiently small. The

82

minimizer can be assumed to be at the center of interval [xL,k, xU,k]. These
methods can be applied to any function and differentiability of f(x) is not
essential.

In approximation methods, an approximation of the function in the form
of a low-order polynomial, usually a second- or third-order polynomial, is
assumed. This is then analyzed using elementary calculus and an approximate
value of x∗ is deduced. The interval [xL, xU] is then reduced and the process
is repeated several times until a sufficiently precise value of x∗ is obtained.
In these methods, f(x) is required to be continuous and differentiable, i.e.,
f(x) ∈ C1.

Several one-dimensional optimization approaches will be examined in this
chapter, as follows [1]–[8]:

1. Dichotomous search
2. Fibonacci search
3. Golden-section search
4. Quadratic interpolation method
5. Cubic interpolation method
6. The Davies, Swann, and Campey method

The first three are search methods, the fourth and fifth are approximation meth-
ods, and the sixth is a practical and useful method that combines a search method
with an approximation method.

The chapter will also deal with a so-called inexact line search due to Fletcher
[9][10], which offers certain important advantages such as reduced computa-
tional effort in some optimization methods.

4.2 Dichotomous Search
Consider a unimodal function which is known to have a minimum in the

interval [xL, xU]. This interval is said to be the range of uncertainty. The
minimizer x∗ of f(x) can be located by reducing progressively the range of
uncertainty until a sufficiently small range is obtained. In search methods, this
can be achieved by using the values of f(x) at suitable points.

If the value of f(x) is known at a single point xa in the range xL < xa < xU ,
point x∗ is equally likely to be in the range xL to xa or xa to xU as depicted in
Fig. 4.1(a). Consequently, the information available is not sufficient to allow
the reduction of the range of uncertainty. However, if the value of f(x) is
known at two points, say, xa and xb, an immediate reduction is possible. Three
possibilities may arise, namely,

(a) f(xa) < f(xb)
(b) f(xa) > f(xb)
(c) f(xa) = f(xb)

In case (a), x∗ may be located in range xL < x∗ < xa or xa < x∗ < xb, that
is, xL < x∗ < xb , as illustrated in Fig. 4.1a. The possibility xb < x∗ < xU

One-Dimensional Optimization 83

is definitely ruled out since this would imply that f(x) has two minima: one to
the left of xb and one to the right of xb. Similarly, for case (b), we must have
xa < x∗ < xU as in Fig. 4.1b. For case (c), we must have xa < x∗ < xb, that
is, both inequalities xL < x∗ < xb and xa < x∗ < xU must be satisfied as in
Fig. 4.1c.

xL xU

xbxa

f (x)

f (xa)

f ()xb

(a)

x

xL

x

xU

xbxa

f (x)

f ()xb

(b)

f(xa)

Figure 4.1. Reduction of range of uncertainty: (a) case (a), f(xa) < f(xb), (b) case (b),
f(xa) > f(xb).

84

xL

x

xU

xbxa

f (x)

(c)

xaf () f ()xb=

Figure 4.1 Cont ’d. Reduction of range of uncertainty: (c) case (c),f(xa) = f(xb).

A rudimentary strategy for reducing the range of uncertainty is the so-called
dichotomous search. In this method, f(x) is evaluated at two points xa =
x1−ε/2 and xb = x1+ε/2 where ε is a small positive number. Then depending
on whether f(xa) < f(xb) or f(xa) > f(xb), range xL to x1+ε/2 or x1−ε/2
to xU can be selected and if f(xa) = f(xb) either will do fine. If we assume
that x1 − xL = xU − x1, i.e., x1 = (xL + xU)/2, the region of uncertainty
is immediately reduced by half. The same procedure can be repeated for the
reduced range, that is, f(x) can be evaluated at x2 − ε/2 and x2 + ε/2 where
x2 is located at the center of the reduced range, and so on. For example, if the
dichotomous search is applied to the function of Fig. 4.2 the range of uncertainty
will be reduced from 0 < x∗ < 1 to 9/16 + ε/2 < x∗ < 5/8 − ε/2 in four
iterations.

Each iteration reduces the range of uncertainty by half and, therefore, after
k iterations, the interval of uncertainty reduces to

Ik = (1
2)kI0

where I0 = xU − xL. For example, after 7 iterations the range of uncertainty
would be reduced to less than 1% of the initial interval. The corresponding
computational effort would be 14 function evaluations since two evaluations
are required for each iteration.

One-Dimensional Optimization 85

xL

x

xU

xbxa

f (x)

1

5
8

9
16

1
2

3
4

ε

Figure 4.2. Construction for dichotomous search.

4.3 Fibonacci Search
Consider an interval of uncertainty

Ik = [xL,k, xU,k]

and assume that two points xa,k and xb,k are located in Ik, as depicted in Fig. 4.3.
As in Sec. 4.2, the values of f(x) at xa,k and xb,k, namely, f(xa,k) and f(xb,k),
can be used to select the left interval

IL
k+1 = [xL,k, xb,k]

if f(xa,k) < f(xb,k), the right interval

IR
k+1 = [xa,k, xU,k]

if f(xa,k) > f(xb,k), or either of IR
k+1 and IL

k+1 if

f(xa, k) = f(xb, k)

86

x

f (x)

xL,k xa,k xb,k xb,k+1

I k

xU,k

I k+2
R

Ik+2
L

I k+1
L

I k+1
R

Figure 4.3. Reduction of range of uncertainty.

If the right interval IR
k+1 is selected, it contains the minimizer and, in addition,

the value of f(x) is known at one interior point of IR
k+1, namely, at point xb,k.

If f(x) is evaluated at one more interior point of IR
k+1, say, at point xb,k+1,

sufficient information is available to allow a further reduction in the region of
uncertainty, and the above cycle of events can be repeated. One of the two
new sub-intervals IL

k+2 and IR
k+2, shown in Fig. 4.3, can be selected as before,

and so on. In this way, only one function evaluation is required per iteration,
and the amount of computation will be reduced relative to that required in the
dichotomous search.

From Fig. 4.3
Ik = IL

k+1 + IR
k+2 (4.1)

and if, for the sake of convenience, we assume equal intervals, then

IL
k+1 = IR

k+1 = Ik+1

IL
k+2 = IR

k+2 = Ik+2

Eq. (4.1) gives the recursive relation

Ik = Ik+1 + Ik+2 (4.2)

If the above procedure is repeated a number of times, a sequence of intervals
{I1, I2, . . . , In} will be generated as follows:

I1 = I2 + I3

One-Dimensional Optimization 87

I2 = I3 + I4

...

In = In+1 + In+2

In the above set of n equations, there are n + 2 variables and if I1 is the given
initial interval, n + 1 variables remain. Therefore, an infinite set of sequences
can be generated by specifying some additional rule. Two specific sequences of
particular interest are the Fibonacci sequence and the golden-section sequence.
The Fibonacci sequence is considered below and the golden-section sequence
is considered in Sec. 4.4.

The Fibonacci sequence is generated by assuming that the interval for iter-
ation n + 2 vanishes, that is, In+2 = 0. If we let k = n in Eq. (4.2), we can
write

In+1 = In − In+2 = In ≡ F0In

In = In+1 + In+2 = In ≡ F1In

In−1 = In + In+1 = 2In ≡ F2In

In−2 = In−1 + In = 3In ≡ F3In

In−3 = In−2 + In−1 = 5In ≡ F4In

In−4 = In−3 + In−2 = 8In ≡ F5In

...
...

Ik = Ik+1 + Ik+2 = Fn−k+1In (4.3a)
...

...

I1 = I2 + I3 = FnIn (4.3b)

The sequence generated, namely,

{1, 1, 2, 3, 5, 8, 13, . . . } = {F0, F1, F2, F3, F4, F5, F6 . . . }
is the well-known Fibonacci sequence which occurs in various branches of
mathematics. It can be generated by using the recursive relation

Fk = Fk−1 + Fk−2 for k ≥ 2 (4.4)

where F0 = F1 = 1. Its application in one-dimensional optimization gives rise
to the Fibonacci search method. The method is illustrated in Fig. 4.4 for n = 6
and I1 = 100 for the case where the left interval is consistently selected, i.e.,
the minimum occurs in the neighborhood of x = 0.

If the number of iterations is assumed to be n, then from Eqn. (4.3b) the
Fibonacci search reduces the interval of uncertainty to

In =
I1

Fn
(4.5)

88

I 1

I 6

1

2

3

4

5

6

0

0

0

0

0

0

100

61.5

38.5

23.1

15.4

7.7

k

Figure 4.4. Fibonacci search for n = 6.

For example, if n = 11 then Fn = 144 and so In is reduced to a value less
than 1% the value of I1. This would entail 11 iterations and since one function
evaluation is required per iteration, a total of 11 function evaluations would be
required as opposed to the 14 required by the dichotomous search to achieve
the same precision. In effect, the Fibonacci search is more efficient than the
dichotomous search. Indeed, it can be shown, that it achieves the largest interval
reduction relative to the other search methods and it is, therefore, the most
efficient in terms of computational effort required.

The Fibonacci sequence of intervals can be generated only if n is known. If
the objective of the optimization is to find x∗ to within a prescribed tolerance,
the required n can be readily deduced by using Eq. (4.5). However, if the
objective is to determine the minimum of f(x) to within a prescribed tolerance,
difficulty will be experienced in determining the required n without solving the
problem. The only available information is that n will be low if the minimum
of f(x) is shallow and high if f(x) varies rapidly in the neighborhood of the
solution.

The above principles can be used to implement the Fibonacci search. Let
us assume that the initial bounds of the minimizer, namely, xL,1 and xU,1, and
the value of n are given, and a mathematical description of f(x) is available.

One-Dimensional Optimization 89

The implementation consists of computing the successive intervals, evaluating
f(x), and selecting the appropriate intervals.

At the kth iteration, the quantities xL,k, xa,k, xb,k, xU,k, Ik+1 and

fa,k = f(xa,k), fb,k = f(xb,k)

are known, and the quantities xL,k+1, xa,k+1, xb,k+1, xU,k+1, Ik+2, fa,k+1,
and fb,k+1 are required. Interval Ik+2 can be obtained from Eq. (4.3a) as

Ik+2 =
Fn−k−1

Fn−k
Ik+1 (4.6)

The remaining quantities can be computed as follows.
If fa,k > fb,k, then x∗ is in interval [xa,k, xU,k] and so the new bounds of

x∗ can be updated as

xL,k+1 = xa,k (4.7)

xU,k+1 = xU,k (4.8)

Similarly, the two interior points of the new interval, namely, xa,k+1 and xb,k+1

will be xb,k and xL,k+1 + Ik+2, respectively. We can thus assign

xa,k+1 = xb,k (4.9)

xb,k+1 = xL,k+1 + Ik+2 (4.10)

as illustrated in Fig. 4.5. The value fb,k is retained as the value of f(x) at
xa,k+1, and the value of f(x) at xb,k+1 is calculated, i.e.,

fa,k+1 = fb,k (4.11)

fb,k+1 = f(xb,k+1) (4.12)

On the other hand, if fa,k < fb,k, then x∗ is in interval [xL,k, xb,k]. In this
case, we assign

xL,k+1 = xL,k (4.13)

xU,k+1 = xb,k (4.14)

xa,k+1 = xU,k+1 − Ik+2 (4.15)

xb,k+1 = xa,k (4.16)

fb,k+1 = fa,k (4.17)

and calculate
fa,k+1 = f(xa,k+1) (4.18)

as depicted in Fig. 4.6. In the unlikely event that fa,k = fb,k, either of the
above sets of assignments can be used since x∗ is contained by both intervals
[xL,k, xb,k] and [xa,k, xU,k].

90

x

f (x)

xL,k xa,k xb,k

xb,k+1

I k

xU,k

I k+2

I k+1

xa,k+1

x L,k+1 xU,k+1

I k+1

Figure 4.5. Assignments in kth iteration of the Fibonacci search if fa,k > fb,k.

x

f (x)

xL,k
xa,k xb,k

xb,k+1

I k

xU,k

I k+2

I k+1

xa,k+1

xL,k+1 xU,k+1

I k+1

Figure 4.6. Assignments in kth iteration of the fibonacci search if fa,k < fb,k.

The above procedure is repeated until k = n − 2 in which case

Ik+2 = In

and
x∗ = xa,k+1 = xb,k+1

as depicted in Fig. 4.7. Evidently, the minimizer is determined to within a
tolerance ±1/Fn.

The error in x∗ can be divided by two by applying one stage of the dichoto-
mous search. This is accomplished by evaluating f(x) at point x = xa,k+1 + ε

One-Dimensional Optimization 91

x

f (x)

xL,k

I k

xU,k

I k+1

xL,k+1 xU,k+1

I k+1

I k+2I k+2

xb,k+1

xa,k+1

xa,k xb,k

Figure 4.7. Assignments in iteration n − 2 of the Fibonacci search if fa,k < fb,k.

where |ε| < 1/Fn and then assigning

x∗ =

⎧⎪⎨
⎪⎩

xa,k+1 + 1
2Fn

if f(xa,k+1 + ε) < f(xa,k+1)
xa,k+1 + ε

2 if f(xa,k+1 + ε) = f(xa,k+1)
xa,k+1 − 1

2Fn
if f(xa,k+1 + ε) > f(xa,k+1)

If n is very large, the difference between xa,k and xb,k can become very
small, and it is possible for xa,k to exceed xb,k, owing to roundoff errors. If this
happens, unreliable results will be obtained. In such applications, checks should
be incorporated in the algorithm for the purpose of eliminating the problem, if it
occurs. One possibility would be to terminate the algorithm since, presumably,
sufficient precision has been achieved if xa,k ≈ xb,k.

The above principles can be used to construct the following algorithm.

Algorithm 4.1 Fibonacci search
Step 1
Input xL,1, xU,1, and n.
Step 2
Compute F1, F2, . . . , Fn using Eq. (4.4).
Step 3
Assign I1 = xU,1 − xL,1 and compute

I2 =
Fn−1

Fn
I1 (see Eq. (4.6))

xa,1 = xU,1 − I2, xb,1 = xL,1 + I2

fa,1 = f(xa,1), fb,1 = f(xb,1)

92

Set k = 1.
Step 4
Compute Ik+2 using Eq. (4.6).
If fa,k ≥ fb,k, then update xL,k+1, xU,k+1, xa,k+1, xb,k+1, fa,k+1,
and fb,k+1 using Eqs. (4.7) to (4.12). Otherwise, if fa,k < fb,k, update
information using Eqs. (4.13) to (4.18).
Step 5
If k = n − 2 or xa,k+1 > xb,k+1, output x∗ = xa,k+1 and f∗ = f(x∗),
and stop. Otherwise, set k = k + 1 and repeat from Step 4.

The condition xa,k+1 > xb,k+1 implies that xa,k+1 ≈ xb,k+1 within the
precision of the computer used, as was stated earlier, or that there is an error in
the algorithm. It is thus used as an alternative stopping criterion.

4.4 Golden-Section Search
The main disadvantage of the Fibonacci search is that the number of iterations

must be supplied as input. A search method in which iterations can be performed
until the desired accuracy in either the minimizer or the minimum value of the
objective function is achieved is the so-called golden-section search. In this
approach, as in the Fibonacci search, a sequence of intervals {I1, I2, I3, . . .}
is generated as illustrated in Fig. 4.8 by using the recursive relation of Eq. (4.2).
The rule by which the lengths of successive intervals are generated is that the
ratio of any two adjacent intervals is constant, that is

Ik

Ik+1
=

Ik+1

Ik+2
=

Ik+2

Ik+3
= · · · = K (4.19)

so that

Ik

Ik+2
= K2 (4.20)

Ik

Ik+3
= K3

and so on.
Upon dividing Eq. (4.2) by Ik+2, we obtain

Ik

Ik+2
=

Ik+1

Ik+2
+ 1 (4.21)

and from Eqs. (4.19) to (4.21)

K2 = K + 1 (4.22)

Now solving for K, we get

K =
1 ±

√
5

2
(4.23)

One-Dimensional Optimization 93

I 1

1

2

3

4

5

6

0

0

0

0

0

0

100

61.8

38.2

23.6

14.6

9.0

k

Figure 4.8. Golden section search.

The negative value of K is irrelevant and so K = 1.618034. This constant is
known as the golden ratio. The terminology has arisen from the fact that in
classical Greece, a rectangle with sides bearing a ratio 1 : K was considered the
most pleasing rectangle and hence it came to be known as the golden rectangle.
In turn, the sequence {I1, I1/K, I1/K2, . . . , I1/Kn−1} came to be known
as the golden-section sequence.

The golden-section search is illustrated in Fig. 4.8 for the case where the
left interval is consistently selected. As can be seen, this search resembles the
Fibonacci search in most respects. The two exceptions are:

1. Successive intervals are independent of n. Consequently, iterations can
be performed until the range of uncertainty or the change in the value of
the objective function is reduced below some tolerance ε.

2. The ratio between successive intervals, namely, Fn−k−1/Fn−k, is replaced
by the ratio 1/K where

1
K

= K − 1 = 0.618034

according to Eqs. (4.22) – (4.23).

The efficiency of the golden-section search can be easily compared with
that of the Fibonacci search. A known relation between Fn and K which is

94

applicable for large values of n is

Fn ≈ Kn+1

√
5

(4.24)

(e.g., if n = 11, Fn = 1.44 and Kn+1/
√

5 ≈ 144.001). Thus Eqs. (4.5) and
(4.24) give the region of uncertainty for the Fibonacci search as

ΛF = In =
I1

Fn
≈

√
5

Kn+1
I1

Similarly, for the golden-section search

ΛGS = In =
I1

Kn−1

and hence

ΛGS

ΛF
=

K2

√
5
≈ 1.17

Therefore, if the number of iterations is the same in the two methods, the region
of uncertainty in the golden-section search is larger by about 17% relative to that
in the Fibonacci search. Alternatively, the golden-section search will require
more iterations to achieve the same precision as the Fibonacci search. However,
this disadvantage is offset by the fact that the total number of iterations need
not be supplied at the start of the optimization.

An implementation of the golden-section search is as follows:

Algorithm 4.2 Golden-section search
Step 1
Input xL,1, xU,1, and ε.
Step 2
Assign I1 = xU,1 − xL,1, K = 1.618034 and compute

I2 = I1/K

xa,1 = xU,1 − I2, xb,1 = xL,1 + I2

fa,1 = f(xa,1), fb,1 = f(xb,1)

Set k = 1.
Step 3
Compute

Ik+2 = Ik+1/K

One-Dimensional Optimization 95

If fa,k ≥ fb,k, then update xL,k+1, xU,k+1, xa,k+1, xb,k+1, fa,k+1,
and fb,k+1 using Eqs. (4.7) to (4.12). Otherwise, if fa,k < fb,k, update
information using Eqs. (4.13) to (4.18).
Step 4
If Ik < ε or xa,k+1 > xb,k+1, then do:

If fa,k+1 > fb,k+1, compute

x∗ = 1
2(xb,k+1 + xU,k+1)

If fa,k+1 = fb,k+1, compute

x∗ = 1
2(xa,k+1 + xb,k+1)

If fa,k+1 < fb,k+1, compute

x∗ = 1
2(xL,k+1 + xa,k+1)

Compute f∗ = f(x∗).
Output x∗ and f∗, and stop.
Step 5
Set k = k + 1 and repeat from Step 3.

4.5 Quadratic Interpolation Method
In the approximation approach to one-dimensional optimization, an approx-

imate expression for the objective function is assumed, usually in the form of a
low-order polynomial. If a second-order polynomial of the form

p(x) = a0 + a1x + a2x
2 (4.25)

is assumed, where a0, a1, and a2 are constants, a quadratic interpolation method
is obtained.

Let
p(xi) = a0 + a1xi + a2x

2
i = f(xi) = fi (4.26)

for i = 1, 2, and 3 where [x1, x3] is a bracket on the minimizer x∗ of f(x).
Assuming that the values fi are known, the three constants a0, a1, and a2 can
be deduced by solving the three simultaneous equations in Eq. (4.26). Thus a
polynomial p(x) can be deduced which is an approximation for f(x). Under
these circumstances, the plots of p(x) and f(x) will assume the form depicted
in Fig. 4.9. As can be seen, the minimizer x̄ of p(x) is close to x∗, and if f(x)
can be accurately represented by a second-order polynomial, then x̄ ≈ x∗. If
f(x) is a quadratic function, then p(x) becomes an exact representation of f(x)
and x̄ = x∗.

The first derivative of p(x) with respect to x is obtained from Eq. (4.25) as

p′(x) = a1 + 2a2x

96

x
x1

f (x)

p (x)
or

x2 x3

x
_

x *

f1

f2

f3

p (x)

f (x)

Figure 4.9. Quadratic interpolation method.

and if
p′(x) = 0

and a2 �= 0, then the minimizer of p(x) can be deduced as

x̄ = − a1

2a2
(4.27)

By solving the simultaneous equations in Eq. (4.26), we find that

a1 = −(x2
2 − x2

3)f1 + (x2
3 − x2

1)f2 + (x2
1 − x2

2)f3

(x1 − x2)(x1 − x3)(x2 − x3)
(4.28)

a2 =
(x2 − x3)f1 + (x3 − x1)f2 + (x1 − x2)f3

(x1 − x2)(x1 − x3)(x2 − x3)
(4.29)

and from Eqs. (4.27) – (4.29), we have

x̄ =
(x2

2 − x2
3)f1 + (x2

3 − x2
1)f2 + (x2

1 − x2
2)f3

2[(x2 − x3)f1 + (x3 − x1)f2 + (x1 − x2)f3]
(4.30)

The above approach constitutes one iteration of the quadratic interpolation
method. If f(x) cannot be represented accurately by a second-order polyno-
mial, a number of such iterations can be performed. The appropriate strategy is

One-Dimensional Optimization 97

to attempt to reduce the interval of uncertainty in each iteration as was done in
the search methods of Secs. 4.2–4.4. This can be achieved by rejecting either
x1 or x3 and then using the two remaining points along with point x̄ for a new
interpolation.

After a number of iterations, the three points will be in the neighborhood
of x∗. Consequently, the second-order polynomial p(x) will be an accurate
representation of f(x) by virtue of the Taylor series, and x∗ can be determined
to within any desired accuracy.

An algorithm based on the above principles is as follows:

Algorithm 4.3 Quadratic interpolation search
Step 1
Input x1, x3, and ε.
Set x̄0 = 1099.
Step 2
Compute
x2 = 1

2(x1 + x3) and fi = f(xi) and i = 1, 2, 3.
Step 3
Compute x̄ from Eq. (4.30) and f̄ = f(x̄).
If |x̄ − x̄0| < ε, then output x∗ = x̄ and f(x∗) = f̄ , and stop.
Step 4
If x1 < x̄ < x2, then do:

If f̄ ≤ f2, assign x3 = x2, f3 = f2, x2 = x̄, f2 = f̄ ;
otherwise, if f̄ > f2, assign x1 = x̄, f1 = f̄ .

If x2 < x̄ < x3, then do:
If f̄ ≤ f2, assign x1 = x2, f1 = f2, x2 = x̄, f2 = f̄ ;
otherwise, if f̄ > f2, assign x3 = x̄, f3 = f̄ .

Set x̄0 = x̄, and repeat from Step 3.

In Step 4, the bracket on x∗ is reduced judiciously to [x1, x2] or [x̄, x3]
if x1 < x̄ < x2; or to [x2, x3] or [x1, x̄] if x2 < x̄ < x3 by using the
principles developed in Sec. 4.2. The algorithm entails one function evaluation
per iteration (see Step 3) except for the first iteration in which three additional
function evaluations are required in Step 2.

An implicit assumption in the above algorithm is that interval [x1, x3] is a
bracket on x∗. If it is not, one can be readily established by varying x in the
direction of decreasing f(x) until f(x) begins to increase.

A simplified version of the interpolation formula in Eq. (4.30) can be obtained
by assuming that points x1, x2, and x3 are equally spaced. If we let

x1 = x2 − δ and x3 = x2 + δ

98

then Eq. (4.30) becomes

x̄ = x2 +
(f1 − f3)δ

2(f1 − 2f2 + f3)
(4.31)

Evidently, this formula involves less computation than that in Eq. (4.30) and,
if equal spacing is allowed, it should be utilized. The minimum of the function
can be deduced as

fmin = f2 −
(f1 − f3)2

8(f1 − 2f2 + f3)
(see Prob. 4.10).

4.5.1 Two-point interpolation
The interpolation formulas in Eqs. (4.30) and (4.31) are said to be three-point

formulas since they entail the values of f(x) at three distinct points. Two-point
interpolation formulas can be obtained by assuming that the values of f(x) and
its first derivatives are available at two distinct points. If the values of f(x) at
x = x1 and x = x2 and the first derivative of f(x) at x = x1 are available, we
can write

p(x1) = a0 + a1x1 + a2x
2
1 = f(x1) ≡ f1

p(x2) = a0 + a1x2 + a2x
2
2 = f(x2) ≡ f2

p′(x1) = a1 + 2a2x1 = f ′(x1) ≡ f ′
1

The solution of these equations gives a1 and a2, and thus from Eq. (4.27), the
two-point interpolation formula

x̄ = x1 +
f ′
1(x2 − x1)2

2[f1 − f2 + f ′
1(x2 − x1)]

can be obtained.
An alternative two-point interpolation formula of the same class can be gen-

erated by assuming that the first derivative of f(x) is known at two points x1

and x2. If we let

p′(x1) = a1 + 2a2x1 = f ′(x1) ≡ f ′
1

p′(x2) = a1 + 2a2x2 = f ′(x2) ≡ f ′
2

we deduce

x̄ =
x2f

′
1 − x1f

′
2

f ′
1 − f ′

2

=
x2f

′
1 − x2f

′
2 + x2f

′
2 − x1f

′
2

f ′
1 − f ′

2

= x2 +
(x2 − x1)f ′

2

f ′
1 − f ′

2

One-Dimensional Optimization 99

4.6 Cubic Interpolation
Another one-dimensional optimization method, which is sometimes quite

useful, is the cubic interpolation method. This is based on the third-order
polynomial

p(x) = a0 + a1x + a2x
2 + a3x

3 (4.32)

As in the quadratic interpolation method, the coefficients ai can be determined
such that p(x) and/or its derivatives at certain points are equal to f(x) and/or
its derivatives. Since there are four coefficients in Eq. (4.32), four equations
are needed for the complete characterization of p(x). These equations can be
chosen in a number of ways and several cubic interpolation formulas can be
generated.

The plot of p(x) can assume either of the forms depicted in Fig. 4.10 and, in
effect, p(x) can have a maximum as well as a minimum. By equating the first
derivative of p(x) to zero, that is,

p′(x) = a1 + 2a2x + 3a3x
2 = 0 (4.33)

and then solving for x, the extremum points of p(x) can be determined as

x =
1

3a3

(
−a2 ±

√
a2

2 − 3a1a3

)
(4.34)

x

a3 > 0

a3 < 0

f(x)

Figure 4.10. Possible forms of third-order polynomial.

100

At the minimizer x̄, the second derivative of p(x) is positive, and thus Eq. (4.33)
gives

p′′(x̄) = 2a2 + 6a3x̄ > 0
or

x̄ > − a2

3a3
(4.35)

Thus, the solution in Eq. (4.34) that corresponds to the minimizer of p(x) can
be readily selected.

Polynomial p(x) will be an approximation for f(x) if four independent equa-
tions are chosen which interrelate p(x) with f(x). One of many possibilities is
to let

p(xi) = a0 + a1xi + a2x
2
i + a3x

3
i = f(xi)

for i = 1, 2, and 3 and

p′(x1) = a1 + 2a2x1 + 3a3x
2
1 = f ′(x1)

By solving this set of equations, coefficients a1 and a3 can be determined as

a3 =
β − γ

θ − ψ
(4.36)

a2 = β − θa3 (4.37)

a1 = f ′(x1) − 2a2x1 − 3a3x
2
1 (4.38)

where

β =
f(x2) − f(x1) + f ′(x1)(x1 − x2)

(x1 − x2)2
(4.39)

γ =
f(x3) − f(x1) + f ′(x1)(x1 − x3)

(x1 − x3)2
(4.40)

θ =
2x2

1 − x2(x1 + x2)
(x1 − x2)

(4.41)

ψ =
2x2

1 − x3(x1 + x3)
(x1 − x3)

(4.42)

The minimizer x̄ can now be obtained by using Eqs. (4.34) and (4.35).
An implementation of the cubic interpolation method is as follows:

Algorithm 4.4 Cubic interpolation search
Step 1
Input x1, x2, x3, and initialize the tolerance ε.
Step 2
Set x̄0 = 1099.
Compute f ′

1 = f ′(x1) and fi = f(xi) for i = 1, 2, 3.

One-Dimensional Optimization 101

Step 3
Compute constants β, γ, θ, and ψ using Eqs. (4.39) – (4.42).
Compute constants a3, a2 and a1 using Eqs. (4.36) – (4.38).
Compute the extremum points of p(x) using Eq. (4.34), and select the
minimizer x̄ using Eq. (4.35).
Compute f̄ = f(x̄).
Step 4
If |x̄ − x̄0| < ε, then output x∗ = x̄ and f(x∗) = f̄ , and stop.
Step 5
Find m such that fm = max (f1, f2, f3).
Set x̄0 = x̄, xm = x̄, fm = f̄ .
If m = 1, compute f ′

1 = f ′(x̄).
Repeat from Step 3.

In this algorithm, a bracket is maintained on x∗ by replacing the point that
yields the largest value in f(x) by the new estimate of the minimizer x̄ in Step
5. If the point that is replaced is x1, the first derivative f ′(x1) is computed since
it is required for the calculation of a1, β, and γ.

As can be seen in Eqs. (4.36) – (4.42), one iteration of cubic interpolation
entails a lot more computation than one iteration of quadratic interpolation.
Nevertheless, the former can be more efficient. The reason is that a third-order
polynomial is a more accurate approximation for f(x) than a second-order one
and, as a result, convergence will be achieved in a smaller number of iterations.
For the same reason, the method is more tolerant to an inadvertent loss of the
bracket.

4.7 The Algorithm of Davies, Swann, and Campey
The methods described so far are either search methods or approximation

methods. A method due to Davies, Swann, and Campey [8] will now be de-
scribed, which combines a search method with an approximation method. The
search method is used to establish and maintain a bracket on x∗, whereas the
approximation method is used to generate estimates of x∗.

In this method, f(x) is evaluated for increasing or decreasing values of x
until x∗ is bracketed. Then the quadratic interpolation formula for equally-
spaced points is used to predict x∗. This procedure is repeated several times
until sufficient accuracy in the solution is achieved, as in previous methods.

The input to the algorithm consists of an initial point x0,1, an initial increment
δ1, a scaling constant K, and the optimization tolerance ε.

At the kth iteration, an initial point x0,k and an initial increment δk are
available, and a new initial point x0,k+1 as well as a new increment δk+1 are
required for the next iteration.

102

Initially, f(x) is evaluated at points x0,k − δk, x0,k, and x0,k + δk. Three
possibilities can arise, namely,

(a) f(x0,k − δk) > f(x0,k) > f(x0,k + δk)
(b) f(x0,k − δk) < f(x0,k) < f(x0,k + δk)
(c) f(x0,k − δk) ≥ f(x0,k) ≤ f(x0,k + δk)

In case (a), the minimum of f(x) is located in the positive direction and so f(x)
is evaluated for increasing values of x until a value of f(x) is obtained, which
is larger than the previous one. If this occurs on the nth function evaluation,
the interval [x0,k, xn,k] is a bracket on x∗. The interval between successive
points is increased geometrically, and so this procedure will yield the sequence
of points

x0,k

x1,k = x0,k + δk

x2,k = x1,k + 2δk

x3,k = x2,k + 4δk

...

xn,k = xn−1,k + 2n−1δk (4.43)

as illustrated in Fig. 4.11. Evidently, the most recent interval is twice as long
as the previous one and if it is divided into two equal sub-intervals at point

xm,k = xn,−1,k + 2n−2δk (4.44)

then four equally-spaced points are available, which bracket the minimizer.
If f(x) is evaluated at point xm,k, the function values

fn−2,k ≡ f(xn−2,k) (4.45)

fn−1,k ≡ f(xn−1,k) (4.46)

fm,k ≡ f(xm,k) (4.47)

fn,k ≡ f(xn,k) (4.48)

will be available. If fm,k ≥ fn−1,k, x∗ is located in the interval [xn−2,k, xm,k]
(see Fig. 4.12) and so the use of Eqs. (4.31) and (4.45) – (4.48) yields an estimate
for x∗ as

x0,k+1 = xn−1,k +
2n−2δk(fn−2,k − fm,k)

2(fn−2,k − 2fn−1,k + fm,k)
(4.49)

Similarly, if fm,k < fn−1,k, x∗ is located in the interval [xn−1,k, xn,k] (see
Fig. 4.13) then an estimate for x∗ is

x0,k+1 = xm,k +
2n−2δk(fn−1,k − fn,k)

2(fn−1,k − 2fm,k + fn,k)
(4.50)

One-Dimensional Optimization 103

x

x0

x *

f (x)

8δ4δ

δ
2δ

Figure 4.11. Search method used in the Davies, Swann, and Campey algorithm.

x

xm

x*

f (x)

xnxn-1xn-2

Figure 4.12. Reduction of range of uncertainty in Davies, Swann, and Campey algorithm if
fm ≥ fn−1.

104

x

x m

x *

f (x)

xnxn-1xn-2

Figure 4.13. Reduction of range of uncertainty in Davies, Swann, and Campey algorithm if
fm < fn−1.

In case (b), x∗ is located in the negative direction, and so x is decreased in
steps δk, 2δk, . . . until the minimum of f(x) is located. The procedure is as in
case (a) except that δk is negative in Eqs. (4.49) and (4.50).

In case (c), x∗ is bracketed by x0,k − δk and x0,k + δk and if

f−1,k = f(x0,k − δk)
f0,k = f(x0,k)
f1,k = f(x0,k + δk)

Eq. (4.31) yields an estimate for x∗ as

x0,k+1 = x0,k +
δk(f−1,k − f1,k)

2(f−1,k − 2f0,k + f1,k)
(4.51)

The kth iteration is completed by defining a new increment

δk+1 = Kδk

where K is a constant in the range 0 to 1. The motivation for this scaling is
that as the solution is approached, a reduced range of x will be searched and,
therefore, the resolution of the algorithm needs to be increased. A suitable
value for K might be 0.1.

The above principles can be used to construct the following algorithm:

One-Dimensional Optimization 105

Algorithm 4.5 Davies, Swann, and Campey search
Step 1
Input x0,1, δ1, K, and initialize the tolerance ε.
Set k = 0.
Step 2
Set k = k + 1, x−1,k = x0,k − δk, x1,k = x0,k + δk.
Compute f0,k = f(x0,k) and f1,k = f(x1,k).
Step 3
If f0,k > f1,k, set p = 1 and go to Step 4; otherwise, compute f−1,k =
f(x−1,k).
If f−1,k < f0,k, set p = −1 and go to Step 4.
Otherwise, if f−1,k ≥ f0,k ≤ f1,k go to Step 7.
Step 4
For n = 1, 2, . . . compute fn,k = f(xn−1,k + 2n−1pδk) until fn,k >
fn−1,k.
Step 5
Compute fm,k = f(xn−1,k + 2n−2pδk).
Step 6
If fm,k ≥ fn−1,k, compute

x0,k+1 = xn−1,k +
2n−2pδk(fn−2,k − fm,k)

2(fn−2,k − 2fn−1,k + fm,k)

Otherwise, if fm,k < fn−1,k, compute

x0,k+1 = xm,k +
2n−2pδk(fn−1,k − fn,k)
2(fn−1,k − 2fm,k + fn,k)

(see Eqs. (4.49) and (4.50)).
If 2n−2δk ≤ ε go to Step 8; otherwise, set δk+1 = Kδk and repeat from
Step 2.
Step 7 Compute

x0,k+1 = x0,k +
δk(f−1,k − f1,k)

2(f−1,k − 2f0,k + f1,k)

(see Eq. (4.51)).
If δk ≤ ε go to Step 8; otherwise, set δk+1 = Kδk and repeat from Step
2.
Step 8
Output x∗ = x0,k+1 and f(x∗) = f0,k+1, and stop.

Parameter δ1 is a small positive constant that would depend on the problem,
say, 0.1x0,1. Constant p in Steps 3 to 6, which can be 1 or −1, is used to
render the formulas in Eqs. (4.49) and (4.50) applicable for increasing as well

106

as decreasing values of x. Constant ε in Step 1 determines the precision of
the solution. If ε is very small, say, less than 10−6, then as the solution is
approached, we have

fn−2,k ≈ fn−1,k ≈ fm,k ≈ fn,k

Consequently, the distinct possibility of dividing by zero may arise in the eval-
uation of x0,k+1. However, this problem can be easily prevented by using
appropriate checks in Steps 6 and 7.

An alternative form of the above algorithm can be obtained by replacing
the quadratic interpolation formula for equally-spaced points by the general
formula of Eq. (4.30). If this is done, the mid-interval function evaluation of
Step 5 is unnecessary. Consequently, if the additional computation required
by Eq. (4.31) is less than one complete evaluation of f(x), then the modified
algorithm is likely to be more efficient.

Another possible modification is to use the cubic interpolation of Sec. 4.6
instead of quadratic interpolation. Such an algorithm is likely to reduce the
number of function evaluations. However, the amount of computation could
increase owing to the more complex formulation in the cubic interpolation.

4.8 Inexact Line Searches
In the multidimensional algorithms to be studied, most of the computational

effort is spent in performing function and gradient evaluations in the execution
of line searches. Consequently, the amount of computation required tends
to depend on the efficiency and precision of the line searches used. If high
precision line searches are necessary, the amount of computation will be large
and if inexact line searches do not affect the convergence of an algorithm, a
small amount of computation might be sufficient.

Many optimization methods have been found to be quite tolerant to line-
search imprecision and, for this reason, inexact line searches are usually used
in these methods.

Let us assume that
xk+1 = xk + αdk

where dk is a given direction vector and α is an independent search parameter,
and that function f(xk+1) has a unique minimum for some positive value of α.
The linear approximation of the Taylor series in Eq. (2.4d) gives

f(xk+1) = f(xk) + gT
k dkα (4.52)

where

gT
k dk =

df(xk + αdk)
dα

∣∣∣∣
α=0

One-Dimensional Optimization 107

Eq. (4.52) represents line A shown in Fig. 4.14a. The equation

f(xk+1) = f(xk) + ρgT
k dkα (4.53)

where 0 ≤ ρ < 1
2 represents line B in Fig. 4.14a whose slope ranges from 0 to

1
2g

T
k dk depending on the value of ρ, as depicted by shaded area B in Fig. 4.14a.

On the other hand, the equation

f(xk+1) = f(xk) + (1 − ρ)gT
k dkα (4.54)

represents line C in Fig. 4.14a whose slope ranges from gT
k dk to 1

2g
T
k dk as

depicted by shaded area C in Fig. 4.14a. The angle between lines C and B,
designated as θ, is given by

θ = tan−1

[
−(1 − 2ρ)gT

k dk

1 + ρ(1 − ρ)(gT
k dk)2

]

as illustrated in Fig. 4.14b. Evidently by adjusting ρ in the range 0 to 1
2 , the

slope of θ can be varied in the range −gT
k dk to 0. By fixing ρ at some value in

the permissible range, two values of α are defined by the intercepts of the lines
in Eqs. (4.53) and (4.54) and the curve for f(xk+1), say, α1 and α2, as depicted
in Fig. 4.14b.

Let α0 be an estimate of the value of α that minimizes f(xk + αdk). If
f(xk+1) for α = α0 is equal to or less than the corresponding value of f(xk+1)
given by Eq. (4.53), and is equal to or greater than the corresponding value of
f(xk+1) given by Eq. (4.54), that is, if

f(xk+1) ≤ f(xk) + ρgT
k dkα0 (4.55)

and
f(xk+1) ≥ f(xk) + (1 − ρ)gT

k dkα0 (4.56)

then α0 may be deemed to be an acceptable estimate of α∗ in that it will
yield a sufficient reduction in f(x). Under these circumstances, we have
α1 ≤ α0 ≤ α2, as depicted in Fig. 4.14b, i.e., α1 and α2 constitute a bracket of
the estimated minimizer α0. Eqs. (4.55) and (4.56), which are often referred to
as the Goldstein conditions, form the basis of a class of inexact line searches. In
these methods, an estimate α0 is generated by some means, based on available
information, and the conditions in Eqs. (4.55) and (4.56) are checked. If both
conditions are satisfied, then the reduction in f(xk+1) is deemed to be accept-
able, and the procedure is terminated. On the other hand, if either Eq. (4.55) or
Eq. (4.56) is violated, the reduction in f(xk+1) is deemed to be insufficient and
an improved estimate of α∗, say, ᾰ0, can be obtained. If Eq. (4.55) is violated,
then α0 > α2 as depicted in Fig. 4.15a and since αL < α∗ < α0, the new

108

(a)

α1

f ()xk

A
C

B

f ()xk+1

α2
α

(b)

α1

f ()xk

C Bf ()xk+1

α2 αα0α *

θ

αL

Figure 4.14. (a) The Goldstein tests. (b) Goldstein tests satisfied.

estimate ᾰ0 can be determined by using interpolation. On the other hand, if
Eq. (4.56) is violated, α0 < α1 as depicted in Fig. 4.15b, and since α0 is likely
to be in the range αL < α0 < α∗, ᾰ0 can be determined by using extrapolation.

If the value of f(xk +αdk) and its derivative with respect to α are known for
α = αL and α = α0, then for α0 > α2 a good estimate for ᾰ0 can be deduced
by using the interpolation formula

ᾰ0 = αL +
(α0 − αL)2f ′

L

2[fL − f0 + (α0 − αL)f ′
L]

(4.57)

One-Dimensional Optimization 109

(a)

α1

f ()xk

C B
f ()xk+1

α2 αα0α *

θ

αL

(b)

α1

f ()xk

C B
f ()xk+1

α2 αα0 α *

θ

αL

Figure 4.15. Goldstein tests violated: (a) with α0 > α2, (b) with α0 < α1.

and for α0 < α1 the extrapolation formula

ᾰ0 = α0 +
(α0 − αL)f ′

0

(f ′
L − f ′

0)
(4.58)

can be used, where

fL = f(xk + αLdk), f ′
L = f ′(xk + αLdk) = g(xk + αLdk)Tdk

f0 = f(x + α0dk), f ′
0 = f ′(xk + α0dk) = g(xk + α0dk)Tdk

110

(see Sec. 4.5).
Repeated application of the above procedure will eventually yield a value of

ᾰ0 such that α1 < ᾰ0 < α2 and the inexact line search is terminated.
A useful theorem relating to the application of the Goldstein tests in an

inexact line search is as follows:

Theorem 4.1 Convergence of inexact line search If

(a) f(xk) has a lower bound,
(b) gk is uniformly continuous on set {x : f(x) < f(x0)},
(c) directions dk are not orthogonal to −gk for all k,

then a descent algorithm using an inexact line search based on Eqs. (4.55) and
(4.56) will converge to a stationary point as k → ∞.

The proof of this theorem is given by Fletcher [9]. The theorem does not
guarantee that a descent algorithm will converge to a minimizer since a saddle
point is also a stationary point. Nevertheless, the theorem is of importance since
it demonstrates that inaccuracies due to the inexactness of the line search are
not detrimental to convergence.

Conditions (a) and (b) of Theorem 4.1 are normally satisfied but condition
(c) may be violated. Nevertheless, the problem can be avoided in practice by
changing direction dk. For example, if θk is the angle between dk and −gk

and

θk = cos−1 −gT
k dk

‖gk‖ ‖dk‖
=

π

2

then dk can be modified slightly to ensure that

θk =
π

2
− µ

where µ > 0.
The Goldstein conditions sometimes lead to the situation illustrated in Fig.

4.16, where α∗ is not in the range [α1, α2]. Evidently, in such a case a value α0 in
the interval [α∗, α1] will not terminate the line search even though the reduction
in f(xk) would be larger than that for any α0 in the interval [α1, α2]. Although
the problem is not serious, since convergence is assured by Theorem 4.1, the
amount of computation may be increased. The problem can be eliminated by
replacing the second Goldstein condition, namely, Eq. (4.56), by the condition

gT
k+1dk ≥ σgT

k dk (4.59)

where 0 < σ < 1 and σ ≥ ρ. This modification to the second Goldstein
condition was proposed by Fletcher [10]. It is illustrated in Fig. 4.17. The
scalar gT

k dk is the derivative of f(xk + αdk) at α = 0, and since 0 < σ < 1,

One-Dimensional Optimization 111

α1

f ()xk

f ()xk+1

α2 αα0α *αL

Figure 4.16. Goldstein tests violated with α∗ < α1.

σgT
k dk is the derivative of f(xk + αdk) at some value of α, say, α1, such that

α1 < α∗. Now if the condition in Eq. (4.59) is satisfied at some point

xk+1 = xk + α0dk

then the slope of f(xk + αdk) at α = α0 is less negative (more positive) than
the slope at α = α1 and, consequently, we conclude that α1 ≤ α0. Now if
Eq. (4.55) is also satisfied, then we must have α1 < (α∗ or α0) < α2, as
depicted in Fig. 4.17.

α1

f ()xk

f ()xk+1

α2 αα0 α *αL

dkgk
T gk+1

T dkσ gk
Tdk

Figure 4.17. Fletcher’s modification of the Goldstein tests.

112

The precision of a line search based on Eqs. (4.55) and (4.59) can be increased
by reducing the value of σ. While σ = 0.9 results in a somewhat imprecise line
search, the value σ = 0.1 results in a fairly precise line search. Note, however,
that a more precise line search could slow down the convergence.

A disadvantage of the condition in Eq. (4.59) is that it does not lead to an exact
line search as σ → 0. An alternative condition that eliminates this problem is
obtained by modifying the condition in Eq. (4.59) as

|gT
k+1dk| ≤ −σgT

k dk

In order to demonstrate that an exact line search can be achieved with the
above condition, let us assume that gT

k dk < 0. If gT
k+1dk < 0, the line search

will not terminate until

−|gT
k+1dk| ≥ σgT

k dk

and if gT
k+1dk > 0, the line search will not terminate until

|gT
k+1dk| ≤ −σgT

k dk (4.60)

Now if σgT
k dk, gT

k+1dk, and −σgT
k dk are the derivatives of f(xk + αdk) at

points α = α1, α = α0, and α = α2, respectively, we have α1 ≤ α0 ≤ α2

as depicted in Fig. 4.18. In effect, Eq. (4.60) overrides both of the Goldstein
conditions in Eqs. (4.55) and (4.56). Since interval [α1, α2] can be reduced
as much as desired by reducing σ, it follows that α∗ can be determined as
accurately as desired, and as σ → 0, the line search becomes exact. In such a
case, the amount of computation would be comparable to that required by any
other exact line search and the computational advantage of using an inexact line
search would be lost.

An inexact line search based on Eqs. (4.55) and (4.59) due to Fletcher [10]
is as follows:

Algorithm 4.6 Inexact line search
Step 1
Input xk, dk, and compute gk.
Initialize algorithm parameters ρ, σ, τ , and χ.
Set αL = 0 and αU = 1099.
Step 2
Compute fL = f(xk + αLdk).
Compute f ′

L = g(xk + αLdk)Tdk.
Step 3
Estimate α0.

One-Dimensional Optimization 113

α1

f ()xk

f ()xk+1

α2 αα0 α *αL

σ gk
Tdk σ gk

Tdk-

gk+1
T dk-| |dkgk+1

T ||

Figure 4.18. Conversion of inexact line search into an exact line search.

Step 4
Compute f0 = f(xk + α0dk).
Step 5 (Interpolation)
If f0 > fL + ρ(α0 − αL)f ′

L, then do:
a. If α0 < αU , then set αU = α0.
b. Compute ᾰ0 using Eq. (4.57).
c. If ᾰ0 < αL + τ(αU − αL) then set ᾰ0 = αL + τ(αU − αL).
d. If ᾰ0 > αU − τ(αU − αL) then set ᾰ0 = αU − τ(αU − αL).
e. Set α0 = ᾰ0 and go to Step 4.

Step 6
Compute f ′

0 = g(xk + α0dk)Tdk.
Step 7 (Extrapolation)
If f ′

0 < σf ′
L, then do:

a. Compute ∆α0 = (α0 − αL)f ′
0/(f ′

L − f ′
0) (see Eq. (4.58)).

b. If ∆α0 < τ(α0 − αL), then set ∆α0 = τ(α0 − αL).
c. If ∆α0 > χ(α0 − αL), then set ∆α0 = χ(α0 − αL).
d. Compute ᾰ0 = α0 + ∆α0.
e. Set αL = α0, α0 = ᾰ0, fL = f0, f ′

L = f ′
0, and go to Step 4.

Step 8
Output α0 and f0 = f(xk + α0dk), and stop.

The precision to which the minimizer is determined depends on the values of
ρ and σ. Small values like ρ = σ = 0.1 will yield a relatively precise line search
whereas values like ρ = 0.3 and σ = 0.9 will yield a somewhat imprecise line
search. The values ρ = 0.1 and σ = 0.7 give good results.

114

An estimate of α0 in Step 3 can be determined by assuming that f(x) is
a convex quadratic function and using α0 = ‖g0‖2/(gT

0 H0g0) which is the
minimum point for a convex quadratic function.

In Step 5, ᾰ0 is checked and if necessary it is adjusted through a series of
interpolations to ensure that αL < ᾰ0 < αU . A suitable value for τ is 0.1.
This assures that ᾰ0 is no closer to αL or αU than 10 percent of the permissible
range. A similar check is applied in the case of extrapolation, as can be seen in
Step 7. The value for χ suggested by Fletcher is 9.

The algorithm maintains a running bracket (or range of uncertainty) [αL, αU]
that contains the minimizer which is initially set to [0, 1099] in Step 1. This is
gradually reduced by reducing αU in Step 5a and increasing αL in Step 7e.

In Step 7e, known data that can be used in the next iteration are saved, i.e.,
α0, f0, and f ′

0 become αL, fL, and f ′
L, respectively. This keeps the amount of

computation to a minimum.
Note that the Goldstein condition in Eq. (4.55) is modified as in Step 5

to take into account the fact that αL assumes a value greater than zero when
extrapolation is applied at least once.

References
1 D. M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, New York, 1972.
2 B. S. Gottfried and J. Weisman, Introduction to Optimization Theory, Prentice-Hall, Engle-

wood Cliffs, N.J., 1973.
3 P. R. Adby and M. A. H. Dempster, Introduction to Optimization Methods, Chapman and

Hall, London, 1974.
4 C. S. Beightler, D. T. Phillips, and D. J. Wilde, Foundations of Optimization, Prentice-Hall,

Englewood Cliffs, N.J., 1979.
5 M. S. Bazaraa and C. M. Shetty, Nonlinear Programming, Theory and Algorithms, Wiley,

New York, 1979.
6 P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London,

1981.
7 G. P. McCormick, Nonlinear Programming, Wiley, New York, 1983.
8 M. J. Box, D. Davies, and W. H. Swann, Nonlinear Optimization Techniques, Oliver and

Boyd, London, 1969.
9 R. Fletcher, Practical Methods of Optimization, 2nd ed., Wiley, New York, 1987.

10 R. Fletcher, Practical Methods of Optimization, vol. 1, Wiley, New York, 1980.

Problems
4.1 (a) Assuming that the ratio of two consecutive Fibonacci numbers,

Fk−1/Fk, converges to a finite limit α, use Eq. (4.4) to show that

lim
k→∞

Fk−1

Fk
= α =

2√
5 + 1

≈ 0.6180

(b) Use MATLAB to verify the value of α in part (a).

One-Dimensional Optimization 115

4.2 The 5th-order polynomial

f(x) = −5x5 + 4x4 − 12x3 + 11x2 − 2x + 1

is known to be a unimodal function on interval [−0.5, 0.5].

(a) Use the dichotomous search to find the minimizer of f(x) on [−0.5,
0.5] with the range of uncertainty less than 10−5.

(b) Solve the line search problem in part (a) using the Fibonacci search.

(c) Solve the line search problem in part (a) using the golden-section
search.

(d) Solve the line search problem in part (a) using the quadratic interpo-
lation method of Sec. 4.5.

(e) Solve the line search problem in part (a) using the cubic interpolation
method of Sec. 4.6.

(f) Solve the line search problem in part (a) using the algorithm of Davies,
Swann, and Campey.

(g) Compare the computational efficiency of the methods in (a) – (f) in
terms of number of function evaluations.

4.3 The function1

f(x) = ln2(x − 2) + ln2(10 − x) − x0.2

is known to be a unimodal function on [6, 9.9]. Repeat Prob. 4.2 for the
above function.

4.4 The function
f(x) = −3x sin 0.75x + e−2x

is known to be a unimodal function on [0, 2π]. Repeat Prob. 4.2 for the
above function.

4.5 The function
f(x) = e3x + 5e−2x

is known to be a unimodal function on [0, 1]. Repeat Prob. 4.2 for the
above function.

4.6 The function
f(x) = 0.2x lnx + (x − 2.3)2

is known to be a unimodal function on [0.5, 2.5]. Repeat Prob. 4.2 for the
above function.

1Here and and the rest of the book, the logarithms of x to the base e and 10 will be denoted as ln(x) and
log10(x), respectively.

116

4.7 Let f1(x) and f2(x) be two convex functions such that f1(−0.4) =
0.36, f1(0.6) = 2.56, f2(−0.4) = 3.66, and f2(1) = 2 and define
the function

f(x) = max{f1(x), fx(x)}
Identify the smallest interval in which the minimizer of f(x) is guaranteed
to exist.

4.8 The values of a function f(x) at points x = x1 and x = x2 are f1 and f2,
respectively, and the derivative of f(x) at point x1 is f ′

1. Show that

x̄ = x1 +
f ′
1(x2 − x1)2

2[f1 − f2 + f ′
1(x2 − x1)]

is an estimate of the minimizer of f(x).

4.9 By letting x1 = x2 − δ and x3 = x2 + δ in Eq. (4.30), show that the
minimizer x̄ can be computed using Eq. (4.31).

4.10 A convex quadratic function f(x) assumes the values f1, f2, and f3 at
x = x1, x2, and x3, respectively, where x1 = x2 − δ and x3 = x2 + δ.
Show that the minimum of the function is given by

fmin = f2 −
(f1 − f3)2

8(f1 − 2f2 + f3)

4.11 (a) Use MATLAB to plot

f(x) = 0.7x4
1 − 8x2

1 + 6x2
2 + cos(x1x2) − 8x1

over the region−π ≤ x1, x2 ≤ π. A MATLAB command for plotting
the surface of a two-variable function is mesh.

(b) Use MATLAB to generate a contour plot of f(x) over the same region
as in (a) and ‘hold’ it.

(c) Compute the gradient of f(x), and prepare MATLAB function files
to evaluate f(x) and its gradient.

(d) Use Fletcher’s inexact line search algorithm to update point x0 along
search direction d0 by solving the problem

minimize
α≥0

f(x0 + αd0)

where

x0 =
[−π

π

]
, d0 =

[
1.0

−1.3

]
This can be done in several steps:

One-Dimensional Optimization 117

• Record the numerical values of α∗ obtained.
• Record the updated point x1 = x0 + α∗d0.
• Evaluate f(x1) and compare it with f(x0).
• Plot the line search result on the contour plot generated in (b).
• Plot f(x0 +αd0) as a function of α over the interval [0, 4.8332].

Based on the plot, comment on the precision of Fletcher’s inexact
line search.

(e) Repeat Part (d) for

x0 =
[−π

π

]
, d0 =

[
1.0

−1.1

]

The interval of α for plotting f(x0 + αd0) in this case is [0, 5.7120].

Chapter 5

BASIC MULTIDIMENSIONAL
GRADIENT METHODS

5.1 Introduction
In Chap. 4, several methods were considered that can be used for the solution

of one-dimensional unconstrained problems. In this chapter, we consider the
solution of multidimensional unconstrained problems.

As for one-dimensional optimization, there are two general classes of multi-
dimensional methods, namely, search methods and gradient methods. In search
methods, the solution is obtained by using only function evaluations. The gen-
eral approach is to explore the parameter space in an organized manner in order
to find a trajectory that leads progressively to reduced values of the objective
function. A rudimentary method of this class might be to adjust all the param-
eters at a specific starting point, one at a time, and then select a new point by
comparing the calculated values of the objective function. The same procedure
can then be repeated at the new point, and so on. Multidimensional search
methods are thus analogous to their one-dimensional counterparts, and like the
latter, they are not very efficient. As a result, their application is restricted to
problems where gradient information is unavailable or difficult to obtain, for
example, in applications where the objective function is not continuous.

Gradient methods are based on gradient information. They can be grouped
into two classes, first-order and second-order methods. First-order methods are
based on the linear approximation of the Taylor series, and hence they entail
the gradient g. Second-order methods, on the other hand, are based on the
quadratic approximation of the Taylor series. They entail the gradient g as well
as the Hessian H.

Gradient methods range from some simple to some highly sophisticated
methods. In this chapter, we focus our attention on the most basic ones which
are as follows:

120

1. Steepest-descent method
2. Newton method
3. Gauss-Newton method

Some more advanced gradient methods will be considered later in Chaps. 6
and 7.

5.2 Steepest-Descent Method
Consider the optimization problem

minimize F = f(x) for x ∈ En

From the Taylor series

F + ∆F = f(x + δ) ≈ f(x) + gT δ + 1
2δTHδ

and as ‖δ‖ → 0, the change in F due to change δ is obtained as

∆F ≈ gT δ

The product at the right-hand side is the scalar or dot product of vectors g and
δ. If

g = [g1 g2 · · · gn]T

and
δ = [δ1 δ2 · · · δn]T

then

∆F ≈
n∑

i=1

giδi = ‖g‖ ‖δ‖ cos θ

where θ is the angle between vectors g and δ, and

‖g‖ = (gTg)1/2 =

(
n∑

i=1

g2
i

)1/2

5.2.1 Ascent and descent directions
Consider the contour plot of Fig. 5.1. If x and x + δ are adjacent points on

contour A, then as ‖δ‖ → 0

∆F ≈ ‖g‖ ‖δ‖ cos θ = 0

since F is constant on a contour. We thus conclude that the angle θ between
vectors g and δ is equal to 90o. In effect, the gradient at point x is orthogonal
to contour A, as depicted in Fig. 5.1. Now for any vector δ, ∆F assumes a
maximum positive value if θ = 0, that is, δ must be in the direction g. On the

Basic Multidimensional Gradient Methods 121

f (x) = 50

1x

2x
A

10

20

30

40

50

g, steepest-ascent directionx

f (x) = 0

δ
steepest-descent
 direction

Figure 5.1. Steepest-descent and steepest-ascent directions.

other hand, ∆F assumes a maximum negative value if θ = π, that is, δ must
in the direction −g. The gradient g and its negative −g are thus said to be the
steepest-ascent and steepest-descent directions, respectively. These concepts
are illustrated in Figs. 5.1 and 5.2.

5.2.2 Basic method
Assume that a function f(x) is continuous in the neighborhood of point x.

If d is the steepest-descent direction at point x, i.e.,

d = −g

then a change δ in x given by
δ = αd

where α is a small positive constant, will decrease the value of f(x). Maximum
reduction in f(x) can be achieved by solving the one-dimensional optimization
problem

minimize
α

F = f(x + αd) (5.1)

as depicted in Fig. 5.3.

122

x 2

x 1

f (x)

g

-g

∆F

Figure 5.2. Construction for steepest-descent method.

x 2

x 1

f (x)

αd

x
x*

α d0

Figure 5.3. Line search in steepest-descent direction.

If the steepest-descent direction at point x happens to point towards the
minimizer x∗ of f(x), then a value of α exists that minimizes f(x + αd)
with respect to α and f(x) with respect to x. Consequently, in such a case
the multidimensional problem can be solved by solving the one-dimensional

Basic Multidimensional Gradient Methods 123

problem in Eq. (5.1) once. Unfortunately, in most real-life problems, d does not
point in the direction of x∗ and, therefore, an iterative procedure must be used
for the solution. Starting with an initial point x0, a direction d = d0 = −g
can be calculated, and the value of α that minimizes f(x0 + αd0), say, α0, can
be determined. Thus a point x1 = x0 + α0d0 is obtained. The minimization
can be performed by using one of the methods of Chap. 4 as a line search. The
same procedure can then be repeated at points

xk+1 = xk + αkdk (5.2)

for k = 1, 2, . . . until convergence is achieved. The procedure can be ter-
minated when ‖αkdk‖ becomes insignificant or if αk ≤ Kα0 where K is
a sufficiently small positive constant. A typical solution trajectory for the
steepest-descent method is illustrated in Fig. 5.4. A corresponding algorithm
is as follows.

Algorithm 5.1 Steepest-descent algorithm
Step 1
Input x0 and initialize the tolerance ε.
Set k = 0.
Step 2
Calculate gradient gk and set dk = −gk.
Step 3
Find αk, the value of α that minimizes f(xk +αdk), using a line search.
Step 4
Set xk+1 = xk + αkdk and calculate fk+1 = f(xk+1).
Step 5
If ‖αkdk‖ < ε, then do:

Output x∗ = xk+1 and f(x∗) = fk+1, and stop.
Otherwise, set k = k + 1 and repeat from Step 2.

5.2.3 Orthogonality of directions
In the steepest-descent method, the trajectory to the solution follows a zig-

zag pattern, as can be seen in Fig. 5.4. If α is chosen such that f(xk + αdk)
is minimized in each iteration, then successive directions are orthogonal. To
demonstrate this fact, we note that

df(xk + αdk)
dα

=
n∑

i=1

∂f(xk + αdk)
∂xki

d(xki + αdki)
dα

=
n∑

i=1

gi(xk + αdk)dki

= g(xk + αdk)Tdk

124

where g(xk + αdk) is the gradient at point xk + αdk. If α∗ is the value of α
that minimizes f(xk + αdk), then

g(xk + α∗dk)Tdk = 0

or
dT

k+1dk = 0
where

dk+1 = −g(xk + α∗dk)
is the steepest-descent direction at point xk + α∗dk. In effect, successive
directions dk and dk+1 are orthogonal as depicted in Fig. 5.4.

1x

2x

x *

0x

dk

dk+1

Figure 5.4. Typical solution trajectory in steepest-descent algorithm.

5.2.4 Elimination of line search
If the Hessian of f(x) is available, the value of α that minimizes f(xk +αd),

namely, αk, can be determined by using an analytical method. If δk = αdk,
the Taylor series yields

f(xk + δk) ≈ f(xk) + δT
k gk + 1

2δT
k Hkδk (5.3)

Basic Multidimensional Gradient Methods 125

and if dk is the steepest-descent direction, i.e.,

δk = −αgk

we obtain

f(xk − αgk) ≈ f(xk) − αgT
k gk + 1

2α2gT
k Hkgk (5.4)

By differentiating and setting the result to zero, we get

df(xk − αgk)
dα

≈ −gT
k gk + αgT

k Hkgk = 0

or

α = αk ≈ gT
k gk

gT
k Hkgk

(5.5)

Now if we assume that α = αk minimizes f(xk + αdk), Eq. (5.2) can be
expressed as

xk+1 = xk − gT
k gk

gT
k Hkgk

gk

The accuracy of αk will depend heavily on the magnitude of δk since the
quadratic approximation of the Taylor series is valid only in the neighborhood
of point xk. At the start of the optimization, ‖δk‖ will be relatively large and so
αk will be inaccurate. Nevertheless, reduction will be achieved in f(x) since
f(xk + αdk) is minimized in the steepest-descent direction. As the solution
is approached, ‖δk‖ is decreased and, consequently, the accuracy of αk will
progressively be improved, and the maximum reduction in f(x) will eventually
be achieved in each iteration. Convergence will thus be achieved. For quadratic
functions, Eq. (5.3) is satisfied with the equal sign and hence α = αk yields
maximum reduction in f(x) in every iteration.

If the Hessian is not available, the value of αk can be determined by calcu-
lating f(x) at points xk and xk − α̂gk where α̂ is an estimate of αk. If

fk = f(xk) and f̂ = f(xk − α̂gk)

Eq. (5.4) gives
f̂ ≈ fk − α̂gT

k gk + 1
2 α̂2gT

k Hkgk

or

gT
k Hkgk ≈ 2(f̂ − fk + α̂gT

k gk)
α̂2

(5.6)

Now from Eqs. (5.5) and (5.6)

αk ≈ gT
k gkα̂

2

2(f̂ − fk + α̂gT
k gk)

(5.7)

126

A suitable value for α̂ is αk−1, namely, the optimum α in the previous iteration.
For the first iteration, the value α̂ = 1 can be used.

An algorithm that eliminates the need for line searches is as follows:

Algorithm 5.2 Steepest-descent algorithm without line search
Step 1
Input x1 and initialize the tolerance ε.
Set k = 1 and α0 = 1.
Compute f1 = f(x1).
Step 2
Compute gk.
Step 3
Set dk = −gk and α̂ = αk−1.
Compute f̂ = f(xk − α̂gk).
Compute αk from Eq. (5.7).
Step 4
Set xk+1 = xk + αkdk and calculate fk+1 = f(xk+1).
Step 5
If ‖αkdk‖ < ε, then do:

Output x∗ = xk+1 and f(x∗) = fk+1, and stop.
Otherwise, set k = k + 1 and repeat from Step 2.

The value of αk in Step 3 is an accurate estimate of the value of α that
minimizes f(xk + αdk) to the extent that the quadratic approximation of the
Taylor series is an accurate representation of f(x). Thus, as was argued earlier,
the reduction in f(x) per iteration tends to approach the maximum possible as
x∗ is approached, and if f(x) is quadratic the maximum possible reduction is
achieved in every iteration.

5.2.5 Convergence
If a function f(x) ∈ C2 has a local minimizer x∗ and its Hessian is positive

definite at x = x∗, then it can be shown that if xk is sufficiently close to x∗, we
have

f(xk+1) − f(x∗) ≤
(

1 − r

1 + r

)2

[f(xk) − f(x∗)] (5.8)

where

r =
smallest eigenvalue of Hk

largest eigenvalue of Hk

Furthermore, if f(x) is a quadratic function then the inequality in Eq. (5.8)
holds for all k (see [1] for proof). In effect, subject to the conditions stated, the
steepest-descent method converges linearly (see Sec. 3.7) with a convergence

Basic Multidimensional Gradient Methods 127

ratio

β =
(

1 − r

1 + r

)2

Evidently, the rate of convergence is high if the eigenvalues of Hk are all nearly
equal, or low if at least one eigenvalue is small relative to the largest eigenvalue.

The eigenvalues of H, namely, λi for 1, 2, . . . , n, determine the geometry
of the surface

xT Hx = constant

This equation gives the contours of xTHx and if H is positive definite, the con-
tours are ellipsoids with axes proportional to 1/

√
λi. If the number of variables

is two, the contours are ellipses with axes proportional to 1/
√

λ1 and 1/
√

λ2.
Consequently, if the steepest-descent method is applied to a two-dimensional
problem, convergence will be fast if the contours are nearly circular, as is to
be expected, and if they are circular, i.e., r = 1, convergence will be achieved
in one iteration. On the other hand, if the contours are elongated ellipses or if
the function exhibits long narrow valleys, progress will be very slow, in partic-
ular as the solution is approached. The influence of r on convergence can be
appreciated by comparing Figs. 5.4 and 5.5.

1x

2x

x *

0x

Figure 5.5. Solution trajectory in steepest-descent algorithm if r ≈ 1.

128

The steepest-descent method attempts, in effect, to reduce the gradient to
zero. Since at a saddle point, the gradient is zero, it might be questioned
whether such a point is a likely solution. It turns out that such a solution is
highly unlikely, in practice, for two reasons. First, the probability of locating a
saddle point exactly as the next iteration point is infinitesimal. Second, there is
always a descent direction in the neighborhood of a saddle point.

5.2.6 Scaling
The eigenvalues of H in a specific optimization problem and, in turn, the

performance of the steepest-descent method tend to depend to a large extent
on the choice of variables. For example, in one and the same two-dimensional
problem, the contours may be nearly circular or elliptical depending on the
choice of units. Consequently, the rate of convergence can often be improved
by scaling the variables through variable transformations.

A possible approach to scaling might be to let

x = Ty

where T is an n × n diagonal matrix, and then solve the problem

minimize
y

h(y) = f(x)|x=Ty

The gradient and Hessian of the new problem are

gh = Tgx and Hh = TT HT

respectively, and, therefore, both the steepest-descent direction as well as the
eigenvalues associated with the problem are changed. Unfortunately, the choice
of T tends to depend heavily on the problem at hand and, as a result, no general
rules can be stated. As a rule of thumb, we should strive to as far as possible
equalize the second derivatives

∂2f

∂x2
i

for i = 1, 2, . . . , n.

5.3 Newton Method
The steepest-descent method is a first-order method since it is based on the

linear approximation of the Taylor series. A second-order method known as
the Newton (also known as the Newton-Raphson) method can be developed
by using the quadratic approximation of the Taylor series. If δ is a change in
x, f(x + δ) is given by

f(x + δ) ≈ f(x) +
n∑

j=1

∂f

∂xi
δi +

1
2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
δiδj (5.9)

Basic Multidimensional Gradient Methods 129

Assuming that this is an accurate representation of the function at point x + δ,
then differentiating f(x + δ) with respect to δk for k = 1, 2, . . . , n and
setting the result to zero will give the values of δk that minimize f(x+δ). This
approach yields

∂f

∂xk
+

n∑
i=1

∂2f

∂xi∂xk
δi = 0 for k = 1, 2, . . . , n

or in matrix form
g = −Hδ

Therefore, the optimum change in x is

δ = −H−1g (5.10)

This solution exists if and only if the following conditions hold:

(a) The Hessian is nonsingular.
(b) The approximation in Eq. (5.9) is valid.

Assuming that the second-order sufficiency conditions for a minimum hold
at point x∗, then H is positive definite at x∗ and also in the neighborhood of
the solution i.e., for ‖x − x∗‖ < ε. This means that H is nonsingular and has
an inverse for ‖x− x∗‖ < ε. Since any function f(x) ∈ C2 can be accurately
represented in the neighborhood of x∗ by the quadratic approximation of the
Taylor series, the solution in Eq. (5.10) exists. Furthermore, for any point x
such that ‖x − x∗‖ < ε one iteration will yield x ≈ x∗.

Any quadratic function has a Hessian which is constant for any x ∈ En, as
can be readily demonstrated. If the function has a minimum, and the second-
order sufficiency conditions for a minimum hold, then H is positive definite
and, therefore, nonsingular at any point x ∈ En. Since any quadratic function
is represented exactly by the quadratic approximation of the Taylor series, the
solution in Eq. (5.10) exists. Furthermore, for any point x ∈ En one iteration
will yield the solution.

If a general nonquadratic function is to be minimized and an arbitrary point x
is assumed, condition (a) and/or condition (b) may be violated. If condition (a)
is violated, Eq. (5.10) may have an infinite number of solutions or no solution
at all. If, on the other hand, condition (b) is violated, then δ may not yield the
solution in one iteration and, if H is not positive definite, δ may not even yield
a reduction in the objective function.

The first problem can be overcome by forcing H to become positive definite
by means of some manipulation. The second problem, on the other hand, can
be overcome by using an iterative procedure which incorporates a line search
for the calculation of the change in x. The iterative procedure will counteract
the fact that one iteration will not yield the solution, and the line search can be

130

used to achieve maximum reduction in f(x) along the direction predicted by
Eq. (5.10). This approach can be implemented by selecting the next point xk+1

as

xk+1 = xk + δk = xk + αkdk (5.11)

where

dk = −H−1
k gk (5.12)

and αk is the value of α that minimizes f(xk +αdk). The vector dk is referred
to as the Newton direction at point xk. In the case where conditions (a) and (b)
are satisfied, the first iteration will yield the solution with αk = 1.

At the start of the minimization, progress might be slow for certain types of
functions. Nevertheless, continuous reduction in f(x) will be achieved through
the choice of α. As the solution is approached, however, both conditions (a)
and (b) will be satisfied and, therefore, convergence will be achieved. The
order of convergence can be shown to be two (see [1, Chap. 7]). In effect, the
Newton method has convergence properties that are complementary to those of
the steepest-descent method, namely, it can be slow away from the solution and
fast close to the solution.

The above principles lead readily to the basic Newton algorithm summarized
below.

Algorithm 5.3 Basic Newton algorithm
Step 1

Input x0 and initialize the tolerance ε.
Set k = 0.
Step 2
Compute gk and Hk.
If Hk is not positive definite, force it to become positive definite.
Step 3
Compute H−1

k and dk = −H−1
k gk.

Step 4
Find αk, the value of α that minimizes f(xk +αdk), using a line search.
Step 5
Set xk+1 = xk + αkdk.
Compute fk+1 = f(xk+1).
Step 6
If ‖αkdk‖ < ε, then do:

Output x∗ = xk+1 and f(x∗) = fk+1, and stop.

Otherwise, set k = k + 1 and repeat from Step 2.

Basic Multidimensional Gradient Methods 131

5.3.1 Modification of the Hessian
If the Hessian is not positive definite in any iteration of Algorithm 5.3, it is

forced to become positive definite in Step 2 of the algorithm. This modification
of Hk can be accomplished in one of several ways.

One approach proposed by Goldfeld, Quandt, and Trotter [2] is to replace
Hk by the n × n identity matrix In wherever it becomes nonpositive definite.
Since In is positive definite, the problem of a nonsingular Hk is eliminated.
This approach can be implemented by letting

Ĥk =
Hk + βIn

1 + β
(5.13)

where β is set to a large value if Hk is nonpositive definite, or to a small value
if Hk is positive definite.

If β is large, then
Ĥk ≈ In

and from Eq. (5.12)
dk ≈ −gk

In effect, the modification in Eq. (5.13) converts the Newton method into the
steepest-descent method.

A nonpositive definite Hk is likely to arise at points far from the solution
where the steepest-descent method is most effective in reducing the value of
f(x). Therefore, the modification in Eq. (5.13) leads to an algorithm that com-
bines the complementary convergence properties of the Newton and steepest-
descent methods.

A second possibility due to Zwart [3] is to form a modified matrix

Ĥk = UTHkU + ε

where U is a real unitary matrix (i.e., UTU = In) and ε is a diagonal n × n
matrix with diagonal elements εi. It can be shown that a matrix U exists such
that UTHkU is diagonal with diagonal elements λi for i = 1, 2, . . . , n, where
λi are the eigenvalues of Hk (see Theorem 2.8). In effect, Ĥk is diagonal with
elements λi + εi. Therefore, if

εi =
{

0 if λi > 0
δ − λi if λi ≤ 0

where δ is a positive constant, then Ĥk will be positive definite. With this
modification, changes in the components of xk in Eq. (5.12) due to negative
eigenvalues are ignored. MatrixUTHkU can be formed by solving the equation

det(Hk − λIn) = 0 (5.14)

132

This method entails minimal disturbance of Hk, and hence the convergence
properties of the Newton method are largely preserved. Unfortunately, how-
ever, the solution of Eq. (5.14) involves the determination of the n roots of the
characteristic polynomial of Hk and is, therefore, time-consuming.

A third method for the manipulation of Hk, which is attributed to Matthews
and Davies [4], is based on the Gaussian elimination. This method leads si-
multaneously to the modification of Hk and the computation of the Newton
direction dk and is, therefore, one of the most practical to use. As was shown
in Sec. 2.6, given a matrix Hk, a diagonal matrix D can be deduced as

D = LHkLT (5.15)

where
L = En−1 · · · E2E1

is a unit lower triangular matrix, and E1, E2, . . . are elementary matrices. If
Hk is positive definite, then D is positive definite and vice-versa (see Theorem
2.7). If D is not positive definite, then a positive definite diagonal matrix D̂
can be formed by replacing each zero or negative element in D by a positive
element. In this way a positive definite matrix Ĥk can be formed as

Ĥk = L−1D̂(LT)−1 (5.16)

Now from Eq. (5.12)
Ĥkdk = −gk (5.17)

and hence Eqs. (5.16) and (5.17) yield

L−1D̂(LT)−1dk = −gk (5.18)

If we let
D̂(LT)−1dk = yk (5.19)

then Eq. (5.18) can be expressed as

L−1yk = −gk

Therefore,
yk = −Lgk (5.20)

and from Eq. (5.19)
dk = LT D̂−1yk (5.21)

The computation of dk can thus be carried out by generating the unit lower
triangular matrix L and the corresponding positive definite diagonal matrix D̂.
If

Hk =

⎡
⎢⎢⎢⎣

h11 h12 · · · h1n

h21 h22 · · · h2n
...

...
...

hn1 hn2 · · · hnn

⎤
⎥⎥⎥⎦

Basic Multidimensional Gradient Methods 133

then

L =

⎡
⎢⎢⎢⎣

l11 0 · · · 0
l21 l22 · · · 0
...

...
...

ln1 ln2 · · · lnn

⎤
⎥⎥⎥⎦

and

D̂ =

⎡
⎢⎢⎢⎣

d̂11 0 · · · 0
0 d̂22 · · · 0
...

...
...

0 0 · · · d̂nn

⎤
⎥⎥⎥⎦

can be computed by using the following algorithm.

Algorithm 5.4 Matthews and Davies algorithm
Step 1
Input Hk and n.
Set L = 0, D̂ = 0.
If h11 > 0, then set h00 = h11, else set h00 = 1.
Step 2
For k = 2, 3, . . . , n do:

Set m = k − 1, lmm = 1.
If hmm ≤ 0, set hmm = h00.
Step 2.1
For i = k, k + 1, . . . , n do:

Set lim = −him/hmm, him = 0.
Step 2.1.1
For j = k, k + 1, . . . , n do:

Set hij = hij + limhmj

If 0 < hkk < h00, set h00 = hkk.
Step 3
Set lnn = 1. If hnn ≤ 0, set hnn = h00.
For i = 1, 2, . . . , n set d̂ii = hii.
Stop.

This algorithm will convert H into an upper triangular matrix with positive
diagonal elements, and will then assign the diagonal elements obtained to D̂.
Any zero or negative elements of D are replaced by the most recent lowest
positive element of D̂, except if the first element is zero or negative, which is
replaced by unity.

If Hk is a 4× 4 matrix, k and m are initially set to 2 and 1, respectively, and
l11 is set to unity; h11 is checked and if it is zero or negative it is changed to

134

unity. The execution of Step 2.1 yields

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
−h21

h11
0 0 0

−h31

h11
0 0 0

−h41

h11
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In addition, the elements in column 1 of Hk other than h11 are set to zero and
the elements of rows 2 to 4 and columns 2 to 4 are updated to give

Hk =

⎡
⎢⎢⎣

h11 h12 h13 h14

0 h′
22 h′

23 h′
24

0 h′
32 h′

33 h′
34

0 h′
42 h′

43 h′
44

⎤
⎥⎥⎦

If 0 < h′
22 < h00, then h′

22 is used to update h00. Indices k and m are then set
to 3 and 2, respectively , and l22 is set to unity. If h′

22 ≤ 0, it is replaced by the
most recent value of h00. The execution of Step 2.1 yields

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
−h21

h11
1 0 0

−h31

h11
−h′

32

h′
22

0 0

−h41

h11
−h′

42

h′
22

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Hk =

⎡
⎢⎢⎣

h11 h12 h13 h14

0 h′
22 h′

23 h′
24

0 0 h′′
33 h′′

34

0 0 h′′
43 h′′

44

⎤
⎥⎥⎦

If 0 < h′′
33 < h00, h′′

33 is assigned to h00, and so on. In Step 3, h
′′′
44 is checked

and is changed to h00 if found to be zero or negative, and l44 is set to unity.
Then the diagonal elements of Hk are assigned to D̂.

With D̂ known, D̂−1 can be readily obtained by replacing the diagonal
elements of D̂ by their reciprocals. The computation of yk and dk can be
completed by using Eqs. (5.20) and (5.21). Algorithm 5.4 is illustrated by the
following example.

Basic Multidimensional Gradient Methods 135

Example 5.1 Compute L and D̂ for the 4 × 4 matrix

Hk =

⎡
⎢⎢⎣

h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44

⎤
⎥⎥⎦

using Algorithm 5.4.

Solution The elements of L and D̂, namely, lij and d̂ii, can be computed as
follows:
Step 1
Input Hk and set n = 4. Initialize L and D̂ as

L =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ D̂ =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

Step 2
If h11 > 0, then set h00 = h11, else set h00 = 1.
k = 2;

m = 1, l11 = 1;
if h11 ≤ 0, set h11 = h00;
Step 2.1
i = 2;

l21 = −h21/h11, h21 = 0;
Step 2.1.1
j = 2;

h22 = h22 + l21h12 = h22 − h21h12/h11 (= h′
22);

j = 3;
h23 = h23 + l21h13 = h23 − h21h13/h11 (= h′

23);
j = 4;

h24 = h24 + l21h14 = h24 − h21h14/h11 (= h′
24);

i = 3;
l31 = −h31/h11, h31 = 0;
j = 2;

h32 = h32 + l31h12 = h32 − h31h12/h11 (= h′
32);

j = 3;
h33 = h33 + l31h13 = h33 − h31h13/h11 (= h′

33);
j = 4;

h34 = h34 + l31h14 = h34 − h31h14/h11 (= h′
34);

i = 4;
l41 = −h41/h11, h41 = 0;

136

j = 2;
h42 = h42 + l41h12 = h42 − h41h12/h11 (= h′

42);
j = 3;

h43 = h43 + l41h13 = h43 − h41h13/h11 (= h′
43);

j = 4;
h44 = h44 + l41h14 = h44 − h41h14/h11 (= h′

44);
if 0 < h22 < h00, set h00 = h22;

k = 3;
m = 2, l22 = 1;
if h22 < 0, set h22 = h00;
i = 3;

l32 = −h32/h22, h32 = 0;
j = 3;

h33 = h33 + l32h23 = h33 − h32h23/h22 (= h′′
33);

j = 4;
h34 = h34 + l32h24 = h34 − h32h24/h22 (= h′′

34);
i = 4;

l42 = −h42/h22, h42 = 0;
j = 3;

h43 = h43 + l42h23 = h43 − h42h23/h22 (= h′′
43);

j = 4;
h44 = h44 + l42h24 = h43 − h42h24/h22 (= h′′

44);
if 0 < h33 < h00, set h00 = h33.

k = 4;
m = 3, l33 = 1;
if h33 ≤ 0, set h33 = h00;
i = 4;

l34 = −h43/h33, h43 = 0;
j = 4;

h44 = h44 + l44h34 = h44 − h43h34/h33 = h′′′
44.

Step 3
l44 = 1;
if h44 ≤ 0, set h44 = h00;
set d̂ii = hii for i = 1, 2, . . . , n.

Example 5.2 The gradient and Hessian are given by

gT
k = [−1

5 2], Hk =
[

3 −6
−6 59

5

]

Deduce a Newton direction dk.

Basic Multidimensional Gradient Methods 137

Solution If

L =
[
1 0
2 1

]
Eq. (5.15) gives

D =
[
1 0
2 1

] ⎡
⎣ 3 −6

−6 59
5

⎤
⎦ [

1 2
0 1

]
=

[
3 0
0 −1

5

]

A positive definite diagonal matrix is

D̂ =

⎡
⎣ 3 0

0 1
5

⎤
⎦

Hence

D̂−1 =

⎡
⎣ 1

3 0

0 5

⎤
⎦

From Eq. (5.20), we get

yk = −
[
1 0
2 1

] ⎡
⎣−1

5

2

⎤
⎦ =

⎡
⎣ 1

5

−8
5

⎤
⎦

Therefore, from Eq. (5.21)

dk =
[
1 2
0 1

] ⎡
⎣ 1

3 0

0 5

⎤
⎦
⎡
⎣ 1

5

−8
5

⎤
⎦ =

⎡
⎣−239

15

−8

⎤
⎦

5.3.2 Computation of the Hessian
The main disadvantage of the Newton method is that the second derivatives

of the function are required so that the Hessian may be computed. If exact
formulas are unavailable or are difficult to obtain, the second derivatives can be
computed by using the numerical formulas

∂f

∂x1
= lim

δ→0

f(x + δ1) − f(x)
δ

= f ′(x) with δ1 = [δ 0 0 · · · 0]T

∂2f

∂x1∂x2
= lim

δ→0

f ′(x + δ2) − f ′(x)
δ

with δ2 = [0 δ 0 · · · 0]T

138

5.4 Gauss-Newton Method
In many optimization problems, the objective function is in the form of a

vector of functions given by

f = [f1(x) f2(x) · · · fm(x)]T

where fp(x) for p = 1, 2, . . . , m are independent functions of x (see Sec. 1.2).
The solution sought is a point x such that all fp(x) are reduced to zero simul-
taneously.

In problems of this type, a real-valued function can be formed as

F =
m∑

p=1

fp(x)2 = fT f (5.22)

If F is minimized by using a multidimensional unconstrained algorithm, then
the individual functions fp(x) are minimized in the least-squares sense (see
Sec. 1.2).

A method for the solution of the above class of problems, known as the Gauss-
Newton method, can be readily developed by applying the Newton method of
Sec. 5.3.

Since there are a number of functions fp(x) and each one depends on xi for
i = 1, 2, . . . , n a gradient matrix, referred to as the Jacobian , can be formed
as

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn

...
...

...
∂fm

∂x1

∂fm

∂x2
· · · ∂fm

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎦

The number of functions m may exceed the number of variables n, that is, the
Jacobian need not be a square matrix.

By differentiating F in Eq. (5.22) with respect to xi, we obtain

∂F

∂xi
=

m∑
p=1

2fp(x)
∂fp

∂xi
(5.23)

for i = 1, 2, . . . , n. Alternatively, in matrix form⎡
⎢⎢⎢⎢⎢⎣

∂F
∂x1

∂F
∂x2

...
∂F
∂xn

⎤
⎥⎥⎥⎥⎥⎦ = 2

⎡
⎢⎢⎢⎢⎢⎢⎣

∂f1

∂x1

∂f2

∂x1
· · · ∂fm

∂x1

∂f1

∂x2

∂f2

∂x2
· · · ∂fm

∂x2

...
...

...
∂f1

∂xn

∂f2

∂xn
· · · ∂fm

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

f1(x)
f2(x)

...
fm(x)

⎤
⎥⎥⎥⎦

Basic Multidimensional Gradient Methods 139

Hence the gradient of F , designated by gF , can be expressed as

gF = 2JT f (5.24)

Assuming that fp(x) ∈ C2, Eq. (5.23) yields

∂2F

∂xi∂xj
= 2

m∑
p=1

∂fp

∂xi

∂fp

∂xj
+ 2

m∑
p=1

fp(x)
∂2fp

∂xi∂xj

for i, j = 1, 2, . . . , n. If the second derivatives of fp(x) are neglected, we
have

∂2F

∂xi∂xj
≈ 2

m∑
p=1

∂fp

∂xi

∂fp

∂xj

Thus the Hessian of F , designated by HF , can be deduced as

HF ≈ 2JTJ (5.25)

Since the gradient and Hessian of F are now known, the Newton method can
be applied for the solution of the problem. The necessary recursive relation is
given by Eqs. (5.11) – (5.12) and (5.24) – (5.25) as

xk+1 = xk − αk(2JTJ)−1(2JT f)
= xk − αk(JTJ)−1(JT f)

where αk is the value of α that minimizes F (xk + αdk). As k is increased,
successive line searches bring about reductions in Fk and xk approaches x∗.
When xk is in the neighborhood of x∗, functions fp(xk) can be accurately
represented by the linear approximation of the Taylor series, the matrix in
Eq. (5.25) becomes an accurate representation of the Hessian of Fk, and the
method converges very rapidly. If functions fp(x) are linear, F is quadratic, the
matrix in Eq. (5.25) is the Hessian, and the problem is solved in one iteration.

The method breaks down if HF becomes singular, as in the case of Newton
method. However, the remedies described in Sec. 5.3 can also be applied to the
Gauss-Newton method.

An algorithm based on the above principles is as follows:

140

Algorithm 5.5 Gauss-Newton algorithm
Step 1
Input x0 and initialize the tolerance ε.
Set k = 0.
Step 2
Compute fpk = fp(xk) for p = 1, 2, . . . , m and Fk.
Step 3
Compute Jk, gk = 2JT

k fk, and Hk = 2JT
k Jk.

Step 4
Compute Lk and D̂k using Algorithm 5.4.
Compute yk = −Lkgk and dk = LT

k D̂−1
k yk.

Step 5
Find αk, the value of α that minimizes F (xk + αdk).
Step 6
Set xk+1 = xk + αkdk.
Compute fp(k+1) for p = 1, 2, . . . , m and Fk+1.
Step 7
If |Fk+1 − Fk| < ε, then do:

Output x∗ = xk+1, fp(k+1)(x∗) for p = 1, 2, . . . , m, and Fk+1.
Stop.

Otherwise, set k = k + 1 and repeat from Step 3.

The factors 2 in Step 3 can be discarded since they cancel out in the calculation
of dk (see Eq. (5.12)). In Step 4, Hk is forced to become positive definite, if
it is not positive definite, and, further, the Newton direction dk is calculated
without the direct inversion of Hk.

References
1 D. G. Luenberger, Linear and Nonlinear Programming, Chap. 7, Addison-Wesley, MA,

1984.
2 S. M. Goldfeld, R. E. Quandt, and H. F. Trotter, “Maximization by quadratic hill-climbing,”

Econometrica, vol. 34, pp. 541–551, 1966.
3 P. B. Zwart, Nonlinear Programming: A Quadratic Analysis of Ridge Paralysis, Washington

University, Report COO-1493-21, St. Louis, Mo., Jan. 1969.
4 A. Matthews and D. Davies, “A comparison of modified Newton methods for unconstrained

optimization,” Computer Journal, vol. 14, pp. 293–294, 1971.

Problems
5.1 The steepest-descent method is applied to solve the problem

minimize f(x) = 2x2
1 − 2x1x2 + x2

2 + 2x1 − 2x2

and a sequence {xk} is generated.

Basic Multidimensional Gradient Methods 141

(a) Assuming that

x2k+1 =
[
0

(
1 − 1

5k

)]T

show that

x2k+3 =
[
0

(
1 − 1

5k+1

)]T

(b) Find the minimizer of f(x) using the result in part (a).

5.2 The problem

minimize f(x) = x2
1 + 2x2

2 + 4x1 + 4x2

is to be solved by using the steepest-descent method with an initial point
x0 = [0 0]T .

(a) By means of induction, show that

xk+1 =

[
2
3k

− 2
(
−1

3

)k

− 1

]T

(b) Deduce the minimizer of f(x).
5.3 Consider the minimization problem

minimize x2
1 + x2

2 − 0.2x1x2 − 2.2x1 + 2.2x2 + 2.2

(a) Find a point satisfying the first-order necessary conditions for a min-
imizer.

(b) Show that this point is the global minimizer.

(c) What is the rate of convergence of the steepest-descent method for
this problem?

(d) Starting at x = [0 0]T , how many steepest-descent iterations would it
take (at most) to reduce the function value to 10−10?

5.4 (a) Solve the problem

minimize f(x) = 5x2
1 − 9x1x2 + 4.075x2

2 + x1

by applying the steepest-descent method with x0 = [1 1]T and ε =
3 × 10−6.

(b) Give a convergence analysis on the above problem to explain why the
steepest-decent method requires a large number of iterations to reach
the solution.

5.5 Solve the problem

minimize f(x) = (x1 + 5)2 + (x2 + 8)2 + (x3 + 7)2

+2x2
1x

2
2 + 4x2

1x
2
3

142

by applying Algorithm 5.1.

(a) Start with x0 = [1 1 1]T and ε = 10−6. Verify the solution point
using the second-order sufficient conditions.

(b) Repeat (a) using x0 = [−2.3 0 0]T .

(c) Repeat (a) using x0 = [0 2 −12]T .

5.6 Solve the problem in Prob. 5.5 by applying Algorithm 5.2. Try the same
initial points as in Prob. 5.5 (a)–(c). Compare the solutions obtained and
the amount of computation required with that of Algorithm 5.1.

5.7 Solve the problem

minimize f(x) = (x2
1 + x2

2 − 1)2 + (x1 + x2 − 1)2

by applying Algorithm 5.1. Use ε = 10−6 and try the following initial
points: [4 4]T , [4 −4]T , [−4 4]T , [−4 −4]T . Examine the solution points
obtained.

5.8 Solve the problem in Prob. 5.7 by applying Algorithm 5.2. Compare the
computational efficiency of Algorithm 5.2 with that of Algorithm 5.1.

5.9 Solve the problem

minimize f(x) = −x2
2e

1−x2
1−20(x1−x2)2

by applying Algorithm 5.1.

(a) Start with x0 = [0.1 0.1]T and ε = 10−6. Examine the solution
obtained.

(b) Start with x0 = [0.8 0.1]T and ε = 10−6. Examine the solution
obtained.

(c) Start with x0 = [1.1 0.1]T and ε = 10−6. Examine the solution
obtained.

5.10 Solve the problem in Prob. 5.9 by applying Algorithm 5.2. Try the 3 initial
points specified in Prob. 5.9 (a)–(c) and examine the solutions obtained.

5.11 Solve the problem

minimize f(x) = x3
1e

x2−x2
1−10(x1−x2)2

by applying Algorithm 5.1. Use ε = 10−6 and try the following initial
points: [−3 −3]T , [3 3]T , [3 − 3]T , and [−3 3]T . Examine the solution
points obtained.

5.12 Solve Prob. 5.11 by applying Algorithm 5.2. Examine the solution points
obtained.

Basic Multidimensional Gradient Methods 143

5.13 Solve the minimization problem in Prob. 5.1 with x0 = [0 0]T by using
Newton method.

5.14 Solve the minimization problem in Prob. 5.2 with x0 = [0 0]T by using
Newton method.

5.15 Modify the Newton algorithm described in Algorithm 5.3 by incorporat-
ing Eq. (5.13) into the algorithm. Give a step-by-step description of the
modified algorithm.

5.16 Solve Prob. 5.5 by applying the algorithm in Prob. 5.15. Examine the
solution points obtained and compare the algorithm’s computational com-
plexity with that of Algorithm 5.1.

5.17 Solve Prob. 5.7 by applying the algorithm in Prob. 5.15. Examine the
solution points obtained and compare the amount of computation required
with that of Algorithm 5.1.

5.18 Solve Prob. 5.9 by applying the algorithm in Prob. 5.15. Examine the
solutions obtained and compare the algorithm’s computational complexity
with that of Algorithm 5.1.

5.19 Solve Prob. 5.11 by applying the algorithm in Prob. 5.15. Examine the
solutions obtained and compare the amount of computation required with
that of Algorithm 5.1.

5.20 (a) Find the global minimizer of the objective function

f(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4

+100(x1 − x4)4

by using the fact that each term in the objective function is nonnegative.

(b) Solve the problem in part (a) using the steepest-descent method with
ε = 10−6 and try the initial points [−2 −1 1 2]T and [200 −200 100
−100]T .

(c) Solve the problem in part (a) using the modified Newton method in
Prob. 5.15 with the same termination tolerance and initial points as in
(b).

(d) Solve the problem in part (a) using the Gauss-Newton method with
the same termination tolerance and initial points as in (b).

(e) Based on the results of (b)–(d), compare the computational efficiency
and solution accuracy of the three methods.

5.21 Solve Prob. 5.5 by applying the Gauss-Newton method. Examine the
solutions obtained and compare the results with those obtained first by
using Algorithm 5.1 and then by using the algorithm in Prob. 5.15.

144

5.22 Solve Prob. 5.7 by applying the Gauss-Newton method. Examine the
solutions obtained and compare the results with those obtained first by
using Algorithm 5.1 and then by using the algorithm in Prob. 5.15.

Chapter 6

CONJUGATE-DIRECTION METHODS

6.1 Introduction
In the multidimensional optimization methods described so far, the direction

of search in each iteration depends on the local properties of the objective
function. Although a relation may exist between successive search directions,
such a relation is incidental. In this chapter, methods are described in which
the optimization is performed by using sequential search directions that bear a
strict mathematical relationship to one another. An important class of methods
of this type is a class based on a set of search directions known as conjugate
directions.

Like the Newton method, conjugate-direction methods are developed for the
quadratic optimization problem and are then extended to the general optimiza-
tion problem. For a quadratic problem, convergence is achieved in a finite
number of iterations.

Conjugate-direction methods have been found to be very effective in many
types of problems and have been used extensively in the past. The four most
important methods of this class are as follows:

1. Conjugate-gradient method
2. Fletcher-Reeves method
3. Powell’s method
4. Partan method

The principles involved and specific algorithms based on these methods form
the subject matter of this chapter.

146

6.2 Conjugate Directions
If f(x) ∈ C1 where x = [x1 x2 · · · xn]T , the problem

minimize
x

F = f(x)

can be solved by using the following algorithm:

Algorithm 6.1 Coordinate-descent algorithm
Step 1
Input x1 and initialize the tolerance ε.
Set k = 1.
Step 2
Set dk = [0 0 · · · 0 dk 0 · · · 0]T .
Step 3
Find αk, the value of α that minimizes f(xk +αdk), using a line search.
Set xk+1 = xk + αkdk

Calculate fk+1 = f(xk+1).
Step 4
If ‖αkdk‖ < ε then output x∗ = xk+1 and f(x∗) = fk+1, and stop.
Step 5
If k = n, set x1 = xk+1, k = 1 and repeat from Step 2;
Otherwise, set k = k + 1 and repeat from Step 2.

In this algorithm, an initial point x1 is assumed, and f(x) is minimized in
direction d1 to obtain a new point x2. The procedure is repeated for points
x2, x3, . . . and when k = n, the algorithm is reinitialized and the procedure is
repeated until convergence is achieved. Evidently, this algorithm differs from
those in Chap. 5 in that f(x) is minimized repeatedly using a set of directions
which bear a strict relationship to one another. The relationship among the
various directions is that they form a set of coordinate directions since only one
element of xk is allowed to vary in each line search.

Algorithm 6.1, which is often referred to as a coordinate-descent algorithm,
is not very effective or reliable in practice, since an oscillatory behavior can
sometimes occur. However, by using another class of interrelated directions
known as conjugate directions, some quite effective algorithms can be devel-
oped.

Definition 6.1
(a) Two distinct nonzero vectors d1 and d2 are said to be conjugate with

respect to a real symmetric matrix H, if

dT
1 Hd2 = 0

Conjugate-Direction Methods 147

(b) A finite set of distinct nonzero vectors {d0, d1, . . . , dk} is said to be
conjugate with respect to a real symmetric matrix H, if

dT
i Hdj = 0 for all i �= j (6.1)

If H = In, where In is the n × n identity matrix, then Eq. (6.1) can be
expressed as

dT
i Hdj = dT

i Indj = dT
i dj = 0 for i �= j

This is the well known condition for orthogonality between vectors di and dj

and, in effect, conjugacy is a generalization of orthogonality.
If dj for j = 0, 1, . . . , k are eigenvectors of H then

Hdj = λjdj

where the λj are the eigenvalues of H. Hence, we have

dT
i Hdj = λjdT

i dj = 0 for i �= j

since di and dj for i �= j are orthogonal [5]. In effect, the set of eigenvectors
dj constitutes a set of conjugate directions with respect to H.

Theorem 6.1 Linear independence of conjugate vectors If nonzero vectors
d0, d1, . . . , dk form a conjugate set with respect to a positive definite matrix
H, then they are linearly independent.

Proof Consider the system
k∑

j=0

αjdj = 0

On premultiplying by dT
i H, where 0 ≤ i ≤ k, and then using Def. 6.1, we

obtain
k∑

j=0

αjdT
i Hdj = αidT

i Hdi = 0

Since H is positive definite, we have dT
i Hdi > 0. Therefore, the above system

has a solution if and only if αj = 0 for j = 0, 1, . . . , k, that is, vectors di are
linearly independent.

The use of conjugate directions in the process of optimization can be demon-
strated by considering the quadratic problem

minimize
x

f(x) = a + xT b + 1
2x

THx (6.2)

148

where a = f(0), b is the gradient of f(x) at x = 0, and H is the Hessian. The
gradient of f(x) at any point can be deduced as

g = b + Hx

At the minimizer x∗ of f(x), g = 0 and thus

Hx∗ = −b (6.3)

If d0, d1, . . . , dn−1 are distinct conjugate directions in En, then they form
a basis of En since they are linearly independent and span the En space. This
means that all possible vectors in En can be expressed as linear combinations
of directions d0, d1, . . . , dn−1. Hence x∗ can be expressed as

x∗ =
n−1∑
i=0

αidi (6.4)

where αi for i = 0, 1, . . . , n− 1 are constants. If H is positive definite, then
from Def. 6.1 we can write

dT
k Hx∗ =

n−1∑
i=0

αidT
k Hdi = αkdT

k Hdk

and thus

αk =
dT

k Hx∗

dT
k Hdk

(6.5)

Now from Eq. (6.3)

αk = − dT
k b

dT
k Hdk

= − bTdk

dT
k Hdk

Therefore, Eq. (6.4) gives the minimizer as

x∗ = −
n−1∑
k=0

dT
k b

dT
k Hdk

dk (6.6)

In effect, if n conjugate directions are known, an explicit expression for x∗
can be obtained.

The significance of conjugate directions can be demonstrated by attempting
to obtain x∗ using a set of n nonzero orthogonal directions p0, p1, . . . , pn−1.
Proceeding as above, we can show that

x∗ =
n−1∑
k=0

pT
k x∗

‖pk‖2
pk

Evidently, in this case, x∗ depends on itself and, in effect, there is a distinct
advantage in using conjugate directions.

Conjugate-Direction Methods 149

6.3 Basic Conjugate-Directions Method
The computation of x∗ through the use of Eq. (6.6) can be regarded as an

iterative computation whereby n successive adjustments αkdk are made to an
initial point x0 = 0. Alternatively, the sequence generated by the recursive
relation

xk+1 = xk + αdk

where

αk = − bTdk

dT
k Hdk

and x0 = 0 converges when k = n − 1 to

xn = x∗

A similar result can be obtained for an arbitrary initial point x0 as is demon-
strated by the following theorem.

Theorem 6.2 Convergence of conjugate-directions method If {d0, d1, . . . ,
dn−1} is a set of nonzero conjugate directions, H is an n × n positive definite
matrix, and the problem

minimize
x

f(x) = a + xT b + 1
2x

THx (6.7)

is quadratic, then for any initial point x0 the sequence generated by the relation

xk+1 = xk + αkdk for k ≥ 0 (6.8)

where

αk = − gT
k dk

dT
k Hdk

and
gk = b + Hxk (6.9)

converges to the unique solution x∗ of the quadratic problem in n iterations,
i.e., xn = x∗.

Proof Vector x∗ − x0 can be expressed as a linear combination of conjugate
directions as

x∗ − x0 =
n−1∑
i=0

αidi (6.10)

Hence as in Eq. (6.5)

αk =
dT

k H(x∗ − x0)
dT

k Hdk
(6.11)

150

The iterative procedure in Eq. (6.8) will yield

xk − x0 =
k−1∑
i=0

αidi (6.12)

and so

dT
k H(xk − x0) =

k−1∑
i=0

αidT
k Hdi = 0

since i �= k. Evidently,
dT

k Hxk = dT
k Hx0 (6.13)

and thus Eqs. (6.11) and (6.13) give

αk =
dT

k (Hx∗ − Hxk)
dT

k Hdk
(6.14)

From Eq. (6.9)
Hxk = gk − b (6.15)

and since gk = 0 at minimizer xk, we have

Hx∗ = −b (6.16)

Therefore, Eqs. (6.14) – (6.16) yield

αk = − dT
k gk

dT
k Hdk

= − gT
k dk

dT
k Hdk

(6.17)

Now for k = n Eqs. (6.12) and (6.10) yield

xn = x0 +
n−1∑
i=0

αidi = x∗

and, therefore, the iterative relation in Eq. (6.8) converges to x∗ in n iterations.

By using Theorem 6.2 in conjunction with various techniques for the gener-
ation of conjugate directions, a number of distinct conjugate-direction methods
can be developed.

Methods based on Theorem 6.2 have certain common properties. Two of
these properties are given in the following theorem.

Theorem 6.3 Orthogonality of gradient to a set of conjugate directions
(a) The gradient gk is orthogonal to directions di for 0 ≤ i < k, that is,

gT
k di = dT

i gk = 0 for 0 ≤ i < k

Conjugate-Direction Methods 151

(b) The assignment α = αk in Theorem 6.2 minimizes f(x) on each line

x = xk−1 + αdi for 0 ≤ i < k

Proof
(a) We assume that

gT
k di = 0 for 0 ≤ i < k (6.18)

and show that

gT
k+1di = 0 for 0 ≤ i < k + 1

From Eq. (6.9)
gk+1 − gk = H(xk+1 − xk)

and from Eq. (6.8)
gk+1 = gk + αkHdk (6.19)

Hence
gT

k+1di = gT
k di + αkdT

k Hdi (6.20)

For i = k, Eqs. (6.20) and (6.17) give

gT
k+1dk = gT

k dk + αkdT
k Hdk = 0 (6.21)

For 0 ≤ i < k, Eq. (6.18) gives

gT
k di = 0

and since di and dk are conjugate

dT
k Hdi = 0

Hence Eq. (6.20) gives

gT
k+1di = 0 for 0 ≤ i < k (6.22)

By combining Eqs. (6.21) and (6.22), we have

gT
k+1di = 0 for 0 ≤ i < k + 1 (6.23)

Now if k = 0, Eq. (6.23) gives gT
1 di = 0 for 0 ≤ i < 1 and from

Eqs. (6.18) and (6.23), we obtain

gT
2 di = 0 for 0 ≤ i < 2

gT
3 di = 0 for 0 ≤ i < 3

...
...

gT
k di = 0 for 0 ≤ i < k

152

(b) Since

gT
k di ≡ gT (xk)di = g(xk−1 + αdi)Tdi

=
df(xk−1 + αdi)

dα
= 0

f(x) is minimized on each line

x = xk−1 + αdi for 0 ≤ i < k

The implication of the second part of the above theorem is that xk minimizes
f(x) with respect to the subspace spanned by the set of vectors {d0, d1, . . . ,
dk−1}. Therefore, xn minimizes f(x) with respect to the space spanned by
the set of vectors {d0, d1, . . . , dn−1}, namely, En. This is another way of
stating that xn = x∗.

6.4 Conjugate-Gradient Method
An effective method for the generation of conjugate directions proposed by

Hestenes and Stiefel [1] is the so-called conjugate-gradient method. In this
method, directions are generated sequentially, one per iteration. For iteration
k+1, a new point xk+1 is generated by using the previous direction dk. Then a
new directiondk+1 is generated by adding a vector βkdk to−gk+1, the negative
of the gradient at the new point.

The conjugate-gradient method is based on the following theorem. This
is essentially the same as Theorem 6.2 except that the method of generating
conjugate directions is now defined.

Theorem 6.4 Convergence of conjugate-gradient method
(a) If H is a positive definite matrix, then for any initial point x0 and an

initial direction
d0 = −g0 = −(b + Hx0)

the sequence generated by the recursive relation

xk+1 = xk + αkdk (6.24)

where

αk = − gT
k dk

dT
k Hdk

(6.25)

gk = b + Hxk (6.26)

dk+1 = −gk+1 + βkdk (6.27)

βk =
gT

k+1Hdk

dT
k Hdk

(6.28)

Conjugate-Direction Methods 153

converges to the unique solution x∗ of the problem given in Eq. (6.2).
(b) The gradient gk is orthogonal to {g0, g1, . . . , gk−1}, i.e.,

gT
k gi = 0 for 0 ≤ i < k

Proof
(a) The proof of convergence is the same as in Theorem 6.2. What remains

to prove is that directions d0, d1, . . . , dn−1 form a conjugate set, that
is,

dT
k Hdi = 0 for 0 ≤ i < k and 1 ≤ k ≤ n

The proof is by induction. We assume that

dT
k Hdi = 0 for 0 ≤ i < k (6.29)

and show that

dT
k+1Hdi = 0 for 0 ≤ i < k + 1

Let S(v0, v1, . . . , vk) be the subspace spanned by vectors v0, v1, . . . ,
vk. From Eq. (6.19)

gk+1 = gk + αkHdk (6.30)

and hence for k = 0, we have

g1 = g0 + α0Hd0 = g0 − α0Hg0

since d0 = −g0. In addition, Eq. (6.27) yields

d1 = −g1 + β0d0 = −(1 + β0)g0 + α0Hg0

that is, g1 and d1 are linear combinations of g0 and Hg0, and so

S(g0,g1) = S(d0,d1) = S(g0,Hg0)

Similarly, for k = 2, we get

g2 = g0 − [α0 + α1(1 + β0)]Hg0 + α0α1H2g0

d2 = −[1 + (1 + β0)β1]g0 + [α0 + α1(1 + β0) + α0β1]Hg0

−α0α1H2g0

and hence

S(g0, g1, g2) = S(g0, Hg0, H2g0)
S(d0, d1, d2) = S(g0, Hg0, H2g0)

154

By continuing the induction, we can show that

S(g0, g1, . . . , gk) = S(g0, Hg0, . . . , Hkg0) (6.31)

S(d0, d1, . . . , dk) = S(g0, Hg0, . . . , Hkg0) (6.32)

Now from Eq. (6.27)

dT
k+1Hdi = −gT

k+1Hdi + βkdT
k Hdi (6.33)

For i = k, the use of Eq. (6.28) gives

dT
k+1Hdk = −gT

k+1Hdk + βkdT
k Hdk = 0 (6.34)

For i < k, Eq. (6.32) shows that

Hdi ∈ S(d0, d1, . . . , dk)

and thus Hdi can be represented by the linear combination

Hdi =
k∑

i=0

aidi (6.35)

where ai for i = 0, 1, . . . , k are constants. Now from Eqs. (6.33) and
(6.35)

dT
k+1Hdi = −

k∑
i=0

aigT
k+1di + βkdT

k Hdi

= 0 for i < k (6.36)

The first term is zero from the orthogonality property of Theorem 6.3(a)
whereas the second term is zero from the assumption in Eq. (6.29). By
combining Eqs. (6.34) and (6.36), we have

dT
k+1Hdi = 0 for 0 ≤ i < k + 1 (6.37)

For k = 0, Eq. (6.37) gives

dT
1 Hdi = 0 for 0 ≤ i < 1

and, therefore, from Eqs. (6.29) and (6.37), we have

dT
2 Hdi = 0 for 0 ≤ i < 2

dT
3 Hdi = 0 for 0 ≤ i < 3

...
...

dT
k Hdi = 0 for 0 ≤ i < k

Conjugate-Direction Methods 155

(b) From Eqs. (6.31) – (6.32), g0, g1, . . . , gk span the same subspace as
d0, d1, . . . , dk and, consequently, they are linearly independent. We
can write

gi =
i∑

j=0

ajdj

where aj for j = 0, 1, . . . , i are constants. Therefore, from Theorem
6.3

gT
k gi =

i∑
j=0

ajgT
k dj = 0 for 0 ≤ i < k

The expressions for αk and βk in the above theorem can be simplified some-
what. From Eq. (6.27)

−gT
k dk = gT

k gk − βk−1gT
k dk−1

where
gT

k dk−1 = 0

according to Theorem 6.3(a). Hence

−gT
k dk = gT

k gk

and, therefore, the expression for αk in Eq. (6.25) is modified as

αk =
gT

k gk

dT
k Hdk

(6.38)

On the other hand, from Eq. (6.19)

Hdk =
1
αk

(gk+1 − gk)

and so

gT
k+1Hdk =

1
αk

(gT
k+1gk+1 − gT

k+1gk) (6.39)

Now from Eqs. (6.31) and (6.32)

gk ∈ S(d0, d1, . . . , dk)

or

gk =
k∑

i=0

aidi

and as a result

gT
k+1gk =

k∑
i=0

aigT
k+1di = 0 (6.40)

156

by virtue of Theorem 6.3(a). Therefore, Eqs. (6.28) and (6.38) – (6.40) yield

βk =
gT

k+1gk+1

gT
k gk

The above principles and theorems lead to the following algorithm:

Algorithm 6.2 Conjugate-gradient algorithm
Step 1
Input x0 and initialize the tolerance ε.
Step 2
Compute g0 and set d0 = −g0, k = 0.
Step 3
Input Hk, i.e., the Hessian at xk.
Compute

αk =
gT

k gk

dT
k Hkdk

Set xk+1 = xk + αkdk and calculate fk+1 = f(xk+1).
Step 4
If ‖αkdk‖ < ε, output x∗ = xk+1 and f(x∗) = fk+1, and stop.
Step 5
Compute gk+1.
Compute

βk =
gT

k+1gk+1

gT
k gk

Generate new direction

dk+1 = −gk+1 + βkdk

Set k = k + 1, and repeat from Step 3.

A typical solution trajectory for the above algorithm for a 2-dimensional
convex quadratic problem is illustrated in Fig. 6.1. Note that x1 = x0 − α0g0,
where α0 is the value of α that minimizes f(x0−αg0), as in the steepest-descent
algorithm.

The main advantages of the conjugate-gradient algorithm are as follows:

1. The gradient is always finite and linearly independent of all previous di-
rection vectors, except when the solution is reached.

2. The computations are relatively simple and only slightly more complicated
by comparison to the computations in the steepest-descent method.

3. No line searches are required.
4. For convex quadratic problems, the algorithm converges in n iterations.

Conjugate-Direction Methods 157

1x

2x

x *

0x

Figure 6.1. Typical solution trajectory in conjugate-gradient algorithm for a quadratic problem.

5. The first direction is a steepest-descent direction and it thus leads to a good
reduction in f(x) during the first iteration.

6. The algorithm has good convergence properties when applied for the so-
lution of nonquadratic problems since the directions are based on gradient
information.

7. Problems associated with the inversion of the Hessian are absent.

The disadvantages of the algorithm are:

1. The Hessian must be supplied, stored, and manipulated.
2. For nonquadratic problems convergence may not be achieved in rare oc-

casions.

6.5 Minimization of Nonquadratic Functions
Like the Newton method, conjugate-direction methods are developed for the

convex quadratic problem but are then applied for the solution of quadratic
as well as nonquadratic problems. The fundamental assumption is made that
if a steady reduction is achieved in the objective function in successive iter-
ations, the neighborhood of the solution will eventually be reached. If H is
positive definite near the solution, then convergence will, in principle, follow
in at most n iterations. For this reason, conjugate-direction methods, like the

158

Newton method, are said to have quadratic termination. In addition, the rate
of convergence is quadratic, that is, the order of convergence is two.

The use of conjugate-direction methods for the solution of nonquadratic
problems may sometimes be relatively inefficient in reducing the objective
function, in particular if the initial point is far from the solution. In such a
case, unreliable previous data are likely to accumulate in the current direction
vector, since they are calculated on the basis of past directions. Under these
circumstances, the solution trajectory may wander through suboptimal areas of
the parameter space, and progress will be slow. This problem can be overcome
by re-initializing these algorithms periodically, say, every n iterations, in order
to obliterate previous unreliable information, and in order to provide new vigor
to the algorithm through the use of a steepest-descent step. Most of the time, the
information accumulated in the current direction is quite reliable and throwing
it away is likely to increase the amount of computation. Nevertheless, this
seems to be a fair price to pay if the robustness of the algorithm is increased.

6.6 Fletcher-Reeves Method
The Fletcher-Reeves method [2] is a variation of the conjugate-gradient

method. Its main feature is that parameters αk for k = 0, 1, 2, . . . are
determined by minimizing f(x + αdk) with respect to α using a line search
as in the case of the steepest-descent or the Newton method. The difference
between this method and the steepest-descent or the Newton method is that dk

is a conjugate direction with respect to dk−1, dk−2, . . . , d0 rather than the
steepest-descent or Newton direction.

If the problem to be solved is convex and quadratic and the directions are
selected as in Eq. (6.27) with βk given by Eq. (6.28), then

df(xk + αdk)
dα

= gT
k+1dk = 0

for k = 0, 1, 2, Further, the conjugacy of the set of directions assures that

df(xk + αdi)
dα

= gT
k+1di = 0 for 0 ≤ i ≤ k

or
gT

k di = 0 for 0 ≤ i < k

as in Theorem 6.3. Consequently, the determination of αk through a line search
is equivalent to using Eq. (6.25). Since a line search entails more computation
than Eq. (6.25), the Fletcher-Reeves modification would appear to be a ret-
rograde step. Nevertheless, two significant advantages are gained as follows:

1. The modification renders the method more amenable to the minimization
of nonquadratic problems since a larger reduction can be achieved in f(x)

Conjugate-Direction Methods 159

along dk at points outside the neighborhood of the solution. This is due
to the fact that Eq. (6.25) will not yield the minimum along dk in the case
of a nonquadratic problem.

2. The modification obviates the derivation and calculation of the Hessian.

The Fletcher-Reeves algorithm can be shown to converge subject to the con-
dition that the algorithm is re-initialized every n iterations. An implementation
of the algorithm is as follows:

Algorithm 6.3 Fletcher-Reeves algorithm
Step 1
Input x0 and initialize the tolerance ε.
Step 2
Set k = 0.
Computer g0 and set d0 = −g0.
Step 3
Find αk, the value of α that minimizes f(xk + αdk).
Set xk+1 = xk + αkdk.
Step 4
If ‖αkdk‖ < ε, output x∗ = xk+1 and f(x∗) = fk+1, and stop.
Step 5
If k = n − 1, set x0 = xk+1 and go to Step 2.
Step 6
Compute gk+1.
Compute

βk =
gT

k+1gk+1

gT
k gk

Set dk+1 = −gk+1 + βkdk.
Set k = k + 1 and repeat from Step 3.

6.7 Powell’s Method
A conjugate-direction method which has been used extensively in the past

is one due to Powell [3]. This method, like the conjugate-gradient method, is
developed for the convex quadratic problem but it can be applied successfully
to nonquadratic problems.

The distinctive feature of Powell’s method is that conjugate directions are
generated through a series of line searches. The technique used is based on the
following theorem:

Theorem 6.5 Generation of conjugate directions in Powell’s method Let x∗
a

and x∗
b be the minimizers obtained if the convex quadratic function

f(x) = a + xTb + 1
2x

THx

160

is minimized with respect to α on lines

x = xa + αda

and
x = xb + αdb

respectively, as illustrated in Fig. 6.2.
If db = da, then vector x∗

b − x∗
a is conjugate with respect to da (or db).

1x

2x

ax

bx

*ax

ad

bd

bx*

Conjugate direction

Figure 6.2. Generation of a conjugate direction.

Proof If f(xa + αda) and f(xb + αdb) are minimized with respect to α, then

df(xa + αda)
dα

= dT
a g(x∗

a) = 0 (6.41a)

df(xb + αdb)
dα

= dT
b g(x∗

b) = 0 (6.41b)

as in the case of a steepest-descent step (see Sec. 5.2). Since

g(x∗
a) = b + Hx∗

a (6.42a)

g(x∗
b) = b + Hx∗

b (6.42b)

then for db = da, Eqs. (6.41) – (6.42) yield

dT
a H(x∗

b − x∗
a) = 0

Conjugate-Direction Methods 161

and, therefore, vector x∗
b −x∗

a is conjugate with respect to direction da (or db).

In Powell’s algorithm, an initial point x00 as well as n linearly independent
directions d01, d02, . . . , d0n are assumed and a series of line searches are
performed in each iteration. Although any set of initial linearly independent
directions can be used, it is convenient to use a set of coordinate directions.

In the first iteration, f(x) is minimized sequentially in directions d01, d02,
. . . , d0n starting from pointx00 to yield pointsx01, x02, . . . , x0n, respectively,
as depicted in Fig. 6.3a. Then a new direction d0(n+1) is generated as

d0(n+1) = x0n − x0

and f(x) is minimized in this direction to yield a new point x0(n+1). The set
of directions is then updated by letting

d11 = d02

d12 = d03

...

d1(n−1) = d0n

d1n = d0(n+1) (6.43)

The effect of the first iteration is to reduce f(x) by an amount ∆f = f(x00)−
f(x0(n+1)) and simultaneously to delete d01 from and add d0(n+1) to the set
of directions.

The same procedure is repeated in the second iteration. Starting with point

x10 = x0(n+1)

f(x) is minimized sequentially in directions d11, d12, . . . , d1n to yield points
x11, x12, . . . , x1n, as depicted in Fig. 6.3b. Then a new direction d1(n+1) is
generated as

d1(n+1) = x1n − x10

and f(x) is minimized in direction d1(n+1) to yield point x1(n+1). Since

d1n = d0(n+1)

by assignment (see Eq. (6.43)), d1(n+1) is conjugate to d1n, according to The-
orem 6.5. Therefore, if we let

d21 = d12

d22 = d13

...

d2(n−1) = d1n

d2n = d1(n+1)

162

01x

00x

02x

03d

02d
03x

0nx

0(n-1)x

0(n+1)x

04d

0(n+1)d

10x

11x

12d

11d
12x

1nd

1(n-2)x

1(n+1)x

13d

1(n+1)d

(a)

(b)

0nx

0(n+1)d
1(n-1)d

1nx

1(n-1)x

0nd01d

Figure 6.3. First and second iterations in Powell’s algorithm.

the new set of directions will include a pair of conjugate directions, namely,
d2(n−1) and d2n.

Proceeding in the same way, each new iteration will increase the number of
conjugate directions by one, and since the first two iterations yield two conjugate
directions, n iterations will yield n conjugate directions. Powell’s method will
thus require n(n + 1) line searches since each iteration entails (n + 1) line
searches. An implementation of Powell’s algorithm is as follows:

Algorithm 6.4 Powell’s algorithm
Step 1
Input x00 = [x01 x02 · · · x0n]T and initialize the tolerance ε.
Set

d01 = [x01 0 · · · 0]T

d02 = [0 x02 · · · 0]T

...

d0n = [0 0 · · · x0n]T

Set k = 0.

Conjugate-Direction Methods 163

Step 2
For i = 1 to n do:

Find αki, the value of α that minimizes f(xk(i−1) + αdki).
Set xki = xk(i−1) + αkidki.

Step 3
Generate a new direction

dk(n+1) = xkn − xk0

Find αk(n+1), the value of α that minimizes f(xk0 + αdk(n+1)).
Set

xk(n+1) = xk0 + αk(n+1)dk(n+1)

Calculate fk(n+1) = f(xk(n+1)).
Step 4
If ‖αk(n+1)dk(n+1)‖ < ε, output x∗ = xk(n+1) and f(x∗) = fk(n+1),
and stop.
Step 5
Update directions by setting

d(k+1)1 = dk2

d(k+1)2 = dk3

...

d(k+1)n = dk(n+1)

Set x(k+1)0 = xk(n+1), k = k + 1, and repeat from Step 2.

In Step 1, d01, d02, . . . , d0n are assumed to be a set of coordinate directions.
In Step 2, f(x) is minimized along the path xk0, xk1, . . . , xkn. In Step 3,
f(x) is minimized in the new conjugate direction. The resulting search pattern
for the case of a quadratic 2-dimensional problem is illustrated in Fig. 6.4.

The major advantage of Powell’s algorithm is that the Hessian need not be
supplied, stored or manipulated. Furthermore, by using a 1-D algorithm that is
based on function evaluations for line searches, the need for the gradient can
also be eliminated.

A difficulty associated with Powell’s method is that linear dependence can
sometimes arise, and the method may fail to generate a complete set of linearly
independent directions that span En, even in the case of a convex quadratic
problem. This may happen if the minimization of f(xk(j−1) + αdkj) with
respect to α in Step 2 of the algorithm yields αkj = 0 for some j. In such a
case, Step 3 will yield

dk(n+1) =
n∑

i=1
i�=j

αkidki

164

1x

2x

01x

10x
11x

00x

02x

12x

13x

03d

12d

02d

13d

11d

Figure 6.4. Solution trajectory in Powell’s algorithm for a quadratic problem.

that is, the new direction generated will not have a component in direction
dkj , and since dkj will eventually be dropped, a set of n directions will result
that does not span En. This means that at least two directions will be linearly
dependent and the algorithm will not converge to the solution.

The above problem can be avoided by discarding dkn if linear dependence
is detected in the hope that the use of the same set of directions in the next
iteration will be successful in generating a new conjugate direction. This is
likely to happen since the next iteration will start with a new point xk.

In principle, linear dependence would occur if at least one αki becomes zero,
as was demonstrated above. Unfortunately, however, owing to the finite preci-
sion of computers, zero is an improbable value for αki and, therefore, checking
the value of αki is an unreliable test for linear dependence. An alternative
approach due to Powell is as follows.

If the direction vectors dki for i = 1, 2, . . . , n are normalized such that

dT
kiHdki = 1 for i = 1, 2, . . . , n

then the determinant of matrix

D = [dk1 dk2 · · · dkn]

assumes a maximum value if and only if the directions dki belong to a conjugate
set. Thus if a nonconjugate direction d1k is dropped and conjugate direction

Conjugate-Direction Methods 165

dk(n+1) is added to D, the determinant of D will increase. On the other hand,
if the addition of dk(n+1) results in linear dependence in D, the determinant of
D will decrease. On the basis of these principles, Powell developed a modified
algorithm in which a test is used to determine whether the new direction gener-
ated should or should not be used in the next iteration. The test also identifies
which one of the n old directions should be replaced by the new direction so as
to achieve the maximum increase in the determinant, and thus reduce the risk
of linear dependence.

An alternative but very similar technique for the elimination of linear depen-
dence in the set of directions was proposed by Zangwill [4]. This technique
is more effective and more economical in terms of computation than Powell’s
modification and, therefore, it deserves to be considered in detail.

Zangwill’s technique can be implemented by applying the following modi-
fications to Powell’s algorithm.

1. The initial directions in Step 1 are chosen to be the coordinate set of vectors
of unit length such that

D0 = [d01 d02 · · · d0n]

=

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

⎤
⎥⎥⎥⎦

and the determinant of D0, designated as ∆0, is set to unity.
2. In Step 2, constants αki for i = 1, 2, . . . , n are determined as before,

and the largest αki is then selected, i.e.,

αkm = max{αk1, αk2, . . . , αkn}

3. In Step 3, a new direction is generated as before, and is then normalized
to unit length so that

dk(n+1) =
1
λk

(xkn − xk0)

where
λk = ‖xkn − xk0‖

4. Step 4 is carried out as before. In Step 5, the new direction in item (3) is
used to replace direction dkm provided that this substitution will maintain
the determinant of

Dk = [dk1 dk2 · · · dkn]

finite and larger than a constant ε1 in the range 0 < ε1 ≤ 1, namely,

0 < ε1 < ∆k = detDk ≤ 1

166

Otherwise, the most recent set of directions is used in the next iteration.
Since

∆k = det[dk1 · · · dk(m−1) dkm dk(m+1) · · · dkn]

and

dk(n+1) =
1
λk

n∑
i−1

αkidki

replacing dkm by dk(n+1) yields

∆
′
k =

αkm

λk
∆k

This result follows readily by noting that

(a) if a constant multiple of a column is added to another column, the
determinant remains unchanged, and

(b) if a column is multiplied by a constant, the determinant is multiplied
by the same constant.

From (a), the summation in ∆
′
k can be eliminated and from (b) constant

αkm/λk can be factored out. In this way, the effect of the substitution of
dkm on the determinant of Dk is known. If

αkm

λk
∆k > ε1

we let
d(k+1)m = dk(n+1)

and
d(k+1)i = dki

for i = 1, 2, . . . , m − 1, m + 1, . . . , n. Otherwise, we let

d(k+1)i = dki

for i = 1, 2, . . . , n. Simultaneously, the determinant ∆k can be updated
as

δk+1 =

⎧⎨
⎩

αkm

λk
∆k if

αkm

λk
∆k > ε1

∆k otherwise

Conjugate-Direction Methods 167

The net result of the above modifications is that the determinant of the direc-
tion matrix will always be finite and positive, which implies that the directions
will always be linearly independent. The strategy in item (2) above of replac-
ing the direction dki that yields the maximum αki ensures that the value of the
determinant ∆k is kept as large as possible so as to prevent linear dependence
from arising in subsequent iterations.

The modified algorithm, which is often referred to as Zangwill’s algorithm,
can be shown to converge in the case of a convex quadratic problem. Its imple-
mentation is as follows:

Algorithm 6.5 Zangwill’s algorithm
Step 1
Input x00 and initialize the tolerances ε and ε1.

Set
d01 = [1 0 · · · 0]T

d02 = [0 1 · · · 0]T

...

d0n = [0 0 · · · 1]T

Set k = 0, ∆0 = 1.
Step 2
For i = 1 to n do:

Find αki, the value of α that minimizes f(xk(i−1) + αdki).
Set xki = xk(i−1) + αkidki.

Determine
αkm = max{αk1, αk2, . . . , αkn}

Step 3
Generate a new direction

dk(n+1) = xkn − xk0

Find αk(n+1), the value of α that minimizes f(xk0 + αdk(n+1)).
Set

xk(n+1) = xk0 + αk(n+1)dk(n+1)

Calculate fk(n+1) = f(xk(n+1)).
Calculate λk = ‖xkn − xk0‖.

168

Step 4
If ‖αk(n+1)dk(n+1)‖ < ε, output x∗ = xk(n+1) and f(x∗) = fk(n+1),
and stop.
Step 5
If αkm∆k/λk > ε1, then do:

Set d(k+1)m = dk(n+1) and d(k+1)i = dki for i = 1, 2, . . . , m− 1,
m + 1, . . . , n.

Set ∆k+1 =
αkm

λk
∆k.

Otherwise, set
d(k+1)i = dki for i = 1, 2, . . . , n, and ∆k+1 = ∆k.

Set x(k+1)0 = xk(n+1), k = k + 1, and repeat from Step 2.

6.8 Partan Method
In the early days of optimization, experimentation with two-variable func-

tions revealed the characteristic zig-zag pattern in the solution trajectory in the
steepest-descent method. It was noted that in well-behaved functions, suc-
cessive solution points tend to coincide on two lines which intersect in the
neighborhood of the minimizer, as depicted in Fig. 6.5. Therefore, an obvious
strategy to attempt was to perform two steps of steepest descent followed by a
search along the line connecting the initial point to the second solution point, as
shown in Fig. 6.5. An iterative version of this approach was tried and found to
converge to the solution. Indeed, for convex quadratic functions, convergence
could be achieved in n iterations. The method has come to be known as the
parallel tangent method, or partan for short, because of a special geometric
property of the tangents to the contours in the case of quadratic functions.

The partan algorithm is illustrated in Fig. 6.6. An initial point x0 is assumed
and two successive steepest-descent steps are taken to yield points x1 and y1.
Then a line search is performed in the direction y1−x0 to yield a point x2. This
completes the first iteration. In the second iteration, a steepest-descent step is
taken from point x2 to yield point y2, and a line search is performed along
direction y2 − x1 to yield point x3, and so on. In effect, points y1, y2, . . . ,
in Fig. 6.6 are obtained by steepest-descent steps and points x2, x3, . . . are
obtained by line searches along the directions y2 − x1, y3 − x2,

In the case of a convex quadratic problem, the lines connectingx1, x2, . . . , xk,
which are not part of the algorithm, form a set of conjugate-gradient directions.
This property can be demonstrated by assuming that d0, d1, . . . , dk−1 form
a set of conjugate-gradient directions and then showing that dk is a conjugate-
gradient direction with respect to d0, d1, . . . , dk−1.

Conjugate-Direction Methods 169

1x

2x

0x

3x

1x
2x

Figure 6.5. Zig-zag pattern of steepest-descent algorithm.

0x

1x

2x 3x

4x

1y

2y 3y

1x

2x

Steepest descent step
Line search

Conjugate direction

Figure 6.6. Solution trajectory for partan method for a nonquadratic problem.

170

k-2x

k-1x

k-1d

kdkx

ky
kg-

k+1x

Figure 6.7. Trajectory for kth iteration in partan method.

Consider the steps illustrated in Fig. 6.7 and note that

gT
k di = 0 for 0 ≤ i < k (6.44)

on the basis of the above assumption and Theorem 6.3. From Eqs. (6.31) –
(6.32), the gradient at point xk−1 can be expressed as

gk−1 =
k−1∑
i=0

aidi

where ai for i = 0, 1, . . . , k − 1 are constants, and hence

gT
k gk−1 = gT

k (b + Hxk−1) =
k−1∑
i=0

aigT
k di = 0 (6.45)

or
gT

k b = −gT
k Hxk−1 (6.46)

Since yk is obtained by a steepest-descent step at point xk, we have

yk − xk = −gk

and
−g(yk)Tgk = gT

k (b + Hyk) = 0

or
gT

k b = −gT
k Hyk (6.47)

Hence Eqs. (6.46) – (6.47) yield

gT
k H(yk − xk−1) = 0 (6.48)

Conjugate-Direction Methods 171

Since

yk − xk−1 = β(xk+1 − xk−1)

where β is a constant, Eq. (6.48) can be expressed as

gT
k H(xk+1 − xk−1) = 0

or

gT
k Hxk+1 = gT

k Hxk−1 (6.49)

We can now write

gT
k gk+1 = gT

k (b + Hxk+1) (6.50)

and from Eqs. (6.45) and (6.49) – (6.50), we have

gT
k gk+1 = gT

k (b + Hxk−1)
= gT

k gk−1 = 0 (6.51)

Point xk+1 is obtained by performing a line search in direction xk+1 −yk, and
hence

gT
k+1(xk+1 − yk) = 0 (6.52)

From Fig. 6.7

xk+1 = xk + dk (6.53)

and
yk = xk − αkgk (6.54)

where αk is the value of α that minimizes f(xk − αgk). Thus Eqs. (6.52) –
(6.54) yield

gT
k+1(dk + αkgk) = 0

or

gT
k+1dk + αkgT

k gk+1 = 0 (6.55)

Now from Eqs. (6.51) and (6.55)

gT
k+1dk = 0

and on combining Eqs. (6.44) and (6.56), we obtain

gT
k+1di = 0 for 0 ≤ i < k + 1

that is, xk satisfies Theorem 6.3.

172

References
1 M. R. Hestenes and E. L. Stiefel, “Methods of conjugate gradients for solving linear systems,”

J. Res. Natl. Bureau Standards, vol. 49, pp. 409–436, 1952.
2 R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” Computer

J., vol. 7, pp. 149–154, 1964.
3 M. J. D. Powell, “An efficient method for finding the minimum of a function of several

variables without calculating derivatives,” Computer J., vol. 7, pp. 155–162, 1964.
4 W. I. Zangwill, “Minimizing a function without calculating derivatives,” Computer J., vol. 10,

pp. 293–296, 1968.
5 R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York,

1985.

Problems
6.1 Use the conjugate-gradient method to solve the optimization problem

minimize f(x) = 1
2x

T Qx + bTx

where Q is given by

Q =

⎡
⎢⎢⎣

Q1 Q2 Q3 Q4

Q2 Q1 Q2 Q3

Q3 Q2 Q1 Q2

Q4 Q3 Q2 Q1

⎤
⎥⎥⎦ with Q1 =

⎡
⎢⎢⎣

12 8 7 6
8 12 8 7
7 8 12 8
6 7 8 12

⎤
⎥⎥⎦

Q2 =

⎡
⎢⎢⎣

3 2 1 0
2 3 2 1
1 2 3 2
0 1 2 3

⎤
⎥⎥⎦ , Q3 =

⎡
⎢⎢⎣

2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

⎤
⎥⎥⎦ , Q4 = I4

and b = −[1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0]T .

6.2 Use the Fletcher-Reeves algorithm to find the minimizer of the Rosenbrock
function

f(x) = 100(x2 − x2
1)

2 + (1 − x1)2

Use ε = 10−6 and try three initial points x0 = [−2 2]T , x0 = [2 −2]T ,
and x0 = [−2 −2]T and observe the results.

6.3 Solve Prob. 5.4 by applying the conjugate-gradient algorithm (Algorithm
6.2).

(a) With ε = 3 × 10−7 and x0 = [1 1]T , perform two iterations by
following the steps described in Algorithm 6.2.

(b) Compare the results of the first iteration obtained by using the conjugate-
gradient algorithm with those obtained by using the steepest-descent
method.

(c) Compare the results of the second iteration obtained by using the
conjugate-gradient algorithm with those obtained by using the steepest-
descent method.

Conjugate-Direction Methods 173

6.4 Solve Prob. 5.5 by applying the Fletcher-Reeves algorithm.

(a) Examine the solution obtained and the amount of computation re-
quired.

(b) Compare the results obtained in part (a) with those of Probs. 5.5, 5.16,
and 5.21.

6.5 Solve Prob. 5.7 by applying the Fletcher-Reeves algorithm.

(a) Examine the solution obtained and the amount of computation re-
quired.

(b) Compare the results obtained in part (a) with those of Probs. 5.7, 5.17,
and 5.22.

6.6 Solve Prob. 5.9 by applying the Fletcher-Reeves algorithm.

(a) Examine the solution obtained and the amount of computation re-
quired.

(b) Compare the results obtained in part (a) with those of Probs. 5.9 and
5.18.

6.7 Solve Prob. 5.4 by applying Powell’s algorithm (Algorithm 6.4) and com-
pare the results with those obtained in Probs. 5.4 and 6.3.

6.8 Solve Prob. 5.5 by applying Powell’s algorithm and compare the results
with those obtained in Probs. 5.5, 5.16, 5.21 and 6.4.

6.9 Solve Prob. 5.7 by applying Powell’s algorithm and compare the results
with those obtained in Probs. 5.7, 5.17, 5.22, and 6.5.

6.10 Solve Prob. 5.4 by applying Zangwill’s algorithm and compare the results
with those obtained in Probs. 5.4, 6.3, and 6.7.

Chapter 7

QUASI-NEWTON METHODS

7.1 Introduction
In Chap. 6, multidimensional optimization methods were considered in which

the search for the minimizer is carried out by using a set of conjugate direc-
tions. An important feature of some of these methods (e.g., the Fletcher-Reeves
and Powell’s methods) is that explicit expressions for the second derivatives of
f(x) are not required. Another class of methods that do not require explicit
expressions for the second derivatives is the class of quasi-Newton methods.
These are sometimes referred to as variable metric methods.

As the name implies, the foundation of these methods is the classical Newton
method described in Sec. 5.3. The basic principle in quasi-Newton methods
is that the direction of search is based on an n × n direction matrix S which
serves the same purpose as the inverse Hessian in the Newton method. This
matrix is generated from available data and is contrived to be an approximation
of H−1. Furthermore, as the number of iterations is increased, S becomes
progressively a more accurate representation of H−1, and for convex quadratic
objective functions it becomes identical to H−1 in n + 1 iterations.

Quasi-Newton methods, like most other methods, are developed for the con-
vex quadratic problem and are then extended to the general problem. They
rank among the most efficient methods available and are, therefore, used very
extensively in numerous applications.

Several distinct quasi-Newton methods have evolved in recent years. In this
chapter, we discuss in detail the four most important methods of this class which
are:

1. Rank-one method
2. Davidon-Fletcher-Powell method
3. Broyden-Fletcher-Goldfarb-Shanno method

176

4. Fletcher method

We then discuss briefly a number of alternative approaches and describe two
interesting generalizations, one due to Broyden and the other due to Huang.

7.2 The Basic Quasi-Newton Approach
In the methods of Chap. 5, the point generated in the kth iteration is given

by
xk+1 = xk − αkSkgk (7.1)

where

Sk =

⎧⎨
⎩

In for the steepest-descent method

H−1
k for the Newton method

Let us examine the possibility of using some arbitrary n × n positive definite
matrix Sk for the solution of the quadratic problem

minimize f(x) = a + bTx + 1
2x

THx

By differentiating f(xk − αSkgk) with respect to α and then setting the result
to zero, the value of α that minimizes f(xk − αSkgk) can be deduced as

αk =
gT

k Skgk

gT
k SkHSkgk

(7.2)

where
gk = b + Hxk

is the gradient of f(x) at x = xk.
It can be shown that

f(xk+1) − f(x∗) ≤
(

1 − r

1 + r

)2

[f(xk) − f(x∗)]

where r is the ratio of the smallest to the largest eigenvalue of SkH (see [1] for
proof). In effect, an algorithm based on Eqs. (7.1) and (7.2) would converge
linearly with a convergence ratio

β =
(

1 − r

1 + r

)2

for any positive definite Sk (see Sec. 3.7). Convergence is fastest if r = 1, that
is, if the eigenvalues of SkH are all equal. This means that the best results can
be achieved by choosing

SkH = In

Quasi-Newton Methods 177

or
Sk = H−1

Similarly, for the general optimization problem,we should choose some positive
definite Sk which is equal to or, at least, approximately equal to H−1

k .
Quasi-Newton methods are methods that are motivated by the preceding

observation. The direction of search is based on a positive definite matrix
Sk which is generated from available data, and which is contrived to be an
approximation for H−1

k . Several approximations are possible for H−1
k and,

consequently, a number of different quasi-Newton methods can be developed.

7.3 Generation of Matrix Sk

Let f(x) ∈ C2 be a function in En and assume that the gradients of f(x) at
points xk and xk+1 are designated as gk and gk+1, respectively. If

xk+1 = xk + δk (7.3)

then the Taylor series gives the elements of gk+1 as

g(k+1)m = gkm +
n∑

i=1

∂gkm

∂xki
δki +

1
2

n∑
i=1

n∑
j=1

∂2gkm

∂xki∂xkj
δkiδkj + · · ·

for m = 1, 2, . . . , n. Now if f(x) is quadratic, the second derivatives of f(x)
are constant and, in turn, the second derivatives of gkm are zero. Thus

g(k+1)m = gkm +
n∑

i=1

∂gkm

∂xki
δki

and since

gkm =
∂fk

∂xkm

we have

g(k+1)m = gkm +
n∑

i=1

∂2fk

∂xki∂xkm
δki

for m = 1, 2, . . . , n. Therefore, gk+1 is given by

gk+1 = gk + Hδk

where H is the Hessian of f(x). Alternatively, we can write

γk = Hδk (7.4)

where

δk = xk+1 − xk (7.5)

γk = gk+1 − gk (7.6)

178

The above analysis has shown that if the gradient of f(x) is known at two
points xk and xk+1, a relation can be deduced that provides a certain amount
of information about H. Since there are n2 unknowns in H (or n(n + 1)/2
unknowns if H is assumed to be a real symmetric matrix) and Eq. (7.4) provides
only n equations, H cannot be determined uniquely. However, if the gradient
is evaluated sequentially at n + 1 points, say, x0, x1, . . . , xn such that the
changes in x, namely,

δ0 = x1 − x0

δ1 = x2 − x1

...

δn−1 = xn − xn−1

form a set of linearly independent vectors, then sufficient information is obtained
to determine H uniquely. To demonstrate this fact, n equations of the type given
by Eq. (7.4) can be re-arranged as

[γ0 γ1 · · · γn−1] = H[δ0 δ1 · · · δn−1] (7.7)

and, therefore,

H = [γ0 γ1 · · · γn−1][δ0 δ1 · · · δn−1]−1

The solution exists if δ0, δ1, . . . , δn−1 form a set of linearly independent
vectors.

The above principles can be used to construct the following algorithm:

Algorithm 7.1 Alternative Newton algorithm
Step 1
Input x00 and initialize the tolerance ε.
Set k = 0.
Input a set of linearly independent vectors δ0, δ1, . . . , δn−1.
Step 2
Compute g00.
Step 3
For i = 0 to n − 1 do:

Set xk(i+1) = xki + δi.
Compute gk(i+1).
Set γki = gk(i+1) − gki.

Step 4
Compute Hk = [γk0 γk1 · · · γk(n−1)][δ0 δ1 · · · δn−1]−1.

Compute Sk = H−1
k .

Quasi-Newton Methods 179

Step 5
Set dk = −Skgk0.
Find αk, the value of α that minimizes f(xk0 + αdk).
Set x(k+1)0 = xk0 + αkdk.
Step 6
If ‖αkdk‖ < ε, output x∗

k = x(k+1)0 and f(x∗) = f(x(k+1)0), and stop.
Step 7
Set k = k + 1 and repeat from Step 3.

The above algorithm is essentially an implementation of the Newton method
except that a mechanism is incorporated for the generation of H−1 using com-
puted data. For a convex quadratic problem, the algorithm will yield the solution
in one iteration and it will thus be quite effective. For a nonquadratic problem,
however, the algorithm has the same disadvantages as any other algorithm based
on the Newton method (e.g., Algorithm 5.3). First, matrix inversion is required,
which is undesirable; second, matrix Hk must be checked for positive definite-
ness and rendered positive definite, if necessary, in every iteration.

A strategy that leads to the elimination of matrix inversion is as follows. We
assume that a positive definite real symmetric matrix Sk is available, which is
an approximation of H−1, and compute a quasi-Newton direction

dk = −Skgk (7.8)

We then find αk, the value of α that minimizes f(xk + αdk), as in the Newton
method. For a convex quadratic problem, Eq. (7.2) gives

αk =
gT

k Skgk

(Skgk)TH(Skgk)
(7.9)

whereSk andH are positive definite. Evidently, αk is greater than zero provided
that xk is not the solution point x∗. We then determine a change in x as

δk = αkdk (7.10)

and deduce a new point xk+1 using Eq. (7.3). By computing the gradient at
points xk and xk+1, the change in the gradient, γk, can be determined using
Eq. (7.6). We then apply a correction to Sk and generate

Sk+1 = Sk + Ck (7.11)

where Ck is an n×n correction matrix which can be computed from available
data. On applying the above procedure iteratively starting with an initial point
x0 and an initial positive definite matrix S0, say, S0 = In, the sequences
δ0, δ1, . . . , δk, γ0, γ1, . . . , γk and S1, S2, . . . , Sk+1 can be generated.
If

Sk+1γi = δi for 0 ≤ i ≤ k (7.12)

180

then for k = n − 1, we can write

Sn[γ0 γ1 · · · γn−1] = [δ0 δ1 · · · δn−1]

or
Sn = [δ0 δ1 · · · δn−1][γ0 γ1 · · · γn−1]

−1 (7.13)

and from Eqs. (7.7) and (7.13), we have

Sn = H−1

Now if k = n, Eqs. (7.8) – (7.10) yield

dn = −H−1gn

αn = 1
δn = −H−1gn

respectively, and, therefore, from Eq. (7.3)

xn+1 = xn − H−1gn = x∗

as in the Newton method.
The above procedure leads to a family of quasi-Newton algorithms which

have the fundamental property that they terminate in n + 1 iterations (k =
0, 1, . . . , n) in the case of a convex quadratic problem. The various algorithms
of this class differ from one another in the formula used for the derivation of
the correction matrix Cn.

In any derivation of Cn, Sk+1 must satisfy Eq. (7.12) and the following
properties are highly desirable:

1. Vectors δ0, δ1, . . . , δn−1 should form a set of conjugate directions (see
Chap. 6).

2. A positive definite Sk should give rise to a positive definite Sk+1.

The first property will ensure that the excellent properties of conjugate-direction
methods apply to the quasi-Newton method as well. The second property will
ensure that dk is a descent direction in every iteration, i.e., for k = 0, 1,
To demonstrate this fact, consider the point xk + δk, and let

δk = αdk

where
dk = −Skgk

For α > 0, the Taylor series in Eq. (2.4h) gives

f(xk + δk) = f(xk) + gT
k δk + 1

2δT
k H(xk + cδk)δk

Quasi-Newton Methods 181

where c is a constant in the range 0 ≤ c < 1. On eliminating δk, we obtain

f(xk + δk) = f(xk) − αgT
k Skgk + o(α‖dk‖)

= f(xk) − [αgT
k Skgk − o(α‖dk‖)]

where o(α‖dk‖) is the remainder which approaches zero faster than α‖dk‖.
Now if Sk is positive definite, then for a sufficiently small α > 0, we have

αgT
k Skgk − o(α‖dk‖) > 0

since α > 0, gT
k Skgk > 0, and o(α‖dk‖) → 0. Therefore,

f(xk + δk) < f(xk) (7.14)

that is, if Sk is positive definite, then dk is a descent direction.
The importance of property (2) should, at this point, be evident. A positive

definite S0 will give a positive definite S1 which will give a positive definite
S2, and so on. Consequently, directions d0, d1, d2, . . . will all be descent
directions, and this will assure the convergence of the algorithm.

7.4 Rank-One Method
The rank-one method owes its name to the fact that correction matrix Ck in

Eq. (7.11) has a rank of unity. This correction was proposed independently by
Broyden [2], Davidon [3], Fiacco and McCormick [4], Murtagh and Sargent
[5], and Wolfe [6]. The derivation of the rank-one formula is as follows.

Assume that
Sk+1γk = δk (7.15)

and let
Sk+1 = Sk + βkξkξ

T
k (7.16)

where ξk is a column vector and βk is a constant. The correction matrix βkξkξ
T
k

is symmetric and has a rank of unity as can be demonstrated (see Prob. 7.1).
From Eqs. (7.15) – (7.16)

δk = Skγk + βkξkξ
T
k γk (7.17)

and hence

γT
k (δk − Skγk) = βkγ

T
k ξkξ

T
k γk

= βk(ξT
k γk)

2 (7.18)

Alternatively, from Eq. (7.17)

(δk − Skγk) = βkξkξ
T
k γk = βk(ξT

k γk)ξk

(δk − Skγk)
T = βkγ

T
k ξkξ

T
k = βk(ξT

k γk)ξ
T
k

182

since ξT
k γk is a scalar. Hence

(δk − Skγk)(δk − Skγk)
T = βk(ξT

k γk)
2βkξkξ

T
k (7.19)

and from Eqs. (7.18) – (7.19), we have

βkξkξ
T
k =

(δk − Skγk)(δk − Skγk)T

βk(ξT
k γk)2

=
(δk − Skγk)(δk − Skγk)T

γT
k (δk − Skγk)

With the correction matrix known, Sk+1 can be deduced from Eq. (7.16) as

Sk+1 = Sk +
(δk − Skγk)(δk − Skγk)T

γT
k (δk − Skγk)

(7.20)

For a convex quadratic problem, this formula will generateH−1 on iteration n−
1 provided that Eq. (7.12) holds. This indeed is the case as will be demonstrated
by the following theorem.

Theorem 7.1 Generation of inverse Hessian If H is the Hessian of a convex
quadratic problem and

γi = Hδi for 0 ≤ i ≤ k (7.21)

where δ1, δ2, . . . , δk are given linearly independent vectors, then for any
initial symmetric matrix S0

δi = Sk+1γi for 0 ≤ i ≤ k (7.22)

where

Si+1 = Si +
(δi − Siγi)(δi − Siγi)T

γT
i (δi − Siγi)

(7.23)

Proof We assume that

δi = Skγi for 0 ≤ i ≤ k − 1 (7.24)

and show that
δi = Sk+1γi for 0 ≤ i ≤ k

If 0 ≤ i ≤ k − 1, Eq. (7.20) yields

Sk+1γi = Skγi + ζk(δk − Skγk)
T γi

Quasi-Newton Methods 183

where

ζk =
δk − Skγk

γT
k (δk − Skγk)

Since Sk is symmetric, we can write

Sk+1γi = Skγi + ζk(δ
T
k γi − γT

k Skγi)

and if Eq. (7.24) holds, then

Sk+1γi = δi + ζk(δ
T
k γi − γT

k δi) (7.25)

For 0 ≤ i ≤ k
γi = Hδi

and
γT

k = δT
k H

Hence for 0 ≤ i ≤ k − 1, we have

δT
k γi − γT

k δi = δT
k Hδi − δT

k Hδi = 0

and from Eq. (7.25)

δi = Sk+1γi for 0 ≤ i ≤ k − 1 (7.26)

By assignment (see Eq. (7.15))

δk = Sk+1γk (7.27)

and on combining Eqs. (7.26) and (7.27), we obtain

δi = Sk+1γi for 0 ≤ i ≤ k (7.28)

To complete the induction, we note that

δi = S1γi for 0 ≤ i ≤ 0

by assignment, and since Eq. (7.28) holds if Eq. (7.24) holds, we can write

δi = S2γi for 0 ≤ i ≤ 1
δi = S3γi for 0 ≤ i ≤ 2

...
...

δi = Sk+1γi for 0 ≤ i ≤ k

These principles lead to the following algorithm:

184

Algorithm 7.2 Basic quasi-Newton algorithm
Step 1
Input x0 and initialize the tolerance ε.
Set k = 0 and S0 = In.
Compute g0.
Step 2
Set dk = −Skgk.
Find αk, the value of α that minimizes f(xk +αdk), using a line search.
Set δk = αkdk and xk+1 = xk + δk.
Step 3
If ‖δk‖ < ε, output x∗ = xk+1 and f(x∗) = f(xk+1), and stop.
Step 4
Compute gk+1 and set

γk = gk+1 − gk

Compute Sk+1 using Eq. (7.20).
Set k = k + 1 and repeat from Step 2.

In Step 2, the value of αn is obtained by using a line search in order to render
the algorithm more amenable to nonquadratic problems. However, for convex
quadratic problems, αn should be calculated by using Eq. (7.2) which should
involve a lot less computation than a line search.

There are two serious problems associated with the rank-one method. First,
a positive definite Sk may not yield a positive definite Sk+1, even for a convex
quadratic problem, and in such a case the next direction will not be a descent
direction. Second, the denominator in the correction formula may approach zero
and may even become zero. If it approaches zero, numerical ill-conditioning
will occur, and if it becomes zero the method will break down since Sk+1 will
become undefined.

From Eq. (7.20), we can write

γT
i Sk+1γi = γT

i Skγi +
γT

i (δk − Skγk)(δ
T
k − γT

k Sk)γi

γT
k (δk − Skγk)

= γT
i Skγi +

(γT
i δk − γT

i Skγk)(δ
T
k γi − γT

k Skγi)
γT

k (δk − Skγk)

= γT
i Skγi +

(γT
i δk − γT

i Skγk)2

γT
k (δk − Skγk)

Therefore, if Sk is positive definite, a sufficient condition for Sk+1 to be positive
definite is

γT
k (δk − Skγk) > 0

The problems associated with the rank-one method can be overcome by check-
ing the denominator of the correction formula in Step 4 of the algorithm. If

Quasi-Newton Methods 185

it becomes zero or negative, Sk+1 can be discarded and Sk can be used for
the subsequent iteration. However, if this problem occurs frequently the pos-
sibility exists that Sk+1 may not converge to H−1. Then the expected rapid
convergence may not materialize.

7.5 Davidon-Fletcher-Powell Method
An alternative quasi-Newton method is one proposed by Davidon [3] and later

developed by Fletcher and Powell [7]. Although similar to the rank-one method,
the Davidon-Fletcher-Powell (DFP) method has an important advantage. If the
initial matrix S0 is positive definite, the updating formula for Sk+1 will yield
a sequence of positive definite matrices S1, S2, . . . , Sn. Consequently, the
difficulty associated with the second term of the rank-one formula given by
Eq. (7.20) will not arise. As a result every new direction will be a descent
direction.

The updating formula for the DFP method is

Sk+1 = Sk +
δkδ

T
k

δT
k γk

− Skγkγ
T
k Sk

γT
k Skγk

(7.29)

where the correction is an n × n symmetric matrix of rank two. The validity
of this formula can be demonstrated by post-multiplying both sides by γk, that
is,

Sk+1γk = Skγk +
δkδ

T
k γk

δT
k γk

− Skγkγ
T
k Skγk

γT
k Skγk

Since δT
k γk and γT

k Skγk are scalars, they can be cancelled out and so we have

Sk+1γk = δk (7.30)

as required.
The implementation of the DFP method is the same as in Algorithm 7.2

except that the rank-two formula of Eq. (7.29) is used in Step 4.
The properties of the DFP method are summarized by the following theorems.

Theorem 7.2 Positive definiteness of S matrix. If Sk is positive definite, then
the matrix Sk+1 generated by the DFP method is also positive definite.

Proof For any nonzero vector x ∈ En, Eq. (7.29) yields

xTSk+1x = xTSkx +
xT δkδ

T
k x

δT
k γk

− xT Skγkγ
T
k Skx

γT
k Skγk

(7.31)

For a real symmetric matrix Sk, we can write

UTSkU = Λ

186

where U is a unitary matrix such that

UTU = UUT = In

and Λ is a diagonal matrix whose diagonal elements are the eigenvalues of Sk

(see Theorem 2.8). We can thus write

Sk = UΛUT = UΛ1/2Λ1/2UT

= (UΛ1/2UT)(UΛ1/2UT)

= S1/2
k S1/2

k

If we let
u = S1/2

k x and v = S1/2
k γk

then Eq. (7.31) can be expressed as

xTSk+1x =
(uTu)(vTv) − (uTv)2

vT v
+

(xT δk)2

δT
k γk

(7.32)

From Step 2 of Algorithm 7.2, we have

δk = αkdk = −αkSkgk (7.33)

where αk is the value of α that minimizes f(xk + αdk) at point x = xk+1.
Since dk = −Skgk is a descent direction (see Eq. (7.14)), we have αk > 0.
Furthermore,

f(xk + αdk)
dα

∣∣∣∣
α=αk

= g(xk + αkdk)Tdk = gT
k+1dk = 0

(see Sec. 5.2.3) and thus

αkgT
k+1dk = gT

k+1αkdk = gT
k+1δk = δT

k gk+1 = 0

Hence from Eq. (7.6), we can write

δT
k γk = δT

k gk+1 − δT
k gk = −δT

k gk

Now from Eq. (7.33), we get

δT
k γk = −δT

k gk = −[−αkSkgk]Tgk = αkgT
k Skgk (7.34)

and hence Eq. (7.32) can be expressed as

xTSk+1x =
(uTu)(vTv) − (uTv)2

vT v
+

(xT δk)2

αkgT
k Skgk

(7.35)

Quasi-Newton Methods 187

Since
uT u = ‖u‖2, vTv = ‖v2‖, uT v = ‖u‖ ‖v‖ cos θ

where θ is the angle between vectors u and v, Eq. (7.35) gives

xTSk+1x =
‖u‖2‖v‖2 − (‖u‖ ‖v‖ cos θ)2

‖v‖2
+

(xT δk)2

αkgT
k Skgk

The minimum value of the right-hand side of the above equation occurs when
θ = 0. In such a case, we have

xT Sk+1x =
(xT δk)2

αkgT
k Skgk

(7.36)

Since vectors u and v point in the same direction, we can write

u = S1/2
k x = βv = βS1/2

k γk = S1/2
k βγk

and thus
x = βγk

where β is a positive constant. On eliminating x in Eq. (7.36) and then elimi-
nating γT

k δk = δT
k γk using Eq. (7.34), we get

xTSk+1x =
(βγT

k δk)2

αkgT
k Skgk

= αkβ
2gT

k Skgk

Now for any θ ≥ 0, we have

xT Sk+1x ≥ αkβ
2gT

k Skgk (7.37)

Therefore, if x = xk is not the minimizer x∗ (i.e., gk �= 0), we have

xT Sk+1x > 0 for x �= 0

since αk > 0 and Sk is positive definite. In effect, a positive definite Sk will
yield a positive definite Sk+1.

It is important to note that the above result holds for any αk > 0 for which

δT
k γk = δT

k gk+1 − δT
k gk > 0 (7.38)

even if f(x) is not minimized at point xk+1, as can be verified by eliminating
x in Eq. (7.32) and then using the inequality in Eq. (7.38) (see Prob. 7.2).
Consequently, if δT

k gk+1 > δT
k gk, the positive definiteness of Sk+1 can be

assured even in the case where the minimization of f(xk + αdk) is inexact.

188

The inequality in Eq. (7.38) will be put to good use later in the construction of
a practical quasi-Newton algorithm (see Algorithm 7.3).

Theorem 7.3 Conjugate directions in DFP method
(a) If the line searches in Step 2 of the DFP algorithm are exact and f(x) is a
convex quadratic function, then the directions generated δ0, δ1, . . . , δk form
a conjugate set, i.e.,

δT
i Hδj = 0 for 0 ≤ i < j ≤ k (7.39)

(b) If
γi = Hδi for 0 ≤ i ≤ k (7.40)

then
δi = Sk+1γi for 0 ≤ i ≤ k (7.41)

Proof As for Theorem 7.1, the proof is by induction. We assume that

δT
i Hδj = 0 for 0 ≤ i < j ≤ k − 1 (7.42)

δi = Skγi for 0 ≤ i ≤ k − 1 (7.43)

and show that Eqs. (7.39) and (7.41) hold.
(a) From Eqs. (7.4) and (7.6), we can write

gk = gk−1 + Hδk−1

= gk−2 + Hδk−2 + Hδk−1

= gk−3 + Hδk−3 + Hδk−2 + Hδk−1

...

= gi+1 + H(δi+1 + δi+2 + · · · + δk−1)

Thus for 0 ≤ i ≤ k − 1, we have

δT
i gk = δT

i gi+1 + δT
i H(δi+1 + δi+2 + · · · + δk−1) (7.44)

If an exact line search is used in Step 2 of Algorithm 7.2, then f(x) is minimized
exactly at point xi+1, and hence

δT
i gi+1 = 0 (7.45)

(see proof of Theorem 7.2). Now for 0 ≤ i ≤ k − 1, Eq. (7.42) gives

δT
i H(δi+1 + δi+2 + · · · + δk−1) = 0 (7.46)

Quasi-Newton Methods 189

and from Eqs. (7.44) – (7.46), we get

δT
i gk = 0

Alternatively, from Eqs. (7.43) and (7.40) we can write

δT
i gk = (Skγi)

Tgk = (SkHδi)Tgk

= δT
i HSkgk = 0

Further, on eliminating Skgk using Eq. (7.33)

δT
i gk = − 1

αk
δT

i Hδk = 0

and since αk > 0, we have

δT
i Hδk = 0 for 0 ≤ i ≤ k − 1 (7.47)

Now on combining Eqs. (7.42) and (7.47)

δT
i Hδj = 0 for 0 ≤ i < j ≤ k (7.48)

To complete the induction, we can write

δT
0 g1 = (S1γ0)

Tg1 = (S1Hδ0)Tg1

= δT
0 HS1g1

= − 1
α1

δT
0 Hδ1

and since f(x) is minimized exactly at point x1, we have δT
0 g1 = 0 and

δT
i Hδj = 0 for 0 ≤ i < j ≤ 1

Since Eq. (7.48) holds if Eq. (7.42) holds, we can write

δT
i Hδj = 0 for 0 ≤ i < j ≤ 2

δT
i Hδj = 0 for 0 ≤ i < j ≤ 3

...
...

δT
i Hδj = 0 for 0 ≤ i < j ≤ k

that is, the directions δ1, δ2, . . . , δk form a conjugate set.
(b) From Eq. (7.43)

γT
k δi = γT

k Skγi for 0 ≤ i ≤ k − 1 (7.49)

190

On the other hand, Eq. (7.40) yields

γT
k δi = δT

k Hδi for 0 ≤ i ≤ k − 1 (7.50)

and since δ0, δ1, . . . , δk form a set of conjugate vectors from part (a),
Eqs. (7.49) – (7.50) yield

γT
k δi = γT

k Skγi = δT
k Hδi = 0 for 0 ≤ i ≤ k − 1 (7.51)

By noting that
δT

k = γT
k Sk+1 and Hδi = γi

Eq. (7.51) can be expressed as

γT
k δi = γT

k Skγi = γT
k Sk+1γi = 0 for 0 ≤ i ≤ k − 1

and, therefore,

δi = Skγi = Sk+1γi for 0 ≤ i ≤ k − 1 (7.52)

Now from Eq. (7.30)
δk = Sk+1γk (7.53)

and on combining Eqs. (7.52) and (7.53), we obtain

δi = Sk+1γi for 0 ≤ i ≤ k

The induction can be completed as in Theorem 7.1.

For k = n − 1, Eqs. (7.40) and (7.41) can be expressed as

[SnH − λI]δi = 0 for 0 ≤ i ≤ n − 1

with λ = 1. In effect, vectors δi are eigenvectors that correspond to the unity
eigenvalue for matrix SnH. Since they are linearly independent, we have

Sn = H−1

that is, in a quadratic problem Sk+1 becomes the Hessian on iteration n − 1.

7.5.1 Alternative form of DFP formula
An alternative form of the DFP formula can be generated by using the

Sherman-Morrison formula (see [8][9] and Sec. A.4) which states that an n×n
matrix

Û = U + VWXT

where U and X are n × m matrices, W is an m × m matrix, and m ≤ n, has
an inverse

Û−1 = U−1 −U−1VY−1XTU−1 (7.54)

Quasi-Newton Methods 191

where
Y = W−1 + XT U−1V

The DFP formula can be written as

Sk+1 = Sk + XWXT

where

X =

⎡
⎣ δk√

(δT
k γk)

Skγk√
(γT

k Skγk)

⎤
⎦ and W =

[
1 0
0 −1

]

and hence Eq. (7.54) yields

S−1
k+1 = S−1

k − S−1
k XY−1XT S−1

k (7.55)

where
Y = W−1 + XTS−1

k X

By letting
S−1

k+1 = Pk+1, S−1
k = Pk

and then deducing Y−1, Eq. (7.55) yields

Pk+1 = Pk +

(
1 +

δT
k Pkδk

δT
k γk

)
γkγ

T
k

δT
k γk

− (γkδ
T
k Pk + Pkδkγ

T
k)

δT
k γk

(7.56)

This formula can be used to generate a sequence of approximations for the
Hessian H.

7.6 Broyden-Fletcher-Goldfarb-Shanno Method
Another recursive formula for generating a sequence of approximations for

H−1 is one proposed by Broyden [2], Fletcher [10], Goldfarb [11] and Shanno
[12] at about the same time. This is referred to as the BFGS updating formula
[13][14] and is given by

Sk+1 = Sk +

(
1 +

γT
k Skγk

γT
k δk

)
δkδ

T
k

γT
k δk

− (δkγ
T
k Sk + Skγkδ

T
k)

γT
k δk

(7.57)

This formula is said to be the dual of the DFP formula given in Eq. (7.29) and
it can be obtained by letting

Pk+1 = Sk+1, Pk = Sk

γk = δk, δk = γk

192

in Eq. (7.56). As may be expected, for convex quadratic functions, the BFGS
formula has the following properties:

1. Sk+1 becomes identical to H−1 for k = n − 1.
2. Directions δ0, δ1, . . . , δn−1 form a conjugate set.
3. Sk+1 is positive definite if Sk is positive definite.
4. The inequality in Eq. (7.38) applies.

An alternative form of the BFGS formula can be obtained as

Pk+1 = Pk +
γkγ

T
k

γT
k δk

− Pkγkγ
T
k Pk

δT
k Pkδk

by letting

Sk+1 = Pk+1, Sk = Pk

δk = γk, γk = δk

in Eq. (7.29) or by applying the Sherman-Morrison formula to Eq. (7.57). This
is the dual of Eq. (7.56).

7.7 Hoshino Method
The application of the principle of duality (i.e., the application of the Sherman-

Morrison formula followed by the replacement of Pk, Pk+1, γk, and δk by
Sk, Sk+1, δk, and γk) to the rank-one formula results in one and the same
formula. For this reason, the rank-one formula is said to be self-dual. Another
self-dual formula, which was found to give good results, is one due to Hoshino
[15]. Like the DFP and BFGS formulas, the Hoshino formula is of rank two.
It is given by

Sk+1 = Sk + θkδkδ
T
k − ψk(δkγ

T
k Sk + Skγkδ

T
k + Skγkγ

T
k Sk)

where

θk =
γT

k δk + 2γT
k Skγk

γT
k δk(γT

k δk + γT
k Skγk)

and ψk =
1

(γT
k δk + γT

k Skγk)

The inverse of Sk+1, designated as Pk+1, can be obtained by applying the
Sherman-Morrison formula.

7.8 The Broyden Family
An updating formula which is of significant theoretical as well as practical

interest is one due to Broyden. This formula entails an independent parameter
φk and is given by

Sk+1 = (1 − φk)SDFP
k+1 + φkSBFGS

k+1 (7.58)

Quasi-Newton Methods 193

Evidently, if φk = 1 or 0 the Broyden formula reduces to the BFGS or DFP
formula, and if

φk =
δT

k γk

δT
k γk±γT

k Skγk

the rank-one or Hoshino formula is obtained.
If the formula of Eq. (7.58) is used in Step 4 of Algorithm 7.2, a Broyden

method is obtained which has the properties summarized in Theorems 7.4 – 7.6
below. These are generic properties that apply to all the methods described so
far.

Theorem 7.4A Properties of Broyden method If a Broyden method is applied
to a convex quadratic function and exact line searches are used, it will terminate
afterm ≤ n iterations. The following properties apply for all k = 0, 1, . . . , m:

(a) δi = Sk+1γi for 0 ≤ i ≤ k
(b) δT

i Hδj = 0 for 0 ≤ i < j ≤ k
(c) If m = n − 1, then Sm = H−1

Theorem 7.4B If S0 = In, then a Broyden method with exact line searches
is equivalent to the Fletcher-Reeves conjugate gradient method (see Sec. 6.6)
provided that f(x) is a convex quadratic function. Integer m in Theorem 7.4A
is the least number of independent vectors in the sequence

g0, Hg0, H2g0, . . .

Theorem 7.4C If f(x) ∈ C1, a Broyden method with exact line searches has
the property that xk+1 and the BFGS component of the Broyden formula are
independent of φ0, φ1, . . . , φk−1 for all k ≥ 1.

The proofs of these theorems are given by Fletcher [14].

7.8.1 Fletcher switch method
A particularly successful method of the Broyden family is one proposed by

Fletcher [13]. In this method, parameter φk in Eq. (7.58) is switched between
zero and unity throughout the optimization. The choice of φk in any iteration
is based on the rule

φk =

⎧⎨
⎩

0 if δT
k Hδk > δT

k Pk+1δk

1 otherwise

where H is the Hessian of f(x), and Pk+1 is the approximation of H generated
by the updating formula. In effect, Fletcher’s method compares Pk+1 with H
in direction δk, and if the above condition is satisfied then the DFP formula is
used. Alternatively, the BFGS formula is used. The Hessian is not available in

194

quasi-Newton methods but on assuming a convex quadratic problem, it can be
eliminated. From Eq. (7.4).

Hδk = γk

and, therefore, the above test becomes

δT
k γk > δT

k Pk+1δk (7.59)

This test is convenient to use when an approximation for H is to be used in the
implementation of the algorithm. An alternative, but equivalent, test which is
applicable to the case where an approximation for H−1 is to be used can be
readily obtained from Eq. (7.59). We can write

δT
k γk > δT

k S−1
k+1δk

and since
δk = Sk+1γk

according to Eq. (7.12), we have

δT
k γk > γT

k Sk+1S−1
k+1Sk+1γk

> γT
k Sk+1γk

since Sk+1 is symmetric.

7.9 The Huang Family
Another family of updating formulas is one due to Huang [16]. This is a

more general family which encompasses the rank-one, DFP, BFGS as well as
some other formulas. It is of the form

Sk+1 = Sk +
δk(θδk + φST

k γk)T

(θδk + φST
k γk)T γk

− Skγk(ψδk + ωST
k γk)T

(ψδk + ωST
k γk)T γk

where θ, φ, ψ, and ω are independent parameters. The formulas that can be
generated from the Huang formula are given in Table 7.1. The McCormick
formula [17] is

Sk+1 = Sk +
(δk − Skγk)δ

T
k

δT
k γk

whereas that of Pearson [18] is given by

Sk+1 = Sk +
(δk − Skγk)γT

k Sk

γT
k Skγk

Quasi-Newton Methods 195

7.10 Practical Quasi-Newton Algorithm
A practical quasi-Newton algorithm that eliminates the problems associated

with Algorithms 7.1 and 7.2 is detailed below. This is based on Algorithm 7.2
and uses a slightly modified version of Fletcher’s inexact line search (Algorithm
4.6). The algorithm is flexible, efficient, and very reliable, and has been found
to be very effective for the design of digital filters and equalizers (see [19,
Chap. 16]).

Table 7.1 The Huang Family

Formula Parameters

Rank-one θ = 1, φ = −1, ψ = 1, ω = −1

DFP θ = 1, φ = 0, ψ = 0, ω = 1

BFGS

⎧⎪⎨
⎪⎩

φ

θ
=

−δT
k γk

δT
k γk + γT

k Skγk

,

ψ = 1, ω = 0

McCormick θ = 1, φ = 0, ψ = 1, ω = 0

Pearson θ = 0, φ = 1, ψ = 0, ω = 1

Algorithm 7.3 Practical quasi-Newton algorithm
Step 1 (Initialize algorithm)
a. Input x0 and ε1.
b. Set k = m = 0.
c. Set ρ = 0.1, σ = 0.7, τ = 0.1, χ = 0.75, M̂ = 600, and ε2 = 10−10.
d. Set S0 = In.
e. Compute f0 and g0, and set m = m+2. Set f00 = f0 and ∆f0 = f0.
Step 2 (Initialize line search)
a. Set dk = −Skgk.
b. Set αL = 0 and αU = 1099.
c. Set fL = f0 and compute f ′

L = g(xk + αLdk)Tdk.
d. (Estimate α0)

If |f ′
L| > ε2, then compute α0 = −2∆f0/f ′

L; otherwise, set α0 = 1.
If α0 ≤ 0 or α0 > 1, then set α0 = 1.

Step 3
a. Set δk = α0dk and compute f0 = f(xk + δk).
b. Set m = m + 1.
Step 4 (Interpolation)
If f0 > fL + ρ (α0 − αL)f ′

L and |fL − f0| > ε2 and m < M̂ , then do:
a. If α0 < αU , then set αU = α0.

196

b. Compute ᾰ0 using Eq. (4.57).
c. Compute ᾰ0L = αL + τ(αU −αL); if ᾰ0 < ᾰ0L, then set ᾰ0 = ᾰ0L.
d. Compute ᾰ0U = αU −τ(αU −αL); if ᾰ0 > ᾰ0U , then set ᾰ0 = ᾰ0U .
e. Set α0 = ᾰ0 and go to Step 3.
Step 5
Compute f ′

0 = g(xk + α0dk)Tdk and set m = m + 1.
Step 6 (Extrapolation)
If f ′

0 < σf ′
L and |fL − f0| > ε2 and m < M̂ , then do:

a. Compute ∆α0 = (α0 − αL)f ′
0/(f ′

L − f ′
0) (see Eq. (4.58)).

b. If ∆α0 ≤ 0, then set ᾰ0 = 2α0; otherwise, set ᾰ0 = α0 + ∆α0.
c. Compute ᾰ0U = α0 +χ(αU −α0); if ᾰ0 > ᾰ0U , then set ᾰ0 = ᾰ0U .
d. Set αL = α0, α0 = ᾰ0, fL = f0, f

′
L = f ′

0 and go to Step 3.
Step 7 (Check termination criteria and output results)
a. Set xk+1 = xk + δk.
b. Set ∆f0 = f00 − f0.
c. If (‖δk‖2 < ε1 and |∆f0| < ε1) or m ≥ M̂ , then output x̆ = xk+1,

f(x̆) = fk+1, and stop.
d. Set f00 = f0.
Step 8 (Prepare for the next iteration)
a. Compute gk+1 and set γk = gk+1 − gk.
b. Compute D = δT

k γk; if D ≤ 0, then set Sk+1 = In; otherwise,
compute Sk+1 using Eq. (7.29) for the DFP method or Eq. (7.57)
for the BFGS method.

c. Set k = k + 1 and go to Step 2.

The

computational complexity of an algorithm can be determined by estimating the
amount of computation required, which is not always an easy task. In optimiza-
tion algorithms of the type described in Chaps. 5–7, most of the computational
effort is associated with function and gradient evaluations and by counting the
function and gradient evaluations, a measure of the computational complexity
of the algorithm can be obtained. In Algorithm 7.3, this is done through index
m which is increased by one for each evaluation of f0, g0, or f ′

0 in Steps 1, 3,
and 5. Evidently, we assume here that a function evaluation requires the same
computational effort as a gradient evaluation which may not be valid, since each
gradient evaluation involves the evaluation of n first derivatives. A more precise
measure of computational complexity could be obtained by finding the number
of additions, multiplications, and divisions associated with each function and
each gradient evaluation and then modifying Steps 1, 3, and 5 accordingly.

Counting the number of function evaluations can serve another useful pur-
pose. An additional termination mechanism can be incorporated in the al-

Quasi-Newton Methods 197

gorithm that can be used to abort the search for a minimum if the number of
function evaluations becomes unreasonably large and exceeds some upper limit,
say, M̂ . In Algorithm 7.3, interpolation is performed in Step 4 and extrapola-
tion is performed in Step 5 only if m < M̂ , and if m ≥ M̂ the algorithm is
terminated in Step 7c. This additional termination mechanism is useful when
the problem being solved does not have a well defined local minimum.

Although a positive definite matrix Sk will ensure that dk is a descent direc-
tion for function f(x) at point xk, sometimes the function f(xk + αdk) may
have a very shallow minimum with respect to α and finding such a minimum
can waste a large amount of computation. The same problem can sometimes
arise if f(xk + αdk) does not have a well-defined minimizer or in cases where
|fL − f0| is very small and of the same order of magnitude as the roundoff er-
rors. To avoid these problems, interpolation or extrapolation is carried out only
if the expected reduction in the function f(xk +αdk) is larger than ε2. In such
a case, the algorithm continues with the next iteration unless the termination
criteria in Step 7c are satisfied.

The estimate of α0 in Step 2d can be obtained by assuming that the function
f(xk + αdk) can be represented by a quadratic polynomial of α and that the
reduction achieved in f(xk +αdk) by changing α from 0 to α0 is equal to ∆f0,
the total reduction achieved in the previous iteration. Under these assumptions,
we can write

fL − f0 = ∆f0 (7.60)

and from Eq. (4.57)

α0 = ᾰ ≈ αL +
(α0 − αL)2f ′

L

2[fL − f0 + (α0 − αL)f ′
L]

(7.61)

Since αL = 0, Eqns. (7.60) and (7.61) give

α0 ≈ α2
0f

′
L

2[∆f0 + α0f ′
L]

Now solving for α0, we get

α0 ≈ −2∆f0

f ′
L

This estimate of α is reasonable for points far away from the solution but can
become quite inaccurate as the minimizer is approached and could even become
negative due to numerical ill-conditioning. For these reasons, if the estimate is
equal to or less than zero or greater than unity, it is replaced by unity in Step
2d, which is the value of α that would minimize f(xk + αdk) in the case of
a convex quadratic problem. Recall that practical problems tend to become
convex and quadratic in the neighborhood of a local minimizer.

198

The most important difference between the inexact line search in Algorithm
4.6 and that used in Algorithm 7.3 is related to a very real problem that can
arise in practice. The first derivatives f ′

0 and f ′
L may on occasion satisfy the

inequalities
α0f

′
L < αLf ′

0 and f ′
L > f ′

0

and the quadratic extrapolation in Step 6 would yield

ᾰ = α0 +
(α0 − αL)f ′

0

f ′
L − f ′

0

=
α0f

′
L − αLf ′

0

f ′
L − f ′

0

< 0

that is, it will predict a negative α. This would correspond to a maximum of
f(xk + αdk) since αdk is a descent direction only if α is positive. In such a
case, ∆α0 = ᾰ − α0 would assume a negative value in Step 6b and to ensure
that α is changed in the descent direction, the value 2α0 is assigned to ᾰ0.
This new value could turn out to be unreasonably large and could exceed the
most recent upper bound αU . Although this is not catastrophic, unnecessary
computations would need to be performed to return to the neighborhood of the
solution, and to avoid the problem a new and more reasonable value of ᾰ0 in
the current bracket is used in Step 6c. A value of χ = 0.75 will ensure that ᾰ0

is no closer to αU than 25 percent of the permissible range. Note that under the
above circumstances, the inexact search of Algorithm 4.6 may fail to exit Step
7.

If the DFP or BFGS updating formula is used in Step 8b and the condition in
Eq. (7.38) is satisfied, then a positive definite matrix Sk will result in a positive
definite Sk+1, as was discussed just after the proof of Theorem 7.2. We will
now demonstrate that if the Fletcher inexact line search is used and the search
is not terminated until the inequality in Eq. (4.59) is satisfied, then Eq. (7.38)
is, indeed, satisfied. When the search is terminated in the kth iteration, we have
α0 ≡ αk and from Step 3 of the algorithm δk = αkdk. Now from Eqs. (7.38)
and (4.59), we obtain

δT
k γk = δT

k gk+1 − δT
k gk

= αk(gT
k+1dk − gT

k dk)

≥ αk(σ − 1)gT
k dk

If dk is a descent direction, then gT
k dk < 0 and αk > 0. Since σ < 1 in

Fletcher’s inexact line search, we conclude that

δT
k γk > 0

and, in effect, the positive definiteness of Sk is assured. In exceptional cir-
cumstances, the inexact line search may not force the condition in Eq. (4.59),
for example, when interpolation or extrapolation is aborted, if |fL − f0| < ε2,

Quasi-Newton Methods 199

and a nonpositive definite Sk+1 matrix may occur. To safeguard against this
possibility and ensure that a descent direction is achieved in every iteration, the
quantity δT

k γk is checked in Step 8b and if it is found to be negative or zero,
the identity matrix In is assigned to Sk+1. This is not catastrophic and it may
actually be beneficial since the next change in x will be in the steepest-descent
direction.

The algorithm will be terminated in Step 7c if the distance between two
successive points and the reduction in the objective function f(x) are less than
ε1. One could, of course, use different tolerances for x and f(x) and, depending
on the problem, one of the two conditions may not even be required.

As may be recalled, the DFP and BFGS updating formulas are closely in-
terrelated through the principle of duality and one can be obtained from the
other and vice versa through the use of the Sherman-Morrison formula (see
Sec. 7.6). Consequently, there are no clear theoretical advantages that apply to
the one and not the other formula. Nevertheless, extensive experimental results
reported by Fletcher [13] show that the use of the BFGS formula tends to yield
algorithms that are somewhat more efficient in a number of different problems.
This is consistent with the experience of the authors.

References
1 D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed., Addison-Wesley, Reading,

MA, 1984.
2 C. G. Broyden, “Quasi-Newton methods and their application to function minimization,”

Maths. Comput., vol. 21, pp. 368–381, 1965.
3 W. C. Davidon, “Variable metric method for minimization,” AEC Res. and Dev. Report

ANL-5990, 1959.
4 A. V. Fiacco and G. P. McCormick, Nonlinear Programming, Wiley, New York, 1968.
5 B. A. Murtagh and R. W. H. Sargent, “A constrained minimization method with quadratic

convergence,” Optimization, ed. R. Fletcher, pp. 215-246, Academic Press, London, 1969.
6 P. Wolfe, “Methods of nonlinear programming,” Nonlinear Programming, ed. J. Abadie,

pp. 97–131, Interscience, Wiley, New York, 1967.
7 R. Fletcher and M. J. D. Powell, “A rapidly convergent descent method for minimization,”

Computer J., vol. 6, pp. 163–168, 1963.
8 T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, N.J., 1980.
9 P. E. Gill, W. Murray, and W. H. Wright, Numerical Linear Algebra and Optimization, vol. 1,

Addison Wesley, Reading, MA, 1991.
10 R. Fletcher, “A new approach to variable metric algorithms,” Computer J., vol. 13, pp. 317–

322, 1970.
11 D. Goldfarb, “A family of variable metric methods derived by variational means,” Maths.

Comput., vol. 24, pp. 23–26, 1970.
12 D. F. Shanno, “Conditioning of quasi-Newton methods for function minimization,” Maths.

Comput., vol. 24, pp. 647–656, 1970.
13 R. Fletcher, Practical Methods of Optimization, vol. 1, Wiley, New York, 1980.
14 R. Fletcher, Practical Methods of Optimization, 2nd ed., Wiley, New York, 1987.
15 S. Hoshino, “A formulation of variable metric methods,” J. Inst. Maths. Applns. vol. 10,

pp. 394–403, 1972.

200

16 H. Y. Huang, “Unified approach to quadratically convergent algorithms for function mini-
mization,” J. Opt. Theo. Applns., vol. 5, pp. 405–423, 1970.

17 G. P. McCormick and J. D. Pearson, “Variable metric methods and unconstrained optimiza-
tion,” in Optimization, ed. R. Fletcher, Academic Press, London, 1969.

18 J. D. Pearson, “Variable metric methods of minimization,” Computer J., vol. 12, pp. 171–178,
1969.

19 A. Antoniou, Digital Signal Processing: Signals, Systems, and Filters, McGraw-Hill, New
York, 2005.

Problems
7.1 Let ξ be a nonzero column vector. Show that matrix M = ξξT has a rank

of one and is symmetric and positive semidefinite.

7.2 In a quasi-Newton algorithm, Sk+1 is obtained from a positive definite
matrix Sk by using the DFP updating formula. Show that the condition

δT
k γk > 0

will ensure that Sk+1 is positive definite.

7.3 Minimize the objective function in Prob. 5.4 by applying the DFP algo-
rithm (e.g., Algorithm 7.3 with the DFP updating formula) using x0 =
[0 0]T and ε = 3 × 10−7. Compare the results with those obtained in
Prob. 5.4.

7.4 Minimize the objective function in Prob. 5.5 by applying the DFP algo-
rithm using x0 = [1 1 1]T and ε = 10−6. Compare the results with those
obtained in Probs. 5.5 and 6.4.

7.5 Minimize the objective function in Prob. 5.7 by applying the DFP algo-
rithm using ε = 10−6, x0 = [4 −4]T , and x0 = [−4 4]T . Compare the
results with those obtained in Probs. 5.7 and 6.5.

7.6 Minimize the objective function in Prob. 5.9 by applying the DFP algo-
rithm using x0 = [0.1 0.1]T and ε = 10−6. Compare the results with
those obtained in Probs. 5.9 and 6.6.

7.7 Implement a quasi-Newton algorithm based on the DFP formula in a com-
puter language of your choice and use it to minimize

f(x) = 100(x2 − x2
1)

2 + (1 − x1)2

(a) Try three different initial points and observe the results.

(b) Compare the results with those obtained in Prob. 6.2.

7.8 Minimize the objective function in Prob. 5.4 by applying the BFGS al-
gorithm (e.g., Algorithm 7.3 with the BFGS updating formula) using
x0 = [0 0]T and ε = 3 × 10−7. Compare the results with those ob-
tained in Probs. 5.4 and 7.3.

Quasi-Newton Methods 201

7.9 Minimize the objective function in Prob. 5.5 by applying the BFGS algo-
rithm using x0 = [1 1 1]T and ε = 10−6. Compare the results with those
obtained in Probs. 5.5, 6.4, and 7.4.

7.10 Minimize the objective function in Prob. 5.7 by applying the BFGS algo-
rithm using ε = 10−6, x0 = [4 −4]T , and x0 = [−4 4]T . Compare the
results with those obtained in Probs. 5.7, 6.5, and 7.5.

7.11 Minimize the objective function in Prob. 5.9 by applying the BFGS algo-
rithm using x0 = [0.1 0.1]T and ε = 10−6. Compare the results with
those obtained in Probs. 5.9, 6.6, and 7.6.

7.12 Implement a quasi-Newton algorithm based on the BFGS formula in a
computer language of your choice and use it to minimize function f(x)
given in Prob. 7.7.

(a) Try three different initial points and observe the results.

(b) Compare the results with those obtained in Probs. 7.7 and 6.2.

7.13 Using the program constructed in Prob. 7.7, minimize the function

f(x) = 100[(x3 − 10θ)2 + (r − 1)2] + x2
3

where

θ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2π

tan−1
(

x2

x1

)
for x1 > 0

0.25 for x1 = 0

0.5 +
1
2π

tan−1
(

x2

x1

)
for x1 < 0

and
r =

√
(x2

1 + x2
2)

Repeat with the program constructed in Prob. 7.12 and compare the results
obtained.

7.14 Using the program constructed in Prob. 7.6, minimize the function

f(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 100(x1 − x4)4

Repeat with the program constructed in Prob. 7.12 and compare the results
obtained.

7.15 Using the program constructed in Prob. 7.7, minimize the function

f(x) =
5∑

i=2

[100(xi − x2
i−1)

2 + (1 − xi)2]

Repeat with the program constructed in Prob. 7.12 and compare the results
obtained.

202

7.16 An interesting variant of the BFGS method is to modify the formula in
Eq. (7.57) by replacing Sk by the identify matrix, which gives

Sk+1 = I +

(
1 +

γT
k γk

γT
k δk

)
δkδ

T
k

γT
k δk

− δkγ
T
k + γkδ

T
k

γT
k δk

Since Sk+1 is now determined without reference to Sk, the above updating
formula is known as a memoryless BFGS formula [1].

Verify that the memoryless BFGS method can be implemented without
explicitly updating matrix Sk. Instead, point xk is updated as

xk+1 = xk + αkdk

where αk is determined by using a line search, and dk is updated using
the formula

dk+1 = −gk+1 + η1γk + (η2 − η3)δk

where

η1 = δT
k gk+1/η4, η2 = γT

k gk+1/η4

η3 =

(
1 +

γT
k γk

η4

)
η1, η4 = γT

k δk

7.17 Minimize the objective function in Prob. 5.7 by applying the memoryless
BFGS method using ε = 10−6, x0 = [4 − 4]T , and x0 = [−4 4]T .
Compare the results with those obtained in Probs. 5.7, 6.5, 7.5, and 7.10.

Chapter 8

MINIMAX METHODS

8.1 Introduction
In many scientific and engineering applications it is often necessary to min-

imize the maximum of some quantity with respect to one or more independent
variables. Algorithms that can be used to solve problems of this type are said
to be minimax algorithms. In the case where the quantity of interest depends
on a real-valued parameter w that belongs to a set S , the objective function
can be represented by f(x, w) and the solution of the minimax problem per-
taining to f(x, w) amounts to finding a vector variable x that minimizes the
maximum of f(x, w) over w ∈ S. There is also a discrete version of this prob-
lem in which the continuous parameter w is sampled to obtain discrete values
Sd = {wi : i = 1, . . . , L} ⊂ S and the corresponding minimax optimization
problem is to find a vector x that minimizes the maximum of f(x, wi) over
wi ∈ Sd.

This chapter is concerned with efficient minimax algorithms. In Sec. 8.2,
we illustrate minimax optimization using an example from digital signal pro-
cessing. Two minimax algorithms due to Charalambous [1][2] are studied in
Sec. 8.3 and improved versions of these algorithms using a technique of nonuni-
form variable sampling [3] are presented in Sec. 8.4.

8.2 Problem Formulation
A minimax problem pertaining to objective function f(x, w) can be formally

stated as
minimize

x
max
w∈S

f(x, w) (8.1a)

where S is a compact set on the w axis, and if f(x, w) is sampled with respect
to w we have

minimize
x

max
wi∈Sd

f(x, wi) (8.1b)

204

where Sd = {wi : i = 1, 2, . . . , L} is a discrete version of set S . Obviously,
the problems in Eqs. (8.1a) and (8.1b) are closely interrelated, and subject to the
condition that the sampling of S is sufficiently dense, an approximate solution
of the problem in Eq. (8.1a) can be obtained by solving the discrete problem in
Eq. (8.1b).

As an illustrative example, let us consider a problem encountered in the field
of digital signal processing whereby a digital filter needs to be designed [4,
Chap. 16].1 In this design problem, we require a transfer function of the form

H(z) =

N∑
i=0

aiz
−i

1 +
N∑

i=1

biz
−i

(8.2)

where z is a complex variable and ai, bi are real coefficients (see Sec. B.5.1)
such that the amplitude response of the filter

M(x, ω) = |H(ejωT)| (8.3)

approximates a specified amplitude response M0(ω). Vector x in Eq. (8.3) is
defined as

x = [a0 a1 · · · aN b1 · · · bN]T

and ω denotes the frequency that can assume values in the range of interest Ω.
In the case of a lowpass digital filter, the desired amplitude response, M0(ω),
is assumed to be a piecewise constant function, as illustrated in Fig. 8.1 (see
Sec. B.9.1). The difference between M(x, ω) and M0(ω), which is, in effect,
the approximation error, can be expressed as

e(x, ω) = M(x, ω) − M0(ω) (8.4)

(see Sec. B.9.3).
The design of a digital filter can be accomplished by minimizing one of the

norms described in Sec. A.8.1. If the L1 or L2 norm is minimized, then the
sum of the magnitudes or the sum of the squares of the elemental errors is
minimized. The minimum error thus achieved usually turns out to be unevenly
distributed with respect to frequency and may exhibit large peaks which are often
objectionable. If prescribed amplitude response specifications are to be met, the
magnitude of the largest elemental error should be minimized and, therefore,
the L∞ norm of the error function should be used. Since the L∞ norm of the
error function e(x, ω) in Eq. (8.4) is numerically equal to max

ω∈Ω
|e(x, ω)|, the

minimization of the L∞ norm can be expressed as

minimize
x

max
ω∈Ω

|e(x, ω)| (8.5)

1See Appendix B for a brief summary of the basics of digital filters.

Minimax Methods 205

G
ai

n

M(x, ω)

M0(ω)

M0(ω)e(x, ω)

e(x, ω)

ω1 ω2 ωkω, rad/s

Figure 8.1. Formulation of objective function.

This is a minimax problem of the type stated in Eq. (8.1a) where the objective
function is the magnitude of the approximation error, i.e., f(x, ω) = |e(x, ω)|.

The application of minimax algorithms for the design of digital filters usu-
ally yields designs in which the error is uniformly distributed with respect to
frequency.

8.3 Minimax Algorithms
The most fundamental algorithm for the minimax optimization problem in

Eq. (8.5) is the so-called least-pth algorithm, which involves minimizing an
objective function in the form of a sum of elemental error functions, each raised
to the pth power, for increasing values of p, say, p = 2, 4, 8, . . . , etc.

Let ω1, ω2, . . . , ωK be K frequencies in Ω and define vector

e(x) = [e1(x) e2(x) · · · en(x)]T

where ei(x) ≡ e(x, ωi) is evaluated using Eq. (8.4). If we denote the Lp norm
of vector e(x) at x = xk as Ψk(x), i.e.,

Ψk(x) = ‖e(x)‖p =

[
K∑

i=1

|ei(x)|p
]1/p

then we have

lim
p→∞Ψk(x) = lim

p→∞ ‖e(x)‖p = ‖e(x)‖∞ = max
1≤i≤K

|ei(x)| ≡
�

E(x)

206

In other words, by minimizing function Ψk(x) for increasing power of p, the
minimization of the L∞ norm of e(x) can be achieved.

In a practical design, the approximation error ‖e(x)‖∞ is always strictly
greater than zero and thus function Ψk(x) can be expressed as

Ψk(x) =
�

E (x)

{
K∑

i=1

[
|ei(x)|

�

E (x)

]p}1/p

(8.6a)

where

ei(x) ≡ e(x, ωi) (8.6b)
�

E(x) = max
1≤i≤K

|ei(x)| (8.6c)

These principles lead readily to the so-called least-pth minimax algorithm which
is as follows [1]:

Algorithm 8.1 Least-pth minimax algorithm
Step 1
Input �x0 and ε1. Set k = 1, p = 2, µ = 2, and

�

E0 = 1099.
Step 2
Initialize frequencies ω1, ω2, . . . , ωK .
Step 3
Using �xk−1 as initial point, minimize Ψk(x) in Eq. (8.6a) with respect

to x, to obtain �xk. Set
�

Ek =
�

E (�x).
Step 4
If |

�

Ek−1 −
�

Ek| < ε1, then output �xk and
�

Ek, and stop. Otherwise,
set p = µp and k = k + 1, and go to step 3.

The underlying principle for the above algorithm is that the minimax problem
is solved by solving a sequence of closely related problems whereby the solution
of one problem renders the solution of the next one more tractable. Parameter
µ in step 1, which must obviously be an integer, should not be too large in order
to avoid numerical ill-conditioning. A value of 2 gives good results.

The minimization in step 3 can be carried out by using any unconstrained
optimization algorithm, for example, Algorithm 7.3 described in Sec. 7.10. The
gradient of Ψk(x) is given by [1]

∇Ψk(x) =

{
K∑

i=1

[
|ei(x)|

�

E(x)

]p}(1/p)−1 K∑
i=1

[
|ei(x)|

�

E (x)

]p−1

∇|ei(x)| (8.7)

The preceding algorithm works very well, except that it requires a consider-
able amount of computation. An alternative and much more efficient minimax

Minimax Methods 207

algorithm is one described in [5], [6]. This algorithm is based on principles
developed by Charalambous [2] and involves the minimization of the objective
function

Ψ(x, λ, ξ) =
∑
i∈I1

1
2λi[φi(x, ξ)]2 +

∑
i∈I2

1
2 [φi(x, ξ)]2 (8.8)

where ξ and λi for i = 1, 2, . . . , K are constants and

φi(x, ξ) = |ei(x)| − ξ

I1 = {i : φi(x, ξ) > 0 and λi > 0} (8.9a)

I2 = {i : φi(x, ξ) > 0 and λi = 0} (8.9b)

The halves in Eq. (8.8) are included for the purpose of simplifying the expression
for the gradient (see Eq. (8.11)).

If

(a) the second-order sufficiency conditions for a minimum of
�

E (x) hold at
�x ,

(b) λi =
�

λi for i = 1, 2, . . . , K where
�

λi are the minimax multipliers
corresponding to the minimum point �x of

�

E(x), and

(c)
�

E(�x − ξ) is sufficiently small

then it can be proved that �x is a strong local minimum point of function
Ψ(x, λ, ξ) given by Eq. (8.8) (see [2] for details). In practice, the conditions
in (a) are satisfied for most practical problems. Consequently, if multipliers λi

are forced to approach the minimax multipliers
�

λi and ξ is forced to approach
�

E (�x), then the minimization of
�

E (x) can be accomplished by minimizing
Ψ(x, λ, ξ) with respect to x. A minimax algorithm based on these principles
is as follows:

Algorithm 8.2 Charalambous minimax algorithm
Step 1
Input �x0 and ε1. Set k = 1, ξ1 = 0, λ11 = λ12 = · · · = λ1K = 1, and
�

E0 = 1099.
Step 2
Initialize frequencies ω1, ω2, . . . , ωK .
Step 3
Using �xk−1 as initial point, minimize Ψ(x, λk, ξk) with respect to x
to obtain �xk. Set

�

Ek =
�

E(�xk) = max
1≤i≤K

|ei(
�xk)| (8.10)

208

Step 4
Compute

Φk =
∑
i∈I1

λkiφi(
�xk, ξk) +

∑
i∈I2

φi(
�xk, ξk)

and update

λ(k+1)i =

⎧⎪⎪⎨
⎪⎪⎩

λkiφi(
�xk, ξk)/Φk for i ∈ I1

φi(
�xk, ξk)/Φk for i ∈ I2

0 for i ∈ I3

for i = 1, 2, . . . , K where

I1 = {i : φi(
�xk, ξk) > 0 and λki > 0}

I2 = {i : φi(
�xk, ξk) > 0 and λki = 0}

and
I3 = {i : φi(

�xk, ξk) ≤ 0}
Step 5
Compute

ξk+1 =
K∑

i=1

λ(k+1)i|ei(
�x)|

Step 6
If |

�

Ek−1 −
�

Ek| < ε1, then output �xk and
�

Ek, and stop. Otherwise, set
k = k + 1 and go to step 3.

The gradient of Ψ(x, λk, ξk), which is required in step 3 of the algorithm,
is given by

∇Ψ(x, λk, ξk) =
∑
i∈I1

λkiφi(x, ξk)∇|ei(x)|+
∑
i∈I2

φi(x, ξk)∇|ei(x)| (8.11)

Constant ξ is a lower bound of the minimum of
�

E (x) and as the algorithm

progresses, it approaches
�

E (�x) from below. Consequently, the number of
functions φi(x, ξ) that do not satisfy either Eq. (8.9a) or Eq. (8.9b) increases
rapidly with the number of iterations. Since the derivatives of these functions
are unnecessary in the minimization of Ψ(x, λ, ξ), they need not be evaluated.
This increases the efficiency of the algorithm quite significantly.

Minimax Methods 209

As in Algorithm 8.1, the minimization in step 3 of Algorithm 8.2 can be
carried out by using Algorithm 7.3.

Example 8.1 Consider the overdetermined system of linear equations

3x1 − 4x2 + 2x3 − x4 = −17.4
−2x1 + 3x2 + 6x3 − 2x4 = −1.2

x1 + 2x2 + 5x3 + x4 = 7.35
−3x1 + x2 − 2x3 + 2x4 = 9.41
7x1 − 2x2 + 4x3 + 3x4 = 4.1
10x1 − x2 + 8x3 + 5x4 = 12.3

which can be expressed as

Ax = b (8.12a)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 −4 2 −1
−2 3 6 −2
1 2 5 1
−3 1 −2 2
7 −2 4 3
10 −1 8 5

⎤
⎥⎥⎥⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎢⎢⎢⎣

−17.4
−1.2
7.35
9.41
4.1
12.3

⎤
⎥⎥⎥⎥⎥⎥⎦ (8.12b)

(a) Find the least-squares solution of Eq. (8.12a), xls, by solving the minimiza-
tion problem

minimize ‖Ax − b‖ (8.13)

(b) Find the minimax solution of Eq. (8.12a), xminimax, by applying Algorithm
8.2 to solve the minimization problem

minimize ‖Ax − b‖∞ (8.14)

(c) Compare the magnitudes of the equation errors for the solutions xls and
xminimax.

Solution

(a) The square of the L2 norm ‖Ax − b‖ is found to be

‖Ax − b‖2 = xTATAx − 2xTATb + bTb

210

It is easy to verify that matrix AT A is positive definite; hence ‖Ax − b‖2

is a strictly globally convex function whose unique minimizer is given by

xls = (ATA)−1AT b =

⎡
⎢⎢⎣

0.6902
3.6824

−0.7793
3.1150

⎤
⎥⎥⎦ (8.15)

(b) By denoting

A =

⎡
⎢⎢⎢⎣

aT
1

aT
2
...

aT
6

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣

b1

b2
...
b6

⎤
⎥⎥⎥⎦

we can write

Ax− b =

⎡
⎢⎢⎢⎣

aT
1 x− b1

aT
2 x− b2

...
aT

6 x− b6

⎤
⎥⎥⎥⎦

and the L∞ norm ‖Ax − b‖∞ can be expressed as

‖Ax − b‖∞ = max
1≤i≤6

|aT
i x − bi|

Hence the problem in Eq. (8.14) becomes

minimize
x

max
1≤i≤6

|ei(x)| (8.16)

where
ei(x) = aT

i x − bi

which is obviously a minimax problem. The gradient of ei(x) is simply
given by

∇ei(x) = ai

By using the least-squares solution xls obtained in part (a) as the initial
point and ε1 = 4 × 10−6, it took Algorithm 8.2 four iterations to converge
to the solution

xminimax =

⎡
⎢⎢⎣

0.7592
3.6780

−0.8187
3.0439

⎤
⎥⎥⎦ (8.17)

In this example as well as Examples 8.2 and 8.3, the unconstrained opti-
mization required is Step 3 was carried out using a quasi-Newton BFGS

Minimax Methods 211

algorithm which was essentially Algorithm 7.3 with a slightly modified
version of Step 8b as follows:

Step 8b′
Compute D = δT

k γk. If D ≤ 0, then set Sk+1 = In, otherwise,
compute Sk+1 using Eq. (7.57).

(c) Using Eqs. (8.15) and (8.17), the magnitudes of the equation errors for
solutions xls and xminimax were found to be

|Axls − b| =

⎡
⎢⎢⎢⎢⎣

0.0677
0.0390
0.0765
0.4054
0.2604

⎤
⎥⎥⎥⎥⎦ and |Axminimax − b| =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2844
0.2844
0.2843
0.2844
0.2844
0.2844

⎤
⎥⎥⎥⎥⎥⎥⎦

As can be seen, the minimax algorithm tends to equalize the equation
errors.

8.4 Improved Minimax Algorithms
To achieve good results with the above minimax algorithms, the sampling

of the objective function f(x, w) with respect to w must be dense; otherwise,
the error in the objective function may develop spikes in the intervals between
sampling points during the minimization. This problem is usually overcome
by using a fairly large value of K of the order of 20 to 30 times the number
of variables, depending on the type of optimization problem. For example,
if a 10th-order digital filter is to be designed, i.e., N = 10 in Eq. (8.2), the
objective function depends on 21 variables and a value of K as high as 630 may
be required. In such a case, each function evaluation in the minimization of the
objective function would involve computing the gain of the filter as many as 630
times. A single optimization may sometimes necessitate 300 to 600 function
evaluations, and a minimax algorithm like Algorithm 8.1 or 8.2 may require 5
to 10 unconstrained optimizations to converge. Consequently, up to 3.8 million
function evaluations may be required to complete a design.

A technique will now be described that can be used to suppress spikes in the
error function without using a large value of K [3]. The technique entails the
application of nonuniform variable sampling and it is described in terms of the
filter-design problem considered earlier. The steps involved are as follows:

1. Evaluate the error function in Eq. (8.4) with respect to a dense set of
uniformly-spaced frequencies that span the frequency band of interest,
say, ω̄1, ω̄2, . . . , ω̄L, where L is fairly large of the order of 10 × K.

2. Segment the frequency band of interest into K intervals.

212

3. For each of the K intervals, find the frequency that yields maximum error.
Let these frequencies be �

ω i for i = 1, 2, . . . , K.
4. Use frequencies �

ω i as sample frequencies in the evaluation of the objective
function, i.e., set ωi = �

ω i for i = 1, 2, . . . , K.

By applying the above nonuniform sampling technique before the start of
the second and subsequent optimizations, frequency points at which spikes
are beginning to form are located and are used as sample points in the next
optimization. In this way, the error at these frequencies is reduced and the
formation of spikes is prevented.

Assume that a digital filter is required to have a specified amplitude response
with respect to a frequency band B which extends from ω̄1 to ω̄L, and let ω̄1, ω̄2,
. . . , ω̄L be uniformly-spaced frequencies such that

ω̄i = ω̄i−1 + ∆ω

for i = 2, 3, . . . , L where

∆ω =
ω̄L − ω̄1

L − 1
(8.18)

These frequency points may be referred to as virtual sample points. Band B
can be segmented into K intervals, say, Ω1 to ΩK such that Ω1 and ΩK are of
width ∆ω/2, Ω2 and ΩK−1 are of width l∆ω, and Ωi for i = 3, 4, . . . , K − 2
are of width 2l∆ω where l is an integer. These requirements can be satisfied
by letting

Ω1 =
{
ω : ω̄1 ≤ ω < ω̄1 + 1

2∆ω
}

Ω2 =
{
ω : ω̄1 + 1

2∆ω ≤ ω < ω̄1 + (l + 1
2)∆ω

}
Ωi =

{
ω : ω̄1 +

[
(2i − 5)l + 1

2

]
∆ω ≤ ω < ω̄1 +

[
(2i − 3)l + 1

2

]
∆ω

}
for i = 3, 4, . . . , K − 2

ΩK−1 ={
ω : ω̄1 +

[
(2K − 7)l + 1

2

]
∆ω ≤ ω < ω̄1 +

[
(2K − 6)l + 1

2

]
∆ω

}
and

ΩK =
{
ω : ω̄1 +

[
(2K − 6)l + 1

2

]
∆ω ≤ ω ≤ ω̄L

}
where

ω̄L = ω̄1 + [(2K − 6)l + 1]∆ω. (8.19)

The scheme is feasible if

L = (2K − 6)l + 2 (8.20)

according to Eqs. (8.18) and (8.19), and is illustrated in Fig. 8.2 for the case
where K = 8 and l = 5.

Minimax Methods 213

Ω1

Ω2 Ω3

ΩK−2

ΩK∆ω

ω1 ω2 ω3

ωK−2 ωK−1 ωK

ΩK−1

ω1
 _

ω5

 _
ω13
 _

ω9
 _

ωL

 _
ωL−12

 _
ωL−8

 _
ωL−4

 _

Figure 8.2. Segmentation of frequency axis.

In the above segmentation scheme, there is only one sample in each of inter-
vals Ω1 and ΩK , l samples in each of intervals Ω2 and ΩK−1, and 2l samples
in each of intervals Ω3, Ω4, . . . ,ΩK−2, as can be seen in Fig. 8.2. Thus step 3
of the technique will yield �

ω 1 = ω̄1 and �
ω K = ω̄L, i.e., the lower and upper

band edges are forced to remain sample frequencies throughout the optimiza-
tion. This strategy leads to two advantages: (a) the error at the band edges is
always minimized, and (b) a somewhat higher sampling density is maintained
near the band edges where spikes are more likely to occur.

In the above technique, the required amplitude response, M0(ω), needs to be
specified with respect to a dense set of frequency points. If M0(ω) is piecewise
constant as in Fig. 8.1, then the required values of M0(ω) can be easily obtained.
If, on the other hand, M0(ω) is specified by an array of numbers, the problem can
be overcome through the use of interpolation. Let us assume that the amplitude
response is specified at frequencies ω̃1 to ω̃S , where ω̃1 = ω̄1 and ω̃S = ω̄L.
The required amplitude response for any frequency interval spanned by four
successive specification points, say, ω̃j ≤ ω ≤ ω̃j+3, can be represented by a
third-order polynomial of ω of the form

M0(ω) = a0j + a1jω + a2jω
2 + a3jω

3 (8.21)

and by varying j from 1 to S − 3, a set of S − 3 third-order polynomials
can be obtained which can be used to interpolate the amplitude response to
any desired degree of resolution. To achieve maximum interpolation accuracy,
each of these polynomials should as far as possible be used at the center of the
frequency range of its validity. Hence the first and last polynomials should be
used for the frequency ranges ω̃1 ≤ ω < ω̃3 and ω̃S−2 ≤ ω ≤ ω̃S , respectively,
and the jth polynomial for 2 ≤ j ≤ S − 4 should be used for the frequency
range ω̃j+1 ≤ ω < ω̃j+2.

214

Coefficients aij for i = 0, 1, . . . , 3 and j = 1 to S − 3 can be determined
by computing ω̃m, (ω̃m)2, and (ω̃m)3 for m = j, j +1, . . . , j +3, and then
constructing the system of simultaneous equations

Ω̃jaj = M0j (8.22)

where

aj = [a0j · · · a3j] and M0j = [M0(ω̃j) · · · M0(ω̃j+3)]T

are column vectors and Ω̃j is the 4 × 4 matrix given by

Ω̃j =

⎡
⎢⎢⎣

1 ω̃j (ω̃j)2 (ω̃j)3

1 ω̃j+1 (ω̃j+1)2 (ω̃j+1)3

1 ω̃j+2 (ω̃j+2)2 (ω̃j+2)3

1 ω̃j+3 (ω̃j+3)2 (ω̃j+3)3

⎤
⎥⎥⎦

Therefore, from Eq. (8.22) we have

aj = Ω̃
−1
j M0j . (8.23)

The above nonuniform sampling technique can be incorporated in Algorithm
8.1 by replacing steps 1, 2, and 4 as shown below. The filter to be designed
is assumed to be a single-band filter, for the sake of simplicity, although the
technique is applicable to filters with an arbitrary number of bands.

Algorithm 8.3 Modified version of Algorithm 8.1
Step 1

a. Input �x0 and ε1. Set k = 1, p = 2, µ = 2, and
�

E 0 = 1099.
Initialize K.

b. Input the required amplitude response M0(ω̃m) for m =
1, 2, . . . , S.

c. Compute L and ∆ω using Eqs. (8.20) and (8.18), respectively.
d. Compute coefficients aij for i = 0, 1, . . . , 3 and j = 1 to S − 3

using Eq. (8.23).
e. Compute the required ideal amplitude response for

ω̄1, ω̄2, . . . , ω̄L using Eq. (8.21).

Step 2
Set ω1 = ω̄1, ω2 = ω̄1+l, ωi = ω̄2(i−2)l+1 for i = 3, 4, . . . , K − 2,
ωK−1 = ω̄L−l, and ωK = ω̄L.

Minimax Methods 215

Step 3
Using �xk−1 as initial value, minimize Ψk(x) in Eq. (8.6a) with respect

to x, to obtain �xk. Set
�

Ek =
�

E (�x).
Step 4

a. Compute |ei(
�xk)| for i = 1, 2, . . . , L using Eqs. (8.4) and

(8.6b).
b. Determine frequencies �

ω i for i = 1, 2, . . . , K and

�

P k =
�

P (�xk) = max
1≤i≤L

|ei(
�xk)| (8.24)

c. Set �
ω i for i = 1, 2, . . . , K.

d. If |
�

Ek−1 −
�

Ek| < ε1 and |
�

P k −
�

Ek| < ε1, then output �xk and
�

Ek, and stop. Otherwise, set p = µp, k = k +1 and go to step 3.

The above nonuniform variable sampling technique can be applied to Algo-
rithm 8.2 by replacing steps 1, 2, and 6 as follows:

Algorithm 8.4 Modified version of Algorithm 8.2
Step 1

a. Input �x0 and ε1. Set k = 1, ξ1 = 0, λ11 = λ12 = · · · = λ1K =
1, and

�

E0 = 1099. Initialize K.
b. Input the required amplitude response M0(ω̃m) for m =

1, 2, . . . , S.
c. Compute L and ∆ω using Eqs. (8.20) and (8.18), respectively.
d. Compute coefficients aij for i = 0, 1, . . . , 3 and j = 1 to S − 3

using Eq. (8.23).
e. Compute the required ideal amplitude response for ω̄1, ω̄2,

. . . , ω̄L using Eq. (8.21).

Step 2
Set ω1 = ω̄1, ω2 = ω̄1+l, ωi = ω̄2(i−2)l+1 for i = 3, 4, . . . , K − 2,
ωK−1 = ω̄L−l, and ωK = ω̄L.
Step 3
Using �xk−1 as initial value, minimize Ψ(x, λk, ξk) with respect to x
to obtain �xk. Set

�

Ek =
�

E(�xk) = max
1≤i≤K

|ei(
�xk)|

Step 4
Compute

Φk =
∑
i∈I1

λkiφi(
�xk, ξk) +

∑
i∈I2

φi(
�xk, ξk)

216

and update

λ(k+1)i =

⎧⎪⎪⎨
⎪⎪⎩

λkiφi(
�xk, ξk)/Φk for i ∈ I1

φi(
�xk, ξk)/Φk for i ∈ I2

0 for i ∈ I3

for i = 1, 2, . . . , K where

I1 = {i : φi(
�xk, ξk) > 0 and λki > 0}

I2 = {i : φi(
�xk, ξk) > 0 and λki = 0}

and

I3 = {i : φi(
�xk, ξk) ≤ 0}

Step 5
Compute

ξk+1 =
K∑

i=1

λ(k+1)i|ei(
�x)|

Step 6

a. Compute |ei(
�xk)| for i = 1, 2, . . . , L using Eqs. (8.4) and

(8.6b).
b. Determine frequencies �

ω i for i = 1, 2, . . . , K and

�

P k =
�

P (�xk) = max
1≤i≤L

|ei(
�xk)|

c. Set ωi = �
ω i for i = 1, 2, . . . , K.

d. If |
�

Ek−1 −
�

Ek| < ε1 and |
�

P k −
�

Ek| < ε1, then output �xk and
�

Ek, and stop. Otherwise, set k = k + 1 and go to step 3.

In step 2, the initial sample frequencies ω1 and ωK are assumed to be at
the left-hand and right-hand band edges, respectively; ω2 and ωK−1 are taken
to be the last and first frequencies in intervals Ω2 and ΩK−1, respectively; and
each of frequencies ω3, ω4, . . . , ωK−2 is set near the center of each of intervals
Ω3, Ω4, . . . , ΩK−2. This assignment is illustrated in Fig. 8.2 for the case where
K = 8 and l = 5.

Without the nonuniform sampling technique, the number of samples K
should be chosen to be of the order of 20 to 30 times the number of vari-
ables, depending on the selectivity of the filter, as was mentioned in the first

Minimax Methods 217

paragraph of Sec. 8.4. If the above technique is used, the number of virtual
sample points is approximately equal to 2l×K, according to Eq. (8.20). As l is
increased above unity, the frequencies of maximum error, �

ω i, become progres-
sively more precise, owing to the increased resolution; however, the amount
of computation required in step 4 of Algorithm 8.3 or step 6 of Algorithm 8.4
is proportionally increased. Eventually, a situation of diminishing returns is
reached whereby further increases in l bring about only slight improvements
in the precision of the �

ω i’s. With l = 5, a value of K in the range of 2 to
6 times the number of variables was found to give good results for a diverse
range of designs. In effect, the use of the nonuniform sampling technique in
the minimax algorithms described would lead to a reduction in the amount of
computation of the order of 75 percent.

Example 8.2
(a) Applying Algorithm 8.1, design a 10th-order lowpass digital filter as-

suming a transfer function of the form given in Eq. (8.2). The desired
amplitude response is

M0(ω) =
{

1 for 0 ≤ ω ≤ ωp rad/s
0 for ωa ≤ ω ≤ π rad/s

(8.25)

where ωp = 0.4π, ωa = 0.5π, and the sampling frequency is 2π.
(b) Applying Algorithm 8.3, design the digital filter specified in part (a).

Solution (a) Using Eqs. (8.2) and (8.3), the amplitude response of the filter is
obtained as

M(x, ω) =

∣∣∣∣∣a0 + a1e
−jω + · · · + aNe−jNω

1 + b1e−jω + · · · + bNe−jNω

∣∣∣∣∣ (8.26)

If we denote

a =

⎡
⎢⎢⎢⎣

a0

a1
...

aN

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣

b1

b2
...

bN

⎤
⎥⎥⎥⎦ , c(ω) =

⎡
⎢⎢⎢⎣

1
cos ω

...
cos Nω

⎤
⎥⎥⎥⎦ , and s(ω) =

⎡
⎢⎢⎢⎣

0
sinω

...
sinNω

⎤
⎥⎥⎥⎦

then x = [aT bT]T . Thus the error function in Eq. (8.4) can be expressed as

ei(x) = M(x, ωi) − M0(ωi)

=
{[aTc(ωi)]2 + [aT s(ωi)]2}1/2

{[1 + bT ĉ(ωi)]2 + [bT ŝ(ωi)2}1/2
− M0(ωi) (8.27)

218

where

ĉ(ω) =

⎡
⎢⎣ cos ω

...
cos Nω

⎤
⎥⎦ and ŝ(ω) =

⎡
⎢⎣ sinω

...
sinNω

⎤
⎥⎦

The gradient of the objective function Ψk(x) can be obtained as

∇|ei(x)| = sgn [ei(x)]∇ei(x) (8.28a)

by using Eqs. (8.7) and (8.27), where

∇ei(x) =

⎡
⎣ ∂ei(x)

∂a

∂ei(x)
∂b

⎤
⎦ (8.28b)

∂ei(x)
∂a

=
M(x, ωi){[aTc(ωi)]c(ωi) + [aT s(ωi)]s(ωi)}

[aTc(ωi)]2 + [aT s(ωi)]2
(8.28c)

∂ei(x)
∂b

=
M(x, ωi){[1 + bT ĉ(ωi)]ĉ(ωi) + [bT ŝ(ωi)]ŝ(ωi)}

[1 + bT ĉ(ωi)]2 + [bT ŝ(ωi)]2

(8.28d)

The above minimax problem was solved by using a MATLAB program that
implements Algorithm 8.1. The program accepts the parameters ωp, ωa, K, and
ε1, as inputs and produces the filter coefficient vectors a and b as output. Step
3 of the algorithm was implemented using the quasi-Newton BFGS algorithm
alluded to in Example 8.1 with a termination tolerance ε2. The program also
generates plots for the approximation error |e(x, ω)| and the amplitude response
of the filter designed. The initial point was taken to be x0 = [aT

0 bT
0]T where

a0 = [1 1 · · · 1]T and b0 = [0 0 · · · 0]T . The number of actual sample points,
K, was set to 600, i.e., 267 and 333 in the frequency ranges 0 ≤ ω ≤ 0.4π
and 0.5π ≤ ω ≤ π, respectively, and ε1 and ε2 were set to 10−6 and 10−9,
respectively. The algorithm required seven iterations and 198.20 s of CPU time
on a 3.1 GHz Pentium 4 PC to converge to the solution point x = [aT bT]T

where

a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00735344
0.02709762
0.06800724
0.12072224
0.16823049
0.18671705
0.16748698
0.11966157
0.06704789
0.02659087
0.00713664

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3.35819120
8.39305902

−13.19675182
16.35127992

−14.94617828
10.68550651

− 5.65665532
2.15596724

− 0.52454530
0.06260344

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Minimax Methods 219

Note that design problems of this type have multiple possible solutions and
the designer would often need to experiment with different initial points as well
as different values of K, ε1, and ε2, in order to achieve a good design.

The transfer function of a digital filter must have poles inside the unit circle of
the z plane to assure the stability of the filter (see Sec. B.7). Since the minimax
algorithms of this chapter are unconstrained, no control can be exercised on the
pole positions and, therefore, a transfer function may be obtained that represents
an unstable filter. Fortunately, the problem can be eliminated through a well-
known stabilization technique. In this technique, all the poles of the transfer
function that are located outside the unit circle are replaced by their reciprocals
and the transfer function is then multiplied by an appropriate multiplier constant
which is equal to the reciprocal of the product of these poles (see p. 535 of [4]).
For example, if

H(z) =
N(z)
D(z)

=
N(z)

D′(z)
∏k

i=1(z − pui)
(8.29)

is a transfer function with k poles pu1 , pu2 , . . . , puk
that lie outside the unit

circle, then a stable transfer function that yields the same amplitude response
can be obtained as

H ′(z) = H0
N(z)

D′(z)
∏k

i=1(z − 1/pui)
=

∑N
i=0 a′izi

1 +
∑N

i=1 b′izi
(8.30a)

where

H0 =
1∏k

i=1 pui

(8.30b)

In the design problem considered above, the poles of H(z) were obtained
as shown in column 2 of Table 8.1 by using command roots of MATLAB.
Since |pi| > 1 for i = 1 and 2, a complex-conjugate pair of poles are located
outside the unit circle, which render the filter unstable. By applying the above
stabilization technique, the poles in column 3 of Table 8.1 were obtained and
multiplier constant H0 was calculated as H0 = 0.54163196.

Table 8.1 Poles of the IIR filters for Example 8.2 (a)

i Poles of the unstable filter Poles of the stabilized filter
1 0.51495917 + 1.25741370j 0.27891834 + 0.68105544j
2 0.51495917 − 1.25741370j 0.27891834 − 0.68105544j
3 0.23514844 + 0.92879138j 0.23514844 + 0.92879138j
4 0.23514844 − 0.92879138j 0.23514844 − 0.92879138j
5 0.24539982 + 0.82867789j 0.24539982 + 0.82867789j
6 0.24539982 − 0.82867789j 0.24539982 − 0.82867789j
7 0.32452615 + 0.46022220j 0.32452615 + 0.46022220j
8 0.32452615 − 0.46022220j 0.32452615 − 0.46022220j
9 0.35906202 + 0.16438481j 0.35906202 + 0.16438481j
10 0.35906202 − 0.16438481j 0.35906202 − 0.16438481j

220

By using Eq. (8.30a), coefficients a′ and b′ were obtained as

a′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00398286
0.01467694
0.03683489
0.06538702
0.09111901
0.10113192
0.09071630
0.06481253
0.03631528
0.01440247
0.00386543

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.88610955
5.98928394

−8.20059471
8.75507027

−7.05776764
4.44624218

−2.10292453
0.72425530

−0.16255342
0.01836567

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The largest magnitude of the poles of the modified transfer function is 0.9581,
and thus the filter is stable.

The approximation error |e(x, ω)| over the passband and stopband is plotted
in Fig. 8.3 and the amplitude response of the filter is shown in Fig. 8.4.

(b) For part (b), the number of sampling points was set to 65, i.e., 29 and 36
in the frequency ranges 0 ≤ ω ≤ ωp and ωa ≤ ω ≤ π, respectively. The initial
point and parameters ε1 and ε2 were the same as in part (a), and parameter l
was set to 5. It took Algorithm 8.3 six iterations and 18.73 s of CPU time to
converge to the solution point x = [aT bT] where

a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00815296
0.03509437
0.09115541
0.16919427
0.24129855
0.27357739
0.24813555
0.17915173
0.09963780
0.03973358
0.00981327

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.02896582
3.98574025

−3.65125139
2.56127374

−0.11412527
−1.16704564

1.36351210
−0.77298905

0.25851314
−0.03992105

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

As can be verified, a complex-conjugate pair of poles of the transfer func-
tion obtained are located outside the unit circle. By applying the stabilization
technique described in part (a), the coefficients of the modified transfer function

Minimax Methods 221

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

Figure 8.3. Error |e(x, ω)| versus ω for Example 8.2(a).

0 0.5 1 1.5 2 2.5 3
−120

−100

−80

−60

−40

−20

0

Figure 8.4. Amplitude response of the lowpass filter for Example 8.2(a).

222

were obtained as

a′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00584840
0.02517440
0.06538893
0.12136889
0.17309179
0.19624651
0.17799620
0.12851172
0.07147364
0.02850227
0.00703940

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.83238201
3.04688036

−2.42167890
1.31022752
0.27609329

−0.90732976
0.84795926

−0.43579279
0.13706106

−0.02054213

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The largest magnitude of the poles of the modified transfer function is 0.9537
and thus the filter is stable.

The approximation error |e(x, ω)| over the passband and stopband is plotted
in Fig. 8.5 and the amplitude response of the filter is depicted in Fig. 8.6.

The next example illustrates the application of Algorithms 8.2 and 8.4.

Example 8.3
(a) Applying Algorithm 8.2, design the 10th-order lowpass digital filter spec-

ified in Example 8.2(a).
(b) Applying Algorithm 8.4, carry out the same design.

Solution (a) The required design was obtained by using a MATLAB program
that implements Algorithm 8.2 following the approach outlined in the solution
of Example 8.2. The number of actual sample points, K, was set to 650, i.e., 289
and 361 in the frequency ranges 0 ≤ ω ≤ ωp and ωa ≤ ω ≤ π, respectively, and
ε1 and ε2 were set to 3×10−9 and 10−15, respectively. The initial point x0 was
the same as in part (a) of Example 8.2. Algorithm 8.2 required eight iterations
and 213.70 s of CPU time to converge to the solution point x = [aT bT]T

where

a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.05487520
0.23393481
0.59719051
1.09174124
1.53685612
1.71358243
1.53374494
1.08715408
0.59319673
0.23174666
0.05398863

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 5.21138732
18.28000994

−39.14255091
66.45234153

−78.76751214
76.41046395

−50.05505315
25.84116347

− 6.76718946
0.68877840

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Minimax Methods 223

0 0.5 1 1.5 2 2.5 3
0

1

2

3
x 10

−4

Figure 8.5. Error |e(x, ω)| versus ω for Example 8.2(b).

0 0.5 1 1.5 2 2.5 3
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Figure 8.6. Amplitude response of the lowpass filter for Example 8.2(b).

224

As can be shown, the transfer function obtained has three complex-conjugate
pairs of poles that are located outside the unit circle. By applying the stabi-
lization technique described in part (a) of Example 8.2, the coefficients of the
modified transfer function were obtained as

a′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00421864
0.01798421
0.04591022
0.08392980
0.11814890
0.13173509
0.11790972
0.08357715
0.04560319
0.01781599
0.00415048

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.49921097
4.87575840

−6.01897510
5.92269310

−4.27567184
2.41390695

−0.98863984
0.28816806

−0.05103514
0.00407073

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The largest magnitude of the modified transfer function is 0.9532 and thus the
filter is stable.

The approximation error |e(x, ω)| over the passband and stopband is plotted
in Fig. 8.7 and the amplitude response of the filter is depicted in Fig. 8.8.

(b) As in Example 8.2(b), the number of sampling points was set to 65, i.e.,
29 and 36 in the frequency ranges 0 ≤ ω ≤ ωp and ωa ≤ ω ≤ π, respectively,
and ε1 and ε2 were set to ε = 10−9 and ε2 = 10−15, respectively. The initial
point x0 was the same as in part (a) and parameter l was set to 4. Algorithm 8.4
required sixteen iterations and 48.38 s of CPU time to converge to a solution
point x = [aT bT]T where

a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.01307687
0.05061800
0.12781582
0.22960471
0.32150671
0.35814899
0.32167525
0.22984873
0.12803465
0.05073663

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 4.25811576
11.94976697

−20.27972610
27.10889061

−26.10756891
20.09430301

−11.29104740
4.74405652

− 1.28479278
0.16834783

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

These coefficients correspond to an unstable transfer function with one pair of
poles outside the unit circle. By applying the stabilization technique,

Minimax Methods 225

0 0.5 1 1.5 2 2.5 3
0

1

2
x 10

−4

Figure 8.7. Error |e(x, ω)| versus ω for Example 8.3(a).

0 0.5 1 1.5 2 2.5 3
−120

−100

−80

−60

−40

−20

0

Figure 8.8. Amplitude response of the lowpass filter for Example 8.3(a).

226

the coefficients of the modified transfer function were obtained as

a′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00392417
0.01518969
0.03835557
0.06890085
0.09647924
0.10747502
0.09652981
0.06897408
0.03842123
0.01522528
0.00393926

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.80254807
5.74653112

−7.72509562
8.13565547

−6.44870979
3.99996323

−1.85761204
0.62780900

−0.13776283
0.01515986

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The largest magnitude of the poles of the modified transfer function is 0.9566
and thus the filter is stable.

The approximation error |e(x, ω)| over the passband and stopband is plotted
in Fig. 8.9 and the amplitude response of the filter is depicted in Fig. 8.10.

From the designs carried out in Examples 8.2 and 8.3, we note that the use
of the least-pth method with uniform sampling in Example 8.2(a) resulted in
the lowest minimax error but a very large density of sample points was required
to achieve a good design, which translates into a large amount of computation.
Through the use of nonuniform variable sampling in Example 8.2(b), a design
of practically the same quality was achieved with much less computation.

It should be mentioned that in the Charalambous algorithm, the value of ξ
becomes progressively larger and approaches the minimum value of the ob-
jective function from below as the optimization progresses. As a result, the
number of sample points that remain active is progressively reduced, i.e., the
sizes of index sets I1 and I2 become progressively smaller. Consequently, by
avoiding the computation of the partial derivatives of ei(x) for i ∈ I3 through
careful programming, the evaluation of gradient ∇Ψ (see Eq. (8.11)) can be
carried out much more efficiently. In the above examples, we have not taken
advantage of the above technique but our past experience has shown that when
it is fully implemented, the Charalambous algorithm usually requires between
10 to 40% of the computation required by the least-pth method, depending on
the application.

Finally, it should be mentioned that with optimization there is always an
element of chance in obtaining a good design and, therefore, one would need
to carry out a large number of different designs using a large set of randomly
chosen initial points to be able to compare two alternative design algorithms
such as Algorithms 8.1 and 8.2.

Minimax Methods 227

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−4

Figure 8.9. Error |e(x, ω)| versus ω for Example 8.3(b).

0 0.5 1 1.5 2 2.5 3
−120

−100

−80

−60

−40

−20

0

Figure 8.10. Amplitude response of the lowpass filter for Example 8.3(b).

228

References
1 C. Charalambous, “A unified review of optimization,” IEEE Trans. Microwave Theory and

Techniques, vol. MTT-22, pp. 289–300, Mar. 1974.
2 C. Charalambous, “Acceleration of the least-pth algorithm for minimax optimization with

engineering applications,” Mathematical Programming, vol. 17, pp. 270–297, 1979.
3 A. Antoniou, “Improved minimax optimisation algorithms and their application in the design

of recursive digital filters,” Proc. Inst. Elect. Eng., part G, vol. 138, pp. 724–730, Dec. 1991.
4 A. Antoniou, Digital Signal Processing: Signals, Systems, and Filters, McGraw-Hill, New

York, 2005.
5 C. Charalambous and A. Antoniou, “Equalisation of recursive digital filters,” Proc. Inst.

Elect. Eng., part G, vol. 127, pp. 219–225, Oct. 1980.
6 C. Charalambous, “Design of 2-dimensional circularly-symmetric digital filters,” Proc. Inst.

Elect. Eng., part G, vol. 129, pp. 47–54, Apr. 1982.

Problems
8.1 Consider the overdetermined system of nonlinear equations

x2
1 − x2

2 − x1 − 3x2 = 2
x3

1 − x4
2 = −2

x2
1 + x3

2 + 2x1 − x2 = −1.1

(a) Using the Gauss-Newton method, find a solution for the above equa-
tions, xgn, by minimizing

F (x) =
3∑

i=1

f2
i (x)

where

f1(x) = x2
1 − x2

2 − x1 − 3x2 − 2
f2(x) = x3

1 − x4
2 + 2

f3(x) = x2
1 + x3

2 + 2x1 − x2 + 1.1

(b) Applying Algorithm 8.2, find a minimax solution, xminimax, by solv-
ing the minimax problem

minimize
x

max
1≤i≤3

|fi(x)|

(c) Evaluate and compare the equation errors for the solutions xgn and
xminimax.

8.2 Verify the expression for the gradient∇ei(x)given in Eqs. (8.28b), (8.28c),
and (8.28d).

Minimax Methods 229

8.3 Applying Algorithm 8.1, design a 12th-order highpass digital filter, as-
suming a desired amplitude response

M0(ω) =
{

0 for 0 ≤ ω ≤ 0.45π rad/s
1 for 0.5π ≤ ω ≤ π rad/s

The transfer function of the filter is of the form given by Eq. (8.2).

8.4 Repeat Problem 8.3 by applying Algorithm 8.2.

8.5 Repeat Problem 8.3 by applying Algorithm 8.3.

8.6 Repeat Problem 8.3 by applying Algorithm 8.4.

8.7 Applying Algorithm 8.1, design a 12th-order bandpass filter, assuming a
desired amplitude response

M0(ω) =

⎧⎨
⎩

0 for 0 ≤ ω ≤ 0.3π rad/s
1 for 0.375π ≤ ω ≤ 0.625π rad/s
0 for 0.7π ≤ ω ≤ π rad/s

The transfer function of the filter is of the form given by Eq. (8.2).

8.8 Repeat Problem 8.7 by applying Algorithm 8.2.

8.9 Repeat Problem 8.7 by applying Algorithm 8.3.

8.10 Repeat Problem 8.7 by applying Algorithm 8.4.

8.11 Applying Algorithm 8.1, design a 12th-order bandstop filter, assuming a
desired amplitude response

M0(ω) =

⎧⎨
⎩

1 for 0 ≤ ω ≤ 0.35π rad/s
0 for 0.425π ≤ ω ≤ 0.575π rad/s
1 for 0.65π ≤ ω ≤ π rad/s

The transfer function of the filter is of the form given by Eq. (8.2).

8.12 Repeat Problem 8.11 by applying Algorithm 8.2.

8.13 Repeat Problem 8.11 by applying Algorithm 8.3.

8.14 Repeat Problem 8.11 by applying Algorithm 8.4.

Chapter 9

APPLICATIONS OF UNCONSTRAINED
OPTIMIZATION

9.1 Introduction

Optimization problems occur in many disciplines, for example, in engineer-
ing, physical sciences, social sciences, and commerce. In this chapter, we
demonstrate the usefulness of the unconstrained optimization algorithms stud-
ied in this book by applying them to a number of problems in engineering.
Applications of various constrained optimization algorithms will be presented
in Chap. 16.

Optimization is particularly useful in the various branches of engineering
like electrical, mechanical, chemical, and aeronautical engineering. The ap-
plications we consider here and in Chap. 16 are in the areas of digital signal
processing, pattern recognition, automatic control, robotics, and telecommuni-
cations. For each selected application, sufficient background material is pro-
vided to assist the reader to understand the application. The steps involved
are the problem formulation phase which converts the problem at hand into
an unconstrained optimization problem, and the solution phase which involves
selecting and applying an appropriate optimization algorithm.

In Sec. 9.2, we examine a problem of point-pattern matching in an uncon-
strained optimization framework. To this end, the concept of similarity trans-
formation is introduced to quantify the meaning of ‘best pattern matching’. In
addition, it is shown that the optimal pattern from a database that best matches a
given point pattern can be obtained by minimizing a convex quadratic function.
In Sec. 9.3, we consider a problem known as the inverse kinematics of robotic
manipulators which entails a system of nonlinear equations. The problem is first
converted into an unconstrained minimization problem and then various meth-
ods studied earlier are applied and the results obtained are compared in terms
of solution accuracy and computational efficiency. Throughout the discussion,

232

the advantages of using an optimization-based solution method relative to a
conventional closed-form method are stressed. In Sec. 9.4, we obtain weighted
least-squares and minimax designs of finite-duration impulse-response (FIR)
digital filters using unconstrained optimization.

9.2 Point-Pattern Matching
9.2.1 Motivation

A problem that arises in pattern recognition is the so-called point-pattern
matching problem. In this problem, a pattern such as a printed or handwritten
character, numeral, symbol, or even the outline of a manufactured part can be
described by a set of points, say,

P = {p1, p2, . . . , pn} (9.1)

where

pi =
[
pi1

pi2

]
is a vector in terms of the coordinates of the ith sample point. If the number
of points in P , n, is sufficiently large, then P in Eq. (9.1) describes the object
accurately and P is referred to as a point pattern of the object. The same object
viewed from a different distance and/or a different angle will obviously corre-
spond to a different point pattern, P̃ , and it is of interest to examine whether or
not two given patterns are matched to within a scaled rotation and a translation.

In a more general setting, we consider the following pattern-matching prob-
lem: We have a database that contains N standard point patterns {P1, P2, . . . ,
PN} where each Pi has the form of Eq. (9.1) and we need to find a pattern from
the database that best matches a given point pattern Q = {q1, q2, . . . , qn}.
In order to solve this problem, two issues need to be addressed. First, we need
to establish a measure to quantify the meaning of ‘best matching’. Second,
we need to develop a solution method to find an optimal pattern P∗ from the
database that best matches pattern Q based on the chosen measure.

9.2.2 Similarity transformation
Two point patterns P and P̃ are said to be similar if one pattern can be

obtained by applying a scaled rotation plus a translation to the other. If pattern
P is given by Eq. (9.1) and

P̃ = {p̃1, p̃2, . . . , p̃n} with p̃i = [p̃i1 p̃i2]T

then P and P̃ are similar if and only if there exist a rotation angle θ, a scaling
factor η, and a translation vector r = [r1 r2]T such that the relation

p̃i = η

[
cos θ − sin θ
sin θ cos θ

]
pi +

[
r1

r2

]
(9.2)

Applications of Unconstrained Optimization 233

holds for i = 1, 2, . . . , n. A transformation that maps pattern P to pattern Q
is said to be a similarity transformation. From Eq. (9.2), we see that a similarity
transformation is characterized by the parameter column vector [η θ r1 r2]T .
Note that the similarity transformation is a nonlinear function of parameters η
and θ. This nonlinearity can lead to a considerable increase in the amount of
computation required by the optimization process. This problem can be fixed
by applying the variable substitution

a = η cos θ, b = η sin θ

to Eq. (9.2) to obtain

p̃i =
[
a −b
b a

]
pi +

[
r1

r2

]
(9.3)

Thus the parameter vector becomes x = [a b r1 r2]T . Evidently, the similarity
transformation now depends linearly on the parameters.

9.2.3 Problem formulation
In a real-life problem, a perfect match between a given point pattern Q and

a point pattern in the database is unlikely, and the best we can do is identify the
closest pattern to Q to within a similarity transformation.

Let
Q = {q1, q2, . . . , qn}

be a given pattern and assume that

P̃(x) = {p̃1, p̃2, . . . , p̃n}

is a transformed version of pattern

P = {p1, p2, . . . , pn}

Let these patterns be represented by the matrices

Q = [q1 q2 · · · qn], P̃(x) = [p̃1 p̃2 · · · p̃n], and P = [p1 p2 · · · pn]

respectively. A transformed pattern P̃ that matches Q can be obtained by
solving the unconstrained optimization problem

minimize
x

‖P̃(x) − Q‖2
F (9.4)

where ‖ · ‖F denotes the Frobenius norm (see Sec. A.8.2). The solution of
the above minimization problem corresponds to finding the best transformation
that would minimize the difference between patterns P̃ and Q in the Frobenius
sense. Since

‖P̃(x) − Q‖2
F =

n∑
i=1

‖p̃i(x) − qi‖2

234

the best transformation in the least-squares sense is obtained.
Now if x∗ is the minimizer of the problem in Eq. (9.4), then the error

e(P̃,Q) = ‖P̃(x∗) − Q‖F (9.5)

is a measure of the dissimilarity between patterns P̃ andQ. Obviously, e(P̃,Q)
should be as small as possible and a zero value would correspond to a perfect
match.

9.2.4 Solution of the problem in Eq. (9.4)
On using Eq. (9.3), Eq. (9.5) gives

||P̃(x) − Q||2F =
n∑

i=1

||p̃i(x) − qi||2

=
n∑

i=1

∣∣∣∣
∣∣∣∣
[
api1 − bpi2 + r1

bpi1 + api2 + r2

]
− qi

∣∣∣∣
∣∣∣∣2

=
n∑

i=1

∣∣∣∣
∣∣∣∣
[
pi1 −pi2 1 0
pi2 pi1 0 1

]
x− qi

∣∣∣∣
∣∣∣∣2

= xT Hx− 2xTb + κ (9.6a)

where

H =

⎡
⎢⎢⎢⎢⎣

n∑
i=1

RT
i Ri

n∑
i=1

RT
i

n∑
i=1

Ri nI2

⎤
⎥⎥⎥⎥⎦ , Ri =

[
pi1 −pi2

pi2 pi1

]
(9.6b)

b =
n∑

i=1

[Ri I2]Tqi (9.6c)

κ =
n∑

i=1

||qi||2 (9.6d)

(see Prob. 9.1(a)). It can be readily verified that the Hessian H in Eq. (9.6b)
is positive definite (see Prob. 9.1(b)) and hence it follows from Chap. 2 that
the objective function in Eq. (9.4) is globally strictly convex and, therefore,
has a unique global minimizer. Using Eq. (9.6a), the gradient of the objective
function can be obtained as

g(x) = 2Hx− 2b

The unique global minimizer can be obtained in closed form by letting

g(x) = 2Hx − 2b = 0

Applications of Unconstrained Optimization 235

and hence
x∗ = H−1b (9.7)

Since H is a positive definite matrix of size 4× 4, its inverse exists and is easy
to evaluate (see Prob. 9.1(c)).

9.2.5 Alternative measure of dissimilarity
As can be seen in Eq. (9.6a), the Frobenius norm of a matrix can be related

to the L2 norm of its column vectors. If we define two new vectors p̃(x) and q
as

p̃(x) =

⎡
⎢⎢⎢⎣

p̃1(x)
p̃2(x)

...
p̃n(x)

⎤
⎥⎥⎥⎦ and q =

⎡
⎢⎢⎢⎣

q1

q2
...

qn

⎤
⎥⎥⎥⎦

then Eq. (9.6) implies that

‖P̃(x) −Q‖2
F = ‖p̃(x) − q‖2

Hence the dissimilarity measure defined in Eq. (9.5) can be expressed as

e(P̃,Q) = ‖p̃(x) − q‖

An alternative of the above dissimilarity measure can be defined in terms of the
L2p norm

e2p(P̃,Q) = ‖p̃(x) − q‖2p

As p increases, e2p(P̃,Q) approaches the L∞ norm of p̃(x) − q which is
numerically equal to the maximum of the function. Therefore, solving the
problem

minimize
x

e2p(P̃,Q) = ‖p̃(x) − q‖2p (9.8)

with a sufficiently large p amounts to minimizing the maximum error between
symbols P̃ and Q. If we let

ri1 = [pi1 −pi2 1 0]T

ri2 = [pi2 pi1 0 1]T

qi =
[
qi1

qi2

]

then the objective function in Eq. (9.8) can be expressed as

e2p(x) =

{
n∑

i=1

[(rT
i1x − qi1)2p + (rT

i2x − qi2)2p]

}1/2p

(9.9a)

236

The gradient and Hessian of e2p(x) can be evaluated as

∇e2p(x) =
1

e2p−1
2p (x)

n∑
i=1

[(rT
i1x − qi1)2p−1 + (rT

i2x − qi2)2p−1] (9.9b)

and

∇2e2p(x) =
(2p − 1)
e2p−1
2p (x)

n∑
i=1

[(rT
i1x − qi1)2p−2ri1rT

i1 + (rT
i2x − qi2)2p−2ri2rT

i2]

−(2p − 1)
e2p(x)

∇e2p(x)∇T e2p(x) (9.9c)

respectively (see Prob. 9.3(a)). It can be shown that the Hessian ∇2e2p(x) in
Eq. (9.9c) is positive semidefinite for any x ∈ R4 and, therefore, the objective
function e2p(x) is globally convex (see Prob. 9.3(b)).

Since the Hessian of e2p(x) is a 4 × 4 positive semidefinite matrix and is
available in closed form, the Newton algorithm (Algorithm 5.3) with the Hessian
matrix Hk modified according to Eq. (5.13) is an appropriate algorithm for the
solution of the problem in Eq. (9.8). If the power 2p involved in the optimization
problem is a power of 2, i.e., 2p = 2K , then the problem at hand can be solved
by first solving the problem for the case p = 1 using Eq. (9.7). The minimizer so
obtained can then be used as the initial point to minimize the objective function
for p = 2. This procedure is then repeated for p = 4, 8, 16, . . . until two
successive optimizations give the same maximum error to within a prescribed
tolerance.

9.2.6 Handwritten character recognition
For illustration purposes, we consider the problem of recognizing a handwrit-

ten character using a database comprising the ten ‘standard’ characters shown
in Fig. 9.1. Each character in the database can be represented by a point pattern
of the form in Eq. (9.1) with n = 196, and the patterns for a, c, e, . . . can be
denoted as Pa, Pc, Pe, . . . where the subscript represents the associated char-
acter. Fig. 9.2 shows a set of sample points that form pattern Pa in the database.
The character to be recognized is plotted in Fig. 9.3. It looks like a rotated e,
it is of larger size relative to the corresponding character in the database, and
it is largely located in the third quadrant. To apply the method discussed, the
character in Fig. 9.3 is represented by a point pattern Q with n = 196.

The dissimilarity between each pattern Pcharacter in the database and pattern
Q is measured in terms of e(Pcharacter,Q) in Eq. (9.5) and e2p(Pcharacter,Q) in
Eq. (9.8) with 2p = 128. Note that the minimization of e(Pcharacter,Q) can be
viewed as a special case of the problem in Eq. (9.8) with p = 1, and its solution
can be obtained using Eq. (9.7). For the minimization of e128(Pcharacter,Q),
a sequential implementation of the Newton method as described in Sec. 9.2.5
was used to obtain the solution. The results obtained are summarized in Ta-

Applications of Unconstrained Optimization 237

0 5
1

2

3

4

0 2 4

1

2

3

4

1 2 3 4

1

2

3

4

2 4 6

2

4

6

0 5
1

2

3

4

2 4

1

2

3

4

0 5
1

2

3

4

2 4
1

2

3

4

5

2 4 6

2

4

6

2 4
1

2

3

4

Figure 9.1. Ten standard characters in the database.

0 1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

p1

p196

-11 -10 -9 -8 -7 -6 -5 -4 -3
-6

-5

-4

-3

-2

-1

0

1

2

Figure 9.2. Sample points in pattern Pa. Figure 9.3. A character to be recognized.

ble 9.1 where x∗
2 and x∗

128 denote the minimizers of e2(Pcharacter,Q) and
e128(Pcharacter,Q), respectively. From the table, it is evident that the char-
acter in Fig. 9.3 is most similar to character e.

See [1] for an in-depth investigation of dissimilarity and affine invariant
distances between two-dimensional point patterns.

9.3 Inverse Kinematics for Robotic Manipulators
9.3.1 Position and orientation of a manipulator

Typically an industrial robot, also known as a robotic manipulator, comprises
a chain of mechanical links with one end fixed relative to the ground and the
other end, known as the end-effector, free to move. Motion is made possible in
a manipulator by moving the joint of each link about its axis with an electric or
hydraulic actuator.

238

Table 9.1 Comparison of dissimilarity measures

Character x∗
2 e(P,Q) x∗

128 e128(P,Q)

a

⎡
⎢⎣

0.8606
0.0401

−8.9877
−4.4466

⎤
⎥⎦ 30.7391

⎡
⎢⎣

0.4453
0.3764

−6.8812
−4.0345

⎤
⎥⎦ 2.7287

c

⎡
⎢⎣

0.8113
1.3432

−5.5632
−7.0455

⎤
⎥⎦ 19.9092

⎡
⎢⎣
−0.0773

1.0372
−4.4867
−4.4968

⎤
⎥⎦ 2.0072

e

⎡
⎢⎣
−1.1334

1.9610
0.6778

−3.9186

⎤
⎥⎦ 5.2524

⎡
⎢⎣
−1.0895

2.0307
0.6513

−4.1631

⎤
⎥⎦ 0.4541

g

⎡
⎢⎣
−0.2723

0.5526
−3.5780
−3.1246

⎤
⎥⎦ 30.4058

⎡
⎢⎣
−0.0481

0.8923
−2.7970
−5.3467

⎤
⎥⎦ 2.5690

n

⎡
⎢⎣

0.0670
0.5845

−5.6081
−3.8721

⎤
⎥⎦ 33.0044

⎡
⎢⎣
−0.0745

0.6606
−5.2831
−3.9995

⎤
⎥⎦ 2.5260

o

⎡
⎢⎣

1.0718
1.3542

−6.0667
−8.3572

⎤
⎥⎦ 16.8900

⎡
⎢⎣
−0.2202

1.2786
−3.1545
−4.9915

⎤
⎥⎦ 2.1602

u

⎡
⎢⎣

0.3425
0.3289

−8.5193
−2.2115

⎤
⎥⎦ 33.6184

⎡
⎢⎣

0.0600
0.0410

−6.8523
−2.0225

⎤
⎥⎦ 2.8700

v

⎡
⎢⎣

1.7989
−0.2632
−12.0215
−6.2948

⎤
⎥⎦ 20.5439

⎡
⎢⎣

1.1678
0.0574

−9.6540
−5.9841

⎤
⎥⎦ 2.0183

y

⎡
⎢⎣
−0.1165

0.6660
−3.8249
−4.1959

⎤
⎥⎦ 30.1985

⎡
⎢⎣
−0.0064

0.6129
−4.2815
−4.1598

⎤
⎥⎦ 2.3597

z

⎡
⎢⎣

0.1962
1.7153

−3.2896
−6.9094

⎤
⎥⎦ 21.4815

⎡
⎢⎣

0.0792
1.1726

−4.4356
−4.8665

⎤
⎥⎦ 2.0220

One of the basic problems in robotics is the description of the position and
orientation of the end-effector in terms of the joint variables. There are two
types of joints: rotational joints for rotating the associated robot link, and
translational joints for pushing and pulling the associated robot link along a

Applications of Unconstrained Optimization 239

Link 1

Link 2

Link 3

x1

y1

z1

x0

y0z0

x2

y3

z4

x3

y2

z3

x4

y4

z2
a2

a3

d1

d4d3

θ1

θ2

θ3

{3}

{2}

{4}

{1}

{0}

Joint
axis 1

Joint
axis 2

Joint
axis 3

Figure 9.4. A three-link robotic manipulator.

straight line. However, joints in industrial robots are almost always rotational.
Fig. 9.4 shows a three-joint industrial robot, where the three joints can be used
to rotate links 1, 2, and 3. In this case, the end-effector is located at the end of
link 3, whose position and orientation can be conveniently described relative to
a fixed coordinate system which is often referred to as a frame in robotics. As
shown in Fig. 9.4, frame {0} is attached to the robot base and is fixed relative
to the ground. Next, frames {1}, {2}, and {3} are attached to joint axes 1, 2,
and 3, respectively, and are subject to the following rules:

• The z axis of frame {i} is along the joint axis i for i = 1, 2, 3.

• The x axis of frame {i} is perpendicular to the z axes of frames {i} and
{i + 1} for i = 1, 2, 3.

• The y axis of frame {i} is determined such that frame {i} is a standard
right-hand coordinate system.

• Frame {4} is attached to the end of link 3 in such a way that the axes of
frames {3} and {4} are in parallel and the distance between the z axes of
these two frames is zero.

Having assigned the frames, the relation between two consecutive frames
can be characterized by the so-called Denavit-Hartenberg (D-H) parameters
[2] which are defined in the following table:

ai: distance from the zi axis to the zi+1 axis measured along the xi axis
αi: angle between the zi axis and the zi+1 axis measured about the xi axis
di: distance from the xi−1 axis to the xi axis measured along the zi axis
θi: angle between the xi−1 axis and the xi axis measured about the zi axis

240

As can be observed in Fig. 9.4, parameters d1, a2, and d4 in this case represent
the lengths of links 1, 2, and 3, respectively, d3 represents the offset between link
1 and link 2, and a3 represents the offset between link 2 and link 3. In addition,
the above frame assignment also determines the angles α0 = 0◦, α1 = −90◦,
α2 = 0◦, and α3 = −90◦. Table 9.2 summarizes the D-H parameters of the
three-joint robot in Fig. 9.4 where the only variable parameters are θ1, θ2, and θ3

which represent the rotation angles of joints 1, 2, and 3, respectively.

Table 9.2 D-H parameters of 3-link robot

i αi−1 ai−1 di θi

1 0◦ 0 d1 θ1

2 −90◦ 0 0 θ2

3 0◦ a2 d3 θ3

4 −90◦ a3 d4 0◦

Since the D-H parameters ai−1, αi−1, di, and θi characterize the relation
between frames {i − 1} and {i}, they can be used to describe the position and
orientation of frame {i} in relation to those of frame {i − 1}. To this end, we
define the so-called homogeneous transformation in terms of the 4 × 4 matrix

i−1
i

T =

[
i−1

i
R i−1piORG

0 0 0 1

]
4×4

(9.10)

where vector i−1piORG denotes the position of the origin of frame {i}with respect
to frame {i−1}, and matrix i−1

i
R is an orthogonal matrix whose columns denote

the x-, y-, and z-coordinate vectors of frame {i} with respect to frame {i− 1}.
With the D-H parameters ai−1, αi−1, di, and θi known, the homogeneous
transformation in Eq. (9.10) can be expressed as [2]

i−1
i

T =

⎡
⎢⎢⎣

cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −αi−1 −sαi−1di

sθisαi−1 cθisαi−1 αi−1 αi−1di

0 0 0 1

⎤
⎥⎥⎦ (9.11)

where sθ and cθ denote sin θ and cos θ, respectively. The significance of the
above formula is that it can be used to evaluate the position and orientation of
the end-effector as

0
N
T = 0

1
T 1

2
T · · · N−1

N
T (9.12)

Applications of Unconstrained Optimization 241

where each i−1
i

T on the right-hand side can be obtained using Eq. (9.11). The
formula in Eq. (9.12) is often referred to as the equation of forward kinematics.

Example 9.1 Derive closed-form formulas for the position and orientation of
the robot tip in Fig. 9.4 in terms of joint angles θ1, θ2, and θ3.

Solution Using Table 9.2 and Eq. (9.11), the homogeneous transformations
i−1

i
T for i = 1, 2, 3, and 4 are obtained as

0
1T =

⎡
⎢⎢⎣

c1 −s1 0 0
s1 c1 0 0
0 0 1 d1

0 0 0 1

⎤
⎥⎥⎦ , 1

2T =

⎡
⎢⎢⎣

c2 −s2 0 0
0 0 1 0

−s2 −c2 0 0
0 0 0 1

⎤
⎥⎥⎦

2
3T =

⎡
⎢⎢⎣

c3 −s3 0 a2

s3 c3 0 0
0 0 1 d3

0 0 0 1

⎤
⎥⎥⎦ , 3

4T =

⎡
⎢⎢⎣

1 0 0 a3

0 0 1 d4

0 −1 0 0
0 0 0 1

⎤
⎥⎥⎦

With N = 4, Eq. (9.12) gives

0
4T = 0

1T
1
2T

2
3T

3
4T

=

⎡
⎢⎢⎣

c1c23 s1 −c1s23 c1(a2c2 + a3c23 − d4s23) − d3s1

s1c23 −c1 −s1s23 s1(a2c2 + a3c23 − d4s23) + d3c1

−s23 0 −c23 d1 − a2s2 − a3s23 − d4c23

0 0 0 1

⎤
⎥⎥⎦

where c1 = cos θ1, s1 = sin θ1, c23 = cos(θ2 + θ3), and s23 = sin(θ2 + θ3).
Therefore, the position of the robot tip with respect to frame {0} is given by

0p4ORG =

⎡
⎣ c1(a2c2 + a3c23 − d4s23) − d3s1

s1(a2c2 + a3c23 − d4s23) + d3c1

d1 − a2s2 − a3s23 − d4c23

⎤
⎦ (9.13)

and the orientation of the robot tip with respect to frame {0} is characterized
by the orthogonal matrix

0
4R =

⎡
⎣ c1c23 s1 −c1s23

s1c23 −c1 −s1s23

−s23 0 −c23

⎤
⎦ (9.14)

9.3.2 Inverse kinematics problem
The joint angles of manipulator links are usually measured using sensors

such as optical encoders that are attached to the link actuators. As discussed

242

in Sec. 9.3.1, when the joint angles θ1, θ2, . . . , θn are known, the position
and orientation of the end-effector can be evaluated using Eq. (9.12). A related
and often more important problem is the inverse kinematics problem which is as
follows: find the joint angles θi for 1 ≤ i ≤ n with which the manipulator’s end-
effector would achieve a prescribed position and orientation. The significance
of the inverse kinematics lies in the fact that the tasks to be accomplished
by a robot are usually in terms of trajectories in the Cartesian space that the
robot’s end-effector must follow. Under these circumstances, the position and
orientation for the end-effector are known and the problem is to find the correct
values of the joint angles that would move the robot’s end-effector to the desired
position and orientation.

Mathematically, the inverse kinematics problem can be described as the prob-
lem of finding the values θi for 1 ≤ i ≤ n that would satisfy Eq. (9.12)
for a given 0

NT. Since Eq. (9.12) is highly nonlinear, the problem of find-
ing its solutions is not a trivial one [2]. For example, if a prescribed posi-
tion of the end-effector for the three-link manipulator in Fig. 9.4 is given by
0p4ORG = [px py pz]T , then Eq. (9.13) gives

c1(a2c2 + a3c23 − d4s23) − d3s1 = px

s1(a2c2 + a3c23 − d4s23) + d3c1 = py (9.15)

d1 − a2s2 − a3s23 − d4c23 = pz

In the next section, we illustrate an optimization approach for the solution
of the inverse kinematics problem on the basis of Eq. (9.15).

9.3.3 Solution of inverse kinematics problem
If we let

x = [θ1 θ2 θ3]T (9.16a)

f1(x) = c1(a2c2 + a3c23 − d4s23) − d3s1 − px (9.16b)

f2(x) = s1(a2c2 + a3c23 − d4s23) + d3c1 − py (9.16c)

f3(x) = d1 − a2s2 − a3s23 − d4c23 − pz (9.16d)

then Eq. (9.15) is equivalent to

f1(x) = 0 (9.17a)

f2(x) = 0 (9.17b)

f3(x) = 0 (9.17c)

To solve this system of nonlinear equations, we construct the objective function

F (x) = f2
1 (x) + f2

2 (x) + f2
3 (x)

Applications of Unconstrained Optimization 243

and notice that vector x∗ solves Eq. (9.17) if and only if F (x∗) = 0. Since
function F (x) is nonnegative, finding a solution point x for Eq. (9.17) amounts
to finding a minimizer x∗ at which F (x∗) = 0. In other words, we can convert
the inverse kinematics problem at hand into the unconstrained minimization
problem

minimize F (x) =
3∑

k=1

f2
k (x) (9.18)

An advantage of this approach over conventional methods for inverse kine-
matics problems [2] is that when the desired position [px py pz]T is not within the
manipulator’s reach, the conventional methods will fail to work and a conclusion
that no solution exists will be drawn. With the optimization approach, however,
minimizing function F (x) will still yield a minimizer, say, x∗ = [θ∗1 θ∗2 θ∗3]T ,
although the objective function F (x) would not become zero at x∗. In effect,
an approximate solution of the problem would be obtained, which could be
entirely satisfactory in most engineering applications. We shall illustrate this
point further in Example 9.2 by means of computer simulations.

To apply the minimization algorithms studied earlier, we let

f(x) =

⎡
⎣ f1(x)

f2(x)
f3(x)

⎤
⎦

and compute the gradient of F (x) as

g(x) = 2JT (x)f(x) (9.19)

where the Jacobian matrix J(x) is given by

J(x) = [∇f1(x) ∇f2(x) ∇f3(x)]T

=

⎡
⎣−q3s1 − d3c1 q4c1 q2c1

q3c1 − d3s1 q4s1 q2s1

0 −q3 −q1

⎤
⎦ (9.20)

with q1 = a2c23 − d4s23, q2 = −a3s23 − d4c23, q3 = a2c2 + q1, and q4 =
−a2s2 + q2. The Hessian of F (x) is given by

H(x) = 2JT (x)J(x) + 2
3∑

k=1

fk(x)∇2fk(x) (9.21)

where ∇2fk(x) is the Hessian of fk(x) (see Prob. 9.4).

Example 9.2 In the three-link manipulator depicted in Fig. 9.4, d1 = 66.04
cm, d3 = 14.91 cm, d4 = 43.31 cm, a2 = 43.18 cm, and a3 = 2.03 cm. By

244

applying a steepest-descent (SD), Newton (N), Gauss-Newton (GN), Fletcher-
Reeves (FR) algorithm and then a quasi-Newton (QN) algorithm based on the
Broyden-Fletcher-Goldfarb-Shanno updating formula in Eq. (7.57), determine
the joint angles θi(t) for i = 1, 2, 3 and−π ≤ t ≤ π such that the manipulator’s
end-effector tracks the desired trajectory pd(t) = [px(t) py(t) pz(t)]T where

px(t) = 30 cos t, py(t) = 100 sin t, pz(t) = 10t + 66.04

for −π ≤ t ≤ π as illustrated in Fig. 9.5.

-40

-20

0

20

40

-100

-50

0

50

100
30

40

50

60

70

80

90

100

 x
 y

 z

Figure 9.5. Desired Cartesian trajectory for Example 9.2.

Solution The problem was solved by applying Algorithms 5.1, 5.5, and 6.3 as
the steepest-descent, Gauss-Newton, and Fletcher-Reeves algorithm, respec-
tively, using the inexact line search in Steps 1 to 6 of Algorithm 7.3 in each
case. The Newton algorithm used was essentially Algorithm 5.3 incorporating
the Hessian-matrix modification in Eq. (5.13) as detailed below:

Algorithm 9.1 Newton algorithm
Step 1
Input x0 and initialize the tolerance ε.
Set k = 0.
Step 2
Compute gk and Hk.
Step 3
Compute the eigenvalues of Hk (see Sec. A.5).
Determine the smallest eigenvalue of Hk, λmin.
Modify matrix Hk to

Applications of Unconstrained Optimization 245

Ĥk =
{

Hk if λmin > 0
Hk + γIn if λmin ≤ 0

where
γ = −1.05λmin + 0.1

Step 4
Compute Ĥ−1

k and dk = −Ĥ−1
k gk

Step 5
Find αk, the value of α that minimizes f(xk + αdk), using the inexact
line search in Steps 1 to 6 of Algorithm 7.3.
Step 6
Set xk+1 = xk + αkdk.
Compute fk+1 = f(xk+1).
Step 7
If ‖αkdk‖ < ε, then do:

Output x∗ = xk+1 and f(x∗) = fk+1, and stop.
Otherwise, set k = k + 1 and repeat from Step 2.

The quasi-Newton algorithm used was essentially Algorithm 7.3 with a
slightly modified version of Step 8b as follows:

Step 8b′
Compute D = δT

k γk. If D ≤ 0, then set Sk+1 = In, otherwise,
compute Sk+1 using Eq. (7.57).

At t = tk, the desired trajectory can be described in terms of its Cartesian
coordinates as

pd(tk) =

⎡
⎣ px(tk)

py(tk)
pz(tk)

⎤
⎦ =

⎡
⎣ 30 cos tk

100 sin tk
10tk + 66.04

⎤
⎦

where −π ≤ tk ≤ π. Assuming 100 uniformly spaced sample points, the
solution of the system of equations in Eq. (9.17) can obtained by solving the
minimization problem in Eq. (9.18) for k = 1, 2, . . . , 100, i.e., for tk =
−π, . . . , π, using the specified D-H parameters. Since the gradient and Hessian
of F (x) are available (see Eqs. (9.19) and (9.21)), the problem can be solved
using each of the five optimization algorithms specified in the description of
the problem to obtain a minimizer x∗(tk) in each case. If the objective function
F (x) turns out to be zero at x∗(tk), then x∗(tk) satisfies Eq. (9.17), and the joint
angles specified by x∗(tk) lead the manipulator’s end-effector to the desired
position precisely. On the other hand, if F [x∗(tk)] is nonzero, then x∗(tk) is
taken as an approximate solution of the inverse kinematics problem at instant
tk.

246

-3 -2 -1 0 1 2 3
-200

-100

0

100

200

300

400

Time

Jo
in

t d
is

pl
ac

em
en

t i
n

de
gr

ee
s

-40
-20

0
20

40

-100

-50

0

50

100
30

40

50

60

70

80

90

100

xy

z

Figure 9.6. Optimal joint angles θ∗
1(t)

(solid line), θ∗
2(t) (dashed line), and θ∗

3(t)
(dot-dashed line).

Figure 9.7. End-effector’s profile (dotted
line) and the desired trajectory (solid line).

Once the minimizer x∗(tk) is obtained, the above steps can be repeated
at t = tk+1 to obtain solution point x∗(tk+1). Since tk+1 differs from tk
only by a small amount and the profile of optimal joint angles is presumably
continuous, x∗(tk+1) is expected to be in the vicinity of x∗(tk). Therefore, the
previous solution x∗(tk) can be used as a reasonable initial point for the next
optimization.1

The five optimization algorithms were applied to the problem at hand and
were all found to work although with different performance in terms of solution
accuracy and computational complexity. The solution obtained using the QN
algorithm, x∗(tk) = [θ∗1(tk) θ∗2(tk) θ∗3(tk)]T for 1 ≤ k ≤ 100, is plotted in
Fig. 9.6; the tracking profile of the end-effector is plotted as the dotted curve
in Fig. 9.7 and is compared with the desired trajectory which is plotted as the
solid curve. It turns out that the desired positions pd(tk) for 20 ≤ k ≤ 31 and
70 ≤ k ≤ 81 are beyond the manipulator’s reach. As a result, we see in Fig. 9.7
that there are two small portions of the tracking profile that deviate from the
desired trajectory, but even in this case, the corresponding x∗(tk) still offers
a reasonable approximate solution. The remaining part of the tracking profile
coincides with the desired trajectory almost perfectly which simply means that
for the desired positions within the manipulator’s work space, x∗(tk) offers a
nearly exact solution.

The performance of the five algorithms in terms of the number of Kflops and
iterations per sample point and the error at sample points within and outside the

1Choosing the initial point on the basis of any knowledge about the solution instead of a random initial point
can lead to a large reduction in the amount of computation in most optimization problems.

Applications of Unconstrained Optimization 247

work space is summarized in Table 9.3. The data supplied are in the form of
averages with respect to 100 runs of the algorithms using random initializations.
As can be seen, the average errors within the manipulator’s work space for the
solutions x∗(tk) obtained using the steepest-descent and Fletcher-Reeves algo-
rithms are much larger than those obtained using the Newton, Gauss-Newton,
and QN algorithms, although the solutions obtained are still acceptable con-
sidering the relatively large size of the desired trajectory. The best results in
terms of efficiency as well as accuracy are obtained by using the Newton and
QN Algorithms.

Table 9.3 Performance comparisons for Example 9.2

Average number of Average number of Average error Average error
Algorithm Kflops per iterations per within outside

sample point sample point work space work space

SD 46.87 23.54 0.05 4.37
N 3.52 2.78 5.27 × 10−8 4.37

GN 3.66 2.76 1.48 × 10−4 7.77
FR 13.74 15.80 0.17 4.37
QN 6.07 3.40 2.84 × 10−5 4.37

9.4 Design of Digital Filters
In this section, we will apply unconstrained optimization for the design of

FIR digital filters. Different designs are possible depending on the type of
FIR filter required and the formulation of the objective function. The theory
and design principles of digital filters are quite extensive [3] and are beyond
the scope of this book. To facilitate the understanding of the application of
unconstrained optimization to the design of digital filters, we present a brief
review of the highlights of the theory, properties, and characterization of digital
filters in Appendix B, which should prove quite adequate in the present context.

The one design aspect of digital filters that can be handled quite efficiently
with optimization is the approximation problem whereby the parameters of
the filter have to be chosen to achieve a specified type of frequency response.
Below, we examine two different designs (see Sec. B.9). In one design, we
formulate a weighted least-squares objective function, i.e., one based on the
square of the L2 norm, for the design of linear-phase FIR filters and in another
we obtain a minimax objective function, i.e., one based on the L∞ norm.

The Lp norm of a vector where p ≥ 1 is defined in Sec. A.8.1. Similarly,
the Lp norm of a function F (ω) of a continuous variable ω can be defined with
respect to the interval [a, b] as

‖F (ω)‖p =

(∫ b

a
|F (ω)|p dω

)1/p

(9.22)

248

where p ≥ 1 and if ∫ b

a
|F (ω)|p dω ≤ K < ∞

the Lp norm of F (ω) exists. If F (ω) is bounded with respect to the interval
[a, b], i.e., |F (ω)| ≤ M for ω ∈ [a, b] where M is finite, then the L∞ norm of
F (ω) is defined as

‖F (ω)‖∞ = max
a≤ω≤b

|F (ω)| (9.23a)

and as in the case of the L∞ norm of a vector, it can be verified that

lim
p→∞ ‖F (ω)‖p = ‖F (ω)‖∞ (9.23b)

(see Sec. B.9.1).

9.4.1 Weighted least-squares design of FIR filters
As shown in Sec. B.5.1, an FIR filter is completely specified by its transfer

function which assumes the form

H(z) =
N∑

n=0

hnz−n (9.24)

where the coefficients hn for n = 0, 1, . . . , n represent the impulse response
of the filter.

9.4.1.1 Specified frequency response

Assuming a normalized sampling frequency of 2π, which corresponds to a
normalized sampling period T = 1 s, the frequency response of an FIR filter is
obtained as H(ejω) by letting z = ejω in the transfer function (see Sec. B.8).
In practice, the frequency response is required to approach some desired fre-
quency response, Hd(ω), to within a specified error. Hence an FIR filter can be
designed by formulating an objective function based on the difference between
the actual and desired frequency responses (see Sec. B.9.3). Except in some
highly specialized applications, the transfer function coefficients (or impulse
response values) of a digital filters are real and, consequently, knowledge of
the frequency response of the filter with respect to the positive half of the base-
band fully characterizes the filter (see Sec. B.8). Under these circumstances, a
weighted least-squares objective function that can be used to design FIR filters
can be constructed as

e(x) =
∫ π

0
W (ω)|H(ejω) − Hd(ω)|2 dω (9.25)

where x = [h0 h1 · · · hN]T is an N + 1-dimensional variable vector repre-
senting the transfer function coefficients, ω is a normalized frequency variable

Applications of Unconstrained Optimization 249

which is assumed to be in the range 0 to π rad/s, and W (ω) is a predefined
weighting function. The design is accomplished by finding the vector x∗ that
minimizes e(x), and this can be efficiently done by means of unconstrained
optimization.

Weighting is used to emphasize or deemphasize the objective function with
respect to one or more ranges of ω. Without weighting, an optimization algo-
rithm would tend to minimize the objective function uniformly with respect to
ω. Thus if the objective function is multiplied by a weighting constant larger
than unity for values of ω in a certain critical range but is left unchanged for
all other frequencies, a reduced value of the objective function will be achieved
with respect to the critical frequency range. This is due to the fact that the
weighted objective function will tend to be minimized uniformly and thus the
actual unweighted objective function will tend to be scaled down in proportion
to the inverse of the weighting constant in the critical range of ω relative to
its value at other frequencies. Similarly, if a weighting constant of value less
than unity is used for a certain uncritical frequency range, an increased value
of the objective will be the outcome with respect to the uncritical frequency
range. Weighting is very important in practice because through the use of suit-
able scaling, the designer is often able to design a more economical filter for
the required specifications. In the above example, the independent variable is
frequency. In other applications, it could be time or some other independent
parameter.

An important step in an optimization-based design is to express the objective
function in terms of variable vector x explicitly. This facilitates the evaluation
of the gradient and Hessian of the objective function. To this end, if we let

c(ω) = [1 cosω · · · cosNω]T (9.26a)

s(ω) = [0 sinω · · · sinNω]T (9.26b)

the frequency response of the filter can be expressed as

H(ejω) =
N∑

n=0

hn cosnω − j
N∑

n=0

hn sinnω = xT c(ω) − jxT s(ω) (9.27)

If we let
Hd(ω) = Hr(ω) − jHi(ω) (9.28)

where Hr(ω) and −Hi(ω) are the real and imaginary parts of Hd(ω), respec-
tively, then Eqs. (9.27) and (9.28) give

|H(ejω) − Hd(ω)|2 = [xTc(ω) − Hr(ω)]2 + [xT s(ω) − Hi(ω)]2

= xT [c(ω)cT (ω) + s(ω)sT (ω)]x
−2xT [c(ω)Hr(ω) + s(ω)Hi(ω)] + |Hd(ω)|2

250

Therefore, the objective function in Eq. (9.25) can be expressed as a quadratic
function with respect to x of the form

e(x) = xT Qx − 2xT b + κ (9.29)

where κ is a constant2 and

Q =
∫ π

0
W (ω)[c(ω)cT (ω) + s(ω)sT (ω)] dω (9.30)

b =
∫ π

0
W (ω)[Hr(ω)c(ω) + Hi(ω)s(ω)] dω (9.31)

Matrix Q in Eq. (9.30) is positive definite (see Prob. 9.5). Hence the objective
function e(x) in Eq. (9.29) is globally strictly convex and has a unique global
minimizer x∗ given by

x∗ = Q−1b (9.32)

For the design of high-order FIR filters, the matrix Q in Eq. (9.30) is of a large
size and the methods described in Sec. 6.4 can be used to find the minimizer
without obtaining the inverse of matrix Q.

9.4.1.2 Linear phase response

The frequency response of an FIR digital filter of order N (or length N + 1)
with linear phase response is given by

H(ejω) = e−jωN/2A(ω) (9.33)

Assuming an even-order filter, function A(ω) in Eq. (9.33) can be expressed as

A(ω) =
N/2∑
n=0

an cos nω (9.34a)

an =

{
hN/2 for n = 0
2hN/2−n for n �= 0 (9.34b)

(see Sec. B.9.2) and if the desired frequency response is assumed to be of the
form

Hd(ω) = e−jωN/2Ad(ω)

then the least-squares objective function

el(x) =
∫ π

0
W (ω)[A(ω) − Ad(ω)]2 dω (9.35a)

2Symbol κ will be used to represent a constant throughout this chapter.

Applications of Unconstrained Optimization 251

can be constructed where the variable vector is given by

x = [a0 a1 · · · aN/2]
T (9.35b)

If we now let

cl(ω) = [1 cosω · · · cos Nω/2]T (9.36a)

A(ω) can be written in terms of the inner product xTcl(ω) and the objective
function el(x) in Eq. (9.35a) can be expressed as

el(x) = xTQlx− 2xTbl + κ (9.36b)

where κ is a constant, as before, with

Ql =
∫ π

0
W (ω)cl(ω)cT

l (ω) dω (9.37a)

bl =
∫ π

0
W (ω)Ad(ω)cl(ω) dω (9.37b)

Like matrix Q in Eq. (9.30), matrix Ql in Eq. (9.37a) is positive definite; hence,
like the objective function e(x) in Eq. (9.29), el(x) in Eq. (9.36b) is globally
strictly convex and its unique global minimizer is given in closed form by

x∗
l = Q−1

l bl (9.38)

For filters of order less than 200, matrix Ql in Eq. (9.38) is of size less than
100, and the formula in Eq. (9.38) requires a moderate amount of computation.
For higher-order filters, the closed-form solution given in Eq. (9.38) becomes
computationally very demanding and methods that do not require the compu-
tation of the inverse of matrix Ql such as those studied in Sec. 6.4 would be
preferred.

Example 9.3
(a) Applying the above method, formulate the design of an even-order linear-

phase lowpass FIR filter assuming the desired amplitude response

Ad(ω) =

{
1 for 0 ≤ ω ≤ ωp

0 for ωa ≤ ω ≤ π
(9.39)

where ωp and ωa are the passband and stopband edges, respectively (see
Sec. B.9.1). Assume a normalized sampling frequency of 2π rad/s.

(b) Using the formulation in part (a), design FIR filters with ωp = 0.45π
and ωa = 0.5π for filter orders of 20, 40, 60, and 80.

252

Solution (a) A suitable weighting function W (ω) for this problem is

W (ω) =

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 ≤ ω ≤ ωp

γ for ωa ≤ ω ≤ π

0 elsewhere

(9.40)

The value of γ can be chosen to emphasize or deemphasize the error function in
the stopband relative to that in the passband. Since W (ω) is piecewise constant,
the matrix Ql in Eq. (9.37a) can be written as

Ql = Ql1 + Ql2

where

Ql1 =
∫ ωp

0
cl(ω)cT

l (ω) dω = {q(1)
ij } for 1 ≤ i, j ≤ N + 2

2
(9.41a)

and

Ql2 = γ

∫ π

ωa

cl(ω)cT
l (ω) dω = {q(2)

ij } for 1 ≤ i, j ≤ N + 2
2

(9.41b)

with

q
(1)
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ωp

2
+

sin[2(i − 1)ωp]
4(i − 1)

for i = j

sin[(i − j)ωp]
2(i − j)

+
sin[(i + j − 2)ωp]

2(i + j − 2)
for i �= j

(9.42a)

and

q
(2)
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ

[
(π − ωa)

2
− sin[2(i − 1)ωa]

4(i − 1)

]
for i = j

−γ

2

[
sin[(i − j)ωa]

(i − j)
+

sin[(i + j − 2)ωa]
(i + j − 2)

]
for i �= j

(9.42b)
Note that for i = j = 1, the expressions in Eq. (9.42) are evaluated by taking
the limit as i → 1, which implies that

q
(1)
11 = ωp and q

(2)
11 = γ(π − ωa) (9.42c)

Vector bl in Eq. (9.37b) is calculated as

bl =
∫ ωp

0
cl(ω) dω = {bn} (9.43a)

with

Applications of Unconstrained Optimization 253

bn =
sin[(n − 1)ωp]

(n − 1)
for 1 ≤ n ≤ N + 2

2
(9.43b)

As before, for n = 1, the expression in Eq. (9.43b) is evaluated by taking
the limit as n → 1, which gives

b1 = ωp (9.43c)

(b) Optimal weighted least-squares designs for the various values of N were
obtained by computing the minimizer x∗

l given by Eq. (9.38) and then evaluating
the filter coefficients {hi} using Eq. (9.34b). The weighting constant γ was
assumed to be 25. The amplitude responses of the FIR filters obtained are
plotted in Fig. 9.8.

0 1 2 3
-100

-80

-60

-40

-20

0

(a) ω, rad/s

G
ai

n,
 d

B

0 1 2 3
-100

-80

-60

-40

-20

0

(b) ω, rad/s

G
ai

n,
 d

B

0 1 2 3
-100

-80

-60

-40

-20

0

(c) ω, rad/s

G
ai

n,
 d

B

0 1 2 3
-100

-80

-60

-40

-20

0

(d) ω, rad/s

G
ai

n,
 d

B

Figure 9.8. Amplitude responses of the filters in Example 9.3: (a) N = 20, (b) N = 40, (c)
N = 60, (d) N = 80.

9.4.2 Minimax design of FIR filters
The Parks-McClellan algorithm and its variants have been the most efficient

tools for the minimax design of FIR digital filters [3]–[5]. However, these
algorithms apply only to the class of linear-phase FIR filters. The group delay
introduced by these filters is constant and independent of frequency in the entire

254

baseband (see Sec. B.8) but it can be quite large. In practice, a variable group
delay in stopbands is of little concern and by allowing the phase response to be
nonlinear in stopbands, FIR filters can be designed with constant group delay
with respect to the passbands, which is significantly reduced relative to that
achieved with filters that have a constant group delay throughout the entire
baseband.

This section presents a least-pth approach to the design of low-delay FIR
filters. For FIR filters, the weighted Lp error function with an even integer
p can be shown to be globally convex.3 This property, in conjunction with
the availability of the gradient and Hessian of the objective function in closed
form, enables us to develop an unconstrained optimization method for the design
problem at hand.

9.4.2.1 Objective function

Given a desired frequency response Hd(ω) for an FIR filter, we want to
determine the coefficients {hn} in the transfer function

H(z) =
N∑

n=0

hnz−n (9.44)

such that the weighted L2p approximation error

f(h) =
[∫ π

0
W (ω)|H(ejω) − Hd(ω)|2p dω

]1/2p

(9.45)

is minimized, where W (ω) ≥ 0 is a weighting function, p is a positive integer,
and h = [h0 h1 · · · hN]T .

If we let

Hd(ω) = Hdr(ω) − jHdi(ω)
c(ω) = [1 cos ω · · · cos Nω]T

s(ω) = [0 sinω · · · sinNω]T

then Eq. (9.45) becomes

f(h) =
{∫ π

0
W [(hTc − Hdr)2 + (hT s− Hdi)2]p dω

}1/2p

(9.46)

where for simplicity the frequency dependence of W, c, s, Hdr, and Hdi has
been omitted. Now if we let

e2(ω) = [hTc(ω) − Hdr(ω)]2 + [hT s(ω) − Hdi(ω)]2 (9.47)

then the objective function can be expressed as

3Note that this property does not apply to infinite-duration impulse response (IIR) filters [3].

Applications of Unconstrained Optimization 255

f(h) =
[∫ π

0
W (ω)ep

2(ω) dω

]1/2p

(9.48)

9.4.2.2 Gradient and Hessian of f(h)
Using Eq. (9.48), the gradient and Hessian of objective function f(h) can

be readily obtained as

∇f(h) = f1−2p(h)
∫ π

0
W (ω)ep−1

2 (ω)q(ω) dω (9.49a)

where
q(ω) = [hTc(ω) − Hdr(ω)]c(ω) + [hT s(ω) − Hdi(ω)]s(ω) (9.49b)

and
∇2f(h) = H1 + H2 − H3 (9.49c)

where
H1 = 2(p − 1)f1−2p(h)

∫ π

0
W (ω)ep−2

2 (ω)q(ω)qT (ω) dω (9.49d)

H2 = f1−2p(h)
∫ π

0
W (ω)ep−1

2 (ω)[c(ω)cT (ω) + s(ω)sT (ω)] dω

(9.49e)

H3 = (2p − 1)f−1(h)∇f(h)∇Tf(h) (9.49f)

respectively.
Of central importance to the present algorithm is the property that for each

and every positive integer p, the weighted L2p objective function defined in
Eq. (9.45) is convex in the entire parameter space RN+1. This property can
be proved by showing that the Hessian ∇2f(h) is positive semidefinite for all
h ∈ RN+1 (see Prob. 9.9).

9.4.2.3 Design algorithm

It is now quite clear that an FIR filter whose frequency response approxi-
mates a rather arbitrary frequency response Hd(ω) to within a given tolerance
in the minimax sense can be obtained by minimizing f(h) in Eq. (9.45) with
a sufficiently large p. It follows from the above discussion that for a given p,
f(h) has a unique global minimizer. Therefore, any descent minimization al-
gorithm, e.g., the steepest-descent, Newton, and quasi-Newton methods studied
in previous chapters, can, in principle, be used to obtain the minimax design
regardless of the initial design chosen. The amount of computation required to
obtain the design is largely determined by the choice of optimization method
as well as the initial point assumed.

A reasonable initial point can be deduced by using the L2-optimal design
obtained by minimizing f(h) in Eq. (9.45) with p = 1. We can write

f(h) = (hTQh − 2hTp + κ)1/2 (9.50a)

256

where

Q =
∫ π

0
W (ω)[c(ω)cT (ω) + s(ω)sT (ω)] dω (9.50b)

p =
∫ π

0
W (ω)[Hdr(ω)c(ω) + Hdi(ω)s(ω)] dω (9.50c)

Since Q is positive definite, the global minimizer of f(h) in Eq. (9.50a) can be
obtained as the solution of the linear equation

Qh = p (9.51)

We note that Q in Eq. (9.51) is a symmetric Toeplitz matrix4 for which fast
algorithms are available to compute the solution of Eq. (9.51) [6].

The minimization of convex objective function f(h) can be accomplished
in a number of ways. Since the gradient and Hessian of f(h) are available in
closed-form and ∇2f(h) is positive semidefinite, the Newton method and the
family of quasi-Newton methods are among the most appropriate.

From Eqs. (9.48) and (9.49), we note that f(h), ∇f(h), and ∇2f(h) all
involve integration which can be carried out using numerical methods. In
computing ∇2f(h), the error introduced in the numerical integration can cause
the Hessian to lose its positive definiteness but the problem can be easily fixed
by modifying ∇2f(h) to ∇2f(h) + εI where ε is a small positive scalar.

9.4.2.4 Direct and sequential optimizations

With a power p, weighting function W (ω), and an initial h, say, h0, chosen,
the design can be obtained directly or indirectly.

In a direct optimization, one of the unconstrained optimization methods is
applied to minimize the L2p objective function in Eq. (9.48) directly. Based
on rather extensive trials, it was found that to achieve a near-minimax design,
the value of p should be larger than 20 and for high-order FIR filters a value
comparable to the filter order N should be used.

In sequential optimization, an L2p optimization is first carried out with p = 1.
The minimizer thus obtained, h∗, is then used as the initial point in another opti-
mization with p = 2. The same procedure is repeated for p = 4, 8, 16, . . . until
the reduction in the objective function between two successive optimizations is
less than a prescribed tolerance.

Example 9.4 Using the above direct and sequential approaches first with a
Newton and then with a quasi-Newton algorithm, design a lowpass FIR filter of
order N = 54 that would have approximately constant passband group delay of
23 s. Assume idealized passband and stopband gains of 1 and 0, respectively;

4A Toeplitz matrix is a matrix whose entries along each diagonal are constant [6].

Applications of Unconstrained Optimization 257

a normalized sampling frequency ωs = 2π; passband edge ωp = 0.45π and
stopband edge ωa = 0.55π; W (ω) = 1 in both the passband and stopband, and
W (ω) = 0 elsewhere.

Solution The design was carried out using the direct approach with p = 128 and
the sequential approach with p = 2, 4, 8, . . . , 128 by minimizing the objective
function in Eq. (9.48) with the Newton algorithm and a quasi-Newton algorithm
with the BFGS updating formula in Eq. (7.57). The Newton algorithm used
was essentially the same as Algorithm 9.1 (see solution of Example 9.2) except
that Step 3 was replaced by the following modified Step 3:

Step 3′
Modify matrix Hk to Ĥk = Hk + 0.1In

The quasi-Newton algorithm used was Algorithm 7.3 with the modifications
described in the solution of Example 9.2.

A lowpass FIR filter that would satisfy the required specifications can be
obtained by assuming a complex-valued idealized frequency response of the
form

Hd(ω) =
{

e−j23ω for ω ∈ [0, ωp]
0 for ω ∈ [ωa, ωs/2]

=
{

e−j23ω for ω ∈ [0, 0.45π]
0 for ω ∈ [0.55π, π]

(see Sec. B.9.2). The integrations in Eqs. (9.48), (9.49a), and (9.49c) can be
carried out by using one of several available numerical methods for integration.
A fairly simple and economical approach, which works well in optimization,
is as follows: Given a continuous function f(ω) of ω, an approximate value of
its integral over the interval [a, b] can be obtained as

∫ b

a
f(ω)dω ≈ δ

K∑
i=1

f(ωi)

where δ = (b − a)/K and ω1 = a + δ/2, ω2 = a + 3δ/2, . . ., ωK =
a+(2K−1)δ/2. That is, we divide interval [a, b] into K subintervals, add the
values of the function at the midpoints of the K subintervals, and then multiply
the sum obtained by δ.

The objective function in Eq. (9.48) was expressed as

f(h) =
[∫ 0.45π

0
ep
2(ω)dω

]1/2p

+
[∫ π

0.55π
ep
2(ω)dω

]1/2p

and each integral was evaluated using the above approach with K = 500. The
integrals in Eqs. (9.49a) and (9.49c) were evaluated in the same way.

258

The initial h was obtained by applying L2 optimization to Eq. (9.50). All
trials converged to the same near minimax design, and the sequential approach
turned out to be more efficient than the direct approach. The Newton and quasi-
Newton algorithms required 21.1 and 40.7 s of CPU time, respectively, on a PC
with a Pentium 4, 3.2 GHz CPU. The amplitude response, passband error, and
group delay characteristic of the filter obtained are plotted in Fig. 9.9a, b, and
c, respectively. We note that an equiripple amplitude response was achieved
in both the passband and stopband. The passband group delay varies between
22.9 and 23.1 but it is not equiripple. This is because the minimax optimization
was carried out for the complex-valued frequency response Hd(ω), not the
phase-response alone (see Eq. (9.45)).

Example 9.5 Using the above direct and sequential approaches first with a
Newton and then with a quasi-Newton algorithm, design a bandpass FIR filter
of order N = 160 that would have approximately constant passband group
delay of 65 s. Assume idealized passband and stopband gains of 1 and 0,
respectively; normalized sampling frequency= 2π; passband edges ωp1 = 0.4π
and ωp2 = 0.6π; stopband edges ωa1 = 0.375π and ωa2 = 0.625π; W (ω) = 1
in the passband and W (ω) = 50 in the stopbands, and W (ω) = 0 elsewhere.

Solution The required design was carried out using the direct approach with p =
128 and the sequential approach with p = 2, 4, 8, . . . , 128 by minimizing the
objective function in Eq. (9.48) with the Newton and quasi-Newton algorithms
described in Example 9.4.

A bandpass FIR filter that would satisfy the required specifications can be
obtained by assuming a complex-valued idealized frequency response of the
form

Hd(ω) =
{

e−j65ω for ω ∈ [ωp1, ωp2]
0 for ω ∈ [0, ωa1]

⋃
[ωa2, ωs/2]

=
{

e−j65ω for ω ∈ [0.4π, 0.6π]
0 for ω ∈ [0, 0.375π]

⋃
[0.625π, π]

(see Sec. B.9.2). The objective function in Eq. (9.48) was expressed as

f(h) =
[∫ 0.375π

0
50ep

2(ω)dω

]1/2p

+
[∫ 0.6π

0.4π
ep
2(ω)dω

]1/2p

+
[∫ π

0.625π
50ep

2(ω)dω

]1/2p

and the integrals at the right-hand side were evaluated using the numerical
method in the solution of Example 9.4 with K = 382, 236, 382 respectively.

Applications of Unconstrained Optimization 259

0 0.5 1 1.5 2 2.5 3
-70

-60

-50

-40

-30

-20

-10

0

Normalized frequency

A
m

pl
itu

de
 r

es
po

ns
e

in
 d

B

(a)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

Normalized frequency

|P
as

sb
an

d
E

rr
or

|

(b)

0 0.2 0.4 0.6 0.8 1 1.2
22

22.2

22.4

22.6

22.8

23

23.2

23.4

23.6

23.8

24

Normalized frequency

G
ro

up
 d

el
ay

 in
 p

as
sb

an
d

(c)

Figure 9.9. Minimax design of a lowpass filter with low passband group delay for Example
9.4: (a) Frequency response, (b) magnitude of the passband error, and (c) passband group delay.

260

The integrals in Eq. (9.49a) and (9.49c) were similarly evaluated in order to
obtain the gradient and Hessian of the problem.

As in Example 9.4, the sequential approach was more efficient. The Newton
and quasi-Newton algorithms required 173.5 and 201.8 s, respectively, on a
Pentium 4 PC.

The amplitude response, passband error, and group delay characteristic are
plotted in Fig. 9.10a, b, and c, respectively. We note that an equiripple amplitude
response has been achieved in both the passband and stopband.

We conclude this chapter with some remarks on the numerical results of
Examples 9.2, 9.4 and 9.5. Quasi-Newton algorithms, in particular algorithms
using an inexact line-search along with the BFGS updating formula (e.g., Algo-
rithm 7.3), are known to be very robust and efficient relative to other gradient-
based algorithms [7]–[8]. However, the basic Newton algorithm used for these
problems, namely, Algorithm 9.1, turned out to be more efficient than the quasi-
Newton algorithm. This is largely due to certain unique features of the problems
considered, which favor the basic Newton algorithm. The problem in Exam-
ple 9.2 is a simple problem with only three independent variables and an well
defined gradient and Hessian that can be easily computed through closed-form
formulas. Furthermore, the inversion of the Hessian is almost a trivial task. The
problems in Examples 9.4 and 9.5 are significantly more complex than that in
Example 9.2; however, their gradients and Hessians are fairly easy to compute
accurately and efficiently through closed-form formulas as in Example 9.2. In
addition, these problems are convex with unique global minimums that are easy
to locate. On the other hand, a large number of variables in the problem tends
to be an impediment in quasi-Newton algorithms because, as was shown in
Chap. 7, these algorithms would, in theory, require n iterations in an n-variable
problem to compute the inverse-Hessian in a well defined convex quadratic
problem (see proof of Theorem 7.3), more in noncovex nonquadratic problems.
However, in multimodal5 highly nonlinear problems with a moderate number of
independent variables, quasi-Newton algorithms are usually the most efficient.

References
1 M. Werman and D. Weinshall, “Similarity and affine invariant distances between 2D point

sets,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, pp. 810–814, August
1995.

2 J. J. Craig, Introduction to Robotics, 2nd ed., Addison-Wesley, 1989.
3 A. Antoniou, Digital Signal Processing: Signals, Systems, and Filters, McGraw-Hill, New

York, 2005.
4 T. W. Parks and J. H. McClellan, “Chebyshev approximation for nonrecursive digital filters

with linear phase,” IEEE Trans. Circuit Theory, vol. 19, pp. 189-194, 1972.

5Problems with multiple minima.

Applications of Unconstrained Optimization 261

0 0.5 1 1.5 2 2.5 3
-60

-50

-40

-30

-20

-10

0

Normalized frequency

A
m

pl
itu

de
 r

es
po

ns
e

in
 d

B

(a)

1.3 1.4 1.5 1.6 1.7 1.8
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Normalized frequency

|P
as

sb
an

d
E

rr
or

|

(b)

1.3 1.4 1.5 1.6 1.7 1.8

60

62

64

66

68

70

Normalized frequency

G
ro

up
 d

el
ay

 in
 p

as
sb

an
d

(c)

Figure 9.10. Minimax design of a bandpass filter with low passband group delay for Example
9.5: (a) Frequency response, (b) magnitude of passband error, (c) passband group delay.

262

5 T. W. Parks and C. S. Burrus, Digital Filter Design, Wiley, New York, 1987.
6 G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., The Johns Hopkins Uni-

versity Press, Baltimore, 1989.
7 R. Fletcher, Practical Methods of Optimization, vol. 1, Wiley, New York, 1980.
8 R. Fletcher, Practical Methods of Optimization, 2nd ed., Wiley, New York, 1987.

Problems
9.1 (a) Verify Eqs. (9.6a)–(9.6d).

(b) Show that matrix H in Eq. (9.6b) is positive definite.

(c) Show that the inverse matrix H−1 in Eq. (9.7) can be evaluated as

H−1 =

⎡
⎢⎢⎢⎢⎣

γ4I2 −γ4

n

n∑
i=1

RT
i

−γ4

n

n∑
i=1

Ri
1
n

(
1 + γ3γ4

n

)
I2

⎤
⎥⎥⎥⎥⎦

where

γ1 =
n∑

i=1

pi1, γ2 =
n∑

i=1

pi2, γ3 = γ2
1 + γ2

2 , γ4 =
(
‖P‖2

F − γ3

n

)−1

9.2 The dissimilarity measure e(P̃,Q) defined in Eq. (9.5) is not symmetric,
i.e., in general e(P̃,Q) �= e(Q, P̃), which is obviously undesirable.

(a) Obtain a dissimilarity measure for two point patterns that is symmetric.

(b) Solve the minimization problem associated with the new dissimilarity
measure.

9.3 (a) Verify Eqs. (9.9a)–(9.9c).

(b) Prove that the objective function given in Eq. (9.8) is globally convex.
Hint: Show that for any y ∈ R4, yT∇2e2p(x)y ≥ 0.

9.4 Derive formulas for the evaluation of ∇2fk(x) for k = 1, 2, and 3 for the
set of functions fk(x) given by Eq. (9.16).

9.5 Show that for a nontrivial weighting function W (ω) ≥ 0, the matrix Q
given by Eq. (9.30) is positive definite.

9.6 Derive the expressions of Ql and bl given in Eqs. (9.41), (9.42), and
(9.43).

9.7 Write a MATLAB program to implement the unconstrained optimization
algorithm for the weighted least-squares design of linear-phase lowpass
FIR digital filters studied in Sec. 9.4.1.2.

9.8 Develop an unconstrained optimization algorithm for the weighted least-
squares design of linear-phase highpass digital filters.

Applications of Unconstrained Optimization 263

9.9 Prove that the objective function given in Eq. (9.45) is globally convex.
Hint: Show that for any y ∈ RN+1, yT∇2f(h)y ≥ 0.

9.10 Develop a method based on unconstrained optimization for the design
of FIR filters with low passband group delay allowing coefficients with
complex values.

9.11 Consider the double inverted pendulum control system described in Ex-
ample 1.2, where α = 16, β = 8, T0 = 0.8, ∆t = 0.02, and K = 40.
The initial state is set to x(0) = [π/6 1 π/6 1]T and the constraints on
the magnitude of control actions are |u(i)| ≤ m for i = 0, 1, . . . , K − 1
with m = 112.

(a) Use the singular-value decomposition technique (see Sec. A.9, es-
pecially Eqs. (A.43) and (A.44)) to eliminate the equality constraint
a(u) = 0 in Eq. (1.9b).

(b) Convert the constrained problem obtained from part (a) to an uncon-
strained problem of the augmented objective function

Fτ (u) = uTu− τ
K−1∑
i=0

ln[m − u(i)] − τ
K−1∑
i=0

ln[m + u(i)]

where the barrier parameter τ is fixed to a positive value in each round
of minimization, which is then reduced to a smaller value at a fixed
rate in the next round of minimization.
Note that in each round of minimization, a line search step should be
carefully executed where the step-size α is limited to a finite interval
[0, ᾱ] that is determined by the constraints |u(i)| ≤ m for 0 ≤ i ≤
K − 1.

Chapter 10

FUNDAMENTALS OF CONSTRAINED
OPTIMIZATION

10.1 Introduction
The material presented so far dealt largely with principles, methods, and

algorithms for unconstrained optimization. In this and the next five chapters,
we build on the introductory principles of constrained optimization discussed
in Secs. 1.4–1.6 and proceed to examine the underlying theory and structure of
some very sophisticated and efficient constrained optimization algorithms.

The presence of constraints gives rise to a number of technical issues that
are not encountered in unconstrained problems. For example, a search along
the direction of the negative of the gradient of the objective function is a well
justified technique for unconstrained minimization. However, in a constrained
optimization problem points along such a direction may not satisfy the con-
straints and in such a case the search will not yield a solution of the problem.
Consequently, new methods for determining feasible search directions have to
be sought.

Many powerful techniques developed for constrained optimization problems
are based on unconstrained optimization methods. If the constraints are simply
given in terms of lower and/or upper limits on the parameters, the problem
can be readily converted into an unconstrained problem. Furthermore, meth-
ods of transforming a constrained minimization problem into a sequence of
unconstrained minimizations of an appropriate auxiliary function exist.

The purpose of this chapter is to lay a theoretical foundation for the de-
velopment of various algorithms for constrained optimization. Equality and
inequality constraints are discussed in general terms in Sec. 10.2. After a
brief discussion on the classification of constrained optimization problems in
Sec. 10.3, several variable transformation techniques for converting optimiza-
tion problems with simple constraints into unconstrained problems are studied

266

in Sec. 10.4. One of the most important concepts in constrained optimization,
the concept of Lagrange multipliers, is introduced and a geometric interpre-
tation of Lagrange multipliers is given in Sec. 10.5. The first-order necessary
conditions for a point x∗ to be a solution of a constrained problem, known as the
Karush-Kuhn-Tucker conditions, are studied in Sec. 10.6 and the second-order
conditions are discussed in Sec. 10.7. As in the unconstrained case, the concept
of convexity plays an important role in the study of constrained optimization
and it is discussed in Sec. 10.8. Finally, the concept of duality, which is of sig-
nificant importance in the development and unification of optimization theory,
is addressed in Sec. 10.9.

10.2 Constraints
10.2.1 Notation and basic assumptions

In its most general form, a constrained optimization problem is to find a
vector x∗ that solves the problem

minimize f(x) (10.1a)

subject to: ai(x) = 0 for i = 1, 2, . . . , p (10.1b)

cj(x) ≥ 0 for j = 1, 2, . . . , q (10.1c)

Throughout the chapter, we assume that the objective function f(x) as well as
the functions involved in the constraints in Eqs. (10.1b) and (10.1c), namely,
{ai(x) for i = 1, 2, . . . , p} and {cj(x) for j = 1, 2, . . . , q}, are continuous
and have continuous second partial derivatives, i.e., ai(x), cj(x) ∈ C2. Let R
denote the feasible region for the problem in Eq. (10.1), which was defined in
Sec. 1.5 as the set of points satisfying Eqs. (10.1b) and (10.1c), i.e.,

R = {x : ai(x) = 0 for i = 1, 2, . . . , p, cj(x) ≥ 0 for j = 1, 2, . . . , q}

In this chapter as well as the rest of the book, we often need to compare
two vectors or matrices entry by entry. For two matrices A = {aij} and
B = {bij} of the same dimension, we use A ≥ B to denote aij ≥ bij for all i,
j. Consequently, A ≥ 0 means aij ≥ 0 for all i, j. We write A 0, A �
0, A ≺ 0, and A � 0 to denote that matrix A is positive definite, positive
semidefinite, negative definite, and negative semidefinite, respectively.

10.2.2 Equality constraints
The set of equality constraints

a1(x) = 0
...

ap(x) = 0
(10.2)

Fundamentals of Constrained Optimization 267

defines a hypersurface in Rn. Using vector notation, we can write

a(x) = [a1(x) a2(x) · · · ap(x)]T

and from Eq. (10.2), we have
a(x) = 0 (10.3)

Definition 10.1 A point x is called a regular point of the constraints in Eq. (10.2)
if x satisfies Eq. (10.2) and column vectors ∇a1(x), ∇a2(x), . . . , ∇ap(x)
are linearly independent.

The definition states, in effect, that x is a regular point of the constraints,
if it is a solution of Eq. (10.2) and the Jacobian Je = [∇a1(x) ∇a2(x) · · ·
∇ap(x)]T has full row rank. The importance of a point x being regular for
a given set of equality constraints lies in the fact that a tangent plane of the
hypersurface determined by the constraints at a regular point x is well defined.
Later in this chapter, the term ‘tangent plane’ will be used to express and describe
important necessary as well as sufficient conditions for constrained optimization
problems. Since Je is a p × n matrix, it would not be possible for x to be a
regular point of the constraints if p > n. This leads to an upper bound for the
number of independent equality constraints, i.e., p ≤ n. Furthermore, if p = n,
in many cases the number of vectors x that satisfy Eq. (10.2) is finite and the
optimization problem becomes a trivial one. For these reasons, we shall assume
that p < n throughout the rest of the book.

Example 10.1 Discuss and sketch the feasible region described by the equality
constraints

−x1 + x3 − 1 = 0 (10.4a)

x2
1 + x2

2 − 2x1 = 0 (10.4b)

Solution The Jacobian of the constraints is given by

Je(x) =
[−1 0 1
2x1 − 2 2x2 0

]

which has rank 2 except at x = [1 0 x3]T . Since x = [1 0 x3]T does not
satisfy the constraint in Eq. (10.4b), any point x satisfying Eq. (10.4) is regular.
The constraints in Eq. (10.4) describe a curve which is the intersection between
the cylinder in Eq. (10.4b) and the plane in Eq. (10.4a). For the purpose of
displaying the curve, we derive a parametric representation of the curve as
follows. Eq. (10.4b) can be written as

(x1 − 1)2 + x2
2 = 1

268

which suggests the parametric expressions

x1 = 1 + cos t (10.5a)

x2 = sin t (10.5b)

for x1 and x2. Now Eq. (10.5) in conjunction with Eq. (10.4a) gives

x3 = 2 + cos t (10.5c)

With parameter t varying from 0 to 2π, Eq. (10.5) describes the curve shown
in Fig. 10.1.

0
0.5

1
1.5

2

−1

−0.5

0

0.5

1
0

0.5

1

1.5

2

2.5

3

Figure 10.1. Constraints in Eq. (10.4) as a curve.

A particularly important class of equality constraints is the class of linear
constraints where functions ai(x) are all linear. In this case, Eq. (10.2) becomes
a system of linear equations which can be expressed as

Ax = b (10.6)

where A ∈ Rp×n is numerically equal to the Jacobian, i.e., A = Je, and
b ∈ Rp×1. Since the Jacobian is a constant matrix, any solution point of
Eq. (10.6) is a regular point if rank(A) = p. If rank(A) = p′ < p, then there
are two possibilities: either

rank([A b]) > rank(A) (10.7)

Fundamentals of Constrained Optimization 269

or
rank([A b]) = rank(A) (10.8)

If Eq. (10.7) is satisfied, then we conclude that contradictions exist in Eq. (10.6),
and a careful examination of Eq. (10.6) is necessary to eliminate such contra-
dictions. If Eq. (10.8) holds with rank(A) = p′ < p, then simple algebraic
manipulations can be used to reduce Eq. (10.6) to an equivalent set of p′ equality
constraints

Âx = b̂ (10.9)

where Â ∈ Rp′×n has rank p′ and b̂ ∈ Rp′×1. Further, linear equality con-
straints in the form of Eq. (10.9) with a full row rank Â can be eliminated so
as to convert the problem to an unconstrained problem or to reduce the number
of parameters involved. The reader is referred to Sec. 10.4.1.1 for the details.

When rank(A) = p′ < p, a numerically reliable way to reduce Eq. (10.6)
to Eq. (10.9) is to apply the singular-value decomposition (SVD) to matrix A.
The basic theory pertaining to the SVD can be found in Sec. A.9. Applying the
SVD to A, we obtain

A = UΣVT (10.10)

where U ∈ Rp×p and V ∈ Rn×n are orthogonal matrices and

Σ =
[

S 0
0 0

]
p×n

with S = diag{σ1, σ2, . . . , σp′}, and σ1 ≥ σ2 ≥ · · · ≥ σp′ > 0. It follows
that

A = U
[
Â
0

]

with Â = S[v1 v2 · · · vp′]T ∈ Rp′×n where vi denotes the ith column of V,
and Eq. (10.6) becomes [

Â
0

]
x =

[
b̂
0

]

This leads to Eq. (10.9) where b̂ is formed by using the first p′ entries of UTb.
Evidently, any solution point of Eq. (10.9) is a regular point.

In MATLAB, the SVD of a matrix A is performed by using command svd.
The decomposition in Eq. (10.10) can be obtained by using

[U, SIGMA, V]=svd(A);
The command svd can also be used to compute the rank of a matrix. We use
svd(A) to compute the singular values of A, and the number of the nonzero
singular values of A is the rank of A.1

1The rank of a matrix can also be found by using MATLAB command rank.

270

Example 10.2 Simplify the linear equality constraints

x1 − 2x2 + 3x3 + 2x4 = 4
2x2 − x3 = 1 (10.11)

2x1 − 10x2 + 9x3 + 4x4 = 5

Solution It can be readily verified that rank(A) = rank([A b]) = 2. Hence the
constraints in Eq. (10.11) can be reduced to a set of two equality constraints.
The SVD of A yields

U =

⎡
⎣ 0.2717 −0.8003 −0.5345

−0.1365 −0.5818 0.8018
0.9527 0.1449 0.2673

⎤
⎦

Σ =

⎡
⎣ 14.8798 0 0 0

0 1.6101 0 0
0 0 0 0

⎤
⎦

V =

⎡
⎢⎢⎣

0.1463 −0.3171 0.6331 −0.6908
−0.6951 −0.6284 −0.3161 −0.1485

0.6402 −0.3200 −0.6322 −0.2969
0.2926 −0.6342 0.3156 0.6423

⎤
⎥⎥⎦

Therefore, the reduced set of equality constraints is given by

2.1770x1 − 10.3429x2 + 9.5255x3 + 4.3540x4 = 5.7135 (10.12a)

−0.5106x1 − 1.0118x2 − 0.5152x3 − 1.0211x4 = −3.0587 (10.12b)

10.2.3 Inequality constraints
In this section, we discuss the class of inequality constraints. The discussion

will be focused on their difference from as well as their relation to equality
constraints. In addition, the convexity of a feasible region defined by linear
inequalities will be addressed.

Consider the constraints

c1(x) ≥ 0
c2(x) ≥ 0

...
cq(x) ≥ 0

(10.13)

Unlike the number of equality constraints, the number of inequality constraints,
q, is not required to be less than n. For example, if we consider the case

Fundamentals of Constrained Optimization 271

c 1(x) = 0

c 2(x) = 0

c 3(x) = 0

x-

Figure 10.2. Active and inactive constraints.

where all cj(x) for 1 ≤ j ≤ q are linear functions, then the constraints in
Eq. (10.13) represent a polyhedron with q facets, and the number of facets in
such a polyhedron is obviously unlimited.

The next two issues are concerned with the inequalities in Eq. (10.13). For
a feasible point x, these inequalities can be divided into two classes, the set of
constraints with ci(x) = 0, which are called active constraints, and the set of
constraints with ci(x) > 0, which are called inactive constraints. Since ci(x)
are continuous functions, the constraints that are inactive at x will remain so
in a sufficiently small neighborhood of x. This means that the local properties
of x will not be affected by the inactive constraints. On the other hand, when
ci(x) = 0 the point x is on the boundary determined by the active constraints.
Hence directions exist that would violate some of these constraints. In other
words, active constraints restrict the feasible region of the neighborhoods of x.
For example, consider a constrained problem with the feasible region shown as
the shaded area in Fig. 10.2. The problem involves three inequality constraints;
constraints c1(x) ≥ 0 and c2(x) ≥ 0 are inactive while c3(x) ≥ 0 is active at
point x = x̄ since x̄ is on the boundary characterized by c3(x) = 0. It can be
observed that local searches in a neighborhood of x̄ will not be affected by the
first two constraints but will be restricted to one side of the tangent line to the
curve c3(x) = 0 at x̄. The concept of active constraints is an important one as it
can be used to reduce the number of constraints that must be taken into account
in a particular iteration and, therefore, often leads to improved computational
efficiency.

Another approach to deal with inequality constraints is to convert them into
equality constraints. For the sake of simplicity, we consider the problem

minimize f(x) x ∈ Rn (10.14a)

subject to: ci(x) ≥ 0 for i = 1, 2, . . . , q (10.14b)

272

which involves only inequality constraints. The constraints in Eq. (10.14b) are
equivalent to

ĉ1 = c1(x) − y1 = 0
ĉ2 = c2(x) − y2 = 0

... (10.15a)

ĉq = cq(x) − yq = 0
yi ≥ 0 for 1 ≤ i ≤ q (10.15b)

where y1, y2, . . . , yq are called slack variables. The constraints in Eq. (10.15b)
can be eliminated by using the simple variable substitutions

yi = ŷ2
i for 1 ≤ i ≤ q

If we let
x̂ = [x1 · · · xn ŷ1 · · · ŷq]T

then the problem in Eq. (10.14) can be formulated as

minimize f(x̂) x̂ ∈ En+q (10.16a)

subject to: ĉi(x̂) = 0 for i = 1, 2, . . . , q (10.16b)

The idea of introducing slack variables to reformulate an optimization problem
has been used successfully in the past, especially in linear programming, to
transform a nonstandard problem into a standard problem (see Chap. 11 for the
details).

We conclude this section by showing that there is a close relation between
the linearity of inequality constraints to the convexity of the feasible region
defined by the constraints. Although determining whether or not the region
characterized by the inequality constraints in Eq. (10.13) is convex is not always
easy, it can be readily shown that a feasible region defined by Eq. (10.13) with
linear ci(x) is a convex polyhedron.

To demonstrate that this indeed is the case, we can write the linear inequality
constraints as

Cx ≥ d (10.17)

with C ∈ Rq×n, d ∈ Rq×1. Let R = {x : Cx ≥ d} and assume that x1,
x2 ∈ R. For λ ∈ [0, 1], the point x = λx1 + (1 − λ)x2 satisfies Eq. (10.17)
because

Cx = λCx1 + (1 − λ)Cx2

≥ λd + (1 − λ)d = d

Fundamentals of Constrained Optimization 273

Therefore, Cx ≥ d defines a convex set (see Sec. 2.7). In the literature,
inequality constraints are sometimes given in the form

c1(x) ≤ 0
... (10.18)

cq(x) ≤ 0

A similar argument can be used to show that if ci(x) for 1 ≤ i ≤ q in Eq. (10.18)
are all linear functions, then the feasible region defined by Eq. (10.18) is convex.

10.3 Classification of Constrained Optimization Problems
In Sec. 1.6, we provided an introductory discussion on the various branches

of mathematical programming. Here, we re-examine the classification issue
paying particular attention to the structure of constrained optimization prob-
lems.

Constrained optimization problems can be classified according to the nature
of the objective function and the constraints. For specific classes of problems,
there often exist methods that are particularly suitable for obtaining solutions
quickly and reliably. For example, for linear programming problems, the sim-
plex method of Dantzig [1] and the primal-dual interior-point methods [2]
have proven very efficient. For general convex programming problems, sev-
eral interior-point methods that are particularly efficient have recently been
developed [3][4].

Before discussing the classification, we formally describe the different types
of minimizers of a general constrained optimization problem. In the following
definitions, R denotes the feasible region of the problem in Eq. (10.1) and the
set of points {x : ||x−x∗|| ≤ δ} with δ > 0 is said to be a ball centered at x∗.

Definition 10.2 Point x∗ is a local constrained minimizer of the problem in
Eq. (10.1) if there exists a ball Bx∗ = {x : ||x − x∗|| ≤ δ} with δ > 0 such
that Dx∗ = Bx∗ ∩R is nonempty and f(x∗) = min{f(x) : x ∈ Dx∗}.

Definition 10.3 Point x∗ is a global constrained minimizer of the problem in
Eq. (10.1) if x∗ ∈ R and f(x∗) = min{f(x) : x ∈ R}

Definition 10.4 A constrained minimizer x∗ is called a strong local minimizer
if there exists a ball Bx∗ such that Dx∗ = Bx∗ ∩ R is nonempty and x∗ is the
only constrained minimizer in Dx∗ .

274

10.3.1 Linear programming
The standard form of a linear programming (LP) problem can be stated as

minimize f(x) = cTx (10.19a)

subject to: Ax = b (10.19b)

x ≥ 0 (10.19c)

where c ∈ Rn×1, A ∈ Rp×n, and b ∈ Rp×1 are given. In words, we need
to find a vector x∗ that minimizes a linear objective function subject to the
linear equality constraints in Eq. (10.19b) and the nonnegativity bounds in
Eq. (10.19c).

LP problems may also be encountered in the nonstandard form

minimize cTx (10.20a)

subject to: Ax ≥ b (10.20b)

By introducing slack variables in terms of vector y as

y = Ax − b

Eq. (10.20b) can be expressed as

Ax − y = b (10.21a)

and
y ≥ 0 (10.21b)

If we express variable x as the difference of two nonnegative vectors x+ ≥ 0
and x− ≥ 0, i.e.,

x = x+ − x−

and let

x̂ =

⎡
⎣x+

x−
y

⎤
⎦

then the objective function becomes

ĉT x̂ = [cT − cT 0]x̂

and the constraints in Eq. (10.21) can be written as

[A −A −I] x̂ = b

and
x̂ ≥ 0

Fundamentals of Constrained Optimization 275

Therefore, the problem in Eq. (10.20) can be stated as the standard LP problem

minimize ĉT x̂ (10.22a)

subject to: Âx̂ = b (10.22b)

x̂ ≥ 0 (10.22c)

where

ĉ =

⎡
⎣ c
−c
0

⎤
⎦ and Â = [A −A −I]

The simplex and other methods that are very effective for LP problems will be
studied in Chaps. 11 and 12.

10.3.2 Quadratic programming
The simplest, yet the most frequently encountered class of constrained non-

linear optimization problems, is the class of quadratic programming (QP) prob-
lems. In these problems, the objective function is quadratic and the constraints
are linear, i.e.,

minimize f(x) = 1
2x

T Hx + xTp + c (10.23a)

subject to: Ax = b (10.23b)

Cx ≥ d (10.23c)

In many applications, the Hessian of f(x), H, is positive semidefinite. This
implies that f(x) is a globally convex function. Since the feasible region de-
termined by Eqs. (10.23b) and (10.23c) is always convex, QP problems with
positive semidefinite H can be regarded as a special class of convex program-
ming problems which will be further addressed in Sec. 10.3.3. Algorithms for
solving QP problems will be studied in Chap. 13.

10.3.3 Convex programming
In a convex programming (CP) problem, a parameter vector is sought that

minimizes a convex objective function subject to a set of constraints that define
a convex feasible region for the problem [3][4]. Evidently, LP and QP problems
with positive semidefinite Hessian matrices can be viewed as CP problems.

There are other types of CP problems that are of practical importance in
engineering and science. As an example, consider the problem

minimize ln(detP−1) (10.24a)

subject to: P 0 (10.24b)

vT
i Pvi ≤ 1 for i = 1, 2, . . . , L (10.24c)

276

where vectors vi for 1 ≤ i ≤ L are given and the elements of matrix P = PT

are the variables. It can be shown that if P 0 (i.e., P is positive definite),
then ln(detP−1) is a convex function of P (see Prob. 10.6). In addition, if p =
P(:) denotes the vector obtained by lexicographically ordering the elements of
matrix P, then the set of vectors p satisfying the constraints in Eqs. (10.24b)
and (10.24c) is convex and, therefore, Eq. (10.24) describes a CP problem.
Algorithms for solving CP problems will be studied in Chap. 13.

10.3.4 General constrained optimization problem
The problem in Eq. (10.1) will be referred to as a general constrained opti-

mization (GCO) problem if either f(x) has a nonlinearity of higher order than
second order and is not globally convex or at least one constraint is not convex.

Example 10.3 Classify the constrained problem (see [5]):

minimize f(x) = 1
27

√
3
[(x1 − 3)2 − 9]x3

2

subject to: x1/
√

3 − x2 ≥ 0

x1 +
√

3x2 ≥ 0
−x1 −

√
3x2 ≥ −6
x1 ≥ 0
x2 ≥ 0

Solution The Hessian of f(x) is given by

H(x) =
2

27
√

3

⎡
⎣ x3

2 3(x1 − 3)x2
2

3(x1 − 3)x2
2 3[(x1 − 3)2 − 9]x2

⎤
⎦

Note that x = [3 1]T satisfies all the constraints but H(x) is indefinite at point
x; hence f(x) is not convex in the feasible region and the problem is a GCO
problem.

Very often GOP problems have multiple solutions that correspond to a num-
ber of distinct local minimizers. An effective way to obtain a good local solution
in such a problem, especially when a reasonable initial point, say, x0, can be
identified, is to tackle the problem by using a sequential QP method. In these
methods, the highly nonlinear objective function is approximated in the neigh-
borhood of point x0 in terms of a convex quadratic function while the nonlinear
constraints are approximated in terms of linear constraints. In this way, the
QP problem can be solved efficiently to obtain a solution, say, x1. The GCO
problem is then approximated in the neighborhood of point x1 to yield a new

Fundamentals of Constrained Optimization 277

QP problem whose solution is x2. This process is continued until a certain
convergence criterion, such as ||xk − xk+1|| or |f(xk) − f(xk+1)| < ε where
ε is a prescribed termination tolerance, is met. Sequential QP methods will be
studied in detail in Chap. 15.

Another approach for the solution of a GCO problem is to reformulate the
problem as a sequential unconstrained problem in which the objective function
is modified taking the constraints into account. The barrier function methods are
representatives of this class of approaches, and will be investigated in Chap. 15.

10.4 Simple Transformation Methods
A transformation method is a method that solves the problem in Eq. (10.1)

by transforming the constrained optimization problem into an unconstrained
optimization problem [6][7].

In this section, we shall study several simple transformation methods that can
be applied when the equality constraints are linear equations or simple nonlinear
equations, and when the inequality constraints are lower and/or upper bounds.

10.4.1 Variable elimination
10.4.1.1 Linear equality constraints

Consider the optimization problem

minimize f(x) (10.25a)

subject to: Ax = b (10.25b)

ci(x) ≥ 0 for 1 ≤ i ≤ q (10.25c)

where A ∈ Rp×n has full row rank, i.e., rank(A) = p with p < n. It can be
shown that all solutions of Eq. (10.25b) are characterized by

x = A+b + [In −A+A]φ̂ (10.26)

where A+ denotes the Moore-Penrose pseudo-inverse of A [8], In is the n×n
identity matrix, and φ̂ is an arbitrary n-dimensional parameter vector (see
Prob. 10.7). The solutions expressed in Eq. (10.26) can be simplified con-
siderably by using the SVD. As A has full row rank, the SVD of A gives

A = UΣVT

where U ∈ Rp×p and V ∈ Rn×n are orthogonal and Σ = [S 0] ∈ Rp×n,
S = diag{σ1, σ2, . . . , σp}, σ1 ≥ · · · ≥ σp > 0. Hence we have

A+ = AT (AAT)−1 = V
[
S−1

0

]
UT

278

and

In −A+A = V
[
0 0
0 In−p

]
VT = VrVT

r

where Vr = [vp+1 vp+2 · · · vn] contains the last r = n − p columns of V.
Therefore, Eq. (10.26) becomes

x = Vrφ + A+b (10.27)

where φ ∈ Rr×1 is an arbitrary r-dimensional vector. In words, Eq. (10.27)
gives a complete characterization of all solutions that satisfy Eq. (10.25b). Sub-
stituting Eq. (10.27) into Eqs. (10.25a) and (10.25c), we obtain the equivalent
optimization problem

minimize
φ

f(Vrφ + A+b) (10.28a)

subject to: ci(Vrφ + A+b) ≥ 0 for 1 ≤ i ≤ q (10.28b)

in which the linear equality constraints are eliminated and the number of pa-
rameters is reduced from n = dim(x) to r = dim(φ).

We note two features of the problem in Eq. (10.28). First, the size of the
problem as compared with that of the problem in Eq. (10.25) is reduced from
n to r = n − p. Once the problem in Eq. (10.28) is solved with a solution φ∗,
Eq. (10.27) implies that x∗ given by

x∗ = Vrφ
∗ + A+b (10.29)

is a solution of the problem in Eq. (10.25). Second, the linear relationship
between x and φ as shown in Eq. (10.27) means that the degree of nonlinear-
ity of the objective function f(x) is preserved in the constrained problem of
Eq. (10.28). If, for example, Eq. (10.25) is an LP or QP problem, then the
problem in Eq. (10.28) is an LP or QP problem as well. Moreover, it can be
shown that if the problem in Eq. (10.25) is a CP problem, then the reduced
problem in Eq. (10.28) is also a CP problem.

A weak point of the above method is that performing the SVD of matrix
A is computationally demanding, especially when the size of A is large. An
alternative method that does not require the SVD is as follows. Assume that
A has full row rank and let P ∈ Rn×n be a permutation matrix that would
permute the columns of A such that

Ax = APPTx = [A1 A2]x̂

where A1 ∈ Rp×p consists of p linearly independent columns of A and
x̂ = PTx is simply a vector obtained by re-ordering the components of x
accordingly. If we denote

x̂ =
[
x̃
ψ

]
(10.30)

Fundamentals of Constrained Optimization 279

with x̃ ∈ Rp×1, ψ ∈ Rr×1, then Eq. (10.25b) becomes

A1x̃ + A2ψ = b

i.e.,
x̃ = A−1

1 b − A−1
1 A2ψ

It follows that

x = Px̂ = P
[
x̃
ψ

]
= P

[
A−1

1 b− A−1
1 A2ψ

ψ

]
≡ Wψ + b̃ (10.31)

where

W = P

[
−A−1

1 A2

Ir

]
∈ Rn×r

b̃ = P

[
A−1

1 b

0

]
∈ Rn×1

The optimization problem in Eq. (10.25) is now reduced to

minimize
ψ

f(Wψ + b̃) (10.32a)

subject to: ci(Wψ + b̃) ≥ 0 for 1 ≤ i ≤ q (10.32b)

Note that the new parameter vector ψ is actually a collection of r components
from x.

Example 10.4 Apply the above variable elimination method to minimize

f(x) = 1
2x

T Hx + xTp + c (10.33)

subject to the constraints in Eq. (10.11), where x = [x1 x2 x3 x4]T .

Solution Since rank(A) = rank([A b]) = 2, the three constraints in Eq. (10.11)
are consistent but redundant. It can be easily verified that the first two constraints
in Eq. (10.11) are linearly independent; hence if we let

x =
[
x̃
ψ

]
with x̃ =

[
x1

x2

]
and ψ =

[
x3

x4

]

then Eq. (10.11) is equivalent to[
1 −2
0 2

]
x̃ +

[
3 2
−1 0

]
ψ =

[
4
1

]

280

i.e.,

x̃ =
[−2 −2

1
2 0

]
ψ +

[
5
1
2

]
≡ Wψ + b̃ (10.34)

It follows that if we partition H and p in Eq. (10.33) as

H =
[
H11 H12

HT
12 H22

]
and p =

[
p1

p2

]

with H11 ∈ R2×2, H22 ∈ R2×2, p1 ∈ R2×1, p2 ∈ R2×1, then Eq. (10.33)
becomes

f(ψ) = 1
2ψT Ĥψ + ψT p̂ + ĉ (10.35)

where

Ĥ = WT H11W + HT
12W + WTH12 + H22

p̂ = HT
12b̃ + WTH11b̃ + p2 + WTp1

ĉ = 1
2 b̃

TH11b̃ + b̃Tp2 + c

The problem now reduces to minimizing f(ψ) without constraints. By writ-
ing

Ĥ = [WT I]H
[
W
I

]
we note that Ĥ is positive definite if H is positive definite. In such a case, the
unique minimizer of the problem is given by

x∗ =
[
x̃∗
ψ∗

]

with
ψ∗ = −Ĥ−1p̂ and x̃∗ = Wψ∗ + b̃

10.4.1.2 Nonlinear equality constraints

When the equality constraints are nonlinear, no general methods are available
for variable elimination since solving a system of nonlinear equations is far more
involved than solving a system of linear equations, if not impossible. However,
in many cases the constraints can be appropriately manipulated to yield an
equivalent constraint set in which some variables are expressed in terms of
the rest of the variables so that the constraints can be partially or completely
eliminated.

Example 10.5 Use nonlinear variable substitution to simplify the constrained
problem

Fundamentals of Constrained Optimization 281

minimize f(x) = −x4
1 − 2x4

2 − x4
3 − x2

1x
2
2 − x2

1x
2
3 (10.36)

subject to: a1(x) = x4
1 + x4

2 + x4
3 − 25 = 0 (10.37a)

a2(x) = 8x2
1 + 14x2

2 + 7x2
3 − 56 = 0 (10.37b)

Solution By writing Eq. (10.37b) as

x2
3 = −8

7x2
1 − 2x2

2 + 8

the constraint in Eq. (10.37b) as well as variable x3 in Eqs. (10.36) and (10.37a)
can be eliminated, and an equivalent minimization problem can be formulated
as

minimize f(x) = −57
49x4

1 − 6x4
2 − 25

7 x2
1x

2
2 + 72

7 x2
1 + 32x2

2 (10.38)

subject to: a1(x) = 113
49 x4

1+5x4
2+ 32

7 x2
1x

2
2− 128

7 x2
1−32x2

2+39 = 0 (10.39)

To eliminate Eq. (10.39), we write the equation as

5x4
2 + (32

7 x2
1 − 32)x2

2 + (113
49 x4

1 − 128
7 x2

1 + 39) = 0

and treat it as a quadratic equation of x2
2. In this way

x2
2 = −(16

35x2
1 − 16

5) ± 1
10

√(
−212

49 x4
1 + 512

7 x2
1 + 244

)
(10.40)

By substituting Eq. (10.40) into Eq. (10.38), we obtain a minimization problem
with only one variable.

The plus and minus signs in Eq. (10.40) mean that we have to deal with
two separate cases, and the minimizer can be determined by comparing the
results for the two cases. It should be noted that the polynomial under the
square root in Eq. (10.40) assumes a negative value for large x1; therefore, the
one-dimensional minimization problem must be solved on an interval where
the square root yields real values.

10.4.2 Variable transformations
10.4.2.1 Nonnegativity bounds

The nonnegativity bound
xi ≥ 0

can be eliminated by using the variable transformation [7]

xi = y2
i (10.41)

282

Similarly, the constraint xi ≥ d can be eliminated by using the transformation

xi = d + y2
i (10.42)

and one can readily verify that xi ≤ d can be eliminated by using the transfor-
mation

xi = d − y2
i (10.43)

Although these transformations are simple and easy to use, these bounds are
eliminated at the cost of increasing the degree of nonlinearity of the objective
function as well as the remaining constraints, which may, in turn, reduce the
efficiency of the optimization process.

Example 10.6 Apply a variable transformation to simplify the constrained prob-
lem

minimize f(x) = −x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3 (10.44)

subject to: b1(x) = x2
1 + x2

2 + x2
3 − 25 = 0 (10.45a)

b2(x) = 8x1 + 14x2 + 7x3 − 56 = 0 (10.45b)

xi ≥ 0 i = 1, 2, 3, 4 (10.45c)

Solution The nonnegativity bounds in the problem can be eliminated by using
the transformation in Eq. (10.41). While eliminating Eq. (10.45c), the transfor-
mation changes Eqs. (10.44), (10.45a), and (10.45b) to Eqs. (10.36), (10.37a),
and (10.37b), respectively, where the yi’s have been renamed as xi’s.

10.4.2.2 Interval-type constraints

The hyperbolic tangent function defined by

y = tanh(z) =
ez − e−z

ez + e−z
(10.46)

is a differentiable monotonically increasing function that maps the entire 1-D
space −∞ < z < ∞ onto the interval −1 < y < 1 as can be seen in Fig. 10.3.
This in conjunction with the linear transformation

x =
(b − a)

2
y +

b + a

2
(10.47)

transforms the infinite interval (−∞, ∞) into the open interval (a, b). By
writing tanh(z) as

tanh(z) =
e2z − 1
e2z + 1

Fundamentals of Constrained Optimization 283

1

-1

z

y

Figure 10.3. The hyperbolic tangent function.

we note that evaluating tanh(z) has about the same numerical complexity as
the exponential function.

An alternative transformation for Eq. (10.46) is one that uses the inverse
tangent function

y =
2
π

tan−1 z (10.48)

which is also differentiable and monotonically increasing. As the transfor-
mations in Eqs. (10.46) and (10.48) are nonlinear, applying them to eliminate
interval-type constraints will in general increase the nonlinearity of the objective
function as well as the remaining constraints.

Example 10.7 In certain engineering problems, an nth-order polynomial

p(z) = zn + dn−1z
n−1 + · · · + d1z + d0

is required to have zeros inside the unit circle of the z plane, for example, the
denominator of the transfer function in discrete-time systems and digital filters
[9]. Such polynomials are sometimes called Schur polynomials.

Find a suitable transformation for coefficients d0 and d1 which would ensure
that the second-order polynomial

p(z) = z2 + d1z + d0

is always a Schur polynomial.

Solution The zeros of p(z) are located inside the unit circle if and only if [9]

d0 < 1
d1 − d0 < 1 (10.49)

d1 + d0 > −1

284

The region described by the constraints in Eq. (10.49) is the triangle shown
in Fig. 10.4. For a fixed d0 ∈ (−1, 1), the line segment inside the triangle
shown as a dashed line is characterized by d1 varying from −(1+d0) to 1+d0.
As d0 varies from −1 to 1, the line segment will cover the entire triangle. This
observation suggests the transformation

d0 = tanh(b0)
(10.50)

d1 = [1 + tanh(b0)] tanh(b1)

which provides a one-to-one correspondence between points in the triangle in
the (d0, d1) space and points in the entire (b0, b1) space. In other words, p(z)
is transformed into the polynomial

p(z) = z2 + [1 + tanh(b0)] tanh(b1)z + tanh(b0) (10.51)

which is always a Schur polynomial for any finite values of b0 and b1.
This characterization of second-order Schur polynomials has been found to

be useful in the design of stable recursive digital filters [10].

-1 1

1

-1

1 + d 0

- (1+)d 0

d0 d0

d1

Figure 10.4. Region of the d1 versus d0 plane for which p(z) is a Schur polynomial.

Fundamentals of Constrained Optimization 285

10.5 Lagrange Multipliers
Lagrange multipliers play a crucial role in the study of constrained optimiza-

tion. On the one hand, the conditions imposed on the Lagrange multipliers are
always an integral part of various necessary and sufficient conditions and, on the
other, they provide a natural connection between constrained and correspond-
ing unconstrained optimization problems; each individual Lagrange multiplier
can be interpreted as the rate of change in the objective function with respect
to changes in the associated constraint function [7]. In simple terms, if x∗ is
a local minimizer of a constrained minimization problem, then in addition to
x∗ being a feasible point, the gradient of the objective function at x∗ has to be
a linear combination of the gradients of the constraint functions, and the La-
grange multipliers are the coefficients in that linear combination. Moreover, the
Lagrange multipliers associated with inequality constraints have to be nonneg-
ative and the multipliers associated with inactive inequality constraints have to
be zero. Collectively, these conditions are known as the Karush-Kuhn-Tucker
conditions (KKT).

In what follows, we introduce the concept of Lagrange multipliers through a
simple example and then develop the KKT conditions for an arbitrary problem
with equality constraints.

10.5.1 An example
Let us consider the minimization of the objective function f(x1, x2, x3, x4)

subject to the equality constraints

a1(x1, x2, x3, x4) = 0 (10.52a)

a2(x1, x2, x3, x4) = 0 (10.52b)

If these constraints can be expressed as

x3 = h1(x1, x2) (10.53a)

x4 = h2(x1, x2) (10.53b)

then they can be eliminated by substituting Eq. (10.53) into the objective func-
tion which will assume the form f [x1, x2, h1(x1, x2), h2(x1, x2)]. If
x∗ = [x∗

1 x∗
2 x∗

3 x∗
4]

T is a local minimizer of the original constrained opti-
mization problem, then x̂∗ = [x∗

1 x∗
2]

T is a local minimizer of the problem

minimize f [x1, x2, h1(x1, x2), h2(x1, x2)]

It, therefore, follows that at x̂∗ we have

∇f =

⎡
⎣ ∂f

∂x1

∂f
∂x2

⎤
⎦ = 0

286

Since variables x3 and x4 in the constraints of Eq. (10.53) are related to variables
x1 and x2, the use of the chain rule for the partial derivatives in ∇f gives

∂f

∂x1
+

∂f

∂x3

∂h1

∂x1
+

∂f

∂x4

∂h2

∂x1
= 0

∂f

∂x2
+

∂f

∂x3

∂h1

∂x2
+

∂f

∂x4

∂h2

∂x2
= 0

From Eqs. (10.52) and (10.53), we have

∂a1

∂x1
+

∂a1

∂x3

∂h1

∂x1
+

∂a1

∂x4

∂h2

∂x1
= 0

∂a1

∂x2
+

∂a1

∂x3

∂h1

∂x2
+

∂a1

∂x4

∂h2

∂x2
= 0

∂a2

∂x1
+

∂a2

∂x3

∂h1

∂x1
+

∂a2

∂x4

∂h2

∂x1
= 0

∂a2

∂x2
+

∂a2

∂x3

∂h1

∂x2
+

∂a2

∂x4

∂h2

∂x2
= 0

The above six equations can now be expressed as

⎡
⎣ ∇T f(x)
∇T a1(x)
∇T a2(x)

⎤
⎦
⎡
⎢⎢⎢⎣

1 0
0 1

∂h1
∂x1

∂h1
∂x2

∂h2
∂x1

∂h2
∂x2

⎤
⎥⎥⎥⎦ = 0 (10.54)

This equation implies that ∇f(x∗), ∇a1(x∗), and ∇a2(x∗) are linearly depen-
dent (see Prob. 10.9). Hence there exist constants α, β, γ which are not all
zero such that

α∇f(x∗) + β∇a1(x∗) + γ∇a2(x∗) = 0 (10.55)

If we assume that x∗ is a regular point of the constraints, then α in Eq. (10.55)
cannot be zero and Eq. (10.55) can be simplified to

∇f(x∗) − λ∗
1∇a1(x∗) − λ∗

2∇a2(x∗) = 0 (10.56)

and, therefore
∇f(x∗) = λ∗

1∇a1(x∗) + λ∗
2∇a2(x∗)

where λ∗
1 = −β/α, λ∗

2 = −γ/α. In words, we conclude that at a local
minimizer of the constrained optimization problem, the gradient of the objective
function is a linear combination of the gradients of the constraints. Constants
λ∗

1 and λ∗
2 in Eq. (10.56) are called the Lagrange multipliers of the constrained

problem. In the rest of this section, we examine the concept of Lagrange
multipliers from a different perspective.

Fundamentals of Constrained Optimization 287

10.5.2 Equality constraints
We now consider the constrained optimization problem

minimize f(x) (10.57a)

subject to: ai(x) = 0 for i = 1, 2, . . . , p (10.57b)

following an approach used by Fletcher in [7, Chap. 9]. Let x∗ be a local
minimizer of the problem in Eq. (10.57). By using the Taylor series of constraint
function ai(x) at x∗, we can write

ai(x∗ + s) = ai(x∗) + sT∇ai(x∗) + o(||s||)
= sT∇ai(x∗) + o(||s||) (10.58)

since ai(x∗) = 0. If s is a feasible vector at x∗, then ai(x∗ + s) = 0 and hence
Eq. (10.58) implies that

sT∇ai(x∗) = 0 for i = 1, 2, . . . , p (10.59)

In other words, s is feasible if it is orthogonal to the gradients of the constraint
functions. Now we project the gradient ∇f(x∗) orthogonally onto the space
spanned by {∇a1(x∗), ∇a2(x∗), . . . , ∇ap(x∗)}. If we denote the projection
as

p∑
i=1

λ∗
i∇ai(x∗)

then ∇f(x∗) can be expressed as

∇f(x∗) =
p∑

i=1

λ∗
i∇ai(x∗) + d (10.60)

where d is orthogonal to ∇ai(x∗) for i = 1, 2, . . . , p.
In what follows, we show that if x∗ is a local minimizer then d must be

zero. The proof is accomplished by contradiction. Assume that d �= 0 and let
s = −d. Since s is orthogonal to ∇ai(x∗) by virtue of Eq. (10.59), s is feasible
at x∗. Now we use Eq. (10.60) to obtain

sT∇f(x∗) = sT

(p∑
i=1

λ∗
i∇ai(x∗) + d

)
= −||d||2 < 0

This means that s is a descent direction at x∗ which contradicts the fact that x∗
is a minimizer. Therefore, d = 0 and Eq. (10.60) becomes

∇f(x∗) =
p∑

i=1

λ∗
i∇ai(x∗) (10.61)

288

In effect, for an arbitrary constrained problem with equality constraints, the
gradient of the objective function at a local minimizer is equal to the linear
combination of the gradients of the equality constraint functions with the La-
grange multipliers as the coefficients.

For the problem in Eq. (10.1) with both equality and inequality constraints,
Eq. (10.61) needs to be modified to include those inequality constraints that are
active at x∗. This more general case is treated in Sec. 10.6.

Example 10.8 Determine the Lagrange multipliers for the optimization problem

minimize f(x)
subject to: Ax = b

where A ∈ Rp×n is assumed to have full row rank. Also discuss the case where
the constraints are nonlinear.

Solution Eq. (10.61) in this case becomes

g∗ = AT λ∗ (10.62)

where λ∗ = [λ∗
1 λ∗

2 · · · λ∗
p]

T and g∗ = ∇f(x∗). By virtue of Eq. (10.62), the
Lagrange multipliers are uniquely determined as

λ∗ = (AAT)−1Ag∗ = (AT)+g∗ (10.63)

where (AT)+ denotes the Moore-Penrose pseudo-inverse of AT .
For the case of nonlinear equality constraints, a similar conclusion can be

reached in terms of the Jacobian of the constraints in Eq. (10.57b). If we let

Je(x) = [∇a1(x) ∇a2(x) · · · ∇ap(x)]T (10.64)

then the Lagrange multipliers λ∗
i for 1 ≤ i ≤ p in Eq. (10.61) are uniquely

determined as
λ∗ = [JT

e (x∗)]+g∗ (10.65)

provided that Je(x) has full row rank at x∗.

The concept of Lagrange multipliers can also be explained from a different
perspective. If we introduce the function

L(x, λ) = f(x) −
p∑

i=1

λiai(x) (10.66)

as the Lagrangian of the optimization problem, then the condition in Eq. (10.61)
and the constraints in Eq. (10.57b) can be written as

∇xL(x, λ) = 0 for {x, λ} = {x∗, λ∗} (10.67a)

and

Fundamentals of Constrained Optimization 289

∇λL(x, λ) = 0 for {x, λ} = {x∗, λ∗} (10.67b)

respectively. The numbers of equations in Eqs. (10.67a) and (10.67b) are n and
p, respectively, and the total number of equations is consistent with the number
of parameters in x and λ, i.e., n + p. Now if we define the gradient operator ∇
as

∇ =

⎡
⎣∇x

∇λ

⎤
⎦

then Eqs. (10.67a) and (10.67b) can be expressed as

∇L(x, λ) = 0 for {x, λ} = {x∗, λ∗} (10.68)

From the above analysis, we see that the Lagrangian incorporates the constraints
into a modified objective function in such a way that a constrained minimizer
x∗ is connected to an unconstrained minimizer {x∗, λ∗} for the augmented
objective function L(x, λ) where the augmentation is achieved with the p
Lagrange multipliers.

Example 10.9 Solve the problem

minimize f(x) = 1
2x

THx + xT p

subject to: Ax = b

where H 0 and A ∈ Rp×n has full row rank.

Solution In Example 10.4 we solved a similar problem by eliminating the
equality constraints. Here, we define the Lagrangian

L(x, λ) = 1
2x

T Hx + xTp − λT (Ax− b)

and apply the condition in Eq. (10.68) to obtain

∇L(x, λ) =

⎡
⎣Hx + p− AT λ

−Ax + b

⎤
⎦

=

⎡
⎣ H −AT

−A 0

⎤
⎦
⎡
⎣ x

λ

⎤
⎦ +

⎡
⎣p

b

⎤
⎦ = 0 (10.69)

Since H 0 and rank(A) = p, we can show that the matrix⎡
⎣ H −AT

−A 0

⎤
⎦

290

is nonsingular (see [13, Chap. 14]) and, therefore, Eq. (10.69) has the unique
solution ⎡

⎣ x∗

λ∗

⎤
⎦ = −

⎡
⎣ H −AT

−A 0

⎤
⎦−1 ⎡⎣p

b

⎤
⎦

It follows that

x∗ = H−1(AT λ∗ − p) (10.70a)

where
λ∗ = (AH−1AT)−1(AH−1p + b) (10.70b)

In Sec. 10.8, it will be shown that x∗ given by Eq. (10.70a) with λ∗ deter-
mined using Eq. (10.70b) is the unique, global minimizer of the constrained
minimization problem.

10.5.3 Tangent plane and normal plane
The first derivative of a smooth function of one variable indicates the direction

along which the function increases. Similarly, the gradient of a smooth multi-
variable function indicates the direction along which the function increases at
the greatest rate. This fact can be verified by using the first-order approximation
of the Taylor series of the function, namely,

f(x∗ + δ) = f(x∗) + δT∇f(x∗) + o(||δ||)

If ||δ|| is small, then the value of the function increases by δT∇f(x∗) which
reaches the maximum when the direction of δ coincides with that of ∇f(x∗).

Two interrelated concepts that are closely related to the gradients of the
objective function and the constraints of the optimization problem in Eq. (10.57)
are the tangent plane and normal plane.

The tangent plane of a smooth function f(x) at a given point x∗ can be
defined in two ways as follows. If Cx∗ is the contour surface of f(x) that passes
through point x∗, then we can think of the tangent plane as a hyperplane in Rn

that touches Cx∗ at and only at point x∗. Alternatively, the tangent plane can
be defined as a hyperplane that passes through point x∗ with ∇f(x∗) as the
normal. For example, for n = 2 the contours, tangent plane, and gradient of a
smooth function are related to each other as illustrated in Fig. 10.5.

Following the above discussion, the tangent plane at point x∗ can be defined
analytically as the set

Tx∗ = {x : ∇f(x∗)T (x− x∗) = 0}

In other words, a point x lies on the tangent plane if the vector that connects
x∗ to x is orthogonal to the gradient ∇f(x∗), as can be seen in Fig. 10.5.

Fundamentals of Constrained Optimization 291

x*∆f ()

x *

x

tangent plane
of at x*f ()x

f1 f2 f3< <

f2f =f3f = f1f =

Figure 10.5. Relation of tangent plane to contours and gradient.

Proceeding in the same way, a tangent plane can be defined for a surface
that is characterized by several equations. Let S be the surface defined by the
equations

ai(x) = 0 for i = 1, 2, . . . , p

and assume that x∗ is a point satisfying these constraints, i.e., x∗ ∈ S. The
tangent plane of S at x∗ is given by

Tx∗ = {x : Je(x∗)(x− x∗) = 0} (10.71)

where Je is the Jacobian defined by Eq. (10.64). From Eq. (10.71), we conclude
that the tangent plane of S is actually an (n − p)-dimensional hyperplane in
space Rn. For example, in the case of Fig. 10.5 we have n = 2 and p = 1 and
hence the tangent plane degenerates into a straight line.

The normal plane can similarly be defined. Given a set of equations ai(x) =
0 for 1 ≤ i ≤ p and a point x∗ ∈ S, the normal plane at x∗ is given by

Nx∗ = {x : x − x∗ =
p∑

i=1

αi∇ai(x∗) for αi ∈ R} (10.72)

It follows that {Nx∗ − x∗} is the range of matrix JT
e (x∗), and hence it is a

p-dimensional subspace in Rn. More importantly, Tx∗ and Nx∗ are orthogonal
to each other.

292

10.5.4 Geometrical interpretation
On the basis of the preceding definitions, a geometrical interpretation of the

necessary condition in Eq. (10.61) is possible [7][11] as follows: If x∗ is a
constrained local minimizer, then the vector ∇f(x∗) must lie in the normal
plane Nx∗ .

A two-variable example is illustrated in Fig. 10.6 where several contours of
the objective functionf(x1, x2) and the only equality constraint a1(x1, x2) = 0
are depicted. Note that at feasible point x̃, ∇f(x̃) lies exactly in the normal
plane generated by ∇a1(x̃) only when x̃ coincides with x∗, the minimizer of
f(x) subject to constraint a1(x) = 0.

f1 f2 f3< <

f2f =f3f = f1f =

x *∆f ()
x *

∆f ()x~

∆ ()x~a1

a1 (x) = 0

x~

a ()x *

∆

1

Figure 10.6. Geometrical interpretation of Eq. (10.61): ∇f(x̃) lies in Nx∗ if x̃ = x∗ where
x∗ is a minimizer.

Eq. (10.61) may also hold when x∗ is a minimizer as illustrated in Fig. 10.7a
and b, or a maximizer as shown in Fig. 10.7c, or x∗ is neither a minimizer nor
a maximizer. In addition, for a local minimizer, the Lagrange multipliers can
be either positive as in Fig. 10.7a or negative as in Fig. 10.7b.

Example 10.10 Construct the geometrical interpretation of Eq. (10.61) for the
three-variable problem

minimize f(x) = x2
1 + x2

2 + 1
4x2

3

subject to: a1(x) = −x1 + x3 − 1 = 0
a2(x) = x2

1 + x2
2 − 2x1 = 0

Solution As was discussed in Example 10.1, the above constraints describe
the curve obtained as the intersection of the cylinder a2(x) = 0 with the plane

Fundamentals of Constrained Optimization 293

x *∆f ()

f1f2f3

x *∆f ()

x*

x*

(d)

x *∆f ()x*

f1f2f3

x *∆f ()

f1f2f3

x*

(a)

(c)

(b)f1 f2 f3<<

a ()x *

∆

1

a ()x*∆

1

a ()x *

∆

1

a ()x*

∆

1

f1f2f3

Figure 10.7. Geometrical interpretation of Eq. (10.61): (a) x∗ is a minimizer with λ∗ > 0;
(b) x∗ is a minimizer with λ∗ < 0; (c) x∗ is a maximizer; (d) x∗ is neither a minimizer nor a
maximizer.

a1(x) = 0. Fig. 10.8 shows that the constrained problem has a global minimizer
x∗ = [0 0 1]T . At x∗, the tangent plane in Eq. (10.71) becomes a line that
passes through x∗ and is parallel with the x2 axis while the normal plane Nx∗

is the plane spanned by

∇a1(x∗) =

⎡
⎣−1

0
1

⎤
⎦ and ∇a2(x∗) =

⎡
⎣−2

0
0

⎤
⎦

which is identical to plane x2 = 0. Note that at x∗

∇f(x∗) =

⎡
⎣ 0

0
1
2

⎤
⎦

As is expected, ∇f(x∗) lies in the normal plane Nx∗ (see Fig. 10.8) and can
be expressed as

∇f(x∗) = λ∗
1∇a1(x∗) + λ∗

2∇a2(x∗)

294

where λ∗
1 = 1

2 and λ∗
2 = −1

4 are the Lagrange multipliers.

x1

x2

x3

x *∆f ()

x *

()a1 x*

∆

()a2 x *

∆

f(x) = 1
4 x *T

Figure 10.8. An interpretation of Eq. (10.61) for Example 10.10.

10.6 First-Order Necessary Conditions
The necessary conditions for a point x∗ to be a local minimizer are useful

in two situations: (a) They can be used to exclude those points that do not
satisfy at least one of the necessary conditions from the candidate points; (b)
they become sufficient conditions when the objective function in question is
convex (see Sec. 10.8 for details).

10.6.1 Equality constraints
Based on the discussion in Sec. 10.5, the first-order necessary conditions for

a minimum for the problem in Eq. (10.57) can be summarized in terms of the
following theorem.

Theorem 10.1 First-order necessary conditions for a minimum, equality
constraints If x∗ is a constrained local minimizer of the problem in Eq. (10.57)
and is a regular point of the constraints in Eq. (10.57b), then

(a) ai(x∗) = 0 for i = 1, 2, . . . , p, and (10.73)

Fundamentals of Constrained Optimization 295

(b) there exist Lagrange multipliers λ∗
i for i = 1, 2, . . . , p such that

∇f(x∗) =
p∑

i=1

λ∗
i∇ai(x∗) (10.74)

Eq. (10.74) can be expressed in terms of the Jacobian Je(x) (see Eq. (10.64))
as

g(x∗) − JT
e (x∗)λ∗ = 0

where g(x) = ∇f(x). In other words, if x∗ is a local minimizer of the problem
in Eq. (10.57), then there exists a vector λ∗ ∈ Rp such that the (n + p)-
dimensional vector [x∗T λ∗T]T satisfies the n + p nonlinear equations[

g(x∗) − JT
e (x∗)λ∗

a(x∗)

]
= 0 (10.75)

Theorem 10.1 can be related to the first-order necessary conditions for a min-
imum for the case of unconstrained minimization in Theorem 2.1 (see Sec. 2.5)
as follows. If function f(x) is minimized without constraints, we can consider
the problem as the special case of the problem in Eq. (10.57) where the number
of constraints is reduced to zero. In such a case, condition (a) of Theorem 10.1
is satisfied automatically and condition (a) of Theorem 2.1 must hold. On the
other hand, condition (b) becomes

∇f(x∗) = 0

which is condition (b) of Theorem 2.1.
If x∗ is a local minimizer and λ∗ is the associated vector of Lagrange mul-

tipliers, the set {x∗, λ∗} may be referred to as the minimizer set or minimizer
for short.

Example 10.11 Find the points that satisfy the necessary conditions for a min-
imum for the problem in Example 10.10.

Solution We have

g(x) =

⎡
⎣ 2x1

2x2
1
2x3

⎤
⎦ , JT

e (x) =

⎡
⎣−1 2x1 − 2

0 2x2

1 0

⎤
⎦

Hence Eq. (10.75) becomes

2x1 + λ1 − λ2(2x1 − 2) = 0
2x2 − 2λ2x2 = 0

x3 − 2λ1 = 0
−x1 + x3 − 1 = 0
x2

1 + x2
2 − 2x1 = 0

296

Solving the above system of equations, we obtain two solutions, i.e.,

x∗
1 =

⎡
⎣ 0

0
1

⎤
⎦ and λ∗

1 =

⎡
⎣ 1

2

−1
4

⎤
⎦

and

x∗
2 =

⎡
⎣ 2

0
3

⎤
⎦ and λ∗

2 =

⎡
⎣ 3

2

11
4

⎤
⎦

The first solution, {x∗
1, λ∗

1}, is the global minimizer set as can be observed in
Fig. 10.8. Later on in Sec. 10.7, we will show that {x∗

2, λ∗
2} is not a minimizer

set.

10.6.2 Inequality constraints
Consider now the general constrained optimization problem in Eq. (10.1) and

let x∗ be a local minimizer. The setJ (x∗) ⊆ {1, 2, . . . , q} is the set of indices
j for which the constraints cj(x) ≥ 0 are active at x∗, i.e., cj(x∗) = 0. At point
x∗, the feasible directions are characterized only by the equality constraints and
those inequality constraints cj(x) with j ∈ J (x∗), and are not influenced by
the inequality constraints that are inactive. As a matter of fact, for an inactive
constraint cj(x) ≥ 0, the feasibility of x∗ implies that

cj(x∗) > 0

This leads to
cj(x∗ + δ) > 0

for any δ with a sufficiently small ||δ||.
If there are K active inequality constraints at x∗ and

J (x∗) = {j1, j2, . . . , jK} (10.76)

then Eq. (10.61) needs to be modified to

∇f(x∗) =
p∑

i=1

λ∗
i∇ai(x∗) +

K∑
k=1

µ∗
jk
∇cjk

(x∗) (10.77)

In words, Eq. (10.77) states that the gradient at x∗, ∇f(x∗), is a linear combi-
nation of the gradients of all the constraint functions that are active at x∗.

An argument similar to that used in Sec. 10.5.2 to explain why Eq. (10.77)
must hold for a local minimum of the problem in Eq. (10.1) is as follows [7].
We start by assuming that x∗ is a regular point for the constraints that are active

Fundamentals of Constrained Optimization 297

at x∗. Let jk be one of the indices from J (x∗) and assume that s is a feasible
vector at x∗. Using the Taylor series of cjk

(x), we can write

cjk
(x∗ + s) = cjk

(x∗) + sT∇cjk
(x∗) + o(||s||)

= sT∇cjk
(x∗) + o(||s||)

Since s is feasible, cjk
(x∗ + s) ≥ 0 which leads to

sT∇cjk
(x∗) ≥ 0 (10.78)

Now we orthogonally project∇f(x∗) onto the space spanned byS = {∇ai(x∗)
for 1 ≤ i ≤ p and ∇cjk

(x∗) for 1 ≤ k ≤ K}. Since the projection is on S , it
can be expressed as a linear combination of vectors {∇ai(x∗) for 1 ≤ i ≤ p
and ∇cjk

(x∗) for 1 ≤ k ≤ K}, i.e.,

p∑
i=1

λ∗
i∇ai(x∗) +

K∑
k=1

µ∗
jk
∇cjk

(x∗)

for some λ∗
i ’s and µ∗

jk
’s. If we denote the difference between ∇f(x∗) and this

projection by d, then we can write

∇f(x∗) =
p∑

i=1

λ∗
i∇ai(x∗) +

K∑
k=1

µ∗
jk
∇cjk

(x∗) + d (10.79)

Since d is orthogonal to S , d is orthogonal to ∇ai(x∗) and ∇cjk
(x∗);

hence s = −d is a feasible direction (see Eqs. (10.59) and (10.78)); however,
Eq. (10.79) gives

sT∇f(x∗) = −||d||2 < 0

meaning that s would be a descent direction at x∗. This contradicts the fact that
x∗ is a local minimizer. Therefore, d = 0 and Eq. (10.77) holds. Constants λ∗

i

and µ∗
jk

in Eq. (10.77) are the Lagrange multipliers for equality and inequality
constraints, respectively.

Unlike the Lagrange multipliers associated with equality constraints, which
can be either positive or negative, those associated with active inequality con-
straints must be nonnegative, i.e.,

µ∗
jk

≥ 0 for 1 ≤ k ≤ K (10.80)

We demonstrate the validity of Eq. (10.80) by contradiction. Suppose that
µ∗

jk∗ < 0 for some jk∗ . Since the gradients in S are linearly independent, the

298

system ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇T a1(x∗)
...

∇T ap(x∗)
∇T cj1(x

∗)
...

∇T cjK (x∗)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

has a solution for s, where the vector on the right-hand side of the above equation
has only one nonzero entry corresponding to ∇T cjk∗ (x∗). Hence we have a
vector s satisfying the equations

sT∇ai(x∗) = 0 for 1 ≤ i ≤ p

sT∇cjk
=

{
1 for k = k∗
0 otherwise

It follows from Eqs. (10.59) and (10.78) that s is feasible. By virtue of
Eq. (10.77), we obtain

sT∇f(x∗) = µ∗
jk∗ < 0

Hence s is a descent direction at x∗ which contradicts the fact that x∗ is a local
minimizer. This proves Eq. (10.80). The following theorem, known as the
KKT conditions [12], summarizes the above discussion.

Theorem 10.2 Karush-Kuhn-Tucker conditions If x∗ is a local minimizer
of the problem in Eq. (10.1) and is regular for the constraints that are active at
x∗, then

(a) ai(x∗) = 0 for 1 ≤ i ≤ p,

(b) cj(x∗) ≥ 0 for 1 ≤ j ≤ q,

(c) there exist Lagrange multipliers λ∗
i for 1 ≤ i ≤ p and µ∗

j for 1 ≤
j ≤ q such that

∇f(x∗) =
p∑

i=1

λ∗
i∇ai(x∗) +

q∑
j=1

µ∗
j∇cj(x∗) (10.81)

(d) λ∗
i ai(x∗) = 0 for 1 ≤ i ≤ p, (10.82a)

µ∗
jcj(x∗) = 0 for 1 ≤ j ≤ q, and (10.82b)

(e) µ∗
j ≥ 0 for 1 ≤ j ≤ q. (10.83)

Some remarks on the KKT conditions stated in Theorem 10.2 are in order.
Conditions (a) and (b) simply mean that x∗ must be a feasible point. The

Fundamentals of Constrained Optimization 299

p+q equations in Eq. (10.82) are often referred to as the complementarity KKT
conditions. They state that λ∗

i and ai(x∗) cannot be nonzero simultaneously,
and µ∗

j and cj(x∗) cannot be nonzero simultaneously. Note that condition (a)
implies the condition in Eq. (10.82a) regardless of whether λ∗

i is zero or not. For
the equality conditions in Eq. (10.82b), we need to distinguish those constraints
that are active at x∗, i.e.,

cj(x∗) = 0 for j ∈ J (x∗) = {j1, j2, . . . , jK}

from those that are inactive at x∗, i.e.,

cj(x∗) > 0 for j ∈ {1, 2, . . . , q}\J (x∗)

whereI\J denotes the system indices inI, that are not inJ . From Eq. (10.82b),

µ∗
j = 0 for j ∈ {1, 2, . . . , q}\J (x∗)

which reduces Eq. (10.81) to Eq. (10.77); however, µj may be nonzero for
j ∈ J (x∗). Condition (e) states that

µ∗
j ≥ 0 for j ∈ J (x∗) (10.84)

The nonnegativity of the Lagrange multipliers associated with inequality con-
straints can be explained using Fig. 10.9. For the sake of simplicity, let us
assume that p = 0 and q = 1 in which case the optimization problem would
involve only one inequality constraint, namely,

c1(x) ≥ 0 (10.85)

If the minimizer x∗ happens to be inside the feasible region R defined by the
constraint in Eq. (10.85) (see Fig. 10.9a), then ∇f(x∗) = 0 and µ∗

1 = 0. If x∗
is on the boundary of R (see Fig. 10.9b), then Eq. (10.81) implies that

∇f(x∗) = µ∗
1∇c1(x∗)

As can be seen in Fig. 10.9b, ∇c1(x∗) is a vector pointing towards the interior
of the feasible region, since c1(x∗) = 0 and c(x) > 0 inside R, and similarly
∇f(x∗) is a vector pointing towards the interior of R. This in conjunction
with the above equation implies that ∇f(x∗) and ∇c1(x∗) must be in the same
direction and hence µ∗

1 > 0. It should be stressed that the nonnegativity of the
Lagrange multipliers holds only for those multipliers associated with inequality
constraints. As was illustrated in Fig. 10.7a and b, nonzero Lagrange multipliers
associated with equality constraints can be either positive or negative.

There are a total of p (equality) +K (inequality) Lagrange multipliers that
may be nonzero, and there are n entries in parameter vector x. It is interesting

300

x*

(b)

f1f2f3

f1 f2 f3<<

c1(x) = 0

Feasible Region

c1(x) > 0

(a)

Feasible Region

x*

f1

f2

f3

c1(x) = 0

f1 f2 f3<<

c1(x) > 0

∆f ()x *

∆c1()x*

Figure 10.9. Nonnegativity of Lagrange multipliers: (a) x∗ is a minimizer in the interior of the
feasible region; (b) x∗ is a minimizer on the boundary of the feasible region.

to note that the KKT conditions involve the same number of equations, i.e.,

g(x∗) − JT
e (x∗)λ∗ − ĴT

ie(x
∗)µ̂∗ = 0 (10.86a)

a(x∗) = 0 (10.86b)

ĉ(x∗) = 0 (10.86c)

where

µ̂∗ = [µ∗
j1 µ∗

j2 · · · µ∗
jK]T (10.87a)

Ĵie(x) = [∇cj1(x) ∇cj2(x) · · · ∇cjK(x)]T (10.87b)

ĉ(x) = [cj1(x) cj2(x) · · · cjK(x)]T (10.87c)

Example 10.12 Solve the constrained minimization problem

minimize f(x) = x2
1 + x2

2 − 14x1 − 6x2

subject to: c1(x) = 2 − x1 − x2 ≥ 0
c2(x) = 3 − x1 − 2x2 ≥ 0

by applying the KKT conditions.

Solution The KKT conditions imply that

2x1 − 14 + µ1 + µ2 = 0
2x2 − 6 + µ1 + 2µ2 = 0

µ1(2 − x1 − x2) = 0
µ2(3 − x1 − 2x2) = 0

µ1 ≥ 0
µ2 ≥ 0

Fundamentals of Constrained Optimization 301

One way to find the solution in this simple case is to consider all possible cases
with regard to active constraints and verify the nonnegativity of the µi’s obtained
[13].

Case 1 No active constraints
If there are no active constraints, we have µ∗

1 = µ∗
2 = 0, which leads to

x∗ =
[
7
3

]
Obviously, this x∗ violates both constraints and it is not a solution.

Case 2 One constraint active
If only the first constraint is active, then we have µ∗

2 = 0, and

2x1 − 14 + µ1 = 0
2x2 − 6 + µ1 = 0
2 − x1 − x2 = 0

Solving this system of equations, we obtain

x∗ =
[

3
−1

]
and µ∗

1 = 8

Since x∗ also satisfies the second constraint, x∗ = [3 −1]T and µ∗ = [8 0]T

satisfy the KKT conditions.
If only the second constraint is active, then µ∗

1 = 0 and the KKT conditions
become

2x1 − 14 + µ2 = 0
2x2 − 6 + 2µ2 = 0

3 − x1 − x2 = 0

The solution of this system of equations is given by

x∗ =

⎡
⎣ 14

3

−5
3

⎤
⎦ and µ∗

2 = 14
3

As x∗ violates the first constraint, the above x∗ and µ∗ do not satisfy the KKT
conditions.

Case 3 Both constraints active
If both constraints are active, we have

2x1 − 14 + µ1 + µ2 = 0
2x2 − 6 + µ1 + 2µ2 = 0

2 − x1 − x2 = 0
3 − x1 − 2x2 = 0

302

The solution to this system of equations is given by

x∗ =
[
1
1

]
and µ∗ =

[
20
−8

]

Since µ∗
2 < 0, this is not a solution of the optimization problem.

Therefore, the only candidate for a minimizer of the problem is

x∗ =
[

3
−1

]
, µ∗ =

[
8
0

]

As can be observed in Fig. 10.10, the above point is actually the global mini-
mizer.

−1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

−26

−32

−38

−44

−50

Feasible Region

x
1

x
2

Figure 10.10. Contours of f(x) and the two constraints for Example 10.12.

10.7 Second-Order Conditions
As in the unconstrained case, there are second-order conditions

(a) that must be satisfied for a point to be a local minimizer (i.e., necessary
conditions), and

(b) that will assure that a point is a local minimizer (i.e., sufficient condi-
tions).

The conditions in the constrained case are more complicated than their uncon-
strained counterparts due to the involvement of the various constraints, as may
be expected.

Fundamentals of Constrained Optimization 303

10.7.1 Second-order necessary conditions
Suppose x∗ is a local minimizer for the equality-constrained problem in

Eq. (10.57) and is a regular point of the constraints in Eq. (10.57b). A second-
order condition can be derived by examining the behavior of f(x) in a neighbor-
hood of x∗. If s is a feasible direction at x∗, then ai(x∗ +s) = 0 for 1 ≤ i ≤ p,
which in conjunction with Eq. (10.66) implies that

f(x∗ + s) = L(x∗ + s, λ∗) (10.88)

where λ∗ satisfies Eq. (10.74). By using the Taylor expansion of L(x∗+s, λ∗)
at {x∗, λ∗} and Theorem 10.1, we obtain

f(x∗ + s) = L(x∗, λ∗) + sT∇xL(x∗, λ∗) + 1
2s

T∇2
xL(x∗, λ∗)s + o(||s||2)

= f(x∗) + 1
2s

T∇2
xL(x∗, λ∗)s + o(||s||2) (10.89)

Using an argument similar to that used in the proof of Theorem 2.2, it can be
shown that by virtue of x∗ being a local minimizer, we have

sT∇2
xL(x∗, λ∗)s ≥ 0 (10.90)

From Eqs. (10.59) and (10.64), it is clear that s is feasible at x∗ if

Je(x∗)s = 0

i.e., s ∈ N [Je(x∗)], which is the null space of Je(x∗). Since this null space can
be characterized by a basis of the space, Eq. (10.90) is equivalent to the posi-
tive semidefiniteness of NT (x∗)∇2

xL(x∗, λ∗)N(x∗) where N(x∗) is a matrix
whose columns form a basis of N [Je(x∗)]. These results can be summarized
in terms of Theorem 10.3.

Theorem 10.3 Second-order necessary conditions for a minimum, equality
constraints If x∗ is a constrained local minimizer of the problem in Eq. (10.57)
and is a regular point of the constraints in Eq. (10.57b), then

(a) ai(x∗) = 0 for i = 1, 2, . . . , p,
(b) there exist λ∗

i for i = 1, 2, . . . , p such that

∇f(x∗) =
p∑

i=1

λ∗
i∇ai(x∗)

(c) NT (x∗)∇2
xL(x∗, λ∗)N(x∗) � 0. (10.91)

Example 10.13 In Example 10.11 it was found that

x∗
2 =

⎡
⎣ 2

0
3

⎤
⎦ and λ∗

2 =

⎡
⎣ 3

2

11
4

⎤
⎦

304

satisfy the first-order necessary conditions for a minimum for the problem of
Example 10.10. Check whether the second-order necessary conditions for a
minimum are satisfied.

Solution We can write

∇2
xL(x∗

2, λ∗
2) =

⎡
⎣−7

2 0 0
0 −7

2 0
0 0 1

2

⎤
⎦

and

Je(x∗
2) =

[−1 0 1
2 0 0

]
It can be readily verified that the null space of Je(x∗

2) is the one-dimensional
space spanned by N(x∗

2) = [0 1 0]T . Since

NT (x∗
2)∇2

x(x∗
2, λ∗

2)N(x∗
2) = −7

2 < 0 (10.92)

we conclude that {x∗
2, λ∗

2} does not satisfy the second-order necessary condi-
tions.

For the general constrained optimization problem in Eq. (10.1), a second-
order condition similar to Eq. (10.91) can be derived as follows. Let x∗ be a
local minimizer of the problem in Eq. (10.1) and J (x∗) be the index set for the
inequality constraints that are active at x∗ (see Eq. (10.76)). A direction s is
said to be feasible at x∗ if

ai(x∗ + s) = 0 for 1 ≤ i ≤ p (10.93a)

cj(x∗ + s) = 0 for j ∈ J (x∗) (10.93b)

Recall that the Lagrangian for the problem in Eq. (10.1) is defined by

L(x, λ, µ) = f(x) −
p∑

i=1

λiai(x) −
q∑

j=1

µjcj(x) (10.94)

If λ∗ and µ∗ are the Lagrange multipliers described in Theorem 10.2, then the
constraints in Eqs. (10.1b) and (10.1c) and the complementarity condition in
Eq. (10.82) imply that

f(x∗) = L(x∗, λ∗, µ∗) (10.95)

From Eqs. (10.81), (10.93), and (10.95), we have

f(x∗ + s) = L(x∗ + s, λ∗, µ∗)
= L(x∗, λ∗, µ∗) + sT∇xL(x∗, λ∗, µ∗)

+1
2s

T∇2
xL(x∗, λ∗, µ∗)s + o(||s||2)

= f(x∗) + 1
2s

T∇2
xL(x∗, λ∗, µ∗)s + o(||s||2)

Fundamentals of Constrained Optimization 305

This in conjunction with the fact that f(x∗) ≤ f(x∗ + s) implies that

sT∇2
xL(x∗, λ∗, µ∗)s ≥ 0 (10.96)

for any s feasible at x∗.
From Eq. (10.93), the feasible directions at x∗ are those directions that are

orthogonal to the gradients of the constraints that are active at x∗, namely,

J(x∗)s =
[

Je(x∗)
Ĵie(x∗)

]
s = 0 (10.97)

where Ĵie(x) is given by Eq. (10.87b). Hence the feasible directions at x∗ are
characterized by the null space ofJ(x∗), denoted asN [J(x∗)], and the condition
in Eq. (10.96) assures the positive semidefiniteness ofNT (x∗)∇2

xL(x∗, λ∗, µ∗)
N(x∗) where N(x∗) is a matrix whose columns form a basis of N [J(x∗)]. A
set of necessary conditions for the general constrained optimization problem in
Eq. (10.1) can now be summarized in terms of the following theorem.

Theorem 10.4 Second-order necessary conditions for a minimum, general
constrained problem If x∗ is a constrained local minimizer of the problem in
Eq. (10.1) and is a regular point of the constraints in Eqs. (10.1b) and (10.1c),
then

(a) ai(x∗) = 0 for 1 ≤ i ≤ p,
(b) cj(x∗) ≥ 0 for 1 ≤ j ≤ q,
(c) there exist Lagrange multipliers λ∗

i ’s and µ∗
j ’s such that

∇f(x∗) =
p∑

i=1

λ∗
i∇ai(x∗) +

q∑
j=1

µ∗
j∇cj(x∗)

(d) λ∗
i ai(x∗) = 0 for 1 ≤ i ≤ p and µ∗

jcj(x∗) = 0 for 1 ≤ j ≤ q,
(e) µ∗

j ≥ 0 for 1 ≤ j ≤ q, and
(f) NT (x∗)∇2

xL(x∗, λ∗, µ∗)N(x∗) � 0. (10.98)

10.7.2 Second-order sufficient conditions
For the constrained problem in Eq. (10.57), second-order sufficient con-

ditions for a point x∗ to be a local minimizer can be readily obtained from
Eq. (10.89), where {x∗, λ∗} is assumed to satisfy the first-order necessary
conditions described in Theorem 10.1. Using an argument similar to that used
in the proof of Theorem 2.4, we can show that a point x∗ that satisfies the
conditions in Theorem 10.1 is a local minimizer if the matrix

NT (x∗)∇2
xL(x∗, λ∗)N(x∗)

306

is positive definite.

Theorem 10.5 Second-order sufficient conditions for a minimum, equality
constraints If x∗ is a regular point of the constraints in Eq. (10.57b), then it
is a strong local minimizer of Eq. (10.57) if

(a) ai(x∗) = 0 for 1 ≤ i ≤ p,
(b) there exist Lagrange multipliers λ∗

i for i = 1, 2, . . . , p such that

∇f(x∗) =
p∑

i=1

λ∗
i∇ai(x∗)

(c) NT (x∗)∇2
xL(x∗, λ∗)N(x) 0, (10.99)

i.e., ∇2
xL(x∗, λ∗) is positive definite in the null space N [J(x∗)].

Example 10.14 Check whether the second-order sufficient conditions for a
minimum are satisfied in the minimization problem of Example 10.10.

Solution We compute

∇2
xL(x∗

1, λ∗
1) =

⎡
⎣ 5

2 0 0
0 5

2 0
0 0 1

2

⎤
⎦

which is positive definite in the entire E3. Hence Theorem 10.5 implies that
x∗

1 is a strong, local minimizer.

A set of sufficient conditions for point x∗ to be a local minimizer for the
general constrained problem in Eq. (10.1) is given by the following theorem.

Theorem 10.6 Second-order sufficient conditions for a minimum, general
constrained problem A point x∗ ∈ Rn is a strong local minimizer of the
problem in Eq. (10.1) if

(a) ai(x∗) = 0 for 1 ≤ i ≤ p,
(b) cj(x∗) ≥ 0 for 1 ≤ j ≤ q,
(c) x∗ is a regular point of the constraints that are active at x∗,
(d) there exist λ∗

i ’s and µ∗
j ’s such that

∇f(x∗) =
p∑

i=1

λ∗
i∇ai(x∗) +

q∑
j=1

µ∗
j∇cj(x∗)

(e) λ∗
i ai(x∗) = 0 for 1 ≤ i ≤ p and µ∗

jcj(x∗) = 0 for 1 ≤ j ≤ q,
(f) µ∗

j ≥ 0 for 1 ≤ j ≤ q, and

Fundamentals of Constrained Optimization 307

(g) NT (x∗)∇2
xL(x∗, λ∗, µ∗)N(x∗) 0 (10.100)

where N(x∗) is a matrix whose columns form a basis of the null space
of J̃(x∗) defined by

J̃(x∗) =

⎡
⎣ Je(x∗)

J̃ie(x∗)

⎤
⎦ (10.101)

The Jacobian J̃ie(x∗) is the matrix whose rows are composed of those
gradients of inequality constraints that are active at x∗, i.e., ∇T cj(x∗),
with cj(x∗) = 0 and µ∗

j > 0.

Proof Let us suppose that x∗ satisfies conditions (a) to (g) but is not a strong
local minimizer. Under these circumstances there would exist a sequence of
feasible points xk → x∗ such that f(xk) ≤ f(x∗). If we write xk = x∗ + δksk

with ||sk|| = 1 for all k, then we may assume that δk > 0, and sk → s∗ for
some vector s∗ with ||s∗|| = 1 and

f(x∗ + δksk) − f(x∗) ≤ 0

which leads to
∇T f(x∗)s∗ ≤ 0 (10.102)

Since s∗ is feasible at x∗, we have

∇T ai(x∗)s∗ = 0 (10.103)

If Jp(x∗) is the index set for inequality constraints that are active at x∗ and are
associated with strictly positive Lagrange multipliers, then

cj(xk) − cj(x∗) = cj(xk) ≥ 0 for j ∈ Jp(x∗)

i.e.,
cj(x∗ + δksk) − cj(x∗) ≥ 0

which leads to
∇T cj(x∗)s∗ ≥ 0 for j ∈ Jp(x∗) (10.104)

Now the inequality in Eq. (10.104) cannot occur since otherwise conditions
(d), (e), (f) in conjunction with Eqs. (10.102), (10.103) would imply that

0 ≥ ∇T f(x∗)s∗ =
p∑

i=1

λ∗
i∇T ai(x∗)s∗ +

q∑
j=1

µ∗
j∇T cj(x∗)s∗ > 0

i.e., 0 > 0 which is a contradiction. Hence

∇T cj(x∗)s∗ = 0 for j ∈ Jp(x∗) (10.105)

308

From Eqs. (10.103) and (10.104), it follows that s∗ belongs to the null space of
J̃(x∗) and so condition (g) implies that s∗T∇2

xL(x∗, λ∗, µ∗)s∗ > 0. Since
xk → x∗, we have sT

k ∇2
xL(x∗, λ∗, µ∗)sk > 0 for a sufficiently large k. Using

the condition in (d), the Taylor expansion of L(xk, λ∗, µ∗) at x∗ gives

L(x∗
k, λ∗, µ∗) = L(x∗, λ∗, µ∗) + δksT

k ∇xL(x∗, λ∗, µ∗)
+1

2δ2
ks

T
k ∇2

xL(x∗, λ∗, µ∗)sk + o(δ2
k)

= f(x∗) + 1
2δ2

ks
T
k ∇2

xL(x∗, λ∗, µ∗)sk + o(δ2
k)

This in conjunction with the inequalities f(xk) ≥ L(xk, λ∗, µ∗) and f(xk) ≤
f(x∗) leads to

0 ≥ f(xk) − f(x∗) ≥ 1
2δ2

ks
T
k ∇2

xL(x∗, λ∗, µ∗)sk + o(δ2
k) (10.106)

So, for a sufficiently large k the right-hand side of Eq. (10.106) becomes strictly
positive, which leads to the contradiction 0 > 0. This completes the proof.

Example 10.15 Use Theorem 10.6 to check the solution of the minimization
problem discussed in Example 10.12.

Solution The candidate for a local minimizer was found to be

x∗ =
[

3
−1

]
, µ∗ =

[
8
0

]

Since the constraints are linear,

∇2
xL(x∗, λ∗, µ∗) = ∇2f(x∗) =

[
2 0
0 2

]

which is positive definite in the entire E2. Therefore, {x∗, µ∗} satisfies all the
conditions of Theorem 10.6 and hence x∗ is a strong local minimizer. As was
observed in Fig. 10.10, x∗ is actually the global minimizer of the problem.

10.8 Convexity
Convex functions and their basic properties were studied in Sec. 2.7 and the

unconstrained optimization of convex functions was discussed in Sec. 2.8. The
concept of convexity is also important in constrained optimization. In uncon-
strained optimization, the properties of convex functions are of interest when
these functions are defined over a convex set. In a constrained optimization,
the objective function is minimized with respect to the feasible region which
is characterized by the constraints imposed. As may be expected, the concept

Fundamentals of Constrained Optimization 309

of convexity can be fully used to achieve useful optimization results when both
the objective function and the feasible region are convex. In Sec. 10.2, these
problems were referred to as CP problems. A typical problem of this class can
be formulated as

minimize f(x) (10.107a)

subject to ai(x) = aT
i x − bi for 1 ≤ i ≤ p (10.107b)

cj(x) ≥ 0 for 1 ≤ j ≤ q (10.107c)

where f(x) and −cj(x) for 1 ≤ j ≤ q are convex functions. The main results,
which are analogous to those in Sec. 2.8, are described by the next two theorems.

Theorem 10.7 Globalness and convexity of minimizers in CP problems
(a) If x∗ is a local minimizer of a CP problem, then x∗ is also a global

minimizer.
(b) The set of minimizers of a CP problem, denoted as S, is convex.
(c) If the objective function f(x) is strictly convex on the feasible region R,

then the global minimizer is unique.

Proof
(a) If x∗ is a local minimizer that is not a global minimizer, then there is a

feasible x̂ such that f(x̂) < f(x∗). If we let xτ = τ x̂ + (1 − τ)x∗ for
0 < τ < 1, then the convexity of f(x) implies that

f(xτ) ≤ τf(x̂) + (1 − τ)f(x∗) < f(x∗)

no matter how close xτ is to x∗. This contradicts the assumption that
x∗ is a local minimizer since f(x∗) is supposed to assume the smallest
value in a sufficiently small neighborhood of x∗. Hence x∗ is a global
minimizer.

(b) Let xa, xb ∈ S. From part (a), it follows that xa and xb are global
minimizers. If xτ = τxa +(1− τ)xb for 0 ≤ τ ≤ 1, then the convexity
of f(x) leads to

f(xτ) ≤ τf(xa) + (1 − τ)f(xb) = f(xa)

Since xa is a global minimizer, f(xτ) ≥ f(xa). Hence f(xτ) = f(xa),
i.e., xτ ∈ S for each τ , thus S is convex.

(c) Suppose that the solution set S contains two distinct points xa and xb

and xτ is defined as in part (b) with 0 < τ < 1. Since xa �= xb and
τ ∈ (0, 1), we have xτ �= xa. By using the strict convexity of f(x), we
would conclude that f(xτ) < f(xa) which contradicts the assumption
that xa ∈ S. Therefore, the global minimizer is unique.

310

It turns out that in a CP problem, the KKT conditions become sufficient for
x∗ to be a global minimizer as stated in the following theorem.

Theorem 10.8 Sufficiency of KKT conditions in CP problems If x∗ is a
regular point of the constraints in Eqs. (10.107b) and (10.107c), and satisfies
the KKT conditions stated in Theorem 10.2, where f(x) is convex and ai(x)
and cj(x) are given by Eqs. (10.107b) and (10.107c), respectively, then it is a
global minimizer.

Proof For a feasible point x̂ with x̂ �= x∗, we have ai(x̂) = 0 for 1 ≤ i ≤ p
and cj(x̂) ≥ 0 for 1 ≤ j ≤ q. In terms of the notation used in Theorem 10.2,
we can write

f(x̂) ≥ f(x̂) −
q∑

j=1

µ∗
jcj(x̂)

Since f(x) and −cj(x) are convex, then from Theorem 2.12, we have

f(x̂) ≥ f(x∗) + ∇T f(x∗)(x̂ − x∗)

and
−cj(x̂) ≥ −cj(x∗) −∇T cj(x∗)(x̂− x∗)

It follows that

f(x̂) ≥ f(x∗)+∇T f(x∗)(x̂−x∗)−
q∑

j=1

µ∗
j∇T cj(x∗)(x̂−x∗)−

q∑
j=1

µ∗
jcj(x∗)

In the light of the complementarity conditions in Eq. (10.82b), the last term in
the above inequality is zero and hence we have

f(x̂) ≥ f(x∗) + [∇f(x∗) −
q∑

j=1

µ∗
j∇cj(x∗)]T (x̂ − x∗) (10.108)

Since ai(x̂) = ai(x∗) = 0, we get

0 = ai(x̂) − ai(x∗) = aT
i (x̂− x∗) = ∇T ai(x∗)(x̂− x∗)

Multiplying the above equality by −λ∗
i and then adding it to the inequality in

Eq. (10.108) for 1 ≤ i ≤ p, we obtain

f(x̂) ≥ f(x∗) + [∇f(x∗) −
p∑

i=1

λ∗
i∇ai(x∗) −

q∑
j=1

µ∗
j∇cj(x∗)]T (x̂− x∗)

From Eq (10.81), the last term in the above inequality is zero, which leads to
f(x̂) ≥ f(x∗). This shows that f(x∗) is a global minimum.

Fundamentals of Constrained Optimization 311

10.9 Duality
The concept of duality as applied to optimization is essentially a problem

transformation that leads to an indirect but sometimes more efficient solution
method. In a duality-based method the original problem, which is referred to as
the primal problem, is transformed into a problem in which the parameters are
the Lagrange multipliers of the primal. The transformed problem is called the
dual problem. In the case where the number of inequality constraints is much
greater than the dimension of x, solving the dual problem to find the Lagrange
multipliers and then finding x∗ for the primal problem becomes an attractive
alternative. For LP problems, a duality theory has been developed to serve as
the foundation of modern primal-dual interior-point methods, (see Sec. 11.4 for
the details).

A popular duality-based method is the Wolfe dual [14], which is concerned
with the CP problem in Eq. (10.107). The main results of the Wolfe dual are
described in terms of the following theorem.

Theorem 10.9 Duality in convex programming Let x∗ be a minimizer, and
λ∗, µ∗ be the associated Lagrange multipliers of the problem in Eq. (10.107).
If x∗ is a regular point of the constraints, then x∗, λ∗, and µ∗ solve the dual
problem

maximize
x, λ, µ

L(x, λ, µ) (10.109a)

subject to : ∇xL(x, λ, µ) = 0 (10.109b)

µ ≥ 0 (10.109c)

In addition, f(x∗) = L(x∗, λ∗, µ∗).

Proof By virtue of Theorem 10.2, f(x∗) = L(x∗, λ∗, µ∗) and µ∗ ≥ 0. For a
set {x, λ, µ} that is feasible for the problem in Eq. (10.109), we have µ ≥ 0
and ∇xL(x, λ, µ) = 0. Hence

L(x∗, λ∗, µ∗) = f(x∗)

≥ f(x∗) −
p∑

i=1

λiai(x∗) −
q∑

j=1

µjcj(x∗) = L(x∗, λ, µ)

With µ ≥ 0, the Lagrangian L(x, λ, µ) is convex and, therefore,

L(x∗, λ, µ) ≥ L(x, λ, µ) + (x∗ − x)T∇xL(x, λ, µ) = L(x, λ, µ)

Hence L(x∗, λ∗, µ∗) ≥ L(x, λ, µ), i.e., set {x∗, λ∗, µ∗} solves the problem
in Eq. (10.109).

312

Example 10.16 Find the Wolfe dual of the standard-form LP problem

minimize cTx (10.110a)

subject to: Ax = b A ∈ Rp×n (10.110b)

x ≥ 0 (10.110c)

Solution The Lagrangian is given by

L(x, λ, µ) = cTx − (Ax− b)T λ − xT µ

From Theorem 10.9, the Wolfe dual of the problem in Eq. (10.110) is the
maximization problem

maximize
x, λ, µ

xT (c − AT λ − µ) + bT λ (10.111a)

subject to: c −AT λ − µ = 0 (10.111b)

µ ≥ 0 (10.111c)

Using Eq. (10.111b), the objective function in Eq. (10.111a) can be simplified
and the dual problem can be stated as

maximize
λ, µ

bT λ (10.112a)

subject to: c − AT λ − µ = 0 (10.112b)

µ ≥ 0 (10.112c)

References
1 G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton,

NJ., 1963.
2 S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997.
3 S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System

and Control Theory, SIAM, Philadelphia, 1994.
4 Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-

ming, SIAM, Philadelphia, 1994.
5 J. T. Betts, “An accelerated multiplier method for nonlinear programming," JOTA, vol. 21,

no. 2, pp. 137–174, 1977.
6 G. Van der Hoek, Reduction Methods in Nonlinear Programming, Mathematical Centre

Tracts, vol. 126, Mathematisch Centrum, Amsterdam, 1980.
7 R. Fletcher, Practical Methods of Optimization, 2nd ed., Wiley, New York, 1987.
8 G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Baltimore, Johns Hopkins

University Press, Baltimore, 1989.

Fundamentals of Constrained Optimization 313

9 A. Antoniou, Digital Signal Processing: Signals, Systems, and Filters, McGraw-Hill, New
York, 2005.

10 W.-S. Lu, “A parameterization method for the design of IIR digital filters with prescribed
stability margin,” in Proc. Int. Symp. Circuits Syst., pp. 2381–2384, June 1997.

11 E. K. P. Chong and S. H. Żak, An Introduction to Optimization, Wiley, New York, 1996.
12 H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proc. 2nd Berkeley Symp.,

pp. 481–492, Berkeley, CA, 1951.
13 D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed., Addison-Wesley, Reading,

MA, 1984.
14 P. Wolfe, “A duality theorem for nonlinear programming,” Quar. Appl. Math, vol. 19, pp. 239–

244, 1961.

Problems
10.1 A trigonometric polynomial is given by

A(ω) =
n∑

k=0

ak cos kω (P10.1)

and Ωp, Ωa are sets given by

Ωp = {ωp0, ωp1, . . . , ωpN} ⊆ [0, ωp]
Ωa = {ωa0, ωa1, . . . , ωaM} ⊆ [ωa, π]

with ωp ≤ ωa. Coefficients ak for k = 0, 1, . . . , n are required in
(P10.1) such that the upper bound δ in

|A(ω) − 1| ≤ δ for ω ∈ Ωp (P10.2)

and
|A(ω)| ≤ δ for ω ∈ Ωa (P10.3)

is minimized. Formulate the above problem as a constrained minimization
problem.

10.2 Consider the trigonometric polynomial A(ω) given in Prob. P10.1. Sup-
pose we need to find ak, for k = 0, 1, . . . , n such that

J =
∫ ωp

0
[A(ω) − 1]2dω +

∫ π

ωa

W (ω)A2(ω)dω (P10.4)

is minimized subject to constraints in Eqs. (P10.2) and (P10.3), where
W (ω) ≥ 0 is a weighting function, and δ is treated as a known positive
scalar. Formulate the above problem as a constrained optimization.

10.3 (a) Write a MATLAB function to examine whether the equality con-
straints inAx = b are (i) inconsistent, or (ii) consistent but redundant,
or (iii) consistent without redundancy.

314

(b) Modify the MATLAB function obtained from part (a) so that if Ax =
b is found to be consistent but redundant, the constraints are reduced
to Âx = b̂ such that (i) Âx = b̂ describes the same feasible region
and (ii) the constraints in Âx = b̂ are not redundant.

10.4 In Sec. 10.3.1, it was shown that the LP problem in Eq. (10.20) can be
converted into the standard-form LP problem of Eq. (10.19). Show that
the standard-form LP problem in Eq. (10.19) can be converted into the
problem in Eq. (10.20). Hint: Use Eq. (10.27).

10.5 (a) Apply the result of Prob. 10.4 to convert the LP problem

minimize f(x) = x1 + 2x2 + 11x3 + 2x4

subject to: a1(x) = x1 + x2 + x3 + 2x4 = 3
a2(x) = x2 + 2x3 + 4x4 = 3
a3(x) = 2x3 + x4 = 2
ci(x) = xi ≥ 0 for i = 1, 2, 3, 4

into the problem in Eq. (10.20).

(b) Solve the LP problem obtained in part (a).

(c) Use the result of part (b) to solve the standard-form LP problem in
part (a).

10.6 (a) Prove that if P is positive definite, then ln(detP−1) is a convex func-
tion of P.

(b) Prove that if p = P(:) denotes the vector obtained by lexicograph-
ically ordering matrix P, then the set of vectors satisfying the con-
straints in Eqs. (10.24b) and (10.24c) is convex.

10.7 Prove that all solutions of Ax = b are characterized by Eq. (10.26). To
simplify the proof, assume that A ∈ Rp×n has full row rank. In this case
the pseudo-inverse of A+ is given by

A+ = AT (AAT)−1

10.8 The feasible region shown in Fig. P10.8 can be described by

R :

⎧⎨
⎩

c < x1 < 400
1 < x2 < 61

x2 < x1/c

where c > 0 is a constant. Find variable transformations x1 = T1(t1, t2)
and x2 = T2(t1, t2) such that −∞ < t1, t2 < ∞ describe the same
feasible region.

Fundamentals of Constrained Optimization 315

400

1

x1

x2

61

R

c

Figure P10.8.

10.9 Show that ∇f(x), ∇a1(x), and ∇a2(x) that satisfy Eq. (10.54) are lin-
early dependent.
Hint: Apply the singular-value decomposition to⎡

⎢⎢⎢⎣
1 0
0 1

∂h1
∂x1

∂h1
∂x2

∂h2
∂x1

∂h2
∂x2

⎤
⎥⎥⎥⎦

10.10 (a) Provide an example to demonstrate that Ax ≥ b does not imply
MAx ≥ Mb in general, even if M is positive definite.

(b) Which condition on MAx ≥ b implies MAx ≥ Mb?

10.11 Use two methods, namely, Eq. (10.27) and the Lagrange multiplier method,
to solve the problem

minimize f(x) = 1
2x

THx + xT p

subject to: Ax = b

where

H =

⎡
⎢⎢⎣

H1 H2 H3 H4

H2 H1 H2 H3

H3 H2 H1 H2

H4 H3 H2 H1

⎤
⎥⎥⎦

with

H1 =

⎡
⎢⎢⎣

10 8 7 6
8 10 8 7
7 8 10 8
6 7 8 10

⎤
⎥⎥⎦

H2 =

⎡
⎢⎢⎣

3 2 1 0
2 3 2 1
1 2 3 2
0 1 2 3

⎤
⎥⎥⎦ , H3 =

⎡
⎢⎢⎣

2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

⎤
⎥⎥⎦ , H4 = I4

316

p =

⎡
⎢⎢⎣

p1

p2

p3

p4

⎤
⎥⎥⎦ , p1 =

⎡
⎢⎢⎣

1
−1

2
−2

⎤
⎥⎥⎦ , p2 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ , p3 =

⎡
⎢⎢⎣

2
2

−4
4

⎤
⎥⎥⎦ , p4 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦

A = [H3 H2 H1 H4], b = [1 14 3 − 4]T

10.12 Consider the feasible region R defined by

R : ai(x) = 0 for i = 1, 2, . . . , p

cj(x) ≥ 0 for j = 1, 2, . . . , q

At a feasible point x, let J (x) be the active index set for the inequality
constraints at x, and define the sets F(x) and F (x) as

F(x) = {s : s is feasible at x}

and

F (x) = {s : sT∇ai(x) = 0 for i = 1, 2, . . . , p

and sT∇cj(x) ≥ 0 for j ∈ J (x)}

respectively. Prove that F(x) ⊆ F (x), i.e., set F (x) contains set F(x).

10.13 Prove that if at a feasible x one of the following conditions is satisfied,
then F(x) = F (x):

(i) The constraints that are active at x are all linear.

(ii) Vectors ∇ai(x) for i = 1, 2, . . . , p and ∇cj(x) for those cj(x) that
are active at x are linearly independent.

10.14 In the literature, the assumption that F(x) = F (x) is known as the con-
straint qualification of x. Verify that the constraint qualification assump-
tion does not hold at x = 0 when the constraints are given by

c1(x) = x3
1 − x2

c2(x) = x2

Hint: Check the vector s = [−1 0]T .

10.15 Consider the constrained minimization problem (see [12])

minimize f(x) = (x1 − 2)2 + x2
2

subject to: c1(x) = x1 ≥ 0
c2(x) = x2 ≥ 0
c3(x) = (1 − x1)3 − x2 ≥ 0

Fundamentals of Constrained Optimization 317

(a) Using a graphical solution, show that x∗ = [1 0]T is the global mini-
mizer.

(b) Verify that x∗ is not a regular point.

(c) Show that there exist no µ2 ≥ 0 and µ3 ≥ 0 such that

∇f(x∗) = µ2∇c2(x∗) + µ3∇c3(x∗)

10.16 Given column vectors ν1, ν2, . . . , νq, define the polyhedral cone C as

C = {ν : ν =
q∑

i=1

µi νi, µi ≥ 0}

Prove that C is closed and convex.

10.17 Let g be a vector that does not belong to set C in Prob. 10.16. Prove that
there exists a hyperplane sTx = 0 that separates C and g.

10.18 Given column vectors ν1, ν2, . . . , νq and g, show that the set

S = {s : sTg < 0 and sT νi ≥ 0, for i = 1, 2, . . . , q}

is empty if and only if there exist µi ≥ 0 such that

g =
q∑

i=1

µi νi

(This is known as Farkas’ lemma.)
Hint: Use the results of Probs. 10.16 and 10.17.

10.19 Let J (x∗) = {j1, j2, . . . , jK} be the active index set at x∗ for the
constraints in Eq. (10.1c). Show that the set

S = {s : sT∇f(x∗) < 0, sT∇ai(x∗) = 0 for i = 1, 2, . . . , p,

and sT∇cj(x∗) ≥ 0 for j ∈ J (x∗)}

is empty if and only if there exist multipliers λ∗
i for 1 ≤ i ≤ p and µ∗

j ≥ 0,
such that

∇f(x∗) =
p∑

i=1

λ∗
i∇ai(x∗) +

∑
j∈J (x∗)

µ∗
j∇cj(x∗)

(This is known as the Extension of Farkas’ lemma.)

10.20 Using the KKT conditions, find solution candidates for the following CP
problem

318

minimize x2
1 + x2

2 − 2x1 − 4x2 + 9

subject to: x1 ≥ 1
x2 ≥ 0

−1
2x1 − x2 + 3

2 ≥ 0

10.21 Consider the constrained minimization problem

minimize f(x) = −x3
1 + x3

2 − 2x1x
2
3

subject to: 2x1 + x2
2 + x3 − 5 = 0

5x2
1 − x2

2 − x3 ≥ 2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

(a) Write the KKT conditions for the solution points of the problem.

(b) Vector x∗ = [1 0 3]T is known to be a local minimizer. At x∗, find
λ∗

1 and µ∗
i for 1 ≤ i ≤ 4, and verify that µ∗

i ≥ 0 for 1 ≤ i ≤ 4.

(c) Examine the second-order conditions for set (x∗, λ∗, µ∗).
10.22 Consider the QP problem

minimize f(x) = 1
2x

THx + xTp

subject to: Ax = b
x ≥ 0

(a) Write the KKT conditions for the solution points of the problem.

(b) Derive the Wolfe dual of the problem.

(c) Let set (x, λ, µ) be feasible for the primal and dual problems, and
denote their objective functions as f(x) and h(x, λ, µ), respectively.
Evaluate the duality gap defined by

δ(x, λ, µ) = f(x) − h(x, λ, µ)

and show that δ(x, λ, µ) is always nonnegative for a feasible (x, λ, µ).

10.23 Consider the minimization problem

minimize f(x) = cTx

subject to: Ax = 0
||x|| ≤ 1

where ||x|| denotes the Euclidean norm of x.

Fundamentals of Constrained Optimization 319

(a) Show that this is a CP problem.

(b) Derive the KKT conditions for the solution points of the problem.

(c) Show that if c −AT λ �= 0 where λ satisfies

AAT λ = Ac

then the minimizer is given by

x∗ = − c −AT λ

||c−AT λ||

Otherwise, any feasible x is a solution.

10.24 Consider the minimization problem

minimize f(x) = cTx

subject to: ||Ax|| ≤ 1

(a) Show that this is a CP problem.

(b) Derive the KKT conditions for the solution points of the problem.

(c) Show that if the solution of the equation

ATAy = c

is nonzero, then the minimizer is given by

x∗ = − y
||Ay||

Otherwise, any feasible x is a solution.

Chapter 11

LINEAR PROGRAMMING
PART I: THE SIMPLEX METHOD

11.1 Introduction
Linear programming (LP) problems occur in a diverse range of real-life

applications in economic analysis and planning, operations research, computer
science, medicine, and engineering. In such problems, it is known that any min-
ima occur at the vertices of the feasible region and can be determined through a
‘brute-force’ or exhaustive approach by evaluating the objective function at all
the vertices of the feasible region. However, the number of variables involved
in a practical LP problem is often very large and an exhaustive approach would
entail a considerable amount of computation. In 1947, Dantzig developed a
method for the solution of LP problems known as the simplex method [1][2].
Although in the worst case, the simplex method is known to require an expo-
nential number of iterations, for typical standard-form problems the number of
iterations required is just a small multiple of the problem dimension [3]. For
this reason, the simplex method has been the primary method for solving LP
problems since its introduction.

In Sec. 11.2, the general theory of constrained optimization developed in
Chap. 10 is applied to derive optimality conditions for LP problems. The
geometrical features of LP problems are discussed and connected to the several
issues that are essential in the development of the simplex method. In Sec. 11.3,
the simplex method is presented for alternative-form LP problems as well as
for standard-form LP problems from a linear-algebraic perspective.

322

11.2 General Properties
11.2.1 Formulation of LP problems

In Sec. 10.3.1, the standard-form LP problem was stated as

minimize f(x) = cTx (11.1a)

subject to: Ax = b (11.1b)

x ≥ 0 (11.1c)

where c ∈ Rn×1 with c �= 0, A ∈ Rp×n, and b ∈ Rp×1 are given. Throughout
this chapter, we assume that A is of full row rank, i.e., rank(A) = p. For the
standard-form LP problem in Eq. (11.1) to be a meaningful LP problem, full
row rank in A implies that p < n.

For a fixed scalar β, the equation cTx = β describes an affine manifold
in the n-dimensional Euclidean space En (see Sec. A.15). For example, with
n = 2, cTx = β represents a line and cTx = β for β = β1, β2, . . . represents
a family of parallel lines. The normal of these lines is c, and for this reason
vector c is often referred to as the normal vector of the objective function.

Another LP problem, which is often encountered in practice, involves mini-
mizing a linear function subject to inequality constraints, i.e.,

minimize f(x) = cTx (11.2a)

subject to: Ax ≥ b (11.2b)

where c ∈ Rn×1 with c �= 0, A ∈ Rp×n, and b ∈ Rp×1 are given. This will
be referred to as the alternative-form LP problem hereafter. If we let

A =

⎡
⎢⎢⎢⎣

aT
1

aT
2
...

aT
p

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣

b1

b2
...
bp

⎤
⎥⎥⎥⎦

then the p constraints in Eq. (11.2b) can be written as

aT
i x ≥ bi for i = 1, 2, . . . , p

where vector ai is the normal of the ith inequality constraint, and A is usually
referred to as the constraint matrix.

By introducing a p-dimensional slack vector variable y, Eq. (11.2b) can be
reformulated as

Ax− y = b for y ≥ 0

Furthermore, vector variable x can be decomposed as

x = x+ − x− with x+ ≥ 0 and x− ≥ 0

Linear Programming Part I: The Simplex Method 323

Hence if we let

x̂ =

⎡
⎣ x+

x−
y

⎤
⎦ , ĉ =

⎡
⎣ c
−c
0

⎤
⎦ , Â = [A −A −Ip]

then Eq. (11.2) can be expressed as a standard-form LP problem, i.e.,

minimize f(x) = ĉT x̂ (11.3a)

subject to: Âx̂ = b (11.3b)

x̂ ≥ 0 (11.3c)

Likewise, the most general LP problem with both equality and inequality con-
straints, i.e.,

minimize f(x) = cTx (11.4a)
subject to: Ax = b (11.4b)

Cx ≥ d (11.4c)

can be expressed as a standard-form LP problem with respect to an augmented
variable x̂. It is primarily for these reasons that the standard-form LP problem
in Eq. (11.1) has been employed most often as the prototype for the descrip-
tion and implementation of various LP algorithms. Nonstandard LP problems,
particularly the problem in Eq. (11.2), may be encountered directly in a variety
of applications. Although the problem in Eq. (11.2) can be reformulated as a
standard-form LP problem, the increase in problem size leads to reduced com-
putational efficiency which can sometimes be a serious problem particularly
when the number of inequality constraints is large. In what follows, the under-
lying principles pertaining to the LP problems in Eqs. (11.1) and (11.2) will
be described separately to enable us to solve each of these problems directly
without the need of converting the one form into the other.

11.2.2 Optimality conditions
Since linear functions are convex (or concave), an LP problem can be viewed

as a convex programming problem. By applying Theorems 10.8 and 10.2 to
the problem in Eq. (11.1), the following theorem can be deduced.

Theorem 11.1 Karush-Kuhn-Tucker conditions for standard-form LP prob-
lem If x∗ is regular for the constraints that are active at x∗, then it is a global
solution of the LP problem in Eq. (11.1) if and only if

(a) Ax∗ = b, (11.5a)
(b) x∗ ≥ 0, (11.5b)
(c) there exist Lagrange multipliers λ∗ ∈ Rp×1 and µ∗ ∈ Rn×1 such that

µ∗ ≥ 0 and
c = AT λ∗ + µ∗ (11.5c)

324

(d) µ∗
i x

∗
i = 0 for 1 ≤ i ≤ n. (11.5d)

The first two conditions in Eq. (11.5) simply say that solution x∗ must be
a feasible point. In Eq. (11.5c), constraint matrix A and vector c are related
through the Lagrange multipliers λ∗ and µ∗.

An immediate observation on the basis of Eqs. (11.5a)–(11.5d) is that in most
cases solution x∗ cannot be strictly feasible. Here we take the term ‘strictly
feasible points’ to mean those points that satisfy the equality constraints in
Eq. (11.5a) with x∗

i > 0 for 1 ≤ i ≤ n. From Eq. (11.5d), µ∗ must be a
zero vector for a strictly feasible point x∗ to be a solution. Hence Eq. (11.5c)
becomes

c = AT λ∗ (11.6)

In other words, for a strictly feasible point to be a minimizer of the standard-
form LP problem in Eq. (11.1), the n-dimensional vector c must lie in the
p-dimensional subspace spanned by the p columns of AT . Since p < n, the
probability that Eq. (11.6) is satisfied is very small. Therefore, any solutions of
the problem are very likely to be located on the boundary of the feasible region.

Example 11.1 Solve the LP problem

minimize f(x) = x1 + 4x2 (11.7a)

subject to: x1 + x2 = 1 (11.7b)

x ≥ 0 (11.7c)

Solution As shown in Fig. 11.1, the feasible region of the above problem is
the segment of the line x1 + x2 = 1 in the first quadrant, the dashed lines
are contours of the form f(x) = constant, and the arrow points to the steepest
descent direction of f(x). We have

c =

⎡
⎣ 1

4

⎤
⎦ and AT =

⎡
⎣ 1

1

⎤
⎦

Since c and AT are linearly independent, Eq. (11.6) cannot be satisfied and,
therefore, no interior feasible point can be a solution. This leaves two end points
to verify. From Fig. 11.1 it is evident that the unique minimizer is x∗ = [1 0]T .

At x∗ the constraint in Eq. (11.7b) and the second constraint in Eq. (11.7c)
are active, and since the Jacobian of these constraints, namely,[

1 1
0 1

]

Linear Programming Part I: The Simplex Method 325

x1
0

1

1

x2

P1

P2

f = 6

f = 5

Figure 11.1. LP problem in Example 11.1.

is nonsingular, x∗ is a regular point. Now Eq. (11.5d) gives µ∗
1 = 0, which

leads to Eq. (11.5c) with

λ∗ = 1 and µ∗
2 = 3

This confirms that x∗ = [1 0]T is indeed a global solution.
Note that if the objective function is changed to

f(x) = cTx = 4x1 + 4x2

then Eq. (11.6) is satisfied with λ∗ = 4 and any feasible point becomes a global
solution. In fact, the objective function remains constant in the feasible region,
i.e.,

f(x) = 4(x1 + x2) = 4 for x ∈ R
A graphical interpretation of this situation is shown in Fig. 11.2

Note that the conditions in Theorems 10.2 and 10.8 are also applicable to
the alternative-form LP problem in Eq. (11.2) since the problem is, in effect, a
convex programming (CP) problem. These conditions can be summarized in
terms of the following theorem.

Theorem 11.2 Necessary and sufficient conditions for a minimum in alter-
native-form LP problem If x∗ is regular for the constraints in Eq. (11.2b) that
are active at x∗, then it is a global solution of the problem in Eq. (11.2) if and
only if

(a) Ax∗ ≥ b, (11.8a)
(b) there exists a µ∗ ∈ Rp×1 such that µ∗ ≥ 0 and

c = AT µ∗ (11.8b)

326

x10

1

1

x2

f = 6

f = 5

Figure 11.2. LP problem in Example 11.1 with f(x) = 4x1 + 4x2.

(c) µ∗
i (a

T
i x∗ − bi) = 0 for 1 ≤ i ≤ p (11.8c)

where aT
i is the ith row of A.

The observation made with regard to Theorem 11.1, namely, that the solutions
of the problem are very likely to be located on the boundary of the feasible
region, also applies to Theorem 11.2. As a matter of fact, if x∗ is a strictly
feasible point satisfying Eq. (11.8c), then Ax∗ > b and the complementarity
condition in Eq. (11.8c) implies that µ∗ = 0. Hence Eq. (11.8b) cannot be
satisfied unless c = 0, which would lead to a meaningless LP problem. In
other words, any solutions of Eq. (11.8) can only occur on the boundary of the
feasible region defined by Eq. (11.2b).

Example 11.2 Solve the LP problem

minimize f(x) = −x1 − 4x2

subject to: x1 ≥ 0
−x1 ≥ −2

x2 ≥ 0
−x1 − x2 + 3.5 ≥ 0
−x1 − 2x2 + 6 ≥ 0

Linear Programming Part I: The Simplex Method 327

Solution The five constraints can be expressed as Ax ≥ b with

A =

⎡
⎢⎢⎢⎢⎣

1 0
−1 0

0 1
−1 −1
−1 −2

⎤
⎥⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎢⎣

0
−2

0
−3.5
−6

⎤
⎥⎥⎥⎥⎦

The feasible region is the polygon shown in Fig. 11.3.

x1

1

x2 P2

P5
P1

P3

P4

f = -6

f = -4

1 2 3

2

3

Figure 11.3. Feasible region in Example 11.2.

Since the solution cannot be inside the polygon, we consider the five edges of
the polygon. We note that at any point x on an edge other than the five vertices
Pi for 1 ≤ i ≤ 5 only one constraint is active. This means that only one of the
five µi’s is nonzero. At such an x, Eq. (11.8b) becomes

c =
[−1
−4

]
= µiai (11.9)

where ai is the transpose of the ith row in A. Since each ai is linearly indepen-
dent of c, no µi exists that satisfies Eq. (11.9). This then leaves the five vertices
for verification. At point P1 = [0 0]T , both the first and third constraints are
active and Eq. (11.8b) becomes[−1

−4

]
=

[
1 0
0 1

] [
µ1

µ3

]

which gives µ1 = −1 and µ3 = −4. Since condition (b) of Theorem 11.2 is
violated, P1 is not a solution. At point P2 = [0 3]T , both the first and fifth

328

constraints are active, and Eq. (11.8b) becomes[−1
−4

]
=

[
1 −1
0 −2

] [
µ1

µ5

]

which gives µ1 = 1 and µ5 = 2. Since the rest of the µi’s are all zero,
conditions (a)–(c) of Theorem 11.2 are satisfied with µ ≡ µ∗ = [1 0 0 0 2]T

and P2 = [0 3]T is a minimizer, i.e., x ≡ x∗ = P2. One can go on to check
the rest of the vertices to confirm that point P2 is the unique solution to the
problem. However, the uniqueness of the solution is obvious from Fig. 11.3.

We conclude the example with two remarks on the solution’s uniqueness.
Later on, we will see that the solution can also be verified by using the positivity
of those µi’s that are associated with active inequality constraints (see Theorem
11.7 in Sec. 11.2.4.2). If we consider minimizing the linear function f(x) =
cTx with c = [−1 −2]T subject to the same constraints as above, then the
contours defined by f(x) = constant are in parallel with edge P2P3. Hence any
point on P2P3 is a solution and, therefore, we do not have a unique solution.

11.2.3 Geometry of an LP problem
11.2.3.1 Facets, edges, and vertices

The optimality conditions and the two examples discussed in Sec. 11.2.2 indi-
cate that points on the boundary of the feasible region are of critical importance
in LP. For the two-variable case, the feasible region R defined by Eq. (11.2b)
is a polygon, and the facets and edges of R are the same. For problems with
n > 2, they represent different geometrical structures which are increasingly
difficult to visualize and formal definitions for these structures are, therefore,
necessary.

In general, the feasible region defined by R = {x : Ax ≥ b} is a convex
polyhedron. A set of points, F , in the n-dimensional space En is said to be
a face of a convex polyhedron R if the condition p1, p2 ∈ F implies that
(p1 + p2)/2 ∈ F . The dimension of a face is defined as the dimension of F .
Depending on its dimension, a face can be a facet, an edge, or a vertex. If l is
the dimension of a face F , then a facet of F is an (l − 1)-dimensional face, an
edge of F is a one-dimensional face, and a vertex of F is a zero-dimensional
face [4]. As an example, Fig. 11.4 shows the convex polyhedron defined by the
constraints

x1 + x2 + x3 ≤ 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

i.e.,
Ax ≥ b (11.10)

Linear Programming Part I: The Simplex Method 329

with

A =

⎡
⎢⎢⎣
−1 −1 −1

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣
−1

0
0
0

⎤
⎥⎥⎦

The polyhedron is a three-dimensional face which has four facets, six edges,
and four vertices.

In the case where n = 2, a feasible region defined by Ax ≥ b becomes a
polygon and facets become edges. As can be seen in Fig. 11.3, the vertices of a
polygon are the points where two inequality constraints become active. In the
case where n = 3, Fig. 11.4 suggests that vertices are the points where three
inequality constraints become active. In general, we define a vertex point as
follows [3].

x1

1

1

x2P2

P3

P4

P1

1

x3

Figure 11.4. Polyhedron defined by Eq. (11.10) and its facets, edges, and vertices.

Definition 11.1 A vertex is a feasible point P at which there exist at least n
active constraints which contain n linearly independent constraints where n is
the dimension of x. Vertex P is said to be nondegenerate if exactly n constraints
are active at P or degenerate if more than n constraints are active at P .

Definition 11.1 covers the general case where both equality and inequality
constraints are present. Linearly independent active constraints are the con-
straints that are active at P and the matrix whose rows are the vectors associ-
ated with the active constraints is of full row rank. At point P1 in Fig. 11.1,
for example, the equality constraint in Eq. (11.7b) and one of the inequality

330

constraints, i.e., x2 ≥ 0, are active. This in conjunction with the nonsingularity
of the associated matrix [

1 1
0 1

]
implies that P1 is a nondegenerate vertex. It can be readily verified that point
P2 in Fig. 11.1, points Pi for i = 1, 2, . . . , 5 in Fig. 11.3, and points Pi for
i = 1, 2, . . . , 4 in Fig. 11.4 are also nondegenerate vertices.

As another example, the feasible region characterized by the constraints

x1 + x2 + x3 ≤ 1
0.5x1 + 2x2 + x3 ≤ 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

i.e.,
Ax ≥ b (11.11)

with

A =

⎡
⎢⎢⎢⎢⎣
−1 −1 −1
−0.5 −2 −1

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎢⎣
−1
−1

0
0
0

⎤
⎥⎥⎥⎥⎦

is illustrated in Fig. 11.5. The convex polyhedron has five facets, eight edges,
and five vertices. At vertex P5 four constraints are active but since n = 3,
P5 is degenerate. The other four vertices, namely, P1, P2, P3 and P4, are
nondegenerate.

x1

x2

P2

P3P4

P1

x3

P5

Figure 11.5. A feasible region with a degenerate vertex.

Linear Programming Part I: The Simplex Method 331

11.2.3.2 Feasible descent directions

A vector d ∈ Rn×1 is said to be a feasible descent direction at a feasible
point x ∈ Rn×1 if d is a feasible direction as defined by Def. 2.4 and the linear
objective function strictly decreases along d, i.e., f(x+αd) < f(x) for α > 0,
where f(x) = cTx. Evidently, this implies that

1
α

[f(x + αd) − f(x)] = cTd < 0 (11.12)

For the problem in Eq. (11.2), we denote as Aa the matrix whose rows are the
rows of A that are associated with the constraints which are active at x. We
call Aa the active constraint matrix at x. If J = {j1, j2, . . . , jK} is the set
of indices that identify active constraints at x, then

Aa =

⎡
⎢⎢⎢⎢⎣

aT
j1

aT
j2
...

aT
jK

⎤
⎥⎥⎥⎥⎦ (11.13)

satisfies the system of equations

aT
j x = bj for j ∈ J

For d to be a feasible direction, we must have

Aa(x + αd) ≥ ba

where ba = [bj1 bj2 · · · bjK]T . It follows that

Aad ≥ 0

which in conjunction with Eq. (11.12) characterizes a feasible descent direction
d such that

Aad ≥ 0 and cTd < 0 (11.14)

Since x∗ is a solution of the problem in Eq. (11.2) if and only if no feasible
descent directions exist at x∗, we can state the following theorem.

Theorem 11.3 Necessary and sufficient conditions for a minimum in alter-
native-form LP problem Point x∗ is a solution of the problem in Eq. (11.2) if
and only if it is feasible and

cTd ≥ 0 for all d with Aa∗d ≥ 0 (11.15)

where Aa∗ is the active constraint matrix at x∗.

332

For the standard-form LP problem in Eq. (11.1), a feasible descent direction
d at a feasible point x∗ satisfies the constraints

Ad = 0
dj ≥ 0 for j ∈ J∗

and
cTd ≤ 0

where J∗ = {j1, j2, . . . , jK} is the set of indices for the constraints in
Eq. (11.1c) that are active at x∗. This leads to the following theorem.

Theorem 11.4 Necessary and sufficient conditions for a minimum in standard-
form LP problem Point x∗ is a solution of the LP problem in Eq. (11.1) if and
only if it is a feasible point and

cTd ≥ 0 for all d with d ∈ N (A) and dj ≥ 0 for j ∈ J∗ (11.16)

where N (A) denotes the null space of A.

11.2.3.3 Finding a vertex

Examples 11.1 and 11.2 discussed in Sec. 11.2.2 indicate that any solutions
of the LP problems in Eqs. (11.1) and (11.2) can occur at vertex points. In
Sec. 11.2.3.4, it will be shown that under some reasonable conditions, a vertex
minimizer always exists. In what follows, we describe an iterative strategy that
can be used to find a minimizer vertex for the LP problem in Eq. (11.2) starting
with a feasible point x0.

In the kth iteration, if the active constraint matrix at xk, Aak
, has rank n,

then xk itself is already a vertex. So let us assume that rank(Aak
) < n. From

a linear algebra perspective, the basic idea here is to generate a feasible point
xk+1 such that the active constraint matrix at xk+1, Aak+1

, is an augmented
version of Aak

with rank(Aak+1
) increased by one. In other words, xk+1 is

a point such that (a) it is feasible, (b) all the constraints that are active at xk

remain active at xk+1, and (c) there is a new active constraint at xk+1, which
was inactive at xk. In this way, a vertex can be identified in a finite number of
steps.

Let
xk+1 = xk + αkdk (11.17)

To assure that all active constraints at xk remain active at xk+1, we must have

Aak
xk+1 = bak

where bak
is composed of the entries of b that are associated with the constraints

which are active at xk. Since Aak
xk = bak

, it follows that

Aak
dk = 0 (11.18)

Linear Programming Part I: The Simplex Method 333

Since rank(Aak
) < n, the solutions of Eq. (11.18) form the null space of Aak

of dimension n−rank(Aak
). Now for a fixed xk and dk ∈ N (Aak

), we call an
inactive constraint aT

i xk − bi > 0 decreasing with respect to dk if aT
i dk < 0.

If the ith constraint is a decreasing constraint with respect to dk, then moving
from xk to xk+1 along dk, the constraint becomes

aT
i xk+1 − bi = aT

i (xk + αkdk) − bi

= (aT
i xk − bi) + αkaT

i dk

with aT
i xk − bi > 0 and aT

i dk < 0. A positive αk that makes the ith constraint
active at point xk+1 can be identified as

αk =
aT

i xk − bi

−aT
i dk

(11.19)

It should be stressed, however, that moving the point along dk also affects other
inactive constraints and care must be taken to ensure that the value of αk used
does not lead to an infeasible xk+1. From the above discussion, we note two
problems that need to be addressed, namely, how to find a direction dk in the
null space N (Aak

) such that there is at least one decreasing constraint with
respect to dk and, if such a dk is found, how to determine the step size αk in
Eq. (11.17).

Given xk and Aak
, we can find an inactive constraint whose normal aT

i is
linearly independent of the rows of Aak

. It follows that the system of equations[
Aak

aT
i

]
dk =

[
0

−1

]
(11.20)

has a solution dk with dk ∈ N (Aak
) and aT

i dk < 0. Having determined dk,
the set of indices corresponding to decreasing constraints with respect to dk

can be defined as

Ik = {i : aT
i xk − bi > 0, aT

i dk < 0}

The value of αk can be determined as the value for which xk +αkdk intersects
the nearest new constraint. Hence, αk can be calculated as

αk = min
i∈Ik

(
aT

i xk − bi

−aT
i dk

)
(11.21)

If i = i∗ is an index in Ik that yields the αk in Eq. (11.21), then it is quite clear
that at point xk+1 = xk + αkdk the active constraint matrix becomes

Aak+1
=

[
Aak

aT
i∗

]
(11.22)

334

where rank(Aak+1
) = rank(Aak

) + 1. By repeating the above steps, a feasible
point xK with rank(AaK) = n will eventually be reached, and point xK is then
deemed to be a vertex.

Example 11.3 Starting from point x0 = [1 1]T , apply the iterative procedure
described above to find a vertex for the LP problem in Example 11.2.

Solution Since the components of the residual vector at x0, namely,

r0 = Ax0 − b =

⎡
⎢⎢⎢⎢⎣

1
1
1

1.5
3

⎤
⎥⎥⎥⎥⎦

are all positive, there are no active constraints at x0. If the first constraint (whose
residual is the smallest) is chosen to form equation Eq. (11.20), we have

[1 0]d0 = −1

which has a (nonunique) solution d0 = [−1 0]T . The setI0 in this case contains
only one index, i.e.,

I0 = {1}
Using Eq. (11.21), we obtain α0 = 1 with i∗ = 1. Hence

x1 = x0 + α0d0 =
[
1
1

]
+

[−1
0

]
=

[
0
1

]

with
Aa1 = [1 0]

At point x1, the residual vector is given by

r1 = Ax1 − b =

⎡
⎢⎢⎢⎢⎣

0
2
1

2.5
4

⎤
⎥⎥⎥⎥⎦

Now if the third constraint (whose residual is the smallest) is chosen to form[
Aa1

aT
3

]
d1 =

[
1 0
0 1

]
d1 =

[
0

−1

]

we obtain d1 = [0 −1]T . It follows that

I1 = {3}

Linear Programming Part I: The Simplex Method 335

From Eq. (11.21), α1 = 1 with i∗ = 3 and, therefore,

x2 = x1 + α1d1 =
[
0
0

]

with

Aa2 =
[
1 0
0 1

]
Since rank(Aa2) = 2 = n, x2 is a vertex. A graphical illustration of this
solution procedure is shown in Fig. 11.6.

x1

1

x2

x1

x2

d1

d0 x0

Figure 11.6. Search path for a vertex starting from point x0.

The iterative strategy described above can also be applied to the standard-
form LP problem in Eq. (11.1). Note that the presence of the equality constraints
in Eq. (11.1b) means that at any feasible point xk, the active constraint matrix
Aak

always contains A as a submatrix.

Example 11.4 Find a vertex for the convex polygon

x1 + x2 + x3 = 1

such that
x ≥ 0

starting with x0 = [13
1
3

1
3]T .

Solution At x0, matrix Aa0 is given by Aa0 = [1 1 1]. Note that the residual
vector at xk for the standard-form LP problem is always given by rk = xk.

336

Hence r0 =
[

1
3

1
3

1
3

]T
. If the first inequality constraint is chosen to form

Eq. (11.20), then we have [
1 1 1
1 0 0

]
d0 =

[
0

−1

]

which has a (nonunique) solution d0 = [−1 1 0]T . It follows that

I0 = {1}

and
α0 = 1

3 with i∗ = 1

Hence

x1 = x0 + α0d0 =

⎡
⎢⎢⎢⎢⎣

0

2
3

1
3

⎤
⎥⎥⎥⎥⎦

At x1,

Aa1 =
[
1 1 1
1 0 0

]

andr1 =
[
0 2

3
1
3

]T
. Choosing the third inequality constraint to form Eq. (11.20),

we have ⎡
⎣ 1 1 1

1 0 0
0 0 1

⎤
⎦d1 =

⎡
⎣ 0

0
−1

⎤
⎦

which leads to d1 = [0 1 −1]T . Consequently,

I1 = {3}

and
α1 = 1

3 with i∗ = 3

Therefore,

x2 = x1 + α1d1 =

⎡
⎣ 0

1
0

⎤
⎦

At x2,

Aa2 =

⎡
⎣ 1 1 1

1 0 0
0 0 1

⎤
⎦

Hence rank(Aa2) = 3, indicating that x2 is a vertex. The search path that leads
to vertex x2 is illustrated in Fig. 11.7.

Linear Programming Part I: The Simplex Method 337

x1

x2

x3

x2

x1
d0x0

Figure 11.7. Search path for a vertex for Example 11.4.

11.2.3.4 Two implementation issues

There are two issues that have to be dealt with when using the method in
Sec. 11.2.3.3 to find a vertex. First, as in the case of any iterative optimization
method, we need to identify a feasible point. As will be shown shortly, this
problem can itself be treated as an LP problem, which is often referred to as a
phase-1 LP problem. Second, in order to move from point xk to point xk+1, we
need to identify a constraint, say, the ith constraint, which is inactive at xk such
that aT

i is linearly independent of the rows of Aak
. Obviously, this is a rank

determination problem. Later on in this subsection, we will describe a method
for rank determination based on the QR decomposition of matrix Aak

.

I. Finding a feasible point. Finding a feasible point for the LP problem in
Eq. (11.2) amounts to finding a vector x0 ∈ Rn×1 such that

Ax0 ≥ b

To this end, we consider the modified constraints

Ax + φe ≥ b (11.23)

where φ is an auxiliary scalar variable and e = [1 1 · · · 1]T . Evidently, if
x = 0 and φ = φ0 = max(0, b1, b2, . . . , bp) in Eq. (11.23) where bi is the ith
component of b in Eq. (11.23), then φ ≥ 0 and Eq. (11.23) is satisfied because

A0 + φ0e ≥ b

In other words, if we define the augmented vector x̂ as

x̂ =
[
x
φ

]

338

then the initial value

x̂0 =
[

0
φ0

]
(11.24)

satisfies the constraints in Eq. (11.23). This suggests that a phase-1 LP problem
can be formulated as

minimize φ (11.25a)

subject to: Ax + φe ≥ b (11.25b)

φ ≥ 0 (11.25c)

A feasible initial point for this problem is given by Eq. (11.24). If the solution
is assumed to be

x̂∗ =
[
x∗
φ∗

]
=

[
x∗
0

]
then at x̂∗ the constraints in Eq. (11.25b) become Ax∗ ≥ b and hence x∗ is
a feasible point for the original LP problem. If φ∗ > 0, we conclude that no
feasible point exists for constraints Ax ≥ b and φ∗ then represents a single
perturbation of the constraint in Eq. (11.2b) with minimum L∞ norm to ensure
feasibility. In effect, point x∗ would become feasible if the constraints were
modified to

Ax ≥ b̃ with b̃ = b − φ∗e (11.26)

II. Finding a linearly independent aT
i . Assume that at xk, rank(Aak

) = rk

with rk < n. Finding a normal vector aT
i associated with an inactive constraint

at xk such that aT
i is linearly independent of the rows of Aak

is equivalent to
finding an aT

i such that rank(Âak
) = rk + 1 where

Âak
=

⎡
⎣Aak

aT
i

⎤
⎦ (11.27)

An effective way of finding the rank of a matrix obtained through finite-
precision computations is to perform QR decomposition with column pivoting,
which can be done through the use of the Householder QR decomposition
described in Sec. A.12.2 (see also [5, Chap. 5]). On applying this procedure
to a matrix M ∈ Rn×m with m ≤ n, after r steps of the procedure we obtain

MP(r) = Q(r)R(r)

where Q(r) ∈ Rn×n is an orthogonal matrix, P(r) ∈ Rm×m is a permutation
matrix, and

R(r) =

⎡
⎣R(r)

11 R(r)
12

0 R(r)
22

⎤
⎦

Linear Programming Part I: The Simplex Method 339

where R(r)
11 ∈ Rr×r is nonsingular and upper-triangular. If ||R(r)

22 ||2 is negligi-
ble, then the numerical rank of M is deemed to be r. A reasonable condition
for terminating the QR decomposition is

||R(r)
22 ||2 ≤ ε||M||2 (11.28)

where ε is some small machine-dependent parameter. When Eq. (11.28) is
satisfied, block R(r)

22 is set to zero and the QR decomposition of M becomes

MP = QR

where P = P(r), Q = Q(r), and

R =

⎡
⎣R(r)

11 R(r)
12

0 0

⎤
⎦ (11.29)

For matrix Aak
in Eq. (11.27), the above QR decomposition can be applied to

AT
ak

∈ Rn×r with r < n, i.e.,

AT
ak

P = QR (11.30)

where R has the form of Eq. (11.29), and the size of R(r)
11 gives the rank of Aak

.
A nice feature of the QR decomposition method is that if matrix Aak

is altered
in some way, for example, by adding a rank-one matrix or appending a row (or
column) to it or deleting a row (or column) from it, the QR decomposition of
the altered matrix can be obtained based on the QR decomposition of matrix
Aak

with a computationally simple updating procedure (see Sec. A.12 and
[5, Chap. 12]). In the present case, we are interested in the QR decomposition
of ÂT

ak
in Eq. (11.27), which is obtained from AT

ak
by appending ai as the last

column. If we let

P̂ =
[
P 0
0 1

]
it follows from Eq. (11.30) that

QT ÂT
ak

P̂ = QT [AT
ak

ai]P̂

= [QTAT
ak

P QTai] = [R wi]

=

⎡
⎣R(r)

11 R(r)
12

wi

0 0

⎤
⎦ (11.31)

where wi = QTai is a column vector with n entries. Note that if we apply
n− r + 1 Givens rotations (see Sec. A.11.2 and [5, Chap. 5]) JT

l for 1 ≤ l ≤

340

n − r − 1 to wi successively so that

JT
n−r−1 · · ·JT

2 · JT
1 wi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1
...

ψr

ψr+1

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ }

(n − r − 1) zeros

(11.32)

then the structure of R is not changed. Now by defining

J = J1 J2 · · · Jn−r−1 and Q̂ = QJ

Eqs. (11.31) and (11.32) yield

Q̂T ÂT
ak

P̂ = J[R wi] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1

R̂(r)
11 R̂(r)

12

...
ψr

ψr+1

0

0 0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.33)

where R̂(r)
11 is an r×r nonsingular upper triangular matrix. If ψr+1 is negligible,

then rank(Âak
) may be deemed to be r; hence aT

i is not linearly independent
of the rows of Aak

. However, if ψr+1 is not negligible, then Eq. (11.33) shows
that rank(Âak

) = r + 1 so that aT
i is a desirable vector for Eq. (11.20). By

applying a permutation matrix Pa to Eq. (11.33) to interchange the (r + 1)th
column with the last column for the matrix on the right-hand side, the updated
QR decomposition of ÂT

ak
is obtained as

AT
ak

P̃ = Q̂R̂

where P̃ = P̂Pa is a permutation matrix and R̂ is given by

R =

⎡
⎣ R̂(r+1)

11 R̃(r+1)
12

0 0

⎤
⎦

with

R̂(r+1)
11 =

⎡
⎢⎣ R̂(r)

11 ψ1
...

0 ψr+1

⎤
⎥⎦

Linear Programming Part I: The Simplex Method 341

11.2.4 Vertex minimizers
11.2.4.1 Finding a vertex minimizer

The iterative method for finding a vertex described in Sec. 11.2.3.3 does not
involve the objective function f(x) = cTx. Consequently, the vertex obtained
may not be a minimizer (see Example 11.3). However, as will be shown in the
next theorem, if we start the iterative method at a minimizer, a vertex would
eventually be reached without increasing the objective function which would,
therefore, be a vertex minimizer.

Theorem 11.5 Existence of a vertex minimizer in alternative-form LP prob-
lem If the minimum of f(x) in the alternative-form LP problem of Eq. (11.2)
is finite, then there is a vertex minimizer.

Proof If x0 is a minimizer, then x0 is finite and satisfies the conditions stated
in Theorem 11.2. Hence there exists a µ∗ ≥ 0 such that

c = AT µ∗ (11.34)

By virtue of the complementarity condition in Eq. (11.8c), Eq. (11.34) can be
written as

c = AT
a0

µ∗
a (11.35)

where Aa0 is the active constraint matrix at x0 and µ∗
a is composed of the entries

of µ∗ that correspond to the active constraints. If x0 is not a vertex, the method
described in Sec. 11.2.3.3 can be applied to yield a point x1 = x0 + α0d0

which is closer to a vertex, where d0 is a feasible direction that satisfies the
condition Aa0d0 = 0 (see Eq. (11.18)). It follows that at x1 the objective
function remains the same as at x0, i.e.,

f(x1) = cTx1 = cTx0 + α0µ
∗T
a Aa0d0 = cTx0 = f(x0)

which means that x1 is a minimizer. If x1 is not yet a vertex, then the process
is continued to generate minimizers x2, x3, . . . until a vertex minimizer is
reached.

Theorem 11.5 also applies to the standard-form LP problem in Eq. (11.1). To
prove this, let x0 be a finite minimizer of Eq. (11.1). It follows from Eq. (11.5c)
that

c = AT λ∗ + µ∗ (11.36)

The complementarity condition implies that Eq. (11.36) can be written as

c = AT λ∗ + IT
0 µ∗

a (11.37)

342

where I0 consists of the rows of the n×n identity matrix that are associated with
the inequality constraints in Eq. (11.3c) that are active atx0, and µ∗

a is composed
of the entries of µ∗ that correspond to the active (inequality) constraints. At
x0, the active constraint matrix Aa0 is given by

Aa0 =
[
A
I0

]
(11.38)

Hence Eq. (11.37) becomes

c = AT
a0

η∗
a with η∗

a =
[

λ∗

µ∗
a

]
(11.39)

which is the counterpart of Eq. (11.35) for the problem in Eq. (11.1). The rest
of the proof is identical with that of Theorem 11.5. We can, therefore, state the
following theorem.

Theorem 11.6 Existence of a vertex minimizer in standard-form LP prob-
lem If the minimum of f(x) in the LP problem of Eq. (11.1) is finite, then a
vertex minimizer exists.

11.2.4.2 Uniqueness

A key feature in the proofs of Theorems 11.5 and 11.6 is the connection
of vector c to the active constraints as described by Eqs. (11.35) and (11.39)
through the Lagrange multipliers µ∗ and λ∗. As will be shown in the next
theorem, the Lagrange multipliers also play a critical role in the uniqueness of
a vertex minimizer.

Theorem 11.7 Uniqueness of minimizer of alternative-form LP problem Let
x∗ be a vertex minimizer of the LP problem in Eq. (11.2) at which

cT = AT
a∗µ∗

a

where µ∗
a ≥ 0 is defined in the proof of Theorem 11.5. If µ∗

a > 0, then x∗ is
the unique vertex minimizer of Eq. (11.2).

Proof Let us suppose that there is another vertex minimizer x̃ �= x∗. We can
write

x̃ = x∗ + d

with d = x̃−x∗ �= 0. Since both x∗ and x̃ are feasible, d is a feasible direction
which implies that Aa∗d ≥ 0. Since x∗ is a vertex, Aa∗ is nonsingular; hence

Linear Programming Part I: The Simplex Method 343

Aa∗d ≥ 0 together with d �= 0 implies that at least one component of Aa∗d,
say, (Aa∗d)i, is strictly positive. We then have

0 = f(x̃) − f(x∗) = cT x̃ − cTx∗ = cTd

= µ∗T

a Aa∗d ≥ (µ∗
a)i · (Aa∗d)i > 0

The above contradiction implies that another minimizer x̃ cannot exist.

For the standard-form LP problem in Eq. (11.1), the following theorem ap-
plies.

Theorem 11.8 Uniqueness of minimizer of standard-form LP problem Con-
sider the LP problem in Eq. (11.1) and let x∗ be a vertex minimizer at which

cT = AT
a∗η∗

a

with

Aa∗ =
[
A
I∗

]
, η∗

a =
[

λ∗

µ∗
a

]
where I∗ consists of the rows of the n × n identity matrix that are associated
with the inequality constraints in Eq. (11.1c) that are active at x∗, λ∗ and µ∗
are the Lagrange multipliers in Eq. (11.5c), and µ∗

a consists of the entries of
µ∗ associated with active (inequality) constraints. If µ∗

a > 0, then x∗ is the
unique vertex minimizer of the problem in Eq. (11.1).

Theorem 11.8 can be proved by assuming that there is another minimizer x̃
and then using an argument similar to that in the proof of Theorem 11.7 with
some minor modifications. Direction c being feasible implies that

Aa∗d =
[
Ad
I∗d

]
=

[
0

I∗d

]
≥ 0 (11.40)

where I∗d consists of the components of d that are associated with the active
(inequality) constraints at x∗. Since Aa∗ is nonsingular, Eq. (11.40) in con-
junction with d �= 0 implies that at least one component of I∗d, say, (I∗d)i, is
strictly positive. This yields the contradiction

0 = f(x̃) − f(x∗) = cTd

= [λ∗T
µ∗T

a]Aad = µ∗T

a I∗d ≥ (µ∗
a)i · (I∗d)i

> 0

The strict positiveness of the Lagrange multiplier µ∗
a is critical for the unique-

ness of the solution. As a matter of fact, if the vertex minimizer x∗ is nonde-
generate (see Def. 11.1 in Sec. 11.2.3.1), then any zero entries in µ∗

a imply the
nonuniqueness of the solution. The reader is referred to [3, Sec. 7.7] for the
details.

344

11.3 Simplex Method
11.3.1 Simplex method for alternative-form LP problem

In this section, we consider a general method for the solution of the LP
problem in Eq. (11.2) known as the simplex method. It was shown in Sec. 11.2.4
that if the minimum value of the objective function in the feasible region is
finite, then a vertex minimizer exists. Let x0 be a vertex and assume that it
is not a minimizer. The simplex method generates an adjacent vertex x1 with
f(x1) < f(x0) and continues doing so until a vertex minimizer is reached.

11.3.1.1 Nondegenerate case

To simplify our discussion, we assume that all vertices are nondegenerate,
i.e., at a vertex there are exactly n active constraints. This assumption is often
referred to as the nondegeneracy assumption [3] in the literature.

Given a vertex xk, a vertex xk+1 is said to be adjacent to xk if Aak+1
differs

from Aak
by one row. In terms of the notation used in Sec. 11.2.3.2, we denote

Aak
as

Aak
=

⎡
⎢⎢⎢⎢⎣

aT
j1

aT
j2
...

aT
jn

⎤
⎥⎥⎥⎥⎦

where ajl
is the normal of the jlth constraint in Eq. (11.2b). Associated with

Aak
is the index set

Jk = {j1, j2, . . . , jn}
Obviously, if Jk and Jk+1 have exactly (n−1) members, vertices xk and xk+1

are adjacent. At vertex xk, the simplex method verifies whether xk is a vertex
minimizer, and if it is not, it finds an adjacent vertex xk+1 that yields a reduced
value of the objective function. Since a vertex minimizer exists and there is
only a finite number of vertices, the simplex method will find a solution after a
finite number of iterations.

Under the nondegeneracy assumption,Aak
is square and nonsingular. Hence

there exists a µk ∈ Rn×1 such that

c = AT
ak

µk (11.41)

Since xk is a feasible point, by virtue of Theorem 11.2 we conclude that xk is
a vertex minimizer if and only if

µk ≥ 0 (11.42)

In other words, xk is not a vertex minimizer if and only if at least one component
of µk, say, (µk)l, is negative.

Linear Programming Part I: The Simplex Method 345

Assume that xk is not a vertex minimizer and let

(µk)l < 0 (11.43)

The simplex method finds an edge as a feasible descent direction dk that points
from xk to an adjacent vertex xk+1 given by

xk+1 = xk + αkdk (11.44)

It was shown in Sec. 11.2.3.2 that a feasible descent direction dk is characterized
by

Aak
dk ≥ 0 and cTdk < 0 (11.45)

To find an edge that satisfies Eq. (11.45), we denote the lth coordinate vector
(i.e., the lth column of the n × n identity matrix) as el and examine vector dk

that solves the equation
Aak

dk = el (11.46)

From Eq. (11.46), we note that Aak
dk ≥ 0. From Eqs. (11.41), (11.43), and

(11.46), we have

cTdk = µT
k Aak

dk = µT
k el = (µk)i < 0

and hence dk satisfies Eq. (11.45) and, therefore, it is a feasible descent direc-
tion. Moreover, for i �= l Eq. (11.46) implies that

aT
ji
(xk + αdk) = aT

ji
xk + αaT

ji
dk = bji

Therefore, there are exactly n − 1 constraints that are active at xk and remain
active at xk + αdk. This means that xk + αdk with α > 0 is an edge that
connects xk to an adjacent vertex xk+1 with f(xk+1) < f(xk). By using an
argument similar to that in Sec. 11.2.3.3, the right step size αk can be identified
as

αk = min
i∈Ik

(
aT

i xk − bi

−aT
i dk

)
(11.47)

where Ik contains the indices of the constraints that are inactive at xk with
aT

i dk < 0, i.e.,

Ik = {i : aT
i xk − bi > 0 and aT

i dk < 0} (11.48)

Once αk is calculated, the next vertex xk+1 is determined by using Eq. (11.44).
Now if i∗ ∈ Ik is the index that achieves the minimum in Eq. (11.47), i.e.,

αk =
aT

i∗xk − bi∗

−aT
i∗dk

346

then at xk+1 the i∗th constraint becomes active. With the jlth constraint leaving
Aak

and the i∗th constraint enteringAak+1
, there are exactly n active constraints

at xk+1 and Aak+1
given by

Aak+1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

aT
j1
...

aT
jl−1

aT
i∗

aT
jl+1

...
aT

jn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.49)

and the index set is given by

Jk+1 = {j1, . . . , jl−1, i∗, jl+1, . . . , jn} (11.50)

A couple of remarks on the method described are in order. First, when
the Lagrange multiplier vector µk determined by using Eq. (11.41) contains
more than one negative component, a ‘textbook rule’ is to select the index l in
Eq. (11.46) that corresponds to the most negative component in µk [3]. Second,
Eq. (11.47) can be modified to deal with the LP problem in Eq. (11.2) with an
unbounded minimum. If the LP problem at hand does not have a bounded
minimum, then at some iteration k the index set Ik will become empty which
signifies an unbounded solution of the LP problem. Below, we summarize
an algorithm that implements the simplex method and use two examples to
illustrate its application.

Algorithm 11.1 Simplex algorithm for the alternative-form LP prob-
lem in Eq. (11.2), nondegenerate vertices
Step 1
Input vertex x0, and form Aa0 and J0.
Set k = 0.
Step 2
Solve

AT
ak

µk = c (11.51)

for µk.
If µk ≥ 0, stop (xk is a vertex minimizer); otherwise, select the index l
that corresponds to the most negative component in µk.
Step 3
Solve

Aak
dk = el (11.52)

for dk.

Linear Programming Part I: The Simplex Method 347

Step 4
Compute the residual vector

rk = Axk − b = (ri)
p
i=1 (11.53a)

If the index set
Ik = {i : ri > 0 and aT

i dk < 0} (11.53b)

is empty, stop (the objective function tends to−∞ in the feasible region);
otherwise, compute

αk = min
i∈Ik

(
ri

−aT
i dk

)
(11.53c)

and record the index i∗ with αk = ri∗/(−aT
i∗dk).

Step 5
Set

xk+1 = xk + αkdk (11.54)

Update Aak+1
and Jk+1 using Eqs. (11.49) and (11.50), respectively.

Set k = k + 1 and repeat from Step 2.

Example 11.5 Solve the LP problem in Example 11.2 with initial vertex x0 =
[2 1.5]T using the simplex method.

Solution From Example 11.2 and Fig. 11.3, the objective function is given by

f(x) = cTx = −x1 − 4x2

and the constraints are given by Ax ≥ b with

A =

⎡
⎢⎢⎢⎢⎣

1 0
−1 0

0 1
−1 −1
−1 −2

⎤
⎥⎥⎥⎥⎦ and b =

⎡
⎢⎢⎢⎢⎣

0
−2

0
−3.5
−6

⎤
⎥⎥⎥⎥⎦

We note that at vertex x0, the second and fourth constraints are active and hence

Aa0 =
[−1 0
−1 −1

]
, J0 = {2, 4}

Solving AT
a0

µ0 = c for µ0 where c = [−1 −4]T , we obtain µ0 = [−3 4]T .
This shows that x0 is not a minimizer and l = 1. Next we solve

Aa0d0 = e1

348

for d0 to obtain d0 = [−1 1]T . From Fig. 11.3, it is evident that d0 is a feasible
descent direction at x0. The residual vector at x0 is given by

r0 = Ax0 − b =

⎡
⎢⎢⎢⎢⎣

2
0
1.5
0
1

⎤
⎥⎥⎥⎥⎦

which shows that the first, third, and fifth constraints are inactive at x0. Fur-
thermore, ⎡

⎣aT
1

aT
3

aT
5

⎤
⎦d0 =

⎡
⎣ 1 0

0 1
−1 −2

⎤
⎦ [−1

1

]
=

⎡
⎣−1

1
−1

⎤
⎦

Hence
I0 = {1, 5}

and

α0 = min

(
r1

−aT
1 d0

,
r5

−aT
5 d0

)
= 1

The next vertex is obtained as

x1 = x0 + α0d0 =
[
1
2.5

]
with

Aa1 =
[−1 −2
−1 −1

]
and J1 = {5, 4}

This completes the first iteration.
The second iteration starts by solving AT

a1
µ1 = c for µ1. It is found that

µ1 = [3 −2]T . Hence x1 is not a minimizer and l = 2. By solving

Aa1d1 = e2

we obtain the feasible descent direction d1 = [−2 1]T . Next we compute the
residual vector at x1 as

r1 = Ax1 − b =

⎡
⎢⎢⎢⎢⎣

1
1

2.5
0
0

⎤
⎥⎥⎥⎥⎦

which indicates that the first three constraints are inactive at x1. By evaluating⎡
⎣aT

1

aT
2

aT
3

⎤
⎦d1 =

⎡
⎣ 1 0
−1 0

0 1

⎤
⎦ [−2

1

]
=

⎡
⎣−2

2
1

⎤
⎦

Linear Programming Part I: The Simplex Method 349

we obtain
I1 = {1}

and
α1 =

r1

−aT
1 d1

= 1
2

This leads to

x2 = x1 + α1d1 =
[
0
3

]
with

Aa2 =
[−1 −2

1 0

]
and J2 = {5, 1}

which completes the second iteration.
Vertex x2 is confirmed to be a minimizer at the beginning of the third iteration

since the equation
AT

a2
µ2 = c

yields nonnegative Lagrange multipliers µ2 = [2 3]T .

Example 11.6 Solve the LP problem

minimize f(x) = x1 + x2

subject to: − x1 ≥ −2
−x2 ≥ −2

2x1 − x2 ≥ −2
−2x1 − x2 ≥ −4

Solution The constraints can be written as Ax ≥ b with

A =

⎡
⎢⎢⎣
−1 0

0 −1
2 −1

−2 −1

⎤
⎥⎥⎦ and b =

⎡
⎢⎢⎣
−2
−2
−2
−4

⎤
⎥⎥⎦

The feasible region defined by the constraints is illustrated in Fig. 11.8. Note
that the feasible region is unbounded.

Assume that we are given vertex x0 = [1 2]T to start Algorithm 11.1. At
x0, the second and fourth constraints are active and so

Aa0 =
[

0 −1
−2 −1

]
and J0 = {2, 4}

350

x1

x2

d0

x0

1

2

-1 2

1

d1

Figure 11.8. Feasible region for Example 11.6.

Equation AT
a0

µ0 = c yields µ0 = [−1
2 −1

2]T and hence x0 is not a minimizer.
Since both components of µ0 are negative, we can choose index l to be either
1 or 2. Choosing l = 1, Eq. (11.46) becomes Aa0d0 = e1 which gives
d0 = [12 −1]T . The residual vector at x0 is given by

r0 = Ax0 − b =

⎡
⎢⎢⎣

1
0
2
0

⎤
⎥⎥⎦

Hence the first and third constraints are inactive at x0. We now compute[
aT

1

aT
3

]
d0 =

[−1 0
2 −1

] [1
2
−1

]
=

[−1
2

2

]

to identify index set I0 = {1}. Hence

α0 =
r1

−aT
1 d0

= 2

and the next vertex is given by

x1 = x0 + α0d0 =
[
2
0

]
with

Aa1 =
[−1 0
−2 −1

]
and J1 = {1, 4}

Next we examine whether or not x1 is a minimizer by solving AT
a1

µ1 = c. This
gives µ1 = [3 −2]T indicating that x1 is not a minimizer and l = 2. Solving

Linear Programming Part I: The Simplex Method 351

Aa1d1 = e2 for d1, we obtain d1 = [0 −1]T . At x1 the residual vector is
given by

r1 = Ax1 − b =

⎡
⎢⎢⎣

0
2
6
0

⎤
⎥⎥⎦

Hence the second and third constraints are inactive. Next we evaluate[
aT

2

aT
3

]
d1 =

[
0 −1
2 −1

] [
0

−1

]
=

[
1
1

]

Since I1 is empty, we conclude that the solution of this LP problem is un-
bounded.

11.3.1.2 Degenerate case

When some of the vertices associated with the problem are degenerate, Al-
gorithm 11.1 needs several minor modifications. At a degenerate vertex, say,
xk, the number of active constraints is larger than n minus the dimension of
variable vector x. Consequently, the number of rows in matrix Aak

is larger
than n and matrix Aak

should be replaced in Steps 2 and 3 of Algorithm 11.1
by a matrix Âak

that is composed of n linearly independent rows of Aak
. Like-

wise, Aa0 in Step 1 and Aak+1
in Step 5 should be replaced by Âa0 and Âak+1

,
respectively.

The set of constraints corresponding to the rows in Âak
is called a working set

of active constraints and in the literature Âak
is often referred to as a working-set

matrix.
Associated with Âak

is the working index set denoted as

Wk = {w1, w2, . . . , wn}

which contains the indices of the rows of Âak
as they appear in matrix A.

Some additional modifications of the algorithm in terms of the notation just
introduced are to replace J0 in Step 1 and Jk+1 in Step 5 by W0 and Wk+1,
respectively, and to redefine the index set Ik in Eq. (11.48) as

Ik = {i : i �∈ Wk and aT
i dk < 0} (11.55)

Relative to Ik in Eq. (11.48), the modified Ik in Eq. (11.55) also includes the
indices of the constraints that are active at xk but are excluded from Âak

and
which satisfy the inequality aT

i dk < 0.
Obviously, for a nondegenerate vertex xk, Âak

= Aak
and there is only

one working set of active constraints that includes all the active constraints at

352

xk and Ik does not contain indices of any active constraints. For a degenerate
vertex xk, however, Âak

is not unique and, as Eq. (11.55) indicates, Ik may
contain indices of active constraints. When Ik does include the index of an
active constraint, the associated residual is zero. Consequently, the step size
αk computed using Eq. (11.53c) is also zero, which implies that xk+1 = xk.
Although under such circumstances the working index set Wk+1 will differ
from Wk, the possibility of generating an infinite sequence of working index
sets without moving from a given vertex does exist. For an example where such
‘cycling’ occurs, see [3, Sec. 8.3.2].

Cycling can be avoided by using an approach proposed by Bland [6]. The ap-
proach is known as Bland’s least-index rule for deleting and adding constraints
and is as follows:

1. In Step 2 of Algorithm 11.1, if the Lagrange multiplier µk has more than
one negative components, then index l is selected as the smallest index in
the working index set Wk corresponding to a negative component of µk,
i.e.,

l = min
wi∈Wk, (µk)i<0

(wi) (11.56)

2. In Step 4, if there are more than one indices that yield the optimum αk

in Eq. (11.53c), then the associated constraints are called blocking con-
straints, and i∗ is determined as the smallest index of a blocking constraint.

The steps of the modified simplex algorithm are as follows.

Algorithm 11.2 Simplex algorithm for the alternative-form LP prob-
lem in Eq. (11.2), degenerate vertices
Step 1
Input vertex x0 and form a working-set matrix Âa0 and a working-index
set W0.
Set k = 0.
Step 2
Solve

ÂT
ak

µk = c (11.57)

for µk.
If µk ≥ 0, stop (vertex xk is a minimizer); otherwise, select index l
using Eq. (11.56).
Step 3
Solve

Âak
dk = el (11.58)

for dk.

Linear Programming Part I: The Simplex Method 353

Step 4
Form index set Ik using Eq. (11.55).
If Ik is empty, stop (the objective function tends to −∞ in the feasible
region).
Step 5
Compute the residual vector

rk = Axk − b = (ri)
p
i=1

parameter

δi =
ri

−aT
i dk

for i ∈ Ik (11.59a)

and
αk = min

i∈Ik

(δi) (11.59b)

Record index i∗ as
i∗ = min

δi=αk

(i) (11.59c)

Step 6
Set xk+1 = xk + αkdk.
Update Âak+1

by deleting row aT
l and adding row aT

i∗ and update index
set Wk+1 accordingly.
Set k = k + 1 and repeat from Step 2.

Example 11.7 Solve the LP problem

minimize f(x) = −2x1 − 3x2 + x3 + 12x4

subject to: x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
2x1 + 9x2 − x3 − 9x4 ≥ 0

−1
3
x1 − x2 + 1

3x3 + 2x4 ≥ 0

(See [3, p. 351].)

Solution We start with x0 = [0 0 0 0]T which is obviously a degenerate
vertex. Applying Algorithm 11.2, the first iteration results in the following
computations:

Âa0 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

W = {1, 2, 3, 4}

354

µ0 = [−2 −3 1 12]T

l = 1
d0 = [1 0 0 0]T

r0 = [0 0 0 0 0 0]T

I0 = {6}
α0 = 0
i∗ = 6
x1 = x0 = [0 0 0 0]T

Âa1 =

⎡
⎢⎢⎣
−1

3 −1 1
3 2

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

W1 = {6, 2, 3, 4}

Note that although x1 = x0, Âa1 differs from Âa0 . Repeating from Step 2, the
second iteration (k = 1) gives

µ1 = [6 3 −1 0]T

l = 3
d1 = [1 0 1 0]T

r1 = [0 0 0 0]T

I1 = {φ}

where I1 is an empty set. Therefore, in the feasible region the objective function
tends to −∞.

As a matter of fact, all the points along the feasible descent direction d1 are
feasible, i.e.,

x = x1 + αd1 = [α 0 α 0]T for α > 0

where f(x) = −α approaches −∞ as α → +∞.

11.3.2 Simplex method for standard-form LP problems
11.3.2.1 Basic and nonbasic variables

For a standard-form LP problem of the type given in Eq. (11.1) with a matrix
A of full row rank, the p equality constraints in Eq. (11.1b) are always treated
as active constraints. As was discussed in Sec. 10.4.1, these constraints reduce
the number of ‘free’ variables from n to n − p. In other words, the p equality
constraints can be used to express p dependent variables in terms of n−p inde-
pendent variables. Let B be the matrix that consists of p linearly independent

Linear Programming Part I: The Simplex Method 355

columns of A. If the variable vector x is partitioned accordingly, then we can
write the equality constraint in Eq. (11.2b) as

Ax = [B N]
[
xB

xN

]
= BxB + NxN = b (11.60)

The variables contained in xB and xN are called basic and nonbasic variables,
respectively. Since B is nonsingular, the basic variables can be expressed in
terms of the nonbasic variables as

xB = B−1b − B−1NxN (11.61)

At vertex xk, there are at least n active constraints. Hence in addition to the p
equality constraints, there are at least n− p inequality constraints that become
active at xk. Therefore, for a standard-form LP problem a vertex contains at
least n − p zero components. The next theorem describes an interesting pro-
perty of A.

Theorem 11.9 Linear independence of columns in matrix A The columns
of A corresponding to strictly positive components of a vertex xk are linearly
independent.

Proof We adopt the proof used in [3]. Let B̂ be formed by the columns of A that
correspond to strictly positive components of xk, and let x̂k be the collection of
the positive components of xk. If B̂ŵ = 0 for some nonzero ŵ, then it follows
that

Axk = B̂x̂k = B̂(x̂k + αŵ) = b

for any scalar α. Since x̂k > 0, there exists a sufficiently small α+ > 0 such
that

ŷk = x̂k + αŵ > 0 for − α+ ≤ α ≤ α+

Now let yk ∈ Rn×1 be such that the components of yk corresponding to x̂k are
equal to the components of ŷk and the remaining components of yk are zero.
Evidently, we have

Ayk = B̂ŷk = b
and

yk ≥ 0 for − α+ ≤ α ≤ α+

Note that with α = 0, yk = xk is a vertex, and when α varies from −α+ to
α+, vertex xk would lie between two feasible points on a straight line, which
is a contradiction. Hence ŵ must be zero and the columns of B̂ are linearly
independent.

356

By virtue of Theorem 11.9, we can use the columns of B̂ as a set of core
basis vectors to construct a nonsingular square matrix B. If B̂ already contains
p columns, we assume that B = B̂; otherwise, we augment B̂ with additional
columns of A to obtain a square nonsingular B. Let the index set associated
with B at xk be denoted as Iβ = {β1, β2, . . . , βp}. With matrix B so formed,
matrix N in Eq. (11.60) can be constructed with those n− p columns of A that
are not in B. Let IN = {ν1, ν2, . . . , νn−p} be the index set for the columns
of N and let IN be the (n− p) × n matrix composed of rows ν1, ν2, . . ., νn−p

of the n × n identity matrix. With this notation, it is clear that at vertex xk the
active constraint matrix Aak

contains the working-set matrix

Âak
=

[
A
IN

]
(11.62)

as an n × n submatrix. It can be shown that matrix Âak
in Eq. (11.62) is

nonsingular. In fact if Âak
x = 0 for some x, then we have

BxB + NxN = 0 and xN = 0

It follows that
xB = −B−1NxN = 0

and hence x = 0. Therefore, Âak
is nonsingular. In summary, at a vertex xk a

working set of active constraints for the application of the simplex method can
be obtained with three simple steps as follows:

(a) Select the columns in matrix A that correspond to the strictly positive
components of xk to form matrix B̂.

(b) If the number of columns in B̂ is equal to p, take B = B̂; otherwise, B̂
is augmented with additional columns of A to form a square nonsingular
matrix B.

(c) Determine the index set IN and form matrix IN .

Example 11.8 Identify working sets of active constraints at vertexx = [3 0 0 0]T

for the LP problem

minimize f(x) = x1 − 2x2 − x4

subject to: 3x1 + 4x2 + x3 = 9
2x1 + x2 + x4 = 6

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

Solution It is easy to verify that point x = [3 0 0 0]T is a degenerate vertex
at which there are five active constraints. Since x1 is the only strictly positive

Linear Programming Part I: The Simplex Method 357

component, B̂ contains only the first column of A, i.e.,

B̂ =
[
3
2

]

Matrix B̂ can be augmented, for example, by using the second column of A to
generate a nonsingular B as

B =
[
3 4
2 1

]
This leads to

IN = {3, 4} and Âa =

⎡
⎢⎢⎣

3 4 1 0
2 1 0 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

Since vertex x is degenerate, matrix Âa is not unique. As a reflection of this
nonuniqueness, there are two possibilities for augmenting B̂. Using the third
column of A for the augmentation, we have

B =
[
3 1
2 0

]
which gives

IN = {2, 4}
and

Âa =

⎡
⎢⎢⎣

3 4 1 0
2 1 0 1
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

Alternatively, augmenting B̂ with the fourth column of A yields

B =
[
3 0
2 1

]
which gives

IN = {2, 3}
and

Âa =

⎡
⎢⎢⎣

3 4 1 0
2 1 0 1
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦

It can be easily verified that all three Âa’s are nonsingular.

358

11.3.2.2 Algorithm for standard-form LP problem

Like Algorithms 11.1 and 11.2, an algorithm for the standard-form LP prob-
lem based on the simplex method can start with a vertex, and the steps of
Algorithm 11.2 can serve as a framework for the implementation. A major
difference from Algorithms 11.1 and 11.2 is that the special structure of the
working-set matrix Âak

in Eq. (11.62) can be utilized in Steps 2 and 3, which
would result in reduced computational complexity.

At a vertex xk, the nonsingularity of the working-set matrix Âak
given by

Eq. (11.62) implies that there exist λk ∈ Rp×1 and µ̂k ∈ R(n−p)×1 such that

c = ÂT
ak

[
λk

µ̂k

]
= AT λk + IT

N µ̂k (11.63)

If µk ∈ Rn×1 is the vector with zero basic variables and the components of µ̂k

as its nonbasic variables, then Eq. (11.63) can be expressed as

c = AT λk + µk (11.64)

By virtue of Theorem 11.1, vertex xk is a minimizer if and only if µ̂k ≥ 0. If
we use a permutation matrix, P, to rearrange the components of c in accordance
with the partition of xk into basic and nonbasic variables as in Eq. (11.60), then
Eq. (11.63) gives

Pc =
[
cB

cN

]
= PAT λk + PIT

N µ̂k

=
[
BT

NT

]
λk +

[
0
µ̂k

]
It follows that

BT λk = cB (11.65)

and
µ̂k = cN − NT λk (11.66)

Since B is nonsingular, λk and µ̂k can be computed using Eqs. (11.65) and
(11.66), respectively. Note that the system of equations that need to be solved
is of size p × p rather than n × n as in Step 2 of Algorithms 11.1 and 11.2.

If some entry in µ̂k is negative, then xk is not a minimizer and a search
direction dk needs to be determined. Note that the Lagrange multipliers µ̂k

are not related to the equality constraints in Eq. (11.1b) but are related to those
bound constraints in Eq. (11.1c) that are active and are associated with the
nonbasic variables. If the search direction dk is partitioned according to the
basic and nonbasic variables, xB and xN , into d(B)

k and d(N)
k , respectively, and

if (µ̂k)l < 0, then assigning

d(N)
k = el (11.67)

Linear Programming Part I: The Simplex Method 359

where el is the lth column of the (n − p) × (n − p) identity matrix, yields
a search direction dk that makes the νlth constraint inactive without affecting
other bound constraints that are associated with the nonbasic variables. In order
to assure the feasibility of dk, it is also required that Adk = 0 (see Theorem
11.4). This requirement can be described as

Adk = Bd(B)
k + Nd(N)

k = Bd(B)
k + Nel = 0 (11.68)

where Nel is actually the νlth column of A. Hence d(B)
k can be determined by

solving the system of equations

Bd(B)
k = −aνl

(11.69a)

where
aνl

= Nel (11.69b)

Together, Eqs. (11.67) and (11.69) determine the search direction dk. From
Eqs. (11.63), (11.67), and (11.68), it follows that

cTdk = λT
k Adk + µ̂T

k INdk = µ̂T
k d(N)

k = µ̂T
k el

= (µ̂k)l < 0

Therefore, dk is a feasible descent direction. From Eqs. (11.67) and (11.69), it
is observed that unlike the cases of Algorithms 11.1 and 11.2 where finding a
feasible descent search direction requires the solution of a system of n equations
(see Eqs. (11.52) and (11.58)), the present algorithm involves the solution of a
system of p equations.

Considering the determination of step size αk, we note that a point xk +αdk

with any α satisfies the constraints in Eq. (11.1b), i.e.,

A(xk + αdk) = Axk + αAdk = b

Furthermore, Eq. (11.67) indicates that with any positive α, xk + αdk does
not violate the constraints in Eq. (11.1c) that are associated with the nonbasic
variables. Therefore, the only constraints that are sensitive to step size αk

are those that are associated with the basic variables and are decreasing along
direction dk. When limited to the basic variables, dk becomes d(B)

k . Since
the normals of the constraints in Eq. (11.1c) are simply coordinate vectors, a
bound constraint associated with a basic variable is decreasing along dk if the
associated component in d(B)

k is negative. In addition, the special structure of
the inequality constraints in Eq. (11.1c) also implies that the residual vector,
when limited to basic variables in xB , is xB itself.

The above analysis leads to a simple step that can be used to determine the
index set

Ik = {i : (d(B)
k)i < 0} (11.70)

360

and, if Ik is not empty, to determine αk as

αk = min
i∈Ik

[
(x(B)

k)i

(−d(B)
k)i

]
(11.71)

where x(B)
k denotes the vector for the basic variables of xk. If i∗ is the index in

Ik that achieves αk, then the i∗th component of x(B)
k + αkd

(B)
k is zero. This

zero component is then interchanged with the lth component of x(N)
k which is

now not zero but αk. The vector x(B)
k + αd(B)

k after this updating becomes

x(B)
k+1 and, of course, x(N)

k+1 remains a zero vector. Matrices B and N as well as
the associated index sets IB and IN also need to be updated accordingly. An
algorithm based on the above principles is as follows.

Algorithm 11.3 Simplex algorithm for the standard-form LP prob-
lem of Eq. (11.1)
Step 1
Input vertex x0, set k = 0, and form B, N, x(B)

0 , IB =
{β(0)

1 , β
(0)
2 , . . . , β

(0)
p }, and IN = {ν(0)

1 , ν
(0)
2 , . . . , ν

(0)
n−p}.

Step 2
Partition vector c into cB and cN .
Solve Eq. (11.65) for λk and compute µ̂k using Eq. (11.66).
If µ̂k ≥ 0, stop (xk is a vertex minimizer); otherwise, select the index l
that corresponds to the most negative component in µ̂k.
Step 3
Solve Eq. (11.69a) for d(B)

k where aνl
is the ν

(k)
l th column of A.

Step 4
Form index set Ik in Eq. (11.70).
If Ik is empty then stop (the objective function tends to −∞ in the fea-
sible region); otherwise, compute αk using Eq. (11.71) and record the
index i∗ with αk = (x(B)

k)i∗/(−d(B))i∗ .
Step 5
Compute x(B)

k+1 = x(B)
k + αkd

(B)
k and replace its i∗th zero component

by αk.
Set x(N)

k+1 = 0.
Update B and N by interchanging the lth column of N with the i∗th
column of B.
Step 6
Update IB and IN by interchanging index ν

(k)
l of IN with index β

(B)
i∗

of IB .

Linear Programming Part I: The Simplex Method 361

Use the x(B)
k+1 and x(N)

k+1 obtained in Step 5 in conjunction with IB and
IN to form xk+1.
Set k = k + 1 and repeat from Step 2.

Example 11.9 Solve the standard-form LP problem

minimize f(x) = 2x1 + 9x2 + 3x3

subject to: − 2x1 + 2x2 + x3 − x4 = 1
x1 + 4x2 − x3 − x5 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0

Solution From Eq. (11.1)

A =
[−2 2 1 −1 0

1 4 −1 0 −1

]
, b =

[
1
1

]
and

c = [2 9 3 0 0]T

To identify a vertex, we set x1 = x3 = x4 = 0 and solve the system[
2 0
4 −1

] [
x2

x5

]
=

[
1
1

]
for x2 and x5. This leads to x2 = 1/2 and x5 = 1; hence

x0 = [0 1
2 0 0 1]T

is a vertex. Associated with x0 are IB = {2, 5}, IN = {1, 3, 4}

B =
[
2 0
4 −1

]
, N =

[−2 1 −1
1 −1 0

]
, and x(B)

0 =
[1

2
1

]
Partitioning c into

cB = [9 0]T and cN = [2 3 0]T

and solving Eq. (11.65) for λ0, we obtain λ0 = [92 0]T . Hence Eq. (11.66)
gives

µ̂0 =

⎡
⎣ 2

3
0

⎤
⎦−

⎡
⎣−2 1

1 −1
−1 0

⎤
⎦ [9

2
0

]
=

⎡
⎣ 11
−2

3
9
2

⎤
⎦

Since (µ̂0)2 < 0, x0 is not a minimizer, and l = 2. Next, we solve Eq. (11.69a)

for d(B)
0 with ν

(0)
2 = 3 and a3 = [1 −1]T , which yields

d(B)
0 =

[
−1

2
−3

]
and I0 = {1, 2}

362

Hence
α0 = min

(
1, 1

3

)
= 1

3 and i∗ = 2

To find x(B)
1 , we compute

x(B)
0 + α0d

(B)
0 =

[1
3
0

]

and replace its i∗th component by α0, i.e.,

x(B)
1 =

[1
3
1
3

]
with x(N)

1 =
[
0
0

]

Now we update B and N as

B =
[
2 1
4 −1

]
and N =

[
−2 0 −1

1 −1 0

]

and update IB and IN as IB = {2, 3} and IN = {1, 5, 4}. The vertex
obtained is

x1 =
[
0 1

3
1
3 0 0

]T

to complete the first iteration.
The second iteration starts with the partitioning of c into

cB =
[
9
3

]
and cN =

⎡
⎣ 2

0
0

⎤
⎦

Solving Eq. (11.65) for λ1, we obtain λ1 = [72
1
2]T which leads to

µ̂1 =

⎡
⎣ 2

0
0

⎤
⎦−

⎡
⎣−2 1

0 −1
−1 0

⎤
⎦
⎡
⎣ 7

2

1
2

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

17
2

1
2

7
2

⎤
⎥⎥⎥⎥⎦

Since µ̂1 > 0, x1 is the unique vertex minimizer.

We conclude this section with a remark on the degenerate case. For a
standard-form LP problem, a vertex xk is degenerate if it has more than n − p
zero components. With the notation used in Sec. 11.3.2.1, the matrix B̂ as-
sociated with a degenerate vertex contains less than p columns and hence the
index set IB contains at least one index that corresponds to a zero component
of xk. Consequently, the index set Ik defined by Eq. (11.70) may contain an

Linear Programming Part I: The Simplex Method 363

index corresponding to a zero component of xk. If this happens, then obvi-
ously the step size determined using Eq. (11.71) is αk = 0, which would lead
to xk+1 = xk and from this point on, cycling would occur. In order to prevent
cycling, modifications should be made in Steps 2 and 4 of Algorithm 11.3, for
example, using Bland’s least-index rule.

11.3.3 Tabular form of the simplex method
For LP problems of very small size, the simplex method can be applied in

terms of a tabular form in which the input data such as A, b, and c are used
to form a table which evolves in a more explicit manner as simplex iterations
proceed.

Consider the standard-form LP problem in Eq. (11.1) and assume that at
vertex xk the equality constraints are expressed as

x(B)
k + B−1Nx(N)

k = B−1b (11.72)

From Eq. (11.64), the objective function is given by

cTxk = µT
k xk + λT

k Axk

= OTx(B)
k + µ̂T

k x(N)
k + λT

k b (11.73)

So the important data at the kth iteration can be put together in a tabular form
as shown in Table 11.1 from which we observe the following:

(a) If µ̂k ≥ 0 , xk is a minimizer.
(b) Otherwise, an appropriate rule can be used to choose a negative compo-

nent in µ̂k, say, (µ̂k)l < 0. As can be seen in Eq. (11.69), the column

in B−1N that is right above (µ̂k)l gives −d(B)
k . In the discussion that

follows, this column will be referred to as the pivot column. In addition,
the variable in xT

N that corresponds to (µ̂k)l is the variable chosen as a
basic variable.

(c) Since x(N)
k = 0, Eq. (11.72) implies that x(B)

k = B−1b. Therefore, the

far-right p-dimensional vector gives x(B)
k .

(d) Since x(N)
k = 0, Eq. (11.73) implies that the number in the lower-right

corner of Table 11.1 is equal to −f(xk).

Table 11.1 Simplex method, kth iteration

xT
B xT

N

I B−1N B−1b

OT µ̂T
k −λT

k b

364

Taking the LP problem discussed in Example 11.8 as an example, at x0 the
table assumes the form shown in Table 11.2. Since (µ̂0)2 < 0, x0 is not a min-
imizer. As was shown above, (µ̂0)2 < 0 also suggests that x3 is the variable

in x(N)
0 that will become a basic variable, and the vector above (µ̂0)2,

[
1
2 3

]T
,

is the pivot column −d(B)
0 . It follows from Eqs. (11.70) and (11.71) that only

Table 11.2 Simplex method, Example 11.8

Basic Variables Nonbasic Variables

x2 x5 x1 x3 x4 B−1b −λT
k b

1 0 −1 1
2

− 1
2

1
2

0 1 −5 3 −2 1

0 0 11 − 3
2

9
2

− 9
2

the positive components of the pivot column should be used to compute the ratio
(x(B)

0)i/(−d(B)
0)i where x(B)

0 is the far-right column in the table. The index
that yields the minimum ratio is i∗ = 2. This suggests that the second basic
variable, x5, should be exchanged with x3 to become a nonbasic variable. To
transform x3 into the second basic variable, we use elementary row operations
to transform the pivot column into the i∗th coordinate vector. In the present
case, we add −1/6 times the second row to the first row, and then multiply the
second row by 1/3. The table assumes the form in Table 11.3.

Table 11.3 Simplex method, Example 11.8 continued

Basic Variables Nonbasic Variables

x2 x5 x1 x3 x4 B−1b −λT
k b

1 − 1
6

− 1
6

0 − 1
6

1
3

0 1
3

− 5
3

1 − 2
3

1
3

0 0 11 − 3
2

9
2

− 9
2

Next we interchange the columns associated with variables x3 and x5 to form
the updated basic and nonbasic variables, and then add 3/2 times the second
row to the last row to eliminate the nonzero Lagrange multiplier associated with
variable x3. This leads to the table shown as Table 11.4.

Linear Programming Part I: The Simplex Method 365

Table 11.4 Simplex method, Example 11.8 continued

Basic Variables Nonbasic Variables

x2 x3 x1 x5 x4 B−1b −λT
k b

1 0 − 1
6

− 1
6

− 1
6

1
3

0 1 − 5
3

1
3

− 2
3

1
3

0 0 17
2

1
2

7
2

−4

The Lagrange multipliers µ̂1 in the last row of Table 11.4 are all positive and

hence x1 is the unique minimizer. Vector x1 is specified by x(B)
1 =

[
1
3

1
3

]T
in

the far-right column and x(N)
1 = [0 0 0]T . In conjunction with the composition

of the basic and nonbasic variables, x(B)
1 and x(N)

1 yield

x1 =
[
0 1

3
1
3 0 0

]T

At x1, the lower-right corner of Table 11.4 gives the minimum of the objective
function as f(x1) = 4.

11.3.4 Computational complexity
As in any iterative algorithm, the computational complexity of a simplex

algorithm depends on both the number of iterations it requires to converge and
the amount of computation in each iteration.

11.3.4.1 Computations per iteration

For an LP problem of the type given in Eq. (11.2) with nondegenerate vertices,
the major computational effort in each iteration is to solve two transposed n×n
linear systems, i.e.,

AT
ak

µk = c and Aak
dk = el (11.74)

(see Steps 2 and 3 of Algorithm 11.1). For the degenerate case, matrix Aak

in Eq. (11.74) is replaced by working-set matrix Âak
which has the same size

as Aak
. For the problem in Eq. (11.1), the computational complexity in each

iteration is largely related to solving two transposed p×p linear systems,namely,

BT λk = cB and Bd(B)
k = −aνl

(11.75)

(see Steps 2 and 3 of Algorithm 11.3). Noticing the similarity between the
systems in Eqs. (11.74) and (11.75), we conclude that the computational ef-
ficiency in each iteration depends critically on how efficiently two transposed
linear systems of a given size are solved. A reliable and efficient approach to

366

solve a linear system of equations in which the number of unknowns is equal
to the number of equations (often called a square system) with a nonsingular
asymmetric system matrix such as Aak

in Eq. (11.74) and B in Eq. (11.75) is
to use one of several matrix factorization-based methods. These include the
LU factorization with pivoting and the Householder orthogonalization-based
QR factorization [3][5]. The number of floating-point operations (flops) re-
quired to solve an n-variable square system using the LU factorization and QR
factorization methods are 2n3/3 and 4n3/3, respectively, (see Sec. A.12). It
should be stressed that although the QR factorization requires more flops, it is
comparable with the LU factorization in efficiency when memory traffic and
vectorization overhead are taken into account [5, Chap. 5]. Another desirable
feature of the QR factorization method is the guaranteed numerical stability,
particularly when the system is ill-conditioned.

For the systems in Eqs. (11.74) and (11.75), there are two important features
that can lead to further reduction in the amount of computation. First, each of
the two systems involves a pair of matrices that are the transposes of each other.
So when matrix factorization is performed for the first system, the transposed
version of the factorization can be utilized to solve the second system. Second,
in each iteration, the matrix is obtained from the matrix used in the preceding
iteration through a rank-one modification. Specifically, Step 5 of Algorithms
11.1 updates Aak

by replacing one of its rows with the normal vector of the
constraint that just becomes active, while Step 6 of Algorithm 11.3 updates B
by replacing one of its columns with the column in N that corresponds to the
new basic variable. Let

Aak
=

⎡
⎢⎢⎢⎢⎣

aT
j1

aT
j2
...

aT
jn

⎤
⎥⎥⎥⎥⎦

and assume that aT
i∗ is used to replace aT

jl
in the updating of Aak

to Aak+1
.

Under these circumstances

Aak+1
= Aak

+ ∆a (11.76a)

where ∆a is the rank-one matrix

∆a = ejl
(aT

i∗ − aT
jl
) (11.76b)

with ejl
being the jlth coordinate vector. Similarly, if we denote matrix B in

the kth and (k + 1)th iterations as Bk and Bk+1, respectively, then

Bk+1 = Bk + ∆b (11.77a)

∆b = (b(k+1)
i∗ − b(k)

i∗)eT
i∗ (11.77b)

where b(k+1)
i∗ and b(k)

i∗ are the i∗th columns in Bk+1 and Bk, respectively.
Efficient algorithms for updating the LU and QR factorizations of a matrix with

Linear Programming Part I: The Simplex Method 367

a rank-one modification, which require only O(n2) flops, are available in the
literature. The reader is referred to [3, Chap. 4], [5, Chap. 12], [7, Chap. 3],
and Sec. A.12 for the details.

As a final remark on the matter, LP problems encountered in practice of-
ten involve a large number of parameters and the associated large-size system
matrix Aak

or B is often very sparse.1 Sparse linear systems can be solved
using specially designed algorithms that take full advantage of either particular
patterns of sparsity that the system matrix exhibits or the general sparse nature
of the matrix. Using these algorithms, reduction in the number of flops as well
as the required storage space can be significant. (See Sec. 2.7 of [8] for an
introduction to several useful methods and further references on the subject.)

11.3.4.2 Performance in terms of number of iterations

The number of iterations required for a given LP problem to converge depends
on the data that specify the problem and on the initial point, and is difficult to
predict accurately [3]. As far as the simplex method is concerned, there is a
worse-case analysis on the computational complexity of the method on the one
hand, and observations on the algorithm’s practical performance on the other
hand.

Considering the alternative-form LP problem in Eq. (11.2), in the worst case,
the simplex method entails examining every vertex to find the minimizer. Con-
sequently, the number of iterations would grow exponentially with the problem
size. In 1972, Klee and Minty [9] described the following well-known LP
problem

maximize
n∑

j=1

10n−jxj (11.78a)

subject to: xi + 2
i−1∑
j=1

10i−jxj ≤ 100i−1 for i = 1, 2, . . . , n

(11.78b)

xj ≥ 0 for j = 1, 2, . . . , n (11.78c)

For each n, the LP problem involves 2n inequality constraints. By introducing n
slack variables s1, s2, . . . , sn and adding them to the constraints in Eq. (11.78b)
to convert the constraints into equalities, it was shown that if we start with the
initial point si = 100i−1 and xi = 0 for i = 1, 2, . . . , n, then the simplex
method has to perform 2n − 1 iterations to obtain the solution. However,
the chances of encountering the worst case scenario in a real-life LP problem
are extremely small. In fact, the simplex method is usually very efficient,

1A matrix is said to be sparse if only a relatively small number of its elements are nonzero.

368

and consistently requires a number of iterations that is a small multiple of the
problem dimension [10], typically, 2 or 3 times.

References
1 G. B. Dantzig, “Programming in a linear structure,” Comptroller, USAF, Washington, D.C.,

Feb. 1948.
2 G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton,

NJ, 1963.
3 P. E. Gill, W. Murray, and M. H. Wright, Numerical Linear Algebra and Optimization, vol.

I, Addison-Wesley, Reading, 1991.
4 R. Saigal, LP problem: A Modern Integrated Analysis, Kluwer Academic, Norwell, 1995.
5 G. H. Golub and C. F. Van Loan, Matrix Computation, 2nd ed., The Johns Hopkins University

Press, Baltimore, 1989.
6 R. G. Bland, “New finite pivoting rules for the simplex method,” Math. Operations Research,

vol. 2, pp. 103–108, May 1977.
7 J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization

and Nonlinear Equations, SIAM, Philadelphia, 1996.
8 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C,

2nd ed., Cambridge University Press, Cambridge, UK, 1992.
9 V. Klee and G. Minty, “How good is the simplex method?” in Inequalities, O. Shisha ed.,

pp. 159–175, Academic Press, New York, 1972.
10 M. H. Wright, “Interior methods for constrained optimization,” Acta Numerica, vol. 1,

pp. 341–407, 1992.

Problems
11.1 (a) Develop a MATLAB function to generate the data matrices A, b, and

c for the LP problem formulated in Prob. 10.1. Inputs of the function
should include the order of polynomial A(ω), n, passband edge ωp,
stopband edge ωa, number of grid points in the passband, N , and
number of grid points in the stopband, M .

(b) Applying the MATLAB function obtained in part (a) with n = 30,
ωp = 0.45π, ωa = 0.55π, and M = N = 30, obtain matrices A, b,
and c for Prob. 10.1.

11.2 (a) Develop a MATLAB function that would find a vertex of the feasible
region defined by

Ax ≥ b (P11.1)

The function may look like x=find v(A,b,x0) and should accept a
general pair (A, b) that defines a nonempty feasible region through
(P11.1), and a feasible initial point x0.

(b) Test the MATLAB function obtained by applying it to the LP problem
in Example 11.2 using several different initial points.

(c) Develop a MATLAB function that would find a vertex of the feasible
region defined by Ax = b and x ≥ 0.

Linear Programming Part I: The Simplex Method 369

11.3 (a) Develop a MATLAB function that would implement Algorithm 11.1.
The function may look like x=lp nd1(A,b,c,x0) where x0 is a
feasible initial point.

(b) Apply the MATLAB function obtained to the LP problems in Exam-
ples 11.2 and 11.6.

11.4 (a) Develop a MATLAB function that would implement Algorithm 11.1
without requiring a feasible initial point. The code can be devel-
oped by implementing the technique described in the first part of
Sec. 11.2.3.4 using the code obtained from Prob. 11.3(a).

(b) Apply the MATLAB function obtained to the LP problems in Exam-
ples 11.2 and 11.6.

11.5 In connection with the LP problem in Eq. (11.2), use Farkas’ Lemma (see
Prob. 10.18) to show that if x is a feasible point but not a minimizer, then
at x there always exists a feasible descent direction.

11.6 (a) Using a graphical approach, describe the feasible region R defined by

x1 ≥ 0
x2 ≥ 0

x1 + x2 − 1 ≥ 0
x1 − 2x2 + 4 ≥ 0
x1 − x2 + 1 ≥ 0

−5x1 + 2x2 + 15 ≥ 0
−5x1 + 6x2 + 5 ≥ 0
−x1 − 4x2 + 14 ≥ 0

(b) Identify the degenerate vertices of R.

11.7 (a) By modifying the MATLAB function obtained in Prob. 11.3(a), imple-
ment Algorithm 11.2. The function may look like x=lp d1(A,b,c,
x0) where x0 is a feasible initial point.

(b) Apply the MATLAB function obtained to the LP problem

minimize f(x) = x1

subject to: x ∈ R
where R is the polygon described in Prob. 11.6(a).

11.8 Consider the LP problem

370

minimize f(x) = −2x1 − 3x2 + x3 + 12x4

subject to: 2x1 + 9x2 − x3 − 9x4 ≥ 0
−x1/3 − x2 + x3/3 + 2x4 ≥ 0

xi ≥ 0 for i = 1, 2, 3, 4

(See [3, p. 351].)

(a) Show that this LP problem does not have finite minimizers.
Hint: Any points of the form [r 0 r 0]T with r ≥ 0 are feasible.

(b) Apply Algorithm 11.1 to the LP problem using x0 = 0 as a starting
point, and observe the results.

(c) Apply Algorithm 11.2 to the LP problem using x0 = 0 as a starting
point.

11.9 Applying an appropriate LP algorithm, solve the problem

minimize f(x) = −4x1 − 8x3

subject to: 16x1 − x2 + 5x3 ≤ 1
2x1 + 4x3 ≤ 1
10x1 + x2 ≤ 1

xi ≤ 1 for i = 1, 2, 3

11.10 Applying Algorithm 11.1, solve the LP problem

minimize f(x) = x1 − 4x2

subject to: − x1 + x2 + 2 ≥ 0
−x1 − x2 + 6 ≥ 0

xi ≥ 0 for i = 1, 2

Draw the path of the simplex steps using x0 = [2 0]T as a starting point.

11.11 Applying Algorithm 11.2, solve the LP problem

minimize f(x) = 2x1 − 6x2 − x3

subject to: − 3x1 + x2 − 2x3 + 7 ≥ 0
2x1 − 4x2 + 12 ≥ 0

4x1 − 3x2 − 3x3 + 14 ≥ 0
xi ≥ 0 for i = 1, 2, 3

11.12 Applying Algorithm 11.2, solve the LP problem described in Prob. 10.1
with n = 30, ωp = 0.45π, ωa = 0.55π, and M = N = 30. Note that the

Linear Programming Part I: The Simplex Method 371

matrices A, b, and c of the problem can be generated using the MATLAB
function developed in Prob. 11.1.

11.13 (a) Develop a MATLAB function that would implement Algorithm 11.3.

(b) Apply the MATLAB function obtained in part (a) to the LP problem
in Example 11.8.

11.14 (a) Convert the LP problem in Prob. 11.10 to a standard-form LP problem
by introducing slack variables.

(b) Apply Algorithm 11.3 to the LP problem obtained in part (a) and
compare the results with those obtained in Prob. 11.10.

11.15 (a) Convert the LP problem in Prob. 11.11 to a standard-form LP problem
by introducing slack variables.

(b) Apply Algorithm 11.3 to the LP problem obtained in part (a) and
compare the results with those of Prob. 11.11.

11.16 Applying Algorithm 11.3, solve the LP problem

minimize f(x) = x1 + 1.5x2 + x3 + x4

subject to: x1 + 2x2 + x3 + 2x4 = 3
x1 + x2 + 2x3 + 4x4 = 5

xi ≥ 0 for i = 1, 2, 3, 4

11.17 Applying Algorithm 11.3, solve the LP problem

minimize f(x) = x1 + 0.5x2 + 2x3

subject to: x1 + x2 + 2x3 = 3
2x1 + x2 + 3x3 = 5

xi ≥ 0 for i = 1, 2, 3

11.18 Based on the remarks given at the end of Sec. 11.3.2, develop a step-
by-step description of an algorithm that extends Algorithm 11.3 to the
degenerate case.

11.19 Develop a MATLAB function to implement the algorithm developed in
Prob. 11.18.

11.20 (a) Convert the LP problem in Prob. 11.8 to a standard-form LP problem.
Note that only two slack variables need to be introduced.

(b) Apply Algorithm 11.3 to the problem formulated in part (a) using an
initial point x0 = 0, and observe the results.

(c) Applying the algorithm developed in Prob. 11.18, solve the problem
formulated in part (a) using an initial point x0 = 0.

372

11.21 Consider the nonlinear minimization problem

minimize f(x) = −2x1 − 2.5x2

subject to: 1 − x2
1 − x2

2 ≥ 0
x1 ≥ 0, x2 ≥ 0

(a) Find an approximate solution of this problem by solving the LP prob-
lem with the same linear objective function subject to x ∈ P where
P is a polygon in the first quadrant of the (x1, x2) plane that contains
the feasible region described above.

(b) Improve the approximate solution obtained in part (a) by using a
polygon with an increased number of edges.

Chapter 12

LINEAR PROGRAMMING
PART II: INTERIOR-POINT METHODS

12.1 Introduction
A paper by Karmarkar in 1984 [1] and substantial progress made since that

time have led to the field of modern interior-point methods for linear program-
ming (LP). Unlike the family of simplex methods considered in Chap. 11, which
approach the solution through a sequence of iterates that move from vertex to
vertex along the edges on the boundary of the feasible polyhedron, the iterates
generated by interior-point algorithms approach the solution from the interior
of a polyhedron. Although the claims about the efficiency of the algorithm in
[1] have not been substantiated in general, extensive computational testing has
shown that a number of interior-point algorithms are much more efficient than
simplex methods for large-scale LP problems [2].

In this chapter, we study several representative interior-point methods. Our
focus will be on algorithmic development rather than theoretical analysis of the
methods. Duality is a concept of central importance in modern interior-point
methods. In Sec. 12.2, we discuss several basic concepts of a duality theory
for linear programming. These include primal-dual solutions and central path.
Two important primal interior-point methods, namely, the primal affine-scaling
method and the primal Newton barrier method will be studied in Secs. 12.3
and 12.4, respectively. In Sec. 12.5, we present two primal-dual path-following
methods. One of these methods, namely, Mehrotra’s predictor-corrector algo-
rithm [3], has been the basis of most interior-point software for LP developed
since 1990.

374

12.2 Primal-Dual Solutions and Central Path
12.2.1 Primal-dual solutions

The concept of duality was first introduced in Sec. 10.9 for the general convex
programming problem (10.107) and the main results of the Wolfe dual, namely,
the results of Theorem 10.9 as applied to LP problems were briefly discussed in
Example 10.16. In this section, we present several additional results concerning
duality, which are of importance for the development of modern interior-point
methods.

Consider the standard-form LP problem

minimize f(x) = cTx (12.1a)

subject to: Ax = b (12.1b)

x ≥ 0 (12.1c)

where matrixA ∈ Rp×n is of full row rank as the primal problem (see Sec. 10.9).
By applying Theorem 10.9 to Eq. (12.1), we obtain the dual problem

maximize h(λ) = bT λ (12.2a)

subject to: AT λ + µ = c (12.2b)

µ ≥ 0 (12.2c)

(see Example 10.16).
Two basic questions concerning the LP problems in Eqs. (12.1) and (12.2)

are:

(a) Under what conditions will the solutions of these problems exist?
(b) How are the feasible points and solutions of the primal and dual related?

An LP problem is said to be feasible if its feasible region is not empty. The
problem in Eq. (12.1) is said to be strictly feasible if there exists an x that
satisfies Eq. (12.1b) with x > 0. Likewise, the LP problem in Eq. (12.2) is said
to be strictly feasible if there exist λ and µ that satisfy Eq. (12.2b) with µ > 0.
It is known that x∗ is a minimizer of the problem in Eq. (12.1) if and only if
there exist λ∗ and µ∗ ≥ 0 such that

AT λ∗ + µ∗ = c (12.3a)

Ax∗ = b (12.3b)

x∗
i µ

∗
i = 0 for 1 ≤ i ≤ n (12.3c)

x∗ ≥ 0, µ∗ ≥ 0 (12.3d)

For the primal problem, λ∗ and µ∗ in Eq. (12.3) are the Lagrange multipliers.
It can be readily verified that a set of vectors {λ∗, µ∗} satisfying Eq. (12.3) is a

Linear Programming Part II: Interior-Point Methods 375

maximizer for the dual problem in Eq. (12.2), and x∗ in Eq. (12.3) may be inter-
preted as the Lagrange multipliers for the dual problem. A set {x∗, λ∗, µ∗} sat-
isfying Eq. (12.3) is called a primal-dual solution. It follows that {x∗, λ∗, µ∗}
is a primal-dual solution if and only if x∗ solves the primal and {λ∗, µ∗} solves
the dual [3]. The next two theorems address the existence and boundedness of
primal-dual solutions.

Theorem 12.1 Existence of a primal-dual solution A primal-dual solution
exists if the primal and dual problems are both feasible.

Proof If point x is feasible for the LP problem in Eq. (12.1) and {λ, µ} is
feasible for the LP problem in Eq. (12.2), then set

λTb ≤ λTb + µTx = λTAx + µTx
= (AT λ + µ)Tx = cTx (12.4)

Since f(x) = cTx has a finite lower bound in the feasible region, there exists a
set {x∗, λ∗, µ∗} that satisfies Eq. (12.3). Evidently, this x∗ solves the problem
in Eq. (12.1). From Eq. (12.4), h(λ) has a finite upper bound and {λ∗, µ∗}
solves the problem in Eq. (12.2). Consequently, the set {x∗, λ∗, µ∗} is a
primal-dual solution.

Theorem 12.2 Strict feasibility of primal-dual solutions If the primal and
dual problems are both feasible, then

(a) solutions of the primal problem are bounded if the dual is strictly feasible;
(b) solutions of the dual problem are bounded if the primal is strictly feasible;
(c) primal-dual solutions are bounded if the primal and dual are both strictly

feasible.

Proof The statement in (c) is an immediate consequence of (a) and (b). To
prove (a), we first note that by virtue of Theorem 12.1 a solution of the primal
exists. Below we follow [3] to show the boundedness. Let {λ, µ} be strictly
feasible for the dual, x be feasible for the primal, and x∗ be a solution of the
primal. It follows that

µTx∗ = (c −AT λ)Tx∗

= cTx∗ − λTAx∗ = cTx∗ − λTb
≤ cTx− λTb = µT x

Since x∗ ≥ 0 and µ > 0, we conclude that

µ∗
i x

∗
i ≤ µTx∗ ≤ µTx

376

Hence

x∗
i ≤ 1

µ∗
i

µTx ≤ max
1≤i≤n

(
1
µ∗

i

)
· µTx

and x∗ is bounded.
Part (b) can be proved in a similar manner.

From Eq. (12.3), we observe that

cTx∗ = [(µ∗)T + (λ∗)TA]x∗ = (λ∗)TAx∗ = (λ∗)Tb (12.5)

i.e.,
f(x∗) = h(λ∗)

If we define the duality gap as

δ(x, λ) = cTx − bT λ (12.6)

then Eq. (12.4) and Eq. (12.5) imply that δ(x, λ) is always nonnegative with
δ(x∗, λ∗) = 0. Moreover, for any feasible x and λ, we have

cTx ≥ cTx∗ = bT λ∗ ≥ bT λ

Hence
0 ≤ cTx − cTx∗ ≤ δ(x, λ) (12.7)

Eq. (12.7) indicates that the duality gap can serve as a bound on the closeness
of f(x) to f(x∗) [2].

12.2.2 Central path
Another important concept related to primal-dual solutions is central path.

By virtue of Eq. (12.3), set {x, λ, µ} with x ∈ Rn, λ ∈ Rp, and µ ∈ Rn is a
primal-dual solution if it satisfies the conditions

Ax = b with x ≥ 0 (12.8a)

AT λ + µ = c with µ ≥ 0 (12.8b)

Xµ = 0 (12.8c)

where X = diag{x1, x2, . . . , xn}. The central path for a standard-form LP
problem is defined as a set of vectors {x(τ), λ(τ), µ(τ)} that satisfy the
conditions

Ax = b with x > 0 (12.9a)

AT λ + µ = c with µ > 0 (12.9b)

Xµ = τe (12.9c)

Linear Programming Part II: Interior-Point Methods 377

where τ is a strictly positive scalar parameter, and e = [1 1 · · · 1]T . For each
fixed τ > 0, the vectors in the set {x(τ), λ(τ), µ(τ)} satisfying Eq. (12.9)
can be viewed as sets of points in Rn, Rp, and Rn, respectively, and when
τ varies, the corresponding points form a set of trajectories called the central
path. On comparing Eq. (12.9) with Eq. (12.8), it is obvious that the central path
is closely related to the primal-dual solutions. From Eqs. (12.9a) and (12.9b),
every point on the central path is strictly feasible. Hence the central path lies
in the interior of the feasible regions of the problems in Eqs. (12.1) and (12.2),
and it approaches a primal-dual solution as τ → 0.

A more explicit relation of the central path with the primal-dual solution
can be observed using the duality gap defined in Eq. (12.6). Given τ > 0, let
{x(τ), λ(τ), µ(τ)} be on the central path. From Eq. (12.9), the duality gap
δ[x(τ), λ(τ)] is given by

δ[x(τ), λ(τ)] = cTx(τ) − bT λ(τ)
= [λT (τ)A + µT (τ)]x(τ) − bT λ(τ)
= µT (τ)x(τ) = nτ (12.10)

Hence the duality gap along the central path converges linearly to zero as τ
approaches zero. Consequently, as τ → 0 the objective function of the primal
problem, cTx(τ), and the objective function of the dual problem, bT λ(τ),
approach the same optimal value.

Example 12.1 Sketch the central path of the LP problem

minimize f(x) = −2x1 + x2 − 3x3

subject to: x1 + x2 + x3 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Solution With c = [−2 1 − 3]T , A = [1 1 1], and b = 1, Eq. (12.9) becomes

x1 + x2 + x3 = 1 (12.11a)

λ + µ1 = −2 (12.11b)

λ + µ2 = 1 (12.11c)

λ + µ3 = −3 (12.11d)

x1µ1 = τ (12.11e)

x2µ2 = τ (12.11f)

x3µ3 = τ (12.11g)

where xi > 0 and µi > 0 for i = 1, 2, 3. From Eqs. (12.11b) – (12.11d), we
have

µ1 = −2 − λ (12.12a)

378

µ2 = 1 − λ (12.12b)

µ3 = −3 − λ (12.12c)

Hence µi > 0 for 1 ≤ i ≤ 3 if

λ < −3 (12.13)

If we assume that λ satisfies Eq. (12.13), then Eqs. (12.11e) – (12.11g) and
(12.11a) yield

− 1
2 + λ

+
1

1 − λ
− 1

3 + λ
=

1
τ

i.e.,
1
τ
λ3 +

(
4
τ

+ 3
)

λ2 +
(

1
τ

+ 8
)

λ +
(

1 − 6
τ

)
= 0 (12.14)

The central path can now be constructed by finding a root of Eq. (12.14),
λ̂, that satisfies Eq. (12.13), by computing µi for 1 ≤ i ≤ 3 using Eq. (12.12)
with λ = λ̂, and then evaluating xi for 1 ≤ i ≤ 3 using Eq. (12.11) with
λ = λ̂. Fig. 12.1 shows the x(τ) component of the central path for τ0 = 5
and τf = 10−4. Note that the entire trajectory lies inside the triangle which is
the feasible region of the problem, and approaches vertex [0 0 1]T which is the
unique minimizer of the LP problem.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

x
1

x
2

x
3

Figure 12.1. Trajectory of x(τ) in Example 12.1.

Linear Programming Part II: Interior-Point Methods 379

12.3 Primal Affine-Scaling Method
The primal affine-scaling (PAS) method was proposed in [4][5] as a modi-

fication of Karmarkar’s interior-point algorithm [1] for LP problems. Though
conceptually simple, the method has been found effective, particularly for large-
scale problems.

Consider the standard-form LP problem in Eq. (12.1) and let xk be a strictly
feasible point. The two major steps of the PAS method involve moving xk

along a projected steepest-descent direction and scaling the resulting point to
center it in the feasible region in a transformed space.

For a linear objective function f(x) = cTx, the steepest-descent direction is
−c. At a feasible point xk, moving along −c does not guarantee the feasibility
of the next iterate since Ac is most likely nonzero. The PAS method moves xk

along the direction that is the orthogonal projection of −c onto the null space
of A. This direction dk is given by

dk = −Pc (12.15)

where P is the projection matrix given by

P = I− AT (AAT)−1A (12.16)

It can be readily verified that AP = 0. Hence if the next point is denoted as

xk+1 = xk + αkdk

then xk+1 satisfies Eq. (12.1b), i.e.,

Axk+1 = Axk + αkAdk

= b− αkAPc = b

If matrix A is expressed in terms of its singular-value decomposition (SVD) as

A = U[Σ 0]VT

where U ∈ Rp×p and V ∈ Rn×n are orthogonal and Σ is positive definite and
diagonal, then the projection matrix becomes

P = V

⎡
⎣0 0

0 In−p

⎤
⎦VT

This gives

cTPc =
n∑

j=p+1

[(VTc)j]2 (12.17)

380

which is always nonnegative and strictly positive as long as one of the last n−p
components in VTc is nonzero. It follows that for any αk > 0

f(xk+1) = cTxk+1 = cTxk − αkcTPc
≤ cTxk = f(xk)

and f(xk+1) will be strictly less than f(xk) if at least one of the last n − p
components in VTc is nonzero.

The search direction, dk, determined by using Eqs. (12.15) and (12.16) is
independent of the current point xk and the progress that can be made along
such a constant direction may become insignificant particularly when xk is
close to the boundary of the feasible region. A crucial step in the PAS method
that overcomes this difficulty is to transform the original LP problem at the kth
iteration from that in Eq. (12.1) to an equivalent LP problem in which point
xk is at a more ‘central’ position so as to achieve significant reduction in f(x)
along the projected steepest-descent direction.

For the standard-form LP problem in Eq. (12.1), the nonnegativity bounds
in Eq. (12.1c) suggest that the point e = [1 1 · · · 1]T , which is situated at an
equal distance from each xi axis for 1 ≤ i ≤ n, can be considered as a central
point. The affine scaling transformation defined by

x̄ = X−1x (12.18a)

with
X = diag{(xk)1, (xk)2, . . . , (xk)n} (12.18b)

maps point xk to e, and the equivalent LP problem given by this transformation
is

minimize f̄(x̄) = c̄T x̄ (12.19a)

subject to: Āx̄ = b (12.19b)

x̄ ≥ 0 (12.19c)

where c̄ = Xc and Ā = AX. If the next point is generated along the projected
steepest-descent direction from xk, then

x̄k+1 = x̄k + αkd̄k = e + αkd̄k (12.20)

where

d̄k = −P̄c̄ = −[I− ĀT (ĀĀT)−1Ā]c̄
= −[I− XAT (AX2AT)−1AX]Xc (12.21)

Equation (12.20) can be written in terms of the original variables as

xk+1 = xk + αkdk (12.22a)

with

Linear Programming Part II: Interior-Point Methods 381

dk = Xd̄k = −[X2 − X2AT (AX2AT)−1AX2]c (12.22b)

which is called the primal affine-scaling direction [6]. In order to compare the
two search directions given by Eqs. (12.15) and (12.22b), we write vector dk

in Eq. (12.22b) as

dk = −XP̄Xc (12.23)

with

P̄ = I −XAT (AX2AT)−1AX (12.24)

Note that matrix P in Eq. (12.16) is the projection matrix for A while matrix
P̄ in Eq. (12.24) is the projection matrix for AX, which depends on both A
and the present point xk. Consequently, AXP̄ = 0, which in conjunction
with Eqs. (12.22a) and (12.23) implies that if xk is strictly feasible, then xk+1

satisfies Eq. (12.1b), i.e.,

Axk+1 = Axk + αkAdk = b− αkAXP̄Xc = b

It can also be shown that for any αk > 0 in Eq. (12.22a),

f(xk+1) ≤ f(xk)

(see Prob. 12.2) and if at least one of the last n − p components of VT
k Xc is

nonzero, the above inequality becomes strict. Here matrix Vk is the n × n
orthogonal matrix obtained from the SVD of AX, i.e.,

AX = Uk[Σk 0]VT
k

Having calculated the search direction dk using Eq. (12.22b), the step size
αk in Eq. (12.22a) can be chosen such that xk+1 > 0. In practice, αk is chosen
as [6]

αk = γαmax (12.25a)

where 0 < γ < 1 is a constant, usually close to unity, and

αmax = min
i with (dk)i<0

[
− (xk)i

(dk)i

]
(12.25b)

The PAS algorithm can now be summarized as follows.

382

Algorithm 12.1 Primal affine-scaling algorithm for the standard-
form LP problem
Step 1
Input A, c, and a strictly feasible initial point x0.
Set k = 0 and initialize the tolerance ε.
Evaluate f(xk) = cTxk.
Step 2
Form X at xk and compute dk using Eq. (12.22b).
Step 3
Calculate the step size αk using Eq. (12.25).
Step 4
Set xk+1 = xk + αkdk and evaluate f(xk+1) = cTxk+1.
Step 5
If

|f(xk) − f(xk+1)|
max(1, |f(xk)|)

< ε

output x∗ = xk+1 and stop; otherwise, set k = k + 1 and repeat from
Step 2.

Example 12.2 Solve the standard-form LP problem in Example 11.9 using the
PAS algorithm.

Solution A strictly feasible initial point is x0 = [0.2 0.7 1 1 1]T . With
γ = 0.9999 and ε = 10−4, Algorithm 12.1 converged to the solution

x∗ =

⎡
⎢⎢⎢⎢⎣

0.000008
0.333339
0.333336
0.000000
0.000029

⎤
⎥⎥⎥⎥⎦

after 4 iterations. The sequence of the iterates obtained is given in Table 12.1.

Table 12.1 Sequence of points {xk for k = 0, 1, . . . , 4} in Example 12.2

x0 x1 x2 x3 x4

0.200000 0.099438 0.000010 0.000010 0.000008
0.700000 0.454077 0.383410 0.333357 0.333339
1.000000 0.290822 0.233301 0.333406 0.333336
1.000000 0.000100 0.000100 0.000100 0.000000
1.000000 0.624922 0.300348 0.000030 0.000029

Linear Programming Part II: Interior-Point Methods 383

12.4 Primal Newton Barrier Method
12.4.1 Basic idea

In the primal Newton barrier (PNB) method [2][7], the inequality constraints
in Eq. (12.1c) are incorporated in the objective function by adding a logarithmic
barrier function. The subproblem obtained has the form

minimize fτ (x) = cTx− τ
n∑

i=1

ln xi (12.26a)

subject to: Ax = b (12.26b)

where τ is a strictly positive scalar. The term −τ
∑n

i=1 ln xi in Eq. (12.26a)
is called a ‘barrier’ function for the reason that if we start with an initial x0

which is strictly inside the feasible region, then the term is well defined and acts
like a barrier that prevents any component xi from becoming zero. The scalar
τ is known as the barrier parameter. The effect of the barrier function on the
original LP problem depends largely on the magnitude of τ . If we start with
an interior point, x0, then under certain conditions to be examined below for a
given τ > 0, a unique solution of the subproblem in Eq. (12.26) exists. Thus,
if we solve the subproblem in Eq. (12.26) for a series of values of τ , a series of
solutions are obtained that converge to the solution of the original LP problem as
τ → 0. In effect, the PNB method solves the LP problem through the solution
of a sequence of optimization problems [8] as in the minimax optimization
methods of Chap. 8.

In a typical sequential optimization method, there are three issues that need
to be addressed. These are:

(a) For each fixed τ > 0 does a minimizer of the subproblem in Eq. (12.26)
exist?

(b) If x∗
τ is a minimizer of the problem in Eq. (12.26) and x∗ is a minimizer

of the problem in Eq. (12.1), how close is x∗
τ to x∗ as τ → 0?

(c) For each fixed τ > 0, how do we compute or estimate x∗
τ ?

12.4.2 Minimizers of subproblem
Throughout the rest of the section, we assume that the primal in Eq. (12.1)

and the dual in Eq. (12.2) are both strictly feasible. Let τ > 0 be fixed and x0

be a strictly feasible point for the problem in Eq. (12.1). At x0 the objective
function of Eq. (12.26a), fτ (x0), is well defined. By virtue of Theorem 12.2,
the above assumption implies that solutions of the primal exist and are bounded.
Under these circumstances, it can be shown that for a given ε > 0 the set

S0 = {x : x is strictly feasible for problem (12.1); fτ (x) ≤ fτ (x0) + ε}

384

is compact for all τ > 0 (see Theorem 4 in [2]). This implies that fτ (x) has a
local minimizer x∗

τ at an interior point of S0. We can compute the gradient and
Hessian of fτ (x) as

∇fτ (x) = c − τX−1e (12.27a)

∇2fτ (x) = τX−2 (12.27b)

with X = diag{x1, x2, . . . , xn} and e = [1 1 · · · 1]T . Since fτ (x) is convex,
x∗

τ in S0 is a global minimizer of the problem in Eq. (12.26).

12.4.3 A convergence issue
Let {τk} be a sequence of barrier parameters that are monotonically decreas-

ing to zero and x∗
k be the minimizer of the problem in Eq. (12.26) with τ = τk.

It follows that

cTx∗
k − τk

n∑
i=1

ln(x∗
k)i ≤ cTx∗

k+1 − τk

n∑
i=1

ln(x∗
k+1)i

and

cTx∗
k+1 − τk+1

n∑
i=1

ln(x∗
k+1)i ≤ cTx∗

k − τk+1

n∑
i=1

ln(x∗
k)i

These equations yield (see Prob. 12.11(a))

f(x∗
k+1) = cTx∗

k+1 ≤ cTx∗
k = f(x∗

k) (12.28)

i.e., the objective function of the original LP problem in Eq. (12.1) is a monoton-
ically decreasing function of sequence {x∗

k for k = 0, 1, . . .}. An immediate
consequence of Eq. (12.28) is that all the minimizers, x∗

k, are contained in the
compact set

S = {x : x is feasible for the problem in Eq. (12.1) and f(x) ≤ f(x0)}

Therefore, sequence {x∗
k} contains at least one convergent subsequence, which

for the sake of simplicity, is denoted again as {x∗
k}, namely,

lim
k→∞

x∗
k = x∗ (12.29)

It can be shown that the limit vector x∗ in Eq. (12.29) is a minimizer of the
primal problem in Eq. (12.1) [2][8]. Moreover, the closeness of x∗

k to x∗ can
be related to the magnitude of the barrier parameter τk as follows. Problem
in Eq. (12.1) is said to be nondegenerate if there are exactly p strictly positive
components in x∗ and is said to be degenerate otherwise. In [9] and [10], it
was shown that

||x∗
k − x∗|| = O(τk) if the problem in Eq. (12.1) is nondegenerate

and

Linear Programming Part II: Interior-Point Methods 385

||x∗
k − x∗|| = O(τ1/2

k) if the problem in Eq. (12.1) is degenerate

The sequence of minimizers for the subproblem in Eq. (12.26) can also be
related to the central path of the problems in Eqs. (12.1) and (12.2). To see
this, we write the Karush-Kuhn-Tucker (KKT) condition in Eq. (10.74) for the
subproblem in Eq. (12.26) at x∗

k as

AT λk + τkX−1e = c (12.30)

where X = diag{(x∗
k)1, (x∗

k)2, . . . , (x∗
k)n}. If we let

µk = τkX−1e (12.31)

then with x∗
k being a strictly feasible point, Eqs. (12.30) and (12.31) lead to

Ax∗
k = b with x∗

k > 0 (12.32a)

AT λk + µk = c with µk > 0 (12.32b)

Xµk = τke (12.32c)

On comparing Eq. (12.32) with Eq. (12.9), we conclude that the sequences of
points {x∗

k, λk, µk} are on the central path for the problems in Eqs. (12.1) and
Eq. (12.2). Further, since x∗ is a minimizer of the problem in Eq. (12.1), there
exist λ∗ and µ∗ ≥ 0 such that

Ax∗ = b with x∗ ≥ 0 (12.33a)

AT λ∗ + µ∗ = c with µ∗ ≥ 0 (12.33b)

X∗µ∗ = 0 (12.33c)

where X∗ = diag{(x∗)1, (x∗)2, . . . , (x∗)n}. By virtue of Eq. (12.29) and
τk → 0, Eqs. (12.32c) and (12.33c) imply that µk → µ∗. From Eqs. (12.32b)
and (12.33b), we have

lim
k→∞

AT (λk − λ∗) = 0 (12.34)

Since AT has full column rank, Eq. (12.34) implies that λk → λ∗. Therefore,
by letting k → ∞ in Eq. (12.32), we obtain Eq. (12.33). In other words,
as k → ∞ the sequences of points {x∗

k, λ∗
k, µ∗

k} converge to a primal-dual
solution {x∗, λ∗, µ∗} of the problems in Eqs. (12.1) and (12.2).

12.4.4 Computing a minimizer of the problem in
Eq. (12.26)

For a fixed τ > 0, the PNB method starts with a strictly feasible point x0

and proceeds iteratively to find points xk and

xk+1 = xk + αkdk

386

such that the search direction satisfies the equality

Adk = 0 (12.35)

The constraints in Eq. (12.35) ensure that if xk satisfies Eq. (12.26b), then so
does xk+1, i.e.,

Axk+1 = Axk + αkAdk = b

To find a descent direction, a second-order approximation of the problem in
Eq. (12.26) is employed using the gradient and Hessian of fτ (x) in Eq. (12.27),
namely,

minimize 1
2τdTX−2d + dT (c − τX−1e) (12.36a)

subject to: Ad = 0 (12.36b)

For a strictly feasible xk, X−2 is positive definite. Hence Eq. (12.36) is a
convex programming problem whose solution dk satisfies the KKT conditions

τX−2dk + c − τX−1e = AT λ (12.37a)

Adk = 0 (12.37b)

From Eq. (12.37), we obtain

dk = xk +
1
τ
X2(AT λ − c) (12.38a)

and
AX2AT λ = τAdk + AX2c − τAxk

= A(X2c − τxk) (12.38b)

We see that the search direction dk in the PNB method is determined by using
Eq. (12.38a) with a λ obtained by solving the p×p symmetric positive-definite
system in Eq. (12.38b).

Having determined dk, a line search along dk can be carried out to determine
a scalar αk > 0 such that xk +αdk remains strictly feasible and fτ (xk +αdk)
is minimized with respect to the range 0 ≤ α ≤ ᾱk where ᾱk is the largest
possible scalar for xk + αdk to be strictly feasible. If we let

xk =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ and dk =

⎡
⎢⎢⎢⎣

d1

d2
...

dn

⎤
⎥⎥⎥⎦

the strict feasibility of xk+αdk can be assured, i.e., xi+αdi > 0 for 1 ≤ i ≤ n,
if α < xi/(−di) for all 1 ≤ i ≤ n. Hence point xk + αdk will remain strictly
feasible if α satisfies the condition

α < min
i with di<0

[
xi

(−di)

]

Linear Programming Part II: Interior-Point Methods 387

In practice, the upper bound of α, namely,

ᾱk = 0.99 × min
i with di<0

[
xi

(−di)

]
(12.39)

gives satisfactory results. At xk, the line search for function fτ (xk + αdk) is
carried out on the closed interval [0, ᾱk]. Since

d2fτ (xk + αdk)
dα2

= τ
n∑

i=1

di

(xi + αdi)2
> 0

fτ (xk + αdk) is strictly convex on [0, ᾱk] and has a unique minimum. One of
the search methods discussed in Chapter 4 can be used to find the minimizer,
αk, and the new point is obtained as xk+1 = xk + αkdk.

The PNB algorithm can be summarized as follows.

Algorithm 12.2 Primal Newton barrier algorithm for the standard-
form LP problem
Step 1
Input A, c, and a strictly feasible initial point x0.
Set l = 0, initialize the barrier parameter such that τ0 > 0, and input the
outer-loop tolerance εouter.
Step 2
Set k = 0 and x(l)

0 = xl, and input the inner-loop tolerance εinner.
Step 3.1
Use Eq. (12.38) with τ = τl to calculate d(l)

k at x(l)
k .

Step 3.2
Use Eq. (12.39) to calculate ᾱk where xk = x(l)

k and dk = d(l)
k .

Step 3.3
Use a line search (e.g., a line search based on the golden-section
method) to determine α

(l)
k .

Step 3.4
Set x(l)

k+1 = x(l)
k + α

(l)
k d(l)

k .
Step 3.5
If ||α(l)

k d(l)
k || < εinner, set xl+1 = x(l)

k+1 and go to Step 4; otherwise,
set k = k + 1 and repeat from Step 3.1.

Step 4
If ||xl − xl+1|| < εouter, output x∗ = xl+1, and stop; otherwise, choose
τl+1 < τl, set l = l + 1, and repeat from Step 2.

Example 12.3 Apply the PNB algorithm to the LP problem in Example 12.1.

388

Solution We start with c = [−2 1 −3]T , A = [1 1 1], b = 1, and x0 =[
1
3

1
3

1
3

]T
which is strictly feasible, and employ the golden-section method (see

Sec. 4.4) to perform the line search in Step 3.3. Parameter τi is chosen as
τl+1 = στl with σ = 0.1.

With τ0 = 0.1 and εouter = 10−4, Algorithm 12.2 took six iterations to
converge to the solution

x∗ =

⎡
⎣ 0.000007

0.000001
0.999992

⎤
⎦

The number of flops required was 5.194K. The path of the sequence {xl for
l = 0, 1, . . . , 6} is shown in Fig. 12.2.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

x
1

x
2

x
3

Figure 12.2. Iteration path in Example 12.3

12.5 Primal-Dual Interior-Point Methods
The methods studied in Secs. 12.3 and 12.4 are primal interior-point methods

in which the dual is not explicitly involved. Primal-dual methods, on the other
hand, solve the primal and dual LP problems simultaneously, and have emerged
as the most efficient interior-point methods for LP problems. In this section, we
examine two important primal-dual interior-point methods, namely, a primal-
dual path-following and a nonfeasible-initialization primal-dual path-following
methods.

Linear Programming Part II: Interior-Point Methods 389

12.5.1 Primal-dual path-following method
The path-following method to be discussed here is based on the work reported

in [11]–[13]. Consider the standard-form LP problem in Eq. (12.1) and its dual
in Eq. (12.2) and let wk = {xk, λk, µk} where xk is strictly feasible for
the primal and {λk, µk} is strictly feasible for the dual. We need to find
an increment vector δw = {δx, δλ, δµ} such that the next iterate wk+1 =
{xk+1, λk+1, µk+1} = {xk +δx, λk +δλ, µk +δµ} remains strictly feasible
and approaches the central path defined by Eq. (12.9) with τ = τk+1 > 0. In the
path-following method, a suitable δw is obtained as a first-order approximate
solution of Eq. (12.9). If wk+1 satisfies Eq. (12.9) with τ = τk+1, then

Aδx = 0 (12.40a)

AT δλ + δµ = 0 (12.40b)

∆Xµk + Xδµ + ∆Xδµ = τk+1e − Xµk (12.40c)

where
∆X = diag{(δx)1, (δx)2, . . . , (δx)n} (12.41)

If the only second-order term in Eq. (12.40c), namely, ∆Xδµ is neglected, then
Eq. (12.40) is approximated by the system of linear equations

Aδx = 0 (12.42a)

AT δλ + δµ = 0 (12.42b)

Mδx + Xδµ = τk+1e − Xµk (12.42c)

where term ∆Xµk in Eq. (12.40c) has been replaced by Mδx with

M = diag{(µk)1, (µk)2, . . . , (µk)n} (12.43)

Solving Eq. (12.42) for δw, we obtain

δλ = YAy (12.44a)

δµ = −AT δλ (12.44b)

δx = −y −Dδµ (12.44c)

where
D = M−1X (12.44d)

Y = (ADAT)−1 (12.44e)

and
y = xk − τk+1M−1e (12.44f)

Since xk > 0, µk > 0, and A has full row rank, matrix Y in Eq. (12.44e) is
the inverse of a p × p positive definite matrix, and calculating Y is the major
computation effort in the evaluation of δw using Eq. (12.44).

390

From Eqs. (12.42a) and (12.42b), the new iterate wk+1 satisfies Eqs. (12.9a)
and (12.9b) but not necessarily Eq. (12.9c) because Eq. (12.42c) is merely a lin-
ear approximation of Eq. (12.40c). If we define vector f(wk) = [f1(wk) f2(wk)
· · · fn(wk)]T with

fi(wk) = (µk)i · (xk)i for 1 ≤ i ≤ n

then Eqs. (12.9c) and (12.10) suggest that the L2 norm ||f(wk) − τke|| can be
viewed as a measure of the closeness of wk to the central path. In [13], it was
shown that if an initial point w0 = {x0, λ0, µ0} is chosen such that (a) x0 is
strictly feasible for the primal and {λ0, µ0} is strictly feasible for the dual and
(b)

||f(w0) − τ0e|| ≤ θτ0 (12.45a)

where τ0 = (µT
0 x0)/n and θ satisfies the conditions

0 ≤ θ ≤ 1
2

(12.45b)

θ2 + δ2

2(1 − θ)
≤

(
1 − δ√

n

)
θ (12.45c)

for some δ ∈ (0,
√

n), then the iterate

wk+1 = wk + δw (12.46)

where δw = {δx, δλ, δµ} is given by Eq. (12.44) with

τk+1 =
(

1 − δ√
n

)
τk (12.47)

will remain strictly feasible and satisfy the conditions

||f(wk+1) − τk+1e|| ≤ θτk+1 (12.48)

and
µT

k+1xk+1 = nτk+1 (12.49)

Since 0 < δ/
√

n < 1, it follows from Eq. (12.47) that τk = (1− δ/n)kτ0 → 0
as k → ∞. From Eqs. (12.49) and (12.10), the duality gap tends to zero, i.e.,
δ(xk, λk) → 0, as k → ∞. In other words, wk converges to a primal-dual
solution as k → ∞. The above method can be implemented in terms of the
following algorithm [13].

Linear Programming Part II: Interior-Point Methods 391

Algorithm 12.3 Primal-dual path-following algorithm for the
standard-form LP problem
Step 1
Input A and a strictly feasible w0 = {x0, λ0, µ0} that satisfies
Eq. (12.45). Set k = 0 and initialize the tolerance ε for the duality gap.
Step 2
If µT

k xk ≤ ε, output solution w∗ = wk and stop; otherwise, continue
with Step 3.
Step 3
Set τk+1 using Eq. (12.47) and compute δw = {δx, δλ, δµ} using
Eq. (12.44).
Step 4
Set wk+1 using Eq. (12.46). Set k = k + 1 and repeat from Step 2.

A couple of remarks concerning Step 1 of the algorithm are in order. First,
values of θ and δ that satisfy Eqs. (12.45b) and (12.45c) exist. For example,
it can be readily verified that θ = 0.4 and δ = 0.4 meet Eqs. (12.45b) and
(12.45c) for any n ≥ 2. Second, in order to find an initial w0 that satisfies
Eq. (12.45a), we can introduce an augmented pair of primal-dual LP problems
such that (a) a strictly feasible initial point can be easily identified for the
augmented problem and (b) a solution of the augmented problem will yield a
solution of the original problem [13]. A more general remedy for dealing with
this initialization problem is to develop a ‘nonfeasible-initialization algorithm’
so that a point w0 that satisfies x0 > 0 and µ0 > 0 but not necessarily Eq. (12.9)
can be used as the initial point. Such a primal-dual path-following algorithm
will be studied in Sec. 12.5.2.

It is important to stress that even for problems of moderate size, the choice
δ = 0.4 yields a factor (1 − δ/

√
n) which is close to unity and, therefore,

parameter τk+1 determined using Eq. (12.47) converges to zero slowly and a
large number of iterations are required to reach a primal-dual solution. In the
literature, interior-point algorithms of this type are referred to as short-step
path-following algorithms [3]. In practice, Algorithm 12.3 is modified to allow
larger changes in parameter τ so as to accelerate the convergence [6][14]. It
was proposed in [14] that τk+1 be chosen as

τk+1 =
µT

k xk

n + ρ
(12.50)

with ρ >
√

n. In order to assume the strict feasibility of the next iterate, the
modified path-following algorithm assigns

wk+1 = wk + αkδw (12.51)

392

where δw = {δx, δλ, δµ} is calculated using Eq. (12.44), and

αk = (1 − 10−6)αmax (12.52a)

with αmax being determined as

αmax = min(αp, αd) (12.52b)

where

αp = min
i with (δx)i<0

[
−(xk)i

(δx)i

]
(12.52c)

αd = min
i with (δµ)i<0

[
−(µk)i

(δµ)i

]
(12.52d)

The modified algorithm assumes the following form.

Algorithm 12.4 Modified version of Algorithm 12.3
Step 1
Input A and a strictly feasible w0 = {x0, λ0, µ0}.
Set k = 0 and ρ >

√
n, and initialize the tolerance ε for the duality gap.

Step 2
If µT

k xk ≤ ε, output solution w∗ = wk and stop; otherwise, continue
with Step 3.
Step 3
Set τk+1 using Eq. (12.50) and compute δw = {δx, δλ, δµ} using
Eq. (12.44).
Step 4
Compute step size αk using Eq. (12.52) and set wk+1 using Eq. (12.51).
Set k = k + 1 and repeat from Step 2.

Example 12.4 Apply Algorithm 12.4 to the LP problems in

(a) Example 12.3
(b) Example 12.2

Solution (a) In order to apply the algorithm to the LP problem in Example 12.3,
we have used the method described in Example 12.1 to find an initial w0 on the
central path with τ0 = 5. The vector w0 obtained is {x0, λ0, µ0} with

x0 =

⎡
⎣ 0.344506

0.285494
0.370000

⎤
⎦ , λ0 = −16.513519, µ0 =

⎡
⎣ 14.513519

17.513519
13.513519

⎤
⎦

Linear Programming Part II: Interior-Point Methods 393

With ρ = 7
√

n and ε = 10−6, Algorithm 12.4 converges after eight iterations
to the solution

x∗ =

⎡
⎣ 0.000000

0.000000
1.000000

⎤
⎦

The number of flops required was 858.
(b) In order to apply the algorithm to the LP problem in Example 12.2,

we have to find a strictly feasible initial point w0 first. By using the method
described in Sec. 10.4.1, a vector x that satisfies Eq. (12.9a) can be obtained as

x = Vrφ + A+b

where Vr is composed of the last n− p columns of matrix V from the SVD of
matrix A and φ ∈ R(n−p)×1 is a free parameter vector. From Eq. (10.27), we
have

x =

⎡
⎢⎢⎢⎢⎣

0.5980 0.0000 0.0000
0.0608 0.1366 0.1794
0.6385 0.5504 −0.2302

−0.4358 0.8236 0.1285
0.2027 −0.0039 0.9478

⎤
⎥⎥⎥⎥⎦
⎡
⎣φ1

φ2

φ3

⎤
⎦ +

⎡
⎢⎢⎢⎢⎣
−0.1394

0.2909
0.0545

−0.0848
−0.0303

⎤
⎥⎥⎥⎥⎦ (12.53)

The requirement x1 > 0 is met if

φ1 > 0.2331 (12.54a)

If we assume that φ2 = φ3 > 0, then x2 > 0 and x3 > 0. To satisfy the
inequalities x4 > 0 and x5 > 0, we require

−0.4358φ1 + 0.9572φ2 > 0.0848 (12.54b)

and
0.2027φ1 + 0.9439φ2 > 0.0303 (12.54c)

Obviously, φ1 = 0.5 and φ2 = 0.5 satisfy Eq. (12.54) and lead to a strictly
feasible initial point

x0 =

⎡
⎢⎢⎢⎢⎣

0.1596
0.4793
0.5339
0.1733
0.5430

⎤
⎥⎥⎥⎥⎦

Next we can write Eq. (12.9b) as

µ = c − AT λ =

⎡
⎢⎢⎢⎢⎣

2 + 2λ1 − λ2

9 − 2λ1 − 4λ2

3 − λ1 + λ2

λ1

λ2

⎤
⎥⎥⎥⎥⎦

394

from which it is easy to verify that λ0 = [1 1]T leads to µ0 = [3 3 3 1 1]T > 0
and {λ0, µ0} satisfies Eq. (12.9b).

The application of Algorithm 12.4 using the above w0, ρ = 12
√

n, and
ε = 10−5 led to the solution

x∗ =

⎡
⎢⎢⎢⎢⎣

0.000000
0.333333
0.333333
0.000000
0.000000

⎤
⎥⎥⎥⎥⎦

in seven iterations. The number of flops required was 2.48K.

12.5.2 A nonfeasible-initialization primal-dual
path-following method

Both Algorithms 12.3 and 12.4 require an initial w0 = {x0, λ0, µ0}with x0

being strictly feasible for the primal and {λ0, µ0} being strictly feasible for the
dual. As can be observed from Example 12.4, finding such an initial point is not
straightforward, even for problems of small size, and it would certainly be highly
desirable to start with an initial point w0 that is not necessarily feasible. In the
literature, interior-point algorithms that accept nonfeasible initial points are
often referred to as nonfeasible-initialization or nonfeasible-start algorithms.
As described in [6], if wk is nonfeasible in the sense that it does not satisfy
Eqs. (12.1b) and (12.2b), then a reasonable way to generate the next point is to
find a set of vector increments δw = {δx, δλ, δµ} such that wk + δw satisfies
Eqs. (12.1b) and (12.2b). Based on this approach, the basic idea presented in
Sec. 12.5.1 can be used to construct a nonfeasible-initialization primal-dual
path-following algorithm [15].

Let wk = {xk, λk, µk} be such that only the conditions xk > 0 and
µk > 0 are assumed. We need to obtain the next iterate

wk+1 = wk + αkδw

such that xk+1 > 0 and µk+1 > 0, and that δw = {δx, δλ, δµ} satisfies the
conditions

A(xk + δx) = b (12.55a)

AT (λk + δλ) + (µk + δµ) = c (12.55b)

Mδx + Xδµ = τk+1e − Xµk (12.55c)

Note that Eq. (12.55c) is the same as Eq. (12.42c) which is a linear approxima-
tion of Eq. (12.40c) but Eqs. (12.55a) and (12.55b) differ from Eqs. (12.42a)
and (12.42b) since in the present case the feasibility of wk is not assumed. At

Linear Programming Part II: Interior-Point Methods 395

the kth iteration, wk is known; hence Eq. (12.55) is a system of linear equations
for {δx, δλ, δµ}, which can be written as

Aδx = rp (12.56a)

AT δλ + δµ = rd (12.56b)

Mδx + Xδµ = τk+1e − Xµk (12.56c)

where rp = b−Axk and rd = c−AT λk −µk are the residuals for the primal
and dual constraints, respectively. Solving Eq. (12.56) for δw, we obtain

δλ = Y(Ay + ADrd + rp) (12.57a)

δµ = −AT δλ + rd (12.57b)

δx = −y − Dδµ (12.57c)

where D, Y, and y are defined by Eqs. (12.44d) – (12.44f), respectively. It
should be stressed that if the new iterate wk+1 is set as in Eq. (12.51) with αk

determined using Eq. (12.52), then xk+1 and µk+1 remain strictly positive but
wk+1 is not necessarily strictly feasible unless αk happens to be unity. As the
iterations proceed, the new iterates generated get closer and closer to the central
path and approach to a primal-dual solution. The nonfeasible-initialization
interior-point algorithm is summarized as follows.

Algorithm 12.5 Nonfeasible-initialization primal-dual path-fol-
lowing algorithm for the standard-form LP problem
Step 1
Input A, b, c, and w0 = {x0, λ0, µ0} with x0 > 0 and µ0 > 0.
Set k = 0 and ρ >

√
n, and initialize the tolerance ε for the duality gap.

Step 2
If µT

k xk ≤ ε, output solution w∗ = wk and stop; otherwise, continue
with Step 3.
Step 3
Set τk+1 using Eq. (12.50) and compute δw = (δx, δλ, δµ) using
Eq. (12.57).
Step 4
Compute step size αk using Eq. (12.52) and set wk+1 using Eq. (12.51).
Set k = k + 1 and repeat from Step 2.

Example 12.5 Apply Algorithm 12.5 to the LP problems in

(a) Example 12.3
(b) Example 12.2

with nonfeasible initial points.

396

Solution (a) In order to apply the algorithm to the LP problem in Example 12.3,
we can use w0 = {x0, λ0, µ0} with

x0 =

⎡
⎣ 0.4

0.3
0.4

⎤
⎦ , λ0 = 0.5, and µ0 =

⎡
⎣ 1.0

0.5
1.0

⎤
⎦

So x0 > 0 and µ0 > 0 but w0 is not feasible. With ε = 10−6 and ρ = 7
√

n,
Algorithm 12.5 took eight iterations to converge to the solution

x∗ =

⎡
⎣ 0.000000

0.000000
1.000000

⎤
⎦

The number of flops required was 1.21K. Fig. 12.3 shows point x0 and the first
three iterates, i.e., xk for k = 0, 1, 2, 3, as compared to the central path which
is shown as a dotted curve.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

x
1

x
2

x
3

x0

Figure 12.3. Iteration path in Example 12.5(a) as compared to the central path.

(b) For the LP problem in Example 12.2, we can use w0 = {x0, λ0, µ0}
with

x0 =

⎡
⎢⎢⎢⎢⎣

1.0
0.1
0.1
2.0
5.0

⎤
⎥⎥⎥⎥⎦ , λ0 =

[−1
1

]
, and µ0 =

⎡
⎢⎢⎢⎢⎣

1.0
0.1
0.2
1.0

10.0

⎤
⎥⎥⎥⎥⎦

Linear Programming Part II: Interior-Point Methods 397

With ε = 10−8 and ρ = 12
√

n, the algorithm took 13 iterations to converge
to the solution

x∗ =

⎡
⎢⎢⎢⎢⎣

0.000000
0.333333
0.333333
0.000000
0.000000

⎤
⎥⎥⎥⎥⎦

The number of flops required was 6.96K.

12.5.3 Predictor-corrector method
The predictor-corrector method (PCM) proposed by Mehrotra [16] can be

viewed as an important improved primal-dual path-following algorithm relative
to the algorithms studied in Secs. 12.5.1 and 12.5.2. As a matter of fact, most
interior-point software available since 1990 is based on Mehrotra’s PCM algo-
rithm [3]. Briefly speaking, improvement is achieved by including the effect of
the second-order term ∆Xδµ in Eq. (12.40c) using a prediction-correction strat-
egy rather than simply neglecting it. In addition, in this method the parameter
τ in Eq. (12.9c) is assigned a value according to the relation

τ = στ̂

where τ̂ = (µTx)/n and 0 < σ < 1. The scalar σ, which is referred to
as centering parameter, is determined adaptively in each iteration based on
whether good progress has been made in the prediction phase.

At the kth iteration, there are three steps in the PCM algorithm that produce
the next iterate wk+1 = {xk+1, λk+1, µk+1} with xk+1 > 0 and µk+1 > 0
as described below (see Chap. 10 in [3]).

1. Generate an affine-scaling ‘predictor’ direction δaff
w using a linear ap-

proximation of the KKT conditions in Eq. (12.8).
Let wk = {xk, λk, µk} with xk > 0 and µk > 0, and consider an
increment δaff

w = {δaff
x , δaff

λ , δaff
µ } such that wk + δaff

w linearly approxi-

mates the KKT conditions in Eq. (12.8). Under these circumstances, δaff
w

satisfies the equations

Aδaff
x = rp (12.58a)

AT δaff
λ + δaff

µ = rd (12.58b)

Mδaff
x + Xδaff

µ = −XMe (12.58c)

where

rp = b −Axk (12.58d)

rd = c − AT λk − µk (12.58e)

398

Solving Eq. (12.58) for δaff
w , we obtain

δaff
λ = Y(b + ADrd) (12.59a)

δaff
µ = rd − AT δaff

λ (12.59b)

δaff
x = −xk − Dδaff

µ (12.59c)

where

D = M−1X (12.59d)

Y = (ADAT)−1 (12.59e)

Along the directions δaff
x and δaff

µ , two scalars αaff
p and αaff

d are determined
as

αaff
p = max

0≤α≤1, xk+αδaff
x ≥0

(α) (12.60a)

and
αaff

d = max
0≤α≤1, µk+αδaff

µ ≥0

(α) (12.60b)

A hypothetical value of τk+1, denoted as τaff , is then determined as

τaff =
1
n

[(µk + αaff
d δaff

µ)T (xk + αaff
p δaff

x)] (12.61)

2. Determine the centering parameter σk.
A heuristic choice of σk, namely,

σk =
(

τaff

τ̂k

)3

(12.62)

with

τ̂k =
1
n

(µT
k xk) (12.63)

was suggested in [16] and was found effective in extensive computational
testing. Intuitively, if τaff � τ̂k, then the predictor direction δaff

w given
by Eq. (12.59) is good and we should use a small centering parameter σk

to substantially reduce the magnitude of parameter τk+1 = σkτ̂k. If τaff

is close to τ̂k, then we should choose σk close to unity so as to move the
next iterate wk+1 closer to the central path.

3. Generate a ‘corrector’ direction to compensate for the nonlinearity in the
affine-scaling direction.
The corrector directionδc

w = {δc
x, δc

λ, δc
µ} is determined using Eq. (12.40)

with the term Xµk in Eq. (12.40c) neglected and the second-order term
∆Xδµ in Eq. (12.40c) replaced by∆Xaffδaff

µ where∆Xaff = diag{(δaff
x)1,

Linear Programming Part II: Interior-Point Methods 399

(δaff
x)2, . . ., (δaff

x)n}. The reason that term Xµk is neglected is because it
has been included in Eq. (12.58c) whereXMe = Xµk. In the primal-dual
path-following algorithms studied in Secs. 12.5.1 and 12.5.2, the second-
order term ∆Xδµ was dropped to obtain the linear systems in Eqs. (12.42)
and (12.56). The PCM method approximates this second-order term with
the increment vectors δx and δµ obtained from the predictor direction.
Having made the above modifications, the equations to be used to com-
pute δc

w become

Aδc
x = 0 (12.64a)

AT δc
λ + δc

µ = 0 (12.64b)

Mδc
x + Xδc

µ = τk+1e − ∆Xaffδaff
µ (12.64c)

where
τk+1 = σkτ̂k (12.64d)

with σk and τ̂k given by Eqs. (12.62) and (12.63), respectively. Solving
Eq. (12.64) for δc

w, we obtain

δc
λ = YAy (12.65a)

δc
µ = −AT δc

λ (12.65b)

δc
x = −y − Dδc

µ (12.65c)

where D and Y are given by Eqs. (12.59d) and (12.59e), respectively, and

y = M−1(∆Xaffδaff
µ − τk+1e) (12.65d)

The predictor and corrector directions are now combined to obtain the
search direction {δx, δλ, δµ} where

δx = δaff
x + δc

x (12.66a)

δλ = δaff
λ + δc

λ (12.66b)

δµ = δaff
µ + δc

µ (12.66c)

and the new iterate is given by

wk+1 = wk + {αk,pδx, αk,dδλ, αk,dδµ} (12.67)

where the step sizes for δx and (δλ, δµ) are determined separately as

αk,p = min(0.99 α(p)
max, 1) (12.68a)

α(p)
max = max

α≥0, xk+αδx≥0
(α) (12.68b)

αk,d = min(0.99 α(d)
max, 1) (12.68c)

α(d)
max = max

α≥0, µk+αδµ≥0
(α) (12.68d)

400

A note on the computational complexity of the method is in order. From
Eq. (12.66), we see that the search direction is obtained by computing δaff

w

and δc
w; hence the two linear systems in Eqs. (12.58) and (12.64) have to

be solved. However, the system matrices for Eqs. (12.58) and (12.64) are
identical and, consequently, the computational effort required by the PCM
algorithm is increased only slightly relative to that required by the primal-dual
path-following algorithms discussed in the preceding sections. This can also be
observed from the fact that matrices Y and D used to solve Eq. (12.58) can also
be used to solve Eq. (12.64). A step-by-step summary of the PCM algorithm
is given below.

Algorithm 12.6 Mehrotra’s predictor-corrector algorithm for the
standard-form LP problem
Step 1
Input A, b, c, and w0 = {x0, λ0, µ0} with x0 > 0 and µ0 > 0.
Set k = 0 and τ̂0 = (µT

0 x0)/n, and initialize the tolerance ε for the
duality gap.
Step 2
If µT

k xk ≤ ε, output solution w∗ = wk and stop; otherwise, go to Step
3.
Step 3
Compute predictor direction {δaff

x , δaff
λ , δaff

µ } using Eq. (12.59).
Step 4
Compute τaff using Eqs. (12.60) and (12.61) and determine τk+1 as

τk+1 = σkτ̂k

where σk and τ̂k are evaluated using Eqs. (12.62) and (12.63).
Step 5
Compute corrector direction {δc

x, δc
λ, δc

µ} using Eq. (12.65).
Step 6
Obtain search direction {δx, δλ, δµ} using Eq. (12.66) and evaluate
step sizes αk,p and αk,d using Eq. (12.68).
Step 7
Set wk+1 using Eq. (12.67).
Set k = k + 1 and repeat from Step 2.

Example 12.6 Apply Algorithm 12.6 to the LP problems in

(a) Example 12.3
(b) Example 12.2

with nonfeasible initial points.

Linear Programming Part II: Interior-Point Methods 401

Solution
(a) We can use the same w0 and ε as in Example 12.5(a) to start Algorithm

12.6. It took six iterations for the algorithm to converge to the solution

x∗ =

⎡
⎣ 0.000000

0.000000
1.000000

⎤
⎦

The number of flops required was 1.268K, which entails a slight increase
as compared to that in Example 12.5(a) but the solution x∗ is more
accurate. Fig. 12.4 shows point x0 and the first three iterates, i.e., xk for
k = 0, 1, 2, 3 as compared to the central path which is plotted as the
dotted curve.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

x
1

x
2

x
3

x0

Figure 12.4. Iteration path in Example 12.6(a) as compared to the central path.

(b) The same w0 and ε as in Example 12.5(b) were used here. The algorithm
took 11 iterations to converge to the solution

x∗ =

⎡
⎢⎢⎢⎢⎣

0.000000
0.333333
0.333333
0.000000
0.000000

⎤
⎥⎥⎥⎥⎦

The number of flops required was 7.564K. This is slightly larger than
the number of flops in Example 12.5(b) but some improvement in the
accuracy of the solution has been achieved.

402

References
1 N. K. Karmarkar, “A new polynomial time algorithm for linear programming,” Combina-

torica, vol. 4, pp. 373–395, 1984.
2 M. H. Wright, “Interior methods for constrained optimization,” Acta Numerica, pp. 341–407,

Cambridge Univ. Press, Cambridge, UK, 1992.
3 S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997.
4 E. R. Barnes, “A variation on Karmarkar’s algorithm for solving linear programming prob-

lems,” Math. Programming, vol. 36, pp. 174–182, 1986.
5 R. J. Vanderbei, M. S. Meketon, and B. A. Freedman, “A modification of Karmarkar’s linear

programming algorithm,” Algorithmica, vol. 1, pp. 395–407, 1986.
6 S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw-Hill, New York,

1996.
7 P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright, “On projected New-

ton barrier methods for linear programming and an equivalence to Karmarkar’s projective
method,” Math. Programming, vol. 36, pp. 183–209, 1986.

8 A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, Wiley, New York, 1968 (Republished by SIAM, 1990).

9 K. Jittorntrum, Sequential Algorithms in Nonlinear Programming, Ph.D. thesis, Australian
National University, 1978.

10 K. Jittorntrum and M. R. Osborne, “Trajectory analysis and extrapolation in barrier function
methods,” J. Australian Math. Soc., Series B, vol. 20, pp. 352–369, 1978.

11 M. Kojima, S. Mizuno, and A. Yoshise, “A primal-dual interior point algorithm for linear pro-
gramming,” Progress in Mathematical Programming: Interior Point and Related Methods,
N. Megiddo ed., pp. 29–47, Springer Verlag, New York, 1989.

12 N. Megiddo, “Pathways to the optimal set in linear programming,” Progress in Mathematical
Programming: Interior Point and Related Methods, N. Megiddo ed., pp. 131–158, Springer
Verlag, New York, 1989.

13 R. D. C. Monteiro and I. Adler, “Interior path following primal-dual algorithms, Part I:
Linear programming,” Math. Programming, vol. 44, pp. 27–41, 1989.

14 Y. Ye, Interior-Point Algorithm: Theory and Analysis, Wiley, New York, 1997.
15 I. J. Lustig, R. E. Marsten, and D. F. Shanno, “Computational experience with a primal-

dual interior point method for linear programming,” Linear Algebra and Its Applications,
vol. 152, pp. 191–222, 1991.

16 S. Mehrotra, “On the implementation of a primal-dual interior point method,” SIAM J. Op-
timization, vol. 2, pp. 575–601, 1992.

Problems
12.1 This problem concerns the central path of the LP problem described in

Example 12.1.

(a) For a sample number of values τ ranging from 500 to 10−3, use
MATLAB command roots to evaluate the roots λ of Eq. (12.14)
with λ < −3.

(b) Generate a trajectory (x1, x2, x3) similar to that in Fig. 12.1.

(c) Change the range of τ from [10−3, 500] to [10−2, 200] and then to
[2.5 × 10−2, 20] and observe the trajectories (x1, x2, x3) obtained.

Linear Programming Part II: Interior-Point Methods 403

12.2 Consider the LP problem Eq. (12.1) and let xk+1 be determined using
Eq. (12.22). Show that if αk > 0, then f(xk+1) ≤ f(xk) and this
inequality holds strictly if at least one of the last n − p components of
VT

k Xc is nonzero, where Vk is the n × n orthogonal matrix obtained
from the SVD of AX : AX = Uk[Σk 0]VT

k .

12.3 (a) Apply the PAS algorithm to solve the LP problem in Prob. 11.16.
Compare the results with those obtained in Prob. 11.16.

(b) Apply the PAS algorithm to solve the LP problem in Prob. 11.17.
Compare the results with those obtained in Prob. 11.17.

12.4 (a) Derive the KKT conditions for the minimizer of the problem in
Eq. (12.26).

(b) Relate the KKT conditions obtained in part (a) to the central path of
the original LP problem in Eq. (12.9).

12.5 (a) Apply the PNB algorithm to solve the LP problem in Prob. 11.16.
Compare the results with those obtained in Prob. 12.3(a).

(b) Apply the PNB algorithm to solve the LP problem in Prob. 11.17.
Compare the results with those obtained in Prob. 12.3(b).

12.6 Develop a PNB algorithm that is directly applicable to the LP problem in
Eq. (11.2).
Hint: Denote A and b in Eq. (11.2b) as

A =

⎡
⎢⎢⎢⎣

aT
1

aT
2
...

aT
p

⎤
⎥⎥⎥⎦ and b =

⎡
⎢⎢⎢⎣

b1

b2
...
bp

⎤
⎥⎥⎥⎦

and consider the logarithmic barrier function

fτ (x) = cTx − τ
p∑

i=1

ln(aT
i x − bi)

where τ > 0 is a barrier parameter.

12.7 Using the initial point [x1 x2 x3 s1 s2 s3] = [0.5 1 10 0.5 98 9870]T ,
solve the LP problem

minimize 100x1 + 10x2 + x3

subject to: s1 + x1 = 1
s2 + 2x1 + x2 = 100
s3 + 200x1 + 20x2 + x3 = 10000
xi ≥ 0, si ≥ 0 for i = 1, 2, 3

404

by using

(a) the PAS algorithm.

(b) the PNB algorithm.

12.8 The primal Newton barrier method discussed in Sec. 12.4 is related to the
primal LP problem in Eq. (12.1). It is possible to develop a dual Newton
barrier (DNB) method in terms of the following steps:

(a) Define a dual subproblem similar to that in Eq. (12.26) for the LP
problem in Eq. (12.2).

(b) Derive the first-order optimality conditions for the subproblem ob-
tained in part (a).

(c) Show that the points satisfying these first-order conditions are on the
primal-dual central path.

(d) Develop a DNB algorithm for solving the dual problem in Eq. (12.2).

12.9 Consider the standard-form LP problem in Eq. (12.1). A strictly feasible
point x∗ > 0 is said to be the analytic center of the feasible region if x∗
is the farthest away from all the boundaries of the feasible region in the
sense that x∗ solves the problem

minimize −
n∑

i=1

lnxi (P12.1a)

subject to: Ax = b (P12.1b)

(a) Derive the KKT conditions for the minimizer of the problem in
Eq. (P12.1).

(b) Are the KKT conditions necessary and sufficient conditions?

(c) Use the KKT conditions obtained to find the analytic center for the
LP problem in Example 12.1.

12.10 Generalize the concept of analytic center discussed in Prob. 12.9 to the
feasible region given by Ax ≥ b, where A ∈ Rp×n with p > n, and
rank(A) = n.

12.11 (a) Prove the inequality in Eq. (12.28).

(b) Drive the formulas in Eqs. (12.38a) and (12.38b).

12.12 Develop a primal path-following interior-point algorithm for the primal
LP problem in Eq. (12.1) in several steps as described below.

(a) Formulate a subproblem by adding a logarithmic barrier function to
the objective function, i.e.,

Linear Programming Part II: Interior-Point Methods 405

minimize fτ (x) = cTx− τ
n∑

i=1

lnxi

subject to: Ax = b

where τ > 0 is a barrier parameter.

(b) Show that the KKT conditions for the minimizer of the above sub-
problem can be expressed as

Ax = b
c − AT λ − τX−1e = 0

where X = diag(x) and e = [1 1 · · · 1]T .

(c) At the kth iteration, let xk+1 = xk + d such that xk+1 would better
approximate the above KKT conditions. Show that up to first-order
approximation, we would require that d satisfy the equations

Ad = 0 (P12.2a)

τX−2d + c − τX−1e − AT λk = 0 (P12.2b)

where X = diag{xk}.

(d) Show that the search direction d in Eq. (P12.2) can be obtained as

d = xk − 1
τ
X2µk (P12.3a)

where
µk = c − AT λk (P12.3b)

λk = (AX2AT)−1AX2(c − τX−1e) (P12.3c)

(e) Based on the results obtained in parts (a)-(d), describe a primal path-
following interior-point algorithm.

12.13 (a) Apply the algorithm developed in Prob. 12.12 to the LP problem in
Prob. 11.16.

(b) Compare the results obtained in part (a) with those of Prob. 12.3(a)
and Prob. 12.5(a).

12.14 (a) Apply the algorithm developed in Prob. 12.12 to the LP problem in
Prob. 11.17.

(b) Compare the results obtained in part (a) with those of Prob. 12.3(b)
and Prob. 12.5(b).

12.15 Show that the search direction determined by Eq. (P12.3) can be expressed
as

d = −1
τ
XP̄xc + XP̄e (P12.4)

406

where P̄ = I−XAT (AX2AT)−1AX is the projection matrix given by
Eq. (12.24).

12.16 In the literature, the two terms on the right-hand side of Eq. (P12.4) are
called the primal affine-scaling direction and centering direction, respec-
tively. Justify the use of this terminology.
Hint: Use the results of Sec. 12.3 and Prob. 12.9.

12.17 (a) Derive the formulas in Eq. (12.44) using Eq. (12.42).

(b) Derive the formulas in Eq. (12.57) using Eq. (12.56).

12.18 (a) Apply Algorithm 12.4 to the LP problem in Prob. 11.16. Compare the
results obtained with those of Probs. 12.3(a), 12.5(a) and 12.13(a).

(b) Apply Algorithm 12.4 to the LP problem 11.17. Compare the results
obtained with those of Probs. 12.3(b), 12.5(b), and 12.14(a).

12.19 (a) Apply Algorithm 12.5 to the LP problem in Prob. 11.16 with a nonfea-
sible initial point {x0, λ0, µ0} with x0 > 0 and µ0 > 0. Compare
the results obtained with those of Prob. 12.18(a).

(b) Apply Algorithm 12.5 to the LP problem in Prob. 11.17 with a nonfea-
sible initial point {x0, λ0, µ0} with x0 > 0 and µ0 > 0. Compare
the results obtained with those of Prob. 12.18(b).

12.20 (a) Derive the formulas in Eq. (12.59) using Eq. (12.58).

(b) Derive the formulas in Eq. (12.65) using Eq. (12.64).

12.21 (a) Apply Algorithm 12.6 to the LP problem in Prob. 11.16 with the same
nonfeasible initial point used in Prob. 12.19(a). Compare the results
obtained with those of Prob. 12.19(a).

(b) Apply Algorithm 12.6 to the LP problem in Prob. 11.17 with the same
nonfeasible initial point used in Prob. 12.19(b). Compare the results
obtained with those of Prob. 12.19(b).

12.22 Consider the nonstandard-form LP problem

minimize cTx

subject to: Ax ≥ b

where c ∈ Rn×1, A ∈ Rp×n, and b ∈ Rp×1 with p > n. Show that its
solution x∗ can be obtained by solving the standard-form LP problem

minimize −bT x

subject to: ATx = c
x ≥ 0

using a primal-dual algorithm and then taking the optimal Lagrange mul-
tiplier vector λ∗ as x∗.

Chapter 13

QUADRATIC AND CONVEX
PROGRAMMING

13.1 Introduction
Quadratic programming (QP) is a family of methods, techniques, and algo-

rithms that can be used to minimize quadratic objective functions subject to
linear constraints. On the one hand, QP shares many combinatorial features
with linear programming (LP) and, on the other, it is often used as the basis of
constrained nonlinear programming. In fact, the computational efficiency of a
nonlinear programming algorithm is often heavily dependent on the efficiency
of the QP algorithm involved.

An important branch of QP is convex QP where the objective function is a
convex quadratic function. A generalization of convex QP is convex program-
ming (CP) where the objective function is convex but not necessarily quadratic
and the feasible region is convex.

In this chapter, we will first study convex QP problems with equality con-
straints and describe a QR-decomposition-based solution method. Next, two
active set methods for strictly convex QP problems are discussed in detail.
These methods can be viewed as direct extensions of the simplex method dis-
cussed in Chap. 11. In Sec. 13.4, the concepts of central path and duality gap
are extended to QP and two primal-dual path-following methods are studied.
In addition, the concept of complementarity for convex QP is examined and its
relation to that in LP is discussed. In Secs. 13.5 and 13.6, certain important
classes of CP algorithms known as cutting-plane and ellipsoid algorithms are
introduced.

Two special branches of CP known as semidefinite programming (SDP) and
second-order cone programming (SOCP) have been the subject of intensive
research during the past several years. The major algorithms for SDP and
SOCP and related concepts will be studied in Chap. 14.

408

13.2 Convex QP Problems with Equality Constraints
The problem we consider in this section is

minimize f(x) = 1
2x

THx + xTp (13.1a)

subject to: Ax = b (13.1b)

where A ∈ Rp×n. We assume in the rest of this section that the Hessian H is
symmetric and positive semidefinite, A has full row rank, and p < n. From
Sec. 10.4.1, the solutions of the problem in Eq. (13.1b) assume the form

x = Vrφ + A+b (13.2)

where Vr is composed of the last n − p columns of V and V is obtained
from the singular-value decomposition (SVD) of A, namely, UΣVT . By us-
ing Eq. (13.2), the constraints in Eq. (13.1b) can be eliminated to yield the
unconstrained minimization problem

minimize f̂(φ) = 1
2φT Ĥφ + φT p̂ (13.3a)

where
Ĥ = VT

r HVr (13.3b)

and
p̂ = VT

r (HA+b + p) (13.3c)

If H in Eq. (13.3b) is positive definite, then Ĥ is also positive definite and
the unique global minimizer of the problem in Eq. (13.1) is given by

x∗ = Vrφ
∗ + A+b (13.4a)

where φ∗ is a solution of the linear system of equations

Ĥφ = −p̂ (13.4b)

If H is positive semidefinite, then Ĥ in Eq. (13.3b) may be either positive
definite or positive semidefinite. If Ĥ is positive definite, then x∗ given by
Eq. (13.4a) is the unique global minimizer of the problem in Eq. (13.1). If Ĥ is
positive semidefinite, then there are two possibilities: (a) If p̂ can be expressed
as a linear combination of the columns of Ĥ, then f̂(φ) has infinitely many
global minimizers and so does f(x); (b) if p̂ is not a linear combination of the
columns of Ĥ, then f̂(φ), and therefore f(x), has no minimizers.

An alternative and often more economical approach to obtain Eq. (13.2) is
to use the QR decomposition of AT , i.e.,

AT = Q
[
R
0

]
(13.5)

Quadratic and Convex Programming 409

where Q is an n × n orthogonal and R is a p × p upper triangular matrix (see
Sec. A.12 and [1]). Using Eq. (13.5), the constraints in Eq. (13.1b) can be
expressed as

RT x̂1 = b

where x̂1 is the vector composed of the first p elements of x̂ with

x̂ = QTx

If we denote

x̂ =
[
x̂1

φ

]
and Q = [Q1 Q2]

with φ ∈ R(n−p)×1, Q1 ∈ Rn×p, and Q2 ∈ Rn×(n−p), then

x = Qx̂ = Q2φ + Q1x̂1 = Q2φ + Q1R−Tb

i.e.,
x = Q2φ + Q1R−Tb (13.6a)

which is equivalent to Eq. (13.2). The parameterized solutions in Eq. (13.6a) can
be used to convert the problem in Eq. (13.1) to the reduced-size unconstrained
problem in Eq. (13.3) where Ĥ and p̂ are given by

Ĥ = QT
2 HQ2 (13.6b)

and
p̂ = QT

2 (HQ1R−Tb + p)

respectively. If H is positive definite, the unique global minimizer of the prob-
lem in Eq. (13.1) can be determined as

x∗ = Q2φ
∗ + Q1R−Tb (13.7)

where φ∗ is a solution of Eq. (13.4b) with Ĥ given by Eq. (13.6b).
In both approaches discussed above, Ĥ is positive definite and the system

in Eq. (13.4b) can be solved efficiently through the LDLT (see Chap. 5) or
Cholesky decomposition (see Sec. A.13).

Example 13.1 Solve the QP problem

minimize f(x) = 1
2(x2

1 + x2
2) + 2x1 + x2 − x3 (13.8a)

subject to: Ax = b (13.8b)

where
A = [0 1 1], b = 1

410

Solution Since matrix H is positive semidefinite in this case, the SVD of A
leads to

Vr =

⎡
⎢⎣

1 0
0 1√

2

0 − 1√
2

⎤
⎥⎦ and A+ =

⎡
⎣ 0

1
2
1
2

⎤
⎦

Since

Ĥ = VT
r HVr =

[1 0
0 1√

2

]
is positive definite, the use of Eq. (13.4a) yields the unique global minimizer as

x∗ = Vrφ
∗ + A+b

=

⎡
⎢⎣

1 0
0 1√

2

0 − 1√
2

⎤
⎥⎦
⎡
⎣−2.0000

−3.5355

⎤
⎦ +

⎡
⎣ 0

1
2
1
2

⎤
⎦ =

⎡
⎣−2
−2

3

⎤
⎦

Alternatively, the problem can be solved by using the QR decomposition of
AT . From Eq. (13.5), we have

Q =

⎡
⎢⎣ 0

√
2

2

√
2

2√
2

2 −0.5 0.5√
2

2 0.5 −0.5

⎤
⎥⎦ , R =

√
2

which leads to

Q1 =

⎡
⎢⎣ 0√

2
2√
2

2

⎤
⎥⎦ , Q2 =

⎡
⎣

√
2

2

√
2

2
−0.5 0.5
0.5 −0.5

⎤
⎦

and

Ĥ =
[
0.75 0.25
0.25 0.75

]
, p̂ =

[
0.1642
2.6642

]
Hence

φ∗ =
[

1.0858
−3.9142

]

The same solution, i.e., x∗ = [−2 −2 3]T , can be obtained by using Eq. (13.7).
Note that if the constraint matrix A is changed to

A = [1 0 0] (13.9)

then

Vr =

⎡
⎣ 0 0

1 0
0 1

⎤
⎦ , Ĥ =

[
1 0
0 0

]

Quadratic and Convex Programming 411

and

p̂ =
[

1
−1

]
Obviously, p̂ cannot be expressed as a linear combination of the columns of Ĥ
in this case and hence the problem in Eq. (13.8) with A given by Eq. (13.9)
does not have a finite solution.

If the objective function is modified to

f(x) = 1
2(x2

1 + x2
2) + 2x1 + x2

then with A given by Eq. (13.9), we have

p̂ =
[
1
0

]
In this case, p̂ is a linear combination of the columns of Ĥ and hence there are
infinitely many solutions. As a matter of fact, it can be readily verified that any
x∗ = [1 −1 x3]T with an arbitrary x3 is a global minimizer of the problem.

The problem in Eq. (13.1) can also be solved by using the first-order necessary
conditions described in Theorem 10.1, which are given by

Hx∗ + p− AT λ∗ = 0
−Ax∗ + b = 0

i.e., [
H −AT

−A 0

] [
x∗
λ∗

]
= −

[
p
b

]
(13.10)

If H is positive definite and A has full row rank, then the system matrix in
Eq. (13.10) is nonsingular (see Eq. 10.69) and the solution x∗ from Eq. (13.10)
is the unique global minimizer of the problem in Eq. (13.1). Hence the solution
x∗ and Lagrange multipliers λ∗ can be expressed as

λ∗ = (AH−1AT)−1(AH−1p + b) (13.11a)

x∗ = H−1(Aλ∗ − p) (13.11b)

The solution of the symmetric system in Eq. (13.10) can be obtained using
numerical methods that are often more reliable and efficient than the formulas
in Eq. (13.11) (see Chap. 10 of [1] for the details).

13.3 Active-Set Methods for Strictly Convex QP Problems
The general form of a QP problem is to minimize a quadratic function subject

to a set of linear equality and a set of linear inequality constraints. Using
Eq. (13.2) or Eq. (13.6a), the equality constraints can be eliminated and without
loss of generality the problem can be reduced to a QP problem subject to only
linear inequality constraints as

412

minimize f(x) = 1
2x

THx + xTp (13.12a)

subject to: Ax ≥ b (13.12b)

where A ∈ Rp×n. The Karush-Kuhn-Tucker (KKT) conditions of the problem
at a minimizer x are given by

Hx + p− AT µ = 0 (13.13a)

(aT
i x − bi)µi = 0 for i = 1, 2, . . . , p (13.13b)

µi ≥ 0 for i = 1, 2, . . . , p (13.13c)

Ax ≥ b (13.13d)

To focus our attention on the major issues, we assume in the rest of this section
that H is positive definite and all vertices of the feasible region are nonde-
generate. First, we consider the possibility of having a solution {x∗, µ∗} for
Eq. (13.13) with x∗ in the interior of the feasible region R . If this is the case,
then Ax∗ > b and Eq. (13.13b) implies that µ∗ = 0, and Eq. (13.13a) gives

x∗ = −H−1p (13.14)

which is the unique global minimizer of f(x) if there are no constraints. There-
fore, we conclude that solutions of the problem in Eq. (13.12) are on the bound-
ary of the feasible region R unless the unconstrained minimizer in Eq. (13.14)
is an interior point of R. In any given iteration, the search direction in an active
set method is determined by treating the constraints that are active at the iterate
as a set of equality constraints while neglecting the rest of the constraints. In
what follows, we describe first a primal active set method [2][3] and then a dual
active set method [4] for the problem in Eq. (13.12).

13.3.1 Primal active-set method
Let xk be a feasible iterate obtained in the kth iteration and assume that Jk

is the index set of the active constraints, which is often referred to as the active
set, at xk. The next iterate is given by

xk+1 = xk + αkdk (13.15)

The constraints that are active at xk will remain active if

aT
j xk+1 − bj = 0 for j ∈ Jk

which leads to
aT

j dk = 0 for j ∈ Jk

The objective function at xk + d becomes

fk(d) = 1
2d

T Hd + dTgk + ck

Quadratic and Convex Programming 413

where
gk = p + Hxk (13.16)

and ck is a constant. A major step in the active set method is to solve the QP
subproblem

minimize f̂(d) = 1
2d

THd + dTgk (13.17a)

subject to: aT
j d = 0 for j ∈ Jk (13.17b)

and this can be accomplished by using one of the methods described in the
preceding section.

If the solution of the problem in Eq. (13.17) is denoted as dk, then there are
two possibilities: either dk = 0 or dk �= 0.

If dk = 0, then the first-order necessary conditions imply that there exist µj

for j ∈ Jk such that
Hxk + p−

∑
j∈Jk

µjaj = 0 (13.18)

i.e.,
Hxk + p− AT

ak
µ̂ = 0 (13.19)

where Aak
is the matrix composed of those rows of A that are associated with

the constraints that are active at xk and µ̂ is the vector composed of the µi’s
in Eq. (13.18). If we augment vector µ̂ to n-dimensional vector µ by padding
zeros at the places corresponding to those rows of A that are inactive at xk,
then Eq. (13.19) can be written as

Hxk + p− AT µ = 0

which is the same as Eq. (13.13a). Since xk is a feasible point, it satisfies
Eq. (13.13d). Moreover, because of the way vector µ is constructed, the com-
plementarity condition in Eq. (13.13b) is also satisfied. So the first-order nec-
essary conditions in Eq. (13.13), which are also sufficient conditions since the
present problem is a convex QP problem, will be satisfied at xk if µ̂ ≥ 0. In
such a case, xk can be deemed to be the unique global solution and the iteration
can be terminated. On the other hand, if one of the components of µ̂, say,
µi, is negative, then if point x moves along a feasible direction at xk, say, d̃,
where the ith constraint becomes inactive while all the other constraints that
were active at xk remain active, then the objective function will decrease. As a
matter of fact, at xk we have aT

j d̃ = 0 for j ∈ Jk, j �= i, and aT
i d̃ > 0. From

Eq. (13.19), we have

∇T f(xk)d̃ = (Hxk + p)T d̃ = µ̂TAT
ak

d̃ =
∑

j∈Jk

µjaT
j d̃

= µi(aT
i d̃) < 0

414

Consequently, active set Jk can be updated by removing index i from Jk. For
the sake of simplicity, the updated index set is again denoted as Jk. If there are
more than one negative Lagrange multipliers, then the index associated with
the most negative Lagrange multiplier is removed.

It should be stressed that in an implementation of the method described,
verifying whether or not dk is zero can be carried out without solving the
problem in Eq. (13.17). At point xk, we can write Eq. (13.19) as

AT
ak

µ̂ = gk (13.20)

where gk is given by Eq. (13.16). It is well known that a solution µ̂ exists if
and only if

rank[AT
ak

gk] = rank(AT
ak

) (13.21)

SVD- and QR-decomposition-based methods are available for checking the
condition in Eq. (13.21) [1][5]. If the condition in Eq. (13.21) is met, the
components of µ̂ are examined to determine whether xk is the solution or Jk

needs to be updated. Otherwise, the subproblem in Eq. (13.17) is solved.
If dk �= 0, then parameter αk in Eq. (13.15) needs to be determined to assure

the feasibility of xk+1. Using Eq. (13.17b), the optimal αk can be determined
as

αk = min

⎧⎪⎨
⎪⎩1, min

i �∈Jk
aT

i
dk<0

aT
i xk − bi

−aT
i dk

⎫⎪⎬
⎪⎭ (13.22)

If αk < 1, then a new constraint becomes active at xk+1. The active set Jk+1

at xk+1 is obtained by adding the index of the new active constraint, jk, to Jk.
The active-set method can be implemented in terms of the following algo-

rithm.

Algorithm 13.1 Primal active-set algorithm for QP problems with
inequality constraints
Step 1
Input a feasible point, x0, identify the active set J0, form matrix Aa0 ,
and set k = 0.
Step 2
Compute gk using Eq. (13.16).
Check the rank condition in Eq. (13.21); if Eq. (13.21) does not hold,
go to Step 4.
Step 3
Solve Eq. (13.20) for µ̂. If µ̂ ≥ 0, output xk as the solution and stop;
otherwise, remove the index that is associated with the most negative
Lagrange multiplier from Jk.
Step 4
Solve the problem in Eq. (13.17) for dk.

Quadratic and Convex Programming 415

Step 5
Find αk using Eq. (13.22) and set xk+1 = xk + αkdk.
Step 6
If αk < 1, construct Jk+1 by adding the index that yields the minimum
in Eq. (13.22) to Jk; otherwise, let Jk+1 = Jk.
Step 7
Set k = k + 1 and repeat from Step 2.

Algorithm 13.1 requires a feasible initial point x0 that satisfies the constraints
Ax0 ≥ b. Such a point can be identified by using, for example, the method
described in Sec. 11.2.3.4. The method involves solving an LP problem of size
n + 1 for which a feasible initial point can be easily identified.

Example 13.2 Find the shortest distance between triangles R and S shown in
Fig. 13.1 and the points r∗ ∈ R and s∗ ∈ S that yield the minimum distance.

1

1

2

32

3

R

S

x1 x3,

x2 , x4

s*

r*

Figure 13.1. Triangles R and S in Example 13.2.

Solution Let r = [x1 x2]T ∈ R and s = [x3 x4]T ∈ S. The square of the
distance between r and s is given by

(x1 − x3)2 + (x2 − x4)2 = xTHx

where

H =

⎡
⎢⎢⎣

1 0 −1 0
0 1 0 −1

−1 0 1 0
0 −1 0 1

⎤
⎥⎥⎦ (13.23)

416

and x = [x1 x2 x3 x4]T is constrained to satisfy the inequalities

x1 ≥ 0
x2 ≥ 0

x1 + 2x2 ≤ 2
x4 ≥ 2

x3 + x4 ≥ 3
x3 + 2x4 ≤ 6

The problem can be formulated as the QP problem

minimize f(x) = 1
2x

T Hx (13.24a)

subject to: Ax ≥ b (13.24b)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

−1 −2 0 0
0 0 0 1
0 0 1 1
0 0 −1 −2

⎤
⎥⎥⎥⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

−2
2
3

−6

⎤
⎥⎥⎥⎥⎥⎥⎦

Since matrix H in Eq. (13.23) is positive semidefinite, Algorithm 13.1 is not
immediately applicable since it requires a positive definite H. One approach to
fix this problem, which has been found to be effective for convex QP problems
of moderate size with positive semidefinite Hessian, is to introduce a small
perturbation to the Hessian to make it positive definite, i.e., we let

H̃ = H + δI (13.25)

where I is the identity matrix and δ is a small positive scalar. Modifying matrix
H in Eq. (13.23) to H̃ as in Eq. (13.25) with δ = 10−9 and then applying Al-
gorithm 13.1 to the modified QP problem with an initial point x0 = [2 0 0 3]T ,
the minimizer was obtained in 5 iterations as x∗ = [0.4 0.8 1.0 2.0]T . Hence
r∗ = [0.4 0.8]T and s∗ = [1 2]T and the shortest distance between these points
is 1.341641 (see Fig. 13.1).

13.3.2 Dual active-set method
A dual active-set method for the QP problem in Eq. (13.12) with H positive

definite was proposed by Goldfarb and Idnani [4]. The method is essentially
the active-set method described in the preceding section but applied to the dual

Quadratic and Convex Programming 417

of the problem in Eq. (13.12). According to Theorem 10.9, the dual is the
maximization problem

maximize [−1
2µTAH−1AT µ + µT (AH−1p + b)]

subject to: µ ≥ 0

which is equivalent to

minimize h(µ) = 1
2µTAH−1AT µ − µT (AH−1p + b) (13.26a)

subject to: µ ≥ 0 (13.26b)

Once the minimizer of the problem in Eq. (13.26), µ∗, is determined, the min-
imizer of the primal is obtained from one of the KKT conditions, i.e.,

Hx + p− AT µ = 0

which gives
x∗ = H−1(AT µ∗ − p) (13.27)

The advantages of the dual problem in Eq. (13.26) include:

(a) A feasible initial point can be easily identified as any vector with non-
negative entries, e.g., µ0 = 0.

(b) The constraint matrix in Eq. (13.26b) is the p×p identity matrix. Conse-
quently, the dual problem always satisfies the nondegeneracy assumption.

(c) The dual problem only involves bound-type inequality constraints which
considerably simplify the computations required in Algorithm 13.1. For
example, checking the rank condition in Eq. (13.21) for the dual problem
entails examining whether the components of gk that correspond to those
indices not in the active set are all zero.

As in the primal active-set method discussed in Sec. 13.3.1, a major step in
the dual active-set method is to solve the QP subproblem which is the dual of
the QP problem in Eq. (13.17). This QP subproblem can be reduced to the
unconstrained optimization problem

minimize 1
2 d̃

T H̃d̃ + d̃T g̃k

where d̃ is the column vector obtained by deleting the components of d whose
indices are in Jk, H̃ is the principal submatrix of H obtained by deleting the
columns and rows associated with index set Jk and g̃k is obtained by deleting
the components of gk whose indices are in Jk.

13.4 Interior-Point Methods for Convex QP Problems
In this section, we discuss several interior-point methods for convex QP

problems that can be viewed as natural extensions of the interior-point methods
discussed in Chap. 12 for LP problems.

418

13.4.1 Dual QP problem, duality gap, and central path
By introducing slack variables and splitting free variables into positive and

negative parts, we can reformulate the QP problem in Eq. (13.12) as

minimize f(x) = 1
2x

THx + xTp (13.28a)

subject to: Ax = b (13.28b)

x ≥ 0 (13.28c)

where H ∈ Rn×n is positive semidefinite and A ∈ Rp×n has full row rank.
By applying Theorem 10.9 to Eq. (13.28), the dual problem can be obtained as

maximize; h(x, λ, µ) = −1
2x

THx + λTb (13.29a)

subject to: AT λ + µ − Hx = p (13.29b)

µ ≥ 0 (13.29c)

The necessary and sufficient conditions for vector x to be the global mini-
mizer of the problem in Eq. (13.28) are the KKT conditions which are given
by

Ax − b = 0 for x ≥ 0 (13.30a)

AT λ + µ − Hx − p = 0 for µ ≥ 0 (13.30b)

Xµ = 0 (13.30c)

where X = diag{x1, x2, . . . , xn}.
Let set {x, λ, µ} be feasible for the problems in Eqs. (13.28) and (13.29).

The duality gap, which was defined in Eq. (12.6) for LP problems, can be
obtained for {x, λ, µ} as

δ(x, λ, µ) = f(x) − h(x, λ, µ) = xT Hx + xTp − λTb
= xT (AT λ + µ) − λTb = xT µ (13.31)

which is always nonnegative and is equal to zero at solution {x∗, λ∗, µ∗}
because of the complementarity condition in Eq. (13.30c).

Based on Eq. (13.30), the concept of central path, which was initially intro-
duced for LP problems in Sec. 12.2.2, can be readily extended to the problems in
Eqs. (13.28) and (13.29) as the parameterized set w(τ) = {x(τ), λ(τ), µ(τ)}
that satisfies the conditions

Ax − b = 0 for x > 0 (13.32a)

AT λ + µ − Hx − p = 0 for µ > 0 (13.32b)

Xµ = τe (13.32c)

Quadratic and Convex Programming 419

where τ is a strictly positive scalar parameter and e = [1 1 · · · 1]T ∈ Rn.
It follows that every point on the central path is strictly feasible and the entire
central path lies in the interior of the feasible regions described by Eqs. (13.28b),
(13.28c), (13.29b), and (13.29c). On comparing Eq. (13.32) with Eq. (13.30),
we see that as τ → 0 the central path approaches set w∗ = {x∗, λ∗, µ∗}which
solves the problems in Eqs. (13.28) and (13.29) simultaneously. This can also
be seen by computing the duality gap on the central path, i.e.,

δ[x(τ), λ(τ), µ(τ)] = xT (τ)µ(τ) = nτ (13.33)

Hence the duality gap approaches zero linearly as τ → 0.
As in the LP case, the equations in Eq. (13.32) that define the central path for

the problem in Eq. (13.28) and its dual can be interpreted as the KKT conditions
for the modified minimization problem

minimize f̂(x) = 1
2x

THx + xT p− τ
n∑

i=1

lnxi (13.34a)

subject to: Ax = b (13.34b)

where τ > 0 is the barrier parameter (see Sec. 12.4). In order to ensure that
f̂(x) in Eq. (13.34a) is well defined, it is required that

x > 0 (13.34c)

The KKT conditions for the problem in Eq. (13.34) are given by

Ax− b = 0 for x > 0 (13.35a)

AT λ − τX−1e − Hx− p = 0 (13.35b)

If we let µ = τX−1e, then x > 0 implies that µ > 0 and Eq. (13.35b) can be
written as

AT λ + µ − Hx− p = 0 for µ > 0 (13.36a)

and
Xµ = τe (13.36b)

Consequently, Eqs. (13.35a), (13.36a), and (13.36b) are identical with Eqs. (13.32a),
(13.32b), and (13.32c), respectively.

In what follows, we describe a primal-dual path-following method similar
to the one proposed by Monteiro and Adler [6] which is an extension of their
work on LP [7] described in Sec. 12.5. We then discuss the class of monotone
linear complementarity problems (LCP’s) and its variant known as the class of
mixed LCP’s, and recast convex QP problems as mixed LCP’s (see Chap. 8 in
[8]).

420

13.4.2 A primal-dual path-following method for convex QP
problems

Consider the convex QP problem in Eq. (13.28) and let wk = {xk, λk, µk}
be such that xk is strictly feasible for the primal problem in Eq. (13.28) and
wk = {xk, λk, µk} is strictly feasible for the dual problem in Eq. (13.29). We
require an increment set δw = {δx, δλ, δµ} such that the next iterate wk+1 =
{xk+1, λk+1, µk+1} = wk + δw remains strictly feasible and approaches
the central path defined by Eq. (13.32). If wk were to satisfy Eq. (13.32) with
τ = τk+1, we would have

−Hδx + AT δλ + δµ = 0 (13.37a)

Aδx = 0 (13.37b)

∆Xµk + Xδµ + ∆Xδµ = τk+1e − Xµk (13.37c)

where ∆X = diag{(δx)1, (δx)2, . . . , (δx)n}. If the second-order term in
Eq. (13.37c), namely, ∆Xδµ, is neglected, then Eq. (13.37) becomes the system
of linear equations

−Hδx + AT δλ + δµ = 0 (13.38a)

Aδx = 0 (13.38b)

Mδx + Xδµ = τk+1e −Xµk (13.38c)

where M = diag {(µk)1, (µk)2, . . . , (µk)n}. These equations can be ex-
pressed in matrix form as⎡

⎣ −H AT I
A 0 0
M 0 X

⎤
⎦ δw =

⎡
⎣ 0

0
τk+1e − Xµk

⎤
⎦ (13.39)

A good choice of parameter τk+1 in Eqs. (13.38) and (13.39) is

τk+1 =
xT

k µk

n + ρ
with ρ ≥

√
n (13.40)

It can be shown that for a given tolerance ε for the duality gap, this choice of
τk+1 will reduce the primal-dual potential function which is defined as

ψn+ρ(x, µ) = (n + ρ) ln(xT µ) −
n∑

i=1

ln(xiµi) (13.41)

to a small but constant amount. This would lead to an iteration complexity of
O(ρ ln(1/ε)) (see Chap. 4 in [9]).

Quadratic and Convex Programming 421

The solution of Eq. (13.38) can be obtained as

δλ = Yy (13.42a)

δx = ΓXAT δλ − y (13.42b)

δµ = Hδx − AT δλ (13.42c)

where
Γ = (M + XH)−1 (13.42d)

Y = (AΓXAT)−1A (13.42e)

and
y = Γ(Xµk − τk+1e) (13.42f)

Since xk > 0 and µk > 0, matrices X and M are positive definite. Therefore,
X−1M + H is also positive definite and the inverse of the matrix

M + XH = X(X−1M + H)

exists. Moreover, since A has full row rank, the matrix

AΓXAT = A(X−1M + H)−1AT

is also positive definite and hence nonsingular. Therefore, matrices Γ and Y in
Eq. (13.42) are well defined.

Once δw is calculated, an appropriate αk needs to be determined such that

wk+1 = wk + αkδw (13.43)

remains strictly feasible. Such an αk can be chosen in the same way as in the
primal-dual interior-point algorithm discussed in Sec. 12.5.1, i.e.,

αk = (1 − 10−6)αmax (13.44a)

where
αmax = min(αp, αd) (13.44b)

with

αp = min
i with (δx)i<0

[
−(xk)i

(δx)i

]
(13.44c)

αd = min
i with (δµ)i<0

[
−(µk)i

(δµ)i

]
(13.44d)

The method described can be implemented in terms of the following algorithm.

422

Algorithm 13.2 Primal-dual path-following algorithm for convex
QP problems
Step 1
Input a strictly feasible w0 = {x0, λ0, µ0}.
Set k = 1 and ρ ≥

√
n, and initialize the tolerance ε for duality gap.

Step 2
If xT

k µk ≤ ε, output solution w∗ = wk, and stop; otherwise, continue
with Step 3.
Step 3
Set τk+1 using Eq. (13.40) and compute δw = {δx, δλ, δµ} using
Eqs. (13.42a) to (13.42c).
Step 4
Compute αk using Eq. (13.44) and update wk+1 using Eq. (13.43).
Set k = k + 1 and repeat from Step 2.

13.4.3 Nonfeasible-initialization primal-dual
path-following method for convex QP problems

Algorithm 13.2 requires a strictly feasible w0 which might be difficult to
obtain particularly for large-scale problems. The idea described in Sec. 12.5.2
can be used to develop a nonfeasible-initialization primal-dual path-following
algorithm for convex QP problems. Let wk = {xk, λk, µk} be such that
xk > 0 and µk > 0 but which may not satisfy Eqs. (13.32a) and (13.32b). We
need to find the next iterate

wk+1 = wk + αkδw

such that xk+1 > 0 and µk+1 > 0, and that δw = {δx, δλ, δµ} satisfies the
equations

−H(xk + δx) − p + AT (λk + δλ) + (µk + δµ) = 0
A(xk + δx) = b
Mδx + Xδµ = τk+1e − Xµk

i.e.,
−Hδx + AT δλ + δµ = rd

Aδx = rp

Mδx + Xδµ = τk+1e − Xµk

where

rd = Hxk + p− AT λk − µk (13.45a)

rp = b −Axk (13.45b)

Quadratic and Convex Programming 423

The above system of linear equations can be expressed as⎡
⎣ −H AT I

A 0 0
M 0 X

⎤
⎦ δw =

⎡
⎣ rd

rp

τk+1e − Xµk

⎤
⎦ (13.46)

On comparing Eq. (13.46) with Eq. (13.39), we see that δw becomes the
search direction determined by using Eq. (13.39) when the residual vectors rp

and rd are reduced to zero. Note that in general the elimination of rp and
rd cannot be accomplished in a single iteration because the next iterate also
depends on αk which may not be unity. The solution of Eq. (13.46) can be
obtained as

δλ = Y0(Ayd + rp) (13.47a)

δx = ΓXAT δλ − yd (13.47b)

δµ = Hδx −AT δλ + rd (13.47c)

where
Γ = (M + XH)−1 (13.47d)

Y0 = (AΓXAT)−1 (13.47e)

yd = Γ[X(µk + rd) − τk+1e] (13.47f)

τk+1 =
xT

k µk

n + ρ
with ρ ≥

√
n (13.47g)

Obviously, if residual vectors rp and rd are reduced to zero, the vector δw =
{δx, δλ, δµ} determined by using Eq. (13.47) is identical with that obtained us-
ing Eq. (13.42). Once δw is determined, αk can be calculated using Eq. (13.44).
The above principles lead to the following algorithm.

Algorithm 13.3 Nonfeasible-initialization primal-dual path-follow-
ing algorithm for convex QP problems
Step 1
Input a set w0 = {x0, λ0, µ0} with x0 > 0 and µ0 > 0.
Set k = 0 and ρ ≥

√
n, and initialize the tolerance ε for the duality gap.

Step 2
If xT

k µk ≤ ε, output solution w∗ = wk and stop; otherwise, continue
with Step 3.
Step 3
Compute τk+1 using Eq. (13.47g) and determine δw = {δx, δλ, δµ}
using Eq. (13.47).
Step 4
Compute αk using Eq. (13.44) and update wk+1 using Eq. (13.43).
Set k = k + 1 and repeat from Step 2.

424

Example 13.3 Solve the convex QP problem

minimize f(x) = 1
2x

T

⎡
⎣ 4 0 0

0 1 −1
0 −1 1

⎤
⎦x + xT

⎡
⎣−8
−6
−6

⎤
⎦ (13.48a)

subject to: x1 + x2 + x3 = 3 (13.48b)

x ≥ 0 (13.48c)

Solution The problem can be solved by using either Algorithm 13.2 or Al-
gorithm 13.3. Using a strictly feasible point x0 = [1 1 1]T and assigning
λ0 = −7 and µ0 = [3 1 1]T , it took Algorithm 13.2 11 iterations and 3681
flops to converge to the solution

x∗ =

⎡
⎣ 0.500000

1.250000
1.250000

⎤
⎦

On the other hand, using a nonfeasible initial point x0 = [1 2 2]T and assigning
λ0 = −1, µ0 = [0.2 0.2 0.2]T , ρ = n + 2

√
n, and ε = 10−5, Algorithm 13.3

took 13 iterations and 4918 flops to converge to the solution

x∗ =

⎡
⎣ 0.500001

1.249995
1.249995

⎤
⎦

Example 13.4 Solve the shortest-distance problem described in Example 13.2
by using Algorithm 13.3.

Solution By letting x = x+ − x− where x+ ≥ 0 and x− ≥ 0, and then
introducing slack vector η ≥ 0, the problem in Eq. (13.12) can be converted
into a QP problem of the type given in Eq. (13.28), i.e.,

minimize 1
2 x̂

T Ĥx̂ + x̂T p̂ (13.49a)

subject to: Âx̂ = b (13.49b)

x̂ ≥ 0 (13.49c)

where

Ĥ =

⎡
⎣ H −H 0
−H H 0

0 0 0

⎤
⎦ , p̂ =

⎡
⎣ p
−p

0

⎤
⎦ , x̂ =

⎡
⎣x+

x−
η

⎤
⎦

Â = [A − A − Ip]

Quadratic and Convex Programming 425

and n = 14, p = 6. We note that Ĥ is positive semidefinite if H is positive
semidefinite. Since a strictly feasible initial w0 is difficult to find in this ex-
ample, Algorithm 13.3 was used with x0 = ones{14, 1}, λ0 = −ones{6, 1},
µ0 = ones{14, 1}, where ones{m, 1} represents a column vector of dimension
m whose elements are all equal to one. Assigning ε = 10−5 and ρ = n+20

√
n,

the algorithm took 11 iterations and 215 Kflops to converge to x̂∗ whose first 8
elements were then used to obtain

x∗ =

⎡
⎢⎢⎣

0.400002
0.799999
1.000001
2.000003

⎤
⎥⎥⎦

The shortest distance can be obtained as 1.341644.
Note that we do not need to introduce a small perturbation to matrix H to

make it positive definite in this example as was the case in Example 13.2.

13.4.4 Linear complementarity problems
The linear complementarity problem (LCP) is to find a vector pair {x, µ}

in Rn that satisfies the relations

Kx + q = µ (13.50a)

x ≥ 0 for µ ≥ 0 (13.50b)

xT µ = 0 (13.50c)

where K ∈ Rn×n and q ∈ Rn are given, and K is positive semidefinite.
Although the problem described in Eq. (13.50) is not an optimization problem,
its solution can be related to the minimization problem

minimize f(x̂) = x̂T
1 x̂2 (13.51a)

subject to: Ax̂ = b (13.51b)

x̂ ≥ 0 (13.51c)

where

x̂ =
[
x̂1

x̂2

]
=

[
x
µ

]
, A = [K − In], and b = −q

Note that the objective function f(x̂) in Eq. (13.51a) can be expressed as

f(x̂) = 1
2 x̂

T
[

0 In

In 0

]
x̂

Hence the problem in Eq. (13.51) is a QP problem with an indefinite Hessian.

426

A variant of the LCP which is well connected to convex QP is the mixed LCP
which entails finding a vector pair {x, µ} in Rn and vector λ ∈ Rp such that[

K11 K12

K21 K22

] [
x
λ

]
+

[
q1

q2

]
=

[
µ
0

]
(13.52a)

x ≥ 0, µ ≥ 0 (13.52b)

xT µ = 0 (13.52c)

where matrix K ∈ R(n+p)×(n+p) given by[
K11 K12

K21 K22

]
is not necessarily symmetric but is positive semidefinite in the sense that

yT Ky ≥ 0 for any y ∈ Rn+p (13.53)

The LCP described by Eq. (13.50) can be viewed as a special mixed LCP
where dimension p is 0. Again, the mixed LCP as stated in Eq. (13.52) is not
an optimization problem. However, it is closely related to the standard-form
LP problem in Eq. (11.1) as well as the convex QP problem in Eq. (13.28). In
order to see the relation of Eq. (13.52) to the LP problem in Eq. (11.1), note
that the conditions in Eqs. (13.52b) and (13.52c) imply that

xiµi = 0 for i = 1, 2, . . . , n

which is the complementarity condition in Eq. (11.5d). Hence the KKT condi-
tions in Eq. (11.5) can be restated as[

0 −AT

A 0

] [
x
λ

]
+

[
c
−b

]
=

[
µ
0

]
(13.54a)

x ≥ 0, µ ≥ 0 (13.54b)

xT µ = 0 (13.54c)

Since matrix

K =
[

0 −AT

A 0

]
is positive semidefinite in the sense of Eq. (13.53) (see Prob. 13.10(a)), we note
that standard-form LP problems can be formulated as mixed LCP’s.

For the convex QP problem in Eq. (13.28), the KKT conditions given in
Eq. (13.30) can be written as[

H −AT

A 0

] [
x
λ

]
+

[
p
−b

]
=

[
µ
0

]
(13.55a)

x ≥ 0, µ ≥ 0 (13.55b)

xT µ = 0 (13.55c)

Quadratic and Convex Programming 427

where

K =
[
H −AT

A 0

]

is positive semidefinite if H is positive semidefinite (see Prob. 13.10(b)). From
the above analysis, we see that the class of mixed LCP covers standard-form
LP problems, convex QP problems, and LCPs.

Let wk = {xk, λk, µk} be the kth iterate with xk > 0, and let µk > 0 and
the (k + 1)th iterate be

wk+1 = wk + αkδw (13.56)

where the search direction δw = {δx, δλ, δµ} is chosen to satisfy the relations

[
K11 K12

K21 K22

] [
xk + δx

λk + δλ

]
+

[
q1

q2

]
=

[
µk + δµ

0

]

(xk + δx)T (µk + δµ) ≈ xT
k µk + δT

x µk + xT
k δµ = τk+1e

These equations can be expressed as

⎡
⎣−K11 −K12 I

K21 K22 0
M 0 X

⎤
⎦
⎡
⎣ δx

δλ

δµ

⎤
⎦ =

⎡
⎣ r1

r2

τk+1e −Xµk

⎤
⎦ (13.57a)

where M = diag{(µk)1, (µk)2, . . . , (µk)n}, X = diag{(xk)1, (xk)2, . . . ,
(xk)n}, and

r1 = K11xk + K12λk − µk + q1 (13.57b)

r2 = −K21xk −K22λk − q2 (13.57c)

τk+1 =
xT

k µk

n + ρ
, with ρ ≥

√
n (13.57d)

It can be readily verified that with K11 = K22 = 0, K21 = −KT
12 = A,

q1 = c, and q2 = −b, Eq. (13.57a) becomes Eq. (12.56) which determines the
search direction for the nonfeasible-initialization primal-dual path-following
algorithm in Sec. 12.5.2. Likewise, withK11 = H, K21 = −KT

12 = A, K22 =
0, q1 = p, and q2 = −b, Eqs. (13.57a) to (13.57d) become Eqs. (13.46),
(13.45a), (13.45b), and (13.47g) which determine the search direction for the
nonfeasible-initialization primal-dual path-following algorithm for the convex
QP in Sec. 13.4.3. Once δw is determined by solving Eq. (13.57), αk can be
calculated using Eq. (13.44). The above method can be implemented in terms
of the following algorithm.

428

Algorithm 13.4 Nonfeasible-initialization interior-point algorithm
for mixed LCP problems
Step 1
Input an initial point w0 = {x0, λ0, µ0} with x0 > 0 and µ0 > 0.
Set k = 0 and ρ >

√
n, and initialize the tolerance ε for xT

k µk.
Step 2
If xT

k µk ≤ ε, output solution w∗ = wk and stop; otherwise, continue
with Step 3.
Step 3
Compute τk+1 using Eq. (13.57d) and determine δw = (δx, δλ, δµ) by
solving Eq. (13.57a).
Step 4
Compute αk using Eq. (13.44) and set wk+1 = wk + αkδw.
Set k = k + 1 and repeat from Step 2.

13.5 Cutting-Plane Methods for CP Problems
Cutting-plane methods for CP problems are of importance as they make good

use of the convexity of the problems at hand. Unlike many descent methods
for convex problems, cutting-plane methods entail easy-to-apply termination
criteria that assure the solution’s optimality to a prescribed accuracy.

An important concept associated with CP is the concept of subgradient. In
what follows, we adopt the approach described in [10] to introduce this concept
and then move on to describe a cutting-plane algorithm proposed by Kelley
[11].

13.5.1 Subgradients
The concept of subgradient is a natural generalization of the concept of

gradient. If a function f(x) is convex and differentiable, then it is known from
Theorem 2.12 that at point x, we have

f(x̂) ≥ f(x) + ∇f(x)T (x̂ − x) for all x̂ (13.58)

This equation states, in effect, that the tangent to the surface defined by f(x) at
point x always lies below the surface, as shown in Fig. 2.8.

Definition 13.1 If f(x) is convex but not necessarily differentiable, then vector
g ∈ Rn is said to be a subgradient of f(x) at x if

f(x̂) ≥ f(x) + gT (x̂ − x) for all x̂ (13.59)

On comparing Eq. (13.59) with Eq. (13.58), we note that the gradient of a
differentiable convex function is a subgradient. For this reason, the commonly
used notation g for gradient will also be adopted to represent a subgradient.

Quadratic and Convex Programming 429

An important property in connection with subgradients is that a convex func-
tion has at least one subgradient at every point [12]. The right-hand side of the
inequality in Eq. (13.59) may be viewed as a linear approximation of f(x), and
this linear function is a lower bound of f(x) which is tight at point x meaning
that the lower bound becomes an equality at x. Geometrically, the subgradients
at a point x for the case where the convex function f(x) is not differentiable
correspond to different tangent lines at x. This is illustrated in Fig. 13.2, where
the two subgradients of f(x) at x∗ are given by g1 = tan θ1 and g2 = tan θ2.

f(x)

θ2θ1

x * x

Figure 13.2. Two subgradients of f(x) at x∗ for a case where f(x) is not differentiable at x∗.

From Eq. (13.59), it follows that f(x̂) ≥ f(x) as long as gT (x̂ − x) ≥ 0.
Note that for a fixed point, gT (x̂ − x) = 0 defines a hyperplane which passes
through pointxwithg as its normal. This hyperplane divides the entireRn space
into two parts. On the one side of the hyperplane where each point x̂ satisfies
gT (x̂ − x) ≥ 0, no minimizers can exist since f(x̂) ≥ f(x). Consequently, a
minimizer of f(x) can only be found on the other side of the plane, which is
characterized by the set of points {x̂ : gT (x̂−x) ≤ 0}. From this discussion,
we see that in an optimization context the concept of the subgradient is useful
as it facilitates the definition of a ‘cutting plane’ in the parameter space, which
can be used to reduce the region of search for a minimizer.

There are several important special cases in which the computation of a
subgradient of a convex f(x) can be readily carried out (see Prob. 13.12) as
follows:

(a) If f(x) is differentiable, then the gradient of f(x) is a subgradient;
(b) If α > 0, then a subgradient of αf(x) is given by αg where g is a

subgradient of f(x);
(c) If f(x) = f1(x) + f2(x) + · · · + fr(x) where fi(x) for 1 ≤ i ≤ r are

convex, then g = g1 + g2 + · · ·+ gr is a subgradient of f(x) where gi

is a subgradient of fi(x);

430

(d) If
f(x) = max[f1(x), f2(x), . . . , fr(x)]

where fi(x) for 1 ≤ i ≤ r are convex, then at point x there is at least
one index i∗ with 1 ≤ i∗ ≤ r such that f(x) = fi∗(x). In this case a
subgradient of fi∗(x), gi∗ , is a subgradient of f(x).

13.5.2 Kelley’s cutting-plane method for CP problems with
bound constraints

Consider the convex problem

minimize f(x) (13.60a)

subject to: xl ≤ x ≤ xu (13.60b)

where f(x) is convex in the feasible regionR described by Eq. (13.60b), and xl

and xu are given vectors that define lower and upper bounds of x, respectively.
Let x0, x1, . . . , xk be k + 1 points in R. Since f(x) is convex in R, we

have

f(x) ≥ f(xi) + gT (xi)(x− xi) for 0 ≤ i ≤ k, x ∈ R (13.61)

where g(xi) is a subgradient of f(x) at xi. Hence f(x) has a lower bound

f(x) ≥ fl, k(x) (13.62a)

where fl, k(x) is the piecewise linear convex function

fl, k(x) = max
0≤i≤k

[
f(xi) + gT (xi)(x− xi)

]
(13.62b)

Eq. (13.62a) is illustrated in Fig. 13.3 for the one-dimensional case with k = 2.
As can be seen, the objective function f(x) is bounded from below by the
globally convex, piecewise linear function fl, k(x).

Three observations can be made based on Eq. (13.62) and Fig. 13.3. First,
the lower bound fl, k(x) is tight at points x0, x1, . . . , xk. Second, if x∗
is a minimizer of f(x) in R, then f∗ = f(x∗) is bounded from below by
Lk = minx∈R[fl, k(x)]. If we let

Uk = min
0≤i≤k

[f(xi)] (13.63)

then we have
Lk ≤ f∗ ≤ Uk

Therefore, when k increases both the lower and upper bounds become tighter,
i.e.,

Lk ≤ Lk+1 ≤ f∗ ≤ Uk+1 ≤ Uk (13.64)

Quadratic and Convex Programming 431

x1xl x2x0 xu

f(x)

x

Figure 13.3. A single-variable interpretation of functions f(x) and fl, 2(x).

Third, as k increases, the minimizer of the lower-bound function fl, k(x) can
serve as an approximate solution of the problem in Eq. (13.60).

Note that minimizing fl,k(x) subject to x ∈ R is an LP problem which is
equivalent to

minimize L (13.65a)

subject to: fl, k(x) ≤ L (13.65b)

xl ≤ x ≤ xu (13.65c)

If we let

z =

⎡
⎣ x

L

⎤
⎦ , c =

⎡
⎣0

1

⎤
⎦ (13.66a)

Ak =

⎡
⎢⎢⎢⎢⎢⎣

−gT (x0) 1
...

−gT (xk) 1
I 0

−I 0

⎤
⎥⎥⎥⎥⎥⎦ , bk =

⎡
⎢⎢⎢⎢⎢⎣

f(x0) − gT (x0)x0
...

f(xk) − gT (xk)xk

xl

−xu

⎤
⎥⎥⎥⎥⎥⎦ (13.66a)

where I denotes the n× n identity matrix, then the problem in Eq. (13.65) can
be stated as the LP problem

minimize cTz (13.67a)

subject to: Az ≥ b (13.67b)

432

Let us denote the minimizer of the problem in Eq. (13.65) as

z∗ =
[
x∗

k
Lk

]

If Uk − Lk is less than a prescribed tolerance ε, then x∗
k is considered an

acceptable solution of the problem in Eq. (13.60); otherwise, point xk+1 is set
to x∗ and A and b in Eq. (13.67) are updated accordingly. The above steps
are then repeated until Uk − Lk ≤ ε. An algorithm based on these ideas is as
follows.

Algorithm 13.5 Kelley’s cutting-plane algorithm for CP problems
with bound constraints
Step 1
Input an initial feasible point x0.
Set k = 0 and initialize the tolerance ε.
Step 2
Evaluate Ak and bk by using Eq. (13.66) and solve the LP problem in
Eq. (13.67) to obtain minimizer x∗

k.
Step 3
Compute Lk and Uk.
If Uk − Lk ≤ ε, output x∗ = x∗

k, and stop; otherwise, set k = k + 1,
xk+1 = x∗

k, and repeat from Step 2.

It follows from Eq. (13.64) that with Uk − Lk ≤ ε the solution x∗
k obtained

with Kelley’s algorithm ensures that |f(x∗
k) − f(x∗)| ≤ ε. Moreover, it can

be shown [10] that Uk − Lk approaches zero as k increases and, therefore, the
algorithm always terminates.

A problem with Kelley’s algorithm is that the number of constraints in
Eq. (13.66) grows with the number of iterations performed and so the com-
putational complexity of each iteration will increase accordingly. However,
if each LP subproblem starts with a good initial point, it can converge to the
minimizer in a small number of iterations and the algorithm becomes practical.
The minimizer x∗

k can serve as the initial point for the (k + 1)th iteration. In
effect, as the minimizer x∗

k satisfies Eq. (13.67b) where A = Ak and b = bk

with Ak, bk defined by Eq. (13.66) and xk+1 = x∗
k, the newly added constraint

in the (k + 1)th iteration, i.e.,

f(x) ≥ f(xk+1) + gT (xk+1)(x− xk+1)

is tightly satisfied at x∗
k and hence x∗

k is a feasible point. Moreover, as can be
seen in Fig. 13.4, x∗

k is a good initial point for iteration k + 1.

Quadratic and Convex Programming 433

x1xl x2x0 xu

f(x)

x2
* x3

* x

Figure 13.4. Point x∗
2 serves as a good initial point in the 3rd iteration.

13.5.3 Kelley’s cutting-plane method for CP problems with
general inequality constraints

The general convex problem

minimize f(x) (13.68a)

subject to: cj(x) ≥ 0 for j = 1, 2, . . . , q (13.68b)

where f(x) and −cj(x) for j = 1, 2, . . . , q are convex functions, can be
converted to

minimize L (13.69a)
subject to: f(x) ≤ L (13.69b)

cj(x) ≥ 0 for j = 1, 2, . . . , q (13.69c)

With z = [xT L]T and c = [0 · · · 0 1]T , the problem in Eq. (13.69) can be
formulated as

minimize cTz

subject to: ĉj(z) ≥ 0 for j = 0, 1, . . . , q

where ĉ0(z) = L − f(x) and ĉj(z) = cj(x) for j = 1, 2, . . . , q. Obviously,
functions −ĉj(z) are all convex in z. Therefore, without loss of generality, we
can consider the CP problem

minimize f(x) = cTx (13.70a)

subject to: cj(x) ≥ 0 for j = 1, 2, . . . , q (13.70b)

where functions −cj(x) are differentiable and convex.
The convexity of the constraint functions in Eq. (13.70b) can be utilized to

generate piecewise linear lower-bound functions in a way similar to that used

434

for objective function f(x) for the problem in Eq. (13.60). Let x0, x1, . . . , xk

be k + 1 distinct points. Since −cj(x) are convex, we have

−cj(x) ≥ −cj(xi) + hT
j (xi)(x− xi) for 0 ≤ i ≤ k, 1 ≤ j ≤ q

where hT
j (xi) denotes a subgradient of −cj(x) at xi. It follows that if point x

satisfies the constraints in Eq. (13.70b), then it also satisfies the constraint

Akx ≥ bk (13.71)

where

Ak =

⎡
⎢⎣A(0)

...
A(k)

⎤
⎥⎦ , bk =

⎡
⎢⎣ A(0)x0 − c(0)

...
A(k)xk − c(k)

⎤
⎥⎦

A(i) =

⎡
⎢⎣
−hT

1 (xi)
...

−hT
q (xi)

⎤
⎥⎦ , c(i) =

⎡
⎢⎣

c1(xi)
...

cq(xi)

⎤
⎥⎦

At the kth iteration, the cutting-plane algorithm solves the LP problem

minimize f(x) = cTx (13.72a)

subject to: Akx ≥ bk (13.72b)

Since the feasible region Rk−1 described by Eq. (13.72b) contains the feasible
region described by Eq. (13.70b), the minimizer of the problem in Eq. (13.72),
x∗

k−1, might violate some of the constraints in Eq. (13.70b). Let us denote x∗
k

as xk+1. If xk+1 satisfies Eq. (13.70b), then obviously xk+1 is the solution of
the problem in Eq. (13.70) and the algorithm terminates. Otherwise, if j∗ is the
index for the most negative cj(xk+1), then the constraints in Eq. (13.72b) are
updated by including the linear constraint

cj∗(xk+1) − hT
j∗(xk+1)(x− xk+1) ≥ 0 (13.73)

In other words, the feasible region of the problem in Eq. (13.72) is reduced to
the intersection ofRk−1 and the half-plane defined by Eq. (13.73). The updated
constraints can be expressed as

Ak+1x ≥ bk+1 (13.74)

where

Ak+1 =
[

Ak

−hT
j∗(xk+1)

]
, bk+1 =

[
bk

−hT
j∗(xk+1)xk+1 − cj∗(xk+1)

]

Quadratic and Convex Programming 435

The iterations continue until the LP subproblem reaches a solution x∗ at which
the most negative constraint function cj(x∗) in Eq. (13.70b) is no less than −ε,
where ε is a prescribed tolerance for nonfeasibility.

An algorithm for the problem in Eq. (13.70) based on Kelley’s method is as
follows.

Algorithm 13.6 Kelley’s cutting-plane algorithm for CP problems
with inequality constraints
Step 1
Input an initial point x0.
Set k = 0 and initialize the tolerance ε.
Step 2
Evaluate Ak and bk in Eq. (13.71).
Step 3
Solve the LP problem in Eq. (13.72) to obtain minimizer x∗

k.
Step 4
If min{cj(x∗

k), 1 ≤ j ≤ q} ≥ −ε, output x∗ = x∗
k and stop; otherwise,

set k = k + 1, xk+1 = x∗
k, update Ak and bk in Eq. (13.72b) by using

Eq. (13.74), and repeat from Step 3.

Example 13.5 The two ellipses in Fig. 13.5 are described by

c1(x) = −[x1 x2]
[1

4 0
0 1

] [
x1

x2

]
+ [x1 x2]

[1
2
0

]
+ 3

4 ≥ 0

c2(x) = −1
8 [x3 x4]

[
5 3
3 5

] [
x3

x4

]
+ [x3 x4]

[11
2
13
2

]
− 35

2 ≥ 0

where x = [x1 x2 x3 x4]T . Find the shortest distance between the two ellipses
using Algorithm 13.6.

Solution The problem can be formulated as the constrained minimization prob-
lem

minimize f(x) = 1
2 [(x1 − x3)2 + (x2 − x4)2]

subject to: c1(x) ≥ 0 and c2(x) ≥ 0

The quadratic objective function has a positive-definite constant Hessian, and
obviously the quadratic constraint functions −c1(x) and −c2(x) are convex
functions. Hence this is a CP problem. In order to apply Algorithm 13.6, we
convert the problem at hand into

minimize cTz

subject to: ĉi(z) ≥ 0 for i = 0, 1, 2

436

1

1

2

32

3

R

S

x1 x3,

x2 , x4

4

5

6

4

r*

s*

Figure 13.5. Distance between two ellipses (Example 13.5).

where z = [x1 x2 x3 x4 L]T , c = [0 0 0 0 1]T , ĉ0(z) = L − f(x),
ĉ1(z) = c1(x), and ĉ2(z) = c2(x).

With

x0 =

⎡
⎢⎢⎣

1.5
0.5
2.5
4.0

⎤
⎥⎥⎦ , L0 = 1, and ε = 10−7,

the algorithm took 186 iterations and 10.75 Mflops to converge to the solution

x∗ =

⎡
⎢⎢⎣

1.992222
0.868259
2.577907
2.475862

⎤
⎥⎥⎦

which corresponds to the solution points r∗ ∈ R and s∗ ∈ S given by

r∗ =
[
1.992222
0.868259

]
and s∗ =

[
2.577907
2.475862

]

These points give the shortest distance between R and S as ||r∗ − s∗|| =
1.710969.

Quadratic and Convex Programming 437

13.6 Ellipsoid Methods
Another class of cutting-plane algorithms, known as ellipsoid algorithms,

was developed by Shor, Nemirovski, and Yudin during the 70’s and was used
by Khachiyan [13] to demonstrate the existence of polynomial-time algorithms
for LP. Starting from an initial ellipsoid E0 which contains a minimizer, an
ellipsoid algorithm generates a hyperplane that passes through the center of the
ellipsoid to divide it into two parts, one of which, denoted as E0h, contains
the minimizer. The algorithm then continues by generating another ellipsoid
E1 that entails minimum volume which contains E0h. Next, a hyperplane that
passes through the center of E1 is generated to cut E1 in half, where the half
containing the minimizer is denoted as E1h. The algorithm goes on to generate
a sequence of progressively smaller ellipsoids, each of which containing the
minimizer. After a sufficiently large number of iterations, the volume of the
ellipsoid shrinks to zero and the minimizer is localized. Below we describe a
basic ellipsoid method reported in [10].

13.6.1 Basic ellipsoid method for unconstrained CP
problems

Consider minimizing a convex objective function f(x) whose subgradient
is denoted as g(x). Assume that f(x) has a minimizer and that an ellipsoid
E0 that contains the minimizer as an interior point has been identified. At the
kth iteration of the algorithm, an ellipsoid Ek in the n-dimensional Euclidean
space En is described as

Ek = {x : (x− xk)TA−1
k (x − xk) ≤ 1}

where xk is the center of the ellipsoid and Ak is a symmetric and positive-
definite matrix. The lengths of the semi-axes of Ek are the square roots of the
eigenvalues of Ak and the volume of Ek is given by [10] as

vol(Ek) = βn

√
det(Ak)

where βn is the volume of the unit ball in En given by

βn =
πn/2

Γ(n
2 + 1)

and Γ(x) is the gamma function whose value at n/2 + 1 can be evaluated as

Γ
(

n
2 + 1

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
n
2

)
! for n even

√
π

2(n+1)/2

(n+1)/2∏
k=1

(2k − 1) for n odd

438

The hyperplane Pk = {x : gT
k (x − xk) = 0}, where gk denotes a sub-

gradient of f(x) at xk, passes through the center of the ellipsoid and cuts the
ellipsoid in half. Since f(x) is convex, we have

f(x) ≥ f(xk) + gT
k (x− xk) (13.75)

Hence only the half of ellipsoid Ekh obtained by the intersection

Ekh = Ek ∩ {x : gT
k (x− xk) ≤ 0}

contains the minimizer. The next ellipsoid that contains Ekh with minimum
volume is given by [13] as

Ek+1 = {x : (x − xk+1)TA−1
k+1(x − xk+1) ≤ 1}

where

xk+1 = xk − Akg̃k

n + 1
(13.76a)

Ak+1 =
n2

n2 − 1

(
Ak − 2

n + 1
Akg̃kg̃T

k Ak

)
(13.76b)

g̃k =
gk

(gT
k Akgk)1/2

(13.76c)

and has a minimum volume

vol(Ek+1) =
(

n

n + 1

)(n+1)/2 (n

n − 1

)(n−1)/2

vol(Ek)

< e−1/2nvol(Ek) (13.77)

Note that the volume-reduction rate depends only on the dimension of the
parameter space. In the case of n = 2, for example, the reduction rate is
0.7698. Moreover, Eq. (13.77) implies that

vol(Ek) < e−k/2nvol(E0)

and hence vol (Ek) approaches zero as k → ∞. This in conjunction with
the fact that Ek for any k contains a minimizer proves the convergence of the
algorithm.

An easy-to-use criterion for terminating the algorithm can be derived as fol-
lows by using the convexity property of f(x). If x∗ is the minimizer contained
in Ek, then Eq. (13.75) implies that

f(x∗) ≥ f(xk) + gT
k (x∗ − xk)

Hence

f(xk) − f(x∗) ≤ −gT
k (x∗ − xk) ≤ max

x∈Ek

[−gT
k (x − xk)]

Quadratic and Convex Programming 439

It can be shown (see Prob. 13.14) that

max
x∈Ek

[−gT
k (x− xk)] = (gT

k Akgk)1/2 (13.78)

Therefore, we can terminate the algorithm if

(gT
k Akgk)1/2 < ε

where ε is a prescribed tolerance. The method leads to the following algorithm.

Algorithm 13.7 Ellipsoid algorithm for unconstrained CP problems
Step 1
Input an initial ellipsoid defined by a positive-definite matrix A0 with
center x0 that contains at least one minimizer.
Set k = 0 and initialize the tolerance ε.
Step 2
Evaluate a subgradient gk and compute γk = (gT

k Akgk)1/2.
Step 3
If γk < ε, then output x∗ = xk and stop; otherwise, continue with Step
4.
Step 4
Compute g̃k, xk+1, and Ak+1 using Eq. (13.76).
Set k = k + 1 and repeat from Step 2.

Example 13.6 It is known that the function

f(x) = (x1 − 5x2 + 4)2 + (7x1 + 11x2 − 18)4

is globally convex and has a unique minimum atx∗ = [1 1]T . Find the minimum
point by applying Algorithm 13.7 with three different initial ellipses.

Solution Three possible initial ellipses are

E
(1)
0 :

(x1 − 4)2

62
+

(x2 + 1)2

32
≤ 1

E
(2)
0 :

(x1 − 31)2

402
+

(x2 − 11)2

162
≤ 1

E
(3)
0 :

(x1 − 61)2

802
+

(x2 + 29)2

482
≤ 1

and each can be shown to contain the minimizer. The three ellipses can be
represented by

E
(i)
0 = {x : (x − x(i)

0)TA(i)−1

0 (x − x(i)
0) ≤ 1}

440

where

x(1)
0 =

[
4

−1

]
, A(1)

0 =
[
36 0
0 9

]

x(2)
0 =

[
31
11

]
, A(2)

0 =
[
1600 0

0 256

]

x(3)
0 =

[
61

−29

]
, A(3)

0 =
[
6400 0

0 2304

]

With ε = 10−7, Algorithm 13.7 quickly converged to the solution. The numer-
ical results obtained from the three trials are summarized in Table 13.1.

Table 13.1 Numerical results for Example 13.6

x0 x∗ Iterations Kflops
[4 − 1]T [0.999975 0.999984]T 59 4.344

[31 11]T [0.999989 1.000013]T 68 5.001

[61 − 29]T [0.999560 0.999911]T 73 5.374

13.6.2 Ellipsoid method for constrained CP problems
The ellipsoid algorithm studied in Sec. 13.6.1 can be extended to deal with

the convex problem
minimize f(x) (13.79a)

subject to: cj(x) ≥ 0 for j = 1, 2, . . . , q (13.79b)

where f(x) and −cj(x) for j = 1, 2, . . . , q are convex functions. At the
kth iteration of the algorithm, we examine the center of ellipsoid Ek, xk, to
see whether or not it is a feasible point. If xk is feasible, then we perform the
iteration in the same way as in the unconstrained case. Since the iteration yields
a new point xk+1 at which the objective function f(x) is reduced as in the case
where Algorithm 13.7 is used, such an iteration is referred to as an objective
iteration.

If xk is not feasible, then at least one constraint is violated at xk. Let j∗ be
the index for the most negative cj∗(xk). Since −cj∗(x) is convex, we have

−cj∗(x) ≥ −cj∗(xk) + hT
k (x− xk) for all x (13.80)

where hk is a subgradient of −cj∗(x) at xk. It follows that at any point x
with hT

k (x − xk) ≥ 0, we have cj∗(x) < 0, i.e., x is nonfeasible. Hence the
hyperplane defined by hT

k (x − xk) = 0 divides ellipsoid Ek into two parts,
one of which is a region where every point is nonfeasible and, therefore, can be

Quadratic and Convex Programming 441

excluded in the subsequent iterations. Under these circumstances, the part of
Ek that should be kept is obtained by the intersection

Ekh = Ek ∩ {x : hT
k (x− xk) ≤ 0}

Using an argument similar to that used in Sec. 13.6.1, we conclude that the next
ellipsoid that contains Ekh with minimum volume is given by

Ek+1 = {x : (x− xk+1)TA−1
k+1(x− xk+1) ≤ 1} (13.81a)

where

xk+1 = xk − Akg̃k

n + 1
(13.81b)

Ak+1 =
n2

n2 − 1
(Ak − 2

n + 1
Akg̃kg̃T

k Ak) (13.81c)

g̃k =
hk

(hT
k Akhk)1/2

(13.81d)

It follows from the above analysis that Eq. (13.81) generates a new ellipsoid with
a center xk+1 that is more likely to be feasible but does not necessarily reduce
the objective function. For this reason the iteration associated with Eq. (13.81)
is referred to as a constraint iteration. If xk+1 is indeed feasible, then the next
iterate xk+2 can be generated using an objective iteration but if xk+1 is still
nonfeasible, then another constraint iteration must be carried out to generate
point xk+2. The iterations continue in this manner until a point, say, xK , is
reached that satisfies all the constraints in Eq. (13.79b) and (gT

KAKgK)1/2 < ε,
where gK is a subgradient of f(x) at xK .

Note that in a constraint iteration, the convexity of −cj∗(xk) leads to

−cj∗(xk) + cj∗(x̂) ≤ −hT
k (x̂ − xk)

≤ max
x∈Ek

−hT
k (x − xk) = (hT

k Akhk)1/2

where x̂ denotes the point at which cj∗(x) reaches its maximum in Ek. It
follows that

cj∗(x̂) ≤ cj∗(xk) + (hT
k Akhk)1/2

and hence cj∗(x̂) < 0 if

cj∗(xk) + (hT
k Akhk)1/2 < 0 (13.82)

Since x̂ is a maximizer of cj∗(x) in ellipsoid Ek, the condition in Eq. (13.82)
implies that cj∗(x) < 0 in the entire Ek. In effect, no feasible points exist in
Ek in such a case. Therefore, Eq. (13.82) can serve as a criterion as to whether
the iteration should be terminated or not. An algorithm based on the approach
is as follows.

442

Algorithm 13.8 Ellipsoid method for CP constrained problems
Step 1
Input an initial ellipsoid defined by a positive definite A0 with center x0

that contains at least one minimizer.
Set k = 0 and initialize the tolerance ε.
Step 2
If xk is feasible continue with Step 2a, otherwise, go to Step 2b.

Step 2a
Evaluate a subgradient of f(x) at xk denoted as gk.
Compute g̃k = gk/(gT

k Akgk)1/2and γk = (gT
k Akgk)1/2.

Go to Step 4.
Step 2b
Let cj∗(x) be a constraint function such that

cj∗(xk) = min
1≤j≤q

[cj(xk)] < 0

Evaluate a subgradient of −cj∗(x) at xk and denote it as hk.
Compute g̃k = hk/(hT

k Akhk)1/2.
Continue with Step 3.

Step 3
If the condition in Eq. (13.82) holds, terminate the iteration; otherwise,
go to Step 5.
Step 4
If γk < ε, output x∗ = xk and stop; otherwise, continue with Step 5.
Step 5
Compute

xk+1 = xk − Akg̃k

n + 1

Ak+1 =
n2

n2 − 1

(
Ak − 2

n + 1
Akg̃kg̃T

k Ak

)

Set k = k + 1 and repeat from Step 2.

Example 13.7 By applying Algorithm 13.8 find the minimizer of the convex
problem with the objective function given in Example 13.6 and the constraints
given by

c1(x) = 2x1 − x2 − 6 ≥ 0
c2(x) = −2x1 − x2 + 10 ≥ 0
c3(x) = −3x1 + x2 + 15 ≥ 0
c4(x) = 3x1 + x2 − 9 ≥ 0

Quadratic and Convex Programming 443

Solution From Example 13.6, we know that the minimizer of the unconstrained
counterpart of this problem isx∗

u = [1 1]T at which c1(x∗
u) < 0 and c4(x∗

u) < 0.
Hence x∗

u is not a feasible point for the present constrained CP problem. We

start the algorithm with ellipse E
(1)
0 defined in Example 13.6 for which

x0 =
[

4
−1

]
and A0 =

[
36 0
0 9

]

Ellipse E
(1)
0 is large enough to contain the entire feasible region. Therefore,

it also contains the minimizer of the problem. Notice that cj(x0) > 0 for
1 ≤ j ≤ 4 and hence x0 is a feasible initial point. With ε = 10−7, it took the
algorithm 76 iterations to converge to the minimizer

x∗ =
[

3.063142
−0.189377

]

which yields f(x∗) = 67.570003. The number of flops used was 7627.

References
1 G. H. Golub and C. F. Van Loan, Matrix Computation, 2nd ed., Baltimore, Johns Hopkins

University Press, MD, 1989.

2 R. Fletcher, Practical Methods of Optimization, 2nd ed., Wiley, NY, 1987.

3 P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, NY, 1981.

4 D. Goldfarb and A. Idnani, “A numerically stable dual method for solving strictly convex
quadratic programs,” Math. Prog., vol. 27, pp. 1–33, 1983.

5 C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice Hall, Englewood
Cliffs, NJ, 1974.

6 R. D. C. Monteiro and I. Adler, “Interior path following primal-dual algorithms, Part II: Con-
vex quadratic programming,” Math. Programming, vol. 44, pp. 45–66, 1989.

7 R. D. C. Monteiro and I. Adler, “Interior path following primal-dual algorithms,Part I: Linear
programming,” Math. Programming, vol. 44, pp. 27–41, 1989.

8 S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1997.

9 Y. Ye, Interior Point Algorithms: Theory and Analysis, Wiley, NY, 1997.

10 S. P. Boyd and C. H. Barratt, Linear Controller Design: Limits of Performance, Prentice
Hall, Englewood Cliffs, NJ, 1991.

11 J. E. Kelley, “The cutting-plane method for solving convex programs,” J. SIAM, vol. 8,
pp. 703–712, Dec. 1960.

12 R. T. Rockafellar, Convex Analysis, 2nd ed., Princeton University Press, Princeton, NJ.,
1970.

13 L. G. Khachiyan, “A polynomial algorithm in linear programming,” Soviet Math. Doklady,
vol. 20, pp. 191–194, 1979.

444

Problems

13.1 Let H(ω) =
N∑

i=0

ai cos iω and x = [a0 a1 · · · aN]T . Show that the

constrained optimization problem

minimize f(x) =
∫ π

0
W (ω)|H(ω) − Hd(ω)|2dω

subject to: |H(ωk) − Hd(ωk)| ≤ δk for k = 1, 2, . . . , K

is a convex QP problem. In this problem, Hd(ω) and W (ω) are given
real-valued functions, W (ω) ≥ 0 is a weighting function, {ω : ωk, k =
1, 2, . . . , K} is a set of grid points on [0, π], and δk > 0 for 1 ≤ k ≤ K
are constants.

13.2 Solve the QP problems
(a)

minimize f(x) = 2x2
1 + x2

2 + x1x2 − x1 − x2

subject to: x1 + x2 = 1

(b)

minimize f(x) = 1.5x2
1−x1x2 +x2

2−x2x3 +0.5x2
3 +x1 +x2 +x3

subject to: x1 + 2x2 + x3 = 4

by using each of the following three methods: the SVD, QR decom-
position, and the Lagrange-multiplier methods.

13.3 By applying Algorithm 13.1, solve the following QP problems:
(a)

minimize f(x) = 3x2
1 + 3x2

2 − 10x1 − 24x2

subject to: − 2x1 − x2 ≥ −4
x ≥ 0

with x0 = [0 0]T .
(b)

minimize f(x) = x2
1 − x1x2 + x2

2 − 3x1

subject to: − x1 − x2 ≥ −2
x ≥ 0

with x0 = [0 0]T .

Quadratic and Convex Programming 445

(c)

minimize f(x) = x2
1 + 0.5x2

2 − x1x2 − 3x1 − x2

subject to: − x1 − x2 ≥ −2
−2x1 + x2 ≥ −2

x ≥ 0

with x0 = [0 0]T .
(d)

minimize f(x) = x2
1 +x2

2 +0.5x2
3 +x1x2 +x1x3−4x1−3x2−2x3

subject to: − x1 − x2 − x3 ≥ −3
x ≥ 0

with x0 = [0 0 0]T .

13.4 Verify that the solution of Eq. (13.39) is given by Eq. (13.42).

13.5 (a) Convert the QP problems in Prob. 13.3 into the form in Eq. (13.28).

(b) Solve the QP problems obtained in part (a) by applying Algorithm
13.2.

13.6 Verify that the solution of Eq. (13.46) is given by Eq. (13.47).

13.7 (a) Solve the QP problems obtained in Prob. 13.5(a) by applying Algo-
rithm 13.3.

(b) Compare the results obtained in part (a) with those obtained in Prob.
13.5(b).

13.8 Show that if H is positive definite, A is of full row rank, µk > 0, and
xk > 0, then Eq. (13.39) has a unique solution for δw.

13.9 (a) By applying Algorithm 13.2 solve the following QP problem:

minimize 1
2x

T (hhT)x + xT p

subject to: Ax = b
x ≥ 0

where

h =

⎡
⎢⎢⎣

1
−4

2
1

⎤
⎥⎥⎦ , A = [1 1 1 1], b = 4, p =

⎡
⎢⎢⎣
−1

0
7
4

⎤
⎥⎥⎦

with x0 = [1 1 1 1]T , λ0 = −2, and µ0 = [1 2 9 6]T .

446

(b) By applying Algorithm 13.3, solve the QP problem in part (a) with
x0 = [3 3 3 3]T , λ0 = 1, and µ0 = [1 1 1 1]T . Compare the solution
obtained with that of part (a).

13.10 Show that
(a)

K =
[

0 −AT

A 0

]

is positive semidefinite in the sense of Eq. (13.53).

(b) Show that if H is positive semidefinite, then

K =
[
H −AT

A 0

]

is positive definite in the sense of Eq. (13.53).

13.11 (a) Convert the QP problem in Prob. 13.9(a) using the initial values for
x0, λ0, and µ0 given in Prob. 13.9(b) to a mixed LCP problem.

(b) Solve the LCP problem obtained in part (a) by applying Algorithm
13.4.

(c) Compare the solutions obtained with those obtained in Prob. 13.9(b).

13.12 Demonstrate the validity of the following:

(a) If f(x) is differentiable, then the gradient of f(x) is a subgradient.

(b) If α > 0, then a subgradient of αf(x) is given by αg where g is a
subgradient of f(x).

(c) If f(x) = f1(x) + f2(x) + · · · + fr(x) where function fi(x) for
1 ≤ i ≤ r are convex, then g = g1 + g2 + · · · + gr is a subgradient
of f(x) where gi is a subgradient of fi(x).

(d) If
f(x) = max[f1(x), f2(x), . . . , fr(x)]

where fi(x) for 1 ≤ i ≤ r are convex, then at point x there is at least
one index i∗ with 1 ≤ i∗ ≤ r such that f(x) = fi∗(x). In this case a
subgradient of fi∗(x), gi∗ , is a subgradient of f(x).

13.13 Consider the problem of finding the shortest distance between the circular
and elliptic disks shown in Fig. P13.13.

(a) Using the following ‘sequential QP’ approach, obtain an approximate
solution of the problem: (i) Replace the disks by polygons with, say,
k edges that approximate the circle and ellipse from either inside or
outside; (ii) formulate the problem of finding the shortest distance
between the two polygons as a QP problem; (iii) apply one of the

Quadratic and Convex Programming 447

-1

2.82 x

y

1

2

3

-2

4

1.5

Figure P13.13.

algorithms described in Sec. 13.4 to find a solution of the QP problem;
(iv) improve the solution accuracy by increasing the number of edges,
k, of each of the two polygons.

(b) Formulate the shortest distance problem as a CP problem and solve it
by using Algorithm 13.6.

(c) Solve the CP problem formulated in part (b) by applying Algorithm
13.8 and compare the results with those obtained in part (b).

13.14 LetA ∈ Rn×n be positive definite andg ∈ Rn×1, x ∈ Rn×1 be arbitrarily
given vectors. Show that

max
z∈Ex

[−gT (z − x)] = (gTAg)1/2

where
Ex = {z : (z − x)TA−1(z − x) ≤ 1}

Hint: Assume thatA = diag{σ1, σ2, . . . , σn}with σi > 0 for 1 ≤ i ≤ n
without loss of generality.

13.15 Consider the least-squares minimization problem with quadratic inequal-
ity (LSQI) constraints which arises in cases where the solution to the
ordinary least-squares problem needs to be regularized [1], namely,

minimize ||Ax− b||

subject to: ||Bx|| ≤ δ

where A ∈ Rm×n, b ∈ Rm×1, B ∈ Rn×n with B nonsingular and
δ ≥ 0.

(a) Convert the LSQI problem to the standard CP problem in Eq. (13.68).

448

(b) With

A =

⎡
⎣ 2 0

0 1
0 0

⎤
⎦ , b =

⎡
⎣ 4

2
3

⎤
⎦ , B =

[
1 0
0 1

]
, and δ = 0.1

apply Algorithms 13.6 and 13.8 to solve the LSQI problem.

(c) Apply the algorithms used in part (b) to the case where δ is increased
to 1. Compare the solution obtained with those in part (b).

Chapter 14

SEMIDEFINITE AND SECOND-ORDER
CONE PROGRAMMING

14.1 Introduction

Semidefinite programming (SDP) is a branch of convex programming (CP)
that has been a subject of intensive research since the early 1990’s [1]–[9]. The
continued interest in SDP has been motivated mainly by two reasons. First,
many important classes of optimization problems such as linear-programming
(LP) and convex quadratic-programming (QP) problems can be viewed as SDP
problems, and many CP problems of practical usefulness that are neither LP nor
QP problems can also be formulated as SDP problems. Second, several interior-
point methods that have proven efficient for LP and convex QP problems have
been extended to SDP in recent years.

Another important branch of convex programming is second-order cone pro-
gramming (SOCP). Although quite specialized, this branch of optimization can
deal effectively with many analysis and design problems in various disciplines.
Furthermore, as for SDP, efficient interior-point methods are available for the
solution of SOCP problems.

This chapter starts with the formulation of the primal and dual SDP prob-
lems. It then demonstrates that several useful CP problems can be formulated
in an SDP setting. After an introduction of several basic properties of the
primal-dual solutions of an SDP problem, a detailed account on several effi-
cient interior-point SDP methods is provided. The methods considered include
the primal-dual interior-point methods studied in [5]–[9] and the projective
method proposed in [4][14]. The last two sections of the chapter are devoted
to the primal and dual SOCP formulations and their relations to corresponding
LP, QP, and SDP formulations; they also include an interior-point algorithm as
well as several examples that illustrate how several important CP problems can
be formulated as SOCP problems.

450

14.2 Primal and Dual SDP Problems
14.2.1 Notation and definitions

Let Sn be the space of real symmetric n × n matrices. The standard inner
product on Sn is defined by

A ·B = trace(AB) =
n∑

i=1

n∑
j=1

aijbij

where A = {aij} and B = {bij} are two members of Sn.
The primal SDP problem is defined as

minimize C · X (14.1a)

subject to: Ai · X = bi for i = 1, 2, . . . , p (14.1b)

X � 0 (14.1c)

where C, X, and Ai for 1 ≤ i ≤ p are members of Sn and the notation in
Eq. (14.1c) denotes that X is positive semidefinite (see Sec. 10.2). It can be
readily verified that the problem formulated in Eq. (14.1) is a CP problem (see
Prob. 14.1). An important feature of the problem is that the variable involved is
a matrix rather than a vector. Despite this distinction, SDP is closely related to
several important classes of optimization problems. For example, if matrices
C and Ai for 1 ≤ i ≤ p are all diagonal matrices, i.e.,

C = diag{c}, Ai = diag{ai}

with c ∈ Rn×1 and ai ∈ Rn×1 for 1 ≤ i ≤ p, then the problem in Eq. (14.1)
is reduced to the standard-form LP problem

minimize cTx (14.2a)

subject to: Ax = b (14.2b)

x ≥ 0 (14.2c)

where A ∈ Rp×n is a matrix with aT
i as its ith row, b = [b1 b2 · · · bp]T , and

vector x ∈ Rn×1 is the diagonal of X. The similarity between Eqs. (14.1a)
and (14.2a) and between Eqs. (14.1b) and (14.2b) is quite evident. To see the
similarity between Eq. (14.1c) and (14.2c), we need the concept of convex cone.

Definition 14.1 A convex cone K is a convex set such that x ∈ K implies that
αx ∈ K for any scalar α ≥ 0.

It can be readily verified that both sets {X : X ∈ Rn×n, X � 0} and
{x : x ∈ Rn×1, x ≥ 0} are convex cones (see Prob. 14.2). We now recall
that the dual of the LP problem in Eq. (14.2) is given by

Semidefinite and Second-Order Cone Programming 451

maximize bTy (14.3a)

subject to: ATy + s = c (14.3b)

s ≥ 0 (14.3c)

(see Chap. 12) and, therefore, the dual SDP problem with respect to the primal
SDP problem in Eq. (14.1) can be obtained as

maximize bTy (14.4a)

subject to:
p∑

i=1

yiAi + S = C (14.4b)

S � 0 (14.4c)

when S is a slack variable that can be regarded as a matrix counterpart of the
slack vector s in Eq. (14.3). To justify the maximization problem in Eq. (14.4)
as a dual of the problem in Eq. (14.1), we assume that there exist X ∈ Sn,
y ∈ Rp, and S ∈ Sn with X � 0 and S � 0 such that X is feasible for the
primal and {y, S} is feasible for the dual, and evaluate

C · X− bTy =

(p∑
i=1

yiAi + S

)
·X − bTy

= S · X ≥ 0 (14.5)

where the first and second equalities follow from Eq. (14.4b) and the inequality
is a consequence of the fact that both S and X are positive semidefinite (see
Prob. 14.3). Later in Sec. 14.3, it will be shown that if X∗ is a solution of the
primal and y∗ is a solution of the dual, then

S∗ · X∗ = 0 (14.6)

where S∗ is determined from Eq. (14.4b), i.e.,

S∗ = C −
p∑

i=1

y∗i Ai

From Eqs. (14.5) and (14.6), it follows that

C · X∗ − bTy∗ = 0 (14.7)

Eqs. (14.5) and (14.7) suggest that a duality gap similar to that in Eq. (12.6)
can be defined for the problems in Eqs. (14.1) and (14.4) as

δ(X, y) = C · X− bTy (14.8)

452

for X ∈ Fp and {y, S} ∈ Fd where Fp and Fd are the feasible sets for the
primal and dual defined by

Fp = {X : X � 0, Ai · X = bi for 1 ≤ i ≤ p}

Fd =

{
{y, S} :

p∑
i=1

yiAi + S = C, S � 0

}

respectively. From Eqs. (14.5) and (14.7), it follows that for any X ∈ Fp and
{y, S} ∈ Fd the duality gap δ(X, y) is nonnegative and the gap is reduced to
zero at the solutions X∗ and S∗ of the primal and dual problems.

If we combine the constraints in Eqs. (14.4b) and (14.4c) into one inequality
constraint, the dual SDP problem becomes

maximize bT y

subject to: C −
p∑

i=1

yiAi � 0

This is obviously equivalent to the following minimization problem

minimize cTx (14.9a)

subject to: F(x) � 0 (14.9b)

where c ∈ Rp×1, x ∈ Rp×1, and

F(x) = F0 +
p∑

i=1

xiFi

with Fi ∈ Sn for 0 ≤ i ≤ p. Notice that the positive semidefinite constraint on
matrix F(x) in Eq. (14.9b) is dependent on vector x in an affine manner. In the
literature, the type of problems described by Eq. (14.9) are often referred to as
convex optimization problems with linear matrix inequality (LMI) constraints,
and have found many applications in science and engineering [3][10]. Since
the minimization problem in Eq. (14.9) is equivalent to a dual SDP problem,
the problem itself is often referred to as an SDP problem.

14.2.2 Examples
(i) LP Problems As we have seen in Sec. 14.2.1, standard-form LP problems
can be viewed as a special class of SDP problems where the matrices C and Ai

for 1 ≤ i ≤ p in Eq. (14.1) are all diagonal.
The alternative-form LP problem

minimize cTx (14.10a)

subject to: Ax ≥ b, A ∈ Rp×n (14.10b)

Semidefinite and Second-Order Cone Programming 453

which was studied extensively in Chap. 11 (see Eq. (11.2)), can be viewed as a
linear minimization problem with LMI constraints. This can be demonstrated
by expressing matrices Fi for 0 ≤ i ≤ n in Eq. (14.9b) as

F0 = −diag{b}, Fi = diag{ai} for i = 1, 2, . . . , n (14.11)

where ai denotes the ith column of A.

(ii) Convex QP Problems The general convex QP problem

minimize xTHx + pT x with H � 0 (14.12a)

subject to: Ax ≥ b (14.12b)

which was studied in Chap. 13 (see Eq. (13.1)), can be formulated as

minimize δ (14.13a)

subject to: xT Hx + pTx ≤ δ (14.13b)

Ax ≥ b (14.13c)

where δ is an auxiliary scalar variable.
Since H is positive semidefinite, we can find a matrix Ĥ such that H =

ĤT Ĥ (see proof of Theorem 7.2); hence the constraint in Eq. (14.13b) can be
expressed as

δ − pT x− (Ĥx)T (Ĥx) ≥ 0 (14.14)

It can be shown (see Prob. 14.4(a)) that the inequality in Eq. (14.14) holds if
and only if

G(δ, x) =
[

In Ĥx
(Ĥx)T δ − pTx

]
� 0 (14.15)

where In is the n × n identity matrix. Note that matrix G(δ, x) is affine with
respect to variables x and δ. In addition, the linear constraints in Eq. (14.13c)
can be expressed as

F(x) = F0 +
n∑

i=1

xiFi � 0 (14.16)

where the Fi for 0 ≤ i ≤ n are given by Eq. (14.11). Therefore, by defining
an augmented vector

x̂ =
[

δ
x

]
(14.17)

the convex QP problem in Eq. (14.12) can be reformulated as the SDP problem

minimize ĉT x̂ (14.18a)

subject to: E(x̂) � 0 (14.18b)

454

where ĉ ∈ Rn+1 with
ĉ = [1 0 · · · 0]T (14.19)

and
E(x̂) = diag{G(δ, x), F(x)}

(iii) Convex QP Problems with Quadratic Constraints Now let us consider the
CP problem

minimize xT Hx + pTx (14.20a)

subject to: xTQix + qT
i x + ri ≤ 0 for i = 1, 2, . . . , p (14.20b)

where H � 0 and Qi � 0 for 1 ≤ i ≤ p. The class of problems represented
by Eq. (14.20) covers the conventional convex QP problems represented by
Eq. (14.12) as a subclass if Qi = 0 for all i. Again, by introducing an auxiliary
scalar variable δ, the problem in Eq. (14.20) can be converted to

minimize δ (14.21a)

subject to: xTHx + pTx ≤ δ (14.21b)

xT Qix + qT
i x + ri ≤ 0 for 1 ≤ i ≤ p (14.21c)

As in the convex QP case, the constraint in Eq. (14.21b) is equivalent to the
constraint in Eq. (14.15) and the constraints in Eq. (14.21c) are equivalent to

Fi(x) =
[

In Q̂ix
(Q̂ix)T −qT

i x− ri

]
� 0 for 1 ≤ i ≤ p (14.22)

where Q̂i is related to Qi by the equation Qi = Q̂T
i Q̂i. Consequently, the

quadratically constrained convex QP problem in Eq. (14.20) can be formulated
as the SDP problem

minimize ĉT x̂ (14.23a)

subject to: E(x̂) � 0 (14.23b)

where x̂ and ĉ are given by Eqs. (14.17) and (14.19), respectively, and

E(x̂) = diag{G(δ, x), F1(x), F2 (x), . . . , Fp(x)}

where G(δ, x) and Fi(x) are given by Eqs. (14.15) and (14.22), respectively.
There are many other types of CP problems that can be recast as SDP prob-

lems. One of them is the problem of minimizing the maximum eigenvalue of
an affine matrix that can arise in structure optimization, control theory, and
other areas [1][11]. This problem can be formulated as an SDP problem of the
form in Eq. (14.4) (see Prob. 14.5). The reader is referred to [3][10] for more
examples.

Semidefinite and Second-Order Cone Programming 455

14.3 Basic Properties of SDP Problems
14.3.1 Basic assumptions

The feasible sets Fp and Fa for the primal and dual problems were defined
in Sec. 14.2.1. A matrix X is said to be strictly feasible for the primal problem
in Eq. (14.1) if it satisfies Eq. (14.1b) and X 0. Such a matrix X can be
viewed as an interior point of Fp. If we let

Fo
p = {X : X 0, Ai · X = bi for 1 ≤ i ≤ p}

then Fo
p is the set of all interior points of Fp and X is strictly feasible for the

primal if X ∈ Fo
p . Similarly, we can define the set of all interior points of Fd

as

Fo
d =

{
{y, S} :

p∑
i=1

yiAi + S = C, S 0

}

and a pair {y, S} is said to be strictly feasible for the dual problem in Eq. (14.4)
if {y, S} ∈ Fo

d .
Unless otherwise stated, the following assumptions will be made in the rest

of the chapter:

1. There exists a strictly feasible point X for the primal problem in Eq. (14.1)
and a strictly feasible pair {y, S} for the dual problem in Eq. (14.4). In
other words, both Fo

p and Fo
d are nonempty.

2. Matrices Ai for i = 1, 2, . . . , p in Eq. (14.1b) are linearly independent,
i.e., they span a p-dimensional linear space in Sn.

The first assumption ensures that the optimization problem at hand can be
tackled by using an interior-point approach. The second assumption, on the
other hand, can be viewed as a matrix counterpart of the assumption made for
the LP problem in Eq. (14.2) that the row vectors in matrix A in Eq. (14.2b)
are linearly independent.

14.3.2 Karush-Kuhn-Tucker conditions
The Karush-Kuhn-Tucker (KKT) conditions for the SDP problem in Eq.

(14.1) can be stated as follows: Matrix X∗ is a minimizer of the problem in Eq.
(14.1) if and only if there exist a matrix S∗ ∈ Sn and a vector y∗ ∈ Rp such
that

p∑
i=1

y∗i Ai + S∗ = C (14.24a)

Ai · X∗ = bi for 1 ≤ i ≤ p (14.24b)

S∗X∗ = 0 (14.24c)

X∗ � 0, S∗ � 0 (14.24d)

456

As noted in Sec. 14.2.1, if Ai = diag{ai} and C = diag{c} with ai ∈ Rn

and c ∈ Rn for 1 ≤ i ≤ p, the problem in Eq. (14.1) becomes a standard-form
LP problem. In such a case, matrix X∗ in Eq. (14.24) is also diagonal and the
conditions in Eq. (14.24) become identical with those in Eq. (12.3), which are
the KKT conditions for the LP problem in Eq. (14.2).

While the equations in (14.24a) and (14.24b) are linear, the complementarity
constraint in Eq. (14.24c) is a nonlinear matrix equation. It can be shown that
under the assumptions made in Sec. 14.3.1, the solution of Eq. (14.24) exists
(see Theorem 3.1 of [3]). Furthermore, if we denote a solution of Eq. (14.24) as
{X∗, y∗, S∗}, then it can be readily verified that {y∗, S∗} is a maximizer for
the dual problem in Eq. (14.4). For these reasons, a set {X∗, y∗, S∗} satisfying
Eq. (14.24) is called a primal-dual solution. It follows that {X∗, y∗, S∗} is a
primal-dual solution if and only if X∗ solves the primal problem in Eq. (14.1)
and {y∗, S∗} solves the dual problem in Eq. (14.4).

14.3.3 Central path
As we have seen in Chaps. 12 and 13, the concept of central path plays an

important role in the development of interior-point algorithms for LP and QP
problems. For the SDP problems in Eqs. (14.1) and (14.4), the central path
consists of set {X(τ), y(τ), S(τ)} such that for each τ > 0 the equations

p∑
i=1

yi(τ)Ai + S(τ) = C (14.25a)

Ai · X(τ) = bi for 1 ≤ i ≤ p (14.25b)

X(τ)S(τ) = τI (14.25c)

S(τ) � 0, X(τ) � 0 (14.25d)

are satisfied.
Using Eqs. (14.8) and (14.25), the duality gap on the central path can be

evaluated as

δ[X(τ), y(τ)] = C · X(τ) − bT y(τ)

=

[p∑
i=1

yi(τ)Ai + S(τ)

]
· X(τ) − bTy(τ)

= S(τ) · X(τ) = trace[S(τ)X(τ)]
= trace(τI) = nτ (14.26)

which implies that
lim
τ→0

δ[X(τ), y(τ)] = 0

Therefore, the limiting set {X∗, y∗, S∗} obtained from X(τ) → X∗, y(τ) →
y∗, and S(τ) → S∗ as τ → 0 is a primal-dual solution. This claim can also

Semidefinite and Second-Order Cone Programming 457

be confirmed by examining Eqs. (14.25a)–(14.25d) which, as τ approaches
zero, become the KKT conditions in Eq. (14.24). In other words, as τ → 0,
the central path approaches a primal-dual solution. In the subsequent sections,
several algorithms will be developed to generate iterates that converge to a
primal-dual solution by following the central path of the problem. Since X(τ)
and S(τ) are positive semidefinite and satisfy Eqs. (14.24a) and (14.24b), re-
spectively, X(τ) ∈ Fp and {y(τ), S(τ)} ∈ Fd. Furthermore, the relaxed
complementarity condition in Eq. (14.24c) implies that for each τ > 0 both
X(τ) and S(τ) are nonsingular; hence X(τ) 0 and S(τ) 0, which imply
that X(τ) ∈ F◦

p and {y(τ), S(τ)} ∈ F◦
d . In other words, for each τ > 0, X(τ)

and {y(τ), S(τ)} are in the interior of the feasible regions for the problems in
Eqs. (14.1) and (14.4), respectively. Therefore, a path-following algorithm that
generates iterates that follow the central path is intrinsically an interior-point
algorithm.

14.3.4 Centering condition
On comparing Eqs. (14.24) and (14.25), we see that the only difference be-

tween the two systems of equations is that the complementarity condition in
Eq. (14.24c) is relaxed in Eq. (14.25c). This equation is often referred to as the
centering condition since the central path is parameterized by introducing vari-
able τ in Eq. (14.25c). Obviously, if X(τ) = diag{x1(τ), x2(τ), . . . , xn(τ)}
and S(τ) = diag{s1(τ), s2(τ), . . . , sn(τ)} as in LP problems, the centering
condition is reduced to n scalar equations, i.e.,

xi(τ)si(τ) = τ for 1 ≤ i ≤ n (14.27)

In general, the centering condition in Eq. (14.25c) involves n2 nonlinear
equations and, consequently, it is far more complicated than the condition in
Eq. (14.27). In what follows, we describe a linear algebraic analysis to reveal
the similarity between the general centering condition and the condition in
Eq. (14.27) [8]. Since X(τ) and S(τ) are positive definite, their eigenvalues
are strictly positive. Let δ1(τ) ≥ δ2(τ) ≥ · · · ≥ δn(τ) > 0 and 0 < γ1(τ) ≤
γ2(τ) ≤ · · · ≤ γn(τ) be the eigenvalues of X(τ) and S(τ), respectively. There
exists an orthogonal matrix Q(τ) such that

X(τ) = Q(τ) diag{δ1(τ), δ2(τ), . . . , δn(τ)}QT (τ)

From Eq. (14.25c), it follows that

S(τ) = τX−1(τ)

= Q(τ) diag
{

τ

δ1(τ)
,

τ

δ2(τ)
, . . . ,

τ

δn(τ)

}
QT (τ)

= Q(τ) diag{γ1(τ), γ2(τ), . . . , γn(τ)}QT (τ)

458

which leads to

δi(τ)γi(τ) = τ for 1 ≤ i ≤ n (14.28)

As τ → 0, we have δi(τ) → δ∗i and γi(τ) → γ∗
i where δ∗1 ≥ δ∗2 ≥ · · · ≥ δ∗n > 0

and 0 ≤ γ∗
1 ≤ γ∗

2 ≤ · · · ≤ γ∗
n are the eigenvalues of X∗ and S∗, respectively,

and Eq. (14.28) becomes

δ∗i γ
∗
i = 0 for 1 ≤ i ≤ n (14.29)

We note that the relations between the eigenvalues of X(τ) and S(τ) as speci-
fied by Eq. (14.28) resemble the scalar centering conditions in Eq. (14.27). In
addition, there is an interesting similarity between Eq. (14.29) and the comple-
mentarity conditions in LP problems (see Eq. (12.3c)).

14.4 Primal-Dual Path-Following Method
14.4.1 Reformulation of centering condition

A primal-dual path-following algorithm for SDP usually generates iterates
by obtaining approximate solutions of Eq. (14.25) for a sequence of decreasing
τi > 0 for k = 0, 1, If we let

G(X, y, S) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑p
i=1 yiAi + S− C

A1 · X− b1
...

Ap · X− bp

XS − τI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14.30)

then Eqs. (14.25a) to (14.25c) can be expressed as

G(X, y, S) = 0 (14.31)

We note that the domain of function G is in Sn × Rp × Sn while the range of
G is in Sn × Rp × Rn×n simply because matrix XS − τI is not symmetric
in general although both X and S are symmetric. This domain inconsistency
would cause difficulties if, for example, the Newton method were to be applied
to Eq. (14.31) to obtain an approximate solution. Several approaches that deal
with this nonsymmetrical problem are available, see, for example, [5]–[8]. In
[8], Eq. (14.25c) is rewritten in symmetric form as

XS + SX = 2τI (14.32)

Semidefinite and Second-Order Cone Programming 459

Accordingly, function G in Eq. (14.30) is modified as

G(X, y, S) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑p
i=1 yiAi + S− C

A1 · X− b1
...

Ap · X− bp

XS + SX − 2τI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14.33)

and its range is now in Sn ×Rp ×Sn. It can be shown that if X � 0 or S � 0,
then Eqs. (14.25c) and (14.32) are equivalent (see Prob. 14.6).

In the Newton method, we start with a given set {X, y, S} and find in-
crements ∆X, ∆y, and ∆S with ∆X and ∆S symmetric such that set
{∆X, ∆y, ∆S} satisfies the linearized equations

p∑
i=1

∆yiAi + ∆S = C− S −
p∑

i=1

yiAi (14.34a)

Ai · ∆X = bi −Ai · X for 1 ≤ i ≤ p

(14.34b)

X∆S + ∆SX + ∆XS + S∆X = 2τI− XS − SX (14.34c)

Eq. (14.34) contains matrix equations with matrix variables ∆X and ∆S. A
mathematical operation known as symmetric Kronecker product [8] (see also
Sec. A.14) turns out to be effective in dealing with this type of linear equations.

14.4.2 Symmetric Kronecker product
Given matrices K, M, and N in Rn×n, the general asymmetric Kronecker

product M ⊗ N with M = {mij} is defined as

M ⊗ N =

⎡
⎢⎣ m11N · · · m1nN

...
...

mn1N · · · mnnN

⎤
⎥⎦

(see Sec. A.14). To deal with matrix variables, it is sometimes desirable to
represent a matrix K as a vector, denoted as nvec(K), which stacks the columns
of K. It can be readily verified that

(M ⊗ N)nvec(K) = nvec(NKMT) (14.35)

The usefulness of Eq. (14.35) is that if a matrix equation involves terms like
NKMT , where K is a matrix variable, then Eq. (14.35) can be used to convert
NKMT into a vector variable multiplied by a known matrix.

460

If a matrix equation contains a symmetric term given by (NKMT +
MKNT)/2 where K ∈ Sn is a matrix variable, then the term can be read-
ily handled using the symmetric Kronecker product of M and N, denoted as
M � N, which is defined by the identity

(M � N)svec(K) = svec[12(NKMT + MKNT)] (14.36)

where sevc(K) converts symmetric matrix K = {kij} into a vector of dimen-
sion n(n + 1)/2 as

svec(K) = [k11

√
2k12 · · ·

√
2k1n k22

√
2k23 · · ·

√
2k2n · · · knn]T

(14.37)
Note that the standard inner product of A and B in Sn can be expressed as the
standard inner product of vectors svec(A) and svec(B), i.e.,

A ·B = svec(A)T svec(B) (14.38)

If we use a matrix K = {kij} with only one nonzero element kij for 1 ≤ i ≤
j ≤ n, then Eq. (14.36) can be used to obtain each column of M�N. Based on
this observation, a simple algorithm can be developed to obtain the n(n+1)/2-
dimensional matrix M � N (see Prob. 14.8). The following lemma describes
an explicit relation between the eigenvalues and eigenvectors of M � N and
the eigenvalues and eigenvectors of M and N (see Prob. 14.9).

Lemma 14.1 If M andN are symmetric matrices satisfying the relation MN =
NM, then the n(n + 1)/2 eigenvalues of M � N are given by

1
2(αiβj + βiαj) for 1 ≤ i ≤ j ≤ n

and the corresponding orthonormal eigenvectors are given by

svec(vivT
i) if i = j

1√
2
svec(vivT

j + vjvT
i) if i < j

where αi for 1 ≤ i ≤ n and βj for 1 ≤ j ≤ n are the eigenvalues of M
and N, respectively, and vi for 1 ≤ i ≤ n is a common basis of orthonormal
eigenvectors of M and N.

14.4.3 Reformulation of Eq. (14.34)
Eq. (14.34c) can be expressed in terms of the symmetric Kronecker product

as

(X� I)svec(∆S) + (S� I)svec(∆X) = svec[τI− 1
2(XS + SX)] (14.39)

Semidefinite and Second-Order Cone Programming 461

For the sake of simplicity, we denote

svec(∆X) = ∆x (14.40a)

svec(∆S) = ∆s (14.40b)

S� I = E (14.40c)

X� I = F (14.40d)

svec[τI− 1
2(XS + SX)] = rc (14.40e)

With this notation, Eq. (14.39) becomes

E∆x + F∆s = rc

To simplify Eqs. (14.34a) and (14.34b), we let

A =

⎡
⎢⎢⎢⎣

[svec(A1)]T

[svec(A2)]T
...

[svec(Ap)]T

⎤
⎥⎥⎥⎦ (14.41a)

x = svec(X) (14.41b)

y = [y1 y2 . . . yp]T (14.41c)

∆y = [∆y1 ∆y2 . . . ∆yp]T (14.41d)

rp = b − Ax (14.41e)

rd = svec[C− S− mat(ATy)] (14.41f)

where mat(·) is the inverse of svec(·). With the use of Eqs. (14.41a)–(14.41f),
Eqs. (14.34a) and (14.34b) can now be written as

AT∆y + ∆s = rd

A∆x = rp

and, therefore, Eq. (14.34) can be reformulated as

J

⎡
⎣∆x

∆y
∆s

⎤
⎦ =

⎡
⎣ rd

rp

rc

⎤
⎦ (14.42)

where

J =

⎡
⎣ 0 AT I

A 0 0
E 0 F

⎤
⎦

It can be readily verified that the solution of Eq. (14.42) is given by

∆x = −E−1[F(rd −AT ∆y) − rc] (14.43a)

∆s = rd − AT∆y (14.43b)

M∆y = rp + AE−1(Frd − rc) (14.43c)

462

where matrix M, which is known as the Schur complement matrix, is given by

M = AE−1FAT

From Eq. (14.43), we see that solving the system of linear equations in
Eq. (14.42) involves evaluating E−1 and computing ∆y from the linear system
in Eq. (14.43c). Hence the computational complexity is mainly determined by
the computations required to solve the system in Eq. (14.43c) [8]. Matrix J in
Eq. (14.42) is actually the Jacobian matrix of functionG defined by Eq. (14.33).
From Eq. (14.43), it can be shown that J is nonsingular (i.e., Eq. (14.42) has a
unique solution) if and only if M is nonsingular. It can also be shown that if
XS+SX 0 then M is nonsingular [12]. Therefore, XS+SX 0 is a suf-
ficient condition for Eq. (14.43) to have a unique solution set {∆x, ∆y, ∆s}.

14.4.4 Primal-dual path-following algorithm
The above analysis leads to the following algorithm.

Algorithm 14.1 Primal-dual path-following algorithm for SDP
problems
Step 1
Input Ai for 1 ≤ i ≤ p, b ∈ Rp, C ∈ Rn×n, and a strictly feasible set
{Xp, y0, S0} that satisfies Eqs. (14.1b) and (14.4b) with X0 0 and
S0 0.
Choose a scalar σ in the range 0 ≤ σ < 1.
Set k = 0 and initialize the tolerance ε for the duality gap δk.
Step 2
Compute

δk =
Xk · Sk

n

Step 3
If δk ≤ ε, output solution {Xk, yk, Sk} and stop; otherwise, set

τk = σ
Xk · Sk

n
(14.44)

and continue with Step 4.
Step 4
Solve Eq. (14.42) using Eqs. (14.43a)–(14.43c) whereX = Xk, y = yk,
S = Sk, and τ = τk.
Convert the solution {∆x, ∆y, ∆s} into {∆X, ∆y, ∆S} with
∆X = mat(∆x) and ∆S = mat(∆s).
Step 5
Choose a parameter γ in the range 0 < γ < 1 and determine parameters
α and β as

Semidefinite and Second-Order Cone Programming 463

α = min(1, γα̂) (14.45a)

β = min(1, γβ̂) (14.45b)

where

α̂ = max
Xk+ᾱ∆X�0

(ᾱ) and β̂ = max
Sk+β̄∆S�0

(β̄)

Step 6 Set

Xk+1 = Xk + α∆X (14.46a)

yk+1 = yk + β∆y (14.46b)

Sk+1 = Sk + β∆S (14.46c)

Set k = k + 1 and repeat from Step 2.

A couple of remarks on Step 5 of the algorithm are in order. First, it follows
from Eq. (14.45) that if the increments ∆X, ∆y, and ∆S obtained in Step
4 are such that Xk + ∆X ∈ Fo

p and {yk + ∆y, Sk + ∆S} ∈ Fo
d , then

we should use α = 1 and β = 1. Otherwise, we should use α = γα̂ and
β = γβ̂ where 0 < γ < 1 to ensure that Xk+1 ∈ Fo

p and {yk+1, Sk+1} ∈ Fo
d .

Typically, a γ in the range 0.9 ≤ γ ≤ 0.99 works well in practice. Second, the
numerical values of α̂ and β̂ can be determined using the eigendecomposition
of symmetric matrices as follows. Since Xk 0, the Cholesky decomposition
(see Sec. A.13) of Xk gives

Xk = X̂T
k X̂k

Now if we perform an eigendecomposition of the symmetric matrix

(X̂T
k)−1∆XX̂−1

k

as
(X̂T

k)−1∆XX̂−1
k = UTΛU

where U is orthogonal and Λ = diag{λ1, λ2, . . . , λn}, we get

Xk + ᾱ∆X = X̂T
k [I + ᾱ(X̂T

k)−1∆XX̂−1
k]X̂k

= X̂T
k (I + ᾱUTΛU)X̂k

= (UX̂k)T (I + ᾱΛ)(UX̂k)

Hence Xkᾱ∆X � 0 if and only if I+ ᾱΛ = diag{1+ ᾱλ1, 1+ ᾱλ2, . . . , 1+
ᾱλn} � 0. If min{λi} ≥ 0, then I + ᾱΛ � 0 holds for any ᾱ ≥ 0; otherwise,

464

the largest ᾱ to assure the positive definiteness of I + ᾱΛ is given by

α̂ =
1

maxi(−λi)
(14.47)

Therefore, the numerical value of α in Eq. (14.45a) can be obtained as

α =

{
1 if all λi ≥ 0

min(1, γα̂) otherwise
(14.48)

where α̂ is determined using Eq. (14.47). Similarly, the numerical value of β
in Eq. (14.45b) can be obtained as

β =

{
1 if all µi ≥ 0

min(1, γβ̂) otherwise
(14.49)

where the µi’s are the eigenvalues of (ŜT
k)−1∆SŜ−1

k with Sk = ŜT
k Ŝk and

β̂ =
1

maxi(−µi)

The numerical value of the centering parameter σ should be in the range of
[0, 1). For small-scale applications, the choice

σ =
n

15
√

n + n
(14.50)

is usually satisfactory.

Example 14.1 Find scalars y1, y2, and y3 such that the maximum eigenvalue
of F = A0 + y1A1 + y2A2 + y3A3 with

A0 =

⎡
⎣ 2 −0.5 −0.6
−0.5 2 0.4
−0.6 0.4 3

⎤
⎦ , A1 =

⎡
⎣ 0 1 0

1 0 0
0 0 0

⎤
⎦

A2 =

⎡
⎣ 0 0 1

0 0 0
1 0 0

⎤
⎦ , A3 =

⎡
⎣ 0 0 0

0 0 1
0 1 0

⎤
⎦

is minimized.

Solution This problem can be formulated as the SDP problem

Semidefinite and Second-Order Cone Programming 465

maximize bTy (14.51a)

subject to:
4∑

i=1

yiAi + S = C (14.51b)

S � 0 (14.51c)

where b = [0 0 0 1]T , y = [y1 y2 y3 y4]T , C = −A0, A4 = I, and −y4

is the maximum eigenvalue of matrix F (see Prob. 14.5). We observe that the
optimization problem in Eq. (14.51) is of the type described by Eq. (14.4) with
n = 3 and p = 4.

It is easy to verify that the set {X0, y0, S0} with

X0 = 1
3I, y0 = [0.2 0.2 0.2 −4]T and S0 =

⎡
⎣ 2 0.3 0.4

0.3 2 −0.6
0.4 −0.6 1

⎤
⎦

is strictly feasible for the associated primal-dual problems. The matrix A in
Eq. (14.41a) is in this case a 4 × 6 matrix given by

A =

⎡
⎢⎢⎣

0
√

2 0 0 0 0
0 0

√
2 0 0 0

0 0 0 0
√

2 0
1 0 0 1 0 1

⎤
⎥⎥⎦

At the initial point, the maximum eigenvalue of F is 3.447265. With σ =
n/(15

√
n + n) = 0.1035, γ = 0.9, and ε = 10−3, it took Algorithm 14.1 four

iterations and 26 Kflops to converge to the solution set {X∗, y∗, S∗} where

y∗ =

⎡
⎢⎢⎣

0.392921
0.599995

−0.399992
−3.000469

⎤
⎥⎥⎦

By using the first three components of y∗, i.e., y1, y2, and y3, the maximum
eigenvalue of F = A0 + y1A1 + y2A2 + y3A3 is found to be 3.

14.5 Predictor-Corrector Method
The algorithm studied in Sec. 14.4 can be improved by incorporating a

predictor-corrector rule proposed by Mehrotra [13] for LP problems (see Sec.
12.5.3).

As in the LP case, there are two steps in each iteration of a predictor-
corrector method. Let us assume that we are now in the kth iteration of the
algorithm. In the first step, a predictor direction {∆X(p), ∆y(p), ∆S(p)} is

466

first identified by using a linear approximation of the KKT conditions. This set
{∆X(p), ∆y(p), ∆S(p)} can be obtained by setting τ = 0 in Eq. (14.40e) to
obtain

rc = svec [−1
2(XkSk + SkXk)] (14.52)

and then using Eq. (14.43). Next, the numerical values of αp and βp can be
determined as

αp = min(1, γα̂) (14.53a)

βp = min(1, γβ̂) (14.53b)

where

α̂ = max
Xk+ᾱ∆X(p)�0

(ᾱ)

β̂ = max
Sk+β̄∆S(p)�0

(β̄)

in a way similar to that described in Eqs. (14.48) and (14.49). The centering
parameter σk is then computed as

σk =

[
(Xk + αp∆X(p)) · (Sk + βp∆S(p))

Xk · Sk

]3

(14.54)

and is used to determine the value of τk in Eq. (14.44), i.e.,

τk = σk
Xk · Sk

n
(14.55)

In the second step, the parameter τk in Eq. (14.55) is utilized to compute

rc = τkI− 1
2(XkSk + SkXk + ∆X(p)∆S(p) + ∆S(p)∆X(p)) (14.56)

and the vector rc in Eq. (14.56) is then used in Eq. (14.43) to obtain the corrector
direction {∆X(c), ∆y(c), ∆S(c)}. The set {Xk, yk, Sk} is then updated as

Xk+1 = Xk + αc∆X(c) (14.57a)

yk+1 = yk + βc∆y(c) (14.57b)

Sk+1 = Sk + βc∆S(c) (14.57c)

where αc and βc are given by

αc = min(1, γα̂) (14.58a)

βc = min(1, γβ̂) (14.58b)

Semidefinite and Second-Order Cone Programming 467

where

α̂ = max
Xk+ᾱ∆X(c)�0

(ᾱ)

β̂ = max
Sk+β̄∆S(c)�0

(β̄)

The above approach can be implemented in terms of the following algorithm.

Algorithm 14.2 Predictor-corrector algorithm for SDP problems
Step 1
Input Ai for 1 ≤ i ≤ p, b ∈ Rp, and C ∈ Rn×n, and a strictly feasible
set {X0, y0, S0} that satisfies Eqs. (14.1b) and (14.4b) with X0 0
and S0 0. Set k = 0 and initialize the tolerance ε for the duality gap
δk.
Step 2
Compute

δk =
Xk · Sk

n

Step 3
If δk ≤ ε, output solution {Xk, yk, Sk} and stop; otherwise, continue
with Step 4.
Step 4
Compute {∆X(p), ∆y(p), ∆S(p)} using Eq. (14.43) with X = Xk,
y = yk, S = Sk, and rc given by Eq (14.52).
Choose a parameter γ in the range 0 < γ ≤ 1 and compute αp and βp

using Eq. (14.53) and evaluate σk using Eq. (14.54).
Compute τk using Eq. (14.55).
Step 5
Compute {∆X(c), ∆y(c), ∆S(c)} using Eq. (14.43) with X = Xk,
y = yk, S = Sk, and rc given by Eq. (14.56).
Step 6
Compute αc and βc using Eq. (14.58).
Step 7
Obtain set {Xk+1, yk+1, Sk+1} using Eq. (14.57).
Set k = k + 1 and repeat from Step 2.

Example 14.2 Apply Algorithm 14.2 to the shortest distance problem in Ex-
ample 13.5.

468

Solution From Sec. 14.2.2, we can first formulate the problem as a CP problem
of the form given by Eq. (14.21), i.e.,

minimize δ

subject to: xTHx ≤ δ

xT Q1x + qT
1 x + r1 ≤ 0

xT Q2x + qT
2 x + r2 ≤ 0

with

x =

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ , H =

⎡
⎢⎢⎣

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎤
⎥⎥⎦

Q1 =
[1

4 0
0 1

]
, Q2 =

[
5 3
3 5

]
, q1 =

[
−1

2
0

]
, q2 =

[
−44
−52

]
r1 = −3

4 , and r2 = 140

The above CP problem can be converted into the SDP problem in Eq. (14.23)
with

ĉ =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦ , x̂ =

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

δ

⎤
⎥⎥⎥⎥⎦

and
E(x̂) = diag{G(δ, x), F1(x), F2(x)}

with

G(δ, x) =
[

I4 Ĥx
(Ĥx)T δ

]
, Ĥ =

⎡
⎢⎢⎣

1 0 −1 0
0 −1 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

F1(x) =
[

I2 Q̂1xa

(Q̂1xa)T −qT
1 xa − r1

]
, Q̂1 =

[1
2 0
0 1

]
, xa =

[
x1

x2

]

F2(x) =
[

I2 Q̂2xb

(Q̂2xb)T −qT
2 xb − r2

]
, Q̂2 =

[
2 2
−1 1

]
, xb =

[
x3

x4

]
The SDP problem in Eq. (14.23) is equivalent to the standard SDP problem

in Eq. (14.4) with p = 5, n = 11,

y =

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

δ

⎤
⎥⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
−1

⎤
⎥⎥⎥⎥⎦

Semidefinite and Second-Order Cone Programming 469

Matrices Ai for 1 ≤ i ≤ 5 and C are given by

A1 = −diag
{[

04 h1

hT
1 0

]
,

[
02 q11

qT
11 −q1(1)

]
, 03

}

A2 = −diag
{[

04 h2

hT
2 0

]
,

[
02 q12

qT
12 −q1(2)

]
, 03

}

A3 = −diag
{[

04 h3

hT
3 0

]
, 03,

[
02 q21

qT
21 −q2(1)

]}

A4 = −diag
{[

04 h4

hT
4 0

]
, 03,

[
02 q22

qT
22 −q2(2)

]}

A5 = −diag
{[

04 0
0 1

]
, 03, 03

}

C = −diag
{[

I4 0
0 0

]
,

[
I2 0
0 −r1

]
,

[
I2 0
0 −r2

]}

where hi, q1j , and q2j for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 2 are the ith and jth
columns of Ĥ, Q̂1, and Q̂2, respectively, Ik is the k × k identity matrix, and
0k is the k × k zero matrix. A strictly feasible initial set {X0, y0, S0} can be
identified as

X0 = diag{I5, X02, X03}
y0 = [1 0 2 4 20]T

S0 = C −
5∑

i=1

y0(i)Ai

where

X02 =

⎡
⎣ 1 0 −0.5

0 1 0
−0.5 0 1

⎤
⎦ and X03 =

⎡
⎣ 180 0 −12

0 60 −2
−12 −2 1

⎤
⎦

With γ = 0.9 and ε = 10−3, it took Algorithm 14.2 six iterations and 10.73
Mflops to converge to the solution {X∗, y∗, S∗} where

y∗ =

⎡
⎢⎢⎢⎢⎣

2.044717
0.852719
2.544895
2.485678
2.916910

⎤
⎥⎥⎥⎥⎦

This corresponds to the solution points r∗ ∈ R and s∗ ∈ S (see Fig. 13.5) with

r∗ =
[
2.044717
0.852719

]
and s∗ =

[
2.544895
2.485678

]

470

which yield the shortest distance between R and S as ||r∗ − s∗|| = 1.707845.
Note that Algorithm 14.2 usually yields a more accurate solution to the problem
than Algorithm 13.6 with comparable computational complexity.

14.6 Projective Method of Nemirovski and Gahinet
In this section, we describe a different interior-point method for SDP prob-

lems that was proposed by Nemirovski and Gahinet in [4][14]. The name of
the method, i.e., the projective method, comes from the fact that orthogonal
projections of positive-definite matrices onto the range of a linear mapping
characterized by some LMI constraint are heavily involved in the algorithm.

14.6.1 Notation and preliminaries
In the space of symmetric matrices of size n × n, Sn, we denote the set of

positive-semidefinite matrices by K and the set of positive-definite matrices by
intK. Note that K is a convex cone (see Sec. 14.2.1) and the notation intK
comes from the fact that the set of positive-definite matrices can be viewed as
the interior of convex cone K.

Given a positive-definite matrix P ∈ Rn×n, an inner product can be intro-
duced in Sn as

〈X, Y〉P = trace(PXPY) (14.59)

which leads to the LP norm

‖X‖P = [trace(PXPX)]1/2 (14.60)

If P is the identity matrix, then the above norm is reduced to the Frobenius
norm

‖X‖I = [trace(X2)]1/2 = ‖X‖F

i.e., norm ‖ · ‖P in Eq. (14.60) is a generalization of the Frobenius norm ‖ · ‖F .
An important concept involved in the development of the projective method

is the Dikin ellipsoid [4] which, for a given positive-definite matrix X, is defined
as the set

D(X) = {Y : ‖Y − X‖2
X−1 < 1} (14.61)

Since

‖Y − X‖2
X−1 = trace[X−1(Y − X)X−1(Y − X)]

= trace[(X−1/2YX−1/2 − I)(X−1/2YX−1/2 − I)]

= ‖X−1/2YX−1/2 − I‖2
F

the Dikin ellipsoid D(X) can be characterized by

D(X) = {Y : ‖X−1/2YX−1/2 − I‖2
F < 1} (14.62)

Semidefinite and Second-Order Cone Programming 471

A very useful property of the Dikin ellipsoid is that for a positive definite X,
every element in D(X) is a positive-definite matrix (see Prob. 14.12). In other
words, for an X ∈ intK, D(X) is an ellipsoid centered at X such that the entire
ellipsoid is within intK.

The SDP problem we consider here is given by Eq. (14.9), i.e.,

minimize cTx (14.63a)

subject to: F(x) � 0 (14.63b)

where c ∈ Rp×1, x ∈ Rp×1, and

F(x) = F0 +
p∑

i=1

xiFi (14.63c)

with Fi ∈ Sn for 0 ≤ i ≤ p. To start with, we need to find a strictly feasible
initial point. This can be done by solving the strict-feasibility problem which
can be stated as

find a vector x such that F(x) 0 (14.64)

In the projective method, which is applicable to both the SDP problem in
Eq. (14.63) and the strict-feasibility problem in Eq. (14.64), we consider the
orthogonal projection of a positive-definite matrix X onto a subspace E of Sn,
where E is the range of the linear map F related to the LMI constraint in
Eqs. (14.63b) and (14.64), i.e.,

Fx =
p∑

i=1

xiFi (14.65)

and
E = {X : X = Fx, x ∈ Rp} (14.66)

The orthogonal projection of a given positive definite X onto subspace E with
respect to metric 〈, 〉P can be defined as the unique solution of the minimization
problem

minimize
Y∈E

‖Y − X‖P = minimize
x∈RP

‖Fx− X‖P (14.67)

which is a least-squares problem because

‖Fx− X‖2
P = trace

[
P

(p∑
i=1

xiFi − X

)
P

(p∑
i=1

xiFi − X

)]

= trace

[(p∑
i=1

xiF̂i − X̂

)(p∑
i=1

xiF̂i − X̂

)]

= xT F̂x− 2xTv + κ (14.68)

472

is a quadratic function with respect to x, where

F̂i = P1/2FiP1/2 (14.69a)

X̂ = P1/2XP1/2 (14.69b)

F̂ = {f̂ij , 1 ≤ i, j ≤ p} with f̂ij = trace(F̂iF̂j) (14.69c)

v = [v1 v2 . . . vp]T with vi = trace(X̂F̂i) (14.69d)

κ = trace(X̂2) (14.69e)

It can be shown that if matrices Fi for i = 1, 2, . . . , p are linearly indepen-
dent, then matrix F̂ is positive definite (see Prob. 14.13) and the unique global
minimizer of the least-squares problem in Eq. (14.67) is given by

x = F̂−1v (14.70)

The orthogonal projection of matrix X onto E with respect to metric 〈, 〉P is
now obtained as

X† =
p∑

i=1

xiFi

where xi is the ith component of vector x obtained from Eq. (14.70).

14.6.2 Projective method for the strict-feasibility problem
Below we assume that matrices Fi for 1 ≤ i ≤ p are linearly independent,

namely, Fx = 0 if and only if x = 0, so as to assure a unique orthogonal
projection of a symmetric matrix X onto subspace E with respect to metric
〈, 〉P defined by Eq. (14.59) with P positive definite.

Initially we need to homogenize the LMI constraint

Fx + F0 = x1F1 + · · · + xpFp + F0 0 (14.71)

as

x1F1 + · · · + xpFp + τF0 0 (14.72a)

τ > 0 (14.72b)

The constraints in Eq. (14.72) are equivalent to

F̃ x̃ =
[Fx + τF0 0

0 τ

]
 0 (14.73a)

where

x̃ =
[
x
τ

]
(14.73b)

Evidently, if vector x satisfies the constraint in Eq. (14.71), then x̃ = [xT 1]T

satisfies the constraint in Eq. (14.73) and, conversely, if x̃ = [xT τ]T satisfies

Semidefinite and Second-Order Cone Programming 473

Eq. (14.73), then vector x/τ satisfies Eq. (14.71). On the basis of the equiva-
lence of the LMI constraints in Eqs. (14.71) and (14.73), we need to consider
only the strict-feasibility problem with a homogenized LMI constraint, i.e.,

find a vector x such that F̃ x̃ =
p+1∑
i=1

x̃iF̃i 0 (14.74a)

where x̃p+1 = τ ,

F̃i =
[
Fi 0
0 0

]
(n+1)×(n+1)

for 1 ≤ i ≤ p (14.74b)

and

F̃p+1 =
[
F0 0
0 1

]
(n+1)×(n+1)

(14.74c)

In the projective method as applied to the strict-feasibility problem in Eq.
(14.74), we start with an initial point X0 ∈ intK, say, X0 = I, and generate
a sequence of positive-definite matrices Xk in such a way that the orthogonal
projection of Xk onto subspace E eventually becomes positive definite. More
specifically, in the kth iteration the positive-definite matrix Xk is orthogonally
projected onto subspace E with respect to metric 〈, 〉X−1

k
, and the projection

obtained is denoted as X†
k. From Eqs. (14.69) and (14.70) it follows that

X†
k =

p+1∑
i=1

x̃iF̃i (14.75)

where x̃i is the ith component of vector x̃k which is calculated as

x̃k = F̂−1v (14.76a)

F̂ = {f̂ij} with f̂ij = trace(X−1
k F̃iX−1

k F̃j) (14.76b)

v = [v1 v2 · · · vp+1]T with vi = trace(X−1
k F̃i) (14.76c)

If the projection X†
k in Eq. (14.75) is positive definite, then the strict-feasibility

problem is solved with vector x̃k given by Eq. (14.76a). Otherwise, matrix Xk

is updated according to

X−1
k+1 = X−1

k − γkX−1
k (X†

k − Xk)X−1
k (14.77a)

where γk is a positive scalar given by

γk =
1

1 + ρ∞
(14.77b)

with
ρ∞ = max

1≤i≤n
|λ(X−1

k X†
k − I)| (14.77c)

474

In Eq. (14.77c), λ(·) denotes the eigenvalues of the matrix involved. Once
X−1

k+1 is obtained from Eq. (14.77a), the orthogonal projection X†
k+1 is obtained

using Eqs. (14.76a)–(14.76c) with index k replaced by k + 1, and the iteration
continues until a positive-definite orthogonal projection is obtained.

To understand the updating formula in Eq. (14.77a), we first write it as

X−1
k+1 = X−1/2

k (I − γkWk)X
−1/2
k (14.78)

where
Wk = X−1/2

k (X†
k − Xk)X

−1/2
k

Since
λ(Wk) = λ(X−1

k X†
k − I)

we can estimate the eigenvalues of matrix I − γkWk as

λ(I− γkWk) ≥ 1 − ρ∞
1 + ρ∞

> 0

which means that I− γkWk is a positive-definite matrix. It now follows from
Eq. (14.78) that if Xk is positive definite, then Xk+1 obtained using Eq. (14.77a)
is also positive definite. Furthermore, it can be shown [4] that

det(X−1
k+1) ≥ κ det(X−1

k)

with κ = e/2 ≈ 1.36, which implies that

det(X−1
k) ≥ κkdet(X−1

0)

That is, if X†
k were to remain positive definite as the iterations continue, we

would have
det(X−1

k) → ∞ as k → ∞ (14.79)

Next, we note that because X†
k is an orthogonal projection onto subspace E ,

X−1
k (X†

k − Xk)X−1
k is orthogonal to E with respect to the usual Frobenius

metric. Namely, X−1
k (X†

k −Xk)X−1
k ∈ E⊥, the orthogonal complement of E ,

with respect to the Frobenius inner product. Since the last term of the updat-
ing formula in Eq. (14.77a) is proportional to X−1

k (X†
k − Xk)X−1

k , we note
that Eq. (14.77a) updates X−1

k in a direction parallel to subspace E⊥. From
Sec. 13.6.1, we know that det(X−1

k) is related to the volume of the ellipsoid
characterized by X−1

k and, consequently, Eq. (14.79) implies that X−1
k+1 would

grow in parallel to subspace E⊥ towards infinity if the iterations were not termi-
nated. To see that this will not occur, notice that the Frobenius inner product of
any two positive-semidefinite matrices is always nonnegative. In geometrical
terms this means that the angle at the vertex of the convex cone K is exactly

Semidefinite and Second-Order Cone Programming 475

Xk-1

Xk+1
-1

K

ε

Cone

E

Figure 14.1. A geometrical interpretation of Eq. (14.77a).

90◦ [4], as illustrated in Fig. 14.1. This geometrical interpretation also suggests
that if the strict-feasibility problem is solvable, i.e., cone K intersects with sub-
space E , then E⊥ ⋂K = {0}. Therefore, if the iterations do not terminate,
then X−1

k as a point in cone K would eventually leave the cone, i.e., becoming
nonpositive definite, which obviously contradicts the fact that the matrix Xk+1

updated using Eq. (14.77a) is always positive definite.
An algorithm for the solution of the homogenized strict-feasibility problem

in Eq. (14.74) is as follows.

Algorithm 14.3 Projective algorithm for the homogenized strict-
feasibility problem in Eq. (14.74)
Step 1
Set k = 0 and X0 = I.
Step 2
Compute the orthogonal projection X†

k with respect to metric 〈, 〉X−1
k

by using Eqs. (14.75) and (14.76).
Step 3
If X†

k is positive definite, output solution x̃∗ = x̃k, which is given by
Eq. (14.76a), and stop; otherwise, continue with Step 4.

476

Step 4
Compute γk using Eqs. (14.77b) and (14.77c).
Update X−1

k to X−1
k+1 using Eq. (14.77a).

Set k = k + 1 and repeat from Step 2.

Example 14.3 Applying Algorithm 14.3, solve the strict-feasibility problem in
Eq. (14.64) if

F0 =

⎡
⎢⎢⎣

0.50 0.55 0.33 2.38
0.55 0.18 −1.18 −0.40
0.33 −1.18 −0.94 1.46
2.38 −0.40 1.46 0.17

⎤
⎥⎥⎦

F1 =

⎡
⎢⎢⎣

5.19 1.54 1.56 −2.80
1.54 2.20 0.39 −2.50
1.56 0.39 4.43 1.77

−2.80 −2.50 1.77 4.06

⎤
⎥⎥⎦

F2 =

⎡
⎢⎢⎣
−1.11 0 −2.12 0.38

0 1.91 −0.25 −0.58
−2.12 −0.25 −1.49 1.45

0.38 −0.58 1.45 0.63

⎤
⎥⎥⎦

F3 =

⎡
⎢⎢⎣

2.69 −2.24 −0.21 −0.74
−2.24 1.77 1.16 −2.01
−0.21 1.16 −1.82 −2.79
−0.74 −2.01 −2.79 −2.22

⎤
⎥⎥⎦

F4 =

⎡
⎢⎢⎣

0.58 −2.19 1.69 1.28
−2.19 −0.05 −0.01 0.91

1.69 −0.01 2.56 2.14
1.28 0.91 2.14 −0.75

⎤
⎥⎥⎦

Solution In order to apply Algorithm 14.3, the problem at hand is first converted
into the homogenized problem in Eq. (14.74) and the initial matrix X0 is set to
I5. The Algorithm took four iterations and 38.8 Kflops to yield

x̃4 =

⎡
⎢⎢⎢⎢⎣

0.214262
0.042863

−0.019655
−0.056181

0.078140

⎤
⎥⎥⎥⎥⎦

which corresponds to a solution of the strict-feasibility problem in Eq. (14.64)
as ⎡

⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦ =

x̃4(1 : 4)
x̃4(5)

=

⎡
⎢⎢⎣

2.742040
0.548538

−0.251537
−0.718983

⎤
⎥⎥⎦

Semidefinite and Second-Order Cone Programming 477

where x̃4(1 : 4) denotes the vector formed by using the first four components
of x̃4. It can be verified that

F0 +
4∑

i=1

xiFi

is a positive-definite matrix whose smallest eigenvalue is 0.1657. It is interesting
to note that the sequence

{det(X−1
k) for k = 0, 1, . . . , 4} = {1, 2.63, 6.75, 16.58, 37.37}

gives the ratio{
det(X−1

k+1)

det(X−1
k)

for k = 0, 1, . . . , 3

}
= {2.63, 2.57, 2.45, 2.25}

This verifies that the ratio is greater than κ = 1.36.

14.6.3 Projective method for SDP problems
14.6.3.1 Problem homogenization

Let us now consider the SDP problem

minimize cTx (14.80a)

subject to: F(x) � 0 (14.80b)

where c ∈ Rp×1, x ∈ Rp×1, and

F(x) = F0 +
p∑

i=1

xiFi (14.80c)

with Fi ∈ Sn for 0 ≤ i ≤ p. We assume below that the problem in Eq. (14.80)
is solvable by using an interior-point method, i.e., the interior of the feasible
region described by Eq. (14.80b) is not empty, and that the objective function
cTx has a finite lower bound in the feasible region.

As in the projective method for the strict-feasibility problem in Sec. 14.6.2,
we first convert the problem at hand into the homogeneous problem

minimize
y, τ

cTy
τ

(14.81a)

subject to: Fy + τF0 � 0 (14.81b)

τ > 0 (14.81c)

478

where

Fy =
p∑

i=1

yiFi

The problems in Eqs. (14.80) and (14.81) are equivalent because if vector x
is a minimizer for the problem in Eq. (14.80), then [yT τ]T = [xT 1]T is
a minimizer for the problem in Eq. (14.81) and, conversely, if [yT τ]T is a
minimizer for the problem in Eq. (14.81), then x = y/τ is a minimizer for the
problem in Eq. (14.80). Now if we let

c̃ =
[
c
0

]
, d̃ =

[
0
1

]
, x̃ =

[
y
τ

]
(14.82a)

F̃ x̃ =
[Fy + τF0 0

0 τ

]
=

p+1∑
i=1

x̃iF̃i (14.82b)

where

F̃i =
[
Fi 0
0 0

]
(n+1)×(n+1)

for 1 ≤ i ≤ p (14.82c)

and

F̃p+1 =
[
F0 0
0 1

]
(n+1)×(n+1)

(14.82d)

then the problem in Eq. (14.81) can be expressed as

minimize f(x̃) =
c̃T x̃
d̃T x̃

(14.83a)

subject to: F̃ x̃ � 0 (14.83b)

d̃T x̃ �= 0 (14.83c)

In what follows, we describe a projective method proposed in [4][14] that applies
to the SDP problem in the form of Eq. (14.83).

14.6.3.2 Solution procedure

In the projective method for the problem in Eq. (14.83), we start with a strictly
feasible initial point x̃0 for which X0 = F̃ x̃0 0 and d̃T x̃0 �= 0. Such an
initial point x̃0 can be obtained by using Algorithm 14.3. In the kth iteration,
the set {x̃k, Xk} is updated to set {x̃k+1, Xk+1} to achieve two goals: to
reduce the objective function and to maintain strict feasibility for point x̃k+1.
These goals can be achieved through the following steps:

1. Compute the orthogonal projection of Xk onto the subspace E defined by

E = {X : X = F̃ x̃, x̃ ∈ Rp+1} (14.84)

Semidefinite and Second-Order Cone Programming 479

and denote the orthogonal projection obtained as

X†
k = F̃ x̃k

If X†
k 0, then continue with Step 2; otherwise, set

Yk = X†
k − Xk (14.85)

and continue with Step 3.
2. Find a value of the objective function f(x̃), f∗

k , such that

||Xk − X†
k(f

∗
k)||X−1

k
≥ 0.99 subject to: X†

k(f
∗
k) 0 (14.86)

The matrix X†
k(f) in Eq. (14.86) represents the orthogonal projection of

Xk onto E(f) which for a given real number f is the subspace of E defined
by

E(f) = {X : X ∈ E and (c̃− f d̃)T x̃ = 0} (14.87)

(see Prob. 14.14(a)). Note that E(f) is related to the hyperplane P(f) =
{x̃ : (c̃ − f d̃)T x̃ = 0} on which the objective function f(x̃) assumes
constant value f (see Prob. 14.14(b)).
Then compute matrix Yk as

Yk = X†
k(f

∗
k) −Xk (14.88)

Details for the calculation of f∗
k and X†

k(f
∗
k) are given in Secs. 14.6.3.4

and 14.6.3.5, respectively.
3. Update Xk to Xk+1 as

X−1
k+1 = X−1

k − γkX−1
k YkX−1

k (14.89)

where the step size γk is chosen such that X−1
k+1 0 and

det(X−1
k+1) ≥ κdet(X−1

k)

for some fixed κ > 1.
Repeat from Step 1.

14.6.3.3 Choice of step size γk

The choice of a suitable value for γk in Eq. (14.89) is dependent on how the
matrix Yk in Eq. (14.89) is calculated. If Yk is calculated using Eq. (14.85),
then it means that X†

k obtained from Step 1 is not positive definite. Evidently,
this is a situation similar to that in the strict-feasibility problem, and γk can
be determined using Eqs. (14.77b) and (14.77c). On the other hand, if Yk is

480

calculated using Eq. (14.88), then γk can be determined by using Eqs. (14.77b)
and (14.77c) with X†

k replaced by X†
k(f

∗
k), i.e.,

γk =
1

1 + ρ̃∞
(14.90a)

with
ρ̃∞ = max

1≤i≤n
|λ(X−1

k X†
k(f

∗
k) − I)| (14.90b)

14.6.3.4 Computation of f∗
k

For a given positive-definite matrix Xk and any element in E , say, X = F̃ x̃,
there exist two matrices Ck and Dk in E such that the inner products c̃T x̃ and
d̃Tx can be represented as inner products in space Sn, i.e.,

c̃T x̃ = 〈Ck, X〉X−1
k

(14.91a)

and
d̃T x̃ = 〈Dk, X〉X−1

k
(14.91b)

respectively (see Prob. 14.15). Consequently, we can write

(c̃ − f d̃)T x̃ = 〈Ck − fDk, X〉X−1
k

and the linear subspace E(f) defined by Eq. (14.87) can be characterized by

E(f) = {X ∈ E , 〈Ck − fDk, X〉X−1
k

= 0} (14.92)

From Fig. 14.2, it follows that the squared distance between Xk and X†
k(f) can

be computed as

δ2(f) = ||Xk −X†
k||

2
X−1

k

+ ||X†
k −X†

k(f)||2
X−1

k

(14.93)

Xk

Xk (f)

Xk

ε(f)

ε

Figure 14.2. Relation among Xk, X†
k, and X†

k(f).

Semidefinite and Second-Order Cone Programming 481

Since X†
k − X†

k(f) is orthogonal to subspace E(f), X†
k − X†

k(f) can be
obtained as the orthogonal projection of X†

k onto a normal of E(f), i.e.,

X†
k − X†

k(f) = 〈u, X†
k〉X−1

k
u

where u is a normal of E(f) with unity length with respect to metric 〈, 〉X−1
k

.

This, in conjunction with the fact that Ck −fDk is a normal of subspace E(f),
yields

||X†
k − X†

k(f)||2 =
〈Ck − fDk, X†

k〉X−1
k

||Ck − fDk||2X−1
k

which modifies Eq. (14.93) to

δ2(f) = ||Xk − X†
k||

2
X−1

k

+
〈Ck − fDk, X†

k〉X−1
k

||Ck − fDk||2X−1
k

(14.94)

The value of f∗
k used in Step 2 in Sec. 16.6.3.2 can now be determined as

follows. First, we note that the matrix X†
k = F̃ x̃k obtained in Step 1 is positive

definite. Hence if we let fk = f(x̃k), then X†
k(fk) = X†

k. If

||Xk − X†
k||X−1

k
≥ 0.99

then the constraints in Eq. (14.86) are satisfied by taking f∗
k = fk. Otherwise,

we have
δ(fk) = ||Xk − X†

k||X−1
k

< 0.99 (14.95)

because f(x̃k) = fk implies that

〈Ck − fkDk, X†
k〉X−1

k
= (c̃ − fkd̃)T x̃k = 0

On the other hand, the limit of δ(f) as f approaches negative infinity is equal to
or larger than one. This, in conjunction with Eq. (14.95), implies the existence
of an f∗

k < fk that satisfies the two constraints in Eq. (14.86). The numerical
value of such an f∗

k can be determined by solving the quadratic equation

0.99 = ||Xk − X†
k||

2
X−1

k

+
〈Ck − fDk, X†

k〉X−1
k

||Ck − fDk||2X−1
k

(14.96)

for f . If f∗
k is the smaller real solution of Eq. (14.96), then we have

||Xk − X†
k(f

∗
k)||X−1

k
= 0.99 (14.97)

Since Xk is positive definite, Eq. (14.97) indicates that X†
k(f

∗
k) is located inside

the Dikin ellipsoid D(Xk) and, therefore, X†
k(f

∗
k) is positive definite.

482

14.6.3.5 Computation of X†
k(f

∗
k)

By definition, X†
k(f) = F̃ x̃∗ minimizes ||Xk − F̃ x̃||X−1

k
subject to the

constraint (c̃ − f d̃)T x̃ = 0. Note that

||Xk − F̃ x̃||2
X−1

k

= x̃T F̂x̃− 2x̃T v + κ

where F̂ and v are given by Eqs. (14.76c) and (14.76d), respectively. Therefore,
x̃∗ and X†

k(f) can be obtained by solving the QP problem

minimize x̃T F̂x̃ − 2x̃T v + κ

subject to: (c̃− f d̃)T x̃ = 0

By applying the formula in Eq. (13.11), we obtain the solution of the above QP
problem as

q = c̃ − f d̃ (14.98a)

λ∗ = −qT F̂−1v

qT F̂−1q
(14.98b)

x̃∗ = F̂−1(qλ∗ + v) (14.98c)

and the orthogonal projection of Xk onto E(f) is given by

X†
k(f) = F̃x̃∗ (14.99)

where x̃∗ is given in Eq. (14.98c).

14.6.3.6 Algorithm

The above method can be implemented in terms of the following algorithm.

Algorithm 14.4 Projective algorithm for the homogenized SDP
problem in Eq. (14.83)
Step 1
Apply Algorithm 14.3 to obtain a strictly feasible point x̃0.
Evaluate X0 = F̃ x̃0 and compute f∗

0 = f(x0).
Set k = 0 and initialize tolerance ε.
Select a positive integer value for L.
Step 2
Compute the orthogonal projection of Xk onto subspace E given by
Eq. (14.84).
Denote the orthogonal projection obtained as X†

k = F̃ x̃k.
Step 3
If X†

k 0, continue with Step 4; otherwise, set

Semidefinite and Second-Order Cone Programming 483

Yk = X†
k − Xk

and continue with Step 5.
Step 4
Compute fk = f(x̃k) and δ(fk) = ||Xk −X†

k||X−1
k

.
If

δ(fk) ≥ 0.99

then let f∗
k = fk, X†

k(f
∗
k) = X†

k, and compute Yk using Eq. (14.88);
otherwise, determine matrices Ck and Dk in Eq. (14.91), compute f∗

k

as the smallest real solution of Eq. (14.96), and obtain (x̃∗
k, X†

k(f
∗
k))

using Eqs. (14.98) and (14.99) with f = f∗
k .

Compute Yk using Eq. (14.88).
If the reduction in f∗

k during the last L iterations is consistently less than
ε, output solution x̃∗ = x̃∗

k and stop; otherwise, continue with Step 5.
Step 5
Update Xk to Xk+1 using Eq. (14.89), where parameter γk is determined
as

γk =
1

1 + ρ∞
with ρ∞ = max

1≤i≤n
|λ(X−1

k Yk)|

Set k = k + 1 and repeat from Step 2.

An analysis on the polynomial-time convergence of the above algorithm can
be found in [4][14]. The latter reference also addresses various implementation
issues of the algorithm.

Example 14.4 Apply Algorithm 14.4 to solve the shortest distance problem
discussed in Example 14.2.

Solution The shortest distance problem in Example 14.2 can be formulated as
the SDP problem in Eq. (14.80) where c = [0 0 0 0 1]T and Fi for 0 ≤ i ≤ 5
are given by F0 = C, Fi = −Ai for i = 1, 2, . . . , 5; on the other hand, C
and Ai are defined in Example 14.2.

The problem at hand can be converted to the homogeneous SDP problem in
Eq. (14.83) with

c̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦ and d̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

484

and F̃i for 1 ≤ i ≤ 6 can be determined using Eqs. (14.82c) and (14.82d). With
ε = 5 × 10−5 and L = 1, it took Algorithm 14.4 36 iterations and 9.7 Mflops
to converge to the solution

x∗ =
x̃(1 : 5)
x̃∗(6)

=

⎡
⎢⎢⎢⎢⎣

2.044301
0.852835
2.544217
2.485864
2.916757

⎤
⎥⎥⎥⎥⎦

This corresponds to the solution points r∗ ∈ R and s∗ ∈ S with

r∗ =
[
2.044301
0.852835

]
and s∗ =

[
2.544217
2.485864

]

which yield the shortest distance between R and S as ||r∗ − s∗|| = 1.707835.
Note that Algorithm 14.4 generated a slightly more accurate solution than Al-
gorithm 14.2 requiring less computation.

14.7 Second-Order Cone Programming
14.7.1 Notation and definitions

The concept of convex cone has been defined in Sec. 14.2 as a convex set
where any element multiplied by any nonnegative scalar still belongs to the
cone (see Def. 14.1). Here we are interested in a special class of convex cones
known as second-order cones.

Definition 14.2 A second-order cone of dimension n is defined as

K =
{[

t
u

]
: t ∈ R, u ∈ Rn−1 for ‖u‖ ≤ t

}
(14.100)

A second-order cone is also called quadratic or Lorentz cone. For n = 1, the
second-order cone degenerates into a ray on the t axis starting from t = 0, as
shown in Fig. 14.3a. The second-order cones for n = 2 and 3 are depicted in
Fig. 14.3b and c, respectively.

Note that the second-order cone K is a convex set in Rn because for any two
points in K, [t1 uT

1]T and [t2 uT
2]T , and λ ∈ [0, 1], we have

λ

[
t1
u1

]
+ (1 − λ)

[
t2
u2

]
=

[
λt1 + (1 − λ)t2
λu1 + (1 − λ)u2

]

where

‖λu1 + (1 − λ)u2‖ ≤ λ‖u1‖ + (1 − λ)‖u2‖ ≤ λt1 + (1 − λ)t2

Semidefinite and Second-Order Cone Programming 485

u1u

u2

t

(a) (b) (c)

Figure 14.3. Second-order cones of dimension (a) n = 1, (b) n = 2, and (c) n = 3.

The primal second-order cone-programming (SOCP) problem is a cons-
trained optimization problem that can be formulated as

minimize
q∑

i=1

ĉT
i xi (14.101a)

subject to:
q∑

i=1

Âixi = b (14.101b)

xi ∈ Ki for i = 1, 2, . . . , q (14.101c)

where ĉi ∈ Rni×1, xi ∈ Rni×1, Âi ∈ Rm×ni , b ∈ Rm×1, and Ki is the
second-order cone of dimension ni. It is interesting to note that there exists
an analogy between the SOCP problem in Eq. (14.101) and the LP problem
in Eq. (12.1): both problems involve a linear objective function and a linear
equality constraint. While the variable vector x in an LP problem is constrained
to the region {x ≥ 0, x ∈ Rn}, which is a convex cone (see Def. 14.1), each
variable vector xi in an SOCP problem is constrained to the second-order cone
Ki.

The dual of the SOCP problem in Eq. (14.101) referred to hereafter as the
dual SOCP problem can be shown to be of the form

maximize bTy (14.102a)

subject to: ÂT
i y + si = ĉi (14.102b)

si ∈ Ki for i = 1, 2, . . . , q (14.102c)

where y ∈ Rm×1 and si ∈ Rni×1 (see Prob. 14.17). Note that a similar analogy
exists between the dual SOCP problem in Eq. (14.102) and the dual LP problem
in Eq. (12.2).

If we let

x = −y, ÂT
i =

[
bT

i

AT
i

]
and ĉi =

[
di

ci

]
(14.103)

where bi ∈ Rm×1 and di is a scalar, then the SOCP problem in Eq. (14.102)
can be expressed as

minimize bT x (14.104a)

486

subject to: ‖AT
i x + ci‖ ≤ bT

i x + di for i = 1, 2, . . . , q

(14.104b)

(see Prob. 14.18). As we will see next, this SOCP formulation turns out to have
a direct connection to many convex-programming problems in engineering and
science.

14.7.2 Relations among LP, QP, SDP and SOCP Problems
The class of SOCP problems is large enough to include both LP and convex

QP problems. If AT
i = 0 and ci = 0 for i = 1, 2, . . . , q, then the problem in

Eq. (14.104) becomes
minimize bTx

subject to: bT
i x + di ≥ 0 for i = 1, 2, . . . , q

which is obviously an LP problem.
Now consider the convex QP problem

minimize f(x) = xT Hx + 2xTp (14.105a)

subject to: Ax ≥ b (14.105b)

where H is positive definite. If we write matrix H as H = HT/2H1/2 and let
p̃ = H−T/2p, then the objective function in Eq. (14.105a) can be expressed as

f(x) = ‖H1/2x + p̃‖2 − pTH−1p

Since the term pTH−1p is a constant, minimizing f(x) is equivalent to mini-
mizing ‖H1/2x + p̃‖ and thus the problem at hand can be converted to

minimize δ (14.106a)

subject to: ‖H1/2x + p̃‖ ≤ δ (14.106b)

Ax ≥ b (14.106c)

where δ is an upper bound for ‖H1/2x + p̃‖ that can be treated as an auxiliary
variable of the problem. By defining

x̃ =
[

δ
x

]
, b̃ =

[
1
0

]
, H̃ = [0 H1/2], Ã = [0 A]

the problem becomes
minimize b̃T x̃ (14.107a)

subject to: ‖H̃x̃ + p̃‖ ≤ b̃T x̃ (14.107b)

Ãx̃ ≥ b (14.107c)

which is an SOCP problem. On the other hand, it can be shown that every
SOCP problem can be formulated as an SDP problem. To see this, note that
the constraint ‖u‖ ≤ t implies that[

tI u
uT t

]
� 0

Semidefinite and Second-Order Cone Programming 487

(see Prob. 14.19). In other words, a second-order cone can be embedded into a
cone of positive semidefinite matrices, and the SOCP problem in Eq. (14.104)
can be formulated as

minimize bT x (14.108a)

subject to:
[

(bT
i x + di)I AT

i x + ci

(AT
i x + ci)T cT

i x + di

]
� 0 (14.108b)

which is an SDP problem.
The above analysis has demonstrated that the branch of nonlinear program-

ming known as CP can be subdivided into a series of nested branches of opti-
mization, namely, SDP, SOCP, convex QP, and LP as illustrated in Fig. 14.4.

LPCP SDP SOCP
Convex
QP

Figure 14.4. Relations among LP, convex QP, SOCP, SDP, and CP problems.

14.7.3 Examples
In this section, we present several examples to demonstrate that a variety of

interesting optimization problems can be formulated as SOCP problems [15].
(i) QP problems with quadratic constraints A general QP problem with

quadratic constrains can be expressed as

minimize xTH0x + 2pT
0 x (14.109a)

subject to: xTHix + 2pT
i x + ri ≤ 0 for i = 1, 2, . . . , q

(14.109b)

where Hi for i = 1, 2, . . . , q are assumed to be positive-definite matrices.
Using the matrix decomposition Hi = HT/2

i H1/2
i , the problem in Eq. (14.109)

can be expressed as

minimize ‖H1/2
0 x + p̃0‖2 − pT

0 H−1
0 p0

subject to: ‖H1/2
i x + p̃i‖2 − pT

i H−1
i pi + ri ≤ 0 for i = 1, 2, . . . , q

488

where p̃i = H−T/2
i pi for i = 0, 1. . . . , q. Obviously, the above problem is

equivalent to the SOCP problem

minimize δ (14.110a)

subject to: ‖H1/2x + p̃0‖ ≤ δ (14.110b)

‖H1/2x + p̃i‖ ≤ (pT
i H−1

i pi − ri)1/2 for i = 1, 2, . . . , q

(14.110c)

(ii) Minimization of a sum of L2 norms Unconstrained minimization problems
of the form

minimize
N∑

i=1

‖Aix + ci‖

occur in a number of applications. By introducing an upper bound for each
L2-norm term in the objective function, the problem can be converted to

minimize
N∑

i=1

δi (14.111a)

subject to: ‖Aix + ci‖ ≤ δi for i = 1, 2, . . . , N

(14.111b)

If we define an augmented variable vector

x̃ =

⎡
⎢⎢⎢⎣

δ1
...

δN

x

⎤
⎥⎥⎥⎦

and let

b̃ =

⎡
⎢⎢⎢⎣

1
...
1
0

⎤
⎥⎥⎥⎦ , Ãi = [0 Ai], b̃i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
← ith component

then Eq. (14.111) becomes

minimize b̃T x̃ (14.112a)

subject to: ‖Ãix̃ + ci‖ ≤ b̃T
i x̃ for i = 1, 2, . . . , N

(14.112b)

Semidefinite and Second-Order Cone Programming 489

which is an SOCP problem.
Another unconstrained problem related to the problem in Eq. (14.111) is the

minimax problem

minimize
x

maximize
1≤i≤N

‖Aix + ci‖ (14.113)

which can be re-formulated as the SOCP problem

minimize δ (14.114a)

subject to: ‖Aix + ci‖ ≤ δ for i = 1, 2, . . . , N

(14.114b)

(iii) Complex L1-norm approximation problem An interesting special case
of the sum-of-norms problem is the complex L1 norm approximation prob-
lem whereby a complex-valued approximate solution for the linear equation
Ax = b is required where A and b are complex-valued such that x solves the
unconstrained problem

minimize ‖Ax − c‖1

where A ∈ Cm×n, c ∈ Cm×1, x ∈ Cn×1, and the L1 norm of x is defined as
‖x‖1 =

∑n
k=1 |xk|. If we let A = [a1 a2 · · · am]T and c = [c1 c2 · · · cm]T

where ak = akr + jaki, ck = ckr + jcki, x = xr + jxi, and j =
√
−1, then

we have

‖Ax − c‖1 =
m∑

k=1

|aT
k x− ck|

=
m∑

k=1

[(aT
krxr − aT

kixi − ckr)2 + (aT
krxi + aT

kixr − cki)2]1/2

=
m∑

k=1

∣∣∣∣
∣∣∣∣
[
aT

kr −aT
ki

aT
ki aT

kr

] [
xr

xi

]
−

[
ckr

cki

]∣∣∣∣
∣∣∣∣ =

m∑
k=1

‖Akx̂ − ck‖︸ ︷︷ ︸
Ak

︸︷︷︸
x̂

︸︷︷︸
ck

Hence the problem under consideration can be converted to

490

minimize
m∑

k=1

δk (14.115a)

subject to: ‖Akx̂ − ck‖ ≤ δk for k = 1, 2, . . . , m

(14.115b)

By letting

x̃ =

⎡
⎢⎢⎢⎣

δ1
...

δm

x̂

⎤
⎥⎥⎥⎦ , b̃0 =

⎡
⎢⎢⎢⎣

1
...
1
0

⎤
⎥⎥⎥⎦ , Ãk = [0 Ak]

b̃k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
← the kth component

the problem in Eq. (14.115) becomes

minimize b̃T x̃ (14.116a)

subject to: ‖Ãkx̃ − ck‖ ≤ b̃T
k x̃ for k = 1, 2, . . . , m

(14.116b)

which is obviously an SOCP problem.
(iv) Linear fractional problem The linear fractional problem can be de-

scribed as

minimize
p∑

i=1

1
aT

i x + ci
(14.117a)

subject to: aT
i x + ci > 0 for i = 1, 2, . . . , p (14.117b)

bT
i x + di ≥ 0 for i = 1, 2, . . . , q (14.117c)

It can be readily verified that subject to the constraints in Eq. (14.117b), each
term in the objective function is convex and hence the objective function itself
is also convex. It, therefore, follows that the problem in Eq. (14.117) is a CP
problem. By introducing the auxiliary constraints

1
aT

i x + ci
≤ δi

Semidefinite and Second-Order Cone Programming 491

i.e.,
δi(zT

i x + ci) ≥ 1

and
δi ≥ 0

the problem in Eq. (14.117) can be expressed as

minimize
p∑

i=1

δi (14.118a)

subject to: δi(aT
i x + ci) ≥ 1 for i = 1, 2, . . . , p (14.118b)

δi ≥ 0 (14.118c)

bT
i x + di ≥ 0 (14.118d)

Furthermore, we note that w2 ≤ uv, u ≥ 0, v ≥ 0 if and only if∣∣∣∣
∣∣∣∣
[

2w
u − v

]∣∣∣∣
∣∣∣∣ ≤ u + v

(see Prob. 14.20) and hence the constraints in Eqs. (14.118b) and (14.118c) can
be written as∣∣∣∣

∣∣∣∣
[

2
aT

i x + ci − δi

]∣∣∣∣
∣∣∣∣ ≤ aT

i x + ci + δi for i = 1, 2, . . . , p

Hence the problem in Eq. (14.118) can be formulated as

minimize
p∑

i=1

δi (14.119a)

subject to:
∣∣∣∣
∣∣∣∣
[

2
aT

i x + ci − δi

]∣∣∣∣
∣∣∣∣ ≤ aT

i x + ci + δi for i = 1, 2, . . . , p

(14.119b)

bT
i x + di ≥ 0 (14.119c)

which is an SOCP problem.

14.8 A Primal-Dual Method for SOCP Problems
14.8.1 Assumptions and KKT conditions

If we let

c =

⎡
⎢⎢⎢⎣

ĉ1

ĉ2
...
ĉq

⎤
⎥⎥⎥⎦ , x =

⎡
⎢⎢⎢⎣

x1

x2
...

xq

⎤
⎥⎥⎥⎦ , s =

⎡
⎢⎢⎢⎣

s1

s2
...
sq

⎤
⎥⎥⎥⎦

A = [Â1 Â2 Â2 · · · Âq] and K = K1 ×K2 × · · · × Kq

492

where K1, K2, . . . , Kq are the second-order cones in Eqs. (14.101) and
(14.102) and K = K1 ×K2 × · · · × Kq represents a second-order cone whose
elements are of the form x = [x1 x2 · · · xq]T with xi ∈ Ki for i = 1, 2, . . . , q,
then the primal and dual SOCP problems in Eqs. (14.101) and (14.102) can be
expressed as

minimize cTx (14.120a)

subject to: Ax = b, x ∈ K (14.120b)

and
maximize bT y (14.121a)

subject to: ATy + s = c, s ∈ K (14.121b)

respectively. The feasible sets for the primal and dual SOCP problems are
defined by

Fp = {x : Ax = b, x ∈ K}
and

Fd = {(s, y) : ATy + s = c, s ∈ K}
respectively. The duality gap between x ∈ Fp and (s, y) ∈ Fd assumes the
form

δ(x, s,y) = cTx − bTy = (ATy + s)Tx − bTy = sTx (14.122)

A vector xi = [ti uT
i]T in space Rni×1 is said to be an interior point of the

second-order cone Ki if ‖ui‖ < ti. If we denote the set of all interior points of
Ki as Ko

i and let
Ko = Ko

1 ×Ko
2 × · · · × Ko

q

then a strictly feasible vector for the problem in Eq. (14.120) is a vector x ∈ Ko
i

satisfying the constraint in Eq. (14.120b). Based on these ideas, the strictly
feasible sets of the primal and dual SOCP problems are given by

Fo
p = {x : Ax = b, x ∈ Ko}

and
Fo

d = {(x, y) : ATy + s = c, s ∈ Ko}
respectively.

In the rest of the chapter, we make the following two assumptions:

1. There exists a strictly feasible pointx for the primal problem in Eq. (14.120)
and a strictly feasible pair (s, y) for the dual problem in Eq. (14.121),
i.e., both Fo

p and Fo
d are nonempty.

2. The rows of matrix A are linearly independent.

Semidefinite and Second-Order Cone Programming 493

Under these assumptions, solutions for the primal and dual SOCP problems
exist and finding these solutions is equivalent to finding a vector set (x, s, y) ∈
K ×K × Rm that satisfies the KKT conditions [16]

Ax = b (14.123a)

ATy + s = c (14.123b)

xT s = 0 (14.123c)

where the condition in Eq. (14.123c) is referred to as the complementarity
condition. From Eq. (14.123c), we note that the duality gap δ(x, s,y) at the
primal and dual solution points becomes zero.

14.8.2 A primal-dual interior-point algorithm
In this section we introduce a primal-dual interior-point algorithm for SOCP,

which is a slightly modified version of an algorithm proposed in [16]. In the
kth iteration of the algorithm, the vector set (xk, sk, yk) is updated to

(xk+1, sk+1, yk+1) = (xk, sk, yk) + αk(∆x, ∆s, ∆y) (14.124)

where (∆x, ∆s, ∆y) is obtained by solving the linear system of equations

A∆x = b− Ax (14.125a)

AT ∆y + ∆s = c − s −AT y (14.125b)

S∆x + X∆s = σµe− Xs (14.125c)

where e = [1 1 · · · 1]T ,

X = diag{X1, . . . , Xq} with Xi =
[

ti uT
i

ui tiIi

]
(14.125d)

S = diag{S1, . . . , Sq} (14.125e)

µ = xT s/q (14.125f)

σ is a small positive scalar, and (x, s, y) assumes the value of (xk, sk, yk).
In Eq. (14.125d), ti and ui are the first component and the remaining part of
vector xi, respectively, and Ii is the identity matrix of dimension ni − 1. The
matrices Si for i = 1, 2, . . . , q in Eq. (14.125e) are defined in a similar manner.
On comparing Eq. (14.125) with Eq. (14.123), it is evident that the vector set
(xk, sk, yk) is updated so that the new vector set (xk+1, sk+1, yk+1) better
approximates the KKT conditions in Eq. (14.123).

In Eq. (14.124), αk is a positive scalar that is determined by the line search

αk = 0.75min(αk1, αk2, αk3) (14.126a)

αk1 = max
0<α≤1

(xk + α∆x ∈ Fo
p) (14.126b)

494

αk2 = max
0<α≤1

(sk + α∆s ∈ Fo
d) (14.126c)

αk3 = max
0<α≤1

[c −AT (yk + α∆y) ∈ Fo
d] (14.126d)

It follows from Eqs. (14.124) and (14.126) that the updated vector set (xk+1, sk+1,
yk+1) will remain strictly feasible.

An algorithm based on the above approach is as follows.

Algorithm 14.5 Primal-dual interior-point algorithm for SOCP
problems
Step 1
Input data set (A, b, c), parameters q and ni for i = 1, 2, . . . , q, and
tolerance ε.
Input an initial vector set (x0, s0,y0) with x0 ∈ Fo

p and (s0,y0) ∈ Fo
d .

Set µ0 = xT
0 s0/q, σ = 10−5, and k = 0.

Step 2
Compute the solution (∆x, ∆s, ∆y) of Eqs. (14.125a)–(14.125c)
where (x, s, y) = (xk, sk,yk) and µ = µk.
Step 3
Compute αk using Eq. (14.126).
Step 4
Set (xk+1, sk+1,yk+1) = (xk + αk∆x, sk + αk∆s, yk + αk∆y)
Step 5
Compute µk+1 = xT

k+1sk+1/q. If µk+1 ≤ ε, output solution (x∗, s∗,
y∗) = (xk+1, sk+1,yk+1) and stop; otherwise, set k = k+1 and repeat
from Step 2.

Example 14.5 Apply Algorithm 14.5 to solve the shortest distance problem
discussed in Example 13.5.

Solution The problem can be formulated as

minimize δ

subject to: [(x1 − x3)2 + (x2 − x4)2]1/2 ≤ δ

[x1 x2]
[
1/4 0
0 1

] [
x1

x2

]
− [x1 x2]

[
1/2
0

]
≤ 3

4

[x3 x4]
[
5/8 3/8
3/8 5/8

] [
x3

x4

]
− [x3 x4]

[
11/2
13/2

]
≤ −35

2

If we let x = [δ x1 x2 x3 x4]T , the above problem can be expressed as

Semidefinite and Second-Order Cone Programming 495

minimize bT x (14.127a)

subject to: ‖AT
i x + ci‖ ≤ bT

i x + di for i = 1, 2, 3
(14.127b)

where

b = [1 0 0 0 0]T

AT
1 =

[
0 −1 0 1 0
0 0 1 0 −1

]
, AT

2 =
[
0 0.5 0 0 0
0 0 1 0 0

]

AT
3 =

[
0 0 0 −0.7071 −0.7071
0 0 0 −0.3536 0.3536

]
b1 = b, b2 = 0, b3 = 0
c1 = 0, c2 = [−0.5 0]T , c3 = [4.2426 −0.7071]T

d1 = 0, d2 = 1, and d3 = 1

The SOCP formulation in Eq. (14.127) is the same as that in Eq. (14.104).
Hence by using Eq. (14.103), the problem at hand can be converted into the
primal and dual formulations in Eq. (14.101) and Eq. (14.102).

In order to generate a strictly feasible vector set (x0, s0, y0), we note that
the initial point used in Example 13.5, i.e., [x1 x2 x3 x4] = [1.5 0.5 2.5 4],
suggests an initial y0 = [β −1.5 − 0.5 −2.5 −4]T where β is a scalar to
ensure that s = c − ATy0 ∈ Fo

d . Since

s0 = c − ATy0 = [β 1 3.5 0 0 1 0.25 0.5 1 −0.3535 −0.1767]T

n1 = 5, n2 = 3, and n3 = 3, choosing β = 3.7 guarantees that s0 ∈ Fo
d . This

gives

y0 = [3.7 −1.5 −0.5 −2.5 −4]T

and
x0 = [3.7 1 3.5 0 0 1 0.25 0.5 1 −0.3535 −0.1767]T

Moreover, it can be readily verified that

x0 = [1 0 0 0 0 0.1 0 0 0.1 0 0]T ∈ Fo
p

With ε = 10−4, it took Algorithm 14.5 15 iterations and 2.98 Mflops to converge
to vector set (x∗, s∗, y∗) where

y∗ =

⎡
⎢⎢⎢⎢⎣
−1.707791
−2.044705
−0.852730
−2.544838
−2.485646

⎤
⎥⎥⎥⎥⎦

496

which corresponds to the solution points r∗ ∈ R and s∗ ∈ S given by

r∗ =
[
2.044705
0.852730

]
and s∗ =

[
2.544838
2.485646

]

These points give the shortest distance between R and S as ‖r∗ − s∗‖ =
1.707790. Compared with the results obtained in Example 13.5, we note that
Algorithm 14.5 led to a more accurate solution with less computation.

References
1 F. Alizadeh, Combinational Optimization with Interior Point Methods and Semidefinite Ma-

trices, Ph.D. thesis, University of Minnesota, Oct. 1991.
2 Y. Nesterov and A. Nemirovski, Interior-Point Polynomial Algorithms in Convex Program-

ming, SIAM, Philadelphia, PA, 1994.
3 L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Review, vol. 38, pp. 49–

95, Mar. 1996.
4 A. Nemirovski and P. Gahinet, “The projective method for solving linear matrix inequalities,”

in Proc. American Control Conference, pp. 840–844, Baltimore, MD., June 1994.
5 C. Helmberg, F. Rendl, R. Vanderbei, and H. Wolkowicz, “An interior-point method for

semidefinite programming,” SIAM J. Optim., vol. 6, pp. 342–361, 1996.
6 M. Kojima, S. Shindoh, and S. Hara, “Interior-point methods for the monotone linear com-

plementarity problem in symmetric matrices,” SIAM J. Optim., vol. 7, pp. 86–125, 1997.
7 Y. Nesterov and M. Todd, “Primal-dual interior-point method for self-scaled cones,” SIAM

J. Optim., vol. 8, pp. 324–364, 1998.
8 F. Alizadeh, J. A. Haeberly, and M. L. Overton, “Primal-dual interior-point methods for

semidefinite programming: Convergence rates, stability and numerical results,” SIAM J.
Optim., vol. 8, pp. 746–768, 1998.

9 R. Monteiro, “Polynomial convergence of primal-dual algorithm for semidefinite program-
ming based on Monteiro and Zhang family of directions,” SIAM J. Optim., vol. 8, pp. 797–
812, 1998.

10 S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System
and Control Theory, SIAM, Philadelphia, 1994.

11 A. S. Lewis and M. L. Overton, “Eigenvalue optimization,” Acta Numerica, vol. 5, pp. 149–
190, 1996.

12 M. Shida, S. Shindoh, and M. Kojima, “Existence and uniqueness of search directions in
interior-point algorithms for the SDP and the monotone SDLCP,” SIAM J. Optim., vol. 8,
pp. 387–398, 1998.

13 S. Mehrotra, “On the implementation of a primal-dual interior point method,” SIAM, J.
Optim., vol. 2, pp. 575–601, 1992.

14 P. Gahinet and A. Nemirovski, “The projective method for solving linear matrix inequalities,”
Math. Programming, vol. 77, pp. 163–190, 1997.

15 M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second-order cone
programming,” Linear Algebra and Its Applications, vol. 284, pp. 193–228, Nov. 1998.

16 R. D. C. Monteiro and T. Tsuchiya, “Polynomial convergence of primal-dual algorithms for
the second-order cone program based on the MZ-family of directions,” Math. Programming,
vol. 88, pp. 61–83, 2000.

Semidefinite and Second-Order Cone Programming 497

Problems
14.1 Prove that the minimization problem in Eq. (14.1) is a CP problem.

14.2 Show that the sets {X : X ∈ Rn×n, X � 0} and {x : x ∈ Rn×1, x ≥
0} are convex cones.

14.3 Given that X � 0 and S � 0, prove that

S · X ≥ 0

where S · X denotes the standard inner product in space Sn defined in
Sec. 14.2.1.

14.4 (a) Prove that the inequality in Eq. (14.14) holds if and only if matrix
G(δ, x) in Eq. (14.15) is positive semidefinite.

(b) Specify matrices F0 and Fi (1 ≤ i ≤ n) in Eq. (14.16) so that
F(x) � 0 reformulates the constraints in Eq. (14.13c).

14.5 The problem of minimizing the maximum eigenvalue of an affine matrix
can be stated as follows: given matrices A0, A1, . . . , Ap in Sn, find
scalars y1, y2, . . . , yp such that the maximum eigenvalue of

A0 +
p∑

i=1

yiAi

is minimized. Formulate this optimization problem as an SDP problem.

14.6 (a) Prove that if X 0 or S 0, then

XS = τI

is equivalent to
XS + SX = 2τI

(b) Give a numerical example to demonstrate that if the condition X 0
or S 0 is removed, then the equalities in part (a) are no longer
equivalent.

14.7 (a) Verify the identity in Eq. (14.35).

(b) Verify the identity in Eq. (14.38).

14.8 By using Eq. (14.36) with a special symmetric matrix K, each row of
matrix M �N can be determined for given matrices M and N.

(a) Develop an algorithm that computes the symmetric Kronecker prod-
uct M � N for given M, N ∈ Rn×n.

(b) Write a MATLAB program that implements the algorithm devel-
oped in part (a).

498

14.9 Prove Lemma 14.1.

14.10 Using Lemma 14.1, show that if matrices M and N commute then the
solution of the Lyapunov equation

MXNT + NXMT = B

where B ∈ Sn, M, and N are given, can be expressed as

X = VCVT

whereV = [v1 v2 · · · vn] is defined by the eigenvectorsvi for1 ≤ i ≤ n
in Lemma 14.1, and C is obtained by calculating VT BV and dividing its
elements by (αiβj + βiαj) componentwise.

14.11 Verify that {∆x, ∆y, ∆s} obtained from Eq. (14.43) solves Eq. (14.42).

14.12 Given a positive-definite matrix X, show that every element in the Dikin
ellipsoid D(X) defined by Eq. (14.61) is a positive-definite matrix.

14.13 Show that if matrices Fi for i = 1, 2, . . . , p are linearly independent,
then matrix F̂ given by Eq. (14.69c) is positive definite.

14.14 (a) Show that for a given real number f , E(f) given by Eq. (14.87) is a
linear subspace of E .

(b) Show that there exists a one-to-one correspondence between E(f) and
hyperplane {x̃ : f(x̃) = f}.

14.15 Show that for a given Xk 0, there exist matrices Ck and Dk in E such
that Eqs. (14.91a) and (14.91b) hold for any X = F̃ x̃ in E .
Hint: A proof of this fact can be carried out by letting

X =
p+1∑
i=1

xiF̃i, Ck =
p+1∑
i=1

αiF̃i, Dk =
p+1∑
i=1

βiF̃i

and converting Eqs. (14.91a) and (14.91b) into a linear system of equations
for α = [α1 α2 · · · αp+1]T and β = [β1 β2 · · · βp+1]T , respectively.

14.16 Applying Algorithm 14.4, solve the SDP problem

minimize cTx

subect to: F(x) = Fi +
4∑

i=1

xiFi � 0

where c = [1 0 2 −1]T and Fi for i = 0, 1, . . . , 4 are given in Example
14.3.

Semidefinite and Second-Order Cone Programming 499

14.17 Show that the Wolfe dual of the primal SOCP problem in Eq. (14.101)
assumes the form in Eq. (14.102).

14.18 Show that the SOCP problem in Eq. (14.102) is equivalent to the SOCP
problem in Eq. (14.104).

14.19 Given a column vector u and a nonnegative scalar t such that ‖u‖2 ≤ t,
the matrix [

tI u
uT t

]
can be constructed. Show that the matrix is positive semidefinite.

14.20 Show that w2 ≤ uv, u ≥ 0, and v ≥ 0 if and only if∣∣∣∣
∣∣∣∣
[

2w
u − v

]∣∣∣∣
∣∣∣∣ ≤ u + v

14.21 Solve the shortest distance problem in Prob. 13.13 by using Algorithm
14.5.

14.22 Solve the least-square minimization problem in Prob. 13.15 by using Al-
gorithm 14.5.

Chapter 15

GENERAL NONLINEAR OPTIMIZATION
PROBLEMS

15.1 Introduction

The most general class of optimization problems is the class of problems
where both the objective function and the constraints are nonlinear, as formu-
lated in Eq. (10.1). These problems can be solved by using a variety of methods
such as penalty- and barrier-function methods, gradient projection methods, and
sequential quadratic-programming (SQP) methods [1]. Among these methods,
SQP algorithms have proved highly effective for solving general constrained
problems with smooth objective and constraint functions [2]. A more recent
development in nonconvex constrained optimization is the extension of the mod-
ern interior-point approaches of Chaps. 12–14 to the general class of nonlinear
problems.

In this chapter, we study two SQP algorithms for nonlinear problems first with
equality and then with inequality constraints. In Sec. 15.3, we modify these
algorithms by including a line-search step and an updating formula such as
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) updating formula to estimate
the Hessian of the Lagrangian. In Sec. 15.4, we study an interior-point algo-
rithm for nonconvex constrained problems, which is a direct extension of the
primal-dual interior-point methods for linear-programming (LP) and quadratic-
programming (QP) problems.

15.2 Sequential Quadratic Programming Methods

SQP methods for the general nonlinear constrained optimization problem in
Eq. (10.1) were first studied during the sixties by Wilson [3], and a great deal
of research has been devoted to this class of methods since that time. A recent
survey of SQP algorithms can be found in [4].

502

15.2.1 SQP problems with equality constraints
Consider the optimization problem

minimize f(x) (15.1a)

subject to: ai(x) = 0 for i = 1, 2, . . . , p (15.1b)

where f(x) and ai(x) are continuous functions which have continuous sec-
ond partial derivatives. We assume that the feasible region R described by
Eq. (15.1b) is nonempty and that p ≤ n. From Chap. 10, we know that the
first-order necessary conditions for x∗ to be a local minimizer of the problem
in Eq. (15.1) are that there exists a λ∗ ∈ Rp such that

∇L(x∗, λ∗) = 0 (15.2)

where L(x, λ) is the Lagrangian defined by

L(x, λ) = f(x) −
p∑

i=1

λiai(x)

and the gradient operation in Eq. (15.2) is performed with respect to x and λ,
i.e.,

∇ =
[∇x

∇λ

]
(See Sec. 10.5.2 for the details.)

If set {xk, λk} is the kth iterate, which is assumed to be sufficiently close to
{x∗, λ∗}, i.e., xk ≈ x∗ and λk ≈ λ∗, we need to find an increment {δx, δλ}
such that the next iterate {xk+1, λk+1} = {xk + δx, λk + δλ} is closer to
{x∗, λ∗}. If we approximate ∇L(xk+1, λk+1) by using the first two terms of
the Taylor series of ∇L for {xk, λk}, i.e.,

∇L(xk+1, λk+1) ≈ ∇L(xk, λk) + ∇2L(xk, λk)
[
δx

δλ

]

then {xk+1, λk+1} is an approximation of {x∗, λ∗} if the increment {δx, δλ}
satisfies the equality

∇2L(xk, λk)
[
δx

δλ

]
= −∇L(xk, λk) (15.3)

More specifically, we can write Eq. (15.3) in terms of the Hessian of the La-
grangian, W, for {x, λ} = {xk, λk} and the Jacobian, A, for x = xk as[

Wk −AT
k

−Ak 0

] [
δx

δλ

]
=

[
AT

k λk − gk

ak

]
(15.4a)

General Nonlinear Optimization Problems 503

where

Wk = ∇2
xf(xk) −

p∑
i=1

(λk)i∇2
xai(xk) (15.4b)

Ak =

⎡
⎢⎢⎢⎣
∇T

x a1(xk)
∇T

x a2(xk)
...

∇T
x ap(xk)

⎤
⎥⎥⎥⎦ (15.4c)

gk = ∇xf(xk) (15.4d)

ak = [a1(xk) a2(xk) · · · ap(xk)]T (15.4e)

If Wk is positive definite and Ak has full row rank, then the matrix at the
left-hand side of Eq. (15.4a) is nonsingular and symmetric and the system of
equations in Eq. (15.4a) can be solved efficiently for {δx, δλ} as shown in
Chap. 4 of [5].

Eq. (15.4a) can also be written as

Wkδx + gk = AT
k λk+1 (15.5a)

Akδx = −ak (15.5b)

and these equations may be interpreted as the first-order necessary conditions
for δx to be a local minimizer of the QP problem

minimize 1
2δTWkδ + δTgk (15.6a)

subject to: Akδ = −ak (15.6b)

If Wk is positive definite and Ak has full row rank, the minimizer of the
problem in Eq. (15.6) can be found by using, for example, the methods discussed
in Sec. 13.2. Once the minimizer, δx, is obtained, the next iterate is set to
xk+1 = xk + δx and the Lagrange multiplier vector1 λk+1 is determined as

λk+1 = (AkAT
k)−1Ak(Wkδx + gk) (15.7)

by using Eq. (15.5a). With xk+1 and λk+1 known, Wk+1, gk+1, Ak+1, and
ak+1 can be evaluated. The iterations are continued until ||δx|| is sufficiently
small to terminate the algorithm. We see that the entire solution procedure
consists of solving a series of QP subproblems in a sequential manner and,
as a consequence, the method is often referred to as the sequential quadratic-
programming (SQP) method.

From Eq. (15.3), we observe that the correct increments δx andδλ are actually
the Newton direction for the Lagrangian L(x, λ). For this reason, the above

1Hereafter this will be referred to as the Lagrange multiplier for the sake of simplicity.

504

method (along with the method for SQP problems described in Sec. 15.2.2)
is sometimes referred to as the Lagrange-Newton method in the literature [1].
It should be stressed at this point that the involvement of the Lagrangian in
this method is crucial. To see this more clearly, note that for an increment δ
satisfying the constraints in Eq. (15.6b), we can write

δTgk = δT (gk − AT
k λk) + δTAT

k λk

= δT (gk − AT
k λk) − aT

k λk

= δT∇xL(xk, λk) + ck

where ck is independent of δ. Therefore, the problem in Eq. (15.6) can be stated
as the QP problem

minimize {1
2δT [∇2

xL(xk, λk)]δ + δT∇xL(xk, λk) + ck} (15.8a)

subject to: Akδ = −ak (15.8b)

In effect, the QP problem in Eq. (15.6) essentially entails minimizing the second-
order approximation of the Lagrangian L(x, λ) rather than the objective func-
tion f(x).

The SQP method can be implemented in terms of the following algorithm.

Algorithm 15.1 SQP algorithm for nonlinear problems with equal-
ity constraints
Step 1
Set {x, λ} = {x0, λ0}, k = 0, and initialize the tolerance ε.
Step 2
Evaluate Wk, Ak, gk, and ak using Eqs. (15.4b) – (15.4e).
Step 3
Solve the QP problem in Eq. (15.6) for δ and compute Lagrange multi-
plier λk+1 using Eq. (15.7).
Step 4
Set xk+1 = xk + δx. If ||δx|| ≤ ε, output x∗ = xk+1 and stop;
otherwise, set k = k + 1, and repeat from Step 2.

Example 15.1 Apply Algorithm 15.1 to the minimization problem

minimize f(x) = −x4
1 − 2x4

2 − x4
3 − x2

1x
2
2 − x2

1x
2
3

subject to: a1(x) = x4
1 + x4

2 + x4
3 − 25 = 0

a2(x) = 8x2
1 + 14x2

2 + 7x2
3 − 56 = 0

General Nonlinear Optimization Problems 505

Solution With xk = [x1 x2]T and λk = [λ1 λ2]T , Step 2 of Algorithm 15.1
gives

Wk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−12x2
1 − 2x2

2 − 2x2
3 −4x1x2 −4x1x3

−12λ1x
2
1 − 16λ2

−4x1x2 −24x2
2 − 2x2

1 0
−12λ1x

2
2 − 28λ2

−4x1x3 0 −12x2
3 − 2x2

1

−12λ1x
2
3 − 14λ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15.9)

gk =

⎡
⎣−4x3

1 − 2x1x
2
2 − 2x1x

2
3

−8x3
2 − 2x2

1x2

−4x3
3 − 2x2

1x3

⎤
⎦

Ak =
[

4x3
1 4x3

2 4x3
3

16x1 28x2 14x3

]
(15.10)

ak =
[

x4
1 + x4

2 + x4
3 − 25

8x2
1 + 14x2

2 + 7x2
3 − 56

]
With x0 = [3 1.5 3]T , λ0 = [−1 −1]T , and ε = 10−8, it took Algorithm 15.1
10 iterations to converge to

x∗ =

⎡
⎣ 1.874065

0.465820
1.884720

⎤
⎦ , λ∗ =

[−1.223464
−0.274937

]

and f(x∗) = −38.384828. To examine whether or not x∗ is a local minimizer,
we can compute the Jacobian of the constraints in Eq. (15.10) at x∗ and perform
the QR decomposition of AT (x∗) as

AT (x∗) = Q
[
R
0

]
where Q ∈ R3×3 is an orthogonal matrix. Since rank[A(x∗)] = 2, the null
space of A(x∗) is a one-dimensional subspace in E3 which is spanned by the
last column of Q, i.e.,

N(x∗) = Q(:, 3) =

⎡
⎣−0.696840

0.222861
0.681724

⎤
⎦

where Q(:, 3) denotes the third column of matrix Q. This leads to

NT (x∗)∇2
xL(x∗, λ∗)N(x∗) = 20.4 > 0

Therefore, x∗ is a local minimizer of the problem.

506

15.2.2 SQP problems with inequality constraints
In this section, we extend Algorithm 15.1 to the case of inequality constraints.

Let us consider the general optimization problem

minimize f(x) (15.11a)

subject to: cj(x) ≥ 0 for j = 1, 2, . . . , q (15.11b)

where f(x) and cj(x) are continuous and have continuous second partial deriva-
tives, and the feasible region R described by Eq. (15.11b) is nonempty. Mo-
tivated by the SQP method for equality constraints studied in Sec. 15.2.1, we
need to find an increment {δx, δµ} for the kth iterate {xk, µk} such that the
next iterate {xk+1, µk+1} = {xk + δx, µk + δµ} approximates the Karush-
Kuhn-Tucker (KKT) conditions

∇xL(x, µ) = 0
cj(x) ≥ 0 for j = 1, 2, . . . , q

µ ≥ 0
µjcj(x) = 0 for j = 1, 2, . . . , q

in the sense that

∇xL(xk+1, µk+1) ≈ ∇xL(xk, µk) + ∇2
xL(xk, µk)δx

+∇2
xµL(xk, µk)δµ = 0 (15.12a)

cj(xk + δx) ≈ cj(xk) + δT
x∇xcj(xk) ≥ 0 for j = 1, 2, . . . , q

(15.12b)

µk+1 ≥ 0 (15.12c)

and

[cj(xk) + δT
x∇xcj(xk)](µk+1)j = 0 for j = 1, 2, . . . , q (15.12d)

The Lagrangian L(x, µ) in this case is defined as

L(x, µ) = f(x) −
q∑

j=1

µjcj(x) (15.13)

Hence

∇xL(xk, µk) = ∇xf(xk) −
q∑

j=1

(µk)j∇xcj(xk) = gk − AT
k µk

∇2
xL(xk, µk) = ∇2

xf(xk) −
q∑

j=1

(µk)j∇2
xcj(xk) = Yk (15.14a)

General Nonlinear Optimization Problems 507

and
∇2

xµL(xk, µk) = −AT
k

where Ak is the Jacobian of the constraints at xk, i.e.,

Ak =

⎡
⎢⎢⎢⎣
∇T

x c1(xk)
∇T

x c2(xk)
...

∇T
x cq(xk)

⎤
⎥⎥⎥⎦ (15.14b)

The approximate KKT conditions in Eq. (15.12) can now be expressed as

Ykδx + gk − AT
k µk+1 = 0 (15.15a)

Akδx ≥ −ck (15.15b)

µk+1 ≥ 0 (15.15c)

(µk+1)j(Akδx + ck)j = 0 for j = 1, 2, . . . , q (15.15d)

where
ck = [c1(xk) c2(xk) . . . cq(xk)]T (15.16)

Given (xk, µk), Eq. (15.15) may be interpreted as the exact KKT conditions
of the QP problem

minimize 1
2δTYkδ + δTgk (15.17a)

subject to: Akδ ≥ −ck (15.17b)

If δx is a regular solution of the QP subproblem in Eq. (15.17) in the sense that
the gradients of those constraints that are active at xk are linearly independent,
then Eq. (15.15a) can be written as

Ykδx + gk − AT
akµ̂k+1 = 0

where the rows of Aak are those rows of Ak satisfying the equality (Akδx +
ck)j = 0 and µ̂k+1 denotes the associated Lagrange multiplier vector. Hence
µ̂k+1 can be computed as

µ̂k+1 = (AakAT
ak)

−1Aak(Ykδx + gk) (15.18)

It follows from the complementarity condition in Eq. (15.15d) that the Lagrange
multiplier µk+1 can be obtained by inserting zeros where necessary in µ̂k+1.

Since the key objective in the above method is to solve the QP subproblem in
each iteration, the method is referred to as the SQP method for general nonlinear
minimization problems with inequality constraints. As in the case of equality
constraints, the quadratic function involved in the QP problem in Eq. (15.17) is
associated with the Lagrangian L(x, µ) in Eq. (15.13) rather than the objective
function f(x) and, as can be seen in Eq. (15.12a), the increment δx obtained

508

by solving Eq. (15.17) is the Newton direction of the Lagrangian with respect
to variable x.

The above SQP method can be implemented in terms of the following algo-
rithm.

Algorithm 15.2 SQP algorithm for nonlinear problems with in-
equality constraints
Step 1
Initialize {x, µ} = {x0, µ0} where x0 and µ0 are chosen such that
cj(x0) ≥ 0 (j = 1, 2, . . . , q) and µ0 ≥ 0.
Set k = 0 and initialize tolerance ε.
Step 2
Evaluate Yk, Ak, gk and ck using Eqs. (15.14a), (15.14b), (15.4d), and
(15.16), respectively.
Step 3
Solve the QP problem in Eq. (15.17) for δx and compute Lagrange mul-
tiplier µ̂k+1 using Eq. (15.18).
Step 4
Set xk+1 = xk + δx. If ||δx|| ≤ ε, output x∗ = xk+1 and stop;
otherwise, set k = k + 1, and repeat from Step 2.

Example 15.2 Apply Algorithm 15.2 to solve the shortest distance problem
discussed in Example 13.5.

Solution As was discussed in Example 13.5, the problem can be formulated as
the constrained minimization problem

minimize f(x) = 1
2 [(x1 − x3)2 + (x2 − x4)2]

subject to: c1(x) = −[x1 x2]
[1

4 0
0 1

] [
x1

x2

]
+ [x1 x2]

[1
2
0

]
+ 3

4 ≥ 0

c2(x) = −1
8 [x3 x4]

[
5 3
3 5

] [
x3

x4

]
+ [x3 x4]

[11
2
13
2

]
− 35

2 ≥ 0

where x = [x1 x2 x3 x4]T . Since both the objective function and the con-
straints are quadratic, Hessian Yk is independent of xk and is given by

Yk =

⎡
⎢⎢⎣

1 + µ1/2 0 −1 0
0 1 + 2µ1 0 −1
−1 0 1 + 5µ2/4 3µ2/4
0 −1 3µ2/4 1 + 5µ2/4

⎤
⎥⎥⎦

General Nonlinear Optimization Problems 509

where µk = [µ1 µ2]T , and Yk is positive definite as long as µk > 0. With

x0 =

⎡
⎢⎢⎣

1.0
0.5
2.0
3.0

⎤
⎥⎥⎦ , µ0 =

[
1
1

]
, and ε = 10−5

it took Algorithm 15.2 seven iterations and 49.8 Kflops to converge to the
solution

x∗ =

⎡
⎢⎢⎣

2.044750
0.852716
2.544913
2.485633

⎤
⎥⎥⎦ and µ∗ =

[
0.957480
1.100145

]

Hence the solution points r∗ ∈ R and s∗ ∈ S can be obtained as

r∗ =
[
2.044750
0.852716

]
and s∗ =

[
2.544913
2.485633

]
Therefore, the shortest distance between R and S is given by ||r∗ − s∗||2 =
1.707800.

15.3 Modified SQP Algorithms
The SQP algorithms described in Sec. 15.2 have good local properties. As

a matter of fact, it can be shown that if (a) the initial point x0 is sufficiently
close to a local minimizer x∗, (b) the coefficient matrix in Eq. (15.4a) for
{x, λ} = {x0, λ0} is nonsingular, (c) the second-order sufficient conditions
hold for {x∗, λ∗} with rank[A(x∗)] = p, and (d) for {x0, λ0} the QP prob-
lem has a unique solution δx, then Algorithm 15.1 converges quadratically (see
Chap. 12 of [1]), i.e., the order of convergence is two (see Sec. 3.7). The main
disadvantage of Algorithms 15.1 and 15.2 is that they may fail to converge
when the initial point is not sufficiently close to x∗. Another disadvantage is
associated with the need to evaluate the Hessian of the Lagrangian which com-
bines the Hessian of the objective function with the Hessians of the constraints.
Due to the large size of the Lagrangian, these algorithms would require a large
number of function evaluations even for problems of moderate size.

In this section, we present two modifications for Algorithms 15.1 and 15.2.
First, we describe a line-search method proposed in [6] that enables the two SQP
algorithms to converge with arbitrary initial points. Second, the Hessian of the
Lagrangian is approximated using a BFGS formula proposed in [2][7]. As in
the BFGS algorithm for unconstrained minimization problems (see Chap. 7), if
we start with an initial approximation for the Hessian which is positive definite,
then the subsequent approximations will remain positive definite under a certain
mild condition. Consequently, this modification reduces the computational
complexity and assures well-defined solutions of the QP subproblems involved.

510

15.3.1 SQP Algorithms with a Line-Search Step
Considering the constrained optimization problem in Eq. (15.11), a line-

search step can by introduced in the algorithm described in Sec. 15.2.2, namely,
Algorithm 15.2, by generating the (k + 1)th iterate as

xk+1 = xk + αkδx (15.19)

where δx is the solution of the QP subproblem in Eq. (15.17), and αk is a scalar
obtained by a line search. Han [6] has proposed that scalar αk be obtained by
minimizing the one-variable exact penalty function

ψh(α) = f(xk + αδx) + r
q∑

j=1

cj(xk + αδx)− (15.20)

on interval [0, δ] where the interval length δ and parameter r > 0 are fixed
throughout the minimization process and function cj(xk + αδx)− is given by

cj(xk + αδx)− = max[0, −cj(xk + αδx)] (15.21)

Note that the second term in Eq. (15.20) is always nonnegative and contains only
those constraint functions that violate the nonnegativity condition in Eq. (15.11b).
The term ‘penalty function’ for ψh(α) in Eq. (15.20) is related to the fact that
the value of ψh(α) depends partly on how many constraints in Eq. (15.11b) are
violated at α and the degree of violation. By choosing an appropriate value
for r, the line search as applied to ψh(α) will yield a value αk such that the
objective function at xk + αkδx is reduced with fewer violated constraints and
a reduced degree of violation. Because of the operation in Eq. (15.21), the
penalty function is, in general, nondifferentiable and, consequently, gradient-
based line searches such as those described in Chap. 7 and [1] would not work
with these algorithms. However, efficient search methods for the minimization
of nondifferentiable one-dimensional functions are available. See, for example,
[8] for a recent survey of direct search methods.

An alternative method of determining αk in Eq. (15.19) was proposed by
Powell [7]. In this method, an inexact line-search is applied to the Lagrangian
in Eq. (15.13) with x = xk + αδx and µ = µk+1 to obtain the following
one-variable function

ψp(α) = f(xk + αδx) −
q∑

j=1

(µk+1)jcj(xk + αδx) (15.22)

We note that if µk+1 ≥ 0, the second term in Eq. (15.22) acts as a penalty
term since an α with cj(xk + αδx) < 0 will increase the value of ψp(α) and,
consequently, minimizing ψp(α) would tend to reduce the objective function

General Nonlinear Optimization Problems 511

along the search direction, δx, with fewer violated constraints and a reduced
degree of violation.

As was shown by Powell, ψp(α) decreases as α varies from 0 to a small
positive value, which suggests a method for determining αk in Eq. (15.19) by
minimizing ψp(α) on the interval [0, 1]. First, we perform a line search to find
the minimizer α∗

1 of ψp(α) on [0, 1], i.e.,

α∗
1 = arg

[
min

0≤α≤1
ψp(α)

]
(15.23)

where arg(·) denotes the resulting argument of the minimum of ψp(α). Unlike
the L1 exact penalty function ψh, function ψp(α) is differentiable and hence effi-
cient gradient-based algorithms for inexact line searches such as those described
in Sec. 4.8 can be used to find α∗

1. Next, we note that if for a particular index j
we have (Akδx+ck)j = 0, then the complementarity condition in Eq. (15.15d)
implies that (µk+1)j = 0 and in this case the term (µk+1)jcj(xk + αδx) is
not present in Eq. (15.22). In other words, the constraints cj(x) ≥ 0 for which
(µk+1)j = 0 need to be dealt with separately. To this end, we define index set

J = {j : (µk+1)j = 0}

and evaluate
α∗

2 = min
j∈J

max{α : cj(xk + αδx) ≥ 0} (15.24)

The value of αk in Eq. (15.19) is then obtained as

αk = 0.95min{α∗
1, α∗

2} (15.25)

Once αk is determined, the increment δx in Eq. (15.18) needs to be modified to
αkδx in order to compute µ̂k+1 and µk+1. In addition, in Step 4 of Algorithm
15.2, xk+1 should be set using Eq. (15.19). With the line-search step included,
the modified SQP algorithm turns out to be more robust in the sense that it
converges with arbitrary initial points.

15.3.2 SQP algorithms with approximated Hessian
The BFGS updating formula discussed in Chap. 7 as applied to the La-

grangian in Eq. (15.13) is given by

Yk+1 = Yk +
γkγ

T
k

δT
x γk

− YkδxδT
x Yk

δT
x Ykδx

(15.26)

where δx = xk+1 − xk and

γk = ∇xL(xk+1, µk+1) −∇xL(xk, µk+1)

= (gk+1 − gk) − (Ak+1 − Ak)T µk+1 (15.27)

512

If Yk is positive definite, then Yk+1 obtained using Eq. (15.26) is also positive
definite if and only if

δT
x γk > 0 (15.28)

However, this condition does not hold when the Lagrangian has a negative cur-
vature for iterate {xk+1, µk+1}. Powell proposed a method for overcoming this
difficulty [7], which has proven quite effective. This method entails replacing
the γk in Eq. (15.26) by

ηk = θγk + (1 − θ)Ykδx (15.29)

where γk is given by Eq. (15.27) and θ is determined as

θ =

⎧⎨
⎩

1 if δT
x γk ≥ 0.2δT

x Ykδx

0.8δT
x Ykδx

δT
x Ykδk−δT

x γk

otherwise
(15.30)

By incorporating one of the line search methods and the BFGS approximation
of the Hessian into Algorithm 15.2, we obtain the modified SQP algorithm
summarized below.

Algorithm 15.3 Modified SQP algorithm for nonlinear problems
with inequality constraints
Step 1
Set {x, µ} = {x0, µ0} where x0 and µ0 are chosen such that
cj(x0) ≥ 0 for j = 1, 2, . . . , q and µ0 ≥ 0.
Set k = 0 and initialize the tolerance ε.
Set Y0 = In.
Step 2
Evaluate Ak, gk, and ck using Eqs. (15.14b), (15.4d), and (15.16),
respectively.
Step 3
Solve the QP problem in Eq. (15.17) for δx and compute Lagrange
multiplier µ̂k+1 using Eq. (15.18).
Step 4
Compute αk, the value of α by either minimizing ψh(α) in Eq. (15.20)
or minimizing ψp(α) in Eq. (15.22) using Eqs. (15.23)–(15.25).
Step 5
Set δx = αkδx and xk+1 = xk + δx.
Compute µ̂k+1 using Eq. (15.18).
Step 6
If ||δx|| ≤ ε, output solution x∗ = xk+1 and stop; otherwise, continue
with Step 7.

General Nonlinear Optimization Problems 513

Step 7
Evaluate γk, θ, and ηk using Eqs. (15.27), (15.30), and (15.29), respec-
tively.
Compute Yk+1 using Eq. (15.26).
Set k = k + 1 and repeat from Step 2.

Example 15.3 Algorithms 15.2 and 15.3 were applied to solve the shortest
distance problem in Example 15.2. With ε = 10−5, µ0 = [1 1]T , and six
different initial points in the feasible region, the results summarized in Table
15.1 were obtained where the entries x/y (e.g., 7/55) denote the number of
iterations and the number of Kflops required, respectively. Symbol ‘×’ indicates
that the algorithm did not converge. As can be seen, Algorithm 15.3, which
combines the idea of sequential quadratic programming with Han’s or Powell’s
line search and Powell’s version of the BFGS updating formula, is considerably
more robust than Algorithm 15.2.

Table 15.1. Test Results for Example 15.3

x0

⎡
⎢⎣

1.0
0.5
2.0
3.0

⎤
⎥⎦

⎡
⎢⎣

2
0
1
5

⎤
⎥⎦

⎡
⎢⎣

3
0
1
5

⎤
⎥⎦

⎡
⎢⎣

0
0
1
5

⎤
⎥⎦

⎡
⎢⎣
−1
0
1
5

⎤
⎥⎦

⎡
⎢⎣

1.0
−0.5
1.0
5.0

⎤
⎥⎦

Algorithm 15.2 7/55 × × × × ×
Algorithm 15.3
with Han’s
line search

}
8/69 9/83 10/88 13/116 12/109 12/108

Algorithm 15.3
with Powell’s
line search

}
8/65 10/87 11/94 12/108 12/109 11/92

15.3.3 SQP problems with equality and inequality
constraints

Having developed SQP algorithms for nonconvex optimization with either
equality or inequality constraints, it is not difficult to extend SQP to the most
general case where both equality and inequality constraints are present. This
optimization problem was formulated in Eq. (10.1) and is of the form

minimize f(x) (15.31a)

subject to: ai(x) = 0 for i = 1, 2, . . . , p (15.31b)

cj(x) ≥ 0 for j = 1, 2, . . . , q (15.31c)

514

Let {xk, λk, µk} be the kth iterate and {δx, δλ, δµ} be a set of increment
vectors such that the KKT conditions

∇xL(x, λ, µ) = 0
ai(x) = 0 for i = 1, 2, . . . , p

cj(x) ≥ 0 for j = 1, 2, . . . , q

µ ≥ 0
µjcj(x) = 0 for j = 1, 2, . . . , q

where the Lagrangian L(x, λ, µ) is defined as

L(x, λ, µ) = f(x) −
p∑

i=1

λiai(x) −
q∑

j=1

µjcj(x)

are satisfied approximately at the next iterate {xk+1, λk+1, µk+1} = {xk +
δx, λk+δλ, µk+δµ}. By using arguments similar to those used in Sec. 15.2.2,
we obtain the approximate KKT conditions as (see Prob. 15.4)

Zkδx + gk − AT
ekλk+1 − AT

ikµk+1 = 0 (15.32a)

Aekδx = −ak (15.32b)

Aikδx ≥ −ck (15.32c)

µk+1 ≥ 0 (15.32d)

(µk+1)j(Aikδx + ck)j = 0 for j = 1, 2, . . . , q

(15.32e)

where

Zk = ∇2
xf(xk) −

p∑
i=1

(λk)i∇2
xai(xk) −

q∑
j=1

(µk)j∇2
xcj(xk)

(15.32f)

gk = ∇xf(xk) (15.32g)

Aek =

⎡
⎢⎣
∇T

x a1(xk)
...

∇T
x ap(xk)

⎤
⎥⎦ (15.32h)

Aik =

⎡
⎢⎣
∇T

x c1(xk)
...

∇T
x cq(xk)

⎤
⎥⎦ (15.32i)

and ak and ck are given by Eqs. (15.4e) and (15.16), respectively.

General Nonlinear Optimization Problems 515

Given (xk, λk, µk), Eqs. (15.32a)–(15.32e) may be interpreted as the exact
KKT conditions of the QP problem

minimize 1
2δTZkδ + δTgk (15.33a)

subject to: Aekδ = −ak (15.33b)

Aikδ ≥ −ck (15.33c)

Note that if δx is a regular solution of the QP subproblem in Eq. (15.33), then
Eq. (15.32a) can be written as

Zkδx + gk − AT
ekλk+1 − AT

aikµ̂k+1 = 0

where matrix Aaik is composed of those rows of Aik that satisfy the equality
(Aikδx + ck)j = 0, and µ̂k+1 denotes the associated Lagrange multiplier. It
follows that λk+1 and µ̂k+1 can be computed as[

λk+1

µ̂k+1

]
= (AakAT

ak)
−1Aak(Zkδx + gk) (15.34)

where

Aak =
[

Aek

Aaik

]
With µ̂k+1 known, the Lagrange multiplier µk+1 can be obtained by inserting
zeros where necessary in µ̂k+1.

As for the development of Algorithm 15.3, a more robust and efficient SQP
algorithm for the general nonconvex optimization problem in Eq. (15.31) can
be obtained by incorporating a line-search step in the algorithm and using an
approximate Hessian.

If δx is the solution of the QP problem in Eq. (15.33), then the (k + 1)th
iterate assumes the form

xk+1 = xk + αkδx (15.35)

where αk is determined as follows. First, we introduce a merit function as

ψ(α) = f(xk + αδx) + β
p∑

k=1

a2
i (xk + αδx) −

q∑
j=1

(µk+1)jcj(xk + αδx)

(15.36)
where β is a sufficiently large positive scalar. Function ψ(α) is a natural gen-
eralization of function ψp(α) in Eq. (15.22) and can be obtained by including a
term related to the equality constraints in Eq. (15.31b). Evidently, minimizing
ψ(α) reduces the objective function along the search direction δx and, at the
same time, reduces the degree of violation for both the equality and inequality

516

constraints. Let the value of α that minimizes function ψ(α) in Eq. (15.36) on
the interval 0 ≤ α ≤ 1 be

α∗
1 = arg

[
min

0≤α≤1
ψ(α)

]
(15.37)

Second, by following an argument similar to that in Sec. 15.3.1, we define
index set

J = {j : (µk+1)j = 0} (15.38)

and compute

α∗
2 = max{α : cj(xk + αδx) ≥ 0, j ∈ J } (15.39)

The value of αk in Eq. (15.35) is then calculated as

αk = 0.95min{α∗
1, α∗

2} (15.40)

Having determined xk+1 with Eq. (15.35), an approximate Hessian Zk+1

can be evaluated by using the modified BFGS updating formula as

Zk+1 = Zk +
ηkη

T
k

δT
x ηk

− ZkδxδT
x Zk

δT
x Zkδx

(15.41)

where

ηk = θγk + (1 − θ)Zkδx (15.42)

γk = (gk+1 − gk) − (Ae,k+1 − Ae,k)T λk+1 − (Ai,k+1 −Ai,k)T µk+1

(15.43)

θ =

⎧⎨
⎩

1 if δT
x γk ≥ 0.2 δT

x Zkδx

0.8δT
x Zkδx

δT
x Zkδx−δT

x γk

otherwise
(15.44)

The above SQP procedure can be implemented in terms of the following
algorithm.

Algorithm 15.4 SQP algorithm for nonlinear problems with
equality and inequality constraints
Step 1
Set {x, λ, µ} = {x0, λ0, µ0} where x0 and µ0 are chosen such that
cj(x0) ≥ 0 for j = 1, 2, . . . , q and µ0 ≥ 0.
Set k = 0 and initialize the tolerance ε.
Set Z0 = In.

General Nonlinear Optimization Problems 517

Step 2
Evaluate gk, Aek, Aik, ak, and ck using Eqs. (15.32g), (15.32h),
(15.32i), (15.4e), and (15.16), respectively.
Step 3
Solve the QP problem in Eq. (15.33) for δx and compute the Lagrange
multipliers λk+1 and µ̂k+1 using Eq. (15.34).
Step 4
Compute αk using Eqs. (15.37), (15.39), and (15.40).
Step 5
Set δx = αkδx and xk+1 = xk + δx.
Step 6
If ||δx|| ≤ ε, output solution x∗ = xk+1 and stop; otherwise, continue
with Step 7.
Step 7
Evaluate γk, θ, and ηk using Eqs. (15.43), (15.44), and (15.42), respec-
tively.
Compute Zk+1 using Eq. (15.41).
Set k = k + 1 and repeat from Step 2.

Example 15.4 Applying Algorithm 15.4, solve the nonlinear constrained opti-
mization problem

minimize f(x) = x2
1 + x2

subject to: a1(x) = x2
1 + x2

2 − 9 = 0
Ax ≥ b

where

A =

⎡
⎢⎢⎣

1 0
−1 0

0 1
0 −1

⎤
⎥⎥⎦ and b =

⎡
⎢⎢⎣

1
−5

2
−4

⎤
⎥⎥⎦

Solution The feasible region of the problem is the part of the circle centered
at the origin with radius 3 that is contained in the rectangle 1 ≤ x1 ≤ 5,
2 ≤ x2 ≤ 4. The feasible region is not a convex set and hence the problem at
hand is a nonconvex problem.

Algorithm 15.4 was applied to the problem with ε = 10−6 and β = 100
using five different initial points that satisfy the inequality constraint Ax0 ≥ b.
The algorithm converged in all cases to the solution point

x∗ =
[

1
2.8284

]

The test results are given in Table 15.2.

518

Table 15.2 Test Results for Example 15.4

x0

[
5
4

] [
5
2

] [
1
2

] [
3
2

] [
4
3

]
Number of iterations 6 6 2 6 6

Number of Kflops 46.9 46.0 14.8 45.5 46.1

15.4 Interior-Point Methods
Interior-point methods that have proven useful for LP, QP, and convex pro-

gramming (CP) problems have recently been extended to nonconvex optimiza-
tion problems [9]–[13]. In this section, we describe an interior-point algorithm
for nonconvex optimization based on the methods described in [12][13], which
is a direct extension of the primal-dual interior-point methods for LP and QP
problems.

15.4.1 KKT conditions and search direction
We consider the constrained nonlinear optimization problem

minimize f(x) (15.45a)

subject to: cj(x) ≥ 0 for j = 1, 2, . . . , q (15.45b)

where f(x) and cj(x) are continuous and have continuous second partial deriva-
tives, and the feasible region R described by Eq. (15.45b) is nonempty.

By introducing slack variable y = [y1 y2 · · · yq]T , the above problem can
be converted to

minimize f(x) (15.46a)

subject to: c(x) − y = 0 (15.46b)

y ≥ 0 (15.46c)

where c(x) = [c1(x) c2(x) · · · cq(x)]T . As in the primal Newton barrier
method discussed in Sec. 12.4, the inequality constraints in Eq. (15.46c) can
be incorporated into the objective function by adding a logarithmic barrier
function. This yields the minimization problem

minimize fτ (x) = f(x) − τ
q∑

i=1

ln yi (15.47a)

subject to: c(x) − y = 0 (15.47b)

General Nonlinear Optimization Problems 519

where τ > 0 is the barrier parameter. The Lagrangian for the problem in
Eq. (15.47) is

L(x, y, λ, τ) = f(x) − τ
q∑

i=1

ln yi − λT [c(x) − y]

and the KKT conditions for a minimizer of the problem in Eq. (15.47) are given
by

∇xL = ∇f(x) −AT (x)λ = 0
∇yL = −τY−1e + λ = 0
∇λL = c(x) − y = 0

where

A(x) = [∇c1(x) · · · ∇cq(x)]T

Y = diag{y1, y2, . . . , yq}
e = [1 1 · · · 1]T

By multiplying the equation∇yL = 0 by Y, we obtain the standard primal-dual
system

∇f(x) − AT (x)λ = 0 (15.48a)

−τe + YΛe = 0 (15.48b)

c(x) − y = 0 (15.48c)

where Λ = diag{λ1, λ2, . . . , λq}.
At thekth iteration, the set of vectors{xk, yk, λk} is updated to{xk+1, yk+1,

λk+1} as

xk+1 = xk + αk∆xk (15.49a)

yk+1 = yk + α∆yk (15.49b)

λk+1 = λk + αk∆λk (15.49c)

where αk is a scalar to be determined using a line search, and the set of in-
crement vectors {∆xk, ∆yk, ∆λk} is determined by solving the linearized
equations for Eq. (15.48) as follows. First, we approximate the nonlinear terms
∇f(x), A(x), c(x), and YΛe in Eq. (15.48) at point xk+1 as

gk+1 ≈ gk + ∇2f(xk)∆xk

AT
k+1 ≈ AT

k +
q∑

i=1

∇2ci(xk)∆xk

ck+1 ≈ ck + Ak∆xk

Yk+1Λk+1e ≈ YkΛke + Λk∆yk + Yk∆λk

520

where gk = ∇f(xk), Ak = A(xk), and ck = c(xk). The linearized system
of equations for Eq. (15.48) becomes⎡

⎣Hk 0 −AT
k

0 Λk Yk

Ak −I 0

⎤
⎦
⎡
⎣ ∆xk

∆yk

∆λk

⎤
⎦ =

⎡
⎣−gk + AT

k λk

τe −YkΛke
−ck + yk

⎤
⎦ (15.50)

where Hk represents the Hessian of the Lagrangian, H(x, λ), for {x, λ} =
{xk, λk}, i.e.,

H(x, λ) = ∇2f(x) −
q∑

i=1

λ(i)∇2ci(x) (15.51)

The search direction determined using Eq. (15.50) is often referred to as the
Newton direction of the problem in Eq. (15.45).

Note that the matrix in Eq. (15.50) is not symmetric, but it can be made
symmetric by multiplying the first equation by −I and the second equation by
−Y−1

k . This would yield⎡
⎣−Hk 0 AT

k
0 −Y−1

k Λk −I
Ak −I 0

⎤
⎦
⎡
⎣ ∆xk

∆yk

∆λk

⎤
⎦ =

⎡
⎣ σk

−γk

ρk

⎤
⎦ (15.52a)

where

σk = gk − AT
k λk (15.52b)

γk = τY−1
k e − λk (15.52c)

ρk = yk − ck (15.52d)

If {xk, yk} satisfies the constraints in Eq. (15.47b), then ρk = 0. Hence ρk

in Eq. (15.52d) can be viewed as a measure of how far the set {xk, yk} is
from being feasible for the primal problem in Eq. (15.46). Likewise, σk in
Eq. (15.52b) can be regarded as a measure of how far the set {xk, λk} is from
being feasible for the dual problem, which is the maximization problem

maximize yT λ

subject to: g(x) − AT (x)λ = 0
y ≥ 0

By solving the second equation in Eq. (15.52a) for ∆yk, we obtain

∆yk = YkΛ−1
k (−γk − ∆λk) (15.53)

and Eq. (15.52a) is reduced to[
−Hk AT

k
Ak YkΛ−1

k

] [
∆xk

∆λk

]
=

[
σk

ρk + YkΛ−1
k γk

]
(15.54)

General Nonlinear Optimization Problems 521

Explicit formulas for the solution of Eq. (15.52a) can be obtained as

∆xk = −N−1
k gk + τN−1

k AT
k Y−1

k e + N−1
k AT

k Y−1
k Λkρk (15.55a)

∆yk = −AkN−1
k gk + τAkN−1

k AT
k Y−1

k e

−(I − AkN−1
k AT

k Y−1
k Λk)ρk (15.55b)

∆λk = Y−1
k Λk(ρk − Ak∆xk) + γk (15.55c)

where Nk is the so-called dual normal matrix

N(x, y, λ) = H(x, λ) + AT (x)Y−1ΛA(x) (15.56)

evaluated for {x, y, λ} = {xk, yk, λk}.
As will be seen below, for convex problems the search direction given by

Eq. (15.55) works well and a step length, αk, can be determined by minimizing
a suitable merit function. For nonconvex problems, however, the above search
direction needs to be modified so as to assure a descent direction for the merit
function.

15.4.2 A merit function for convex problems
A suitable merit function is one whose minimization along a search direction

leads to progress towards finding a local minimizer. In this regard, the penalty
functions described in Eqs. (15.20) and (15.22) can be regarded as merit func-
tions evaluated along search direction dk at point xk. A suitable merit function
for convex problems is

ψβ,τ (x, y) = f(x) − τ
q∑

i=1

ln yi +
β

2
||y − c(x)||2

which can also be expressed as

ψβ,τ (x, y) = fτ (x) +
β

2
||ρ(x, y)||2 (15.57)

where fτ (x) is given by Eq. (15.47), ρ(x, y) = y − c(x), and β ≥ 0 is a
parameter to be determined later.

Evidently, this merit function is differentiable with respect to the elements
of x and y. With a sufficiently large β, minimizing ψβ,τ at {xk +α∆xk, yk +
α∆yk} reduces the objective function fτ (x) and, at the same time, the new
point is closer to the feasible region because of the presence of the term
β||ρ(x, y)||2/2.

Let {∆xk, ∆yk, ∆λk} given by Eq. (15.55) be the search direction at the
kth iteration. Using Eqs. (15.55) and (15.57), we can verify that

sk =
[
∇xψβ,τ (xk, yk)
∇yψβ,τ (xk, yk)

]T [
∆xk

∆yk

]

522

= −ξT
k N−1

k ξk + τeTY−1
k ρk + ξT

k N−1
k AT

k Y−1
k Λkρk

−β||ρk||2 (15.58)

where ξk = gk − τAT
k Y−1

k e (see Prob. 15.8). If the dual normal matrix
N(x, y, λ) is positive definite for {x, y, λ} = {xk, yk, λk} and {xk, yk}
is not feasible, i.e., ρk �= 0, then from Eq. (15.58) it follows that {∆xk, ∆yk}
is not a descent direction for merit function ψβ,τ (x, y) for {x, y} = {xk, yk}
only if

τeTY−1
k ρk + ξT

k N−1
k AT

k Y−1
k Λkρk > 0 (15.59)

In such a case, we can choose a β which is greater than or equal to βmin where

βmin = (−ξT
k N−1

k ξk+τeTY−1
k ρk+ξT

k N−1
k AT

k Y−1
k Λkρk)/||ρk||2 (15.60)

to ensure that the inner product sk in Eq. (15.58) is negative and, therefore,
{∆xk, ∆yk} is a descent direction for ψβ,τ (x, y) for {x, y} = {xk, yk}. In
practice, β is initially set to zero and remains unchanged as long as {∆xk, ∆yk}
is a descent direction for ψβ,τ . If, with β = 0, sk in Eq. (15.58) is nonnegative,
then βmin is calculated using Eq. (15.60) and β is set to 10βmin so as to ensure
that sk is negative. Note that the above analysis was carried out under the
assumption that the dual normal matrix N(x, y, λ) defined by Eq. (15.56) is
positive definite. If the objective function f(x) is convex and the constraint
functions cj(x) for j = 1, 2, . . . , q are all concave, i.e., if the optimization
problem in Eq. (15.45) is a CP problem, then Eq. (15.48b) in conjunction with
the fact that τ > 0 and Y is positive definite implies that λ > 0 and, therefore,
matrix N(x, y, λ) is positive definite. In other words, we have shown that for
a CP problem there exists a β that causes the search direction in Eq. (15.55) to
be a descent direction for merit function ψβ,τ (x, y).

Once the search direction {∆xk, ∆yk, λk} is computed and an appropriate
β is chosen, the scalar αk in Eq. (15.49) is calculated in two steps: (a) Find
αmax such that yk + αmax∆yk > 0 and λk + αmax∆λk > 0; for yk > 0 and
λk > 0, αmax can be computed as

αmax = 0.95
[

max
1≤i≤q

(
−∆yk(i)

yk(i)
, −∆λk(i)

λk(i)

)]−1

(15.61)

(b) Perform a line search on interval [0, αmax] to find αk, the value of α that
minimizes the one-variable function ψβ,τ (xk + α∆xk, yk + α∆yk).

As in the Newton barrier method for LP and QP problems, the value of the
barrier parameter τ is fixed in the subproblem in Eq. (15.47). Once a minimizer
of this subproblem is obtained, it can serve as the initial point for the same
subproblem with a reduced barrier parameter τ . This procedure is continued
until the difference in norm between two consecutive minimizers is less than a
given tolerance and, at that time, the minimizer of the corresponding subproblem

General Nonlinear Optimization Problems 523

is deemed to be a solution for the problem in Eq. (15.45). From Eq. (15.48b),
it is quite obvious that an appropriate value of τ should be proportional to
yT

k λk/q, as in the case of LP and QP problems (see, for example, Eq. (12.50)).
In [11], the use of the formula

τk+1 = δ

{
min

[
(1 − r)

1 − ζ

ζ
, 2

]}3 yT
k λk

q
(15.62)

was proposed for the update of τ , where q is the number of constraints involved,

ζ =
q min
1≤i≤q

[yk(i)λk(i)]

yT
k λk

and r and δ are parameters which are set to 0.95 and 0.1, respectively. The
interior-point algorithm for convex programming problems can now be sum-
marized as follows.

Algorithm 15.5 Interior-point algorithm for CP problems with in-
equality constraints
Step 1
Input an initial set {x0, y0, λ0} with y0 > 0 and λ0 > 0 and an initial
barrier parameter τ0. Set l = 0, {x∗

0, y∗
0, λ∗

0} = {x0, y0, λ0}, and
initialize the outer-loop tolerance εouter.
Step 2
Set k = 0, τ = τl, and initialize the inner-loop tolerance εinner.
Step 3

Step 3.1
Set β = 0 and evaluate {∆xk, ∆yk, ∆λk} using Eq. (15.55) and
sk using Eq. (15.58).
Step 3.2
If sk ≥ 0, compute βmin using Eq. (15.60) and set β = 10βmin;
otherwise, continue with Step 3.3.
Step 3.3
Compute αmax using Eq. (15.61) and perform a line search to find
the value of αk that minimizes ψβ,τ (xk + α∆xk, yk + α∆yk) on
[0, αmax].
Step 3.4
Set {xk+1, yk+1, λk+1} using Eq. (15.49).

524

Step 3.5
If ||αk∆xk|| + ||αk∆yk|| + ||αk∆λk|| < εinner, set
{x∗

l+1, y∗
l+1, λ∗

l+1} = {xk+1, yk+1, λk+1} and continue with
Step 4; otherwise, set k = k + 1 and repeat from Step 3.1.

Step 4
If ||x∗

l − x∗
l+1|| + ||y∗

l − y∗
l+1|| + ||λ∗

l − λ∗
l+1|| < εouter, output

{x∗, y∗, λ∗} = {x∗
l , y∗

l , λ∗
l } and stop; otherwise, calculate τl+1

using Eq. (15.62), set {x0, y0, λ0} = {x∗
l , y∗

l , λ∗
l }, l = l + 1, and

repeat from Step 2.

In Step 3.3 an inexact line search based on the Goldstein conditions in
Eqs. (4.55) and (4.56) can be applied with ρ = 0.1. Initially, α0 in these
inequalities is set to αmax. If the inequalities are not satisfied then the value of
α0 is successively halved until they are satisfied.

Example 15.5 Apply Algorithm 15.5 to the shortest-distance problem in Ex-
ample 13.5 with εinner = 10−3, εouter = 10−5, τ0 = 0.001, and an initial set
{x0, y0, λ0} with x0 = [0 1 2 2]T , y0 = [2 2]T , and λ0 = [1 1]T . Note that
x0 violates both constraints c1(x) ≥ 0 and c2(x) ≥ 0.

Solution The minimization problem at hand is a CP problem and Algorithm
15.4 is, therefore, applicable. To apply the algorithm, we compute

g(x) =

⎡
⎢⎢⎣

x1 − x3

x2 − x4

x3 − x1

x4 − x2

⎤
⎥⎥⎦

A(x) =

⎡
⎣ 1−x1

2 −2x2 0 0

0 0 −5x3−3x4+22
4

−3x3−5x4+26
4

⎤
⎦

H(x, λ) =

⎡
⎢⎢⎣

1 + λ1
2 0 −1 0

0 1 + 2λ1 0 −1
−1 0 1 + 5λ2

4
3λ2
4

0 −1 3λ2
4 1 + 5λ2

4

⎤
⎥⎥⎦

where λ1 and λ2 are the first and second components of λ, respectively. It took
Algorithm 15.4 three outer-loop iterations and 22.4 Kflops to converge to the
solution

x∗ =

⎡
⎢⎢⎣

2.044750
0.852716
2.544913
2.485633

⎤
⎥⎥⎦ , y∗ =

[
0.131404
0.114310

]
× 10−6, and λ∗ =

[
0.957480
1.100145

]

General Nonlinear Optimization Problems 525

Therefore, we obtain

r∗ =
[
2.044750
0.852716

]
and s∗ =

[
2.544913
2.485633

]

Hence the shortest distance between R and S is ||r∗ − s∗|| = 1.707800.

15.4.3 Algorithm modifications for nonconvex problems
If the problem in Eq. (15.45) is not a CP problem, the dual normal matrix

N(x, y, λ) in Eq. (15.56) may be indefinite and in such a case, the algorithm
developed in Sec. 15.4.2 needs to be modified to deal with the indefiniteness of
matrix N(x, y, λ).

A simple and effective way to fix the problem is to modify the Hessian of
the Lagrangian as

Ĥ(x, λ) = H(x, λ) + ηI (15.63)

where η ≥ 0 is chosen to yield a modified dual normal matrix

N(x, y, λ) = Ĥ(x, λ) + AT (x)Y−1ΛA(x) (15.64)

which is positive definite. With this modification, the search direction {∆xk,
∆yk, ∆λk} given by Eq. (15.55) remains a descent direction for merit function
ψβ,τ , and Algorithm 15.5 applies.

For problems of moderate size, a suitable value of η can be determined as
follows. First, we examine the eigenvalues of H(x, λ). If they are all positive,
then we set η = 0. Otherwise, we use η̄ = 1.2η0 as an upper bound of η where
η0 is the magnitude of the most negative eigenvalue of H(x, λ). Evidently,
with η = η̄ in Eq. (15.63), the modified N(x, y, λ) in Eq. (15.64) is positive
definite. Next, we successively halve η and test the positive definiteness of
N(x, y, λ) with η = 2−mη̄ for m = 1, 2, . . . until an η = 2−m∗

η̄ is reached
for which N(x, y, λ) fails to be positive definite. The value of η in Eq. (15.63)
is then taken as

η = 2−(m∗−1)η̄ (15.65)

A computationally more economical method for finding a suitable value of η,
which is based on matrix factorization of the reduced KKT matrix in Eq. (15.54),
can be found in [12].

The modified version of Algorithm 15.5 is as follows.

526

Algorithm 15.6 Interior-point algorithm for nonconvex problems
with inequality constraints
Step 1
Input an initial set {x0, y0, λ0} with y0 > 0, λ0 > 0, and an initial
barrier parameter τ0.
Set l = 0, {x∗

0, y∗
0, λ∗

0} = {x0, y0, λ0}, and initialize the outer-loop
tolerance εouter.
Step 2
Set k = 0, τ = τl, and initialize the inner-loop tolerance εinner.
Step 3

Step 3.1
Evaluate the eigenvalues of H(xk, λk). If they are all positive, con-
tinue with Step 3.2; otherwise, set η̄ = 1.2η0 where η0 is the magni-
tude of the most negative eigenvalue of H(xk, λk); test the positive
definiteness of N(xk, yk, λk) in Eq. (15.64) with η = 2−mη̄ for
m = 1, 2, . . . until a value η = 2−m∗

η̄ is obtained for which
N(xk, yk, λk) fails to be positive definite; evaluate

Ĥ(xk, λk) = H(xk, λk) + ηI

Nk = Ĥ(xk, λk) + AT (xk)Y−1
k ΛkA(xk)

with η = 2−(m∗−1)η̄.
Step 3.2
Set β = 0 and evaluate {∆xk, ∆yk, ∆λk} using Eq. (15.55) and
sk using Eq. (15.58).
Step 3.3
If sk ≥ 0, compute βmin using Eq. (15.60) and set β = 10βmin;
otherwise, continue with Step 3.4.
Step 3.4
Compute αmax using Eq. (15.61) and perform a line search to find
αk, the value of α that minimizes ψβ,τ (xk + α∆xk, yk + α∆yk)
on [0, αmax].
Step 3.5
Set {xk+1, yk+1, λk+1} using Eq. (15.49).
Step 3.6
If ||αk∆xk|| + ||αk∆yk|| + ||αk∆λk|| < εinner, set {x∗

l+1, y∗
l+1,

λ∗
l+1} = {xk+1, yk+1, λk+1} and continue with Step 4; otherwise,

set k = k + 1 and repeat from Step 3.1.
Step 4
If ||x∗

l − x∗
l+1|| + ||y∗

l − y∗
l+1|| + ||λ∗

l − λ∗
l+1|| < εouter, output {x∗,

y∗, λ∗} = {x∗
l , y∗

l , λ∗
l } and stop; otherwise, calculate τl+1 using

Eq. (15.62), set {x0, y0, λ0} = {x∗
l , y∗

l , λ∗
l }, l = l + 1, and repeat

from Step 2.

General Nonlinear Optimization Problems 527

1

1

x1

x2
feasible region

Figure 15.1. Feasible region of the problem in Example 15.5.

Example 15.6 Applying Algorithm 15.6, solve the nonconvex optimization
problem

minimize f(x) = (x1 − 2)2 + (x2 − 1)2

subject to: c1(x) = −x2
1 + x2 ≥ 0

c2(x) = −x1 + x2
2 ≥ 0

Solution The feasible region of this problem, shown as the shaded area in
Fig. 15.1, is obviously nonconvex. To apply the algorithm, we compute

g(x) =
[
2(x1 − 2)
2(x2 − 1)

]
, A(x) =

[−2x1 1
−1 2x2

]

H(x, λ) =
[
2 + 2λ1 0

0 2 − 2λ2

]
where λ1 and λ2 are the first and second components of λ, respectively. Since
λ > 0, H(x, λ) becomes indefinite if the second component of λ is greater
than 1.

With

x0 =
[−1

2

]
, y0 =

[
20
20

]
, λ0 =

[
1
2

]
τ0 = 0.001, εinner = 5 × 10−4, and εouter = 10−5

528

it took Algorithm 15.5 four outer-loop iterations and 34.7 Kflops to converge
to the solution

x∗ =
[
1.000004
1.000007

]
, y∗ =

[
0.000009
0.891272

]
× 10−5, λ∗ =

[
0.999983
0.000007

]

The above numerical values for x0, y0, and λ0 led to an indefinite N(x0, y0,
λ0), but an η = 0.600025 was then identified to assure the positive definiteness
of the modified dual normal matrix in Eq. (15.64). The numerical values of the
four iterates, xk, generated by the algorithm are given in Table 15.3.

Table 15.3 xk for k = 0 to 4 for Example 15.6

k xk(1) xk(2)

0 −1.000000 2.000000
1 1.034101 1.080555
2 1.000013 1.000013
3 1.000004 1.000007
4 1.000004 1.000007

References
1 R. Fletcher, Practical Methods of Optimization, 2nd ed., Wiley, New York, 1987.
2 P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale

constrained optimization,” Research Report NA 97–2, Dept. of Mathematics, Univ. of Cali-
fornia, San Diego, 1997.

3 R. B. Wilson, A Simplicial Method for Concave Programming, Ph.D. dissertation, Graduate
School of Business Administration, Harvard University, Cambridge, MA., 1963.

4 P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta numerica, vol. 4,
pp. 1–52, 1995.

5 G. H. Golub and C. F. Van Loan, Matrix Computation, 2nd ed., Baltimore, The Johns Hopkins
University Press, MD, 1989.

6 S. P. Han, “A globally convergent method for nonlinear programming,” J. Optimization
Theory and Applications, vol. 22, pp. 297–309, July 1977.

7 M. J. D. Powell, “Algorithms for nonlinear constraints that use Lagrangian functions,” Math.
Programming, vol. 14, pp. 224–248, 1978.

8 M. H. Wright, “Direct search methods: Once scorned, now respectable,” in Numerical
Analysis 1995, D. F. Griffiths and G. A. Watson eds., pp. 191–208, Addison Wesley Longman,
UK.

9 A. El-Bakry, R. Tapia, T. Tsuchiya, and Y. Zhang, “On the formulation and theory of the
Newton interior-point method for nonlinear programming,” J. Optimization Theory and
Applications, vol. 89, pp. 507–541, 1996.

10 A. Forsgren and P. Gill, “Primal-dual interior methods for nonconvex nonlinear program-
ming,” Technical Report NA-96-3, Dept. of Mathematics, Univ. of California, San Diego,
1996.

General Nonlinear Optimization Problems 529

11 D. M. Gay, M. L. Overton, and M. H. Wright, “A primal-dual interior method for noncon-
vex nonlinear programming,” Proc. 1996 Int. Conf. on Nonlinear Programming, Kluwer
Academic Publishers, 1998.

12 R. J. Vanderbei and D. F. Shanno, “An interior-point algorithm for nonconvex nonlinear pro-
gramming,” Research Report SOR-97-21 (revised), Statistics and Operations Res., Princeton
University, June 1998.

13 D. F. Shanno and R. J. Vanderbei, “Interior-point methods for nonconvex nonlinear pro-
gramming: Orderings and high-order methods,” Research Report SOR-99-5, Statistics and
Operations Res., Princeton University, May 1999.

Problems
15.1 The Lagrange multiplier λk+1 can be computed using Eq. (15.7) if Ak

has full row rank. Modify Eq. (15.7) so as to make it applicable to the
case where Ak does not have full row rank.

15.2 Apply Algorithm 15.1 to the problem

minimize f(x) = ln(1 + x2
1) + x2

subject to: (1 + x2
1)

2 + x2
2 − 4 = 0

15.3 Apply Algorithm 15.2 or Algorithm 15.3 to the problem

minimize f(x) = 0.01x2
1 + x2

2

subject to: c1(x) = x1x2 − 25 ≥ 0
c2(x) = x2

1 + x2
2 − 25 ≥ 0

c3(x) = x1 ≥ 2

15.4 Derive the approximate KKT conditions in Eqs. (15.32a)–(15.32e).

15.5 Apply Algorithm 15.4 to the nonconvex problem

minimize f(x) = 2x2
1 + 3x2

subject to: a1(x) = x2
1 + x2

2 − 16 = 0
Ax ≥ b

where

A =

⎡
⎢⎢⎣

1 0
−1 0

0 1
0 −1

⎤
⎥⎥⎦ and b =

⎡
⎢⎢⎣

2
−5

1
−5

⎤
⎥⎥⎦

15.6 Using Eqs. (15.52)–(15.54), derive the formulas in Eq. (15.55).

15.7 Show that if the Hessian, H(x, λ), is positive definite, then the dual
normal matrix N(x, y, λ) in Eq. (15.56) is also positive definite.

530

15.8 Using Eqs. (15.55) and (15.57), derive the expression of sk in Eq. (15.58).

15.9 Show that the inner product sk is negative if β ≥ βmin where βmin is given
by Eq. (15.60).

15.10 Apply Algorithm 15.5 to the CP problem

minimize f(x) = (x1 − 2)2 + (x2 − 1)2

subject to: c1(x) = −x2
1 + x2 ≥ 0

c2(x) = x1 − x2
2 ≥ 0

15.11 Apply Algorithm 15.6 to the nonconvex problem

minimize f(x) = −x1x2

subject to: c1(x) = 1 − x2
1 − x2

2 ≥ 0

15.12 Apply Algorithm 15.6 to the nonconvex problem in Prob. 15.3, and com-
pare the solution with that obtained in Prob. 15.3.

15.13 Consider the nonlinear constrained problem

minimize f(x)

subject to: 0 ≤ ci(x) ≤ ri for i = 1, 2, . . . , q

(a) Show that the problem just described can be converted into the
problem

minimize f(x)
subject to: ci(x) − yi = 0

yi + pi = ri for i = 1, 2, . . . , q

yi ≥ 0, pi ≥ 0

(b) Use the method outlined in part (a) to deal with the nonlinear con-
strained problem

minimize f(x)

subject to: ai(x) = 0 for i = 1, 2, . . . , p

15.14 Consider the constrained problem

minimize f(x)

subject to: li ≤ xi ≤ ui for i = 1, 2, . . . , n

where li and ui are constants.

(a) Convert the inequality constraints to equality constraints by intro-
ducing slack variables.

General Nonlinear Optimization Problems 531

(b) Follow the development in Secs. 15.4.1 and 15.4.2, derive a system
of linear equations similar to Eq. (15.52a) for the search direction.

(c) Using the system of linear equations in part (b), derive a reduced
KKT system similar to that in Eq. (15.54).

15.15 Convert the constrained problem

minimize f(x) = 100(x2
1 − x2)2 + (x1 − 1)2 + 90(x2

3 − x4)2

+(x3 − 1)2 + 10.1[(x2 − 1)2 + (x4 − 1)2]
+19.8(x2 − 1)(x4 − 1)

subject to: − 10 ≤ xi ≤ 10 for i = 1, 2, 3, 4

into the form in Eq. (15.46) and solve it using Algorithm 15.6.

Chapter 16

APPLICATIONS OF CONSTRAINED
OPTIMIZATION

16.1 Introduction

Constrained optimization provides a general framework in which a variety of
design criteria and specifications can be readily imposed on the required solu-
tion. Usually, a multivariable objective function that quantifies a performance
measure of a design can be identified. This objective function may be linear,
quadratic, or highly nonlinear, and usually it is differentiable so that its gradi-
ent and sometimes Hessian can be evaluated. In a real-life design problem, the
design is carried out under certain physical limitations with limited resources.
If these limitations can be quantified as equality or inequality constraints on the
design variables, then a constrained optimization problem can be formulated
whose solution leads to an optimal design that satisfies the limitations imposed.
Depending on the degree of nonlinearity of the objective function and con-
straints, the problem at hand can be a linear programming (LP), quadratic pro-
gramming (QP), convex programming (CP), semidefinite programming (SDP),
second-order cone programming (SOCP), or general nonlinear constrained op-
timization problem.

This chapter is devoted to several applications of some of the constrained
optimization algorithms studied in Chaps. 11–15 in the areas of digital signal
processing, control, robotics, and telecommunications. In Sec. 16.2, we show
how constrained algorithms of the various types, e.g., LP, QP, CP, SDP algo-
rithms, can be utilized for the design of digital filters. The authors draw from
their extensive research experience on the subject [1][2]. Section 16.3 intro-
duces several models for uncertain dynamic systems and develops an effective
control strategy known as model predictive control for this class of systems,
which involves the use of SDP. In Sec. 16.4, LP and SDP are applied to solve
a problem that entails optimizing the grasping force distribution for dextrous

534

robotic hands. In Sec. 16.5, an SDP-based method for multiuser detection and
a CP approach to minimize bit-error rate for wireless communication systems
is described.

16.2 Design of Digital Filters
16.2.1 Design of linear-phase FIR filters using QP

In many applications of digital filters in communication systems, it is often
desirable to design linear-phase finite-duration impulse response (FIR) digital
filters with a specified maximum passband error, δp, and/or a specified max-
imum stopband gain, δa [3] (see Sec. B.9.1). FIR filters of this class can be
designed relatively easily by using a QP approach as described below.

For the sake of simplicity, we consider the problem of designing a linear-
phase lowpass FIR filter of even order N (odd length N + 1) with normalized
passband and stopband edges ωp and ωa, respectively (see Sec. B.9.2). The
frequency response of such a filter can be expressed as

H(ejω) = e−jωN/2A(ω)

as in Eq. (9.33) and the desired amplitude response, Ad(ω), can be assumed to
be of the form given by Eq. (9.39). If we use the piecewise-constant weighting
function defined by Eq. (9.40), then the objective function el(x) in Eq. (9.35a)
becomes

el(x) =
∫ ωp

0
[A(ω) − 1]2 dω + γ

∫ π

ωa

A2(ω) dω (16.1a)

= xTQlx − 2xTbl + κ (16.1b)

where x is given by Eq. (9.35b), and Ql = Ql1 + Ql2 and bl are given by
Eq. (9.37). If the weight γ in Eq. (16.1a) is much greater than 1, then minimizing
el(x) would yield an FIR filter with a minimized least-squares error in the
stopband but the passband error would be left largely unaffected. This problem
can be fixed by imposing the constraint

|A(ω) − 1| ≤ δp for ω ∈ [0, ωp] (16.2)

where δp is the upper bound on the amplitude of the passband error. With
A(ω) = cT

l (ω)x where cl(ω) is defined by Eq. (9.36a), Eq. (16.2) can be
written as

cT
l (ω)x ≤ 1 + δp for ω ∈ [0, ωp] (16.3a)

and
−cT

l (ω)x ≤ −1 + δp for ω ∈ [0, ωp] (16.3b)

Note that the frequency variable ω in Eq. (16.3) can assume an infinite set of
values in the range 0 to ωp. A realistic way to implement these constraints is

Applications of Constrained Optimization 535

to impose the constraints on a finite set of sample frequencies Sp = {ω(p)
i :

i = 1, 2, . . . , Mp} in the passband. Under these circumstances, the above
constraints can be expressed in matrix form as

Apx ≤ bp (16.4a)

where

Ap =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cT
l (ω(p)

1)
...

cT
l (ω(p)

Mp
)

−cT
l (ω(p)

1)
...

−cT
l (ω(p)

Mp
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and bp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + δp
...

1 + δp

−1 + δp
...

−1 + δp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16.4b)

Additional constraints can be imposed to ensure that the maximum stopband
gain, δa, is also well controlled. To this end, we impose the constraint

|A(ω)| ≤ δa for ω ∈ [ωa, π] (16.5)

A discretized version of Eq. (16.5) is given by

cT
l (ω)x ≤ δa for ω ∈ Sa (16.6a)

−cT
l (ω)x ≤ δa for ω ∈ Sa (16.6b)

where Sa = {ω(a)
i : i = 1, 2, . . . , Ma} is a set of sample frequencies in the

stopband. The inequality constraints in Eq. (16.6) can be expressed in matrix
form as

Aax ≤ ba (16.7a)

where

Aa =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cT
l (ω(a)

1)
...

cT
l (ω(a)

Ma
)

−cT
l (ω(a)

1)
...

−cT
l (ω(a)

Ma
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and ba = δa

⎡
⎢⎣ 1

...
1

⎤
⎥⎦ (16.7b)

The design problem can now be formulated as the optimization problem

minimize e(x) = xTQlx − 2blx + κ (16.8a)

subject to:
[
Ap

Aa

]
x ≤

[
bp

ba

]
(16.8b)

536

There are (N + 2)/2 design variables in vector x and 2(Mp + Ma) linear
inequality constraints in Eq. (16.8b). Since matrix Ql is positive definite, the
problem under consideration is a convex QP problem that can be solved using
the algorithms studied in Chap. 13.

Example 16.1 Applying the above method, design a linear-phase lowpass FIR
digital filter that would satisfy the following specifications: passband edge =
0.45π, stopband edge = 0.5π, maximum passband error δp = 0.025, minimum
stopband attenuation = 40 dB. Assume idealized passband and stopband gains
of 1 and 0, respectively, and a normalized sampling frequency of 2π.

Solution The design was carried out by solving the QP problem in Eq. (16.8)
using Algorithm 13.1. We have used a weighting constant γ = 3 × 103 in
Eq. (16.1a) and δp = 0.025 in Eq. (16.2). The maximum stopband gain, δa, in
Eq. (16.5) can be deduced from the minimum stopband attenuation, Aa, as

δa = 10−0.05Aa = 10−2

(see Sec. B.9.1). We assumed 80 uniformly distributed sample frequencies
with respect to the passband [0, 0.45π] and 10 sample frequencies in the lower
one-tenth of the stopband [0.5π, π], which is usually the most critical part of
the stopband, i.e., Mp = 80 and Ma = 10 in sets Sp and Sa, respectively.

Unfortunately, there are no analytical methods for predicting the filter order
N that would yield a filter which would meet the required specifications but a
trial-and-error approach can often be used. Such an approach has resulted in a
filter order of 84.

The amplitude of the passband ripple and the minimum stopband attenuation
achieved were 0.025 and 41.65 dB, respectively. The amplitude response of the
filter is plotted in Fig. 16.1. It is interesting to note that an equiripple error has
been achieved with respect to the passband, which is often a desirable feature.

16.2.2 Minimax design of FIR digital filters using SDP
Linear-phase FIR filters are often designed very efficiently using the so-called

weighted-Chebyshev method which is essentially a minimax method based on
the Remez exchange algorithm [1, Chap. 15]. These filters can also be designed
using a minimax method based on SDP, as will be illustrated in this section. In
fact, the SDP approach can be used to design FIR filters with arbitrary amplitude
and phase responses including certain types of filters that cannot be designed
with the weighted-Chebyshev method [4].

Applications of Constrained Optimization 537

0 0.5 1 1.5 2 2.5 3

-100

-50

0

(a) ω, rad/s

G
ai

n,
 d

B

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.05

0

0.05

(b) ω, rad/s

G
ai

n,
 d

B

Figure 16.1. Amplitude response of the filter for Example 16.1: (a) For baseband 0 ≤ ω ≤ π,
(b) for passband 0 ≤ ω ≤ ωp.

Consider an FIR filter of order N characterized by the general transfer func-
tion

H(z) =
N∑

n=0

hnz−n (16.9)

The frequency response of such a filter can be expressed as

H(ejω) =
N∑

n=0

hne−jnω = hT [c(ω) − js(ω)] (16.10)

where c(ω) and s(ω) are given by Eqs. (9.26a) and (9.26b), respectively, and
h = [h0 h1 · · · hN]T . Let Hd(ω) be the desired frequency response and
assume a normalized sampling frequency of 2π. In a minimax design, we need
to find a coefficient vector h that solves the optimization problem

minimize
h

max
ω∈Ω

[W (ω)|H(ejω) − Hd(ω)|] (16.11)

where Ω is a frequency region of interest over the positive half of the baseband
[0, π] and W (ω) is a given weighting function.

If δ denotes the upper bound of the squared weighted error in Eq. (16.11),
i.e.,

W 2(ω)|H(ejω) − Hd(ω)|2 ≤ δ for ω ∈ Ω (16.12)

538

then the minimax problem in Eq. (16.11) can be reformulated as

minimize δ (16.13a)

subject to: W 2(ω)|H(ejω) − Hd(ω)|2 ≤ δ for ω ∈ Ω (16.13b)

Now let Hr(ω) and Hi(ω) be the real and imaginary parts of Hd(ω), respec-
tively. We can write

W 2(ω)|H(ejω) − Hd(ω)|2 = W 2(ω){[hTc(ω) − Hr(ω)]2

+[hT s(ω) + Hi(ω)]2}
= α2

1(ω) + α2
2(ω) (16.14)

where

α1(ω) = hTcw(ω) − Hrw(ω)
α2(ω) = hT sw(ω) + Hiw(ω)
cw(ω) = W (ω)c(ω)
sw(ω) = W (ω)s(ω)

Hrw(ω) = W (ω)Hr(ω)
Hiw(ω) = W (ω)Hi(ω)

Using Eq. (16.14), the constraint in Eq. (16.13b) becomes

δ − α2
1(ω) − α2

2(ω) ≥ 0 for ω ∈ Ω (16.15)

It can be shown that the inequality in Eq. (16.15) holds if and only if

D(ω) =

⎡
⎣ δ α1(ω) α2(ω)

α1(ω) 1 0
α2(ω) 0 1

⎤
⎦ � 0 for ω ∈ Ω (16.16)

(see Prob. 16.3) i.e., D(ω) is positive definite for the frequencies of interest. If
we write

x =
[

δ
h

]
=

⎡
⎢⎢⎢⎣

x1

x2
...

xN+2

⎤
⎥⎥⎥⎦ (16.17)

where x1 = δ and [x2 x3 · · · xN+2]T , then matrix D(ω) is affine with respect
to x. If S = {ωi : i = 1, 2, . . . , M} ⊂ Ω is a set of frequencies which is
sufficiently dense on Ω, then a discretized version of Eq. (16.16) is given by

F(x) � 0 (16.18a)

Applications of Constrained Optimization 539

where
F(x) = diag{D(ω1), D(ω2), . . . , D(ωM)} (16.18b)

and the minimization problem in Eq. (16.13) can be converted into the opti-
mization problem

minimize cTx (16.19a)

subject to: F(x) � 0 (16.19b)

where c = [1 0 · · · 0]T . Upon comparing Eq. (16.19) with Eq. (14.9), we
conclude that this problem belongs to the class of SDP problems studied in
Chap. 14.

Example 16.2 Assuming idealized passband and stopband gains of 1 and 0,
respectively, and a normalized sampling frequency of 2π, apply the SDP-based
minimax approach described in Sec. 16.2.2 to design a lowpass FIR filter of
order 84 with a passband edge ωp = 0.45π and a stopband edge ωa = 0.5π.

Solution The design was carried out by solving the SDP problem in Eq. (16.19)
using Algorithm 14.1. The desired specifications can be achieved by assuming
an idealized frequency response of the form

Hd(ω) =
{

e−j42ω for ω ∈ [0, ωp]
0 for ω ∈ [ωa, ωs/2]

=
{

e−j42ω for ω ∈ [0, 0.45π]
0 for ω ∈ [0.5π, π]

For a filter order N = 84, the variable vector x has 86 elements as can be
seen in Eq. (16.17). We assumed 300 sample frequencies that were uniformly
distributed in Ω = [0, 0.45]∪ [0.5π, π], i.e., M = 300 in set S . Consequently,
matrix F(x) in Eq. (16.19b) is of dimension 900 × 900. Using a piecewise
constant representation for the weighting function W (ω) defined in Eq. (9.40)
with γ = 1.5, a filter was obtained that has an equiripple amplitude response
as can be seen in the plots of Fig. 16.2a and b. The maximum passband error
and minimum stopband attenuation were 0.0098 and 43.72 dB, respectively.

The existence of a unique equiripple linear-phase FIR-filter design for a
given set of amplitude-response specifications is guaranteed by the so-called
alternation theorem (see p. 677 of [1]). This design has a constant group delay
of N/2 s. Interestingly, the FIR filter designed here has a constant group delay
of N/2 = 42, as can be seen in the delay characteristic of Fig. 16.2c, and
this feature along with the equiripple amplitude response achieved suggests
that the SDP minimax approach actually obtained the unique best equiripple
linear-phase design. The SDP approach is much more demanding than the
Remez exchange algorithm in terms of computation effort. However, it can

540

be used to design FIR filter types that cannot be designed with the Remez
exchange algorithm, for example, low-delay FIR filters with approximately
constant passband group delay.

0 0.5 1 1.5 2 2.5 3
-80

-70

-60

-50

-40

-30

-20

-10

0

10

(a)

ω, rad/s

G
ai

n,
 d

B

0 0.2 0.4 0.6 0.8 1 1.2 1.4
41.9998

41.9999

42

42.0001

42.0002

(b)

ω, rad/s

G
ro

up
 D

el
ay

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.002

0.004

0.006

0.008

0.01

0.012

(c)

ω, rad/s

|E
rr

or
|

Figure 16.2. Performance of the lowpass FIR filter designed in Example 16.2: (a) Amplitude
response, (b) passband error, (c) group-delay characteristic.

Applications of Constrained Optimization 541

16.2.3 Minimax design of IIR digital filters using SDP
16.2.3.1 Introduction

Infinite-duration impulse response (IIR) digital filters offer improved selec-
tivity and computational efficiency and reduced system delay compared to what
can be achieved using FIR filters of comparable approximation accuracy [1].
The major drawbacks of an IIR design are that linear phase response can be
achieved only approximately and the design must deal with the stability problem
which does not exist in the FIR case.

A linear phase response is often required in digital filters for the purpose of
avoiding phase distortion in the signals to be processed. Since signal compo-
nents transmitted through stopbands are usually heavily attenuated, the linearity
of the phase response is typically unimportant in stopbands. Consequently, IIR
filters which have an approximately linear phase response in passbands and
possibly a nonlinear phase response in stopbands are often entirely satisfac-
tory particularly if they are also more economical in terms of computational
complexity. Several methods are available for the design of IIR filters with
approximately linear phase response in passbands [5]–[8].

The stability problem can be handled in several ways, see, for example,
[1][5]–[8]. A popular approach is to impose stability constraints that estab-
lish a class of stable IIR filters from which the best solution for the design
problem can be obtained. Obviously, this leads to a constrained optimization
formulation for the design. However, technical difficulties can often occur if we
attempt to implement a stability constraint that is explicitly related to the design
variables. This is because the locations of the poles of the transfer function,
which determine the stability of the filter, are related to the filter coefficients in
a highly nonlinear and implicit way even for filters of moderate orders. Linear
stability constraints that depend on the design variables affinely were proposed
in [6][8]. These constraints depend on the frequency variable ω which can vary
from 0 to π. Their linearity makes it possible to formulate the design of stable
IIR filters as LP or convex QP problems. It should be mentioned, however,
that constraints of this class are sufficient conditions for stability and are often
too restrictive to permit a satisfactory design, especially the linear constraint
proposed in [6].

Below, we formulate the design of an IIR filter as an SDP problem. The
stability of the filter is assured by using a single linear matrix inequality (LMI)
constraint, which fits nicely into an SDP formulation and does not depend on
continuous parameters other than the design variables.

The transfer function of the IIR filter to be designed is assumed to be of the
form

H(z) =
A(z)
B(z)

(16.21a)

542

where

A(z) =
N∑

i=0

aiz
−i (16.21b)

B(z) = 1 +
K∑

i=1

biz
−i (16.21c)

and K is an integer between 1 and N . The particular form of the denominator
polynomial B(z) in Eq. (16.20c) has N − K poles at the origin which, as was
recently observed in [8], can be beneficial in the design of certain types of digital
filters.

16.2.3.2 LMI constraint for stability

The stability of a filter represented by transfer function H(z) such as that in
Eq. (16.20a) is guaranteed if the zeros of polynomial B(z) in Eq. (16.20c) are
strictly inside the unit circle as was stated earlier. It can be shown that the zeros
of B(z) are the eigenvalues of the matrix

D =

⎡
⎢⎢⎢⎢⎢⎣
−b1 −b2 · · · −bN−1 −bN

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦ (16.22)

(see Prob. 16.4(a)). Consequently, the filter is stable if the moduli of the eigen-
values are all strictly less than one. The well-known Lyapunov theory [9] states
that D represents a stable filter if and only if there exists a positive definite
matrix P such that P − DTPD is positive definite, i.e.,

F = {P : P 0 and P− DTPD 0} (16.23)

is nonempty. Using simple linear algebraic manipulations, it can be verified
that the set F in Eq. (16.22) can be characterized by

F =
{
P :

[
P−1 D
DT P

]
 0

}
(16.24)

(see Prob. 16.4). Note that unlike the constraints in Eq. (16.22), matrix D in
Eq. (16.23) (hence the coefficients of B(z)) appears affinely.

16.2.3.3 SDP formulation of the design problem

Given a desired frequency response Hd(ω), a minimax design of a stable
IIR filter can be obtained by finding a transfer function H(z) such as that in

Applications of Constrained Optimization 543

Eq. (16.20) which solves the constrained optimization problem

minimize max
0≤ω≤π

[W (ω)|H(ejω) − Hd(ω)|] (16.25a)

subject to: B(z) �= 0 for |z| ≥ 1 (16.25b)

(see Sec. B.7). The frequency response of the filter can be expressed as

H(ejω) =
A(ω)
B(ω)

(16.26)

where

A(ω) =
N∑

n=0

ane−jnω = aTc(ω) − jaT s(ω)

B(ω) = 1 +
K∑

n=1

bne−jnω = 1 + bT ĉ(ω) − jbT ŝ(ω)

a = [a0 a1 · · · aN]T

b = [b1 b2 · · · bK]T

c(ω) = [1 cos ω · · · cos Nω]T

s(ω) = [0 sinω · · · sinNω]T

ĉ(ω) = [cosω cos 2ω · · · cos Kω]T

ŝ(ω) = [sinω sin 2ω · · · sinKω]T

and Hd(ω) can be written as

Hd(ω) = Hr(ω) + jHi(ω) (16.27)

where Hr(ω) and Hi(ω) denote the real and imaginary parts of Hd(ω), respec-
tively.

Following the reformulation step in the FIR case (see Sec. 16.2.2), the prob-
lem in Eq. (16.24) can be expressed as

minimize δ (16.28a)

subject to: W 2(ω)|H(ejω) − Hd(ω)|2 ≤ δ for ω ∈ Ω
(16.28b)

B(z) �= 0 for |z| ≥ 1 (16.28c)

where Ω = [0, π], we can write

W 2(ω)|H(ejω) − Hd(ω)| =
W 2(ω)
|B(ω)|2 |A(ω) − B(ω)Hd(ω)|2 (16.29)

544

which suggests the following iterative scheme: In the kth iteration, we seek
to find polynomials Ak(z) and Bk(z) that solve the constrained optimization
problem

minimize δ (16.30a)

subject to:
W 2(ω)

|Bk−1(ω)|2 |A(ω) − B(ω)Hd(ω)|2 ≤ δ for ω ∈ Ω

(16.30b)

B(z) �= 0 for |z| ≥ 1 (16.30c)

where Bk−1(ω) is obtained in the (k − 1)th iteration. An important differ-
ence between the problems in Eqs. (16.27) and (16.29) is that the constraint in
Eq. (16.27b) is highly nonlinear because of the presence of B(ω) as the denomi-
nator of H(ejω) while the constraint in Eq. (16.29b) is a quadratic function with
respect to the components of a and b and W 2(ω)/|Bk−1(ω)|2 is a weighting
function.

Using arguments similar to those in Sec. 16.2.2, it can be shown that the
constraint in Eq. (16.29) is equivalent to

Γ(ω) � 0 for ω ∈ Ω (16.31)

where

Γ(ω) =

⎡
⎣ δ α1(ω) α2(ω)

α1(ω) 1 0
α2(ω) 0 1

⎤
⎦

with

α1(ω) = x̂Tck − Hrw(ω)
α2(ω) = x̂T sk + Hiw(ω)

x̂ =
[
a
b

]
, ck =

[
cw

uw

]
, sk =

[
sw

vw

]

wk =
W (ω)

|Bk−1(ω)|
cw = wkc(ω)
sw = wks(ω)

Hrw(ω) = wkHr(ω)
Hiw(ω) = wkHi(ω)

uw = wk[−Hi(ω)ŝ(ω) − Hr(ω)ĉ(ω)]
vw = wk[−Hi(ω)ĉ(ω) + Hr(ω)ŝ(ω)]

As for the stability constraint in Eq. (16.29c), we note from Sec. 16.2.3.2 that
for a stable filter there exists a Pk−1 0 that solves the Lyapunov equation [9]

Pk−1 −DT
k−1Pk−1Dk−1 = I (16.32)

Applications of Constrained Optimization 545

where I is the K × K identity matrix and Dk−1 is a K × K matrix of the
form in Eq. (16.21) with −bT

k−1 as its first row. Eq. (16.23) suggests a stability
constraint for the digital filter as[

P−1
k−1 D

DT Pk−1

]
 0 (16.33)

or

Qk =
[
P−1

k−1 − τI D
DT Pk−1 − τI

]
� 0 (16.34)

where D is given by Eq. (16.21) and τ > 0 is a scalar that can be used to control
the stability margin of the IIR filter. We note that (a) Qk in Eq. (16.33) depends
on D (and hence on x̂) affinely; and (b) because of Eq. (16.31), the positive
definite matrix Pk−1 in Eq. (16.33) is constrained. Consequently, Eq. (16.33)
is a sufficient (but not necessary) constraint for stability. However, if the it-
erative algorithm described above converges, then the matrix sequence {Dk}
also converges. Since the existence of a Pk−1 0 in Eq. (16.31) is a neces-
sary and sufficient condition for the stability of the filter, the LMI constraint in
Eq. (16.33) becomes less and less restrictive as the iterations continue.

Combining a discretized version of Eq. (16.30) with the stability constraint
in Eq. (16.33), the constrained optimization problem in Eq. (16.29) can now be
formulated as

minimize cTx (16.35a)

subject to:
[
Γk 0
0 Qk

]
� 0 (16.35b)

where

x =

⎡
⎣ δ

x̂

⎤
⎦ =

⎡
⎣ δ

a
b

⎤
⎦ , c =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦

and
Γk = diag{Γ(ω1), Γ(ω2), . . . , Γ(ωM)}

In the above equation, {ωi : 1 ≤ i ≤ M} is a set of frequencies in the range
of interest. Since both Γk and Qk depend on variable vector x affinely, the
problem in Eq. (16.34) is an SDP problem.

16.2.3.4 Iterative SDP algorithm

Given a desired frequency response Hd(ω), a weighting function W (ω), and
the orders of A(z) and B(z), namely, N and K, respectively, we can start the
design with an initial point x̂0 = [aT

0 bT
0]T with b0 = 0. Coefficient vector a0

546

is obtained by designing an FIR filter assuming a desired frequency response
Hd(ω) using a routine design algorithm [1]. The SDP problem formulated in
Eq. (16.34) is solved for k = 1. If ||x̂k−x̂k−1|| is less than a prescribed tolerance
ε, then x̂k is deemed to be a solution for the design problem. Otherwise, the
SDP in Eq. (16.34) is solved for k = 2, etc. This algorithm is illustrated by the
following example.

Example 16.3 Assuming idealized passband and stopband gains of 1 and 0, re-
spectively, and a normalized sampling frequency of 2π, apply the above iterative
minimax approach to design an IIR lowpass digital filter that would meet the
following specifications: passband edge ωp = 0.5π, stopband edge ωa = 0.6π,
maximum passband error δp ≤ 0.02, minimum stopband attenuation Aa ≥ 34
dB, group delay in passband = 9 s with a maximum deviation of less than 1 s.

Solution The required IIR filter was designed by solving the SDP problem in
Eq. (16.34) using Algorithm 14.1. The desired specifications were achieved by
using an idealized frequency of the form

Hd(ω) =
{

e−j9ω for ω ∈ [0, ωp]
0 for ω ∈ [ωa, ωs/2]

=
{

e−j9ω for ω ∈ [0, 0.5π]
0 for ω ∈ [0.6π, π]

along with N = 12, K = 6, W (ω) = 1 on [0, 0.5π] ∪ [0.6π, π] and zero
elsewhere, τ = 10−4, and ε = 5 × 10−3. The constraint Γ(ω) � 0 was
discretized over a set of 240 equally-spaced sample frequencies on [0, ωp] ∪
[ωa, π]. It took the algorithm 50 iterations to converge to a solution. The poles
and zeros of the filter obtained are given in Table 16.1, and a0 = 0.00789947.
The largest pole magnitude is 0.944.

The performance of the filter obtained can be compared with that of an
alternative design reported by Deczky as Example 1 in [5], which has the same
passband and stopband edges and filter order. As can be seen in Table 16.2 and
Fig. 16.3, the present design offers improved performance as well as a reduced
group delay. In addition, the present filter has only six nonzero poles, which
would lead to reduced computational complexity in the implementation of the
filter.

Applications of Constrained Optimization 547

Table 16.1 Zeros and poles of the transfer function for Example 16.3

Zeros Poles

−2.12347973
−1.22600378 −0.15960464 ± j0.93037014

1.49482238± j0.55741991 −0.03719150 ± j0.55679595
0.75350472± j1.37716837 0.24717453 ± j0.18656749

−0.89300316 ± j0.65496710 Plus another 6 poles
−0.32277491 ± j0.93626367 at the origin

−0.49091195 ± j0.86511412

Table 16.2 Performance comparisons for Example 16.3

Filter Iterative SDP Design Deczky’s Design [5]

Maximum passband 0.0171 0.0549
error in magnitude

Minimum stopband 34.7763 31.5034
attenuation, dB

Maximum ripple
of group delay 0.8320 1.3219
in passband, s

16.3 Model Predictive Control of Dynamic Systems
One of the challenges encountered in modeling and control of real-life dy-

namic systems is the development of controllers whose performance remains
robust against various uncertainties that exist due to modeling errors, sensor
noise, power-supply interference, and finite word length effects of the con-
troller itself. Model predictive control (MPC) is a popular open-loop control
methodology that has proven effective for the control of slow-varying dynamic
systems such as process control in chemical, oil refinement, and pulp and pa-
per industries [10][11]. At each control instant, a model predictive controller
performs online optimization to generate an optimal control input based on
a model that describes the dynamics of the system to be controlled and the
available input and output measurements. In [11], it was shown that robust
MPC that takes into account model uncertainty and various constraints on the

548

0 0.5 1 1.5 2 2.5 3
-60

-50

-40

-30

-20

-10

0

10

ω, rad/s

G
ai

n,
 d

B

(a)

0 0.5 1 1.5
5

10

15

20

ω, rad/s

G
ro

up
 D

el
ay

(b)

Figure 16.3. Performance of the IIR filter designed (solid lines) and the filter in [5] (dashed
lines) for Example 16.3: (a) Amplitude response, (b) passband group delay characteristic.

Applications of Constrained Optimization 549

control input and plant output can be designed using SDP techniques. In this
section, we follow the methodology used in [11] to illustrate several SDP-based
techniques for the design of robust model predictive controllers.

16.3.1 Polytopic model for uncertain dynamic systems
A linear discrete-time time-varying dynamic system can be modeled in terms

of a state-space formulation as [9]

x(k + 1) = A(k)x(k) + B(k)u(k) (16.36a)

y(k) = Cx(k) (16.36b)

where y(k) ∈ Rm×1 is the output vector, u(k) ∈ Rp×1 is the input vector, and
x(k) ∈ Rn×1 is the state vector at time instant k. The matrices A(k) ∈ Rn×n

and B(k) ∈ Rn×m are time dependent. The time dependence of the system
matrix A(k) and the input-to-state matrix B(k) can be utilized to describe
systems whose dynamic characteristics vary with time. In order to incorporate
modeling uncertainties into the model in Eq. (16.35), the pair [A(k) B(k)] is
allowed to be a member of the polytope M defined by

M = Co{[A1 B1], [A2 B2], . . . , [AL BL]}

where Co denotes the convex hull spanned by [Ai Bi] for 1 ≤ i ≤ L, which is
defined as

M = {[A B] : [A B] =
L∑

i=1

λi[Ai Bi], λi ≥ 0,
L∑

i=1

λi = 1} (16.37)

(see Sec. A.16).
The linear model in Eq. (16.35) subject to the constraint [A(k) B(k)] ∈ M

can be used to describe a wide variety of real-life dynamic systems. As an
example, consider the angular positioning system illustrated in Fig. 16.4 [12].
The control problem is to use the input voltage to the motor to rotate the antenna
such that the antenna angle, θ, relative to some reference tracks the angle of
the moving target, θr. The discrete-time equation of the motion of the antenna
can be derived from its continuous-time counterpart by discretization using a
sampling period of 0.1 s and a first-order approximation of the derivative as

x(k + 1) =
[

θ(k)
θ̇(k + 1)

]
=

[
1 0.1
0 1 − 0.1α(k)

]
x(k) +

[
0

0.1η

]
u(k)

= A(k)x(k) + Bu(k) (16.38a)

y(k) = [1 0]x(k) = Cx(k) (16.38b)

where η = 0.787. The parameter α(k) in matrix A(k) is proportional to the
coefficient of viscous friction in the rotating parts of the antenna, and is assumed

550

Target

Antenna

Motor

θ
θr

Figure 16.4. Angular positioning system.

to be arbitrarily time-varying in the range 0.1 ≤ α(k) ≤ 10. It follows that
Eq. (16.37) is a polytopic model with A(k) ∈ Co {A1, A2} where

A1 =
[
1 0.10
0 0.99

]
, A2 =

[
1 0.1
0 0

]
(16.37c)

Below, we deal with several aspects of MPCs.

16.3.2 Introduction to robust MPC
At sampling instant k, a robust MPC uses plant measurements and a model,

such as the polytopic model in Eq. (16.35), to predict future outputs of the
system. These measurements are utilized to compute m control inputs, u(k +
i|k) for i = 0, 1, . . . , m − 1, by solving the minimax optimization problem

minimize
u(k+i|k), 0≤i≤m−1

max
[A(k+i) B(k+i)]∈M,i≥0

Jp(k) (16.38)

The notation u(k+i|k) denotes the control decision made at instant k+i based
on the measurements available at instant k; J(k) is an objective function that
measures system performance and is given by

J(k) =
∞∑
i=0

[xT (k + i|k)Qx(k + i|k) + uT (k + i|k)Ru(k + i|k)] (16.39)

where Q � 0 and R 0 are constant weighting matrices; x(k + i|k) denotes
the system state at instant k + i, which is predicted using the measurements at
instant k; and u(k + i|k) denotes the control input at instant k + i obtained
by solving the problem in Eq. (16.38). It follows that the control inputs ob-
tained by solving the problem in Eq. (16.38) take into account the system’s
uncertainty by minimizing the worst-case value of J(k) among all possible

Applications of Constrained Optimization 551

plant models included in set M. The control inputs so computed are, therefore,
robust against model uncertainties. At any given sampling instant k, the solu-
tion of the optimization problem in Eq. (16.38) provides a total of m control
actions u(k|k), u(k + 1|k), . . . , u(k + m − 1|k), but in a model predictive
controller only the first control action, u(k|k), is implemented. At the next
sampling instant, new measurements are obtained based on which the problem
in Eq. (16.38) is solved again to provide a new set of m control actions; the first
one is then implemented.

Frequently, the solution of the above minimax problem is computationally too
demanding to implement and in the MPC literature the problem in Eq. (16.38)
has been addressed by deriving an upper bound of the objective function J(k)
and then minimizing this upper bound with a constant state-feedback control
law

u(k + i|k) = Fx(k + i|k) for i ≥ 0 (16.40)

Let us assume that there exists a quadratic function V (x) = xT Px with P 0
such that for all x(k + i|k) and u(k + i|k) satisfying Eq. (16.35) and for
[A(k + i) B(k + i)] ∈ M, i ≥ 0, V (x) satisfies the inequality

V [x(k + i + 1|k)] − V [x(k + i|k)] ≤ −[xT (k + i|k)Qx(k + i|k)

+uT (k + i|k)Ru(k + i|k)] (16.41)

If the objective function is finite, then the series in Eq. (16.39) must converge
and, consequently, we have x(∞|k) = 0 which implies that V [x(∞|k)] = 0.
By summing the inequality in Eq. (16.41) from i = 0 to ∞, we obtain J(k) ≤
V [x(k|k)]. This means that V [x(k|k)] is an upper bound of the objective
function, which is considerably easier to deal with than J(k). In the next
section, we study the condition under which a positive definite matrix P exists
such that V (x) satisfies the condition in Eq. (16.41); we then formulate a
modified optimization problem that can be solved by SDP algorithms.

16.3.3 Robust unconstrained MPC by using SDP
If γ is an upper bound of V [x(k|k)], namely,

V [x(k|k)] = xT (k|k)Px(k|k) ≤ γ (16.42)

then minimizing V [x(k|k)] is equivalent to minimizing γ. If we let

S = γP−1 (16.43)

then P 0 implies that S 0 and Eq. (16.42) becomes

1 − xT (k|k)S−1x(k|k) ≥ 0

552

which is equivalent to [
1 xT (k|k)

x(k|k) S

]
� 0 (16.44)

At sampling instant k, the state vector x(k|k) is assumed to be a known mea-
surement which is used in a state feedback control u(k|k) = Fx(k|k) (see
Eq. (16.40)). Recall that for V [x(k|k)] to be an upper bound of J(k), V (k|k)
is required to satisfy the condition in Eq. (16.41). By substituting Eqs. (16.40)
and (16.35) into Eq. (16.41), we obtain

xT (k + i|k)Wx(k + i|k) ≤ 0 for i ≥ 0 (16.45)

where

W = [A(k + i) + B(k + i)F]TP[A(k + i) + B(k + i)F]
−P + FTRF + Q

Evidently, Eq. (16.45) holds if W � 0. Now if we let Y = FS where S
is related to matrix P by Eq. (16.43), then based on the fact that the matrix
inequality [

D F
HT G

]
 0 (16.46)

is equivalent to
G 0 and D − HG−1HT 0 (16.47)

or
D 0 and G − HTD−1H 0 (16.48)

it can be shown that W � 0 is equivalent to⎡
⎢⎢⎣

S SAT
k+i + YTBT

k+i SQ1/2 YTR1/2

Ak+iS + Bk+iY S 0 0
Q1/2S 0 γIn 0
R1/2Y 0 0 γIp

⎤
⎥⎥⎦ � 0

(16.49)
where Ak+i and Bk+i stand for A(k + i) and B(k + i), respectively (see
Probs. 16.6 and 16.7). Since the matrix inequality in Eq. (16.49) is affine with
respect to [A(k + i) B(k + i)], Eq. (16.49) is satisfied for all [A(k + i) B(k +
i)] ∈ M defined by Eq. (16.36) if there exist S 0, Y, and scalar γ such that⎡

⎢⎢⎣
S SAT

j + YT BT
j SQ1/2 YTR1/2

AjS + BjY S 0 0
Q1/2S 0 γIn 0
R1/2Y 0 0 γIp

⎤
⎥⎥⎦ � 0 (16.50)

Applications of Constrained Optimization 553

for j = 1, 2, . . . , L. Therefore, the unconstrained robust MPC can be formu-
lated in terms of the constrained optimization problem

minimize
γ,S,Y

γ (16.51a)

subject to: constraints in Eqs. (16.44) and (16.50) (16.51b)

There are a total of L+1 matrix inequality constraints in this problem in which
the variables γ,S, and Y are present affinely. Therefore, this is an SDP problem
and the algorithms studied in Chap. 14 can be used to solve it. Once the optimal
matrices S∗ and Y∗ are obtained, the optimal feedback matrix can be computed
as

F∗ = Y∗S∗−1 (16.52)

Example 16.4 Design a robust MPC for the angular positioning system dis-
cussed in Sec. 16.3.1. Assume that the initial angular position and angular
velocity of the antenna are θ(0) = 0.12 rad and θ̇(0) = −0.1 rad/s, respec-
tively. The goal of the MPC is to steer the antenna to the desired position
θr = 0. The weighting matrix R in J(k) in this case is a scalar and is set to
R = 2 × 10−5.

Solution Note thatθ(k) is related tox(k) through the equationθ(k) = [1 0]x(k);
hence Eq. (16.37b) implies that y(k) = θ(k), and

y2(k + i|k) = xT (k + i|k)
[
1 0
0 0

]
x(k + i|k)

The objective function can be written as

J(k) =
∞∑
i=0

[y2(k + i|k) + Ru2(k + i|k)]

=
∞∑
i=0

[xT (k + i|k)Qx(k + i|k) + Ru2(k + i|k)]

where

Q =
[
1 0
0 0

]
and R = 2 × 10−5

Since the control system under consideration has only one scalar input,
namely, the voltage applied to the motor, u(k + i|k) is a scalar. Consequently,
the feedback gain F is a row vector of dimension 2. Other known quantities in
the constraints in Eqs. (16.44) and (16.50) are

x(0|0) =
[

0.12
−0.10

]
, Q1/2 =

[
1 0
0 0

]
, R1/2 = 0.0045

Bj =
[

0
0.0787

]
for j = 1, 2

554

and matrices A1 and A2 are given by Eq. (16.37c).
With the above data and a sampling period of 0.1 s, the solution of the SDP

problem in Eq. (16.51), {Y∗, S∗}, can be obtained using Algorithm 14.1, and by
using Eq. (16.52) F∗ can be deduced. The optimal MPC can then be computed
using the state feedback control law

u(k + 1|k) = F∗x(k + 1|k) for k = 0, 1, . . . (16.53)

The state x(k+1|k) in Eq. (16.53) is calculated using the model in Eq. (16.37),
where A(k) is selected randomly from the set

M = Co{A1, A2}

Figure 16.5a and b depicts the angular position θ(k) and velocity θ̇(k) ob-
tained over the first 2 seconds, respectively. It is observed that both θ(k) and
θ̇(k) are steered to the desired value of zero within a second. The corresponding
MPC profile u(k) for k = 1, 2, . . . , 20 is shown in Fig. 16.5c.

16.3.4 Robust constrained MPC by using SDP
Frequently, it is desirable to design an MPC subject to certain constraints on

the system’s input and/or output. For example, constraints on the control input
may become necessary in order to represent limitations on control equipment
(such as value saturation in a process control scenario). The need for constraints
can be illustrated in terms of Example 16.4. In Fig. 16.5c, we observe that at
instants 0.1, 0.2, and 0.3 s, the magnitude of the control voltage exceeds 2 V. In
such a case, the controller designed would become nonfeasible if the maximum
control magnitude were to be limited to 2 V. In the rest of the section we
develop robust model-predictive controllers with L2 norm and componentwise
input constraints using SDP.

16.3.4.1 L2-norm input constraint

As in the unconstrained MPC studied in Sec. 16.3.3, the objective function
considered here is also the upper bound γ in Eq. (16.42), and the state feedback
control u(k + i|k) = Fx(k + i|k) is assumed throughout this section. From
Sec. 16.3.3, we know that the matrix inequality constraint in Eq. (16.50) implies
the inequality in Eq. (16.49) which, in conjunction with Eq. (16.35), leads to

xT (k + i + 1|k)Px(k + i + 1|k) − xT (k + i|k)Px(k + i|k)
≤ −xT (k + i|k)(FTRF + S)x(k + i|k) < 0

Hence

xT (k + i + 1|k)Px(k + i + 1|k) < xT (k + i|k)Px(k + i|k)

Applications of Constrained Optimization 555

0 0.5 1 1.5 2
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

(a) Time, s

A
ng

ul
ar

 p
os

iti
on

, r
ad

0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(b) Time, s

A
ng

ul
ar

 v
el

oc
ity

, r
ad

/s

0 0.5 1 1.5 2
-10

-8

-6

-4

-2

0

2

4

(c) Time, s

C
on

tr
ol

 in
pu

t,
vo

lts

Figure 16.5. Performance of MPC in Example 16.4 with R = 2× 10−5: (a) Angular position
θ(k), (b) angular velocity θ̇(k), (c) profile of the MPC.

556

By repeating the above argument for i = 0, 1, . . ., we conclude that

xT (k + i|k)Px(k + i|k) < xT (k|k)Px(k|k) for i ≥ 1

Therefore,
xT (k|k)Px(k|k) ≤ γ

implies that
xT (k + i|k)Px(k + i|k) ≤ γ for i ≥ 1

So if we define set E as

E = {z : zTPz ≤ γ} = {z : zTS−1z ≤ 1} (16.54)

then from the above analysis

x(k|k) ∈ E implies that x(k + i|k) ∈ E for i ≥ 1

In other words, set E is an invariant ellipsoid for the predicted states of the
uncertain system.

Now let us consider the Euclidean norm constraint on the control input at
sampling instant k, i.e.,

||u(k + i|k)|| ≤ umax for i ≥ 0 (16.55)

where umax is a given upper bound. In a state feedback MPC, the control is
given by

u(k + i|k) = Fx(k + i|k) = YS−1x(k + i|k)

Since set E is invariant for the predicted state, we have

max
i≥0

||u(k + i|k)||2 = max
i≥0

||YS−1x(k + i|k)||2

≤ max
z∈E

||YS−1z||2 (16.56)

It can be shown that

max
z∈E

||YS−1z||2 = λmax(YS−1 YT) (16.57)

where λmax(M) denotes the largest eigenvalue of matrix M (see Prob. 16.8).
Further, by using the equivalence between the matrix equality in Eq. (16.46)
and that in Eq. (16.47) or Eq. (16.48), it can be shown that the matrix inequality[

u2
maxI Y
YT S

]
� 0 (16.58)

implies that
λmax(YS−1YT) ≤ u2

max (16.59)

Applications of Constrained Optimization 557

(see Prob. 16.9). Therefore, the L2-norm input constraint in Eq. (16.55) holds
if the matrix inequality in Eq. (16.58) is satisfied. Thus a robust MPC that
allows an L2-norm input constraint can be formulated by adding the constraint
in Eq. (16.58) to the SDP problem in Eq. (16.51) as

minimize
γ,S,Y

γ (16.60a)

subject to: constraints in Eqs. (16.44), (16.50), and (16.58) (16.60b)

Since variables S and Y are present in Eq. (16.58) affinely, this is again an SDP
problem.

16.3.4.2 Componentwise input constraints

Another type of commonly used input constraint is an upper bound for the
magnitude of each component of the control input, i.e.,

|uj(k + i|k)| ≤ uj,max for i ≥ 0, j = 1, 2, . . . , p (16.61)

It follows from Eq. (16.56) that

max
i≥0

|uj(k + i|k)|2 = max
i≥0

|[YS−1x(k + i|k)]j|2

≤ max
z∈E

|(YS−1z)j |2 for j = 1, 2, . . . , p

(16.62)

Note that the set E defined in Eq. (16.54) can be expressed as

E = {z : zTS−1z ≤ 1} = {w : ||w|| ≤ 1, w = S−1/2z}

which, in conjunction with the use of the Cauchy-Schwarz inequality, modifies
Eq. (16.61) into

max
i≥0

|uj(k + i|k)|2 ≤ max
||w||≤1

|(YS−1/2w)j |2 ≤ ||(YS−1/2)j||2

= (YS−1Y)i,j for j = 1, 2, . . . , p (16.63)

It can be readily verified that if there exists a symmetric matrix X ∈ Rp×p such
that [

X Y
YT S

]
� 0 (16.64a)

where the diagonal elements of X satisfy the inequalities

Xjj ≤ u2
j,max for j = 1, 2, . . . , p (16.64b)

then
(YTS−1Y)jj ≤ u2

j,max for j = 1, 2, . . . , p

558

which, by virtue of Eq. (16.63), implies the inequalities in Eq. (16.61) (see
Prob. 16.10). Therefore, the componentwise input constraints in Eq. (16.61)
hold if there exists a symmetric matrix X that satisfies the inequalities in
Eqs. (16.64a) and (16.64b). Hence a robust MPC with the input constraints
in Eq. (16.61) can be formulated by modifying the SDP problem in Eq. (16.51)
to

minimize
γ,S,X,Y

γ (16.65a)

subject to the constraints in Eqs. (16.44), (16.50), and (16.64) (16.65b)

Example 16.5 Design an MPC for the angular positioning system discussed in
Sec. 16.3.1 with input constraint

|u(k|k + i)| ≤ 2 for i ≥ 0

The initial state x(0) and other parameters are the same as in Example 16.4.

Solution Since u(k|k + i) is a scalar, ||u(k + i|k)|| = |u(k + i|k)|. Hence
the L2-norm input and the componentwise input constraints become identical.
With umax = 2 V, the MPC can be obtained by solving the SDP problem in
Eq. (16.60) using Algorithm 14.1 for each sampling instant k. The angular
position θ(k) and velocity θ̇(k) over the first 2 seconds are plotted in Fig. 16.6a
and b, respectively. The control profile is depicted in Fig. 16.6c where we note
that the magnitude of the control voltage has been kept within the 2-V bound.

It is interesting to note that the magnitude of the MPC commands can also
be reduced by using a larger value of weighting factor R in J(k). For the an-
gular positioning system in question with R = 0.0035, the unconstrained MPC
developed in Example 16.4 generates the control profile shown in Fig. 16.7a,
which obviously satisfies the constraint |u(k|k + i)| ≤ 2. However, the corre-
sponding θ(k) and θ̇(k) plotted in Fig. 16.7b and c, respectively, indicate that
such an MPC takes a longer time to steer the system from the same initial state
to the desired zero state compared to what is achieved by the constrained MPC.

16.4 Optimal Force Distribution for Robotic Systems with
Closed Kinematic Loops

Because of their use in a wide variety of applications ranging from robotic
surgery to space exploration, robotic systems with closed kinematic loops such
as multiple manipulators handling a single workload, dextrous hands with fin-
gers closed1 through the object grasped (see Fig. 16.8), and multilegged vehicles

1A kinematic finger/chain is said to be closed if both ends of the finger/chain are mechanically constrained.

Applications of Constrained Optimization 559

0 0.5 1 1.5 2
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

(a) Time, s

A
ng

ul
ar

 p
os

iti
on

, r
ad

0 0.5 1 1.5 2
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

(b) Time, s

A
ng

ul
ar

 v
el

oc
ity

, r
ad

/s

0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

(c) Time, s

C
on

tr
ol

 in
pu

t,
vo

lts

Figure 16.6. Performance of MPC in Example 16.5. (a) Angular position θ(k), (b) angular
velocity θ̇(k), (c) profile of the constrained MPC.

560

0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

(a) Time, s

C
on

tr
ol

 in
pu

t,
vo

lts

0 0.5 1 1.5 2
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

(b) Time, s

A
ng

ul
ar

 p
os

iti
on

, r
ad

0 0.5 1 1.5 2
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

(c) Time, s

A
ng

ul
ar

 v
el

oc
ity

, r
ad

/s

Figure 16.7. Performance of MPC in Example 16.4 with R = 0.0035 (a) Profile of the MPC,
(b) angular position θ(k), (c) angular velocity θ̇(k).

Applications of Constrained Optimization 561

with kinematic chains closed through the body (see Fig. 16.9) have become an
increasingly important subject of study in the past several years [13]–[18]. An
issue of central importance for this class of robotic systems is the force distribu-
tion that determines the joint torques and forces to generate the desired motion
of the workload [14].

Figure 16.8. Three coordinated manipulators (also known as a three-finger dextrous hand)
grasping an object.

Figure 16.9. Multilegged vehicle.

In Sec. 16.4.1, the force distribution problem for multifinger dextrous hands
is described and two models for the contact forces are studied. The optimal
force distribution problem is then formulated and solved using LP and SDP in
Secs. 16.4.2 and 16.4.3, respectively.

16.4.1 Force distribution problem in multifinger dextrous
hands

Consider a dextrous hand with m fingers grasping an object such as that
depicted in Fig. 16.10 for m = 3. The contact force ci of the ith finger is
supplied by the finger’s nj joint torques τij for j = 1, 2, . . . , nj , and fext is an
external force exerted on the object. The force distribution problem is to find

562

c1

c2

fext

c3

τ12

τ31

τ11

τ32

τ33

τ21

τ22

τ23

Finger 2
Finger 1

Finger 3

Figure 16.10. A three-finger hand grasping an object.

the contact forces ci for i = 1, 2, . . . , m that would balance the external force
fext ∈ R6 so as to assure a stable grasp. The dynamics of the system can be
represented by the equation

Wc = −fext (16.66)

where c is a vector whose components are the m contact forces ci for 1 ≤ i ≤ m
and W ∈ R6×3m is a matrix whose columns comprise the directions of the m
contact forces. The product vector Wc in Eq. (16.66) is a six-dimensional
vector whose first three components represent the overall contact force and last
three components represent the overall contact torque relative to a frame of
reference with the center of mass of the object as its origin [14][17].

To maintain a stable grasp, the contact forces whose magnitudes are within
the friction force limit must remain positive towards the object surface. There
are two commonly used models to describe a contact force, namely, the point-
contact and soft-finger contact model. In the point-contact model, the contact
force ci has three components, a component ci1 that is orthogonal and two
components ci2 and ci3 that are tangential to the object surface as shown in
Fig. 16.11a. In the soft-finger contact model, ci has an additional component
ci4, as shown in Fig. 16.11b, that describes the torsional moment around the
normal on the object surface [17].

Friction force plays an important role in stable grasping. In a point-contact
model, the friction constraint can be expressed as√

c2
i2 + c2

i3 ≤ µici1 (16.67)

where ci1 is the normal force component, ci2 and ci3 are the tangential com-
ponents of the contact force ci, and µi > 0 denotes the friction coefficient at
the contact point. It follows that for a given friction coefficient µi > 0, the
constraint in Eq. (16.67) describes a friction cone as illustrated in Fig. 16.12.

Applications of Constrained Optimization 563

ci1ci2

ci3

Contact force ci

Object
surface ci1

ci4

ci2

ci3

Contact force ci

Object
surface

(a) (b)

Figure 16.11. (a) Point-contact model, (b) soft-finger contact model.

ci1

ci2

ci3

Contact force ci

Object
surface

Figure 16.12. Friction cone as a constraint on contact force ci.

Obviously, the friction force modeled by Eq. (16.67) is nonlinear: for a fixed
µi and ci1, the magnitude of the tangential force is constrained to within a circle
of radius µici1. A linear constraint for the friction force can be obtained by ap-
proximating the circle with a square as shown in Fig. 16.13. The approximation
involved can be described in terms of the linear constraints [14]

ci1 ≥ 0 (16.68a)

− µi√
2
ci1 ≤ ci2 ≤ µi√

2
ci1 (16.68b)

− µi√
2
ci1 ≤ ci3 ≤ µi√

2
ci1 (16.68c)

The friction limits in a soft-finger contact model depend on both the torsion
and shear forces, and can be described by a linear or an elliptical approximation
[17]. The linear model is given by

1
µi

ft +
1

µ̂ti
|ci4| ≤ ci1 (16.69)

564

µici1

µici1

ci3

ci2

Figure 16.13. Linear approximation for friction cone constraint.

where µ̂ti is a constant between the torsion and shear limits, µi is the tangential

friction coefficient, and ft =
√

c2
i2 + c2

i3. The elliptical model, on the other
hand, is described by

ci1 ≥ 0 (16.70a)
1
µi

(c2
i2 + c2

i3) +
1

µti
c2
i4 ≤ c2

i1 (16.70b)

where µti is a constant.

16.4.2 Solution of optimal force distribution problem by
using LP

The problem of finding the optimal force distribution of an m-finger dextrous
hand is to find the contact forces ci for 1 ≤ i ≤ m that optimize a performance
index subject to the force balance constraint in Eq. (16.66) and friction-force
constraints in one of Eqs. (16.67)–(16.70).

A typical performance measure in this case is the weighted sum of the m
normal force components ci1 (1 ≤ i ≤ m), i.e.,

p =
m∑

i=1

wici1 (16.71)

If we employ the point-contact model and let

c =

⎡
⎢⎣ c1

...
cm

⎤
⎥⎦ , ci =

⎡
⎣ ci1

ci2

ci3

⎤
⎦ , w =

⎡
⎢⎣ w1

...
wm

⎤
⎥⎦ , wi =

⎡
⎣wi

0
0

⎤
⎦

Applications of Constrained Optimization 565

then the objective function in Eq. (16.71) can be expressed as

p(c) = wTc (16.72)

and the friction-force constraints in Eq. (16.68) can be written as

Ac ≥ 0 (16.73)

where

A =

⎡
⎢⎣A1 0

. . .
0 Am

⎤
⎥⎦ and Ai =

⎡
⎢⎢⎢⎢⎣

1 0 0
µi/

√
2 −1 0

µi/
√

2 1 0
µi/

√
2 0 −1

µi/
√

2 0 1

⎤
⎥⎥⎥⎥⎦

Obviously, the problem of minimizing function p(c) in Eq. (16.72) subject to
the linear inequality constraints in Eq. (16.73) and linear equality constraints

Wc = −fext (16.74)

is an LP problem and many algorithms studied in Chaps. 11 and 12 are appli-
cable. In what follows, the above LP approach is illustrated using a four-finger
robot hand grasping a rectangular object. The same robot hand was used in
[17] to demonstrate a gradient-flow-based optimization method.

Example 16.6 Find the optimal contact forces ci for i = 1, 2, . . . , 4, that
minimize the objective function in Eq. (16.73) subject to the constraints in
Eqs. (16.72) and (16.74) for a four-finger robot hand grasping the rectangular
object illustrated in Fig. 16.14.

Solution The input data of the problem is given by

WT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 −a1

1 0 0 0 0 b
0 0 1 −b a1 0
0 1 0 0 0 a2

1 0 0 0 0 b
0 0 1 −b −a2 0
0 −1 0 0 0 −a3

1 0 0 0 0 −b
0 0 1 b −a3 0
0 −1 0 0 0 a4

1 0 0 0 0 −b
0 0 1 b a4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16.75)

566

Finger 1

Finger 2

Finger 4 Finger 3

x

y

z

b

a1 a2

a3a4

c11

c12

c13
c21

c22

c23

c31

c32

c33
c43

c42

c41

Figure 16.14. Grasping a rectangular object with four fingers.

where a1 = 0.1, a2 = 0.15, a3 = 0.05, a4 = 0.065, and b = 0.02. The
weights, µi, and fext are given by wi = 1, µi = 0.4 for 1 ≤ i ≤ 4, and

fext = [0 0 −1 0 0 0]T (16.76)

The rank of matrix W is 6; hence the solutions of Eq. (16.74) can be char-
acterized by the equation

c = −W+fext + Vηφ (16.77)

where W+ denotes the Moore-Penrose pseudoinverse of W, Vη is the ma-
trix formed using the last 6 columns of V obtained from the singular-value
decomposition W = UΣVT , and φ ∈ R6×1 is the free parameter vector (see
Sec. 10.4). Using Eq. (16.77), the above LP problem is reduced to

minimize ŵT φ (16.78a)

subject to Âφ ≥ b̂ (16.78b)

where
ŵ = VT

η w, Â = AVη, b̂ = AW+fext

The reduced LP problem was solved by using Algorithm 11.1. In [14], this
solution method is referred to as the compact LP method. If φ∗ is the minimizer
of the LP problem in Eq. (16.78), then the minimizer of the original LP problem
is given by

c∗ = −W+fext + Vηφ
∗

which leads to

c∗ =

⎡
⎢⎢⎣

c∗1
c∗2
c∗3
c∗4

⎤
⎥⎥⎦

Applications of Constrained Optimization 567

with

c∗1 =

⎡
⎣ 1.062736

0.010609
0.300587

⎤
⎦ , c∗2 =

⎡
⎣ 0.705031

0.015338
0.199413

⎤
⎦

c∗3 =

⎡
⎣ 1.003685
−0.038417

0.283885

⎤
⎦ , c∗4 =

⎡
⎣ 0.764082

0.012470
0.216115

⎤
⎦

The minimum value of p(c) at c∗ was found to be 3.535534.

16.4.3 Solution of optimal force distribution problem by
using SDP

The LP-based solution discussed in Sec. 16.4.2 is an approximate solution
because it was obtained for the case where the quadratic friction-force constraint
in Eq. (16.67) is approximated using a linear model. An improved solution can
be obtained by formulating the problem at hand as an SDP problem. To this end,
we need to convert the friction-force constraints into linear matrix inequalities
[17].

For the point-contact case, the friction-force constraint in Eq. (16.67) yields

µici1 ≥ 0

and

µ2
i c

2
i1 − (c2

i2 + c2
i3) ≥ 0

Hence Eq. (16.67) is equivalent to

Pi =

⎡
⎣µici1 0 ci2

0 µici1 ci3

ci2 ci3 u1ci1

⎤
⎦ � 0 (16.79)

(see Prob. 16.11a). For an m-finger robot hand, the constraint on point-contact
friction forces is given by

P(c) =

⎡
⎢⎣P1 0

. . .
0 Pm

⎤
⎥⎦ � 0 (16.80)

where Pi is defined by Eq. (16.79). Similarly, the constraint on the soft-finger
friction forces of an m-finger robot hand can be described by Eq. (16.80) where
matrix Pi is given by

568

Pi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ci1 0 0 0
0 αi 0 ci2 0
0 0 αi ci3

0 ci2 ci3 αi

βi 0 ci2

0 0 βi ci3

ci2 ci3 βi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16.81)

with αi = µi(ci1 + ci4/µ̂ti) and βi = µi(ci1 − ci4/µ̂ti) for the linear model in
Eq. (16.69) or

Pi =

⎡
⎢⎢⎣

ci1 0 0 αici2

0 ci1 0 αici3

0 0 ci1 βici4

αici2 αici3 βici4 ci1

⎤
⎥⎥⎦ (16.82)

with αi = 1/
√

µi and βi = 1/
√

µti for the elliptical model in Eq. (16.70) (see
Prob. 16.11(b) and (c)).

Note that matrix P(c) for both point-contact and soft-finger models is linear
with respect to parameters ci1, ci2, ci3, and ci4.

The optimal force distribution problem can now be formulated as

minimize p = wTc (16.83a)

subject to: Wc = −fext (16.83b)

P(c) � 0 (16.83c)

where c = [cT
1 cT

2 · · · cT
m]T with ci = [ci1 ci2 ci3]T for the point-contact

case or ci = [ci1 ci2 ci3 ci4]T for the soft-finger case, and P(c) is given
by Eq. (16.80) with Pi defined by Eq. (16.79) for the point-contact case or
Eq. (16.82) for the soft-finger case. By using the variable elimination method
discussed in Sec. 10.4, the solutions of Eq. (16.83b) can be expressed as

c = Vηφ + c0 (16.84)

with c0 = −W+fext where W+ is the Moore-Penrose pseudo-inverse of W.
Thus the problem in Eq. (16.83) reduces to

minimize p̂ = ŵT φ (16.85a)

subject to: P(Vηφ + c0) � 0 (16.85b)

Since P(Vηφ+c0) is affine with respect to vector φ, the optimization problem
in Eq. (16.85) is a standard SDP problem of the type studied in Chap. 14.

Example 16.7 Find the optimal contact forces ci for 1 ≤ i ≤ 4 that would solve
the minimization problem in Eq. (16.83) for the 4-finger robot hand grasping

Applications of Constrained Optimization 569

the rectangular object illustrated in Fig. 16.14, using the soft-finger model in
Eq. (16.70) with µi = 0.4 and µti =

√
0.2 for 1 ≤ i ≤ 4.

Solution The input data are given by

w = [1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0]T

fext = [1 1 −1 0 0.5 0.5]T

WT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 −a1

1 0 0 0 0 b
0 0 1 −b a1 0
0 0 0 0 −1 0
0 1 0 0 0 a2

1 0 0 0 0 b
0 0 1 −b −a2 0
0 0 0 0 −1 0
0 −1 0 0 0 −a3

1 0 0 0 0 −b
0 0 1 b −a3 0
0 0 0 0 1 0
0 −1 0 0 0 a4

1 0 0 0 0 −b
0 0 1 b a4 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the numerical values of a1, a2, a3, and b are the same as in Example
16.6.

By applying Algorithm 14.1 to the SDP problem in Eq. (16.85), the minimizer
φ∗ was found to be

φ∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.419912
−0.217252

3.275539
0.705386

−0.364026
−0.324137
−0.028661

0.065540
−0.839180

0.217987

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Eq. (16.84) then yields

c∗ = Vηφ
∗ + c0 =

⎡
⎢⎢⎣

c∗1
c∗2
c∗3
c∗4

⎤
⎥⎥⎦

570

where

c∗1 =

⎡
⎢⎢⎣

2.706396
−1.636606

0.499748
−0.015208

⎤
⎥⎥⎦ , c∗2 =

⎡
⎢⎢⎣

0.003041
−0.000633

0.000252
−0.000172

⎤
⎥⎥⎦

c∗3 =

⎡
⎢⎢⎣

3.699481
0.638543
0.500059

−0.541217

⎤
⎥⎥⎦ , c∗4 =

⎡
⎢⎢⎣

0.009955
−0.001303
−0.000059

0.000907

⎤
⎥⎥⎦

The minimum value of p(c) at c∗ is p(c)∗ = 6.418873.

16.5 Multiuser Detection in Wireless Communication
Channels

Multiuser communication systems are telecommunication systems where
several users can transmit information through a common channel [19] as illus-
trated in Fig. 16.15. A typical system of this type is a cellular communication
system where a number of mobile users in a cell send their information to the
receiver at the base station of the cell.

Transmiter 1

Receiver

Transmiter K

+

Noise

Channel

. .
 .

. .
 .

Figure 16.15. A multiuser communication system.

There are three basic multiple access methods for multiuser communication,
namely, frequency-division multiple access (FDMA), time-division multiple
access (TDMA), and code-division multiple access (CDMA). In FDMA, the
available channel bandwidth is divided into a number of nonoverlapping sub-
channels and each subchannel is assigned to a user. In TDMA, the unit time
duration known as frame duration is divided into several nonoverlapping time
intervals, and each time interval is assigned to a user. In CDMA, each user is
assigned a distinct code sequence which spreads the user’s information signal
across the assigned frequency band. These code sequences have small cross-
correlation with each other so that signals from different users can be separated
at the receiver using a bank of match filters, each performing cross-correlation
of the received signal with a particular code sequence.

Applications of Constrained Optimization 571

In order to accommodate asynchronous users in CDMA channels, practi-
cal code sequences are not orthogonal [20]. This nonorthogonality leads to
nonzero cross-correlation between each pair of code sequences. Therefore,
users interfere with each other and any interferer with sufficient power at the
receiver can cause significant performance degradation. Multiuser detection is
a demodulation technique that can perform quite effectively in the presence of
multiple access interference. The purpose of this section is to demonstrate that
several multiuser detection problems can be addressed using modern optimiza-
tion methods. In Sec. 16.5.1, the CDMA channel model and the maximum-
likelihood (ML) multiuser detector [21] is reviewed. A near-optimal multiuser
detector for direct sequence (DS)-CDMA channels using SDP relaxation [22]
is described in Sec. 16.5.2. In digital communication systems, performance is
usually measured in terms of the probability that a signal bit is in error at the
receiver output, and this probability is referred to as the bit-error rate (BER).
In Sec. 16.5.3, we describe a linear multiuser detection algorithm based on
minimizing the BER subject to a set of reasonable constraints [23].

16.5.1 Channel model and ML multiuser detector
16.5.1.1 CDMA channel model

We consider a DS-CDMA system where K users transmit information bits
through a common channel. The bit interval of each user is Tb seconds and each
information bit belongs to the set {1,−1}. Each signal is assigned a signature
waveform s(t), often called spreading sequence, given by

s(t) =
N∑

i=1

(−1)cipTc [t − (i − 1)Tc] for t ∈ [0, Tb] (16.86)

where pTc(t) is a rectangular pulse which takes the value of one for 0 ≤ t ≤ Tc

and zero elsewhere, {c1, c2, . . . , cN} is a binary sequence, N = Tb/Tc is the
length of the signature waveform, which is often referred to as the spreading
gain. Typically, the waveform of pTc(t) is common to all the users, and it is the
binary sequence {c1, c2, . . . , cN} assigned to each user that distinguishes the
different signature waveforms. One of the commonly used binary sequences
is the Gold sequence which has low crosscorrelations for all possible cyclic
shifts [19]. The signature waveforms are normalized to have unit energy, i.e.,
||sk(t)||2 = 1 for 1 ≤ k ≤ K. The received baseband signal is given by

y(t) =
∞∑
i=0

K∑
k=1

Ai
kb

i
ksk(t − iTb − τk) + n(t) (16.87)

where bi
k is an information bit, τk is the transmission delay, Ai

k is the signal
amplitude of the kth user, and n(t) is additive white Gaussian noise (AWGN)

572

with variance σ2. A DS-CDMA system is said to be synchronous if τk in
Eq. (16.87) is zero for 1 ≤ k ≤ K, and thus

y(t) =
K∑

k=1

Akbksk(t) + n(t) (16.88)

where t can assume values in the bit interval [0, Tb].
Demodulation is achieved by filtering the received signal y(t) with a bank

of matched filters. The filter bank consists of K filters, each matched to each
signature waveform, and the filtered signals are sampled at the end of each bit
interval. The outputs of the matched filters are given by

yk =
∫ Tb

0
y(t)sk(t) dt for 1 ≤ k ≤ K (16.89)

Using Eq. (16.88), Eq. (16.89) can be expressed as

yk = Akbk +
∑
j �=k

Ajbjρjk + nk for 1 ≤ k ≤ K (16.90)

where

ρjk =
∫ Tb

0
sj(t)sk(t) dt

and

nk =
∫ Tb

0
n(t)sk(t) dt

The discrete-time synchronous model in Eq. (16.90) can be described in
matrix form as

y = RAb + n (16.91)

where y = [y1 y2 · · · yK]T , A = diag{A1, A2, . . . , AK}, b = [b1 b2 · · ·
bK]T , Rij = ρij , and n = [n1 n2 · · · nK]T . Since n(t) in Eq. (16.88) is an
AWGN with variance σ2, the term n in Eq. (16.91) is a zero-mean Gaussian
noise vector with covariance matrix σ2R.

If we consider an ideal channel which is free of background noise and the
signature waveforms are orthogonal to each other, then Eq. (16.89) assumes the
form yk = Akbk. In such a case the information bit bk can be perfectly detected
based on the output of the kth matched filter, yk. In a realistic CDMA channel,
however, the signature waveforms are nonorthogonal [20] and hence the second
term at the right-hand side of Eq. (16.90), which quantifies the multiple access
interference (MAI), is always nonzero. The MAI in conjunction with the noise
represented by term nk in Eq. (16.90) can in many cases be so large that it
is difficult to estimate the transmitted information based on the outputs of the

Applications of Constrained Optimization 573

matched filters without further processing. A multiuser detector is essentially
a digital signal processing algorithm or processor that takes y as its input to
estimate the transmitted information vector b such that a low probability of
error is achieved.

16.5.1.2 ML multiuser detector

The goal of the optimal multiuser detector is to generate an estimate of the
information vector b in Eq. (16.91) that maximizes the log-likelihood function
defined by

f(b) = exp

(
− 1

2σ2

∫ Tb

0
[y(t) −

K∑
k=1

Akbksk(t)]2 dt

)
(16.92)

which is equivalent to maximizing the quadratic function

Ω(b) =

[
K∑

k=1

Akbksk(t)

]2

= 2bTAy − bTARAb (16.93)

By defining the unnormalized crosscorrelation matrix as H = ARA and letting
p = −2Ay, the ML detector is characterized by the solution of the combina-
torial optimization problem [21]

minimize xTHx + xTp (16.94a)

subject to: xi ∈ {1, −1} for i = 1, 2, . . . , K (16.94b)

Because of the binary constraints in Eq. (16.94b), the optimization problem
in Eq. (16.94) is an integer programming (IP) problem. Its solution can be
obtained by exhaustive evaluation of the objective function over 2K possible
values of x. However, the amount of computation involved becomes prohibitive
even for a moderate number of users.

16.5.2 Near-optimal multiuser detector using SDP
relaxation

The near-optimal multiuser detector described in [22] is based on a relaxation
of the so-called MAX-CUT problem as detailed below.

16.5.2.1 SDP relaxation of MAX-CUT problem

We begin by examining the MAX-CUT problem which is a well-known IP
problem in graph theory. It can be formulated as

maximize 1
2

∑∑
i<j

wij(1 − xixj) (16.95a)

574

subject to: xi ∈ {1,−1} for 1 ≤ i ≤ n (16.95b)

where wij denotes the weight from node i to node j in the graph. The constraints
in Eq. (16.95b) can be expressed as x2

i = 1 for 1 ≤ i ≤ n. If we define a
symmetric matrix W = {wij} with wii = 0 for 1 ≤ i ≤ n, then the objective
function in Eq. (16.95a) can be expressed as

1
2

∑∑
i<j

wij(1 − xixj) = 1
4

∑∑
wij − 1

4x
T Wx

= 1
4

∑∑
wij − 1

4 trace(WX)

where trace(·) denotes the trace of the matrix andX = xxT withx = [x1 x2 · · ·
xn]T (see Sec. A.7). Note that the set of matrices {X : X = xxT with x2

i = 1
for 1 ≤ i ≤ n} can be characterized by {X : xii = 1 for 1 ≤ i ≤ n, X � 0,
and rank(X) = 1} where xii denotes the ith diagonal element of X. Hence the
problem in Eq. (16.95) can be expressed as

minimize trace(WX) (16.96a)

subject to: X � 0 (16.96b)

xii = 1 for 1 ≤ i ≤ n (16.96c)

rank(X) = 1 (16.96d)

In [24], Geomans and Williamson proposed a relaxation of the above problem
by removing the rank constraint in Eq. (16.96d), which leads to

minimize trace(WX) (16.97a)

subject to : X � 0 (16.97b)

xii = 1 for 1 ≤ i ≤ n (16.97c)

Note that the objective function in Eq. (16.97a) is a linear function of X and
the constraints in Eqs. (16.97b) and (16.97c) can be combined into an LMI as∑∑

i>j
xijFij + I � 0

where, for each (i, j) with i > j, Fij is a symmetric matrix whose (i, j)th and
(j, i)th components are one and zero elsewhere. The problem in Eq. (16.97)
fits into the formulation in Eq. (14.9) and, therefore, is an SDP problem. For
this reason, the problem in Eq. (16.97) is known as an SDP relaxation of the IP
problem in Eq. (16.95) and, equivalently, of the problem in Eq. (16.96).

If we denote the minimum values of the objective functions in the problems
of Eqs. (16.96) and (16.97) as µ∗ and ν∗, respectively, then since the feasible
region of the problem in Eq. (16.96) is a subset of the feasible region of the

Applications of Constrained Optimization 575

problem in Eq. (16.97), we have ν∗ ≤ µ∗. Further, it has been shown that if
the weights wij are all nonnegative, then ν∗ ≥ 0.87856µ∗ [25]. Therefore, we
have

0.87856µ∗ ≤ ν∗ ≤ µ∗ (16.98)

This indicates that the solution of the SDP problem in Eq. (16.97) is in general a
good approximation of the solution of the problem in Eq. (16.96). It is the good
quality of the approximation in conjunction with the SDP’s polynomial-time
computational complexity that makes the Geomans-Williamson SDP relaxation
an attractive optimization tool for combinatorial minimization problems. As
a consequence, this approach has found applications in graph optimization,
network management, and scheduling [26][27]. In what follows, we present an
SDP-relaxation-based algorithm for multiuser detection.

16.5.2.2 An SDP-relaxation-based multiuser detector

Let

X̂ =

[
xxT x
xT 1

]
and C =

[
H p/2
pT /2 1

]
(16.99)

By using the property that trace(AB) = trace(BA), the objective function in
Eq. (16.94) can be expressed as

xT Hx + xTp = trace(CX̂) (16.100)

(see Prob. 16.13(a)). Using an argument similar to that in Sec. 16.5.2.1, the
constraint in Eq. (16.94b) can be converted to

X̂ � 0, x̂ii = 1 for 1 ≤ i ≤ K (16.101a)

rank (X̂) = 1 (16.101b)

where x̂ii denotes the ith diagonal element of X̂ (see Prob. 16.13(b)). By
removing the rank constraint in Eq. (16.101b), we obtain an SDP relaxation of
the optimization problem in Eq. (16.94) as

minimize trace(CX̂) (16.102a)

subject to: X̂ � 0 (16.102b)

x̂ii = 1 for i = 1, 2, . . ., K + 1 (16.102c)

The variables in the original problem in Eq. (16.94) assume only the values
of 1 or −1 while the variable X̂ in the SDP minimization problem (16.102) has
real-valued components. In what follows, we describe two approaches that can

576

be used to generate a binary solution for the problem in Eq. (16.94) based on
the solution X̂ of the SDP problem in Eq. (16.102).

Let the solution of the problem in Eq. (16.102) be denoted as X̂∗. It follows
from Eq. (16.99) that X̂∗ is a (K +1)× (K +1) symmetric matrix of the form

X̂∗ =
[

X∗ x∗
x∗T 1

]
(16.103)

with
x̂∗

ii = 1 for i = 1, 2, . . . , K.

In view of Eq. (16.103), our first approach is simply to apply operator sgn(·) to
x∗ in Eq. (16.103), namely,

b̂ = sgn(x∗) (16.104)

wherex∗ denotes the vector formed by the first K components in the last column
of X̂∗.

At the cost of more computation, a better binary solution can be obtained by
using the eigendecomposition of matrix X̂∗, i.e., X̂∗ = USUT , where U is an
orthogonal and S is a diagonal matrix with the eigenvalues of X̂∗ as its diagonal
components in decreasing order (see Sec. A.9). It is well known that an optimal
rank-one approximation of X̂∗ in the L2 norm sense is given by λ1u1uT

1 , where
λ1 is the largest eigenvalue of X̂∗ and u1 is the eigenvector associated with λ1

[28]. If we denote the vector formed by the first K components of u1 as ũ, and
the last component of u1 by uK+1, i.e.,

u1 =
[

ũ
uK+1

]

then the optimal rank-one approximation of X̂∗ can be written as

X̂∗ ≈ λ1u1uT
1 = λ1

[
ũũT uK+1ũ
uK+1ũT u2

K+1

]

=
λ1

u2
K+1

[
x̃1x̃T

1 x̃1

x̃T
1 1

]
(16.105)

where x̃1 = uK+1ũ. Since λ1 > 0, on comparing Eqs. (16.103) and (16.105)
we note that the signs of the components of vector x̃1 are likely to be the same
as the signs of the corresponding components in vector x∗. Therefore, a binary
solution of the problem in Eq. (16.94) can be generated as

b̂ =
{

sgn(ũ) if uK+1 > 0
−sgn(ũ) if uK+1 < 0 (16.106)

Applications of Constrained Optimization 577

16.5.2.3 Solution suboptimality

Because of the relaxation involved, the detector described is suboptimal but,
as mentioned in Sec. 16.5.2.1, the SDP relaxation of the MAX-CUT problem
yields a good suboptimal solution. However, there are two important differences
between the SDP problems in Eqs. (16.97) and (16.102): The diagonal com-
ponents of W in Eq. (16.97) are all zero whereas those of C in Eq. (16.102)
are all strictly positive; and although the off-diagonal components in W are
assumed to be nonnegative, matrix C may contain negative off-diagonal com-
ponents. Consequently, the bounds in Eq. (16.98) do not always hold for the
SDP problem in Eq. (16.102). However, as will be demonstrated in terms of
some experimental results presented below, the near-optimal detector offers
comparable performance to that of the optimal ML detector.

In the next section, we describe an alternative but more efficient SDP-
relaxation-based detector.

16.5.2.4 Efficient-relaxation-based detector via duality

Although efficient interior-point algorithms such as those in [27][29] (see
Secs. 14.4–14.5) can be applied to solve the SDP problem in Eq. (16.102),
numerical difficulties can arise because the number of variables can be quite
large even for the case of a moderate number of users. For example, if K = 20,
the dimension of vector x in Eq. (16.99) is 20 and the number of variables in
X̂ becomes K(K + 1)/2 = 210. In this section, we present a more efficient
approach for the solution of the SDP problem under consideration. Essentially,
we adopt an indirect approach by first solving the dual SDP problem, which
involves a much smaller number of variables, and then convert the solution of
the dual problem to that of the primal SDP problem.

We begin by rewriting the SDP problem in Eq. (16.102) as

minimize trace(CX̂) (16.107a)

subject to: X̂ � 0 (16.107b)

trace(AiX) = 1 for i = 1, 2, . . . , K + 1 (16.107c)

where Ai is a diagonal matrix whose diagonal components are all zero except
for the ith component which is 1. It follows from Chap. 14 that the dual of the
problem in Eq. (16.107) is given by

minimize − bTy (16.108a)

subject to: S = C−
K+1∑
i=1

yiAi (16.108b)

S � 0 (16.108c)

578

where y = [y1 y2 · · · yK+1]T and b = [1 1 · · · 1]T ∈ C(K+1)×1. Evidently,
the dual problem in Eq. (16.108) involves only K + 1 variables and it is, there-
fore, much easier to solve then the primal problem. Any efficient interior-point
algorithm can be used for the solution such as the projective algorithm proposed
by Nemirovski and Gahinet [30] (see Sec. 14.6).2

In order to obtain the solution of the primal SDP problem in Eq. (16.107), we
need to carry out some analysis on the Karush-Kuhn-Tucker (KKT) conditions
for the solutions of the problems in Eqs. (16.107) and (16.108). The KKT
conditions state that the set {X̂∗, y∗} solves the problems in Eqs. (16.107) and
(16.108) if and only if they satisfy the conditions

K+1∑
i=1

y∗i Ai + S∗ = C (16.109a)

trace(AiX̂∗) = 1 for i = 1, 2, . . . , K + 1 (16.109b)

S∗X̂∗ = 0 (16.109c)

X̂∗ � 0 and S∗ � 0 (16.109d)

From Eq. (16.109a), we have

S∗ = C −
K+1∑
i=1

y∗i Ai (16.110)

Since the solution y∗ is typically obtained by using an iterative algorithm,
e.g., the projective algorithm of Nemirovski and Gahinet, y∗ can be a good
approximate solution only of the problem in Eq. (16.109), which means that
y∗ is in the interior of the feasible region. Consequently, matrix S∗ remains
positive definite. Therefore, the set {y∗, S∗, X̂∗} can be regarded as a point in
the feasible region that is sufficiently close to the limiting point of the central
path for the problems in Eqs. (16.107) and (16.108). Recall that the central path
is defined as a parameterized set {y(τ), S(τ), X̂(τ) for τ > 0} that satisfies
the modified KKT conditions

K+1∑
i=1

yi(τ)Ai + S(τ) = C (16.111a)

tr(AiX̂(τ)) = 1 for i = 1, 2, . . . , K + 1 (16.111b)

S(τ)X̂(τ) = τI (16.111c)

X̂(τ) � 0 and S(τ) � 0 (16.111d)

2The projective method has been implemented in the MATLAB LMI Control Toolbox for solving a variety
of SDP problems [31].

Applications of Constrained Optimization 579

The relation between Eqs. (16.109) and (16.111) becomes transparent since the
entire central path defined by Eq. (16.111) lies in the interior of the feasible
region and as τ → 0, the path converges to the solution set {y∗, S∗, X̂∗} that
satisfies Eq. (16.109).

From Eq. (16.111c), it follows that

X̂(τ) = τS−1(τ) (16.112)

which suggests an approximate solution of (16.107) as

X̂ = τ(S∗)−1 (16.113)

for some sufficiently small τ > 0, where S∗ is given by Eq. (16.110). In order
for matrix X̂ in Eq. (16.113) to satisfy the equality constraints in Eq. (16.107c),
X̂ needs to be slightly modified using a scaling matrix Π as

X̂∗ = Π(S∗)−1Π (16.114a)

where

Π = diag{ξ1/2
1 ξ

1/2
2 · · · ξ

1/2
K+1} (16.114b)

and ξi is the ith diagonal component of (S∗)−1. In Eq. (16.114a) we have pre-
and post-multiplied (S∗)−1 by Π so that matrix X̂∗ remains symmetric and
positive definite. It is worth noting that by imposing the equality constraints in
Eq. (16.107c) on X̂, the parameter τ in Eq. (16.113) is absorbed in the scaling
matrix Π.

In summary, an approximate solution X̂ of the SDP problem in Eq. (16.107)
can be efficiently obtained by using the following algorithm.

Algorithm 16.1 SDP-relaxation algorithm based on dual problem
Step 1
Form matrix C using Eq. (16.99).
Step 2
Solve the dual SDP problem in Eq. (16.108) and let its solution be y∗.
Step 3
Compute S∗ using Eq. (16.110).
Step 4
Compute X̂∗ using Eq. (16.114).
Step 5
Compute b̂ using Eq. (16.104) or (16.106).

We conclude this section with two remarks on the computational complexity
of the above algorithm and the accuracy of the solution obtained. To a large ex-
tent, the mathematical complexity of the algorithm is determined by Steps 2 and

580

4 where a (K + 1)-variable SDP problem is solved and a (K + 1) × (K + 1)
positive definite matrix is inverted, respectively. Consequently, the dual ap-
proach reduces the amount of computation required considerably compared to
that required to solve the K(K + 1)/2-variable SDP problem in Eq. (16.107)
directly. Concerning the accuracy of the solution, we note that it is the bi-
nary solution that determines the performance of the multiuser detector. Since
the binary solution is the output of the sign operation (see Eqs. (16.104) and
(16.106)), the approximation introduced in Eq. (16.114) is expected to have an
insignificant negative effect on the solution.

Example 16.8 Apply the primal and dual SDP-relaxation-based multiuser de-
tectors to a six-user synchronous system and compare their performance with
that of the ML detector described in Sec. 16.5.1.2 in terms of bit-error rate
(BER) and computational complexity.

Solution For the sake of convenience, we refer to the detectors based on the
primal and dual problems of Sec. 16.5.2.2 and Sec. 16.5.2.4 as the SDPR-P
and SDPR-D detectors, respectively. The SDP problems in Eqs. (16.102) and
(16.108) for the SDPR-P and SDPR-D detectors were solved by using Algo-
rithms 14.1 and 14.4, respectively. The user signatures used in the simulations
were 15-chip Gold sequences. The received signal power of the six users
were set to 5, 3, 1.8, 0.6, 0.3, and 0.2, respectively. The last (weakest) user
with power 0.2 was designated as the desired user. The average BERs for the
SDPR-P, SDPR-D, and ML detectors are plotted versus the signal-to-noise ra-
tio (SNR) in Fig. 16.16, and as can be seen the demodulation performance of
the SDPR-P and SDPR-D detectors is consistently very close to that of the ML
detector.

The computational complexity of the detectors was evaluated in terms of CPU
time and the results for the SDPR-P, SDPR-D, and ML detectors are plotted
in Fig. 16.17 versus the number of active users. As expected, the amount
of computation required by the ML detector increases exponentially with the
number of users as shown in Fig. 16.17a. The SDPR detectors reduce the
amount of computation to less than 1 percent and between the SDPR-P and
SDPR-D detectors, the latter one, namely, the one based on the dual problem,
is significantly more efficient as can be seen in Fig. 16.17b.

16.5.3 A constrained minimum-BER multiuser detector
16.5.3.1 Problem formulation

Although the SDP-based detectors described in Sec. 16.5.2 achieve near op-
timal performance with reduced computational complexity compared to that of
the ML detector, the amount of computation they require is still too large for
real-time applications. A more practical solution is to develop linear multiuser

Applications of Constrained Optimization 581

6 7 8 9 10 11 12 13

10
-1

SNR (dB)

B
E

R

ML
SDPR-P
SDPR-D

Figure 16.16. BER of six-user synchronous DS-CDMA system in AWGN channel.

detectors that estimate the users’ information bits by processing the observa-
tion data with an FIR digital filter. Several linear detectors with satisfactory
performance have been recently developed [20]. However, in general, these de-
tectors do not provide the lowest BER and, therefore, it is of interest to develop
a constrained minimum-BER detector that minimizes BER directly.

We consider a DS-CDMA channel with K synchronous users whose con-
tinuous-time model is given by Eq. (16.88). Within the observation window,
the critically sampled version of the received signal r = [y(0) y(∆) · · ·
y[(N − 1)∆]]T , where ∆ denotes the sampling period, can be expressed as

r = Sb + n (16.115)

where

S = [A1s1 A2s2 · · · AKsK]
sk = [sk(0) sk(∆) · · · sk[(N − 1)∆]]T

b = [b1 b2 · · · bK]T

n = [n(0) n(∆) · · · n[(N − 1)∆]]T

In Eq. (16.115), n is an AWGN signal with zero mean and variance σ2I, and
sk ∈ RN×1 is the signature signal of the kth user.

582

10 11 12 13 14 15 16 17
0

500

1000

1500

2000

2500

Number of active users

C
P

U
 ti

m
e

 (
s/

sy
m

bo
l)

MLD

10 15 20 25
0

5

10

15

20

25

30

Number of active users

C
P

U
 ti

m
e

SDPR-P
SDPR-D

(a)

(b)

Figure 16.17. Computational complexity of (a) ML detector and (b) SDPR-P and SDPR-D
detectors.

The linear multiuser detector to be investigated in this section can be regarded
as an FIR filter of length N that is characterized by its coefficient vector c ∈
RN×1. From the channel model in Eq. (16.115), it follows that the output of
the detector is given by

cT r = cTSb + cTn

Let the kth user be the desired user. We want to detect its information bit with
minimum error regardless of the information bits sent by the other K−1 users.
If b̂i for 1 ≤ i ≤ 2K−1 are the possible information vectors with their kth entry
bk = 1, then for each b̂i the output of the detector is given by cTr = cT v̂i+cTn
where v̂i = Sb̂i. The BER of the kth user can be shown to be [19]

P (c) =
1

2K−1

2K−1∑
i=1

Q

(
cT v̂i

||c||σ

)
(16.116)

Applications of Constrained Optimization 583

with

Q(x) =
1√
2π

∫ ∞

x
d−v2/2 dv (16.117)

A detector whose coefficient vector c∗ minimizes P (c) in Eq. (16.116) can
be referred to as a constrained minimum-BER (CMBER) detector. An optimal
linear detector is an unconstrained optimization algorithm that minimizes the
BER objective function P (c) in Eq. (16.116). A difficulty associated with
the above unconstrained problem is that function P (c) is highly nonlinear and
there may exist more than one local minimum. Consequently, convergence to
c∗ cannot be guaranteed for most optimization algorithms. In what follows, we
present a constrained optimization formulation of the problem that can be used
to implement a CMBER detector [23].

It can be shown that any local minimizer of the BER objective function in
Eq. (16.116) subject to constraints

cT v̂i ≥ 0 for 1 ≤ i ≤ 2K−1 (16.118)

is a global minimizer. Furthermore, with the constraint ||c|| = 1, the global
minimizer is unique (see Prob. 16.14).

Before proceeding to the problem formulation, it should be mentioned that
the constraints in Eq. (16.118) are reasonable in the sense that they will not ex-
clude good local minimizers. This can be seen from Eqs. (16.116) and (16.117)
which indicate that nonnegative inner products cTvi for 1 ≤ i ≤ 2K−1 tend to
reduce P (c) compared with negative inner products. Now if we define the set

I = {c : c satisfies Eq. (16.118) and ||c|| = 1} (16.119)

then it can be readily shown that as long as vectors {si : 1 ≤ i ≤ K} are linearly
independent, set I contains an infinite number of elements (see Prob. 16.15).
Under these circumstances, we can formulate the multiuser detection problem
at hand as the constrained minimization problem

minimize P (c) (16.120a)

subject to: c ∈ I (16.120b)

16.5.3.2 Conversion of the problem in Eq. (16.120) into a CP problem

We start with a simple conversion of the problem in Eq. (16.120) into the
following problem

584

minimize P (c) =
1

2K−1

2K−1∑
i=1

Q(cTvi) (16.121a)

subject to: cTvi ≥ 0 for 1 ≤ i ≤ 2K−1 (16.121b)

||c|| = 1 (16.121c)

where

vi =
v̂i

σ
for 1 ≤ i ≤ wK−1

Note that the problem in Eq. (16.121) is not a CP problem because the feasible
region characterized by Eqs. (16.121b) and (16.121c) is not convex. However,
it can be readily verified that the solution of Eq. (16.121) coincides with the
solution of the constrained optimization problem

minimize P (c) (16.122a)

subject to: cTvi ≥ 0 for 1 ≤ i ≤ 2K−1 (16.122b)

||c|| ≤ 1 (16.122c)

This is because for any c with ‖c‖ < 1,we always have P (ĉ) ≤ P (c) where ĉ =
c/‖c‖. In other words, the minimizer c∗ of the problem in Eq. (16.122) always
satisfies the constraint ‖c∗‖ = 1. A key distinction between the problems in
Eqs. (16.121) and (16.122) is that the latter one is a CP problem for which a
number of efficient algorithms are available (see Chap. 13).

16.5.3.3 Newton-barrier method

The optimization algorithm described below fits into the class of barrier
function methods studied in Chap. 12 but it has several additional features that
are uniquely associated with the present problem. These include a closed-form
formula for evaluating the Newton direction and an efficient line search.

By adopting a barrier function approach, we can drop the nonlinear constraint
in Eq. (16.122c) and convert the problem in Eq. (16.122) into the form

minimize Fµ(c) = P (c) − µ ln(1 − cTc) (16.123a)

subject to: cTvi ≥ 0 for 1 ≤ i ≤ 2K−1 (16.123b)

where µ > 0 is the barrier parameter. With a strictly feasible initial point
c0, which strictly satisfies the constraints in Eqs. (16.122b) and (16.122c), the
logarithmic term in Eq. (16.123a) is well defined. The gradient and Hessian of
Fµ(c) are given by

∇Fµ(c) = −
M∑
i=1

1
M

e−β2
i /2vi +

2µc
1 − ‖c‖2

(16.124)

Applications of Constrained Optimization 585

∇2Fµ(c) =
M∑
i=1

1
M

e−β2
i /2βivivT

i +
2µ

1 − ‖c‖2
I (16.125)

+
4µ

(1 − ‖c‖)2 ccT (16.126)

where M = 2K−1 and βi = cTvi for 1 ≤ i ≤ M . Note that the Hessian in
the interior of the feasible region, i.e., c with βi = cTvi > 0 and ‖c‖ < 1,
is positive definite. This suggests that at the (k + 1)th iteration, ck+1 can be
obtained as

ck+1 = ck + αkdk (16.127)

where the search direction dk is given by

dk = −[∇2Fµ(ck)]−1∇Fµ(ck) (16.128)

The positive scalar αk in Eq. (16.127) can be determined by using a line
search as follows. First, we note that the one-variable function Fµ(ck + αdk)
is strictly convex on the interval [0, ᾱ] where ᾱ is the largest positive scalar
such that ck + αdk remains feasible for 0 ≤ α ≤ ᾱ. Once ᾱ is determined,
Fµ(ck +αdk) is a unimodal function on [0, ᾱ] and the search for the minimizer
of the function can be carried out using one of the well known methods such as
quadratic or cubic interpolation or the Golden-section method (see Chap. 4). To
find ᾱ, we note that a point ck + αdk satisfies the constraints in Eq. (16.122b)
if

(ck + αdk)Tvi ≥ 0 for 1 ≤ i ≤ M (16.129)

Since ck is feasible, we have cT
k vi ≥ 0 for 1 ≤ i ≤ M . Hence for those indices

i such that dT
k vi ≥ 0, any nonnegative α will satisfy Eq. (16.129). In other

words, only those constraints in Eq. (16.122b) whose indices are in the set

Ik = {i : dT
k vi < 0} (16.130)

will affect the largest value of α that satisfies Eq. (16.129), and that value of α
can be computed as

ᾱ1 = min
i∈Ik

(
cT

k vi

−dT
k vi

)
(16.131)

In order to satisfy the constraint in Eq. (16.122c), we solve the equation

‖ck + αdk‖2 = 1

to obtain the solution

α = ᾱ2 =
[(cT

k dk)2 − ‖dk‖2(‖ck‖2 − 1)]1/2 − cT
k dk

‖dk‖2
(16.132)

586

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
0.15

0.2

0.25

0.3

0.35

0.4

SNR (dB)

B
E

R

CMBER

ML

Figure 16.18. Performance comparison of CMBER and ML detectors for a system with 10
equal-power users.

The value of ᾱ can then be taken as min(ᾱ1, ᾱ2). In practice, we must keep the
next iterate strictly inside the feasible region to ensure that the barrier function
in Eq. (16.123a) is well defined. To this end we can use

ᾱ = 0.99min(ᾱ1, ᾱ2) (16.133)

The above iterative optimization procedure is continued until the difference
between two successive solutions is less than a prescribed tolerance. For a
strictly feasible initial point, the Newton-barrier method described above always
converges to the global minimizer for an arbitrary positive µ. However, the
value of µ does affect the behavior of the algorithm. A small µ may lead to an
ill-conditioned Hessian while a large µ may lead to slow convergence. A µ in
the interval [0.001, 0.1] would guarantee a well-conditioned Hessian and allow
a fast convergence.

The BER performance of the CMBER detector is compared with that of the
ML detector in Fig. 16.18 for a system with 10 equal-power users. As can be
seen, the performance of the CMBER is practically the same as that of the ML
detector.

References
1 A. Antoniou, Digital Singal Processing: Signals, Systems, and Filters, McGraw-Hill, New

York, 2005.
2 W.-S. Lu and A. Antoniou, Two-Dimensional Digital Filters, Marcel Dekker, New York,

1992.

Applications of Constrained Optimization 587

3 J. W. Adams, “FIR digital filters with least-squares stopbands subject to peak-gain con-
straints,” IEEE Trans. Circuits Syst., vol. 38, pp. 376–388, April 1991.

4 W.-S. Lu, “Design of nonlinear-phase FIR digital filters: A semidefinite programming ap-
proach,” IEEE Int. Symp. on Circuits and Systems, vol. III, pp. 263–266, Orlando, FL., May
1999.

5 A. G. Deczky, “Synthesis of recursive digital filters using the minimum p-error criterion,”
IEEE Trans. Audio and Electroacoustics, vol. 20, pp. 257–263, 1972.

6 A. T. Chottra and G. A. Jullien, “A linear programming approach to recursive digital filter
design with linear phase,” IEEE Trans. Circuits Syst., vol. 29, pp. 139–149, Mar. 1982.

7 W.-S. Lu, S.-C. Pei, and C.-C. Tseng, “A weighted least-squares method for the design of
stable 1-D and 2-D IIR filters,” IEEE Trans. Signal Processing, vol. 46, pp. 1–10, Jan. 1998.

8 M. Lang, “Weighted least squares IIR filter design with arbitrary magnitude and phase
responses and specified stability margin,” IEEE Symp. on Advances in Digital Filtering and
Signal Processing, pp. 82–86, Victoria, BC, June 1998.

9 T. Kailath, Linear Systems, Englewood Cliffs, Prentice-Hall, NJ., 1981.
10 C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: Theory and practice

— a survey,” Automatica, vol. 25, pp. 335–348, 1989.
11 M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained model predictive

control using linear matrix inequalities,” Automatica, vol. 32, pp. 1361–1379, 1996.
12 H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley, New York, 1972.
13 J. Kerr and B. Roth, “Analysis of multifingered hands,” Int. J. Robotics Research, vol. 4,

no. 4, pp. 3–17, Winter 1986.
14 D. E. Orin and F.-T. Cheng, “General dynamic formulation of the force distribution equa-

tions,” Proc. 4th Int. Conf. on Advanced Robotics, pp. 525–546, Columbus, Ohio, June
13-15, 1989.

15 F.-T. Cheng and D. E. Orin, “Efficient algorithm for optimal force distribution — The
compact-dual LP method,” IEEE Trans. Robotics and Automation, vol. 6, pp. 178–187,
April 1990.

16 E. S. Venkaraman and T. Iberall, Dextrous Robot Hands, Springer Verlag, New York, 1990.
17 M. Buss, H. Hashimoto, and J. B. Moore, “Dextrous hand grasping force optimization,”

IEEE Trans. Robotics and Automation, vol. 12, pp. 406-418, June 1996.
18 K. Shimoga, “Robot grasp synthesis algorithms: A survey,” Int. J. Robotics Research, vol. 15,

pp. 230–266, June 1996.
19 J. G. Proakis, Digial Communications, 3rd ed., McGraw-Hill, New York, 1995.
20 S. Verdú, Multiuser Detection, Cambridge University Press, New York, 1998.
21 S. Verdú, “Minimum probability of error for asynchronous Gaussian multiple-access chan-

nels,” IEEE Trans. Inform. Theory, vol. 32, pp. 85–96, Jan. 1986.
22 X. M. Wang, W.-S. Lu, and A. Antoniou, “A near-optimal multiuser detector for CDMA

channels using semidefinite programming relaxation,” Proc. Int. Symp. Circuits Syst., Syd-
ney, Australia, June 2001.

23 X. F. Wang, W.-S. Lu, and A. Antoniou, “Constrained minimum-BER multiuser detection,”
IEEE Trans. Signal Processing, vol. 48, pp. 2903–2909, Oct. 2000.

24 M. X. Geomans and D. P. Williamson, “Improved approximation algorithms for maximum
cut and satisfiability problem using semidefinite programming,” J. ACM, vol. 42, pp. 1115–
1145, 1995.

25 M. X. Geomans and D. P. Williamson, “.878-approximation algorithm for MAX-CUT and
MAX-2SAT,” Proc. 26th ACM Symp. Theory of Computing, pp. 422–431, 1994.

26 L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Review, vol. 38, pp. 49–
95, 1996.

27 H. Wolkowicz, R. Saigal, and L. Vandenberghe, Handbook on Semidefinite Programming,
Kluwer Academic, MA, 2000.

588

28 G. W. Stewart, Introduction to Matrix Computations, New York, Academic Press, 1973.
29 K. C. Toh, R. H. Tütüncü, and M. J. Todd, “On the implementation of SDPT3 version 3.1 —

a MATLAB software package for semidefinite-quadratic-linear Programming," Proc. IEEE
Conf. on Computer-Aided Control System Design, Sept. 2004.

30 A. Nemirovski and P. Gahinet, “The projective method for solving linear matrix inequalities,”
Math. Programming, Series B, vol. 77, pp. 163–190, 1997.

31 P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, Manual of LMI Control Toolbox,
Natick: MathWorks Inc., May 1990.

Problems
16.1 Write a MATLAB program to implement the constrained optimization

algorithm described in Sec. 16.2, and use it to obtain the design in Example
16.1.

16.2 Derive the expression in Eq. (16.14).

16.3 Show that the inequality in Eq. (16.15) holds if and only if matrix D(ω)
in Eq. (16.16) is positive semidefinite.

16.4 (a) Show that the zeros of polynomial zKB(z) in Eq. (16.20c) are the
eigenvalues of matrix D in Eq. (16.21).

(b) Show that if the matrix inequality in Eq. (16.23) holds for some matrix
P 0, then the largest modulus of the eigenvalues of matrix D in
Eq. (16.21) is strictly less than one.

16.5 Show that the constraint in Eq. (16.29b) is equivalent to the matrix equality
in Eq. (16.30).

16.6 Show that the matrix inequality in Eq. (16.46) is equivalent to the matrix
inequalities in Eq. (16.47) or those in Eq. (16.48).

16.7 Using the results of Prob. 16.6, show that matrix W in Eq. (16.45) is
negative semidefinite if and only if the matrix inequality in Eq. (16.49)
holds.

16.8 Assuming that matrix S ∈ Rn×n is positive definite, Y ∈ Rp×n, and E is
defined by Eq. (16.54), show that the formula in Eq. (16.57) is valid.

16.9 Using the result of Prob. 16.6, show that the matrix inequality in Eq. (16.58)
implies the inequality in Eq. (16.59).

16.10 Show that if there exists a symmetric matrix X ∈ Rp×p such that the
conditions in Eqs. (16.64a) and (16.64b) are satisfied, then (YS−1Y)jj ≤
u2

j,max.

16.11 (a) Show that Eq. (16.67) is equivalent to Eq. (16.79).
(b) Show that the constraint in Eq. (16.69) assures the positive semidefi-

niteness of matrix Pi in Eq. (16.81).
(c) Show that the constraints in Eq. (16.70) assure to the positive semidef-

initeness of matrix Pi in Eq. (16.82).

Applications of Constrained Optimization 589

16.12 (a) It has been shown that the smallest eigenvalue λmin of matrix P(c) in
Eq. (16.83c) can be viewed as a measure of the strictest friction and
by how much the contact forces are away from slippage [17]. Modify
the constraint in Eq. (16.83c) such that λmin of P(c) is no less than
a given threshold, say, ε, and the modified problem in Eq. (16.83)
remains an SDP problem.

(b) Solve the optimal force distribution problem in Example 16.7 with the
additional requirement that λmin of P(c) be no less than ε = 0.05.

16.13 (a) Show that the objective function in Eq. (16.94a) can be expressed as

trace(CX̂)

where

X̂ =
[
xxT x
xT 1

]
and C =

[
H p/2

pT /2 1

]

(b) Using the results obtained in part (a), show that the optimization
problem in Eq. (16.94) can be reformulated as a problem which is
identical with that in Eq. (16.101).

16.14 (a) Show that any local minimizer of the BER cost function in Eq. (16.116)
subject to the constraints in Eq. (16.118) is a global minimizer.

(b) Show that with an additional constraint ‖c‖ = 1, the global minimizer
for the problem in part (a) is unique.

16.15 Show that if the signature vectors {sk : 1 ≤ i ≤ K} in Eq. (16.115)
are linearly independent, then set I defined by Eq. (16.119) contains an
infinite number of elements.

16.16 Show that the constrained problem in Eq. (16.122) is a CP problem.

Appendix A
Basics of Linear Algebra

A.1 Introduction
In this appendix we summarize some basic principles of linear algebra [1]–

[4] that are needed to understand the derivation and analysis of the optimization
algorithms and techniques presented in the book. We state these principles
without derivations. However, a reader with an undergraduate-level linear-
algebra background should be in a position to deduce most of them without
much difficulty. Indeed, we encourage the reader to do so as the exercise will
contribute to the understanding of the optimization methods described in this
book.

In what follows, Rn denotes a vector space that consists of all column vec-
tors with n real-valued components, and Cn denotes a vector space that consists
of all column vectors with n complex-valued components. Likewise, Rm×n

and Cm×n denote spaces consisting of all m × n matrices with real-valued
and complex-valued components, respectively. Evidently, Rm×1 ≡ Rm and
Cm×1 ≡ Cm. Boldfaced uppercase letters, e.g., A, M, represent matrices,
and boldfaced lowercase letters, e.g., a, x, represent column vectors. AT and
AH = (A∗)T denote the transpose and complex-conjugate transpose of matrix
A, respectively. A−1 (if it exists) and det(A) denote the inverse and determi-
nant of square matrix A, respectively. The identity matrix of dimension n is
denoted as In. Column vectors will be referred to simply as vectors henceforth
for the sake of brevity.

592

A.2 Linear Independence and Basis of a Span
A number of vectorsv1, v2, . . . , vk in Rn are said to be linearly independent

if
k∑

i=1

αivi = 0 (A.1)

only if αi = 0 for i = 1, 2, . . . , k. Vectors v1, v2, . . . , vk are said to be
linearly dependent if there exit real scalars αi for i = 1, 2, . . . , k, with at least
one nonzero αi, such that Eq. (A.1) holds.

A subspace S is a subset of Rn such that x ∈ S and y ∈ S imply that
αx + βy ∈ S for any real scalars α and β. The set of all linear combinations
of vectors v1, v2, . . . , vk is a subspace called the span of {v1, v2, . . . , vk}
and is denoted as span{v1, v2, . . . , vk}.

Given a set of vectors {v1, v2, . . . , vk}, a subset of r vectors {vi1 , vi2 ,
. . . , vir} is said to be a maximal linearly independent subset if (a) vectors
vi1 , vi2 , . . . , vir are linearly independent, and (b) any vector in {v1, v2, . . . ,
vk} can be expressed as a linear combination of vi1 , vi2 , . . . , vir . In such a
case, the vector set {vi1 , vi2 , . . . , vir} is called a basis for span{v1, v2, . . . ,
vk} and integer r is called the dimension of the subspace The dimension of a
subspace S is denoted as dim(S).

Example A.1 Examine the linear dependence of vectors

v1 =

⎡
⎢⎢⎣

1
−1

3
0

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

0
2
1

−1

⎤
⎥⎥⎦ , v3 =

⎡
⎢⎢⎣

3
−7

7
2

⎤
⎥⎥⎦ , and v4 =

⎡
⎢⎢⎣
−1

5
−1
−2

⎤
⎥⎥⎦

and obtain a basis for span{v1, v2, v3, v4}.

Solution We note that

3v1 + 2v2 − 2v3 − 3v4 = 0 (A.2)

Hence vectors v1, v2, v3, and v4 are linearly dependent. If

α1v1 + α2v2 = 0

then ⎡
⎢⎢⎣

α1

−α1 + 2α2

3α1

−α2

⎤
⎥⎥⎦ = 0

which implies that α1 = 0 and α2 = 0. Hence v1 and v2 are linearly indepen-
dent. We note that

v3 = 3v1 − 2v2 (A.3)

Appendix A: Basics of Linear Algebra 593

and by substituting Eq. (A.3) into Eq. (A.2), we obtain

−3v1 + 6v2 − 3v4 = 0

i.e.,
v4 = −v1 + 2v2 (A.4)

Thus vectors v3 and v4 can be expressed as linear combinations of v1 and v2.
Therefore, {v1, v2} is a basis of span{v1, v2, v3, v4}.

A.3 Range, Null Space, and Rank
Consider a system of linear equations

Ax = b (A.5)

where A ∈ Rm×n and b ∈ Rm×1. If we denote the ith column of matrix A as
ai ∈ Rm×1, i.e.,

A = [a1 a2 · · · an]

and let
x = [x1 x2 . . . xn]T

then Eq. (A.5) can be written as

n∑
i=1

xiai = b

It follows from the above expression that Eq. (A.5) is solvable if and only if

b ∈ span{a1, a2, . . . , an}

The subspace span{a1, a2, . . . , an} is called the range of A and is denoted
as R(A). Thus, Eq. (A.5) has a solution if and only if vector b is in the range
of A.

The dimension of R(A) is called the rank of A, i.e., r = rank(A) =
dim[R(A)]. Since b ∈ span{a1, a2, . . . , an} is equivalent to

span{b, a1, . . . , an} = span{a1, a2, . . . , an}

we conclude that Eq. (A.5) is solvable if and only if

rank(A) = rank([A b]) (A.6)

It can be shown that rank(A) = rank(AT). In other words, the rank of a
matrix is equal to the maximum number of linearly independent columns or
rows.

594

Another important concept associated with a matrix A ∈ Rm×n is the null
space of A, which is defined as

N (A) = {x : x ∈ Rn, Ax = 0}

It can be readily verified that N (A) is a subspace of Rn. If x is a solution of
Eq. (A.5) then x + z with z ∈ N (A) also satisfies Eq. (A.5). Hence Eq. (A.5)
has a unique solution only if N (A) contains just one component, namely, the
zero vector in Rn. Furthermore, it can be shown that for A ∈ Rm×n

rank(A) + dim[N (A)] = n (A.7)

(see [2]). For the important special case where matrix A is square, i.e., n = m,
the following statements are equivalent: (a) there exists a unique solution for
Eq. (A.5); (b) N (A) = {0}; (c) rank(A) = n.

A matrix A ∈ Rm×n is said to have full column rank if rank(A) = n, i.e.,
the n column vectors of A are linearly independent, and A is said to have full
row rank if rank(A) = m, i.e., the m row vectors of A are linearly independent.

Example A.2 Find the rank and null space of matrix

V =

⎡
⎢⎢⎣

1 0 3 −1
−1 2 −7 5

3 1 7 −1
0 −1 2 −2

⎤
⎥⎥⎦

Solution Note that the columns of V are the vectors vi for i = 1, 2, . . . , 4 in
Example A.1. Since the maximum number of linearly independent columns is
2, we have rank(V) = 2. To find N (V), we write V = [v1 v2 v3 v4]; hence
the equation Vx = 0 becomes

x1v1 + x2v2 + x3v3 + x4v4 = 0 (A.8)

Using Eqs. (A.3) and (A.4), Eq. (A.8) can be expressed as

(x1 + 3x3 − x4)v1 + (x2 − 2x3 + 2x4)v2 = 0

which implies that

x1 + 3x3 − x4 = 0
x2 − 2x3 + 2x4 = 0

i.e.,

x1 = −3x3 + x4

x2 = 2x3 − 2x4

Appendix A: Basics of Linear Algebra 595

Hence any vector x that can be expressed as

x =

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−3x3 + x4

2x3 − 2x4

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−3

2
1
0

⎤
⎥⎥⎦x3 +

⎡
⎢⎢⎣

1
−2

0
1

⎤
⎥⎥⎦x4

with arbitrary x3 and x4 satisfies Ax = 0. Since the two vectors in the above
expression, namely,

n1 =

⎡
⎢⎢⎣
−3

2
1
0

⎤
⎥⎥⎦ and n2 =

⎡
⎢⎢⎣

1
−2

0
1

⎤
⎥⎥⎦

are linearly independent, we have N (V) = span{n1, n2}.

A.4 Sherman-Morrison Formula
The Sherman-Morrison formula [4] states that given matricesA ∈ Cn×n, U ∈

Cn×p, W ∈ Cp×p, and V ∈ Cn×p, such that A−1, W−1 and (W−1 +
VHA−1U)−1 exist, then the inverse of A + UWVH exists and is given by

(A + UWVH)−1 = A−1 − A−1UY−1VHA−1 (A.9)

where
Y = W−1 + VHA−1U (A.10)

In particular, if p = 1 and W = 1, then Eq. (A.9) assumes the form

(A + uvH)−1 = A−1 − A−1uvHA−1

1 + vHA−1u
(A.11)

where u and v are vectors in Cn×1. Eq. (A.11) is useful for computing the
inverse of a rank-one modification of A, namely, A+uvH , if A−1 is available.

Example A.3 Find A−1 for

A =

⎡
⎢⎢⎢⎣

1.04 0.04 · · · 0.04
0.04 1.04 · · · 0.04

...
...

...
0.04 0.04 · · · 1.04

⎤
⎥⎥⎥⎦ ∈ R10×10

Solution Matrix A can be treated as a rank-one perturbation of the identity
matrix:

A = I + ppT

596

where I is the identity matrix and p = [0.2 0.2 · · · 0.2]T . Using Eq. (A.11),
we can compute

A−1 = (I + ppT)−1 = I − ppT

1 + pTp
= I− 1

1.4
ppT

=

⎡
⎢⎢⎢⎣

0.9714 −0.0286 · · · −0.0286
−0.0286 0.9714 · · · −0.0286

...
...

...
−0.0286 −0.0286 . . . 0.9714

⎤
⎥⎥⎥⎦

A.5 Eigenvalues and Eigenvectors
The eigenvalues of a matrix A ∈ Cn×n are defined as the n roots of its

so-called characteristic equation

det(λI −A) = 0 (A.12)

If we denote the set of n eigenvalues {λ1, λ2, . . . , λn} by λ(A), then for a
λi ∈ λ(A), there exists a nonzero vector xi ∈ Cn×1 such that

Axi = λixi (A.13)

Such a vector is called an eigenvector of A associated with eigenvalue λi.
Eigenvectors are not unique. For example, if xi is an eigenvector of matrix

A associated with eigenvalue λi and c is an arbitrary nonzero constant, then
cxi is also an eigenvector of A associated with eigenvalue λi.

If A has n distinct eigenvalues λ1, λ2, . . . , λn with associated eigenvectors
x1, x2, . . . , xn, then these eigenvectors are linearly independent; hence we
can write

A[x1 x2 · · · xn] = [Ax1 Ax2 · · · Axn] = [λ1x1 λ2x2 · · · λnxn]

= [x1 x2 · · · xn]

⎡
⎢⎣λ1 0

. . .
0 λn

⎤
⎥⎦

In effect,
AX = XΛ

or
A = XΛX−1 (A.14)

with

X = [x1 x2 · · · xn] and Λ = diag{λ1, λ1, . . . , λn}

Appendix A: Basics of Linear Algebra 597

where diag{λ1, λ2, . . . , λn} represents the diagonal matrix with components
λ1, λ2, . . . , λn along its diagonal. The relation in (A.14) is often referred to
as an eigendecomposition of A.

A concept that is closely related to the eigendecomposition in Eq. (A.14) is
that of similarity transformation. Two square matrices A and B are said to be
similar if there exists a nonsingular X, called a similarity transformation, such
that

A = XBX−1 (A.15)

From Eq. (A.14), it follows that if the eigenvalues of A are distinct, then A
is similar to Λ = diag{λ1, λ2, . . . , λn} and the similarity transformation
involved, X, is composed of the n eigenvectors of A. For arbitrary matrices
with repeated eigenvalues, the eigendecomposition becomes more complicated.
The reader is referred to [1]–[3] for the theory and solution of the eigenvalue
problem for the general case.

Example A.4 Find the diagonal matrix Λ, if it exists, that is similar to matrix

A =

⎡
⎢⎢⎣

4 −3 1 1
2 −1 1 1
0 0 1 2
0 0 2 1

⎤
⎥⎥⎦

Solution From Eq. (A.12), we have

det(λI− A) = det
[
λ − 4 3
−2 λ + 1

]
· det

[
λ − 1 −2
−2 λ − 1

]
= (λ2 − 3λ + 2)(λ2 − 2λ − 3)
= (λ − 1)(λ − 2)(λ + 1)(λ − 3)

Hence the eigenvalues of A are λ1 = 1, λ2 = 2, λ3 = −1, and λ4 = 3. An
eigenvector xi associated with eigenvalue λi satisfies the relation

(λiI − A)xi = 0

For λ1 = 1, we have

λ1I− A =

⎡
⎢⎢⎣
−3 3 −1 −1
−2 2 −1 −1

0 0 0 −2
0 0 −2 0

⎤
⎥⎥⎦

It is easy to verify that x1 = [1 1 0 0]T satisfies the relation

(λ1I − A)x1 = 0

598

Similarly, x2 = [3 2 0 0]T , x3 = [0 0 1 −1]T , and x4 = [1 1 1 1]T satisfy the
relation

(λiI − A)xi = 0 for i = 2, 3, 4

If we let

X = [x1 x2 x3 x4] =

⎡
⎢⎢⎣

1 3 0 1
1 2 0 1
0 0 1 1
0 0 −1 1

⎤
⎥⎥⎦

then we have
AX = ΛX

where
Λ = diag{1, 2, −1, 3}

A.6 Symmetric Matrices
The matrices encountered most frequently in numerical optimization are

symmetric. For these matrices, an elegant eigendecomposition theory and cor-
responding computation methods are available. If A = {aij} ∈ Rn×n is
a symmetric matrix, i.e., aij = aji, then there exists an orthogonal matrix
X ∈ Rn×n, i.e., XXT = XTX = In, such that

A = XΛXT (A.16)

where Λ = diag{λ1, λ2, . . . , λn}. If A ∈ Cn×n is such that A = AH , then
A is referred to as a Hermitian matrix. In such a case, there exists a so-called
unitary matrix U ∈ Cn×n for which UUH = UHU = In such that

A = UΛUH (A.17)

In Eqs. (A.16) and (A.17), the diagonal components of Λ are eigenvalues of A,
and the columns of X and U are corresponding eigenvectors of A.

The following properties can be readily verified:

(a) A square matrix is nonsingular if and only if all its eigenvalues are
nonzero.

(b) The magnitudes of the eigenvalues of an orthogonal or unitary matrix
are always equal to unity.

(c) The eigenvalues of a symmetric or Hermitian matrix are always real.
(d) The determinant of a square matrix is equal to the product of its eigen-

values.

A symmetric matrix A ∈ Rn×n is said to be positive definite, positive
semidefinite, negative semidefinite, negative definite if xT Ax > 0, xTAx ≥
0, xTAx ≤ 0, xTAx < 0, respectively, for all nonzero x ∈ Rn×1.

Appendix A: Basics of Linear Algebra 599

Using the decomposition in Eq. (A.16), it can be shown that matrix A is
positive definite, positive semidefinite, negative semidefinite, negative definite,
if and only if its eigenvalues are positive, nonnegative, nonpositive, negative,
respectively. Otherwise, A is said to be indefinite. We use the shorthand
notation A , �, �, ≺ 0 to indicate that A is positive definite, positive
semidefinite, negative semidefinite, negative definite throughout the book.

Another approach for the characterization of a square matrix A is based on
the evaluation of the leading principal minor determinants. A minor determi-
nant, which is usually referred to as a minor, is the determinant of a submatrix
obtained by deleting a number of rows and an equal number of columns from
the matrix. Specifically, a minor of order r of an n × n matrix A is obtained
by deleting n − r rows and n − r columns. For example, if

A =

⎡
⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎦

then

∆(123,123)
3 =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ , ∆(134,124)
3 =

∣∣∣∣∣∣
a11 a12 a14

a31 a32 a34

a41 a42 a44

∣∣∣∣∣∣
and

∆(12,12)
2 =

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ , ∆(13,14)
2 =

∣∣∣∣ a11 a14

a31 a34

∣∣∣∣
∆(24,13)

2 =
∣∣∣∣ a21 a23

a41 a43

∣∣∣∣ , ∆(34,34)
2 =

∣∣∣∣ a33 a34

a43 a44

∣∣∣∣
are third-order and second-order minors, respectively. An nth-order minor is
the determinant of the matrix itself and a first-order minor, i.e., if n−1 rows and
n − 1 columns are deleted, is simply the value of a single matrix component.1

If the indices of the deleted rows are the same as those of the deleted columns,
then the minor is said to be a principal minor, e.g., ∆(123,123)

3 , ∆(12,12)
2 , and

∆(34,34)
2 in the above examples.

Principal minors ∆(123,123)
3 and ∆(12,12)

2 in the above examples can be rep-
resented by

∆(1,2,3)
3 = detH(1,2,3)

3

and
∆(1,2)

2 = detH(1,2)
2

1The zeroth-order minor is often defined to be unity.

600

respectively. An arbitrary principal minor of order i can be represented by

∆(l)
i = detH(l)

i

where

H(l)
i =

⎡
⎢⎢⎢⎣

al1l1 al1l2 · · · al1li
al2l1 al2l2 · · · al2li

...
...

...
alil1 alil2 · · · alili

⎤
⎥⎥⎥⎦

and l ∈ {l1, l2, . . . , li} with 1 ≤ l1 < l2 < · · · < li ≤ n is the set of rows

(and columns) retained in submatrix H(l)
i .

The specific principal minors

∆r =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1r

a21 a22 · · · a2r
...

...
...

ar1 ar2 · · · arr

∣∣∣∣∣∣∣∣∣
= detHr

for 1 ≤ r ≤ n are said to be the leading principal minors of an n × n matrix.
For a 4 × 4 matrix, the complete set of leading principal minors is as follows:

∆1 = a11, ∆2 =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣
∆3 =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ , ∆4 =

∣∣∣∣∣∣∣∣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣
The leading principal minors of a matrix A or its negative −A can be used to

establish whether the matrix is positive or negative definite whereas the principal
minors of A or −A can be used to establish whether the matrix is positive or
negative semidefinite. These principles are stated in terms of Theorem 2.9 in
Chap. 2 and are often used to establish the nature of the Hessian matrix in
optimization algorithms.

The fact that a nonnegative real number has positive and negative square roots
can be extended to the class of positive semidefinite matrices. Assuming that
matrix A ∈ Rn×n is positive semidefinite, we can write its eigendecomposition
in Eq. (A.16) as

A = XΛXT = XΛ1/2WWT Λ1/2XT

where Λ1/2 = diag{λ1/2
1 , λ

1/2
2 , . . . , λ

1/2
n } and W is an arbitrary orthogonal

matrix, which leads to
A = A1/2(A1/2)T (A.18)

Appendix A: Basics of Linear Algebra 601

where A1/2 = XΛ1/2W and is called an asymmetric square root of A. Since
matrix W can be an arbitrary orthogonal matrix, an infinite number of asym-
metric square roots of A exist. Alternatively, since X is an orthogonal matrix,
we can write

A = (αXΛ1/2XT)(αXΛ1/2XT)
where α is either 1 or −1, which gives

A = A1/2A1/2 (A.19)

where A1/2 = αXΛ1/2XT and is called a symmetric square root of A. Again,
because α can be either 1 or −1, more than one symmetric square roots exist.
Obviously, the symmetric square roots XΛ1/2XT and−XΛ1/2XT are positive
semidefinite and negative semidefinite, respectively.

If A is a complex-valued positive semidefinite matrix, then non-Hermitian
and Hermitian square roots of A can be obtained using the eigendecomposition
in Eq. (A.17). For example, we can write

A = A1/2(A1/2)H

where A1/2 = UΛ1/2W is a non-Hermitian square root of A if W is unitary.
On the other hand,

A = A1/2A1/2

where A1/2 = αUΛ1/2UH is a Hermitian square root if α = 1 or α = −1.

Example A.5 Verify that

A =

⎡
⎣ 2.5 0 1.5

0
√

2 0
1.5 0 2.5

⎤
⎦

is positive definite and compute a symmetric square root of A.

Solution An eigendecomposition of matrix A is

A = XΛXT

with

Λ =

⎡
⎣ 4 0 0

0 2 0
0 0 1

⎤
⎦ and X =

⎡
⎣
√

2/2 0 −
√

2/2
0 −1 0√
2/2 0

√
2/2

⎤
⎦

Since the eigenvalues of A are all positive, A is positive definite. A symmetric
square root of A is given by

A1/2 = XΛ1/2XT =

⎡
⎣ 1.5 0 0.5

0
√

2 0
0.5 0 1.5

⎤
⎦

602

A.7 Trace
The trace of an n × n square matrix, A = {aij}, is the sum of its diagonal

components, i.e.,

trace(A) =
n∑

i=1

aii

It can be verified that the trace of a square matrix A with eigenvalues λ1, λ2,
. . . , λn is equal to the sum of its eigenvalues, i.e.,

trace(A) =
n∑

i=1

λi

A useful property pertaining to the product of two matrices is that the trace
of a square matrix AB is equal to the trace of matrix BA, i.e.,

trace(AB) = trace(BA) (A.20)

By applying Eq. (A.20) to the quadratic form xTHx, we obtain

xT Hx = trace(xTHx) = trace(HxxT) = trace(HX)

where X = xxT . Moreover, we can write a general quadratic function as

xT Hx + 2pTx + κ = trace(ĤX̂) (A.21)

where

Ĥ =
[

H p
pT κ

]
and X̂ =

[
xxT x
xT 1

]

A.8 Vector Norms and Matrix Norms
A.8.1 Vector norms

The Lp norm of a vector x ∈ Cn for p ≥ 1 is given by

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

(A.22)

where p is a positive integer and xi is the ith component of x. The most popular
Lp norms are ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞, where the infinity norm ‖ · ‖∞ can easily
be shown to satisfy the relation

‖x‖∞ = lim
p→∞

(
n∑

i=1

|xi|p
)1/p

= max
i

|xi| (A.23)

For example, if x = [1 2 · · · 100]T , then ‖x‖ = 581.68, ‖x‖10 = 125.38,
‖x‖50 = 101.85, ‖x‖100 = 100.45, ‖x‖200 = 100.07 and, of course, ‖x‖∞ =
100.

Appendix A: Basics of Linear Algebra 603

The important point to note here is that for an even p, the Lp norm of a
vector is a differentiable function of its components but the L∞ norm is not.
So when the L∞ norm is used in a design problem, we can replace it by an Lp

norm (with p even) so that powerful calculus-based tools can be used to solve
the problem. Obviously, the results obtained can only be approximate with
respect to the original design problem. However, as indicated by Eq. (9.23), the
difference between the approximate and exact solutions becomes insignificant
if p is sufficiently large.

The inner product of two vectors x, y ∈ Cn is a scalar given by

xHy =
n∑

i=1

x∗
i yi

where x∗
i denotes the complex-conjugate of xi. Frequently, we need to estimate

the absolute value of xHy. There are two well-known inequalities that provide
tight upper bounds for |xHy|, namely, the Hölder inequality

|xHy| ≤ ‖x‖p‖y‖q (A.24)

which holds for any p ≥ 1 and q ≥ 1 satisfying the equality

1
p

+
1
q

= 1

and the Cauchy-Schwartz inequality which is the special case of the Hölder
inequality with p = q = 2, i.e.,

|xHy| ≤ ‖x‖2‖y‖2 (A.25)

If vectors x and y have unity lengths, i.e., ‖x‖2 = ‖y‖2 = 1, then Eq. (A.25)
becomes

|xHy| ≤ 1 (A.26)

A geometric interpretation of Eq. (A.26) is that for unit vectors x and y, the
inner product xHy is equal to cos θ, where θ denotes the angle between the two
vectors, whose absolute value is always less than one.

Another property of the L2 norm is its invariance under orthogonal or unitary
transformation. That is, if A is an orthogonal or unitary matrix, then

‖Ax‖2 = ‖x‖2 (A.27)

The Lp norm of a vector x, ‖x‖p, is monotonically decreasing with respect
to p for p ≥ 1. For example, we can relate ‖x‖1 and ‖x‖2 as

‖x‖2
1 =

(
n∑

i=1

|xi|
)2

= |x1|2 + |x2|2 + · · · + |xn|2 + 2|x1x2| + · · · + 2|xn−1xn|
≥ |x1|2 + |x2|2 + · · · + |xn|2 = ‖x‖2

2

604

which implies that
‖x‖1 ≥ ‖x‖2

Furthermore, if ‖x‖∞ is numerically equal to |xk| for some index k, i.e.,

‖x‖∞ = max
i

|xi| = |xk|

then we can write

‖x‖2 = (|x1|2 + · · · + |xn|2)1/2 ≥ (|xk|2)1/2 = |xk| = ‖x‖∞

i.e.,
‖x‖2 ≥ ‖x‖∞

Therefore, we have
‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞

In general, it can be shown that

‖x‖1 ≥ ‖x‖2 ≥ ‖x‖3 ≥ · · · ≥ ‖x‖∞

A.8.2 Matrix norms
The Lp norm of matrix A = {aij} ∈ Cm×n is defined as

‖A‖p = max
x�=0

‖Ax‖p

‖x‖p
for p ≥ 1 (A.28)

The most useful matrix Lp norm is the L2 norm

‖A‖2 = max
x�=0

‖Ax‖2

‖x‖2
=

[
max

i

∣∣∣λi(AHA)
∣∣∣]1/2

=
[
max

i

∣∣∣λi(AAH)
∣∣∣]1/2

(A.29)
which can be easily computed as the square root of the largest eigenvalue mag-
nitude in AHA or AAH . Some other frequently used matrix Lp norms are

‖A‖1 = max
x�=0

‖Ax‖1

‖x‖1
= max

1≤j≤n

m∑
i=1

|aij |

and

‖A‖∞ = max
x�=0

‖Ax‖∞
‖x‖∞

= max
1≤i≤m

n∑
j=1

|aij|

Another popular matrix norm is the Frobenius norm which is defined as

‖A‖F =

⎛
⎝ m∑

i=1

n∑
j=1

|aij |2
⎞
⎠1/2

(A.30)

Appendix A: Basics of Linear Algebra 605

which can also be calculated as

‖A‖F = [trace(AHA)]1/2 = [trace(AAH)]1/2 (A.31)

Note that the matrix L2 norm and the Frobenius norm are invariant under
orthogonal or unitary transformation, i.e., if U ∈ Cn×n and V ∈ Cm×m are
unitary or orthogonal matrices, then

‖UAV‖2 = ‖A‖2 (A.32)

and

‖UAV‖F = ‖A‖F (A.33)

Example A.6 Evaluate matrix norms ||A||1, ||A||2, ||A||∞, and ||A||F for

A =

⎡
⎢⎢⎣

1 5 6 3
0 4 −7 0
3 1 4 1

−1 1 0 1

⎤
⎥⎥⎦

Solution

||A||1 = max
1≤j≤4

(
4∑

i=1

|aij |
)

= max{5, 11, 17, 5} = 17

||A||∞ = max
1≤i≤4

⎛
⎝ 4∑

j=1

|aij |

⎞
⎠ = max{15, 11, 9, 3} = 15

||A||F =

⎛
⎝ 4∑

i=1

4∑
j=1

|aij |2
⎞
⎠1/2

=
√

166 = 12.8841

To obtain ||A||2, we compute the eigenvalues of ATA as

λ(ATA) = {0.2099, 6.9877, 47.4010, 111.4014}

Hence

||A||2 = [max
i

|λi(ATA)|]1/2 =
√

111.4014 = 10.5547

606

A.9 Singular-Value Decomposition
Given a matrixA ∈ Cm×n of rank r, there exist unitary matricesU ∈ Cm×m

and V ∈ Cn×n such that
A = UΣVH (A.34)

where

Σ =
[
S 0
0 0

]
m×n

(A.34)

and
S = diag{σ1, σ2, . . . , σr} (A.34)

with σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
The matrix decomposition in Eq. (A.34a) is known as the singular-value

decomposition (SVD) of A. It has many applications in optimization and
elsewhere. If A is a real-valued matrix, then U and V in Eq. (A.34a) become
orthogonal matrices and VH becomes VT . The positive scalars σi for i =
1, 2, . . . , r in Eq. (A.34c) are called the singular values of A. If U =
[u1 u2 · · · um] and V = [v1 v2 · · · vn], vectors ui and vi are called the left
and right singular vectors of A, respectively. From Eq. (A.34), it follows that

AAH = U
[
S2 0
0 0

]
m×m

UH (A.35)

and

AHA = V
[
S2 0
0 0

]
n×n

VH (A.35)

Therefore, the singular values of A are the positive square roots of the nonzero
eigenvalues of AAH (or AHA), the ith left singular vector ui is the ith eigen-
vector of AAH , and the ith right singular vector vi is the ith eigenvector of
AHA.

Several important applications of the SVD are as follows:

(a) The L2 norm and Frobenius norm of a matrix A ∈ Cm×n of rank r are
given, respectively, by

‖A‖2 = σ1 (A.36)

and

‖A‖F =

(
r∑

i=1

σ2
i

)1/2

(A.37)

(b) The condition number of a nonsingular matrix A ∈ Cn×n is defined as

cond(A) = ‖A‖2‖A−1‖2 =
σ1

σn
(A.38)

Appendix A: Basics of Linear Algebra 607

(c) The range and null space of a matrix A ∈ Cm×n of rank r assume the
forms

R(A) = span{u1, u2, . . . , ur} (A.39)

N (A) = span{vr+1, vr+2, . . . , vn} (A.40)

(d) Properties and computation of Moore-Penrose pseudo-inverse:
The Moore-Penrose pseudo-inverse of a matrix A ∈ Cm×n is defined

as the matrix A+ ∈ Cn×m that satisfies the following four conditions:

(i) AA+A = A

(ii) A+AA+ = A+

(iii) (AA+)H = AA+

(iv) (A+A)H = A+A

Using the SVD of A in Eq. (A.34), the Moore-Penrose pseudo-inverse
of A can be obtained as

A+ = VΣ+UH (A.41)

where

Σ+ =
[
S−1 0
0 0

]
n×m

(A.41)

and
S−1 = diag{σ−1

1 , σ−1
2 , . . . , σ−1

r } (A.41)

Consequently, we have

A+ =
r∑

i=1

viuH
i

σi
(A.42)

(e) For an underdetermined system of linear equations

Ax = b (A.43)

where A ∈ Cm×n, b ∈ Cm×1 with m < n, and b ∈ R(A), all the
solutions of Eq. (A.43) are characterized by

x = A+b + Vrφ (A.44)

where A+ is the Moore-Penrose pseudo-inverse of A,

Vr = [vr+1 vr+2 · · · vn] (A.44)

is a matrix of dimension n×(n−r) composed of the last n−r columns of
matrix V which is obtained by constructing the SVD of A in Eq. (A.34),

608

and φ ∈ C(n−r)×1 is an arbitrary (n−r)-dimensional vector. Note that
the first term in Eq. (A.44a), i.e., A+b, is a solution of Eq. (A.43) while
the second term, Vrφ, belongs to the null space of A (see Eq. (A.40)).
Through vector φ, the expression in Eq. (A.44) parameterizes all the
solutions of an underdetermined system of linear equations.

Example A.7 Perform the SVD of matrix

A =
[
2.8284 −1 1
2.8284 1 −1

]
and compute ||A||2, ||A||F , and A+.

Solution To compute matrix V in Eq. (A.34a), from Eq. (A.35b) we obtain

ATA =

⎡
⎣ 16 0 0

0 2 −2
0 −2 2

⎤
⎦ = V

⎡
⎣ 16 0 0

0 4 0
0 0 0

⎤
⎦VT

where

V =

⎡
⎣ 1 0 0

0 0.7071 −0.7071
0 −0.7071 −0.7071

⎤
⎦ = [v1 v2 v3]

Hence the nonzero singular values of A are σ1 =
√

16 = 4 and σ2 =
√

4 = 2.
Now we can write (A.34a) as UΣ = AV, where

UΣ = [σ1u1 σ2u2 0] = [4u1 2u2 0]

and

AV =
[
2.8284 −1.4142 0
2.8284 1.4142 0

]
Hence

u1 =
1
4

[
2.8284
2.8284

]
=

[
0.7071
0.7071

]
, u2 =

1
2

[−1.4142
1.4142

]
=

[−0.7071
0.7071

]
and

U = [u1 u2] =
[
0.7071 −0.7071
0.7071 0.7071

]
On using Eqs. (A.36) and (A.37), we have

||A||2 = σ1 = 4 and ||A||F = (σ2
1 + σ2

2)
1/2 =

√
20 = 4.4721

Now from Eq. (A.42), we obtain

A+ =
v1uT

1

σ1
+

v2uT
2

σ2
=

⎡
⎣ 0.1768 0.1768
−0.2500 0.2500

0.2500 −0.2500

⎤
⎦

Appendix A: Basics of Linear Algebra 609

A.10 Orthogonal Projections
Let S be a subspace in Cn. Matrix P ∈ Cn×n is said to be an orthogonal

projection matrix onto S if R(P) = S, P2 = P, and PH = P, where R(P)
denotes the range of transformation P (see Sec. A.3), i.e., R(P) = {y : y =
Px, x ∈ Cn}. The term ‘orthogonal projection’ originates from the fact that
if x ∈ Cn is a vector outside S , then Px is a vector in S such that x − Px is
orthogonal to every vector inS and ‖x−Px‖ is the minimum distance between
x and s, i.e., min ‖x − s‖, for s ∈ S, as illustrated in Fig. A.1.

Px

x x-Px

S

Figure A.1. Orthogonal projection of x onto subspace S.

Let {s1, s2, . . . , sk} be a basis of a subspaceS of dimension k (see Sec. A.2)
such that ||si|| = 1 and sT

i sj = 0 for i, j = 1, 2, . . . , k and i �= j. Such a basis
is called orthonormal. It can be readily verified that an orthogonal projection
matrix onto S can be explicitly constructed in terms of an orthonormal basis as

P = SSH (A.45)

where
S = [s1 s2 · · · sk] (A.45)

It follows from Eqs. (A.39), (A.40), and (A.45) that [u1 u2 · · · ur]·[u1 u2 · · · ur]H

is the orthogonal projection ontoR(A) and [vr+1 vr+2 · · · vn]·[vr+1 vr+2 · · ·
vn]H is the orthogonal projection onto N (A).

Example A.8 Let S = span{v1, v2} where

v1 =

⎡
⎣ 1

1
1

⎤
⎦ and v2 =

⎡
⎣−1

1
1

⎤
⎦

Find the orthogonal projection onto S .

Solution First, we need to find an orthonormal basis {s1, s2} of subspace S .
To this end, we take

s1 =
v1

‖v1‖
=

⎡
⎣ 1/

√
3

1/
√

3
1/

√
3

⎤
⎦

610

Then we try to find vector ŝ2 such that ŝ2 ∈ S and ŝ2 is orthogonal to s1. Such
an ŝ2 must satisfy the relation

ŝ2 = α1v1 + α2v2

for some α1, α2 and
ŝT
2 s1 = 0

Hence we have

(α1vT
1 + α2vT

2)s1 = α1vT
1 s1 + α2vT

2 s1 =
√

3α1 +
1√
3
α2 = 0

i.e., α2 = −3α1. Thus

ŝ2 = α1v1 − 3α1v2 = α1

⎡
⎣ 4
−2
−2

⎤
⎦

where α1 is a parameter that can assume an arbitrary nonzero value.
By normalizing vector ŝ2, we obtain

s2 =
ŝ2

‖ŝ2‖
=

1√
42 + (−2)2 + (−2)2

⎡
⎣ 4
−2
−2

⎤
⎦ =

1√
6

⎡
⎣ 2
−1
−1

⎤
⎦

It now follows from Eq. (A.45) that the orthogonal projection onto S can be
characterized by

P = [s1 s2][s1 s2]T =

⎡
⎣ 1 0 0

0 0.5 0.5
0 0.5 0.5

⎤
⎦

A.11 Householder Transformations and Givens Rotations
A.11.1 Householder transformations

The Householder transformation associated with a nonzero vectoru ∈ Rn×1

is characterized by the symmetric orthogonal matrix

H = I− 2
uuT

‖u‖2
(A.46)

If
u = x − ‖x‖e1 (A.47)

Appendix A: Basics of Linear Algebra 611

where e1 = [1 0 · · · 0]T , then the Householder transformation will convert
vector x to coordinate vector e1 to within a scale factor ‖x‖, i.e.,

Hx = ‖x‖

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ (A.48)

Alternatively, if vector u in Eq. (A.46) is chosen as

u = x + ‖x‖e1 (A.49)

then

Hx = −‖x‖

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ (A.50)

From Eqs. (A.47) and (A.49), we see that the transformed vector Hx contains
n − 1 zeros. Furthermore, since H is an orthogonal matrix, we have

‖Hx‖2 = (Hx)THx = xTHTHx = xTx = ‖x‖2

Therefore, Hx preserves the length of x. For the sake of numerical robustness,
a good choice of vector u between Eqs. (A.47) and (A.49) is

u = x + sign(x1)‖x‖e1 (A.51)

because the alternative choice, u = x−sign(x1)‖x‖e1, may yield a vector u
whose magnitude becomes too small when x is close to a multiple of e1.

Given a matrix A ∈ Rn×n, the matrix product HA is called a Householder
update of A and it can be evaluated as

HA =

(
I − 2uuT

‖u‖2

)
A = A − uvT (A.52)

where

v = αATu, α = − 2
‖u‖2

(A.52)

We see that a Household update of A is actually a rank-one correction of A,
which can be obtained by using a matrix-vector multiplication and then an outer
product update. In this way, a Householder update can be carried out efficiently
without requiring matrix multiplication explicitly.

By successively applying the Householder update with appropriate values of
u, a given matrix A can be transformed to an upper triangular matrix. To see

612

this, consider a matrix A ∈ Rn×n and let Hi be the ith Householder update
such that after k − 1 successive applications of Hi for i = 1, 2, . . . , k − 1 the
transformed matrix becomes

A(k−1) = Hk−1 · · · H1A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ · · · ∗
0 ∗ ∗ ∗

. . .
0 0 ∗
0 0 · · · 0
...

... · · ·
... a(k−1)

k · · ·a(k−1)
n

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.53)

The next Householder update is characterized by

Hk = I− 2
ukuT

k

‖uk‖2
=

[
Ik−1 0
0 H̃k

]
(A.54)

where

uk =

⎡
⎢⎢⎢⎢⎢⎣

0
...
0

u(k−1)
k

⎤
⎥⎥⎥⎥⎥⎦

}
k − 1

, u(k−1)
k = a(k−1)

k + sign[a(k−1)
k (1)]||a(k−1)

k ||e1

H̃k = In−k+1 − 2
u(k−1)

k (u(k−1)
k)T

‖u(k−1)
k ‖2

and a(k−1)
k (1) represents the first component of vector a(k−1)

k .
Evidently, premultiplying A(k−1) by Hk alters only the lower right block of

A(k−1) in Eq. (A.53) thereby converting its first column a(k−1)
k to [∗ 0 · · · 0]T .

Proceeding in this way, all the entries in the lower triangle will become zero.

Example A.9 Applying a series of Householder transformations, reduce matrix

A =

⎡
⎢⎢⎣

1 0 3 −1
−1 2 −7 5

3 1 7 −1
0 −1 2 −2

⎤
⎥⎥⎦

to an upper triangular matrix.

Appendix A: Basics of Linear Algebra 613

Solution Using Eq. (A.51), we compute vector u1 as

u1 =

⎡
⎢⎢⎣

1
−1

3
0

⎤
⎥⎥⎦ +

√
11

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 +
√

11
−1
3
0

⎤
⎥⎥⎦

The associated Householder transformation is given by

H = I − 2u1uT
1

‖u1‖2
=

⎡
⎢⎢⎣
−0.3015 0.3015 −0.9045 0

0.3015 0.9302 0.2095 0
−0.9045 0.2095 0.3714 0

0 0 0 1

⎤
⎥⎥⎦

The first Householder update is found to be

A(1) = H1A =

⎡
⎢⎢⎣
−3.3166 −0.3015 −9.3469 2.7136

0 2.0698 −4.1397 4.1397
0 0.7905 −1.5809 1.5809
0 −1 2 −2

⎤
⎥⎥⎦

From Eq. (A.53), we obtain

a(1)
2 =

⎡
⎣ 2.0698

0.7905
−1

⎤
⎦

Using Eq. (A.54), we can compute

u(1)
2 =

⎡
⎣ 4.5007

0.7905
−1

⎤
⎦

H̃2 =

⎡
⎣−0.8515 −0.3252 0.4114
−0.3252 0.9429 0.0722

0.4114 0.0722 0.9086

⎤
⎦

and

H2 =
[

1 0
0 H̃2

]
By premultiplying matrix H1A by H2, we obtain the required upper triangular
matrix in terms of the second Householder update as

H2H1A =

⎡
⎢⎢⎣
−3.3166 −0.3015 −9.3469 2.7136

0 −2.4309 4.8617 −4.8617
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

614

A.11.2 Givens rotations
Givens rotations are rank-two corrections of the identity matrix and are char-

acterized by

Gik(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · s · · · 0
...

...
. . .

...
...

0 · · · −s · · · c · · · 0
...

...
...

. . .
...

0 . . . 0 · · · 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i

k

i k

for 1 ≤ i, k ≤ n, where c = cos θ and s = sin θ for some θ. It can be verified
that Gik(θ) is an orthogonal matrix and GT

ik(θ)x only affects the ith and kth
components of vector x, i.e.,

y = GT
ik(θ)x with yl =

⎧⎨
⎩

cxi − sxk for l = i
sxi + cxk for l = k
xl otherwise

By choosing an appropriate θ such that

sxi + cxk = 0 (A.55)

the kth component of vector y is forced to zero. A numerically stable method
for determining suitable values for s and c in Eq. (A.55) is described below,
where we denote xi and xk as a and b, respectively.

(a) If b = 0, set c = 1, s = 0.
(b) If b �= 0, then

(i) if |b| > |a|, set

τ = −a

b
, s =

1√
1 + τ2

, c = τs

(ii) otherwise, if |b| ≤ |a|, set

τ = − b

a
, c =

1√
1 + τ2

, s = τc

Note that when premultiplying matrixA byGT
ik(θ), matrixGT

ik(θ)A alters only
the ith and kth rows of A. The application of Givens rotations is illustrated by
the following example.

Appendix A: Basics of Linear Algebra 615

Example A.10 Convert matrix A given by

A =

⎡
⎣ 3 −1
−3 5

2 1

⎤
⎦

into an upper triangular matrix by premultiplying it by an orthogonal transfor-
mation matrix that can be obtained using Givens rotations.

Solution To handle the first column, we first use GT
2,3(θ) to force its last com-

ponent to zero. In this case, a = −3 and b = 2, hence

τ =
2
3
, c =

1√
1 + τ2

= 0.8321, and s = τc = 0.5547

Therefore, matrix G2,3(θ1) is given by

G2,3(θ1) =

⎡
⎣ 1 0 0

0 0.8321 0.5547
0 −0.5547 0.8321

⎤
⎦

which leads to

GT
2,3(θ1)A =

⎡
⎣ 3 −1
−3.6056 3.6056

0 3.6056

⎤
⎦

In order to apply GT
1,2(θ2) to the resulting matrix to force the second component

of its first column to zero, we note that a = 3 and b = −3.6056; hence

τ =
3

3.6056
, s =

1√
1 + τ2

= 0.7687, and c = τs = 0.6396

Therefore, matrix G1,2(θ2) is given by

G1,2(θ2) =

⎡
⎣ 0.6396 0.7687 0
−0.7687 0.6396 0

0 0 1

⎤
⎦

and

GT
1,2(θ2)GT

2,3(θ1)A =

⎡
⎣ 4.6904 −3.4112

0 1.5374
0 3.6056

⎤
⎦

Now we can force the last component of the second column of the resulting
matrix to zero by applying GT

2,3(θ3). With a = 1.5374 and b = 3.6056, we
compute

τ =
1.5374
3.6056

, s =
1√

1 + τ2
= 0.9199, and c = τs = 0.3922

616

Therefore, matrix G2,3(θ3) is given by

G2,3(θ3) =

⎡
⎣ 1 0 0

0 −0.3922 0.9199
0 −0.9199 −0.3922

⎤
⎦

which yields

GT
2,3(θ3)GT

1,2(θ2)GT
2,3(θ1)A =

⎡
⎣ 4.6904 −3.4112

0 −3.9196
0 0

⎤
⎦

A.12 QR Decomposition
A.12.1 Full-rank case

A QR decomposition of a matrix A ∈ Rm×n is given by

A = QR (A.56)

where Q ∈ Rm×m is an orthogonal matrix and R ∈ Rm×n is an upper trian-
gular matrix.

In general, more than one QR decompositions exist. For example, if A =
QR is a QR decomposition of A, then A = Q̃R̃ is also a QR decomposition
of A if Q̃ = QĨ and R̃ = ĨR and Ĩ is a diagonal matrix whose diagonal
comprises a mixture of 1’s and −1’s. Obviously, Q̃ remains orthogonal and R̃
is a triangular matrix but the signs of the rows in R̃ corresponding to the −1’s
in Ĩ are changed compared with those in R.

For the sake of convenience, we assume in the rest of this section that m ≥ n.
This assumption implies that R has the form

R =
[
R̂
0

]}n rows
}m − n rows︸︷︷︸

n columns

where R̂ is an upper triangular square matrix of dimensionn, and that Eq. (A.56)
can be expressed as

A = Q̂R̂ (A.57)

where Q̂ is the matrix formed by the first n columns of Q. Now if we let
Q̂ = [q1 q2 · · · qn], Eq. (A.57) yields

Ax = Q̂R̂x = Q̂x̂ =
n∑

i=1

x̂iqi

Appendix A: Basics of Linear Algebra 617

In other words, if A has full column rank n, then the first n columns in Q form
an orthogonal basis for the range of A, i.e., R(A).

As discussed in Sec. A.11.1, a total of n successive applications of the House-
holder transformation can convert matrix A into an upper triangular matrix, R,
i.e.,

Hn · · · H2 H1A = R (A.58)

Since each Hi in Eq. (A.58) is orthogonal, we obtain

A = (Hn · · · H2 H1)TR = QR (A.59)

where Q = (Hn · · · H2 H1)T is an orthogonal matrix and, therefore,
Eqs. (A.58) and (A.59) yield a QR decomposition of A. This method requires
n2(m − n/3) multiplications [3].

An alternative approach for obtaining a QR decomposition is to apply Givens
rotations as illustrated in Sec. A.11.2. For a general matrix A ∈ Rm×n with
m ≥ n, a total of mn − n(n + 1)/2 Givens rotations are required to convert
A into an upper triangular matrix and this Givens-rotation-based algorithm
requires 1.5n2(m − n/3) multiplications [3].

A.12.2 QR decomposition for rank-deficient matrices
If the rank of a matrix A ∈ Rm×n where m ≥ n is less than n, then there

is at least one zero component in the diagonal of R in Eq. (A.56). In such
a case, the conventional QR decomposition discussed in Sec. A.12.1 does not
always produce an orthogonal basis forR(A). For such rank-deficient matrices,
however, the Householder-transformation-based QR decomposition described
in Sec. A.12.1 can be modified as

AP = QR (A.60)

where rank(A) = r < n, Q ∈ Rm×m is an orthogonal matrix,

R =
[
R11 R12

0 0

]
(A.60)

where R11 ∈ Rr×r is a triangular and nonsingular matrix, and P ∈ Rn×n

assumes the form
P = [es1 es2 · · · esn]

where esi denotes the sith column of the n × n identity matrix and index set
{s1, s2, . . . , sn} is a permutation of {1, 2, . . . , n}. Such a matrix is said to
be a permutation matrix [1].

To illustrate how Eq. (A.60) is obtained, assume that k− 1 (with k− 1 < r)
Householder transformations and permutations have been applied toA to obtain

R(k−1) = (Hk−1 · · · H2 H1)A(P1 P2 · · · Pk−1)

618

=

⎡
⎣R(k−1)

11 R(k−1)
12

0 R(k−1)
22

⎤
⎦
}
k − 1}
m − k + 1

(A.61)

︸ ︷︷ ︸
k−1

︸ ︷︷ ︸
n−k+1

where R(k−1)
11 ∈ R(k−1)×(k−1) is upper triangular and rank(R(k−1)

11) = k − 1.

Since rank(A) = r, block R(k−1)
22 is nonzero. Now we postmultiply Eq. (A.61)

by a permutation matrix Pk which rearranges the last n − k + 1 columns of
R(k−1) such that the column in R(k−1)

22 with the largest L2 norm becomes its
first column. A Householder matrix Hk is then applied to obtain

HkR(k−1)Pk =

⎡
⎣R(k)

11 R(k)
12

0 R(k)
22

⎤
⎦
}
k}
m − k︸︷︷︸

k

︸︷︷︸
n−k

where R(k)
11 ∈ Rk×k is an upper triangular nonsingular matrix. If r = k, then

R(k)
22 must be a zero matrix since rank(A) = r; otherwise, R(k)

22 is a nonzero
block, and we proceed with postmultiplying R(k) by a new permutation matrix
Pk+1 and then premultiplying by a Householder matrix Hk+1. This procedure
is continued until the modified QR decomposition in Eq. (A.60) is obtained
where

Q = (HrHr−1 · · · H1)T and P = P1P2 · · · Pr

The decomposition in Eq. (A.60) is called the QR decomposition of matrix
A with column pivoting. It follows from Eq. (A.60) that the first r columns of
matrix Q form an orthogonal basis for the range of A.

Example A.11 Find a QR decomposition of the matrix

A =

⎡
⎢⎢⎣

1 0 3 −1
−1 2 −7 5

3 1 7 −1
0 −1 2 2

⎤
⎥⎥⎦

Solution In Example A.9, two Householder transformation matrices

H1 =

⎡
⎢⎢⎣
−0.3015 0.3015 −0.9045 0

0.3015 0.9302 0.2095 0
−0.9045 0.2095 0.3714 0

0 0 0 1

⎤
⎥⎥⎦

Appendix A: Basics of Linear Algebra 619

H2 =

⎡
⎢⎢⎣

1 0 0 0
0 −0.8515 −0.3252 0.4114
0 −0.3252 0.9429 0.0722
0 0.4114 0.0722 0.9086

⎤
⎥⎥⎦

were obtained that reduce matrix A to the upper triangular matrix

R = H2H1A =

⎡
⎢⎢⎣
−3.3166 −0.3015 −9.3469 2.7136

0 −2.4309 4.8617 −4.8617
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

Therefore, a QR decomposition of A can be obtained as A = QR where R is
the above upper triangular matrix.

Q = (H2H1)−1 = HT
1 HT

2 =

⎡
⎢⎢⎣
−0.3015 0.0374 −0.9509 0.0587

0.3015 −0.8602 −0.1049 0.3978
−0.9045 −0.2992 0.2820 0.1130

0 0.4114 0.0722 0.9086

⎤
⎥⎥⎦

A.13 Cholesky Decomposition
For a symmetric positive-definite matrix A ∈ Rn×n, there exists a unique

lower triangular matrix G ∈ Rn×n with positive diagonal components such
that

A = GGT (A.62)

The decomposition in Eq. (A.62) is known as the Cholesky decomposition and
matrix G as the Cholesky triangle.

One of the methods that can be used to obtain the Cholesky decomposition of
a given positive-definite matrix is based on the use of the outer-product updates
[1] as illustrated below.

A positive-definite matrix A ∈ Rn×n can be expressed as

A =
[
a11 uT

u B

]
(A.63)

where a11 is a positive number. It can be readily verified that with

T =
[1√

a11
0

−u/a11 In−1

]
(A.64)

we have

TATT =
[

1 0
0 B − uuT /a11

]
≡

[
1 0
0 A1

]
(A.65)

620

which implies that

A =
[√

a11 0
u/

√
a11 In−1

] [
1 0
0 B − uuT /a11

] [√
a11 u/

√
a11

0 In−1

]

≡ G1

[
1 0
0 A1

]
GT

1 (A.66)

where G1 is a lower triangular matrix and A1 = B−uuT /a11 is an (n− 1)×
(n − 1) symmetric matrix. Since A is positive definite and T is nonsingular,
it follows from Eq. (A.65) that matrix A1 is positive definite; hence the above
procedure can be applied to matrix A1. In other words, we can find an (n −
1) × (n − 1) lower triangular matrix G2 such that

A1 = G2

[
1 0
0 A2

]
GT

2 (A.67)

where A2 is an (n − 2) × (n − 2) positive-definite matrix. By combining
Eqs. (A.66) and (A.67), we obtain

A =
[√

a11 0
u/

√
a11 G2

] [
I2 0
0 A2

] [√
a11 uT /

√
a11

0 GT
2

]

≡ G12

[
I2 0
0 A2

]
GT

12 (A.68)

where I2 is the 2 × 2 identity matrix and G12 is lower triangular. The above
procedure is repeated until the second matrix at the right-hand side of Eq. (A.68)
is reduced to the identity matrix In. The Cholesky decomposition of A is then
obtained.

Example A.12 Compute the Cholesky triangle of the positive-definite matrix

A =

⎡
⎣ 4 −2 1
−2 7 −1

1 −1 1

⎤
⎦

Solution From Eq. (A.66), we obtain

G1 =

⎡
⎣ 2 0 0
−1 1 0
0.5 0 1

⎤
⎦

and

A1 =
[

7 −1
−1 1

]
− 1

4

[
−2

1

]
[2 1] =

[
6 −0.50

−0.50 0.75

]

Appendix A: Basics of Linear Algebra 621

Now working on matrix A1, we get

G2 =
[√

6 0
−0.5/

√
6 1

]

and
A2 = 0.75 − (−0.5)2/6 = 0.7083

In this case, Eq. (A.66) becomes

A =

⎡
⎣ 2 0 0
−1

√
6 0

0.5 −0.5/
√

6 1

⎤
⎦
⎡
⎣ 1 0 0

0 1 0
0 0 0.7083

⎤
⎦
⎡
⎣ 2 0 0
−1

√
6 0

0.5 −0.5/
√

6 1

⎤
⎦T

Finally, we use
G3 =

√
0.7083 ≈ 0.8416

to reduce A2 to A3 = 1, which leads to the Cholesky triangle

G =

⎡
⎣ 2 0 0
−1

√
6 0

0.5 −0.5/
√

6
√

0.7083

⎤
⎦ ≈

⎡
⎣ 2 0 0
−1 2.4495 0
0.5 −0.2041 0.8416

⎤
⎦

A.14 Kronecker Product
Let A ∈ Rp×m and B ∈ Rq×n. The Kronecker product of A and B, denoted

as A ⊗ B, is a pq × mn matrix defined by

A ⊗ B =

⎡
⎢⎣ a11B · · · a1mB

...
...

ap1B · · · apmB

⎤
⎥⎦ (A.69)

where aij denotes the (i, j)th component of A [5]. It can be verified that

(i) (A⊗ B)T = AT ⊗ BT

(ii) (A⊗ B) · (C⊗ D) = AC ⊗ BD where C ∈ Rm×r and D ∈ Rn×s

(iii) If p = m, q = n, and A, B are nonsingular, then

(A ⊗B)−1 = A−1 ⊗ B−1

(iv) If A ∈ Rm×m and B ∈ Rn×n, then the eigenvalues of A ⊗ B and A ⊗
In + Im ⊗ B are λiµj and λi + µj , respectively, for i = 1, 2, . . . , m and
j = 1, 2, . . . , n, where λi and µj are the ith and jth eigenvalues of A and
B, respectively.

622

The Kronecker product is useful when we are dealing with matrix variables.
If we use nvec(X) to denote the column vector obtained by stacking the column
vectors of matrix X, then it is easy to verify that for M ∈ Rp×m, N ∈ Rq×n

and X ∈ Rn×m, we have

nvec(NXMT) = (M⊗ N)nvec(X) (A.70)

In particular, if p = m = q = n, N = AT , and M = In, then Eq. (A.70)
becomes

nvec(ATX) = (In ⊗ AT)nvec(X) (A.71)

Similarly, we have

nvec(XA) = (AT ⊗ In)nvec(X) (A.71)

For example, we can apply Eq. (A.71) to the Lyapunov equation [5]

ATP + PA = −Q (A.72)

where matrices A and Q are given and Q is positive definite. First, we write
Eq. (A.72) in vector form as

nvec(ATP) + nvec(PA) = −nvec(Q) (A.73)

Using Eq. (A.71), Eq. (A.73) becomes

(In ⊗ AT)nvec(P) + (AT ⊗ In)nvec(P) = −nvec(Q)

which can be solved to obtain nvec(P) as

nvec(P) = −(In ⊗ AT + AT ⊗ In)−1nvec(Q) (A.74)

Example A.13 Solve the Lyapunov equation

ATP + PA = −Q

for matrix P where

A =
[
−2 −2

1 0

]
and Q =

[
1 −1

−1 2

]

Solution From Eq. (A.69), we compute

I2 ⊗AT + AT ⊗ I2 =

⎡
⎢⎢⎣
−4 1 1 0
−2 −2 0 1
−2 0 −2 1

0 −2 −2 0

⎤
⎥⎥⎦

Appendix A: Basics of Linear Algebra 623

Since

nvec(Q) =

⎡
⎢⎢⎣

1
−1
−1

2

⎤
⎥⎥⎦

Eq. (A.74) gives

nvec(P) = −(I2 ⊗ AT + AT ⊗ I2)−1nvec(Q)

= −

⎡
⎢⎢⎣
−4 1 1 0
−2 −2 0 1
−2 0 −2 1

0 −2 −2 0

⎤
⎥⎥⎦
−1 ⎡⎢⎢⎣

1
−1
−1

2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.5
0.5
0.5
3

⎤
⎥⎥⎦

from which we obtain

P =
[
0.5 0.5
0.5 3

]

A.15 Vector Spaces of Symmetric Matrices
Let Sn be the vector space of real symmetric n × n matrices. As in the n-

dimensional Euclidean space where the inner product is defined for two vectors,
the inner product for matrices A and B in Sn is defined as

A · B = trace(AB)

If A = (aij) and B = (bij), then we have

A · B = trace(AB) =
n∑

i=1

n∑
j=1

aijbij (A.75)

The norm ‖A‖Sn associated to this inner product is

‖A‖Sn =
√

A · A =

⎡
⎣ n∑

i=1

n∑
j=1

a2
ij

⎤
⎦1/2

= ‖A‖F (A.76)

where ‖A‖F denotes the Frobenius norm of A (see Sec. A.8.2).
An important set in space Sn is the set of all positive-semidefinite matrices

given by
P = {X : X ∈ Sn and X � 0} (A.77)

A set K in a vector space is said to be a convex cone if K is a convex set such
that v ∈ K implies αv ∈ K for any nonnegative scalar α. It is easy to verify
that set P forms a convex cone in space Sn.

624

Let matrices X and S be two components of P , i.e., X � 0 and S � 0. The
eigendecomposition of X gives

X = UΛUT (A.78)

where U ∈ Rn×n is orthogonal and Λ = diag{λ1, λ2, . . . , λn}. The decom-
position in Eq. (A.78) can be expressed as

X =
n∑

i=1

λiuiuT
i

where ui denotes the ith column of U. By using the property that

trace(AB) = trace(BA)

(see Eq. (A.20)), we can compute the inner product X · S as

X · S = trace(XS) = trace

(
n∑

i=1

λiuiuT
i S

)
=

n∑
i=1

λi trace(uiuT
i S)

=
n∑

i=1

λi trace(uT
i Sui) =

n∑
i=1

λiµi (A.79)

where µi = uT
i Sui. Since both X and S are positive semidefinite, we have

λi ≥ 0 and µi ≥ 0 for i = 1, 2, . . . , n. Therefore, Eq. (A.79) implies that

X · S ≥ 0 (A.80)

In other words, the inner product of two positive-semidefinite matrices is always
nonnegative.

A further property of the inner product on set P is that if X and S are positive
semidefinite and X·S = 0, then the product matrix XS must be the zero matrix,
i.e.,

XS = 0 (A.81)

To show this, we can write

uT
i XSuj = uT

i

(
n∑

k=1

λkukuT
k

)
Suj = λiuT

i Suj (A.82)

Using the Cauchy-Schwartz inequality (see Eq. (A.25)), we have

|uT
i Suj |2 = |(S1/2ui)T (S1/2uj)|2 ≤ ‖S1/2ui‖2‖S1/2uj‖2 = µiµj (A.83)

Now if X · S = 0, then Eq. (A.79) implies that

n∑
i=0

λiµi = 0 (A.84)

Appendix A: Basics of Linear Algebra 625

Since λi and µi are all nonnegative, Eq. (A.84) implies that λiµi = 0 for
i = 1, 2, . . . , n; hence for each index i, either λi = 0 or µi = 0. If λi = 0,
Eq. (A.82) gives

uT
i XSuj = 0 (A.85)

If λi �= 0, then µi must be zero and Eq. (A.83) implies that uT
i Suj = 0 which,

in conjunction with Eq. (A.82) also leads to Eq. (A.85). Since Eq. (A.85) holds
for any i and j, we conclude that

UTXSU = 0 (A.86)

Since U is nonsingular, Eq. (A.86) implies Eq. (A.81).
Given p + 1 symmetric matrices F0, F1, . . . , Fp in space Sn, and a p-

dimensional vector x = [x1 x2 · · · xp]T , we can generate a symmetric matrix

F(x) = F0 + x1F1 + · · · + xpFp = F0 +
p∑

i=1

xiFi (A.87)

which is said to be affine with respect to x. Note that if the constant term F0

were a zero matrix, then F(x) would be a linear function of vector x, i.e., F(x)
would satisfy the condition F(αx + βy) = αF(x) + βF(y) for any vectors
x, y ∈ Rp and any scalars α and β. However, because of the presence of F0,
F(x) in Eq. (A.87) is not linear with respect to x in a strict sense and the term
‘affine’ is often used in the literature to describe such a class of matrices. In
effect, the affine property is a somewhat relaxed version of the linearity property.

In the context of linear programming, the concept of an affine manifold is
sometimes encountered. A manifold is a subset of the Euclidean space that
satisfies a certain structural property of interest, for example, a set of vectors
satisfying the relation xTc = β. Such a set of vectors may possess the affine
property, as illustrated in the following example.

Example A.14 Describe the set of n-dimensional vectors {x : xTc = β} for a
given vector c ∈ Rn×1 and a scalar β as an affine manifold in the n-dimensional
Euclidean space En.

Solution Obviously, the set of vectors {x : xTc = β} is a subset in En. If we
denote x = [x1 x2 · · · xn]T and c = [c1 c2 · · · cn]T , then equation xTc = β
can be expressed as F (x) = 0 where

F (x) = −β + x1c1 + x2c2 + · · · + xncn (A.88)

By viewing −β, c1, c2, . . . , cn as one-dimensional symmetric matrices, F (x)
in Eq. (A.88) assumes the form in Eq. (A.87), which is affine with respect to x.
Therefore the set {x : xTc = β} is an affine manifold in En.

626

Example A.15 Convert the following constraints

X = (xij) � 0 for i, j = 1, 2, 3 (A.89)

and
xii = 1 for i = 1, 2, 3 (A.89)

into a constraint of the type
F(x) � 0 (A.90)

for some vector variable x where F(x) assumes the form in Eq. (A.87).

Solution The constraints in Eqs. (A.89a) and (A.89b) can be combined into

X =

⎡
⎣ 1 x12 x13

x12 1 x23

x13 x23 1

⎤
⎦ � 0 (A.91)

Next we write matrix X in (A.91) as

X = F0 + x12F1 + x13F2 + x23F3

where F0 = I3 and

F1 =

⎡
⎣ 0 1 0

1 0 0
0 0 0

⎤
⎦ , F2 =

⎡
⎣ 0 0 1

0 0 0
1 0 0

⎤
⎦ , F3 =

⎡
⎣ 0 0 0

0 0 1
0 1 0

⎤
⎦

Hence the constraint in Eq. (A.89) can be expressed in terms of Eq. (A.90) with
Fi given by the above equations and x = [x12 x13 x23]T .

A.16 Polygon, Polyhedron, Polytope, and Convex Hull
A polygon is a closed plane figure with an arbitrary number of sides. A

polygon is said to be convex if the region inside the polygon is a convex set
(see Def. 2.7). A convex polygon with m sides can be described in terms of m
linear inequalities which can be expressed in matrix form as

Py = {x : Ax ≥ b} (A.92)

where A ∈ Rm×2, x ∈ R2×1, and b ∈ Rm×1.
A convex polyhedron is an n-dimensional extension of a convex polygon. A

convex polyhedron can be described by the equation

Ph = {x : Ax ≥ b} (A.93)

Appendix A: Basics of Linear Algebra 627

where A ∈ Rm×n, x ∈ Rn×1, and b ∈ Rm×1. For example, a 3-dimensional
convex polyhedron is a 3-dimensional solid which consists of several polygons,
usually joined at their edges such as that shown Fig. 11.4.

A polyhedron may or may not be bounded depending on the numerical values
of A and b in Eq. (A.93). A bounded polyhedron is called a polytope.

Given a set of points S = {p1, p2, . . . , pL} in an n-dimensional space, the
convex hull spanned by S is defined as the smallest convex set that contains S .
It can be verified that the convex hull is characterized by

Co{p1, p2, . . . , pL} = {p : p =
L∑

i=1

λipi, λi ≥ 0,
L∑

i=1

λi = 1} (A.94)

In the above definition, each point pi represents an abstract n-dimensional point.
For example, if point pi is represented by an n-dimensional vector, say, vi, then
the convex hull spanned by the L vectors {v1,v2, . . . ,vL} is given by

Co{v1, v2, . . . , vL} = {v : v =
L∑

i=1

λivi, λi ≥ 0,
L∑

i=1

λi = 1} (A.95)

Alternatively, if point pi is represented by a pair of matrices [Ai Bi] with
Ai ∈ Rn×n and Bi ∈ Rn×m, then the convex hull spanned by {[Ai Bi] for
i = 1, 2, . . . , L} is given by

Co{[A1 B1], [A2 B2] , . . . , [AL BL]} =

{[A B] : [A B] =
L∑

i=1

λi[Ai Bi], λi ≥ 0,
L∑

i=1

λi = 1}

References
1 G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., The Johns Hopkins Uni-

versity Press, Baltimore, 1989.
2 R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York,

1991.
3 G. W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.
4 P. E. Gill, W. Murray, and M. H. Wright, Numerical Linear Algebra and Optimization, vol. 1,

Addison-Wesley, New York, 1991.
5 S. Barnett, Polynomials and Linear Control Systems, Marcel Dekker, New York, 1983.

Appendix B
Basics of Digital Filters

B.1 Introduction
Several of the unconstrained and constrained optimization algorithms de-

scribed in this book have been illustrated in terms of examples taken from the
authors’ research on the application of optimization algorithms for the design
of digital filters. To enhance the understanding of the application of the algo-
rithms presented to the design of digital filters, we provide in this appendix a
concise introduction to the basic concepts and principles of digital filters as well
as typical design problems associated with these systems. A detailed treatment
of the subject can be found in [1].

B.2 Characterization
Digital filters are digital systems that can be used to process discrete-time

signals. A single-input single-output digital filter can be represented by a block
diagram as shown in Fig. B.1a where x(nT) and y(nT) are the excitation (input)
and response (output), respectively. The excitation and response are sequences
of numbers such as those illustrated in Fig B.1b and c. In the most general case,
the response of a digital filter at instant nT is a function of a number of values
of the excitation x[(n+K)T], x[(n+K − 1)T], . . ., x(nT), x[(n− 1)T], . . .,
x[(n−M)T] and a number of values of the response y[(n−1)T], y[(n−2)T],
. . ., y[(n − N)T] where M , K and N are positive integers, i.e.,

y(nT) = Rx(nT) = f{x[(n + K)T], . . . , x[(n − M)T],
y[(n − 1)T], . . . , y[(n − N)T]} (B.1)

where R is an operator that can be interpreted as “is the response produced by
the excitation”.

Digital filters can be linear or nonlinear, time invariant or time dependent,
causal or noncausal. In a linear digital filter, the response of the filter to a linear

630

x(nT)

nT nT

y(nT)

x(nT) y(nT)Digital filter

(a)

(b) (c)

Figure B.1. (a) Block diagram representation of a digital filter, (b) excitation, (c) response.

combination of two signals x1(nT) and x2(nT) satisfies the relation

R[αx1(nT) + βx2(nT)] = αRx1(nT) + βRx2(nT)

In an initially relaxed time-invariant digital filter, we have

Rx(nT − kT) = y(nT − kT)

This relation states, in effect, that a delayed excitation will produce a delayed
but otherwise unchanged response. In this context, an initially relaxed digital
filter is one whose response y(nT) is zero for nT < 0 if x(nT) = 0 for all
nT < 0. A causal digital filter, on the other hand, is a filter whose response at
instant nT depends only on values of the input at instants nT , (n − 1)T , . . .,
(n − M)T , i.e., it is independent of future values of the excitation.

In a general linear, time-invariant, causal digital filter, Eq. (B.1) assumes the
form of a linear recursive difference equation, i.e.,

y(nT) =
N∑

i=0

aix(nT − iT) −
N∑

i=1

biy(nT − iT) (B.2)

where ai for 0 ≤ i ≤ N and bi for 1 ≤ i ≤ N are constants. Some of these
constants can be zero. A digital filter characterized by Eq. (B.2) is said to be
recursive, since the response depends on a number of values of the excitation
as well as a number of values of the response. Integer N , namely, the order of
the difference equation, is said to be the order of the digital filter.

Appendix B: Basics of Digital Filters 631

If the response of a digital filter at instant nT is independent of all the previous
values of the response, i.e., y(nT −T), y(nT −2T), . . ., then Eq. (B.2) reduces
to the nonrecursive equation

y(nT) =
N∑

i=0

aix(nT − iT) (B.3)

which characterizes an N th-order nonrecursive filter (see Secs. 4.2 and 4.3 of
[1]). The number of coefficients in the difference equation, namely, N + 1 is
said to be the length of the nonrecursive filter.

B.3 Time-Domain Response
The time-domain response of a digital filter to some excitation is often re-

quired and to facilitate the evaluation of time-domain responses, a number of
standard signals are frequently used. Typical signals of this type are the unit
impulse, unit step, and unit sinusoid which are defined in Table B.1 (see Sec. 4.3
of [1]).

Table B.1 Discrete-time standard signals

Function Definition

Unit impulse δ(nT) =
{

1 for n = 0
0 for n �= 0

Unit step u(nT) =
{

1 for n ≥ 0
0 for n < 0

Unit sinusoid u(nT) sin ωnT

From Eq. (B.3), the impulse response of an arbitrary N th-order nonrecursive
filter, denoted as h(nT), is given by

h(nT) ≡ y(nT) = Rδ(nT)

=
N∑

i=0

aiδ(nT − iT)

Now from the definition of the unit impulse in Table B.1, we can readily show
that . . ., h(−2T) = 0, h(−T) = 0, h(0) = a0, h(T) = a1, . . ., h(NT) = aN ,
h[(N + 1)T] = 0, h[(N + 2)T] = 0, . . ., i.e.,

h(nT) =
{

ai for n = i
0 otherwise

(B.4)

632

In effect, the impulse response in nonrecursive digital filters is of finite dura-
tion and for this reason these filters are also known as finite-duration impulse
response (FIR) filters. On the other hand, the use of Eq. (B.2) gives the impulse
response of a recursive filter as

y(nT) = h(nT) =
N∑

i=0

aiδ(nT − iT) −
N∑

i=1

biy(nT − iT)

and if the filter is initially relaxed, we obtain

y(0) = h(0) = a0δ(0) + a1δ(−T) + a2δ(−2T) + · · ·
−b1y(−T) − b2y(−2T) − · · · = a0

y(T) = h(T) = a0δ(T) + a1δ(0) + a2δ(−T) + · · ·
−b1y(0) − b2y(−T) − · · · = a1 − b1a0

y(2T) = h(2T) = a0δ(2T) + a1δ(T) + a2δ(0) + · · ·
−b1y(T) − b2y(0) − · · ·

= a2 − b1(a1 − b1a0) − b2a0

...

Evidently, in this case the impulse response is of infinite duration since the
response at instant nT depends on previous values of the response which are
always finite. Hence recursive filters are also referred to as infinite-duration
impulse response (IIR) filters.

Other types of time-domain response are the unit-step and the sinusoidal
responses. The latter is of particular importance because it leads to a frequency-
domain characterization for digital filters.

Time-domain responses of digital filters of considerable complexity can be
deduced by using the z transform. The z transform of a signal x(nT) is defined
as

Zx(nT) = X(z) =
∞∑

n=−∞
x(nT)z−n (B.5)

where z is a complex variable. The conditions for the convergence of X(z) can
be found in Sec. 3.3 of [1].

B.4 Stability Property
A digital filter is said to be stable if any bounded excitation will produce a

bounded response. In terms of mathematics, a digital filter is stable if and only
if any input x(nT) such that

|x(nT)| ≤ P < ∞ for all n

Appendix B: Basics of Digital Filters 633

will produce an output y(nT) that satisfies the condition

|y(nT)| ≤ Q < ∞ for all n

where P and Q are positive constants.
A necessary and sufficient condition for the stability of a causal digital filter is

that its impulse response be absolutely summable over the range 0 ≤ nT ≤ ∞,
i.e.,

∞∑
n=0

|h(nT)| ≤ R < ∞ (B.6)

(see Sec. 4.7 of [1] for proof).
Since the impulse response of FIR filters is always of finite duration, as can

be seen in Eq. (B.4), it follows that it is absolutely summable and, therefore,
these filters are always stable.

B.5 Transfer Function
The analysis and design of digital filters is greatly simplified by representing

the filter in terms of a transfer function. This can be derived from the difference
equation or the impulse response and it can be used to find the time-domain
response of a filter to an arbitrary excitation or its frequency-domain response
to an arbitrary linear combination of sinusoidal signals.

B.5.1 Definition
The transfer function of a digital filter can be defined as the ratio of the z

transform of the response to the z transform of the excitation, i.e.,

H(z) =
Y (z)
X(z)

(B.7)

From the definition of the z transform in Eq. (B.5), it can be readily shown that

Zx(nT − kT) = z−kX(z)

and
Z[αx1(nT) + βx2(nT)] = αX1(z) + βX2(z)

Hence if we apply the z transform to both sides of Eq. (B.2), we obtain

Y (z) = Zy(nT) = Z
N∑

i=0

aix(nT − iT) −Z
N∑

i=1

biy(nT − iT)

=
N∑

i=0

aiz
−iZx(nT) −

N∑
i=1

biz
−iZy(nT)

=
N∑

i=0

aiz
−iX(z) −

N∑
i=1

biz
−iY (z) (B.8)

634

Therefore, from Eqs. (B.7) and (B.8), we have

H(z) =
Y (z)
X(z)

=
∑N

i=0 aiz
−i

1 +
∑N

i=1 biz−i
=

∑N
i=0 aiz

N−i

zN +
∑N

i=1 bizN−i
(B.9)

The transfer function happens to be the z transform of the impulse response,
i.e., H(z) = Zh(nT) (see Sec. 5.2 of [1]).

In FIR filters, bi = 0 for 1 ≤ i ≤ N and hence the transfer function in
Eq. (B.9) assumes the form

H(z) =
N∑

i=0

aiz
−i

Since coefficients ai are numerically equal to the impulse response values h(iT)
for 0 ≤ i ≤ N , as can be seen in Eq. (B.4), the transfer function for FIR filters
is often expressed as

H(z) =
N∑

i=0

h(iT)z−i or
N∑

n=0

hnz−n (B.10)

where hn is a simplified representation of h(nT).

B.5.2 Zero-pole form
By factorizing the numerator and denominator polynomials in Eq. (B.9), the

transfer function can be expressed as

H(z) =
A(z)
B(z)

=
H0

∏Z
i=1(z − zi)mi∏P

i=1(z − pi)ni
(B.11)

where z1, z2, . . . , zZ and p1, p2, . . . , pP are the zeros and poles of H(z), mi

and ni are the orders of zero zi and pole pi, respectively,
∑Z

i mi =
∑P

i ni = N ,
and H0 is a multiplier constant. Evidently, the zeros, poles, and multiplier
constant describe the transfer function and, in turn, the digital filter, completely.
Typically, the zeros and poles of digital filters are simple, i.e., mi = ni = 1 for
1 ≤ i ≤ N , and in such a case Z = P = N .

From Eq. (B.10), the transfer function of an FIR filter can also be expressed
as

H(z) =
1

zN

N∑
n=0

hnzN−n

and, in effect, all the poles in an FIR filter are located at the origin of the z
plane.

Appendix B: Basics of Digital Filters 635

B.6 Time-Domain Response Using the Z Transform
The time-domain response of a digital filter to an arbitrary excitation x(nT)

can be readily obtained from Eq. (B.7) as

y(nT) = Z−1[H(z)X(z)] (B.12)

i.e., we simply obtain the inverse-z transform of H(z)X(z) (see Sec. 5.4 of
[1]).

B.7 Z-Domain Condition for Stability
The stability condition in Eq. (B.6), namely, the requirement that the impulse

response be absolutely summable over the range 0 ≤ nT ≤ ∞ is difficult
to apply in practice because it requires complete knowledge of the impulse
response over the specified range. Fortunately, this condition can be converted
into a corresponding z-domain condition that is much easier to apply as follows:
A digital filter is stable if and only if all the poles of the transfer function are
located strictly inside the unit circle of the z plane. In mathematical terms, a
digital filter with poles

pi = rie
jψi

where ri = |pi| and ψi = arg pi for 1 ≤ i ≤ N is stable if and only if

ri < 1

The z-plane areas of stability and instability are illustrated in Fig. B.2.
From the above discussion we note that for a stable digital filter, the denom-

inator of the transfer function, B(z), must not have zeros on or outside the unit
circle |z| = 1 and, therefore, an alternative way of stating the z-domain stability
condition is

B(z) �= 0 for |z| ≥ 1 (B.13)

The poles of the transfer function are the zeros of polynomial B(z) in
Eq. (B.11) and it can be easily shown that these are numerically equal to the
eigenvalues of matrix

D =

⎡
⎢⎢⎢⎢⎢⎣
−b1 −b2 · · · −bN−1 −bN

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

(see Prob. 16.4(a)). Consequently, an IIR filter is stable if and only if the moduli
of the eigenvalues of matrix D are all strictly less than one.

636

z plane

Region of
stability Regions of

instability

1

Re z

jIm z

Figure B.2. Z-plane areas of stability and instability in IIR filters.

B.8 Frequency, Amplitude, and Phase Responses
A most important type of time-domain response for a digital filter is its steady-

state sinusoidal response which leads to a frequency-domain characterization
for the filter.

As shown in Sec. 5.5.1 of [1], the steady-state sinusoidal response of a stable
digital filter can be expressed as

ỹ(nT) = lim
n→∞R[u(nT) sinωnT]

= M(ω) sin[ωnT + θ(ω)]

where

M(ω) = |H(ejωT)| and θ(ω) = arg H(ejωT) (B.14)

Thus, the steady-state effect of a digital filter on a sinusoidal excitation is to
introduce a gain M(ω) and a phase shift θ(ω), which can be obtained by
evaluating the transfer function H(z) on the unit circle z = ejωT of the z plane.
H(ejωT), M(ω), and θ(ω) in Eq. (B.14) as functions of ω are known as the
frequency response, amplitude response, and phase response, respectively.

The frequency response of a digital filter characterized by a transfer function
of the form given in Eq. (B.11) can be obtained as

H(z) |z→ejωT = H(ejωT) = M(ω)ejθ(ω) (B.15)

=
H0

∏Z
i=1(e

jωT − zi)mi∏P
i=1(ejωT − pi)ni

(B.16)

and by letting
ejωT − zi = Mzie

jψzi (B.17)

Appendix B: Basics of Digital Filters 637

ejωT − pi = Mpie
jψpi (B.18)

Eqs. (B.14)–(B.18) give

M(ω) =
|H0|

∏Z
i=1 Mmi

zi∏P
i=1 Mni

pi

(B.19)

θ(ω) = arg H0 +
Z∑

i=1

miψzi −
P∑

i=1

niψpi (B.20)

where arg H0 = π if H0 is negative. Thus the gain and phase shift of a digital
filter at some frequency ω can be obtained by calculating the magnitudes and
angles of the complex numbers in Eqs. (B.17) and (B.18) and then substituting
these values in Eqs. (B.19) and (B.20). These calculations are illustrated in
Fig. B.3 for the case of a transfer function with two zeros and two poles. The
vectors from the zeros and poles to point B represent the complex numbers in
Eqs. (B.17) and (B.18), respectively.

The amplitude and phase responses of a digital filter can be plotted by eval-
uating the gain and phase shift for a series of frequencies ω1, ω2, . . . , ωK over
the frequency range of interest.

ωT A

Mz1

Mz2

B

C

z plane

Mp1

Mp2

p1

ψ p1

p2

ψ p2

z2

ψz2

1

z1

ψ z1

Re z

jIm z

Figure B.3. Calculation of gain and phase shift of a digital filter.

Point A in Fig. B.3 corresponds to ω = 0, i.e., zero frequency, and one
complete revolution of vector ejωT about the origin corresponds to an increase

638

in frequency of ωs = 2π/T rad/s; this is known as the sampling frequency.
Point C, on the other hand, corresponds to an increase in frequency of π/T ,
i.e., half the sampling frequency, which is often referred to as the Nyquist
frequency. In the design of digital filters, a normalized sampling frequency
of 2π rad/s is usually used, for the sake of simplicity, which corresponds to a
Nyquist frequency of π and a normalized sampling period, T = 2π/ωs, of 1 s.

If vector ejωT in Fig. B.3 is rotated k complete revolutions starting at some
arbitrary point, say, point B, it will return to its original position and the values
of M(ω) and θ(ω) will be the same as before according to Eqs. (B.19) and
(B.20). Therefore,

H(ej(ω+kωs)T) = H(ejωT)

In effect, the frequency response of a digital filter is a periodic function of fre-
quency with a period ωs. It, therefore, follows that knowledge of the frequency
response of a digital filter over the base period −ωs/2 ≤ ω ≤ ωs/2 provides
a complete frequency-domain characterization for the filter. This frequency
range is often referred to as the baseband.

Assuming real transfer-function coefficients, the amplitude response of a
digital filter can be easily shown to be an even function and the phase response
an odd function of frequency, i.e.,

M(−ω) = M(ω) and θ(−ω) = −θ(ω)

Consequently, a frequency-domain description of a digital filter over the positive
half of the baseband, i.e., 0 ≤ ω ≤ ωs/2, constitutes a complete frequency-
domain description of the filter.

Digital filters can be used in a variety of applications for example to pass
low and reject high frequencies (lowpass filters), to pass high and reject low
frequencies (highpass filters), or to pass or reject a range of frequencies (band-
pass or bandstop filters). In this context, low and high frequencies are specified
in relation to the positive half of the baseband, e.g., frequencies in the upper
part of the baseband are deemed to be high frequencies. A frequency range
over which the digital filter is required to pass or reject frequency components
is said to be a passband or stopband as appropriate.

In general, the amplitude response is required to be close to unity in passbands
and approach zero in stopbands. A constant passband gain close to unity is
required to ensure that the different sinusoidal components of the signal are
subjected to the same gain. Otherwise, so-called amplitude distortion will
occur. The gain is required to be as small as possible in stopbands to ensure
that undesirable signals are as far as possible rejected.

Note that the gain of a filter can vary over several orders of magnitude and
for this reason it is often represented in terms of decibels as

M(ω)dB = 20 log10 M(ω)

Appendix B: Basics of Digital Filters 639

In passbands, M(ω) ≈ 1 and hence we have M(ω)dB ≈ 0. On the other
hand, in stopbands the gain is a small fraction and hence M(ω)dB is a negative
quantity. To avoid this problem, stopbands are often specified in terms of
attenuation which is defined as the reciprocal of the gain in decibels, i.e.,

A(ω) = 20 log10

1
M(ω)

(B.21)

Phase shift in a signal is associated with a delay and the delay introduced by
a digital filter is usually measured in terms of the group delay which is defined
as

τ(ω) = −dθ(ω)
dω

(B.22)

If different sinusoidal components of the signal with different frequencies are
delayed by different amounts, a certain type of distortion known as phase dis-
tortion (or delay distortion) is introduced, which is sometimes objectionable.
This type of distortion, can be minimized by ensuring that the group delay is as
far as possible constant in passbands, and a constant group delay corresponds
to a linear phase response as can be readily verified by using Eq. (B.22) (see
Sec. 5.7 of [1]).

B.9 Design
The design of digital filters involves four basic steps as follows:

• Approximation

• Realization

• Implementation

• Study of the effects of roundoff errors

The approximation step is the process of deducing the transfer function coef-
ficients such that some desired amplitude or phase response is achieved. Real-
ization is the process of obtaining a digital network that has the specified transfer
function. Implementation is the process of constructing a system in hardware
or software form based on the transfer function or difference equation charac-
terizing the digital filter. Digital systems constructed either in terms of special-
or general-purpose hardware are implemented using finite arithmetic and there
is, therefore, a need to proceed to the fourth step of the design process, namely,
the study of the effects of roundoff errors on the performance of the digital filter
(see Sec. 8.1 of [1]). In the context of optimization, the design of a digital filter
is usually deemed to be the solution of just the approximation problem.

640

M
(ω

)

ω

ω

δa

1+δp

1−δp

ωp

ωp

ωa

ωa

1.0

M
(ω

)

δa

1+δp

1−δp

1.0

(a)

(b)

ωs
2

ωs
2

Figure B.4. Idealized amplitude responses for lowpass and highpass filters.

B.9.1 Specified amplitude response
The design of an FIR or IIR filter that would satisfy certain amplitude-

response requirements starts with an idealized amplitude response such as those
depicted in Fig. B.4a to d for lowpass, highpass, bandpass, and bandstop filters,
respectively. In lowpass and highpass filters, parameters ωp and ωa are the
passband and stopband edges. In bandpass and bandstop filters, on the other
hand, ωp1 and ωp2 are the lower and upper passband edges, and ωa1 and ωa2 are
the lower and upper stopband edges. The frequency bands between passbands
and stopbands, e.g., the range ωp < ω < ωa in a lowpass or highpass filter,
are called transition bands, for obvious reasons. The idealized passband gain
is usually assumed to be unity but some other value could be used if necessary.

The objective of design in digital filters is to find a set of transfer function
coefficients which would yield an amplitude response that falls within the pass-
band and stopband templates shown in Fig. B.4a to d. For example, in the case

Appendix B: Basics of Digital Filters 641

M
(ω

)

ω

δa

1+δp

1−δp

ωp1 ωp2
ωa1

ωa2

1.0

(c)

M
(ω

)

1+δp

1−δp

1.0

δa

(d)

ω
ωp1 ωp2ωa1 ωa2

ωs
2

ωs
2

Figure B.4 Cont’d. Idealized amplitude responses for bandpass and bandstop filters.

of a lowpass filter, we require that

1 − δp ≤ M(ω) ≤ 1 + δp

with respect to the passband and

M(ω) ≤ δa

with respect to the stopband.
The peak-to-peak passband error in Fig. B.4a to d is often expressed in

decibels as

Ap = 20 log10(1 + δp) − 20 log10(1 − δp) = 20 log10
1 + δp

1 − δp
(B.23)

642

which is often referred to as the passband ripple. The peak error δp can be
deduced from Eq. (B.23) as

δp =
100.05Ap − 1
100.05Ap + 1

Since the maximum stopband gain δa is a small fraction which corresponds to
a negative quantity when expressed in decibels, the stopband specification is
often expressed in terms of the minimum stopband attenuation, Aa, which can
be obtained from Eq. (B.21) as

Aa = 20 log10
1
δa

The peak stopband error can be deduced from Aa as

δa = 10−0.05Aa

B.9.2 Linear phase response
A linear phase response is most easily obtained by designing the filter as an

FIR filter. It turns out that a linear phase response can be achieved by simply
requiring the impulse response of the filter to be symmetrical or antisymmetrical
with respect to its midpoint (see Sec. 9.2 of [1]), i.e.,

hn = hN−n for n = 0, 1, . . . , N (B.24)

Assuming a normalized sampling frequency of 2π, which corresponds to a
normalized sampling period of 1 s, the use of Eqs. (B.10) and (B.24) will show
that

H(ejω) = e−jωN/2A(ω)
where

A(ω) =
N/2∑
n=0

an cosnω

an =
{

hN/2 for n = 0
2hN/2−n for n �= 0

for even N and

A(ω) =
(N−1)/2∑

n=0

an cos[(n + 1/2)ω]

an = 2h(N−1)/2−n

for odd N . The quantity A(ω) is called the gain function and, in fact, its
magnitude is the gain of the filter, i.e.,

M(ω) = |A(ω)| (B.25)

Appendix B: Basics of Digital Filters 643

B.9.3 Formulation of objective function
Let us assume that we need to design an N th-order IIR filter with a trans-

fer function such as that in Eq. (B.9) whose amplitude response is required to
approach one of the idealized amplitude responses shown Fig. B.4a to d. As-
suming a normalized sampling frequency of 2π rad/s, the amplitude response
of such a filter can be expressed as

|H(ejω)| = M(x, ω) =

∣∣∣∣∣
∑N

i=0 aie
−jωi

1 +
∑N

i=1 bie−jωi

∣∣∣∣∣
where

x = [a0 a1 · · · aN b1 b2 · · · bN]T

is the parameter vector. An error function can be constructed as

e(x, ω) = M(x, ω) − M0(ω) (B.26)

where M0(ω) is the required idealized amplitude response, for example,

M0(ω) =
{

1 for 0 ≤ ω ≤ ωp

0 otherwise

in the case of a lowpass filter. An objective function can now be constructed in
terms of one of the standard norms of the error function, e.g., the L2 norm

F =
∫

ω∈Ω

|e(x, ω)|2dω (B.27)

where Ω denotes the positive half of the normalized baseband [0, π]. Minimiz-
ing F in Eq. (B.27) would yield a least-squares solution. Alternatively, we can
define the objective function as

F = max
ω∈Ω

|e(x, ω)| = lim
p→∞

∫
ω∈Ω

|e(x, ω)|pdω (B.28)

where p is a positive integer, which would yield a minimax solution.
A more general design can be accomplished by forcing the frequency re-

sponse of the filter, H(ejω), to approach some desired idealized frequency
response Hd(ω) by minimizing the least-pth objective function

F = max
ω∈Ω

|e(x, ω)| = lim
p→∞

∫
ω∈Ω

|H(ejωT) − Hd(ω)|pdω (B.29)

As before, we can assign p = 2 to obtain a least-squares solution or let p → ∞
to obtain a minimax solution.

644

Discretized versions of the objective functions in Eqs. (B.27)–(B.29) can be
deduced by sampling the error in Eq. (B.26), e(x, ω), at frequencies ω1, ω2, . . .,
ωK , and thus the vector

E(x) = [e1(x) e2(x) . . . eK(x)]T

can be formed where
ei(x) = e(x, ωi)

for i = 1, 2, . . . , K. At this point, an objective function can be constructed in
terms of the Lp norm of E (x), as

F = ||E(x)||p =

[
K∑

i=1

|ei(x)|p
]1/p

where we can assign p = 2 for a least-squares solution or p → ∞ for a minimax
solution.

The above objective functions can be readily applied for the design of FIR
filters by setting the denominator coefficients of the transfer function, bi for
1 ≤ i ≤ N , to zero. If a linear phase response is also required, it can be readily
achieved by simply forcing the coefficients ai ≡ hi for 1 ≤ i ≤ N to satisfy
the symmetry property in Eq. (B.24) and this can be accomplished by using the
amplitude response given by Eq. (B.25).

Reference
1 A. Antoniou, Digital Signal Processing: Signals, Systems, and Filters, McGraw-Hill, New

York, 2005.

Index

Active
constraint matrix, 331
constraints, 18

inequality, 271
Active-set methods for strictly convex quadratic-

programming problems, 411
advantages of, 417
dual active-set method, 416–417
dual problem, 418
primal active-set method, 412–416

active set, 412
algorithm, 414
example, 415

Additive white Gaussian noise in wireless com-
munication channels, 571

Affine
manifold, 625

example, 625
property of a matrix, 625

Algorithms:
algorithm for the homogenized strict-

feasibility problem, 475
basic quasi-Newton algorithm, 184
block diagram, 66
Charalambous minimax algorithm, 207

modified version, 215
closed, 69
computational efficiency, 76
conjugate-gradient algorithm, 156

advantages and disadvantages, 156
continuous, 67
convergence, 9
coordinate descent algorithm, 146
cubic interpolation search, 100
Davies, Swann, and Campey algorithm,

101–106
descent, 66
ellipsoid algorithm for

constrained convex-programming prob-
lems, 442

unconstrained convex-programming prob-
lems, 439

Fibonacci search, 91
Fletcher’s inexact line search algorithm,

112
Fletcher-Reeves algorithm, 159
Gauss-Newton algorithm, 140
general structure, 8
global convergence, 72
golden-section search, 94
initialization, 9
interior-point

algorithm for convex problems with in-
equality constraints, 523

algorithm for nonconvex problems with
inequality constraints, 526

primal-dual path-following algorithm
for convex quadratic-programming
problems, 422

iterative, 66
Kelley’s cutting-plane algorithm for convex-

programming problems with
bound constraints, 432
inequality constraints, 435

L1 algorithms, 24
L2 algorithms, 24
least-pth minimax algorithm, 206

modified version, 214
L∞ algorithms, 24
Matthews and Davies algorithm for the

modification of the Hessian to
achieve positive definiteness, 133

Mehrotra’s predictor-corrector algorithm,
400

minimax algorithms, 24
modified primal-dual path-following algo-

rithm, 392

646

Algorithms: Cont’d
modified sequential quadratic-programming

algorithm for nonlinear problems
with

equality and inequality constraints, 516
inequality constraints, 512

near-optimal multiuser detector using
semidefinite-programming relaxation,
579

Newton algorithm, 130, 244
alternative, 178

nonfeasible-initialization interior-point primal-
dual path-following algorithm

for convex quadratic-programming prob-
lems, 423

for linear complementarity problems,
428

for linear-programming problems, 395
point-to-point mapping, 66
point-to-set mapping, 67
Powell’s algorithm, 162
practical quasi-Newton algorithm, 195–

199
predictor-corrector algorithm, 400

for semidefinite problems, 467
primal

active-set algorithm for quadratic-
programming problems with in-
equality constraints, 414

affine-scaling linear programming al-
gorithm, 382

Newton barrier algorithm, 387
primal-dual

interior-point algorithm for second-
order cone programming problems,
494

path-following algorithm for linear-
programming problems, 391

path-following algorithm for semidefi-
nite programming problems, 462

projective algorithm of Nemirovski and
Gahinet for semidefinite-programming
problems, 482

quadratic interpolation search, 97
robustness, 10
rule of correspondence, 66
sequential quadratic-programming algo-

rithm for nonlinear problems with
equality constraints, 504
inequality constraints, 508

simplex algorithm for alternative-form
linear-programming problem

degenerate vertices, 352
nondegenerate vertices, 346

simplex algorithm for standard-form
linear-programming problem, 360

steepest descent, 123

without line search, 126
Zangwill’s algorithm, 167

Alternative-form linear-programming problem,
322

Amplitude
distortion in digital filters, 638
response in digital filters, 204, 636

Analytic center in linear programming, 404
Analytical optimization methods, 2
Applications:

constrained optimization
introduction to, 533

Approximation
error, 6
methods (one-dimensional), 82

cubic interpolation, 99–101
Davies, Swann, and Campey algo-

rithm, 101
quadratic interpolation, 95–98

Approximation step in digital filters, 639
Asymmetric square root, 601
Attenuation in digital filters, 639
Augmented objective function, 289
Average

convergence ratio, 78
linear convergence, 78
order of convergence, 78

example, 78

Ball in linear algebra, 273
Bandpass digital filters, 638
Bandstop digital filters, 638
Barrier

function in linear programming, 383
function methods, 277
parameter in

interior-point methods for nonconvex
optimization problems, 519

linear programming, 383
Baseband in digital filters, 638
Basic

conjugate-directions method, 149–152
convergence, 149
orthogonality of gradient to a set of con-

jugate directions, 150
optimization problem, 4
quasi-Newton

algorithm, 184
method, 176

variables in linear programming, 355
Basis for a span, 592

example, 592
Bit-error rate in multiuser detection, 571
Block diagram for an algorithm, 66
Boundary point, 18
Bounded sets, 72
Bracket, 81

INDEX 647

Branches of mathematical programming:
dynamic programming, 24
integer programming, 23
linear programming, 22
nonlinear programming, 23
quadratic programming, 23

Broyden method, 192
equivalence with Fletcher-Reeves method,

193
updating formula, 192

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method,
191

comparison with Davidon-Fletcher-Powell
method, 199

updating formula, 191

Cauchy-Schwartz inequality, 603
Causality property in digital filters, 630
Centering

condition in semidefinite programming,
457

direction in linear programming, 406
parameter in linear programming, 397

Central path in
linear programming, 376–378

example, 377
quadratic programming, 418
semidefinite programming, 456

Channel model in wireless communications,
571–573

Characteristic
equation, 596
polynomial

roots of, 132
Characterization of

nonrecursive (FIR) digital filters in terms
of a difference equation, 631

recursive (IIR) digital filters in terms of a
difference equation, 630

symmetric matrices, 43–51
examples, 45–51

Charalambous
method

design of lowpass digital filter, 222
minimax algorithm, 207

modified version, 215
Cholesky

matrix decomposition, 619
example, 620

triangle, 619
Classes of nonlinear optimization problems, 81

one-dimensional, 81
Classification of

constrained optimization problems, 273–
277

example, 276
stationary points, 40–43

Closed
algorithms, 69

examples, 69–71
kinematic chains in robotic systems, 558
sets, 72

Code sequences in multiuser detection, 570
Code-division multiple access in multiuser de-

tection, 570
Column

pivoting in QR decomposition, 618
rank, 594
vector, 4

Compact sets, 72
Complementarity in Karush-Kuhn-Tucker con-

ditions, 299
Complex L1-norm approximation problem for-

mulated as a second-order cone pro-
gramming problem, 489

Computational
complexity

in minimax methods, 211
of practical quasi-Newton algorithm,

196
in predictor-corrector method, 400
in simplex method, 365–368

efficiency, 76
effort

dichotomous search, 84
Fibonacci search, 88

Concave functions, 51–58
definition, 52

Condition number of a matrix, 606
Conjugate directions

in Davidon-Fletcher-Powell method, 188
definition, 146
generation of conjugate directions in Pow-

ell’s method, 159–160
methods

convergence, 149
introduction to, 145

orthogonality of gradient to a set of, 150,
153

Conjugate-gradient
algorithm, 156

advantages and disadvantages, 156
trajectory of solution, 157

method, 152–156
convergence, 152

Conjugate-transpose, 591
Constrained optimization

application of singular-value decomposi-
tion, 269

applications
introduction to, 533

augmented objective function, 289
barrier function methods, 277
basic assumptions, 266

648

Constrained optimization Cont’d
classification of constrained problems,

273–277
example, 276

constraint qualification, 316
convex programming, 275
convexity, 308
dual problem, 311

Wolfe dual, 311
duality, 311
equality constraints, 266

example, 270, 289
example, 300
Farkas lemma, 317
feasible region, 266

example, 267–268
general constrained problem, 276
geometrical interpretation of gradient,

292–294
example, 292

global constrained minimizer, 273
inequality constraints, 270

active, 271
inactive, 271

interior-point methods, 273
introduction to, 373

introduction to, 265
Lagrange multipliers

equality and inequality constraints, 297
equality constraints, 287–290
example, 285–286, 288
introduction to, 285

Lagrangian, 288
linear programming, 274
local constrained minimizer, 273
nonnegativity bounds, 281
normal plane, 291
notation, 266
primal problem, 311
problems, 10
quadratic programming, 275
regular point, 267
relation between linearity of inequality

constraints and convexity of the fea-
sible region, 272

sequential quadratic-programming method,
276

simplex method, 273
slack variables, 272
strong local constrained minimizer, 273
sufficiency of Karush-Kuhn-Tucker con-

ditions in convex problems, 310
tangent plane, 290
transformation methods, 277
unconstrained minimizer, 289
variable elimination method, 277–284

example, 279
linear equality constraints, 277
nonlinear equality constraints, 280

variable transformations, 281–284
example, 282
interval-type constraints, 282

Constraint
iteration in ellipsoid methods, 441
qualification, 316

Constraints
active, 18
blocking, 352
constraint matrix, 322
equality, 10, 266

example, 270
inequality, 10, 270

active, 271
inactive, 271

interval-type, 282
relation between linearity of inequality

constraints and convexity of the fea-
sible region, 272

working set of active, 351
Contact forces in dextrous hands, 562
Continuous algorithms, 67
Contour, 2
Convergence, 9

average
convergence ratio, 78
linear convergence, 78
order of, 78

conjugate-directions method, 149
conjugate-gradient method, 152
global, 72
of inexact line search, 110
linear, 77

in steepest descent method, 127
order of, 76

in Newton method, 130
quadratic rate of convergence in conjugate-

direction methods, 158
quadratic termination, 158
rates, 76
ratio, 77

example, 77
in steepest-descent method, 127

of a sequence, 66
steepest-descent method, 126–128
superlinear, 77

Convex
cone, 450, 623
functions, 51–58

convexity of linear combination of con-
vex functions, 52

definition, 51
existence of a global minimizer, 59
optimization, 58–60

INDEX 649

Convex Cont’d
functions Cont’d

properties of strictly convex functions,
57

property relating to gradient, 55
property relating to Hessian, 56
relation between local and global min-

imizers, 58
hull, 627
optimization problems with linear matrix

inequality constraints, 452
polygon, 626
polyhedron, 272, 626
programming, 275
quadratic problems with equality con-

straints, 408–411
example, 409

sets
definition, 51
theorem, 54

Convex hull in model predictive control of dy-
namic systems, 549

Convexity
in constrained optimization, 308

theorem, 309
relation between linearity of inequality

constraints and convexity of the fea-
sible region, 272

Coordinate directions, 146
Coordinate-descent algorithm, 146
Correction matrix, 179
Corrector direction, 466
Cost function, 4
Cubic

approximation of Taylor series, 30
interpolation search, 99–101

algorithm, 100
Cutting-plane methods for convex-programming

problems, 428
Kelley’s method for convex-programming

problems with bound constraints,
430

algorithm, 432
Kelley’s method for convex-programming

problems with general inequality
constraints, 433

Kelley’s method for convex-programming
problems with inequality constraints,
436

algorithm, 435
example, 435

subgradient, 428
properties, 429

Cycling in simplex method, 352
least-index rule, 352

Davidon-Fletcher-Powell (DFP) method

advantage relative to rank-one method,
185

alternative updating formula, 190
comparison with Broyden-Fletcher-Goldfarb-

Shanno method, 199
positive definiteness of S matrix, 185
updating formula, 185

Davidon-Fletcher-Powell (DFP)method, 185
Davies, Swann, and Campey algorithm, 101–106
Definitions:

closed algorithm, 69
concave function, 52
conjugate vectors, 146
convex

function, 51
set, 51

convex cone, 450
degenerate vertex, 329
descent function, 71
feasible direction, 34
global

constrained minimizer, 273
minimizer, 31

local constrained minimizer, 273
nonconvex set, 51
nondegenerate vertex, 329
point-to-set mapping, 67
regular point, 267
saddle point, 40
second-order cone, 484
strictly

concave function, 52
convex function, 52

strong
local constrained minimizer, 273
minimizer, 31

subgradient, 428
weak

global minimizer, 31
local minimizer, 31

Degenerate linear-programming problems, 384
Delay distortion in digital filters, 639
Denavit-Hartenberg parameters, 239
Descent

algorithms, 66
functions, 71

example, 71
Design of

digital filters
discretized objective function, 644
formulation of objective function, 643–

644
introduction to, 247–248
least-squares objective function, 643
minimax objective function, 643

FIR digital filters with linear phase re-
sponse, 642

650

Design of Cont’d
FIR or IIR digital filters with a specified

amplitude response, 640–642
linear-phase FIR digital filter using

quadratic programming
example, 536

linear-phase FIR digital filters using
quadratic programming, 534–536

constraint on passband error, 534
constraint on stopband gain, 535
discretization, 535
optimization problem, 535

linear-phase FIR digital filters using un-
constrained optimization, 250–253

example, 251–253
minimax FIR digital filters using semidef-

inite programming, 536–540
discretization, 538–539
example, 539
frequency response, 537
minimax problem, 538
Remez exchange algorithm, 536
squared weighted error, 537
weighted-Chebyshev method, 536

minimax FIR digital filters using uncon-
strained optimization, 253–260

algorithm, 255
direct and sequential optimization, 256
example, 256, 258
gradient and Hessian, 255
low-delay filters, 254
objective function, 254
Toeplitz matrix, 256

minimax IIR digital filters using semidef-
inite programming, 541–547

example, 546
formulation of design problem, 542
frequency response, 543
introduction to, 541
iterative SDP algorithm, 545
linear matrix inequality constraint, 542
Lyapunov equation, 544
optimization problem, 544
stability constraint, 545
weighting function, 544

weighted least-squares FIR digital filters
using unconstrained optimization,
248–253

linear phase response, 250–253
specified frequency response, 248–250
weighting, 249

Determinant of a square matrix in terms of its
eigenvalues, 598

Dextrous hands in robotic systems, 558
Diagonalization of matrices, 45
Dichotomous search, 82–84

computational effort, 84

Digital filters:
amplitude

distortion, 638
response, 636

approximation step, 639
attenuation, 639
bandpass, 638
bandstop, 638
baseband, 638
causality property, 630
characterization of

nonrecursive (FIR) filters in terms of a
difference equation, 631

recursive (IIR) filters in terms of a dif-
ference equation, 630

definition, 629
delay distortion, 639
design of

FIR filters with linear phase response,
642

FIR or IIR filters with a specified am-
plitude response, 640–642

design of lowpass filter using
Charalambous method, 222
least-pth method, 217
modified Charalambous method, 222
modified least-pth method, 217

desired amplitude response, 204
discretized objective function, 644
excitation (input), 629
finite-duration impulse response (FIR) fil-

ters, 632
formulation of objective function, 643–

644
frequency response, 636
gain, 636

in decibels, 638
group delay, 639
highpass, 638
impulse response, 631
infinite-duration impulse response (IIR)

filters, 632
initially relaxed, 630
least-squares objective function, 643
length of a nonrecursive (FIR) filter, 631
linearity property, 630
lower

passband edge, 640
stopband edge, 640

lowpass, 638
maximum stopband gain, 642
minimax objective function, 643
minimum stopband attenuation, 642
normalized

sampling frequency, 638
sampling period, 638

Nyquist frequency, 638

INDEX 651

Digital filters: Cont’d
order, 630
passband, 638

edge, 640
ripple, 642

peak-to-peak passband error, 641
peak stopband error, 642
periodicity of frequency response, 638
phase

distortion, 639
response, 636
shift, 636

R operator, 629
sampling frequency, 638
Schur polynomials, 283
stability

condition imposed on eigenvalues, 635
condition imposed on impulse re-

sponse, 632
condition imposed on poles, 635
property, 632

stabilization technique, 219
standard signals

unit impulse, 631
unit sinusoid, 631
unit step, 631

steady-state sinusoidal response, 636
stopband, 638

edge, 640
system properties, 629
time-domain response, 631–632

using the z transform, 635
time-invariance property, 630
transfer function

definition, 633
derivation from difference equation,

634
multiplier constant, 634
poles, 634
in zero-pole form, 634
zeros, 634

transition band, 640
upper

passband edge, 640
stopband edge, 640

z transform, 632
Dikin ellipsoid, 470
Dimension of a subspace, 592
Direction

centering direction in linear programming,
406

coordinate, 146
corrector, 398, 466
matrix S, 175

generation of, 177
positive definiteness of, 185
relation with the Hessian, 177

Newton, 130
orthogonal, 123
primal affine-scaling, 381
projected steepest-descent, 379
quasi-Newton, 179
steepest

ascent, 121
descent, 121

Discretization, 12
Disjoint feasible region, 21
Dissimilarity measure in point-pattern matching,

234
alternative measure, 235

Dot product, 120
Double inverted pendulum, 11
Dual

active-set method for convex quadratic-
programming problems, 416–417

normal matrix in interior-point methods
for nonconvex optimization prob-
lems, 521

problem in
constrained optimization, 311
linear programming, 374
quadratic programming, 418
second-order cone programming, 485

semidefinite problem, 451
Wolfe dual, 311

Duality
in constrained optimization, 311
in convex programming

theorem, 311
of DFP and BFGS updating formulas, 191
gap in

linear programming, 376
primal-dual method for second-order

cone programming problems, 492
quadratic programming, 418
semidefinite-programming problems,

451, 456
of Hoshino formula, 192

Dynamic programming, 24

Edge of a convex polyhedron, 328
Efficient multiuser detector based on duality, 577
Eigendecomposition, 597

example, 597
Eigenvalues, 46, 596

ratio of smallest to the largest eigenvalue
in steepest-descent method, 126

Eigenvectors, 147, 596
Elemental error, 204
Elementary

matrices, 44
transformations, 44

Elimination of
line search in steepest-descent method,

124–126

652

Elimination of Cont’d
spikes in the error function, 211

Ellipsoid, 437
Ellipsoid methods for convex-programming

problems, 437–443
constraint iteration, 441
ellipsoid, 437
method for constrained problems, 440–

443
algorithm, 442
example, 442

method for unconstrained problems, 437–
440

algorithm, 439
example, 439

objective iteration, 440
End-effector, 237
Equality constraints, 10, 266

example, 270
Equation of forward kinematics, 241
Error

approximation, 6
elemental, 204
residual, 8

Euclidean
norm, 7
space, 4

Examples:
active constraints, 356
affine manifold, 625
alternative-form linear-programming prob-

lem, 326
bounded solution, 347
degenerate vertex, 353
unbounded solution, 349

average order of convergence, 78
basis for a span, 592
central path in linear programming, 377
characterization of symmetric matrices,

45–51
Cholesky decomposition, 620
classification of constrained optimization

problems, 276
closed algorithms, 69–71
constrained optimization, 300

equality constraints, 289
convergence ratio, 77
convex quadratic-programming problems

with equality constraints, 409
descent functions, 71
design of

bandpass FIR digital filter using uncon-
strained optimization, 258

linear-phase FIR digital filter using
quadratic programming, 536

linear-phase FIR digital filter using un-
constrained optimization, 251–253

lowpass FIR digital filter using uncon-
strained optimization, 256

minimax FIR digital filters using
semidefinite programming, 539

minimax IIR digital filters using
semidefinite programming, 546

design of lowpass digital filter using
Charalambous method, 222
least-pth method, 217
modified Charalambous method, 222
modified least-pth method, 217

double inverted pendulum, 11
eigendecomposition, 597
ellipsoid method for

constrained convex-programming prob-
lems, 442

unconstrained convex-programming prob-
lems, 439

equality constraints, 270
feasible region, 267–268
first-order necessary conditions for a min-

imum in constrained optimization,
295

geometrical interpretation of gradient, 292
Givens rotations, 615
global convergence, 74–76
graphical optimization method, 18–20
Householder transformation, 612
interior-point algorithm for

convex problems with inequality con-
straints, 524

nonconvex problems with inequality
constraints, 527

joint angles in three-link manipulator, 243
Kelley’s cutting-plane method for convex-

programming problems with in-
equality constraints, 435

Lagrange multipliers, 285–286, 288
linear dependence of vectors, 592
Lyapunov equation, 622
matrix norms, 605
modified primal-dual path-following method,

392
modified sequential quadratic-programming

algorithm for nonlinear problems
with

equality and inequality constraints, 517
inequality constraints, 513

multilayer thin-film system, 15
near-optimal multiuser detector using

semidefinite-programming relaxation,
580

nonfeasible-initialization interior-point primal-
dual path-following method for

convex quadratic-programming prob-
lems, 424

linear-programming problems, 395

INDEX 653

Examples: Cont’d
nonlinear equality constraints in con-

strained optimization, 280
null space, 594
optimal force distribution in multifinger

dextrous hands
using linear programming, 565
using semidefinite programming, 569

orthogonal projections, 609
position and orientation of the robot tip in

a manipulator, 241
predictor-corrector method, 400

for semidefinite problems, 467
primal

active-set method for quadratic-programming
problems with inequality constraints,
415

affine-scaling linear-programming method,
382

Newton barrier method, 387
primal-dual

interior-point method for second-order
cone programming problems, 494

path-following method for semidefinite
programming problems, 464

projective method of Nemirovski and
Gahinet for

semidefinite-programming problems,
483

strict-feasibility problem, 476
QR decomposition, 618
rank of a matrix, 594
robust

constrained model predictive control
using semidefinite programming,
558

unconstrained model predictive control
of dynamic systems using semidef-
inite programming, 553

second-order necessary conditions for a
minimum, 303

second-order Schur polynomial, 283
second-order sufficient conditions for a

minimum, 306
general constrained problem, 308

sequential quadratic-programming method
for nonlinear problems with

equality constraints, 504
inequality constraints, 508

Sherman-Morrison formula, 595
singular-value decomposition, 608
solution of overdetermined system of lin-

ear equations, 209
standard-form linear-programming prob-

lem, 324, 361
step response of a control system, 6
symmetric square root, 601

transportation problem, 16
variable elimination method in con-

strained optimization, 279
variable transformations in constrained

optimization, 282
vertex of a convex polyhedron, 334, 335
Wolfe dual, 312

Excitation (input) in digital filters, 629
Existence of

primal-dual solution in linear program-
ming, 375

a vertex minimizer in
alternative-form linear-programming prob-

lem, 341
standard-form linear-programming prob-

lem, 342
Experimental methods of optimization, 3
Exterior point, 18
Extrapolation formula for inexact line search,

109
Extrema, 31

Face of a convex polyhedron, 328
Facet of a convex polyhedron, 328
Farkas lemma, 317
Feasible

descent directions in linear programming,
331

direction, 34
domain, 17
linear-programming problem, 374
point, 17

in linear programming, 337
region, 17, 266

disjoint, 21
example, 267–268
relation between linearity of inequality

constraints and convexity of the fea-
sible region, 272

simply connected, 21
Fibonacci

search, 85–92
algorithm, 91
comparison with golden-section search,

94
computational effort, 88

sequence, 87
Finding

a feasible point, 337
a linearly independent normal vector, 338
a vertex minimizer, 341–343

Finite-duration impulse response (FIR) digital
filters, 632

First-order conditions for a minimum
necessary conditions in constrained opti-

mization, 294–302
example, 295

654

First-order conditions for a minimum Cont’d
necessary conditions for equality con-

straints, 294
theorem, 294

necessary conditions for inequality con-
straints, 296

necessary conditions in unconstrained op-
timization, 35–36

theorem, 35
First-order gradient methods, 119
Fletcher

inexact line search algorithm, 112
switch method, 193

Fletcher-Reeves method, 158–159
advantages, 158
algorithm, 159

Frame in robotics, 239
Frequency response in digital filters, 636
Frequency-division multiple access in commu-

nications, 570
Friction

cone in dextrous hands, 562
force in dextrous hands, 562
limits in dextrous hands, 563

Frobenius norm, 605

Gain
in decibels, 638
in digital filters, 636

Gamma function, 437
Gauss-Newton method, 138–140

algorithm, 140
Gaussian elimination in Matthews and Davies

method for the modification of the
Hessian, 132

General
constrained optimization problem, 10, 266
structure of optimization algorithms, 8

Generation of conjugate directions in Powell’s
method, 159–160

Geometrical interpretation of gradient in a
constrained optimization problem,
292–294

example, 292
Geometry of a linear-programming problem,

328–340
degenerate vertex, 329
edge, 328
face, 328
facet, 328
method for finding a vertex, 332–336
nondegenerate vertex, 329
vertex, 328

example, 334, 335
Givens rotations, 614

example, 615
Global

constrained minimizer, 273
convergence, 72

examples, 74–76
theorem, 72

minimizer, 31
Golden ratio, 93
Golden-section

golden ratio, 93
search, 92–95

algorithm, 94
comparison with Fibonacci search, 94

sequence, 87
Goldstein

conditions, 107
tests, 108

Gradient
geometrical interpretation

constrained optimization problem, 292–
294

example, 292
information, 27
in least-pth method, 206
vector, 27

Gradient methods, 28
conjugate directions

intoduction to, 145
first-order, 119
Gauss-Newton method, 138–140

algorithm, 140
introduction to multidimensional, 119
Newton, 128–137

direction, 130
modification of the Hessian to achieve

positive definiteness, 131–137
order of convergence, 130
relation with steepest-descent method,

131
second-order, 119
steepest descent, 120–128

algorithm, 123, 126
convergence, 126–128
elimination of line search, 124–126
relation with Newton method, 131
scaling, 128

Graphical optimization method, 2
examples, 18–20

Group delay in digital filters, 639

Handwritten character recognition, 236
Hermitian

matrix, 598
square root, 601

Hessian matrix, 28
computation, 137
modification to achieve positive definite-

ness, 131–137
examples, 135–137

Highpass digital filters, 638

INDEX 655

Hölder inequality, 603
Homogeneous transformation, 240
Hoshino

method, 192
updating formula, 192

Householder
transformation, 610

example, 612
update, 611

Huang family
of quasi-Newton methods, 194
updating formula, 194

Hull, 627
Hypersurface, 267

Identity matrix, 46
Impulse response in digital filters, 631
Inactive inequality constraints, 271
Inequality constraints, 10, 270

active, 271
inactive, 271
relation between linearity of inequality

constraints and convexity of the fea-
sible region, 272

Inexact line searches, 106–114
choice of parameters, 113
convergence theorem, 110
Fletcher’s algorithm, 112

modified version, 195
Goldstein

conditions, 107
tests, 108

interpolation formula, 108
Infinite-duration impulse response (IIR) digital

filters, 632
Initialization of an algorithm, 9
Inner product

for matrices, 623
for vectors, 603

Integer programming, 23
Interior point, 18
Interior-point methods, 273

introduction to, 373
Interior-point methods for convex quadratic-

programming problems, 417–428
central path, 418
dual problem, 418
duality gap, 418
linear complementarity problems, 425–

428
algorithm, 428

mixed linear complementarity problems,
419

monotone linear complementarity prob-
lems, 419

nonfeasible-initialization interior-point primal-
dual path-following method, 422–
425

algorithm, 423
example, 424

primal-dual path-following method, 420–
422

algorithm, 422
example, 424
iteration complexity, 420
potential function, 420

Interior-point methods for nonconvex optimiza-
tion problems, 518–528

algorithm for convex problems with in-
equality constraints, 523

example, 524
algorithm for nonconvex problems with in-

equality constraints, 526
example, 527

barrier parameter, 519
dual normal matrix, 521
Karush-Kuhn-Tucker conditions for, 519
Lagrangian in, 519
merit function, 521
primal-dual system in, 519
search direction, 521

Interpolation formula
for inexact line search, 108
polynomial, 213
simplified three-point quadratic formula,

98
three-point quadratic formula, 96
two-point quadratic formula, 98

Interval-type constraints in optimization, 282
Inverse kinematics for robotic manipulators,

237–247
Denavit-Hartenberg parameters, 239
end-effector, 237
equation of forward kinematics, 241
frame in robotics, 239
homogeneous transformation, 240
joint angles in three-link manipulator

example, 243
optimization problem, 241–242
position and orientation of a manipulator,

237–241
example, 241

robotic manipulator, 237
solution of inverse kinematics problem,

242–247
Iteration, 9
Iteration complexity in primal-dual path-following

method, 420
Iterative algorithms, 66

Jacobian, 138
Joint angles in three-link manipulator

example, 243

656

Karush-Kuhn-Tucker conditions, 285
complementarity, 299
for interior-point methods for nonconvex

optimization problems, 519
for nonlinear problems with inequality

constraints, 506
for second-order cone programming prob-

lems, 491
for semidefinite-programming problems,

455
for standard-form linear-programming

problems, 323
sufficiency conditions in convex problems,

310
theorem, 298

Kelley’s cutting-plane method for convex-
programming problems with

bound constraints, 430
algorithm, 432

general inequality constraints, 433
inequality constraints, 436

algorithm, 435
example, 435

Kronecker product, 621

L1

algorithms, 24
norm, 7

of a matrix, 604
of a vector, 602

L2

algorithms, 24
norm, 7

design of FIR digital filters using un-
constrained optimization, 248–253

invariance under orthogonal or unitary
transformation, 603

of a matrix, 604
of a vector, 602

Lagrange multipliers
equality and inequality constraints, 297
equality constraints, 287–290
example, 285–286, 288
introduction to, 285
Lagrangian, 288

Lagrangian, 288
in interior-point methods for nonconvex

optimization problems, 519
multiplier vector, 503
in nonlinear problems with inequality con-

straints, 506
in sequential quadratic-programming prob-

lems with equality constraints, 502
Leading principal minor, 600
Least-pth minimax

algorithm, 206
modified version, 214

method, 205–206
choice of parameter µ, 206
design of lowpass digital filter, 217
gradient, 206
numerical ill-conditioning, 206

Least-squares problem, 7
Left singular vector, 606
Length of a nonrecursive (FIR) digital filter, 631
L∞

algorithms, 24
norm, 8

design of FIR digital filters using un-
constrained optimization, 253–260

of a function of a continuous variable,
248

of a matrix, 604
of a vector, 602

Limit of a sequence, 66
Linear

complementarity problems in convex
quadratic programming, 425–428

algorithm, 428
convergence, 77
dependence in Powell’s method, 163
dependence of vectors

example, 592
fractional problem formulated as a second-

order cone programming problem,
490

independence of columns in constraint
matrix, theorem, 355

Linear algebra:
affine

manifold, 625
property of a matrix, 625

asymmetric square root, 601
ball, 273
Cauchy-Schwartz inequality, 603
characteristic equation, 596
Cholesky

decomposition, 619
triangle, 619

column rank, 594
condition number of a matrix, 606
convex

cone, 623
hull, 627
polygon, 626
polyhedron, 272, 626

determinant of a square matrix in terms of
its eigenvalues, 598

dimension of a subspace, 592
eigendecomposition, 597

example, 597
eigenvalues, 596
eigenvectors, 596
Frobenius norm, 605

INDEX 657

Linear algebra: Cont’d
Givens rotations, 614
Hermitian

matrix, 598
square root, 601

Hölder inequality, 603
Householder

transformation, 610
update, 611

hypersurface, 267
inner product, 603

for matrices, 623
introduction to, 591
Kronecker product, 621
L1norm

of a matrix, 604
of a vector, 602

L2 norm
invariance under orthogonal or unitary

transformation, 603
of a matrix, 604
of a vector, 602

left singular vector, 606
L∞ norm

of a matrix, 604
of a vector, 602

Lp norm
of a matrix, 604
of a vector, 602

manifold, 625
maximal linearly independent subset, 592
Moore-Penrose pseudo-inverse, 607

evaluation of, 607
non-Hermitian square root, 601
nonsingular matrices, 598
normal

plane, 291
vector, 322

null space, 594
orthogonal

matrices, 598
projection matrix, 609

orthonormal basis of a subspace, 609
polygon, 626
polytope, 627
QR decomposition

with column pivoting, 618
for full-rank case, 616
mathematical complexity, 617
for rank-deficient case, 617

range of a matrix, 593
rank of a matrix, 593
right singular vector, 606
row rank, 594
Schur polynomials, 283
Sherman-Morrison formula, 595

similarity transformation, 597
singular

value decomposition, 606
values, 606

span, 592
basis for, 592

subspace, 592
symmetric

matrices, 598
square root, 601

tangent plane, 290
trace of a matrix, 602
vector spaces of symmetric matrices, 623–

626
Linear programming, 17, 22, 274

active
constrained matrix, 331
constraints, example, 356

alternative-form LP problem, 322
example, 326
necessary and sufficient conditions for

a minimum, 325, 331
analytic center, 404
centering direction, 406
central path, 376–378
constraint matrix, 322
degenerate LP problems, 384
dual problem, 374
duality gap, 376
existence of a vertex minimizer in

alternative-form LP problem
theorem, 341

existence of a vertex minimizer in
standard-form LP problem

theorem, 342
existence of primal-dual solution, 375
feasible

descent directions, 331
LP problem, 374

finding a
feasible point, 337
linearly independent normal vector,

338
vertex minimizer, 341–343

geometry of an LP problem, 328–340
degenerate vertex, 329
edge, 328
face, 328
facet, 328
nondegenerate vertex, 329
vertex, 328

interior-point methods
introduction to, 373

introduction to, 321
Karush-Kuhn-Tucker conditions

theorem, 323

658

Linear programming Cont’d
linear independence of columns in con-

straint matrix
theorem, 355

Mehrotra’s predictor-corrector algorithm,
400

modified primal-dual path-following method,
392

nondegenerate LP problems, 384
nonfeasible-start primal-dual path-following

algorithms, 394
normal vector, 322
optimality conditions, 323–328
primal

LP problem, 374
primal-dual

solutions, 374–376
projected steepest-descent direction, 379
relation between

alternative-form linear-programming and
semidefinite-programming problems,
453

standard-form linear-programming and
semidefinite-programming problems,
450

scaling, 379
affine scaling transformation, 380
primal affine-scaling direction, 381

simplex method
for alternative-form LP problem, 344–

354
basic and nonbasic variables in standard-

form LP problem, 355
blocking constraints, 352
computational complexity, 365–368
cycling, 352
least-index rule, 352
pivot in tabular form, 363
for standard-form LP problem, 354–

363
tabular form, 363–365

standard-form LP problem, 322
example, 324
necessary and sufficient conditions for

a minimum, 332
strict feasibility of primal-dual solutions,

375
strictly feasible LP problem, 374
uniqueness of minimizer of alternative-

form LP problem
theorem, 342

uniqueness of minimizer of standard-form
LP problem

theorem, 343
Linearity property in digital filters, 630
Linearly independent vectors, 592
Local constrained minimizer, 273

Location of maximum of a convex function, 59
Logarithmic barrier function, 383
Lorentz

cone in second-order cone programming,
484

Low-delay FIR digital filters using unconstrained
optimization, 254

Lower
passband edge in digital filters, 640
stopband edge in digital filters, 640
triangular matrix, 132

Lowpass digital filters, 638
Lp norm, 7

of a function of a continuous variable, 248
of a matrix, 604
of a vector, 602

Lyapunov equation, 544, 622
example, 622

Manifold, 625
Mathematical

complexity
QR decomposition, 617

programming, 4
introduction to nonlinear, 27

Matrices:
active constraint matrix, 331
affine property, 625
asymmetric square root, 601
characteristic equation, 596
characterization of symmetric matrices,

43–51
via diagonalization, 43

Cholesky
decomposition, 619
triangle, 619

column rank, 594
computation of the Hessian matrix, 137
condition number, 606
conjugate-transpose, 591
constraint matrix, 322
correction matrix, 179
determinant of a square matrix in terms of

its eigenvalues, 598
diagonalization, 45
direction matrix S, 175

generation of, 177
dual normal matrix, 521
eigendecomposition, 597

of symmetric matrices, 46
eigenvalues, 46, 596
eigenvectors, 147, 596
elementary, 44
Frobenius norm, 605
Gaussian elimination, 132
Givens rotations, 614
Hermitian, 598

square root, 601

INDEX 659

Matrices:
identity, 46
inner product for matrices, 623
Jacobian, 138
Kronecker product, 621
L1 norm, 604
L2 norm, 604
leading principal minor, 600
L∞ norm, 604
Lp norm, 604
minor determinant (or minor), 599
modification of the Hessian to achieve pos-

itive definiteness, 131–137
examples, 135–137

Moore-Penrose pseudo-inverse, 607
evaluation of, 607

non-Hermitian square root, 601
nonsingular, 598
norms

example, 605
notation, 591
orthogonal, 46, 598

projection, 609
positive definite, positive semidefinite,

negative definite, negative semidef-
inite, 43, 598

notation, 599
positive definiteness of S matrix, 185
principal minor, 599
properties, 46
QR decomposition

with column pivoting, 618
example, 618
for full-rank case, 616
mathematical complexity, 617
for rank-deficient case, 617

range, 593
rank, 593
relation between direction matrix S and the

Hessian, 177
roots of the characteristic polynomial, 132
row rank, 594
Schur complement matrix, 462
Sherman-Morrison formula, 595
similarity transformation, 597
singular

value decomposition, 606
values, 606

sparse, 367
strictly feasible, 455
symmetric, 598

square root, 601
Toeplitz matrix, 256
trace, 602
unit lower triangular matrix, 132
unitary, 46, 598

upper triangular, 133
vector spaces, 623–626
working set, 351

Matthews and Davies
algorithm for the modification of the Hes-

sian to achieve positive definiteness,
133

method, 132–134
Maximal linearly independent subset, 592
Maximizer, 31
Maximum, 1

stopband gain in digital filters, 642
Maximum-likelihood multiuser detector, 573
McCormick updating formula, 194
Mean-value theorem for differentiation, 30
Mehrotra’s predictor-corrector linear-programming

algorithm, 400
Memoryless BFGS updating formula, 202
Merit function in

interior-point methods for nonconvex op-
timization problems, 521

modified sequential quadratic-programming
methods, 515

Minimax
algorithms, 24, 205

Charalambous, 207
improved, 211–217
least-pth, 206
modified Charalambous, 215
modified least-pth, 214

methods
computational complexity in, 211
elimination of spikes, 211
introduction to, 203
nonuniform variable sampling tech-

nique, 211
objective function, 203
use of interpolation in, 213

multipliers, 207
problem, 8

Minimization of
nonquadratic functions, 129

using conjugate-directions methods,
157–158

a sum of L2 norms formulated as a second-
order cone programming problem,
488

Minimizer, 9, 31
global, 31
strong, 31
uniqueness of minimizer of alternative-

form linear-programming problem
theorem, 342

uniqueness of minimizer of standard-form
linear-programming problem

theorem, 343

660

Minimizer Cont’d
weak

global, 31
local, 31

Minimum, 1
point, 9
stopband attenuation in digital filters, 642
value, 9

Minor determinant (or minor), 599
Mixed linear complementarity problems, 419
Model predictive control of dynamic systems,

547–558
convex hull, 549
introduction to, 547
introduction to robust MPC, 550–551
minimax optimization problem, 550
polytopic model for uncertain dynamic

systems, 549–550
robust constrained MPC using semidefi-

nite programming, 554–558
componentwise input constraints, 557
Euclidean norm constraint, 556
example, 558
invariant ellipsoid, 556
L2-norm input constraint, 554
modified SDP problem, 558
SDP problem, 557

robust unconstrained MPC using semidef-
inite programming, 551–554

example, 553
optimization problem, 553

Modification of the Hessian to achieve positive
definiteness, 131–137

examples, 135–137
Matthews and Davies algorithm, 133

Monotone linear complementarity problems,
419

Moore-Penrose pseudo-inverse, 607
evaluation of, 607

Multidimensional
optimization

introduction to, 119
unconstrained problems, 119

Multilayer thin-film system, 15
Multilegged vehicles as robotic systems, 558
Multimodal problems, 260
Multiple manipulators as robotic systems, 558
Multiplier constant in digital filters, 634
Multiuser access interference in wireless com-

munications, 572
Multiuser detection in wireless communication

channels, 570–586
additive white Gaussian noise, 571
bit-error rate, 571
channel model, 571–573
code sequences, 570
code-division multiple access, 570

constrained minimum-BER multiuser de-
tector, 580–586

formulation as a convex-programming
problem, 583

problem formulation, 580–583
solution based on a Newton-barrier

method, 584–586
frequency-division multiple access, 570
introduction to, 570
maximum-likelihood multiuser detector,

573
multiuser access interference, 572
multiuser detector, 573
near-optimal multiuser detector using

semidefinite-programming relaxation,
573–580

algorithm, 579
binary solution, 575
efficient detector based on duality, 577
example, 580
optimization problem, 575
relaxation of MAX-CUT problem,

573–575
SDP-relaxation-based multiuser detec-

tor, 575
solution suboptimality, 577

spreading
sequence, 571
gain, 571

time-division multiple access, 570
transmission delay, 571

Multiuser detector, 573

Necessary and sufficient conditions
for a minimum in alternative-form linear-

programming problem
theorem, 325, 331

for a minimum in standard-form linear-
programming problem

theorem, 332
for local minima and maxima, 33–40

Negative definite
matrix, 43, 598

notation, 599
quadratic form, 36

Negative semidefinite
matrix, 43, 598

notation, 599
quadratic form, 36

Newton
algorithm, 130, 244

alternative, 178
direction, 130
method, 128–137

modification of the Hessian to achieve
positive definiteness, 131–137

order of convergence, 130

INDEX 661

Newton Cont’d
method Cont’d

relation with steepest descent method,
131

Non-Hermitian square root, 601
Nonbasic variables in linear programming, 355
Nonconvex sets

definition, 51
Nondegeneracy assumption in simplex method,

344
Nondegenerate linear programming problems,

384
Nonfeasible point, 18
Nonfeasible-initialization interior-point primal-

dual path-following method
for convex quadratic-programming prob-

lems, 422–425
algorithm, 423
example, 424

for linear-programming problems, 394–
397

algorithm, 395
example, 395

Nonfeasible-start interior-point primal-dual path-
following algorithms, 394

Nonlinear
equality constraints in constrained opti-

mization, 280
example, 280

programming, 23
introduction to, 27

Nonnegativity bounds in constrained optimiza-
tion, 281

Nonquadratic functions
minimization, 129

using conjugate-directions methods,
157–158

Nonsingular matrix, 598
Nonuniform variable sampling technique, 211

segmentation of frequency axis, 213
virtual sample points, 212

Normal
plane, 291
vector, 322

Normalized sampling
frequency in digital filters, 638
period in digital filters, 638

Norms:
Euclidean, 7
Frobenius, 605
L1 norm, 7

of a matrix, 604
of a vector, 602

L2 norm, 7
of a matrix, 604
of a vector, 602

L∞ norm, 8

of a function of a continuous variable,
248

of a matrix, 604
of a vector, 602

Lp norm, 7
of a function of a continuous variable,

248
of a matrix, 604
of a vector, 602

Null space, 594
example, 594

Numerical
ill-conditioning in least-pth minimax

method, 206
methods of optimization, 3

Nyquist frequency in digital filters, 638

Objective
function, 4

augmented, 289
in a minimax problem, 203

iteration in ellipsoid methods, 440
One-dimensional optimization

approximation methods, 82
cubic interpolation, 99–101
quadratic interpolation, 95–98

Davies, Swann, and Campey algorithm,
101–106

inexact line searches, 106–114
problems, 81
range of uncertainty, 82
search methods, 81

dichotomous, 82–84
Fibonacci, 85–92
golden-section, 92–95

Optimal force distribution for robotic systems,
558–570

closed kinematic chains, 558
dextrous hands, 558
force distribution problem in multifinger

dextrous hands, 561–570
compact linear programming method,

566
contact forces, 562
example, 565, 569
friction cone, 562
friction force, 562
friction limits, 563
point-contact model, 562
soft-finger contact model, 562
torsional moment, 562
using linear programming, 564–567
using semidefinite programming, 567–

570
introduction to, 558
multilegged vehicles, 558
multiple manipulators, 558

662

Optimality conditions for linear programming,
323–328

Optimization,
by analytical methods, 2
basic problem, 4
boundary point, 18
classes of nonlinear optimization prob-

lems, 81
of constrained problems, 10
of convex functions, 58–60
cost function, 4
by experimental methods, 3
exterior point, 18
feasible

domain, 17
point, 17
region, 17

of a function of a continuous independent
variable, 5

gradient vector, 27
by graphical methods, 2
Hessian matrix, 28
interior point, 18
introduction to, 1

multidimensional, 119
nonfeasible point, 18
by numerical methods, 3
objective function, 4
optimum, 1
practice, 1
as a process, 1
saddle point, 40
of several functions, 5
stationary point, 40
theory, 1
tolerance, 10
types of optimization problems, 2
uncostrained, 11

Optimum, 1
point, 9
value, 9

Order of
a digital filter, 630
convergence, 76

Orthogonal
direction, 123
matrices, 46, 598
projections

example, 609
matrix, 609
in projective method of Nemirovski and

Gahinet for strict-feasibility prob-
lem, 473

vectors, 147
Orthogonality

condition, 147

of gradient to a set of conjugate directions,
150, 153

Orthonormal basis of a subspace, 609
Overdetermined system of linear equations, 209

Partan
algorithm

solution trajectory, 169
method, 168–171

Passband
in digital filters, 638
edge in digital filters, 640
ripple in digital filters, 642

Peak stopband error in digital filters, 642
Peak-to-peak passband error in digital filters, 641
Penalty function in sequential quadratic-programming

methods, 510
Periodicity of frequency response in digital fil-

ters, 638
Phase

distortion in digital filters, 639
response in digital filters, 636
shift in digital filters, 636

Point-contact model in multifinger dextrous
hands, 562

Point-pattern matching, 232–236
dissimilarity measure, 234

alternative measure, 235
handwritten character recognition, 236
problem formulation, 233
similarity transformation, 233
solution of optimization problem, 234

Point-to-point mapping, 66
Point-to-set mapping, 67
Poles in digital filters, 634
Polygon, 626
Polyhedron, 626
Polynomial interpolation, 213
Polytope, 627
Polytopic model for uncertain dynamic systems,

549–550
Position and orientation of a manipulator, 237–

241
Positive definite

matrix, 43, 598
notation, 599

quadratic form, 36
Positive semidefinite

matrix, 43, 598
notation, 599

quadratic form, 36
Powell’s method, 159–168

advantages and disadvantages, 163
algorithm, 162
alternative approach, 164
generation of conjugate directions, 159–

160

INDEX 663

Powell’s method Cont’d
linear dependence in, 163
solution trajectory, 164
Zangwill’s technique, 165–168

Practical quasi-Newton algorithm, 195–199
choice of line-search parameters, 198
computational complexity, 196
modified inexact line search, 195
positive definiteness condition in, 198
termination criteria in, 199

Predictor-corrector method, 397–401
algorithm, 400
centering parameter, 397
computational complexity, 400
corrector direction, 398
example, 400
for semidefinite-programming problems,

465–470
algorithm, 467
corrector direction, 466
example, 467
predictor direction, 465

Mehrotra’s algorithm, 400
predictor direction, 397

Primal
active-set method for convex quadratic-

programming problems, 412–416
affine-scaling method for linear-programming

problems, 379–382
affine scaling transformation, 380
algorithm, 382
example, 382
primal affine-scaling direction, 381
projected steepest-descent direction,

379
scaling, 379

linear-programming problem, 374
Newton barrier method for linear-programming

problems, 383–388
algorithm, 387
barrier function, 383
barrier parameter, 383
example, 387
logarithmic barrier function, 383

problem in
constrained optimization, 311
second-order cone programming, 485
semidefinite programming, 450

Primal-dual
interior-point methods, 273
path-following method, 389–394

algorithm, 391
example, 392
modified algorithm, 392
nonfeasible initialization, 394–397
nonfeasible-initialization algorithm, 395

nonfeasible-initialization example, 395
short-step algorithms, 391

path-following method for convex quadratic-
programming problems, 420–422

algorithm, 422
example, 424
potential function, 420

path-following method for semidefinite
programming, 458–465

algorithm, 462
example, 464
reformulation of centering condition,

458
Schur complement matrix, 462
symmetric Kronecker product, 459

solutions in
linear programming, 374–376
semidefinite programming, 456

system in interior-point methods for non-
convex optimization problems, 519

Principal minor, 599
Projected steepest-descent direction in linear

programming, 379
Projective method of Nemirovski and Gahinet,

470–484
for semidefinite-programming problems,

477–484
algorithm, 482
choice of step size, 479
computations, 480–482
Dikin ellipsoid, 470
example, 483
notation, 470
problem homogenization, 477–478
solution procedure, 478
strict-feasibility problem, 471

for the strict-feasibility problem, 472–477
algorithm, 475
example, 476
orthogonal projections, 473

Properties of
Broyden method, 193
semidefinite programming, 455–458

QR decomposition
with column pivoting, 618
example, 618
for full-rank case, 616
for rank-deficient case, 617

Quadratic
approximation of Taylor series, 30
cone in second-order cone programming,

484
form, 36

positive definite, positive semidefinite,
negative definite, negative semidef-
inite, 36

664

Quadratic Cont’d
interpolation search

algorithm, 97
simplified three-point formula, 97
three-point formula, 95–98
two-point formula, 98

programming, 23, 275
rate of convergence in conjugate-direction

methods, 158
termination, 158

Quadratic programming
central path, 418
convex quadratic-programming problems

with equality constraints, 408–411
example, 409

dual problem, 418
duality gap, 418
introduction to, 407
mixed linear complementarity problems,

419
monotone linear complementarity prob-

lems, 419
primal-dual potential function, 420
problem formulated as a second-order

cone programming problem, 487
relation between convex quadratic-programming

problems
with quadratic constraints and semidefinite-

programming problems, 454
and semidefinite-programming prob-

lems, 453
Quasi-Newton

direction, 179
algorithm

basic, 184
practical, 195–199

methods
advantage of DFP method relative to

rank-one method, 185
basic, 176
Broyden method, 192
Broyden-Fletcher-Goldfarb-Shanno (BFGS)

method, 191
choice of line-search parameters, 198
comparison of DFP and BFGS meth-

ods, 199
correction matrix, 179
Davidon-Fletcher-Powell (DFP) method,

185
disadvantages of rank-one method, 184
duality of DFP and BFGS formulas,

191
duality of Hoshino formula, 191
equivalence of Broyden method with

Fletcher-Reeves method, 193
Fletcher switch method, 193
generation of inverse Hessian, 182

Hoshino method, 192
introduction to, 175
McCormick updating formula, 194
memoryless BFGS updating formula,

202
positive definiteness condition, 198
rank-one method, 181
relation between direction matrix S and

the Hessian, 177
termination criteria, 199
updating formula for BFGS method,

191
updating formula for Broyden method,

192
updating formula for DFP method, 185
updating formula for Hoshino method,

192
updating formula for rank-one method,

182

R operator in digital filters, 629
Range of

a matrix, 593
uncertainty, 82

Rank of a matrix, 593
example, 594

Rank-one method, 181
disadvantages, 184
updating formula, 182

Rates of convergence, 76
Regular point, 267
Relation between semidefinite-programming

problems
and alternative-form linear-programming

problems, 453
and convex quadratic-programming prob-

lems, 453
with quadratic constraints, 454

and standard-form linear-programming
problems, 450

Relations
between second-order cone programming

problems and linear-programming,
quadratic-programming, and semidefinite-
programming problems, 486

Relaxation of MAX-CUT problem, 573–575
Remainder of Taylor series, 29
Residual error, 8
Response (output) in digital filters, 629
Right singular vector, 606
Robotic manipulator, 237
Robustness in algorithms, 10
Roots of characteristic polynomial, 132
Row rank, 594
Rule of correspondence, 66

Saddle point, 40
in steepest descent method, 128

INDEX 665

Sampling frequency in digital filters, 638
Scalar product, 120
Scaling in

linear programming, 379
affine scaling transformation, 380

steepest-descent method, 128
Schur polynomials, 283

example, 283
Search

direction in interior-point methods for
nonconvex optimization problems,
521

methods (multidimensional)
introduction to, 119

methods (one-dimensional), 81
dichotomous, 82–84
Fibonacci, 85–92
golden-section, 92–95

Second-order
cone, 484
gradient methods, 119

Second-order conditions for a maximum
necessary conditions in unconstrained op-

timization, 39
sufficient conditions in unconstrained op-

timization, 40
theorem, 40

Second-order conditions for a minimum
constrained optimization, 302–305
necessary conditions

constrained optimization, 303
equality constraints, 303
example, 303
general constrained problem, 305
unconstrained optimization, 36

sufficient conditions
equality constraints, 306
example, 306, 308
general constrained problem, 306
unconstrained optimization, theorem,

39
Second-order cone programming, 484–496

complex L1-norm approximation prob-
lem formulated as an SOCP prob-
lem, 489

definitions, 484
dual problem, 485
introduction to, 449
linear fractional problem formulated as an

SOCP problem, 490
Lorentz cone, 484
minimization of a sum of L2 norms for-

mulated as an SOCP problem, 488
notation, 484
primal problem, 485
primal-dual method, 491–496

assumptions, 491

duality gap in, 492
example, 494
interior-point algorithm, 494
Karush-Kuhn-Tucker conditions in,

491
quadratic cone, 484
quadratic-programming problem with quadratic

constraints formulated as an SOCP
problem, 487

relations between second-order cone pro-
gramming problems and linear-
programming, quadratic-programming,
and semidefinite-programming prob-
lems, 486

second-order cone, 484
Semidefinite programming

assumptions, 455
centering condition, 457
central path in, 456
convex

cone, 450
optimization problems with linear ma-

trix inequality constraints, 452
definitions, 450
dual problem, 451
duality gap in, 451, 456
introduction to, 449
Karush-Kuhn-Tucker conditions in, 455
notation, 450
primal problem, 450
primal-dual

solutions, 456
properties, 455–458

primal-dual path-following method,
458–465

relation between semidefinite-programming
and

alternative-form linear-programming prob-
lems, 453

convex quadratic-programming prob-
lems, 453

convex quadratic-programming prob-
lems with quadratic constraints, 454

standard-form linear-programming prob-
lems, 450

Semidefinite-programming relaxation-based mul-
tiuser detector, 575

Sequential quadratic-programming methods,
501–518

introduction to, 276, 501
modified algorithms, 509–518

algorithm for nonlinear problems with
equality and inequality constraints,
516

algorithm for nonlinear problems with
inequality constraints, 512

666

Sequential quadratic-programming methods Cont’d
modified algorithms Cont’d

algorithms with a line-search step,
510–511

algorithms with approximated Hessian,
511–513

example, 513, 517
merit function, 515
nonlinear problems with equality and

inequality constraints, 513–518
penalty function, 510

nonlinear problems with equality con-
straints, 502–505

algorithm, 504
example, 504
Lagrange-Newton method, 504
Lagrangian in, 502
Lagrangian multiplier vector, 503

nonlinear problems with inequality con-
straints, 506–509

algorithm, 508
example, 508
Karush-Kuhn-Tucker conditions for,

506
Lagrangian in, 506

Sets,
bounded, 72
closed, 72
compact, 72

Sherman-Morrison formula, 595
example, 595

Similarity transformation, 233, 597
Simplex method, 273

computational complexity, 365–368
for alternative-form linear-programming

problem, 344–354
algorithm, degenerate vertices, 352
algorithm, nondegenerate vertices, 346
blocking constraints, 352
cycling, 352
degenerate case, 351
example, bounded solution, 347
example, degenerate vertex, 353
example, unbounded solution, 349
least-index rule, 352
nondegeneracy assumption, 344
nondegenerate case, 343–351
working index set, 351
working set of active constraints, 351
working-set matrix, 351

for standard-form linear-programming
problem, 354–363

algorithm, 360
basic and nonbasic variables, 355
example, 361

tabular form, 363–365

pivot, 363
Simply connected feasible region, 21
Singular

value decomposition, 606
application to constrained optimiza-

tion, 269
example, 608

values, 606
Slack variables in constrained optimization, 272
Snell’s law, 14
Soft-finger model in multifinger dextrous hands,

562
Solution

of inverse kinematics problem, 242–247
point, 9

Span, 592
basis for, 592

example, 592
Sparse matrices, 367
Spreading

gain in multiuser detection, 571
sequence in multiuser detection, 571

Stability
condition imposed on

eigenvalues, 635
impulse response, 632
poles, 635

property in digital filters, 632
Stabilization technique for digital filters, 219
Standard signals in digital filters

unit impulse, 631
unit sinusoid, 631
unit step, 631

Standard-form linear-programming problem,
322

Stationary points, 40
classification, 40–43

Steady-state sinusoidal response in digital filters,
636

Steepest-ascent direction, 121
Steepest-descent

algorithm, 123
without line search, 126
solution trajectory, 169

direction, 121
method, 120–128

convergence, 126–128
elimination of line search, 124–126
relation with Newton method, 131
saddle point, 128
scaling, 128
solution trajectory, 123

Step response of a control system, 6
Stopband

in digital filters, 638
edge in digital filters, 640

INDEX 667

Strict feasibility
of primal-dual solutions in linear program-

ming, 375
problem in projective method of Ne-

mirovski and Gahinet, 471
Strictly

concave functions,
definition, 52

convex functions,
definition, 52
theorem, 57

feasible
linear-programming problem, 374
matrices, 455

Strong
local constrained minimizer, 273
minimizer, 31

Subgradients, 428–430
definition, 428
properties, 429

Subspace, 592
dimension of, 592

Superlinear convergence, 77
Suppression of spikes in the error function, 211
Symmetric

matrices, 598
square root, 601

example, 601

Tabular form of simplex method, 363–365
pivot, 363

Tangent plane, 290
Taylor series, 29

cubic approximation of, 30
higher-order exact closed-form expres-

sions for, 30
linear approximation of, 30
quadratic approximation of, 30
remainder of, 29

Theorems:
characterization of

matrices, 43
symmetric matrices via diagonaliza-

tion, 43
conjugate directions in Davidon-Fletcher-

Powell method, 188
convergence of

conjugate-directions method, 149
conjugate-gradient method, 152
inexact line search, 110

convex sets, 54
convexity of linear combination of convex

functions, 52
duality in convex programming, 311
eigendecomposition of symmetric matri-

ces, 46
equivalence of Broyden method with

Fletcher-Reeves method, 193

existence of
a global minimizer in convex functions,

59
a vertex minimizer in alternative-form

linear-programming problem, 341
a vertex minimizer in standard-form

linear-programming problem, 342
primal-dual solution in linear program-

ming, 375
first-order necessary conditions for a min-

imum
equality constraints, 294
unconstrained optimization, 35

generation of
conjugate directions in Powell’s method,

159
inverse Hessian, 182

global convergence, 72
globalness and convexity of minimizers in

convex problems, 309
Karush-Kuhn-Tucker conditions, 298

for standard-form linear-programming
problem, 323

linear independence of
columns in constraint matrix, 355
conjugate vectors, 147

location of maximum of a convex function,
59

mean-value theorem for differentiation, 30
necessary and sufficient conditions for a

minimum in
alternative-form linear-programming prob-

lem, 325, 331
standard-form linear-programming prob-

lem, 332
optimization of convex functions, 58–60
orthogonality of gradient to a set of conju-

gate directions, 150, 153
positive definiteness of S matrix, 185
properties of

Broyden method, 193
matrices, 46
strictly convex functions, 57

property of convex functions relating to
gradient, 55
Hessian, 56

relation between local and global minimiz-
ers in convex functions, 58

second-order necessary conditions for a
maximum

unconstrained optimization, 39
second-order necessary conditions for a

minimum
equality constraints, 303
general constrained problem, 305
unconstrained optimization, 36

668

Theorems: Cont’d
second-order sufficient conditions for a

maximum
unconstrained optimization, 40

second-order sufficient conditions for a
minimum

equality constraints, 306
general constrained problem, 306
unconstrained optimization, 39

strict feasibility of primal-dual solutions,
375

strictly convex functions, 57
sufficiency of Karush-Kuhn-Tucker con-

ditions in convex problems, 310
uniqueness of minimizer of

alternative-form linear-programming prob-
lem, 342

standard-form linear-programming prob-
lem, 343

Weierstrass theorem, 72
Time invariance property in digital filters, 630
Time-division multiple access in communica-

tions, 570
Time-domain response

in digital filters, 631–632
using the z transform, 635

Toeplitz matrix, 256
Torsional moment in multifinger dextrous hands,

562
Trace of a matrix, 602
Trajectory of solution in

conjugate-gradient algorithm, 157
partan algorithm, 169
Powell’s algorithm, 164
steepest-descent algorithm, 123, 169

Transfer function in a digital filter
definition, 633

Transfer function of a digital filter
derivation from difference equation, 634
in zero-pole form, 634

Transformation methods in constrained optimi-
zation, 277

Transformations:
affine scaling, 380
elementary, 44
homogeneous, 240
similarity, 233

Transition band in digital filters, 640
Transmission delay in communication channels,

571
Transportation problem, 16

Unconstrained minimizer, 289
Unconstrained optimization

applications
introduction to, 231

multidimensional problems, 119

problems, 11
Unimodal, 81
Uniqueness of minimizer of

alternative-form linear-programming prob-
lem, 342

standard-form linear-programming prob-
lem, 343

Unit lower triangular matrix, 132
Unitary matrices, 46, 598
Updating formulas:

alternative formula for Davidon-Fletcher-
Powell (DFP) method, 190

Broyden formula, 192
Broyden-Fletcher-Goldfarb-Shanno (BFGS)

formula, 191
DFP formula, 185
duality of DFP and BFGS formulas, 191
Hoshino formula, 192
Huang formula, 194
McCormick formula, 194
memoryless BFGS updating formula, 202
rank-one formula, 182

Upper
passband edge in digital filters, 640
stopband edge in digital filters, 640
triangular matrix, 133

Variable elimination methods in constrained op-
timization, 277–284

example, 279
linear equality constraints, 277
nonlinear equality constraints, 280

example, 280
Variable transformations in constrained optimi-

zation, 281–284
example, 282
interval-type constraints, 282
nonnegativity bounds, 281

Vector spaces of symmetric matrices, 623–626
Vectors

conjugate, 146
eigenvectors, 147
inner product, 603
L1 norm, 602
L2 norm, 602
left singular, 606
L∞ norm, 602
linear independence, 592
linearly independent, 147
Lp norm, 602
notation, 591
orthogonal, 147
right singular, 606

Vertex minimizer
existence of vertex minimizer in alternative-

form linear-programming problem
theorem, 341

INDEX 669

Vertex minimizer Cont’d
existence of vertex minimizer in standard-

form linear-programming problem
theorem, 342

finding a, 341–343
Vertex of a convex polyhedron, 328

degenerate, 329
example, 334, 335
method for finding a vertex, 332–336
nondegenerate, 329

Virtual sample points, 212

Weak
global minimizer, 31
local minimizer, 31

Weierstrass theorem, 72
Weighting in the design of least-squares FIR fil-

ters, 249
Weights, 8
Wolfe dual, 311

example, 312
Working

index set, 351
set of active constraints, 351

Z transform, 632
Zangwill’s

algorithm, 167
technique, 165–168

Zeros in digital filters, 634

Printed in the United States

	PracticalOptimizationAlgori1275_f.jpg
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf

