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Preface

The rapid advancements in the efficiency of digital computers and the evo-
lution of reliable software for numerical computation during the past three
decades have led to an astonishing growth in the theory, methods, and algo-
rithms of numerical optimization. This body of knowledge has, in turn, mo-
tivated widespread applications of optimization methods in many disciplines,
e.g., engineering, business, and science, and led to problem solutions that were
considered intractable not too long ago.

Although excellent books are available that treat the subject of optimization
with great mathematical rigor and precision, there appears to be a need for a
book that provides a practical treatment of the subject aimed at a broader au-
dience ranging from college students to scientists and industry professionals.
This book has been written to address this need. It treats unconstrained and
constrained optimization in a unified manner and places special attention on the
algorithmic aspects of optimization to enable readers to apply the various algo-
rithms and methods to specific problems of interest. To facilitate this process,
the book provides many solved examples that illustrate the principles involved,
and includes, in addition, two chapters that deal exclusively with applications of
unconstrained and constrained optimization methods to problems in the areas of
pattern recognition, control systems, robotics, communication systems, and the
design of digital filters. For each application, enough background information
is provided to promote the understanding of the optimization algorithms used
to obtain the desired solutions.

Chapter 1 gives a brief introduction to optimization and the general structure
of optimization algorithms. Chapters 2 to 9 are concerned with unconstrained
optimization methods. The basic principles of interest are introduced in Chap-
ter 2. These include the first-order and second-order necessary conditions for
a point to be a local minimizer, the second-order sufficient conditions, and the
optimization of convex functions. Chapter 3 deals with general properties of
algorithms such as the concepts of descent function, global convergence, and



Xvi

rate of convergence. Chapter 4 presents several methods for one-dimensional
optimization, which are commonly referred to as line searches. The chapter
also deals with inexact line-search methods that have been found to increase
the efficiency in many optimization algorithms. Chapter 5 presents several
basic gradient methods that include the steepest descent, Newton, and Gauss-
Newton methods. Chapter 6 presents a class of methods based on the concept of
conjugate directions such as the conjugate-gradient, Fletcher-Reeves, Powell,
and Partan methods. An important class of unconstrained optimization meth-
ods known as quasi-Newton methods is presented in Chapter 7. Representa-
tive methods of this class such as the Davidon-Fletcher-Powell and Broydon-
Fletcher-Goldfarb-Shanno methods and their properties are investigated. The
chapter also includes a practical, efficient, and reliable quasi-Newton algorithm
that eliminates some problems associated with the basic quasi-Newton method.
Chapter 8 presents minimax methods that are used in many applications in-
cluding the design of digital filters. Chapter 9 presents three case studies in
which several of the unconstrained optimization methods described in Chap-
ters 4 to 8 are applied to point pattern matching, inverse kinematics for robotic
manipulators, and the design of digital filters.

Chapters 10 to 16 are concerned with constrained optimization methods.
Chapter 10 introduces the fundamentals of constrained optimization. The con-
cept of Lagrange multipliers, the first-order necessary conditions known as
Karush-Kuhn-Tucker conditions, and the duality principle of convex program-
ming are addressed in detail and are illustrated by many examples. Chapters
11 and 12 are concerned with linear programming (LP) problems. The gen-
eral properties of LP and the simplex method for standard LP problems are
addressed in Chapter 11. Several interior-point methods including the primal
affine-scaling, primal Newton-barrier, and primal dual-path following meth-
ods are presented in Chapter 12. Chapter 13 deals with quadratic and general
convex programming. The so-called active-set methods and several interior-
point methods for convex quadratic programming are investigated. The chapter
also includes the so-called cutting plane and ellipsoid algorithms for general
convex programming problems. Chapter 14 presents two special classes of con-
vex programming known as semidefinite and second-order cone programming,
which have found interesting applications in a variety of disciplines. Chapter
15 treats general constrained optimization problems that do not belong to the
class of convex programming; special emphasis is placed on several sequential
quadratic programming methods that are enhanced through the use of efficient
line searches and approximations of the Hessian matrix involved. Chapter 16,
which concludes the book, examines several applications of constrained opti-
mization for the design of digital filters, for the control of dynamic systems, for
evaluating the force distribution in robotic systems, and in multiuser detection
for wireless communication systems.
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The book also includes two appendices, A and B, which provide additional
support material. Appendix A deals in some detail with the relevant parts of
linear algebra to consolidate the understanding of the underlying mathematical
principles involved whereas Appendix B provides a concise treatment of the
basics of digital filters to enhance the understanding of the design algorithms
included in Chaps. 8, 9, and 16.

The book can be used as a text for a sequence of two one-semester courses
on optimization. The first course comprising Chaps. 1 to 7, 9, and part of
Chap. 10 may be offered to senior undergraduate or first-year graduate students.
The prerequisite knowledge is an undergraduate mathematics background of
calculus and linear algebra. The material in Chaps. 8 and 10 to 16 may be
used as a text for an advanced graduate course on minimax and constrained
optimization. The prerequisite knowledge for this eourse is the contents of the
first optimization course.

The book is supported by online solutions of the end-of-chapter problems
under password as well as by a collection of MATLAB programs for free access
by the readers of the book, which can be used to solve a variety of optimiza-
tion problems. These materials can be downloaded from the book’s website:
http://www.ece.uvic.ca/~optimization/.

We are grateful to many of our past students at the University of Victoria,
in particular, Drs. M. L. R. de Campos, S. Netto, S. Nokleby, D. Peters, and
Mr. J. Wong who took our optimization courses and have helped improve the
manuscript in one way or another; to Chi-Tang Catherine Chang for typesetting
the first draft of the manuscript and for producing most of the illustrations; to
R. Nongpiur for checking a large part of the index; and to P. Ramachandran
for proofreading the entire manuscript. We would also like to thank Professors
M. Ahmadi, C. Charalambous, P. S. R. Diniz, Z. Dong, T. Hinamoto, and P. P.
Vaidyanathan for useful discussions on optimization theory and practice; Tony
Antoniou of Psicraft Studios for designing the book cover; the Natural Sciences
and Engineering Research Council of Canada for supporting the research that
led to some of the new results described in Chapters 8, 9, and 16; and last but
not least the University of Victoria for supporting the writing of this book over
a number of years.

Andreas Antoniou and Wu-Sheng Lu
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Chapter 1

THE OPTIMIZATION
PROBLEM

1.1 Introduction

Throughout the ages, man has continuously been involved with the process of
optimization. In its earliest form, optimization consisted of unscientific rituals
and prejudices like pouring libations and sacrificing animals to the gods, con-
sulting the oracles, observing the positions of the stars, and watching the flight
of birds. When the circumstances were appropriate, the timing was thought to
be auspicious (or optimum) for planting the crops or embarking on a war.

As the ages advanced and the age of reason prevailed, unscientific rituals
were replaced by rules of thumb and later, with the development of mathematics,
mathematical calculations began to be applied.

Interest in the process of optimization has taken a giant leap with the advent of
the digital computer in the early fifties. In recent years, optimization techniques
advanced rapidly and considerable progress has been achieved. At the same
time, digital computers became faster, more versatile, and more efficient. As a
consequence, it is now possible to solve complex optimization problems which
were thought intractable only a few years ago.

The process of optimization is the process of obtaining the ‘best’, if it is pos-
sible to measure and change what is ‘good’ or ‘bad’. In practice, one wishes the
‘most’ or ‘maximum’ (e.g., salary) or the ‘least’ or ‘minimum’ (e.g., expenses).
Therefore, the word ‘optimum’ is taken to mean ‘maximum’ or ‘minimum’ de-
pending on the circumstances; ‘optimum’ is a technical term which implies
quantitative measurement and is a stronger word than ‘best” which is more
appropriate for everyday use. Likewise, the word ‘optimize’, which means to
achieve an optimum, is a stronger word than ‘improve’. Optimization theory
is the branch of mathematics encompassing the quantitative study of optima
and methods for finding them. Optimization practice, on the other hand, is the
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collection of techniques, methods, procedures, and algorithms that can be used
to find the optima.

Optimization problems occur in most disciplines like engineering, physics,
mathematics, economics, administration, commerce, social sciences, and even
politics. Optimization problems abound in the various fields of engineering like
electrical, mechanical, civil, chemical, and building engineering. Typical areas
of application are modeling, characterization, and design of devices, circuits,
and systems; design of tools, instruments, and equipment; design of structures
and buildings; process control; approximation theory, curve fitting, solution
of systems of equations; forecasting, production scheduling, quality control;
maintenance and repair; inventory control, accounting, budgeting, etc. Some
recent innovations rely almost entirely on optimization theory, for example,
neural networks and adaptive systems.

Most real-life problems have several solutions and occasionally an infinite
number of solutions may be possible. Assuming that the problem at hand
admits more than one solution, optimization can be achieved by finding the
best solution of the problem in terms of some performance criterion. If the
problem admits only one solution, that is, only a unique set of parameter values
is acceptable, then optimization cannot be applied.

Several general approaches to optimization are available, as follows:

1. Analytical methods
2. Graphical methods
3. Experimental methods
4. Numerical methods

Analytical methods are based on the classical techniques of differential cal-
culus. In these methods the maximum or minimum of a performance criterion
is determined by finding the values of parameters x1, 9, ..., T, that cause the
derivatives of f(x1, xo, ..., z,) withrespecttoz1, x2, ..., T, toassume zero
values. The problem to be solved must obviously be described in mathematical
terms before the rules of calculus can be applied. The method need not entail
the use of a digital computer. However, it cannot be applied to highly nonlinear
problems or to problems where the number of independent parameters exceeds
two or three.

A graphical method can be used to plot the function to be maximized or min-
imized if the number of variables does not exceed two. If the function depends
on only one variable, say, x1, a plot of f(x1) versus x1 will immediately reveal
the maxima and/or minima of the function. Similarly, if the function depends
on only two variables, say, 1 and z2, a set of contours can be constructed. A
contour is a set of points in the (z1, x2) plane for which f(z1, x2) is constant,
and so a contour plot, like a topographical map of a specific region, will reveal
readily the peaks and valleys of the function. For example, the contour plot of
f(x1, z2) depicted in Fig. 1.1 shows that the function has a minimum at point
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A. Unfortunately, the graphical method is of limited usefulness since in most
practical applications the function to be optimized depends on several variables,
usually in excess of four.

f(x, x,) =50

X2

f()f]sxz) =0

X

Figure 1.1. Contour plot of f(x1, z2).

The optimum performance of a system can sometimes be achieved by direct
experimentation. In this method, the system is set up and the process variables
are adjusted one by one and the performance criterion is measured in each
case. This method may lead to optimum or near optimum operating conditions.
However, it can lead to unreliable results since in certain systems, two or more
variables interact with each other, and must be adjusted simultaneously to yield
the optimum performance criterion.

The most important general approach to optimization is based on numerical
methods. In this approach, iterative numerical procedures are used to generate a
series of progressively improved solutions to the optimization problem, starting
with an initial estimate for the solution. The process is terminated when some
convergence criterion is satisfied. For example, when changes in the indepen-
dent variables or the performance criterion from iteration to iteration become
insignificant.

Numerical methods can be used to solve highly complex optimization prob-
lems of the type that cannot be solved analytically. Furthermore, they can be
readily programmed on the digital computer. Consequently, they have all but
replaced most other approaches to optimization.



The discipline encompassing the theory and practice of numerical optimiza-
tion methods has come to be known as mathematical programming [1]-[5].
During the past 40 years, several branches of mathematical programming have
evolved, as follows:

1. Linear programming
2. Integer programming
3. Quadratic programming
4. Nonlinear programming
5. Dynamic programming

Each one of these branches of mathematical programming is concerned with a
specific class of optimization problems. The differences among them will be
examined in Sec. 1.6.

1.2  The Basic Optimization Problem

Before optimization is attempted, the problem at hand must be properly
formulated. A performance criterion F'must be derived in terms of n parameters
L1, T2y ..., Ty aAS

F = f(x1, x2, ..., Ty)

F'is a scalar quantity which can assume numerous forms. It can be the cost of a
product in a manufacturing environment or the difference between the desired
performance and the actual performance in a system. Variableszy, 2, ..., Zp
are the parameters that influence the product cost in the first case or the actual
performance in the second case. They can be independent variables, like time,
or control parameters that can be adjusted.

The most basic optimization problem is to adjust variables 1, x2, ..., z,
in such a way as to minimize quantity F'. This problem can be stated mathe-
matically as

minimize F' = f(z1, z2, ..., ) (1.1)

Quantity F' is usually referred to as the objective or cost function.

The objective function may depend on a large number of variables, sometimes
as many as 100 or more. To simplify the notation, matrix notation is usually
employed. If x is a column vector with elements x1, x2, ..., x,, the transpose
of x, namely, xT', can be expressed as the row vector

xT =[x To - Ty

In this notation, the basic optimization problem of Eq. (1.1) can be expressed
as
minimize F' = f(x) for x € E"

where £ represents the n-dimensional Euclidean space.
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On many occasions, the optimization problem consists of finding the maxi-
mum of the objective function. Since

max|[f(x)] = —min[—f(x)]

the maximum of F' can be readily obtained by finding the minimum of the
negative of F' and then changing the sign of the minimum. Consequently, in
this and subsequent chapters we focus our attention on minimization without
loss of generality.

In many applications, a number of distinct functions of x need to be optimized
simultaneously. For example, if the system of nonlinear simultaneous equations

filx)=0 for i=1,2, ..., m

needs to be solved, a vector x is sought which will reduce all f;(x) to zero
simultaneously. In such a problem, the functions to be optimized can be used
to construct a vector

F(x) = [f1(x) fa(x) = fa(x)]T

The problem can be solved by finding a point x = x* such that F(x*) = 0.
Very frequently, a point x* that reduces all the f;(x) to zero simultaneously
may not exist but an approximate solution, i.e., F(x*) ~ 0, may be available
which could be entirely satisfactory in practice.

A similar problem arises in scientific or engineering applications when the
function of x that needs to be optimized is also a function of a continuous
independent parameter (e.g., time, position, speed, frequency) that can assume
an infinite set of values in a specified range. The optimization might entail
adjusting variables 1, z2, ..., Xy S0 as to optimize the function of interest
over a given range of the independent parameter. In such an application, the
function of interest can be sampled with respect to the independent parameter,
and a vector of the form

F(x) = [f(x, t1) f(x, t2) -+ f(x, tm)]"
can be constructed, where ¢ is the independent parameter. Now if we let
fix) = f(x, ti)
we can write
F(x) = [f1(x) f2(x) - fm(x)]"

A solution of such a problem can be obtained by optimizing functions f;(x)
fori = 1, 2, ..., m simultaneously. Such a solution would, of course, be



6

approximate because any variations in f(x, t) between sample points are ig-
nored. Nevertheless, reasonable solutions can be obtained in practice by using
a sufficiently large number of sample points. This approach is illustrated by the
following example.

Example 1.1 The step response y(x, t) of an nth-order control system is re-
quired to satisfy the specification

t for 0 <t <2

2 for 2<t< 3

Wit =93 _y 15 for 3<t<4
for 4 <t

as closely as possible. Construct a vector F(x) that can be used to obtain a
function f(x, t) such that

y(x, t) = yo(x, t) for 0<t<5

Solution The difference between the actual and specified step responses, which
constitutes the approximation error, can be expressed as

f(xv t) = y(X, t) - yO(Xv t)
and if f(x, t)is sampledatt =0, 1, 2, ..., 5, we obtain
F(x) = [fi(x) fa(x) - fo(x)]"

where
fl(x) = f(X, 0) = y(X, O)
fo(x) = f(x, 1) =y(x, 1) -1
fa(x) = f(x, 2) =y(x, 2) — 2
f4(X) = f(X, 3) = y(X7 3) -2
f5(X) = f(X, 4) = y(X, 4) -1
fo(x) = f(x, 5) =y(x, 5) -1

The problem is illustrated in Fig. 1.2. It can be solved by finding a point x = x*
such that F(x*) ~ 0. Evidently, the quality of the approximation obtained for
the step response of the system will depend on the density of the sampling
points and the higher the density of points, the better the approximation.
]
Problems of the type just described can be solved by defining a suitable objec-
tive function in terms of the element functions of F(x). The objective function
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3

f(x 1)
y (X, 0

i Yy 1) N

Figure 1.2. Graphical construction for Example 1.1.

must be a scalar quantity and its optimization must lead to the simultaneous
optimization of the element functions of F'(x) in some sense. Consequently, a
norm of some type must be used. An objective function can be defined in terms
of the L, norm as

m 1/10
P=1,- {zm(xnp}
=1

where p is an integer.'
Several special cases of the L, norm are of particular interest. If p = 1

=1

and, therefore, in a minimization problem like that in Example 1.1, the sum of
the magnitudes of the individual element functions is minimized. This is called
an L problem.

If p = 2, the Euclidean norm

m 1/2
F=1L= {Z lfi(x>|2}
i=1

is minimized, and if the square root is omitted, the sum of the squares is mini-
mized. Such a problem is commonly referred as a least-squares problem.

ISee Sec. A.8 for more details on vector and matrix norms. Appendix A also deals with other aspects of
linear algebra that are important to optimization.



In the case where p = oo, if we assume that there is a unique maximum of
| fi(x)| designated F' such that

F = max [fi(x)|

1<i<m

then we can write

- Fﬁ%{?}['ﬁp)} }

Since all the terms in the summation except one are less than unity, they tend
to zero when raised to a large positive power. Therefore, we obtain

F = F = max | fi(x)]

1<i<m

Evidently, if the L, normis used in Example 1.1, the maximum approximation
error is minimized and the problem is said to be a minimax problem.

Often the individual element functions of F(x) are modified by using con-
stants w1, wa, ..., Wy, as weights. For example, the least-squares objective
function can be expressed as

m

F =Y [wifi(x)]?

i=1

so as to emphasize important or critical element functions and de-emphasize
unimportant or uncritical ones. If F'is minimized, the residual errors in w; f;(x)
at the end of the minimization would tend to be of the same order of magnitude,
1.€.,

error in |w; f;(x)| ~ €
and so

error in |f;(x)| &~ .
|wil
Consequently, if a large positive weight w; is used with f;(x), a small residual
error is achieved in | f;(x)|.

1.3  General Structure of Optimization Algorithms

Most of the available optimization algorithms entail a series of steps which
are executed sequentially. A typical pattern is as follows:
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Algorithm 1.1 General optimization algorithm

Step 1

(a) Set k = 0 and initialize xg.

(b) Compute Fy = f(xp).

Step 2

(a)Setk =k + 1.

(b) Compute the changes in x;, given by column vector Ax;, where

AXZ = [Azy Axg -+ Axy)

by using an appropriate procedure.
(c) Set xp, = X1 + Axy,
(d) Compute Fj, = f(xy) and AF), = Fj,_1 — F}.
Step 3
Check if convergence has been achieved by using an appropriate crite-
rion, e.g., by checking A F}, and/or Axy. If this is the case, continue to
Step 4; otherwise, go to Step 2.
Step 4
(a) Output x* = x;, and F* = f(x¥).
(b) Stop.

In Step 1, vector xg is initialized by estimating the solution using knowledge
about the problem at hand. Often the solution cannot be estimated and an
arbitrary solution may be assumed, say, xg = 0. Steps 2 and 3 are then
executed repeatedly until convergence is achieved. Each execution of Steps 2
and 3 constitutes one iteration, that is, k is the number of iterations.

When convergence is achieved, Step 4 is executed. In this step, column

vector
*

x* =[x al - 2k)T =xp
and the corresponding value of F’, namely,
F* = f(x7)

are output. The column vector x* is said to be the optimum, minimum, solution
point, or simply the minimizer, and F™* is said to be the optimum or minimum
value of the objective function. The pair x* and F™* constitute the solution of
the optimization problem.

Convergence can be checked in several ways, depending on the optimization
problem and the optimization technique used. For example, one might decide
to stop the algorithm when the reduction in Fj, between any two iterations has
become insignificant, that is,

|AF,| = |Fy—1 — Fi| <erp (1.2)
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where e is an optimization tolerance for the objective function. Alternatively,
one might decide to stop the algorithm when the changes in all variables have
become insignificant, that is,

|Az;| < e fort=1,2,...,n (1.3)

where ¢, is an optimization tolerance for variables x1, x2, ..., T,. A third
possibility might be to check if both criteria given by Eqgs. (1.2) and (1.3) are
satisfied simultaneously.

There are numerous algorithms for the minimization of an objective function.
However, we are primarily interested in algorithms that entail the minimum
amount of effort. Therefore, we shall focus our attention on algorithms that are
simple to apply, are reliable when applied to a diverse range of optimization
problems, and entail a small amount of computation. A reliable algorithm is
often referred to as a ‘robust’ algorithm in the terminology of mathematical
programming.

1.4 Constraints

In many optimization problems, the variables are interrelated by physical
laws like the conservation of mass or energy, Kirchhoff’s voltage and current
laws, and other system equalities that must be satisfied. In effect, in these
problems certain equality constraints of the form

ai(x) =0 for x € E™

where 1 = 1, 2, ..., p must be satisfied before the problem can be considered
solved. In other optimization problems a collection of inequality constraints
might be imposed on the variables or parameters to ensure physical realizability,
reliability, compatibility, or even to simplify the modeling of the problem. For
example, the power dissipation might become excessive if a particular current
in a circuit exceeds a given upper limit or the circuit might become unreliable
if another current is reduced below a lower limit, the mass of an element in a
specific chemical reaction must be positive, and so on. In these problems, a
collection of inequality constraints of the form

cj(x) >0 for x € E"

where 5 = 1, 2, ..., ¢ must be satisfied before the optimization problem can
be considered solved.

An optimization problem may entail a set of equality constraints and possibly
a set of inequality constraints. If this is the case, the problem is said to be a
constrained optimization problem. The most general constrained optimization
problem can be expressed mathematically as
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minimize f(x) for x € E" (1.4a)
subjectto:  a;(x) =0 fori=1,2,...,p (1.4b)
cj(x) >0 for j=1,2,...,¢q (1.4¢)

A problem that does not entail any equality or inequality constraints is said
to be an unconstrained optimization problem.

Constrained optimization is usually much more difficult than unconstrained
optimization, as might be expected. Consequently, the general strategy that
has evolved in recent years towards the solution of constrained optimization
problems is to reformulate constrained problems as unconstrained optimiza-
tion problems. This can be done by redefining the objective function such
that the constraints are simultaneously satisfied when the objective function
is minimized. Some real-life constrained optimization problems are given as
Examples 1.2 to 1.4 below.

Example 1.2 Consider a control system that comprises a double inverted pen-
dulum as depicted in Fig. 1.3. The objective of the system is to maintain the
pendulum in the upright position using the minimum amount of energy. This
is achieved by applying an appropriate control force to the car to damp out
any displacements ¢ (¢) and 02(t). Formulate the problem as an optimization
problem.

u(t) —==—f M

QO O

Figure 1.3.  The double inverted pendulum.

Solution The dynamic equations of the system are nonlinear and the standard
practice is to apply a linearization technique to these equations to obtain a
small-signal linear model of the system as [6]

x(t) = Ax(t) + fu(t) (1.5)



where
01(1) 0 1 0 0 0
. 01(15) . (67 0 —ﬁ 0 o -1
XO= 1ol A0 0o o 1" F7 0
02(t) —a 0 a 0 0

with @ > 0, 8 > 0, and a # (3. In the above equations, x(t), 01(t), and
f2(t) represent the first derivatives of x(t), 01(t), and 0 (t), respectively, with
respect to time, 0;(t) and 02(t) would be the second derivatives of ¢, (¢) and
02(t), and parameters « and 3 depend on system parameters such as the length
and weight of each pendulum, the mass of the car, etc. Suppose that at instant
t = 0 small nonzero displacements 61 (¢) and 65(t) occur, which would call for
immediate control action in order to steer the system back to the equilibrium
state x(¢) = 0 at time ¢ = Tp. In order to develop a digital controller, the
system model in (1.5) is discretized to become

x(k + 1) = ®x(k) + gu(k) (1.6)

where ® = I + AtA, g = Atf, At is the sampling interval, and I is the
identity matrix. Let x(0) # 0 be given and assume that 7 is a multiple of At,
i.e., To = KAt where K is an integer. We seek to find a sequence of control
actions u(k) for k = 0, 1, ..., K — 1 such that the zero equilibrium state is
achieved at t = Tp, i.e., x(Tp) = 0.

Let us assume that the energy consumed by these control actions, namely,

K-1
J =Y u’(k)
k=0

needs to be minimized. This optimal control problem can be formulated ana-
lytically as

K-1

minimize J = Y u*(k) (1.7a)
k=0

subjectto: x(K) =10 (1.7b)

From Eq. (1.6), we know that the state of the system att = K At is determined
by the initial value of the state and system model in Eq. (1.6) as

x(K) = ®%x(0) + Kz_:l L gy (k)
k=0

K-1
= b+ Y geulb)
k=0
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where h = —®%x(0) and g, = ®X~*~1g. Hence constraint (1.7b) is equiv-
alent to

K-1
> gru(k) =h (1.8)
k=0

If we define u = [u(0) u(1) - w(K —1)]T and G = [go g1 - gx_1),
then the constraint in Eq. (1.8) can be expressed as Gu = h, and the optimal
control problem at hand can be formulated as the problem of finding a u that
solves the minimization problem

minimize u”u (1.92)
subjectto: a(u) =0 (1.9b)
where a(u) = Gu — h. In practice, the control actions cannot be made

arbitrarily large in magnitude. Consequently, additional constraints are often
imposed on |u(7)|, for instance,

lu(i)] <m fori=0,1,..., K—1
These constraints are equivalent to

m + u(i)

>
m —u(i) >

0
0

Hence if we define

m+ u(K — 1)
m—u(K —1)

then the magnitude constraints can be expressed as
c(u)>0 (1.9¢)

Obviously, the problem in Eq. (1.9) fits nicely into the standard form of opti-
mization problems given by Eq. (1.4).
|

Example 1.3 High performance in modern optical instruments depends on the
quality of components like lenses, prisms, and mirrors. These components have
reflecting or partially reflecting surfaces, and their performance is limited by the
reflectivities of the materials of which they are made. The surface reflectivity
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can, however, be altered by the deposition of a thin transparent film. In fact, this
technique facilitates the control of losses due to reflection in lenses and makes
possible the construction of mirrors with unique properties [7][8].

As is depicted in Fig. 1.4, a typical N-layer thin-film system consists of N
layers of thin films of certain transparent media deposited on a glass substrate.
The thickness and refractive index of the ith layer are denoted as x; and n;,
respectively. The refractive index of the medium above the first layer is denoted
as ng. If ¢ is the angle of incident light, then the transmitted ray in the (i — 1)th
layer is refracted at an angle ¢; which is given by Snell’s law, namely,

n; sin ¢; = ng sin ¢q

S ,,0

layer 1 | X m
|
! i
| I\92 |
ayer 2 \ X2 m
/ +
layer 3 : n3

ny

&

layer N /

/A Substrate \ 4 NS

Figure 1.4. An N-layer thin-film system.

Given angle ¢ and the wavelength of light, A, the energy of the light reflected
from the film surface and the energy of the light transmitted through the film
surface are usually measured by the reflectance R and transmittance 7" which
satisfy the relation

R+T=1

For an N-layer system, R is given by (see [9] for details)
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a2
R(zi, ..., an, \) = | R—Y (1.10)
n +y
c
V=73 (1.11)
N .
{b} _ H [ cos O, (]Slncsk)/nk] 1
c oy LITk sin 0k Cos Oy, NN+1
(1.12)
where j = v/—1 and
2
5 = Wnkmf\cos Ok (1.13)
ng/ cos P for light polarized with the electric
vector lying in the plane of incidence
Nk = (1.14)

Ny, COS P for light polarized with the electric
vector perpendicular to the
plane of incidence

The design of a multilayer thin-film system can now be accomplished as follows:
Given a range of wavelenghs \; < A < ), and an angle of incidence ¢y, find
x1, T2, ..., x such that the reflectance R(x, \) best approximates a desired
reflectance R4(\) for A € [N\, Ay]. Formulate the design problem as an
optimization problem.

Solution In practice, the desired reflectance is specified at grid points A1, Ag,
..., Ag intheinterval [\;, \,]; hence the design may be carried out by selecting
x; such that the objective function

K
J = wilR(x, A\;) — Ra(\)]? (1.15)
i=1
1s minimized, where
X = [1'1 xXro - - QZN]T

and w; > 0 is a weight to reflect the importance of term [R(x, A\;) — Rq()\;)]?
in Eq. (1.15). If we letp = [1 ny+1]7, ey = [0 17, e— = [no —1]%, and

N
M(x, \) = H

k=1

cosdr  (7sindg)/nk
Mg sin cos
then R(x, A) can be expressed as

e M(x, A)n|”

eI M(x, \)n

b — c|?
bno + ¢

(1.16)

R(x, \) = ‘
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Finally, we note that the thickness of each layer cannot be made arbitrarily
thin or arbitrarily large and, therefore, constraints must be imposed on the
elements of x as

diy <x; < dy, fori=1,2,..., N 1.17)
The design problem can now be formulated as the constrained minimization
problem
9 2

K T
M(x, A;
minimize J = > w; || o= b, Xom | Ra(\) (1.182)

i=1 ezM(X7 )\1)77
subjectto: x; —d; > 0 fori=1,2,..., N (1.18b)
diy, —x; >0 for i=1,2,..., N (1.18¢)

Example 1.4 Quantities q1, g2, - .., ¢ of a certain product are produced by
m manufacturing divisions of a company, which are at distinct locations. The
product is to be shipped to n destinations that require quantities by, bo, ..., by.
Assume that the cost of shipping a unit from manufacturing division ¢ to des-
tination j is ¢;; withe =1, 2, ..., mand 7 = 1, 2, ..., n. Find the quantity
x;; to be shipped from division 7 to destination j so as to minimize the total
cost of transportation, i.e.,

m n
minimize C' = E E CijTij

i=1 j=1

This is known as the transportation problem. Formulate the problem as an
optimization problem.

Solution Note that there are several constraints on variables z;;. First, each
division can provide only a fixed quantity of the product, hence

n
Zazij:qi for i=1,2,...,m
j=1

Second, the quantity to be shipped to a specific destination has to meet the need
of that destination and so

m
Zmij:bj forj:1,2,...,n
i=1

In addition, the variables x;; are nonnegative and thus, we have

x5 >0 fori=1,2,....m and j=1,2,...,n
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If we let
CcC = [Cll e Cl’I’L C21 “ e C2n e le “ e Cmn]T
r 1 --- 1 0 0 --- 0 . ]
oo --- 0 1 1 --- 1
A oo --- 0 O 0 --- 0 -+ 1 1 -1
/10 --- 0 1 O - 0 --- 1 0 ---0
o1 --- 0 O 1 -~ 0 -- 0 1 ---0
o o -1 0 0 -~ 1 -~ 0 0 --- 1]
b=1[q - gnbi - ba)"
then the minimization problem can be stated as
minimize C' = ¢’ x (1.19a)
subjectto: Ax =Db (1.19b)
x>0 (1.19¢)
where c¢’'x is the inner product of ¢ and x. The problem in Eq. (1.19) like

those in Examples 1.2 and 1.3 fits into the standard optimization problem in
Eq. (1.4). Since both the objective function in Eq. (1.19a) and the constraints in
Egs. (1.19b) and (1.19c) are linear, the problem is known as a linear program-
ming (LP) problem (see Sect. 1.6.1).

|

1.5 The Feasible Region

Any point x that satisfies both the equality as well as the inequality constraints
is said to be a feasible point of the optimization problem. The set of all points that
satisfy the constraints constitutes the feasible domain region of f(x). Evidently,
the constraints define a subset of E™. Therefore, the feasible region can be
defined as a set?

R ={x:ai(x)=0for i=1,2,..., pandcj(x) >0for j=1,2,...,q}

where R C E™.
The optimum point x* must be located in the feasible region, and so the
general constrained optimization problem can be stated as

minimize f(x) for x e R

2The above notation for a set will be used consistently throughout the book.
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Any point X not in R is said to be a nonfeasible point.
If the constraints in an optimization problem are all inequalities, the con-
straints divide the points in the ™ space into three types of points, as follows:

1. Interior points
2. Boundary points
3. Exterior points

Aninterior point is a point for which ¢;(x) > 0 forall j. A boundary point is a
point for which at least one ¢;(x) = 0, and an exterior point is a point for which
atleast one ¢;(x) < 0. Interior points are feasible points, boundary points may
or may not be feasible points, whereas exterior points are nonfeasible points.

If a constraint ¢,, (x) is zero during a specific iteration, the constraint is said
to be active, and if ¢, (x*) is zero when convergence is achieved, the optimum
point x* is located on the boundary. In such a case, the optimum point is said to
be constrained. If the constraints are all equalities, the feasible points must be
located on the intersection of all the hypersurfaces corresponding to a;(x) = 0
fori: =1, 2, ..., p. The above definitions and concepts are illustrated by the
following two examples.

Example 1.5 By using a graphical method, solve the following optimization
problem

minimize f(x) = 7 + x5 — 4z, + 4
subjectto:  ¢1(x) = 21 —222+6 >0
ca(x) = —af +x3—1>0

c3(x) =21 >0

ca(x) =22 >0

Solution The objective function can be expressed as
(21— 2)* + 23 = f(x)

Hence the contours of f(x) in the (1, 22) plane are concentric circles with
radius /f(x) centered at x1 = 2, x5 = 0. Constraints ¢1(x) and co(x) dictate
that

w2 < 3w1 +3

and
To > a4+ 1

respectively, while constraints c3(x) and ¢4 (x) dictate that 1 and 2 be positive.
The contours of f(x) and the boundaries of the constraints can be constructed
as shown in Fig. 1.5.

The feasible region for this problem is the shaded region in Fig. 1.5. The
solution is located at point A on the boundary of constraint c2(x). In effect,
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2
c2(x) = - Xy +Xxp-1

~— ¢3(x)

c1 (X)= x1-2Xx246

Feasible -
region n

-2

Figure 1.5. Graphical construction for Example 1.5.

the solution is a constrained optimum point. Consequently, if this problem is
solved by means of mathematical programming, constraint ¢y (x) will be active
when the solution is reached.
In the absence of constraints, the minimization of f(x) would yield point B
as the solution.
|

Example 1.6 By using a graphical method, solve the optimization problem
minimize f(x) = 27 + 23 + 2z

subjectto: a1(x) =27+ 23—-1=0

(x)
ci(x) =z +22—-05>0
co(x) =21 >0
Cg(X) = T2 > 0

Solution The objective function can be expressed as

2 (zp+1)2 = f(x)+1
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Hence the contours of f(x) in the (21, x2) plane are concentric circles with
radius \/ f(x) + 1, centered at 21 = 0, 22 = —1. Constraint a1 (x) is a circle
centered at the origin with radius 1. On the other hand, constraint ¢ (x) is a
straight line since it is required that

xI9 Z —I + 0.5

The last two constraints dictate that z; and z2 be nonnegative. Hence the
required construction can be obtained as depicted in Fig. 1.6.

In this case, the feasible region is the arc of circle a;(x) = 0 located in the
first quadrant of the (z1, x2) plane. The solution, which is again a constrained
optimum point, is located at point A. There are two active constraints in this
example, namely, a1 (x) and c3(x).

In the absence of constraints, the solution would be point B in Fig. 1.6.

]

Figure 1.6. Graphical construction for Example 1.6.
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In the above examples, the set of points comprising the feasible region are
simply connected as depicted in Fig. 1.7a. Sometimes the feasible region may
consist of two or more disjoint sub-regions, as depicted in Fig. 1.7b. If this is
the case, the following difficulty may arise. A typical optimization algorithm
is an iterative numerical procedure that will generate a series of progressively
improved solutions, starting with an initial estimate for the solution. Therefore,
if the feasible region consists of two sub-regions, say, A and B, an initial estimate
for the solution in sub-region A is likely to yield a solution in sub-region A, and
a better solution in sub-region B may be missed. Fortunately, however, in most
real-life optimization problems, this difficulty can be avoided by formulating
the problem carefully.

Feasible

X .
2 region

X1

(a)

X2

Feasible
region A

Feasible
region B

X1

(b)

Figure 1.7. Examples of simply connected and disjoint feasible regions.
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1.6  Branches of Mathematical Programming

Several branches of mathematical programming were enumerated in Sec. 1.1,
namely, linear, integer, quadratic, nonlinear, and dynamic programming. Each
one of these branches of mathematical programming consists of the theory and
application of a collection of optimization techniques that are suited to a specific
class of optimization problems. The differences among the various branches
of mathematical programming are closely linked to the structure of the opti-
mization problem and to the mathematical nature of the objective and constraint
functions. A brief description of each branch of mathematical programming is
as follows.

1.6.1 Linear programming

If the objective and constraint functions are linear and the variables are con-
strained to be positive, as in Example 1.4, the general optimization problem
assumes the form

minimize f(x E ;T

n
subject to:  a;(x) = Zﬁij%’ —pj=0 for j=1,2,....p

n
cj(x):Z%jxi—ijO for j=1,2,...,¢q
i=1

x; >0 fore=1,2,...,n
where «;, 8i;, vij, p; and v; are constants. For example,

minimize f(x) = —2x1 + 4xy + Tx3 + x4 + 525
subjectto:  a1(x) = —x1 +xo+ 223+ x4+ 225 —7=0
az(x) = —x1 4+ 229+ 3x3+ 24+ 25 —6=0
a3(x) = —w1 +x2 + 234+ 214 +25 —4=0
x; >0 for t=1,2,...,5
or

minimize f(x) = 3z + 4x2 + b3
subject to: ( ) =21+ 2x2+3x3—5>0

Optimization problems like the above occur in many disciplines. Their so-
lution can be readily achieved by using some powerful LP algorithms as will
be shown in Chaps. 11 and 12.
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1.6.2 Integer programming

In certain linear programming problems, at least some of the variables are re-
quired to assume only integer values. This restriction renders the programming
problem nonlinear. Nevertheless, the problem is referred to as linear since the
objective and constraint functions are linear [10].

1.6.3 Quadratic programming

If the optimization problem assumes the form
minimize f(x) = ap+ v x+x7Qx

subjectto: alx > 3

where
a1 29 <. Qg
Qo1 Q22 ... Q2q
o =
Qpnl Qp2 ... QOpg
T
B =B B2 - Byl
T
Y= 72 - Wl

and Q is a positive definite or semidefinite symmetric square matrix, then the
constraints are linear and the objective function is quadratic. Such an optimiza-
tion problem is said to be a quadratic programming (QP) problem (see Chap. 10
of [5]). A typical example of this type of problem is as follows:

minimize f(x) = 227 + 125 — 21 — 229

subjectto: ¢

1.6.4 Nonlinear programming

In nonlinear programming problems, the objective function and usually the
constraint functions are nonlinear. Typical examples were given earlier as Ex-
amples 1.1 to 1.3. Thisis the most general branch of mathematical programming
and, in effect, LP and QP can be considered as special cases of nonlinear pro-
gramming. Although it is possible to solve linear or quadratic programming
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problems by using nonlinear programming algorithms, the specialized algo-
rithms developed for linear or quadratic programming should be used for these
problems since they are usually much more efficient.

The choice of optimization algorithm depends on the mathematical behavior
and structure of the objective function. Most of the time, the objective function
is a well behaved nonlinear function and all that is necessary is a general-
purpose, robust, and efficient algorithm. For certain applications, however,
specialized algorithms exist which are often more efficient than general-purpose
ones. These are often referred to by the type of norm minimized, for example,
an algorithm that minimizes an L1, Lo, or Ly, norm is said to by an Ly, Lo, or
minimax algorithm.

1.6.5 Dynamic programming

In many applications, a series of decisions must be made in sequence, where
subsequent decisions are influenced by earlier ones. In such applications, a
number of optimizations have to be performed in sequence and a general strat-
egy may be required to achieve an overall optimum solution. For example, a
large system which cannot be optimized owing to the size and complexity of
the problem can be partitioned into a set of smaller sub-systems that can be
optimized individually. Often individual sub-systems interact with each other
and, consequently, a general solution strategy is required if an overall optimum
solution is to be achieved. Dynamic programming is a collection of techniques
that can be used to develop general solution strategies for problems of the type
just described. It is usually based on the use of linear, integer, quadratic or
nonlinear optimization algorithms.
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Problems
1.1 (a) Solve the following minimization problem by using a graphical method:

minimize f(x) = x% + z9 + 4

subject to: ¢(x) = —a% — (zo4+4)? +16 >0
c2x) =x1—22—6>0

Note: An explicit numerical solution is required.
(b) Indicate the feasible region.
(c) Is the optimum point constrained?

1.2 Repeat Prob. 1(a) to (c) for the problem

. 8

minimize f(x) = 9 — —

x1

subjectto: ¢1(x) = ta1 — 22 >0

co(x) =16 — (1 —5)2 — 23 >0
Note: Obtain an accurate solution by using MATLAB.
1.3 Repeat Prob. 1(a) to (c) for the problem
minimize f(x) = (z1 — 12)x1 + (w3 — 6)z2 + 45

subjectto:  ¢1(x) = %961 - % >0
ca(x) = —w2 — %xl + % >0
= X2 Z 0

~—

C3 (X
1.4 Repeat Prob. 1(a) to (c) for the problem
minimize f(x) = 1(v1 — 6)* + (v2 — 4)?

subjectto: a1(x) =21 —3=0
c1(x) = 87—0—132—%”51 >0

ca(x) =2 >0

1.5 Develop a method to determine the coordinates of point A in Example 1.5
based on the following observation: From Fig. 1.5, we see that there will
be no intersection points between the contour of f(x) = 72 and constraint
c2(x) = 0 if radius r is smaller than the distance A to B and there will be
two distinct intersection points between them if ris larger than the distance
A to B. Therefore, the solution point A can be identified by determining
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the value of r for which the distance between the two intersection points
is sufficiently small.

1.6 Solve the constrained minimization problem

minimize f(x) = 3x1 + 2x2 + x3

subject to:  a1(x) = 2x1 + 3z + 3 = 30
ci(x) =z1 >0
ca(x) =2 >0
c3(x) =23 >0

Hint: (i) Use the equality constraint to eliminate variable x3, and (ii) use
2 = 22 to eliminate constraint z > 0.

1.7 Consider the constrained minimization problem
minimize f(x) = —5sin(z1 + x2) + (z1 — 22)? — 21 — 229

subjectto: c¢1(x) =5—x1 >0
c2(x) =5—22>0

(a) Plotadense family of contours for f(x) overtheregion D = {(x1, x2) :
-5 < x1 < 5, =5 < xg < 5} to identify all local minimizers and
local maximizers of f(x) in D.

(b) Convert the problem in part (a) into an unconstrained minimization

problem by eliminating the inequality constraints. Hint: A constraint

2 < acan be eliminated by using the variable substitution = a — &2.



Chapter 2

BASIC PRINCIPLES

2.1 Introduction

Nonlinear programming is based on a collection of definitions, theorems,
and principles that must be clearly understood if the available nonlinear pro-
gramming methods are to be used effectively.

This chapter begins with the definition of the gradient vector, the Hessian
matrix, and the various types of extrema (maxima and minima). The conditions
that must hold at the solution point are then discussed and techniques for the
characterization of the extrema are described. Subsequently, the classes of con-
vex and concave functions are introduced. These provide a natural formulation
for the theory of global convergence.

Throughout the chapter, we focus our attention on the nonlinear optimization
problem

minimize f = f(x)
subjectto: x € R

where f(x) is a real-valued function and R C E™ is the feasible region.

2.2  Gradient Information

In many optimization methods, gradient information pertaining to the ob-
jective function is required. This information consists of the first and second
derivatives of f(x) with respect to the n variables.

If f(x) € O, that is, if f(x) has continuous first-order partial derivatives,
the gradient of f(x) is defined as

V(%) @1
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where T
0 0 o)
V=15 8z =" 7] (2.2)
If f(x) € C?, thatis, if f(x) has continuous second-order partial derivatives,
the Hessian' of f(x) is defined as

H(x) = Vgl = V{VTf(x)} (2.3)
Hence Egs. (2.1) — (2.3) give
92f 92f 92f
87:2:% Ox10x9 Y B9110zn
f *r ... 9
H(X) — | Oz20m: Oz3 0x20Tn
oy oy . ¥
0rn0x1  OxpOza Ox2
For a function f(x) € C?
0% f B 0% f

Bxiaa:j a ij sz

since differentiation is a linear operation and hence H(x) is an n X n square
symmetric matrix.

The gradient and Hessian at a point x = xy, are represented by g(xj) and
H(xy) or by the simplified notation g, and Hy, respectively. Sometimes, when
confusion is not likely to arise, g(x) and H(x) are simplified to g and H.

The gradient and Hessian tend to simplify the optimization process con-
siderably. Nevertheless, in certain applications it may be uneconomic, time-
consuming, or impossible to deduce and compute the partial derivatives of
f(x). For these applications, methods are preferred that do not require gradient
information.

Gradient methods, namely, methods based on gradient information may use
only g(x) or both g(x) and H(x). In the latter case, the inversion of matrix
H(x) may be required which tends to introduce numerical inaccuracies and is
time-consuming. Such methods are often avoided.

2.3  The Taylor Series

Some of the nonlinear programming procedures and methods utilize linear
or quadratic approximations for the objective function and the equality and
inequality constraints, namely, f(x), a;(x), and ¢;(x) in Eq. (1.4). Such

1For the sake of simplicity, the gradient vector and Hessian matrix will be referred to as the gradient and
Hessian, respectively, henceforth.
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approximations can be obtained by using the Taylor series. If f(x) is a function
of two variables x1 and x5 such that f(x) € C* where P — oo, that is, f(x)
has continuous partial derivatives of all orders, then the value of function f(x)
at point [z1 + 01, w2 + d2] is given by the Taylor series as

0 9]
f(@r 401, 224 62) = flw1, 22) + afl‘% + 6;252
1 (0% o  20%f 2f
+§ (ax% (51 + 8(1316.%2 5152 + 8755% (52
+O(|13]1%) 42
where
& = [61 6)"

O(||6]|?) is the remainder, and ||| is the Euclidean norm of § given by
8]l = voTé

The notation ¢(x) = O(x) denotes that ¢(x) approaches zero at least as fast
as x as x approaches zero, that is, there exists a constant K > 0 such that
P(x)

2 <K asz—0
T

The remainder term in Eq. (2.4a) can also be expressed as o(||6]|?) where the
notation ¢(z) = o(x) denotes that ¢(x) approaches zero faster than v as x
approaches zero, that is,

¢(z)

——0 asx—0
T

If f(x) is a function of n variables, then the Taylor series of f(x) at point
[x1 + 61, z2 + d2, ...]is given by

"0
f(l'1+517 aj2—|—52, ) :f(l'l, €2, )+283{ 5Z
i=1
1 n n 82](‘
+§ ;;51 méj
+o(]|]1%) (2.4b)

Alternatively, on using matrix notation

Fx+8) = f(x) + ()78 + 6THX)S + o([5]%)  (240)
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where g(x) is the gradient, and H(x) is the Hessian at point x.
As ||6]] — 0, second- and higher-order terms can be neglected and a linear
approximation can be obtained for f(x + ) as

f(x+0)~ f(x)+g(x)s (2.4d)
Similarly, a quadratic approximation for f(x + d) can be obtained as
f(x+8)~ f(x)+g(x)"6 + 36 H(x)d (2.4e)

Another form of the Taylor series, which includes an expression for the
remainder term, is

fx+6) = f(x)
ak1+k2+ +knf

* Z 856 18x

1<ki+ka+--+kn<P
8P+1f(x + a5 -

zs

+ > PP ‘ (2.4)
k14ko+-+kn=P+1 Y*1 2 i=1
where 0 < o < 1 and
PRkt thn £(x) ﬁ (5;%
1<ky+ka+-+kn <P O} Oay? - - - Dy i kil
is the sum of terms taken over all possible combinations of k1, ko, ..., k, that

add up to a number in the range 1 to P. (See Chap. 4 of Protter and Morrey [1]
for proof.) This representation of the Taylor series is completely general and,
therefore, it can be used to obtain cubic and higher-order approximations for
f(x + &). Furthermore, it can be used to obtain linear, quadratic, cubic, and
higher-order exact closed-form expressions for f(x + &). If f(x) € C! and
P =0, Eq. (2.4f) gives

fx+0)=f(x) +gx+ad)’s (2.4g)
and if f(x) € C? and P = 1, then
fx+08) = f(x)+gx)"d + 36"H(x + ad)s (2.4h)

where 0 < o < 1. Eq. (2.4g) is usually referred to as the mean-value theorem
for differentiation.

Yet another form of the Taylor series can be obtained by regrouping the terms
in Eq. (2.4f) as

fx+08) = f(x) +g(x)"6+16"H(x)d + £ D*f(x)

1 r—1 :
LR e I O (2.40)
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where

s , 0" f(x) }
{5“512 P .

D=3 Y

i1=112=1 7

>

1

2.4  Types of Extrema

The extrema of a function are its minima and maxima. Points at which a
function has minima (maxima) are said to be minimizers (maximizers). Several
types of minimizers (maximizers) can be distinguished, namely, local or global
and weak or strong.

Definition 2.1 A point x* € R, where R is the feasible region, is said to be a
weak local minimizer of f(x) if there exists a distance € > 0 such that

f(x) > f(x) (2.5)
if
x€R and [x—x"||<e

Definition 2.2 A point x* € R is said to be a weak global minimizer of f(x) if

fx) = f(x9) (2.6)

forallx € 'R.
[ ]
If Def. 2.2 is satisfied at x*, then Def. 2.1 is also satisfied at x*, and so a
global minimizer is also a local minimizer.

Definition 2.3
If Eq. (2.5) in Def. 2.1 or Eq. (2.6) in Def. 2.2 is replaced by

f(x) > f(x) (2.7)

x* is said to be a strong local (or global) minimizer.
| |
The minimum at a weak local, weak global, etc. minimizer is called a weak
local, weak global, etc. minimum.
A strong global minimum in E? is depicted in Fig. 2.1.

Weak or strong and local or global maximizers can similarly be defined by
reversing the inequalities in Egs. (2.5) — (2.7).
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Jf(x)

Minimizer x*

X2

X

Figure 2.1. A strong global minimizer.

Example 2.1 The function of Fig. 2.2 has a feasible region defined by the set
R={z: z; <z <z}
Classify its minimizers.

Solution The function has a weak local minimum at point B, strong local minima
at points A, C, and D, and a strong global minimum at point C.
]

In the general optimization problem, we are in principle seeking the global
minimum (or maximum) of f(x). In practice, an optimization problem may
have two or more local minima. Since optimization algorithms in general are
iterative procedures which start with an initial estimate of the solution and
converge to a single solution, one or more local minima may be missed. If
the global minimum is missed, a suboptimal solution will be achieved, which
may or may not be acceptable. This problem can to some extent be overcome
by performing the optimization several times using a different initial estimate
for the solution in each case in the hope that several distinct local minima will
be located. If this approach is successful, the best minimizer, namely, the one
yielding the lowest value for the objective function can be selected. Although
such a solution could be acceptable from a practical point of view, usually
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strong
fx) sltron ig strong local
mir?iir"]lum glgbal e
weak minimum

local
minimum

feasible region

X1 X2
A B C D

Figure 2.2.  Types of minima. (Example 2.1)

there is no guarantee that the global minimum will be achieved. Therefore, for
the sake of convenience, the term ‘minimize f(x)’ in the general optimization
problem will be interpreted as ‘find a local minimum of f(x)’.

In a specific class of problems where function f(x) and set R satisfy certain
convexity properties, any local minimum of f(x) is also a global minimum
of f(x). In this class of problems an optimal solution can be assured. These
problems will be examined in Sec. 2.7.

2.5 Necessary and Sufficient Conditions for
Local Minima and Maxima

The gradient g(x) and the Hessian H(x) must satisfy certain conditions at a
local minimizer x*, (see [2, Chap. 6]). Two sets of conditions will be discussed,
as follows:

1. Conditions which are satisfied at a local minimizer x*. These are the
necessary conditions.

2. Conditions which guarantee that x* is a local minimizer. These are the
sufficient conditions.

The necessary and sufficient conditions can be described in terms of a number

of theorems. A concept that is used extensively in these theorems is the concept
of a feasible direction.

Definition 2.4 Let § = ad be a change in x where « is a positive constant and
d is a direction vector. If R is the feasible region and a constant & > 0 exists
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such that
X+ad €R
for all o in the range 0 < o < &, then d is said to be a feasible direction at
point x.
|
In effect, if a point x remains in R after it is moved a finite distance in a
direction d, then d is a feasible direction vector at x.

Example 2.2 The feasible region in an optimization problem is given by
R={x:x1>2 29 >0}

as depicted in Fig. 2.3. Which of the vectorsd; = [-2 2|7, dy = [0 27, d3 =
[2 0]T are feasible directions at points x; = [4 1], xo = [2 3]7, and x5 =
[14]7?

X2

X2

Wi

-2 0 2 4

X1

Figure 2.3.  Graphical construction for Example 2.2.

Solution Since
X1 +ad; €R

for all « in the range 0 < a < & for & = 1, d; is a feasible direction at point
x1; foranyrange 0 < a < &

x1+ads € R and x7; +adz €R

Hence ds and d3 are feasible directions at x7.
Since no constant & > 0 can be found such that

xo+ad; €R for 0 <a<a
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d; is not a feasible direction at x3. On the other hand, a positive constant &
exists such that

Xo+ads € R and X9 +ads €R

for 0 < o < &, and so dg and dg are feasible directions at xs.
Since x3 is not in R, no & > 0 exists such that

x3+ad €R for 0<a<a&

for any d. Hence d1, ds, and d3 are not feasible directions at x3.

2.5.1 First-order necessary conditions

The objective function must satisfy two sets of conditions in order to have
a minimum, namely, first- and second-order conditions. The first-order condi-
tions are in terms of the first derivatives, i.e., the gradient.

Theorem 2.1 First-order necessary conditions for a minimum
(a) If f(x) € C' and x* is a local minimizer, then
g(x*)Td >0

for every feasible direction d at x*.

(b) If x* is located in the interior of R then

g(x*) =0

Proof (a) If d is a feasible direction at x*, then from Def. 2.4
x=x"+ad R for 0 <a<a
From the Taylor series
f(x) = f(x*) + ag(x")"d + o(a/d]|)

If
g(x")Td <0
thenas o — 0
ag(x*)Td +o(af|d]]) <0

and so

fx) < f(x7)
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This contradicts the assumption that x* is a minimizer. Therefore, a necessary
condition for x* to be a minimizer is

g(x)'d >0

(b) If x* is in the interior of R, vectors exist in all directions which are
feasible. Thus from part (a), a direction d = d; yields

g(x")"d1 >0
Similarly, for a directiond = —d;
—g(x")Td; >0
Therefore, in this case, a necessary condition for x* to be a local minimizer is

g(x") =0

2.5.2  Second-order necessary conditions

The second-order necessary conditions involve the first as well as the second
derivatives or, equivalently, the gradient and the Hessian.

Definition 2.5

(a) Let d be an arbitrary direction vector at point x. The quadratic form
dTH(x)d is said to be positive definite, positive semidefinite, negative
semidefinite, negative definite if dTH(X)d >0,>0, <0, <0,re-
spectively, for all d # 0 at x. If d” H(x)d can assume positive as well
as negative values, it is said to be indefinite.

(b) If dTH(x)d is positive definite, positive semidefinite, etc., then matrix
H(x) is said to be positive definite, positive semidefinite, etc.

Theorem 2.2 Second-order necessary conditions for a minimum

(a) If f(x) € C? andx* is a local minimizer, then for every feasible direction
d ar x*
(i) g(x)Td >0
(i) If g(x*)Td = 0, then dTH(x*)d > 0
(b) If x* is a local minimizer in the interior of R, then
(i) g(x*) = 0
(ii) dTH(x)*d > 0 foralld # 0

Proof Conditions (7) in parts (a) and (b) are the same as in Theorem 2.1(a)
and (b).
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Condition (¢7) of part (a) can be proved by letting x = x* + ad, where d is a
feasible direction. The Taylor series gives

F(x) = f(x*) + ag(x")Td + a”d"H(x")d + o(a”[|d|*)
Now if condition (i) is satisfied with the equal sign, then
f(x) = f(x") + 30*d"H(x")d + o(a?[d]]?)
If
dTH(x*)d <0

thenas o« — 0

sa’d"H(x")d + o(a”||d||*) < 0
and so

fx) < f(x9)

This contradicts the assumption that x* is a minimizer. Therefore, if g(x*)7d =

0, then
dTH(x*)d >0

If x* is a local minimizer in the interior of R, then all vectors d are feasible
directions and, therefore, condition (¢¢) of part (b) holds. This condition is
equivalent to stating that H(x*) is positive semidefinite, according to Def. 2.5.

| |

Example 2.3 Point x* = [1 0]7 is a local minimizer of the problem

N[ —

minimize f(z1, x2) = x% — 1 +x2+ 122
subject to: x1 >0, z9 >0

Show that the necessary conditions for x* to be a local minimizer are satisfied.

Solution The partial derivatives of f(z1, x2) are

ﬁ:2$1—1+x27 af

I
8:191 (9%'2 T

Hence if d = [d; dg]” is a feasible direction, we obtain

g(X)Td = (2$1 -1+ l‘g)dl + (]_ + .Il)dg

Atx = x*
g(x")"d = 3ds
and since dy > 0 for d to be a feasible direction, we have

g(x")"d >0
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Therefore, the first-order necessary conditions for a minimum are satisfied.
Now
g(x"Td=0

if do = 0. The Hessian is
o121
H(x*) = {1 0}
and so
dTH(x*)d = 2d? + 2dds
For dy = 0, we obtain
dTH(x*)d = 2d? > 0

for every feasible value of d;. Therefore, the second-order necessary conditions
for a minimum are satisfied.
|

Example 2.4 Points p; = [0 0] and p2 = [6 9] are probable minimizers for

the problem

minimize f(z1, To) = 25 — x3xy + 223

subjectto: x1 >0, 9 >0

Check whether the necessary conditions of Theorems 2.1 and 2.2 are satisfied.

Solution The partial derivatives of f(z1, x2) are

0
—f = 337% — 22129,

2
= —z] +4x
0x1 1 2

of
0xo
Hence if d = [d; d3]”, we obtain

g(x)Td = (322 — 2z120)dy + (—22 + 4a2)d

At points p; and ps
g(x)"d=0

i.e., the first-order necessary conditions are satisfied. The Hessian is

6x1 — 2290 —2x
)

and if x = py, then
0 0
and so
d"H(p;)d =4d3 >0
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Hence the second-order necessary conditions are satisfied at x = p;, and p;
can be a local minimizer.

If x = po, then
18 —12
H(pQ) = |:_12 4 :|

and
dTH(ps)d = 18d3 — 24d,dy + 4d3

Since d”H(p2)d is indefinite, the second-order necessary conditions are vio-
lated, that is, p2 cannot be a local minimizer.
]
Analogous conditions hold for the case of a local maximizer as stated in the
following theorem:

Theorem 2.3 Second-order necessary conditions for a maximum

(a) If f(x) € C? and x* is a local maximizer, then for every feasible
direction d at x*
(i) g(x*)Td <0
(i) If g(x*)T d = 0, then dTH(x*)d < 0
(b) If x* is a local maximizer in the interior of R then
(i) g(x*) =0
(ii) dTH(x*)d < 0 foralld # 0
Condition (i7) of part (b) is equivalent to stating that H(x*) is negative semidef-
inite.
The conditions considered are necessary but not sufficient for a point to be
a local extremum point, that is, a point may satisfy these conditions without
being a local extremum point. We now focus our attention on a set of stronger
conditions that are sufficient for a point to be a local extremum. We consider
conditions that are applicable in the case where x* is located in the interior of
the feasible region. Sufficient conditions that are applicable to the case where
x* is located on a boundary of the feasible region are somewhat more difficult
to deduce and will be considered in Chap. 10.

Theorem 2.4 Second-order sufficient conditions for a minimum If f (x) € C?
and x* is located in the interior of R, then the conditions

(a)g(x*) =0

(b) H(x™") is positive definite
are sufficient for x* to be a strong local minimizer.

Proof For any direction d, the Taylor series yields

f(x* +d) = f(x*) +g(x")Td + 5d"H(x")d + o([[d]]?)
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and if condition (a) is satisfied, we have

F(x* +d) = f(x*) + 5d"H(x")d + o([[d]*)
Now if condition (b) is satisfied, then

%dTH(X*)d + 0(||dH2) >0 as||d]| — 0

Therefore,
fx*+d) > f(x7)

that is, x* is a strong local minimizer.
|
Analogous conditions hold for a maximizer as stated in Theorem 2.5 below.

Theorem 2.5 Second-order sufficient conditions for a maximum If f(x*) €
C? and x* is located in the interior of R, then the conditions

(a)g(x) =0

(b) H(x*) is negative definite
are sufficient for x* to be a strong local maximizer.

2.6  Classification of Stationary Points

If the extremum points of the type considered so far, namely, minimizers and
maximizers, are located in the interior of the feasible region, they are called
stationary points since g(x) = 0 at these points. Another type of stationary
point of interest is the saddle point.

Definition 2.6 A point X € R, where R is the feasible region, is said to be a
saddle point if
(a)g(x) =0
(b) point X is neither a maximizer nor a minimizer.
[

A saddle point in E? is illustrated in Fig. 2.4.
At a point x = X + ad € R in the neighborhood of a saddle point X, the
Taylor series gives

f(x) = f(%) + 50*d"H(X)d + o(a”||d]*)

since g(X) = 0. From the definition of a saddle point, directions d; and da
must exist such that

fx+ad)) < f(x) and f(x+ ads) > f(X)

Since X is neither a minimizer nor a maximizer, then as o — 0 we have
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Saddle
point

=10,

Figure 2.4. A saddle point in EZ.

dfH(x)d; <0 and diH(x)dy >0

Therefore, matrix H(X) must be indefinite.

Stationary points can be located and classified as follows:

1. Find the points x; at which g(x;) = 0.

2. Obtain the Hessian H(x;).

3. Determine the character of H(x;) for each point x;.
If H(x;) is positive (or negative) definite, x; is a minimizer (or maximizer);
if H(x;) is indefinite, x; is a saddle point. If H(x;) is positive (or negative)
semidefinite, x; can be a minimizer (or maximizer); in the special case where
H(x;) = 0, x; can be a minimizer or maximizer since the necessary conditions
are satisfied in both cases. Evidently, if H(x;) is semidefinite, insufficient
information is available for the complete characterization of a stationary point
and further work is, therefore, necessary in such a case. A possible approach
would be to deduce the third partial derivatives of f(x) and then calculate the
fourth term in the Taylor series, namely, term D3 f(x)/3! in Eq. (2.4i). If the
fourth term is zero, then the fifth term needs to be calculated and so on. An
alternative and more practical approach would be to compute f(x; + e;) and
f(x; —ej) forj =1, 2, ..., nwhere e; is a vector with elements

0 for k #j
k= e for k =j
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for some small positive value of € and then check whether the definition of a
minimizer or maximizer is satisfied.

Example 2.5 Find and classify the stationary points of
f(x) = (21 -2)° + (22 - 3)°

Solution The first-order partial derivatives of f(x) are

of _ 2
ooy~ T2
of _ 2
6:E2 = 3(1’2 — 3)

If g = 0, then
3(x1—2)2=0 and 3(zz—3)2=0
and so there is a stationary point at
x=x; =[23]"
The Hessian is given by

6(x1 — 2) 0

H= 0 6(z2 — 3)

and at x = x3
H=0

Since H is semidefinite, more work is necessary in order to determine the
type of stationary point.

The third derivatives are all zero except for 9% f /0x3 and 93 f /Ox3 which
are both equal to 6. For point x; + §, the fourth term in the Taylor series is

given by
1 (50°f 5 0°f 3 53
3,(51%%+52%3 :51+(52
and is positive for d1, d2 > 0 and negative for d;, d2 < 0. Hence
f(X1 + 6) > f(Xl) for 61, 6o >0

and
f(X1 + 5) < f(Xl) for 61, do <0

that is, x; 1S neither a minimizer nor a maximizer. Therefore, x; is a saddle
point.
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]
From the preceding discussion, it follows that the problem of classifying the
stationary points of function f(x) reduces to the problem of characterizing the
Hessian. This problem can be solved by using the following theorems.

Theorem 2.6 Characterization of symmetric matrices A real symmetric n xXn
matrix H is positive definite, positive semidefinite, etc., if for every nonsingular
matrix B of the same order, the n X n matrix H given by

H=B"HB
is positive definite, positive semidefinite, etc.
Proof If H is positive definite, positive semidefinite etc., then for all d # 0
d"Hd = d"(BTHB)d
= (d"BT)H(Bd)
= (Bd)TH(BJ)
Since B is nonsingular, Bd = d is a nonzero vector and thus
d"Hd = d"Hd > 0, > 0, etc.
for all d # 0. Therefore, R
H=B"HB
is positive definite, positive semidefinite, etc.

Theorem 2.7 Characterization of symmetric matrices via diagonalization

(a) If the n x n matrix B is nonsingular and

H=B"HB

is a diagonal matrix with diagonal elements Bl, iLQ, cey iLn then H
is positive definite, positive semidefinite, negative semidefinite, negative
definite, if h; > 0, > 0, <0, < Ofori =1,2,..., n. Otherwise, if
some h; are positive and some are negative, H is indefinite.

(b) The converse of part (a) is also true, that is, if H is positive definite,
positive semideﬁnite, etc., then h; > 0, > 0, etc., and if H is indefinite,
then some h; are positive and some are negative.

Proof (a) Foralld # 0

dHd = d?hy + dhy + - - + d%h,,
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Therefore, if iLl >0, >0,etc. fori =1, 2, ..., n, then
d"Hd > 0, > 0, etc.

that is, H is positive definite, positive semidefinite etc. If some h; are positive
and some are negative, a vector d can be found which will yield a positive or
negative d”Hd and then IEI is indefinite. Now since H = BTHB, it follows
from Theorem 2.6 that if h; > 0, > 0, etc. fort = 1, 2, ..., n, then H is
positive definite, positive semidefinite, etc.

(b) Suppose that H is positive definite, positive semidefinite, etc. Since
H = BTHB, it follows from Theorem 2.6 that H is positive definite, positive
semidefinite, etc. If d is a vector with element d;, given by

dh — 0 for k #i
F=11 for k=1

then K R
d™Hd=h;, >0, >0, etc. fori=1,2,...,n

If H is indefinite, then from Theorem 2.6 it follows that His indefinite, and,
therefore, some h; must be positive and some must be negative.
]

A diagonal matrix H can be obtained by performing row and column oper-
ations on H, like adding & times a given row to another row or adding m times
a given column to another column. For a symmetric matrix, these operations
can be carried out by applying elementary transformations, that is, H can be
formed as

H=.. E3sE;E;HETETET ... (2.8)
where Eq, Eq, - - - are elementary matrices. Typical elementary matrices are
1 00
0 1 0
0 k 1

and
1 m 0 O
0 1 0 0
Ev=10 0 1 0
0 0 0 1

If E, premultiplies a 3 x 3 matrix, it will cause k times the second row to be
added to the third row, and if E; postmultiplies a 4 x 4 matrix it will cause m
times the first column to be added to the second column. If

B=E/EIE!...
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then
BT = .. .E3E;E;

and so Eq. (2.8) can be expressed as
H = B"HB

Since elementary matrices are nonsingular, B is nonsingular, and hence H
is positive definite, positive semidefinite, etc., if H is positive definite, positive
semidefinite, etc.

Therefore, the characterization of H can be achieved by diagonalizing H,
through the use of appropriate elementary matrices, and then using Theorem

2.7.
Example 2.6 Diagonalize the matrix
1 -2 4
H=|-2 2 0
4 0o -7

and then characterize it.

Solution Add 2 times the first row to the second row as

1 0 0 1 -2 4 1 2 0 1 0 4
2 1 0f -2 2 0 01 0j=]0 -2 8
0 0 1 4 0 —7][0 0 1 4 8 -7

Add —4 times the first row to the third row as

1 0 0 1 0 4 1 0 —4 1 0 0
0O 1 0|0 =2 8 01 0|=|0 -2 8
-4 0 1 4 8 =710 0 1 0 8 =23
Now add 4 times the second row to the third row as
1 0 0 1 0 0 1 00 1 0 0
01 0j]|]0 —2 8 01 4({=]0 -2 0
0 4 1 0 8 —-23][0 0 1 0 0 9
Since 1 = 1, ho = —2, hg = 9, H is indefinite.
Example 2.7 Diagonalize the matrix

4 -2 0
H=|-2 3 0

0 0 50
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and determine its characterization.

Solution Add 0.5 times the first row to the second row as

1 0 0 4 -2 0 1 05 0 4 0 O
05 1 01|1-2 3 O 0 1 0l=10 2 O
0 0 1 0 0 50] 10 O 1 0 0 50

Hence H is positive definite.

||
Another theorem that can be used to characterize the Hessian is as follows:

Theorem 2.8 Eigendecomposition of symmetric matrices

(a) If H is a real symmetric matrix, then there exists a real unitary (or
orthogonal) matrix U such that

A =UTHU

is a diagonal matrix whose diagonal elements are the eigenvalues of H.
(b) The eigenvalues of H are real.
(See Chap. 4 of Horn and Johnson [3] for proofs.)

For a real unitary matrix, we have U7 U = I, where

10 --- 0
0 1 0
Li=1. . :
00 --- 1

is the n x n identity matrix, and hence det U = =1, that is, U is nonsingular.
From Theorem 2.6, A is positive definite, positive semidefinite, etc. if H is
positive definite, positive semidefinite, etc. Therefore, H can be characterized
by deducing its eigenvalues and then checking their signs as in Theorem 2.7.

Another approach for the characterization of a square matrix H is based on
the evaluation of the so-called principal minors and leading principal minors of
H, which are described in Sec. A.6. The details of this approach are summarized
in terms of the following theorem.

Theorem 2.9 Properties of matrices
(a) If H is positive semidefinite or positive definite, then

detH>0or >0

(b) H is positive definite if and only if all its leading principal minors are
positive, i.e., det H; > 0fort =1, 2, ..., n.
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(c) His positive semidefinite if and only if all its principal minors are nonneg-

ative, i.e., det (Hz(l)) > 0 for all possible selections of {l1, la, ..., l;}
fori=1,2,..., n

(d) H is negative definite if and only if all the leading principal minors of
—H are positive, i.e., det (—H;) > 0fori=1,2, ..., n.

(e) H is negative semidefinite if and only if all the principal minors of —H
are nonnegative, i.e., det (—Hil)) > 0 for all possible selections of
{ll, lg, ey li}fori: 1, 2, ey N

(f) H is indefinite if neither (c) nor (e) holds.

Proof (@) Elementary transformations do not change the determinant of a matrix
and hence

detH:detI:I:HfLi

i=1
where H is a diagonalized version of H with diagonal elements hi. If H is

positive semidefinite or positive definite, then ~; > 0 or > 0 from Theorem 2.7
and, therefore,

det H>0or >0

(b) If
d=[dydy ---d; 00--- 0]

and H is positive definite, then
d"Hd = d{H.d, > 0

for all dg # 0 where
do=[di dy -+ di]"

and H; is the ith leading principal submatrix of H. The preceding inequality
holdsfori =1, 2, ..., nand, hence H, is positive definitefori = 1, 2, ..., n.
From part (a)

det H; >0 fort=1,2,....n

Now we prove the sufficiency of the theorem by induction. If n = 1, then
H = a1, and det (H;) = ay; > 0 implies that H is positive definite. We
assume that the sufficiency is valid for matrix H of size (n — 1) by (n — 1)
and we shall show that the sufficiency is also valid for matrix H of size n by n.
First, we write H as
H,1 h
a0 ]
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where
hi1 hia -+ hip-1 hin
ha1 has -+ hop_1 haon
Hn—l - . . . 9 h - .
hp—11 ha-12 o+ hp—imot hn—1n

By assumption H,,_; is positive definite; hence there exists an R such that
R'H, R=1,,

where I,,_1 is the (n — 1) x (n — 1) identity matrix. If we let

R O
s=[5 1]
we obtain
RT 0] [H,_ h R O I,.1 R'h
T _ n—1 _ n—1
SHS‘[O 1}[W’ mJ[o J‘[Whlhm}
If we define I R™L
_ n—1
o=t
then
TT [ I,.1 0][L,; R'M][I,.; -R'h
T S"HST = —h™R 1| |hTR  hp, 0 1
[T 0
“ | 0 hpy—hTRR"h

Soif welet U = ST and o = h,y;, — hTRRTh, then
1
UTHU =

which implies that
(det U)? det H = o

As det H > 0, we obtain o > 0 and, therefore, UTHU is positive definite
which implies the positive definiteness of H.
(c) The proof of the necessity is similar to the proof of part (b). If

d=[0---0d, 0 ...le20...0dli0...0]T
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and H is positive semidefinite, then
l
d"Hd = d7H"d, > 0

for all dy # O where
do = [dy, di, -+ dj,)"

and Hz(l) is an ¢ X ¢ principal submatrix. Hence HEZ) is positive semidefinite for

all possible selections of rows (and columns) from the set! = {ly, lo, ..., l;,}
withl <3 <lp<... <l;<n}andi=1, 2, ..., n. Now from part (a)

det (H)) >0  for 1,2,..., n.

The proof of sufficiency is rather lengthy and is omitted. The interested reader
is referred to Chap. 7 of [3].

(d) If H; is negative definite, then —H; is positive definite by definition and
hence the proof of part (b) applies to part (d).

(e) If Hz(-l) is negative semidefinite, then —HEZ) is positive semidefinite by
definition and hence the proof of part (c) applies to part (e).

(f) If neither part (c) nor part (e) holds, then d” Hd can be positive or
negative and hence H is indefinite.

|

Example 2.8 Characterize the Hessian matrices in Examples 2.6 and 2.7 by
using the determinant method.

Solution Let
A; = det (Hl)

be the leading principal minors of H. From Example 2.6, we have
A =1, Ay=-2, A3=-18

and if A} = det (—H;), then
Al=—-1, Ay=-2, A;=18

since

det (—H;) = (—1)° det (H;)

Hence H is indefinite.
From Example 2.7, we get

Hence H is positive definite.
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Example 2.9 Find and classify the stationary points of

f(x) = 2% + 2129 + 222 4 221 + 29

Solution The first partial derivatives of f(x) are

0

7f = 2x1 + 222 + 2
81‘1

0

7‘](. = 2x —1—4.%'2 +1
8952

If g = 0, then
201+ 229+ 2=0

201 +4x0+1=0

and so there is a stationary point at

x=x = -4 4"
The Hessian is deduced as
H— 2 2
T2 4

and since A; = 2 and Ay = 4, H is positive definite. Therefore, x; is a
minimizer.

|
Example 2.10 Find and classify the stationary points of function
f(x) =22 — 23 + 22 — 22125 — 20wy + 4y + 12

Solution The first-order partial derivatives of f(x) are

0

97 =2x] —2x3+4

8$1

of

2 op, —

1 Ty — T3

0

—f = —2x1 — 22 + 213

Oxs
On equating the gradient to zero and then solving the simultaneous equations
obtained, the stationary point x; = [—10 4 —8]7 can be deduced. The Hessian

18
2 0 -2
H=|0 -2 -1

-2 -1 2
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and since Ay = 2, Ay = —4, Az = —2,and A} = =2, Ay = —4, Ay =2,
H is indefinite. Therefore, point x; = [~10 4 — 8] is a saddle point. The
solution can be readily checked by diagonalizing H as

2 0 0
H={0 -2 0
0 0 25

2.7 Convex and Concave Functions

Usually, in practice, the function to be minimized has several extremum
points and, consequently, the uncertainty arises as to whether the extremum
point located by an optimization algorithm is the global one. In a specific class
of functions referred to as convex and concave functions, any local extremum
point is also a global extremum point. Therefore, if the objective function is
convex or concave, optimality can be assured. The basic principles relating to
convex and concave functions entail a collection of definitions and theorems.

Definition 2.7
A set R. C E" is said to be convex if for every pair of points x1, xo C R,
and for every real number « in the range 0 < « < 1, the point

x =ax) + (1 — a)x

is located in R, i.e., X € R..
|
In effect, if any two points x;, X2 € R are connected by a straight line,
then R, is convex if every point on the line segment between x; and x3 is a
member of R.. If some points on the line segment between x; and x» are not in
R, the set is said to be nonconvex. Convexity in sets is illustrated in Fig. 2.5.
The concept of convexity can also be applied to functions.

Definition 2.8

(a) A function f(x) defined over a convex set R, is said to be convex if for
every pair of points X1, X2 € R, and every real number « in the range
0 < a < 1, the inequality

flaxi + (1 — a)x2] < af(x1) + (1 —a)f(x2) (2.9)
holds. If x; # x5 and

floxi + (1 —a)xa] < af(x1) + (1 —a)f(x2)
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Convex set

Nonconvex set

Figure 2.5. Convexity in sets.

then f(x) is said to be strictly convex.

(b) If ¢(x) is defined over a convex set R, and f(x) = —¢(x) is convex,
then ¢(x) is said to be concave. If f(x) is strictly convex, ¢(x) is
strictly concave.

|
In the left-hand side of Eq. (2.9), function f(x) is evaluated on the line
segment joining points x; and xo whereas in the right-hand side of Eq. (2.9) an
approximate value is obtained for f(x) based on linear interpolation. Thus a
function is convex if linear interpolation between any two points overestimates
the value of the function. The functions shown in Fig. 2.6a and b are convex
whereas that in Fig. 2.6¢ is nonconvex.

Theorem 2.10 Convexity of linear combination of convex functions If

f(x) = afi(x) +bf2(x)

where a, b > 0 and f1(x), f2(Xx) are convex functions on the convex set R.,
then f(x) is convex on the set R..

Proof Since f1(x) and f(x) are convex, and a, b > 0, then for x = ax; +
(1 — a)x2 we have
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Convex Convex

flx)

X1 X2 X1 X2

(@) ( b)

Nonconvex

fix)

X1 X2

()

Figure 2.6. Convexity in functions.

afiloxi + (1 — a)xo] < alafi(x1) + (1 — a) fi(x2)]
bfolaxi + (1 — a)xa] < blafo(x1) + (1 — @) fa(x2)]
where 0 < o < 1. Hence
f(x) = afi(x) + bfa(x)
flaxi + (1 — a)x2] = afi[axi + (1 — a)xa] + bfa]ax; + (1 — a)x2]
< afafi(x1) +bf2(x1)] + (1 — a)[afi(x2)
+bf2(x2)]

Since

afi(x1) +bfa(x1) = f
afi(xz) + bfa(x2) = f(x2)

the above inequality can be expressed as
flaxi + (1 — a)xa] < af(x1) + (1 — a) f(x2)

that is, f(x) is convex.
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Theorem 2.11 Relation between convex functions and convex sets If f(x) is
a convex function on a convex set R, then the set

Se={x: x€R., f(x) <K}
is convex for every real number K.

Proof If x;, x3 € S, then f(x;) < K and f(x2) < K from the definition of
Se. Since f(x) is convex

flaxi + (1 —a)xg] < af(x1) + (1 —a)f(x2)
<aK+(1-a)K
or
fx) <K for x=ax;+(l—a)xe and 0<a<1
Therefore

xeS,

that is, S, is convex by virtue of Def. 2.7.

|
Theorem 2.11 is illustrated in Fig. 2.7, where set S. is convex if f(x) is a
convex function on convex set R..

fx)

X1

Figure 2.7.  Graphical construction for Theorem 2.11.

An alternative view of convexity can be generated by examining some the-
orems which involve the gradient and Hessian of f(x).
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Theorem 2.12 Property of convex functions relating to gradient If f(x) €
C!, then f(x) is convex over a convex set R, if and only if

Fx1) > f(x) +g(x)" (x1 — x)

forall x and x1 € R, where g(x) is the gradient of f(x).

Proof The proof of this theorem consists of two parts. First we prove that if
f(x) is convex, the inequality holds. Then we prove that if the inequality holds,
f(x) is convex. The two parts constitute the necessary and sufficient conditions
of the theorem. If f(x) is convex, then for all « in the range 0 < o < 1

flaxi + (1 - a)x] < af(x1) + (1 - a)f(x)
flx+alx —x)] - f(x) < alf(x1) = f(x)]
As a — 0, the Taylor series of f[x + a(x; — x)] yields
F(x) + &) alx —x) = f(x) < alf(x1) = f(x)]
and so
Fx) = f(x) +8(0)" (x1 - x) (2.10)
Now if this inequality holds at points x and x> € R, then
f(x2) = f(x) + g(x)" (x2 — x) (2.11)
Hence Eqgs. (2.10) and (2.11) yield
af(x1) + (1 —a)f(x2) = af(x) +ag(x)"(x1 —x) + (1 - a)f(x)
+(1 - a)g(x)" (x2 — x)
or
af(x1) + (1 —a)f(x2) > f(x) +&" (x)[axs + (1 - a)xz — x|

With the substitution
x =ax1 + (1 — a)xe

we obtain

flaxi + (1 = a)xo] < af(x1) + (1 — ) f(x2)

for 0 < a < 1. Therefore, from Def. 2.8 f(x) is convex.
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f(xl)

f(x)

Figure 2.8.  Graphical construction for Theorem 2.12.

Theorem 2.12 states that a linear approximation of f(x) at point x; based
on the derivatives of f(x) at x underestimates the value of the function. This
fact is illustrated in Fig. 2.8.

Theorem 2.13 Property of convex functions relating to the Hessian A function
f(x) € C? is convex over a convex set R, if and only if the Hessian H (x) of
f(x) is positive semidefinite for x € R..

Proof If x; = x4+ d where x; and x are arbitrary points in R, then the Taylor
series yields

f(x1) = f(%) +g8(x)" (x1 — x) + 3d"H(x + ad)d (2.12)

where 0 < a < 1 (see Eq. (2.4h)). Now if H(x) is positive semidefinite
everywhere in R, then

1d"H(x + ad)d > 0

and so
Fx1) = f(x) +g(x)" (x1 —x)

Therefore, from Theorem 2.12, f(x) is convex.
If H(x) is not positive semidefinite everywhere in R, then a point x and at
least a d exist such that

d"H(x + ad)d < 0

and so Eq. (2.12) yields
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Fx1) < f(x) +g(x)" (x1 - x)

and f(x) is nonconvex from Theorem 2.12. Therefore, f(x) is convex if and
only if H(x) is positive semidefinite everywhere in R..
|
For a strictly convex function, Theorems 2.11-2.13 are modified as follows.

Theorem 2.14 Properties of strictly convex functions

(a) If f(x) is a strictly convex function on a convex set R, then the set
Se={x: xeR, for f(x) < K}

is convex for every real number K.
(b) If f(x) € C1, then f(x) is strictly convex over a convex set if and only if

F(x1) > f(x) +g(x)" (x1 - x)

forall x and x1 € R. where g(x) is the gradient of f(x).
(c) A function f(x) € C? is strictly convex over a convex set R.. if and only
if the Hessian H(x) is positive definite for x € R..

If the second-order sufficient conditions for a minimum hold at x* as in
Theorem 2.4, in which case x* is a strong local minimizer, then from Theorem
2.14(c), f(x) must be strictly convex in the neighborhood of x*. Consequently,
convexity assumes considerable importance even though the class of convex
functions is quite restrictive.

If ¢(x) is defined over a convex set R, and f(x) = —¢(x) is strictly con-
vex, then ¢(x) is strictly concave and the Hessian of ¢(x) is negative definite.
Conversely, if the Hessian of ¢(x) is negative definite, then ¢(x) is strictly
concave.

Example 2.11 Check the following functions for convexity:
(a) f(x )—el’l +23+5
b)) f(x) = 3x1 - 5x1x2 —|— 3
(©) f(x)= g1 — 2] + a3
d) f(x)= 50 + 1021 + 22 — 623 — 323

Solution In each case the problem reduces to the derivation and characterization
of the Hessian H.
(a) The Hessian can be obtained as

et
H‘[o 2}
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For —oo < x1 < 0o, H is positive definite and f(x) is strictly convex.
(b) In this case, we have

Since Ay = 6, Ay = —13 and All = —6, AIQ = —13, where A; = det (H;)
and A; = det (—H;), H is indefinite. Thus f(x) is neither convex nor concave.
(c) For this example, we get

H— {395%—2 0]

0 2

For 1 < —y/2/3 and 21 > +/2/3, H is positive semidefinite and f(x) is
convex; for z1 < —+/2/3 and z1 > /2/3, H is positive definite and f(x) is
strictly convex; for —/2/3 < z1 < \/2/3, H is indefinite, and f(x) is neither
convex nor concave.

(d) As before

~12 0
H=[" 4

In this case H is negative definite, and f(x) is strictly concave.

2.8 Optimization of Convex Functions

The above theorems and results can now be used to deduce the following
three important theorems.

Theorem 2.15 Relation between local and global minimizers in convex func-
tions If f(x) is a convex function defined on a convex set R, then

(a) the set of points S. where f(x) is minimum is convex;
(b) any local minimizer of f(x) is a global minimizer.

Proof (a) If F* is a minimum of f(x), then S, = {x: f(x) < F*, x € R.}
is convex by virtue of Theorem 2.11.

(b) If x* € R, is alocal minimizer but there is another point x** € R, which
is a global minimizer such that

) < F(X)
then on line x = ax™ + (1 — a)x*

flox™ + (1 —a)x"] < af (x™7) + (1 — ) f(x7)
<af(x’)+ (1 -a)f(x")
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or
f(x) < f(x") for all

This contradicts the fact that x* is a local minimizer and so

fx) = f(x7)

for all x € R.. Therefore, any local minimizers are located in a convex set,
and all are global minimizers.
[ ]

Theorem 2.16 Existence of a global minimizer in convex functions If f (x) €
C' is a convex function on a convex set R and there is a point X* such that

g(z*)Td >0 where d = x; — x*
forall x1 € R, then x* is a global minimizer of f(x).
Proof From Theorem 2.12
Fa) > f6) + g(x) (1 — x7)
where g(x*) is the gradient of f(x) at x = x*. Since
g(x")"(x1 —x*) > 0

we have
fa) = f(x7)
and so x* is a local minimizer. By virtue of Theorem 2.15, x* is also a global
minimizer.
Similarly, if f(x) is a strictly convex function and

g(x)Td >0

then x* is a strong global minimizer.
|

The above theorem states, in effect, that if f(x) is convex, then the first-order
necessary conditions become sufficient for x* to be a global minimizer.

Since a convex function of one variable is in the form of the letter U whereas
a convex function of two variables is in the form of a bowl, there are no theorems
analogous to Theorems 2.15 and 2.16 pertaining to the maximization of a convex
function. However, the following theorem, which is intuitively plausible, is
sometimes useful.

Theorem 2.17 Location of maximum of a convex function If f(x) is a
convex function defined on a bounded, closed, convex set R., then if f(x) has
a maximum over R, it occurs at the boundary of R..
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Proof If point x is in the interior of R, a line can be drawn through x which
intersects the boundary at two points, say, x; and x2, since R is bounded and
closed. Since f(x) is convex, some « exists in the range 0 < « < 1 such that

x =ax) + (1 — a)xa

and
fx) < af(xi) + (1 —a)f(x2)
If f(x1) > f(x2), we have

fx) <af(x)+ 1 -a)f(x)

= f(x1)
If
f(x1) < f(x2)
we obtain
f(x) < af(x2) +(1—a)f(xs)
= f(x2)
Now if
f(x1) = f(x2)
the result

fx) < f(x1) and  f(x) < f(x2)
is obtained. Evidently, in all possibilities the maximizers occur on the boundary
of R..
]
This theorem is illustrated in Fig. 2.9.
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Problems
2.1 (a) Obtain a quadratic approximation for the function
f(x) =223 + 22 4+ 2322 + dwyzo + 3

at point x + & if xI = [1 1].
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f®

X, ' '

Maximizers

Xy

Figure 2.9.  Graphical construction for Theorem 2.17.

(b) Now obtain a linear approximation.

2.2 An n-variable quadratic function is given by
f(x)=a+blx+ 1xTQx
where Q is an n X n symmetric matrix. Show that the gradient and Hessian
of f(x) are given by
g=b+Qx and Vif(x)=Q

respectively.

2.3 Point x, = [2 4]T is a possible minimizer of the problem
minimize f(x) = 1[2? + 423 — 4(321 + 8z2) + 100
subjectto: x1 =2, 29 >0
(a) Find the feasible directions.
(b) Check if the second-order necessary conditions are satisfied.

2.4 Points x, = [0 3]7, x;, = [4 0], x. = [4 3]T are possible maximizers of
the problem

maximize f(x) = 2(4zy + 3z2) — (27 + 23 4 25)
subjectto: x1 >0, 92 >0

(a) Find the feasible directions.
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(b) Check if the second-order necessary conditions are satisfied.
2.5 Pointx, = [4 —1]7 is a possible minimizer of the problem

minimize f(x) = % — 9

subjectto: z1 4+ 22 =3, 1 >0
(a) Find the feasible directions.
(b) Check if the second-order necessary conditions are satisfied.

2.6 Classify the following matrices as positive definite, positive semidefinite,
etc. by using LDL” factorization:

5 3 1 -5 1 1
(@H=|3 4 2|, ) H=|1 -2 2
1 2 6 1 2 -4

(-1 2 -3
(ccH=1|2 4 5
-3 5 —20
2.7 Check the results in Prob. 2.6 by using the determinant method.

2.8 Classify the following matrices by using the eigenvalue method:

1 0 4
wu-[2 %, @H_[Z g 108]

2.9 One of the points x, = [1 —1]T, x;, = [0 0]7, x, = [1 1]7 minimizes
the function
f(x) =100(z2 — 27)* + (1 — 21)?

By using appropriate tests, identify the minimizer.

2.10 An optimization algorithm has given a solution x, = [0.6959 —11.3479]7
for the problem

minimize f(x) = 2 + 122 + (1 + 22)?

(a) Classify the general Hessian of f(x) (i.e., positive definite, . . ., etc.).
(b) Determine whether x, is a minimizer, maximizer, or saddle point.

2.11 Find and classify the stationary points for the function
f(x) = 2? — 23 + 23 — 22123 — 2ox3 + 4y + 12
2.12 Find and classify the stationary points for the following functions:

(a) f(x) = 222 + 23 — 2z129 + 225 + o
(b) f(x) = 23 — daiwy + 4a] + 22123 + 23 — 8wy29 + 871 — 42
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2.13 Show that
212 5
f(x) = (z2 —21)" + 27
has only one stationary point which is neither a minimizer or a maximizer.

2.14 Investigate the following functions and determine whether they are convex
or concave:

23 4 cosh
(b) f(x) = 23 4 223 + 222 + 23 — 2129 + 2173 — 22924 + 2174
x% — 2x% — 2x§ + xi — X1To + X123 — 2T924 + T 124
2.15 A given quadratic function f(x) is known to be convex for ||x|| < e.
Show that it is convex for all x € E".

2.16 Two functions f1(x) and fo(x) are convex over a convex set R.. Show
that

f(x) = afi(x) + Bf2(x)
where « and 3 are nonnegative scalars is convex over R..

2.17 Assume that functions f;(x) and fo(x) are convex and let

f(x) = max{f1(x), fa(x)}

Show that f(x) is a convex function.

2.18 Let ~(t) be a single-variable convex function which is monotonic non-
decreasing, i.e., y(t1) > 7(t2) for t; > t2. Show that the compound
function [ f(x)] is convex if f(x) is convex [2].



Chapter 3

GENERAL PROPERTIES
OF ALGORITHMS

3.1 Introduction

In Chap. 1, an optimization algorithm has been informally introduced as a
sequence of steps that can be executed repeatedly in order to obtain a series
of progressively improved solutions, starting with an initial estimate of the
solution. In this chapter, a more formal and mathematical description of an
algorithm will be supplied and some fundamental concepts pertaining to all
algorithms in general will be studied.

The chapter includes a discussion on the principle of global convergence.
Specifically, a general theorem that enumerates the circumstances and condi-
tions under which convergence can be assured in any given algorithm is proved
[1]-[3].

The chapter concludes with a quantitative discussion relating to the speed of
convergence of an optimization algorithm. In particular, quantitative criteria
are described that can be used to compare the efficiency of different types of
algorithms.

3.2  An Algorithm as a Point-to-Point Mapping

There are numerous algorithms that can be used for the solution of nonlinear
programming problems ranging from some simple to some highly complex al-
gorithms. Although different algorithms differ significantly in their structure,
mathematical basis, and range of applications, they share certain common prop-
erties that can be regarded as universal. The two most fundamental common
properties of nonlinear programming algorithms are

1. They are iterative algorithms.
2. They are descent algorithms.
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An algorithm is iterative if the solution is obtained by calculating a series
of points in sequence, starting with an initial estimate of the solution. On the
other hand, an algorithm is a descent algorithm if each new point generated by
the algorithm yields a reduced value of some function, possibly the objective
function.

In mathematical terms, an algorithm can be regarded as a point-to-point
mapping where a point X, in some space, normally a subspace of the E™ vector
space, is mapped onto another point xj_ 1 in the same space. The value of x4 1
is governed by some rule of correspondence. In effect, if point x;, is used as input
to the algorithm, a point X is obtained as output. An algorithm can thus be
represented by a block diagram as depicted in Fig. 3.1. In this representation, xg
is an initial estimate of the solution and the feedback line denotes the iterative
nature of the algorithm. The rule of correspondence between xj41 and xg,
which might range from a simple expression to a large number of formulas, can
be represented by the relation

Xk+1 = A(Xk)

X0o—=———

A O Xp+1

X, Q

Figure 3.1.  Block diagram for an iterative algorithm.

When applied iteratively to successive points, an algorithm will generate a

series (or sequence) of points {x, X1, ..., Xg, ...} inspace X, as depicted in
Fig. 3.2. If the sequence converges to a limit X, then X is the required solution.
A sequence {xq, X1, ..., Xk, ...} is said to converge to a limit X if for any

given € > 0, and an integer K exists such that
|xr —%[| <e  forallk > K

where || - || denotes the Euclidean norm. Such a sequence can be represented
by the notation {x,}°, and its limit as £ — oo by x, — X. If the sequence
converges, it has a unique limit point.

Later on in this chapter, reference will be made to subsequences of a given
sequence. A subsequence of {x}72, denoted as {xj}rer, where I is a set
of positive integers, can be obtained by deleting certain elements in {x;}72.
For example, if I = {k : k > 10} then {xy }rer = {x10, X11, X12, ...}, if
I = {k : k even and greater than zero} then {xy}rc; = {x2, X4, X¢, ...},
andif [ = {k: 0 < k < 100}, then {xy }rer = {x1, X2, ..., X100}. In our
notation S = {k : P}, S is the set of elements such that &k has property P.
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A2

Xq
Figure 3.2. A point-to-point algorithm in E2.

If the sequence of points generated by an algorithm A converges to a limit X
as described above, then algorithm A is said to be continuous.

3.3 An Algorithm as a Point-to-Set Mapping

In the above discussion, an algorithm was considered as a point-to-point
mapping in that for any given point x; a corresponding unique point X1 is
generated. In practice, this is the true nature of an algorithm only if a specific
version of the algorithm is implemented on a specific computer. Since dif-
ferent implementations of an algorithm by different programmers on different
computers are very likely to give slightly different results, owing to the accu-
mulation of roundoff errors, it is advantageous to consider an algorithm as a
point-to-set mapping. In this way, if any general properties of an algorithm
are deduced, they will hold for all possible implementations of the algorithm.
Furthermore, they may hold for similar algorithms. For these reasons, the fol-
lowing more general definition of an algorithm will be used throughout the rest
of this chapter.

Definition 3.1 An algorithm is a point-to-set mapping on space X that assigns
a subset of X to every point x € X.
]
According to this definition, an algorithm A will generate a sequence of
points {xk}zozl by assigning a set X; which is a subset of X, i.e., X7 C X, to
a given initial point xg € X. Then an arbitrary point x; € X is selected and
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a set Xo C X is assigned to it, and so on, as depicted in Fig. 3.3. The rule of
correspondence between X1 and Xy, is, therefore, of the form

XE4+1 € A(Xk)

where A(xy,) is the set of all possible outputs if x, is the input.

X2 X]

X0

X1 ARXg)

X AKXp)
X

X3

X1

Figure 3.3. A point-to-set algorithm in E2.

Clearly, the above definition encompasses all possible implementations of
an algorithm and it would encompass a class of algorithms that are based on a
similar mathematical structure. The concept of the point-to-set algorithm can
be visualized by noting that in a typical algorithm

Xk41 = A(Xk) + &4

where €, is a random vector due to the quantization of numbers. Since the
quantization error tends to depend heavily on the sequence in which arithmetic
operations are performed and on the precision of the computer used, the exact
location of x4 1 is not known. Nevertheless, it is known that x; ; is a member
of a small subset of X.

3.4 Closed Algorithms

In the above discussion, reference was made to the continuity of a point-to-
point algorithm. A more general property which is applicable to point-to-point
as well as to point-to-set algorithms is the property of closeness. This property
reduces to continuity in a point-to-point algorithm.
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Definition 3.2

(a) A point-to-setalgorithm A, from space X to space X is said to be closed
at point X € X if the assumptions

Xp — X for x, € X
Xpt+1 — X1 for xg41 € A(Xk)

imply that
X1 € A(f()
The notation x;, — X denotes that the sequence {x},} 2, converges to a
limit X.
(b) A point-to-set algorithm A is said to be closed on X if itis closed at each

point of X.
|

This definition is illustrated in Fig. 3.4. It states that algorithm A is closed at
point X if a solid line can be drawn between X and X, and if a solid line can be
drawn for all X € X, then A is closed on X.

A
X

X2

Xk

X1 € A(Xp)

X1

Figure 3.4. Definition of a closed algorithm in E2.

Example 3.1 An algorithm A is defined by

(x4 2) for z; > 1

Ty = A(xg) =
%l’k for x;, <1
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2.0

X+

1.0

1.0 Xk 2.0

Figure 3.5. Graph for Example 3.1.

(see Fig. 3.5). Show that the algorithm is not closed at & = 1.

Solution Let sequence {z}}7° , be defined by

1
=1+ W
The sequence can be obtained as
{zi}izo ={1.5, 1.25, 1.125 ..., 1}

and hence
T — rz=1

The corresponding sequence {1 }7°, is given by

Th41 = A(xk) = %(Ik + 2)

and so
{Tr41}ieo = {1.75, 1.625, 1.5625, ..., 1.5}
Thus
Tht1 — .fi'l =1.5
Now

N
—
=
N~—
Il
=
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and since 1 = 1.5, we have
1 # A(2)
Therefore, A is not closed at & = 1. The problem is due to the discontinuity of
A(:Ek) at xp = 1.
]

Example 3.2 An algorithm A is defined by
Tpy1 = A(zg) = l‘% for —oo < a2 <

Show that A is closed.

Solution Let { ) } be a sequence converging to Z, i.e., z, — &. Then {xy11} =
{A(xr)} = {x7} is a sequence that converges to 22, i.e., z7 — &1 = 2% Since
%1 = A(&), we conclude that for all  in the range —oo < & < 00, A is closed.

3.5 Descent Functions

In any descent algorithm, a specific function D(x) is utilized, which is re-
duced continuously throughout the optimization until convergence is achieved.
D(x) may be the objective function itself or some related function, and it is re-
ferred to as the descent function. A formal definition summarizing the required
specifications for a function to be a descent function is as follows. This will be
used later in Theorem 3.1.

Definition 3.3

Let S C X be the set containing the solution points, and assume that A is an
algorithm on X. A continuous real-valued function D(x) on X is said to be a
descent function for S and A if it satisfies the following specifications:

(a) if xi & S, then D(x;41) < D(xy) for all x41 € A(xx)
(b) if x5, € S, then D(xp41) < D(xy) for all x41 € A(xx)

Example 3.3 Obtain a descent function for the algorithm

Th+1 = A(mk) = %:Ek

Solution For an arbitrary point xg, the sequence

o0 = — [
{':Uk}k‘:() - {':U()) 4 ) 42, cee O}
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is generated. Therefore, D(xy) = |zj| satisfies condition (a). The solution
set is a single point at zo, = 0. Therefore, condition (b) is satisfied. Hence
D(z) = |z| is a descent function for the algorithm.

|

3.6  Global Convergence

If an algorithm has the important property that an arbitrary initial point xg €
X will lead to a converging sequence of points {xj}7°, then the algorithm is
said to be globally convergent. In practice, even the most efficient algorithms
are likely to fail if certain conditions are violated. For example, an algorithm
may generate sequences that do not converge or may converge to points that
are not solutions. There are several factors that are likely to cause failure in an
algorithm. However, if they are clearly understood, certain precautions can be
taken which will circumvent the cause of failure. Consequently, the study of
global convergence is of particular interest not only to the theorist but also the
practitioner.

A large segment of the theory of global convergence deals with the circum-
stances and conditions that will guarantee global convergence. An important
theorem in this area is as follows:

Theorem 3.1 Convergence of an algorithm Let A be an algorithm on X and
assume that an initial point xo will yield an infinite sequence {x;,}7° , where

Xp+1 € A(xg)

If a solution set S and a descent function D(xy,) exist for the algorithm such
that

(a) all points xj, are contained in a compact subset of X,
(b) D(xy) satisfies the specifications of Def. 3.3, and
(c) the mapping of A is closed at all points outside S,

then the limit of any convergent subsequence of {X}, }32 is a solution point.

Proof The proof of this important theorem consists of two parts. In part (a),
we suppose that X is the limit of any subsequence of {x}}7°, say, {Xx}ker,
where [ is a set of integers, and show that D(xy,) converges with respect to the
infinite sequence {x; }7° . In part (b), we show that X is in the solution set .S.

The second part of the proof relies heavily on the Weierstrass theorem (see
[4]) which states that if W is a compact set, then the sequence {x}}72,, where
xy € W, has alimit pointin W. A set W is compact if it is closed. A set W is
closed, if all points on the boundary of W belong to W. A set W is bounded,
if it can be circumscribed by a hypersphere of finite radius. A consequence of
the Weierstrass theorem is that a subsequence {xj, }rer of {x1}72 has a limit
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point in set W = {x;, : k € I} since W is a subset of W and is, therefore,
compact.

(a) Since D(xy) is continuous on X and X is assumed to be the limit of
{xx }ker, a positive number and an integer K exist such that

D(x;) — D(X) < ¢ 3.1)

fork > K with k € I. Hence D(xy) converges with respect to the subsequence
{xt }ker. We must show, however, that D(xj) converges with respect to the
infinite sequence {x; }72.

For any £ > K, we can write

D(xx) = D(®) = [D(xx) = D(xk)] + [D(xk) - DX)]  (B.2)

It k = K in Eq. (3.1)
D(xg)—D(x) <e (3.3)

and if k > K, then D(xy) < D(x) from Def. 3.3 and hence

D(x;) — D(xg) <0 (3.4)
Now from Egs. (3.2) — (3.4), we have

D(xx) — D)) < e
for all k > K. Therefore,

lim D(xy) = D(X) (3.5)

k—o00

that is, D(xy,) converges with respect to the infinite series, as x; — X.

(b) Let us assume that X is not in the solution set. Since the elements of
subsequence {Xy1}res belong to a compact set according to condition (a), a
compact subset {xj 1 : k € I C I} exists such that x;, converges to some
limit X by virtue of the Weierstrass theorem. As in part (a), we can show that

lim D(xxy1) = D(X) (3.6)

k—o0

Therefore, from Egs. (3.5) and (3.6)
D(x) = D(%) (3.7
On the other hand,

X, — X for k€ I (from part (a))
X1 — X for xp+1 € A(x)
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and since X ¢ S by supposition, and A is closed at points outside .S according
to condition (c), we have
X € A(%)

Consequently,

D(x) < D(%) (3.8)
On comparing Eqs. (3.7) and (3.8), a contradiction is observed and, in effect,
our assumption that point X is not in the solution set S is not valid. That is, the
limit of any convergent subsequence of {x,}7°, is a solution point.

]
In simple terms, the above theorem states that if

(a) the points that can be generated by the algorithm are located in the finite
E™ space,

(b) a descent function can be found that satisfies the strict requirements
stipulated, and

(c) the algorithm is closed outside the neighborhood of the solution,

then the algorithm is globally convergent. Further, a very close approximation
to the solution can be obtained in a finite number of iterations, since the limit
of any convergent finite subsequence of {xy} ;2 is a solution.

A corollary of Theorem 3.1 which is of some significance is as follows:

Corollary If under the conditions of Theorem 3.1, the solution set .S consists
of a single point X, then the sequence {xy, };° , converges to X.

Proof If we suppose that there is a subsequence {xy } s that does not converge
to X, then
[xr — || > € (3.9)

forallk € Iande > 0. Now set {xy: € I’ C I} is compactand hence {xj } e
converges to a limit point, say, x’, by virtue of the Weierstrass theorem. From
Theorem 3.1,

”Xk — X,H <e€ (3.10)

forall k > K. Since the solution set consists of a single point, we have x’ = .
Under these circumstances, Egs. (3.9) and (3.10) become contradictory and, in
effect, our supposition is false. That is, any subsequence of {x}}7°, including
the sequence itself, converges to X.
[

If one or more of the conditions in Theorem 3.1 are violated, an algorithm
may fail to converge. The possible causes of failure are illustrated in terms of
the following examples.

Example 3.4 A possible algorithm for the problem

minimize f(x) = |z|
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is

%(Jﬁk + 2) for zp > 1
Tpr1 = A(zg) =
ixk for Tk < 1

Show that the algorithm is not globally convergent and explain why.

Solution If xg = 4, the algorithm will generate the sequence

{z}52, = {4, 3, 2.5, 2.25, ..., 2}
and if xo = —4, we have
{ze}i2o = {—4, -1, —0.25, —0.0625, ..., 0}

Since two distinct initial points lead to different limit points, the algorithm is
not globally convergent. The reason is that the algorithm is not closed at point
zr, = 1 (see Example 3.1), i.e., condition (c) of Theorem 3.1 is violated.

]
Example 3.5 A possible algorithm for the problem

minimize f(z) = 23

is
Th41 = A(:L‘k) = —(wi + 1)

Show that the algorithm is not globally convergent and explain why.
Solution For an initial point zq the solution sequence is
{z}f20 = {zo, —(23+1), —((25+1)°+1), (((2§+1)°+1)*+1), ..., —oc}

Hence the sequence does not converge, and its elements are not in a compact
set. Therefore, the algorithm is not globally convergent since condition (a) of
Theorem 3.1 is violated.

]

Example 3.6 A possible algorithm for the problem
minimize f(x) = |z — 1|

subjectto: x>0

18

Tpr1 = Alzg) = Vg
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Show that the algorithm is globally convergent for 0 < zg < oc.

Solution For any initial point x in the range 0 < xy < co, we have

1/2 1/4

{zr}izo = {=o, l‘o/ ) 370/ R
1/2 1/4 1/8

{21} = {2, «* «® 1

Thus
xr— =1 X1 —21=1

Evidently, all points x; belong to a compact set and so condition (a) is satisfied.
The objective function f(x) is a descent function since

|zps1 — 1] < |xg — 1] forall k < 0o

and so condition (b) is satisfied.

Since
T — & for x>0
Tht+1 — i‘l for Tht1 = A($k)
and
1 = A(%)

the algorithm is closed, and so condition (c) is satisfied. The algorithm is,
therefore, globally convergent.
]

3.7 Rates of Convergence

The many available algorithms differ significantly in their computational
efficiency. An efficient or fast algorithm is one that requires only a small
number of iterations to converge to a solution and the amount of computation
will be small. Economical reasons dictate that the most efficient algorithm for
the application be chosen and, therefore, quantitative measures or criteria that
can be used to measure the rate of convergence in a set of competing algorithms
are required.

The most basic criterion in this area is the order of convergence of a sequence.
If {2 } 72, is a sequence of real numbers, its order of convergence is the largest
nonnegative integer p that will satisfy the relation

0<fB <
where

8= lim S G.11)

k—oo |z — Z|P
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and Z is the limit of the sequence as £ — oo. Parameter (3 is called the
convergence ratio.

Example 3.7 Find the order of convergence and convergence ratio of the se-
quence {xy} 32 if

(@ zp=~F for0<y<1

(b)xk:72k for 0 <y <1

Solution (a) Since & = 0, Eq. (3.11) gives

6 = hm f)/k(lfp)“i’l
k—o00
Hence forp =0, 1, 2we have 8 =0, ~, co. Thusp=1and 3 = ~.
(b) In this case

2(k+1)

S P o 2k (2—p)
f= i, S = i T

Hence forp =0, 1, 2, 3, wehave 6 =0, 0, 1, co. Thusp =2 and 5 = 1.
|
If the limit in Eq. (3.11) exists, then

lim |z —2|=¢
k—oo
where ¢ < 1. As a result
lim ‘$k+1 — Zi‘| = ﬁgp
k—o0

Therefore, the rate of convergence is increased if p is increased and ( is reduced.
If v = 0.8 in Example 3.7, the sequences in parts (a) and (b) will be

{zi}izy = {1, 0.8, 0.64, 0.512, 0.409, ..., 0}
and
{zK}io = {1, 0.64, 0.409, 0.167, 0.023, ..., 0}

respectively. The rate of convergence in the second sequence is much faster
since p = 2.
If p = 1and B < 1, the sequence is said to have linear convergence. If p = 1
and 3 = 0 or p > 2 the sequence is said to have superlinear convergence.
Most of the available nonlinear programming algorithms have linear conver-
gence and hence their comparison is based on the value of 3.
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Another measure of the rate of convergence of a sequence is the so-called
average order of convergence. This is the lowest nonnegative integer that will
satisfy the relation

v = lim |z), — 2|Vt =1
k—oo
If no p > 0 can be found, then the order of convergence is infinity.

Example 3.8 Find the average order of convergence of the sequence {xj}7°
(a)xk:'yk for 0 <y <1
®) z, =% for0<y<1

Solution (a) Since £ =0

v = lim (yF)Y/@D" =1
k—o00
Hence forp =0, 1, 2, we have v =0, 1, 1. Thusp = 1.
() In this case,
7= lim ()Y@ =

k—o0
Hence forp =0, 1, 2, 3, wehave v =0, v, 1, 1. Thus p = 2.
|

If the average order of convergence is unity, then the sequence is said to have
an average linear convergence. An average convergence ratio can be defined
as

v = lim |z — &|"/*
k—oo

In the above discussion, the convergence of a sequence of numbers has
been considered. Such a sequence might consist of the values of the objective
function as the solution is approached. In such a case, we are measuring the rate
at which the objective function is approaching its minimum. Alternatively, if
we desire to know how fast the variables of the problem approach their optimum
values, a sequence of numbers can be generated by considering the magnitudes
or the square magnitudes of the vectors x;, — X, namely, ||x; — X|| or ||xz —%||2,
as the solution is approached.

In the above measures of the rate of convergence, the emphasis is placed on
the efficiency of an algorithm in the neighborhood of the solution. Usually in
optimization a large percentage of the computation is used in the neighborhood
of the solution and, consequently, the above measures are quite meaningful.
Occasionally, however, a specific algorithm may be efficient in the neighbor-
hood of the solution and very inefficient elsewhere. In such a case, the use of
the above criteria would lead to misleading results and, therefore, other criteria
should also be employed.
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Problems

3.1 Let A be a point-to-set algorithm from space E! to space E'. The graph
of A is defined as the set

{(z,y): x € E', y € A(x)}
(a) Show that algorithm A defined by
Al) ={y: v/4 <y <z/2}

is closed on E'.
(b) Plot the graph of A.

3.2 Examine whether or not the following point-to-set mappings from E! to
E! are closed:

(a) )
S f
mmz{w w70
T ifz=20
) )
1 f
mmz{x He7o
1 ifz=0
« if 2 £ 0
mmz{x e
1 ifx=20

3.3 Define the point-to-set mapping on E” by
Ax)={y: y'x>1}

Is A closed on E™?

34 Let {bg, k=0, 1, ...} and {cg, £k = 0, 1, ...} be sequences of real
numbers, where by — 0 superlinearly in the sense thatp = 1 and § =0
(see Eq. (3.11)) and ¢ < ¢ < C with ¢ > 0. Show that {bgck, k =
0, 1, ...} converges to zero superlinearly.



Chapter 4

ONE-DIMENSIONAL OPTIMIZATION

4.1 Introduction

Three general classes of nonlinear optimization problems can be identified,
as follows:

1. One-dimensional unconstrained problems
2. Multidimensional unconstrained problems
3. Multidimensional constrained problems

Problems of the first class are the easiest to solve whereas those of the third class
are the most difficult. In practice, multidimensional constrained problems are
usually reduced to multidimensional unconstrained problems which, in turn,
are reduced to one-dimensional unconstrained problems. In effect, most of
the available nonlinear programming algorithms are based on the minimization
of a function of a single variable without constraints. Therefore, efficient one-
dimensional optimization algorithms are required, if efficient multidimensional
unconstrained and constrained algorithms are to be constructed.
The one-dimensional optimization problem is

minimize F' = f(x)

where f(z) is a function of one variable. This problem has a solution if f(z) is
unimodal in some range of x, i.e., f(x) has only one minimum in some range
zr, < x < xy, where x1, and xy are the lower and upper limits of the minimizer
¥,

Two general classes of one-dimensional optimization methods are available,
namely, search methods and approximation methods.

In search methods, an interval [z, xy7] containing z*, known as a bracket, is
established and is then repeatedly reduced on the basis of function evaluations

until a reduced bracket [x, 1, xy ;] is obtained which is sufficiently small. The
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minimizer can be assumed to be at the center of interval [z j, xy ;). These
methods can be applied to any function and differentiability of f(z) is not
essential.

In approximation methods, an approximation of the function in the form
of a low-order polynomial, usually a second- or third-order polynomial, is
assumed. This is then analyzed using elementary calculus and an approximate
value of z* is deduced. The interval [z, xy] is then reduced and the process
is repeated several times until a sufficiently precise value of x* is obtained.
In these methods, f(x) is required to be continuous and differentiable, i.e.,
f(z) e CL.

Several one-dimensional optimization approaches will be examined in this
chapter, as follows [1]-[8]:

1. Dichotomous search
Fibonacci search
Golden-section search
Quadratic interpolation method
Cubic interpolation method
6. The Davies, Swann, and Campey method

kAW

The first three are search methods, the fourth and fifth are approximation meth-
ods, and the sixth is a practical and useful method that combines a search method
with an approximation method.

The chapter will also deal with a so-called inexact line search due to Fletcher
[91[10], which offers certain important advantages such as reduced computa-
tional effort in some optimization methods.

4.2 Dichotomous Search

Consider a unimodal function which is known to have a minimum in the
interval [z, xy]|. This interval is said to be the range of uncertainty. The
minimizer z* of f(x) can be located by reducing progressively the range of
uncertainty until a sufficiently small range is obtained. In search methods, this
can be achieved by using the values of f(z) at suitable points.

If the value of f(x) is known at a single point z, in the range 27, < x, < xy,
point z* is equally likely to be in the range x, to x, or z, to z; as depicted in
Fig. 4.1(a). Consequently, the information available is not sufficient to allow
the reduction of the range of uncertainty. However, if the value of f(x) is
known at two points, say, x, and xzp, an immediate reduction is possible. Three
possibilities may arise, namely,

(@) f(za) < f(xp)

() f(xa) > f(xp)

(©) f(za) = f(zp)
In case (a), ™ may be located in range xy, < x* < x, or T, < x* < xp, that
is, zp < x* < xp, as illustrated in Fig. 4.1a. The possibility z;, < z* < zy
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is definitely ruled out since this would imply that f () has two minima: one to
the left of z; and one to the right of x;. Similarly, for case (b), we must have
T < ¥ < xy as in Fig. 4.1b. For case (¢), we must have x, < x* < xy, that
is, both inequalities x; < x* < xp and x, < ™ < xy must be satisfied as in
Fig. 4.1c.

f)
L R R e T ‘
D 1
j Xa xp ?
(a)
f®

fxp) F----=
fop) F-----4 - |

R ¢

Xy Xy

(b)

Figure 4.1. Reduction of range of uncertainty: (a) case (a), f(zo) < f(xp), (b) case (b),
f(@a) > f(zp).
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©
Figure 4.1 Cont ’d. Reduction of range of uncertainty: (c) case (¢),f(zq) = f(zb)-

A rudimentary strategy for reducing the range of uncertainty is the so-called
dichotomous search. 1In this method, f(z) is evaluated at two points z, =
x1—¢e/2and xy, = x1+¢/2 where ¢ is a small positive number. Then depending
on whether f(z,) < f(xp) or f(z4) > f(zp), range xptox; +€/20rx1 —e/2
to zy can be selected and if f(z,) = f(x}) either will do fine. If we assume
that x1 — xp = xy — x1, i.e.,, 11 = (zp + xy)/2, the region of uncertainty
is immediately reduced by half. The same procedure can be repeated for the
reduced range, that is, f(x) can be evaluated at zo — /2 and x2 + /2 where
x9 is located at the center of the reduced range, and so on. For example, if the
dichotomous search is applied to the function of Fig. 4.2 the range of uncertainty
will be reduced from 0 < z* < 1t0 9/16 +¢/2 < z* < 5/8 — /2 in four
iterations.

Each iteration reduces the range of uncertainty by half and, therefore, after
k iterations, the interval of uncertainty reduces to

I, = ($)*1o

where Iy = zy — zp. For example, after 7 iterations the range of uncertainty
would be reduced to less than 1% of the initial interval. The corresponding
computational effort would be 14 function evaluations since two evaluations
are required for each iteration.
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fx)
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Figure 4.2. Construction for dichotomous search.

4.3 Fibonacci Search

Consider an interval of uncertainty

Iy = [rp g, U]
and assume that two points x, ; and y, ;, are located in I, as depicted in Fig. 4.3.

Asin Sec. 4.2, the values of f(x) at x, , and x, 1, namely, f(z4 k) and f(zp 1),
can be used to select the left interval

Ity = 2o Tog)
if f(zax) < f(xp k), the right interval

If = [Tan, Tu)
if f(zqk) > f(zpx), oreither of IF | and I}, ; if

f(xa, k) = f(xp, k)
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f(x)

Figure 4.3.  Reduction of range of uncertainty.

If the right interval lirl is selected, it contains the minimizer and, in addition,
the value of f(z) is known at one interior point of [ lirl’ namely, at point x k.
If f(z) is evaluated at one more interior point of I, l§+1’ say, at point Ty j41,
sufficient information is available to allow a further reduction in the region of
uncertainty, and the above cycle of events can be repeated. One of the two
new sub-intervals [ kL " o and I ,ﬁQ, shown in Fig. 4.3, can be selected as before,
and so on. In this way, only one function evaluation is required per iteration,
and the amount of computation will be reduced relative to that required in the
dichotomous search.
From Fig. 4.3
I =TIk + I, “4.1)

and if, for the sake of convenience, we assume equal intervals, then
L _ 7R _
I = Iy = Ien
L _ 7R _
Iifo = Iipo = Iy

Eq. (4.1) gives the recursive relation

Iy = Ip1 + Ipyo 4.2)
If the above procedure is repeated a number of times, a sequence of intervals
{L, I, ..., I,} will be generated as follows:

L =1+ I3
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I, = I3+ 14

I, = n+1+ In+2

In the above set of n equations, there are n + 2 variables and if I; is the given
initial interval, n 4 1 variables remain. Therefore, an infinite set of sequences
can be generated by specifying some additional rule. Two specific sequences of
particular interest are the Fibonacci sequence and the golden-section sequence.
The Fibonacci sequence is considered below and the golden-section sequence
is considered in Sec. 4.4.

The Fibonacci sequence is generated by assuming that the interval for iter-
ation n + 2 vanishes, that is, [,,;2 = 0. If we let £ = n in Eq. (4.2), we can
write

Inii = Iy — Inyo = I, = Fyl,
I, =In1+Ino=1,=F1,
In_1 = Iy + Inp1 = 21, = FI,
Ino =1, 1+1,=3I,=FsI,
In_3 = I, o+ I,_1 =51, = Fyl,
In-y = Iy 3+ I, o =8I, = FsI,

Iy = Iy + Ikyo = Fogq1ln (4.3a)

The sequence generated, namely,
{1, 1, 2, 3,5, 8,13, ... } ={Fy, F1, F», F3, Fy, F5, Fs ...}

is the well-known Fibonacci sequence which occurs in various branches of
mathematics. It can be generated by using the recursive relation

Fo=F.q1+F, o fork>2 (4.4)

where Fy = F; = 1. Its application in one-dimensional optimization gives rise
to the Fibonacci search method. The method is illustrated in Fig. 4.4 forn = 6
and I; = 100 for the case where the left interval is consistently selected, i.e.,
the minimum occurs in the neighborhood of x = 0.

If the number of iterations is assumed to be n, then from Eqn. (4.3b) the
Fibonacci search reduces the interval of uncertainty to

I, = 4.5)

h
Fy



88

0 100

Figure 4.4. Fibonacci search for n = 6.

For example, if n = 11 then F,, = 144 and so [,, is reduced to a value less
than 1% the value of I;. This would entail 11 iterations and since one function
evaluation is required per iteration, a total of 11 function evaluations would be
required as opposed to the 14 required by the dichotomous search to achieve
the same precision. In effect, the Fibonacci search is more efficient than the
dichotomous search. Indeed, it can be shown, that it achieves the largest interval
reduction relative to the other search methods and it is, therefore, the most
efficient in terms of computational effort required.

The Fibonacci sequence of intervals can be generated only if n is known. If
the objective of the optimization is to find x* to within a prescribed tolerance,
the required n can be readily deduced by using Eq. (4.5). However, if the
objective is to determine the minimum of f () to within a prescribed tolerance,
difficulty will be experienced in determining the required n without solving the
problem. The only available information is that n will be low if the minimum
of f(x) is shallow and high if f(z) varies rapidly in the neighborhood of the
solution.

The above principles can be used to implement the Fibonacci search. Let
us assume that the initial bounds of the minimizer, namely, xr, ; and zy 1, and
the value of n are given, and a mathematical description of f(z) is available.
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The implementation consists of computing the successive intervals, evaluating
f(z), and selecting the appropriate intervals.
At the kth iteration, the quantities xr, ., Tqk, Tt .k, Tuk, {p4+1 and

Jak = f(@ak), Jor = f(Tor)

are known, and the quantities Ty, p11, Tq k+1: Tok+1, TUk+1> Lkt2s fak+1s
and f, .41 are required. Interval Ij 5 can be obtained from Eq. (4.3a) as

Fn—k—l

—= ] 4.6
Fo. k+1 (4.6)

I yo =

The remaining quantities can be computed as follows.
If for > for, then ¥ is ininterval [z, %, 2y k] and so the new bounds of
x* can be updated as

TLk+1 = Tak 4.7)

TUk+1 = TUK (4.8)

Similarly, the two interior points of the new interval, namely, z, 41 and x g1
will be xp, , and 7, ;41 + Ij42, respectively. We can thus assign

Tak+1 = Tpk 4.9)

Tp k41 = TL k41 T Ipg2 (4.10)

as illustrated in Fig. 4.5. The value f3, is retained as the value of f(x) at
Zq k+1, and the value of f(x) at x4 is calculated, i.e.,

Jagr1 = fok 4.11)
Jokt1 = f(@pp41) (4.12)

On the other hand, if f, ; < fyx, then * is in interval [z j, xp%]. In this
case, we assign

TLkt1 = TLk (4.13)

TUk+1 = Tk 4.14)

Tak+1 = TUk+1 — Lkso (4.15)

Thk+1 = Tak (4.16)

Jok+1 = fak (4.17)
and calculate

fa,k+1 = f(ﬂUa,kH) (4.18)

as depicted in Fig. 4.6. In the unlikely event that f, = fpx, either of the
above sets of assignments can be used since x* is contained by both intervals

[TLk, Tok) and [Tak, TUk]-
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Figure 4.5. Assignments in kth iteration of the Fibonacci search if fo 1 > fo k-

fx)

Figure 4.6.  Assignments in kth iteration of the fibonacci search if fo r < fo k-

The above procedure is repeated until £ = n — 2 in which case
I k+2 = I,
and
T =T g1 = Tht1
as depicted in Fig. 4.7. Evidently, the minimizer is determined to within a
tolerance +1/F,,.

The error in 2* can be divided by two by applying one stage of the dichoto-
mous search. This is accomplished by evaluating f(x) at pointx = x4 11 +€
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fx)
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XL k+1 b, k1 AU k+1

Figure 4.7. Assignments in iteration n — 2 of the Fibonacci search if f, 1 < fp,x.

where |¢| < 1/F}, and then assigning

Takt1 + ﬁ" if f(zapy1+€) < f(Taps1)
¥ = ZTak+1 T % iff(:Ea,k—&—l + 5) = f(*fa,k—‘rl)
Tapr1 — 53 i f(@api1 +8) > f(Tart)

If n is very large, the difference between x, j and xp ) can become very
small, and it is possible for . to exceed xy, 1, owing to roundoff errors. If this
happens, unreliable results will be obtained. In such applications, checks should
be incorporated in the algorithm for the purpose of eliminating the problem, if it
occurs. One possibility would be to terminate the algorithm since, presumably,
sufficient precision has been achieved if x, 1 ~ Ty k.

The above principles can be used to construct the following algorithm.

Algorithm 4.1 Fibonacci search

Step 1
Input z7, 1, zy,1, and n.
Step 2
Compute Iy, Fy, ..., F, using Eq. (4.4).
Step 3
Assign I} = xy,;1 — vr,1 and compute
L= oty (see Eq. (4.6))
Fy

Tag = 2y1 — L2, w1 =zp1+ 12

fa1 = f(xa1), fou = f(xp,1)
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Set k= 1.

Step 4

Compute I using Eq. (4.6).

If fax = fox then update xp ky1, TUkt1, Takt1s Toktl, Jaktl,

and fy ;11 using Egs. (4.7) to (4.12). Otherwise, if f, 1. < fp 1, update

information using Egs. (4.13) to (4.18).

Step 5

If k=n—2o0rxgp41 > Tp i1, OUtput * = x4 41 and f* = f(a¥),

and stop. Otherwise, set £ = k + 1 and repeat from Step 4.

The condition x4 k41 > Zp k41 implies that x4 511 ~ Tp k41 Within the
precision of the computer used, as was stated earlier, or that there is an error in
the algorithm. It is thus used as an alternative stopping criterion.

4.4 Golden-Section Search

The main disadvantage of the Fibonacci search is that the number of iterations
must be supplied as input. A search method in which iterations can be performed
until the desired accuracy in either the minimizer or the minimum value of the
objective function is achieved is the so-called golden-section search. In this
approach, as in the Fibonacci search, a sequence of intervals {1y, I, I3, ...}
is generated as illustrated in Fig. 4.8 by using the recursive relation of Eq. (4.2).
The rule by which the lengths of successive intervals are generated is that the
ratio of any two adjacent intervals is constant, that is

Iy Ik kg2

= = =...=K 4.19)
Topr Ikp2 Ipys
so that
1
kK2 (4.20)
Tjyo
Tits
and so on.
Upon dividing Eq. (4.2) by I}, 2, we obtain
I, Titq
— = +1 4.21)
Ipva Iiy2
and from Egs. (4.19) to (4.21)
K?=K+1 (4.22)
Now solving for K, we get
1
K= £v5 (4.23)

2
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ko 100

0 14.6

Figure 4.8.  Golden section search.

The negative value of K is irrelevant and so K = 1.618034. This constant is
known as the golden ratio. The terminology has arisen from the fact that in
classical Greece, a rectangle with sides bearing aratio 1 : K was considered the
most pleasing rectangle and hence it came to be known as the golden rectangle.
In turn, the sequence {11, I1/K, I1/K?, ..., I;/K" '} came to be known
as the golden-section sequence.

The golden-section search is illustrated in Fig. 4.8 for the case where the
left interval is consistently selected. As can be seen, this search resembles the
Fibonacci search in most respects. The two exceptions are:

1. Successive intervals are independent of n. Consequently, iterations can
be performed until the range of uncertainty or the change in the value of
the objective function is reduced below some tolerance ¢.

2. Theratio between successive intervals, namely, F,,_x_1/F,,_, isreplaced
by the ratio 1/ K where

1
— =K —-1=0.618034
% 618

according to Eqgs. (4.22) — (4.23).

The efficiency of the golden-section search can be easily compared with
that of the Fibonacci search. A known relation between F}, and K which is
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applicable for large values of n is

Kn+1

F, ~
V5

(e.g.,if n =11, F,, = 1.44 and K”+1/\/5 ~ 144.001). Thus Egs. (4.5) and
(4.24) give the region of uncertainty for the Fibonacci search as

I V5
= — = 7_[1
Fn Knt+l

4.24)

Ap =1,

Similarly, for the golden-section search

I
Ags =1In= 15
and hence
A K2
GS 2 117

Ar V5
Therefore, if the number of iterations is the same in the two methods, the region
of uncertainty in the golden-section search is larger by about 17% relative to that
in the Fibonacci search. Alternatively, the golden-section search will require
more iterations to achieve the same precision as the Fibonacci search. However,
this disadvantage is offset by the fact that the total number of iterations need
not be supplied at the start of the optimization.
An implementation of the golden-section search is as follows:

Algorithm 4.2 Golden-section search

Step 1

Input zy 1, zy1,and €.

Step 2

Assign IT = 2y 1 — 2,1, K = 1.618034 and compute

I = L/K
Taq = vy1 — Lo, mp1 =xp1+ 12

fa1 = f(za1), fou = f(zp1)

Setk = 1.
Step 3
Compute
Iy = I /K
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If far > for, thenupdate Ty k11, TUk+1, Taktl, Toktl, fak+1s
and fy, .41 using Egs. (4.7) to (4.12). Otherwise, if f, 1 < f3 1, update
information using Eqgs. (4.13) to (4.18).
Step 4
If I, < eorxgpi1 > Tpr41, then do:

If faks+1 > fort1, compute

" = 3 (T 1 + TUk41)
If fok+1 = fok+1, compute

r* = L(Taps1 + Topt1)
If fok+1 < fok+1, compute

z* = %(xL,kJrl + ZTakt1)

Compute f* = f(x*).

Output £* and f*, and stop.

Step 5

Set k = k + 1 and repeat from Step 3.

4.5  Quadratic Interpolation Method

In the approximation approach to one-dimensional optimization, an approx-
imate expression for the objective function is assumed, usually in the form of a
low-order polynomial. If a second-order polynomial of the form

p(z) = ag + a1z + aga? (4.25)

is assumed, where ag, a1, and ay are constants, a quadratic interpolation method
is obtained.

Let

p(l‘z) =ag + a1x; + CLQ-I'? = f(mz) = fZ (4.26)

for i = 1, 2, and 3 where [z, 3] is a bracket on the minimizer z* of f(x).
Assuming that the values f; are known, the three constants ag, a1, and as can
be deduced by solving the three simultaneous equations in Eq. (4.26). Thus a
polynomial p(x) can be deduced which is an approximation for f(x). Under
these circumstances, the plots of p(z) and f(z) will assume the form depicted
in Fig. 4.9. As can be seen, the minimizer Z of p(x) is close to z*, and if f(x)
can be accurately represented by a second-order polynomial, then  ~ z*. If
f(z) is a quadratic function, then p(z) becomes an exact representation of f(z)
and T = ™.

The first derivative of p(z) with respect to z is obtained from Eq. (4.25) as

p'(z) = a1 + 2asx
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Figure 4.9. Quadratic interpolation method.

and if
p(z)=0
and ay # 0, then the minimizer of p(x) can be deduced as
_ ai
r=—-——
2(12

By solving the simultaneous equations in Eq. (4.26), we find that
(23 —23) fi + (23 —a]) f2 + (2 — 23)f3
(r1 — z2) (71 — 23) (72 — T3)

(w2 — x3) f1 + (w3 — w1) fo + (1 — 22) f3
(71 — 22) (71 — 23) (72 — T3)
and from Eqgs. (4.27) — (4.29), we have
(z3 —23) fi + (23 —at) fo + (2 —23) f3
2[(z2 — x3) f1 + (v3 — 21) fa + (¥1 — 22) f3]

a; = —

ag —

xr =

4.27)

(4.28)

(4.29)

(4.30)

The above approach constitutes one iteration of the quadratic interpolation
method. If f(x) cannot be represented accurately by a second-order polyno-
mial, a number of such iterations can be performed. The appropriate strategy is
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to attempt to reduce the interval of uncertainty in each iteration as was done in
the search methods of Secs. 4.2-4.4. This can be achieved by rejecting either
x1 or x3 and then using the two remaining points along with point & for a new
interpolation.

After a number of iterations, the three points will be in the neighborhood
of z*. Consequently, the second-order polynomial p(z) will be an accurate
representation of f(x) by virtue of the Taylor series, and z* can be determined
to within any desired accuracy.

An algorithm based on the above principles is as follows:

Algorithm 4.3 Quadratic interpolation search
Step 1
Input z1, 3, and €.
Set Zp = 10%.
Step 2
Compute
zy = 3(v1+3) and f; = f(2;) andi = 1, 2, 3.
Step 3
Compute 7 from Eq. (4.30) and f = f(7).
If |Z — Zo| < &, then output z* = Z and f(z*) = f, and stop.
Step 4
If x1 < T < x9, then do:
If f < fo,assignag =2, f3= fo, 12 =12, fo=f;
otherwise, if f > fo, assignxy =2z, f1 = f.
If xo < T < x3, then do:
Iff < fo,assign x1 = x2, f1 = fo, x9 =7,
otherwise, if f > fo, assign 3 = z, f3 = f.
Set o9 = Z, and repeat from Step 3.

fo=f;

In Step 4, the bracket on z* is reduced judiciously to [z1, z2] or [z, z3]
if 1 < T < x9; orto [xa, x3] or [z1, Z] if 22 < T < w3 by using the
principles developed in Sec. 4.2. The algorithm entails one function evaluation
per iteration (see Step 3) except for the first iteration in which three additional
function evaluations are required in Step 2.

An implicit assumption in the above algorithm is that interval [z, z3] is a
bracket on x*. If it is not, one can be readily established by varying z in the
direction of decreasing f(x) until f(x) begins to increase.

A simplified version of the interpolation formula in Eq. (4.30) can be obtained
by assuming that points x1, x2, and x3 are equally spaced. If we let

x1:x2—(5 and x3:x2+6
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then Eq. (4.30) becomes
(f1— f3)é
(fi —2f2+ f3)

Evidently, this formula involves less computation than that in Eq. (4.30) and,
if equal spacing is allowed, it should be utilized. The minimum of the function
can be deduced as

(fr = f3)?

(fi —2f2+ f3)

T=2+ 5 4.31)

fmin = f2 - 3
(see Prob. 4.10).

4.5.1 Two-point interpolation

The interpolation formulas in Eqgs. (4.30) and (4.31) are said to be three-point
formulas since they entail the values of f(x) at three distinct points. Two-point
interpolation formulas can be obtained by assuming that the values of f(z) and
its first derivatives are available at two distinct points. If the values of f(z) at
x = x1 and & = z2 and the first derivative of f(z) at x = x; are available, we
can write

N
f2

p(z1) = ap + a1z1 + ain% = f(z1)
p(x2) = ap + a1x2 + a237% = f(x2)
p(z1) = a1 + 2a9z1 = f'(21) = f

The solution of these equations gives a; and as, and thus from Eq. (4.27), the
two-point interpolation formula

Ji(zo — 21)?

f1 = fo+ fi(xe — 21)]

f=$1+2

can be obtained.

An alternative two-point interpolation formula of the same class can be gen-
erated by assuming that the first derivative of f(x) is known at two points x;
and xo. If we let

p(z1) = a1 + 2az71 = f'(21) = f]
P (x2) = a1 + 2a0w2 = f'(w2) = f3
we deduce
Tofi —x1fy  wafi —wafs +aafy —x1fy
a-rn fi— 1
(x2 —21)f5

fi=1
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4.6  Cubic Interpolation

Another one-dimensional optimization method, which is sometimes quite
useful, is the cubic interpolation method. This is based on the third-order
polynomial

p(z) =ap+ a1z + azz? + asa® (4.32)

As in the quadratic interpolation method, the coefficients a; can be determined
such that p(x) and/or its derivatives at certain points are equal to f(z) and/or
its derivatives. Since there are four coefficients in Eq. (4.32), four equations
are needed for the complete characterization of p(z). These equations can be
chosen in a number of ways and several cubic interpolation formulas can be
generated.

The plot of p(x) can assume either of the forms depicted in Fig. 4.10 and, in
effect, p(x) can have a maximum as well as a minimum. By equating the first
derivative of p(x) to zero, that s,

P (z) = a1 + 2a22 + 3azz® =0 (4.33)

and then solving for x, the extremum points of p(z) can be determined as

1
T = % (—ag + \/a% — 3aqas ) 4.34)

Figure 4.10. Possible forms of third-order polynomial.
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At the minimizer Z, the second derivative of p(x) is positive, and thus Eq. (4.33)
gives
p”(f) = 2a9 + 6a3x >0
or a
z>—— (4.35)
3a3
Thus, the solution in Eq. (4.34) that corresponds to the minimizer of p(x) can
be readily selected.
Polynomial p(z) will be an approximation for f(x) if four independent equa-
tions are chosen which interrelate p(x) with f(x). One of many possibilities is
to let

p(x;) = ap + ar1x; + an? + agxf = f(z;)
fort =1, 2, and 3 and
p'(z1) = a1 + 2a9m1 + 3a3x% = f'(x1)

By solving this set of equations, coefficients a; and a3 can be determined as

0y = g:l (4.36)
ag = ﬁ — (9(13 (4.37)
ay = f'(z1) — 2a9x; — 3azx? (4.38)
where

8= fx2) — f(ﬂ(cglg)l‘ti;)zl)(xl — T9) (4.39)
LS —f (fa)1 * J; 3()1;1)(951 —x3) (4.40)

227 — x4 22)
§ = o 22) 4.41)

B 223 — x3(z1 + 23)
W = o — 23) 4.42)

The minimizer & can now be obtained by using Eqgs. (4.34) and (4.35).
An implementation of the cubic interpolation method is as follows:

Algorithm 4.4 Cubic interpolation search

Step 1

Input x1, =3, x3, and initialize the tolerance €.
Step 2

Set £o = 10%.

Compute f| = f'(z1) and f; = f(x;) fori=1,2, 3.
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Step 3

Compute constants (3, v, 6, and v using Egs. (4.39) — (4.42).
Compute constants a3, az and a; using Egs. (4.36) — (4.38).
Compute the extremum points of p(z) using Eq. (4.34), and select the
minimizer Z using Eq. (4.35).

Compute f = f(7).

Step 4

If |# — Zo| < &, then output z* = Z and f(z*) = f, and stop.
Step 5

Find m such that f,,, = max (f1, f2, f3).

SetZo =T, T =T, fm = [.

If m = 1, compute f] = f/(Z).

Repeat from Step 3.

In this algorithm, a bracket is maintained on x* by replacing the point that
yields the largest value in f(x) by the new estimate of the minimizer Z in Step
5. If the point that is replaced is x1, the first derivative f’(x1) is computed since
it is required for the calculation of a1, , and 7.

As can be seen in Egs. (4.36) — (4.42), one iteration of cubic interpolation
entails a lot more computation than one iteration of quadratic interpolation.
Nevertheless, the former can be more efficient. The reason is that a third-order
polynomial is a more accurate approximation for f(x) than a second-order one
and, as a result, convergence will be achieved in a smaller number of iterations.
For the same reason, the method is more tolerant to an inadvertent loss of the
bracket.

4.7  The Algorithm of Davies, Swann, and Campey

The methods described so far are either search methods or approximation
methods. A method due to Davies, Swann, and Campey [8] will now be de-
scribed, which combines a search method with an approximation method. The
search method is used to establish and maintain a bracket on x*, whereas the
approximation method is used to generate estimates of z*.

In this method, f(x) is evaluated for increasing or decreasing values of z
until z* is bracketed. Then the quadratic interpolation formula for equally-
spaced points is used to predict z*. This procedure is repeated several times
until sufficient accuracy in the solution is achieved, as in previous methods.

The input to the algorithm consists of an initial point z¢ 1, an initial increment
01, a scaling constant K, and the optimization tolerance ¢.

At the kth iteration, an initial point x; and an initial increment J;, are
available, and a new initial point x( ;41 as well as a new increment J; are
required for the next iteration.
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Initially, f(z) is evaluated at points xq ; — i, o, and zg j + J;. Three
possibilities can arise, namely,

(@) f(zokr —0k) > f(wok) > f(zok + Ok)

) f(zok —0k) < fzox) < fzox + k)

(©) flzor — k) = flzok) < flzor + oK)
In case (a), the minimum of f(z) is located in the positive direction and so f(x)
is evaluated for increasing values of z until a value of f(x) is obtained, which
is larger than the previous one. If this occurs on the nth function evaluation,
the interval [z x, k] is a bracket on z*. The interval between successive
points is increased geometrically, and so this procedure will yield the sequence
of points

Zo,k

Tk = Tok + Ok
Tok = T1k + 20k
T3k = Tok + 40

Tpg = Tpo1k + 2" 10k (4.43)

as illustrated in Fig. 4.11. Evidently, the most recent interval is twice as long
as the previous one and if it is divided into two equal sub-intervals at point

Tk = Tp—1 ) + 2726}, (4.44)

then four equally-spaced points are available, which bracket the minimizer.
If f(z) is evaluated at point z,, ;, the function values

Jn—2k = f(zn_o) (4.45)
Jn—1k = [(Tp-_1k) (4.46)
ke = f(ﬂfm,k) 4.47)
fok = f(@nk) (4.48)

will be available. If f,, , > f,—1 %, «*is located in the interval [z,,_2 k., T, k]
(see Fig. 4.12) and so the use of Egs. (4.31) and (4.45) — (4.48) yields an estimate

for x* as
2n_26k(fn—2,k‘ - fm,k)
fan,k - 2fn71,k + fm,k)
Similarly, if f,, 1 < fn—1 %, «* is located in the interval [z,,_; , Zp 1] (see
Fig. 4.13) then an estimate for z* is

T0ktl = Tmk + 2“*25,6(]0”717,6 ~ fok)
K (ke — 2fmk + fak)

TOk+1 = Tp—1k + 3 (4.49)

(4.50)
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f(x)

Figure 4.11. Search method used in the Davies, Swann, and Campey algorithm.

f(x)

=

Figure 4.12. Reduction of range of uncertainty in Davies, Swann, and Campey algorithm if

fm 2 fn—1~
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f(x)

Xn-2 Xp-1 m Xn

Figure 4.13.  Reduction of range of uncertainty in Davies, Swann, and Campey algorithm if

fm < fn71~

In case (b), «* is located in the negative direction, and so x is decreased in
steps 0k, 20k, ... until the minimum of f(x) is located. The procedure is as in
case (a) except that J;, is negative in Egs. (4.49) and (4.50).

In case (c), x* is bracketed by z , — 0 and xq ;, + 0y and if

fo1k = f(wor — Ok)
Jor = f(zo)
fie = f(@or + Ok)

Eq. (4.31) yields an estimate for z* as

Ok(f-1k — fik)
fo1k —2for + fir)

The kth iteration is completed by defining a new increment

Tok+1 = Tok + 3 4.51)

Op1 = Kop

where K is a constant in the range O to 1. The motivation for this scaling is
that as the solution is approached, a reduced range of = will be searched and,
therefore, the resolution of the algorithm needs to be increased. A suitable
value for K might be 0.1.

The above principles can be used to construct the following algorithm:
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Algorithm 4.5 Davies, Swann, and Campey search

Step 1

Input g 1, 01, K, and initialize the tolerance €.

Set k = 0.

Step 2

Setk=Fk—+1, T_1k = X0k — Ok, Tk = Tok + O

Compute for = f(wox) and fix = f(z1z).

Step 3

If for > fix setp =1 and go to Step 4; otherwise, compute f_ ; =
f(@-1).

If f_11 < fo setp = —1and go to Step 4.

Otherwise, if f_1 1 > for < fi,x goto Step 7.

Step 4

Forn =1, 2, ... compute f,x = f(Tp_14 + 2" 1pdy) until f,, >

fnfl,k-
Step 5

Compute fr k= f(Zn_1k+ 2" *pdy).
Step 6
If fm,k: > fn—l,k’ compute

To kil = Ttk + 2n_2p5k(fn—2,k - fm,k)
h " 2(fn—2,k - 2fn—1,k + fm,k)
Otherwise, if f,, 1, < fn—1,k» compute

2n72p6k(fnfl,k - fn,k)
Q(fn—l,k - 2fm,k + fn,k)

T0,k+1 = Tm,k T

(see Egs. (4.49) and (4.50)).
If 2725, < € go to Step 8; otherwise, set J, 1 = K, and repeat from
Step 2.
Step 7 Compute
Ok (f-1k — f1k)
=1k —2for + fir)

Tok+1 = Tok T
7+ ) 2(

(see Eq. (4.51)).

If §;, < € go to Step 8; otherwise, set 01 = K Iy and repeat from Step
2.

Step 8

Output * = 20 ;41 and f(z*) = fo x+1, and stop.

Parameter 47 is a small positive constant that would depend on the problem,
say, 0.1zp 1. Constant p in Steps 3 to 6, which can be 1 or —1, is used to
render the formulas in Egs. (4.49) and (4.50) applicable for increasing as well
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as decreasing values of x. Constant € in Step 1 determines the precision of
the solution. If € is very small, say, less than 1075, then as the solution is
approached, we have

fn—Q,kz ~ fn—l,k ~ fm,k ~ fn,k

Consequently, the distinct possibility of dividing by zero may arise in the eval-
uation of g ,41. However, this problem can be easily prevented by using
appropriate checks in Steps 6 and 7.

An alternative form of the above algorithm can be obtained by replacing
the quadratic interpolation formula for equally-spaced points by the general
formula of Eq. (4.30). If this is done, the mid-interval function evaluation of
Step 5 is unnecessary. Consequently, if the additional computation required
by Eq. (4.31) is less than one complete evaluation of f(x), then the modified
algorithm is likely to be more efficient.

Another possible modification is to use the cubic interpolation of Sec. 4.6
instead of quadratic interpolation. Such an algorithm is likely to reduce the
number of function evaluations. However, the amount of computation could
increase owing to the more complex formulation in the cubic interpolation.

4.8 Inexact Line Searches

In the multidimensional algorithms to be studied, most of the computational
effort is spent in performing function and gradient evaluations in the execution
of line searches. Consequently, the amount of computation required tends
to depend on the efficiency and precision of the line searches used. If high
precision line searches are necessary, the amount of computation will be large
and if inexact line searches do not affect the convergence of an algorithm, a
small amount of computation might be sufficient.

Many optimization methods have been found to be quite tolerant to line-
search imprecision and, for this reason, inexact line searches are usually used
in these methods.

Let us assume that

Xpt1 = X + ady
where dj is a given direction vector and « is an independent search parameter,

and that function f (x4 1) has a unique minimum for some positive value of a.
The linear approximation of the Taylor series in Eq. (2.4d) gives

f(xng1) = f(xk) + gt dia (4.52)

where
df (xi; + ady,)

T
d,. =
8k dk do o
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Eq. (4.52) represents line A shown in Fig. 4.14a. The equation

F(xpi1) = f(xk) + pgl dra (4.53)

where 0 < p < % represents line B in Fig. 4.14a whose slope ranges from O to
%g{dk depending on the value of p, as depicted by shaded area B in Fig. 4.14a.
On the other hand, the equation

F(xng1) = f(xx) + (1= p)gldya (4.54)

represents line C in Fig. 4.14a whose slope ranges from gfdk to %g,{dk as
depicted by shaded area C in Fig. 4.14a. The angle between lines C and B,
designated as 6, is given by

—(1—2p)gfdy

0 = tan~?
1+ p(1 = p)(gf dr)?

as illustrated in Fig. 4.14b. Evidently by adjusting p in the range O to %, the
slope of 6 can be varied in the range —g%dk to 0. By fixing p at some value in
the permissible range, two values of « are defined by the intercepts of the lines
in Egs. (4.53) and (4.54) and the curve for f(xy11), say, @1 and aw, as depicted
in Fig. 4.14b.

Let o be an estimate of the value of « that minimizes f(x + ady). If
f(xg41) for @ = g is equal to or less than the corresponding value of f(xj1)
given by Eq. (4.53), and is equal to or greater than the corresponding value of
f(xg+1) given by Eq. (4.54), that is, if

F(ig1) < f(xi) + pgi diao (4.55)

and
F(xeg1) > f(xi) + (1= p)gi drao (4.56)

then oy may be deemed to be an acceptable estimate of o* in that it will
yield a sufficient reduction in f(x). Under these circumstances, we have
a1 < ag < amg, as depicted in Fig. 4.14b, i.e., a1 and ap constitute a bracket of
the estimated minimizer ayg. Egs. (4.55) and (4.56), which are often referred to
as the Goldstein conditions, form the basis of a class of inexact line searches. In
these methods, an estimate « is generated by some means, based on available
information, and the conditions in Egs. (4.55) and (4.56) are checked. If both
conditions are satisfied, then the reduction in f(xj1) is deemed to be accept-
able, and the procedure is terminated. On the other hand, if either Eq. (4.55) or
Eq. (4.56) is violated, the reduction in f(xj1) is deemed to be insufficient and
an improved estimate of a*, say, ¢, can be obtained. If Eq. (4.55) is violated,
then ayp > a9 as depicted in Fig. 4.15a and since o, < a® < g, the new
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f X))

f&xp)

fKeeD)

o,

Figure 4.14. (a) The Goldstein tests. (b) Goldstein tests satisfied.

estimate g can be determined by using interpolation. On the other hand, if
Eq. (4.56) is violated, cvg < a7 as depicted in Fig. 4.15b, and since «y is likely
to be in the range oy, < ap < a*, & can be determined by using extrapolation.

If the value of f(xj,+ ady) and its derivative with respect to c are known for
a = ar, and a = qy, then for ag > a9 a good estimate for ¢y can be deduced
by using the interpolation formula

(a0 — ap)?f7,
L= fo + (a0 — ar) L] (47

g =«
0 L+2
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f&xp)

f(xk+1)

o,

f&xp)

f X))

o

Figure 4.15. Goldstein tests violated: (a) with ag > g, (b) with ap < .

and for ag < «y the extrapolation formula

(a0 — ) fo

4.58
= 1) (*:38)

ap = ap +

can be used, where

fr = fxp+ardy), fr=f(xk+ardy) = g(xx + ardy)’dy
fo=f(x+aodi), fo=f(xk+aodi)=g(xx + aody)’dy
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(see Sec. 4.5).

Repeated application of the above procedure will eventually yield a value of
&g such that oy < &g < g and the inexact line search is terminated.

A useful theorem relating to the application of the Goldstein tests in an
inexact line search is as follows:

Theorem 4.1 Convergence of inexact line search If

(a) f(xx) has a lower bound,
(b) gy is uniformly continuous on set {x : f(x) < f(x0)},
(c) directions dy. are not orthogonal to —g;. for all k,

then a descent algorithm using an inexact line search based on Egs. (4.55) and
(4.56) will converge to a stationary point as k — oo.

The proof of this theorem is given by Fletcher [9]. The theorem does not
guarantee that a descent algorithm will converge to a minimizer since a saddle
point is also a stationary point. Nevertheless, the theorem is of importance since
it demonstrates that inaccuracies due to the inexactness of the line search are
not detrimental to convergence.

Conditions (a) and (b) of Theorem 4.1 are normally satisfied but condition
(c) may be violated. Nevertheless, the problem can be avoided in practice by
changing direction d;. For example, if 6, is the angle between d; and —gy,
and

-1 —g%dk m

0 =cos™ ——E —— = —
gl [l 2

then d; can be modified slightly to ensure that

s
=5 —n
where p > 0.

The Goldstein conditions sometimes lead to the situation illustrated in Fig.
4.16, where o* isnot in the range [«1, a]. Evidently, in such a case a value o in
the interval [a*, o] will not terminate the line search even though the reduction
in f(xy) would be larger than that for any «y in the interval [, az]. Although
the problem is not serious, since convergence is assured by Theorem 4.1, the
amount of computation may be increased. The problem can be eliminated by
replacing the second Goldstein condition, namely, Eq. (4.56), by the condition

gl d;, > ogld, (4.59)

where 0 < 0 < 1 and ¢ > p. This modification to the second Goldstein
condition was proposed by Fletcher [10]. It is illustrated in Fig. 4.17. The
scalar g7 dy, is the derivative of f(x; + adg) at a = 0, and since 0 < o < 1,
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f&p)

f(xk+1)

oy o* o7} o Ol o

Figure 4.16.  Goldstein tests violated with o™ < .

aggdk is the derivative of f(xy + ady) at some value of «, say, a1, such that
a1 < o. Now if the condition in Eq. (4.59) is satisfied at some point

Xk+1 = Xk + apdy
then the slope of f(xj + ady) at & = «y is less negative (more positive) than
the slope at &« = «; and, consequently, we conclude that a; < ag. Now if

Eq. (4.55) is also satisfied, then we must have oy < (a* or o) < ag, as
depicted in Fig. 4.17.

f&p)

f Xgr)

273

Figure 4.17. Fletcher’s modification of the Goldstein tests.
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The precision of a line search based on Egs. (4.55) and (4.59) can be increased
by reducing the value of 0. While o = 0.9 results in a somewhat imprecise line
search, the value o = 0.1 results in a fairly precise line search. Note, however,
that a more precise line search could slow down the convergence.

A disadvantage of the condition in Eq. (4.59) is that it does not lead to an exact
line search as ¢ — 0. An alternative condition that eliminates this problem is
obtained by modifying the condition in Eq. (4.59) as

‘g£+1dk| < —agfdk

In order to demonstrate that an exact line search can be achieved with the
above condition, let us assume that g,{dk <0.If g,{ 11dx < 0, the line search
will not terminate until

—|gk 1 dg| > ogldy

and if g} 41dk > 0, the line search will not terminate until
lghsidil < —ogldy (4.60)

Now if ag{dk, g{Hdk, and —ag,{dk are the derivatives of f(xj + ady) at
points @ = a1, @ = g, and @ = g, respectively, we have a; < g < g
as depicted in Fig. 4.18. In effect, Eq. (4.60) overrides both of the Goldstein
conditions in Egs. (4.55) and (4.56). Since interval [, ae] can be reduced
as much as desired by reducing o, it follows that o™ can be determined as
accurately as desired, and as 0 — 0, the line search becomes exact. In such a
case, the amount of computation would be comparable to that required by any
other exact line search and the computational advantage of using an inexact line
search would be lost.

An inexact line search based on Eqgs. (4.55) and (4.59) due to Fletcher [10]
is as follows:

Algorithm 4.6 Inexact line search

Step 1

Input x;, di, and compute g.

Initialize algorithm parameters p, o, 7, and Y.
Set ay, = 0 and oy = 10%°.

Step 2

Compute fr, = f(xx + ardg).

Compute f = g(xy + ardy)dy.

Step 3

Estimate c.
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f&g)

fKpe)

T
|85, 1d; | | 81 dy |
|

Figure 4.18. Conversion of inexact line search into an exact line search.

Step 4

Compute fo = f(xx + aodg).

Step 5 (Interpolation)

If fo > fr + p(aog — ar) f7, then do:
a. If ap < ag, then set oy = .
b. Compute ¢ using Eq. (4.57).
c. If ap < ap + 7(ay — ap) then set &g = ap, + 7(ay — ap).
d. If &g > ay — 7(ay — arp) then set ¢y = ay — 7(ay — ap).
e. Set g = (g and go to Step 4.

Step 6
Compute f} = g(xy, + agdg)?dy.
Step 7 (Extrapolation)

If fy < of}, then do:
a. Compute Aoy = (oo — ar) fo/(f1 — [f§) (see Eq. (4.58)).
b. If Aag < 7(ag — ), then set Ay = 7(avg — arp).
c. If Aag > x(ap — ar), then set Aoy = x (g — ag).
d. Compute ¢y = g + Aav.
e. Set o, = a, o = o, fr = fo. f1, = fo. and go to Step 4.
Step 8
Output g and fo = f(xy + apdy), and stop.

The precision to which the minimizer is determined depends on the values of
pand o. Small values like p = o = 0.1 will yield arelatively precise line search
whereas values like p = 0.3 and 0 = 0.9 will yield a somewhat imprecise line
search. The values p = 0.1 and o = 0.7 give good results.
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An estimate of « in Step 3 can be determined by assuming that f(x) is
a convex quadratic function and using ag = ||go||?/ (gt Hogo) which is the
minimum point for a convex quadratic function.

In Step 5, g is checked and if necessary it is adjusted through a series of
interpolations to ensure that o, < &g < ag. A suitable value for 7 is 0.1.
This assures that ¢ is no closer to «, or argy than 10 percent of the permissible
range. A similar check is applied in the case of extrapolation, as can be seen in
Step 7. The value for x suggested by Fletcher is 9.

The algorithm maintains a running bracket (or range of uncertainty) [z, o]
that contains the minimizer which is initially set to [0, 10°?] in Step 1. This is
gradually reduced by reducing oy in Step Sa and increasing oy, in Step 7e.

In Step 7e, known data that can be used in the next iteration are saved, i.e.,
ap, fo, and f{ become oy, fr, and f ’L, respectively. This keeps the amount of
computation to a minimum.

Note that the Goldstein condition in Eq. (4.55) is modified as in Step 5
to take into account the fact that oy, assumes a value greater than zero when
extrapolation is applied at least once.
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Problems

4.1 (a) Assuming that the ratio of two consecutive Fibonacci numbers,
F}._1/ F}, converges to a finite limit «, use Eq. (4.4) to show that

F_ 2
lim —#=L — 0= = ~0.6180
oo B N

(b) Use MATLARB to verify the value of « in part (a).
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4.2 The 5th-order polynomial
f(z) = —5a® +4a* —122° + 112% — 22 + 1

is known to be a unimodal function on interval [—0.5, 0.5].

(a) Use the dichotomous search to find the minimizer of f(x) on [—0.5,
0.5] with the range of uncertainty less than 10~°.

(b) Solve the line search problem in part (a) using the Fibonacci search.

(c) Solve the line search problem in part (a) using the golden-section
search.

(d) Solve the line search problem in part (a) using the quadratic interpo-
lation method of Sec. 4.5.

(e) Solve the line search problem in part (a) using the cubic interpolation
method of Sec. 4.6.

(f) Solve the line search problem in part (a) using the algorithm of Davies,
Swann, and Campey.

(g) Compare the computational efficiency of the methods in (a) — (f) in
terms of number of function evaluations.

4.3 The function!
flx) = lnz(:v —-2)+ 1n2(10 —x) — 202

is known to be a unimodal function on [6, 9.9]. Repeat Prob. 4.2 for the
above function.

4.4 The function
f(z) = —3zsin0.75z + e~ 2*

is known to be a unimodal function on [0, 27]. Repeat Prob. 4.2 for the
above function.

4.5 The function
f(x) = e + 5e "
is known to be a unimodal function on [0, 1]. Repeat Prob. 4.2 for the
above function.
4.6 The function
f(z) =02zInz + (z — 2.3)2
is known to be a unimodal function on [0.5, 2.5]. Repeat Prob. 4.2 for the
above function.

Here and and the rest of the book, the logarithms of x to the base e and 10 will be denoted as In(x) and
log; (), respectively.
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4.7 Let fi(xz) and fa(x) be two convex functions such that f1(—0.4) =
0.36, f1(0.6) = 2.56, fo(—0.4) = 3.66, and f2(1) = 2 and define
the function

f(x) = max{f1(x), fo(x)}

Identify the smallest interval in which the minimizer of f(x) is guaranteed
to exist.

4.8 The values of a function f(x) at points z = x; and x = 2 are f and fo,
respectively, and the derivative of f(x) at point 1 is fi. Show that

fi(wz —a1)?
[fr = fo+ fi(z2 — 21)]
is an estimate of the minimizer of f(x).

4.9 By letting 1 = x3 — d and z3 = x93 + J in Eq. (4.30), show that the
minimizer Z can be computed using Eq. (4.31).

ﬂ?:xl-i-z

4.10 A convex quadratic function f(x) assumes the values f1, f2, and f3 at
r = x1, X2, and xs, respectively, where x1 = xo — § and 3 = x2 + 9.
Show that the minimum of the function is given by

(fi — f3)?
(fi —2f2+ f3)

fmin - f2 - R
4.11 (a) Use MATLAB to plot
f(x) = 0.72] — 8x% 4 623 + cos(z122) — 821
overtheregion —m < x1, 2 < m. AMATLAB command for plotting

the surface of a two-variable function is mesh.

(b) Use MATLAB to generate a contour plot of f(x) over the same region
as in (a) and ‘hold’ it.

(¢c) Compute the gradient of f(x), and prepare MATLAB function files
to evaluate f(x) and its gradient.

(d) Use Fletcher’s inexact line search algorithm to update point xq along
search direction dg by solving the problem

minimize f(xo + adg)
a>0

S I

This can be done in several steps:

where
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Record the numerical values of o* obtained.
Record the updated point x; = xg + a*dp.

Evaluate f(x;) and compare it with f(xo).

Plot the line search result on the contour plot generated in (b).

Plot f(x0 + adp) as a function of « over the interval [0, 4.8332].
Based on the plot, comment on the precision of Fletcher’s inexact
line search.

(e) Repeat Part (d) for

o=[73) =[]

The interval of « for plotting f(xo + adp) in this case is [0, 5.7120].



Chapter 5

BASIC MULTIDIMENSIONAL
GRADIENT METHODS

5.1 Introduction

In Chap. 4, several methods were considered that can be used for the solution
of one-dimensional unconstrained problems. In this chapter, we consider the
solution of multidimensional unconstrained problems.

As for one-dimensional optimization, there are two general classes of multi-
dimensional methods, namely, search methods and gradient methods. In search
methods, the solution is obtained by using only function evaluations. The gen-
eral approach is to explore the parameter space in an organized manner in order
to find a trajectory that leads progressively to reduced values of the objective
function. A rudimentary method of this class might be to adjust all the param-
eters at a specific starting point, one at a time, and then select a new point by
comparing the calculated values of the objective function. The same procedure
can then be repeated at the new point, and so on. Multidimensional search
methods are thus analogous to their one-dimensional counterparts, and like the
latter, they are not very efficient. As a result, their application is restricted to
problems where gradient information is unavailable or difficult to obtain, for
example, in applications where the objective function is not continuous.

Gradient methods are based on gradient information. They can be grouped
into two classes, first-order and second-order methods. First-order methods are
based on the linear approximation of the Taylor series, and hence they entail
the gradient g. Second-order methods, on the other hand, are based on the
quadratic approximation of the Taylor series. They entail the gradient g as well
as the Hessian H.

Gradient methods range from some simple to some highly sophisticated

methods. In this chapter, we focus our attention on the most basic ones which
are as follows:
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1. Steepest-descent method
2. Newton method
3. Gauss-Newton method

Some more advanced gradient methods will be considered later in Chaps. 6
and 7.

5.2 Steepest-Descent Method

Consider the optimization problem
minimize F' = f(x) for x € E"
From the Taylor series
F+AF = f(x+8) ~ f(x) +g"d + 16"Hs
and as ||d]| — 0, the change in F' due to change d is obtained as
AF ~g's

The product at the right-hand side is the scalar or dot product of vectors g and
6. If
g=1lg192 - gn"
and
§=1[061 09 -~ 5n]T
then

AF =) gi0i = ||g| |19]| cos b
i=1

where 6 is the angle between vectors g and &, and

1/2
Igll = (g7g)/? = (Z%)

5.2.1 Ascent and descent directions

Consider the contour plot of Fig. 5.1. If x and x + § are adjacent points on
contour A, then as ||d]| — 0

AF ~ [g] [13]] cos6 =0

since F' is constant on a contour. We thus conclude that the angle 6 between
vectors g and 4 is equal to 90°. In effect, the gradient at point x is orthogonal
to contour A, as depicted in Fig. 5.1. Now for any vector §, AF assumes a
maximum positive value if § = 0, that is, § must be in the direction g. On the
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F(x) =50

X2

fx)=0

steepest-descent
direction

5

g, steepest-ascent direction

X
Figure 5.1. Steepest-descent and steepest-ascent directions.

other hand, AF assumes a maximum negative value if § = 7, that is, § must
in the direction —g. The gradient g and its negative —g are thus said to be the
steepest-ascent and steepest-descent directions, respectively. These concepts
are illustrated in Figs. 5.1 and 5.2.

5.2.2  Basic method
Assume that a function f(x) is continuous in the neighborhood of point x.
If d is the steepest-descent direction at point x, i.e.,
d=-g
then a change 4 in x given by
0 =ad

where « is a small positive constant, will decrease the value of f(x). Maximum
reduction in f(x) can be achieved by solving the one-dimensional optimization
problem

minioténize F = f(x+ad) (5.1)

as depicted in Fig. 5.3.
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Fx)
AF
X2
g
X
Figure 5.2. Construction for steepest-descent method.
f®)

X
2 od

w

(-7

0C

ou

Figure 5.3. Line search in steepest-descent direction.

If the steepest-descent direction at point X happens to point towards the
minimizer x* of f(x), then a value of « exists that minimizes f(x + ad)
with respect to o and f(x) with respect to x. Consequently, in such a case
the multidimensional problem can be solved by solving the one-dimensional
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problem in Eq. (5.1) once. Unfortunately, in most real-life problems, d does not
point in the direction of x* and, therefore, an iterative procedure must be used
for the solution. Starting with an initial point xg, a directiond = dg = —g
can be calculated, and the value of « that minimizes f(x¢ + ady), say, ag, can
be determined. Thus a point x; = xg + agdg is obtained. The minimization
can be performed by using one of the methods of Chap. 4 as a line search. The
same procedure can then be repeated at points

Xp+1 = Xk + ogdg (5.2)

for k = 1, 2, ... until convergence is achieved. The procedure can be ter-
minated when ||o;dg|| becomes insignificant or if o, < Koo where K is
a sufficiently small positive constant. A typical solution trajectory for the
steepest-descent method is illustrated in Fig. 5.4. A corresponding algorithm
is as follows.

Algorithm 5.1 Steepest-descent algorithm

Step 1

Input x( and initialize the tolerance ¢.
Set k = 0.

Step 2

Calculate gradient gy, and set dg, = —gp.
Step 3

Find oy, the value of « that minimizes f(xj + ady ), using a line search.
Step 4
Set ;11 = Xy, + apdy and calculate fr11 = f(Xp11)-
Step 5
If || di|| < €, then do:
Output x* = xy41 and f(x*) = fr11, and stop.
Otherwise, set k = k + 1 and repeat from Step 2.

5.2.3  Orthogonality of directions

In the steepest-descent method, the trajectory to the solution follows a zig-
zag pattern, as can be seen in Fig. 5.4. If « is chosen such that f(xj + ady)
is minimized in each iteration, then successive directions are orthogonal. To
demonstrate this fact, we note that

df (x5, + ady) Zn: Of (x + ady) d(x; + ady;)

do = 0xk; do
= gi(xk + ady)dy
=1
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where g(xj + ady) is the gradient at point xj + ady. If o* is the value of «
that minimizes f(xj + ady), then

g(x, +a*dy)'d, =0
or
di, dy =0
where
dii1 = —g(xx +a’dy)
is the steepest-descent direction at point x; + a*dg. In effect, successive
directions dj, and dg; are orthogonal as depicted in Fig. 5.4.

X

Figure 5.4. Typical solution trajectory in steepest-descent algorithm.

5.2.4 Elimination of line search

If the Hessian of f(x) is available, the value of « that minimizes f(x; +ad),
namely, g, can be determined by using an analytical method. If 6 = ady,
the Taylor series yields

F(xp + k) = f(xi) + 0} gk + 561 Hydy, (5.3)
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and if dy, is the steepest-descent direction, i.e.,
0 = —agy
we obtain
fxe — agr) ~ f(xx) — agf g + 5a°g) Hige (5.4)

By differentiating and setting the result to zero, we get

d X — agr
f(dg) ~ —gh gk + ogl Hyge =0
Q
or T
o=y~ —oEER (5.5)
g;. Hygi

Now if we assume that &« = ay minimizes f(x; + adg), Eq. (5.2) can be
expressed as
g{gk
gl Higr
The accuracy of «j will depend heavily on the magnitude of ;, since the
quadratic approximation of the Taylor series is valid only in the neighborhood
of point xj,. At the start of the optimization, ||| will be relatively large and so
oy, will be inaccurate. Nevertheless, reduction will be achieved in f(x) since
f(xx + ady) is minimized in the steepest-descent direction. As the solution
is approached, ||| is decreased and, consequently, the accuracy of ay will
progressively be improved, and the maximum reduction in f(x) will eventually
be achieved in each iteration. Convergence will thus be achieved. For quadratic
functions, Eq. (5.3) is satisfied with the equal sign and hence o = ay, yields
maximum reduction in f(x) in every iteration.
If the Hessian is not available, the value of o can be determined by calcu-
lating f(x) at points x, and x;, — &g where & is an estimate of ay. If

Xk+1 = X —

fe=f(xx) and f= f(xx — agp)

Eq. (5.4) gives .
[~ fi—agler + 2a g Hyg

or
2(f — fr + agf gk
gi Hygy, ~ ( o ) (5.6)
Now from Egs. (5.5) and (5.6)
T A2
g ~ 8 B (5.7)

- 2(f — fu + dgler)
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A suitable value for & is a1, namely, the optimum « in the previous iteration.
For the first iteration, the value & = 1 can be used.
An algorithm that eliminates the need for line searches is as follows:

Algorithm 5.2 Steepest-descent algorithm without line search
Step 1

Input x; and initialize the tolerance ¢.

Set k =1and g = 1.

Compute f1 = f(x1).

Step 2

Compute gy.

Step 3

Setdy, = —grand & = ay_1.

Compute f= f(xx — agg).
Compute oy, from Eq. (5.7).
Step 4
Set x;+1 = X, + apdy and calculate fr11 = f(Xp41)-
Step 5
If || d || < €, then do:
Output x* = xj11 and f(x*) = fi41, and stop.
Otherwise, set K = k + 1 and repeat from Step 2.

The value of oy in Step 3 is an accurate estimate of the value of o that
minimizes f(xj + ady) to the extent that the quadratic approximation of the
Taylor series is an accurate representation of f(x). Thus, as was argued earlier,
the reduction in f(x) per iteration tends to approach the maximum possible as
x* is approached, and if f(x) is quadratic the maximum possible reduction is
achieved in every iteration.

5.2.5 Convergence

If a function f(x) € C? has a local minimizer x* and its Hessian is positive
definite at x = x*, then it can be shown that if xy, is sufficiently close to x*, we
have
1—r
147

2
Faun) = 1) < (0 ) 1) = ) 589
where
smallest eigenvalue of Hy,

largest eigenvalue of Hy,

Furthermore, if f(x) is a quadratic function then the inequality in Eq. (5.8)
holds for all k (see [1] for proof). In effect, subject to the conditions stated, the
steepest-descent method converges linearly (see Sec. 3.7) with a convergence
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5 (1 - r) 2
C\1+7r
Evidently, the rate of convergence is high if the eigenvalues of Hy, are all nearly
equal, or low if at least one eigenvalue is small relative to the largest eigenvalue.

The eigenvalues of H, namely, A; for 1, 2, ..., n, determine the geometry
of the surface

ratio

xTHx = constant

This equation gives the contours of x” Hx and if H is positive definite, the con-
tours are ellipsoids with axes proportional to 1/4/);. If the number of variables
is two, the contours are ellipses with axes proportional to 1/4/A; and 1//As.
Consequently, if the steepest-descent method is applied to a two-dimensional
problem, convergence will be fast if the contours are nearly circular, as is to
be expected, and if they are circular, i.e., » = 1, convergence will be achieved
in one iteration. On the other hand, if the contours are elongated ellipses or if
the function exhibits long narrow valleys, progress will be very slow, in partic-
ular as the solution is approached. The influence of r on convergence can be
appreciated by comparing Figs. 5.4 and 5.5.

Xy

[ )
X0

X1

Figure 5.5. Solution trajectory in steepest-descent algorithm if r ~ 1.
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The steepest-descent method attempts, in effect, to reduce the gradient to
zero. Since at a saddle point, the gradient is zero, it might be questioned
whether such a point is a likely solution. It turns out that such a solution is
highly unlikely, in practice, for two reasons. First, the probability of locating a
saddle point exactly as the next iteration point is infinitesimal. Second, there is
always a descent direction in the neighborhood of a saddle point.

5.2.6  Scaling

The eigenvalues of H in a specific optimization problem and, in turn, the
performance of the steepest-descent method tend to depend to a large extent
on the choice of variables. For example, in one and the same two-dimensional
problem, the contours may be nearly circular or elliptical depending on the
choice of units. Consequently, the rate of convergence can often be improved
by scaling the variables through variable transformations.

A possible approach to scaling might be to let

x =Ty
where T is an n X n diagonal matrix, and then solve the problem

mini;nize h(y) = f(X)|x:Ty

The gradient and Hessian of the new problem are
gy =Tg, and H,=TTHT

respectively, and, therefore, both the steepest-descent direction as well as the
eigenvalues associated with the problem are changed. Unfortunately, the choice
of T tends to depend heavily on the problem at hand and, as a result, no general
rules can be stated. As a rule of thumb, we should strive to as far as possible
equalize the second derivatives

82 f

—5 fore=1,2,...,n
Ox?

5.3 Newton Method

The steepest-descent method is a first-order method since it is based on the
linear approximation of the Taylor series. A second-order method known as
the Newton (also known as the Newton-Raphson) method can be developed
by using the quadratic approximation of the Taylor series. If § is a change in
x, f(x+ 9) is given by

f(x+6)~ Z
— 0

-5]- (5.9)

12
522
=1j5=1
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Assuming that this is an accurate representation of the function at point x + 98,
then differentiating f(x + &) with respect to d for ¥ = 1,2, ..., n and
setting the result to zero will give the values of ;, that minimize f(x+6). This
approach yields

0; = for k=1,2, ...
(%ck +Z@x18xk 0 o S

or in matrix form
g=—Hd

Therefore, the optimum change in x is
0=-Hlg (5.10)

This solution exists if and only if the following conditions hold:

(a) The Hessian is nonsingular.
(b) The approximation in Eq. (5.9) is valid.

Assuming that the second-order sufficiency conditions for a minimum hold
at point x*, then H is positive definite at x* and also in the neighborhood of
the solution i.e., for ||x — x*|| < €. This means that H is nonsingular and has
an inverse for ||x — x*|| < ¢. Since any function f(z) € C? can be accurately
represented in the neighborhood of x* by the quadratic approximation of the
Taylor series, the solution in Eq. (5.10) exists. Furthermore, for any point x
such that || x — x*|| < ¢ one iteration will yield x ~ x*.

Any quadratic function has a Hessian which is constant for any x € E", as
can be readily demonstrated. If the function has a minimum, and the second-
order sufficiency conditions for a minimum hold, then H is positive definite
and, therefore, nonsingular at any point x € E™. Since any quadratic function
is represented exactly by the quadratic approximation of the Taylor series, the
solution in Eq. (5.10) exists. Furthermore, for any point x € E™ one iteration
will yield the solution.

If a general nonquadratic function is to be minimized and an arbitrary point x
is assumed, condition (a) and/or condition (b) may be violated. If condition (a)
is violated, Eq. (5.10) may have an infinite number of solutions or no solution
at all. If, on the other hand, condition (b) is violated, then  may not yield the
solution in one iteration and, if H is not positive definite, § may not even yield
a reduction in the objective function.

The first problem can be overcome by forcing H to become positive definite
by means of some manipulation. The second problem, on the other hand, can
be overcome by using an iterative procedure which incorporates a line search
for the calculation of the change in x. The iterative procedure will counteract
the fact that one iteration will not yield the solution, and the line search can be
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used to achieve maximum reduction in f(x) along the direction predicted by
Eq. (5.10). This approach can be implemented by selecting the next point xx 1
as

Xp11 = Xg + 0 = X + apdy (5.11)

where

dy = -H,; 'g; (5.12)

and «y, is the value of « that minimizes f(xy + ady). The vector dy, is referred
to as the Newton direction at point Xj,. In the case where conditions (a) and (b)
are satisfied, the first iteration will yield the solution with oy, = 1.

At the start of the minimization, progress might be slow for certain types of
functions. Nevertheless, continuous reduction in f(x) will be achieved through
the choice of a. As the solution is approached, however, both conditions (a)
and (b) will be satisfied and, therefore, convergence will be achieved. The
order of convergence can be shown to be two (see [1, Chap. 7]). In effect, the
Newton method has convergence properties that are complementary to those of
the steepest-descent method, namely, it can be slow away from the solution and
fast close to the solution.

The above principles lead readily to the basic Newton algorithm summarized
below.

Algorithm 5.3 Basic Newton algorithm
Step 1
Input x¢ and initialize the tolerance €.
Set k = 0.
Step 2
Compute g and Hy.
If Hy, is not positive definite, force it to become positive definite.
Step 3
Compute H,;l and d; = —H,;lgk.
Step 4
Find oy, the value of « that minimizes f(xj + ady ), using a line search.
Step 5
Set xp11 = xXp + apdg.
Compute f1 = f(Xg+1)-
Step 6
If || d|| < €, then do:
Output x* = xj11 and f(x*) = fi41, and stop.

Otherwise, set k = k + 1 and repeat from Step 2.
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5.3.1 Modification of the Hessian

If the Hessian is not positive definite in any iteration of Algorithm 5.3, it is
forced to become positive definite in Step 2 of the algorithm. This modification
of Hj, can be accomplished in one of several ways.

One approach proposed by Goldfeld, Quandt, and Trotter [2] is to replace
H;, by the n x n identity matrix I,, wherever it becomes nonpositive definite.
Since I,, is positive definite, the problem of a nonsingular Hj, is eliminated.
This approach can be implemented by letting

% Hk + ﬁIn

H;, 110 (5.13)
where [ is set to a large value if Hy, is nonpositive definite, or to a small value
if Hy, is positive definite.

If 5 is large, then

and from Eq. (5.12)
dp = —gk

In effect, the modification in Eq. (5.13) converts the Newton method into the
steepest-descent method.

A nonpositive definite Hy, is likely to arise at points far from the solution
where the steepest-descent method is most effective in reducing the value of
f(x). Therefore, the modification in Eq. (5.13) leads to an algorithm that com-
bines the complementary convergence properties of the Newton and steepest-
descent methods.

A second possibility due to Zwart [3] is to form a modified matrix

H,=U"H,U+¢

where U is a real unitary matrix (i.e., UTU = I,,) and € is a diagonal n x n
matrix with diagonal elements ;. It can be shown that a matrix U exists such
that UTH,, U is diagonal with diagonal elements \; fori = 1, 2, ..., n, where
A; are the eigenvalues of Hy, (see Theorem 2.8). In effect, I:Ik is diagonal with
elements \; + ;. Therefore, if

J0 it X\ >0
STUS-N if M<O0

where J is a positive constant, then H;, will be positive definite. With this
modification, changes in the components of xj in Eq. (5.12) due to negative
eigenvalues are ignored. Matrix UT H, U can be formed by solving the equation

det(Hy, — AI,) =0 (5.14)
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This method entails minimal disturbance of Hj, and hence the convergence
properties of the Newton method are largely preserved. Unfortunately, how-
ever, the solution of Eq. (5.14) involves the determination of the n roots of the
characteristic polynomial of Hy, and is, therefore, time-consuming.

A third method for the manipulation of Hy, which is attributed to Matthews
and Davies [4], is based on the Gaussian elimination. This method leads si-
multaneously to the modification of Hj and the computation of the Newton
direction d;, and is, therefore, one of the most practical to use. As was shown
in Sec. 2.6, given a matrix Hy, a diagonal matrix D can be deduced as

D = LH,L” (5.15)

where
L=E,1 - EE;

is a unit lower triangular matrix, and E;, E,, ... are elementary matrices. If
H;, is positive definite, then D is positive definite and vice-versa (see Theorem
2.7). If D is not positive definite, then a positive definite diagonal matrix D
can be formed by replacing each zero or negative element in D by a positive
element. In this way a positive definite matrix [, can be formed as

H, = L 'D@L)™! (5.16)
Now from Eq. (5.12) A
Hydr = —gk (5.17)
and hence Egs. (5.16) and (5.17) yield
L 'D@L) 4, = —g; (5.18)
If we let .
DL di =y (5.19)
then Eq. (5.18) can be expressed as
L'y, = —gi
Therefore,
yr = —Lg, (5.20)
and from Eq. (5.19) A
d, =L"D 'y, (5.21)

The computation of dj can thus be carried out by generating the unit lower
triangular matrix L and the corresponding positive definite diagonal matrix D.

If
hi1 hia -+ hiy
hao1  haa -+ hoy

H, =

hnl hn2 to hnn
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then
Iy 0 - 0
I
lnl ln2 lnn
and
di1 0 0
. 0 d 0
D= 22
0 0 dnn

can be computed by using the following algorithm.

Algorithm 5.4 Matthews and Davies algorithm
Step 1
Input H;, and n.
SetL=0,D=0.
If h11 > 0, then set hgg = h11, else set hgy = 1.
Step 2
Fork =2, 3, ..., ndo:
Setm=k—1, lym = 1.
If hym < 0, set Ry = hoo.

Step 2.1

Fori=Fk, k+1, ..., ndo:
Set lim = _him/hmma him =0.
Step 2.1.1
Forj=k k+1, ..., ndo:

Set hij = hij + lzmhm]
If 0 < hgr < hgo, set hog = hig.

Step 3

Set Ly, = 1. If Ay, <0, set hpn = hoo-
Fori=1, 2, ..., nsetd; = hj;.
Stop.

This algorithm will convert H into an upper triangular matrix with positive
diagonal elements, and will then assign the diagonal elements obtained to D.
Any zero or negative elements of D are replaced by the most recent lowest
positive element of D, except if the first element is zero or negative, which is
replaced by unity.

If Hy is a 4 x 4 matrix, k and m are initially set to 2 and 1, respectively, and
l11 is set to unity; h1; is checked and if it is zero or negative it is changed to
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unity. The execution of Step 2.1 yields

Lz—Z“’l”iooo
il
s 000

In addition, the elements in column 1 of H;, other than hq are set to zero and
the elements of rows 2 to 4 and columns 2 to 4 are updated to give

hi1 hi2
O /
Hk — 22
0 hy
0 Ay

If 0 < hby < hoo, then b, is used to update hgo.

his
/
23
/
33
/
43

hia
/
24
/
34
/
44

Indices k£ and m are then set

to 3 and 2, respectively , and lo is set to unity. If k5, < 0, it is replaced by the
most recent value of hgg. The execution of Step 2.1 yields

ro1 0 0 07
21
- 1 0 0
hi1 /
L= _@ ~32 o 0
hii By
ha 12
e Mg
| Thn R, ]
and
hi1 hi2 hiz huis
O h/ h/ /
H, — 22 Mgz Moy
0 0
0 0 ?/3 ?/4
43 Ny

If 0 < hlly < hoo, W is assigned to hgo, and so on. In Step 3, h,y, is checked
and is changed to hgg if found to be zero or negative, and l44 is set to unity.
Then the diagonal elements of H, are assigned to D.

With D known, D! can be readily obtained by replacing the diagonal
elements of D by their reciprocals. The computation of y; and dj can be
completed by using Egs. (5.20) and (5.21). Algorithm 5.4 is illustrated by the
following example.
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Example 5.1 Compute L and D for the 4 x 4 matrix

hi1 hi2 hiz his
ha1  hoo  hoz  hay
h31 hs2 hsz hs
ha1 hao  haz  hay

H, =

135

O O OO

using Algorithm 5.4.
Solution The elements of L and ]3, namely, /;; and czii, can be computed as
follows:
Step 1 A
Input Hy, and set n = 4. Initialize L and D as

0 0 0 O 0 0 O

0 0 0 O “ 0 0 O

L= 0 0 0 O D= 0 0 O

0 0 0 O 0 0 O

Step 2

If h11 > 0, then set hgg = hq1, else set hgg = 1.
k=2;
m=1101 =1
if hi1 <0, set h11 = hoo;
Step 2.1
1= 2;
lo1 = —hg1/h11, ho1 = 0;
Step 2.1.1
J=12
haa = hag + la1h12 = hag — harhi2/hi1 (= hby);
J=3;
has = hag + la1h13 = has — ha1hisz/hi1 (= hbs);
J=4
hos = hos + lo1h1a = hog — horhia/hi1 (= hby);
1= 3;
l31 = —hg1/h11, h31 = 0;
J=2
h3a = hag + l31h12 = hss — hg1hi2/hi1 (= his);
J=3
hs3 = haz + l31h13 = haz — hg1hi3/hi1 (= his);
J=4
hs4 = haa + l31h14a = h3s — hgr1hia/hi1 (= hiy);
1 =4;
lsy = —ha1/h11, ha1 = 0;
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j=2
hap = hao + larhia = haa — harhia/hi1 (= hlj);
J=3
has = has + lanh1s = hag — harhis/hi1 (= hlys);
J=4
haa = haa + lunhia = haa — harhia/hi1 (= hly);
if 0 < haa < hoo, set hog = hao;
k=3;
m = 2, l22 = 1;
if hog < 0, set hos = hog;
1= 3;
l3o = —h3a/ha2, h3a = 0;
J=3
h33 = h33 —+ l32h23 = h33 - h32h23/h‘22 (: /3,3)’
j=4
h3a = haa + l3ohos = haa — hsohaa/hao (= h3,);
1 =4,
lig = —haa/haa, hap = 0;
j=3
=4
hag = has + laohog = hag — hashos/hao (= hljy);
if 0 < hgs < hgo, set hgg = hss.
k=4,
m=3, l33=1;
if hag < 0, set hys = hoo;

i =4,
I34 = —haz/h33, haz = 0;
J=4
haa = hag + laahsa = haa — hazhsza/hss = hlj}.

Step 3
lyg = 15
if h4A4 <0, set hyq = hop;
setdy; = hy;fori=1,2, ..., n.

Example 5.2 The gradient and Hessian are given by

3 —6
gg:[_% 2]’ H; = |:_6 59]
5

Deduce a Newton direction dy.
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L= s 1]

Solution If

Eq. (5.15) gives

o~ [ 1[, ] 22 2

5

A positive definite diagonal matrix is

A 3 0
D=
0 5
Hence )
(= O
pl-|’ ]
10 5

From Eq. (5.20), we get

NN

Therefore, from Eq. (5.21)
1 27113 0 % _%
dk:{o 1] _
0 5] [-% -8

5.3.2 Computation of the Hessian

The main disadvantage of the Newton method is that the second derivatives
of the function are required so that the Hessian may be computed. If exact
formulas are unavailable or are difficult to obtain, the second derivatives can be
computed by using the numerical formulas

—_

8 6 _ ! .
35{1 :gi—%f(x—F 15) ey = f(x) withd, =500 --- 07
Pf o P+ 8) =) 53— 050 O

0x10x9 6—0 )
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5.4 Gauss-Newton Method

In many optimization problems, the objective function is in the form of a
vector of functions given by

f= [fl(x) fQ(X) ce fm(x)]T

where f,(x) forp =1, 2, ..., mare independent functions of x (see Sec. 1.2).
The solution sought is a point X such that all f,,(x) are reduced to zero simul-
taneously.

In problems of this type, a real-valued function can be formed as

F=Y f(x)*=f"f (5.22)
p=1

If F' is minimized by using a multidimensional unconstrained algorithm, then
the individual functions fj(x) are minimized in the least-squares sense (see
Sec. 1.2).

A method for the solution of the above class of problems, known as the Gauss-
Newton method, can be readily developed by applying the Newton method of
Sec. 5.3.

Since there are a number of functions f,,(x) and each one depends on x; for

1 =1, 2, ..., na gradient matrix, referred to as the Jacobian , can be formed
as
of  OA .. OA
o1 Oxzo 0zn
ofr  0fa . . Of2
J = ox1 Oxo 0Ty
Ofm  Ofm ... Ofm
o1 Oxzo 0zn

The number of functions m may exceed the number of variables n, that is, the
Jacobian need not be a square matrix.
By differentiating F' in Eq. (5.22) with respect to x;, we obtain

oF Ui af,
=39 P 5.23
p=1

fori =1, 2, ..., n. Alternatively, in matrix form

OF ofi  9f Ofm

Oy dr1  Odr1  Bz1 fi X)

oF on  of .. 9w | | f2(%)

Ozz | = 2 | Bxs oo Oxa .

oF A Of ot | Lfm(x)

Oxn 0%  Oxn  On



Basic Multidimensional Gradient Methods 139

Hence the gradient of F', designated by g, can be expressed as
_ o1T
gr=2J'f (5.24)

Assuming that f,,(x) € C?, Eq. (5.23) yields

0*F " df, Of, i 0?f
=2 PP 4 9 X P
8:10,-8:@- —1 8:1@1 8iL'j ;921 fp( )6:101695]
fori, j = 1,2, ..., n. If the second derivatives of f,(x) are neglected, we
have
0*F ~9 i fp 0fp
6902-8% —1 8(131 8$j

Thus the Hessian of F', designated by Hr, can be deduced as
Hp ~2J7J (5.25)

Since the gradient and Hessian of F' are now known, the Newton method can
be applied for the solution of the problem. The necessary recursive relation is
given by Egs. (5.11) — (5.12) and (5.24) — (5.25) as

Xpt1 = Xi — Ozk(QJTJ)_l(QJTf)
= x;, — ap(JTI)HITE)

where «y, is the value of « that minimizes F'(xj + ady). As k is increased,
successive line searches bring about reductions in F} and xj approaches x*.
When x;, is in the neighborhood of x*, functions f,(xj) can be accurately
represented by the linear approximation of the Taylor series, the matrix in
Eq. (5.25) becomes an accurate representation of the Hessian of F}, and the
method converges very rapidly. If functions f,(x) are linear, F is quadratic, the
matrix in Eq. (5.25) is the Hessian, and the problem is solved in one iteration.

The method breaks down if Hy becomes singular, as in the case of Newton
method. However, the remedies described in Sec. 5.3 can also be applied to the
Gauss-Newton method.

An algorithm based on the above principles is as follows:
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Algorithm 5.5 Gauss-Newton algorithm
Step 1

Input x¢ and initialize the tolerance ¢.

Set k = 0.

Step 2

Compute fpr, = fp(xx) forp=1,2, ..., mand F}.
Step 3

Compute J;, g = 2J£fk, and H;, = 2J%Jk.
Step 4

Compute L, and D, using Algorithm 5.4.
Compute y, = —Ligr and dy, = Lfﬁ,;lyk.

Step 5

Find oy, the value of « that minimizes F'(xj + ady).

Step 6

Set xp41 = X + agdg.

Compute fyr41) forp=1,2, ..., mand Fg;.

Step 7

If |F1 — Fi| < ¢, then do:
Output x* = Xj11, fprs1)(X*) forp=1,2,..., m,and Fjy;.
Stop.

Otherwise, set k = k + 1 and repeat from Step 3.

The factors 2 in Step 3 can be discarded since they cancel out in the calculation
of dj (see Eq. (5.12)). In Step 4, H;, is forced to become positive definite, if
it is not positive definite, and, further, the Newton direction dy, is calculated
without the direct inversion of Hj..
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Problems
5.1 The steepest-descent method is applied to solve the problem

minimize f(x) = 227 — 2z 29 4 73 + 221 — 229

and a sequence {xy} is generated.
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w1 )

1 \17T
Xok43 = {0 (1 - 51<;+1)

(b) Find the minimizer of f(x) using the result in part (a).

5.2 The problem

(a) Assuming that

show that

minimize f(x) = 27 + 223 + 4z + 49
is to be solved by using the steepest-descent method with an initial point
xo = [0 0]T.

(a) By means of induction, show that

2 1\*

(b) Deduce the minimizer of f(x).
5.3 Consider the minimization problem
minimize x% + :c% —0.22129 — 2.221 + 2.229 + 2.2
(a) Find a point satisfying the first-order necessary conditions for a min-
imizer.
(b) Show that this point is the global minimizer.

(c) What is the rate of convergence of the steepest-descent method for
this problem?

(d) Starting at x = [0 0]”, how many steepest-descent iterations would it
take (at most) to reduce the function value to 107102

5.4 (a) Solve the problem
minimize f(x) = 5x? — 9z1x9 + 4.07523 + 2
by applying the steepest-descent method with xq = [1 1]7 and ¢ =
3% 107

(b) Give a convergence analysis on the above problem to explain why the
steepest-decent method requires a large number of iterations to reach
the solution.

5.5 Solve the problem

minimize f(x) = (v1 + 5)% + (z2 + 8)* + (w3 + 7)?
+2$%ZL‘% + 41‘%.7}%
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5.6

5.7

5.8

59

5.10

5.11

5.12

by applying Algorithm 5.1.

(a) Start with xo = [1 1 1]7 and & = 107°. Verify the solution point
using the second-order sufficient conditions.

(b) Repeat (a) using xg = [~2.3 0 0]7".
(c) Repeat (a) using xg = [02 —12]7.

Solve the problem in Prob. 5.5 by applying Algorithm 5.2. Try the same
initial points as in Prob. 5.5 (a)—(c). Compare the solutions obtained and
the amount of computation required with that of Algorithm 5.1.

Solve the problem
P (02 2 2 2
minimize f(x) = (2] + 25 —1)°+ (z1 + 22 — 1)

by applying Algorithm 5.1. Use ¢ = 1075 and try the following initial
points: [4 4], [4 —4]7, [-44]T, [-4 —4]T. Examine the solution points
obtained.

Solve the problem in Prob. 5.7 by applying Algorithm 5.2. Compare the
computational efficiency of Algorithm 5.2 with that of Algorithm 5.1.

Solve the problem

minimize f(x) = _373617@720(3;17“)2

by applying Algorithm 5.1.
(a) Start with xg = [0.1 0.1]7 and ¢ = 1075. Examine the solution
obtained.

(b) Start with xg = [0.8 0.1]7 and ¢ = 1075, Examine the solution
obtained.

(c) Start with xg = [1.1 0.1]7 and ¢ = 1075. Examine the solution
obtained.

Solve the problem in Prob. 5.9 by applying Algorithm 5.2. Try the 3 initial
points specified in Prob. 5.9 (a)—(c) and examine the solutions obtained.

Solve the problem

minimize f(x) = 95:1‘3@””27“%10("3179”2)2

by applying Algorithm 5.1. Use ¢ = 1079 and try the following initial
points: [—3 —3]7, [3 3]7, [3 — 3]7, and [~3 3]7. Examine the solution
points obtained.

Solve Prob. 5.11 by applying Algorithm 5.2. Examine the solution points
obtained.
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5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

Solve the minimization problem in Prob. 5.1 with xo = [0 0]” by using
Newton method.

Solve the minimization problem in Prob. 5.2 with xo = [0 0]” by using
Newton method.

Modify the Newton algorithm described in Algorithm 5.3 by incorporat-
ing Eq. (5.13) into the algorithm. Give a step-by-step description of the
modified algorithm.

Solve Prob. 5.5 by applying the algorithm in Prob. 5.15. Examine the
solution points obtained and compare the algorithm’s computational com-
plexity with that of Algorithm 5.1.

Solve Prob. 5.7 by applying the algorithm in Prob. 5.15. Examine the
solution points obtained and compare the amount of computation required
with that of Algorithm 5.1.

Solve Prob. 5.9 by applying the algorithm in Prob. 5.15. Examine the
solutions obtained and compare the algorithm’s computational complexity
with that of Algorithm 5.1.

Solve Prob. 5.11 by applying the algorithm in Prob. 5.15. Examine the
solutions obtained and compare the amount of computation required with
that of Algorithm 5.1.

(a) Find the global minimizer of the objective function

f(x) = (21 + 1032)* + 5(z5 — 24)® + (72 — 223)*
+100(z1 — x4)*

by using the fact that each term in the objective function is nonnegative.

(b) Solve the problem in part (a) using the steepest-descent method with
e = 107% and try the initial points [-2 —1 1 2] and [200 —200 100
—100]7.

(c) Solve the problem in part (a) using the modified Newton method in
Prob. 5.15 with the same termination tolerance and initial points as in

).

(d) Solve the problem in part (a) using the Gauss-Newton method with
the same termination tolerance and initial points as in (b).

(e) Based on the results of (b)—(d), compare the computational efficiency
and solution accuracy of the three methods.

Solve Prob. 5.5 by applying the Gauss-Newton method. Examine the
solutions obtained and compare the results with those obtained first by
using Algorithm 5.1 and then by using the algorithm in Prob. 5.15.
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5.22 Solve Prob. 5.7 by applying the Gauss-Newton method. Examine the
solutions obtained and compare the results with those obtained first by
using Algorithm 5.1 and then by using the algorithm in Prob. 5.15.



Chapter 6

CONJUGATE-DIRECTION METHODS

6.1 Introduction

In the multidimensional optimization methods described so far, the direction
of search in each iteration depends on the local properties of the objective
function. Although a relation may exist between successive search directions,
such a relation is incidental. In this chapter, methods are described in which
the optimization is performed by using sequential search directions that bear a
strict mathematical relationship to one another. An important class of methods
of this type is a class based on a set of search directions known as conjugate
directions.

Like the Newton method, conjugate-direction methods are developed for the
quadratic optimization problem and are then extended to the general optimiza-
tion problem. For a quadratic problem, convergence is achieved in a finite
number of iterations.

Conjugate-direction methods have been found to be very effective in many
types of problems and have been used extensively in the past. The four most
important methods of this class are as follows:

1. Conjugate-gradient method
2. Fletcher-Reeves method

3. Powell’s method

4. Partan method

The principles involved and specific algorithms based on these methods form
the subject matter of this chapter.
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6.2  Conjugate Directions
If f(x) € C! where x = [x1 x3 -+ x,]T, the problem

minimize F' = f(x)
X
can be solved by using the following algorithm:

Algorithm 6.1 Coordinate-descent algorithm

Step 1

Input x; and initialize the tolerance €.

Setk = 1.

Step 2

Setdy, =1[00 --- 0di 0 --- 0]T.

Step 3

Find oy, the value of v that minimizes f(xj + ady ), using a line search.
Set xp41 = X + ody

Calculate fr11 = f(Xk11)-

Step 4

If [ dg|| < € then output x* = x41 and f(x*) = fx41, and stop.
Step 5

If £ = n, set x; = xx41, £ = 1 and repeat from Step 2;

Otherwise, set k = k + 1 and repeat from Step 2.

In this algorithm, an initial point x; is assumed, and f(x) is minimized in
direction d; to obtain a new point x2. The procedure is repeated for points
X3, X3, ...and when k = n, the algorithm is reinitialized and the procedure is
repeated until convergence is achieved. Evidently, this algorithm differs from
those in Chap. 5 in that f(x) is minimized repeatedly using a set of directions
which bear a strict relationship to one another. The relationship among the
various directions is that they form a set of coordinate directions since only one
element of x, is allowed to vary in each line search.

Algorithm 6.1, which is often referred to as a coordinate-descent algorithm,
is not very effective or reliable in practice, since an oscillatory behavior can
sometimes occur. However, by using another class of interrelated directions
known as conjugate directions, some quite effective algorithms can be devel-
oped.

Definition 6.1

(a) Two distinct nonzero vectors d; and dg are said to be conjugate with
respect to a real symmetric matrix H, if

d'Hd, =0
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(b) A finite set of distinct nonzero vectors {dg, di, ..., dj} is said to be
conjugate with respect to a real symmetric matrix H, if
d/Hd; =0 foralli#j (6.1)
]

If H = I,,, where I, is the n x n identity matrix, then Eq. (6.1) can be
expressed as

d/Hd; =d/I,d; =d/d; =0 for i#j

This is the well known condition for orthogonality between vectors d; and d;
and, in effect, conjugacy is a generalization of orthogonality.
Ifd; forj =0, 1, ..., k are eigenvectors of H then

Hd; = A\;d;
where the \; are the eigenvalues of H. Hence, we have
d/Hd; = \;dfdj =0  for i#j

since d; and d; for 7 # j are orthogonal [5]. In effect, the set of eigenvectors
d; constitutes a set of conjugate directions with respect to H.

Theorem 6.1 Linear independence of conjugate vectors If nonzero vectors
do, di, ..., dg form a conjugate set with respect to a positive definite matrix
H, then they are linearly independent.

Proof Consider the system
k
Z Oéjdj =0
J=0

On premultiplying by diTH, where 0 < ¢ < k, and then using Def. 6.1, we
obtain

k
> o;d]Hd; = oyd] Hd; = 0
j=0

Since H is positive definite, we have diTHdi > (. Therefore, the above system
has a solution if and only if o; = O for j = 0, 1, ..., k, thatis, vectors d; are
linearly independent.
]
The use of conjugate directions in the process of optimization can be demon-
strated by considering the quadratic problem

minimize f(x)=a+x’b+ %XTHX (6.2)
x
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where a = f(0), b is the gradient of f(x) at x = 0, and H is the Hessian. The
gradient of f(x) at any point can be deduced as

g=b+ Hx
At the minimizer x* of f(x), g = 0 and thus
Hx* = -b (6.3)

Ifdg, di, ..., dy—1 are distinct conjugate directions in £, then they form
a basis of £ since they are linearly independent and span the E™ space. This
means that all possible vectors in E™ can be expressed as linear combinations

of directions dg, di, ..., d,—1. Hence x* can be expressed as
n—1
x* =" ad; (6.4)
i=0
where o; fort =0, 1, ..., n — 1 are constants. If H is positive definite, then
from Def. 6.1 we can write
n—1
dfHx* =Y o;dfHd; = a;,df Hdy
i=0
and thus .
d; Hx*
. — (65)
d{Hdk
Now from Eq. (6.3)
d;{b b’d,
= T4qTH4, = d’Hd
k k k k
Therefore, Eq. (6.4) gives the minimizer as
n—1 T
d.b
x* = — d;, (6.6)
2 iTHa,

In effect, if n conjugate directions are known, an explicit expression for x*
can be obtained.

The significance of conjugate directions can be demonstrated by attempting
to obtain x* using a set of n nonzero orthogonal directions pg, p1, ---, Pn—1-
Proceeding as above, we can show that

n—1 _T_x
P X

X" = opk
= lpxl?

Evidently, in this case, x* depends on itself and, in effect, there is a distinct
advantage in using conjugate directions.
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6.3 Basic Conjugate-Directions Method

The computation of x* through the use of Eq. (6.6) can be regarded as an
iterative computation whereby n successive adjustments o dj are made to an
initial point x9 = 0. Alternatively, the sequence generated by the recursive
relation

Xp+1 = Xp + adg
where

b’'d,

d7Hd;

and xg = 0 converges when £k = n — 1 to

. —

X, =x"

A similar result can be obtained for an arbitrary initial point xq as is demon-
strated by the following theorem.

Theorem 6.2 Convergence of conjugate-directions method If {do, di, ...,
d,,—1} is a set of nonzero conjugate directions, H is an n x n positive definite
matrix, and the problem

minimize f(x) =a+x"b + %XTHX (6.7)
X

is quadratic, then for any initial point x( the sequence generated by the relation

Xp+1 = X + apdg for k>0 (6.8)
where
gl
= T 4THA
k k
and
gr = b + Hxy (6.9)

converges to the unique solution x* of the quadratic problem in n iterations,
Le., X, = x*

Proof Vector x* — x( can be expressed as a linear combination of conjugate
directions as

n—1
x*—x0= Y od; (6.10)
=0

Hence as in Eq. (6.5)
B d;‘gH(x* — Xp)

= 6.11
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The iterative procedure in Eq. (6.8) will yield

k—1
Xp—Xo =Y _ oyd; (6.12)
i=0
and so
k—1
dTH(x;, — x0) = Z a;diHd; =0
i=0
since i # k. Evidently,
dFHx;, = dTHx, (6.13)

and thus Eqgs. (6.11) and (6.13) give

_ d} (Hx* — Hxy)

6.14
From Eq. (6.9)
and since g = 0 at minimizer x;, we have
Hx" = -b (6.16)
Therefore, Eqgs. (6.14) — (6.16) yield
d’ T'd
ap = — k8 8Tk (6.17)

~dfHd,  dTHd,
Now for k£ = n Egs. (6.12) and (6.10) yield

n—1
xn:XO—I—Zaidizx*
i=0
and, therefore, the iterative relation in Eq. (6.8) converges to x* in n iterations.
|

By using Theorem 6.2 in conjunction with various techniques for the gener-
ation of conjugate directions, a number of distinct conjugate-direction methods
can be developed.

Methods based on Theorem 6.2 have certain common properties. Two of
these properties are given in the following theorem.

Theorem 6.3 Orthogonality of gradient to a set of conjugate directions
(a) The gradient gy, is orthogonal to directions d; for 0 < i < k, that is,

gfd; =dTg, =0 for 0<i<k
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(b) The assignment o = «, in Theorem 6.2 minimizes f(x) on each line

X = X}_1 + ad; for 0<i<k

Proof

(a) We assume that
ghd; =0 for 0 <i<k

and show that
ghidi=0 for 0<i<k+1

From Eq. (6.9)
gk+1 — 8k = H(Xg11 — k)
and from Eq. (6.8)
8k+1 = gk + apHdyg

Hence
gl di = gl d; + ap.df Hd,

For ¢ = k, Egs. (6.20) and (6.17) give
gl di, = gi dj, + apdf Hdy = 0
For 0 <7 < k, Eq. (6.18) gives
gid; =0
and since d; and dj, are conjugate
diHd; =0
Hence Eq. (6.20) gives
ggﬂdi:O for 0<i<k
By combining Eqgs. (6.21) and (6.22), we have

gidi=0 for 0<i<k+1

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

Now if k¥ = 0, Eq. (6.23) gives gid; = 0 for 0 < i < 1 and from

Egs. (6.18) and (6.23), we obtain

gld; =0 for 0<i<?2
gld;i=0 for 0<i<3

ghd, =0 for 0<i<k
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(b) Since

g%dz‘ = gT(Xk)di = g(xp—1 + Oédi)Tdi
df (xx—1 + ad;)

f(x) is minimized on each line

X =Xp,_1 + ad; for 0<i<k

The implication of the second part of the above theorem is that x; minimizes
f(x) with respect to the subspace spanned by the set of vectors {dy, di, ...,
dy_1}. Therefore, x,, minimizes f(x) with respect to the space spanned by
the set of vectors {dy, di, ..., d,—1}, namely, E™. This is another way of
stating that x,, = x*.

6.4 Conjugate-Gradient Method

An effective method for the generation of conjugate directions proposed by
Hestenes and Stiefel [1] is the so-called conjugate-gradient method. In this
method, directions are generated sequentially, one per iteration. For iteration
k+1, anew point X 1 is generated by using the previous direction dy. Then a
new direction dj 11 is generated by adding a vector 3 dj, to —gy1 1, the negative
of the gradient at the new point.

The conjugate-gradient method is based on the following theorem. This
is essentially the same as Theorem 6.2 except that the method of generating
conjugate directions is now defined.

Theorem 6.4 Convergence of conjugate-gradient method
(a) If H is a positive definite matrix, then for any initial point Xy and an
initial direction
do = —go = —(b + Hxo)

the sequence generated by the recursive relation

Xpr1 = Xg + apdy (6.24)
where
T
8 d

= — 6.25

“ = TdTHd, (6.25)
8L = b+ HXk (626)
dpi1 = —8rt+1 + Brds (6.27)

T
8.1 Hdy,
By = St = (6.28)

d}Hd,
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converges to the unique solution x* of the problem given in Eq. (6.2).
(b) The gradient gy, is orthogonal to {go, g1, ..., 8k—1}, L.e.,

glgi=0 for0<i<k

Proof

(a) The proof of convergence is the same as in Theorem 6.2. What remains
to prove is that directions dg, di, ..., d,—1 form a conjugate set, that
is,

d/Hd, =0 for 0<i<kandl <k<n

The proof is by induction. We assume that
dfHd; =0 for 0<i<k (6.29)
and show that
df. . Hd; =0 for 0<i<k+1

Let S(vo, V1, ..., Vi) be the subspace spanned by vectors vo, vi, ...,
vi. From Eq. (6.19)

8k+1 = 8k + axgHdyg (6.30)
and hence for £k = 0, we have
g1 = 8o + aoHdg = go — apHgo
since dg = —gp. In addition, Eq. (6.27) yields
di = —g1 + fodo = —(1 + Bo)go + aoHgo
that is, g and d; are linear combinations of gy and Hgy, and so
S5(go, 1) = S(do, d1) = S(go, Hgo)
Similarly, for k = 2, we get

g2 = 8o — oo + a1 (1 + Bo)|Hgo + apar H?go
dy = —[1 + (14 Bo)B1]go + [0 + a1 (1 + Bo) + o B1]Hgo
—apaH?gy

and hence

(g0, Heo, H?gy)
(gO; Hg07 HZgO)

S(g0> 1, g2)

=S
S(do, di, d2) = S
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By continuing the induction, we can show that

S(go, g1, ---» g) = S(go, Heo, ..., H'gy)  (6.31)
S(dg, dy, ..., d) = S(go, Hgo, ..., H'g) (6.32)

Now from Eq. (6.27)
df, Hd, = —g/,,Hd; + 6xd] Hd; (6.33)
For ¢ = k, the use of Eq. (6.28) gives
df. Hd; = —g/,Hd; + 8xd; Hdy = 0 (6.34)
For ¢ < k, Eq. (6.32) shows that
Hd; € S(do, di, ..., dg)

and thus Hd; can be represented by the linear combination

k
Hdi = Zaidi (6~35)
i=0
where a; fori = 0, 1, ..., k are constants. Now from Egs. (6.33) and

(6.35)

k
di \Hd;, = =) aigf, d; + Brdf Hd;
=0
=0 for i<k (6.36)

The first term is zero from the orthogonality property of Theorem 6.3(a)
whereas the second term is zero from the assumption in Eq. (6.29). By
combining Eqs. (6.34) and (6.36), we have

di,;Hd; =0 for 0<i<k+]1 (6.37)
For k = 0, Eq. (6.37) gives
dTHd; =0 for 0<i<1
and, therefore, from Egs. (6.29) and (6.37), we have
dlHd, =0 for 0<i<?2
dlHd, =0 for 0<i<3

dfHd; =0 for 0<i<k



Conjugate-Direction Methods 155

(b) From Egs. (6.31) — (6.32), g0, g1, ..., &k span the same subspace as
dg, di, ..., d; and, consequently, they are linearly independent. We
can write

7
gi = _a;d;
=0

where a; for j = 0, 1, ..., ¢ are constants. Therefore, from Theorem
6.3

i
glzgiZZajgzdj:O for 0<i<k
j=0

The expressions for oy, and 3, in the above theorem can be simplified some-
what. From Eq. (6.27)

—gfdp = gl g, — Br18f dis
where
gid;_1 =0
according to Theorem 6.3(a). Hence
—gi dy. = g g

and, therefore, the expression for ay, in Eq. (6.25) is modified as

T
g 8k
ap = (6.38)
dedkJ
On the other hand, from Eq. (6.19)
1
Hdy = —(gk+1 — 8k)
Qg
and so ]
gi Hdy = ;k(g5+1gk+1 — gl 18) (6.39)
Now from Egs. (6.31) and (6.32)
gL € S(do, d1, ceey dk)
or
k
gk = Y aid;
i=0
and as a result i
gl g = aghdi=0 (6.40)

=0
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by virtue of Theorem 6.3(a). Therefore, Egs. (6.28) and (6.38) — (6.40) yield

. gg+1gk+1
Or=—F_—
g 8k

The above principles and theorems lead to the following algorithm:

Algorithm 6.2 Conjugate-gradient algorithm

Step 1
Input x¢ and initialize the tolerance ¢.
Step 2
Compute gp and set dg = —gg, k = 0.
Step 3
Input Hy, i.e., the Hessian at xy.
Compute

T

o = Tgk gk
d; Hpd;,

Set x;11 = X + apdy and calculate fr 11 = f(Xpi1)-
Step 4

If [|apdg|| < €, output x* = xp11 and f(x*) = fi41, and stop.
Step 5
Compute g+ 1.
Compute
ggﬂgkﬂ
e
8. 8k

Generate new direction

dit1 = —8k+1 + Ordy
Set k = k + 1, and repeat from Step 3.

A typical solution trajectory for the above algorithm for a 2-dimensional
convex quadratic problem is illustrated in Fig. 6.1. Note that x; = xg — apgo,
where qy is the value of « that minimizes f (xo—ag), as in the steepest-descent
algorithm.

The main advantages of the conjugate-gradient algorithm are as follows:

1. The gradient is always finite and linearly independent of all previous di-
rection vectors, except when the solution is reached.

2. The computations are relatively simple and only slightly more complicated

by comparison to the computations in the steepest-descent method.

No line searches are required.

4. For convex quadratic problems, the algorithm converges in n iterations.

»
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X2

X1

Figure6.1. Typical solution trajectory in conjugate-gradient algorithm for a quadratic problem.

5. The firstdirection is a steepest-descent direction and it thus leads to a good
reduction in f(x) during the first iteration.

6. The algorithm has good convergence properties when applied for the so-
lution of nonquadratic problems since the directions are based on gradient
information.

7. Problems associated with the inversion of the Hessian are absent.

The disadvantages of the algorithm are:

1. The Hessian must be supplied, stored, and manipulated.
2. For nonquadratic problems convergence may not be achieved in rare oc-
casions.

6.5 Minimization of Nonquadratic Functions

Like the Newton method, conjugate-direction methods are developed for the
convex quadratic problem but are then applied for the solution of quadratic
as well as nonquadratic problems. The fundamental assumption is made that
if a steady reduction is achieved in the objective function in successive iter-
ations, the neighborhood of the solution will eventually be reached. If H is
positive definite near the solution, then convergence will, in principle, follow
in at most n iterations. For this reason, conjugate-direction methods, like the
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Newton method, are said to have quadratic termination. In addition, the rate
of convergence is quadratic, that is, the order of convergence is two.

The use of conjugate-direction methods for the solution of nonquadratic
problems may sometimes be relatively inefficient in reducing the objective
function, in particular if the initial point is far from the solution. In such a
case, unreliable previous data are likely to accumulate in the current direction
vector, since they are calculated on the basis of past directions. Under these
circumstances, the solution trajectory may wander through suboptimal areas of
the parameter space, and progress will be slow. This problem can be overcome
by re-initializing these algorithms periodically, say, every n iterations, in order
to obliterate previous unreliable information, and in order to provide new vigor
to the algorithm through the use of a steepest-descent step. Most of the time, the
information accumulated in the current direction is quite reliable and throwing
it away is likely to increase the amount of computation. Nevertheless, this
seems to be a fair price to pay if the robustness of the algorithm is increased.

6.6 Fletcher-Reeves Method

The Fletcher-Reeves method [2] is a variation of the conjugate-gradient
method. Its main feature is that parameters oy for £ = 0, 1, 2, ... are
determined by minimizing f(x + «dy) with respect to « using a line search
as in the case of the steepest-descent or the Newton method. The difference
between this method and the steepest-descent or the Newton method is that dy,
is a conjugate direction with respect to d;_1, dg_o, ..., dg rather than the
steepest-descent or Newton direction.

If the problem to be solved is convex and quadratic and the directions are
selected as in Eq. (6.27) with 3, given by Eq. (6.28), then

df(xk + ady)
da
fork =0, 1, 2, .... Further, the conjugacy of the set of directions assures that

df (xx + ad;)
da

= ggﬂdk =0

:ggﬂdi:O for 0<:<k

or
gld; =0 for 0<i<k

as in Theorem 6.3. Consequently, the determination of «;, through a line search
is equivalent to using Eq. (6.25). Since a line search entails more computation
than Eq. (6.25), the Fletcher-Reeves modification would appear to be a ret-
rograde step. Nevertheless, two significant advantages are gained as follows:

1. The modification renders the method more amenable to the minimization
of nonquadratic problems since a larger reduction can be achieved in f(x)
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along dj, at points outside the neighborhood of the solution. This is due
to the fact that Eq. (6.25) will not yield the minimum along dy, in the case
of a nonquadratic problem.

2. The modification obviates the derivation and calculation of the Hessian.

The Fletcher-Reeves algorithm can be shown to converge subject to the con-
dition that the algorithm is re-initialized every n iterations. An implementation
of the algorithm is as follows:

Algorithm 6.3 Fletcher-Reeves algorithm

Step 1

Input x( and initialize the tolerance ¢.
Step 2

Set k = 0.

Computer g and set dg = —gp.

Step 3

Find ay, the value of «v that minimizes f(xx + ady).

Set X411 = Xk + apdg.

Step 4

If || di|| < €, output x* = x4 and f(x*) = fr11, and stop.
Step 5

Ifk=n—1,setxg = x4+ and go to Step 2.

Step 6
Compute g 1.
Compute
g£+1gk+1
B =—F7—
g 8k

Setdgi1 = —gkt1 + Grdy.
Set k = k + 1 and repeat from Step 3.

6.7 Powell’s Method

A conjugate-direction method which has been used extensively in the past
is one due to Powell [3]. This method, like the conjugate-gradient method, is
developed for the convex quadratic problem but it can be applied successfully
to nonquadratic problems.

The distinctive feature of Powell’s method is that conjugate directions are
generated through a series of line searches. The technique used is based on the
following theorem:

Theorem 6.5 Generation of conjugate directions in Powell’s method Let X,
and x; be the minimizers obtained if the convex quadratic function

fx)=a+x"b+ %XTHX
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is minimized with respect to « on lines
X =X, + ad,

and
X = Xp + ady

respectively, as illustrated in Fig. 6.2.
If dy, = dg, then vector xj; — X}, is conjugate with respect to d, ( or dy).

Conjugate direction

X2

X

Figure 6.2. Generation of a conjugate direction.

Proof If f(x, + ad,) and f(xp + ad;) are minimized with respect to «, then

d a da *
f(xd“;a) = dlg(x}) =0 (6.41a)
df (xp + ad N
@+ ady) bda ) _ dl'g(x;) =0 (6.41b)
as in the case of a steepest-descent step (see Sec. 5.2). Since
g(x;) = b+ Hx (6.42a)
g(x;) = b+ Hx; (6.42b)

then for d, = dg, Egs. (6.41) — (6.42) yield
dTH(x} —x*) =0
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and, therefore, vector x; — X, is conjugate with respect to direction d,, (or dy).

[
In Powell’s algorithm, an initial point xqg as well as n linearly independent
directions dg;, dgo, ..., dg, are assumed and a series of line searches are

performed in each iteration. Although any set of initial linearly independent
directions can be used, it is convenient to use a set of coordinate directions.

In the first iteration, f(x) is minimized sequentially in directions dg1, dos,
..., dop, starting from point xgq to yield points xg1, Xg2, - - - , Xon, respectively,
as depicted in Fig. 6.3a. Then a new direction dg,,+1) is generated as

dO(nJrl) = Xon — Xo

and f(x) is minimized in this direction to yield a new point x,,4.1). The set
of directions is then updated by letting

di1 = dp2
di2 = do3
dl(nfl) - dOn
dln = do(n+1) (643)

The effect of the first iteration is to reduce f(x) by an amount Af = f(xgg) —
fXon +1)> and simultaneously to delete do; from and add dg,, 1) to the set
of directions.

The same procedure is repeated in the second iteration. Starting with point

X10 = X0o(n+1)

f(x) is minimized sequentially in directions d11, di2, ..., di, to yield points
X11, X12, ..., Xin, as depicted in Fig. 6.3b. Then a new direction dl(n+1) is
generated as

dl(n+1) = Xin — X10
and f(x) is minimized in direction d;(,, 1) to yield point X;(,,41). Since

din = dy(n+1)

by assignment (see Eq. (6.43)), dy(,,+1) is conjugate to di,, according to The-
orem 6.5. Therefore, if we let

do1 = di2
dyo = di3
da(n—1) = din

do, = dl(n+1)
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[

X0 dons1) Xo(n+1)

(a)

dine1)

= -m
Xin-1) diy Xi(n+1)

(b)

Figure 6.3. First and second iterations in Powell’s algorithm.

the new set of directions will include a pair of conjugate directions, namely,
d2(n71) and da,,.

Proceeding in the same way, each new iteration will increase the number of
conjugate directions by one, and since the first two iterations yield two conjugate
directions, n iterations will yield n conjugate directions. Powell’s method will
thus require n(n + 1) line searches since each iteration entails (n + 1) line
searches. An implementation of Powell’s algorithm is as follows:

Algorithm 6.4 Powell’s algorithm

Step 1
Input xo9 = [701 Zo2 --- Ton]? and initialize the tolerance .
Set

d01 = [xm 0 O]T

do2 = [0 z02

don =[0 0 - z0n]"

Set k£ = 0.
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Step 2

For ¢ =1 ton do:
Find ay;, the value of « that minimizes f(xk(i,l) + adg;).
Set xk; = Xp(i—1) + kid-

Step 3

Generate a new direction

dk(n+1) = Xkn — Xk0

Find ay(,41), the value of « that minimizes f(xxo + ady(,41))-
Set

Xk(nt1) = Xk0 + U(nt1)dk(nt1)

Calculate fk(n+l) = f(Xk(n+1)).

Step 4

If [k (ny1)di(nany | < & output x* = Xy, 11) and f(x*) = frni1),
and stop.

Step 5

Update directions by setting

dpr1y1 = di2
drq1)2 = dis

diry1)n = dr(nr)
Set X(k41)0 = Xk(nt1): k = k + 1, and repeat from Step 2.

InStep 1,do1, dog, - - ., do,, are assumed to be a set of coordinate directions.
In Step 2, f(x) is minimized along the path xzo, Xg1, - .., Xkn. In Step 3,
f(x) is minimized in the new conjugate direction. The resulting search pattern
for the case of a quadratic 2-dimensional problem is illustrated in Fig. 6.4.

The major advantage of Powell’s algorithm is that the Hessian need not be
supplied, stored or manipulated. Furthermore, by using a 1-D algorithm that is
based on function evaluations for line searches, the need for the gradient can
also be eliminated.

A difficulty associated with Powell’s method is that linear dependence can
sometimes arise, and the method may fail to generate a complete set of linearly
independent directions that span £, even in the case of a convex quadratic
problem. This may happen if the minimization of f(xj;_1) + ady;) with
respect to « in Step 2 of the algorithm yields ay; = 0 for some j. In such a
case, Step 3 will yield

n
A1) = D Akidg
=1
i
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X2

Xo1 P2

x|
Figure 6.4. Solution trajectory in Powell’s algorithm for a quadratic problem.

that is, the new direction generated will not have a component in direction
d;;, and since dj; will eventually be dropped, a set of n directions will result
that does not span E™. This means that at least two directions will be linearly
dependent and the algorithm will not converge to the solution.

The above problem can be avoided by discarding dy,, if linear dependence
is detected in the hope that the use of the same set of directions in the next
iteration will be successful in generating a new conjugate direction. This is
likely to happen since the next iteration will start with a new point x.

In principle, linear dependence would occur if at least one ay; becomes zero,
as was demonstrated above. Unfortunately, however, owing to the finite preci-
sion of computers, zero is an improbable value for aig; and, therefore, checking
the value of ay; is an unreliable test for linear dependence. An alternative
approach due to Powell is as follows.

If the direction vectors dy; forz = 1, 2, ..., n are normalized such that
dlHdy; =1  for i=1,2,...,n

then the determinant of matrix
D = [dp1 dg2 -+ diy)

assumes a maximum value if and only if the directions dg; belong to a conjugate
set. Thus if a nonconjugate direction d;j, is dropped and conjugate direction
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dj(n+1) is added to D, the determinant of D will increase. On the other hand,
if the addition of dy,(,,4.1) results in linear dependence in D, the determinant of
D will decrease. On the basis of these principles, Powell developed a modified
algorithm in which a test is used to determine whether the new direction gener-
ated should or should not be used in the next iteration. The test also identifies
which one of the n old directions should be replaced by the new direction so as
to achieve the maximum increase in the determinant, and thus reduce the risk
of linear dependence.

An alternative but very similar technique for the elimination of linear depen-
dence in the set of directions was proposed by Zangwill [4]. This technique
is more effective and more economical in terms of computation than Powell’s
modification and, therefore, it deserves to be considered in detail.

Zangwill’s technique can be implemented by applying the following modi-
fications to Powell’s algorithm.

1. Theinitial directions in Step 1 are chosen to be the coordinate set of vectors
of unit length such that

Dy = [do1 do2 -+ don]
10 -~ 0

and the determinant of Dy, designated as Ay, is set to unity.
2. In Step 2, constants ay; for i = 1, 2, ..., n are determined as before,
and the largest ay; is then selected, i.e.,

Qg = MaxX{ k1, Qk2, -, Un}

3. In Step 3, a new direction is generated as before, and is then normalized
to unit length so that

1
dk(n+1) = Yk(xm — Xp0)
where
Ak = [|Xkn — Xkol|
4. Step 4 is carried out as before. In Step 5, the new direction in item (3) is

used to replace direction dg,,, provided that this substitution will maintain
the determinant of

Dy = [dg1 di2 -+ dgy)

finite and larger than a constant €7 in the range 0 < £; < 1, namely,

0<er<Ap=detDg <1
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Otherwise, the most recent set of directions is used in the next iteration.
Since

A =det[dgr - drgn—1) dkm dr(me1) = dknl

and
1 n
d(nt1) = oW > iy
ki1

replacing d, by dy (1) yields

!

Qkm
A = S

This result follows readily by noting that

(a) if a constant multiple of a column is added to another column, the
determinant remains unchanged, and
(b) if acolumn is multiplied by a constant, the determinant is multiplied
by the same constant.
From (a), the summation in A;g can be eliminated and from (b) constant
Qm / Ak can be factored out. In this way, the effect of the substitution of
d;.,,, on the determinant of Dy, is known. If

Apm,
—— A >
A k-~ &1
we let
dixy1)m = di(nt)

and

diry1)i = dii
fori=1,2,..., m—1, m—+1,..., n. Otherwise, we let

dpi1)i = dig
fori =1, 2, ..., n. Simultaneously, the determinant A, can be updated
as

Ak k

Qo e’

Skm Ay if Skm Ay > 1
Okt1 = Ak

JAN? otherwise
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The net result of the above modifications is that the determinant of the direc-
tion matrix will always be finite and positive, which implies that the directions
will always be linearly independent. The strategy in item (2) above of replac-
ing the direction dy; that yields the maximum «y; ensures that the value of the
determinant Ay is kept as large as possible so as to prevent linear dependence
from arising in subsequent iterations.

The modified algorithm, which is often referred to as Zangwill’s algorithm,
can be shown to converge in the case of a convex quadratic problem. Its imple-
mentation is as follows:

Algorithm 6.5 Zangwill’s algorithm

Step 1

Input xg¢ and initialize the tolerances ¢ and ;.

Set
dpy=[1 0 --- 0]F
dpx=1[0 1 --- 0]F
dop, =0 0 --- 1]

Setk =0, Ag=1.
Step 2
For i = 1 to n do:
Find ay;, the value of o that minimizes f(xy;—1) + adg;).
Set Xy = Xp(i—1) + kid.
Determine
Qe = max{ag1, k2, -, Qpnt
Step 3
Generate a new direction

di(nt1) = Xkn — Xk0

Find ay,(,41), the value of o that minimizes f(xxo + adj(n41))-
Set
Xk(nt1) = Xk0 + U(nt1)dk(nt1)

Calculate fi(ni1) = f(Xp(ni1))-
Calculate A\, = || Xk — Xkol|-
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Step 4
If |agng 1) dr(nyn)ll < & output X* = Xg(,41) and f(x*) = frni),
and stop.
Step 5
If agm A /A > €1, then do:

Set d(k+1)m = dk(n+1) and d(k+1)i =dg fori=1,2, ..., m—1,
m-+1, ..., n.

Set Ak+1 = Oé)]\gimAk
k

Otherwise, set
d(k+1)i = dki fori = 1, 2, e, N, and Ak—f—l = Ak
Set X(k41)0 = Xk(n+1)» k¥ = k + 1, and repeat from Step 2.

6.8 Partan Method

In the early days of optimization, experimentation with two-variable func-
tions revealed the characteristic zig-zag pattern in the solution trajectory in the
steepest-descent method. It was noted that in well-behaved functions, suc-
cessive solution points tend to coincide on two lines which intersect in the
neighborhood of the minimizer, as depicted in Fig. 6.5. Therefore, an obvious
strategy to attempt was to perform two steps of steepest descent followed by a
search along the line connecting the initial point to the second solution point, as
shown in Fig. 6.5. An iterative version of this approach was tried and found to
converge to the solution. Indeed, for convex quadratic functions, convergence
could be achieved in n iterations. The method has come to be known as the
parallel tangent method, or partan for short, because of a special geometric
property of the tangents to the contours in the case of quadratic functions.

The partan algorithm is illustrated in Fig. 6.6. An initial point x¢ is assumed
and two successive steepest-descent steps are taken to yield points x; and y;.
Then a line search is performed in the direction y; —Xg to yield a point x5. This
completes the first iteration. In the second iteration, a steepest-descent step is
taken from point X2 to yield point y2, and a line search is performed along
direction yo — x; to yield point x3, and so on. In effect, points yi, yo, ...,
in Fig. 6.6 are obtained by steepest-descent steps and points X2, X3, ... are
obtained by line searches along the directions y2 — X1, y3 — X2, . . ..

Inthe case of a convex quadratic problem, the lines connecting X1, X2, . . ., Xk,
which are not part of the algorithm, form a set of conjugate-gradient directions.
This property can be demonstrated by assuming that dg, di, ..., dg_q1 form
a set of conjugate-gradient directions and then showing that dj, is a conjugate-
gradient direction with respect to dg, di, ..., dg_1.
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X2

X1

Figure 6.5. Zig-zag pattern of steepest-descent algorithm.

X2

X1
Steepest descent step
—————— Line search

—— — —  Conjugate direction

Figure 6.6. Solution trajectory for partan method for a nonquadratic problem.
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Xp2

Figure 6.7. Trajectory for kth iteration in partan method.

Consider the steps illustrated in Fig. 6.7 and note that
gld;=0 for 0<i<k (6.44)

on the basis of the above assumption and Theorem 6.3. From Egs. (6.31) —
(6.32), the gradient at point x;_; can be expressed as

k—1
gh1= Y aid;
i=0

where a; for: =0, 1, ..., k — 1 are constants, and hence
k—1
gleg, 1 =gl(b+Hx,_|) = Z a;igrd; =0 (6.45)
i=0
or
gi b = —gj Hx; (6.46)

Since y;, is obtained by a steepest-descent step at point x, we have

Yie — Xk = —8k

and
—g(ye) g =gl (b+ Hyy) =0

or
gib = —gi Hy, (6.47)

Hence Eqgs. (6.46) — (6.47) yield

gl H(yr —x_1) =0 (6.48)
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Since
Yk — Xp—1 = B(Xp41 — Xp—1)

where [ is a constant, Eq. (6.48) can be expressed as
gh H(xpp1 —Xg-1) =0
or
gl Hxpy1 = gl Hxy (6.49)
We can now write
gi g1 = g1 (b + Hxpy) (6.50)
and from Eqgs. (6.45) and (6.49) — (6.50), we have

glgii = gl (b +Hx;_))
=glg, 1=0 (6.51)

Point x4 1 is obtained by performing a line search in direction xx41 — yx, and
hence

g1 (Xks1 —yr) =0 (6.52)
From Fig. 6.7
Xpr1 = Xi +dg (6.53)
and
Vi = Xp — Qg8 (6.54)

where «y, is the value of « that minimizes f(xy — agy). Thus Egs. (6.52) —
(6.54) yield

gy (dy + gr) =0
or
g1k + kg gra1 = 0 (6.55)
Now from Egs. (6.51) and (6.55)
ng+1dk =0
and on combining Egs. (6.44) and (6.56), we obtain
ggﬂdi:O for 0<i<k+1

that is, x;, satisfies Theorem 6.3.
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Problems
6.1 Use the conjugate-gradient method to solve the optimization problem

minimize f(z)= %XTQX +blx

where Q is given by

Q1 Q2 Q3 Qq 12 8 7 6
Q Qi Q Q3 . 8 12 8 7

e lth ==
Q Q Q Qi Q with Qu 7 8 12 8
Qs Q3 Q2 Qi 6 7 8 12

3 2 1 0 21 0 O

2 3 2 1 1 2 1 0
Q2_ 1 2 3 2 9 Q3_ 0 1 2 1 9 Q4_I4

Lo 1 2 3 0O 0 1 2

andb=—-[1111000011110000]7.

6.2 Use the Fletcher-Reeves algorithm to find the minimizer of the Rosenbrock
function
f(x) =100(z2 — 22)% + (1 — x1)?

Use ¢ = 1076 and try three initial points xo = [-2 2]7, x¢ = [2 —2]7,

and xo = [-2 —2|7 and observe the results.

6.3 Solve Prob. 5.4 by applying the conjugate-gradient algorithm (Algorithm

6.2).

(a) With e = 3 x 1077 and x¢ = [1 1]7, perform two iterations by
following the steps described in Algorithm 6.2.

(b) Compare the results of the firstiteration obtained by using the conjugate-
gradient algorithm with those obtained by using the steepest-descent
method.

(c¢) Compare the results of the second iteration obtained by using the
conjugate-gradient algorithm with those obtained by using the steepest-
descent method.
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6.4 Solve Prob. 5.5 by applying the Fletcher-Reeves algorithm.

(a) Examine the solution obtained and the amount of computation re-
quired.

(b) Compare the results obtained in part (a) with those of Probs. 5.5, 5.16,
and 5.21.

6.5 Solve Prob. 5.7 by applying the Fletcher-Reeves algorithm.

(a) Examine the solution obtained and the amount of computation re-
quired.

(b) Compare the results obtained in part (a) with those of Probs. 5.7, 5.17,
and 5.22.

6.6 Solve Prob. 5.9 by applying the Fletcher-Reeves algorithm.

(a) Examine the solution obtained and the amount of computation re-
quired.

(b) Compare the results obtained in part (a) with those of Probs. 5.9 and
5.18.

6.7 Solve Prob. 5.4 by applying Powell’s algorithm (Algorithm 6.4) and com-
pare the results with those obtained in Probs. 5.4 and 6.3.

6.8 Solve Prob. 5.5 by applying Powell’s algorithm and compare the results
with those obtained in Probs. 5.5, 5.16, 5.21 and 6.4.

6.9 Solve Prob. 5.7 by applying Powell’s algorithm and compare the results
with those obtained in Probs. 5.7, 5.17, 5.22, and 6.5.

6.10 Solve Prob. 5.4 by applying Zangwill’s algorithm and compare the results
with those obtained in Probs. 5.4, 6.3, and 6.7.



Chapter 7

QUASI-NEWTON METHODS

7.1 Introduction

In Chap. 6, multidimensional optimization methods were considered in which
the search for the minimizer is carried out by using a set of conjugate direc-
tions. An important feature of some of these methods (e.g., the Fletcher-Reeves
and Powell’s methods) is that explicit expressions for the second derivatives of
f(x) are not required. Another class of methods that do not require explicit
expressions for the second derivatives is the class of quasi-Newton methods.
These are sometimes referred to as variable metric methods.

As the name implies, the foundation of these methods is the classical Newton
method described in Sec. 5.3. The basic principle in quasi-Newton methods
is that the direction of search is based on an n x n direction matrix S which
serves the same purpose as the inverse Hessian in the Newton method. This
matrix is generated from available data and is contrived to be an approximation
of H™!. Furthermore, as the number of iterations is increased, S becomes
progressively a more accurate representation of H~!, and for convex quadratic
objective functions it becomes identical to H~! in n 4+ 1 iterations.

Quasi-Newton methods, like most other methods, are developed for the con-
vex quadratic problem and are then extended to the general problem. They
rank among the most efficient methods available and are, therefore, used very
extensively in numerous applications.

Several distinct quasi-Newton methods have evolved in recent years. In this
chapter, we discuss in detail the four most important methods of this class which
are:

1. Rank-one method
2. Davidon-Fletcher-Powell method
3. Broyden-Fletcher-Goldfarb-Shanno method



176

4. Fletcher method

We then discuss briefly a number of alternative approaches and describe two
interesting generalizations, one due to Broyden and the other due to Huang.

7.2 The Basic Quasi-Newton Approach

In the methods of Chap. 5, the point generated in the kth iteration is given
by
Xk+1 = Xk — O Sk8k (7.1)

where

{ L, for the steepest-descent method
Sk =

H,:l for the Newton method

Let us examine the possibility of using some arbitrary n X n positive definite
matrix Sy, for the solution of the quadratic problem

minimize f(x) =a + b’ x + %XTHX

By differentiating f(x; — aSggy) with respect to a and then setting the result
to zero, the value of « that minimizes f(x; — aSkgx) can be deduced as

s
Sk
= — ok hEk (7.2)
g, SeHSkgk
where
gr = b+ Hxy

is the gradient of f(x) at x = x.

It can be shown that
1—r
1+7r

2
Fxwn) = 1) < (T2 ) 1£Gae) = £
where r is the ratio of the smallest to the largest eigenvalue of Sy H (see [1] for
proof). In effect, an algorithm based on Egs. (7.1) and (7.2) would converge
linearly with a convergence ratio

1—r\2
= <1 )
+r
for any positive definite S, (see Sec. 3.7). Convergence is fastest if » = 1, that

is, if the eigenvalues of S H are all equal. This means that the best results can
be achieved by choosing

S H=1,
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or
S, = H!
Similarly, for the general optimization problem, we should choose some positive
definite Sy, which is equal to or, at least, approximately equal to H;l.
Quasi-Newton methods are methods that are motivated by the preceding
observation. The direction of search is based on a positive definite matrix
S which is generated from available data, and which is contrived to be an
approximation for H,;l. Several approximations are possible for H;l and,
consequently, a number of different quasi-Newton methods can be developed.

7.3  Generation of Matrix S;,
Let f(x) € C? be a function in E™ and assume that the gradients of f(x) at
points x; and x4 are designated as gy, and g 1, respectively. If

Xk4+1 = Xk + O (7.3)

then the Taylor series gives the elements of g1 as

n

OGkm 0% Gim
9(k+1)m —gkm+z Ik 51m ZZ@ Ik 51@151@

= j=1 9wk

form =1, 2, ..., n. Now if f(x) is quadratic, the second derivatives of f(x)
are constant and, in turn, the second derivatives of gy,,, are zero. Thus

Ik
I(k+1)ym = gkm+z = O

Ox Lki

and since
- O fr
km (9ka

we have . )

0 f

9k = Ggkm + T

form =1, 2, ..., n. Therefore, g1 is given by

8k+1 = g, + Hoy,
where H is the Hessian of f(x). Alternatively, we can write
v, = Hdy, (7.4)
where

Ok = Xpy1 — Xk (7.5)
Yi = 8k+1 — 8k (7.6)
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The above analysis has shown that if the gradient of f(x) is known at two
points xj, and x4 1, a relation can be deduced that provides a certain amount
of information about H. Since there are n? unknowns in H (or n(n + 1)/2
unknowns if H is assumed to be a real symmetric matrix) and Eq. (7.4) provides
only n equations, H cannot be determined uniquely. However, if the gradient
is evaluated sequentially at n + 1 points, say, Xg, X1, ..., X, such that the
changes in x, namely,

6Q:X1—X0

61 = X2 —X]

an—l = Xp — Xp-1

form a set of linearly independent vectors, then sufficient information is obtained
to determine H uniquely. To demonstrate this fact, n equations of the type given
by Eq. (7.4) can be re-arranged as

Yo Y1 =" Yn—1]l = H[b0 01 -+ 8p—1] (7.7)

and, therefore,

H=[vov - Yn_1][60 61 --- 671—1]71

The solution exists if dg, d1, ..., d,—1 form a set of linearly independent
vectors.
The above principles can be used to construct the following algorithm:

Algorithm 7.1 Alternative Newton algorithm
Step 1
Input xg¢ and initialize the tolerance €.
Set k = 0.
Input a set of linearly independent vectors &g, &1, ..., Op—1.
Step 2
Compute ggg.
Step 3
Fori =0ton —1do:
Set Xp(iy1) = Xk + 0.
Compute gy (;41)-
Set Vi = 8k(i+1) — ki
Step 4
Compute Hy = [V Vi1 Yi(n1)[00 61 -+ dpa] 7.
Compute Sy, = H,:l.
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Step 5

Setdi = —Sigro-

Find «y, the value of « that minimizes f(xro + ady).

Set X(x41)0 = Xko + g dy-

Step 6

If [[axdy || < &, output X} = X(;41)0 and f(x*) = f(X(x+1)0), and stop.
Step 7

Set k = k + 1 and repeat from Step 3.

The above algorithm is essentially an implementation of the Newton method
except that a mechanism is incorporated for the generation of H~! using com-
puted data. For a convex quadratic problem, the algorithm will yield the solution
in one iteration and it will thus be quite effective. For a nonquadratic problem,
however, the algorithm has the same disadvantages as any other algorithm based
on the Newton method (e.g., Algorithm 5.3). First, matrix inversion is required,
which is undesirable; second, matrix Hy, must be checked for positive definite-
ness and rendered positive definite, if necessary, in every iteration.

A strategy that leads to the elimination of matrix inversion is as follows. We
assume that a positive definite real symmetric matrix S is available, which is
an approximation of H™!, and compute a quasi-Newton direction

dy, = —Skgs (7.8)
We then find «y, the value of « that minimizes f(xj + ady), as in the Newton

method. For a convex quadratic problem, Eq. (7.2) gives

T

(Skgr)TH(Srgr)

where S, and H are positive definite. Evidently, oy, is greater than zero provided
that x, is not the solution point x*. We then determine a change in x as

dk = Oékdk (7.10)

and deduce a new point xj 1 using Eq. (7.3). By computing the gradient at
points x; and xy41, the change in the gradient, v;, can be determined using
Eq. (7.6). We then apply a correction to S; and generate

Si+1 =Sk +Cy (7.11)

where Cy, is an n X n correction matrix which can be computed from available
data. On applying the above procedure iteratively starting with an initial point

Xo and an initial positive definite matrix Sg, say, So = I,, the sequences
60, 01, -+, Ok, Yo, Y1s ---» Y and Sy, So, ..., Sk4q can be generated.
If

Sk+17; = 6; for 0 <i<k (7.12)
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then for k = n — 1, we can write

SnlvoY1 ** Yn-1l =60 01 -+ Fp1]

or
Su=1[0001 -+ durll¥o v - Ynoal ™ (7.13)
and from Egs. (7.7) and (7.13), we have

S,=H"!

Now if k = n, Egs. (7.8) — (7.10) yield

d, = -H'g,
oap =1
6n = _Hilgn

respectively, and, therefore, from Eq. (7.3)
Xpi1 =X, — H lg, = x*

as in the Newton method.

The above procedure leads to a family of quasi-Newton algorithms which
have the fundamental property that they terminate in n + 1 iterations (k =
0, 1, ..., n)inthe case of a convex quadratic problem. The various algorithms
of this class differ from one another in the formula used for the derivation of
the correction matrix C,,.

In any derivation of C,,, S;; must satisfy Eq. (7.12) and the following
properties are highly desirable:

1. Vectors 8¢, 61, ..., d,—1 should form a set of conjugate directions (see
Chap. 6).
2. A positive definite Sy should give rise to a positive definite Sg 1.

The first property will ensure that the excellent properties of conjugate-direction
methods apply to the quasi-Newton method as well. The second property will
ensure that dy, is a descent direction in every iteration, i.e., for k =0, 1, ....
To demonstrate this fact, consider the point x; + dj, and let

0, = ady,

where
di = —Si8k
For a0 > 0, the Taylor series in Eq. (2.4h) gives

F(xi+ k) = f(xx) + &1 Ok + 304 H(x, + c6y)0k
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where c is a constant in the range 0 < ¢ < 1. On eliminating d, we obtain

f(xg +6k) = f(xk) — agl Sker + o(a|di))
= f(xx) — [ag} Skgr — ol dk])]

where o(«a|dg]|) is the remainder which approaches zero faster than «|dg||.
Now if Sy, is positive definite, then for a sufficiently small o > 0, we have

agf Skgx — o(al|dgll) > 0
since a > 0, gL Sggy > 0, and o(c||d||) — 0. Therefore,

f(Xk + (Sk) < f(xk) (7.14)

that is, if Sy, is positive definite, then dy, is a descent direction.

The importance of property (2) should, at this point, be evident. A positive
definite Sy will give a positive definite S; which will give a positive definite
So, and so on. Consequently, directions dg, di, ds, ... will all be descent
directions, and this will assure the convergence of the algorithm.

7.4 Rank-One Method

The rank-one method owes its name to the fact that correction matrix Cy, in
Eq. (7.11) has a rank of unity. This correction was proposed independently by
Broyden [2], Davidon [3], Fiacco and McCormick [4], Murtagh and Sargent
[5], and Wolfe [6]. The derivation of the rank-one formula is as follows.

Assume that

Sk117vk = Ok (7.15)

and let
Ski1 = Sk + Br€r€r (7.16)

where £, is a column vector and (3 is a constant. The correction matrix 3x& k{f
is symmetric and has a rank of unity as can be demonstrated (see Prob. 7.1).
From Egs. (7.15) — (7.16)

8k = Sk + Be€r€ivi (7.17)

and hence

i (6k — Skvi) = Byt €réi i
= Br(&fvp)? (7.18)

Alternatively, from Eq. (7.17)

(8 — Skvr) = Bibrbrh Vi = Br(€hvi)éx
0k — Skvie)” = BvE&rEr = Brul&bv)Er
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since £} ~,, is a scalar. Hence

(85 — Skvr) (81 — Skvi) " = Be(€f V1) Bréréi (7.19)

and from Eqgs. (7.18) — (7.19), we have

7 _ (06 = Skyi) (O — Skve)”
Pl Br(Ekvr)?

_ (0 — Skvi) (0 — Sk:’Yk)T
YE (81 — Skvr)

With the correction matrix known, Sy 1 can be deduced from Eq. (7.16) as

(8 — Skvi) (6 — Sevp)”

(7.20)
YF(8k — Skvi)

Sk+1 =Sk +

For a convex quadratic problem, this formula will generate H™! on iteration n—
1 provided that Eq. (7.12) holds. This indeed is the case as will be demonstrated
by the following theorem.

Theorem 7.1 Generation of inverse Hessian If H is the Hessian of a convex
quadratic problem and

v; = Hé; for 0<i<k (7.21)

where 61, 0a, ..., 0 are given linearly independent vectors, then for any
initial symmetric matrix Sg

8 =Sp1v;  for 0<i<k (7.22)

where

(51‘ - Si’Yi)((si - Si’Yi)T

Six1=S;+ (7.23)
e vF(8; — Siv;)
Proof We assume that
6; = Sk for 0<i<k-1 (7.24)

and show that
0; = Sk+17; for 0 <i<k
If0<:¢<k—1,Eq. (7.20) yields

Skt17Ys = Sk + Cr(0k — Skvi) i
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where
0 — Sk
Ck

L8k — Skvr)
Since Sy is symmetric, we can write

Sk+17: = Skvi + Cr(0k v — V£ SkYs)
and if Eq. (7.24) holds, then

Sk+17: = 6i + (0L v — ¥£ 62) (7.25)
For0< i<k
v: = Ho;
and
i =61 H

Hence for 0 <7 < k — 1, we have
O0F~, —~F8; = 6T HS, — 6T HS; =0
and from Eq. (7.25)
6; = Sk117; for 0<i<k—-1 (7.26)
By assignment (see Eq. (7.15))
8k = Sra1 (7.27)
and on combining Eqgs. (7.26) and (7.27), we obtain
6; = Sk117, for 0 <i<k (7.28)
To complete the induction, we note that
d; = S17v; for 0 < <0
by assignment, and since Eq. (7.28) holds if Eq. (7.24) holds, we can write

6; = S2v; for 0<i<1
51‘283’}’1- fOI‘OSiSQ

0; = Sg+17y; for 0<i<k

These principles lead to the following algorithm:
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Algorithm 7.2 Basic quasi-Newton algorithm
Step 1
Input x¢ and initialize the tolerance ¢.
Setk =0and Sy = I,,.
Compute gy.
Step 2
Setdi = —Sigy.
Find oy, the value of « that minimizes f(xj, 4+ ady), using a line search.
Set 0, = o dy and Xg+1 = Xg + 0.
Step 3
If [|0%|| < e, output x* = xj11 and f(x*) = f(xx+1), and stop.
Step 4
Compute g1 and set
Y = 8k+1 — Bk
Compute Sy 1 using Eq. (7.20).
Set k = k + 1 and repeat from Step 2.

In Step 2, the value of o, is obtained by using a line search in order to render
the algorithm more amenable to nonquadratic problems. However, for convex
quadratic problems, «,, should be calculated by using Eq. (7.2) which should
involve a lot less computation than a line search.

There are two serious problems associated with the rank-one method. First,
a positive definite S;, may not yield a positive definite Sy 1, even for a convex
quadratic problem, and in such a case the next direction will not be a descent
direction. Second, the denominator in the correction formula may approach zero
and may even become zero. If it approaches zero, numerical ill-conditioning
will occur, and if it becomes zero the method will break down since Sg 1 will
become undefined.

From Eq. (7.20), we can write

Y7 (8k — Skvi) (04 — ¥E Sk) v
¥E (8 — Skvy)
(YE8r — YESkvi) 0k i — VESkvs)
i (8 — Swvy)
(v] o1 — v Sivi)?
i (8k — Skvy)

Y Ski1V: = i Skvi +

= 71 Sk +

= v Sk, +

Therefore, if Sy, is positive definite, a sufficient condition for Sy; 1 to be positive
definite is

Vi (8K — Sikyy) > 0
The problems associated with the rank-one method can be overcome by check-
ing the denominator of the correction formula in Step 4 of the algorithm. If
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it becomes zero or negative, Sy 1 can be discarded and Sy can be used for
the subsequent iteration. However, if this problem occurs frequently the pos-
sibility exists that S, ; may not converge to H™!. Then the expected rapid
convergence may not materialize.

7.5 Davidon-Fletcher-Powell Method

An alternative quasi-Newton method is one proposed by Davidon [3] and later
developed by Fletcher and Powell [7]. Although similar to the rank-one method,
the Davidon-Fletcher-Powell (DFP) method has an important advantage. If the
initial matrix Sq is positive definite, the updating formula for Sy, will yield
a sequence of positive definite matrices S;, So, ..., S,. Consequently, the
difficulty associated with the second term of the rank-one formula given by
Eq. (7.20) will not arise. As a result every new direction will be a descent
direction.

The updating formula for the DFP method is

0k0L  SkvYES
Sker = Sp+ o — SRR (7.29)
0k Vi Vi Sk Yk
where the correction is an n X n symmetric matrix of rank two. The validity
of this formula can be demonstrated by post-multiplying both sides by ~,,, that
is,

80k SkVkYE Sk

Sk+1Yk = SkYi +

LR Y Sk
Since éffyk and 'ygSk’yk are scalars, they can be cancelled out and so we have
Sk+1Ye = Ok (7.30)

as required.

The implementation of the DFP method is the same as in Algorithm 7.2
except that the rank-two formula of Eq. (7.29) is used in Step 4.

The properties of the DFP method are summarized by the following theorems.

Theorem 7.2 Positive definiteness of S matrix. If Sy, is positive definite, then
the matrix Sy 1 generated by the DFP method is also positive definite.

Proof For any nonzero vector x € E™, Eq. (7.29) yields
xTékéfx XTSk'yk'yZSkx

éf’yk v %Sk’Y k
For a real symmetric matrix S, we can write

U’s,U=A

XTSk+1X = x7Spx + (7.31)
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where U is a unitary matrix such that

vl'u=uu’ =1,

and A is a diagonal matrix whose diagonal elements are the eigenvalues of Sy,

(see Theorem 2.8). We can thus write
S, = UAUT = UA/2AY2uT
= (UA'2UT)(UA?UT)
1/2a1/2
_ Sk:/ Sk/
If we let
u= S]1€/2X and v = S,1€/2’y,€
then Eq. (7.31) can be expressed as
(u"w)(v'v) — (u'v)* | (x"4p)?

T
X Sk+1X =
T T
v 0k Yk

v
From Step 2 of Algorithm 7.2, we have

0y = apdy = —a;Sigr

(7.32)

(7.33)

where oy, is the value of « that minimizes f(x; + ady) at point X = X 1.
Since dj = —Spg; is a descent direction (see Eq. (7.14)), we have aj > 0.

Furthermore,

f(xr + adyg)
da

a=qy,

(see Sec. 5.2.3) and thus
argh1di = g 10kdr = gl 16k = 01 gr1 =0
Hence from Eq. (7.6), we can write
81y, = 04 81 — 618k = —0L 8k
Now from Eq. (7.33), we get
81y, = —04 8k = —[—arSkgk|" 8k = argf Skek
and hence Eq. (7.32) can be expressed as

(u'w)(v'v) = (ulv)? - (x"op)?

=g(x + Oékdk)Tdk = gg—i—ldk =0

XTSk+1X =

T T
viv 8 SkEk

(7.34)

(7.35)
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Since

T T

u'u=u?, viv=|v’, uf

u’' v =|ul ||v] cosf
where 0 is the angle between vectors u and v, Eq. (7.35) gives

T ~alPIvIP = (hall [v]icos6)* | (xTd)?
X SkJrlX - D) T
vl gl SkEk

The minimum value of the right-hand side of the above equation occurs when
6 = 0. In such a case, we have

(xTdr)?

(7.36)
&L Sk

xS 1x =

Since vectors u and v point in the same direction, we can write
1/2 1/2 1/2
u=8;""x = gv = 88,2y, =5,

and thus

x = [y,
where (3 is a positive constant. On eliminating x in Eq. (7.36) and then elimi-
nating *ygék = 6{7k using Eq. (7.34), we get

(8% 6k)?

T 2T
X" Sgyp1x = = a8} SkLk
o8l Sk F
Now for any 6 > 0, we have
x"Spi1x > aiBgl Sigk (7.37)

Therefore, if x = x}, is not the minimizer x* (i.e., g # 0), we have
xTSjp1x > 0 for x #0

since a > 0 and Sy, is positive definite. In effect, a positive definite Sy will
yield a positive definite Sk 1.
]
It is important to note that the above result holds for any o > 0 for which

0Ty, = 0L gri1 — 0L g > 0 (7.38)

even if f(x) is not minimized at point Xy 1, as can be verified by eliminating
x in Eq. (7.32) and then using the inequality in Eq. (7.38) (see Prob. 7.2).
Consequently, if 6{gk+1 > 5ggk, the positive definiteness of Sg; can be
assured even in the case where the minimization of f(xj + ady) is inexact.
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The inequality in Eq. (7.38) will be put to good use later in the construction of
a practical quasi-Newton algorithm (see Algorithm 7.3).

Theorem 7.3 Conjugate directions in DFP method

(a) If the line searches in Step 2 of the DFP algorithm are exact and f(x) is a
convex quadratic function, then the directions generated dq, 01, ..., Oy form
a conjugate set, i.e.,

6THS; =0  for 0<i<j<k (7.39)
(b) If
v, =H8  for 0<i<k (7.40)
then
6; = Sk+17, for 0<i<k (7.41)

Proof As for Theorem 7.1, the proof is by induction. We assume that

0/Hé; =0 for 0<i<j<k-—1 (7.42)
0 =Spy; for0<i<k-—1 (7.43)

and show that Egs. (7.39) and (7.41) hold.
(a) From Egs. (7.4) and (7.6), we can write

gk = gr—1 + Hdp_1
=gr_o+Hdbp_o+ Hbr_1
= gr-3+Hdép 3+ HO, o+ Hp 1

=giv1 + H(0ip1 + 042 + -+ 0p1)
Thus for 0 < i < k — 1, we have
678k ="0]gir1+ 6 H(Sip1+ 812+ +81) (7.44)

If an exact line search is used in Step 2 of Algorithm 7.2, then f(x) is minimized
exactly at point x;41, and hence

6/ git1=0 (7.45)
(see proof of Theorem 7.2). Now for 0 < ¢ < k — 1, Eq. (7.42) gives

OTH(ip1 4 0iso+ -+ 0,_1) =0 (7.46)
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and from Eqgs. (7.44) — (7.46), we get

6/gr=0
Alternatively, from Eqgs. (7.43) and (7.40) we can write

67gr = (Skvi) gk = (SeHS) g
= &, HSgr = 0

Further, on eliminating Sy gy, using Eq. (7.33)
1
0lg, = ——6THS, =0
o

and since oy, > 0, we have
0’HO, =0 for 0<i<k-—1
Now on combining Eqs. (7.42) and (7.47)
STHO; =0 for 0<i<j<k
To complete the induction, we can write

5tg1 = (S170) g1 = (S1Hdo) g1
= 6%H81g1

1
= ——60Hs,
a1
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(7.47)

(7.48)

and since f(x) is minimized exactly at point x;, we have 60Tg1 = 0 and

6/HS; =0 for 0<i<j<l1
Since Eq. (7.48) holds if Eq. (7.42) holds, we can write

OJHO; =0 for 0<i<j<2
6/HS; =0 for 0<i<j<3

6/HS; =0 for 0<i<j<k

that is, the directions 81, 8o, ..., 0j form a conjugate set.
(b) From Eq. (7.43)

7%51' = ’Y%Sk’yi for 0<i<k-1

(7.49)
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On the other hand, Eq. (7.40) yields
vFe; =0THS;, for 0<i<k-—1 (7.50)

and since &g, &1, ..., O form a set of conjugate vectors from part (a),
Egs. (7.49) — (7.50) yield

Yo =~ESpy; =6LHO; =0  for 0<i<k—1 (7.51)

By noting that
0F =~TS,.1 and HO; =~

Eq. (7.51) can be expressed as
Y0 =VESkYi = Vi Skr17:i =0 for 0<i<k—1
and, therefore,
0i = Sk = Sk+17; for 0 <i<k—-1 (7.52)

Now from Eq. (7.30)
0k = Spr17Yk (7.53)

and on combining Egs. (7.52) and (7.53), we obtain
0; = Sk+17; for 0 <1<k

The induction can be completed as in Theorem 7.1.

For k = n — 1, Egs. (7.40) and (7.41) can be expressed as
[S,H — AI|§; =0 for0<i<n-—1

with A = 1. In effect, vectors d; are eigenvectors that correspond to the unity
eigenvalue for matrix S,, H. Since they are linearly independent, we have

S, =H"!

that is, in a quadratic problem Sy, becomes the Hessian on iteration n — 1.

7.5.1 Alternative form of DFP formula

An alternative form of the DFP formula can be generated by using the
Sherman-Morrison formula (see [8][9] and Sec. A.4) which states thatann x n
matrix

U=U+VWX’

where U and X are n X m matrices, W is an m X m matrix, and m < n, has
an inverse

Ul=u'l-ulvy XTu! (7.54)
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where
Y=wW'l+X'U'v

The DFP formula can be written as

Ski1 = S + XWXT

where
X = O Sk ] and W = [(1) _OJ
V6Ev) VTS
and hence Eq. (7.54) yields
Siti =S, — S, ' XY 'XTs; ! (7.55)
where
Y =W !4+X7s X
By letting

Sit1 =Pri1, S =Py

and then deducing Y !, Eq. (7.55) yields

(7.56)

Py = Pyt <1 n 6£Pk5k> Vevh (V0% Px + Prdii)

vk ) Sk 8Lk

This formula can be used to generate a sequence of approximations for the
Hessian H.

7.6  Broyden-Fletcher-Goldfarb-Shanno Method
Another recursive formula for generating a sequence of approximations for
H~! is one proposed by Broyden [2], Fletcher [10], Goldfarb [11] and Shanno

[12] at about the same time. This is referred to as the BFGS updating formula
[13][14] and is given by

s 867 (8, FSk + Spv,. 6L
Sk+1:Sk+(1+7k k’)’k) k0p  (0kY% Sk + SkVi0k)

— (7.57)
Yi 0k ) Vi Ok ¥ Ok
This formula is said to be the dual of the DFP formula given in Eq. (7.29) and
it can be obtained by letting
Piri1 = Skyr1, Pr =S
Vi = Ok, Ok =g
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in Eq. (7.56). As may be expected, for convex quadratic functions, the BFGS
formula has the following properties:

1. Sj1 becomes identical to H ' fork=n-—1.

2. Directions 8¢, 61, ..., 0,_1 form a conjugate set.
3. Sj41 is positive definite if Sy, is positive definite.
4. The inequality in Eq. (7.38) applies.

An alternative form of the BFGS formula can be obtained as

T T
YV Prvivi Pr
Py =P+ -
* ’7%(& E{Pkdk

by letting
Skr1 = Pry1, Sk = Py
0 = Yer Vi = O

in Eq. (7.29) or by applying the Sherman-Morrison formula to Eq. (7.57). This
is the dual of Eq. (7.56).

7.7 Hoshino Method

The application of the principle of duality (i.e., the application of the Sherman-
Morrison formula followed by the replacement of Py, Py, v}, and d; by
Sk, Sk+1, Ok, and 7;,) to the rank-one formula results in one and the same
formula. For this reason, the rank-one formula is said to be self-dual. Another
self-dual formula, which was found to give good results, is one due to Hoshino
[15]. Like the DFP and BFGS formulas, the Hoshino formula is of rank two.
It is given by

Sk+1 = Sk + 0k6k07 — U(0kYE Sk + SkVkOr + SkYiVE Sk)
where

’7%516 + 27£Sk’7k B 1
=T T T and = —5 T
Y5 Ok (V5 Ok + Y5 SkYk) (V% Ok + 75 Sk V)

The inverse of Si 1, designated as Py 1, can be obtained by applying the
Sherman-Morrison formula.

7.8 The Broyden Family

An updating formula which is of significant theoretical as well as practical
interest is one due to Broyden. This formula entails an independent parameter
¢k and is given by

Ski1 = (1 — on)SE{T + okSELT? (1.58)
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Evidently, if ¢, = 1 or O the Broyden formula reduces to the BFGS or DFP
formula, and if
_ 85 Yk

SLYREYE Sk
the rank-one or Hoshino formula is obtained.

If the formula of Eq. (7.58) is used in Step 4 of Algorithm 7.2, a Broyden
method is obtained which has the properties summarized in Theorems 7.4 — 7.6
below. These are generic properties that apply to all the methods described so
far.

o

Theorem 7.4A Properties of Broyden method If a Broyden method is applied
to a convex quadratic function and exact line searches are used, it will terminate
afterm < niterations. The following properties apply forallk =0, 1, ..., m:

(a) 6; = Spy17vy; for0<i <k

(b) 6IHS; =0 for0<i<j<k

(c) Ifm=n—1,thenS,, =H™!

Theorem 7.4B If Sg = 1,,, then a Broyden method with exact line searches
is equivalent to the Fletcher-Reeves conjugate gradient method (see Sec. 6.6)
provided that f(X) is a convex quadratic function. Integer m in Theorem 7.4A
is the least number of independent vectors in the sequence

g0, Hego, H?go, ...

Theorem 7.4C If f(x) € C', a Broyden method with exact line searches has

the property that Xy, and the BFGS component of the Broyden formula are
independent of ¢g, ¢, ..., @) forallk > 1.

The proofs of these theorems are given by Fletcher [14].

7.8.1 Fletcher switch method

A particularly successful method of the Broyden family is one proposed by
Fletcher [13]. In this method, parameter ¢ in Eq. (7.58) is switched between
zero and unity throughout the optimization. The choice of ¢ in any iteration
is based on the rule

{ 0 if (S{H(Sk > ang+16k
bk =

1 otherwise

where H is the Hessian of f(x), and Py is the approximation of H generated
by the updating formula. In effect, Fletcher’s method compares Py with H
in direction dy, and if the above condition is satisfied then the DFP formula is
used. Alternatively, the BFGS formula is used. The Hessian is not available in
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quasi-Newton methods but on assuming a convex quadratic problem, it can be
eliminated. From Eq. (7.4).

Hoj, = 4

and, therefore, the above test becomes

This test is convenient to use when an approximation for H is to be used in the
implementation of the algorithm. An alternative, but equivalent, test which is
applicable to the case where an approximation for H™! is to be used can be
readily obtained from Eq. (7.59). We can write

Ok Yk > Ok Sip 10k
and since
Ok = Sky17k
according to Eq. (7.12), we have

Sy > ’7£Sk+1sﬁlsk+1"/k
> v Ski1vk

since Sy1 is symmetric.

7.9 The Huang Family

Another family of updating formulas is one due to Huang [16]. This is a
more general family which encompasses the rank-one, DFP, BFGS as well as
some other formulas. It is of the form

85,06y, + ¢SL ’Yk)  Seve(¥ék + wSE) "
(001 + ¢SEvp) Ty (8 + wSEvE) vk

where 0, ¢, 1, and w are independent parameters. The formulas that can be
generated from the Huang formula are given in Table 7.1. The McCormick
formula [17] is

Sk+1 =Sk +

(8 — Si74)8T

Sk41 =Sk +
5%’)’14

whereas that of Pearson [18] is given by

(81 — SkYi)VE Sk
YISk

Sk+1 =Sk +
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7.10 Practical Quasi-Newton Algorithm

A practical quasi-Newton algorithm that eliminates the problems associated
with Algorithms 7.1 and 7.2 is detailed below. This is based on Algorithm 7.2
and uses a slightly modified version of Fletcher’s inexact line search (Algorithm
4.6). The algorithm is flexible, efficient, and very reliable, and has been found
to be very effective for the design of digital filters and equalizers (see [19,
Chap. 16]).

Table 7.1 The Huang Family

Formula Parameters

Rank-one =1, ¢=—-1,¢v=1, w=—-1

DFP 0=1¢=0,¢v=0,w=1
¢ _ =i

BEGS 0 ok + 5 SkVe
Yv=1,w=0

McCormick 0=1,¢=0,v=1, w=0

Pearson 0=0,¢=19v=0,w=1

Algorithm 7.3 Practical quasi-Newton algorithm

Step 1 (Initialize algorithm)

a. Input xg and €7.

b.Setk=m =0.

c.Setp=0.1,0 =0.7,7 = 0.1, x = 0.75, M = 600, and 5 = 102,
d. Set Sg = I,.

e. Compute fy and gg, and set m = m + 2. Set foo = fo and A fo = fo.
Step 2 (Initialize line search)

a.Setdy = —Sigp.

b. Set a, = 0 and oy = 10%7.

c. Set fr, = fo and compute f} = g(x; + ardg)?ds.

d. (Estimate )

If | f7| > €2, then compute ag = —2A fy/ f} ; otherwise, set g = 1.
If ag < 0orag > 1, then set ag = 1.
Step 3

a. Set 0, = apdy, and compute fo = f(xi + 0).

b.Setm =m + 1.

Step 4 (Interpolation) X

If fo > fr+p (a0 —ar)fr and | fr, — fo| > €2 and m < M, then do:
a. If ag < ay, then set ay = «y.
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b. Compute ¢ using Eq. (4.57).

c. Compute &7, = o, + 7(ay — ayr); if &g < dor, then set &g = A

d. Compute ooy = ay — 7(ay —ar); if ag > qou, then set &g = qou.

e. Set ap = &g and go to Step 3.

Step 5

Compute f} = g(xx + aody)Tdy and set m = m + 1.

Step 6 (Extrapolation)

If f < ofy and |f1, — fo| > €2 and m < M, then do:

a. Compute Ay = (o — a) fo/(f1 — f5) (see Eq. (4.58)).

b. If Ay < 0, then set ¢y = 2ay; otherwise, set g = gy + Aay.

c. Compute qop = ag + x(ay — ap); if &g > aop, then set g = .

d. Set ag, = g, g = o, fr = fo, f7 = f{) and go to Step 3.

Step 7 (Check termination criteria and output results)

a. Set Xp11 = Xp, + 0.

b. Set Afo = foo — fo- R

c. If (]|0k||2 < e1 and |Afo| < e1) or m > M, then output X = X1,

f(X) = fi+1, and stop.

d. Set foo = fo.

Step 8 (Prepare for the next iteration)

a. Compute g1 and set v, = i1 — k-

b. Compute D = Jg'yk; if D <0, then set S = I,;; otherwise,
compute Sy 1 using Eq. (7.29) for the DFP method or Eq. (7.57)
for the BFGS method.

c.Setk =k + 1 and go to Step 2.

The

computational complexity of an algorithm can be determined by estimating the
amount of computation required, which is not always an easy task. In optimiza-
tion algorithms of the type described in Chaps. 5—7, most of the computational
effort is associated with function and gradient evaluations and by counting the
function and gradient evaluations, a measure of the computational complexity
of the algorithm can be obtained. In Algorithm 7.3, this is done through index
m which is increased by one for each evaluation of fy, go, or f in Steps 1, 3,
and 5. Evidently, we assume here that a function evaluation requires the same
computational effort as a gradient evaluation which may not be valid, since each
gradient evaluation involves the evaluation of n first derivatives. A more precise
measure of computational complexity could be obtained by finding the number
of additions, multiplications, and divisions associated with each function and
each gradient evaluation and then modifying Steps 1, 3, and 5 accordingly.

Counting the number of function evaluations can serve another useful pur-
pose. An additional termination mechanism can be incorporated in the al-
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gorithm that can be used to abort the search for a minimum if the number of
function evaluations becomes unreasonably large and exceeds some upper limit,
say, M. In Algorithm 7.3, interpolation is performed in Step 4 and extrapola-
tion is performed in Step 5 only if m < M, and if m > M the algorithm is
terminated in Step 7c. This additional termination mechanism is useful when
the problem being solved does not have a well defined local minimum.

Although a positive definite matrix Sy will ensure that dy, is a descent direc-
tion for function f(x) at point xj, sometimes the function f(x; + adj) may
have a very shallow minimum with respect to o and finding such a minimum
can waste a large amount of computation. The same problem can sometimes
arise if f(xy + ady) does not have a well-defined minimizer or in cases where
|fz. — fol is very small and of the same order of magnitude as the roundoff er-
rors. To avoid these problems, interpolation or extrapolation is carried out only
if the expected reduction in the function f(xy + ady) is larger than €5. In such
a case, the algorithm continues with the next iteration unless the termination
criteria in Step 7c are satisfied.

The estimate of g in Step 2d can be obtained by assuming that the function
f(xx + ady) can be represented by a quadratic polynomial of « and that the
reduction achieved in f(xy + ady) by changing « from 0 to oy is equal to A fj,
the total reduction achieved in the previous iteration. Under these assumptions,
we can write

fo—fo=A4Af (7.60)
and from Eq. (4.57)

(a0 —ap)’f
[fL = fo+ (a0 —ar) f]
Since a;, = 0, Eqns. (7.60) and (7.61) give

U
2[Afo + a0 f1]

(7.61)

aozdzaL—i—Q

Now solving for g, we get
24 fo
fL
This estimate of « is reasonable for points far away from the solution but can
become quite inaccurate as the minimizer is approached and could even become
negative due to numerical ill-conditioning. For these reasons, if the estimate is
equal to or less than zero or greater than unity, it is replaced by unity in Step
2d, which is the value of « that would minimize f(x; + ady) in the case of

a convex quadratic problem. Recall that practical problems tend to become
convex and quadratic in the neighborhood of a local minimizer.

op =~
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The most important difference between the inexact line search in Algorithm
4.6 and that used in Algorithm 7.3 is related to a very real problem that can
arise in practice. The first derivatives f( and f; may on occasion satisfy the
inequalities

aoft, <arfy and fi > f}

and the quadratic extrapolation in Step 6 would yield

(o —ar)fy  aofp —apfl
fif R
that is, it will predict a negative ««. This would correspond to a maximum of
f(xx + ady) since ady is a descent direction only if « is positive. In such a
case, Aag = & — o would assume a negative value in Step 6b and to ensure
that « is changed in the descent direction, the value 2aq is assigned to ay.
This new value could turn out to be unreasonably large and could exceed the
most recent upper bound agr. Although this is not catastrophic, unnecessary
computations would need to be performed to return to the neighborhood of the
solution, and to avoid the problem a new and more reasonable value of &g in
the current bracket is used in Step 6¢. A value of xy = 0.75 will ensure that &
is no closer to ay than 25 percent of the permissible range. Note that under the
above circumstances, the inexact search of Algorithm 4.6 may fail to exit Step

7.

If the DFP or BFGS updating formula is used in Step 8b and the condition in
Eq. (7.38) is satisfied, then a positive definite matrix Sy will result in a positive
definite Si1, as was discussed just after the proof of Theorem 7.2. We will
now demonstrate that if the Fletcher inexact line search is used and the search
is not terminated until the inequality in Eq. (4.59) is satisfied, then Eq. (7.38)
is, indeed, satisfied. When the search is terminated in the kth iteration, we have
ap = o and from Step 3 of the algorithm é; = apdi. Now from Egs. (7.38)
and (4.59), we obtain

<0

a=ao+

St = 01 8rt1 — Of 8k
= Oék(glicpﬂdk - ggdk)
> ag(o — 1)gi di

If dj, is a descent direction, then gzdk < 0Oand ap > 0. Since 0 < 1 in
Fletcher’s inexact line search, we conclude that

85k >0

and, in effect, the positive definiteness of Sy is assured. In exceptional cir-
cumstances, the inexact line search may not force the condition in Eq. (4.59),
for example, when interpolation or extrapolation is aborted, if | fr, — fo| < €2,
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and a nonpositive definite Sy, ; matrix may occur. To safeguard against this
possibility and ensure that a descent direction is achieved in every iteration, the
quantity 6%'“ is checked in Step 8b and if it is found to be negative or zero,
the identity matrix I, is assigned to Sy,.1. This is not catastrophic and it may
actually be beneficial since the next change in x will be in the steepest-descent
direction.

The algorithm will be terminated in Step 7c if the distance between two
successive points and the reduction in the objective function f(x) are less than
1. One could, of course, use different tolerances for x and f(x) and, depending
on the problem, one of the two conditions may not even be required.

As may be recalled, the DFP and BFGS updating formulas are closely in-
terrelated through the principle of duality and one can be obtained from the
other and vice versa through the use of the Sherman-Morrison formula (see
Sec. 7.6). Consequently, there are no clear theoretical advantages that apply to
the one and not the other formula. Nevertheless, extensive experimental results
reported by Fletcher [13] show that the use of the BEFGS formula tends to yield
algorithms that are somewhat more efficient in a number of different problems.
This is consistent with the experience of the authors.
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Problems

7.1 Let & be a nonzero column vector. Show that matrix Ml = ££7 has a rank

of one and is symmetric and positive semidefinite.

7.2 In a quasi-Newton algorithm, Sy is obtained from a positive definite

matrix Sy, by using the DFP updating formula. Show that the condition
8y, >0

will ensure that Sy is positive definite.

7.3 Minimize the objective function in Prob. 5.4 by applying the DFP algo-

rithm (e.g., Algorithm 7.3 with the DFP updating formula) using xg =
[0 0]" and e = 3 x 10~7. Compare the results with those obtained in
Prob. 5.4.

7.4 Minimize the objective function in Prob. 5.5 by applying the DFP algo-

rithm using xg = [1 1 1]7 and ¢ = 107%. Compare the results with those
obtained in Probs. 5.5 and 6.4.

7.5 Minimize the objective function in Prob. 5.7 by applying the DFP algo-

rithm using ¢ = 1079, xo = [4 —4]7, and x¢ = [~4 4]T. Compare the
results with those obtained in Probs. 5.7 and 6.5.

7.6 Minimize the objective function in Prob. 5.9 by applying the DFP algo-

rithm using xo = [0.1 0.1]7 and ¢ = 107%. Compare the results with
those obtained in Probs. 5.9 and 6.6.

7.7 Implement a quasi-Newton algorithm based on the DFP formula in a com-

puter language of your choice and use it to minimize
f(x) = 100(zg — 27) + (1 — 21)”

(a) Try three different initial points and observe the results.

(b) Compare the results with those obtained in Prob. 6.2.

7.8 Minimize the objective function in Prob. 5.4 by applying the BFGS al-

gorithm (e.g., Algorithm 7.3 with the BFGS updating formula) using
xo = [0 0]7 and ¢ = 3 x 10~7. Compare the results with those ob-
tained in Probs. 5.4 and 7.3.



Quasi-Newton Methods 201

7.9 Minimize the objective function in Prob. 5.5 by applying the BFGS algo-
rithm using xg = [1 1 1]7 and ¢ = 1075. Compare the results with those
obtained in Probs. 5.5, 6.4, and 7.4.

7.10 Minimize the objective function in Prob. 5.7 by applying the BFGS algo-
rithm using ¢ = 1076, xg = [4 —4]7, and x¢ = [~4 4]7. Compare the
results with those obtained in Probs. 5.7, 6.5, and 7.5.

7.11 Minimize the objective function in Prob. 5.9 by applying the BFGS algo-
rithm using xo = [0.1 0.1]7 and ¢ = 1075, Compare the results with
those obtained in Probs. 5.9, 6.6, and 7.6.

7.12 Implement a quasi-Newton algorithm based on the BFGS formula in a
computer language of your choice and use it to minimize function f(x)
given in Prob. 7.7.

(a) Try three different initial points and observe the results.
(b) Compare the results with those obtained in Probs. 7.7 and 6.2.

7.13 Using the program constructed in Prob. 7.7, minimize the function

f(x) = 100[(z3 — 100)? + (r — 1)%] + 232

where .
— tan~ ! (@) for 1 >0
2 T
0 =< 0.25 for xr1 =0
1
0.5+ — tan~! <$2) for r1 <0
2 T
and
r=/(2? + 23)

Repeat with the program constructed in Prob. 7.12 and compare the results
obtained.

7.14 Using the program constructed in Prob. 7.6, minimize the function
f(x) = (21 + 1022)? + 5(z3 — 24)® + (v2 — 233)* + 100(z1 — 24)*
Repeat with the program constructed in Prob. 7.12 and compare the results

obtained.

7.15 Using the program constructed in Prob. 7.7, minimize the function

5

F(x) =) _[100(z; — 2f1)* + (1 — 2:)%]

=2

Repeat with the program constructed in Prob. 7.12 and compare the results
obtained.
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7.16 An interesting variant of the BFGS method is to modify the formula in
Eq. (7.57) by replacing Sy by the identify matrix, which gives

Vi \ 8k0E  BkvE + ViOk
~Fs,,

Spi1=I+(1+
o ( T8 ~T6;

Since S 1 is now determined without reference to Sy, the above updating
formula is known as a memoryless BFGS formula [1].

Verify that the memoryless BFGS method can be implemented without
explicitly updating matrix Sy. Instead, point xy, is updated as

Xp+1 = Xk + agdg

where oy is determined by using a line search, and dj is updated using
the formula

dpy1 = —8rs1 + MYk + (12 — 13)0k

where

M = 01 &r1/N4s M2 =V} i1/
T
1 = (1 + 7’;}3’“) m, =10k

7.17 Minimize the objective function in Prob. 5.7 by applying the memoryless
BFGS method using ¢ = 1076, xo = [4 —4]T, and xo = [—4 4]T.
Compare the results with those obtained in Probs. 5.7, 6.5, 7.5, and 7.10.



Chapter 8

MINIMAX METHODS

8.1 Introduction

In many scientific and engineering applications it is often necessary to min-
imize the maximum of some quantity with respect to one or more independent
variables. Algorithms that can be used to solve problems of this type are said
to be minimax algorithms. In the case where the quantity of interest depends
on a real-valued parameter w that belongs to a set S, the objective function
can be represented by f(x, w) and the solution of the minimax problem per-
taining to f(x, w) amounts to finding a vector variable x that minimizes the
maximum of f(x, w) over w € S. There is also a discrete version of this prob-
lem in which the continuous parameter w is sampled to obtain discrete values
Sg=A{w;: i=1, ..., L} C S and the corresponding minimax optimization
problem is to find a vector x that minimizes the maximum of f(x, w;) over
w; € Sy.

This chapter is concerned with efficient minimax algorithms. In Sec. 8.2,
we illustrate minimax optimization using an example from digital signal pro-
cessing. Two minimax algorithms due to Charalambous [1][2] are studied in
Sec. 8.3 and improved versions of these algorithms using a technique of nonuni-
form variable sampling [3] are presented in Sec. 8.4.

8.2  Problem Formulation
A minimax problem pertaining to objective function f(x, w) can be formally
stated as
minimize max f(x, w) (8.1a)
X weS
where S is a compact set on the w axis, and if f(x, w) is sampled with respect
to w we have

minimize max f(x, w;) (8.1b)
X w; ESy
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where Sy = {w; : i =1, 2, ..., L} is a discrete version of set S. Obviously,
the problems in Egs. (8.1a) and (8.1b) are closely interrelated, and subject to the
condition that the sampling of S is sufficiently dense, an approximate solution
of the problem in Eq. (8.1a) can be obtained by solving the discrete problem in
Eq. (8.1b).

As an illustrative example, let us consider a problem encountered in the field
of digital signal processing whereby a digital filter needs to be designed [4,
Chap. 16]." In this design problem, we require a transfer function of the form

N .
E a;z""
H(z) = —=°

= ~ A
1+ Z b;z™"
=1

where z is a complex variable and a;, b; are real coefficients (see Sec. B.5.1)
such that the amplitude response of the filter

M(x, w) = |H(e“T)| (8.3)

8.2)

approximates a specified amplitude response My(w). Vector x in Eq. (8.3) is
defined as
X = [aoal aNbl bN]T

and w denotes the frequency that can assume values in the range of interest (2.
In the case of a lowpass digital filter, the desired amplitude response, My(w),
is assumed to be a piecewise constant function, as illustrated in Fig. 8.1 (see
Sec. B.9.1). The difference between M (x, w) and My(w), which is, in effect,
the approximation error, can be expressed as

e(x, w) = M(x, w) — Mp(w) (8.4)

(see Sec. B.9.3).

The design of a digital filter can be accomplished by minimizing one of the
norms described in Sec. A.8.1. If the L or Lo norm is minimized, then the
sum of the magnitudes or the sum of the squares of the elemental errors is
minimized. The minimum error thus achieved usually turns out to be unevenly
distributed with respect to frequency and may exhibit large peaks which are often
objectionable. If prescribed amplitude response specifications are to be met, the
magnitude of the largest elemental error should be minimized and, therefore,
the L, norm of the error function should be used. Since the L, norm of the
error function e(x, w) in Eq. (8.4) is numerically equal to IUIJ1€a§>2<|e(x, w)|, the
minimization of the L., norm can be expressed as

minimize max |e(x, w)] (8.5)
X weN

ISee Appendix B for a brief summary of the basics of digital filters.
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Gain

/T\/e(x ®)  My(o)
! /N

O] ‘ V \wk

Figure 8.1. Formulation of objective function.

This is a minimax problem of the type stated in Eq. (8.1a) where the objective
function is the magnitude of the approximation error, i.e., f(x, w) = |e(x, w)|.

The application of minimax algorithms for the design of digital filters usu-
ally yields designs in which the error is uniformly distributed with respect to
frequency.

8.3 Minimax Algorithms

The most fundamental algorithm for the minimax optimization problem in
Eq. (8.5) is the so-called least-pth algorithm, which involves minimizing an
objective function in the form of a sum of elemental error functions, each raised

to the pth power, for increasing values of p, say, p = 2, 4, §, ..., etc.
Let wy, wo, ..., wk be K frequencies in 2 and define vector
e(x) = [e1(x) ea(x) -+ en(x)]"

where e;(x) = e(x, w;) is evaluated using Eq. (8.4). If we denote the L, norm
of vector e(x) at x = x, as Wi (x), i.e.,

1/p
Vp(x) = lle(x)[p, = [Zlez ]

then we have

Jn W (x) = lim [le(x)[l, = [le(x)lloc = max lei(x)| = E(x)
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In other words, by minimizing function W (x) for increasing power of p, the
minimization of the L., norm of e(x) can be achieved.

In a practical design, the approximation error ||e(X)||c is always strictly
greater than zero and thus function Wy (x) can be expressed as

o o]
\Pk(x):E(x){Z[ = ] } (8.6a)

i1 L B(x)
where
ei(x) = e(x, w;) (8.6b)
B(x) = max |ei(x)| (8.6¢)

These principles lead readily to the so-called least-pth minimax algorithm which
is as follows [1]:

Algorithm 8.1 Least-pth minimax algorithm
Step 1
Input xp andey. Setk =1, p=2, p =2, and Eq = 10%.
Step 2
Initialize frequencies wy, wa, ..., Wk.
Step 3
Using X _1 as initial pomt minimize Wy (x) in Eq. (8.6a) with respect
to X, to obtain X ;. Set B, = E(X).
Step 4
If |Ek,1 - Ek| < &1, then output xj, and Ek and stop. Otherwise,
set p = up and k = k + 1, and go to step 3.
|

The underlying principle for the above algorithm is that the minimax problem
is solved by solving a sequence of closely related problems whereby the solution
of one problem renders the solution of the next one more tractable. Parameter
win step 1, which must obviously be an integer, should not be too large in order
to avoid numerical ill-conditioning. A value of 2 gives good results.

The minimization in step 3 can be carried out by using any unconstrained
optimization algorithm, for example, Algorithm 7.3 described in Sec. 7.10. The
gradient of Wy (x) is given by [1]

el |V el 7
Wk(x):{Zli ]} le ] Vlei(x)| (8.7

i1 L E(x) E(x)

The preceding algorithm works very well, except that it requires a consider-
able amount of computation. An alternative and much more efficient minimax
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algorithm is one described in [5], [6]. This algorithm is based on principles
developed by Charalambous [2] and involves the minimization of the objective
function

U(x, X6 =Y thloi(x, OF + Y Lai(x, )P (8.8)

i€y i€l
where £ and \; for? =1, 2, ..., K are constants and
9i(x, §) = lei(x)| = &
I = {i: ¢i(x,&) >0and \; > 0} (8.9a)
Iy = {i: ¢i(x,&) >0and \; = 0} (8.9b)

The halves in Eq. (8.8) are included for the purpose of simplifying the expression
for the gradient (see Eq. (8.11)).

If

(a) the second-order sufficiency conditions for a minimum of E (x) hold at
X,

(b)y \; = Ay fori =1, 2, ..., K where )\; are the minimax multipliers

corresponding to the minimum point X of E (x), and
(¢) E(X — ¢) is sufficiently small

then it can be proved that x is a strong local minimum point of function
U(x, A, £) given by Eq. (8.8) (see [2] for details). In practice, the conditions
in (a) are satisfied for most practical problems. Consequently, if multipliers \;
are forced to approach the minimax multipliers j\z and ¢ is forced to approach
E(X), then the minimization of E(x) can be accomplished by minimizing
U(x, A, &) with respect to x. A minimax algorithm based on these principles
is as follows:

Algorithm 8.2 Charalambous minimax algorithm

Step 1

Input )v(() andeq. Setk =1, fl =0, M1 =X 2=---=ANg=1,and
Eo = 10%.

Step 2

Initialize frequencies wy, wa, ..., Wk.

Step 3

Using X_1 as initial point, minimize ¥(x, Ak, &) with respect to x
to obtain xXj. Set

Ej, = E(X}, b = max_lei(X)] (8.10)
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Step 4
Compute
Op = > Meidi(Xky &) + Y 0i(Xp, &)
el i€ls
and update
Mei®i(X ks, &k)/ P for i e I
A+ = 3 Pi( Xk &)/ P for i € Ip
0 for i € I3
fori =1, 2, ..., K where
L = {Z : (ﬁz(fk, {k) > 0and A\g; > 0}
Iy = {i: ¢i(Xg, &) > 0and A\p; = 0}
and
Iy ={i: ¢i(Xg, &) < 0}
Step 5
Compute
K
Shi1 = D Ag1yilei(X)
i=1
Step 6

If | Ek,l — Ek] < &1, then output x;, and Ek, and stop. Otherwise, set
k =k + 1 and go to step 3.

The gradient of ¥ (x, Ak, &), which is required in step 3 of the algorithm,
is given by

VU (x, Ak, &) = Y Aidi(x, &) Vei(x) [+ di(x, &) Ves(x)| (8.11)

i€l i€ls

Constant £ is a lower bound of the minimum of E (x) and as the algorithm

progresses, it approaches E(}vc ) from below. Consequently, the number of
functions ¢;(x, &) that do not satisfy either Eq. (8.92a) or Eq. (8.9b) increases
rapidly with the number of iterations. Since the derivatives of these functions
are unnecessary in the minimization of ¥(x, A, ), they need not be evaluated.
This increases the efficiency of the algorithm quite significantly.
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As in Algorithm 8.1, the minimization in step 3 of Algorithm 8.2 can be

carried out by using Algorithm 7.3.

Example 8.1 Consider the overdetermined system of linear equations

3x1 — 4xg + 223 — x4
—2x1 + 3x2 + 623 — 224
r1 + 2x9 + bxs + x4
—3x1 + T2 — 223 + 224
Trx1 — 229 + 423 4 324
101 — 9 + 8x3 + bxy

which can be expressed as

Ax =D
where
3 -4 2 -1
-2 3 6 -2
1 2 5 1
A= -3 1 -2 2|’

T =2 4 3
10 -1 8 5

—-174
—-1.2
7.35
= 9.41
=41
=123

(8.12a)

—-174
—-1.2
7.35
9.41

4.1
12.3

b= (8.12b)

(a) Find the least-squares solution of Eq. (8.12a), x;, by solving the minimiza-

tion problem

minimize ||Ax — bl

(8.13)

(b) Find the minimax solution of Eq. (8.12a), Xminimaz, by applying Algorithm

8.2 to solve the minimization problem

minimize [[AxXx — b||oo

(8.14)

(c¢) Compare the magnitudes of the equation errors for the solutions x;; and

Xminimaz-

Solution

(a) The square of the Ly norm ||Ax — b|| is found to be

|Ax —b|]? = xTATAx — 2x"ATb + b'b
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(b

It is easy to verify that matrix AT A is positive definite; hence ||Ax — b||?
is a strictly globally convex function whose unique minimizer is given by

0.6902
x, = (ATA)ATh = | 0% (8.15)
3.1150
By denoting
a{ b1
T
a b
A=| 2], b=|"
ag b6
we can write
al'x — b
alx — by
Ax—b =
agx — b6
and the L, norm ||[Ax — b||~ can be expressed as
|Ax — bljec = max lal'x — by
Hence the problem in Eq. (8.14) becomes
minimize max lei(x)] (8.16)

where
ei(x) =alx —b;

which is obviously a minimax problem. The gradient of e;(x) is simply
given by
Vei(x) = a;

By using the least-squares solution X;s obtained in part (a) as the initial
point and £; = 4 x 1075, it took Algorithm 8.2 four iterations to converge

to the solution
0.7592

3.6780
3.0439

(8.17)

In this example as well as Examples 8.2 and 8.3, the unconstrained opti-
mization required is Step 3 was carried out using a quasi-Newton BFGS
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algorithm which was essentially Algorithm 7.3 with a slightly modified
version of Step 8b as follows:

Step 8b’
Compute D = 6{7,6. If D < 0, then set Si,1 = I, otherwise,
compute Sy using Eq. (7.57).

(c¢) Using Egs. (8.15) and (8.17), the magnitudes of the equation errors for
solutions x; and X,pinimaz Were found to be

e 0.2844
0.2844
0.0390 0.2843

|Axs —b| = | 0.0765 | and [AxXpminimas —b| = | o
0.2844

0.4054

04054 0.2844
- 0.2844

As can be seen, the minimax algorithm tends to equalize the equation
errors. M

8.4 Improved Minimax Algorithms

To achieve good results with the above minimax algorithms, the sampling
of the objective function f(x, w) with respect to w must be dense; otherwise,
the error in the objective function may develop spikes in the intervals between
sampling points during the minimization. This problem is usually overcome
by using a fairly large value of K of the order of 20 to 30 times the number
of variables, depending on the type of optimization problem. For example,
if a 10th-order digital filter is to be designed, i.e., N = 10 in Eq. (8.2), the
objective function depends on 21 variables and a value of K as high as 630 may
be required. In such a case, each function evaluation in the minimization of the
objective function would involve computing the gain of the filter as many as 630
times. A single optimization may sometimes necessitate 300 to 600 function
evaluations, and a minimax algorithm like Algorithm 8.1 or 8.2 may require 5
to 10 unconstrained optimizations to converge. Consequently, up to 3.8 million
function evaluations may be required to complete a design.

A technique will now be described that can be used to suppress spikes in the
error function without using a large value of K [3]. The technique entails the
application of nonuniform variable sampling and it is described in terms of the
filter-design problem considered earlier. The steps involved are as follows:

1. Evaluate the error function in Eq. (8.4) with respect to a dense set of
uniformly-spaced frequencies that span the frequency band of interest,
say, Wi, Wa, ..., wr, where L is fairly large of the order of 10 x K.

2. Segment the frequency band of interest into K intervals.
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3. For each of the K intervals, find the frequency that yields maximum error.

Let these frequenciesbe w; fori =1, 2, ..., K.
4. Usefrequencies w; as sample frequencies in the evaluation of the objective
function, i.e., setw; = w;fori =1, 2, ..., K.

By applying the above nonuniform sampling technique before the start of
the second and subsequent optimizations, frequency points at which spikes
are beginning to form are located and are used as sample points in the next
optimization. In this way, the error at these frequencies is reduced and the
formation of spikes is prevented.

Assume that a digital filter is required to have a specified amplitude response
with respect to a frequency band B which extends from w; to wy,, and let w1, wo,

.., wr, be uniformly-spaced frequencies such that

w; = wij_1 + Aw

fori =2, 3, ..., L where
wp, — w1

These frequency points may be referred to as virtual sample points. Band B
can be segmented into K intervals, say, {21 to Qg such that 2; and Qf are of
width Aw/2, Q9 and Q1 are of width [Aw, and ; fori =3, 4, ..., K —2
are of width 2] Aw where [ is an integer. These requirements can be satisfied
by letting

0 ={w: & <w<o+ A0}
ng{w: @1+%Aw§w<@1+(l+%)Aw}
Q, = {w; @1+[(2¢—5)z+§}Aw§w<w1+[(2i—3>l+%}AW}
fori=3,4,...,K —2
Q1 =
v oo <o [ox-one o

and
O = {w: @1+ [2K - 6)1+ ] Aw <w <y}

where
wrp =w1 + [2K — 6)l + 1]Aw. (8.19)

The scheme is feasible if
L=(2K—-6)l+2 (8.20)

according to Egs. (8.18) and (8.19), and is illustrated in Fig. 8.2 for the case
where K = 8 and [ = 5.
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I'l Q
Q — <
P | | |
®; oF 0y o3

)

®;

| |
I Qg » T Q. — |
AW —]  f~— | | | Q
J I | P I | | 1l 1 1 | || | I
(O]} W g W74 [0);
Wk Wk Wg

Figure 8.2. Segmentation of frequency axis.

In the above segmentation scheme, there is only one sample in each of inter-
vals 21 and Qp, [ samples in each of intervals €25 and Q5 _1, and 2! samples
in each of intervals €23, €24, ..., Q ko, as can be seen in Fig. 8.2. Thus step 3
of the technique will yield w1 = @ and w x = Wy, i.e., the lower and upper
band edges are forced to remain sample frequencies throughout the optimiza-
tion. This strategy leads to two advantages: (a) the error at the band edges is
always minimized, and (b) a somewhat higher sampling density is maintained
near the band edges where spikes are more likely to occur.

In the above technique, the required amplitude response, My (w), needs to be
specified with respect to a dense set of frequency points. If My(w) is piecewise
constant as in Fig. 8.1, then the required values of M (w) can be easily obtained.
If, on the other hand, M (w) is specified by an array of numbers, the problem can
be overcome through the use of interpolation. Let us assume that the amplitude
response is specified at frequencies w; to wg, where w1 = w; and Wg = wy.
The required amplitude response for any frequency interval spanned by four
successive specification points, say, w; < w < w;43, can be represented by a
third-order polynomial of w of the form

My (w) = agj + a1jw + agjw2 + agng (8.21)

and by varying j from 1 to S — 3, a set of S — 3 third-order polynomials
can be obtained which can be used to interpolate the amplitude response to
any desired degree of resolution. To achieve maximum interpolation accuracy,
each of these polynomials should as far as possible be used at the center of the
frequency range of its validity. Hence the first and last polynomials should be
used for the frequency ranges w1 < w < w3 and ws_2 < w < wg, respectively,
and the jth polynomial for 2 < 5 < S — 4 should be used for the frequency
range Wiy < w < Wjyo.
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Coefficients a;; fori =0, 1, ..., 3and j = 1to S — 3 can be determined

by computing @,,,, (@)%, and (Oy,)2 for m =4, j+1, ...

constructing the system of simultaneous equations
2ja; = My,

where

and Moj = [MQ((:)J’)

aj = [aogj - az]

are column vectors and ;j is the 4 x 4 matrix given by

1 CDJ (@‘)2 (~j)3
. — |1 @i (@) (@41)
! 1 Qjra (@542)° (@j42)
1 Qjrs (@43)°  (@j43)

Therefore, from Eq. (8.22) we have

~—1
a; = Qj Moj.

, j+3, and then

(8.22)

Mo(@j13)]"

(8.23)

The above nonuniform sampling technique can be incorporated in Algorithm
8.1 by replacing steps 1, 2, and 4 as shown below. The filter to be designed
is assumed to be a single-band filter, for the sake of simplicity, although the
technique is applicable to filters with an arbitrary number of bands.

Algorithm 8.3 Modified version of Algorithm 8.1
Step 1

a. Input Xg and e1. Set k = 1,p = 2, u = 2, and Eo = 109,

Initialize K.

b. Input the required amplitude response My(w,,) for m =

1,2 ...,5

c. Compute L and Aw using Egs. (8.20) and (8.18), respectively.
d. Compute coefficients a;; fori =0, 1, ..., 3andj = 1t0 S -3

using Eq. (8.23).
e. Compute the required ideal
w1, Wa, ..., wr, using Eq. (8.21).
Step 2

amplitude

response  for

Set wy = Wy, wo = Wiy, Wi = @2(i72)l+1 fort =3, 4, ..., K -2,

WK_1=wr_1,and wg = wr,.
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Step 3
Using X1 as initial value, minimize ¥ (x) in Eq. (8.6a) with respect

to X, to obtain X . Set Ej, = E(X).

Step 4
a. Compute |e;(xy)| fori = 1, 2, ..., L using Egs. (8.4) and
(8.6b).
b. Determine frequencies w; fori =1, 2, ..., K and
Py = P(xg) = 1@?<XL|€Z(X’€>‘ (8.24)
c. Set w;fori=1, 2, ..., K.

d. If ]Ek,l — Ek\ < g1 and \ﬁk — Ek\ < €1, then output X and
E'k, and stop. Otherwise, set p = up, k = k+ 1 and go to step 3.

The above nonuniform variable sampling technique can be applied to Algo-
rithm 8.2 by replacing steps 1, 2, and 6 as follows:

Algorithm 8.4 Modified version of Algorithm 8.2
Step 1
a. Input Xpandey. Setk =1, =0 1 =A== Ng =

1, and E o = 10%. Initialize K.
b. Input the required amplitude response My(@w,,) for m =

1,2, ..., 8.
c. Compute L and Aw using Egs. (8.20) and (8.18), respectively.
d. Compute coefficients a;; fori =0, 1, ..., 3and j =1t0 .S -3

using Eq. (8.23).
e. Compute the required ideal amplitude response for @y, wo,
.., wr, using Eq. (8.21).

Step 2

Setwy; = W1, Wy = W14, Wi = Wa(i—2)i+1 fori =3,4, ..., K -2,
Wr_1 = w1, and wg = wy,.

Step 3

Using Xj_1 as initial value, minimize W(x, A, &) with respect to x
to obtain Xj. Set

Ek = E(Xk) = 1r<nax les(xk)|

Step 4

Compute

Op = > Meidi(Xks &) + Y i Xk, &k)

i€l i€ls
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and update
Mei®i(X ks, &)/ P for ie
A1) = 3 Pi( X, &)/ Pr for i € I
0 for i € I3
fori =1, 2, ..., K where
Iy = {i: ¢i(Xg, &) > 0and Ap; > 0}
Iy = {i: ¢i(Xg, &) > 0and A\g; = 0}
and
Iy ={i: ¢i(xy, &) <0}
Step 5
Compute
K
Ehr1 = D Apyilei( X))
i=1
Step 6
a. Compute |e;(xy)| fori = 1, 2, ..., L using Egs. (8.4) and
(8.6b).
b. Determine frequencies w; fori =1, 2, ..., K and
k= P(Xe) = max lei(Xp)]
c. Setw;=w;fori=1,2,..., K.

d. If ]E’k_l — Ek| < g1 and ng — Ek] < €1, then output X, and
E', and stop. Otherwise, set k = k + 1 and go to step 3.
In step 2, the initial sample frequencies w; and wg are assumed to be at

the left-hand and right-hand band edges, respectively; wy and wg 1 are taken
to be the last and first frequencies in intervals {25 and Qi 1, respectively; and

each of frequencies ws, wy, ..., Wi _2 is set near the center of each of intervals
Qs, Q4, ..., Qx_o. This assignment is illustrated in Fig. 8.2 for the case where
K =8and! =5.

Without the nonuniform sampling technique, the number of samples K
should be chosen to be of the order of 20 to 30 times the number of vari-
ables, depending on the selectivity of the filter, as was mentioned in the first
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paragraph of Sec. 8.4. If the above technique is used, the number of virtual
sample points is approximately equal to 2] x K, according to Eq. (8.20). Aslis
increased above unity, the frequencies of maximum error, & ;, become progres-
sively more precise, owing to the increased resolution; however, the amount
of computation required in step 4 of Algorithm 8.3 or step 6 of Algorithm 8.4
is proportionally increased. Eventually, a situation of diminishing returns is
reached whereby further increases in [ bring about only slight improvements
in the precision of the w;’s. With [ = 5, a value of K in the range of 2 to
6 times the number of variables was found to give good results for a diverse
range of designs. In effect, the use of the nonuniform sampling technique in
the minimax algorithms described would lead to a reduction in the amount of
computation of the order of 75 percent.

Example 8.2

(a) Applying Algorithm 8.1, design a 10th-order lowpass digital filter as-
suming a transfer function of the form given in Eq. (8.2). The desired
amplitude response is

1 for 0 < w < wy rad/s

Mo(w) = { 0 for w, < w < mrad/s (8.25)

where w;, = 0.47, w, = 0.5, and the sampling frequency is 2.
(b) Applying Algorithm 8.3, design the digital filter specified in part (a).

Solution (a) Using Eqgs. (8.2) and (8.3), the amplitude response of the filter is
obtained as

—Jjw 4 ... —jNw
M(x, w) = alo_—}}——;bfeejw :— . :bgjvf\;(iij (8.26)
If we denote
ao b1 1 0
a= a,l , b= b,2 , c(w) = CO:Sw , and s(w) = Sil.lw
a'N b;\[ cos Nw sin Nw

then x = [a” bT]7. Thus the error function in Eq. (8.4) can be expressed as

ei(x) = M(x, w;) — Mo(w;)
_ {@Te()]? + [aTs(w)P}?
{1+ bTe(wi)]? + [bT8(w;)?}1/?

— Mo(ws) (827



218

where
Ccos w sin w

¢(w) = : and S(w) = :
cos Nw sin Nw

The gradient of the objective function ¥ (x) can be obtained as

V0ei(x)| = sgn [e;(x)]Ve;(x) (8.28a)
by using Egs. (8.7) and (8.27), where
Oe;(x)
Vei(x) = [ o ] (8.28b)
Oei(x)
b
dei(x) _ M(x, wi){[a"c(wi)]e(w:) + [a”s(wi)]s(wi)} .
da [aTc(w;)]? + [als(w;)]? (8.28¢)
Oei(x) _ M(x, wi){[1 +b"e(wi)]e(wi) + [bT8(wi)]8(wi) }
b [14+bT¢(w;)]? + [bT8(w;)]?
(8.28d)

The above minimax problem was solved by using a MATLAB program that
implements Algorithm 8.1. The program accepts the parameters wy, w,, K, and
€1, as inputs and produces the filter coefficient vectors a and b as output. Step
3 of the algorithm was implemented using the quasi-Newton BFGS algorithm
alluded to in Example 8.1 with a termination tolerance 5. The program also
generates plots for the approximation error |e(x, w)| and the amplitude response
of the filter designed. The initial point was taken to be xo = [a} b{]7 where
ag=[11"---1]Tandby = [00 --- 0]T. The number of actual sample points,
K, was set to 600, i.e., 267 and 333 in the frequency ranges 0 < w < 0.47w
and 0.57 < w < 7, respectively, and £; and €2 were set to 1076 and 1079,
respectively. The algorithm required seven iterations and 198.20 s of CPU time
on a 3.1 GHz Pentium 4 PC to converge to the solution point x = [a’ b”]”
where

[0.00735344 7 - -

— 3.35819120

0.02709762
8.39305902

0.06800724
—13.19675182

0.12072224
16.35127992

0.16823049
—14.94617828

a=|[0.18671705|, b=

10.68550651

0.16748698
— 5.65665532

0.11966157
2.15596724

0.06704789
—0.52454530
0.02659087 0.06260344

1 0.00713664 | -
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Note that design problems of this type have multiple possible solutions and
the designer would often need to experiment with different initial points as well
as different values of K, €1, and e5, in order to achieve a good design.

The transfer function of a digital filter must have poles inside the unit circle of
the z plane to assure the stability of the filter (see Sec. B.7). Since the minimax
algorithms of this chapter are unconstrained, no control can be exercised on the
pole positions and, therefore, a transfer function may be obtained that represents
an unstable filter. Fortunately, the problem can be eliminated through a well-
known stabilization technique. In this technique, all the poles of the transfer
function that are located outside the unit circle are replaced by their reciprocals
and the transfer function is then multiplied by an appropriate multiplier constant
which is equal to the reciprocal of the product of these poles (see p. 535 of [4]).
For example, if

N N
Hxy = ME) . (2) (8.29)
D(z)  D'(2) [T}~ (2 = pu,)
is a transfer function with k poles py,, pus, - .., Dy, that lie outside the unit

circle, then a stable transfer function that yields the same amplitude response
can be obtained as

N Noaizt
H'(2) = Ho N(z) - im0 (8.30a)
D'(2)Ili=1(z = 1/pu;) 14 3255, b2
where ]
Hy= —— (8.30D)

In the design problem considered above, the poles of H(z) were obtained
as shown in column 2 of Table 8.1 by using command roots of MATLAB.
Since |p;| > 1 fori = 1 and 2, a complex-conjugate pair of poles are located
outside the unit circle, which render the filter unstable. By applying the above
stabilization technique, the poles in column 3 of Table 8.1 were obtained and
multiplier constant Hy was calculated as Hy = 0.54163196.

Table 8.1 Poles of the IIR filters for Example 8.2 (a)

) Poles of the unstable filter Poles of the stabilized filter
1 0.51495917 + 1.257413705 0.27891834 + 0.681055445
2 0.51495917 — 1.257413705 0.27891834 — 0.68105544 5
3 0.23514844 + 0.928791385 0.23514844 + 0.928791385
4 0.23514844 — 0.928791385 0.23514844 — 0.9287913875
5 0.24539982 + 0.82867789j 0.24539982 + 0.828677897
6 0.24539982 — 0.828677895 0.24539982 — 0.828677897
7 0.32452615 + 0.460222205 0.32452615 + 0.460222207
8  0.32452615 — 0.4602222075 0.32452615 — 0.460222205
9  0.35906202 + 0.164384815 0.35906202 + 0.16438481
10 0.35906202 — 0.16438481j 0.35906202 — 0.16438481j
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By using Eq. (8.30a), coefficients a’ and b’ were obtained as

0.00398286 -5 886109551

0.01467694
5.98928394

0.03683489
—8.20059471

0.06538702
8.75507027

0.09111901
a’ = [0.10113192 b = —7.05776764
’ 4.44624218

0.09071630
—2.10292453

0.06481253
0.72425530

0.03631528
—0.16255342
0.01440247 Pt
1 0.00386543 -

The largest magnitude of the poles of the modified transfer function is 0.9581,
and thus the filter is stable.

The approximation error |e(x, w)| over the passband and stopband is plotted
in Fig. 8.3 and the amplitude response of the filter is shown in Fig. 8.4.

(b) For part (b), the number of sampling points was set to 65, i.e., 29 and 36
in the frequency ranges 0 < w < wy, and w, < w < 7, respectively. The initial
point and parameters €1 and 2 were the same as in part (a), and parameter [
was set to 5. It took Algorithm 8.3 six iterations and 18.73 s of CPU time to
converge to the solution point x = [a” b’ where

10.00815296 7

[ —2.02896582 T
0.03509437
3.98574025
0.09115541
—3.65125139
0.16919427
2.56127374
0.24129855
—0.11412527
a= (027357739 |, b=
—1.16704564
0.24813555
1.36351210
0.17915173
—0.77298905
0.09963780
0.25851314
0.03973358 0.03992105
L 0.00981327 | - -

As can be verified, a complex-conjugate pair of poles of the transfer func-
tion obtained are located outside the unit circle. By applying the stabilization
technique described in part (a), the coefficients of the modified transfer function
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Figure 8.3. Error |e(x, w)| versus w for Example 8.2(a).
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Figure 8.4. Amplitude response of the lowpass filter for Example 8.2(a).
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were obtained as

_ 8822???&8 _ r—1.83238201
0.06538893 304688036
0.12136889 —9.42167890
0.17309179 1.31022752
o — | 019624651 | b= | 0-27609329
' ’ —0.90732976
0.17799620
0.84795926
0.12851172
—0.43579279
0.07147364
0.13706106
0.02850227 015706100
| 0.00703940 | L—0. ]

The largest magnitude of the poles of the modified transfer function is 0.9537
and thus the filter is stable.
The approximation error |e(x, w)| over the passband and stopband is plotted
in Fig. 8.5 and the amplitude response of the filter is depicted in Fig. 8.6.
|
The next example illustrates the application of Algorithms 8.2 and 8.4.

Example 8.3

(a) Applying Algorithm 8.2, design the 10th-order lowpass digital filter spec-
ified in Example 8.2(a).
(b) Applying Algorithm 8.4, carry out the same design.

Solution (a) The required design was obtained by using a MATLAB program
that implements Algorithm 8.2 following the approach outlined in the solution
of Example 8.2. The number of actual sample points, K, was setto 650, i.e., 289
and 361 in the frequency ranges 0 < w < wp andw, < w < 7, respectively, and
1 and 5 were set to 3 x 107 and 10~ !?, respectively. The initial point xo was
the same as in part (a) of Example 8.2. Algorithm 8.2 required eight iterations
and 213.70 s of CPU time to converge to the solution point x = [a? b’
where

[0.054875207 - -

—5.21138732

0.23393481
18.28000994

0.59719051
—39.14255091

1.09174124
66.45234153

1.53685612
—78.76751214

a=|171358243 |, b=

76.41046395

1.53374494
—50.05505315

1.08715408
25.84116347

0.59319673
— 6.76718946
0.23174666 068877840

L 0.05398863 | l
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x 10~

Figure 8.5. Error |e(x, w)| versus w for Example 8.2(b).

Figure 8.6. Amplitude response of the lowpass filter for Example 8.2(b).
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As can be shown, the transfer function obtained has three complex-conjugate
pairs of poles that are located outside the unit circle. By applying the stabi-
lization technique described in part (a) of Example 8.2, the coefficients of the
modified transfer function were obtained as

_ 88233;2211 _ r—2.49921097 ]
0.04591022 4.87575840
' —6.01897510
0.08392980
0.11814890 5.92269310
o — | 013173500 | b/ = | —4-27567184
0.11790972 | 2.41390695
' —0.98863984
0.08357715
0.28816806
0.04560319
—0.05103514
0.01781599 005103514
| 0.00415048 | : ]

The largest magnitude of the modified transfer function is 0.9532 and thus the
filter is stable.

The approximation error |e(x, w)| over the passband and stopband is plotted
in Fig. 8.7 and the amplitude response of the filter is depicted in Fig. 8.8.

(b) As in Example 8.2(b), the number of sampling points was set to 65, i.e.,
29 and 36 in the frequency ranges 0 < w < wp and w, < w < T, respectively,
and 1 and e were setto e = 1072 and e = 10712, respectively. The initial
point x¢ was the same as in part (a) and parameter [ was set to 4. Algorithm 8.4
required sixteen iterations and 48.38 s of CPU time to converge to a solution
point x = [a” b”]” where

[0.01307687 [ —4.25811576
0.05061800 11.94976697
0.12781582 —20.27972610
0.22960471 27.10889061

a— 0.32150671 b— —26.10756891
0.35814899 |’ 20.09430301
0.32167525 —11.29104740
0.22984873 4.74405652
0.12803465 — 1.28479278

1 0.05073663 | L 0.16834783 |

These coefficients correspond to an unstable transfer function with one pair of
poles outside the unit circle. By applying the stabilization technique,
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Figure 8.7.  Error |e(x, w)| versus w for Example 8.3(a).
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Figure 8.8. Amplitude response of the lowpass filter for Example 8.3(a).
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the coefficients of the modified transfer function were obtained as

10.003924177

r—2.80254807 ]
88;2;2??? 5.74653112
0.06890085 772509562
0.09647924 8.13565547
a’ = 0.10747502 b/ _ —6.44870979
' P T 3.99996323
0.09652981
0.06807408 —1.85761204
' 0.62780900
0.03842123
—0.13776283
0.01522528 013776253
| 0.00393926 | : ]

The largest magnitude of the poles of the modified transfer function is 0.9566
and thus the filter is stable.

The approximation error |e(x, w)| over the passband and stopband is plotted
in Fig. 8.9 and the amplitude response of the filter is depicted in Fig. 8.10.

]

From the designs carried out in Examples 8.2 and 8.3, we note that the use
of the least-pth method with uniform sampling in Example 8.2(a) resulted in
the lowest minimax error but a very large density of sample points was required
to achieve a good design, which translates into a large amount of computation.
Through the use of nonuniform variable sampling in Example 8.2(b), a design
of practically the same quality was achieved with much less computation.

It should be mentioned that in the Charalambous algorithm, the value of &
becomes progressively larger and approaches the minimum value of the ob-
jective function from below as the optimization progresses. As a result, the
number of sample points that remain active is progressively reduced, i.e., the
sizes of index sets I; and I become progressively smaller. Consequently, by
avoiding the computation of the partial derivatives of e;(x) for i € I3 through
careful programming, the evaluation of gradient VW (see Eq. (8.11)) can be
carried out much more efficiently. In the above examples, we have not taken
advantage of the above technique but our past experience has shown that when
it is fully implemented, the Charalambous algorithm usually requires between
10 to 40% of the computation required by the least-pth method, depending on
the application.

Finally, it should be mentioned that with optimization there is always an
element of chance in obtaining a good design and, therefore, one would need
to carry out a large number of different designs using a large set of randomly
chosen initial points to be able to compare two alternative design algorithms
such as Algorithms 8.1 and 8.2.
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x10™*

Figure 8.9. Error |e(x, w)]| versus w for Example 8.3(b).
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Figure 8.10. Amplitude response of the lowpass filter for Example 8.3(b).
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Problems
8.1 Consider the overdetermined system of nonlinear equations

¥~k - 31y =2
xz{’—xéz—Q

T+a3+2 =-11

]+ x5+ 21 —x0 = —1.

(a) Using the Gauss-Newton method, find a solution for the above equa-
tions, X4, by minimizing

where

f1(x) :x%—xg—m1—3af2—2

fo(x) = 23 — a5+ 2
f3(x) = a2 + a5+ 221 —ay + 1.1

(b) Applying Algorithm 8.2, find a minimax solution, X,inimaz» by SOlv-
ing the minimax problem
minimize max, | fi(x)]

(c) Evaluate and compare the equation errors for the solutions x4, and
Xminimazx-

8.2 Verify the expression for the gradient Ve;(x) givenin Egs. (8.28b), (8.28¢),
and (8.28d).
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8.3

8.4
8.5
8.6
8.7

8.8
8.9
8.10
8.11

8.12
8.13
8.14

Applying Algorithm 8.1, design a 12th-order highpass digital filter, as-
suming a desired amplitude response

Mo(w) = { 0 for 0 < w < 0.457 rad/s
1 for 0.57m < w < 7 rad/s
The transfer function of the filter is of the form given by Eq. (8.2).
Repeat Problem 8.3 by applying Algorithm 8.2.
Repeat Problem 8.3 by applying Algorithm 8.3.
Repeat Problem 8.3 by applying Algorithm 8.4.

Applying Algorithm 8.1, design a 12th-order bandpass filter, assuming a
desired amplitude response

My(w) =% 1 for 0.375m < w < 0.6257 rad/s

0 for 0 < w < 0.37 rad/s
0 for 0.7t < w < 7 rad/s

The transfer function of the filter is of the form given by Eq. (8.2).
Repeat Problem 8.7 by applying Algorithm 8.2.
Repeat Problem 8.7 by applying Algorithm 8.3.
Repeat Problem 8.7 by applying Algorithm 8.4.

Applying Algorithm 8.1, design a 12th-order bandstop filter, assuming a
desired amplitude response

My(w) =< 0  for 0.4257 < w < 0.5757 rad/s

1 for 0 < w < 0.357 rad/s
1 for 0.656m < w < 7 rad/s

The transfer function of the filter is of the form given by Eq. (8.2).
Repeat Problem 8.11 by applying Algorithm 8.2.
Repeat Problem 8.11 by applying Algorithm 8.3.
Repeat Problem 8.11 by applying Algorithm 8.4.



Chapter 9

APPLICATIONS OF UNCONSTRAINED
OPTIMIZATION

9.1 Introduction

Optimization problems occur in many disciplines, for example, in engineer-
ing, physical sciences, social sciences, and commerce. In this chapter, we
demonstrate the usefulness of the unconstrained optimization algorithms stud-
ied in this book by applying them to a number of problems in engineering.
Applications of various constrained optimization algorithms will be presented
in Chap. 16.

Optimization is particularly useful in the various branches of engineering
like electrical, mechanical, chemical, and aeronautical engineering. The ap-
plications we consider here and in Chap. 16 are in the areas of digital signal
processing, pattern recognition, automatic control, robotics, and telecommuni-
cations. For each selected application, sufficient background material is pro-
vided to assist the reader to understand the application. The steps involved
are the problem formulation phase which converts the problem at hand into
an unconstrained optimization problem, and the solution phase which involves
selecting and applying an appropriate optimization algorithm.

In Sec. 9.2, we examine a problem of point-pattern matching in an uncon-
strained optimization framework. To this end, the concept of similarity trans-
formation is introduced to quantify the meaning of ‘best pattern matching’. In
addition, it is shown that the optimal pattern from a database that best matches a
given point pattern can be obtained by minimizing a convex quadratic function.
In Sec. 9.3, we consider a problem known as the inverse kinematics of robotic
manipulators which entails a system of nonlinear equations. The problem is first
converted into an unconstrained minimization problem and then various meth-
ods studied earlier are applied and the results obtained are compared in terms
of solution accuracy and computational efficiency. Throughout the discussion,
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the advantages of using an optimization-based solution method relative to a
conventional closed-form method are stressed. In Sec. 9.4, we obtain weighted
least-squares and minimax designs of finite-duration impulse-response (FIR)
digital filters using unconstrained optimization.

9.2  Point-Pattern Matching
9.2.1 Motivation

A problem that arises in pattern recognition is the so-called point-pattern
matching problem. In this problem, a pattern such as a printed or handwritten
character, numeral, symbol, or even the outline of a manufactured part can be
described by a set of points, say,

P = {p1> p2, ..., pn} (91)

bi1
pi [pz‘z ]

is a vector in terms of the coordinates of the ith sample point. If the number
of points in P, n, is sufficiently large, then P in Eq. (9.1) describes the object
accurately and P is referred to as a point pattern of the object. The same object
viewed from a different distance and/or a different angle will obviously corre-
spond to a different point pattern, P, and it is of interest to examine whether or
not two given patterns are matched to within a scaled rotation and a translation.

In a more general setting, we consider the following pattern-matching prob-
lem: We have a database that contains N standard point patterns {P;, Pa, ...,
Pn } where each P; has the form of Eq. (9.1) and we need to find a pattern from
the database that best matches a given point pattern @ = {qi1, q2, ..., Qn}-
In order to solve this problem, two issues need to be addressed. First, we need
to establish a measure to quantify the meaning of ‘best matching’. Second,
we need to develop a solution method to find an optimal pattern P* from the
database that best matches pattern Q based on the chosen measure.

where

9.2.2  Similarity transformation

Two point patterns P and P are said to be similar if one pattern can be
obtained by applying a scaled rotation plus a translation to the other. If pattern
P is given by Eq. (9.1) and

P={P1, P2, ..., P} with P; = [pi1 pio]”

then P and P are similar if and only if there exist a rotation angle 6, a scaling
factor 7, and a translation vector r = [ry ro]” such that the relation

. |cosf —sinf| r1
pl_n[sin@ cos@}pZ+ L“J ©-2)
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holds for i = 1, 2, ..., n. A transformation that maps pattern P to pattern Q
is said to be a similarity transformation. From Eq. (9.2), we see that a similarity
transformation is characterized by the parameter column vector [1 6 r1 5]
Note that the similarity transformation is a nonlinear function of parameters 7
and 6. This nonlinearity can lead to a considerable increase in the amount of
computation required by the optimization process. This problem can be fixed
by applying the variable substitution

a=mncosf, b=mnsind
to Eq. (9.2) to obtain

. |a =b] 71
b=y )] eer | ©3)

Thus the parameter vector becomes x = [a by 72]7. Evidently, the similarity
transformation now depends linearly on the parameters.

9.2.3 Problem formulation

In a real-life problem, a perfect match between a given point pattern Q and
a point pattern in the database is unlikely, and the best we can do is identify the
closest pattern to Q to within a similarity transformation.

Let

Q:{q17 Cl27 sty Qn}
be a given pattern and assume that

75(X) = {f)la f)27 ey f)n}
is a transformed version of pattern

P:{pla P2, .-, pn}

Let these patterns be represented by the matrices

Q=[aq1q - qu), P(xX) =[P1 P2 -+ Pn), and P = [p1 p2 -+ py]

respectively. A transformed pattern P that matches Q can be obtained by
solving the unconstrained optimization problem

minimize IP(x) — Q||% (9.4)

where || - || denotes the Frobenius norm (see Sec. A.8.2). The solution of
the above minimization problem corresponds to finding the best transformation
that would minimize the difference between patterns P and Q in the Frobenius

sense. Since
n

IP(x) — Q7 = > Ipi(x) — ail?

i=1
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the best transformation in the least-squares sense is obtained.
Now if x* is the minimizer of the problem in Eq. (9.4), then the error

e(P,Q) = |IP(x*) — Q| r 9.5)

is a measure of the dissimilarity between patterns Pand Q. Obviously, 6(75, Q)
should be as small as possible and a zero value would correspond to a perfect
match.

9.2.4  Solution of the problem in Eq. (9.4)
On using Eq. (9.3), Eq. (9.5) gives

B0 —QlE = 3 [1pi() — al?
=1

>

i=1

2

{apil — bpiz +7“1} o
bpi1 + apiz2 + 12 !

“|[pa —p 2
i1 —Pi2
e X — ;
; {Pm pi1 0 1] &
=x"Hx — 2x'b + & (9.6a)

where

n

> R/R; zn:R{

H= ", =, Ryj= [gfl _gﬂ (9.6b)
ZRz n12 2 1
=1
b =) [R; L] q (9.6¢)
=1
k= |lal] (9.6d)
=1

(see Prob. 9.1(a)). It can be readily verified that the Hessian H in Eq. (9.6b)
is positive definite (see Prob. 9.1(b)) and hence it follows from Chap. 2 that
the objective function in Eq. (9.4) is globally strictly convex and, therefore,
has a unique global minimizer. Using Eq. (9.6a), the gradient of the objective
function can be obtained as

g(x) = 2Hx — 2b
The unique global minimizer can be obtained in closed form by letting

g(x) =2Hx—-2b=0
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and hence
x*=H'b 9.7

Since H is a positive definite matrix of size 4 X 4, its inverse exists and is easy
to evaluate (see Prob. 9.1(c)).

9.2.5 Alternative measure of dissimilarity

As can be seen in Eq. (9.6a), the Frobenius norm of a matrix can be related
to the Lo norm of its column vectors. If we define two new vectors p(x) and q
as

I:)I(X) qd1
b0 = | 70| |
f)n(x) dn

then Eq. (9.6) implies that
IP(x) - Ql% = [B(x) - al®
Hence the dissimilarity measure defined in Eq. (9.5) can be expressed as
e(P,Q) = [B(x) —d

An alternative of the above dissimilarity measure can be defined in terms of the
Lo, norm

e2p(P, Q) = [|B(x) — dll2p

As p increases, ez, (P, Q) approaches the Lo, norm of p(x) — q which is
numerically equal to the maximum of the function. Therefore, solving the
problem

minimize e2p(P, Q) = |[B(x) — dll2p ©-8)

with a sufficiently large p amounts to minimizing the maximum error between
symbols P and Q. If we let
ri = [pa —piz 1 0]7
rio = [pi2 pa 0 1]7
. _ |9a
& [%‘2 ]

then the objective function in Eq. (9.8) can be expressed as

n 1/2p
eap(x) = {Z[(rgx —q)? + (rhx — qi2)2p]} (9.9a)

=1
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The gradient and Hessian of eg,(x) can be evaluated as

1 n
Vegp(x) = op—1, Z[(rgx — i)+ (rhx — i) (9.9b)
€op (x) iz
and
2p—1) &
v262p(x = 2;1;) 1 X)) Z le qll rllrzl + ( TioX — q$2)2 21‘1’21‘2%]
i=1
2p —1
—wVegp(x)VTegp(x) (9.9¢)
eap(x)

respectively (see Prob. 9.3(a)). It can be shown that the Hessian V2egp(x) in
Eq. (9.9¢) is positive semidefinite for any x € R* and, therefore, the objective
function ey, (x) is globally convex (see Prob. 9.3(b)).

Since the Hessian of eg,(x) is a 4 x 4 positive semidefinite matrix and is
available in closed form, the Newton algorithm (Algorithm 5.3) with the Hessian
matrix Hy modified according to Eq. (5.13) is an appropriate algorithm for the
solution of the problem in Eq. (9.8). If the power 2p involved in the optimization
problem is a power of 2, i.e., 2p = 2X, then the problem at hand can be solved
by first solving the problem for the case p = 1 using Eq. (9.7). The minimizer so
obtained can then be used as the initial point to minimize the objective function
for p = 2. This procedure is then repeated for p = 4, 8, 16, ... until two
successive optimizations give the same maximum error to within a prescribed
tolerance.

9.2.6 Handwritten character recognition

For illustration purposes, we consider the problem of recognizing a handwrit-
ten character using a database comprising the ten ‘standard’ characters shown
in Fig. 9.1. Each character in the database can be represented by a point pattern
of the form in Eq. (9.1) with n = 196, and the patterns for a, ¢, e, ... can be
denoted as P,, P., Pe, ... where the subscript represents the associated char-
acter. Fig. 9.2 shows a set of sample points that form pattern P, in the database.
The character to be recognized is plotted in Fig. 9.3. It looks like a rotated e,
it is of larger size relative to the corresponding character in the database, and
it is largely located in the third quadrant. To apply the method discussed, the
character in Fig. 9.3 is represented by a point pattern Q with n = 196.

The dissimilarity between each pattern Py aracter in the database and pattern
Q is measured in terms of e(Peharacter, @) in Eq. (9.5) and egp (Peharacter, Q) in
Eq. (9.8) with 2p = 128. Note that the minimization of e(Peharacter; @) can be
viewed as a special case of the problem in Eq. (9.8) with p = 1, and its solution
can be obtained using Eq. (9.7). For the minimization of e128(Pcharacter, Q)s
a sequential implementation of the Newton method as described in Sec. 9.2.5
was used to obtain the solution. The results obtained are summarized in Ta-
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Figure 9.1. Ten standard characters in the database.
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Figure 9.2. Sample points in pattern P,,. Figure 9.3. A character to be recognized.

ble 9.1 where x5 and x7j,¢ denote the minimizers of ea(Pcharacter; @) and
€128 (Pcharacter, @), respectively. From the table, it is evident that the char-
acter in Fig. 9.3 is most similar to character e.

See [1] for an in-depth investigation of dissimilarity and affine invariant
distances between two-dimensional point patterns.

9.3 Inverse Kinematics for Robotic Manipulators
9.3.1 Position and orientation of a manipulator

Typically an industrial robot, also known as a robotic manipulator, comprises
a chain of mechanical links with one end fixed relative to the ground and the
other end, known as the end-effector, free to move. Motion is made possible in
a manipulator by moving the joint of each link about its axis with an electric or
hydraulic actuator.
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Table 9.1 Comparison of dissimilarity measures

Character x5 e(P, Q) X3og e12s(P, Q)
0.8606 ] [ 0.44537
0.0401 0.3764
a aomor | [ 307300 || il 27287
| —4.4466 | | —4.0345 |
0.8113 7] [—0.07737
1.3432 1.0372
c 55632 19.9092 44867 2.0072
| 7.0455 | | —4.4968 |
[—1.13347 [ —1.08957
1.9610 2.0307
e 0.6778 5.2524 0.6513 0.4541
| 3.9186 | | 4.1631 |
[—0.2723 7 [ —0.04817
0.5526 0.8923
g _3.5780 30.4058 97970 2.5690
| 3.1246 | | 5.3467
0.0670] [ —0.07457
0.5845 0.6606
n _5.6081 33.0044 _5.9831 2.5260
| —3.8721 | | —3.9995 |
[ 1.07187 [ —0.22027
1.3542 1.2786
o —6.0667 16.8900 31545 2.1602
| —8.3572 | | —4.9915 |
[ 0.34257 [ 0.0600]
0.3289 0.0410
u _85193 33.6184 _6.8523 2.8700
| 22115 | | —2.0225 |
1.7989 [ 1.16787
—0.2632 0.0574
v _12.0215 20.5439 —9.6540 2.0183
~6.2048 | 5.9841 |
[—0.1165 ] [ —0.0064 7
0.6660 0.6129
y _3.8949 30.1985 _ 49815 2.3597
| 4.1959 | | 4.1508
0.1962 7] [ 0.07927
1.7153 1.1726
z _3.9896 21.4815 _4.4356 2.0220
| 69094 | | 4.8665 |

One of the basic problems in robotics is the description of the position and
orientation of the end-effector in terms of the joint variables. There are two
types of joints: rotational joints for rotating the associated robot link, and
translational joints for pushing and pulling the associated robot link along a
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Figure 9.4. A three-link robotic manipulator.

straight line. However, joints in industrial robots are almost always rotational.
Fig. 9.4 shows a three-joint industrial robot, where the three joints can be used
to rotate links 1, 2, and 3. In this case, the end-effector is located at the end of
link 3, whose position and orientation can be conveniently described relative to
a fixed coordinate system which is often referred to as a frame in robotics. As
shown in Fig. 9.4, frame {0} is attached to the robot base and is fixed relative
to the ground. Next, frames {1}, {2}, and {3} are attached to joint axes 1, 2,
and 3, respectively, and are subject to the following rules:

The z axis of frame {4} is along the joint axis i fori = 1, 2, 3.

The x axis of frame {i} is perpendicular to the z axes of frames {:} and
{i+1}fori=1,2, 3.

The y axis of frame {i} is determined such that frame {i} is a standard
right-hand coordinate system.

Frame {4} is attached to the end of link 3 in such a way that the axes of
frames {3} and {4} are in parallel and the distance between the z axes of
these two frames is zero.

Having assigned the frames, the relation between two consecutive frames

can be characterized by the so-called Denavit-Hartenberg (D-H) parameters
[2] which are defined in the following table:

a;:  distance from the z; axis to the z; 1 axis measured along the x; axis
«a;:  angle between the z; axis and the z;41 axis measured about the x; axis
d;:  distance from the x;_ axis to the z; axis measured along the z; axis
0;:  angle between the z;_1 axis and the x; axis measured about the z; axis
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As can be observed in Fig. 9.4, parameters d;, a2, and dy4 in this case represent
the lengths of links 1, 2, and 3, respectively, d3 represents the offset between link
1 and link 2, and a3 represents the offset between link 2 and link 3. In addition,
the above frame assignment also determines the angles g = 0°, @ = —90°,
ag = 0°, and a3 = —90°. Table 9.2 summarizes the D-H parameters of the
three-joint robot in Fig. 9.4 where the only variable parameters are 01, 6o, and 03
which represent the rotation angles of joints 1, 2, and 3, respectively.

Table 9.2 D-H parameters of 3-link robot

i | a1 ai—1 di 0;
1 0° 0 dy 01
2 | —90° 0 0 0>
3] 0° az  ds 03
4 | —90° as dy 0°

Since the D-H parameters a;_1, a;—1, d;, and 6; characterize the relation
between frames {¢ — 1} and {7}, they can be used to describe the position and
orientation of frame {i} in relation to those of frame {i — 1}. To this end, we
define the so-called homogeneous transformation in terms of the 4 x 4 matrix

ii-lR i—1 TORG
e [Zpl (9.10)
4x4

where vector ~ 1piom denotes the position of the origin of frame {4} with respect
to frame {¢—1}, and matrix *' R is an orthogonal matrix whose columns denote
the x-, y-, and z-coordinate vectors of frame {i} with respect to frame {i — 1}.
With the D-H parameters a;—1, a;—1, d;, and 6; known, the homogeneous
transformation in Eq. (9.10) can be expressed as [2]

cb; —s0; 0 Qi1

-1 sO;co;—1  cbico—1  —oy—1  —Soy_1d;

i T - 5918041‘—1 CeiSOéifl o aifldi (911)
0 0 0 1

where s and cf denote sin § and cos 0, respectively. The significance of the
above formula is that it can be used to evaluate the position and orientation of
the end-effector as

O = OT!T... NI (9.12)
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where each *;'T on the right-hand side can be obtained using Eq. (9.11). The
formula in Eq. (9.12) is often referred to as the equation of forward kinematics.

Example 9.1 Derive closed-form formulas for the position and orientation of
the robot tip in Fig. 9.4 in terms of joint angles 61, 05, and 05.

Solution Using Table 9.2 and Eq. (9.11), the homogeneous transformations
“!'Tfori=1, 2, 3, and 4 are obtained as

_Cl —S81 0 07 I C2 —S89 0 0
op_ |1 a 0 0 i~_ | 0 0 1 0
1T = 0 0 1 di]’ 2T = —s9 —co 0 0
L 0 0 0 1] L 0 0 0 1
_C3 —S83 0 ag_ (1 0 0 as
2m _ | 83 Cc3 0 O 3 0 0 1 da
3T = 0 0 1 ds|’ T = 0O -1 0 O
L 0 0 0 1] L0 0 0 1
With N = 4, Eq. (9.12) gives
i~ (i
cices 81 —c1823  c1(agce + ageas — dysas) — dssy
_ s1ea3 —c1 —s1S23  s1(azce + aszces — dasaz) + dsc
—s93 0 —C23 d1 — azsy — azsa3 — daca3
0 0 0 1

where ¢ = cosfy, s; = sinby, cog3 = cos(f2 + 03), and s93 = sin(fs + 63).
Therefore, the position of the robot tip with respect to frame {0} is given by

s1(agca + ascas — dasaz) + dzcy 9.13)

c1(agce + azcoz — dasa3) — dzsy
0
Pdorc =
dy — agsy — azseg — dyco3

and the orientation of the robot tip with respect to frame {0} is characterized
by the orthogonal matrix

0 C1C23 S1 —C1523
4R = | S1C23 —C1 —S818523 (9.14)
—s23 0 —C23
|

9.3.2 Inverse kinematics problem

The joint angles of manipulator links are usually measured using sensors
such as optical encoders that are attached to the link actuators. As discussed
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in Sec. 9.3.1, when the joint angles 61, 62, ..., 8, are known, the position
and orientation of the end-effector can be evaluated using Eq. (9.12). A related
and often more important problem is the inverse kinematics problem which is as
follows: find the joint angles 6; for 1 < ¢ < n with which the manipulator’s end-
effector would achieve a prescribed position and orientation. The significance
of the inverse kinematics lies in the fact that the tasks to be accomplished
by a robot are usually in terms of trajectories in the Cartesian space that the
robot’s end-effector must follow. Under these circumstances, the position and
orientation for the end-effector are known and the problem is to find the correct
values of the joint angles that would move the robot’s end-effector to the desired
position and orientation.

Mathematically, the inverse kinematics problem can be described as the prob-
lem of finding the values 6; for 1 < ¢ < n that would satisfy Eq. (9.12)
for a given {,T. Since Eq. (9.12) is highly nonlinear, the problem of find-
ing its solutions is not a trivial one [2]. For example, if a prescribed posi-
tion of the end-effector for the three-link manipulator in Fig. 9.4 is given by

OPiors = [P Py pz]T, then Eq. (9.13) gives
c1(asca + azcaz — dysa3) — dzsy = pu
s1(agca + azcaz — dase3) + dzc1 = py, (9.15)

dy — azs2 — azsaz — dsca3 = p.

In the next section, we illustrate an optimization approach for the solution
of the inverse kinematics problem on the basis of Eq. (9.15).

9.3.3  Solution of inverse kinematics problem
If we let

x = [0 6y 3] (9.16a)
f1(x) = ci(azca + ageaz — dases) — dzsi — pa (9.16b)
fa(x) = s1(agca + azcas — dasag) + dzci — py (9.16¢)
f3(x) = d1 — azs2 — azsa3 — dscoz — p (9.16d)

then Eq. (9.15) is equivalent to
fix) =0 (9.17a)
fo(x) =0 (9.17b)
fa(x) =0 (9.17¢)

To solve this system of nonlinear equations, we construct the objective function

F(x) = ff(x) + f3(x) + f3(x)
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and notice that vector x* solves Eq. (9.17) if and only if F'(x*) = 0. Since
function F'(x) is nonnegative, finding a solution point x for Eq. (9.17) amounts
to finding a minimizer x* at which F'(x*) = 0. In other words, we can convert
the inverse kinematics problem at hand into the unconstrained minimization
problem

minimize F(x (9.18)

”M“

An advantage of this approach over conventional methods for inverse kine-
matics problems [2] is that when the desired position [p, py p-] T'is not within the
manipulator’s reach, the conventional methods will fail to work and a conclusion
that no solution exists will be drawn. With the optimization approach, however,
minimizing function F(x) will still yield a minimizer, say, x* = [0F 05 05]7,
although the objective function F'(x) would not become zero at x*. In effect,
an approximate solution of the problem would be obtained, which could be
entirely satisfactory in most engineering applications. We shall illustrate this
point further in Example 9.2 by means of computer simulations.

To apply the minimization algorithms studied earlier, we let

f1(x)
f(x) = [fQ(X)]
f3(x)

and compute the gradient of F'(x) as
g(x) = 237 (x)f(x) (9.19)
where the Jacobian matrix J(x) is given by

J(x) = [VAx) Viax) V)"

—q3s51 —d3c1  quc1 @ac1
= g3c1 —d3s1  qaS1 Q251 (9.20)
0 —q3 —q1
with 1 = agca3 — dys23, g2 = —assag — dac23, g3 = azc2 + q1, and ¢4 =
—a282 + q2. The Hessian of F'(x) is given by
H(x) = 237 (x)J(x) + 2 Z fe(x)V? fr(x) (9.21)

where V2 f;.(x) is the Hessian of fj(x) (see Prob. 9.4).

Example 9.2 In the three-link manipulator depicted in Fig. 9.4, d; = 66.04
cm, d3 = 14.91 cm, dy = 43.31 cm, as = 43.18 cm, and a3 = 2.03 cm. By
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applying a steepest-descent (SD), Newton (N), Gauss-Newton (GN), Fletcher-
Reeves (FR) algorithm and then a quasi-Newton (QN) algorithm based on the
Broyden-Fletcher-Goldfarb-Shanno updating formula in Eq. (7.57), determine
the jointangles 6;(¢) fori = 1, 2, 3and —m < ¢ < 7 such that the manipulator’s
end-effector tracks the desired trajectory py(t) = [px(t) py(t) p»(t)]T where

pz(t) =30cost, py(t) =100sint, p,(t) = 10t + 66.04

for —m <t < m as illustrated in Fig. 9.5.

100
90

80

60
50

40

30
100

Figure 9.5. Desired Cartesian trajectory for Example 9.2.

Solution The problem was solved by applying Algorithms 5.1, 5.5, and 6.3 as
the steepest-descent, Gauss-Newton, and Fletcher-Reeves algorithm, respec-
tively, using the inexact line search in Steps 1 to 6 of Algorithm 7.3 in each
case. The Newton algorithm used was essentially Algorithm 5.3 incorporating
the Hessian-matrix modification in Eq. (5.13) as detailed below:

Algorithm 9.1 Newton algorithm

Step 1

Input x¢ and initialize the tolerance ¢.

Set k = 0.

Step 2

Compute g and Hy.

Step 3

Compute the eigenvalues of Hy, (see Sec. A.5).
Determine the smallest eigenvalue of Hy, Apuin-
Modify matrix H;, to
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I:I _{Hk if  Apin >0
T HE +AL, i Apin <0
where
v = —1.05\in + 0.1
Step 4
Compute IA{I;1 and dy, = —ﬂ;lgk
Step 5

Find ay, the value of « that minimizes f(xj + ady), using the inexact
line search in Steps 1 to 6 of Algorithm 7.3.
Step 6
Set x;+1 = Xi + agdg.
Compute fii1 = f(xpt1):
Step 7
If || di|| < €, then do:
Output x* = xp41 and f(x*) = fr11, and stop.
Otherwise, set k = k + 1 and repeat from Step 2.

The quasi-Newton algorithm used was essentially Algorithm 7.3 with a
slightly modified version of Step 8b as follows:

Step 8b’
Compute D = 5;{%. It D < 0, then set S+1 = I,,, otherwise,
compute Sy, 1 using Eq. (7.57).

At t = ty, the desired trajectory can be described in terms of its Cartesian
coordinates as

Pe(tr) 30 cos ty,
pa(ty) = | py(te) | = 100 sin ¢,
p=(ty) 10ty + 66.04

where —m <t < w. Assuming 100 uniformly spaced sample points, the
solution of the system of equations in Eq. (9.17) can obtained by solving the
minimization problem in Eq. (9.18) for £ = 1, 2, ..., 100, i.e., for t; =
—, ..., m,using the specified D-H parameters. Since the gradient and Hessian
of F(x) are available (see Egs. (9.19) and (9.21)), the problem can be solved
using each of the five optimization algorithms specified in the description of
the problem to obtain a minimizer x* (¢, ) in each case. If the objective function
F(x) turns out to be zero at x* (¢, ), then x* (¢, ) satisfies Eq. (9.17), and the joint
angles specified by x*(t;) lead the manipulator’s end-effector to the desired
position precisely. On the other hand, if F'[x*(tx)] is nonzero, then x* () is
taken as an approximate solution of the inverse kinematics problem at instant
t.
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Figure 9.6. Optimal joint angles 07 (t) Figure 9.7. End-effector’s profile (dotted
(solid line), 65 (t) (dashed line), and 03 (t) line) and the desired trajectory (solid line).

(dot-dashed line).

Once the minimizer x*(t;) is obtained, the above steps can be repeated
at t = t,,1 to obtain solution point x*(txy1). Since tj 1 differs from ¢
only by a small amount and the profile of optimal joint angles is presumably
continuous, x* (¢ 1) is expected to be in the vicinity of x*(¢;). Therefore, the
previous solution x*(#) can be used as a reasonable initial point for the next
optimization.!

The five optimization algorithms were applied to the problem at hand and
were all found to work although with different performance in terms of solution
accuracy and computational complexity. The solution obtained using the QN
algorithm, x*(t3) = [0 (tr) 03(tx) 05(t)]" for 1 < k < 100, is plotted in
Fig. 9.6; the tracking profile of the end-effector is plotted as the dotted curve
in Fig. 9.7 and is compared with the desired trajectory which is plotted as the
solid curve. It turns out that the desired positions pg(x) for 20 < k& < 31 and
70 < k < 81 are beyond the manipulator’s reach. As aresult, we see in Fig. 9.7
that there are two small portions of the tracking profile that deviate from the
desired trajectory, but even in this case, the corresponding x* (1) still offers
a reasonable approximate solution. The remaining part of the tracking profile
coincides with the desired trajectory almost perfectly which simply means that
for the desired positions within the manipulator’s work space, x*(¢;) offers a
nearly exact solution.

The performance of the five algorithms in terms of the number of Kflops and
iterations per sample point and the error at sample points within and outside the

Choosing the initial point on the basis of any knowledge about the solution instead of a random initial point
can lead to a large reduction in the amount of computation in most optimization problems.
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work space is summarized in Table 9.3. The data supplied are in the form of
averages with respect to 100 runs of the algorithms using random initializations.
As can be seen, the average errors within the manipulator’s work space for the
solutions x* () obtained using the steepest-descent and Fletcher-Reeves algo-
rithms are much larger than those obtained using the Newton, Gauss-Newton,
and QN algorithms, although the solutions obtained are still acceptable con-
sidering the relatively large size of the desired trajectory. The best results in
terms of efficiency as well as accuracy are obtained by using the Newton and
QN Algorithms.

Table 9.3 Performance comparisons for Example 9.2

Average number of | Average number of | Average error | Average error
Algorithm Kflops per iterations per within outside
sample point sample point work space work space

SD 46.87 23.54 0.05 4.37

N 3.52 2.78 5.27 x 1078 4.37

GN 3.66 2.76 1.48 x 1074 7.77

FR 13.74 15.80 0.17 4.37

QN 6.07 3.40 2.84 x 107° 4.37
| |

9.4  Design of Digital Filters

In this section, we will apply unconstrained optimization for the design of
FIR digital filters. Different designs are possible depending on the type of
FIR filter required and the formulation of the objective function. The theory
and design principles of digital filters are quite extensive [3] and are beyond
the scope of this book. To facilitate the understanding of the application of
unconstrained optimization to the design of digital filters, we present a brief
review of the highlights of the theory, properties, and characterization of digital
filters in Appendix B, which should prove quite adequate in the present context.

The one design aspect of digital filters that can be handled quite efficiently
with optimization is the approximation problem whereby the parameters of
the filter have to be chosen to achieve a specified type of frequency response.
Below, we examine two different designs (see Sec. B.9). In one design, we
formulate a weighted least-squares objective function, i.e., one based on the
square of the L9 norm, for the design of linear-phase FIR filters and in another
we obtain a minimax objective function, i.e., one based on the L., norm.

The L, norm of a vector where p > 1 is defined in Sec. A.8.1. Similarly,
the L,, norm of a function F'(w) of a continuous variable w can be defined with
respect to the interval [a, b] as

b 1/p
IP@Il, = ( | i@ dw> ©0.22)
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where p > 1 and if
b
/ IF(W)P dw < K < 0
a
the L, norm of F'(w) exists. If F'(w) is bounded with respect to the interval
[a,b],i.e., |[F(w)| < M for w € [a, b] where M is finite, then the Lo, norm of

F(w) is defined as
1F (@)oo = max [F(w)] (9.23a)

and as in the case of the L., norm of a vector, it can be verified that
Jim [ E(@)lp = [1F (@)l (9.23b)
(see Sec. B.9.1).

9.4.1 Weighted least-squares design of FIR filters

As shown in Sec. B.5.1, an FIR filter is completely specified by its transfer
function which assumes the form

N
H(z) =) hpz™" 9.24)
n=0
where the coefficients h,, forn = 0, 1, ..., n represent the impulse response

of the filter.

9.4.1.1 Specified frequency response

Assuming a normalized sampling frequency of 27, which corresponds to a
normalized sampling period 1" = 1 s, the frequency response of an FIR filter is
obtained as H (/%) by letting z = €/* in the transfer function (see Sec. B.8).
In practice, the frequency response is required to approach some desired fre-
quency response, Hy(w), to within a specified error. Hence an FIR filter can be
designed by formulating an objective function based on the difference between
the actual and desired frequency responses (see Sec. B.9.3). Except in some
highly specialized applications, the transfer function coefficients (or impulse
response values) of a digital filters are real and, consequently, knowledge of
the frequency response of the filter with respect to the positive half of the base-
band fully characterizes the filter (see Sec. B.8). Under these circumstances, a
weighted least-squares objective function that can be used to design FIR filters
can be constructed as

e(x) = /OTr W(w)|H (') — Hy(w)|? dw (9.25)

where x = [hg h1 --- hy]T is an N + 1-dimensional variable vector repre-
senting the transfer function coefficients, w is a normalized frequency variable
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which is assumed to be in the range 0 to 7 rad/s, and W (w) is a predefined
weighting function. The design is accomplished by finding the vector x* that
minimizes e(x), and this can be efficiently done by means of unconstrained
optimization.

Weighting is used to emphasize or deemphasize the objective function with
respect to one or more ranges of w. Without weighting, an optimization algo-
rithm would tend to minimize the objective function uniformly with respect to
w. Thus if the objective function is multiplied by a weighting constant larger
than unity for values of w in a certain critical range but is left unchanged for
all other frequencies, a reduced value of the objective function will be achieved
with respect to the critical frequency range. This is due to the fact that the
weighted objective function will tend to be minimized uniformly and thus the
actual unweighted objective function will tend to be scaled down in proportion
to the inverse of the weighting constant in the critical range of w relative to
its value at other frequencies. Similarly, if a weighting constant of value less
than unity is used for a certain uncritical frequency range, an increased value
of the objective will be the outcome with respect to the uncritical frequency
range. Weighting is very important in practice because through the use of suit-
able scaling, the designer is often able to design a more economical filter for
the required specifications. In the above example, the independent variable is
frequency. In other applications, it could be time or some other independent
parameter.

An important step in an optimization-based design is to express the objective
function in terms of variable vector x explicitly. This facilitates the evaluation
of the gradient and Hessian of the objective function. To this end, if we let

c(w) = [1 cosw --- cos Nw]” (9.26a)
s(w) = [0 sinw --- sin Nw]" (9.26b)

the frequency response of the filter can be expressed as
' N N
H(e%) = Z hy cosnw — j Z hnsinnw = xTc(w) — jxI's(w) (9.27)
n=0 n=0

If we let
Hj(w) = Hy(w) — jH;(w) (9.28)

where H,(w) and —H;(w) are the real and imaginary parts of Hy(w), respec-
tively, then Eqgs. (9.27) and (9.28) give

S

[H () — Ha(w)* = [x" c(w) — Hr(w)]” + [x"s(
= xT[c(w)c! (w) + s(w)sT (w)]x
)

—2xT[c(w)H, (w) + s(w
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Therefore, the objective function in Eq. (9.25) can be expressed as a quadratic
function with respect to x of the form

e(x) =xTQx—2x"b + & (9.29)

where £ is a constant? and
Q- /0 "W (@) e(w)eT (@) + s(w)s” ()] dw 9.30)
b— /0 "W () [Hy (w)e(w) + Hi(w)s(w)] dw 9.31)

Matrix Q in Eq. (9.30) is positive definite (see Prob. 9.5). Hence the objective
function e(x) in Eq. (9.29) is globally strictly convex and has a unique global
minimizer x* given by

x*=Q 'b (9.32)
For the design of high-order FIR filters, the matrix Q in Eq. (9.30) is of a large
size and the methods described in Sec. 6.4 can be used to find the minimizer
without obtaining the inverse of matrix Q.

9.4.1.2 Linear phase response

The frequency response of an FIR digital filter of order IV (or length N 4 1)
with linear phase response is given by

H(e??) = e 79N/ A(w) (9.33)

Assuming an even-order filter, function A(w) in Eq. (9.33) can be expressed as

N/2
Alw) = Z @y, COS NUW (©.342)
n=0
_ ) hay for n=0
"o { 2hnj2—n  for n#0 (9.34b)

(see Sec. B.9.2) and if the desired frequency response is assumed to be of the
form ‘
Hy(w) = e 7N 4y (w)

then the least-squares objective function

er(x) = /0 W (W) [AW) — Ag(w)]? dw (9.352)

2Symbol « will be used to represent a constant throughout this chapter.
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can be constructed where the variable vector is given by
_ T
x=lap a1 - ayyo] (9.35b)

If we now let
c/(w) =[1 cosw --- cos Nw/2]" (9.36a)

A(w) can be written in terms of the inner product x” ¢;(w) and the objective
function e;(x) in Eq. (9.35a) can be expressed as

e(x) = xTQix — 2xTb; + & (9.36b)

where x is a constant, as before, with

Q= [ Wwelw)d @) o (9.372)
b — /0 "W () Ag(w)ey(w) dw (9.37b)

Like matrix Q in Eq. (9.30), matrix Q; in Eq. (9.37a) is positive definite; hence,
like the objective function e(x) in Eq. (9.29), ¢;(x) in Eq. (9.36b) is globally
strictly convex and its unique global minimizer is given in closed form by

x; = Q; 'by (9.38)

For filters of order less than 200, matrix Q; in Eq. (9.38) is of size less than
100, and the formula in Eq. (9.38) requires a moderate amount of computation.
For higher-order filters, the closed-form solution given in Eq. (9.38) becomes
computationally very demanding and methods that do not require the compu-
tation of the inverse of matrix Q; such as those studied in Sec. 6.4 would be
preferred.

Example 9.3

(a) Applying the above method, formulate the design of an even-order linear-
phase lowpass FIR filter assuming the desired amplitude response

Ad(w) =

{1 for 0 <w < w,p ©0.39)

0 for wo, <w <

where w), and w, are the passband and stopband edges, respectively (see
Sec. B.9.1). Assume a normalized sampling frequency of 27 rad/s.

(b) Using the formulation in part (a), design FIR filters with w, = 0.457
and w, = 0.57 for filter orders of 20, 40, 60, and 80.
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Solution (a) A suitable weighting function W (w) for this problem is

1 for 0 <w <w,p
W(w)=1 v for wy <w <7 (9.40)
0 elsewhere

The value of v can be chosen to emphasize or deemphasize the error function in
the stopband relative to that in the passband. Since W (w) is piecewise constant,
the matrix Q; in Eq. (9.37a) can be written as

Q =Qn+Qp

where

Qi = /pr ci(w)ef (w) dw = {qzl)} for 1 <i, j <

N+2
;r (9.41a)

and

™ . N+42
Qn :7/ cw)el @) dw = {g?}  for 1<, j < S— (941b)

with
wp - sin[2(i — 1wy .
L4 — 7 for 1 =3
2 41 -1
¢ = (9.42a)
sinf(i — )] | sin[(i+J - 2)uw) .
i) vy T
and
(T —wq)  sinf2(i — 1)wg) .
4;;" =
v [sin[(i — j)ws]  sin[(i + j — 2)wq] .,
e v f"”#ém)

Note that for ¢+ = 7 = 1, the expressions in Eq. (9.42) are evaluated by taking
the limit as ¢« — 1, which implies that

qﬁ) =w, and qﬁ) =y(m — wq) (9.42¢)

Vector b; in Eq. (9.37b) is calculated as

by = / 7 (W) dw = {bn} (9.43a)
0
with
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sin[(n — 1)wp) for 1< n < N+2
(n—1) B

by, = (9.43b)

As before, for n = 1, the expression in Eq. (9.43b) is evaluated by taking
the limit as n — 1, which gives

b1 = wp (9.43¢)

(b) Optimal weighted least-squares designs for the various values of N were
obtained by computing the minimizer x; given by Eq. (9.38) and then evaluating
the filter coefficients {h;} using Eq. (9.34b). The weighting constant y was
assumed to be 25. The amplitude responses of the FIR filters obtained are
plotted in Fig. 9.8.
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Figure 9.8. Amplitude responses of the filters in Example 9.3: (a) N = 20, (b) N = 40, (¢)
N =60, (d) N = 80.

9.4.2 Minimax design of FIR filters

The Parks-McClellan algorithm and its variants have been the most efficient
tools for the minimax design of FIR digital filters [3]-[5]. However, these
algorithms apply only to the class of linear-phase FIR filters. The group delay
introduced by these filters is constant and independent of frequency in the entire
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baseband (see Sec. B.8) but it can be quite large. In practice, a variable group
delay in stopbands is of little concern and by allowing the phase response to be
nonlinear in stopbands, FIR filters can be designed with constant group delay
with respect to the passbands, which is significantly reduced relative to that
achieved with filters that have a constant group delay throughout the entire
baseband.

This section presents a least-pth approach to the design of low-delay FIR
filters. For FIR filters, the weighted L, error function with an even integer
p can be shown to be globally convex.® This property, in conjunction with
the availability of the gradient and Hessian of the objective function in closed
form, enables us to develop an unconstrained optimization method for the design
problem at hand.

9.4.2.1 Objective function

Given a desired frequency response Hy(w) for an FIR filter, we want to
determine the coefficients {h,,} in the transfer function

N
H(z) =Y hpz " (9.44)
n=0
such that the weighted L, approximation error
™ . 1/2p
) = | [T W) H () - Hw)? do 949
0

is minimized, where W (w) > 0 is a weighting function, p is a positive integer,
and h = [ho hl s hN]T.
If we let
Hd(w) = Hdr(w) —dei(w)

c(w) =[1 cosw --- cos Nw]?

s(w) = [0 sinw --- sin Nw]T
then Eq. (9.45) becomes

™ 1/2p

f(h) = { / W{(h"c — Hy)? + (hT's — Hy)?P dw} (9.46)
0

where for simplicity the frequency dependence of W, c, s, Hg,., and Hy; has
been omitted. Now if we let

ex(w) = [hTe(w) — Hyr ()] + [W's(w) — Hai(w)*  (947)
then the objective function can be expressed as

3Note that this property does not apply to infinite-duration impulse response (IIR) filters [3].
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:|1/2p

F(h) = { /0 "W (w)el(w) dw (9.48)

9.4.2.2  Gradient and Hessian of f(h)

Using Eq. (9.48), the gradient and Hessian of objective function f(h) can
be readily obtained as

Vf(h) = f2(h) /0 "W (@)l w)q(w) dw (9.492)

where
q(w) = [Wc(w) — Hyp(w)]e(w) + MTs(w) — Hgi(w)]s(w) (9.49b)

and
V2f(h) = H; + Hy — H3 (9.49¢)
where .
H; =2(p—1)f"%(h) ; W (w)eb?(w)q(w)q” () dw  (9.49d)
H, = f'7*"(h) /07r W(w)eb™ (@) [e(w)e” (w) + s(w)s” (w)] duw
(9.49¢)
H; = (2p - 1)/ ' (0)Vf(L)V" f(h) (9.491)
respectively.

Of central importance to the present algorithm is the property that for each
and every positive integer p, the weighted Lo, objective function defined in
Eq. (9.45) is convex in the entire parameter space R™V!. This property can
be proved by showing that the Hessian V2 f(h) is positive semidefinite for all
h € RN*1 (see Prob. 9.9).

9.4.2.3 Design algorithm

It is now quite clear that an FIR filter whose frequency response approxi-
mates a rather arbitrary frequency response Hy(w) to within a given tolerance
in the minimax sense can be obtained by minimizing f(h) in Eq. (9.45) with
a sufficiently large p. It follows from the above discussion that for a given p,
f(h) has a unique global minimizer. Therefore, any descent minimization al-
gorithm, e.g., the steepest-descent, Newton, and quasi-Newton methods studied
in previous chapters, can, in principle, be used to obtain the minimax design
regardless of the initial design chosen. The amount of computation required to
obtain the design is largely determined by the choice of optimization method
as well as the initial point assumed.

A reasonable initial point can be deduced by using the Lo-optimal design
obtained by minimizing f(h) in Eq. (9.45) with p = 1. We can write

f(h) = (W"Qh — 2h"p + k)'/? (9.50a)



256

where
Q- /0 W(w)le(w)eT (@) + s(w)sT ()] dw (9.50b)

p= [ Wl (oW + Ha@s@]do 0500
0

Since Q is positive definite, the global minimizer of f(h) in Eq. (9.50a) can be
obtained as the solution of the linear equation

Qh=p 9.51)

We note that Q in Eq. (9.51) is a symmetric Toeplitz matrix* for which fast
algorithms are available to compute the solution of Eq. (9.51) [6].

The minimization of convex objective function f(h) can be accomplished
in a number of ways. Since the gradient and Hessian of f(h) are available in
closed-form and V2 f(h) is positive semidefinite, the Newton method and the
family of quasi-Newton methods are among the most appropriate.

From Egs. (9.48) and (9.49), we note that f(h), Vf(h), and V2f(h) all
involve integration which can be carried out using numerical methods. In
computing V2 f(h), the error introduced in the numerical integration can cause
the Hessian to lose its positive definiteness but the problem can be easily fixed
by modifying V2 f(h) to V2 f(h) + I where ¢ is a small positive scalar.

9.4.2.4 Direct and sequential optimizations

With a power p, weighting function W (w), and an initial h, say, hg, chosen,
the design can be obtained directly or indirectly.

In a direct optimization, one of the unconstrained optimization methods is
applied to minimize the Lo, objective function in Eq. (9.48) directly. Based
on rather extensive trials, it was found that to achieve a near-minimax design,
the value of p should be larger than 20 and for high-order FIR filters a value
comparable to the filter order N should be used.

In sequential optimization, an Lo, optimization is first carried out with p = 1.
The minimizer thus obtained, h*, is then used as the initial point in another opti-
mization with p = 2. The same procedure is repeated for p = 4, 8, 16, . . . until
the reduction in the objective function between two successive optimizations is
less than a prescribed tolerance.

Example 9.4 Using the above direct and sequential approaches first with a
Newton and then with a quasi-Newton algorithm, design a lowpass FIR filter of
order N = 54 that would have approximately constant passband group delay of
23 s. Assume idealized passband and stopband gains of 1 and 0, respectively;

4 A Toeplitz matrix is a matrix whose entries along each diagonal are constant [6].
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a normalized sampling frequency w, = 27; passband edge w, = 0.457 and
stopband edge w, = 0.557; W (w) = 1 in both the passband and stopband, and
W (w) = 0 elsewhere.

Solution The design was carried out using the direct approach with p = 128 and
the sequential approach withp = 2, 4, 8, ..., 128 by minimizing the objective
function in Eq. (9.48) with the Newton algorithm and a quasi-Newton algorithm
with the BFGS updating formula in Eq. (7.57). The Newton algorithm used
was essentially the same as Algorithm 9.1 (see solution of Example 9.2) except
that Step 3 was replaced by the following modified Step 3:

Step 3/ )
Modify matrix Hy to H, = Hy + 0.11,

The quasi-Newton algorithm used was Algorithm 7.3 with the modifications
described in the solution of Example 9.2.

A lowpass FIR filter that would satisfy the required specifications can be
obtained by assuming a complex-valued idealized frequency response of the
form

e for we [0, wy
Hy(w) = { 0 for w € [wg, ws/2]

[ e %% for w e [0, 0.457]

|0 for w € [0.557, 7]

(see Sec. B.9.2). The integrations in Eqgs. (9.48), (9.49a), and (9.49c) can be
carried out by using one of several available numerical methods for integration.
A fairly simple and economical approach, which works well in optimization,
is as follows: Given a continuous function f(w) of w, an approximate value of
its integral over the interval [a, b] can be obtained as

b K
/ fw)dw =~ 52 f(wi)
a i=1

where § = (b—a)/K and w; = a +0/2, wa = a+ 36/2, ..., wg =
a+ (2K —1)§/2. Thatis, we divide interval [a, ] into K subintervals, add the
values of the function at the midpoints of the K subintervals, and then multiply
the sum obtained by .

The objective function in Eq. (9.48) was expressed as

f(h) = [/00'4% eg(w)dw] v + [/Oﬂ eg(w)dw} v

55T

and each integral was evaluated using the above approach with K = 500. The
integrals in Egs. (9.49a) and (9.49¢) were evaluated in the same way.
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The initial h was obtained by applying Lo optimization to Eq. (9.50). All
trials converged to the same near minimax design, and the sequential approach
turned out to be more efficient than the direct approach. The Newton and quasi-
Newton algorithms required 21.1 and 40.7 s of CPU time, respectively, on a PC
with a Pentium 4, 3.2 GHz CPU. The amplitude response, passband error, and
group delay characteristic of the filter obtained are plotted in Fig. 9.9a, b, and
¢, respectively. We note that an equiripple amplitude response was achieved
in both the passband and stopband. The passband group delay varies between
22.9 and 23.1 but it is not equiripple. This is because the minimax optimization
was carried out for the complex-valued frequency response H;(w), not the
phase-response alone (see Eq. (9.45)).

|

Example 9.5 Using the above direct and sequential approaches first with a
Newton and then with a quasi-Newton algorithm, design a bandpass FIR filter
of order N = 160 that would have approximately constant passband group
delay of 65 s. Assume idealized passband and stopband gains of 1 and 0,
respectively; normalized sampling frequency= 2m; passband edges w,1 = 0.47
and wpy = 0.67; stopband edges w,1 = 0.3757 and w,e = 0.6257; W(w) =

in the passband and W (w) = 50 in the stopbands, and W (w) = 0 elsewhere.

Solution The required design was carried out using the direct approach with p =

128 and the sequential approach withp = 2, 4, 8, ..., 128 by minimizing the
objective function in Eq. (9.48) with the Newton and quasi-Newton algorithms
described in Example 9.4.

A bandpass FIR filter that would satisfy the required specifications can be
obtained by assuming a complex-valued idealized frequency response of the
form

— 65w
Hyw) = { e for w € [wpi, wpa]

[

0 for w € [0, wa1]U [wa2, ws/2]
[
[

I for w € [0.47, 0.67]
R for w e [0, 0. 3757r] U [0.6257, =]

(see Sec. B.9.2). The objective function in Eq. (9.48) was expressed as

f(h) = [ /0 o 50e§’(w)dw] o + [ /0 o eg(w)dw} v

Am

™ 1/2p

+ [/ 50eg(w)dw}
0.6257

and the integrals at the right-hand side were evaluated using the numerical
method in the solution of Example 9.4 with K = 382, 236, 382 respectively.
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Figure 9.9. Minimax design of a lowpass filter with low passband group delay for Example
9.4: (a) Frequency response, (b) magnitude of the passband error, and (c) passband group delay.
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The integrals in Eq. (9.49a) and (9.49c) were similarly evaluated in order to
obtain the gradient and Hessian of the problem.

As in Example 9.4, the sequential approach was more efficient. The Newton
and quasi-Newton algorithms required 173.5 and 201.8 s, respectively, on a
Pentium 4 PC.

The amplitude response, passband error, and group delay characteristic are
plotted in Fig. 9.10a, b, and c, respectively. We note that an equiripple amplitude
response has been achieved in both the passband and stopband.

|

We conclude this chapter with some remarks on the numerical results of
Examples 9.2, 9.4 and 9.5. Quasi-Newton algorithms, in particular algorithms
using an inexact line-search along with the BFGS updating formula (e.g., Algo-
rithm 7.3), are known to be very robust and efficient relative to other gradient-
based algorithms [7]-[8]. However, the basic Newton algorithm used for these
problems, namely, Algorithm 9.1, turned out to be more efficient than the quasi-
Newton algorithm. This is largely due to certain unique features of the problems
considered, which favor the basic Newton algorithm. The problem in Exam-
ple 9.2 is a simple problem with only three independent variables and an well
defined gradient and Hessian that can be easily computed through closed-form
formulas. Furthermore, the inversion of the Hessian is almost a trivial task. The
problems in Examples 9.4 and 9.5 are significantly more complex than that in
Example 9.2; however, their gradients and Hessians are fairly easy to compute
accurately and efficiently through closed-form formulas as in Example 9.2. In
addition, these problems are convex with unique global minimums that are easy
to locate. On the other hand, a large number of variables in the problem tends
to be an impediment in quasi-Newton algorithms because, as was shown in
Chap. 7, these algorithms would, in theory, require n iterations in an n-variable
problem to compute the inverse-Hessian in a well defined convex quadratic
problem (see proof of Theorem 7.3), more in noncovex nonquadratic problems.
However, in multimodal® highly nonlinear problems with a moderate number of
independent variables, quasi-Newton algorithms are usually the most efficient.
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Problems
9.1 (a) Verity Egs. (9.6a)—(9.6d).
(b) Show that matrix H in Eq. (9.6b) is positive definite.

(c) Show that the inverse matrix H™! in Eq. (9.7) can be evaluated as

n
7ala ~LY R
H! — i=1
n
WY R (145
i=1
where
n n ~3 -1
M=) pins 2= ) pig, B = N+ u= (\P”% - n)
i=1 i=1

9.2 The dissimilarity measure 6(75, Q) defined in Eq. (9.5) is not symmetric,
i.e., in general e(P, Q) # e(Q, P), which is obviously undesirable.
(a) Obtain adissimilarity measure for two point patterns that is symmetric.

(b) Solve the minimization problem associated with the new dissimilarity
measure.
9.3 (a) Verity Egs. (9.92)—(9.9¢).
(b) Prove that the objective function given in Eq. (9.8) is globally convex.
Hint: Show that for any y € R?, yTvgegp(x)y > 0.
9.4 Derive formulas for the evaluation of V2 f;, (x) for k = 1, 2, and 3 for the
set of functions f;(x) given by Eq. (9.16).
9.5 Show that for a nontrivial weighting function W (w) > 0, the matrix Q
given by Eq. (9.30) is positive definite.
9.6 Derive the expressions of Q; and b; given in Egs. (9.41), (9.42), and
(9.43).
9.7 Write a MATLAB program to implement the unconstrained optimization
algorithm for the weighted least-squares design of linear-phase lowpass
FIR digital filters studied in Sec. 9.4.1.2.

9.8 Develop an unconstrained optimization algorithm for the weighted least-
squares design of linear-phase highpass digital filters.
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9.9 Prove that the objective function given in Eq. (9.45) is globally convex.

Hint: Show that for any y € RV*1, yTV2f(h)y > 0.

9.10 Develop a method based on unconstrained optimization for the design

9.11

of FIR filters with low passband group delay allowing coefficients with
complex values.

Consider the double inverted pendulum control system described in Ex-
ample 1.2, where « = 16, 8 =8, Ty = 0.8, At = 0.02, and K = 40.
The initial state is set to x(0) = [71/6 1 7/6 1]7 and the constraints on
the magnitude of control actions are |u(i)| < mfori =0, 1, ..., K—1
withm = 112.

(a) Use the singular-value decomposition technique (see Sec. A.9, es-
pecially Eqs. (A.43) and (A.44)) to eliminate the equality constraint
a(u) = 01in Eq. (1.9b).

(b) Convert the constrained problem obtained from part (a) to an uncon-
strained problem of the augmented objective function

o K—1 o K—1 .
Fr(uy=u'u—-r Z Infm —u(i)] — 7 Z In[m + ()]
i=0 =0

where the barrier parameter 7 is fixed to a positive value in each round
of minimization, which is then reduced to a smaller value at a fixed
rate in the next round of minimization.

Note that in each round of minimization, a line search step should be
carefully executed where the step-size « is limited to a finite interval
[0, @] that is determined by the constraints |u(z)| < m for 0 < i <
K -1



Chapter 10

FUNDAMENTALS OF CONSTRAINED
OPTIMIZATION

10.1 Introduction

The material presented so far dealt largely with principles, methods, and
algorithms for unconstrained optimization. In this and the next five chapters,
we build on the introductory principles of constrained optimization discussed
in Secs. 1.4—1.6 and proceed to examine the underlying theory and structure of
some very sophisticated and efficient constrained optimization algorithms.

The presence of constraints gives rise to a number of technical issues that
are not encountered in unconstrained problems. For example, a search along
the direction of the negative of the gradient of the objective function is a well
justified technique for unconstrained minimization. However, in a constrained
optimization problem points along such a direction may not satisfy the con-
straints and in such a case the search will not yield a solution of the problem.
Consequently, new methods for determining feasible search directions have to
be sought.

Many powerful techniques developed for constrained optimization problems
are based on unconstrained optimization methods. If the constraints are simply
given in terms of lower and/or upper limits on the parameters, the problem
can be readily converted into an unconstrained problem. Furthermore, meth-
ods of transforming a constrained minimization problem into a sequence of
unconstrained minimizations of an appropriate auxiliary function exist.

The purpose of this chapter is to lay a theoretical foundation for the de-
velopment of various algorithms for constrained optimization. Equality and
inequality constraints are discussed in general terms in Sec. 10.2. After a
brief discussion on the classification of constrained optimization problems in
Sec. 10.3, several variable transformation techniques for converting optimiza-
tion problems with simple constraints into unconstrained problems are studied
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in Sec. 10.4. One of the most important concepts in constrained optimization,
the concept of Lagrange multipliers, is introduced and a geometric interpre-
tation of Lagrange multipliers is given in Sec. 10.5. The first-order necessary
conditions for a point x* to be a solution of a constrained problem, known as the
Karush-Kuhn-Tucker conditions, are studied in Sec. 10.6 and the second-order
conditions are discussed in Sec. 10.7. As in the unconstrained case, the concept
of convexity plays an important role in the study of constrained optimization
and it is discussed in Sec. 10.8. Finally, the concept of duality, which is of sig-
nificant importance in the development and unification of optimization theory,
is addressed in Sec. 10.9.

10.2  Constraints
10.2.1  Notation and basic assumptions

In its most general form, a constrained optimization problem is to find a
vector x* that solves the problem

minimize f(x) (10.1a)
subjectto: a;(x) =0 fort=1,2,...,p (10.1b)
cj(x) >0 for j=1,2,...,q (10.1¢)

Throughout the chapter, we assume that the objective function f(x) as well as
the functions involved in the constraints in Eqgs. (10.1b) and (10.1c), namely,
{aj(x)fori =1,2, ..., p} and {¢c;(x) forj =1, 2, ..., ¢}, are continuous
and have continuous second partial derivatives, i.e., a;(x), ¢j(x) € C?. Let R
denote the feasible region for the problem in Eq. (10.1), which was defined in
Sec. 1.5 as the set of points satisfying Eqs. (10.1b) and (10.1c¢), i.e.,

R={x:aix)=0fori=1,2,...,p, ¢j(x)>0forj=1,2,..., ¢}

In this chapter as well as the rest of the book, we often need to compare
two vectors or matrices entry by entry. For two matrices A = {a;;} and
B = {b;;} of the same dimension, we use A > B to denote a;; > b;; for all i,
j. Consequently, A > 0 means a;; > 0 for all 7, j. We write A > 0, A =
0, A < 0,and A = 0 to denote that matrix A is positive definite, positive
semidefinite, negative definite, and negative semidefinite, respectively.

10.2.2  Equality constraints

The set of equality constraints

(10.2)
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defines a hypersurface in R". Using vector notation, we can write

a(x) = [a1(x) as(x) -+ ap(x)]"
and from Eq. (10.2), we have
a(x)=0 (10.3)

Definition 10.1 A point x is called a regular point of the constraints in Eq. (10.2)
if x satisfies Eq. (10.2) and column vectors Vai(x), Vaa(x), ..., Vay(x)
are linearly independent.
]

The definition states, in effect, that x is a regular point of the constraints,
if it is a solution of Eq. (10.2) and the Jacobian J. = [Va;(x) Vaa(x) ---
Vap(x)]T has full row rank. The importance of a point x being regular for
a given set of equality constraints lies in the fact that a tangent plane of the
hypersurface determined by the constraints at a regular point x is well defined.
Later in this chapter, the term ‘tangent plane’ will be used to express and describe
important necessary as well as sufficient conditions for constrained optimization
problems. Since J. is a p X n matrix, it would not be possible for x to be a
regular point of the constraints if p > n. This leads to an upper bound for the
number of independent equality constraints, i.e., p < n. Furthermore, if p = n,
in many cases the number of vectors x that satisfy Eq. (10.2) is finite and the
optimization problem becomes a trivial one. For these reasons, we shall assume
that p < n throughout the rest of the book.

Example 10.1 Discuss and sketch the feasible region described by the equality
constraints

—x1+z23—1=0 (10.4a)
23423 —22, =0 (10.4b)

Solution The Jacobian of the constraints is given by

—1 0 1
T =1os —2 22y 0
which has rank 2 except at x = [1 0 x3]7. Since x = [1 0 x3]T does not

satisfy the constraint in Eq. (10.4b), any point x satisfying Eq. (10.4) is regular.
The constraints in Eq. (10.4) describe a curve which is the intersection between
the cylinder in Eq. (10.4b) and the plane in Eq. (10.4a). For the purpose of
displaying the curve, we derive a parametric representation of the curve as
follows. Eq. (10.4b) can be written as

(x1—1)2+23=1
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which suggests the parametric expressions

1 = 14 cost (10.5a)
To = sint (10.5b)

for z; and 2. Now Eq. (10.5) in conjunction with Eq. (10.4a) gives
r3 = 2+ cost (10.5¢)

With parameter ¢ varying from 0 to 27, Eq. (10.5) describes the curve shown
in Fig. 10.1.
]

Figure 10.1. Constraints in Eq. (10.4) as a curve.

A particularly important class of equality constraints is the class of linear
constraints where functions a;(x) are all linear. In this case, Eq. (10.2) becomes
a system of linear equations which can be expressed as

Ax=b (10.6)

where A € RP*™ is numerically equal to the Jacobian, i.e., A = J,, and
b € RP*!. Since the Jacobian is a constant matrix, any solution point of
Eq. (10.6) is a regular point if rank(A) = p. If rank(A) = p’ < p, then there
are two possibilities: either

rank([A b]) > rank(A) (10.7)



Fundamentals of Constrained Optimization 269

or
rank([A b]) = rank(A) (10.8)

If Eq. (10.7) is satisfied, then we conclude that contradictions exist in Eq. (10.6),
and a careful examination of Eq. (10.6) is necessary to eliminate such contra-
dictions. If Eq. (10.8) holds with rank(A) = p’ < p, then simple algebraic
manipulations can be used to reduce Eq. (10.6) to an equivalent set of p’ equality
constraints

Ax=b (10.9)

where A € RP'*" has rank p/ and b € RP*1. Further, linear equality con-
straints in the form of Eq. (10.9) with a full row rank A can be eliminated so
as to convert the problem to an unconstrained problem or to reduce the number
of parameters involved. The reader is referred to Sec. 10.4.1.1 for the details.
When rank(A) = p’ < p, a numerically reliable way to reduce Eq. (10.6)
to Eq. (10.9) is to apply the singular-value decomposition (SVD) to matrix A.
The basic theory pertaining to the SVD can be found in Sec. A.9. Applying the
SVD to A, we obtain
A =UuxVvT (10.10)

where U € RP*P and V € R™*"™ are orthogonal matrices and

with S = diag{o1, 02, ..., oy}, and 01 > 09 > -+ > o,y > 0. It follows
that R
A
A=TU
o)
with A = S[vi vy - vp/]T € RP'*" where v; denotes the ith column of V,

and Eq. (10.6) becomes
[o]==[5]
0 0

This leads to Eq. (10.9) where b is formed by using the first p’ entries of UTb.
Evidently, any solution point of Eq. (10.9) is a regular point.

In MATLAB, the SVD of a matrix A is performed by using command svd.
The decomposition in Eq. (10.10) can be obtained by using

[U, SIGMA, V]=svd(A);
The command svd can also be used to compute the rank of a matrix. We use

svd (A) to compute the singular values of A, and the number of the nonzero
singular values of A is the rank of A.!

'The rank of a matrix can also be found by using MATLAB command rank.
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Example 10.2 Simplify the linear equality constraints

T, — 229 + 3x3 + 224 = 4
200 —x3 =1 (10.11)
2x1 — 10z9 + 923 + 424 = 5

Solution It can be readily verified that rank(A) = rank([A b]) = 2. Hence the
constraints in Eq. (10.11) can be reduced to a set of two equality constraints.
The SVD of A yields

[ 0.2717 —0.8003 —0.5345
U= | —0.1365 —0.5818 0.8018]
0.9527  0.1449  0.2673
[14.8798 0 0 0
> = 0  1.6101 0 0}
L0 0 00

[ 0.1463 —-0.3171  0.6331 —0.6908
—0.6951 —0.6284 —0.3161 —0.1485
0.6402 —0.3200 —-0.6322 —0.2969
0.2926 —0.6342 0.3156  0.6423

Therefore, the reduced set of equality constraints is given by

2.1770z1 — 10.342929 + 9.5255x3 + 4.3540z4 = 5.7135 (10.12a)
—0.5106z1 — 1.011829 — 0.5152z3 — 1.0211x4 = —3.0587 (10.12b)

10.2.3 Inequality constraints

In this section, we discuss the class of inequality constraints. The discussion
will be focused on their difference from as well as their relation to equality
constraints. In addition, the convexity of a feasible region defined by linear
inequalities will be addressed.

Consider the constraints

C1(X) Z 0
CQ(X) > 0

: (10.13)
cq(xj >0

Unlike the number of equality constraints, the number of inequality constraints,
q, is not required to be less than n. For example, if we consider the case
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c,(x)=0

c3(x)=0

Figure 10.2. Active and inactive constraints.

where all cj(x) for 1 < 5 < ¢ are linear functions, then the constraints in
Eq. (10.13) represent a polyhedron with g facets, and the number of facets in
such a polyhedron is obviously unlimited.

The next two issues are concerned with the inequalities in Eq. (10.13). For
a feasible point x, these inequalities can be divided into two classes, the set of
constraints with ¢;(x) = 0, which are called active constraints, and the set of
constraints with ¢;(x) > 0, which are called inactive constraints. Since c¢;(x)
are continuous functions, the constraints that are inactive at x will remain so
in a sufficiently small neighborhood of x. This means that the local properties
of x will not be affected by the inactive constraints. On the other hand, when
¢i(x) = 0 the point x is on the boundary determined by the active constraints.
Hence directions exist that would violate some of these constraints. In other
words, active constraints restrict the feasible region of the neighborhoods of x.
For example, consider a constrained problem with the feasible region shown as
the shaded area in Fig. 10.2. The problem involves three inequality constraints;
constraints ¢1(x) > 0 and ca(x) > 0 are inactive while c3(x) > 0 is active at
point x = X since X is on the boundary characterized by c3(x) = 0. It can be
observed that local searches in a neighborhood of x will not be affected by the
first two constraints but will be restricted to one side of the tangent line to the
curve c3(x) = 0 at x. The concept of active constraints is an important one as it
can be used to reduce the number of constraints that must be taken into account
in a particular iteration and, therefore, often leads to improved computational
efficiency.

Another approach to deal with inequality constraints is to convert them into
equality constraints. For the sake of simplicity, we consider the problem

minimize f(x) x € R" (10.14a)
subjectto:  ¢;(x) >0 fori=1,2,...,¢q (10.14b)
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which involves only inequality constraints. The constraints in Eq. (10.14b) are
equivalent to

& =cax) -y =0

(10.15a)
g = cq(x) —yg =0
(A for 1<i<gq (10.15b)
where y1, Yo, ..., yq arecalled slack variables. The constraints in Eq. (10.15b)
can be eliminated by using the simple variable substitutions
yi:yf for 1 <i<gq
If we let
X=[r1 - Tuir - gq]T
then the problem in Eq. (10.14) can be formulated as
minimize f(%x) x & E"9 (10.16a)
subjectto:  ¢;(x) =0 fori=1,2,...,¢ (10.16b)

The idea of introducing slack variables to reformulate an optimization problem
has been used successfully in the past, especially in linear programming, to
transform a nonstandard problem into a standard problem (see Chap. 11 for the
details).

We conclude this section by showing that there is a close relation between
the linearity of inequality constraints to the convexity of the feasible region
defined by the constraints. Although determining whether or not the region
characterized by the inequality constraints in Eq. (10.13) is convex is not always
easy, it can be readily shown that a feasible region defined by Eq. (10.13) with
linear ¢;(x) is a convex polyhedron.

To demonstrate that this indeed is the case, we can write the linear inequality
constraints as

Cx>d (10.17)

with C € R?*", d € R?*!, Let R = {x : Cx > d} and assume that x,
xy € R. For A\ € [0, 1], the point x = A\x; + (1 — \)xy satisfies Eq. (10.17)
because

Cx = ACx; + (1 — A)Cxa
>M+(1-Nd=d



Fundamentals of Constrained Optimization 273

Therefore, Cx > d defines a convex set (see Sec. 2.7). In the literature,
inequality constraints are sometimes given in the form

Cc1 (X) <0

(10.18)
cq(x) <0

A similar argument can be used to show that if ¢;(x) for 1 < ¢ < ¢inEq. (10.18)
are all linear functions, then the feasible region defined by Eq. (10.18) is convex.

10.3  Classification of Constrained Optimization Problems

In Sec. 1.6, we provided an introductory discussion on the various branches
of mathematical programming. Here, we re-examine the classification issue
paying particular attention to the structure of constrained optimization prob-
lems.

Constrained optimization problems can be classified according to the nature
of the objective function and the constraints. For specific classes of problems,
there often exist methods that are particularly suitable for obtaining solutions
quickly and reliably. For example, for linear programming problems, the sim-
plex method of Dantzig [1] and the primal-dual interior-point methods [2)
have proven very efficient. For general convex programming problems, sev-
eral interior-point methods that are particularly efficient have recently been
developed [3][4].

Before discussing the classification, we formally describe the different types
of minimizers of a general constrained optimization problem. In the following
definitions, R denotes the feasible region of the problem in Eq. (10.1) and the
set of points {x : ||x —x*|| < §} withd > 0is said to be a ball centered at x*.

Definition 10.2 Point x* is a local constrained minimizer of the problem in
Eq. (10.1) if there exists a ball B« = {x : ||x — x*|| < 0} with § > 0 such
that Dy« = By« N'R is nonempty and f(x*) = min{ f(x) : x € Dy~ }.

|

Definition 10.3 Point x* is a global constrained minimizer of the problem in
Eq. (10.1) if x* € R and f(x*) = min{f(x): x € R}
|

Definition 10.4 A constrained minimizer x* is called a strong local minimizer
if there exists a ball B+ such that D« = B+ N 'R is nonempty and x* is the
only constrained minimizer in D,«.

]
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10.3.1 Linear programming

The standard form of a linear programming (LP) problem can be stated as

minimize f(x) = c’x (10.19a)
subjectto: Ax =Db (10.19b)
x>0 (10.19¢)

where ¢ € R™ !, A € RP*", and b € RP*! are given. In words, we need
to find a vector x* that minimizes a linear objective function subject to the
linear equality constraints in Eq. (10.19b) and the nonnegativity bounds in
Eq. (10.19¢).

LP problems may also be encountered in the nonstandard form

minimize ¢’ x (10.20a)
subjectto: Ax>Db (10.20b)
By introducing slack variables in terms of vector y as
y=Ax—-b
Eq. (10.20b) can be expressed as
Ax—-y=b (10.21a)

and
y=>0 (10.21b)

If we express variable x as the difference of two nonnegative vectors x*+ > 0
and x~ > 0, i.e.,
+

X=X"—-Xx

F

then the objective function becomes

and let

Ix=[c! —clox
and the constraints in Eq. (10.21) can be written as
[A —A -I]x=b

and
x>0
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Therefore, the problem in Eq. (10.20) can be stated as the standard LP problem

minimize ¢’ % (10.22a)
subject to: Ax=b (10.22b)
x>0 (10.22¢)

where

C
¢ = [—c] and A=[A —A ]
0

The simplex and other methods that are very effective for LP problems will be
studied in Chaps. 11 and 12.

10.3.2 Quadratic programming

The simplest, yet the most frequently encountered class of constrained non-
linear optimization problems, is the class of quadratic programming (QP) prob-
lems. In these problems, the objective function is quadratic and the constraints
are linear, i.e.,

minimize f(x) = ix"Hx +x"p + ¢ (10.23a)
subjectto: Ax =Db (10.23b)
Cx >d (10.23¢)

In many applications, the Hessian of f(x), H, is positive semidefinite. This
implies that f(x) is a globally convex function. Since the feasible region de-
termined by Eqs. (10.23b) and (10.23c) is always convex, QP problems with
positive semidefinite H can be regarded as a special class of convex program-
ming problems which will be further addressed in Sec. 10.3.3. Algorithms for
solving QP problems will be studied in Chap. 13.

10.3.3 Convex programming

In a convex programming (CP) problem, a parameter vector is sought that
minimizes a convex objective function subject to a set of constraints that define
a convex feasible region for the problem [3][4]. Evidently, LP and QP problems
with positive semidefinite Hessian matrices can be viewed as CP problems.

There are other types of CP problems that are of practical importance in
engineering and science. As an example, consider the problem

minimize In(detP~!) (10.24a)

subjectto: P >0 (10.24b)
viPv;<1 fori=1,2,...,L (10.24c¢)
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where vectors v; for 1 < ¢ < L are given and the elements of matrix P = PT
are the variables. It can be shown that if P > 0 (i.e., P is positive definite),
then In(detP 1) is a convex function of P (see Prob. 10.6). In addition, if p =
P(:) denotes the vector obtained by lexicographically ordering the elements of
matrix P, then the set of vectors p satisfying the constraints in Eqs. (10.24b)
and (10.24c¢) is convex and, therefore, Eq. (10.24) describes a CP problem.
Algorithms for solving CP problems will be studied in Chap. 13.

10.3.4  General constrained optimization problem

The problem in Eq. (10.1) will be referred to as a general constrained opti-
mization (GCO) problem if either f(x) has a nonlinearity of higher order than
second order and is not globally convex or at least one constraint is not convex.

Example 10.3 Classify the constrained problem (see [5]):

minimize f(x) = ﬁ[(ml —3)% - 9|z3

subject to: a:l/\/g— x93 > 0

z14V3zy > 0
—x1 — V312 > —6
I 2 0
T2 Z 0
Solution The Hessian of f(x) is given by
9 3 3(x1 — 3)x3

H(x) = 273 30 — 3

2 3[(x1—3)% — 9o
Note that x = [3 1]7 satisfies all the constraints but H(x) is indefinite at point
x; hence f(x) is not convex in the feasible region and the problem is a GCO
problem.
|

Very often GOP problems have multiple solutions that correspond to a num-
ber of distinct local minimizers. An effective way to obtain a good local solution
in such a problem, especially when a reasonable initial point, say, X, can be
identified, is to tackle the problem by using a sequential QP method. In these
methods, the highly nonlinear objective function is approximated in the neigh-
borhood of point xg in terms of a convex quadratic function while the nonlinear
constraints are approximated in terms of linear constraints. In this way, the
QP problem can be solved efficiently to obtain a solution, say, x;. The GCO
problem is then approximated in the neighborhood of point x; to yield a new
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QP problem whose solution is x2. This process is continued until a certain
convergence criterion, such as ||x; — xg11]| or | f(xx) — f(Xk+1)| < € where
€ is a prescribed termination tolerance, is met. Sequential QP methods will be
studied in detail in Chap. 15.

Another approach for the solution of a GCO problem is to reformulate the
problem as a sequential unconstrained problem in which the objective function
is modified taking the constraints into account. The barrier function methods are
representatives of this class of approaches, and will be investigated in Chap. 15.

10.4  Simple Transformation Methods

A transformation method is a method that solves the problem in Eq. (10.1)
by transforming the constrained optimization problem into an unconstrained
optimization problem [6][7].

In this section, we shall study several simple transformation methods that can
be applied when the equality constraints are linear equations or simple nonlinear
equations, and when the inequality constraints are lower and/or upper bounds.

10.4.1 Variable elimination
10.4.1.1 Linear equality constraints
Consider the optimization problem

minimize f(x) (10.25a)
subjectto: Ax=Db (10.25b)
ci(x) >0 for 1<i<gq (10.25¢)

where A € RP*™ has full row rank, i.e., rank(A) = p with p < n. It can be
shown that all solutions of Eq. (10.25b) are characterized by

x=ATb+[I, — ATAlp (10.26)

where AT denotes the Moore-Penrose pseudo-inverse of A [8],1,isthen xn
identity matrix, and ¢ is an arbitrary n-dimensional parameter vector (see
Prob. 10.7). The solutions expressed in Eq. (10.26) can be simplified con-
siderably by using the SVD. As A has full row rank, the SVD of A gives

A =UxVT

where U € RP*P and V € R™ ™ are orthogonal and ¥ = [S 0] € RP*",
S = diag{o1, 02, ..., op}, 01 > --- > 0, > 0. Hence we have

S—l

T
0 U

AT =AT(AATY 1=V {
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and
L,-AtA=Vv |0 O |yr_vyv7T
0 I, "
where V,. = [vp41 Vpio -+ V] contains the last 7 = n — p columns of V.
Therefore, Eq. (10.26) becomes
x=V,¢p+A"b (10.27)

where ¢ € R™! is an arbitrary r-dimensional vector. In words, Eq. (10.27)
gives a complete characterization of all solutions that satisfy Eq. (10.25b). Sub-
stituting Eq. (10.27) into Egs. (10.25a) and (10.25c), we obtain the equivalent
optimization problem

minidr)nize f(V.¢p+ A™Db) (10.28a)

subjectto: ¢;(V,¢p +ATb) >0 for 1<i<gq (10.28b)

in which the linear equality constraints are eliminated and the number of pa-
rameters is reduced from n = dim(x) to r = dim(¢).

We note two features of the problem in Eq. (10.28). First, the size of the
problem as compared with that of the problem in Eq. (10.25) is reduced from
n tor = n — p. Once the problem in Eq. (10.28) is solved with a solution ¢*,
Eq. (10.27) implies that x* given by

x*=V,¢*+A"b (10.29)

is a solution of the problem in Eq. (10.25). Second, the linear relationship
between x and ¢ as shown in Eq. (10.27) means that the degree of nonlinear-
ity of the objective function f(x) is preserved in the constrained problem of
Eq. (10.28). If, for example, Eq. (10.25) is an LP or QP problem, then the
problem in Eq. (10.28) is an LP or QP problem as well. Moreover, it can be
shown that if the problem in Eq. (10.25) is a CP problem, then the reduced
problem in Eq. (10.28) is also a CP problem.

A weak point of the above method is that performing the SVD of matrix
A is computationally demanding, especially when the size of A is large. An
alternative method that does not require the SVD is as follows. Assume that
A has full row rank and let P € R™ " be a permutation matrix that would
permute the columns of A such that

Ax = APPTx = [A; Ay)x

where A; € RP*P consists of p linearly independent columns of A and
% = PTx is simply a vector obtained by re-ordering the components of x
accordingly. If we denote

X = [’i] (10.30)
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with x € RPX!, 2y € R™*!, then Eq. (10.25b) becomes

Aix+ Ay =D

1e.,
Xx=A]'b— At Ayp
It follows that
X X AT — ATTALY
x = Px=P X}:P[ 1 1A }
k y
=Wy +b (10.31)
where
—ATA
W = [ L ] € ™7
. Ar'b .
b="P 0 € R

The optimization problem in Eq. (10.25) is now reduced to

mini;}nize f(Wa) + b) (10.32a)
subjectto: ¢;(Wep+b) >0  for 1<i<gq (10.32b)

Note that the new parameter vector ¢/ is actually a collection of  components
from x.

Example 10.4 Apply the above variable elimination method to minimize

f(x) = %XTHX +xTp+e (10.33)

subject to the constraints in Eq. (10.11), where x = [z1 22 z3 24]” .

Solution Since rank (A ) =rank([A b)) = 2, the three constraints in Eq. (10.11)
are consistent but redundant. It can be easily verified that the first two constraints
in Eq. (10.11) are linearly independent; hence if we let

x—[j}} with i—{i;] and @b—{ii]

then Eq. (10.11) is equivalent to

o Sl d)e= ]
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1.e.,

2
It follows that if we partition H and p in Eq. (10.33) as

Hi; H12] {Pq
H — d =
[Hng H,,| "¢ P p2

i:{_f _02}1#4—[2}5“71,04-5 (10.34)

with Hyp € R?*2, Hyy € R?*2, p; € R?*!, py € R?*!, then Eq. (10.33)
becomes

fp) = 39" Hep + o p+e (10.35)
where
WIH W + HLW + WTH 5 + Hyy
H,{QB + WTHUE) + P2 + WTp1
= 1p"H;1b+b'py+ ¢

H
p
¢

The problem now reduces to minimizing f(t») without constraints. By writ-
ing

H=[WTIH {VIV}

we note that H is positive definite if H is positive definite. In such a case, the

unique minimizer of the problem is given by

=[]

with

10.4.1.2  Nonlinear equality constraints

When the equality constraints are nonlinear, no general methods are available
for variable elimination since solving a system of nonlinear equations is far more
involved than solving a system of linear equations, if not impossible. However,
in many cases the constraints can be appropriately manipulated to yield an
equivalent constraint set in which some variables are expressed in terms of
the rest of the variables so that the constraints can be partially or completely
eliminated.

Example 10.5 Use nonlinear variable substitution to simplify the constrained
problem
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minimize f(x) = —z] — 2z5 — x5 — 2223 — 223 (10.36)
subjectto: aj(x) = af + o3 + 23 —25=0 (10.37a)
as(x) = 83 + 1422 4+ 722 —56 =0  (10.37b)

Solution By writing Eq. (10.37b) as

T3 = —%xf — 223 +8

the constraint in Eq. (10.37b) as well as variable 3 in Egs. (10.36) and (10.37a)
can be eliminated, and an equivalent minimization problem can be formulated
as

minimize f(x) = —3laf — 625 — Batazd + Zaf + 3223 (10.38)

subject to: a1 (x) = L2ai+5x5+ 22l — 128273223 +39 = 0 (10.39)

To eliminate Eq. (10.39), we write the equation as
558% (3721:1 — 32).752 (1419351,“11 — @ﬂs% +39)=0

and treat it as a quadratic equation of 3. In this way

23 = — (182 16) 1 110\/( Wt + 202 4 204) (10.40)
By substituting Eq. (10.40) into Eq. (10.38), we obtain a minimization problem
with only one variable.

The plus and minus signs in Eq. (10.40) mean that we have to deal with
two separate cases, and the minimizer can be determined by comparing the
results for the two cases. It should be noted that the polynomial under the
square root in Eq. (10.40) assumes a negative value for large z; therefore, the
one-dimensional minimization problem must be solved on an interval where
the square root yields real values.

]

10.4.2  Variable transformations
10.4.2.1 Nonnegativity bounds

The nonnegativity bound
xT; Z 0

can be eliminated by using the variable transformation [7]

z; =y} (10.41)
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Similarly, the constraint x; > d can be eliminated by using the transformation
z; = d+y? (10.42)

and one can readily verify that z; < d can be eliminated by using the transfor-
mation
x; =d—y? (10.43)

Although these transformations are simple and easy to use, these bounds are
eliminated at the cost of increasing the degree of nonlinearity of the objective
function as well as the remaining constraints, which may, in turn, reduce the
efficiency of the optimization process.

Example 10.6 Apply a variable transformation to simplify the constrained prob-
lem

minimize f(x) = —} — 223 — 3 — 1179 — 1173 (10.44)
subjectto: by(x) = 22 + 23+ 23 -25=0 (10.452)
ba(x) = 8x1 + 1dag + 723 —56 =0  (10.45b)

x>0 i=1,2 34 (10.45¢)

Solution The nonnegativity bounds in the problem can be eliminated by using
the transformation in Eq. (10.41). While eliminating Eq. (10.45c), the transfor-
mation changes Egs. (10.44), (10.45a), and (10.45b) to Egs. (10.36), (10.37a),
and (10.37b), respectively, where the ¥;’s have been renamed as x;’s.

|
10.4.2.2 Interval-type constraints
The hyperbolic tangent function defined by
ef—e”*
=tanh(z) = ———— 10.46
4 anh(2) e +e? ( )

is a differentiable monotonically increasing function that maps the entire 1-D
space —oo < z < oo onto the interval —1 < y < 1 as can be seen in Fig. 10.3.
This in conjunction with the linear transformation

(b—a) b+a

= 10.47
x 5 Y+ 5 ( )

transforms the infinite interval (—oo, oo) into the open interval (a, b). By
writing tanh(z) as

2z
e —1
tanh(Z) = W
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Figure 10.3. The hyperbolic tangent function.

we note that evaluating tanh(z) has about the same numerical complexity as
the exponential function.

An alternative transformation for Eq. (10.46) is one that uses the inverse
tangent function

2
y=—tan 1z (10.48)

™
which is also differentiable and monotonically increasing. As the transfor-
mations in Egs. (10.46) and (10.48) are nonlinear, applying them to eliminate

interval-type constraints will in general increase the nonlinearity of the objective
function as well as the remaining constraints.

Example 10.7 In certain engineering problems, an nth-order polynomial
p(2) = 2" +dp 12"+ diz+dy

is required to have zeros inside the unit circle of the z plane, for example, the
denominator of the transfer function in discrete-time systems and digital filters
[9]. Such polynomials are sometimes called Schur polynomials.

Find a suitable transformation for coefficients dy and d; which would ensure
that the second-order polynomial

p(2) = 22 + d1z + do
is always a Schur polynomial.
Solution The zeros of p(z) are located inside the unit circle if and only if [9]

dop < 1
di—dp <1 (10.49)
dy+dy > —1
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The region described by the constraints in Eq. (10.49) is the triangle shown
in Fig. 10.4. For a fixed dy € (—1, 1), the line segment inside the triangle
shown as a dashed line is characterized by d; varying from —(1+dp) to 1+ dj.
As dg varies from —1 to 1, the line segment will cover the entire triangle. This
observation suggests the transformation

dp = tanh(bg)
(10.50)
dy = [1 + tanh(bo)] tanh(bl)

which provides a one-to-one correspondence between points in the triangle in
the (dp, d1) space and points in the entire (by, b1) space. In other words, p(z)
is transformed into the polynomial

p(2) = 2% 4 [1 4 tanh(bg)] tanh(b; )z 4 tanh(bg) (10.51)
which is always a Schur polynomial for any finite values of by and b;.
This characterization of second-order Schur polynomials has been found to

be useful in the design of stable recursive digital filters [10].
[

1+d0

- (1+d0)

Figure 10.4. Region of the d; versus do plane for which p(z) is a Schur polynomial.
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10.5 Lagrange Multipliers

Lagrange multipliers play a crucial role in the study of constrained optimiza-
tion. On the one hand, the conditions imposed on the Lagrange multipliers are
always an integral part of various necessary and sufficient conditions and, on the
other, they provide a natural connection between constrained and correspond-
ing unconstrained optimization problems; each individual Lagrange multiplier
can be interpreted as the rate of change in the objective function with respect
to changes in the associated constraint function [7]. In simple terms, if x* is
a local minimizer of a constrained minimization problem, then in addition to
x* being a feasible point, the gradient of the objective function at x* has to be
a linear combination of the gradients of the constraint functions, and the La-
grange multipliers are the coefficients in that linear combination. Moreover, the
Lagrange multipliers associated with inequality constraints have to be nonneg-
ative and the multipliers associated with inactive inequality constraints have to
be zero. Collectively, these conditions are known as the Karush-Kuhn-Tucker
conditions (KKT).

In what follows, we introduce the concept of Lagrange multipliers through a
simple example and then develop the KKT conditions for an arbitrary problem
with equality constraints.

10.5.1 An example

Let us consider the minimization of the objective function f(z1, 2, x3, x4)
subject to the equality constraints

al(xl, T2, T3, .7}4) =0 (10.52&)
az(zy1, x2, 3, x4) =0 (10.52b)
If these constraints can be expressed as
Ir3 = hl(Il, Ig) (10.533.)
Ty = hg(a?l, 172) (1053]3)

then they can be eliminated by substituting Eq. (10.53) into the objective func-
tion which will assume the form f[z1, xo, hi(x1, x2), ho(z1, x2)]. If
* ] is a local minimizer of the original constrained opti-

x* = [z} a5 o} x}
mization problem, then x* = [z% 23] is a local minimizer of the problem

minimize f[a:l, 2, hl(a?l, 172), hQ(IEl, IEQ)]

It, therefore, follows that at X* we have
of
Vf B ox1 _o
= o =

Oxo
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Since variables z3 and x4 in the constraints of Eq. (10.53) are related to variables
x1 and x2, the use of the chain rule for the partial derivatives in V f gives

Of | 0f O Of 0hs _
(91‘1 (91‘3 8$1 8$4 axl
Of | 0f O 0f hy _ |
Oxy  Ox30xy  Oxz4 Ox9
From Eqgs. (10.52) and (10.53), we have
dar | 0w Oy 0w Ohy _
Oxr1 Oxz30x1 Oxza 0x1
dur | 0w Oy 0w Dby _
81}2 83:3 85{?2 85{?4 8932
Ouy 0y 0hy | Doy 0hy _
Oxr1 Oxz30x1 Oxza 0x1
Duy | Dazdhy 0w dhy _
(91‘2 (91‘3 8332 8334 8372
The above six equations can now be expressed as
il e
Viay(x)| o o | =0 (10.54)
VTaz(X)] % %
o1 Oxzo

This equation implies that V f (x*), Va; (x*), and Vaz(x*) are linearly depen-
dent (see Prob. 10.9). Hence there exist constants «, (3, + which are not all
zero such that

aVf(x*) + Var(x*) +yVaz(x*) =0 (10.55)

If we assume that x* is a regular point of the constraints, then « in Eq. (10.55)
cannot be zero and Eq. (10.55) can be simplified to

Vf(x*) — A\Vai(x*) — \5Vaz(x*) =0 (10.56)

and, therefore
Vf(x*) = A Vai(x*) + MsVas(x*)

where \] = —(3/a, A5 = —vy/a. In words, we conclude that ar a local
minimizer of the constrained optimization problem, the gradient of the objective
function is a linear combination of the gradients of the constraints. Constants
Al and A3 in Eq. (10.56) are called the Lagrange multipliers of the constrained
problem. In the rest of this section, we examine the concept of Lagrange
multipliers from a different perspective.
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10.5.2 Equality constraints

We now consider the constrained optimization problem
minimize f(x) (10.57a)

subjectto:  a;(x) =0 fori=1,2,...,p (10.57b)

following an approach used by Fletcher in [7, Chap. 9]. Let x* be a local
minimizer of the problem in Eq. (10.57). By using the Taylor series of constraint
function a;(x) at x*, we can write

a;(x* +s) = a;(x*) + STV(ZZ'(X*) + o(||s]|)
= sTVa;(x*) + o(||s||) (10.58)

since a;(x*) = 0. If s is a feasible vector at x*, then a;(x* +s) = 0 and hence
Eq. (10.58) implies that

s'Vai(x*)=0 fori=1,2,...,p (10.59)

In other words, s is feasible if it is orthogonal to the gradients of the constraint
functions. Now we project the gradient V f(x*) orthogonally onto the space

spanned by {Va(x*), Vaa(x*), ..., Va,(x*)}. If we denote the projection
as )

Z /\;"Vaz (X>|<

i=1
then V f(x*) can be expressed as

P

=Y AVai(x*) +d (10.60)

where d is orthogonal to Va,;(x*) fori =1, 2, ..., p

In what follows, we show that if x* is a local minimizer then d must be
zero. The proof is accomplished by contradiction. Assume that d # 0 and let
s = —d. Since s is orthogonal to Va;(x*) by virtue of Eq. (10.59), s is feasible
at x*. Now we use Eq. (10.60) to obtain

sV f(x* (Zx*vaz +d> =—||d||* <0

This means that s is a descent direction at x* which contradicts the fact that x*
is a minimizer. Therefore, d = 0 and Eq. (10.60) becomes

p
= A Vai(x") (10.61)
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In effect, for an arbitrary constrained problem with equality constraints, the
gradient of the objective function at a local minimizer is equal to the linear
combination of the gradients of the equality constraint functions with the La-
grange multipliers as the coefficients.

For the problem in Eq. (10.1) with both equality and inequality constraints,
Eq. (10.61) needs to be modified to include those inequality constraints that are
active at x*. This more general case is treated in Sec. 10.6.

Example 10.8 Determine the Lagrange multipliers for the optimization problem

minimize f(x)
subjectto: Ax=Db
where A € RP*™ is assumed to have full row rank. Also discuss the case where
the constraints are nonlinear.

Solution Eq. (10.61) in this case becomes
g" = ATN (10.62)
where A* = [A} A3 -+ AT and g* = V f(x*). By virtue of Eq. (10.62), the
Lagrange multipliers are uniquely determined as
A= (AAT)TAg" = (AT)Tg* (10.63)

where (AT)* denotes the Moore-Penrose pseudo-inverse of A7
For the case of nonlinear equality constraints, a similar conclusion can be
reached in terms of the Jacobian of the constraints in Eq. (10.57b). If we let

Jo(x) = [Vai(x) Vag(x) -+ Vay(x)]" (10.64)

then the Lagrange multipliers A} for 1 < ¢ < p in Eq. (10.61) are uniquely
determined as
A" =[J0 (x)) e (10.65)
provided that J.(x) has full row rank at x*.
]
The concept of Lagrange multipliers can also be explained from a different
perspective. If we introduce the function

P
L(x, A) = f(x) = > Niai(x) (10.66)
i=1
as the Lagrangian of the optimization problem, then the condition in Eq. (10.61)
and the constraints in Eq. (10.57b) can be written as

V:L(x, A) =0 for {x,A} = {x*, A"} (10.67a)
and
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VaL(x, A) =0  for {x,A} ={x", A"} (10.67b)

respectively. The numbers of equations in Egs. (10.67a) and (10.67b) are n and
p, respectively, and the total number of equations is consistent with the number
of parameters in x and A, i.e., n + p. Now if we define the gradient operator V

as
Va
vV =

Vi
then Eqgs. (10.67a) and (10.67b) can be expressed as

VL(x, A\)=0 for {x, A} = {x", A"} (10.68)

From the above analysis, we see that the Lagrangian incorporates the constraints
into a modified objective function in such a way that a constrained minimizer
x* is connected to an unconstrained minimizer {x*, A*} for the augmented
objective function L(x, A) where the augmentation is achieved with the p
Lagrange multipliers.

Example 10.9 Solve the problem
minimize f(x) = %XTHX +xTp
subjectto: Ax=Db
where H > 0 and A € RP*™ has full row rank.

Solution In Example 10.4 we solved a similar problem by eliminating the
equality constraints. Here, we define the Lagrangian

L(x, A) = ix"Hx + x"p — AT(Ax - b)

and apply the condition in Eq. (10.68) to obtain

[Hx +p— ATX
VL(x, A) =
| —Ax+b
TH AT X P
= + =0 (10.69)
| —A 0 A b

Since H > 0 and rank(A) = p, we can show that the matrix

H -AT

—A 0
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is nonsingular (see [13, Chap. 14]) and, therefore, Eq. (10.69) has the unique
solution

x* H -AT77! P
\* -A 0 b
It follows that
x* = H 1(ATA* — p) (10.70a)
where
A= (AH'ATY"Y(AH 'p +b) (10.70b)

In Sec. 10.8, it will be shown that x* given by Eq. (10.70a) with A* deter-
mined using Eq. (10.70b) is the unique, global minimizer of the constrained
minimization problem.

|

10.5.3 Tangent plane and normal plane

The first derivative of a smooth function of one variable indicates the direction
along which the function increases. Similarly, the gradient of a smooth multi-
variable function indicates the direction along which the function increases at
the greatest rate. This fact can be verified by using the first-order approximation
of the Taylor series of the function, namely,

F(x*+8) = f(x) + 8TV F(x*) +o(][0]])

If ||8]| is small, then the value of the function increases by 6" V f(x*) which
reaches the maximum when the direction of  coincides with that of V f(x*).

Two interrelated concepts that are closely related to the gradients of the
objective function and the constraints of the optimization problemin Eq. (10.57)
are the rangent plane and normal plane.

The tangent plane of a smooth function f(x) at a given point x* can be
defined in two ways as follows. If Cx- is the contour surface of f(x) that passes
through point x*, then we can think of the tangent plane as a hyperplane in R"
that touches Cx+ at and only at point x*. Alternatively, the tangent plane can
be defined as a hyperplane that passes through point x* with V f(x*) as the
normal. For example, for n = 2 the contours, tangent plane, and gradient of a
smooth function are related to each other as illustrated in Fig. 10.5.

Following the above discussion, the tangent plane at point x* can be defined
analytically as the set

T = {x: Vf(x")"(x —x") = 0}

In other words, a point x lies on the tangent plane if the vector that connects
x* to x is orthogonal to the gradient V f(x*), as can be seen in Fig. 10.5.
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vf(x*)

tangent plane
of f(x) at x*

f=]'c3f=f2f=f1
fi<h<p

Figure 10.5. Relation of tangent plane to contours and gradient.

Proceeding in the same way, a tangent plane can be defined for a surface
that is characterized by several equations. Let S be the surface defined by the
equations

a;(x) =0 fori=1,2,...,p

and assume that x* is a point satisfying these constraints, i.e., x* € S. The
tangent plane of S at x* is given by

T = {x: Je(x")(x —x") =0} (10.71)

where J. is the Jacobian defined by Eq. (10.64). From Eq. (10.71), we conclude
that the tangent plane of S is actually an (n — p)-dimensional hyperplane in
space R™. For example, in the case of Fig. 10.5 we have n = 2 and p = 1 and
hence the tangent plane degenerates into a straight line.

The normal plane can similarly be defined. Given a set of equations a;(x) =
0for 1 <4 < pand apoint x* € S, the normal plane at x* is given by

P
Now ={x: x—x" = ZaiVai(x*) for o; € R} (10.72)
i=1

It follows that {NVy+ — x*} is the range of matrix JZ'(x*), and hence it is a
p-dimensional subspace in R". More importantly, 7y« and Ny« are orthogonal
to each other.
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10.5.4 Geometrical interpretation

On the basis of the preceding definitions, a geometrical interpretation of the
necessary condition in Eq. (10.61) is possible [7][11] as follows: If x* is a
constrained local minimizer, then the vector V f(x*) must lie in the normal
plane Ny .

A two-variable example is illustrated in Fig. 10.6 where several contours of
the objective function f(x1, z2) and the only equality constraintai(x1, z2) = 0
are depicted. Note that at feasible point X, V f(X) lies exactly in the normal
plane generated by Va;(X) only when X coincides with x*, the minimizer of
f(x) subject to constraint a; (x) = 0.

v (X)

Vai(x*)

‘I: al(x):O

f=hrf=5Hf=h
h<h<fs

Figure 10.6. Geometrical interpretation of Eq. (10.61): V f(%) lies in Ny if X = x* where
x* is a minimizer.

Eq. (10.61) may also hold when x* is a minimizer as illustrated in Fig. 10.7a
and b, or a maximizer as shown in Fig. 10.7c, or x* is neither a minimizer nor
a maximizer. In addition, for a local minimizer, the Lagrange multipliers can
be either positive as in Fig. 10.7a or negative as in Fig. 10.7b.

Example 10.10 Construct the geometrical interpretation of Eq. (10.61) for the
three-variable problem

minimize f(x) = 23 + 23 + ix%
subjectto: aj(x) = —z1+23—1=0
ag(x) = 23 + 23 — 22, =0

Solution As was discussed in Example 10.1, the above constraints describe
the curve obtained as the intersection of the cylinder as(x) = 0 with the plane
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Va,(x*)

£ b fi . . b A
fi<h<fs @ ®

v (x) T v

‘ “VF(x)

f3 fz f S f3 fz fi
©) (d)

Figure 10.7. Geometrical interpretation of Eq. (10.61): (a) x* is a minimizer with A* > 0;
(b) x* is a minimizer with \* < 0; (¢) x* is a maximizer; (d) x* is neither a minimizer nor a
maximizer.

a1 (x) = 0. Fig. 10.8 shows that the constrained problem has a global minimizer
x* = [0 0 1]7. At x*, the tangent plane in Eq. (10.71) becomes a line that
passes through x* and is parallel with the x5 axis while the normal plane Ny
is the plane spanned by

-1 -2
Var(x*)=1 0 and Vay(x*)=1] 0
1 0
which is identical to plane 2 = 0. Note that at x*
0
Vi) =10
1
2

As is expected, V f(x*) lies in the normal plane Ny« (see Fig. 10.8) and can
be expressed as

Vf(x*) = A]Vai(x*) + A\3Vaq(x™)
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where \] = % and \5 = —% are the Lagrange multipliers.

X3

Va(x*) fvixe-T

Vaz(x*)\\\,"’

X2

Figure 10.8. An interpretation of Eq. (10.61) for Example 10.10.

10.6  First-Order Necessary Conditions

The necessary conditions for a point x* to be a local minimizer are useful
in two situations: (a) They can be used to exclude those points that do not
satisfy at least one of the necessary conditions from the candidate points; (b)
they become sufficient conditions when the objective function in question is
convex (see Sec. 10.8 for details).

10.6.1 Equality constraints

Based on the discussion in Sec. 10.5, the first-order necessary conditions for
a minimum for the problem in Eq. (10.57) can be summarized in terms of the
following theorem.

Theorem 10.1 First-order necessary conditions for a minimum, equality
constraints [fx* is a constrained local minimizer of the problem in Eq. (10.57)
and is a regular point of the constraints in Eq. (10.57b), then

(@) a;(x*) =0 for i=1,2,...,p, and (10.73)
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(b) there exist Lagrange multipliers \; for i =1, 2, ..., p such that
p
Vi) = AVai(x*) (10.74)
i=1
|

Eq. (10.74) can be expressed in terms of the Jacobian J. (x) (see Eq. (10.64))
as
g(x") = 3T (x")A" = 0
where g(x) = V f(x). In other words, if x* is a local minimizer of the problem
in Eq. (10.57), then there exists a vector X* € RP such that the (n + p)-
dimensional vector [x*T X*T|T satisfies the n + p nonlinear equations

g(x*) — I (x*)A*
a(x*)

Theorem 10.1 can be related to the first-order necessary conditions for a min-
imum for the case of unconstrained minimization in Theorem 2.1 (see Sec. 2.5)
as follows. If function f(x) is minimized without constraints, we can consider
the problem as the special case of the problem in Eq. (10.57) where the number
of constraints is reduced to zero. In such a case, condition (a) of Theorem 10.1
is satisfied automatically and condition (a) of Theorem 2.1 must hold. On the
other hand, condition (b) becomes

Vfx*)=0

=0 (10.75)

which is condition (b) of Theorem 2.1.

If x* is a local minimizer and \* is the associated vector of Lagrange mul-
tipliers, the set {x*, A"} may be referred to as the minimizer set or minimizer
for short.

Example 10.11 Find the points that satisfy the necessary conditions for a min-
imum for the problem in Example 10.10.

Solution We have

211 -1 2x1—2
gx)=|2zo |, J'x)=1]0 2x9
T3 1 0
Hence Eq. (10.75) becomes

201+ A — X221 —2) =0
2.%2—2>\2:C2 =0

r3—2X =0
—x1+x3—1=0
242221 =0
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Solving the above system of equations, we obtain two solutions, i.e.,

0 2
x;=10 and A} =
1 1
1
2
x5=10 and A5 =
3 11
4

The first solution, {x}, A]}, is the global minimizer set as can be observed in
Fig. 10.8. Later on in Sec. 10.7, we will show that {x3, A3} is not a minimizer
set.

and

[[9Y]

10.6.2  Inequality constraints

Consider now the general constrained optimization problem in Eq. (10.1) and
let x* be a local minimizer. The set 7 (x*) C {1, 2, ..., ¢} is the set of indices
j for which the constraints ¢;(x) > 0 are active at x*, i.e., ¢j(x*) = 0. At point
x*, the feasible directions are characterized only by the equality constraints and
those inequality constraints ¢;(x) with j € J(x*), and are not influenced by
the inequality constraints that are inactive. As a matter of fact, for an inactive
constraint ¢;(x) > 0, the feasibility of x* implies that

¢i(x*) >0
This leads to
cj(x*+6) >0

for any 9 with a sufficiently small ||4]|.
If there are K active inequality constraints at x* and

Jx*) =1{j1, j2, -+, i} (10.76)

then Eq. (10.61) needs to be modified to

p K
V) =D NiVai(x*) + )l Ve, (x7) (10.77)
=1 k=1

In words, Eq. (10.77) states that the gradient at x*, V f (x*), is a linear combi-
nation of the gradients of all the constraint functions that are active at x*.

An argument similar to that used in Sec. 10.5.2 to explain why Eq. (10.77)
must hold for a local minimum of the problem in Eq. (10.1) is as follows [7].
We start by assuming that x* is a regular point for the constraints that are active
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at x*. Let j be one of the indices from 7 (x*) and assume that s is a feasible
vector at x*. Using the Taylor series of ¢;, (x), we can write

¢, (X" +8) = ¢, (x") + 8" Ve, (x) + o(|Is]])
= s"Ve;, (x7) +of[s]])

Since s is feasible, c;, (x* +s) > 0 which leads to
sT'Vej, (x*) >0 (10.78)

Now we orthogonally project V f (x*) onto the space spanned by S = {Va;(x*)
for1 <1i < pand Vej, (x*) for 1 <k < K}. Since the projection is on S, it
can be expressed as a linear combination of vectors {Va;(x*) for1 < ¢ <p
and Ve, (x*) for1 < k < K}, ie.,

Z AN Va;(x*) + Z ,u]chjk( )

for some A}’s and pij, ’s. If we denote the difference between V f(x*) and this
projection by d, then we can write

ZA Va;(x +ZMMV%( ) +d (10.79)
k=1

Since d is orthogonal to S, d is orthogonal to Va;(x*) and Ve;, (x*);
hence s = —d is a feasible direction (see Egs. (10.59) and (10.78)); however,
Eq. (10.79) gives

STV f(x") = —[d| < 0

meaning that s would be a descent direction at x*. This contradicts the fact that
x* is a local minimizer. Therefore, d = 0 and Eq. (10.77) holds. Constants A}
and 7 in Eq. (10.77) are the Lagrange multipliers for equality and inequality
constraints, respectively.

Unlike the Lagrange multipliers associated with equality constraints, which
can be either positive or negative, those associated with active inequality con-
straints must be nonnegative, i.e.,

pi >0  for 1<k<K (10.80)

We demonstrate the validity of Eq. (10.80) by contradiction. Suppose that
. < 0 for some ji-. Since the gradients in S are linearly independent, the
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system -
r V7% (x*) 0

o 0

v;ap(x ) s = 1

V le(X*) 0

V7, (x*) 0]

has a solution for s, where the vector on the right-hand side of the above equation
has only one nonzero entry corresponding to VTCjk* (x*). Hence we have a
vector s satisfying the equations

s'Va;(x*) =0 for 1<i<p

. _ J 1 for k=k*
s Ve = { 0  otherwise

It follows from Eqgs. (10.59) and (10.78) that s is feasible. By virtue of
Eq. (10.77), we obtain
STYS(x") = 11, <0

Hence s is a descent direction at x* which contradicts the fact that x* is a local
minimizer. This proves Eq. (10.80). The following theorem, known as the
KKT conditions [12], summarizes the above discussion.

Theorem 10.2 Karush-Kuhn-Tucker conditions If x* is a local minimizer
of the problem in Eq. (10.1) and is regular for the constraints that are active at
x*, then

(@) a;i(x*) =0 for 1 <i<p,

() ¢j(x*) 20 for 1<j<q,

(c) there exist Lagrange multipliers X} for 1 < i < pand p; for 1 <
7 < q such that

P q
V) =D AVai(x*) + Y piVe(x¥) (10.81)
i=1 j=1
(d) Na;j(x*)=0 for 1<i<np, (10.82a)
picj(x*) =0 for 1< j<g, and (10.82b)
() pi>0 for 1<j<gq. (10.83)
|

Some remarks on the KKT conditions stated in Theorem 10.2 are in order.
Conditions (a) and (b) simply mean that x* must be a feasible point. The
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p—+ q equations in Eq. (10.82) are often referred to as the complementarity KKT
conditions. They state that \! and a;(x*) cannot be nonzero simultaneously,
and i and c;j(x*) cannot be nonzero simultaneously. Note that condition (a)
implies the condition in Eq. (10.82a) regardless of whether A} is zero or not. For
the equality conditions in Eq. (10.82b), we need to distinguish those constraints
that are active at x*, i.e.,

ci(x*) =0 for j € J(x*) = {j1, jo, ---, iK’}
from those that are inactive at x*, i.e.,
¢i(x*) >0 for je{1,2,..., ¢}\JT(x")
where Z\ 7 denotes the system indices in Z, that are notin 7. From Eq. (10.82b),
w; =0 for je{l,2,..., ¢\J(x")

which reduces Eq. (10.81) to Eq. (10.77); however, p; may be nonzero for
j € J(x*). Condition (e) states that

pw; >0 for jeJ(x") (10.84)

The nonnegativity of the Lagrange multipliers associated with inequality con-
straints can be explained using Fig. 10.9. For the sake of simplicity, let us
assume that p = 0 and ¢ = 1 in which case the optimization problem would
involve only one inequality constraint, namely,

c1(x) >0 (10.85)

If the minimizer x* happens to be inside the feasible region R defined by the
constraint in Eq. (10.85) (see Fig. 10.9a), then V f(x*) = 0 and pj = 0. If x*
is on the boundary of R (see Fig. 10.9b), then Eq. (10.81) implies that

Vix) =pmVea(x')

As can be seen in Fig. 10.9b, V¢ (x*) is a vector pointing towards the interior
of the feasible region, since c¢;(x*) = 0 and ¢(x) > 0 inside R, and similarly
V f(x*) is a vector pointing towards the interior of R. This in conjunction
with the above equation implies that V f(x*) and V¢; (x*) must be in the same
direction and hence pj > 0. It should be stressed that the nonnegativity of the
Lagrange multipliers holds only for those multipliers associated with inequality
constraints. As wasillustratedin Fig. 10.7a and b, nonzero Lagrange multipliers
associated with equality constraints can be either positive or negative.

There are a total of p (equality) + K (inequality) Lagrange multipliers that
may be nonzero, and there are n entries in parameter vector x. It is interesting
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Feasible Region
vei(x®)

“ ci1(x)>0

ViA(x

ci1(x)=0

f3 fz fl
fi< h<f3
(a) (b)

Figure 10.9. Nonnegativity of Lagrange multipliers: (a) x™ is a minimizer in the interior of the

feasible region; (b) x™ is a minimizer on the boundary of the feasible region.

to note that the KKT conditions involve the same number of equations, i.e.,

g(x*) = ITxIHIN I (x" )" =0 (10.86a)
a(x") = (10.86b)
é(x*) = (10.86¢)
where
=5 o k]t (10.87a)
Jie(x) = [Veji(x) Veja(x) -+ Ver(x)] (10.87b)
é(X) = [le(x) CjQ(X) ce CjK(X)]T (10.870)

Example 10.12 Solve the constrained minimization problem
minimize f(x) = z7 + 23 — 141 — 6xo
subjectto: c¢1(x) =2—x1 —x2 >0

ca(x) =3—x1—222>0
by applying the KKT conditions.

Solution The KKT conditions imply that

201 — 144+ 1+ p2 =0
209 —6 4+ 1 + 22 =0
p1(2—x1 —x2) =0
/1,2(3—1'1—21'2) =0
pr >0

po2 >0
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One way to find the solution in this simple case is to consider all possible cases
with regard to active constraints and verify the nonnegativity of the ;’s obtained
[13].

Case 1 No active constraints
If there are no active constraints, we have ] = p5 = 0, which leads to

<=[3]

Obviously, this x* violates both constraints and it is not a solution.
Case 2 One constraint active
If only the first constraint is active, then we have x5 = 0, and
201 — 1441 =0
209 =641 =0
2 — Tl — Ty = 0

Solving this system of equations, we obtain
x" = [_31] and pj =8

Since x* also satisfies the second constraint, x* = [3 —1]7 and pu* = [8 0]
satisfy the KKT conditions.
If only the second constraint is active, then ;7 = 0 and the KKT conditions
become
201 — 1442 =0
29 — 6 + 2M2 =0
3 — Tl — T2 = 0

The solution of this system of equations is given by

14
3
x*:[ } and pj =14

5

3
As x* violates the first constraint, the above x* and p* do not satisty the KKT
conditions.

Case 3 Both constraints active
If both constraints are active, we have
201 — 144+ 1 +p2 =0
209 — 6+ p1 +2u2 =0
2—x1—29=0
3—x1—2x2 =0
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The solution to this system of equations is given by

=M and pr=|?%
=11 H=1_3

Since p5 < 0, this is not a solution of the optimization problem.
Therefore, the only candidate for a minimizer of the problem is

<=[4] =[]

As can be observed in Fig. 10.10, the above point is actually the global mini-
mizer.
|

Feasible Region

2k

Figure 10.10. Contours of f(x) and the two constraints for Example 10.12.

10.7 Second-Order Conditions

As in the unconstrained case, there are second-order conditions

(a) that must be satisfied for a point to be a local minimizer (i.e., necessary
conditions), and
(b) that will assure that a point is a local minimizer (i.e., sufficient condi-
tions).
The conditions in the constrained case are more complicated than their uncon-
strained counterparts due to the involvement of the various constraints, as may
be expected.
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10.7.1  Second-order necessary conditions

Suppose x* is a local minimizer for the equality-constrained problem in
Eq. (10.57) and is a regular point of the constraints in Eq. (10.57b). A second-
order condition can be derived by examining the behavior of f(x) in a neighbor-
hood of x*. If s is a feasible direction at x*, then a;(x*+s) = 0for 1 < i < p,
which in conjunction with Eq. (10.66) implies that

F(x*+58) = L(x* +5, A (10.88)

where A" satisfies Eq. (10.74). By using the Taylor expansion of L(x* +s, A*)
at {x*, A"} and Theorem 10.1, we obtain

f(x*+58) = L(x*, X*) + 8T V,L(x*, A*) + 1T VZL(x*, A*)s + o(||s|]?)
= f(x*) + 1sTVZL(x*, X*)s + o(|[s||?) (10.89)

Using an argument similar to that used in the proof of Theorem 2.2, it can be
shown that by virtue of x* being a local minimizer, we have

sTV2L(x*, A*)s >0 (10.90)
From Egs. (10.59) and (10.64), it is clear that s is feasible at x* if
Je(x*)s=0

i.e., s € N[J.(x*)], which is the null space of J.(x*). Since this null space can
be characterized by a basis of the space, Eq. (10.90) is equivalent to the posi-
tive semidefiniteness of N7 (x*)V2 L(x*, A*)N(x*) where N(x*) is a matrix
whose columns form a basis of N[J.(x*)]. These results can be summarized
in terms of Theorem 10.3.

Theorem 10.3 Second-order necessary conditions for a minimum, equality
constraints Ifx* is a constrained local minimizer of the problem in Eq. (10.57)
and is a regular point of the constraints in Eq. (10.57b), then

(a) a;(x*)=0 for i=1,2,...,p,

(b) there exist \; for i =1,2, ..., p such that

P
Vi) = Z A Va;(x¥)
i=1

(c) NT(x*)V2L(x*, A*)N(x*) = 0. (10.91)
|

Example 10.13 In Example 10.11 it was found that

2
x5= 10 and Aj =
; 3

[\l [J%)
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satisfy the first-order necessary conditions for a minimum for the problem of
Example 10.10. Check whether the second-order necessary conditions for a
minimum are satisfied.

Solution We can write

V2ZL(x3, A}) =

| — |
o O |
NI~y
o | o
NSJEN]
o= O O
| I

and 10 1
JG(XE)Z[Q 0 0}

It can be readily verified that the null space of J.(x%) is the one-dimensional
space spanned by N(z3) = [0 1 0]. Since
N7 (x3)V2 (x5, A5)N(x3) =2 <0 (10.92)
we conclude that {x3, A5} does not satisfy the second-order necessary condi-
tions.
|
For the general constrained optimization problem in Eq. (10.1), a second-
order condition similar to Eq. (10.91) can be derived as follows. Let x* be a
local minimizer of the problem in Eq. (10.1) and [ (x*) be the index set for the
inequality constraints that are active at x* (see Eq. (10.76)). A direction s is
said to be feasible at x* if
a;(x*+s) =0 for 1<i<p (10.93a)
ci(x*+s) =0 for j € J(x¥) (10.93b)

Recall that the Lagrangian for the problem in Eq. (10.1) is defined by
P q
Lx, A, ) = f(x) = > Niai(x) = > pje;(x) (10.94)
i=1 j=1

If A* and p* are the Lagrange multipliers described in Theorem 10.2, then the
constraints in Eqgs. (10.1b) and (10.1c) and the complementarity condition in
Eq. (10.82) imply that

f(x*) = L(x*, A", p¥) (10.95)
From Egs. (10.81), (10.93), and (10.95), we have
f(x* +5s) = L(xX* +5, A*, p¥)
= L(x*, XY, u*) +sT V L(x*, X*, u*)
+58TVIL(x*, A%, p)s +o(|Is|[?)
= f(x*)+ 3T VEL(x", X*, p*)s +o(|[s]]?)
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This in conjunction with the fact that f(x*) < f(x* 4+ s) implies that
sTVZL(x*, A", u*)s >0 (10.96)

for any s feasible at x*.
From Eq. (10.93), the feasible directions at x* are those directions that are
orthogonal to the gradients of the constraints that are active at x*, namely,
* Je (X*)

J(x*)s = |:Jie(x*):| s=0 (10.97)
where J ie(x) is given by Eq. (10.87b). Hence the feasible directions at x* are
characterized by the null space of J(x*), denoted as N'[J (x*)], and the condition
in Eq. (10.96) assures the positive semidefiniteness of N7 (x*) V2 L(x*, A*, p*)
N (x*) where N(x*) is a matrix whose columns form a basis of N'[J(x*)]. A
set of necessary conditions for the general constrained optimization problem in
Eq. (10.1) can now be summarized in terms of the following theorem.

Theorem 10.4 Second-order necessary conditions for a minimum, general
constrained problem If x* is a constrained local minimizer of the problem in
Eq. (10.1) and is a regular point of the constraints in Egs. (10.1b) and (10.1c),
then

(a) a;i(x*) =0 for 1<i<p,

(b) cj(x*) >0 for 1<j<gq,

(c) there exist Lagrange multipliers A;’s and pi3’s such that

p q
V) =D A Vai(x*) + ) i Ve(x*)
i=1

J=1

(d) Nai(x*) =0 for 1 <i<pandpjc;(x*)=0 for 1 <j<gq

()1, >0 for 1<j<q and

() NT(x*)V2L(x*, X*, u*)N(x*) = 0. (10.98)
|

10.7.2  Second-order sufficient conditions

For the constrained problem in Eq. (10.57), second-order sufficient con-
ditions for a point x* to be a local minimizer can be readily obtained from
Eq. (10.89), where {x*, A*} is assumed to satisfy the first-order necessary
conditions described in Theorem 10.1. Using an argument similar to that used
in the proof of Theorem 2.4, we can show that a point x* that satisfies the
conditions in Theorem 10.1 is a local minimizer if the matrix

N7 (x*)V2L(x*, A*)N(x*)
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is positive definite.

Theorem 10.5 Second-order sufficient conditions for a minimum, equality
constraints If X* is a regular point of the constraints in Eq. (10.57b), then it
is a strong local minimizer of Eq. (10.57) if

(@) ai(x*) =0 for 1<i<p,

(b) there exist Lagrange multipliers \; for i =1, 2, ..., p such that

P
Vf(x*) = Z A Va;(x¥)
=1

(c) NT(x*)V2L(x*, A*)N(x) = 0, (10.99)
i.e., V2L(x*, X*) is positive definite in the null space N'1J(x*)].
|

Example 10.14 Check whether the second-order sufficient conditions for a
minimum are satisfied in the minimization problem of Example 10.10.

0
1]
2

which is positive definite in the entire £3. Hence Theorem 10.5 implies that
x7 is a strong, local minimizer.

Solution We compute

O O rw

ViL(xi, A]) = {

O oy O
[an}

]
A set of sufficient conditions for point x* to be a local minimizer for the
general constrained problem in Eq. (10.1) is given by the following theorem.

Theorem 10.6 Second-order sufficient conditions for a minimum, general
constrained problem A point x* € R™ is a strong local minimizer of the
problem in Eq. (10.1) if

(a) a;(x*) =0 for 1 <i<p,

(b) ¢j(x*) >0 for 1<j<q

(c) x* is a regular point of the constraints that are active at x*,

(d) there exist \}’s and ,u;“» ’s such that

P q
Vfx*) = Z)\;‘Vai(x*) + Zu;ch(x*)
i=1

=1

(e) Nai(x*) =0 for 1 <i<pand pjc;(x*) =0 for 1 <j<gq
(f) p; =0 for 1<j<gq and
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(9) NT(x*)V2L(x*, \*, w*)N(x*) = 0 (10.100)
where N(x*) is a matrix whose columns form a basis of the null space
of J(x*) defined by

Je(x*)
J(x*) = [ ] (10.101)
jie (X*)

The Jacobian J ie(X*) is the matrix whose rows are composed of those
gradients of inequality constraints that are active at X*, i.e., Vch (x*),
with ¢j(x*) = 0 and p; > 0.

Proof Let us suppose that x* satisfies conditions (a) to (g) but is not a strong
local minimizer. Under these circumstances there would exist a sequence of
feasible points x; — x* such that f(x;) < f(x*). If we write x; = x* + JiSg
with ||sg|| = 1 for all k, then we may assume that §; > 0, and s, — s* for
some vector s* with ||s*|| = 1 and

fx* +0gsy) — f(x*) <0

which leads to
VT f(x*)s* <0 (10.102)

Since s* is feasible at x*, we have
V6 (x*)s* =0 (10.103)

If J,(x*) is the index set for inequality constraints that are active at x* and are
associated with strictly positive Lagrange multipliers, then

cj(xg) — ¢j(x*) = ¢j(xx) >0 for j € Jp(x")

ie.,
¢ (x* 4+ Ogsi) —cj(x*) >0

which leads to
VTei(x")s* >0 for j € Jp(x") (10.104)

Now the inequality in Eq. (10.104) cannot occur since otherwise conditions
(d), (e), (f) in conjunction with Egs. (10.102), (10.103) would imply that

D q
0> VT f(x*)s* = > NV T a;(x*)s* + Z,uj-Vch(x*)s* >0
i=1 j=1
i.e., 0 > 0 which is a contradiction. Hence

Vlej(x*)s* =0 for j € Jp(x") (10.105)
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From Egs. (10.103) and (10.104), it follows that s* belongs to the null space of
J(x*) and so condition (g) implies that s* V2 L(x*, A*, u*)s* > 0. Since
xr — x*, we have s} V2L(x*, A*, u*)sy, > 0 for a sufficiently large k. Using
the condition in (d), the Taylor expansion of L(xy, A*, u*) at x* gives

L(XZa )‘*7/“[’*) = L(X*a )‘*7 /’l’*) +6kS£VxL(X*a )‘*7 p’*)
FISTVAL, X, sy + o6)
— () + BRTVRLOE, A, i)y + ofd?)

This in conjunction with the inequalities f(x) > L(xg, A", p*)and f(x;) <
f(x*) leads to

0> f(xg) — f(x*) > 307sf VAL(x*, X, p*)s, +o(67)  (10.106)

So, for a sufficiently large & the right-hand side of Eq. (10.106) becomes strictly
positive, which leads to the contradiction 0 > 0. This completes the proof.
|

Example 10.15 Use Theorem 10.6 to check the solution of the minimization
problem discussed in Example 10.12.

Solution The candidate for a local minimizer was found to be

<= 4] w3

Since the constraints are linear,

0 2

which is positive definite in the entire £2. Therefore, {x*, u*} satisfies all the
conditions of Theorem 10.6 and hence x* is a strong local minimizer. As was
observed in Fig. 10.10, x* is actually the global minimizer of the problem.

|

10.8  Convexity

Convex functions and their basic properties were studied in Sec. 2.7 and the
unconstrained optimization of convex functions was discussed in Sec. 2.8. The
concept of convexity is also important in constrained optimization. In uncon-
strained optimization, the properties of convex functions are of interest when
these functions are defined over a convex set. In a constrained optimization,
the objective function is minimized with respect to the feasible region which
is characterized by the constraints imposed. As may be expected, the concept
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of convexity can be fully used to achieve useful optimization results when both
the objective function and the feasible region are convex. In Sec. 10.2, these
problems were referred to as CP problems. A typical problem of this class can
be formulated as

minimize f(x) (10.107a)
subjectto a;(x) = al x — b; for 1<i<p (10.107b)
cj(x) >0 for 1 <j<gq (10.107¢)

where f(x) and —c;(x) for 1 < j < g are convex functions. The main results,
which are analogous to those in Sec. 2.8, are described by the next two theorems.

Theorem 10.7 Globalness and convexity of minimizers in CP problems

(a) If X* is a local minimizer of a CP problem, then x* is also a global
minimizer.

(b) The set of minimizers of a CP problem, denoted as S, is convex.

(c) Ifthe objective function f(x) is strictly convex on the feasible region R,
then the global minimizer is unique.

Proof

(a) If x* is a local minimizer that is not a global minimizer, then there is a
feasible x such that f(x) < f(x*). If we let x; = 7x + (1 — 7)x* for
0 < 7 < 1, then the convexity of f(x) implies that

) S7fE) + (1 —7)f(X) < f(XT)

no matter how close x, is to x*. This contradicts the assumption that
x* is a local minimizer since f(x*) is supposed to assume the smallest
value in a sufficiently small neighborhood of x*. Hence x* is a global
minimizer.

(b) Let x4, xp € S. From part (a), it follows that x, and x; are global
minimizers. If x; = 7x, + (1 — 7)x; for 0 < 7 < 1, then the convexity
of f(x) leads to

fxr) S 7f(%a) + (1 = 7)f(x0) = f(Xa)

Since x, is a global minimizer, f(x,) > f(x,). Hence f(x;) = f(Xa),
i.e., x, € S for each 7, thus S is convex.

(¢) Suppose that the solution set S contains two distinct points x, and x;
and x; is defined as in part (b) with 0 < 7 < 1. Since x, # x; and
7 € (0, 1), we have x; # x,. By using the strict convexity of f(x), we
would conclude that f(x;) < f(x,) which contradicts the assumption
that x, € S. Therefore, the global minimizer is unique.
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It turns out that in a CP problem, the KKT conditions become sufficient for
x* to be a global minimizer as stated in the following theorem.

Theorem 10.8 Sufficiency of KKT conditions in CP problems If x* is a
regular point of the constraints in Egs. (10.107b) and (10.107¢c), and satisfies
the KKT conditions stated in Theorem 10.2, where f(x) is convex and a;(x)
and c;(x) are given by Egs. (10.107b) and (10.107c), respectively, then it is a
global minimizer.

Proof For a feasible point x with x # x*, we have a;(x) = 0for1 <i <p
and ¢;j(x) > 0 for 1 < j < g. In terms of the notation used in Theorem 10.2,

we can write .
Fx) = f(%) = D wie;(%)
j=1
Since f(x) and —c;(x) are convex, then from Theorem 2.12, we have

&) > f(x) + V(x5 (% —x*)
and
—cj(%) > —¢j(x*) = Vej(x*) (% — x7)
It follows that
FR) = f)+ V() (x—x" ZujvTcg ) Z%
7j=1

In the light of the complementarity conditions in Eq. (10.82b), the last term in
the above inequality is zero and hence we have

F5) > )+ [VF(¢) = Y Ve () (x—x)  (10.108)
j=1
Since a;(x) = a;(x*) = 0, we get

0=a;(X)—a;(x*) = af(fc -x") = VTai(x*)(fc —x")
Multiplying the above equality by —A; and then adding it to the inequality in
Eq. (10.108) for 1 < ¢ < p, we obtain

F®) > f(x) + ZA Vai(x zujvc] %)

From Eq (10.81), the last term in the above inequality is zero, which leads to
f(x) > f(x*). This shows that f(x*) is a global minimum.
]
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10.9  Duality

The concept of duality as applied to optimization is essentially a problem
transformation that leads to an indirect but sometimes more efficient solution
method. In a duality-based method the original problem, which is referred to as
the primal problem, is transformed into a problem in which the parameters are
the Lagrange multipliers of the primal. The transformed problem is called the
dual problem. In the case where the number of inequality constraints is much
greater than the dimension of x, solving the dual problem to find the Lagrange
multipliers and then finding x* for the primal problem becomes an attractive
alternative. For LP problems, a duality theory has been developed to serve as
the foundation of modern primal-dual interior-point methods, (see Sec. 11.4 for
the details).

A popular duality-based method is the Wolfe dual [14], which is concerned
with the CP problem in Eq. (10.107). The main results of the Wolfe dual are
described in terms of the following theorem.

Theorem 10.9 Duality in convex programming Let X* be a minimizer, and
¥, pu* be the associated Lagrange multipliers of the problem in Eq. (10.107).
If xX* is a regular point of the constraints, then x*, X*, and pu* solve the dual
problem

maximize L(x, A, p) (10.109a)

X, A,
subject to: Vi L(x, A\, u) =0 (10.109b)
n=>0 (10.109¢)

In addition, f(x*) = L(x*, X*, p*).

Proof By virtue of Theorem 10.2, f(x*) = L(x*, A*, pu*)and p* > 0. For a
set {x, A, p} thatis feasible for the problem in Eq. (10.109), we have p > 0
and V,L(x, A, p) = 0. Hence

L(x*, A%, p*) = f(x")
p q
- Z)‘iai Z/‘JCJ L(x*, A\, )

With g > 0, the Lagrangian L(x, X, u) is convex and, therefore,
L(x*, A\, p) > L(x, A, p) 4+ (x* —x)TV,L(x, X\, p) = L(x, X, p)

Hence L(x*, A", u*) > L(x, A\, p),i.e.,set {x*, A*, u*} solves the problem
in Eq. (10.109).
[
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Example 10.16 Find the Wolfe dual of the standard-form LP problem

minimize ¢! x (10.110a)
subjectto: Ax =b A ¢ RP*" (10.110b)
x>0 (10.110c)

Solution The Lagrangian is given by
L(x, A, ) =c’x— (Ax —b)TA—xTp

From Theorem 10.9, the Wolfe dual of the problem in Eq. (10.110) is the
maximization problem

maximize x? (¢ — ATA — ) +bTA (10.111a)

X, A, QU
subjectto: c—ATA—p =0 (10.111b)
nw>0 (10.111¢)

Using Eq. (10.111b), the objective function in Eq. (10.111a) can be simplified
and the dual problem can be stated as

maximize b’ A (10.112a)
A
subjectto: ¢ —ATA—pu =0 (10.112b)
©n>0 (10.112¢)
| ]
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Problems

10.1 A trigonometric polynomial is given by

Alw) = Z aj, cos kw (P10.1)
k=0

and €),,, €1, are sets given by

Qp = {wpo, wp1, -5 wpn} S [0, wy
Qa = {wa07 Waly -+ waM} C [waa 7T]
with w, < w,. Coefficients a;, for £ = 0, 1, ..., n are required in

(P10.1) such that the upper bound § in
|A(w) —1] < ¢ for w € Q, (P10.2)

and
[A(w)| <6 for w € Q, (P10.3)

is minimized. Formulate the above problem as a constrained minimization
problem.

10.2 Consider the trigonometric polynomial A(w) given in Prob. P10.1. Sup-

pose we need to find ay, for k =0, 1, ..., n such that
wp i
J= / [Aw) — 1]2dw + / W (w)A2(w)dw (P10.4)
0 Wa
is minimized subject to constraints in Eqs. (P10.2) and (P10.3), where

W (w) > 0 is a weighting function, and ¢ is treated as a known positive
scalar. Formulate the above problem as a constrained optimization.

10.3 (a) Write a MATLAB function to examine whether the equality con-

straints in Ax = b are (i) inconsistent, or (ii) consistent but redundant,
or (iii) consistent without redundancy.
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10.4

10.5

10.6

10.7

10.8

(b) Modify the MATLAB function obtained from part (a) so thatif Ax =
b is found to be consistent but refiundant, the constraints are reduced
to Ax = b such that (1) Ax = b describes the same feasible region
and (ii) the constraints in Ax = b are not redundant.

In Sec. 10.3.1, it was shown that the LP problem in Eq. (10.20) can be
converted into the standard-form LP problem of Eq. (10.19). Show that
the standard-form LP problem in Eq. (10.19) can be converted into the
problem in Eq. (10.20). Hint: Use Eq. (10.27).

(a) Apply the result of Prob. 10.4 to convert the LP problem
minimize f(x) = x1 + 222 + 1123 + 224
subject to:  ap(x

(
(

az(x

=x1+x9+ax3+2x4 =3
=29+ 2x3+4x4 =3
=23+ x4 =2

=x; >0 for i =1, 2, 3, 4

as( X

~— ' —

Ci (X

into the problem in Eq. (10.20).
(b) Solve the LP problem obtained in part (a).

(c) Use the result of part (b) to solve the standard-form LP problem in
part (a).

(a) Prove thatif P is positive definite, then In(det P~1) is a convex func-
tion of P.

(b) Prove that if p = P(:) denotes the vector obtained by lexicograph-
ically ordering matrix P, then the set of vectors satisfying the con-
straints in Eqgs. (10.24b) and (10.24c¢) is convex.

Prove that all solutions of Ax = b are characterized by Eq. (10.26). To
simplify the proof, assume that A € RP*" has full row rank. In this case
the pseudo-inverse of A™ is given by

At = AT(AAT) !
The feasible region shown in Fig. P10.8 can be described by
c < x < 400
R : 1 < =z < 61
xe < x1/c

where ¢ > 0 is a constant. Find variable transformations z1 = T3 (¢1, t2)
and xo = Ty(t1, ta) such that —oo < t1, t2 < oo describe the same
feasible region.
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X2

61 ’

c 400

Figure P10.8.

10.9 Show that V f(x), Vai(x), and Vag(x) that satisfy Eq. (10.54) are lin-
early dependent.
Hint: Apply the singular-value decomposition to

1 0
0 1
Oh1  Ohy
o1 02
Ohy  Ohy
o1 0x2

10.10 (a) Provide an example to demonstrate that Ax > b does not imply
MAx > Mb in general, even if M is positive definite.

(b) Which condition on M Ax > b implies MAx > Mb?

10.11 Usetwo methods, namely, Eq. (10.27) and the Lagrange multiplier method,
to solve the problem

minimize f(x) = %XTHX +x'p

subjectto: Ax=Db

where
'H; H, H; H,
o |H: Hi Hy Hy
~ |H; Hy, H; H,
LHs H; Hy H;
with
10 8 7 6
8 10 8 7
Hi=17 5 10 3
6 7 8 10
3 2 1 0 2 1 0 0
2 3 2 1 1 210
Ho=11 5 3 o Hs=|p | o 1| Ha=1
0 1 2 3 00 1 2
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10.12

10.13

10.14

10.15

P1 1 0 2 0
P2 -1 0 2 0
P = Ps y P1 = 9 y P2 = 0 y P3 = 4 y P4 = 0
P4 -2 0 4 0

A=[H;H,H Hy,b=[1143 —4]7
Consider the feasible region R defined by
R: ai(x)=0 fori=1,2,...,p
cj(x) >0 for j=1,2,...,¢q

At a feasible point x, let 7 (x) be the active index set for the inequality
constraints at x, and define the sets F(x) and F'(x) as

F(x) = {s: sis feasible at x}
and

Fx)={s: s'Vai(x)=0 fori=1,2,...,p
and s'Vej(x) >0  for j € J(x)}

respectively. Prove that F(x) C F(x), i.e., set F'(x) contains set F(x).

Prove that if at a feasible x one of the following conditions is satisfied,
then F(x) = F(x):

(i) The constraints that are active at x are all linear.

(ii) Vectors Va;(x) fori =1, 2, ..., pand V¢;(x) for those ¢;j(x) that
are active at x are linearly independent.

In the literature, the assumption that F(x) = F'(x) is known as the con-
straint qualification of x. Verify that the constraint qualification assump-
tion does not hold at x = 0 when the constraints are given by

c1(x) = 23 — a9

c2(x) = 9

Hint: Check the vector s = [—1 0]

Consider the constrained minimization problem (see [12])

minimize f(x) = (z; — 2)% + 3

subject to: ¢1(x) = x1 >0
c2(x) =22 >0
e3(x) = (1—21)2—22>0
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10.16

10.17

10.18

10.19

10.20

(a) Using a graphical solution, show that x* = [1 0] is the global mini-
mizer.

(b) Verify that x* is not a regular point.
(c) Show that there exist no po > 0 and us > 0 such that

Vf(x") = p2Vea(x") + p3Ves(x7)

Given column vectors V1, V2, ..., V4, define the polyhedral cone C as

q
C={v:v=> pvi p >0}

=1

Prove that C is closed and convex.

Let g be a vector that does not belong to set C in Prob. 10.16. Prove that
there exists a hyperplane s” x = 0 that separates C and g.
Given column vectors v1, va, ..., V4 and g, show that the set

S={s:slg<0ands’v; >0, for i=1,2,..., ¢}

is empty if and only if there exist x; > 0 such that

q
g= Z,Uz‘ v;
i=1

(This is known as Farkas’ lemma.)
Hint: Use the results of Probs. 10.16 and 10.17.

Let J(x*) = {j1, j2, ..., jx} be the active index set at x* for the
constraints in Eq. (10.1c). Show that the set
S={s:s'Vf(x*)<0,s'Vai(x*)=0 for i=1,2,...,p,
and s’ Vej(x*) > 0 for j € J(x*)}

is empty if and only if there exist multipliers A7 for1 < ¢ < pand p5 > 0,
such that

P
Vi) = NVar) + Y Ve
=1 JET (x*)
(This is known as the Extension of Farkas’ lemma.)

Using the KKT conditions, find solution candidates for the following CP
problem
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minimize % + x3 — 221 — 49 + 9

1
xT9 0
-2 +3>0

subject to: T, >
>

10.21 Consider the constrained minimization problem
minimize f(x) = —z} + 23 — 2z,
subject to: 2z +x3 +x3—5 =0
5x3 — x5 — 13 > 2
2120, 2920, z3 >0
(a) Write the KKT conditions for the solution points of the problem.

(b) Vector x* = [1 0 3]7 is known to be a local minimizer. At x*, find
AT and pf for 1 <4 < 4, and verify that 7 > 0 for 1 < i < 4.

(c) Examine the second-order conditions for set (x*, A*, pu*).
10.22 Consider the QP problem

minimize f(x) = ix"Hx +x"p

subjectto: Ax =Db
x>0

(a) Write the KKT conditions for the solution points of the problem.
(b) Derive the Wolfe dual of the problem.

(c) Let set (x, A, p) be feasible for the primal and dual problems, and
denote their objective functions as f(x) and h(x, X, p), respectively.
Evaluate the duality gap defined by

6(X7 Av l’l’) = f(X) - h(X, )‘a IJ’)
and show that d(x, A, p)isalwaysnonnegative for afeasible (x, A, p).

10.23 Consider the minimization problem

minimize f(x) = c¢'x

subjectto: Ax =0
x|l <1

where ||x|| denotes the Euclidean norm of x.
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(a) Show that this is a CP problem.
(b) Derive the KKT conditions for the solution points of the problem.
(c) Show that if c — AT\ # 0 where X satisfies

AATX = Ac
then the minimizer is given by

c— AT
llc — ATAl

x* =

Otherwise, any feasible x is a solution.
10.24 Consider the minimization problem

minimize f(x) = c¢’x

subjectto:  ||Ax|| <1

(a) Show that this is a CP problem.
(b) Derive the KKT conditions for the solution points of the problem.
(c) Show that if the solution of the equation

ATAy =c
is nonzero, then the minimizer is given by

oY
Ayl

Otherwise, any feasible x is a solution.



Chapter 11

LINEAR PROGRAMMING
PART I: THE SIMPLEX METHOD

11.1 Introduction

Linear programming (LP) problems occur in a diverse range of real-life
applications in economic analysis and planning, operations research, computer
science, medicine, and engineering. In such problems, it is known that any min-
ima occur at the vertices of the feasible region and can be determined through a
‘brute-force’ or exhaustive approach by evaluating the objective function at all
the vertices of the feasible region. However, the number of variables involved
in a practical LP problem is often very large and an exhaustive approach would
entail a considerable amount of computation. In 1947, Dantzig developed a
method for the solution of LP problems known as the simplex method [1][2].
Although in the worst case, the simplex method is known to require an expo-
nential number of iterations, for typical standard-form problems the number of
iterations required is just a small multiple of the problem dimension [3]. For
this reason, the simplex method has been the primary method for solving LP
problems since its introduction.

In Sec. 11.2, the general theory of constrained optimization developed in
Chap. 10 is applied to derive optimality conditions for LP problems. The
geometrical features of LP problems are discussed and connected to the several
issues that are essential in the development of the simplex method. In Sec. 11.3,
the simplex method is presented for alternative-form LP problems as well as
for standard-form LP problems from a linear-algebraic perspective.
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11.2  General Properties
11.2.1  Formulation of LP problems
In Sec. 10.3.1, the standard-form LP problem was stated as

minimize f(x) = c’x (11.1a)
subjectto: Ax =b (11.1b)
x>0 (11.1¢)

where c € R"*! withc # 0, A € RP*",and b € RP*! are given. Throughout
this chapter, we assume that A is of full row rank, i.e., rank(A) = p. For the
standard-form LP problem in Eq. (11.1) to be a meaningful LP problem, full
row rank in A implies that p < n.

For a fixed scalar 3, the equation ¢* x = ( describes an affine manifold
in the n-dimensional Euclidean space E™ (see Sec. A.15). For example, with
n =2, c’'x = Brepresents a line and ¢’ x = B for 3 = 31, (o, ... represents
a family of parallel lines. The normal of these lines is ¢, and for this reason
vector c is often referred to as the normal vector of the objective function.

Another LP problem, which is often encountered in practice, involves mini-
mizing a linear function subject to inequality constraints, i.e.,

T

minimize f(x) = c’x (11.2a)

subjectto: Ax>Db (11.2b)

where ¢ € R"*! withc # 0, A € RP*", and b € RP*! are given. This will
be referred to as the alternative-form LP problem hereafter. If we let

ai b1
a b
A=|72, b=|"
ag by

then the p constraints in Eq. (11.2b) can be written as
a?xzbi fort=1,2,...,p

where vector a; is the normal of the ith inequality constraint, and A is usually
referred to as the constraint matrix.
By introducing a p-dimensional slack vector variable y, Eq. (11.2b) can be
reformulated as
Ax—y=Db for y >0

Furthermore, vector variable x can be decomposed as

x=x"—x" with x">0 and x >0
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Hence if we let

xt c
X=|x"|, ¢=|-c
y 0

then Eq. (11.2) can be expressed as a standard-form LP problem, i.e.,

, A=[A -A 1]

T

minimize f(x) = ¢' X (11.3a)
subject to: Ax=b (11.3b)
£>0 (11.3¢)

Likewise, the most general LP problem with both equality and inequality con-
straints, i.e.,

minimize f(x) = c’x (11.4a)
subjectto: Ax =Db (11.4b)
Cx>d (11.4¢)

can be expressed as a standard-form LP problem with respect to an augmented
variable x. It is primarily for these reasons that the standard-form LP problem
in Eq. (11.1) has been employed most often as the prototype for the descrip-
tion and implementation of various LP algorithms. Nonstandard LP problems,
particularly the problem in Eq. (11.2), may be encountered directly in a variety
of applications. Although the problem in Eq. (11.2) can be reformulated as a
standard-form LP problem, the increase in problem size leads to reduced com-
putational efficiency which can sometimes be a serious problem particularly
when the number of inequality constraints is large. In what follows, the under-
lying principles pertaining to the LP problems in Eqgs. (11.1) and (11.2) will
be described separately to enable us to solve each of these problems directly
without the need of converting the one form into the other.

11.2.2  Optimality conditions

Since linear functions are convex (or concave), an LP problem can be viewed
as a convex programming problem. By applying Theorems 10.8 and 10.2 to
the problem in Eq. (11.1), the following theorem can be deduced.

Theorem 11.1 Karush-Kuhn-Tucker conditions for standard-form LP prob-
lem Ifx* is regular for the constraints that are active at x*, then it is a global
solution of the LP problem in Eq. (11.1) if and only if
(a) Ax* = b, (11.5a)
(b) x* >0, (11.5b)
(c) there exist Lagrange multipliers X\* € RP*! and p* € R™' such that
w* > 0and
c=ATX 4+ p* (11.5¢)
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(d)pixzy; =0 for 1 <i<n. (11.5d)
| |

The first two conditions in Eq. (11.5) simply say that solution x* must be
a feasible point. In Eq. (11.5¢), constraint matrix A and vector c are related
through the Lagrange multipliers A* and p*.

An immediate observation on the basis of Egs. (11.5a)—(11.5d) is that in most
cases solution x* cannot be strictly feasible. Here we take the term ‘strictly
feasible points’ to mean those points that satisfy the equality constraints in
Eq. (11.5a) with 7 > 0 for 1 < % < n. From Eq. (11.5d), p* must be a
zero vector for a strictly feasible point x* to be a solution. Hence Eq. (11.5¢)
becomes

c=ATX* (11.6)

In other words, for a strictly feasible point to be a minimizer of the standard-
form LP problem in Eq. (11.1), the n-dimensional vector ¢ must lie in the
p-dimensional subspace spanned by the p columns of AT. Since p < n, the
probability that Eq. (11.6) is satisfied is very small. Therefore, any solutions of
the problem are very likely to be located on the boundary of the feasible region.

Example 11.1 Solve the LP problem

minimize f(x) = z1 + 4x2 (11.7a)
subjectto: x1+ax2 =1 (11.7b)
x>0 (11.7¢)

Solution As shown in Fig. 11.1, the feasible region of the above problem is
the segment of the line x1 + x2 = 1 in the first quadrant, the dashed lines
are contours of the form f(x) = constant, and the arrow points to the steepest
descent direction of f(x). We have

1

1

1
c= [ ] and AT =
4
Since c and AT are linearly independent, Eq. (11.6) cannot be satisfied and,
therefore, no interior feasible point can be a solution. This leaves two end points
to verify. From Fig. 11.1 it is evident that the unique minimizer is x* = [1 0]
At x* the constraint in Eq. (11.7b) and the second constraint in Eq. (11.7¢)
are active, and since the Jacobian of these constraints, namely,

o 1]
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X2

Figure 11.1. LP problem in Example 11.1.

is nonsingular, x* is a regular point. Now Eq. (11.5d) gives u7 = 0, which
leads to Eq. (11.5¢) with

A*=1 and p5;=3

This confirms that x* = [1 0]7 is indeed a global solution.
Note that if the objective function is changed to

f(x) = cTx = 4z + 4ay

then Eq. (11.6) is satisfied with \* = 4 and any feasible point becomes a global
solution. In fact, the objective function remains constant in the feasible region,
ie.,

f(x) =4(x1 +x2) =4 for x e R

A graphical interpretation of this situation is shown in Fig. 11.2
|
Note that the conditions in Theorems 10.2 and 10.8 are also applicable to
the alternative-form LP problem in Eq. (11.2) since the problem is, in effect, a
convex programming (CP) problem. These conditions can be summarized in
terms of the following theorem.

Theorem 11.2 Necessary and sufficient conditions for a minimum in alter-
native-form LP problem [fx* is regular for the constraints in Eq. (11.2b) that
are active at X*, then it is a global solution of the problem in Eq. (11.2) if and
only if
(a) Ax* > b, (11.82)
(b) there exists a p* € RP*! such that p* > 0 and

c=ATp" (11.8b)
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X1

Figure 11.2. LP problem in Example 11.1 with f(x) = 4x1 + 4x2.

(c)pui(@lx* —b)=0 for 1<i<p (11.8¢)
where aZT is the ith row of A.
|

The observation made with regard to Theorem 11.1, namely, that the solutions
of the problem are very likely to be located on the boundary of the feasible
region, also applies to Theorem 11.2. As a matter of fact, if x* is a strictly
feasible point satisfying Eq. (11.8c), then Ax* > b and the complementarity
condition in Eq. (11.8¢c) implies that u* = 0. Hence Eq. (11.8b) cannot be
satisfied unless ¢ = 0, which would lead to a meaningless LP problem. In
other words, any solutions of Eq. (11.8) can only occur on the boundary of the
feasible region defined by Eq. (11.2b).

Example 11.2 Solve the LP problem

minimize f(x) = —z1 — 4x2

subject to: z1 >0
—X1 Z —2

z9 > 0

—r1—220+3.5>0
—x1 —2224+6 >0
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Solution The five constraints can be expressed as Ax > b with

1 0 0
-1 0 -2

A= 0 1|, b=] 0
-1 -1 ~3.5
-1 -2 —6

The feasible region is the polygon shown in Fig. 11.3.

X2
34

1 2 3 X,

Figure 11.3. Feasible region in Example 11.2.

Since the solution cannot be inside the polygon, we consider the five edges of
the polygon. We note that at any point x on an edge other than the five vertices
P; for 1 <4 < 5 only one constraint is active. This means that only one of the
five p;’s is nonzero. At such an x, Eq. (11.8b) becomes

c= {:H = pia (11.9)

where a; is the transpose of the ith row in A.. Since each a; is linearly indepen-
dent of c, no p; exists that satisfies Eq. (11.9). This then leaves the five vertices
for verification. At point P; = [0 0]7, both the first and third constraints are
active and Eq. (11.8b) becomes

—1 . 1 0 1251

-4 |0 1 143
which gives 11 = —1 and p3 = —4. Since condition (b) of Theorem 11.2 is
violated, Pj is not a solution. At point P, = [0 3]7, both the first and fifth
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constraints are active, and Eq. (11.8b) becomes

=11 _[1 —-1] [m
Sl=lo =[]

which gives 417 = 1 and pus = 2. Since the rest of the p;’s are all zero,
conditions (a)—(c) of Theorem 11.2 are satisfied with g = p* =[100 0 2]T
and P, = [0 3]7 is a minimizer, i.e., x = x* = P,. One can go on to check
the rest of the vertices to confirm that point P is the unique solution to the

problem. However, the uniqueness of the solution is obvious from Fig. 11.3.
We conclude the example with two remarks on the solution’s uniqueness.
Later on, we will see that the solution can also be verified by using the positivity
of those ;s that are associated with active inequality constraints (see Theorem
11.7 in Sec. 11.2.4.2). If we consider minimizing the linear function f(x) =
cIx with ¢ = [-1 —2]7 subject to the same constraints as above, then the
contours defined by f(x) = constant are in parallel with edge P> P3. Hence any

point on P, Pj is a solution and, therefore, we do not have a unique solution.

|

11.2.3  Geometry of an LP problem
11.2.3.1 Facets, edges, and vertices

The optimality conditions and the two examples discussed in Sec. 11.2.2 indi-
cate that points on the boundary of the feasible region are of critical importance
in LP. For the two-variable case, the feasible region R defined by Eq. (11.2b)
is a polygon, and the facets and edges of R are the same. For problems with
n > 2, they represent different geometrical structures which are increasingly
difficult to visualize and formal definitions for these structures are, therefore,
necessary.

In general, the feasible region defined by R = {x: Ax > b} is a convex
polyhedron. A set of points, F, in the n-dimensional space E™ is said to be
a face of a convex polyhedron R if the condition p;, p2 € F implies that
(p1 + p2)/2 € F. The dimension of a face is defined as the dimension of F.
Depending on its dimension, a face can be a facet, an edge, or a vertex. If [ is
the dimension of a face F, then a facer of F is an (I — 1)-dimensional face, an
edge of F is a one-dimensional face, and a vertex of F is a zero-dimensional
face [4]. As an example, Fig. 11.4 shows the convex polyhedron defined by the
constraints

1+ 70+ 23 <1
120, 29>0, 23>0

1.€.,

Ax>b (11.10)
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with
-1 -1 -1 —1
1 0 0 0
A= 0 1 0l’ b= 0
0 0 1 0

The polyhedron is a three-dimensional face which has four facets, six edges,
and four vertices.

In the case where n = 2, a feasible region defined by Ax > b becomes a
polygon and facets become edges. As can be seen in Fig. 11.3, the vertices of a
polygon are the points where two inequality constraints become active. In the
case where n = 3, Fig. 11.4 suggests that vertices are the points where three
inequality constraints become active. In general, we define a vertex point as
follows [3].

X3

X1

Figure 11.4. Polyhedron defined by Eq. (11.10) and its facets, edges, and vertices.

Definition 11.1 A vertex is a feasible point P at which there exist at least n
active constraints which contain n linearly independent constraints where n is
the dimension of x. Vertex P is said to be nondegenerate if exactly n constraints
are active at P or degenerate if more than n constraints are active at P.
|

Definition 11.1 covers the general case where both equality and inequality
constraints are present. Linearly independent active constraints are the con-
straints that are active at P and the matrix whose rows are the vectors associ-
ated with the active constraints is of full row rank. At point P; in Fig. 11.1,
for example, the equality constraint in Eq. (11.7b) and one of the inequality
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constraints, i.e., xo > 0, are active. This in conjunction with the nonsingularity
of the associated matrix

1 1

0 1

implies that P; is a nondegenerate vertex. It can be readily verified that point
P, in Fig. 11.1, points P; for: = 1, 2,..., 5 in Fig. 11.3, and points F; for
1 =1, 2,..., 4in Fig. 11.4 are also nondegenerate vertices.

As another example, the feasible region characterized by the constraints

r1+x2+23 <1
05214+ 222 +23 <1
120, 29020, w2320

ie.,
Ax>Db (11.11)
with
-1 -1 -1 -1
-05 -2 -1 -1
A= 1 0 0, b= 0
0 1 0 0
0 0 1 0

is illustrated in Fig. 11.5. The convex polyhedron has five facets, eight edges,
and five vertices. At vertex Ps four constraints are active but since n = 3,
Ps is degenerate. The other four vertices, namely, Py, P>, P3 and Py, are
nondegenerate.

X2

Figure 11.5. A feasible region with a degenerate vertex.
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11.2.3.2  Feasible descent directions

A vector d € R™ ! is said to be a feasible descent direction at a feasible
point x € R™*! if d is a feasible direction as defined by Def. 2.4 and the linear
objective function strictly decreases along d, i.e., f(x+ad) < f(x) fora > 0,
where f(x) = c’x. Evidently, this implies that

1

“[f(x+ad) - f(x)]=cld <0 (11.12)

o
For the problem in Eq. (11.2), we denote as A, the matrix whose rows are the
rows of A that are associated with the constraints which are active at x. We
call A, the active constraint matrix at x. If 7 = {j1, jo, ..., ji } is the set

of indices that identify active constraints at x, then
T
T

A, = (11.13)

T
aj
satisfies the system of equations

aij:bj for jeJ

For d to be a feasible direction, we must have
A,(x+ad) > b,
where b, = [bj1 bj2 - - ij]T. It follows that
A, d>0

which in conjunction with Eq. (11.12) characterizes a feasible descent direction
d such that
A, d>0 and c'd<0 (11.14)

Since x* is a solution of the problem in Eq. (11.2) if and only if no feasible
descent directions exist at x*, we can state the following theorem.

Theorem 11.3 Necessary and sufficient conditions for a minimum in alter-
native-form LP problem Point X* is a solution of the problem in Eq. (11.2) if
and only if it is feasible and

c’d>0  foralldwith Ag-d >0 (11.15)

where A .+ is the active constraint matrix at xX*.
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For the standard-form LP problem in Eq. (11.1), a feasible descent direction
d at a feasible point x* satisfies the constraints

Ad=0
dj >0 for j € J.

and
c'd <0

where J. = {j1, j2, ..., jx} is the set of indices for the constraints in
Eq. (11.1c) that are active at x*. This leads to the following theorem.

Theorem 11.4 Necessary and sufficient conditions for a minimum in standard-
Jorm LP problem Point X* is a solution of the LP problem in Eq. (11.1) if and
only if it is a feasible point and

c’'d > 0 forall d withd € N(A) and d; > 0 for j € J. (11.16)
where N'(A) denotes the null space of A.

11.2.3.3 Finding a vertex

Examples 11.1 and 11.2 discussed in Sec. 11.2.2 indicate that any solutions
of the LP problems in Egs. (11.1) and (11.2) can occur at vertex points. In
Sec. 11.2.3.4, it will be shown that under some reasonable conditions, a vertex
minimizer always exists. In what follows, we describe an iterative strategy that
can be used to find a minimizer vertex for the LP problem in Eq. (11.2) starting
with a feasible point xg.

In the kth iteration, if the active constraint matrix at Xy, A, , has rank n,
then xy, itself is already a vertex. So let us assume that rank(A,, ) < n. From
a linear algebra perspective, the basic idea here is to generate a feasible point
X1 such that the active constraint matrix at X1, Ag,, ,, 1S an augmented
version of A,, with rank(A,, ) increased by one. In other words, X1 is
a point such that (a) it is feasible, (b) all the constraints that are active at xy,
remain active at X1, and (c) there is a new active constraint at xj 1, which
was inactive at x;. In this way, a vertex can be identified in a finite number of
steps.

Let

Xpt+1 = X + agdy (11.17)
To assure that all active constraints at x;, remain active at X1, we must have
Aakxk—i-l = bak

where b, is composed of the entries of b that are associated with the constraints
which are active at x;,. Since A, X, = by, , it follows that

A,d,=0 (11.18)
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Since rank(A,, ) < n, the solutions of Eq. (11.18) form the null space of A,
of dimension n —rank(A,, ). Now for a fixed x; and dy, € N'(A,, ), we call an
inactive constraint aiTxk — b; > 0 decreasing with respect to d, if aZTdk < 0.
If the ith constraint is a decreasing constraint with respect to d, then moving
from xj, to xj41 along dg, the constraint becomes

azTXk-i-l —b; = alT(xk + Oékdk) —b;

= (aZTXk — bi) + Ozkadek

with aiTxk —b; > 0and adek < 0. A positive oy that makes the ith constraint
active at point x4 can be identified as

(11.19)

It should be stressed, however, that moving the point along dy, also affects other
inactive constraints and care must be taken to ensure that the value of o, used
does not lead to an infeasible x; 1. From the above discussion, we note two
problems that need to be addressed, namely, how to find a direction dj, in the
null space N/ (A,, ) such that there is at least one decreasing constraint with
respect to dg and, if such a dj is found, how to determine the step size ay in
Eq. (11.17).

Given x;, and A, , we can find an inactive constraint whose normal aZ-T is
linearly independent of the rows of A, . It follows that the system of equations

[AE‘%’C} d; = [_ﬂ (11.20)

a;

has a solution dj, with dj, € N'(A,, ) and a¥'d;, < 0. Having determined dj,
the set of indices corresponding to decreasing constraints with respect to dy,
can be defined as

I = {l aZTXk—bi > 0, aZTdk < 0}

The value of o, can be determined as the value for which x;, + o dy, intersects
the nearest new constraint. Hence, oy, can be calculated as

T —b;
g = min [ TR (11.21)
i€y \ —a; dg

If ¢ = 4" is an index in 7}, that yields the o, in Eq. (11.21), then it is quite clear
that at point x;41 = Xy, + ady, the active constraint matrix becomes

A, = [A%k } (11.22)

ai*
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where rank(A,, . ,) = rank(A,, ) 4 1. By repeating the above steps, a feasible
point x i with rank(A,, ) = n will eventually be reached, and point x i is then
deemed to be a vertex.

Example 11.3 Starting from point xo = [1 1], apply the iterative procedure
described above to find a vertex for the LP problem in Example 11.2.

Solution Since the components of the residual vector at x(, namely,

1
1
I'OZAXQ—b: 1
1.5
3

are all positive, there are no active constraints at xg. If the first constraint (whose
residual is the smallest) is chosen to form equation Eq. (11.20), we have

[10]dg = —1
which has a (nonunique) solutiondg = [—1 0]7. The set Zy in this case contains
only one index, i.e.,
Zo = {1}

Using Eq. (11.21), we obtain cvg = 1 with ¢* = 1. Hence

X1 = xo + apdg = m + [_(1)} B m

with
A, =[10]
At point x7, the residual vector is given by
0 1
2
r = AX1 —b= 1
2.5
4

Now if the third constraint (whose residual is the smallest) is chosen to form

Agl, [1 0], [ O
Gpfa-lo dfa= [

we obtain d; = [0 —1]7. Tt follows that

7, = {3}
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From Eq. (11.21), a; = 1 with ¢* = 3 and, therefore,

X2 = X1 +apd; = {O]

0
10
A= o 1)

Since rank(A,,) = 2 = n, X2 is a vertex. A graphical illustration of this
solution procedure is shown in Fig. 11.6.

with

X1
Figure 11.6. Search path for a vertex starting from point X.

The iterative strategy described above can also be applied to the standard-
form LP problemin Eq. (11.1). Note that the presence of the equality constraints
in Eq. (11.1b) means that at any feasible point xy, the active constraint matrix
A, always contains A as a submatrix.

Example 11.4 Find a vertex for the convex polygon
1 +x2+a3=1

such that

starting with xo = [3 1 2]7.

Wl

Solution At xo, matrix A, is given by Ay, = [1 1 1]. Note that the residual
vector at xg, for the standard-form LP problem is always given by ri = xy.
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T
Hence rp = |3 % %] . If the first inequality constraint is chosen to form
Eq. (11.20), then we have

R

which has a (nonunique) solution dg = [—1 1 0]%. It follows that
To = {1}
and
ap =3 with i* =1
Hence
0
x1 = X0+ apdg = | 2
1
3
At xq,
1 1 1
Aa = {1 0 0}

T
andr; = [0 % %] . Choosing the third inequality constraint to form Eq. (11.20),

1 1 1 0
1 0 0fd;= 0
0 0 1 -1

which leads to d; = [0 1 —1]7. Consequently,

I = {3}
and
alzé with ¥ = 3
Therefore,
0
X9 = X1 + a1dy = [1]
0
At x9,
1 1 1
A, =11 0 0]
0 0 1

Hence rank(A,,) = 3, indicating that X is a vertex. The search path that leads
to vertex xg is illustrated in Fig. 11.7.
|
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X3

X2

X1

Figure 11.7. Search path for a vertex for Example 11.4.

11.2.3.4  Two implementation issues

There are two issues that have to be dealt with when using the method in
Sec. 11.2.3.3 to find a vertex. First, as in the case of any iterative optimization
method, we need to identify a feasible point. As will be shown shortly, this
problem can itself be treated as an LP problem, which is often referred to as a
phase-1 LP problem. Second, in order to move from point xj, to point Xy, we
need to identify a constraint, say, the ¢th constraint, which is inactive at x; such
that a! is linearly independent of the rows of A,,. Obviously, this is a rank
determination problem. Later on in this subsection, we will describe a method
for rank determination based on the QR decomposition of matrix A, .

I. Finding a feasible point. Finding a feasible point for the LP problem in
Eq. (11.2) amounts to finding a vector xo € R™*! such that

AX() > b
To this end, we consider the modified constraints
Ax+¢e>Db (11.23)
where ¢ is an auxiliary scalar variable and e = [1 1 --- 1]7. Evidently, if
x = 0and ¢ = ¢9 = max(0, b1, b, ..., by)inEq. (11.23) where b; is the ith
component of b in Eq. (11.23), then ¢ > 0 and Eq. (11.23) is satisfied because
A0+ ¢oe>Db

In other words, if we define the augmented vector x as

[3
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then the initial value
R 0
— 11.24
0 { %o } ( )

satisfies the constraints in Eq. (11.23). This suggests that a phase-1 LP problem
can be formulated as

minimize ¢ (11.25a)
subjectto: Ax+¢e > b (11.25b)
¢ >0 (11.25¢)

A feasible initial point for this problem is given by Eq. (11.24). If the solution
is assumed to be
& — x*|  [x*
=1s1= |0

then at X* the constraints in Eq. (11.25b) become Ax* > b and hence x* is
a feasible point for the original LP problem. If ¢* > 0, we conclude that no
feasible point exists for constraints Ax > b and ¢* then represents a single
perturbation of the constraint in Eq. (11.2b) with minimum L, norm to ensure
feasibility. In effect, point x* would become feasible if the constraints were
modified to

Ax>b withb=b— ¢*e (11.26)

IL Finding a linearly independent a]. Assume that at x, rank(A,, ) = 7y,
with 7 < n. Finding a normal vector a] associated with an inactive constraint
at x;, such that a is linearly independent of the rows of A, . 1s equivalent to
finding an a! such that rank(A,, ) = 7 4+ 1 where

A,
(11.27)

An effective way of finding the rank of a matrix obtained through finite-
precision computations is to perform QR decomposition with column pivoting,
which can be done through the use of the Householder QR decomposition
described in Sec. A.12.2 (see also [5, Chap. 5]). On applying this procedure
to a matrix M € R™ " with m < n, after r steps of the procedure we obtain

MP™ = QMR
where Q") € R™ ™ is an orthogonal matrix, P(") € R™*™ is a permutation
matrix, and
[RYB R%Z)]
R —

0o Ry
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where Rﬁ) € R™" is nonsingular and upper-triangular. If HR;E) [|2 is negligi-
ble, then the numerical rank of M is deemed to be r. A reasonable condition
for terminating the QR decomposition is

IR (|2 < e]|M]]s (11.28)

where ¢ is some small machine-dependent parameter. When Eq. (11.28) is
satisfied, block Rgg) is set to zero and the QR decomposition of M becomes

MP = QR
where P = P, Q = Q(), and

R{) R{}
R = (11.29)
0 o0

For matrix A,, in Eq. (11.27), the above QR decomposition can be applied to
Al € R withr < n,ie.,

T
ATP=QR (11.30)

where R has the form of Eq. (11.29), and the size of Rﬁ? gives therank of A, .
A nice feature of the QR decomposition method is that if matrix A, is altered
in some way, for example, by adding a rank-one matrix or appending a row (or
column) to it or deleting a row (or column) from it, the QR decomposition of
the altered matrix can be obtained based on the QR decomposition of matrix
A, with a computationally simple updating procedure (see Sec. A.12 and
[5, Chap. 12]). In the present case, we are interested in the QR decomposition
of Agk in Eq. (11.27), which is obtained from Azk by appending a; as the last
column. If we let
p_ [P 0]

0 1
it follows from Eq. (11.30) that

QAT P = QT[Al a)P
= [Q"Al P Q"a] =R w;]

R} R
w; (11.31)

0 0

where w; = QTa; is a column vector with n entries. Note that if we apply
n — r + 1 Givens rotations (see Sec. A.11.2 and [5, Chap. 5]) J;‘F for 1 <[ <
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n —r — 1 to w; successively so that

F gy T
Ur
Tnpoa 5 Iiwi = |
0
(:] }(n—r—l)zeros

then the structure of R is not changed. Now by defining

A~

J=J,Jy - Ju,q and Q=QJ
Eqgs. (11.31) and (11.32) yield

-
R RE
QTATP=JR w]=| 1
0
0 0 :
L ! 0 -

(11.32)

(11.33)

where Rﬁ) is anr X r nonsingular upper triangular matrix. If ¢, is negligible,

then rank(Aak) may be deemed to be ; hence a!’

is not linearly independent

of the rows of A, . However, if 1/, is not negligible, then Eq. (11.33) shows
that rank(Aak) = r + 1 so that a! is a desirable vector for Eq. (11.20). By
applying a permutation matrix P, to Eq. (11.33) to interchange the (r + 1)th
column with the last column for the matrix on the right-hand side, the updated

QR decomposition of AaTk is obtained as

AT P =QR

k

where P = PP, is a permutation matrix and R is given by

R RE
R =

0 0

with )
o) Ry
Ry, = :

L 0 wr—i-l
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11.2.4  Vertex minimizers
11.2.4.1 Finding a vertex minimizer

The iterative method for finding a vertex described in Sec. 11.2.3.3 does not
involve the objective function f(x) = c¢’'x. Consequently, the vertex obtained
may not be a minimizer (see Example 11.3). However, as will be shown in the
next theorem, if we start the iterative method at a minimizer, a vertex would
eventually be reached without increasing the objective function which would,
therefore, be a vertex minimizer.

Theorem 11.5 Existence of a vertex minimizer in alternative-form LP prob-
lem If the minimum of f(x) in the alternative-form LP problem of Eq. (11.2)
is finite, then there is a vertex minimizer.

Proof If xg is a minimizer, then X is finite and satisfies the conditions stated
in Theorem 11.2. Hence there exists a ;™ > 0 such that

c=ATp (11.34)

By virtue of the complementarity condition in Eq. (11.8c), Eq. (11.34) can be
written as
c=AL u* (11.35)

ao

where A, is the active constraint matrix at X and p, is composed of the entries
of p* that correspond to the active constraints. If xg is not a vertex, the method
described in Sec. 11.2.3.3 can be applied to yield a point x; = xg + apdg
which is closer to a vertex, where dg is a feasible direction that satisfies the
condition A,,dgp = O (see Eq. (11.18)). It follows that at x; the objective
function remains the same as at xg, i.e.,

f(x1) =c"xy = cxp + aopiT Agydo = ' x0 = f(x0)

which means that x; is a minimizer. If x; is not yet a vertex, then the process
is continued to generate minimizers X2, X3, ... until a vertex minimizer is
reached.

[ ]

Theorem 11.5 also applies to the standard-form LP problem in Eq. (11.1). To
prove this, let xg be a finite minimizer of Eq. (11.1). It follows from Eq. (11.5¢)
that

c=ATX +u* (11.36)

The complementarity condition implies that Eq. (11.36) can be written as

c=ATX 418 u; (11.37)



342

where I consists of the rows of the n x n identity matrix that are associated with
the inequality constraints in Eq. (11.3c) that are active at xg, and p, is composed
of the entries of p* that correspond to the active (inequality) constraints. At
X0, the active constraint matrix A, is given by

A
A, = {Io} (11.38)
Hence Eq. (11.37) becomes
c=A,n, with n, = w (11.39)

which is the counterpart of Eq. (11.35) for the problem in Eq. (11.1). The rest
of the proof is identical with that of Theorem 11.5. We can, therefore, state the
following theorem.

Theorem 11.6 Existence of a vertex minimizer in standard-form LP prob-
lem If the minimum of f(x) in the LP problem of Eq. (11.1) is finite, then a
vertex minimizer exists.

|

11.24.2  Uniqueness

A key feature in the proofs of Theorems 11.5 and 11.6 is the connection
of vector c to the active constraints as described by Eqs. (11.35) and (11.39)
through the Lagrange multipliers p* and A*. As will be shown in the next
theorem, the Lagrange multipliers also play a critical role in the uniqueness of
a vertex minimizer.

Theorem 11.7 Uniqueness of minimizer of alternative-form LP problem Let
x* be a vertex minimizer of the LP problem in Eq. (11.2) at which

T _ T , *
Y *Aa*“a

where p}, > 0 is defined in the proof of Theorem 11.5. If ), > 0, then x* is
the unique vertex minimizer of Eq. (11.2).

Proof Let us suppose that there is another vertex minimizer X # x*. We can
write

x=x"+d

withd = x—x* #£ 0. Since both x* and x are feasible, d is a feasible direction
which implies that A «~d > 0. Since x* is a vertex, A~ is nonsingular; hence
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A ,+d > 0 together with d # 0 implies that at least one component of A ,-d,
say, (Ag+d);, is strictly positive. We then have

0=f(x)—f(x*)=clx—cIx*=cld
*T *
= Hq Aypd > (Ha)i : (Aa*d)z >0
The above contradiction implies that another minimizer X cannot exist.
|

For the standard-form LP problem in Eq. (11.1), the following theorem ap-
plies.

Theorem 11.8 Uniqueness of minimizer of standard-form LP problem Con-
sider the LP problem in Eq. (11.1) and let X* be a vertex minimizer at which

T _ T %
c _Aa*na

A L[
S E R

where 1, consists of the rows of the n X n identity matrix that are associated
with the inequality constraints in Eq. (11.1c) that are active at x*, X* and p*
are the Lagrange multipliers in Eq. (11.5c), and W, consists of the entries of
p* associated with active (inequality) constraints. If p) > 0, then X* is the
unique vertex minimizer of the problem in Eq. (11.1).

with

|

Theorem 11.8 can be proved by assuming that there is another minimizer x
and then using an argument similar to that in the proof of Theorem 11.7 with
some minor modifications. Direction ¢ being feasible implies that
Ad| [ O
IL.d| |Ld
where I.d consists of the components of d that are associated with the active
(inequality) constraints at x*. Since A+ is nonsingular, Eq. (11.40) in con-
junction with d # 0 implies that at least one component of I.d, say, (I.d);, is
strictly positive. This yields the contradiction

0= f(%) - f(x*) =c'd
= N 2 Ad = ) Ld > () - (Ld);
>0

A, d= { } >0 (11.40)

The strict positiveness of the Lagrange multiplier g, is critical for the unique-
ness of the solution. As a matter of fact, if the vertex minimizer x* is nonde-
generate (see Def. 11.1 in Sec. 11.2.3.1), then any zero entries in p) imply the
nonuniqueness of the solution. The reader is referred to [3, Sec. 7.7] for the
details.
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11.3  Simplex Method
11.3.1 Simplex method for alternative-form LP problem

In this section, we consider a general method for the solution of the LP
problemin Eq. (11.2) known as the simplex method. It was shown in Sec. 11.2.4
that if the minimum value of the objective function in the feasible region is
finite, then a vertex minimizer exists. Let xg be a vertex and assume that it
is not a minimizer. The simplex method generates an adjacent vertex x; with
f(x1) < f(x0) and continues doing so until a vertex minimizer is reached.

11.3.1.1 Nondegenerate case

To simplify our discussion, we assume that all vertices are nondegenerate,
i.e., at a vertex there are exactly n active constraints. This assumption is often
referred to as the nondegeneracy assumption [3] in the literature.

Given a vertex X, a vertex X1 is said to be adjacent to x;, if A, , , differs
from A, by one row. In terms of the notation used in Sec. 11.2.3.2, we denote
A, as

a;

where a;, is the normal of the j;th constraint in Eq. (11.2b). Associated with
A, is the index set
Te = {Jj1, J2 -+, Jn}

Obviously, if Jj and Jj41 have exactly (n — 1) members, vertices x;, and Xy 1
are adjacent. At vertex Xy, the simplex method verifies whether x;, is a vertex
minimizer, and if it is not, it finds an adjacent vertex x 1 that yields a reduced
value of the objective function. Since a vertex minimizer exists and there is
only a finite number of vertices, the simplex method will find a solution after a
finite number of iterations.

Under the nondegeneracy assumption, A, is square and nonsingular. Hence
there exists a p;, € R™*! such that

c=Al w, (11.41)

Since x;, is a feasible point, by virtue of Theorem 11.2 we conclude that xy, is
a vertex minimizer if and only if

py >0 (11.42)

In other words, xy, is not a vertex minimizer if and only if at least one component
of g, say, ()1, is negative.



Linear Programming Part I: The Simplex Method 345
Assume that x;, is not a vertex minimizer and let
(1) <0 (11.43)

The simplex method finds an edge as a feasible descent direction dj, that points
from x;, to an adjacent vertex Xx1 given by

Xp4+1 = Xi + ody (11.44)

It was shown in Sec. 11.2.3.2 that a feasible descent direction dy, is characterized
by

A,dr,>0 and c’d, <0 (11.45)
To find an edge that satisfies Eq. (11.45), we denote the [th coordinate vector
(i.e., the Ith column of the n x n identity matrix) as e; and examine vector dy,

that solves the equation
A, dp=¢ (11.46)

From Eq. (11.46), we note that A,, d;, > 0. From Egs. (11.41), (11.43), and
(11.46), we have

c'dy = pf Ao, dy, = piler = (pg)i <0

and hence dy, satisfies Eq. (11.45) and, therefore, it is a feasible descent direc-
tion. Moreover, for ¢ # [ Eq. (11.46) implies that

T _.T Ty _ 1.
a; (xx + ady) = aj,x; + aaj,dg = by,

Therefore, there are exactly n — 1 constraints that are active at x; and remain
active at x; + adg. This means that x; + adi with @ > 0 is an edge that
connects Xy, to an adjacent vertex x4 With f(xx4+1) < f(xx). By using an
argument similar to that in Sec. 11.2.3.3, the right step size oy, can be identified

as
T
. a xp — b;
aj = min | b (11.47)
1€1y —a; d;
where 7, contains the indices of the constraints that are inactive at x; with
adek <0,i.e.,
_f;. a7 T
Ik—{l. a; xk—bi>0andai dk<0} (11.48)

Once oy is calculated, the next vertex Xy is determined by using Eq. (11.44).
Now if +* € Zj is the index that achieves the minimum in Eq. (11.47), i.e.,

T
;X — bi*

af =
T
a;.dy
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then at X1 the :*th constraint becomes active. With the j;th constraint leaving
A, and the i*th constraintentering A there are exactly n active constraints
at xj1 and Ag, , given by

Ak41°

Ay, = | ak (11.49)

and the index set is given by

Ti+1 =1{d1s -+, Ji-1, 7 Jig1s -+, Jn} (11.50)

A couple of remarks on the method described are in order. First, when
the Lagrange multiplier vector u, determined by using Eq. (11.41) contains
more than one negative component, a ‘textbook rule’ is to select the index [ in
Eq. (11.46) that corresponds to the most negative component in g, [3]. Second,
Eq. (11.47) can be modified to deal with the LP problem in Eq. (11.2) with an
unbounded minimum. If the LP problem at hand does not have a bounded
minimum, then at some iteration k the index set Z; will become empty which
signifies an unbounded solution of the LP problem. Below, we summarize
an algorithm that implements the simplex method and use two examples to
illustrate its application.

Algorithm 11.1 Simplex algorithm for the alternative-form LP prob-
lem in Eq. (11.2), nondegenerate vertices
Step 1
Input vertex xg, and form A,, and Jo.
Setk = 0.
Step 2
Solve
Al pp=c (11.51)

for .
If ;. > 0, stop (xx is a vertex minimizer); otherwise, select the index /
that corresponds to the most negative component in fty,.
Step 3
Solve
Aakdk =€ (11.52)

for dy,.
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Step 4
Compute the residual vector

ry = AXk —b= (TZ‘)?:I (1153&)
If the index set

Tp = {i: r; >0and a’d; < 0} (11.53b)

is empty, stop (the objective function tends to —co in the feasible region);
otherwise, compute

ri
= mi 11.53¢
@k = mmin <_a%pdk> ( )
and record the index i* with ay, = r;«/(—akdy).
Step 5
Set

Xp+1 = Xg + opdyg (11.54)

Update A, ., and Ji1 using Egs. (11.49) and (11.50), respectively.
Set £ = k + 1 and repeat from Step 2.

Example 11.5 Solve the LP problem in Example 11.2 with initial vertex xo =
[2 1.5]7 using the simplex method.

Solution From Example 11.2 and Fig. 11.3, the objective function is given by
f(x) =clx = —z1 — 4y

and the constraints are given by Ax > b with

1 0 0

-1 0 -2

A= 0 1 and b= 0
-1 -1 —-3.5

-1 -2 —6

We note that at vertex X, the second and fourth constraints are active and hence

-1 0
Aaoz[_l _J, Jo= {2, 4)

Solving Al p1y = c for pg where ¢ = [-1 —4]7, we obtain py = [—3 4]7.
This shows that xq is not a minimizer and [ = 1. Next we solve

Aaod() = e
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for dg to obtain dg = [—1 1]7. From Fig. 11.3, it is evident that d, is a feasible
descent direction at xg. The residual vector at xg is given by
2
0
rg = A.XO —b=115
0
1
which shows that the first, third, and fifth constraints are inactive at xy. Fur-
thermore,
al’ 1 0 —-1
T -1
al -1 -2 ~1
Hence
Zo = {1,5}
and

. ! T's5 1
g = min =
TAa.’ T

The next vertex is obtained as

X1:X0+Od()d(): |:25:|

with ) 5
A, = [:1 :1] and J; = {5, 4}
This completes the first iteration.
The second iteration starts by solving Afl p, = c for p;. It is found that

i, = [3 —2]7. Hence x; is not a minimizer and [ = 2. By solving

A, di =e

we obtain the feasible descent direction d; = [—2 1]7. Next we compute the
residual vector at x; as

1

1

r, = AX1 —b=|25
0
0

which indicates that the first three constraints are inactive at x;. By evaluating

o=l -
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we obtain

Iy = {1}
and

R
—a;d;
This leads to
Xy =xX1 +a1dy = {g]

with

-1 -2
Aa2:[ 1 0} and J» = {5, 1}

which completes the second iteration.
Vertex xg is confirmed to be a minimizer at the beginning of the third iteration
since the equation
T
Aa2 Ho =C

yields nonnegative Lagrange multipliers p,, = [2 3]7.

Example 11.6 Solve the LP problem

minimize f(x) = z1 + x2

subject to: —x1 > —2
—X9 Z —2

201 — 19 > —2

—2x1 — 19 > —4

Solution The constraints can be written as Ax > b with

-1 0 -2

0 -1 -2

A= 9 _1 and b= _9
-2 -1 —4

The feasible region defined by the constraints is illustrated in Fig. 11.8. Note
that the feasible region is unbounded.

Assume that we are given vertex xo = [1 2] to start Algorithm 11.1. At
Xg, the second and fourth constraints are active and so

0 -1
AaO:[_2 _1} and Jp = {2, 4}
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X1

d

Figure 11.8. Feasible region for Example 11.6.

Equation AZ p1y = cyields pty = [—3 —3]7 and hence X is not a minimizer.
Since both components of p are negative, we can choose index [ to be either
1 or 2. Choosing [ = 1, Eq. (11.46) becomes A,,dy = e; which gives

do = [} —1]T. The residual vector at X is given by

1
I‘():AX()—b: g
0

Hence the first and third constraints are inactive at xg. We now compute
T 1 1
al I 1 0 5 _ |73
el AR 10
to identify index set Zp = {1}. Hence

1
T =

o = 2

and the next vertex is given by

2
X1 = Xo + apdg = [O}

with .
A, =1 Ol and 7 = {1, 4}
-2 -1
Next we examine whether or not x; is a minimizer by solving Agl p; = c. This
gives p; = [3 —2]7 indicating that x; is not a minimizer and [ = 2. Solving
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A, d; = ey for di, we obtain d; = [0 —1]7. At x; the residual vector is
given by

0
2
ra= AX1 —b= 6
0
Hence the second and third constraints are inactive. Next we evaluate
T
a; {0 -1 o |1
o= o] [4]-1

Since 7 is empty, we conclude that the solution of this LP problem is un-
bounded.
|

11.3.1.2  Degenerate case

When some of the vertices associated with the problem are degenerate, Al-
gorithm 11.1 needs several minor modifications. At a degenerate vertex, say,
X, the number of active constraints is larger than n minus the dimension of
variable vector x. Consequently, the number of rows in matrix A,, is larger
than n and matrix A, should be replaced in Steps 2 and 3 of Algorithm 11.1
by a matrix A, . thatis composed of n linearly independent rows of A, . Like-
wise, A, in Step 1 and A in Step 5 should be replaced by Aao and A
respectively.

The set of constraints corresponding to the rows in A, . 1s called aworking set

Ak+1 ak+1°

of active constraints and in the literature A, . is oftenreferred to as a working-set
matrix.
Associated with A, is the working index set denoted as

Wk = {wl, wa, - .., wn}

which contains the indices of the rows of Aak as they appear in matrix A.
Some additional modifications of the algorithm in terms of the notation just
introduced are to replace 7y in Step 1 and Jj+1 in Step 5 by Wy and Wy 1,
respectively, and to redefine the index set Z; in Eq. (11.48) as

Ty ={i: i ¢ Wyandald; <0} (11.55)

Relative to Zj, in Eq. (11.48), the modified Z;, in Eq. (11.55) also inclgdes the
indices of the constraints that are active at x;, but are excluded from A,, and
which satisfy the inequality adek < 0.

Obviously, for a nondegenerate vertex xi, A,, = A, and there is only
one working set of active constraints that includes all the active constraints at
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x) and 7, does not contain indices of any active constraints. For a degenerate
vertex X, however, A, is not unique and, as Eq. (11.55) indicates, 7}, may
contain indices of active constraints. When Z;. does include the index of an
active constraint, the associated residual is zero. Consequently, the step size
ay computed using Eq. (11.53c) is also zero, which implies that xx41 = X.
Although under such circumstances the working index set Wy,1 will differ
from W, the possibility of generating an infinite sequence of working index
sets without moving from a given vertex does exist. For an example where such
‘cycling’ occurs, see [3, Sec. 8.3.2].

Cycling can be avoided by using an approach proposed by Bland [6]. The ap-
proach is known as Bland'’s least-index rule for deleting and adding constraints
and is as follows:

1. In Step 2 of Algorithm 11.1, if the Lagrange multiplier £¢;, has more than
one negative components, then index [ is selected as the smallest index in
the working index set WV, corresponding to a negative component of p,,,
i.e.,

l= min wj 11.56
wi €W, (uk-)i<0( ) ( )

2. In Step 4, if there are more than one indices that yield the optimum o
in Eq. (11.53c), then the associated constraints are called blocking con-
straints, and ¢* is determined as the smallest index of a blocking constraint.

The steps of the modified simplex algorithm are as follows.

Algorithm 11.2 Simplex algorithm for the alternative-form LP prob-
lem in Eq. (11.2), degenerate vertices
Step 1
Input vertex x( and form a working-set matrix Aao and a working-index
set W.
Set k= 0.
Step 2
Solve X
Al pp=c (11.57)
for .
If p;, > 0, stop (vertex xj, is a minimizer); otherwise, select index !
using Eq. (11.56).
Step 3
Solve
A, dy=¢ (11.58)

for dy,.



Linear Programming Part I: The Simplex Method 353

Step 4

Form index set Z; using Eq. (11.55).

If Z, is empty, stop (the objective function tends to —oo in the feasible
region).

Step 5

Compute the residual vector

rp = Ax, —b = (i),

parameter
T .
5 = —afdk for i € I, (11.59a)
and
= min(d; 11.59b
o, greuzrkl(éz) (11.59b)
Record index 7* as
i* = min () (11.59¢)

di=ay

Step 6

Set X411 = Xk + apdg.

Update A, 4.1 DYy deleting row alT and adding row a’. and update index
set Wy 1 accordingly.

Set k = k + 1 and repeat from Step 2.

Example 11.7 Solve the LP problem
minimize f(x) = —2z1 — 3x2 + x3 + 1224

subjectto: x1 >0, 29 >0, 23>0, x4 > 0
2014+ 929 —x3 — 924 > 0

1
371 — X2+ %563%—2:84 >0
(See [3, p. 351].)

Solution We start with xo = [0 0 0 0]7 which is obviously a degenerate
vertex. Applying Algorithm 11.2, the first iteration results in the following
computations:

1 0 0 O

A 01 00
Aay = 0 010
0 0 01

W ={1,2 3,4}
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Zo = {6}
ag =0
i* =6
x; =x0=1[0000]"
1 1
R
Aa =109 o1 0
0 0 0 1

Wr = {6, 2, 3, 4}

Note that although x; = xg, Aal differs from Aao. Repeating from Step 2, the
second iteration (k = 1) gives

1

=3
d,=[1o010/"
ri=1[0000]7
I, = {¢}

where 7 is an empty set. Therefore, in the feasible region the objective function
tends to —oo.

As a matter of fact, all the points along the feasible descent direction d; are
feasible, i.e.,

x=x1; +ad; =[a0a0]” for >0

where f(x) = —a approaches —oo as @ — +00.

11.3.2  Simplex method for standard-form LP problems
11.3.2.1 Basic and nonbasic variables

For a standard-form LP problem of the type given in Eq. (11.1) with a matrix
A of full row rank, the p equality constraints in Eq. (11.1b) are always treated
as active constraints. As was discussed in Sec. 10.4.1, these constraints reduce
the number of ‘free’ variables from n to n — p. In other words, the p equality
constraints can be used to express p dependent variables in terms of n — p inde-
pendent variables. Let B be the matrix that consists of p linearly independent
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columns of A. If the variable vector x is partitioned accordingly, then we can
write the equality constraint in Eq. (11.2b) as

Ax = B N] L’;ﬂ =Bxp+Nxy=b (11.60)

The variables contained in x g and Xy are called basic and nonbasic variables,
respectively. Since B is nonsingular, the basic variables can be expressed in
terms of the nonbasic variables as

xg = B 'b — B !Nxy (11.61)

At vertex Xy, there are at least n active constraints. Hence in addition to the p
equality constraints, there are at least n — p inequality constraints that become
active at x;. Therefore, for a standard-form LP problem a vertex contains at
least n — p zero components. The next theorem describes an interesting pro-
perty of A.

Theorem 11.9 Linear independence of columns in matrix A The columns
of A corresponding to strictly positive components of a vertex Xy, are linearly
independent.

Proof We adopt the proof used in [3]. Let B be formed by the columns of A that
correspond to strictly positive components of xj, and let X, be the collection of
the positive components of x. If Bw = 0 for some nonzero w, then it follows
that

Ax, =Bx, =B(X,+aw)=b

for any scalar . Since x; > 0, there exists a sufficiently small ;. > 0 such
that
Vi =X +aw >0 for —ay <a<ag

Now let y;, € R™ ! be such that the components of y;, corresponding to X, are
equal to the components of ¥ and the remaining components of yy are zero.
Evidently, we have

Ay, =By, =b
and
yr > 0 for —ay <a<ay

Note that with o = 0, y; = Xy, is a vertex, and when « varies from —a to
a4, vertex x; would lie between two feasible points on a straight line, which
is a contradiction. Hence w must be zero and the columns of B are linearly
independent.

]
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By virtue of Theorem 11.9, we can use the columns of B as a set of core
basis vectors to construct a nonsingular square matrix B. If BA already contains
p columns, we assume that B = B; otherwise, we augment B with additional
columns of A to obtain a square nonsingular B. Let the index set associated
with B at x;, be denoted as Zg = {1, (o, ..., Bp}. With matrix B so formed,
matrix N in Eq. (11.60) can be constructed with those n — p columns of A that
are not in B. Let Zy = {v1, va, ..., vp—p} be the index set for the columns
of N and let Iy be the (n — p) x n matrix composed of rows vy, va, . . ., Vp—p
of the n x n identity matrix. With this notation, it is clear that at vertex xy, the
active constraint matrix A, contains the working-set matrix

A A
A, = [IN} (11.62)
as an n X n submatrix. It can be shown that matrix Aak in Eq. (11.62) is
nonsingular. In factif A,, x = 0 for some x, then we have

Bxgp+Nxy =0 and xy =0

It follows that
xg=—-B !Nxy =0

and hence x = 0. Therefore, A, . 1s nonsingular. In summary, at a vertex xj a
working set of active constraints for the application of the simplex method can
be obtained with three simple steps as follows:

(a) Select the columns in matrix A that correspond to the strictly positive
components of x; to form matrix B.

(b) If the number of columns in Bis equal to p, take B = ]:3:; otherwise, B
is augmented with additional columns of A to form a square nonsingular
matrix B.

(¢) Determine the index set 7, and form matrix I.

Example 11.8 Identify working sets of active constraints at vertex x = [3 0 0 0]
for the LP problem

minimize f(x) = x1 — 2x9 — x4
subject to: 31 +4x0+23 =9

201+ a0+ 14 =6
2120, 2020, 23>0, 24 >0

Solution It is easy to verify that point x = [3 0 0 0] is a degenerate vertex
at which there are five active constraints. Since x is the only strictly positive
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component, B contains only the first column of A, i.e.,
- 3
B -
H

Matrix B can be augmented, for example, by using the second column of A to
generate a nonsingular B as

3 4
B=[3 ]
This leads to
34 1 0
" 2 1 0 1
In ={3,4} and A, = 00 1 0
0 0 0 1

Since vertex x is degenerate, matrix A, is not unique. As a reflection of this
nonuniqueness, there are two possibilities for augmenting B. Using the third
column of A for the augmentation, we have

3 1
B-[ o
which gives
In ={2, 4}
and
3410
A 2 1 01
Aa = 01 0 0
0 0 0 1
Alternatively, augmenting B with the fourth column of A yields
30
5[y 1]
which gives
In =12, 3}
and
3410
A 2 1 01
Aa = 01 0 0
00 10

It can be easily verified that all three A,’s are nonsingular.



358

11.3.2.2  Algorithm for standard-form LP problem

Like Algorithms 11.1 and 11.2, an algorithm for the standard-form LP prob-
lem based on the simplex method can start with a vertex, and the steps of
Algorithm 11.2 can serve as a framework for the implementation. A major
difference from Algorithms 11.1 and 11.2 is that the special structure of the
working-set matrix A, in Eq. (11.62) can be utilized in Steps 2 and 3, which
would result in reduced computational complexity.

At a vertex xy, the nonsingularity of the working-set matrix Aak given by
Eq. (11.62) implies that there exist A\, € RP*! and f1;, € R P)*1 such that

Ak

c=Al ﬂk] = AT, + 15, (11.63)

If p;, € R™¥! is the vector with zero basic variables and the components of i,
as its nonbasic variables, then Eq. (11.63) can be expressed as

c=ATXN, + (11.64)

By virtue of Theorem 11.1, vertex xj, is a minimizer if and only if fi;, > 0. If
we use a permutation matrix, P, to rearrange the components of ¢ in accordance
with the partition of x;, into basic and nonbasic variables as in Eq. (11.60), then
Eq. (11.63) gives

Pc = {CB} = PAT ), + PIL ju,,

CN
N e (]
= AL+ |-
[NT F 1273
It follows that
and
fr, = cy — NI, (11.66)

Since B is nonsingular, Ay and fi;, can be computed using Eqgs. (11.65) and
(11.66), respectively. Note that the system of equations that need to be solved
is of size p X p rather than n X n as in Step 2 of Algorithms 11.1 and 11.2.

If some entry in f;, is negative, then xj, is not a minimizer and a search
direction dy, needs to be determined. Note that the Lagrange multipliers fi,,
are not related to the equality constraints in Eq. (11.1b) but are related to those
bound constraints in Eq. (11.1c) that are active and are associated with the
nonbasic variables. If the search direction dy, is partitioned according to the
basic and nonbasic variables, x g and x, into d,gB) and d,(cN), respectively, and
if (f1,); < 0, then assigning

V) = ¢ (11.67)
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where €; is the [th column of the (n — p) X (n — p) identity matrix, yields
a search direction d; that makes the v;th constraint inactive without affecting
other bound constraints that are associated with the nonbasic variables. In order
to assure the feasibility of dg, it is also required that Ad; = 0 (see Theorem
11.4). This requirement can be described as

Adj, =Bd” + Nd{™ = Bd” + Ne, = 0 (11.68)

where Ne; is actually the v;th column of A. Hence d,(fB)

solving the system of equations

can be determined by

Bd” = —a,, (11.69a)
where
a,, = Ne (11.69b)

Together, Eqgs. (11.67) and (11.69) determine the search direction d;. From
Egs. (11.63), (11.67), and (11.68), it follows that

N ~ N ~
cTd = AL Ad, + afTIndy, = pfd™) = ple,

= ()1 <0

Therefore, dy, is a feasible descent direction. From Egs. (11.67) and (11.69), it
is observed that unlike the cases of Algorithms 11.1 and 11.2 where finding a
feasible descent search direction requires the solution of a system of n equations
(see Egs. (11.52) and (11.58)), the present algorithm involves the solution of a
system of p equations.

Considering the determination of step size ag, we note that a point x;, + ady,
with any « satisfies the constraints in Eq. (11.1b), i.e.,

A(xp +adg) = Ax, + aAdg =b

Furthermore, Eq. (11.67) indicates that with any positive «, X + ady does
not violate the constraints in Eq. (11.1c) that are associated with the nonbasic
variables. Therefore, the only constraints that are sensitive to step size ay
are those that are associated with the basic variables and are decreasing along
direction d;. When limited to the basic variables, d; becomes dng). Since
the normals of the constraints in Eq. (11.1c) are simply coordinate vectors, a
bound constraint associated with a basic variable is decreasing along dj if the
associated component in dl(CB) is negative. In addition, the special structure of
the inequality constraints in Eq. (11.1c) also implies that the residual vector,
when limited to basic variables in x g, is x g itself.

The above analysis leads to a simple step that can be used to determine the
index set

T = {i: (d\P); <0} (11.70)
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and, if Z;, is not empty, to determine o, as

C !
O = in |~ (11.71)
€Ty | (—dP)y,

where xggB) denotes the vector for the basic variables of x;,. If ¢* is the index in

7} that achieves ay, then the ¢*th component of x,(gB) + akd,(f) is zero. This

zero component is then interchanged with the /th component of x,(CN) which is

now not zero but ;. The vector X](CB) + adgﬁB) after this updating becomes

x,(fr)l and, of course, X,(ﬁ)l remains a zero vector. Matrices B and N as well as
the associated index sets Zp and Z also need to be updated accordingly. An

algorithm based on the above principles is as follows.

Algorithm 11.3 Simplex algorithm for the standard-form LP prob-
lem of Eq. (11.1)

Step 1

Input vertex xg, set £ = 0, and form B, N, X[()B), Ip =
(8, 8, 80 and Ty = {1, A0, )

Step 2

Partition vector c into cg and cy.

Solve Eq. (11.65) for Ay and compute ft;, using Eq. (11.66).

If fi;, > 0, stop (xy, is a vertex minimizer); otherwise, select the index /
that corresponds to the most negative component in fiy,.

Step 3

Solve Eq. (11.69a) for d,(CB) where a,, is the Z/l(k)th column of A.

Step 4

Form index set Z;, in Eq. (11.70).

If Z, is empty then stop (the objective function tends to —oo in the fea-
sible region); otherwise, compute o, using Eq. (11.71) and record the

index ¢* with a, = (xéB))i*/(—d(B))i*-

Step 5
Compute x,(ﬁ)l = ngB) + akd,(cB) and replace its ¢*th zero component
by .

Set x,(ﬁ)l =0.

Update B and N by interchanging the /th column of N with the i*th
column of B.

Step 6

Update Zp and Zy by interchanging index yl(k) of 7,y with index BZ-(F )
of Ip.
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Use the Xg_)l and x,(fi)l obtained in Step 5 in conjunction with Zp and

In to form xg 1.
Set k = k + 1 and repeat from Step 2.

Example 11.9 Solve the standard-form LP problem

minimize f(x) = 2z1 + 9x2 + 33

subject to: — 21+ 229+ 23 —24 = 1

|
—

T +4r9 — 13 —T5 =
2120, 202>0, 23>0, 24 >0, 25 >0

Solution From Eq. (11.1)

-2 2 1 -1 0 1
A‘{14—1 0—1}’ b_M

and
c=[29300"T

To identify a vertex, we set x1 = x3 = x4 = 0 and solve the system
o alz]=0]
4 —1]|z5 1
for x4 and x5. This leads to zo = 1/2 and x5 = 1; hence
xo=1[02001)"

is a vertex. Associated with xg are Zp = {2, 5}, Zny = {1, 3, 4}

2 0 -2 1 -1 @ _[3
BLL _1}, N[ 1 1 0}, and x; [1

Partitioning c into
cg=1[90" and cy=[230]"
and solving Eq. (11.65) for Ay, we obtain Ay = [% 0]”. Hence Eq. (11.66)

gives
2 -2 17 9 11
3] 1 -1 [2}: -2
0 -1 0 0

Since (f1p)2 < 0, X is not a minimizer, and | = 2. Next, we solve Eq. (11.69a)

for dE)B) with Véo) =3andag = [1 —1]7, which yields

llo:

Nojowl

1
ng>:[:§} and Tp = {1, 2}
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Hence
aozmin(l,%) :% and " =2

To find ng), we compute

1
x(? +andl” = 3]

and replace its ¢*th component by ay, i.e.,

1
X%B):{:{’] with ng):[g}
3
Now we update B and N as
2 1 -2 0 -1
B_[4 —1] and N_{ 1 -1 0}

and update Zp and Zy as Zp = {2, 3} and Zy = {1, 5, 4}. The vertex
obtained is
T
x| = [0 0 0}

Wl
Wl

to complete the first iteration.
The second iteration starts with the partitioning of ¢ into

9 2
cp = {3] and cy =10
0

Solving Eq. (11.65) for A1, we obtain A\; = [% %]T which leads to

Since f1; > 0, x; is the unique vertex minimizer.

17

2

[NGIEN|
| S|
I
N |—

NI~y

We conclude this section with a remark on the degenerate case. For a
standard-form LP problem, a vertex xj, is degenerate if it has more than n — p
zero components. With the notation used in Sec. 11.3.2.1, the matrix B as-
sociated with a degenerate vertex contains less than p columns and hence the
index set Zp contains at least one index that corresponds to a zero component
of xi. Consequently, the index set 7, defined by Eq. (11.70) may contain an
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index corresponding to a zero component of x;. If this happens, then obvi-
ously the step size determined using Eq. (11.71) is oy, = 0, which would lead
to Xg+1 = X and from this point on, cycling would occur. In order to prevent
cycling, modifications should be made in Steps 2 and 4 of Algorithm 11.3, for
example, using Bland’s least-index rule.

11.3.3  Tabular form of the simplex method

For LP problems of very small size, the simplex method can be applied in
terms of a tabular form in which the input data such as A, b, and c are used
to form a table which evolves in a more explicit manner as simplex iterations
proceed.

Consider the standard-form LP problem in Eq. (11.1) and assume that at
vertex x;, the equality constraints are expressed as

x® 1 B INx™) = B~'b (11.72)

From Eq. (11.64), the objective function is given by

CTXk = /J,{Xk + AZAXk

= 07x® 4+ pIx™ 4 ATb (11.73)

So the important data at the kth iteration can be put together in a tabular form
as shown in Table 11.1 from which we observe the following:

(a) If i > 0, x}, is a minimizer.
(b) Otherwise, an appropriate rule can be used to choose a negative compo-
nent in fuz, say, (fix); < 0. As can be seen in Eq. (11.69), the column

in B~!IN that is right above (ji,); gives —d,gB). In the discussion that
follows, this column will be referred to as the pivot column. In addition,
the variable in x% that corresponds to (fiz); is the variable chosen as a
basic variable.

(¢) Since x,E:N) = 0, Eq. (11.72) implies that x,(CB) = B~ !b. Therefore, the
. : . . (B)
far-right p-dimensional vector gives x; .

(d) Since x,(fN) = 0, Eq. (11.73) implies that the number in the lower-right

corner of Table 11.1 is equal to — f(xy).

Table 11.1 Simplex method, kth iteration

Xp Xy
I BN B 'b

oT  Af -Afb




364

Taking the LP problem discussed in Example 11.8 as an example, at x( the
table assumes the form shown in Table 11.2. Since (f1y)2 < 0, xq is not a min-

imizer. As was shown above, (f1y)2 < 0 also suggests that x3 is the variable
T
in x(()N) that will become a basic variable, and the vector above (f1( )2, [% 3} ,

is the pivot column —d(()B). It follows from Egs. (11.70) and (11.71) that only

Table 11.2 Simplex method, Example 11.8

Basic Variables Nonbasic Variables
T2 Ts T T3 T4 B 'b —)\Eb
.
0 1 -5 3 -2 1
0 1 - % g — %

the positive components of the pivot column should be used to compute the ratio

(XSB))i / (—ng))i where X(()B) is the far-right column in the table. The index
that yields the minimum ratio is ¢* = 2. This suggests that the second basic
variable, x5, should be exchanged with x3 to become a nonbasic variable. To
transform x3 into the second basic variable, we use elementary row operations
to transform the pivot column into the ¢*th coordinate vector. In the present
case, we add —1/6 times the second row to the first row, and then multiply the
second row by 1/3. The table assumes the form in Table 11.3.

Table 11.3 Simplex method, Example 11.8 continued

Basic Variables Nonbasic Variables

T2 Ts T T3 T4 B~ 'b —)\Zb
I

N T N T

0 0 11 —% % _%

Next we interchange the columns associated with variables z3 and x5 to form
the updated basic and nonbasic variables, and then add 3/2 times the second
row to the last row to eliminate the nonzero Lagrange multiplier associated with
variable x3. This leads to the table shown as Table 11.4.
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Table 11.4 Simplex method, Example 11.8 continued

Basic Variables Nonbasic Variables

To T3 1 5 T4 B~ 'b f)\fb
e
. B N
oo o3 -

The Lagrange multipliers f&; in the last row of Table 11.4 are all positive and

T
hence x; is the unique minimizer. Vector x; is specified by ng) = [% %] in
the far-right column and ng) = [0 0 0]”. In conjunction with the composition

of the basic and nonbasic variables, ng) and ng) yield

xlz[oééoor

At x1, the lower-right corner of Table 11.4 gives the minimum of the objective
function as f(x;) = 4.

11.3.4 Computational complexity
As in any iterative algorithm, the computational complexity of a simplex

algorithm depends on both the number of iterations it requires to converge and
the amount of computation in each iteration.

11.3.4.1  Computations per iteration

For an LP problem of the type given in Eq. (11.2) with nondegenerate vertices,
the major computational effort in each iteration is to solve two transposed n X n
linear systems, i.e.,

Al p.=c and A,dy=¢ (11.74)

(see Steps 2 and 3 of Algorithm 11.1). For the degenerate case, matrix A,
in Eq. (11.74) is replaced by working-set matrix Aak which has the same size
as A,,. For the problem in Eq. (11.1), the computational complexity in each
iteration is largely related to solving two transposed p x p linear systems, namely,

B'A,=cp and Bd{® =-a, (11.75)

(see Steps 2 and 3 of Algorithm 11.3). Noticing the similarity between the
systems in Eqs. (11.74) and (11.75), we conclude that the computational ef-
ficiency in each iteration depends critically on how efficiently two transposed
linear systems of a given size are solved. A reliable and efficient approach to
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solve a linear system of equations in which the number of unknowns is equal
to the number of equations (often called a square system) with a nonsingular
asymmetric system matrix such as A, in Eq. (11.74) and B in Eq. (11.75) is
to use one of several matrix factorization-based methods. These include the
LU factorization with pivoting and the Householder orthogonalization-based
QR factorization [3][5]. The number of floating-point operations (flops) re-
quired to solve an n-variable square system using the LU factorization and QR
factorization methods are 2n3/3 and 4n3/3, respectively, (see Sec. A.12). It
should be stressed that although the QR factorization requires more flops, it is
comparable with the LU factorization in efficiency when memory traffic and
vectorization overhead are taken into account [5, Chap. 5]. Another desirable
feature of the QR factorization method is the guaranteed numerical stability,
particularly when the system is ill-conditioned.

For the systems in Eqgs. (11.74) and (11.75), there are two important features
that can lead to further reduction in the amount of computation. First, each of
the two systems involves a pair of matrices that are the transposes of each other.
So when matrix factorization is performed for the first system, the transposed
version of the factorization can be utilized to solve the second system. Second,
in each iteration, the matrix is obtained from the matrix used in the preceding
iteration through a rank-one modification. Specifically, Step 5 of Algorithms
11.1 updates A,, by replacing one of its rows with the normal vector of the
constraint that just becomes active, while Step 6 of Algorithm 11.3 updates B
by replacing one of its columns with the column in N that corresponds to the
new basic variable. Let

al
%_'1
Ay, = a.]Q
aj,
and assume that ag; is used to replace ag; in the updating of A, to A
Under these circumstances

Q41

Ao, = A + A, (11.76a)

where A, is the rank-one matrix

A, =ej(al. —a)) (11.76b)
with e, being the j;th coordinate vector. Similarly, if we denote matrix B in
the kth and (k + 1)th iterations as By, and By 1, respectively, then

Bii1 =B+ 4y (11.77a)
A, = (bFD _ pM)el (11.77b)
(k+1) (k) - - :
where b;. and b;.” are the ¢*th columns in By, and By, respectively.

Efficient algorithms for updating the LU and QR factorizations of a matrix with
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a rank-one modification, which require only O(n?) flops, are available in the
literature. The reader is referred to [3, Chap. 4], [5, Chap. 12], [7, Chap. 3],
and Sec. A.12 for the details.

As a final remark on the matter, LP problems encountered in practice of-
ten involve a large number of parameters and the associated large-size system
matrix A,, or B is often very sparse.! Sparse linear systems can be solved
using specially designed algorithms that take full advantage of either particular
patterns of sparsity that the system matrix exhibits or the general sparse nature
of the matrix. Using these algorithms, reduction in the number of flops as well
as the required storage space can be significant. (See Sec. 2.7 of [8] for an
introduction to several useful methods and further references on the subject.)

11.3.4.2 Performance in terms of number of iterations

The number of iterations required for a given LP problem to converge depends
on the data that specify the problem and on the initial point, and is difficult to
predict accurately [3]. As far as the simplex method is concerned, there is a
worse-case analysis on the computational complexity of the method on the one
hand, and observations on the algorithm’s practical performance on the other
hand.

Considering the alternative-form LP problem in Eq. (11.2), in the worst case,
the simplex method entails examining every vertex to find the minimizer. Con-
sequently, the number of iterations would grow exponentially with the problem
size. In 1972, Klee and Minty [9] described the following well-known LP

problem
n

maximize Y 10" 7z, (11.78a)
j=1
subject to:  x; + 22 107z < 100! fori=1,2,...,n
j=1
(11.78b)

xj >0 for j=1,2,...,n (11.78¢c)

For each n, the LP problem involves 2n inequality constraints. By introducing n
slack variables sy, s3, ..., s, and adding them to the constraints in Eq. (11.78b)
to convert the constraints into equalities, it was shown that if we start with the
initial point s; = 100t and 2; = O fori = 1, 2, ..., n, then the simplex
method has to perform 2" — 1 iterations to obtain the solution. However,
the chances of encountering the worst case scenario in a real-life LP problem
are extremely small. In fact, the simplex method is usually very efficient,

! A matrix is said to be sparse if only a relatively small number of its elements are nonzero.
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and consistently requires a number of iterations that is a small multiple of the
problem dimension [10], typically, 2 or 3 times.
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Problems

11.1 (a) Develop a MATLAB function to generate the data matrices A, b, and

c for the LP problem formulated in Prob. 10.1. Inputs of the function
should include the order of polynomial A(w), n, passband edge w,
stopband edge w,, number of grid points in the passband, /N, and
number of grid points in the stopband, M.

(b) Applying the MATLAB function obtained in part (a) with n = 30,
wp = 0.45m, w, = 0.55m, and M = N = 30, obtain matrices A, b,
and c for Prob. 10.1.

11.2 (a) Develop a MATLAB function that would find a vertex of the feasible

region defined by
Ax>Db (P11.1)

The function may look like x=find_v(A,b,x0) and should accept a
general pair (A, b) that defines a nonempty feasible region through
(P11.1), and a feasible initial point xg.

(b) Testthe MATLAB function obtained by applying it to the LP problem
in Example 11.2 using several different initial points.

(c) Develop a MATLAB function that would find a vertex of the feasible
region defined by Ax = b and x > 0.
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11.3 (a) Develop a MATLAB function that would implement Algorithm 11.1.
The function may look like x=1p_nd1(A,b,c,x0) where xg is a
feasible initial point.

(b) Apply the MATLAB function obtained to the LP problems in Exam-
ples 11.2 and 11.6.

11.4 (a) Develop a MATLAB function that would implement Algorithm 11.1
without requiring a feasible initial point. The code can be devel-
oped by implementing the technique described in the first part of
Sec. 11.2.3.4 using the code obtained from Prob. 11.3(a).

(b) Apply the MATLAB function obtained to the LP problems in Exam-
ples 11.2 and 11.6.

11.5 In connection with the LP problem in Eq. (11.2), use Farkas’ Lemma (see
Prob. 10.18) to show that if x is a feasible point but not a minimizer, then
at x there always exists a feasible descent direction.

11.6 (@) Using a graphical approach, describe the feasible region R defined by

mlzo

zo >0
r1+ax20—12>0
T1—2x2+4 >0
r1—x20+1 >0
—5x1 +2x9+15 >0
—5x1+6x2+5 >0
—x1—4x9+14 > 0

(b) Identify the degenerate vertices of k.

11.7 (a) By modifying the MATLAB function obtained in Prob. 11.3(a), imple-
ment Algorithm 11.2. The function may look like x=1p_d1(A,b,c,
x0) where xg is a feasible initial point.

(b) Apply the MATLAB function obtained to the LP problem
minimize f(x) = z;
subjectto: x € R

where R is the polygon described in Prob. 11.6(a).
11.8 Consider the LP problem
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minimize f(x) = —2x; — 3x2 + x3 + 1224
subject to: 201+ 929 —x3 — 914 > 0
—x1/3 —xo+x3/3+2x4 > 0
x; >0 for i =1, 2, 3, 4

(See [3, p. 351].)

(a) Show that this LP problem does not have finite minimizers.
Hint: Any points of the form [r 0 7 0]7 with > 0 are feasible.

(b) Apply Algorithm 11.1 to the LP problem using xg = 0 as a starting
point, and observe the results.

(c¢) Apply Algorithm 11.2 to the LP problem using xg = 0 as a starting
point.

11.9 Applying an appropriate LP algorithm, solve the problem

minimize f(x) = —4x; — 8x3
subjectto: 16x; — a2 + 53 <1
21 +4x3 < 1
1021 + 29 < 1
r; <1 for i =1, 2, 3

11.10 Applying Algorithm 11.1, solve the LP problem
minimize f(x) = z1 — 4x2
subjectto: —x1+22+2 >0
—x1—22+6 >0
z; >0 for =1, 2
Draw the path of the simplex steps using xo = [2 0]7 as a starting point.
11.11 Applying Algorithm 11.2, solve the LP problem
minimize f(x) = 2x; — 6xy — x3
subjectto: —3z1 4+ a2 —223+7 >0
221 —4z2+12 >0
dr1 —3x0 — 323+ 14 > 0
z; >0 for i=1, 2, 3

11.12 Applying Algorithm 11.2, solve the LP problem described in Prob. 10.1
with n = 30, w, = 0.457, w, = 0.557, and M = N = 30. Note that the
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11.13

11.14

11.15

11.16

11.17

11.18

11.19

11.20

matrices A, b, and c of the problem can be generated using the MATLAB
function developed in Prob. 11.1.

(a) Develop a MATLAB function that would implement Algorithm 11.3.

(b) Apply the MATLAB function obtained in part (a) to the LP problem
in Example 11.8.

(a) Convert the LP problem in Prob. 11.10 to a standard-form LP problem
by introducing slack variables.

(b) Apply Algorithm 11.3 to the LP problem obtained in part (a) and
compare the results with those obtained in Prob. 11.10.

(a) Convert the LP problem in Prob. 11.11 to a standard-form LP problem
by introducing slack variables.

(b) Apply Algorithm 11.3 to the LP problem obtained in part (a) and
compare the results with those of Prob. 11.11.

Applying Algorithm 11.3, solve the LP problem

minimize f(x) = x1 + 1.5x9 + x3 + x4
subjectto: x1 + 2z + x3 4+ 224 = 3

1+ x9+2x3+4x4 = 5
z; >0 for =1, 2, 3, 4

Applying Algorithm 11.3, solve the LP problem
minimize f(x) = x; + 0.5x2 + 23

subjectto: x1 + 22 + 223 = 3
2x1 + 20+ 3x3 =5
z; >0 for i=1, 2,3

Based on the remarks given at the end of Sec. 11.3.2, develop a step-
by-step description of an algorithm that extends Algorithm 11.3 to the
degenerate case.

Develop a MATLAB function to implement the algorithm developed in
Prob. 11.18.

(a) Convert the LP problem in Prob. 11.8 to a standard-form LP problem.
Note that only rwo slack variables need to be introduced.

(b) Apply Algorithm 11.3 to the problem formulated in part (a) using an
initial point xo = 0, and observe the results.

(c) Applying the algorithm developed in Prob. 11.18, solve the problem
formulated in part (a) using an initial point xg = 0.
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11.21 Consider the nonlinear minimization problem

minimize f(x) = —2z1 — 2.5x2

subjectto: 1 —a? — 23 >0
120, 22020

(a) Find an approximate solution of this problem by solving the LP prob-
lem with the same linear objective function subject to x € P where
P is a polygon in the first quadrant of the (x1, x2) plane that contains
the feasible region described above.

(b) Improve the approximate solution obtained in part (a) by using a
polygon with an increased number of edges.



Chapter 12

LINEAR PROGRAMMING
PART II: INTERIOR-POINT METHODS

12.1 Introduction

A paper by Karmarkar in 1984 [1] and substantial progress made since that
time have led to the field of modern interior-point methods for linear program-
ming (LP). Unlike the family of simplex methods considered in Chap. 11, which
approach the solution through a sequence of iterates that move from vertex to
vertex along the edges on the boundary of the feasible polyhedron, the iterates
generated by interior-point algorithms approach the solution from the interior
of a polyhedron. Although the claims about the efficiency of the algorithm in
[1] have not been substantiated in general, extensive computational testing has
shown that a number of interior-point algorithms are much more efficient than
simplex methods for large-scale LP problems [2].

In this chapter, we study several representative interior-point methods. Our
focus will be on algorithmic development rather than theoretical analysis of the
methods. Duality is a concept of central importance in modern interior-point
methods. In Sec. 12.2, we discuss several basic concepts of a duality theory
for linear programming. These include primal-dual solutions and central path.
Two important primal interior-point methods, namely, the primal affine-scaling
method and the primal Newton barrier method will be studied in Secs. 12.3
and 12.4, respectively. In Sec. 12.5, we present two primal-dual path-following
methods. One of these methods, namely, Mehrotra’s predictor-corrector algo-
rithm [3], has been the basis of most interior-point software for LP developed
since 1990.
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12.2  Primal-Dual Solutions and Central Path
12.2.1 Primal-dual solutions

The concept of duality was first introduced in Sec. 10.9 for the general convex
programming problem (10.107) and the main results of the Wolfe dual, namely,
the results of Theorem 10.9 as applied to LP problems were briefly discussed in
Example 10.16. In this section, we present several additional results concerning
duality, which are of importance for the development of modern interior-point
methods.

Consider the standard-form LP problem

minimize f(x) = c’x (12.1a)
subjectto: Ax =b (12.1b)
x>0 (12.1¢)

where matrix A € RP*™ is of full row rank as the primal problem (see Sec. 10.9).
By applying Theorem 10.9 to Eq. (12.1), we obtain the dual problem

maximize h(X) = bl (12.2a)
subjectto: ATA+p =c (12.2b)
©n>0 (12.2¢)

(see Example 10.16).
Two basic questions concerning the LP problems in Egs. (12.1) and (12.2)
are:

(a) Under what conditions will the solutions of these problems exist?
(b) How are the feasible points and solutions of the primal and dual related?

An LP problem is said to be feasible if its feasible region is not empty. The
problem in Eq. (12.1) is said to be strictly feasible if there exists an x that
satisfies Eq. (12.1b) with x > 0. Likewise, the LP problem in Eq. (12.2) is said
to be strictly feasible if there exist X and p that satisfy Eq. (12.2b) with g > 0.
It is known that x* is a minimizer of the problem in Eq. (12.1) if and only if
there exist A* and p* > 0 such that

AT+ p*=c (12.3a)
Ax* =D (12.3b)
xiu; =0 for 1<i<n (12.3¢)

x* >0, p >0 (12.3d)

For the primal problem, A* and p* in Eq. (12.3) are the Lagrange multipliers.
It can be readily verified that a set of vectors {\*, p*} satisfying Eq. (12.3)is a
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maximizer for the dual problem in Eq. (12.2), and x* in Eq. (12.3) may be inter-
preted as the Lagrange multipliers for the dual problem. A set {x*, A*, p*} sat-
isfying Eq. (12.3) is called a primal-dual solution. Tt follows that {x*, A\*, pu*}
is a primal-dual solution if and only if x* solves the primal and {\*, p*} solves
the dual [3]. The next two theorems address the existence and boundedness of
primal-dual solutions.

Theorem 12.1 Existence of a primal-dual solution A primal-dual solution
exists if the primal and dual problems are both feasible.

Proof If point x is feasible for the LP problem in Eq. (12.1) and {A, p} is
feasible for the LP problem in Eq. (12.2), then set

AT < ATb+ p'x = ATAx + pu'x
= (ATA + p)Tx = "x (12:4)

Since f(x) = c’'x has a finite lower bound in the feasible region, there exists a
set {x*, A*, p*} thatsatisfies Eq. (12.3). Evidently, this x* solves the problem
in Eq. (12.1). From Eq. (12.4), h(A) has a finite upper bound and {\*, p*}
solves the problem in Eq. (12.2). Consequently, the set {x*, A*, p*} is a
primal-dual solution.

]

Theorem 12.2 Strict feasibility of primal-dual solutions If the primal and
dual problems are both feasible, then

(a) solutions of the primal problem are bounded if the dual is strictly feasible;

(b) solutions of the dual problem are bounded if the primal is strictly feasible;

(c) primal-dual solutions are bounded if the primal and dual are both strictly
feasible.

Proof The statement in (c) is an immediate consequence of (a) and (b). To
prove (a), we first note that by virtue of Theorem 12.1 a solution of the primal
exists. Below we follow [3] to show the boundedness. Let {\, p} be strictly
feasible for the dual, x be feasible for the primal, and x* be a solution of the
primal. It follows that
HTX* _ (C _ ATA)TX*

= c'x* - ATAx* = c'x* = ATb
<cT'x—ATb=p’x

Since x* > 0 and p > 0, we conclude that

piy < p'x" < p'x
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Hence
1 1
z; < —plx < max <*> cuTx
W i<i<n \ 1
and x* is bounded.
Part (b) can be proved in a similar manner.
[ |
From Eq. (12.3), we observe that
cI'x* = [(u*)T + ()\*)TA]X* = (X“)TAX* = ()\*)Tb (12.5)
ie.,
J(x*) = h(X)
If we define the duality gap as
5(x, A) =clx—blA (12.6)

then Eq. (12.4) and Eq. (12.5) imply that 6(x, A) is always nonnegative with
d(x*, A*) = 0. Moreover, for any feasible x and A, we have

x> c'x* =b"A* > b'A
Hence

0<clx—clx* <éo(x, A) (12.7)
Eq. (12.7) indicates that the duality gap can serve as a bound on the closeness

of f(x) to f(x*) [2].
12.2.2  Central path

Another important concept related to primal-dual solutions is central path.
By virtue of Eq. (12.3), set {x, A, pu} withx € R", A € RP,and u € R" isa
primal-dual solution if it satisfies the conditions

Ax=b  with x>0 (12.82)

ATA+p=c with p>0 (12.8b)

Xpu =0 (12.8¢)

where X = diag{x1, =2, ..., ,}. The central path for a standard-form LP

problem is defined as a set of vectors {x(7), A(7), wp(7)} that satisfy the
conditions

Ax=Db with x > 0 (12.9a)
ATA+p=c with p>0 (12.9b)
Xu = T1e (12.9¢)
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where 7 is a strictly positive scalar parameter, and e = [1 1 --- 1]7. For each
fixed 7 > 0, the vectors in the set {x(7), A(7), p(7)} satisfying Eq. (12.9)
can be viewed as sets of points in R™, RP, and R", respectively, and when
T varies, the corresponding points form a set of trajectories called the central
path. On comparing Eq. (12.9) with Eq. (12.8), it is obvious that the central path
is closely related to the primal-dual solutions. From Egs. (12.9a) and (12.9b),
every point on the central path is strictly feasible. Hence the central path lies
in the interior of the feasible regions of the problems in Egs. (12.1) and (12.2),
and it approaches a primal-dual solution as 7 — 0.

A more explicit relation of the central path with the primal-dual solution
can be observed using the duality gap defined in Eq. (12.6). Given 7 > 0, let
{x(7), A(7), p(7)} be on the central path. From Eq. (12.9), the duality gap
d[x(7), A(7)] is given by

§[x(7), AM71)] = cTx(1) — bTA(7)
= AT(T)A + pT (7)]x(1) = bTA(T)
= pT(7)x(1) =nr (12.10)
Hence the duality gap along the central path converges linearly to zero as 7
approaches zero. Consequently, as 7 — 0 the objective function of the primal

problem, c”x(7), and the objective function of the dual problem, b” X(7),
approach the same optimal value.

Example 12.1 Sketch the central path of the LP problem

minimize f(x) = —2z; + x2 — 373
subjectto: x1 4+ a2+ 23 =1
120,20 >0, 2320

Solution Withc = [-21 —3]7, A =[111],and b = 1, Eq. (12.9) becomes

T1+x9t+x3 =1 (12.11a)
At pp =2 (12.11b)

At pe =1 (12.11¢)

A+ pus = -3 (12.11d)

Tl =T (12.11e)

Tollg = T (12.11f)

T3y = T (12.11g)

where z; > 0 and p; > 0 for: =1, 2, 3. From Eqgs. (12.11b) — (12.11d), we
have

pr=-2-=A (12.12a)
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po =1— X (12.12b)
p3 = —3— A (12.12¢)

Hence p; > Ofor1 <7 < 3if
A< =3 (12.13)

If we assume that \ satisfies Eq. (12.13), then Eqgs. (12.11e) — (12.11g) and
(12.11a) yield

1 1 1 1
RIS S e W gy Y
1.€.,
1/\3+(4+3)>\2+(1+8))\+(1—6):0 (12.14)
T T T T

_ The central path can now be constructed by finding a root of Eq. (12.14),
A, that satisfies Eq. (12.13), by computing ; for 1 <4 < 3 using Eq. (12.12)
with )) = )\, and then evaluating z; for 1 < ¢ < 3 using Eq. (12.11) with
A = A. Fig. 12.1 shows the x(7) component of the central path for 7o = 5
and 75 = 10~%. Note that the entire trajectory lies inside the triangle which is
the feasible region of the problem, and approaches vertex [0 0 1]7 which is the
unique minimizer of the LP problem.
[

Figure 12.1. Trajectory of x(7) in Example 12.1.
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12.3  Primal Affine-Scaling Method

The primal affine-scaling (PAS) method was proposed in [4][5] as a modi-
fication of Karmarkar’s interior-point algorithm [1] for LP problems. Though
conceptually simple, the method has been found effective, particularly for large-
scale problems.

Consider the standard-form LP problem in Eq. (12.1) and let xj, be a strictly
feasible point. The two major steps of the PAS method involve moving xj
along a projected steepest-descent direction and scaling the resulting point to
center it in the feasible region in a transformed space.

For a linear objective function f(x) = ¢’ x, the steepest-descent direction is
—c. At a feasible point x;, moving along —c does not guarantee the feasibility
of the next iterate since Ac is most likely nonzero. The PAS method moves xy,
along the direction that is the orthogonal projection of —c onto the null space
of A. This direction dy, is given by

d; = —Pc (12.15)
where P is the projection matrix given by
P=I-AT(AAT)"1A (12.16)
It can be readily verified that AP = 0. Hence if the next point is denoted as
Xp+1 = Xk + ogdg
then x4 1 satisfies Eq. (12.1b), i.e.,

Axpi1 = Axy + apAdy
—b—a,APc=h

If matrix A is expressed in terms of its singular-value decomposition (SVD) as
A =UZ o VT

where U € RP*P and V € R™*" are orthogonal and X is positive definite and
diagonal, then the projection matrix becomes

0 o
P=V vT

0 L.,

This gives

c'Pc= zn: [(VTc);)? (12.17)
Jj=p+1
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which is always nonnegative and strictly positive as long as one of the last n — p
components in V7 ¢ is nonzero. It follows that for any aj, > 0

f(xiy1) = " xpp1 = xp — g’ Pe
< cfxp = f(xk)

and f(xx4+1) will be strictly less than f(xy) if at least one of the last n — p
components in V¢ is nonzero.

The search direction, dj, determined by using Eqs. (12.15) and (12.16) is
independent of the current point X and the progress that can be made along
such a constant direction may become insignificant particularly when x; is
close to the boundary of the feasible region. A crucial step in the PAS method
that overcomes this difficulty is to transform the original LP problem at the kth
iteration from that in Eq. (12.1) to an equivalent LP problem in which point
X}, is at a more ‘central’ position so as to achieve significant reduction in f(x)
along the projected steepest-descent direction.

For the standard-form LP problem in Eq. (12.1), the nonnegativity bounds
in Eq. (12.1c) suggest that the point e = [1 1 --- 1], which is situated at an
equal distance from each z; axis for 1 < ¢ < n, can be considered as a central
point. The affine scaling transformation defined by

x=X"'x (12.18a)
with
X = diag{(xk)l, (Xk)g, ey (Xk)n} (1218b)

maps point X, to e, and the equivalent LP problem given by this transformation
is

minimize f(X) = ¢’ % (12.19a)
subjectto: Ax =Db (12.19b)
x>0 (12.19¢)

where ¢ = Xcand A = AX. If the next point is generated along the projected
steepest-descent direction from xy, then

Xp+1 = Xi + Ozkak =e+ Ozkak (12.20)
where
d, = —Pc=-[I-AT(AAT)'AJc
= —[I- XAT(AX2AT)"1AX]Xc (12.21)

Equation (12.20) can be written in terms of the original variables as

Xpt+1 = Xg + apdy, (12.22a)
with
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d, = Xd, = -[X2 - X2AT(AX2AT) " 'AX%c  (12.22b)

which is called the primal affine-scaling direction [6]. In order to compare the
two search directions given by Egs. (12.15) and (12.22b), we write vector dy,
in Eq. (12.22b) as

d;, = —XPXc (12.23)

with
P=I-XAT(AX?2AT)"1AX (12.24)
Note that matrix P in Eq. (12.16) is the projection matrix for A while matrix
P in Eq. (12.24) is the projection matrix for AX, which depends on both A
and the present point x;. Consequently, AXP = 0, which in conjunction

with Eqgs. (12.22a) and (12.23) implies that if xy, is strictly feasible, then x1
satisfies Eq. (12.1b), i.e.,

Ax; 1 = Ax, +apAdy =b — o, AXPXc=b
It can also be shown that for any ay, > 0 in Eq. (12.22a),

f(xky1) < f(xx)

(see Prob. 12.2) and if at least one of the last n — p components of V{Xc is
nonzero, the above inequality becomes strict. Here matrix Vi is the n X n
orthogonal matrix obtained from the SVD of AX, i.e.,

AX = Ui[Z, 0] VY
Having calculated the search direction dj, using Eq. (12.22b), the step size

oy in Eq. (12.22a) can be chosen such that x;; > 0. In practice, oy is chosen
as [6]

Ok = 7YOmax (12.25a)

where 0 < v < 1 is a constant, usually close to unity, and

. (Xk)z}
o - 12.25b
Cma; iwithn(ltil)i<0|: (dg)i ( :

The PAS algorithm can now be summarized as follows.
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Algorithm 12.1 Primal affine-scaling algorithm for the standard-

form LP problem
Step 1
Input A, c, and a strictly feasible initial point xg.
Set k = 0 and initialize the tolerance ¢.
Evaluate f(x;) = ¢’ x4.
Step 2
Form X at x; and compute d;, using Eq. (12.22b).
Step 3
Calculate the step size ay, using Eq. (12.25).
Step 4
Set Xj 1 = X + ady and evaluate f(Xj; 1) = ¢! Xpy1.
Step 5
If
|f(xk) = f(Xp+1)|

max(1, |f(xz)|)

<e€

output x* = x;1 and stop; otherwise, set k = k + 1 and repeat from

Step 2.

Example 12.2 Solve the standard-form LP problem in Example 11.9 using the

PAS algorithm.

Solution A strictly feasible initial point is xo = [0.2 0.7 1 1 1],

~v =0.9999 and ¢ = 104, Algorithm 12.1 converged to the solution

0.000008
0.333339
x* = |0.333336
0.000000
0.000029

With

after 4 iterations. The sequence of the iterates obtained is given in Table 12.1.

Table 12.1 Sequence of points {x; for k =0, 1, ..., 4} in Example 12.2

X0 X1 X2 X3 X4

0.200000 0.099438 0.000010 0.000010 0.000008
0.700000 0.454077 0.383410 0.333357 0.333339
1.000000 0.290822 0.233301 0.333406 0.333336
1.000000 0.000100 0.000100 0.000100 0.000000
1.000000 0.624922 0.300348 0.000030 0.000029
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12.4 Primal Newton Barrier Method
12.4.1 Basic idea

In the primal Newton barrier (PNB) method [2][7], the inequality constraints
in Eq. (12.1c¢) are incorporated in the objective function by adding a logarithmic
barrier function. The subproblem obtained has the form

n
minimize fr(x) = cI'x—r Z In z; (12.26a)
i=1

subjectto: Ax=Db (12.26b)

where 7 is a strictly positive scalar. The term —7 ) i ; In z; in Eq. (12.26a)
is called a ‘barrier’ function for the reason that if we start with an initial xg
which is strictly inside the feasible region, then the term is well defined and acts
like a barrier that prevents any component x; from becoming zero. The scalar
7 is known as the barrier parameter. The effect of the barrier function on the
original LP problem depends largely on the magnitude of 7. If we start with
an interior point, Xg, then under certain conditions to be examined below for a
given 7 > 0, a unique solution of the subproblem in Eq. (12.26) exists. Thus,
if we solve the subproblem in Eq. (12.26) for a series of values of 7, a series of
solutions are obtained that converge to the solution of the original LP problem as
7 — 0. In effect, the PNB method solves the LP problem through the solution
of a sequence of optimization problems [8] as in the minimax optimization
methods of Chap. 8.

In a typical sequential optimization method, there are three issues that need
to be addressed. These are:

(a) For each fixed 7 > 0 does a minimizer of the subproblem in Eq. (12.26)
exist?

(b) If x¥ is a minimizer of the problem in Eq. (12.26) and x* is a minimizer
of the problem in Eq. (12.1), how close is x} to x* as 7 — 07

(c) For each fixed 7 > 0, how do we compute or estimate x}?

12.4.2  Minimizers of subproblem

Throughout the rest of the section, we assume that the primal in Eq. (12.1)
and the dual in Eq. (12.2) are both strictly feasible. Let 7 > 0 be fixed and xg
be a strictly feasible point for the problem in Eq. (12.1). At x( the objective
function of Eq. (12.26a), f;(x¢), is well defined. By virtue of Theorem 12.2,
the above assumption implies that solutions of the primal exist and are bounded.
Under these circumstances, it can be shown that for a given € > 0 the set

Sp = {x : x is strictly feasible for problem (12.1); f(x) < fr(x0) + ¢}
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is compact for all 7 > 0 (see Theorem 4 in [2]). This implies that f,(x) has a
local minimizer x at an interior point of Syp. We can compute the gradient and
Hessian of f;(x) as

Vi(x) =c—71X"le (12.27a)
V2f(x) = 7X 72 (12.27b)
with X = diag{w1, x2, ..., z,yande = [1 1 --- 1]T. Since f, (x) is convex,

x* in Sy is a global minimizer of the problem in Eq. (12.26).

12.4.3 A convergence issue

Let {7 } be a sequence of barrier parameters that are monotonically decreas-
ing to zero and x; be the minimizer of the problem in Eq. (12.26) with 7 = 7.
It follows that

n n

CTXZ — Tk Z In(xz); < CTXZH — T Z In(xy )
i=1 i=1
and . .
X = Thr1 Y In(xjy)i < €7 xf = T ) In(x});
=1 =1

These equations yield (see Prob. 12.11(a))
Fxh) =c"xpyy <xj = f(x5) (12.28)

i.e., the objective function of the original LP problem in Eq. (12.1) is a monoton-
ically decreasing function of sequence {xj, for k =0, 1, ...}. An immediate
consequence of Eq. (12.28) is that all the minimizers, X}, are contained in the
compact set

S = {x: x is feasible for the problem in Eq. (12.1) and f(x) < f(xo)}

Therefore, sequence {x} } contains at least one convergent subsequence, which
for the sake of simplicity, is denoted again as {x} }, namely,
lim xj, = x* (12.29)
k—o0
It can be shown that the limit vector x* in Eq. (12.29) is a minimizer of the
primal problem in Eq. (12.1) [2][8]. Moreover, the closeness of xj, to x* can
be related to the magnitude of the barrier parameter 7, as follows. Problem
in Eq. (12.1) is said to be nondegenerate if there are exactly p strictly positive
components in x* and is said to be degenerate otherwise. In [9] and [10], it
was shown that

||x; —x*|| = O(7y) if the problem in Eq. (12.1) is nondegenerate

and
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||x;; —x*|| = O(Téﬂ) if the problem in Eq. (12.1) is degenerate

The sequence of minimizers for the subproblem in Eq. (12.26) can also be
related to the central path of the problems in Eqgs. (12.1) and (12.2). To see
this, we write the Karush-Kuhn-Tucker (KKT) condition in Eq. (10.74) for the
subproblem in Eq. (12.26) at x}; as

AT\, + X le=c (12.30)
where X = diag{(x})1, (x})2, ..., (xX})n}. If we let
e =X e (12.31)

then with xj being a strictly feasible point, Eqs. (12.30) and (12.31) lead to

Ax; =b with xj, > 0 (12.32a)
AT\ 4+ p, =c  with g >0 (12.32b)
X”’k = Ti€ (12320)

On comparing Eq. (12.32) with Eq. (12.9), we conclude that the sequences of
points {x}, Ag, py} are on the central path for the problems in Eqs. (12.1) and
Eq. (12.2). Further, since x* is a minimizer of the problem in Eq. (12.1), there
exist A* and p* > 0 such that

Ax"* =b with x* >0 (12.33a)

ATX*+p*=c  with p* >0 (12.33b)

X*u* =0 (12.33¢)

where X* = diag{(x*)1, (x*)2, ..., (x*)n}. By virtue of Eq. (12.29) and

7, — 0, Egs. (12.32c¢) and (12.33c) imply that ;. — p*. From Eqgs. (12.32b)
and (12.33b), we have
lim AT(Ay —A") =0 (12.34)
k—o0
Since AT has full column rank, Eq. (12.34) implies that A;, — A*. Therefore,
by letting & — oo in Eq. (12.32), we obtain Eq. (12.33). In other words,

as k — oo the sequences of points {x}, A%, p} converge to a primal-dual
solution {x*, A*, u*} of the problems in Egs. (12.1) and (12.2).

124.4 Computing a minimizer of the problem in
Eq. (12.26)
For a fixed 7 > 0, the PNB method starts with a strictly feasible point xg
and proceeds iteratively to find points x; and

Xk+1 = Xk + akdk
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such that the search direction satisfies the equality
Adiy =0 (12.35)

The constraints in Eq. (12.35) ensure that if x;, satisfies Eq. (12.26b), then so
does xx41, 1.€.,
AXk+1 = Ax; + arAd, =b
To find a descent direction, a second-order approximation of the problem in
Eq. (12.26) is employed using the gradient and Hessian of f(x) in Eq. (12.27),
namely,
minimize 37d”X2d + d”(c — 7X'e) (12.36a)
subjectto: Ad =0 (12.36b)

For a strictly feasible x;,, X2 is positive definite. Hence Eq. (12.36) is a
convex programming problem whose solution dy, satisfies the KKT conditions

X 2dp+c—7X"le = AT (12.37a)
Ad, =0 (12.37b)

From Eq. (12.37), we obtain

1
d, = x; + -X?(ATXx —¢) (12.38a)
T

and
AX?ATA = 7Ad;, + AX?c — TAx,
= A(X%c — 7x}) (12.38b)

We see that the search direction dy, in the PNB method is determined by using
Eq. (12.38a) with a X obtained by solving the p x p symmetric positive-definite
system in Eq. (12.38b).

Having determined dy, a line search along dj, can be carried out to determine
a scalar oy, > 0 such that xj, + aedj, remains strictly feasible and £ (xx + ady)
is minimized with respect to the range 0 < a < &y, where &y, is the largest
possible scalar for x; + ady, to be strictly feasible. If we let

I dl
T d
X = :2 and d; = ?
In dn

the strict feasibility of x;+ady, canbe assured, i.e., x;+ad; > O0forl < i < n,
if o < z;/(—d;) forall 1 <i < n. Hence point x;, + adj, will remain strictly
feasible if « satisfies the condition

- . { T }
O ivindi<o | (—dy)
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In practice, the upper bound of «, namely,

L : T
ap = 0.99 x ZIWirtrhud]fi1<0 |:(_dz):| (12.39)

gives satisfactory results. At xy, the line search for function £ (x; + ady) is
carried out on the closed interval [0, az]. Since

d? d “ d;

fr(Xk;-QFOé k):TZ s
da = (7 + ad;)

fr(xx + ady) is strictly convex on [0, @] and has a unique minimum. One of

the search methods discussed in Chapter 4 can be used to find the minimizer,

oy, and the new point is obtained as xx41 = Xj, + apdy.

The PNB algorithm can be summarized as follows.

Algorithm 12.2 Primal Newton barrier algorithm for the standard-
form LP problem
Step 1
Input A, c, and a strictly feasible initial point xq.
Set [ = 0, initialize the barrier parameter such that 7y > 0, and input the
outer-loop tolerance &gy
Step 2
Set £ = 0 and X(()l) = x;, and input the inner-loop tolerance €;;pe;.
Step 3.1
Use Eq. (12.38) with 7 = 7; to calculate d,(fl) at xg).
Step 3.2
Use Eq. (12.39) to calculate &y, where x5 = x,(cl) and d; = d,il).
Step 3.3
Use a line search (e.g., az%ine search based on the golden-section
!

method) to determine o).
Step 3.4
Set x&_l = X,(€l) + a,(ﬁl)d,(cl).
Step 3.5
If ||a,(€l)d§€l) || < Einners S€t X711 = x,(fil and go to Step 4; otherwise,
set k = k + 1 and repeat from Step 3.1.
Step 4
If ||x; — X;11]] < Eouer, OUtpUt X* = X1, and stop; otherwise, choose
Ti+1 < T, setl = [ + 1, and repeat from Step 2.

Example 12.3 Apply the PNB algorithm to the LP problem in Example 12.1.
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Solution We start withc = [-2 1 —3]7, A =[111],b =1, and xg =

T
[% % %} which is strictly feasible, and employ the golden-section method (see

Sec. 4.4) to perform the line search in Step 3.3. Parameter 7; is chosen as
Ti41 = or witho = 0.1.
With 79 = 0.1 and eguer = 1074, Algorithm 12.2 took six iterations to
converge to the solution
0.000007
x* = [0.00000l]
0.999992

The number of flops required was 5.194K. The path of the sequence {x; for
=0, 1, ..., 6}is shown in Fig. 12.2.
|

0.8 : 4 \

0.6 : , \

0.4 ’ \

Figure 12.2. Iteration path in Example 12.3

12.5 Primal-Dual Interior-Point Methods

The methods studied in Secs. 12.3 and 12.4 are primal interior-point methods
in which the dual is not explicitly involved. Primal-dual methods, on the other
hand, solve the primal and dual LP problems simultaneously, and have emerged
as the most efficient interior-point methods for LP problems. In this section, we
examine two important primal-dual interior-point methods, namely, a primal-
dual path-following and a nonfeasible-initialization primal-dual path-following
methods.
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12.5.1  Primal-dual path-following method

The path-following method to be discussed here is based on the work reported
in [11]-[13]. Consider the standard-form LP problem in Eq. (12.1) and its dual
in Eq. (12.2) and let wi, = {xx, A, pj} where x; is strictly feasible for
the primal and {Ag, p;} is strictly feasible for the dual. We need to find
an increment vector 6,, = {8, 05, 0,} such that the next iterate wy =
{Xkt15 Mot1s M1} = {Xp+0z, Ap+0x, py+0,} remains strictly feasible
and approaches the central path defined by Eq. (12.9) with 7 = 7411 > 0. Inthe
path-following method, a suitable §,, is obtained as a first-order approximate
solution of Eq. (12.9). If w4 satisfies Eq. (12.9) with 7 = 741, then

A8, =0 (12.40a)
AT§y+6,=0 (12.40b)
AX[,Lk + Xéu + AX(;H = Tk+1€ — X“k (1240C)

where
AX = diag{(8.)1, (02)2, ..., (2)n} (12.41)

If the only second-order term in Eq. (12.40c), namely, AX4 , is neglected, then
Eq. (12.40) is approximated by the system of linear equations

Ad, =0 (12.42a)
AT§,+46,=0 (12.42b)
Mo, + X4, = Tpr1e — Xpy, (12.42¢)

where term AXp,, in Eq. (12.40c) has been replaced by MJ,, with

M = diag{ ()1, (p)2, -5 (Bg)n} (12.43)
Solving Eq. (12.42) for §,,, we obtain

5y = YAy (12.44a)

5, = —ATé), (12.44b)

6, = -y —DJ, (12.44c¢)
where

D=M1X (12.44d)

Y = (ADAT)! (12.44¢)
and

y = X, — et M le (12.44f)

Since x; > 0, g, > 0, and A has full row rank, matrix Y in Eq. (12.44e) is
the inverse of a p X p positive definite matrix, and calculating Y is the major
computation effort in the evaluation of §,, using Eq. (12.44).
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From Egs. (12.42a) and (12.42b), the new iterate w1 satisfies Egs. (12.9a)
and (12.9b) but not necessarily Eq. (12.9¢) because Eq. (12.42c) is merely a lin-

ear approximation of Eq. (12.40c). If we define vector f (wy,) = [f1(wg) fo(wg)
oo fu(wr)]T with

filwe) = (pg)i - (Xk)i for 1<:<n

then Eqgs. (12.9¢) and (12.10) suggest that the Ly norm ||f(w}) — 7| can be
viewed as a measure of the closeness of wy, to the central path. In [13], it was
shown that if an initial point wo = {x0, Ao, o} is chosen such that (a) xg is
strictly feasible for the primal and { Ao, g} is strictly feasible for the dual and
(b)

||f(wo) — T0el|| < 079 (12.45a)

where 79 = (udx0)/n and 0 satisfies the conditions

1
0<6< 5 (12.45b)
92 2
o (1 N 5) 0 (12.45¢)
2(1-10) vn
for some § € (0, \/n), then the iterate
Wil = Wi + Oy (12.46)
where 6., = {0, 0, ,} is given by Eq. (12.44) with
1
Tk+1 = 1— % Tk (1247)
will remain strictly feasible and satisfy the conditions
[[f(Wry1) — Thr1el| < 07t (12.48)
and
b X1 = Ty (12.49)

Since 0 < 6/y/n < 1, it follows from Eq. (12.47) that 7, = (1 — & /n)*m5 — 0
as k — oo. From Egs. (12.49) and (12.10), the duality gap tends to zero, i.e.,
0(xk, Ap) — 0, as & — oo. In other words, wy, converges to a primal-dual
solution as k — oo. The above method can be implemented in terms of the
following algorithm [13].
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Algorithm 12.3 Primal-dual path-following algorithm for the
standard-form LP problem

Step 1

Input A and a strictly feasible wg = {xo, Ao, no} that satisfies
Eq. (12.45). Set k = 0 and initialize the tolerance ¢ for the duality gap.
Step 2

If uka < g, output solution w* = wy, and stop; otherwise, continue
with Step 3.

Step 3

Set 741 using Eq. (12.47) and compute 6, = {0, 05, d,} using
Eq. (12.44).

Step 4

Set w1 using Eq. (12.46). Set £ = k + 1 and repeat from Step 2.

A couple of remarks concerning Step 1 of the algorithm are in order. First,
values of 6 and ¢ that satisfy Eqgs. (12.45b) and (12.45¢) exist. For example,
it can be readily verified that # = 0.4 and § = 0.4 meet Eqs. (12.45b) and
(12.45c) for any n > 2. Second, in order to find an initial wy that satisfies
Eq. (12.45a), we can introduce an augmented pair of primal-dual LP problems
such that (a) a strictly feasible initial point can be easily identified for the
augmented problem and (b) a solution of the augmented problem will yield a
solution of the original problem [13]. A more general remedy for dealing with
this initialization problem is to develop a ‘nonfeasible-initialization algorithm’
so that a point wy that satisfies xo > 0 and p;, > 0 but not necessarily Eq. (12.9)
can be used as the initial point. Such a primal-dual path-following algorithm
will be studied in Sec. 12.5.2.

It is important to stress that even for problems of moderate size, the choice
d = 0.4 yields a factor (1 — 6/+/n) which is close to unity and, therefore,
parameter 751 determined using Eq. (12.47) converges to zero slowly and a
large number of iterations are required to reach a primal-dual solution. In the
literature, interior-point algorithms of this type are referred to as short-step
path-following algorithms [3]. In practice, Algorithm 12.3 is modified to allow
larger changes in parameter 7 so as to accelerate the convergence [6][14]. It
was proposed in [14] that 741 be chosen as

N%Xk
n+p

Thil = (12.50)

with p > /n. In order to assume the strict feasibility of the next iterate, the
modified path-following algorithm assigns

Wii1 = Wi + oy (12.51)
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where 6, = {0, 0, d,,} is calculated using Eq. (12.44), and
ar = (1 —=10"% amax (12.52a)

with apax being determined as

Omax = min(oy, ag) (12.52b)
where
(X’C)i} (12.52¢)
i with (05); <0

(

: Bi)i
g = min (12.52d)
a i with (0,,); <0 [ (6u)11

ap = min |:—

The modified algorithm assumes the following form.

Algorithm 12.4 Modified version of Algorithm 12.3

Step 1

Input A and a strictly feasible wo = {xq, Ao, po}-

Set k = 0 and p > /n, and initialize the tolerance ¢ for the duality gap.
Step 2

If u%xk < g, output solution w* = wy, and stop; otherwise, continue
with Step 3.

Step 3

Set 7341 using Eq. (12.50) and compute 8,, = {d,, 5, d,} using
Eq. (12.44).

Step 4

Compute step size oy, using Eq. (12.52) and set w1 using Eq. (12.51).
Set k = k + 1 and repeat from Step 2.

Example 12.4 Apply Algorithm 12.4 to the LP problems in

(a) Example 12.3
(b) Example 12.2

Solution (a) In order to apply the algorithm to the LP problem in Example 12.3,
we have used the method described in Example 12.1 to find an initial wq on the
central path with 79 = 5. The vector wq obtained is {xg, Ao, fto} with

0.344506 14.513519
xo = | 0.285494 | , Ao = —16.513519, py= | 17.513519
0.370000 13.513519
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With p = 7\/nand e = 1079, Algorithm 12.4 converges after eight iterations
to the solution
0.000000
x* = [0.000000]
1.000000

The number of flops required was 858.

(b) In order to apply the algorithm to the LP problem in Example 12.2,
we have to find a strictly feasible initial point wyq first. By using the method
described in Sec. 10.4.1, a vector x that satisfies Eq. (12.9a) can be obtained as

x=V,p+A"b

where V. is composed of the last n — p columns of matrix V from the SVD of
matrix A and ¢ € R("P)*1 is a free parameter vector. From Eq. (10.27), we
have

0.5980  0.0000  0.0000 —0.1394
0.0608  0.1366  0.1794 | [ ¢1 0.2909
X = 0.6385  0.5504 —0.2302| | ¢2| + | 0.0545 (12.53)
—0.4358  0.8236  0.1285| [ ¢3 —0.0848
0.2027 —0.0039  0.9478 —0.0303
The requirement z; > 0 is met if
¢1 > 0.2331 (12.54a)

If we assume that ¢po = ¢3 > 0, then zo > 0 and x3 > 0. To satisfy the
inequalities z4 > 0 and x5 > 0, we require

—0.4358¢1 4+ 0.9572¢2 > 0.0848 (12.54b)

and
0.2027¢1 4+ 0.9439¢5 > 0.0303 (12.54¢)

Obviously, ¢1 = 0.5 and ¢2 = 0.5 satisfy Eq. (12.54) and lead to a strictly
feasible initial point
0.1596
0.4793
xo = | 0.5339
0.1733
0.5430

Next we can write Eq. (12.9b) as

242\ — X

9 —2)\1 — 4\

p=c—AThx=1] 3—-X\ +X
A1
A2
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from which it is easy to verify that Ag = [1 1]7 leadsto uy = [333 1 1]7 > 0
and {o, p} satisfies Eq. (12.9b).

The application of Algorithm 12.4 using the above wg, p = 12y/n, and
e = 107° led to the solution

0.000000
0.333333
x* = 10.333333
0.000000
0.000000

in seven iterations. The number of flops required was 2.48K.

12.5.2 A nonfeasible-initialization primal-dual
path-following method

Both Algorithms 12.3 and 12.4 require an initial wo = {xg, Ao, o} withxg
being strictly feasible for the primal and {\g, g} being strictly feasible for the
dual. As can be observed from Example 12.4, finding such an initial point is not
straightforward, even for problems of small size, and it would certainly be highly
desirable to start with an initial point wy that is not necessarily feasible. In the
literature, interior-point algorithms that accept nonfeasible initial points are
often referred to as nonfeasible-initialization or nonfeasible-start algorithms.
As described in [6], if wy, is nonfeasible in the sense that it does not satisfy
Egs. (12.1b) and (12.2b), then a reasonable way to generate the next point is to
find a set of vector increments 8, = {05, dx, d,} such that wy, + d,, satisfies
Egs. (12.1b) and (12.2b). Based on this approach, the basic idea presented in
Sec. 12.5.1 can be used to construct a nonfeasible-initialization primal-dual
path-following algorithm [15].

Let w;, = {Xx, Ak, M} be such that only the conditions x; > 0 and
;> 0 are assumed. We need to obtain the next iterate

Wil = Wi + 04

such that X1 > 0 and p;,; > 0, and that d,, = {9, 6, §,} satisfies the
conditions

A(x;+d,)=Db (12.55a)
AT+ 68)) + (uyp +6,) = ¢ (12.55b)
Mo, + X0, = 1€ — Xy, (12.55¢)

Note that Eq. (12.55¢) is the same as Eq. (12.42c) which is a linear approxima-
tion of Eq. (12.40c) but Eqgs. (12.55a) and (12.55b) differ from Eqs. (12.42a)
and (12.42b) since in the present case the feasibility of wy, is not assumed. At
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the kth iteration, wy, is known; hence Eq. (12.55) is a system of linear equations
for {d,, 0, 0.}, which can be written as

Ad, =r, (12.56a)
ATS\ +6, =1, (12.56b)
MJ, + X8, = 7118 — Xpy, (12.56¢)

wherer, =b—Ax;andr; = c— AT\ — p, are the residuals for the primal
and dual constraints, respectively. Solving Eq. (12.56) for §,,, we obtain

0r» = Y(Ay + ADrg + 1)) (12.57a)
5, =—AT6)+ry (12.57b)
0, = -y —Dd, (12.57¢)

where D, Y, and y are defined by Eqgs. (12.44d) — (12.44f), respectively. It
should be stressed that if the new iterate w1 is set as in Eq. (12.51) with ay,
determined using Eq. (12.52), then x4 1 and g, remain strictly positive but
W41 1S not necessarily strictly feasible unless o happens to be unity. As the
iterations proceed, the new iterates generated get closer and closer to the central
path and approach to a primal-dual solution. The nonfeasible-initialization
interior-point algorithm is summarized as follows.

Algorithm 12.5 Nonfeasible-initialization primal-dual path-fol-
lowing algorithm for the standard-form LP problem

Step 1

Input A, b, ¢, and wg = {xg, Ao, o} withxg > 0 and p, > 0.

Set k = 0 and p > \/n, and initialize the tolerance ¢ for the duality gap.
Step 2

If H%Xk < g, output solution w* = wy, and stop; otherwise, continue
with Step 3.

Step 3

Set 7y4+1 using Eq. (12.50) and compute §,, = (0, 0y, d,) using
Eq. (12.57).

Step 4

Compute step size oy, using Eq. (12.52) and set w1 using Eq. (12.51).
Set k = k + 1 and repeat from Step 2.

Example 12.5 Apply Algorithm 12.5 to the LP problems in

(a) Example 12.3
(b) Example 12.2

with nonfeasible initial points.
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Solution (a) In order to apply the algorithm to the LP problem in Example 12.3,
we can use wo = {Xg, Ao, Mg} With

1.0

0.5

1.0

0.4
xo= {03, X=0.5, and py=
0.4

So xo > 0 and p, > 0 but wy is not feasible. With ¢ = 1076 and p = 7/n,
Algorithm 12.5 took eight iterations to converge to the solution

0.000000
x* = | 0.000000
1.000000

The number of flops required was 1.21K. Fig. 12.3 shows point x( and the first
three iterates, i.e., x; for k = 0, 1, 2, 3, as compared to the central path which
is shown as a dotted curve.

Figure 12.3. Iteration path in Example 12.5(a) as compared to the central path.

(b) For the LP problem in Example 12.2, we can use wo = {Xg, Ao, Ko}
with

1.0 1.0
0.1 1 0.1
xg=|[0.1], A= [ 1} , and pg=| 0.2
2.0 1.0

5.0 10.0
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With ¢ = 1078 and p = 12/n, the algorithm took 13 iterations to converge

to the solution
0.000000

0.333333
x" = 10.333333
0.000000
0.000000

The number of flops required was 6.96K.

12.5.3  Predictor-corrector method

The predictor-corrector method (PCM) proposed by Mehrotra [16] can be
viewed as an important improved primal-dual path-following algorithm relative
to the algorithms studied in Secs. 12.5.1 and 12.5.2. As a matter of fact, most
interior-point software available since 1990 is based on Mehrotra’s PCM algo-
rithm [3]. Briefly speaking, improvement is achieved by including the effect of
the second-order term AX4,, in Eq. (12.40c) using a prediction-correction strat-
egy rather than simply neglecting it. In addition, in this method the parameter
7 in Eq. (12.9¢) is assigned a value according to the relation

T=0T

where 7 = (u'x)/n and 0 < ¢ < 1. The scalar o, which is referred to
as centering parameter, is determined adaptively in each iteration based on
whether good progress has been made in the prediction phase.

At the kth iteration, there are three steps in the PCM algorithm that produce
the next iterate Wy 1 = {Xpy1, Ae+1, Mpyq)y Withxg; > 0and py ;> 0
as described below (see Chap. 10 in [3]).

1. Generate an affine-scaling ‘predictor’ direction éiﬁ using a linear ap-
proximation of the KKT conditions in Eq. (12.8).
Let wi, = {xg, Ak, py+ with x; > 0 and p;, > 0, and consider an
increment 62 = {53l 53l Jzﬁ} such that wy, + 821 linearly approxi-
mates the KKT conditions in Eq. (12.8). Under these circumstances, 62,5
satisfies the equations

A& =, (12.58a)
AT 4550 =1y (12.58b)
Mot + X5 = —XMe (12.58¢)
where
r, = b — Ax, (12.58d)

rg =c—ATX, — (12.58¢)
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Solving Eq. (12.58) for 62, we obtain

05T = Y (b + ADry) (12.59a)
o = ry— AT (12.59b)
8 = —x;, — D& (12.59¢)
where
D =M1X (12.59d)
Y = (ADAT)! (12.59%)
Along the directions 2 and Jzﬂ, two scalars agﬂ and o3 are determined
as
agﬂ = max () (12.60a)
0<a<l, xz+ads >0
and

adlt = max () (12.60b)
0<a<l, p,+ad;, >0

A hypothetical value of 751, denoted as 7,g, is then determined as
1
T = (g + 0§ 05" (xk+opTED] (1260

Determine the centering parameter oy,
A heuristic choice of o, namely,

3
— <T?ﬂ“ ) (12.62)
Tk
with )
i = — (i xn) (12.63)

was suggested in [16] and was found effective in extensive computational
testing. Intuitively, if 7,4 < 7%, then the predictor direction quﬂ given
by Eq. (12.59) is good and we should use a small centering parameter oy,
to substantially reduce the magnitude of parameter 7,41 = ox7x. If Tag
is close to 7y, then we should choose o, close to unity so as to move the
next iterate w1 closer to the central path.

. Generate a ‘corrector’ direction to compensate for the nonlinearity in the

affine-scaling direction.

The corrector direction &;, = {d3, 85, &), } is determined using Eq. (12.40)
with the term Xy, in Eq. (12.40c) neglected and the second-order term

AXSJ,, inEq. (12.40c) replaced by AXaﬁé'Zﬁ where AX? = diag{(62),,
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(621),, ..., (821),}. The reason that term X, is neglected is because it
has been included in Eq. (12.58¢c) where XMe = X ;.. In the primal-dual
path-following algorithms studied in Secs. 12.5.1 and 12.5.2, the second-
order term AXJ,, was dropped to obtain the linear systems in Egs. (12.42)
and (12.56). The PCM method approximates this second-order term with
the increment vectors &, and &, obtained from the predictor direction.
Having made the above modifications, the equations to be used to com-
pute J;, become

A& =0 (12.64a)
ATS+65 =0 (12.64b)
MJ4§ + X686 = 710 — AXM50 (12.64c)
where
Thtl = OkTk (12.644d)

with o and 7 given by Eqgs. (12.62) and (12.63), respectively. Solving
Eq. (12.64) for é;,, we obtain

05 = YAy (12.65a)

8 = —AT6 (12.65b)

0, = -y — DJZ (12.65¢)

where D and Y are given by Egs. (12.59d) and (12.59e), respectively, and
y =M1 (AXM5ET — 7 e (12.65d)

The predictor and corrector directions are now combined to obtain the
search direction {8, 0y, 6, } where

6, = 02 4 §¢ (12.66a)
oy = 85T + 6% (12.66b)
8, = 641 +6¢ (12.66¢)

and the new iterate is given by
Wit = Wi + {agp0z, 0 adr, a0y} (12.67)

where the step sizes for d, and (9, J,,) are determined separately as

agp = min(0.99 af), 1) (12.68a)

alp) = max () (12.68b)
a>0, xp+al;>0

apq = min(0.99 (@ 1) (12.68¢)

ald = max _ (a) (12.68d)

a>0, fh,+ad,>0
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A note on the computational complexity of the method is in order. From
Eq. (12.66), we see that the search direction is obtained by computing éf}ff
and 67 ; hence the two linear systems in Eqs. (12.58) and (12.64) have to
be solved. However, the system matrices for Eqgs. (12.58) and (12.64) are
identical and, consequently, the computational effort required by the PCM
algorithm is increased only slightly relative to that required by the primal-dual
path-following algorithms discussed in the preceding sections. This can also be
observed from the fact that matrices Y and D used to solve Eq. (12.58) can also
be used to solve Eq. (12.64). A step-by-step summary of the PCM algorithm
is given below.

Algorithm 12.6 Mehrotra’s predictor-corrector algorithm for the
standard-form LP problem

Step 1

Input A, b, c, and wog = {xg, Ao, po} Withxg > 0 and p, > 0.

Set k = 0 and 7y = (pux0)/n, and initialize the tolerance ¢ for the
duality gap.

Step 2

If p;{xk < g, output solution w* = wy, and stop; otherwise, go to Step
3.

Step 3

Compute predictor direction {82, 83, JZH} using Eq. (12.59).

Step 4

Compute 7,g using Egs. (12.60) and (12.61) and determine 71 as

Thtl = OTk

where o, and 7 are evaluated using Eqs. (12.62) and (12.63).

Step 5

Compute corrector direction {d7, 45, d7,} using Eq. (12.65).

Step 6

Obtain search direction {d,, 65, 6,} using Eq. (12.66) and evaluate
step sizes ay, , and oy, ¢ using Eq. (12.68).

Step 7

Set w1 using Eq. (12.67).

Set k = k + 1 and repeat from Step 2.

Example 12.6 Apply Algorithm 12.6 to the LP problems in

(a) Example 12.3
(b) Example 12.2

with nonfeasible initial points.
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Solution

(a) We can use the same wg and ¢ as in Example 12.5(a) to start Algorithm
12.6. It took six iterations for the algorithm to converge to the solution

0.000000
x* = | 0.000000
1.000000

The number of flops required was 1.268K, which entails a slight increase
as compared to that in Example 12.5(a) but the solution x* is more
accurate. Fig. 12.4 shows point xg and the first three iterates, i.e., xj, for

k=0, 1, 2, 3 as compared to the central path which is plotted as the
dotted curve.

Figure 12.4. Iteration path in Example 12.6(a) as compared to the central path.

(b) The same wq and ¢ as in Example 12.5(b) were used here. The algorithm
took 11 iterations to converge to the solution

0.000000
0.333333
x* = 10.333333
0.000000
0.000000

The number of flops required was 7.564K. This is slightly larger than
the number of flops in Example 12.5(b) but some improvement in the
accuracy of the solution has been achieved.
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Problems
12.1 This problem concerns the central path of the LP problem described in

Example 12.1.

(a) For a sample number of values 7 ranging from 500 to 1073, use
MATLAB command roots to evaluate the roots A of Eq. (12.14)
with A < —3.

(b) Generate a trajectory (x1, 2, x3) similar to that in Fig. 12.1.

(¢) Change the range of 7 from [1073, 500] to [10~2, 200] and then to
[2.5 x 1072, 20] and observe the trajectories (1, 2, 3) obtained.
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12.2 Consider the LP problem Eq. (12.1) and let x;,; be determined using
Eq. (12.22). Show that if ap > 0, then f(xxy1) < f(xx) and this
inequality holds strictly if at least one of the last n — p components of
Vch is nonzero, where Vy, is the n x n orthogonal matrix obtained
from the SVD of AX : AX = U,[X; 0] VL.

12.3 (a) Apply the PAS algorithm to solve the LP problem in Prob. 11.16.

Compare the results with those obtained in Prob. 11.16.
(b) Apply the PAS algorithm to solve the LP problem in Prob. 11.17.
Compare the results with those obtained in Prob. 11.17.

12.4 (a) Derive the KKT conditions for the minimizer of the problem in
Eq. (12.26).
(b) Relate the KKT conditions obtained in part (a) to the central path of
the original LP problem in Eq. (12.9).
12.5 (a) Apply the PNB algorithm to solve the LP problem in Prob. 11.16.
Compare the results with those obtained in Prob. 12.3(a).
(b) Apply the PNB algorithm to solve the LP problem in Prob. 11.17.
Compare the results with those obtained in Prob. 12.3(b).
12.6 Develop a PNB algorithm that is directly applicable to the LP problem in
Eq. (11.2).
Hint: Denote A and b in Eq. (11.2b) as

a{ b1
al b
A= .2 and b= _2
ag by

and consider the logarithmic barrier function

P
fr(x)=clx—7 Z In(al'x — b)
i=1
where 7 > ( is a barrier parameter.
12.7 Using the initial point [x1 x5 x3 51 s2 s3] = [0.5 1 10 0.5 98 9870]7,
solve the LP problem

minimize 10021 + 10zo + x3

subjectto: s;14+x1 =1
So + 2x1 + 2 = 100
s3 + 200z 4+ 2029 + x3 = 10000
x;>0,8>0fori=1,2,3
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12.8

12.9

12.10

12.11

12.12

by using
(a) the PAS algorithm.
(b) the PNB algorithm.

The primal Newton barrier method discussed in Sec. 12.4 is related to the
primal LP problem in Eq. (12.1). It is possible to develop a dual Newton
barrier (DNB) method in terms of the following steps:

(a) Define a dual subproblem similar to that in Eq. (12.26) for the LP
problem in Eq. (12.2).

(b) Derive the first-order optimality conditions for the subproblem ob-
tained in part (a).

(c¢) Show that the points satisfying these first-order conditions are on the
primal-dual central path.

(d) Develop a DNB algorithm for solving the dual problem in Eq. (12.2).

Consider the standard-form LP problem in Eq. (12.1). A strictly feasible
point x* > 0 is said to be the analytic center of the feasible region if x*
is the farthest away from all the boundaries of the feasible region in the
sense that x* solves the problem

n

minimize — » Inw; (P12.1a)
i=1
subjectto: Ax=Db (P12.1b)

(a) Derive the KKT conditions for the minimizer of the problem in
Eq. (P12.1).

(b) Are the KKT conditions necessary and sufficient conditions?

(¢) Use the KKT conditions obtained to find the analytic center for the
LP problem in Example 12.1.

Generalize the concept of analytic center discussed in Prob. 12.9 to the
feasible region given by Ax > b, where A € RP*™ with p > n, and
rank(A) = n.

(a) Prove the inequality in Eq. (12.28).

(b) Drive the formulas in Eqs. (12.38a) and (12.38b).

Develop a primal path-following interior-point algorithm for the primal
LP problem in Eq. (12.1) in several steps as described below.

(a) Formulate a subproblem by adding a logarithmic barrier function to
the objective function, i.e.,
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n
minimize f,(x) =clx— 7 Z Inz;
i=1

subjectto: Ax=Db
where 7 > ( is a barrier parameter.

(b) Show that the KKT conditions for the minimizer of the above sub-
problem can be expressed as

Ax =Db
c—ATA—7X"le=0

where X = diag(x)ande =[11 --- 1]T.

(c) At the kth iteration, let x;11 = xj + d such that xj; would better
approximate the above KKT conditions. Show that up to first-order
approximation, we would require that d satisfy the equations

Ad =0 (P12.22)
X ?d+c—71Xle—ATN. =0 (P12.2b)

where X = diag{xy}.
(d) Show that the search direction d in Eq. (P12.2) can be obtained as

1
d=x, — X%, (P12.3a)
T
where
= c— AT, (P12.3b)
Ak = (AXZAT)1AX?(c — 7X 7 e) (P12.3c)

(e) Based on the results obtained in parts (a)-(d), describe a primal path-
following interior-point algorithm.

12.13 (a) Apply the algorithm developed in Prob. 12.12 to the LP problem in
Prob. 11.16.

(b) Compare the results obtained in part (a) with those of Prob. 12.3(a)
and Prob. 12.5(a).

12.14 (a) Apply the algorithm developed in Prob. 12.12 to the LP problem in
Prob. 11.17.

(b) Compare the results obtained in part (a) with those of Prob. 12.3(b)
and Prob. 12.5(b).

12.15 Show that the search direction determined by Eq. (P12.3) can be expressed
as

d= —EXPXC + XPe (P12.4)
T
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12.16

12.17

12.18

12.19

12.20

12.21

12.22

where P = I — XAT(AX2?AT)~1 AX is the projection matrix given by
Eq. (12.24).

In the literature, the two terms on the right-hand side of Eq. (P12.4) are
called the primal affine-scaling direction and centering direction, respec-

tively. Justify the use of this terminology.
Hint: Use the results of Sec. 12.3 and Prob. 12.9.

(a) Derive the formulas in Eq. (12.44) using Eq. (12.42).

(b) Derive the formulas in Eq. (12.57) using Eq. (12.56).

(a) Apply Algorithm 12.4 to the LP problem in Prob. 11.16. Compare the
results obtained with those of Probs. 12.3(a), 12.5(a) and 12.13(a).

(b) Apply Algorithm 12.4 to the LP problem 11.17. Compare the results
obtained with those of Probs. 12.3(b), 12.5(b), and 12.14(a).

(a) Apply Algorithm 12.5 to the LP problem in Prob. 11.16 with a nonfea-
sible initial point {xg, Ao, o} with xg > 0 and p, > 0. Compare
the results obtained with those of Prob. 12.18(a).

(b) Apply Algorithm 12.5 to the LP problem in Prob. 11.17 with a nonfea-
sible initial point {xg, Ao, o} with xg > 0 and p > 0. Compare
the results obtained with those of Prob. 12.18(d).

(a) Derive the formulas in Eq. (12.59) using Eq. (12.58).
(b) Derive the formulas in Eq. (12.65) using Eq. (12.64).

(a) Apply Algorithm 12.6 to the LP problem in Prob. 11.16 with the same
nonfeasible initial point used in Prob. 12.19(a). Compare the results
obtained with those of Prob. 12.19(a).

(b) Apply Algorithm 12.6 to the LP problem in Prob. 11.17 with the same
nonfeasible initial point used in Prob. 12.19(b). Compare the results
obtained with those of Prob. 12.19(b).

Consider the nonstandard-form LP problem
minimize c¢’x
subjectto: Ax>Db

where ¢ € R, A € RP*" and b € RP*! with p > n. Show that its
solution x* can be obtained by solving the standard-form LP problem

minimize —b”x
subjectto:  ATx =c
x>0

using a primal-dual algorithm and then taking the optimal Lagrange mul-
tiplier vector A* as x*.



Chapter 13

QUADRATIC AND CONVEX
PROGRAMMING

13.1 Introduction

Quadratic programming (QP) is a family of methods, techniques, and algo-
rithms that can be used to minimize quadratic objective functions subject to
linear constraints. On the one hand, QP shares many combinatorial features
with linear programming (LP) and, on the other, it is often used as the basis of
constrained nonlinear programming. In fact, the computational efficiency of a
nonlinear programming algorithm is often heavily dependent on the efficiency
of the QP algorithm involved.

An important branch of QP is convex QP where the objective function is a
convex quadratic function. A generalization of convex QP is convex program-
ming (CP) where the objective function is convex but not necessarily quadratic
and the feasible region is convex.

In this chapter, we will first study convex QP problems with equality con-
straints and describe a QR-decomposition-based solution method. Next, two
active set methods for strictly convex QP problems are discussed in detail.
These methods can be viewed as direct extensions of the simplex method dis-
cussed in Chap. 11. In Sec. 13.4, the concepts of central path and duality gap
are extended to QP and two primal-dual path-following methods are studied.
In addition, the concept of complementarity for convex QP is examined and its
relation to that in LP is discussed. In Secs. 13.5 and 13.6, certain important
classes of CP algorithms known as cutting-plane and ellipsoid algorithms are
introduced.

Two special branches of CP known as semidefinite programming (SDP) and
second-order cone programming (SOCP) have been the subject of intensive
research during the past several years. The major algorithms for SDP and
SOCP and related concepts will be studied in Chap. 14.
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13.2  Convex QP Problems with Equality Constraints

The problem we consider in this section is

minimize f(x) = ix"Hx +xp (13.1a)
subjectto: Ax=Db (13.1b)
where A € RP*™. We assume in the rest of this section that the Hessian H is

symmetric and positive semidefinite, A has full row rank, and p < n. From
Sec. 10.4.1, the solutions of the problem in Eq. (13.1b) assume the form

x=V,0+A"b (13.2)

where V. is composed of the last n — p columns of V and V is obtained
from the singular-value decomposition (SVD) of A, namely, USVT. By us-
ing Eq. (13.2), the constraints in Eq. (13.1b) can be eliminated to yield the
unconstrained minimization problem

minimize f(¢) = 3¢ "Ho + ¢'p (13.3a)
where
H=VIHV, (13.3b)
and
p=VI(HA'b +p) (13.3¢)

If H in Eq. (13.3b) is positive definite, then H is also positive definite and
the unique global minimizer of the problem in Eq. (13.1) is given by

x*=V,¢*+A"b (13.4a)
where ¢™ is a solution of the linear system of equations
Hop = —p (13.4b)

If H is positive semidefinite, then H in Eq. (13.3b) may be either positive
definite or positive semidefinite. If H is positive definite, then x* given by
Eq. (13.4a) is the unique global minimizer of the problem in Eq. (13.1). If His
positive semidefinite, then there are two possibilities: (a) If p can be expressed
as a linear combination of the columns of H, then f(gi)) has infinitely many
global minimizers and so does f(x); (b) if p is not a linear combination of the
columns of H, then f(¢), and therefore f(x), has no minimizers.

An alternative and often more economical approach to obtain Eq. (13.2) is
to use the QR decomposition of AT e,

AT =qQ Hﬂ (13.5)
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where Q is an n x n orthogonal and R is a p X p upper triangular matrix (see
Sec. A.12 and [1]). Using Eq. (13.5), the constraints in Eq. (13.1b) can be
expressed as

R'% =b

where X is the vector composed of the first p elements of X with
x=QTx
If we denote

x= %] wd Q-

with ¢ € R"P)*1 Q; € R"*P and Qo € R**("~P), then
x=Q%x = Q¢+ Qix1 = Q¢+ QR b

ie.,

x=Q¢0+ QR b (13.6a)

whichis equivalentto Eq. (13.2). The parameterized solutions in Eq. (13.6a) can
be used to convert the problem in Eq. (13.1) to the reduced-size unconstrained
problem in Eq. (13.3) where H and p are given by

H=QIHQ, (13.6b)

and
p=Q;(HQR "b+p)

respectively. If H is positive definite, the unique global minimizer of the prob-
lem in Eq. (13.1) can be determined as

x* = Q0" + QIR Tb (13.7)

where ¢ is a solution of Eq. (13.4b) with H given by Eq. (13.6b).

In both approaches discussed above, H is positive definite and the system
in Eq. (13.4b) can be solved efficiently through the LDL” (see Chap. 5) or
Cholesky decomposition (see Sec. A.13).

Example 13.1 Solve the QP problem
minimize f(x) = (2] + 23) + 221 + 22 — 23 (13.8a)
subjectto: Ax=Db (13.8b)

where
A=[011], b=1
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Solution Since matrix H is positive semidefinite in this case, the SVD of A
leads to

1 0 0
V,=|0 % and AT = 5]

0 —-L 1

V2 2

Since

is positive definite, the use of Eq. (13.4a) yields the unique global minimizer as

x* =V, ¢*+A"b

1 (1) —2.0000 0 )
0 —2%| 13535 . 3

V2
Alternatively, the problem can be solved by using the QR decomposition of
AT From Eq. (13.5), we have

0 V2 V2
2 2

Q=¥ —05 05|, R=V2
205 —0.5

which leads to

Q= @ , Q2= 1-05 0.5
{ )

|2 0.5 —0.5
and )
- 0.75 0.25 . 10.1642
~ 1025 0.75]" P 7 |26642
Hence
o = 1.0858
| —3.9142
The same solution, i.e., x* = [~2 —2 3]7, can be obtained by using Eq. (13.7).

Note that if the constraint matrix A is changed to

A=[100] (13.9)

0 0
Vr:10,ﬂ:[(1) 8]
0 1

then
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o[

Obviously, p cannot be expressed as a linear combination of the columns of H
in this case and hence the problem in Eq. (13.8) with A given by Eq. (13.9)
does not have a finite solution.

If the objective function is modified to

f(x) = §(aF + a3) + 221 + 29
then with A given by Eq. (13.9), we have

>=[s)

In this case, p is a linear combination of the columns of H and hence there are
infinitely many solutions. As a matter of fact, it can be readily verified that any
x* = [1 —1 z3]7 with an arbitrary 23 is a global minimizer of the problem.
]
The problemin Eq. (13.1) can also be solved by using the first-order necessary
conditions described in Theorem 10.1, which are given by

Hx* +p—-ATAx* =0
—Ax*+b =0

H -AT][x* 9]

a0 =R 1310
If H is positive definite and A has full row rank, then the system matrix in
Eq. (13.10) is nonsingular (see Eq. 10.69) and the solution x* from Eq. (13.10)
is the unique global minimizer of the problem in Eq. (13.1). Hence the solution
x* and Lagrange multipliers A* can be expressed as

A= (AH'AT)"{(AH 'p + b) (13.11a)

x* = H}(AX —p) (13.11b)
The solution of the symmetric system in Eq. (13.10) can be obtained using

numerical methods that are often more reliable and efficient than the formulas
in Eq. (13.11) (see Chap. 10 of [1] for the details).

and

i.e.,

13.3  Active-Set Methods for Strictly Convex QP Problems

The general form of a QP problem is to minimize a quadratic function subject
to a set of linear equality and a set of linear inequality constraints. Using
Eq. (13.2) or Eq. (13.6a), the equality constraints can be eliminated and without
loss of generality the problem can be reduced to a QP problem subject to only
linear inequality constraints as
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minimize f(x) = %XTHX +xTp (13.12a)
subjectto: Ax>Db (13.12b)

where A € RP*". The Karush-Kuhn-Tucker (KKT) conditions of the problem
at a minimizer x are given by

Hx+p—-Afp=0 (13.13a)
(al'x —bj)pu; =0  fori=1,2,...,p (13.13b)

wi >0 fort=1,2,...,p (13.13c)

Ax > b (13.13d)

To focus our attention on the major issues, we assume in the rest of this section
that H is positive definite and all vertices of the feasible region are nonde-
generate. First, we consider the possibility of having a solution {x*, u*} for
Eq. (13.13) with x* in the interior of the feasible region R . If this is the case,
then Ax* > b and Eq. (13.13b) implies that p* = 0, and Eq. (13.13a) gives

x*=-H'p (13.14)

which is the unique global minimizer of f(x) if there are no constraints. There-
fore, we conclude that solutions of the problem in Eq. (13.12) are on the bound-
ary of the feasible region R unless the unconstrained minimizer in Eq. (13.14)
is an interior point of R. In any given iteration, the search direction in an active
set method is determined by treating the constraints that are active at the iterate
as a set of equality constraints while neglecting the rest of the constraints. In
what follows, we describe first a primal active set method [2][3] and then a dual
active set method [4] for the problem in Eq. (13.12).

13.3.1 Primal active-set method

Let x;, be a feasible iterate obtained in the kth iteration and assume that 7,
is the index set of the active constraints, which is often referred to as the active
set, at xi. The next iterate is given by

Xpt1 = X + apdg (13.15)
The constraints that are active at x;, will remain active if
a]Tka —-b;=0 for j € Ji

which leads to
adek =0 for 7 € Ji

The objective function at x;, + d becomes

fr(d) = $d"Hd + d"g, + ¢4
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where
gr = p + Hx;, (13.16)

and c; is a constant. A major step in the active set method is to solve the QP
subproblem R

minimize f(d) = Jd"Hd + d’g; (13.17a)

subject to: afd =0 for j € Ji (13.17b)

and this can be accomplished by using one of the methods described in the
preceding section.

If the solution of the problem in Eq. (13.17) is denoted as dj, then there are
two possibilities: either d;, = 0 or di # O.

If dj, = 0, then the first-order necessary conditions imply that there exist 1,
for j € J such that

Hx,+p— Y pa; =0 (13.18)
J€Tk
i.e.,
Hx,+p—Al i1=0 (13.19)

where A, is the matrix composed of those rows of A that are associated with
the constraints that are active at x; and i is the vector composed of the p;’s
in Eq. (13.18). If we augment vector f& to n-dimensional vector p by padding
zeros at the places corresponding to those rows of A that are inactive at X,
then Eq. (13.19) can be written as

Hx,+p—-ATp=0

which is the same as Eq. (13.13a). Since xj, is a feasible point, it satisfies
Eq. (13.13d). Moreover, because of the way vector p is constructed, the com-
plementarity condition in Eq. (13.13b) is also satisfied. So the first-order nec-
essary conditions in Eq. (13.13), which are also sufficient conditions since the
present problem is a convex QP problem, will be satisfied at x;, if &t > 0. In
such a case, xj, can be deemed to be the unique global solution and the iteration
can be terminated. On the other hand, if one of the components of [, say,
L, 1s negative, then if point x moves along a feasible direction at xy, say, d,
where the ith constraint becomes inactive while all the other constraints that
were active at xj, remain active, then the objective function will decrease. As a
matter of fact, at x;, we have a?a = 0forj € Jg, j # i, and aiTa > 0. From
Eq. (13.19), we have

VI f(xp)d = (Hx +p)Td=a"ALd= > pjald
JE€ETk
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Consequently, active set J, can be updated by removing index ¢ from 7. For
the sake of simplicity, the updated index set is again denoted as Jj. If there are
more than one negative Lagrange multipliers, then the index associated with
the most negative Lagrange multiplier is removed.

It should be stressed that in an implementation of the method described,
verifying whether or not dy is zero can be carried out without solving the
problem in Eq. (13.17). At point xj, we can write Eq. (13.19) as

Ag =g (13.20)

where gy, is given by Eq. (13.16). It is well known that a solution fs exists if
and only if
rank[A] g;] = rank(A[ ) (13.21)

SVD- and QR-decomposition-based methods are available for checking the
condition in Eq. (13.21) [1][5]. If the condition in Eq. (13.21) is met, the
components of fi are examined to determine whether x;, is the solution or J,
needs to be updated. Otherwise, the subproblem in Eq. (13.17) is solved.

If di. # 0, then parameter oy, in Eq. (13.15) needs to be determined to assure
the feasibility of xj41. Using Eq. (13.17b), the optimal oy, can be determined
as

T
. .oa; X, — b
o =min< 1, min % (13.22)
¢, —ald,
alek<O

If a; < 1, then a new constraint becomes active at xj1. The active set Jx1
at Xy 1 is obtained by adding the index of the new active constraint, jg, to Jk.

The active-set method can be implemented in terms of the following algo-
rithm.

Algorithm 13.1 Primal active-set algorithm for QP problems with
inequality constraints

Step 1

Input a feasible point, xg, identify the active set [Jp, form matrix A,
and set k = 0.

Step 2

Compute gy, using Eq. (13.16).

Check the rank condition in Eq. (13.21); if Eq. (13.21) does not hold,
go to Step 4.

Step 3

Solve Eq. (13.20) for f. If it > 0, output x;, as the solution and stop;
otherwise, remove the index that is associated with the most negative
Lagrange multiplier from 7.

Step 4

Solve the problem in Eq. (13.17) for dy.
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Step 5

Find a4 using Eq. (13.22) and set xx1 = X + agdg.

Step 6

If o, < 1, construct Ji41 by adding the index that yields the minimum
in Eq. (13.22) to Jj; otherwise, let Ji+1 = Jk.

Step 7

Set k = k + 1 and repeat from Step 2.

Algorithm 13.1 requires a feasible initial point x that satisfies the constraints
Axy > b. Such a point can be identified by using, for example, the method
described in Sec. 11.2.3.4. The method involves solving an LP problem of size
n + 1 for which a feasible initial point can be easily identified.

Example 13.2 Find the shortest distance between triangles R and S shown in
Fig. 13.1 and the points r* € R and s* € S that yield the minimum distance.

XZ’X4

3

3 X,
Figure 13.1. Triangles R and S in Example 13.2.

Solution Let r = [z1 22]7 € R and s = [z3 24]7 € S. The square of the
distance between r and s is given by

(1 — x3)% + (29 — 24)? = x'Hx

where

H = (13.23)
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and x = [z1 22 23 x4]T is constrained to satisfy the inequalities

X1
€2
1 + 2x9
T4

xr3 + X4

IN IV IV IA IV IV
S IV RN CR Ul e R o)

T3 + 214

The problem can be formulated as the QP problem

minimize f(x) = %XTHX (13.24a)
subjectto: Ax>Db (13.24b)
where
1 0 0 0 0
0 1 0 0 0
-1 =2 0 0 -2
A= 0O 0 © 1’ b= 2
0 0 1 1 3
0 0 -1 =2 —6

Since matrix H in Eq. (13.23) is positive semidefinite, Algorithm 13.1 is not
immediately applicable since it requires a positive definite H. One approach to
fix this problem, which has been found to be effective for convex QP problems
of moderate size with positive semidefinite Hessian, is to introduce a small
perturbation to the Hessian to make it positive definite, i.e., we let

H=H+4I (13.25)

where 1 is the identity matrix and J is a small positive scalar. Modifying matrix
H in Eq. (13.23) to H as in Eq. (13.25) with § = 10~ and then applying Al-
gorithm 13.1 to the modified QP problem with an initial point xq = [2 0 0 3],
the minimizer was obtained in 5 iterations as x* = [0.4 0.8 1.0 2.0]”. Hence
r* = [0.4 0.8]7 and s* = [1 2]” and the shortest distance between these points
is 1.341641 (see Fig. 13.1).

|

13.3.2  Dual active-set method

A dual active-set method for the QP problem in Eq. (13.12) with H positive
definite was proposed by Goldfarb and Idnani [4]. The method is essentially
the active-set method described in the preceding section but applied to the dual
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of the problem in Eq. (13.12). According to Theorem 10.9, the dual is the
maximization problem

maximize [—$p” AH AT p + p” (AH 'p + b))
subjectto: p© >0

which is equivalent to
minimize h(p) = i AH ATy — " (AH 'p + b) (13.26a)
subjectto: p© >0 (13.26b)

Once the minimizer of the problem in Eq. (13.26), p*, is determined, the min-
imizer of the primal is obtained from one of the KKT conditions, i.e.,

Hx+p—-ATp=0

which gives
x* =H YATp* — p) (13.27)

The advantages of the dual problem in Eq. (13.26) include:

(a) A feasible initial point can be easily identified as any vector with non-
negative entries, e.g., g = 0.

(b) The constraint matrix in Eq. (13.26b) is the p x p identity matrix. Conse-
quently, the dual problem always satisfies the nondegeneracy assumption.

(¢) The dual problem only involves bound-type inequality constraints which
considerably simplify the computations required in Algorithm 13.1. For
example, checking the rank condition in Eq. (13.21) for the dual problem
entails examining whether the components of g, that correspond to those
indices not in the active set are all zero.

As in the primal active-set method discussed in Sec. 13.3.1, a major step in
the dual active-set method is to solve the QP subproblem which is the dual of
the QP problem in Eq. (13.17). This QP subproblem can be reduced to the
unconstrained optimization problem

minimize %&TI:IEI + Engk

where d is the column vector obtained by deleting the components of d whose
indices are in Jj,, H is the principal submatrix of H obtained by deleting the
columns and rows associated with index set 7 and gy, is obtained by deleting
the components of g; whose indices are in Jy.

13.4 Interior-Point Methods for Convex QP Problems

In this section, we discuss several interior-point methods for convex QP
problems that can be viewed as natural extensions of the interior-point methods
discussed in Chap. 12 for LP problems.
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13.4.1 Dual QP problem, duality gap, and central path

By introducing slack variables and splitting free variables into positive and
negative parts, we can reformulate the QP problem in Eq. (13.12) as

minimize f(x) = ix"Hx +xp (13.28a)
subjectto: Ax =b (13.28b)
x>0 (13.28¢)

where H € R™ ™ is positive semidefinite and A € RP*™ has full row rank.
By applying Theorem 10.9 to Eq. (13.28), the dual problem can be obtained as

maximize; h(x, A, p) = —3x  Hx + ATb (13.29a)
subjectto: ATA+pu—Hx =p (13.29b)
©w>0 (13.29c¢)

The necessary and sufficient conditions for vector x to be the global mini-
mizer of the problem in Eq. (13.28) are the KKT conditions which are given
by

Ax—b=0 forx>0 (13.30a)
ATAX+p—-Hx—p=0 for pu>0 (13.30b)
Xp=0 (13.30c)

where X = diag{x1, =2, ..., T, }.

Let set {x, A, p} be feasible for the problems in Egs. (13.28) and (13.29).
The duality gap, which was defined in Eq. (12.6) for LP problems, can be
obtained for {x, A\, u} as

5(x, A, p) = f(x) —h(x, A\, p) =x"Hx+x'p—-A"b
=x"(A"x+p) = ATb=x"p (13.31)

which is always nonnegative and is equal to zero at solution {x*, A*, p*}
because of the complementarity condition in Eq. (13.30c).

Based on Eq. (13.30), the concept of central path, which was initially intro-
duced for LP problems in Sec. 12.2.2, can be readily extended to the problems in
Eqgs. (13.28) and (13.29) as the parameterized set w(7) = {x(7), A(7), p(7)}
that satisfies the conditions

Ax—b =0 for x >0 (13.32a)
ATAX+p—-Hx—p=0 for p>0 (13.32b)
Xpu = T1e (13.32¢)
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where 7 is a strictly positive scalar parameter and e = [1 1 --- 1]7 € R™.
It follows that every point on the central path is strictly feasible and the entire
central path lies in the interior of the feasible regions described by Egs. (13.28b),
(13.28c¢), (13.29b), and (13.29c). On comparing Eq. (13.32) with Eq. (13.30),
we see that as 7 — 0 the central path approaches set w* = {x*, A*, p*} which
solves the problems in Eqs. (13.28) and (13.29) simultaneously. This can also
be seen by computing the duality gap on the central path, i.e.,

O[x(1), A1), p(1)] = XT(T);L(T) =nr (13.33)

Hence the duality gap approaches zero linearly as 7 — 0.

As in the LP case, the equations in Eq. (13.32) that define the central path for
the problem in Eq. (13.28) and its dual can be interpreted as the KKT conditions
for the modified minimization problem

minimize f(x) = 3x’Hx +x'p— 7Y Inz; (13.34a)
=1

subjectto: Ax=Db (13.34b)

where 7 > 0 is the barrier parameter (see Sec. 12.4). In order to ensure that

f(x) in Eq. (13.34a) is well defined, it is required that
x>0 (13.34¢)
The KKT conditions for the problem in Eq. (13.34) are given by

Ax—b=0 for x >0 (13.35a)
ATA—7X"le—-Hx—-p=0 (13.35b)

If we let u = 7X " 'e, then x > 0 implies that & > 0 and Eq. (13.35b) can be
written as

ATA+p—-Hx—p=0 for p>0 (13.36a)

and
Xu =rT1e (13.36b)

Consequently, Egs. (13.35a), (13.36a), and (13.36b) are identical with Egs. (13.32a),
(13.32b), and (13.32c), respectively.

In what follows, we describe a primal-dual path-following method similar
to the one proposed by Monteiro and Adler [6] which is an extension of their
work on LP [7] described in Sec. 12.5. We then discuss the class of monotone
linear complementarity problems (LCP’s) and its variant known as the class of
mixed LCP’s, and recast convex QP problems as mixed LCP’s (see Chap. 8 in

[8D.
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13.4.2 A primal-dual path-following method for convex QP
problems

Consider the convex QP problem in Eq. (13.28) and let wy, = {xy, Ag, ty}
be such that xj, is strictly feasible for the primal problem in Eq. (13.28) and
Wi = {Xg, Ak, py ) is strictly feasible for the dual problem in Eq. (13.29). We
require an increment set 8., = {Jd, 6, 6, } such that the next iterate w1 ; =
{Xk+1, Akt1, Mpyi1} = Wi + 6, remains strictly feasible and approaches
the central path defined by Eq. (13.32). If wj, were to satisfy Eq. (13.32) with
T = Tk+1, we would have

~Ho, +AT6y+5,=0 (13.37a)

Aj, =0 (13.37b)

AXpy + X6, + AXd, = Trr1e — Xy (13.37¢c)

where AX = diag{(d)1, (6z)2, ..., (0z)n}. If the second-order term in

Eq. (13.37¢), namely, AXJ,, is neglected, then Eq. (13.37) becomes the system
of linear equations

~H6, + A5, +5,=0 (13.38a)
Ad, =0 (13.38b)
Mo, + X0, = Tpr1e — Xy, (13.38¢)
where M = diag {(p)1, (¢g)2, -, (t)n}. These equations can be ex-
pressed in matrix form as
-H AT 1 0
A 0 O0|éy= 0 (13.39)
M 0 X Tk+1€ — X[,Lk
A good choice of parameter 71 in Eqgs. (13.38) and (13.39) is
Xflik
Thtl = with p > +/n (13.40)
n-+p

It can be shown that for a given tolerance ¢ for the duality gap, this choice of
Ti-+1 Will reduce the primal-dual potential function which is defined as

Ut p(X, 1) = (n+ p)In(x" ) Zln (5147) (13.41)

to a small but constant amount. This would lead to an iteration complexity of
O(plIn(1/¢)) (see Chap. 4 in [9]).
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The solution of Eq. (13.38) can be obtained as

0y =Yy (13.42a)
0, = IXATs, —y (13.42b)
5, =Hs, — ATS) (13.42¢)
where
r=M+XH)! (13.42d)
Y = (ATXAT) A (13.42¢)
and
y = T(Xpy, — t1€) (13.42f)

Since xj, > 0 and p;, > 0, matrices X and M are positive definite. Therefore,
XM + H is also positive definite and the inverse of the matrix

M+ XH = X(X~'M + H)
exists. Moreover, since A has full row rank, the matrix
ATXAT = A(X"'M +H) AT
is also positive definite and hence nonsingular. Therefore, matrices I' and Y in
Eq. (13.42) are well defined.
Once §,, is calculated, an appropriate oy needs to be determined such that

Wil = Wi + a0y (13.43)

remains strictly feasible. Such an oy can be chosen in the same way as in the
primal-dual interior-point algorithm discussed in Sec. 12.5.1, i.e.,

ar = (1 —107%) amax (13.44a)
where
Omax = min(oy, og) (13.44b)
with x2)
. Xk )i
= min — 13.44c
P i (02)i<0 [ (633)1:| ( )
: ()i
ag = min — (13.44d)
I i with (0,,);<0 (du)i

The method described can be implemented in terms of the following algorithm.
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Algorithm 13.2 Primal-dual path-following algorithm for convex
QP problems

Step 1

Input a strictly feasible wo = {xq, Ao, to}-

Set k = 1 and p > /n, and initialize the tolerance ¢ for duality gap.
Step 2

If x{uk < g, output solution w* = wy, and stop; otherwise, continue
with Step 3.

Step 3

Set 7341 using Eq. (13.40) and compute d,, = {d,, 5, d,} using
Egs. (13.42a) to (13.42¢).

Step 4

Compute oy, using Eq. (13.44) and update w1 using Eq. (13.43).

Set k = k + 1 and repeat from Step 2.

13.4.3  Nonfeasible-initialization primal-dual
path-following method for convex QP problems

Algorithm 13.2 requires a strictly feasible wy which might be difficult to
obtain particularly for large-scale problems. The idea described in Sec. 12.5.2
can be used to develop a nonfeasible-initialization primal-dual path-following
algorithm for convex QP problems. Let wj, = {xj, A, ;) be such that
xj, > 0 and p;, > 0 but which may not satisfy Eqgs. (13.32a) and (13.32b). We
need to find the next iterate

Wil = WE + agdy

such that X1 > 0 and p;, > 0, and that d,, = {d,, 6, §,,} satisfies the
equations

~H(xg +6,) —p+ AT (A, +3)) + (g +6,) =0
Mo, + X0, = Tpr1e — Xy,

ie.,
~Hé, + AT6\+6, =14
Ad, =1,
Mo, + Xd, = Tpr1e — Xpy,
where

rg = Hx, +p — AT, — (13.45a)
r, = b — Axy, (13.45b)
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The above system of linear equations can be expressed as

-H AT 1 ry
A 0 0]|dy= r,

M 0 X Tk+1€ — X[,Lk

(13.46)

On comparing Eq. (13.46) with Eq. (13.39), we see that §,, becomes the
search direction determined by using Eq. (13.39) when the residual vectors r,,
and rg are reduced to zero. Note that in general the elimination of r, and
ry cannot be accomplished in a single iteration because the next iterate also
depends on aj which may not be unity. The solution of Eq. (13.46) can be
obtained as

5>\ = Yo(AYd + I'p) (13.473.)
0, = TXATS, —y, (13.47b)
6, =Hs, —ATS)\ +r4 (13.47¢)
where

I'=(M+XH)! (13.47d)
Y, = (ATXAT)™! (13.47¢)
ya = P[X(py, + ra) — Ths1€] (13.47f)

XJ i
Tyl = —& with p > /n (13.47¢)

n+p

Obviously, if residual vectors r,, and ry are reduced to zero, the vector 6., =
{64, 6, 0,,} determined by using Eq. (13.47) is identical with that obtained us-
ing Eq. (13.42). Once §,, is determined, o, can be calculated using Eq. (13.44).
The above principles lead to the following algorithm.

Algorithm 13.3 Nonfeasible-initialization primal-dual path-follow-
ing algorithm for convex QP problems

Step 1

Input a set wo = {xg, Ao, po} Withxg > 0 and py > 0.

Setk = 0 and p > +/n, and initialize the tolerance ¢ for the duality gap.
Step 2

If xg 1, < g, output solution w* = wy, and stop; otherwise, continue
with Step 3.

Step 3

Compute 75,1 using Eq. (13.47g) and determine 6, = {6, dx, 0,}
using Eq. (13.47).

Step 4

Compute o, using Eq. (13.44) and update w1 using Eq. (13.43).

Set k = k + 1 and repeat from Step 2.
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Example 13.3 Solve the convex QP problem

4 0 0 -8

minimize f(x) = ix” |0 1 -1|x+x’ | -6 (13.48a)
0 -1 1 —6

subjectto: z; 4+ x2+2x3 =3 (13.48b)

x>0 (13.48¢)

Solution The problem can be solved by using either Algorithm 13.2 or Al-
gorithm 13.3. Using a strictly feasible point xg = [1 1 1] and assigning
Ao = —7and py = [3 1 1]7, it took Algorithm 13.2 11 iterations and 3681
flops to converge to the solution

0.500000
x* = | 1.250000
1.250000
On the other hand, using a nonfeasible initial point xo = [1 2 2] and assigning

Ao = —1, puy =10.20.20.2]7, p = n + 2y/n, and e = 10~?, Algorithm 13.3
took 13 iterations and 4918 flops to converge to the solution

0.500001
x* = | 1.249995
1.249995

|

Example 13.4 Solve the shortest-distance problem described in Example 13.2
by using Algorithm 13.3.

Solution By letting x = x™ — x~ where x* > 0 and x~ > 0, and then
introducing slack vector > 0, the problem in Eq. (13.12) can be converted
into a QP problem of the type given in Eq. (13.28), i.e.,

minimize %" Hx + %" p (13.49a)
subjectto: Ak = b (13.49b)
x>0 (13.49¢)
where
R H -H o p xT
H=|-H H 0|, p=|-p|, x=|x"
0 0 0 0 n
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and n = 14, p = 6. We note that H is positive semidefinite if H is positive
semidefinite. Since a strictly feasible initial wyq is difficult to find in this ex-
ample, Algorithm 13.3 was used with xg = ones{14,1}, Ao = —ones{6, 1},
o = ones{14, 1}, where ones{m, 1} represents a column vector of dimension
m whose elements are all equal to one. Assigninge = 107° and p = n+20,/n,
the algorithm took 11 iterations and 215 Kflops to converge to x* whose first 8
elements were then used to obtain

0.400002
. |0.799999
1.000001
2.000003

The shortest distance can be obtained as 1.341644.
Note that we do not need to introduce a small perturbation to matrix H to
make it positive definite in this example as was the case in Example 13.2.
|

13.4.4 Linear complementarity problems

The linear complementarity problem (LCP) is to find a vector pair {x, @}
in R"™ that satisfies the relations

x>0 for p >0 (13.50b)
xTp =0 (13.50c)

where K € R™"™ and q € R"™ are given, and K is positive semidefinite.
Although the problem described in Eq. (13.50) is not an optimization problem,
its solution can be related to the minimization problem

minimize f(X) = %7 %Xy (13.51a)
subjectto: AXx =Db (13.51b)
x>0 (13.51c)

where

. X X
% = [zﬂ - [”] A=[K -1, and b=—q
Note that the objective function f(x) in Eq. (13.51a) can be expressed as
0 In} <

f(x) = %iT I, O

Hence the problem in Eq. (13.51) is a QP problem with an indefinite Hessian.
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A variant of the LCP which is well connected to convex QP is the mixed LCP
which entails finding a vector pair {x, p} in R™ and vector A € RP such that

K1 K12:| {X] [Oh} {N}
= 13.52
[Km K| [A * q2 0 ( 2)
x>0, u>0 (13.52b)
xTp =0 (13.52¢)

where matrix K € R("tP)*("+P) gjven by

[Kn K12]
Ky Koo

is not necessarily symmetric but is positive semidefinite in the sense that
y 'Ky >0  foranyy € R"'? (13.53)

The LCP described by Eq. (13.50) can be viewed as a special mixed LCP
where dimension p is 0. Again, the mixed LCP as stated in Eq. (13.52) is not
an optimization problem. However, it is closely related to the standard-form
LP problem in Eq. (11.1) as well as the convex QP problem in Eq. (13.28). In
order to see the relation of Eq. (13.52) to the LP problem in Eq. (11.1), note
that the conditions in Eqgs. (13.52b) and (13.52c) imply that

zip; =0 fori=1,2,...,n

which is the complementarity condition in Eq. (11.5d). Hence the KKT condi-
tions in Eq. (11.5) can be restated as

0 —AT c| [m
[A ’ A]+[_b] _ M (13.54a)
x>0, pu>0 (13.54b)
xTp =0 (13.54c)
Since matrix
K-|0 —AT
T |A o0

is positive semidefinite in the sense of Eq. (13.53) (see Prob. 13.10(a)), we note
that standard-form LP problems can be formulated as mixed LCP’s.

For the convex QP problem in Eq. (13.28), the KKT conditions given in
Eq. (13.30) can be written as

T
P Y R KN A B
x>0, u >0 (13.55b)
x'p =0 (13.55¢)
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where

H -—-AT
k=X 0|

is positive semidefinite if H is positive semidefinite (see Prob. 13.10(b)). From
the above analysis, we see that the class of mixed LCP covers standard-form
LP problems, convex QP problems, and LCPs.

Let wy = {xx, Ak, )} be the kth iterate with x5, > 0, and let 1, > 0 and
the (k + 1)th iterate be

Wil = Wi + 04 (13.56)

where the search direction §,, = {8, 0, 8, } is chosen to satisfy the relations

[Kn K12} {Xk"i‘éz} n [On} _ [Nk+6u]
Ko Koo | [Ar+ ) q2 0

(xk + 62)" (p + 0,) ~ X%Hk + 6;F:Mk + x{éu = Tgt1€

These equations can be expressed as

-Ki1 —Kip2 17 [0, r
K21 K22 0 6,\ = Iro (13573)
M 0 X 5/L Tk+1€ — X[,l,k
where M = diag{ (1)1 (Hg)es - -, (1)a} X = diag{ ()1, ()2, -,
(xk)n}, and
ri = Kuxg + Kooy — p +qu (13.57b)
ro = —Ko1x; — Koo Ay — q2 (13.57¢)
XJ, 1y
Thy] = —BT 8 with p > v/n (13.57d)
n—+p

It can be readily verified that with K;; = Koy = 0, Ky; = —K{z = A,
q1 = ¢, and q2 = —b, Eq. (13.57a) becomes Eq. (12.56) which determines the
search direction for the nonfeasible-initialization primal-dual path-following
algorithmin Sec. 12.5.2. Likewise, withK1; = H, Ko = —K{z =A Ky =
0, q1 = p, and q2 = —b, Egs. (13.57a) to (13.57d) become Egs. (13.46),
(13.45a), (13.45b), and (13.47g) which determine the search direction for the
nonfeasible-initialization primal-dual path-following algorithm for the convex
QP in Sec. 13.4.3. Once §,, is determined by solving Eq. (13.57), ay, can be
calculated using Eq. (13.44). The above method can be implemented in terms
of the following algorithm.
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Algorithm 13.4 Nonfeasible-initialization interior-point algorithm
for mixed LCP problems

Step 1

Input an initial point wg = {xg, Ao, fo} with xg > 0 and p, > 0.
Set k = 0 and p > /n, and initialize the tolerance ¢ for x} p1;,.

Step 2

If xfuk < g, output solution w* = wy, and stop; otherwise, continue
with Step 3.

Step 3

Compute 75, using Eq. (13.57d) and determine §,, = (8., 6, 6,,) by
solving Eq. (13.57a).

Step 4

Compute oy, using Eq. (13.44) and set Wi11 = Wi + a;:0y.

Set k = k + 1 and repeat from Step 2.

13.5  Cutting-Plane Methods for CP Problems

Cutting-plane methods for CP problems are of importance as they make good
use of the convexity of the problems at hand. Unlike many descent methods
for convex problems, cutting-plane methods entail easy-to-apply termination
criteria that assure the solution’s optimality to a prescribed accuracy.

An important concept associated with CP is the concept of subgradient. In
what follows, we adopt the approach described in [10] to introduce this concept
and then move on to describe a cutting-plane algorithm proposed by Kelley
[11].

13.5.1 Subgradients

The concept of subgradient is a natural generalization of the concept of
gradient. If a function f(x) is convex and differentiable, then it is known from
Theorem 2.12 that at point x, we have

f(X)> f(x)+Vix)T(x-—x) forallx (13.58)
This equation states, in effect, that the tangent to the surface defined by f(x) at

point x always lies below the surface, as shown in Fig. 2.8.

Definition 13.1 If f(x) is convex but not necessarily differentiable, then vector
g € R" is said to be a subgradient of f(x) at x if

f(x)> f(x)+gl(x—x) forallx (13.59)

]
On comparing Eq. (13.59) with Eq. (13.58), we note that the gradient of a
differentiable convex function is a subgradient. For this reason, the commonly
used notation g for gradient will also be adopted to represent a subgradient.
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An important property in connection with subgradients is that a convex func-
tion has at least one subgradient at every point [12]. The right-hand side of the
inequality in Eq. (13.59) may be viewed as a linear approximation of f(x), and
this linear function is a lower bound of f(x) which is tight at point x meaning
that the lower bound becomes an equality at x. Geometrically, the subgradients
at a point x for the case where the convex function f(x) is not differentiable
correspond to different tangent lines at x. This is illustrated in Fig. 13.2, where
the two subgradients of f(x) at z* are given by g; = tan 6; and go = tan 6.

f(x)

Figure 13.2. Two subgradients of f(x) at z* for a case where f(x) is not differentiable at z*.

From Eq. (13.59), it follows that f(%x) > f(x) as long as g’ (x — x) > 0.
Note that for a fixed point, g’ (X — x) = 0 defines a hyperplane which passes
through point x with g as its normal. This hyperplane divides the entire R" space
into two parts. On the one side of the hyperplane where each point x satisfies
g’ (x — x) > 0, no minimizers can exist since f(%x) > f(x). Consequently, a
minimizer of f(x) can only be found on the other side of the plane, which is
characterized by the set of points {X : g’ (%X —x) < 0}. From this discussion,
we see that in an optimization context the concept of the subgradient is useful
as it facilitates the definition of a ‘cutting plane’ in the parameter space, which
can be used to reduce the region of search for a minimizer.

There are several important special cases in which the computation of a
subgradient of a convex f(x) can be readily carried out (see Prob. 13.12) as
follows:

(a) If f(x) is differentiable, then the gradient of f(x) is a subgradient;

(b) If « > 0, then a subgradient of af(x) is given by ag where g is a
subgradient of f(x);

(o) If f(x) = fi(x) + fa(x) + - + fr(x) where fi(x) for 1 < i <7 are
convex, then g = g1 + g2 + - - - + &, is a subgradient of f(x) where g;
is a subgradient of f;(x);
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(d) If
f(x) = max[fi(x), fo(x), ..., fr(x)]
where f;(x) for 1 < i < r are convex, then at point x there is at least
one index 7* with 1 < ¢* < r such that f(x) = f;+(x). In this case a
subgradient of f;+(x), g;=, is a subgradient of f(x).

13.5.2  Kelley’s cutting-plane method for CP problems with
bound constraints

Consider the convex problem
minimize f(x) (13.60a)

subjectto: x; < x < X (13.60Db)

where f(x) is convex in the feasible region R described by Eq. (13.60b), and x;
and x,, are given vectors that define lower and upper bounds of x, respectively.

Let xo, X1, ..., X, be k + 1 points in R. Since f(x) is convex in R, we
have

f(x)> f(xi)+gl(x)(x—x%;) for0<i<k,xeR  (13.6])
where g(x;) is a subgradient of f(x) at x;. Hence f(x) has a lower bound

f(x) > fi, k(%) (13.62a)

where f; ,(x) is the piecewise linear convex function

i w(x) = ma, [£(xi) + &7 (1) (x = i) (13.62b)
Eq. (13.62a) is illustrated in Fig. 13.3 for the one-dimensional case with k = 2.
As can be seen, the objective function f(x) is bounded from below by the
globally convex, piecewise linear function f 1 (x).

Three observations can be made based on Eq. (13.62) and Fig. 13.3. First,
the lower bound f; (x) is tight at points X, X1, ..., X;. Second, if x*
is a minimizer of f(x) in R, then f* = f(x*) is bounded from below by
L, = minxeR[fl’ k(X)] If we let

U, = Oglz‘lgk[f(xi)] (13.63)
then we have
Ly < f*<Ug

Therefore, when k increases both the lower and upper bounds become tighter,
ie.,
Ly < Lgyr < fF < U1 < Ug (13.64)
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flx)

% fe——— e

X1 X0 X1 X2 u X

Figure 13.3. A single-variable interpretation of functions f(x) and f;, 2(x).

Third, as k increases, the minimizer of the lower-bound function f; ;(x) can
serve as an approximate solution of the problem in Eq. (13.60).

Note that minimizing f; ;(x) subject to x € R is an LP problem which is
equivalent to

minimize L (13.65a)
subjectto:  f; p(x) < L (13.65b)
X S x <Xy (13.65¢)
If we let
[x 0
7 — . c= (13.66a)
s 1
r—g’(x0) 1 f(x0) — g (x0)%0
A= | —gT0) 1|0 Pr= | fn) — g 0a)x | (13660
I 0 X1
L I 0 —Xy

where I denotes the n x n identity matrix, then the problem in Eq. (13.65) can
be stated as the LP problem

minimize ¢’z (13.67a)

subjectto: Az >Db (13.67b)
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Let us denote the minimizer of the problem in Eq. (13.65) as

If Uy, — Ly, is less than a prescribed tolerance ¢, then xj, is considered an
acceptable solution of the problem in Eq. (13.60); otherwise, point X1 is set
to x* and A and b in Eq. (13.67) are updated accordingly. The above steps
are then repeated until U, — L < €. An algorithm based on these ideas is as
follows.

Algorithm 13.5 Kelley’s cutting-plane algorithm for CP problems
with bound constraints

Step 1

Input an initial feasible point xg.

Set k = 0 and initialize the tolerance €.

Step 2

Evaluate Ay and by, by using Eq. (13.66) and solve the LP problem in
Eq. (13.67) to obtain minimizer Xj,.

Step 3

Compute L and Uy.

If U, — Ly, < &, output X* = xj, and stop; otherwise, set k = k + 1,
Xk+1 = X}, and repeat from Step 2.

It follows from Eq. (13.64) that with Uy, — Lj, < ¢ the solution xj obtained
with Kelley’s algorithm ensures that | f(x}) — f(x*)| < e. Moreover, it can
be shown [10] that U, — Ly, approaches zero as k increases and, therefore, the
algorithm always terminates.

A problem with Kelley’s algorithm is that the number of constraints in
Eq. (13.66) grows with the number of iterations performed and so the com-
putational complexity of each iteration will increase accordingly. However,
if each LP subproblem starts with a good initial point, it can converge to the
minimizer in a small number of iterations and the algorithm becomes practical.
The minimizer x;, can serve as the initial point for the (k + 1)th iteration. In
effect, as the minimizer xj, satisfies Eq. (13.67b) where A = A, and b = by,
with Ay, by, defined by Eq. (13.66) and X1 = Xj;, the newly added constraint
in the (k + 1)th iteration, i.e.,

F(x) > f(xp1) + 87 (Xper1) (X — Xp1)

is tightly satisfied at x; and hence xj, is a feasible point. Moreover, as can be
seen in Fig. 13.4, xj is a good initial point for iteration £ + 1.
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fix)

Y M

=

X; X0 X5 X3 X1 X

Figure 13.4. Point x5 serves as a good initial point in the 3rd iteration.

13.5.3  Kelley’s cutting-plane method for CP problems with
general inequality constraints

The general convex problem

minimize f(x) (13.68a)

subject to:  ¢;(x) >0 for j=1,2,...,¢ (13.68b)

where f(x) and —c¢;(x) for j = 1, 2, ..., ¢ are convex functions, can be
converted to

minimize L (13.69a)

subjectto:  f(x) < L (13.69b)

cj(x) >0 for j=1,2,..., ¢ (13.69¢)

Withz = [x” L]" andc = [0 --- 0 1], the problem in Eq. (13.69) can be
formulated as
minimize ¢’ z

subject to:  ¢;(z) > 0 for j=0,1, ..., ¢

where ¢o(z) = L — f(x) and ¢;(z) = ¢;(x) forj =1, 2, ..., g. Obviously,
functions —¢;(z) are all convex in z. Therefore, without loss of generality, we
can consider the CP problem

minimize f(x) = c’x (13.70a)
subject to: ¢;(x) >0 for j=1,2,...,¢q (13.70b)

where functions —c;(x) are differentiable and convex.
The convexity of the constraint functions in Eq. (13.70b) can be utilized to
generate piecewise linear lower-bound functions in a way similar to that used
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for objective function f(x) for the problem in Eq. (13.60). Let xq, x1, ..., Xj
be k + 1 distinct points. Since —c;(x) are convex, we have

—cj(x) > —cj(x;) + h?(xi)(x — X;) for 0<i<k, 1<j<gq

where hJT(xi) denotes a subgradient of —c;(x) at x;. It follows that if point x
satisfies the constraints in Eq. (13.70b), then it also satisfies the constraint

Aux > by (13.71)
where

FAO) AO)x, — c0)

A = |, br= :
AR AB)x, — c®)
[—h{(x;) c(xi)
A0 — . ’ e — .
| —h!(x;) cq(Xi)

At the kth iteration, the cutting-plane algorithm solves the LP problem
minimize f(x) = c’x (13.72a)

subjectto:  Axx > by (13.72b)

Since the feasible region Ry described by Eq. (13.72b) contains the feasible
region described by Eq. (13.70b), the minimizer of the problem in Eq. (13.72),
XJ._ 1, might violate some of the constraints in Eq. (13.70b). Let us denote x;;
as xp+1. If xg41 satisfies Eq. (13.70b), then obviously xj1 is the solution of
the problem in Eq. (13.70) and the algorithm terminates. Otherwise, if j* is the
index for the most negative c;(xj41), then the constraints in Eq. (13.72b) are
updated by including the linear constraint

¢je (Xp41) = hle (Xpy1) (X = Xpoy1) > 0 (13.73)

In other words, the feasible region of the problem in Eq. (13.72) is reduced to
the intersection of R, and the half-plane defined by Eq. (13.73). The updated
constraints can be expressed as

Ak-_;’_lX Z bk-_;’_l (1374)
where
Ay [ by
A. == b =
s {—hjr* (xp1) |7 T [ —hE (1) Xet1 — ¢ (Xig1)
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The iterations continue until the LP subproblem reaches a solution x* at which
the most negative constraint function c;(x*) in Eq. (13.70b) is no less than —e¢,
where € is a prescribed tolerance for nonfeasibility.

An algorithm for the problem in Eq. (13.70) based on Kelley’s method is as
follows.

Algorithm 13.6 Kelley’s cutting-plane algorithm for CP problems
with inequality constraints

Step 1

Input an initial point x.

Set k = 0 and initialize the tolerance €.

Step 2

Evaluate A, and by, in Eq. (13.71).

Step 3

Solve the LP problem in Eq. (13.72) to obtain minimizer x;.

Step 4

If min{c;(x}), 1 < j < ¢} > —¢, output x* = x; and stop; otherwise,
setk = k + 1, X441 = X}, update A and by, in Eq. (13.72b) by using
Eq. (13.74), and repeat from Step 3.

Example 13.5 The two ellipses in Fig. 13.5 are described by
1 1
= O =
cl(x):—[mlxg][é 1} B;]me]{a]jﬁzo
1 5 3| |3 9] s
C2(X) = _5[5”3 ':U4] 3 5 x4 + [.%'3 l’4] 1317 2 >0
2

where X = [11 x5 3 £4]7. Find the shortest distance between the two ellipses
using Algorithm 13.6.

Solution The problem can be formulated as the constrained minimization prob-
lem

minimize f(x) = %[(331 — x3)° + (72 — 74)?]

subjectto: ¢1(x) >0 and c2(x) >0

The quadratic objective function has a positive-definite constant Hessian, and
obviously the quadratic constraint functions —cj(x) and —cy(x) are convex
functions. Hence this is a CP problem. In order to apply Algorithm 13.6, we
convert the problem at hand into

minimize ¢’ z

subject to:  ¢&(z) > 0 for i =0, 1, 2
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.)CQ,X4

3 4 X1, X3

Figure 13.5. Distance between two ellipses (Example 13.5).

where z = [z1 29 23 x4 LT, c = [0 0 0 0 1]7, éo(z) = L — f(x),
¢1(z) = c1(x), and éo )_CQ(X)
With
1.5
Xg = gg , Lo=1, and e=10"",
4.0

the algorithm took 186 iterations and 10.75 Mflops to converge to the solution

1.992222
X 0.868259
2.577907
2.475862

which corresponds to the solution points r* € R and s* € S given by

« | 1.992222 and st — 2.577907
1 0.868259 1 2.475862

I =

These points give the shortest distance between R and S as ||r* — s
1.710969.
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13.6  Ellipsoid Methods

Another class of cutting-plane algorithms, known as ellipsoid algorithms,
was developed by Shor, Nemirovski, and Yudin during the 70’s and was used
by Khachiyan [13] to demonstrate the existence of polynomial-time algorithms
for LP. Starting from an initial ellipsoid Ey which contains a minimizer, an
ellipsoid algorithm generates a hyperplane that passes through the center of the
ellipsoid to divide it into two parts, one of which, denoted as FEjy, contains
the minimizer. The algorithm then continues by generating another ellipsoid
[ that entails minimum volume which contains Ey;. Next, a hyperplane that
passes through the center of E; is generated to cut £ in half, where the half
containing the minimizer is denoted as E;,. The algorithm goes on to generate
a sequence of progressively smaller ellipsoids, each of which containing the
minimizer. After a sufficiently large number of iterations, the volume of the
ellipsoid shrinks to zero and the minimizer is localized. Below we describe a
basic ellipsoid method reported in [10].

13.6.1 Basic ellipsoid method for unconstrained CP
problems
Consider minimizing a convex objective function f(x) whose subgradient
is denoted as g(x). Assume that f(x) has a minimizer and that an ellipsoid
FE)y that contains the minimizer as an interior point has been identified. At the
kth iteration of the algorithm, an ellipsoid E}, in the n-dimensional Euclidean
space E™ is described as

Ep={x: (x—xx)T A (x —x;) <1}

where x;, is the center of the ellipsoid and Aj is a symmetric and positive-
definite matrix. The lengths of the semi-axes of E}, are the square roots of the
eigenvalues of Ay and the volume of Ey, is given by [10] as

vol(Ey) = [Bny/det(Ay)

where (3, is the volume of the unit ball in E™ given by

/2

MR ICESY

and I'(z) is the gamma function whose value at n/2 + 1 can be evaluated as

(5)! for n even
L(y+1)= (n+1)/2
2(“% H (2k — 1) for n odd
k=1
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The hyperplane Py = {x : g} (x — x;) = 0}, where gy, denotes a sub-
gradient of f(x) at xj, passes through the center of the ellipsoid and cuts the
ellipsoid in half. Since f(x) is convex, we have

F(x) = fxx) + i (x — x1) (13.75)
Hence only the half of ellipsoid E};, obtained by the intersection
Ey, = ELN {X : gg(x— Xk) < 0}

contains the minimizer. The next ellipsoid that contains Fy;, with minimum
volume is given by [13] as

Epp = {x: (x = xp31) AL (X — xpq1) < 1}

where
A
= — 13.7
Xp+1 = Xg 1 (13.76a)
Ay = (A 2 A ~TA> (13.76b)
k1= 09 F T k8kEf Ak :
- 8k
gk = —F 1 175 (13.76¢)
(gF Argr)'/?
and has a minimum volume
(n+1)/2 (n—-1)/2
n n
1(E = 1(FE
wiBe) = () () vlE
< e V2ol(Ey,) (13.77)

Note that the volume-reduction rate depends only on the dimension of the
parameter space. In the case of n = 2, for example, the reduction rate is
0.7698. Moreover, Eq. (13.77) implies that

vol(Ey) < e */2mvol(Ey)

and hence vol (E}) approaches zero as k — oo. This in conjunction with
the fact that E for any k contains a minimizer proves the convergence of the
algorithm.

An easy-to-use criterion for terminating the algorithm can be derived as fol-
lows by using the convexity property of f(x). If x* is the minimizer contained
in Ey, then Eq. (13.75) implies that

Fx*) = f(xx) + g (x5 — xx)
Hence

Floxr) = f(x) < g (x* —xp) < )r(r%‘cgi[—g{(x — x|
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It can be shown (see Prob. 13.14) that

max(—gj (x — xi)] = (gt Argr)'? (13.78)
x€Ey

Therefore, we can terminate the algorithm if
(gh Awgr)'/? <
where ¢ is a prescribed tolerance. The method leads to the following algorithm.

Algorithm 13.7 Ellipsoid algorithm for unconstrained CP problems
Step 1

Input an initial ellipsoid defined by a positive-definite matrix Ay with
center x( that contains at least one minimizer.

Set k = 0 and initialize the tolerance €.

Step 2

Evaluate a subgradient g and compute v, = (g%Akgk)
Step 3

If 71 < e, then output x* = x;, and stop; otherwise, continue with Step
4,

Step 4

Compute gy, Xx+1, and Ay 1 using Eq. (13.76).

Set k = k + 1 and repeat from Step 2.

1/2.

Example 13.6 It is known that the function
f(x) = (z1 — 5wy + 4)% + (7o + 1129 — 18)4

is globally convex and has a unique minimum at x* = [1 1] Find the minimum
point by applying Algorithm 13.7 with three different initial ellipses.

Solution Three possible initial ellipses are

1. (z1—4)7  (x2+1)?

Eo R TR
@, (@1-31)%  (2-11)% _
Eo 402 + 162 s1

—61)2 (29 +29)?
g® . (@ <1
0 g2 T 4gz =

and each can be shown to contain the minimizer. The three ellipses can be
represented by

i i i)~ 1 i
B = f{x: (x—x)TAY  (x—x{)) <1}
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where
G- 1) w-[2
X = ?H Ay = [16000 226}
xy = :—gsﬂ’ Ay = [64000 23004}

With e = 1077, Algorithm 13.7 quickly converged to the solution. The numer-
ical results obtained from the three trials are summarized in Table 13.1.

Table 13.1 Numerical results for Example 13.6

Xo x* Iterations  Kflops

[4 —1]7  [0.999975 0.999984] 59 4.344
[B111]7  [0.999989 1.000013]" 68 5.001
[61 —29]"  [0.999560 0.999911]" 73 5.374

13.6.2  Ellipsoid method for constrained CP problems

The ellipsoid algorithm studied in Sec. 13.6.1 can be extended to deal with
the convex problem

minimize f(x) (13.79a)
subjectto: ¢j(x) >0 for j=1,2,...,¢q (13.79b)
where f(x) and —c;j(x) for j = 1, 2, ..., ¢ are convex functions. At the

kth iteration of the algorithm, we examine the center of ellipsoid Fy, X, to
see whether or not it is a feasible point. If x, is feasible, then we perform the
iteration in the same way as in the unconstrained case. Since the iteration yields
anew point X1 at which the objective function f(x) is reduced as in the case
where Algorithm 13.7 is used, such an iteration is referred to as an objective
iteration.

If x;, is not feasible, then at least one constraint is violated at x. Let j* be
the index for the most negative c;« (x,). Since —c;«(x) is convex, we have

—cj+(x) > —cj+(xx) + hi (x —x;,)  forallx (13.80)

where hy, is a subgradient of —c;-(x) at x;. It follows that at any point x
with hf (x — x;) > 0, we have ¢;«(x) < 0, i.e., x is nonfeasible. Hence the
hyperplane defined by hg(x — xi) = 0 divides ellipsoid E}, into two parts,
one of which is a region where every point is nonfeasible and, therefore, can be
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excluded in the subsequent iterations. Under these circumstances, the part of
FE)i, that should be kept is obtained by the intersection

Eyp, :Ekﬂ{X: hZ(X—Xk) < 0}

Using an argument similar to that used in Sec. 13.6.1, we conclude that the next
ellipsoid that contains E; with minimum volume is given by

By = {x: (x =xp1) A}l (x = xp41) <1} (13.81a)

where Aud
K8k
= — 13.81b
X1 = Xb = 27 ( )
A "’ (A 2 Al Ay (13.81c)
_ _ 8lc
k1 = o\ Bk T 1 k8k8k Ak
hy
g = ——————— 13.81d

It follows from the above analysis that Eq. (13.81) generates a new ellipsoid with
a center x4 that is more likely to be feasible but does not necessarily reduce
the objective function. For this reason the iteration associated with Eq. (13.81)
is referred to as a constraint iteration. If x;11 is indeed feasible, then the next
iterate x4 o can be generated using an objective iteration but if x4 is still
nonfeasible, then another constraint iteration must be carried out to generate
point xyo. The iterations continue in this manner until a point, say, Xy, is
reached that satisfies all the constraints in Eq. (13.79b) and (g% A kg ) 12 < ¢,
where g is a subgradient of f(x) at xx.
Note that in a constraint iteration, the convexity of —c;= (xy) leads to

—cj (%) + ¢ (%) < —hy (% — %)
< max —h} (x — x;,) = (hf Ayhy)'/?
xeEy

where x denotes the point at which c¢;«(x) reaches its maximum in Ej. It
follows that
¢j+ (%) < ¢j(xx) + (bf Aghy)'/?

and hence ¢« (%) < 0 if
i (xx) + (WY Aphy) /2 < 0 (13.82)

Since X is a maximizer of ¢;-(x) in ellipsoid EJ, the condition in Eq. (13.82)
implies that c;-(x) < 0 in the entire E},. In effect, no feasible points exist in
EJ in such a case. Therefore, Eq. (13.82) can serve as a criterion as to whether
the iteration should be terminated or not. An algorithm based on the approach
is as follows.



442

Algorithm 13.8 Ellipsoid method for CP constrained problems
Step 1
Input an initial ellipsoid defined by a positive definite A with center x
that contains at least one minimizer.
Set k = 0 and initialize the tolerance ¢.
Step 2
If x;, is feasible continue with Step 2a, otherwise, go to Step 2b.
Step 2a
Evaluate a subgradient of f(x) at x;, denoted as g.
Compute &), = g1/ (g1 Argr)"/%and v, = (gf Argr)
Go to Step 4.
Step 2b
Let cj-(x) be a constraint function such that

/2

¢j (%) = min e (x;)] < 0
Evaluate a subgradient of —c;(x) at x;, and denote it as hy,.
Compute g;, = hy/(hl Ay hy)'/2.

Continue with Step 3.

Step 3
If the condition in Eq. (13.82) holds, terminate the iteration; otherwise,
go to Step 5.
Step 4
If v < €, output x* = x;, and stop; otherwise, continue with Step 5.
Step 5
Compute ~
P s — ey MEBL
k+1 L —1
2
n 2
Ay = Ap— ——Argiel A
k+1 n2_1( L k8E8K k)

Set k = k + 1 and repeat from Step 2.

Example 13.7 By applying Algorithm 13.8 find the minimizer of the convex
problem with the objective function given in Example 13.6 and the constraints
given by

—2r1 —22+102>0
=31 +ax2+15>0
3r1+22—9>0
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Solution From Example 13.6, we know that the minimizer of the unconstrained
counterpart of this problemis x = [1 1]7 atwhichc; (x}) < Oand c4(x) < 0.
Hence x, is not a feasible point for the present constrained CP problem. We

start the algorithm with ellipse E(()l) defined in Example 13.6 for which

XOZ[_ﬂ and A0:[306 8}

Ellipse E((]l) is large enough to contain the entire feasible region. Therefore,
it also contains the minimizer of the problem. Notice that c;(xo) > 0 for
1 < j < 4 and hence xq is a feasible initial point. With ¢ = 1077, it took the
algorithm 76 iterations to converge to the minimizer

. [ 3.063142
—0.189377

which yields f(x*) = 67.570003. The number of flops used was 7627.
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Problems
N

13.1 Let H(w) = Zai cosiw and x = [ag a1 --- ay]T. Show that the
i=0
constrained optimization problem

minimize f(x) = /0 "W () [ H(w) — Haw)[?dw

subject to: | H (wx) — Hg(wg)| < O for k=1,2,..., K

is a convex QP problem. In this problem, Hy(w) and W (w) are given
real-valued functions, W (w) > 0 is a weighting function, {w : wi, k =
1,2, ..., K}isasetof grid pointson [0, 7], and 3 > Ofor1 <k < K
are constants.

13.2 Solve the QP problems
(a)
minimize f(x) = 290% + x% + 2129 — 11 — X2
subjectto: x1+x2 =1

(b

minimize f(x) = 1.555% — X129+ x% — Xox3+ 0.5:6% 4+ 214+ 22+ T3
subjectto: x1 4+ 2x9 +x3 =4

by using each of the following three methods: the SVD, QR decom-
position, and the Lagrange-multiplier methods.

13.3 By applying Algorithm 13.1, solve the following QP problems:
(a)

minimize f(x) = 3z} + 323 — 1021 — 24z,

subjectto: —2x; —x9 > —4
0

AV

X

with xg = [0 0]7.

(b)
minimize f(x) = z% — z129 4+ 23 — 32,
subjectto: — a1 —x9 > —2
x>0

with xg = [0 0]7T.
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(d)

minimize f(x) = 2% 4+ 0.523 — x125 — 321 — 29
subjectto: —x1 —xy > —2
—2x1 + a9 > —2
x>0

with xo = [0 0]
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minimize f(x) = x% + m% + 0.53;% +x 129 + 2123 — 421 — 329 — 2203
subjectto: —x1 —x3—x3 > —3
x>0

with xo = [0 0 0]T.

13.4 Verify that the solution of Eq. (13.39) is given by Eq. (13.42).
13.5 (a) Convert the QP problems in Prob. 13.3 into the form in Eq. (13.28).
(b) Solve the QP problems obtained in part (a) by applying Algorithm

13.2.

13.6 Verify that the solution of Eq. (13.46) is given by Eq. (13.47).
13.7 (a) Solve the QP problems obtained in Prob. 13.5(a) by applying Algo-

rithm 13.3.

(b) Compare the results obtained in part (a) with those obtained in Prob.

13.5(b).

13.8 Show that if H is positive definite, A is of full row rank, p;,, > 0, and
xj, > 0, then Eq. (13.39) has a unique solution for J,,,.

13.9 (a) By applying Algorithm 13.2 solve the following QP problem:

minimize %XT(hhT)x +x'p

subjectto: Ax =Db

x>0
where
1 -1
—4 0
h= ME A=[1111], b=4, p= .
1 4

withxg=[11117, Xg=-2, and py=1[1296].
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(b) By applying Algorithm 13.3, solve the QP problem in part (a) with
x0 = [3333]T, X = 1,and g = [1 1 1 1]T. Compare the solution
obtained with that of part (a).
13.10 Show that
(a)

2]

A 0

is positive semidefinite in the sense of Eq. (13.53).
(b) Show that if H is positive semidefinite, then

H —AT}

K:[A 0

is positive definite in the sense of Eq. (13.53).

13.11 (a) Convert the QP problem in Prob. 13.9(a) using the initial values for
X0, Ao, and g given in Prob. 13.9(b) to a mixed LCP problem.

(b) Solve the LCP problem obtained in part (a) by applying Algorithm
13.4.

(¢) Compare the solutions obtained with those obtained in Prob. 13.9(b).
13.12 Demonstrate the validity of the following:
(a) If f(x) is differentiable, then the gradient of f(x) is a subgradient.

(b) If a > 0, then a subgradient of a.f(x) is given by ag where g is a
subgradient of f(x).

(o) If f(x) = fi(x) + fa(x) + -+ + fr(x) where function f;(x) for
1 <7 < rareconvex, theng = g1 + g2 + - - - + g, is a subgradient
of f(x) where g; is a subgradient of f;(x).

(d) If
f(x) = max[fi(x), f2(%), ..., fr(x)]

where f;(x) for 1 <4 < r are convex, then at point x there is at least
one index 7* with 1 < ¢* < r such that f(x) = f;=(x). In this case a
subgradient of f;«(x), g;=, is a subgradient of f(x).

13.13 Consider the problem of finding the shortest distance between the circular
and elliptic disks shown in Fig. P13.13.

(a) Using the following ‘sequential QP’ approach, obtain an approximate
solution of the problem: (i) Replace the disks by polygons with, say,
k edges that approximate the circle and ellipse from either inside or
outside; (ii) formulate the problem of finding the shortest distance
between the two polygons as a QP problem; (iii) apply one of the
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13.14

13.15

Figure P13.13.

algorithms described in Sec. 13.4 to find a solution of the QP problem;
(iv) improve the solution accuracy by increasing the number of edges,
k, of each of the two polygons.

(b) Formulate the shortest distance problem as a CP problem and solve it
by using Algorithm 13.6.

(¢) Solve the CP problem formulated in part (b) by applying Algorithm
13.8 and compare the results with those obtained in part (b).

Let A € R™*" be positive definiteand g € R™"*!,x € R"*! be arbitrarily
given vectors. Show that

T _ (T 1/2
max[—g’ (z —x)] = (g Ag)

where
Ey,={z: (z—x)TA Y (z—x) <1}

Hint: Assume that A = diag{o1, o2, ..., o} witho; > O0forl <i<n
without loss of generality.

Consider the least-squares minimization problem with quadratic inequal-
ity (LSQI) constraints which arises in cases where the solution to the
ordinary least-squares problem needs to be regularized [1], namely,

minimize ||[Ax — b||

subjectto:  ||Bx|| < ¢

where A € R™*" b € R™! B € R™" with B nonsingular and
d>0.

(a) Convert the LSQI problem to the standard CP problem in Eq. (13.68).
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(b) With

1 0

A= , B:[0 1}, and 6=0.1

0 0 3

2 0 4
0 1|, b=|2

apply Algorithms 13.6 and 13.8 to solve the LSQI problem.

(¢) Apply the algorithms used in part (b) to the case where ¢ is increased
to 1. Compare the solution obtained with those in part (b).



Chapter 14

SEMIDEFINITE AND SECOND-ORDER
CONE PROGRAMMING

14.1 Introduction

Semidefinite programming (SDP) is a branch of convex programming (CP)
that has been a subject of intensive research since the early 1990’s [1]-[9]. The
continued interest in SDP has been motivated mainly by two reasons. First,
many important classes of optimization problems such as linear-programming
(LP) and convex quadratic-programming (QP) problems can be viewed as SDP
problems, and many CP problems of practical usefulness that are neither LP nor
QP problems can also be formulated as SDP problems. Second, several interior-
point methods that have proven efficient for LP and convex QP problems have
been extended to SDP in recent years.

Another important branch of convex programming is second-order cone pro-
gramming (SOCP). Although quite specialized, this branch of optimization can
deal effectively with many analysis and design problems in various disciplines.
Furthermore, as for SDP, efficient interior-point methods are available for the
solution of SOCP problems.

This chapter starts with the formulation of the primal and dual SDP prob-
lems. It then demonstrates that several useful CP problems can be formulated
in an SDP setting. After an introduction of several basic properties of the
primal-dual solutions of an SDP problem, a detailed account on several effi-
cient interior-point SDP methods is provided. The methods considered include
the primal-dual interior-point methods studied in [5]-[9] and the projective
method proposed in [4][14]. The last two sections of the chapter are devoted
to the primal and dual SOCP formulations and their relations to corresponding
LP, QP, and SDP formulations; they also include an interior-point algorithm as
well as several examples that illustrate how several important CP problems can
be formulated as SOCP problems.
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14.2 Primal and Dual SDP Problems
14.2.1 Notation and definitions

Let S™ be the space of real symmetric n X n matrices. The standard inner
product on S™ is defined by

A - B = trace(AB) :ii

where A = {a;;} and B = {b;;} are two members of S™.
The primal SDP problem is defined as

minimize C - X (14.1a)
subjectto: A;-X = b; fori=1,2,...,p (14.1b)
X*>0 (14.1¢)

where C, X, and A; for 1 < ¢ < p are members of S™ and the notation in
Eq. (14.1c) denotes that X is positive semidefinite (see Sec. 10.2). It can be
readily verified that the problem formulated in Eq. (14.1) is a CP problem (see
Prob. 14.1). An important feature of the problem is that the variable involved is
a matrix rather than a vector. Despite this distinction, SDP is closely related to
several important classes of optimization problems. For example, if matrices
Cand A; for 1 < ¢ < p are all diagonal matrices, i.e.,

C = diag{c}, A; = diag{a;}

withc € R"*'anda; € R"*! for1 <i < p, then the problem in Eq. (14.1)
is reduced to the standard-form LP problem

T

minimize ¢’ X (14.2a)

subjectto: Ax =b (14.2b)

x>0 (14.2¢)

where A € RP*X™ is a matrix with aiT as its ith row, b = [by by --- bp]T, and

vector x € R™*! is the diagonal of X. The similarity between Eqs. (14.1a)
and (14.2a) and between Egs. (14.1b) and (14.2b) is quite evident. To see the
similarity between Eq. (14.1c) and (14.2¢), we need the concept of convex cone.

Definition 14.1 A convex cone K is a convex set such that x € IC implies that
ax € K for any scalar o > 0.
|
It can be readily verified that both sets {X : X € R™"™ X » 0} and
{x: x € R"™! x > 0} are convex cones (see Prob. 14.2). We now recall
that the dual of the LP problem in Eq. (14.2) is given by
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maximize bTy (14.3a)
subject to: Aly+s=c (14.3b)
s>0 (14.3¢)

(see Chap. 12) and, therefore, the dual SDP problem with respect to the primal
SDP problem in Eq. (14.1) can be obtained as

maximize bTy (14.4a)
p

subject to: Z%‘Ai +S=C (14.4b)
i=1

S>>0 (14.4¢)

when S is a slack variable that can be regarded as a matrix counterpart of the
slack vector s in Eq. (14.3). To justify the maximization problem in Eq. (14.4)
as a dual of the problem in Eq. (14.1), we assume that there exist X € S”,
y € RP,and S € §™ with X > 0 and S > 0 such that X is feasible for the
primal and {y, S} is feasible for the dual, and evaluate

p

C-X-bly = (ZyiAi—i—S) ‘X —bly
=1

=S-X>0 (14.5)

where the first and second equalities follow from Eq. (14.4b) and the inequality
is a consequence of the fact that both S and X are positive semidefinite (see
Prob. 14.3). Later in Sec. 14.3, it will be shown that if X* is a solution of the
primal and y* is a solution of the dual, then

S*. X* =0 (14.6)

where S* is determined from Eq. (14.4b), i.e.,
P
§*=C- Z yi A
i=1

From Eqgs. (14.5) and (14.6), it follows that
C-X*—bly*=0 (14.7)

Egs. (14.5) and (14.7) suggest that a duality gap similar to that in Eq. (12.6)
can be defined for the problems in Eqgs. (14.1) and (14.4) as

(X, y)=C-X-bly (14.8)
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for X € F, and {y, S} € F; where F, and F; are the feasible sets for the
primal and dual defined by

fp:{X:XEO,Ai'X:bi fOI‘lSZ'Sp}

p
Fa= {{ya S}: > yAi+S=C, SEO}
i=1

respectively. From Eqs. (14.5) and (14.7), it follows that for any X € F,, and
{y, S} € Fy4the duality gap §(X, y) is nonnegative and the gap is reduced to
zero at the solutions X* and S* of the primal and dual problems.

If we combine the constraints in Egs. (14.4b) and (14.4c¢) into one inequality
constraint, the dual SDP problem becomes

maximize b’y
P
subjectto: C — Z yiA; = 0
i=1

This is obviously equivalent to the following minimization problem

minimize ¢’ x (14.9a)
subjectto: F(x) >~ 0 (14.9b)

where ¢ € RP*! x € RP*1, and
P
F(X) =Fy+ Z$1FZ
i=1

with F; € 8" for 0 < ¢ < p. Notice that the positive semidefinite constraint on
matrix F(x) in Eq. (14.9b) is dependent on vector x in an affine manner. In the
literature, the type of problems described by Eq. (14.9) are often referred to as
convex optimization problems with linear matrix inequality (LMI) constraints,
and have found many applications in science and engineering [3][10]. Since
the minimization problem in Eq. (14.9) is equivalent to a dual SDP problem,
the problem itself is often referred to as an SDP problem.

14.2.2 Examples

(i) LP Problems As we have seen in Sec. 14.2.1, standard-form LP problems
can be viewed as a special class of SDP problems where the matrices C and A ;
for 1 < i < pinEq. (14.1) are all diagonal.

The alternative-form LP problem

minimize ¢’ x (14.10a)

subject to: Ax >b, A € RP*" (14.10b)
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which was studied extensively in Chap. 11 (see Eq. (11.2)), can be viewed as a
linear minimization problem with LMI constraints. This can be demonstrated
by expressing matrices F'; for 0 < i < n in Eq. (14.9b) as

Fy = —diag{b}, F; = diag{a;} fori=1,2,...,n (14.11)
where a; denotes the 7th column of A.
(ii) Convex QP Problems The general convex QP problem
minimize x’ Hx + p’x  with H> 0 (14.12a)

subjectto: Ax>Db (14.12b)
which was studied in Chap. 13 (see Eq. (13.1)), can be formulated as

minimize § (14.13a)
subjectto: x! Hx +p’x < ¢ (14.13b)
Ax>b (14.13¢)

where ¢ is an auxiliary scalar variable. R
_Since H is positive semidefinite, we can find a matrix H such that H =
HTH (see proof of Theorem 7.2); hence the constraint in Eq. (14.13b) can be
expressed as

§—pTx— (Hx)T(Hx) >0 (14.14)
It can be shown (see Prob. 14.4(a)) that the inequality in Eq. (14.14) holds if
and only if

(14.15)

G(é,x):{ I Hx ]zo

(Hx)T §-pTx
where I,, is the n x n identity matrix. Note that matrix G (0, x) is affine with

respect to variables x and §. In addition, the linear constraints in Eq. (14.13c¢)
can be expressed as

n
F(x)=Fo+» z;F; =0 (14.16)
i=1
where the F; for 0 < ¢ < n are given by Eq. (14.11). Therefore, by defining
an augmented vector

X

X = { 0 } 14.17)
the convex QP problem in Eq. (14.12) can be reformulated as the SDP problem
minimize &’ % (14.18a)

subjectto: E(x) =0 (14.18b)
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where ¢ € R™! with
¢=1[0---07 (14.19)

and
E(x) = diag{ G (9, x), F(x)}

(iii) Convex QP Problems with Quadratic Constraints Now let us consider the
CP problem
minimize x’ Hx + p’x (14.20a)

subjectto: x'Qx+qlx+7r; <0 fori=1,2,....,p (14.20b)

where H > 0 and Q; >~ O for 1 < ¢ < p. The class of problems represented
by Eq. (14.20) covers the conventional convex QP problems represented by
Eq. (14.12) as a subclass if Q; = 0 for all ¢. Again, by introducing an auxiliary
scalar variable ¢, the problem in Eq. (14.20) can be converted to

minimize § (14.21a)

subject to: x'Hx +plx < ¢ (14.21b)
xIQix+qlx+r <0  for 1<i<p  (142lc)

As in the convex QP case, the constraint in Eq. (14.21b) is equivalent to the
constraint in Eq. (14.15) and the constraints in Eq. (14.21c) are equivalent to

In QZ’X .
. — N - <1< .
F;(x) Q)T —Tx—ri] 0 forl1<i<p (14.22)

where Qz is related to Q; by the equation Q; = QZTQl Consequently, the
quadratically constrained convex QP problem in Eq. (14.20) can be formulated
as the SDP problem

Tx (14.23a)

minimize ¢
subjectto: E(x) = 0 (14.23b)
where X and ¢ are given by Egs. (14.17) and (14.19), respectively, and

E(x) = diag{G(4, x), F1(x), F3 (x), ..., Fp(x)}

where G(0, x) and F;(x) are given by Eqs. (14.15) and (14.22), respectively.

There are many other types of CP problems that can be recast as SDP prob-
lems. One of them is the problem of minimizing the maximum eigenvalue of
an affine matrix that can arise in structure optimization, control theory, and
other areas [1][11]. This problem can be formulated as an SDP problem of the
form in Eq. (14.4) (see Prob. 14.5). The reader is referred to [3][10] for more
examples.
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14.3  Basic Properties of SDP Problems
14.3.1 Basic assumptions

The feasible sets F, and F, for the primal and dual problems were defined
in Sec. 14.2.1. A matrix X is said to be strictly feasible for the primal problem
in Eq. (14.1) if it satisfies Eq. (14.1b) and X > 0. Such a matrix X can be
viewed as an interior point of F,. If we let

f;:{X: X>=0,A;-X=bfor 1<i<p}

then 7 is the set of all interior points of F;, and X is strictly feasible for the
primal if X € F7. Similarly, we can define the set of all interior points of Fg4
as

P
Fg = {{y, S} Z%AH—S:C, S >—0}
i=1
and a pair {y, S} is said to be strictly feasible for the dual problem in Eq. (14.4)
if {y, S} € 3.
Unless otherwise stated, the following assumptions will be made in the rest
of the chapter:

1. There exists a strictly feasible point X for the primal problem in Eq. (14.1)
and a strictly feasible pair {y, S} for the dual problem in Eq. (14.4). In
other words, both ¥ and F7 are nonempty.

2. Matrices A; fori =1, 2, ..., pin Eq. (14.1b) are linearly independent,
i.e., they span a p-dimensional linear space in S™.

The first assumption ensures that the optimization problem at hand can be
tackled by using an interior-point approach. The second assumption, on the
other hand, can be viewed as a matrix counterpart of the assumption made for
the LP problem in Eq. (14.2) that the row vectors in matrix A in Eq. (14.2b)
are linearly independent.

14.3.2 Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker (KKT) conditions for the SDP problem in Eq.
(14.1) can be stated as follows: Matrix X* is a minimizer of the problem in Eq.
(14.1) if and only if there exist a matrix S* € S™ and a vector y* € RP such
that

p
> yiAi+8*=C (14.24a)
=1
A X*=b  for 1<i<p (14.24b)
S*X* = 0 (14.24¢)

X* = 0, S* = 0 (14.24d)
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As noted in Sec. 14.2.1, if A; = diag{a;} and C = diag{c} with a; € R"
and c € R" for 1 < ¢ < p, the problem in Eq. (14.1) becomes a standard-form
LP problem. In such a case, matrix X* in Eq. (14.24) is also diagonal and the
conditions in Eq. (14.24) become identical with those in Eq. (12.3), which are
the KKT conditions for the LP problem in Eq. (14.2).

While the equations in (14.24a) and (14.24b) are linear, the complementarity
constraint in Eq. (14.24c¢) is a nonlinear matrix equation. It can be shown that
under the assumptions made in Sec. 14.3.1, the solution of Eq. (14.24) exists
(see Theorem 3.1 of [3]). Furthermore, if we denote a solution of Eq. (14.24) as
{X*, y*, S*}, then it can be readily verified that {y*, S*} is a maximizer for
the dual problem in Eq. (14.4). For these reasons, a set { X*, y*, S*} satisfying
Eq. (14.24) is called a primal-dual solution. 1t follows that {X*, y*, S*} isa
primal-dual solution if and only if X* solves the primal problem in Eq. (14.1)
and {y*, S*} solves the dual problem in Eq. (14.4).

14.3.3  Central path

As we have seen in Chaps. 12 and 13, the concept of central path plays an
important role in the development of interior-point algorithms for LP and QP
problems. For the SDP problems in Eqs. (14.1) and (14.4), the central path
consists of set {X(7), y(7), S(7)} such that for each 7 > 0 the equations

Zyl )JA; +S(1) = C (14.252)
A;-X(r)=1b; for 1<i<p (14.25b)
X(7)8(r) = 71 (14.25¢)

S(r) = 0, X(1) = 0 (14.25d)

are satisfied.
Using Eqgs. (14.8) and (14.25), the duality gap on the central path can be
evaluated as

3[X(r), y(1)] = C-X(7) - bly()

= [Zyz JAi +S( )] X(r) = bly(r)
= S(7) - X(71) = trace[S(7)X(7)]
= trace(7I) = n7 (14.26)

which implies that
lim 6[X(7), y(7)] = 0
T—

Therefore, the limiting set { X*, y*, S*} obtained from X(7) — X*, y(7) —
*,and S(7) — S* as 7 — 0 is a primal-dual solution. This claim can also
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be confirmed by examining Eqs. (14.25a)—(14.25d) which, as 7 approaches
zero, become the KKT conditions in Eq. (14.24). In other words, as 7 — 0,
the central path approaches a primal-dual solution. In the subsequent sections,
several algorithms will be developed to generate iterates that converge to a
primal-dual solution by following the central path of the problem. Since X ()
and S(7) are positive semidefinite and satisfy Eqs. (14.24a) and (14.24b), re-
spectively, X(7) € F, and {y(7), S(7)} € F4. Furthermore, the relaxed
complementarity condition in Eq. (14.24c) implies that for each 7 > 0 both
X(7) and S(7) are nonsingular; hence X(7) > 0 and S(7) > 0, which imply
that X(7) € 77 and{y(7), S(7)} € F. Inother words, foreach 7 > 0, X(7)
and {y(7), S(7)} are in the interior of the feasible regions for the problems in
Egs. (14.1) and (14.4), respectively. Therefore, a path-following algorithm that
generates iterates that follow the central path is intrinsically an interior-point
algorithm.

14.3.4  Centering condition

On comparing Eqgs. (14.24) and (14.25), we see that the only difference be-
tween the two systems of equations is that the complementarity condition in
Eq. (14.24c) is relaxed in Eq. (14.25¢). This equation is often referred to as the
centering condition since the central path is parameterized by introducing vari-
able 7 in Eq. (14.25¢). Obviously, if X(7) = diag{z1(7), z2(7), ..., zn(7)}
and S(7) = diag{s1(7), s2(7), ..., sn(7)} as in LP problems, the centering
condition is reduced to n scalar equations, i.e.,

zi(T)si(t) =7 for 1<i<n (14.27)

In general, the centering condition in Eq. (14.25¢) involves n? nonlinear

equations and, consequently, it is far more complicated than the condition in
Eq. (14.27). In what follows, we describe a linear algebraic analysis to reveal
the similarity between the general centering condition and the condition in
Eq. (14.27) [8]. Since X(7) and S(7) are positive definite, their eigenvalues
are strictly positive. Let 61(7) > d2(7) > -+ > 0,(7) > 0and 0 < y1(7) <
Yo (7) < - -+ < v, (7) be the eigenvalues of X (7) and S(7), respectively. There
exists an orthogonal matrix Q(7) such that

X(7) = Q(7) diag{01(7), d2(7), ..., da(7)}Q7(7)
From Eq. (14.25¢), it follows that
S(t) = 7X7 (1)
— Q(7) diag{ ——, " [ T(r
- A i {505 50 o i 4O
= Q(r) diag{y1(7), 72(7), ..., w(1)}Q"(7)
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which leads to

Si(r)yi(r) =7  for 1<i<n (14.28)

AsT — 0,wehave §;(7) — 6; and v;(7) — ~; whered; > 65 > --- > 67 >0
and 0 < 7§ < 5 < --- < 7 are the eigenvalues of X* and S*, respectively,
and Eq. (14.28) becomes

Syr=0 for1<i<n (14.29)

We note that the relations between the eigenvalues of X (7) and S(7) as speci-
fied by Eq. (14.28) resemble the scalar centering conditions in Eq. (14.27). In
addition, there is an interesting similarity between Eq. (14.29) and the comple-
mentarity conditions in LP problems (see Eq. (12.3¢)).

14.4  Primal-Dual Path-Following Method
14.4.1 Reformulation of centering condition

A primal-dual path-following algorithm for SDP usually generates iterates
by obtaining approximate solutions of Eq. (14.25) for a sequence of decreasing
7 >0fork=0, 1, .... If welet

A - X—-b
GX,y, 8) = 5 (14.30)
A, X—-1b,
L XS —71
then Eqgs. (14.25a) to (14.25c) can be expressed as
GX,y,S)=0 (14.31)

We note that the domain of function G is in S™ x RP x 8™ while the range of
G isin 8™ x RP x R™" simply because matrix XS — 71 is not symmetric
in general although both X and S are symmetric. This domain inconsistency
would cause difficulties if, for example, the Newton method were to be applied
to Eq. (14.31) to obtain an approximate solution. Several approaches that deal
with this nonsymmetrical problem are available, see, for example, [5]-[8]. In
[8], Eq. (14.25c¢) is rewritten in symmetric form as

XS +SX =271 (14.32)
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Accordingly, function G in Eq. (14.30) is modified as
_Zf:1 yiA; +S — C7

A X b
G(X,y, S) = ; (14.33)
A, X —b,

XS +SX — 271

and its range is now in S™ x RP x §™. It can be shown thatif X > QO or S > 0,
then Eqgs. (14.25¢) and (14.32) are equivalent (see Prob. 14.6).

In the Newton method, we start with a given set {X, y, S} and find in-
crements AX, Ay, and AS with AX and AS symmetric such that set
{AX, Ay, AS} satisfies the linearized equations

P P
> AyiAi+ AS = C -S> yA, (14.34a)
=1 =1
A, AX =b—-A;- X for1<i<p
(14.34b)
XAS + ASX 4+ AXS + SAX = 271 - XS - 8X (14.34c)

Eq. (14.34) contains matrix equations with matrix variables AX and AS. A
mathematical operation known as symmetric Kronecker product [8] (see also
Sec. A.14) turns out to be effective in dealing with this type of linear equations.

14.4.2 Symmetric Kronecker product

Given matrices K, M, and N in R™"*", the general asymmetric Kronecker
product M ® N with M = {m;} is defined as

miN -+ mp,IN
M®N = :

mnlN s mnnN
(see Sec. A.14). To deal with matrix variables, it is sometimes desirable to

represent a matrix K as a vector, denoted as nvec(K), which stacks the columns
of K. It can be readily verified that

(M ® N)nvec(K) = nvec(NKMT) (14.35)

The usefulness of Eq. (14.35) is that if a matrix equation involves terms like
NKMTZ, where K is a matrix variable, then Eq. (14.35) can be used to convert
NKMT into a vector variable multiplied by a known matrix.
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If a matrix equation contains a symmetric term given by (NKM7+
MKNT)/2 where K € S™ is a matrix variable, then the term can be read-
ily handled using the symmetric Kronecker product of M and N, denoted as
M & N, which is defined by the identity

(M ® N)svec(K) = svec[3(NKM? + MKNT)] (14.36)

1
2
where seve(K) converts symmetric matrix K = {k;;} into a vector of dimen-
sionn(n +1)/2 as

svec(K) = [k11 V2k12 -+ V2k1y koo V2kaz -+ V2kay -+ k)"
(14.37)
Note that the standard inner product of A and B in 8™ can be expressed as the
standard inner product of vectors svec(A) and svec(B), i.e.,

A - B = svec(A)T svec(B) (14.38)

If we use a matrix K = {k;;} with only one nonzero element k;; for 1 < i <
J < n,then Eq. (14.36) can be used to obtain each column of M © N. Based on
this observation, a simple algorithm can be developed to obtain the n(n+1)/2-
dimensional matrix M © N (see Prob. 14.8). The following lemma describes
an explicit relation between the eigenvalues and eigenvectors of M ® N and
the eigenvalues and eigenvectors of M and N (see Prob. 14.9).

Lemma 14.1 If M and N are symmetric matrices satisfying the relation MIN =
NM, then the n(n + 1)/2 eigenvalues of M ® N are given by

%(aiﬁj + Biaj)  for 1<i<j<n
and the corresponding orthonormal eigenvectors are given by
svec(v;vl) ifi=j

D) ifi<y

i

1 T )
ﬁsvec(vzvj + Vv

where o; for 1 < @ < nand B; for 1 < j < n are the eigenvalues of M
and N, respectively, and v; for 1 < i < n is a common basis of orthonormal
eigenvectors of Ml and N.

14.4.3 Reformulation of Eq. (14.34)

Eq. (14.34c) can be expressed in terms of the symmetric Kronecker product
as

(X ®I)svec(AS) + (S ® I)svec(AX) = svec[rI — (XS + SX)] (14.39)
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For the sake of simplicity, we denote

svec(AX) = Ax (14.40a)

svec(AS) = As (14.40b)

SoI=E (14.40¢)

XoI=F (14.40d)

svec[rI — $(XS + SX)] = r, (14.40e)

With this notation, Eq. (14.39) becomes
EAx+ FAs=r,
To simplify Eqs. (14.34a) and (14.34b), we let

[svec(A1)]T
[svec(As)]”
A= : (14.41a)
[svec(Ap)]T
x = svec(X) (14.41b)
y=1[vy ... yp]T (14.41¢)
Ay = [Ay1 Ays ... Ayl" (14.41d)
r, =b—-Ax (14.41e)
ry = svec[C — S — mat(ATy)] (14.411)

where mat(-) is the inverse of svec(-). With the use of Egs. (14.41a)—(14.41f),
Egs. (14.34a) and (14.34b) can now be written as

ATAy + As =1y

AAx =1,
and, therefore, Eq. (14.34) can be reformulated as
Ax ry
J|Ay | = |1 (14.42)
As re
where
0 AT 1
J=]1A 0 O
E 0 F
It can be readily verified that the solution of Eq. (14.42) is given by
Ax = —E7'[F(r; - ATAy) — 1] (14.43a)
As =15— ATAy (14.43Db)

MAy = r, + AE"}(Fry —r.) (14.43¢)
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where matrix M, which is known as the Schur complement matrix, is given by
M = AE'FAT

From Eq. (14.43), we see that solving the system of linear equations in
Eq. (14.42) involves evaluating E~! and computing Ay from the linear system
in Eq. (14.43c). Hence the computational complexity is mainly determined by
the computations required to solve the system in Eq. (14.43c) [8]. Matrix J in
Eq. (14.42) is actually the Jacobian matrix of function G defined by Eq. (14.33).
From Eq. (14.43), it can be shown that J is nonsingular (i.e., Eq. (14.42) has a
unique solution) if and only if M is nonsingular. It can also be shown that if
XS +SX > 0then M is nonsingular [12]. Therefore, XS +SX > 0 is a suf-
ficient condition for Eq. (14.43) to have a unique solution set { Ax, Ay, As}.

14.4.4 Primal-dual path-following algorithm

The above analysis leads to the following algorithm.

Algorithm 14.1 Primal-dual path-following algorithm for SDP
problems

Step 1

Input A; for1 <i<p,be RP,C € R"™", and a strictly feasible set
{Xyp, yo0, So} that satisfies Eqgs. (14.1b) and (14.4b) with X > 0 and
So = 0.

Choose a scalar ¢ in the range 0 < o < 1.

Set k = 0 and initialize the tolerance ¢ for the duality gap Jy.

Step 2

Compute
X - Sk
Op =
n
Step 3
If 6, < &, output solution {Xy, yx, Sk} and stop; otherwise, set
Xk - S
7, = gk 2k (14.44)
n

and continue with Step 4.

Step 4

Solve Eq. (14.42) using Eqgs. (14.43a)—(14.43c) where X = X,y = Y&,
S = Sk, and 7 = Tk

Convert the solution {Ax, Ay, As} into {AX, Ay, AS} with
AX = mat(Ax) and AS = mat(As).

Step 5

Choose a parameter vy in the range 0 < -y < 1 and determine parameters
« and 3 as
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a = min(1, v&) (14.45a)
8 = min(1, v03) (14.45b)
where
& = max a) and B= max 3
Xk-&-&AXtO( ) b sk+BAsto(6)
Step 6 Set
Xip1 = Xi +aAX (14.46a)
Yi+1 = Yi + BAy (14.46b)
Sei1 = Sk + BAS (14.46¢)

Set k = k + 1 and repeat from Step 2.

A couple of remarks on Step 5 of the algorithm are in order. First, it follows
from Eq. (14.45) that if the increments AX, Ay, and AS obtained in Step
4 are such that X + AX € F; and {y; + Ay, Sj + AS} € FY, then
we should use @ = 1 and 3 = 1. Otherwise, we should use o = & and
B = v where 0 < y < 1 to ensure that X, 1 € F,) and {yx1, Sk11} € FY.
Typically, a y in the range 0.9 < v < 0.99 works well in practice. Second, the
numerical values of & and 3 can be determined using the eigendecomposition
of symmetric matrices as follows. Since X > 0, the Cholesky decomposition
(see Sec. A.13) of X, gives

X, = XITX,
Now if we perform an eigendecomposition of the symmetric matrix

(XP)'axx;!

as
XH'axx; ' = UuTAU
where U is orthogonal and A = diag{\1, A2, ..., Ay}, we get
Xy +aAX = XTI+ aXT)'AXX, X,
= X (I+aUuTAU)X,
= (UX)"(I+aA)(UXy)
Hence X;@AX > Oifand only if I+aA =diag{1+a;,14+aly, ..., 1+

aXp} = 0. If min{\;} > 0, then I + &A > 0 holds for any & > 0; otherwise,
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the largest & to assure the positive definiteness of I + aA is given by

1
V= ——— 14.47
“ max; (—\;) ( )

Therefore, the numerical value of « in Eq. (14.45a) can be obtained as

1 ifallA\; >0
o = (14.48)

min(1, v&) otherwise

where & is determined using Eq. (14.47). Similarly, the numerical value of 3
in Eq. (14.45b) can be obtained as

1 ifall u; >0
B = (14.49)

min(1, y3)  otherwise

where the p;’s are the eigenvalues of (S;{)_IASS;1 with S, = ST'S;, and

o
max;(— ;)

8=

The numerical value of the centering parameter o should be in the range of
[0, 1). For small-scale applications, the choice

g

n
=— 14.50
15y/n+n ( )

is usually satisfactory.

Example 14.1 Find scalars y;, y2, and y3 such that the maximum eigenvalue
of F = Ag + y1A1 + y2As + y3 Az with

T2 05 —06 01 0
Ag=|-05 2 04, Ar=|1 0 o]

| —06 04 3 00 0

0 0 1 00 0
A2:OOO,A3—001]

1 0 0 01 0

1s minimized.

Solution This problem can be formulated as the SDP problem
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maximize b’y (14.51a)
4

subject to: > yiAi+8=C (14.51b)
=1

S>=0 (14.51¢c)

where b = [000 1)7, y = [y1 v2 y3 wa]?. C = —Ag, Ay = I, and —yy
is the maximum eigenvalue of matrix F (see Prob. 14.5). We observe that the
optimization problem in Eq. (14.51) is of the type described by Eq. (14.4) with
n =3 and p = 4.

It is easy to verify that the set {Xo, yo, So} with

2 03 04
Xo=3I, y0=1[020.202 —4]" and Sp=|03 2 —06
04 —06 1

is strictly feasible for the associated primal-dual problems. The matrix A in
Eq. (14.41a) is in this case a 4 x 6 matrix given by

0 v2 0 0 0 0
A_oo\/ﬁooo
10 0 0 0 Vv2 0
1 0 0 1 0 1

At the initial point, the maximum eigenvalue of F' is 3.447265. With o =
n/(15y/n+n) = 0.1035, v = 0.9, and e = 1073, it took Algorithm 14.1 four
iterations and 26 Kflops to converge to the solution set {X*, y*, S*} where

0.392921

. 0.599995
—0.399992
—3.000469

By using the first three components of y*, i.e., y1, y2, and y3, the maximum
eigenvalue of F = Ag + y1 A1 4+ yoAs + y3Ajs is found to be 3.
|

14.5 Predictor-Corrector Method

The algorithm studied in Sec. 14.4 can be improved by incorporating a
predictor-corrector rule proposed by Mehrotra [13] for LP problems (see Sec.
12.5.3).

As in the LP case, there are two steps in each iteration of a predictor-
corrector method. Let us assume that we are now in the kth iteration of the
algorithm. In the first step, a predictor direction {AX®P) | Ay®)  AS®)} is
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first identified by using a linear approximation of the KKT conditions. This set
{AX®) Ay®  ASP)} can be obtained by setting 7 = 0 in Eq. (14.40e) to
obtain

re = svec [— (X Sy + SiXk)] (14.52)
and then using Eq. (14.43). Next, the numerical values of ay, and (3, can be
determined as

ap = min(l, yé&) (14.53a)
3, = min(1, v3) (14.53Db)

where

& = max (@)
X, +aAXP) =0
= max
Sk+BAS®) -0

in a way similar to that described in Egs. (14.48) and (14.49). The centering
parameter o, is then computed as

(Xi + apAX®) . (S, + 3,A8P)]°

= 14.54
Ok X, Sy ( )
and is used to determine the value of 7, in Eq. (14.44), i.e.,
Xk -S
T = op 2k (14.55)
n

In the second step, the parameter 73, in Eq. (14.55) is utilized to compute
re = 7.1 — 1(X3 Sy, + Si Xy + AXPASP) - ASPAXP))  (14.56)

and the vector r. in Eq. (14.56) is then used in Eq. (14.43) to obtain the corrector
direction {AX() | Ay(9) AS©}. The set {Xy, yx, Sk} is then updated as

X1 = Xp + a,AX O (14.57a)
Yer1 = Y + Ay (14.57b)
Sii1 = Sk + B.AS) (14.57¢)

where o, and (. are given by

ae. = min(1, v&) (14.58a)

B, = min(1, v3) (14.58b)
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where

& = max (@)
Xi+aAX (=0

= max
S,+BASC =0

The above approach can be implemented in terms of the following algorithm.

Algorithm 14.2 Predictor-corrector algorithm for SDP problems
Step 1

Input A; for1 < i < p,b € RP,and C € R™*", and a strictly feasible
set {Xo, yo, So} that satisfies Egs. (14.1b) and (14.4b) with Xy > 0
and Sg > 0. Set £ = 0 and initialize the tolerance ¢ for the duality gap
O

Step 2

Compute

~ Xg Sk

o

Ok

Step 3

If 6, < e, output solution {Xy, yx, Sk} and stop; otherwise, continue
with Step 4.

Step 4

Compute {AX®) Ay®)  ASP} using Eq. (14.43) with X = X,
Y = y&, S = Si, and r. given by Eq (14.52).

Choose a parameter vy in the range 0 < v < 1 and compute o, and 3,
using Eq. (14.53) and evaluate oy, using Eq. (14.54).

Compute 73, using Eq. (14.55).

Step 5

Compute {AX(C), Ay, AS(C)} using Eq. (14.43) with X = X,
Y = Y&, S = Sg, and r. given by Eq. (14.56).

Step 6

Compute . and (3. using Eq. (14.58).

Step 7

Obtain set {Xy11, Yk+1, Sks1) using Eq. (14.57).

Set k = k + 1 and repeat from Step 2.

Example 14.2 Apply Algorithm 14.2 to the shortest distance problem in Ex-
ample 13.5.
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Solution From Sec. 14.2.2, we can first formulate the problem as a CP problem
of the form given by Eq. (14.21), i.e.,
minimize §
subject to: xTHx < §
xX'Qix+qix+r <0
xTQox + qu +7r3 <0

with

(21 1 0O -1 0

o xI9 . 0 1 0 -1

=l B5 10 0 1 o

L L4 0 -1 0 1
rl 1
i 0 5 3 —5 —44

— | 4 — — 2 —

w

= —% and ro = 140

The above CP problem can be converted into the SDP problem in Eq. (14.23)
with

0 I
0 X9
c=1|0 y X = I3
0 Ty
1 0
and
E(x) = diag{G(J, x), Fi(x), Fa(x)}
with
1 0 -1 0
[ 1, Hx ~ |0 -1 0 1
G0, %) = | (frx)T 5}’ H=10 0 0 o
0 0 0 0
_—AIQ lea A_%O KA
F1(x) = | (Qixq)T —OhTXa—TJ’ Ql_{() L
o [ . 12 Q2Xb N 2 2:| o [1'3}
Falx) = L (Qaxp)” —qub—TJ’ Q2_{—1 1 7 [y

The SDP problem in Eq. (14.23) is equivalent to the standard SDP problem
in Eq. (14.4) withp =5, n = 11,
1
T2
y=|z3|, b=
T4
0 -1

OO OO
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:|703

qi1
(h

[04 hy] [02 qi2 }
Oh 03

Matrices A; for 1 < ¢ < 5 and C are given by

S (TR

Ay = —diag

hg 0]’ Q1T2 - }
. 0, h3] { q21 H
A3 = —dia ,
s £ _hg 0] q2T1 —q2(1
Ay = —dia : [ 422 ”
* g h4T q22 —q2(2

A5 = —diag

0, }

I, O I, O
’ 0 —T1 ’ 0 —T9
where h;, qi;, and o for 1 < ¢ < 4and 1 < j < 2 are the ¢th and jth
columns of ﬂ, Ql, and Q2, respectively, Iy, is the & x k identity matrix, and
0y, is the k X k zero matrix. A strictly feasible initial set {Xy, yo, So} can be
identified as

C = —diag

— N N N
o
=~
=
&~

Xy = diag{I5, Xo2, Xo3}
yo = [102420]7

5
So=C-> yol)A
=1

1 0 —0.5 180 0 12
0 1 0 and Xogz 0 60 -2

where

Xp2 =
—-05 0 1 —-12 -2 1

With v = 0.9 and ¢ = 1073, it took Algorithm 14.2 six iterations and 10.73
Mflops to converge to the solution {X*, y*, S*} where

2.044717
0.852719
yv* = | 2.544895
2.485678
2.916910

This corresponds to the solution points r* € R and s* € S (see Fig. 13.5) with

« _ |2.044717 d s — 2.544895
~ 1 0.852719 [ 2.485678
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which yield the shortest distance between R and S as ||r* — s*|| = 1.707845.
Note that Algorithm 14.2 usually yields a more accurate solution to the problem
than Algorithm 13.6 with comparable computational complexity.

[

14.6  Projective Method of Nemirovski and Gahinet

In this section, we describe a different interior-point method for SDP prob-
lems that was proposed by Nemirovski and Gahinet in [4][14]. The name of
the method, i.e., the projective method, comes from the fact that orthogonal
projections of positive-definite matrices onto the range of a linear mapping
characterized by some LMI constraint are heavily involved in the algorithm.

14.6.1 Notation and preliminaries

In the space of symmetric matrices of size n x n, 8™, we denote the set of
positive-semidefinite matrices by & and the set of positive-definite matrices by
intKC. Note that K is a convex cone (see Sec. 14.2.1) and the notation intAC
comes from the fact that the set of positive-definite matrices can be viewed as
the interior of convex cone K.

Given a positive-definite matrix P € R™*", an inner product can be intro-
duced in §™ as

(X, Y)p = trace(PXPY) (14.59)
which leads to the L p norm
IX||p = [trace(PXPX)]"/? (14.60)

If P is the identity matrix, then the above norm is reduced to the Frobenius
norm
IX |7 = [trace(X*)]'/? = |X]

i.e.,norm || - || p in Eq. (14.60) is a generalization of the Frobenius norm || - || 7.

An important concept involved in the development of the projective method

is the Dikin ellipsoid [4] which, for a given positive-definite matrix X, is defined
as the set

DX)={Y: Y - X|3%-: <1} (14.61)

Since
1Y — X321 = trace[X (Y — X)X (Y — X)]
= trace[(XV/2YX V2 1) (X 12y X V2 1))
— X AYXC 1)
the Dikin ellipsoid D(X) can be characterized by
D(X)={Y: |XY2yX V2 1% < 1} (14.62)
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A very useful property of the Dikin ellipsoid is that for a positive definite X,
every element in D(X) is a positive-definite matrix (see Prob. 14.12). In other
words, for an X € intkC, D(X) is an ellipsoid centered at X such that the entire
ellipsoid is within int/C.

The SDP problem we consider here is given by Eq. (14.9), i.e.,

minimize ¢’ x (14.63a)
subjectto: F(x) = 0 (14.63b)

where ¢ € RP*!, x € RP*1, and
p
F(x)=Fo+ Y x;F (14.63c)
=1

with F; € 8™ for 0 < ¢ < p. To start with, we need to find a strictly feasible
initial point. This can be done by solving the strict-feasibility problem which
can be stated as

find a vector x such that F(x) > 0 (14.64)

In the projective method, which is applicable to both the SDP problem in
Eq. (14.63) and the strict-feasibility problem in Eq. (14.64), we consider the
orthogonal projection of a positive-definite matrix X onto a subspace £ of S”,
where £ is the range of the linear map F related to the LMI constraint in
Egs. (14.63b) and (14.64), i.e.,

Fx =) xiF; (14.65)
=1
and
£={X: X=7Fx,xeR} (14.66)

The orthogonal projection of a given positive definite X onto subspace £ with
respect to metric (, ) p can be defined as the unique solution of the minimization
problem

minimize ||Y — X||p = minimize |Fx — X||p (14.67)
Ye& xeRP

which is a least-squares problem because

P P
|Fx — X||% = trace [P (Z i F; — X) P (Z z,F; — X)]
i=1

i=1

p p
= trace [(Z o, F; — X) (Z o, F; — X>‘|
1=1 =1

= x"Fx - 2x'v+k (14.68)
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is a quadratic function with respect to x, where

F;, = PY/2F,pl/? (14.69a)
X = P/2xpl/? (14.69b)
F={fi, 1<i,j<p}  with f; = trace(F;F;) (14.69c)
v=_[vivg ... v,)T  with v; = trace(XF;) (14.69d)
ks = trace(X?) (14.69¢)
It can be shown that if matrices F; for ¢ = 1, 2, ..., p are linearly indepen-

dent, then matrix F is positive definite (see Prob. 14.13) and the unique global
minimizer of the least-squares problem in Eq. (14.67) is given by

x=Flv (14.70)

The orthogonal projection of matrix X onto £ with respect to metric (, ) p is
now obtained as
P
i=1

where z; is the 7th component of vector x obtained from Eq. (14.70).

14.6.2  Projective method for the strict-feasibility problem

Below we assume that matrices F; for 1 < i < p are linearly independent,
namely, 7x = 0 if and only if x = 0, so as to assure a unique orthogonal
projection of a symmetric matrix X onto subspace £ with respect to metric
(,)p defined by Eq. (14.59) with P positive definite.

Initially we need to homogenize the LMI constraint

fX—i—FO:xlFl-i-"'-i-fL'pr-i-Fo =0 (14.71)

as
o1Fy 4+ 2,F, + 7Fy = 0 (14.72a)
>0 (14.72b)

The constraints in Eq. (14.72) are equivalent to

Fx = V’”TFO 0] =0 (14.73a)
0 T
where
~ X
% = L} (14.73b)

Evidently, if vector x satisfies the constraint in Eq. (14.71), then x = [x 1]
satisfies the constraint in Eq. (14.73) and, conversely, if x = [x 7] satisfies
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Eq. (14.73), then vector x/7 satisfies Eq. (14.71). On the basis of the equiva-
lence of the LMI constraints in Egs. (14.71) and (14.73), we need to consider
only the strict-feasibility problem with a homogenized LMI constraint, i.e.,

p+1
find a vector x such that 7x = Z z;F; = 0 (14.74a)
i=1

where T 11 =T,

F;, = [F 0 for 1<i<p (14.74b)
0 0 (n+1)X(n+1)
and Fr 0
Fpi1 = [ 00 . (14.74c)
(n+1)x(n+1)

In the projective method as applied to the strict-feasibility problem in Eq.
(14.74), we start with an initial point Xy € int/C, say, Xo = I, and generate
a sequence of positive-definite matrices Xy, in such a way that the orthogonal
projection of X, onto subspace £ eventually becomes positive definite. More
specifically, in the kth iteration the positive-definite matrix Xy, is orthogonally
projected onto subspace £ with respect to metric (, ) Xt and the projection

obtained is denoted as XL From Eqgs. (14.69) and (14.70) it follows that

p+l
Xi =Y #F; (14.75)
i=1
where Z; is the ith component of vector X; which is calculated as
%, = Flv (14.76a)
F = {fi;} with f;; = trace(X; 'F;X,'F;) (14.76b)
v =[vivg - vpa]]  with v; = trace(X;'F;)  (14.76¢)

If the projection XL in Eq. (14.75) is positive definite, then the strict-feasibility
problem is solved with vector x;, given by Eq. (14.76a). Otherwise, matrix Xy,
is updated according to

Xl = X0 - X (X - X)X (14.772)
where ~yj, is a positive scalar given by
1
= 14.77b
"= T o ( )
with
poo = max |A(X; XL — 1) (14.77¢)

1<i<n
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In Eq. (14.77¢), A(-) denotes the eigenvalues of the matrix involved. Once

X,;il is obtained from Eq. (14.77a), the orthogonal projection XL 1 1s obtained
using Eqgs. (14.76a)—(14.76¢) with index k replaced by k + 1, and the iteration
continues until a positive-definite orthogonal projection is obtained.

To understand the updating formula in Eq. (14.77a), we first write it as

Xl = X, PA - WX, (14.78)

where o o
Wi =X, (X - X)X,

Since
AWi) = XX IXT - 1)

we can estimate the eigenvalues of matrix I — v, Wy, as

Poo
AMI— v W) >1-— >0
(L= Wy) 21—+ r—
which means that I — v, Wy is a positive-definite matrix. It now follows from
Eq. (14.78) thatif X, is positive definite, then X}, 1 obtained using Eq. (14.77a)
is also positive definite. Furthermore, it can be shown [4] that

det(X k+1) > det(X; 1)
with k = e/2 ~ 1.36, which implies that

det(X; 1) > r¥det(Xy 1)

That is, if XL were to remain positive definite as the iterations continue, we
would have
det(X; ') w00 as k— o0 (14.79)

Next, we note that because X}; is an orthogonal projection onto subspace &,
X/,zl(XT Xk)X is orthogonal to & with respect to the usual Frobenius
metric. Namely, X! (x! I — X)X, ! € &+, the orthogonal complement of &,
with respect to the Frobenius inner product. Since the last term of the updat-
ing formula in Eq. (14.77a) is proportional to X,;l(X Xk)Xk , We note
that Eq. (14.77a) updates X,:l in a direction parallel to subspace £-. From
Sec. 13.6.1, we know that det(X;l) is related to the volume of the ellipsoid
characterized by X,;l and, consequently, Eq. (14.79) implies that X,;ll would
grow in parallel to subspace £ towards infinity if the iterations were not termi-
nated. To see that this will not occur, notice that the Frobenius inner product of
any two positive-semidefinite matrices is always nonnegative. In geometrical
terms this means that the angle at the vertex of the convex cone K is exactly
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8L

/ Cone K

Figure 14.1. A geometrical interpretation of Eq. (14.77a).

90° [4], as illustrated in Fig. 14.1. This geometrical interpretation also suggests
that if the strict-feasibility problem is solvable, i.e., cone K intersects with sub-
space &, then & 1 N K = {0}. Therefore, if the iterations do not terminate,
then X,;l as a point in cone X would eventually leave the cone, i.e., becoming
nonpositive definite, which obviously contradicts the fact that the matrix X1
updated using Eq. (14.77a) is always positive definite.

An algorithm for the solution of the homogenized strict-feasibility problem
in Eq. (14.74) is as follows.

Algorithm 14.3 Projective algorithm for the homogenized strict-
feasibility problem in Eq. (14.74)

Step 1

Setk=0and Xy =1.

Step 2

Compute the orthogonal projection XL with respect to metric (, ) X!
by using Eqgs. (14.75) and (14.76).

Step 3

If X}; is positive definite, output solution X* = Xj, which is given by
Eq. (14.76a), and stop; otherwise, continue with Step 4.
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Step 4

Compute 7 using Eqgs. (14.77b) and (14.77¢).
Update X,;l to X,;il using Eq. (14.77a).

Set k = k + 1 and repeat from Step 2.

Example 14.3 Applying Algorithm 14.3, solve the strict-feasibility problem in
Eq. (14.64) if

[0.50 0.55 0.33 2.387
Fy — 0.55 0.18 —-1.18 —-0.40
0.33 —-1.18 —-0.94 1.46
12.38 —0.40 1.46 0.17 ]
[ 5.19 1.54 1.56 —2.807
F, — 1.54 2.20 0.39 -2.50
1.56 0.39 4.43 1.77
| —2.80 —2.50 1.77 4.06 |
[—1.11 0 =212 0.387
Fy — 0 191 -0.25 -0.58
—-2.12 -0.25 —-1.49 1.45
L 0.38 —0.58 1.45 0.63 |
[ 2.69 —-2.24 —-0.21 —-0.747
Fy — —2.24 1.77 1.16 —2.01
—0.21 1.16 —-1.82 —-2.79
|-0.74 —-2.01 -2.79 —2.22]
[ 0.8 —-2.19 1.69 1.287
F, — -2.19 -0.05 -0.01 0.91
1.69 —-0.01 2.56 2.14
1.28 0.91 2.14 —-0.75]

Solution In order to apply Algorithm 14.3, the problem at hand is first converted
into the homogenized problem in Eq. (14.74) and the initial matrix Xj is set to
I5. The Algorithm took four iterations and 38.8 Kflops to yield

0.214262
0.042863

x4 = | —0.019655
—0.056181
0.078140

which corresponds to a solution of the strict-feasibility problem in Eq. (14.64)
as

T 2.742040
o |  xa(1:4) | 0.548538
3|  x4(5) | —0.251537

T4 —0.718983
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where x4(1 : 4) denotes the vector formed by using the first four components
of x4. It can be verified that

4
Fo+ Y zF;
i=1

is a positive-definite matrix whose smallest eigenvalue is 0.1657. Itis interesting
to note that the sequence

{det(X;Y) for k=0, 1, ..., 4} = {1, 2.63, 6.75, 16.58, 37.37}

gives the ratio

det(X; !
(7’“:“11) for k=0,1, ..., 3, ={2.63, 2.57, 2.45, 2.25}
det(X, ")
This verifies that the ratio is greater than x = 1.36.
|
14.6.3 Projective method for SDP problems
14.6.3.1  Problem homogenization
Let us now consider the SDP problem
minimize ¢’ x (14.80a)
subjectto: F(x) >0 (14.80b)
where ¢ € RP*1, x € RP*! and
P
F(x)=Fo+ Y z;F; (14.80c)
i=1

with F; € 8™ for 0 < i < p. We assume below that the problem in Eq. (14.80)
is solvable by using an interior-point method, i.e., the interior of the feasible
region described by Eq. (14.80b) is not empty, and that the objective function
c'x has a finite lower bound in the feasible region.

As in the projective method for the strict-feasibility problem in Sec. 14.6.2,
we first convert the problem at hand into the homogeneous problem

T
minimize ¢y (14.81a)

y7 T T
subjectto: Fy+7Fg = O (14.81b)
T > 0 (14.81c¢)
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where
P
Fy = yiF;
i=1

The problems in Eqgs. (14.80) and (14.81) are equivalent because if vector x
is a minimizer for the problem in Eq. (14.80), then [y? 7|7 = [xT 1]7 is
a minimizer for the problem in Eq. (14.81) and, conversely, if [y’ 7]7 is a
minimizer for the problem in Eq. (14.81), then x = y /7 is a minimizer for the
problem in Eq. (14.80). Now if we let

. [c ~ [0 - |y
C—-O], d—[l], X—{T:| (14.82a)
+1
~_ | Fy+71Fy; O _p e
Fx = 0 T] = ;:J:F (14.82b)
where -
F,=| ¢ 0 for 1<i<p (14.82¢)
L0 Ol ti)xmtn)
and )
Fpi1 = Fo 0 (14.82d)
L0 1] iyxmt)
then the problem in Eq. (14.81) can be expressed as
c'X
minimize f(X) = = 14.83a
FE) = (1483
subject to: FX = 0 (14.83b)
dTx £ 0 (14.83¢)

In what follows, we describe a projective method proposed in [4][14] that applies
to the SDP problem in the form of Eq. (14.83).

14.6.3.2  Solution procedure

In the projective method for the problem in Eq. (14.83), we start with a strictly
feasible initial point xg for which Xy = .7}5(0 >~ 0 and d”'x, # 0. Such an
initial point Xg can be obtained by using Algorithm 14.3. In the kth iteration,
the set {Xj, Xy} is updated to set {Xjy1, Xp41} to achieve two goals: to
reduce the objective function and to maintain strict feasibility for point Xy 1.
These goals can be achieved through the following steps:

1. Compute the orthogonal projection of X, onto the subspace £ defined by

£E={X: X=FxxeR (14.84)
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and denote the orthogonal projection obtained as
X! = Fx
If XL > 0, then continue with Step 2; otherwise, set
Y = X} - X, (14.85)

and continue with Step 3.
2. Find a value of the objective function f(x), f;, such that

[p: = XL(f;;)HX;l >0.99 subjectto: XL(fi)>=0  (14.86)

The matrix XL( f) in Eq. (14.86) represents the orthogonal projection of
X onto &£( f) which for a given real number f is the subspace of £ defined
by

E(f)={X:Xec& and (¢—fd)Ix=0} (14.87)
(see Prob. 14.14(a)). Note that £(f) is related to the hyperplane P(f) =
{x : (¢ — fd)Tx = 0} on which the objective function f(x) assumes
constant value f (see Prob. 14.14(b)).
Then compute matrix Yy as

Yy = XL(f) — Xi (14.88)

Details for the calculation of f; and XL( f7) are given in Secs. 14.6.3.4
and 14.6.3.5, respectively.
3. Update X}, to X1 as

Xt =X = XY X! (14.89)
where the step size - is chosen such that X,;j_l > 0 and
det(X;},) > rdet(X; 1)

for some fixed x > 1.
Repeat from Step 1.

14.6.3.3  Choice of step size i

The choice of a suitable value for 7, in Eq. (14.89) is dependent on how the
matrix Y in Eq. (14.89) is calculated. If Y}, is calculated using Eq. (14.85),
then it means that XL obtained from Step 1 is not positive definite. Evidently,
this is a situation similar to that in the strict-feasibility problem, and -~y can
be determined using Eqs. (14.77b) and (14.77c). On the other hand, if Y is
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calculated using Eq. (14.88), then ;. can be determined by using Eqs. (14.77b)
and (14.77¢) with X;rC replaced by XL(f,j), ie.,

1

= 14.90a
T =7 o ( )

with
foo = max \(X X[ (f7) ~ T (14.90b)

14.6.3.4  Computation of f};

For a given positive-definite matrix X;, and any element in &, say, X = FX,
there exist two matrices Cy and Dy, in £ such that the inner products ¢’k and
d”'x can be represented as inner products in space S™, i.e.,

s = (Cy, X) -1 (14.91a)

and ~
d’x = (Dy, X)Xgl (14.91b)

respectively (see Prob. 14.15). Consequently, we can write
(€ = fd) % = (Cj, — fDy, X) 1
and the linear subspace £(f) defined by Eq. (14.87) can be characterized by

E(f) ={X €&, (Cy.— [Dy, X) 1 =0} (14.92)

From Fig. 14.2, it follows that the squared distance between X, and XJ,L (f) can
be computed as

() = 11Xk = X{R o + XL - XLDIE s (1493)

=

2N
‘\_—_

>
N4

Figure 14.2. Relation among Xy, XL, and Xl(f).
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Since XL — XL(f) is orthogonal to subspace E(f), X}; - XL(f) can be
obtained as the orthogonal projection of XL onto a normal of £(f), i.e.,

X, — X} (f) = (u, X}) y1u

where u is a normal of £( f) with unity length with respect to metric (, ) ,—1.
k

This, in conjunction with the fact that Cy, — fDy, is a normal of subspace £( f),

yields

(Ck — Dy, XL)X;

XT_XT f 2 _
R (e

which modifies Eq. (14.93) to
(Ck — fDy, Xbxgl
[1Ck = DI

§2(f) = || X — Xy@k_l + (14.94)

The value of f; used in Step 2 in Sec. 16.6.3.2 can now be determined as
follows. First, we note that the matrix X,JrC = FX;, obtained in Step 1 is positive
definite. Hence if we let f;, = f(Xy), then XL(fk) = XL If

.i_
X5 = X[ |1 > 0.99

then the constraints in Eq. (14.86) are satisfied by taking f; = f;. Otherwise,
we have
6(fx) = || Xk — XLHX; < 0.99 (14.95)

because f(Xy) = fi implies that
(Ck — f1Dg, XL)kal =@ frd) % =0

On the other hand, the limit of §(f) as f approaches negative infinity is equal to
or larger than one. This, in conjunction with Eq. (14.95), implies the existence
of an f; < fj, that satisfies the two constraints in Eq. (14.86). The numerical
value of such an f; can be determined by solving the quadratic equation

(Cr, = [Dy, X})y 1

0.99 = | X, — XI|[2_, + (14.96)
s = Xl ICk — fDx|[5
k
for f. If f; is the smaller real solution of Eq. (14.96), then we have
X5 = XLl = 099 (14.97)

Since X, is positive definite, Eq. (14.97) indicates that XL (fr)islocated inside
the Dikin ellipsoid D(X}y) and, therefore, XL( f7) is positive definite.
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14.63.5  Computation of X} (f7)
By definition, Xl(f) — FX* minimizes ||X}, — ]:"S(HX_l subject to the
- k
constraint (¢ — fd)7x = 0. Note that

X — Fx|% 1 =%"Fx —2%"v + &
k

where F and v are given by Eqs. (14.76c) and (14.76d), respectively. Therefore,
x* and XL( f) can be obtained by solving the QP problem

minimize X Fx — 2%7v +

subjectto: (¢ — fd)Tx =0

By applying the formula in Eq. (13.11), we obtain the solution of the above QP
problem as

g=¢—fd (14.98a)
Tfp—l
=4V (14.98b)
q’F-lq
X =F g\ +v) (14.98c¢)

and the orthogonal projection of Xy, onto £(f) is given by
X! (f) = Fx* (14.99)
where x* is given in Eq. (14.98c).

14.6.3.6  Algorithm

The above method can be implemented in terms of the following algorithm.

Algorithm 14.4 Projective algorithm for the homogenized SDP
problem in Eq. (14.83)

Step 1

Apply Algorithm 14.3 to obtain a strictly feasible point Xg.

Evaluate X = FX( and compute f& = f(xg).

Set k = 0 and initialize tolerance ¢.

Select a positive integer value for L.

Step 2

Compute the orthogonal projection of X onto subspace £ given by
Eq. (14.84).

Denote the orthogonal projection obtained as X! =F X

Step 3

If X,TC > 0, continue with Step 4; otherwise, set
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Y, = XI - X,
and continue with Step 5.
Step 4
Compute fi = f (%) and 8(fi) = || Xy — XLl 1.
If
d(frx) > 0.99

then let f; = fi, XL(f,j) = XL, and compute Y}, using Eq. (14.88);
otherwise, determine matrices Cj, and Dy, in Eq. (14.91), compute f}
as the smallest real solution of Eq. (14.96), and obtain (X}, XL( i)
using Eqs. (14.98) and (14.99) with f = f}.

Compute Y, using Eq. (14.88).

If the reduction in f; during the last L iterations is consistently less than
€, output solution X* = X7 and stop; otherwise, continue with Step 5.
Step 5

Update X, to X1 using Eq. (14.89), where parameter vy, is determined
as

. -1
Vk with peo = max [A(X Y5)]

Set k = k + 1 and repeat from Step 2.

An analysis on the polynomial-time convergence of the above algorithm can
be found in [4][14]. The latter reference also addresses various implementation
issues of the algorithm.

Example 14.4 Apply Algorithm 14.4 to solve the shortest distance problem
discussed in Example 14.2.

Solution The shortest distance problem in Example 14.2 can be formulated as
the SDP problem in Eq. (14.80) where c = [000 0 1]7 and F; for0 < i < 5
are given by Fg = C, F; = —A,; fori = 1, 2, ..., 5; on the other hand, C
and A; are defined in Example 14.2.

The problem at hand can be converted to the homogeneous SDP problem in
Eq. (14.83) with

and d=

o
Il

O O O OO
!
— o oo oo
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and F; for 1 < i < 6 can be determined using Eqs. (14.82c) and (14.82d). With
e =5x 107% and L = 1, it took Algorithm 14.4 36 iterations and 9.7 Mflops
to converge to the solution

2.044301
N 0.852835

1:5
x = XU - ) _ | 2510217
x*(6) 2.485864
2.916757

This corresponds to the solution points r* € R and s* € S with

« _ |2.044301 and  s* 2.544217
0.852835 2.485864

which yield the shortest distance between R and S as ||r* — s*|| = 1.707835.
Note that Algorithm 14.4 generated a slightly more accurate solution than Al-
gorithm 14.2 requiring less computation.

[

14.7  Second-Order Cone Programming
14.7.1  Notation and definitions

The concept of convex cone has been defined in Sec. 14.2 as a convex set
where any element multiplied by any nonnegative scalar still belongs to the

cone (see Def. 14.1). Here we are interested in a special class of convex cones
known as second-order cones.

Definition 14.2 A second-order cone of dimension n is defined as

K- {m . te R, ue R for [u] <t} (14.100)

A second-order cone is also called quadratic or Lorentz cone. For n = 1, the
second-order cone degenerates into a ray on the ¢ axis starting from ¢ = 0, as
shown in Fig. 14.3a. The second-order cones for n = 2 and 3 are depicted in
Fig. 14.3b and c, respectively.

Note that the second-order cone K is a convex set in R™ because for any two
points in K, [t; ul]T and [t ul]?, and X € [0, 1], we have

Mal#a-n[2]= i

where

A + (1 = Mg < Allun [ + (1 = A)fJug] < Aty + (1 = M)t
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u

(2) (b) (©)

Figure 14.3.  Second-order cones of dimension (a) n = 1, (b) n = 2, and (¢) n = 3.

The primal second-order cone-programming (SOCP) problem is a cons-
trained optimization problem that can be formulated as

q
minimize »_ &/ x; (14.101a)
q =1
subject to: ZAixi =b (14.101b)
=1
x; €K  fori=1,2 ...,q (1410l

where ¢; € R"*1 x; € R"<1 A, € R™™i b € R™! and K; is the
second-order cone of dimension n;. It is interesting to note that there exists
an analogy between the SOCP problem in Eq. (14.101) and the LP problem
in Eq. (12.1): both problems involve a linear objective function and a linear
equality constraint. While the variable vector x in an LP problem is constrained
to the region {x > 0, x € R"}, which is a convex cone (see Def. 14.1), each
variable vector x; in an SOCP problem is constrained to the second-order cone
IC;.

The dual of the SOCP problem in Eq. (14.101) referred to hereafter as the
dual SOCP problem can be shown to be of the form

maximize b’y (14.102a)

subjectto:  Aly +s; = ¢ (14.102b)
s; € IC; fori=1,2,...,q (14.102¢)

wherey € R™*!ands; € R"*! (see Prob. 14.17). Note that a similar analogy
exists between the dual SOCP problem in Eq. (14.102) and the dual LP problem
in Eq. (12.2).
If we let
X = -y, AiT =

! . d;

7 . —
AT and ¢; = [C} (14.103)
where b; € R™*! and d; is a scalar, then the SOCP problem in Eq. (14.102)
can be expressed as

minimize b’ x (14.104a)
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subject to: ||Ag‘x—|— ci| € b;x + d; fori=1,2,....¢q
(14.104b)
(see Prob, 14.18). As we will see next, this SOCP formulation turns out to have

a direct connection to many convex-programming problems in engineering and
science.

14.7.2  Relations among LP, QP, SDP and SOCP Problems
The class of SOCP problems is large enough to include both LP and convex
QP problems. If Af =0andc; =0fori =1, 2, ..., g, then the problem in
Eq. (14.104) becomes
minimize b’ x
subject to: b_;-rx +d; >0 fore=1,2, ..., q
which is obviously an LP problem.
Now consider the convex QP problem
minimize f(x) = x? Hx + 2x’p (14.105a)
subjectto: Ax>b (14.105b)

where H is positive definite. If we write matrix H as H = HT/2H!/2 and let
p = H~1/2p, then the objective function in Eq. (14.105a) can be expressed as

fx) = |HY*x +p|> - p"H 'p

Since the term p” H™!p is a constant, minimizing f(x) is equivalent to mini-
mizing ||[H'/?x 4 p|| and thus the problem at hand can be converted to

minimize & (14.106a)
subject to:  |[H'?x +p|| <6 (14.106b)
Ax>b (14.106¢)

where 4 is an upper bound for ||[H/2x + p|| that can be treated as an auxiliary
variable of the problem. By defining

x=[2]. b=[g]. m=omw” A=pa
X 0

the problem becomes

minimize b’ % (14.107a)
subjectto:  ||Hx + p|| < b¥x (14.107b)
Ax>b (14.107¢)

which is an SOCP problem. On the other hand, it can be shown that every
SOCP problem can be formulated as an SDP problem. To see this, note that
the constraint ||u| < ¢ implies that

tI u
p-
{u" t}—o
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(see Prob. 14.19). In other words, a second-order cone can be embedded into a
cone of positive semidefinite matrices, and the SOCP problem in Eq. (14.104)
can be formulated as
minimize b’ x (14.108a)
T . T )
(by x+di)l - A;xt+eil o 14 108)

subject to: (ATx+¢)T eI'x+d; |~

which is an SDP problem.

The above analysis has demonstrated that the branch of nonlinear program-
ming known as CP can be subdivided into a series of nested branches of opti-
mization, namely, SDP, SOCP, convex QP, and LP as illustrated in Fig. 14.4.

SOCP

Convex
QP

Figure 14.4. Relations among LP, convex QP, SOCP, SDP, and CP problems.

14.7.3 Examples

In this section, we present several examples to demonstrate that a variety of
interesting optimization problems can be formulated as SOCP problems [15].

(i) QP problems with quadratic constraints A general QP problem with
quadratic constrains can be expressed as

minimize x? Hox + 2pg X (14.109a)

subject to: xTH;x + Zp;frx +7r, <0 fori=1,2,...,¢q
(14.109b)
where H; for ¢ = 1, 2, ..., ¢ are assumed to be positive-definite matrices.

Using the matrix decomposition H; = HZ-T/ 2H} /2 , the problem in Eq. (14.109)
can be expressed as

minimize |[Hy*x + pol|> — pi Hy 'po

subject to: ]\Hl-l/2x+f)¢\|2 —p/H; 'pi+7r, <0 fori=1,2...,¢q
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where p; = H, r/ 2pi fori =0, 1. ..., g. Obviously, the above problem is
equivalent to the SOCP problem
minimize (14.110a)
subject to:  |[HY?x + po|| < 6 (14.110b)
IHY2x + pi|| < (pFH; 'pi — 7)Y for i=1,2,..., ¢
(14.110c)

(ii) Minimization of a sum of L norms Unconstrained minimization problems

of the form
N

minimize Z |Aix + c|
i=1
occur in a number of applications. By introducing an upper bound for each
Ls-norm term in the objective function, the problem can be converted to

N
minimize Y _ 4; (14.111a)
i=1
subject to:  ||A;x + ¢ < ; for i=1,2,..., N
(14.111b)

If we define an augmented variable vector

01
%=
on
X
and let
0]
1 :
- : - - 0
b=1|:|, A;=[0A;], b;=|1]| < ithcomponent
1 0
0 :
_O_
then Eq. (14.111) becomes
minimize b’ % (14.112a)
subjectto:  ||A;x + ¢l <blx for i=1,2, ..., N

(14.112b)
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which is an SOCP problem.
Another unconstrained problem related to the problem in Eq. (14.111) is the
minimax problem

minimize maximize ||A;x + c;| (14.113)
x 1<i<N

which can be re-formulated as the SOCP problem

minimize § (14.114a)

subjectto:  [[A;x+¢|| <d fori=1,2,..., N
(14.114b)

(iii) Complex L-norm approximation problem An interesting special case
of the sum-of-norms problem is the complex L; norm approximation prob-
lem whereby a complex-valued approximate solution for the linear equation
Ax = b is required where A and b are complex-valued such that x solves the
unconstrained problem

minimize ||Ax —cl;

where A € C"™*" ¢ € C™*! x € C™*!, and the L norm of x is defined as
x|t = 37 |zk]. fwelet A =[ajas --- a,]f ande = [c1 ca -+ cpT
where aj;, = ay, + jag;, ¢k = Cir + jCri» X = X, + jX;, and j = /—1, then
we have

|Ax —cfls = Z g x — cxl

[(af,x, — afx; — cir)? + (afxi + afx, — c)?]M/?

aj; ap | [x Cki
Ay X Ck
Hence the problem under consideration can be converted to

Ms

m
\ = 3 Ak — e
k=1
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m
minimize Y _ &, (14.115a)
k=1
subject to:  ||[Axx —cgl| <0 for k=1,2,....,m
(14.115b)
By letting
[ 61 1
x=| |, bo=|'|., Ai=[0A
=5 b= k=10 Ayg]
| X 0
0]
B 0
by = | 1| « the kth component
0
_O_

the problem in Eq. (14.115) becomes
minimize b’x (14.116a)

subjectto:  ||Azx —cil| <bfx for k=1,2,...,m
(14.116b)

which is obviously an SOCP problem.
(iv) Linear fractional problem The linear fractional problem can be de-

scribed as

P
1
minimize E —_— (14.117a)
P alTx + ¢

subjectto: alx+¢; >0 fori=1,2,...,p (14.117b)
blx+d; >0 fori=1,2,...,q (14.117c)

It can be readily verified that subject to the constraints in Eq. (14.117b), each
term in the objective function is convex and hence the objective function itself
is also convex. It, therefore, follows that the problem in Eq. (14.117) is a CP
problem. By introducing the auxiliary constraints

1
a;xX+¢
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1.e.,
6i(ziTx +¢)>1
and
0; >0
the problem in Eq. (14.117) can be expressed as
P
minimize Y _ d; (14.118a)
i=1
subjectto:  d;(alx+¢;)>1 fori=1,2,...,p (14.118b)
0; >0 (14.118c)
blx +d; >0 (14.118d)
Furthermore, we note that w? < wv, u > 0, v > 0if and only if
L2
u—"v

(see Prob. 14.20) and hence the constraints in Eqs. (14.118b) and (14.118¢) can
be written as

2 T )
X <* i i ] = e
[az +Ci_5z} ‘ aIX—i—Cl—I-(SZ for ¢ 1, 2, , D

Hence the problem in Eq. (14.118) can be formulated as

minimize zp: 0; (14.119a)
i=1
subject to: ‘{ T 2 }‘ga-Tx+ci+5i fori=1,2,...,p
a;x+¢ —0; E
(14.119b)
blx+d; >0 (14.119¢)
which is an SOCP problem.

14.8 A Primal-Dual Method for SOCP Problems
14.8.1 Assumptions and KKT conditions

If we let
c1 X1 S1
Co X2 S2
C = . y X = . s S —
Cq Xq Sq

A=[A1AzAy -~ A and K=K; xKax---xK,
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where K1, K2, ..., K4 are the second-order cones in Eqs. (14.101) and
(14.102) and K = K1 x Ko x - - - x K, represents a second-order cone whose
elements are of the formx = [z} x5 -+ z,]T withx; € K;fori=1,2, ..., q,

then the primal and dual SOCP problems in Egs. (14.101) and (14.102) can be
expressed as

minimize ¢’ x (14.120a)
subjectto: Ax=b, xe K (14.120b)
and
maximize bTy (14.121a)
subjectto: Aly+s=c,sek (14.121b)

respectively. The feasible sets for the primal and dual SOCP problems are
defined by
Fp={x: Ax=b, x€ K}

and
Fi={(s,y): ATy+s=c, sk}

respectively. The duality gap between x € F, and (s, y) € F; assumes the
form

5(x,s,y) =c'x—bly = (ATy +s)'x —bly =sTx (14.122)

A vector x; = [t; ul']T in space R™*! is said to be an interior point of the
second-order cone C; if ||u;|| < ;. If we denote the set of all interior points of
KC; as K and let

K=K x K3 x -+ x Ky

then a strictly feasible vector for the problem in Eq. (14.120) is a vector x € K
satisfying the constraint in Eq. (14.120b). Based on these ideas, the strictly
feasible sets of the primal and dual SOCP problems are given by

Fp={x: Ax=Db, x€ K%}

and
Fi=A{(x,y): ATy—i—s:c7 s € K%}

respectively.
In the rest of the chapter, we make the following two assumptions:

1. There exists a strictly feasible point x for the primal problemin Eq. (14.120)
and a strictly feasible pair (s, y) for the dual problem in Eq. (14.121),
i.e., both 7 and F7 are nonempty.

2. The rows of matrix A are linearly independent.
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Under these assumptions, solutions for the primal and dual SOCP problems
exist and finding these solutions is equivalent to finding a vector set (x, s, y) €
K x IC x R™ that satisfies the KKT conditions [16]

Ax=b (14.123a)
Aly+s=c (14.123b)
x's =0 (14.123¢)

where the condition in Eq. (14.123c) is referred to as the complementarity
condition. From Eq. (14.123c), we note that the duality gap J(x,s,y) at the
primal and dual solution points becomes zero.

14.8.2 A primal-dual interior-point algorithm

In this section we introduce a primal-dual interior-point algorithm for SOCP,
which is a slightly modified version of an algorithm proposed in [16]. In the
kth iteration of the algorithm, the vector set (X, Sk, yx) is updated to

(Xkt1, Skt1, Yer1) = (Xk, Sk, Y&) + ax(Ax, As, Ay) (14.124)

where (Ax, As, Ay) is obtained by solving the linear system of equations

AAx = b — Ax (14.125a)

ATAy +As=c—-s— ATy (14.125b)

SAx + XAs = opue — Xs (14.125c¢)

wheree = [1 1 --- 1]T,
. . ti u-T

X = diag{Xi, ..., Xg} with X;= | % | (14.1250)

S = diag{Si, ..., S¢} (14.125¢)

1= xTs/q (14.125f)

o is a small positive scalar, and (x, s, y) assumes the value of (xg, Sk, yi)-
In Eq. (14.125d), t; and u; are the first component and the remaining part of
vector x;, respectively, and I; is the identity matrix of dimension n; — 1. The
matrices S; fori = 1, 2, ..., ginEq. (14.125¢) are defined in a similar manner.
On comparing Eq. (14.125) with Eq. (14.123), it is evident that the vector set
(Xk, Sk, Y) is updated so that the new vector set (Xg41, Sp+1, Yk+1) better
approximates the KKT conditions in Eq. (14.123).

In Eq. (14.124), o, is a positive scalar that is determined by the line search

ar = 0.75min(og1, ke, ags3) (14.126a)
— (0]
ap = Orggél(xk +alAx € F)) (14.126b)
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o = 0123%(1(5]6 + als € FJ) (14.126¢)
ags = max [c — AT (yi, + aAy) € F3] (14.126d)

Itfollows from Eqgs. (14.124) and (14.126) that the updated vector set (X 11, Sk+1,
Vi-+1) will remain strictly feasible.
An algorithm based on the above approach is as follows.

Algorithm 14.5 Primal-dual interior-point algorithm for SOCP
problems

Step 1

Input data set (A, b, c), parameters g and n; fori =1, 2, ..., ¢, and
tolerance €.

Input an initial vector set (xg, Sg, ¥o) With x¢ € JFy and (s0,¥0) € F3.
Set po = x3¢'s0/q, 0 = 107, and k = 0.

Step 2

Compute the solution (Ax, As, Ay) of Egs. (14.125a)-(14.125¢c)
where (x, s, y) = (X, Sk, Y&) and p = ju,.

Step 3

Compute oy, using Eq. (14.126).

Step 4

Set (Xg+1,Sk+1,Ykt1) = (X + apAX, si + apAs, yi + agAy)
Step 5

Compute pigy1 = X£+1Sk+1/q. If ur11 < e, output solution (x*, s*,
v*) = (Xk+1, Sk+1, Yk+1) and stop; otherwise, set & = k+ 1 and repeat
from Step 2.

Example 14.5 Apply Algorithm 14.5 to solve the shortest distance problem
discussed in Example 13.5.

Solution The problem can be formulated as
minimize §
subject to:  [(x1 — x3)% + (29 — m4)2]1/2 <5

sl [0 ][0 ]~ el [ 7] <3

x2

s[5 5[] - [1f3] <=5

If we let x = [§ 21 22 23 24]7, the above problem can be expressed as
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minimize b’ x (14.127a)
subjectto:  [|ATx + ¢;|| < bl'x +d; fori=1,2,3
(14.127b)

where

b=1[10000]"
r [0 -1 0 1 0 r [0 05 0 0 0
Al_[o 0 10—1]’ AQ_[O 0 100

AT — 0 0 0 —07071 —-0.7071
3710 0 0 —0.3536  0.3536

by =b, by=0, b3=0
c1 =0, co=[-0507T, c3=1[4.2426 —0.7071]"
d1 = 0, d2 = 1, and Cl3 =1

The SOCP formulation in Eq. (14.127) is the same as that in Eq. (14.104).
Hence by using Eq. (14.103), the problem at hand can be converted into the
primal and dual formulations in Eq. (14.101) and Eq. (14.102).

In order to generate a strictly feasible vector set (xg, So, Yo), we note that
the initial point used in Example 13.5, i.e., [z1 22 x3 x4] = [1.5 0.5 2.5 4],
suggests an initial yo = [3 —1.5 — 0.5 —2.5 —4]7 where §3 is a scalar to
ensure thats = ¢ — ATy, € F9. Since

so=c—ATy;=[31350010.250.51 —0.3535 —0.1767]"

n1 =5, ng = 3, and n3 = 3, choosing 3 = 3.7 guarantees that sy € FJ. This
gives

yo = [3.7 —1.5 —=0.5 —2.5 —4]7
and
X0 =[3.71350010.250.51 —0.3535 —0.1767]7

Moreover, it can be readily verified that
xo=[100000.1000.100]" € 7y

Withe = 1074, it took Algorithm 14.5 15 iterations and 2.98 Mflops to converge

to vector set (x*, s*, y*) where
—1.707791
—2.044705
v* = | —0.852730
—2.544838

—2.485646
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which corresponds to the solution points r* € R and s* € S given by

X [ 2.044705}

B . _ [2.544838
0.852730

and s" =15 185646

These points give the shortest distance between R and S as [|r* — s*|| =
1.707790. Compared with the results obtained in Example 13.5, we note that
Algorithm 14.5 led to a more accurate solution with less computation.
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Problems
14.1 Prove that the minimization problem in Eq. (14.1) is a CP problem.

14.2 Show that the sets {X : X € R"*" X =0} and {x: x € R"*! x>
0} are convex cones.

14.3 Given that X > 0 and S > 0, prove that
S-X>0

where S - X denotes the standard inner product in space S™ defined in
Sec. 14.2.1.

14.4 (a) Prove that the inequality in Eq. (14.14) holds if and only if matrix
G(d, x) in Eq. (14.15) is positive semidefinite.
(b) Specify matrices Fy and F; (1 < ¢ < n) in Eq. (14.16) so that
F(x) > 0 reformulates the constraints in Eq. (14.13c).

14.5 The problem of minimizing the maximum eigenvalue of an affine matrix
can be stated as follows: given matrices Ag, Ay, ..., A, in S”, find
scalars y1, y2, ..., yp such that the maximum eigenvalue of

p
Ao+ yiA;
i=1

is minimized. Formulate this optimization problem as an SDP problem.
14.6 (a) Prove thatif X = 0 or S > 0, then

XS =171

is equivalent to
XS +SX =271

(b) Give a numerical example to demonstrate that if the condition X > 0
or S >~ 0 is removed, then the equalities in part (a) are no longer
equivalent.

14.7 (a) Verify the identity in Eq. (14.35).
(b) Verity the identity in Eq. (14.38).

14.8 By using Eq. (14.36) with a special symmetric matrix K, each row of
matrix M ® N can be determined for given matrices M and N.

(a) Develop an algorithm that computes the symmetric Kronecker prod-
uct M © N for given M, N € R™*",

(b) Write a MATLAB program that implements the algorithm devel-
oped in part (a).
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14.9
14.10

14.11
14.12

14.13

14.14

14.15

14.16

Prove Lemma 14.1.

Using Lemma 14.1, show that if matrices M and N commute then the
solution of the Lyapunov equation

MXN? + NXMT =B
where B € §”, M, and N are given, can be expressed as
X =vcvT

where V = [v va -+ v,]isdefined by the eigenvectors v;for1 <i <mn
in Lemma 14.1, and C is obtained by calculating VBV and dividing its
elements by (a;3; + (;cj) componentwise.

Verify that {Ax, Ay, As} obtained from Eq. (14.43) solves Eq. (14.42).

Given a positive-definite matrix X, show that every element in the Dikin
ellipsoid D(X) defined by Eq. (14.61) is a positive-definite matrix.

Show that if matrices F; for i = 1, 2, ..., p are linearly independent,

then matrix F' given by Eq. (14.69c¢) is positive definite.

(a) Show that for a given real number f, £(f) given by Eq. (14.87) is a
linear subspace of £.

(b) Show that there exists a one-to-one correspondence between £( f ) and
hyperplane {x : f(x) = f}.
Show that for a given X, > 0, there exist matrices C and Dy, in € such

that Egs. (14.91a) and (14.91b) hold for any X = Fxin€.
Hint: A proof of this fact can be carried out by letting

p+1 p+1 p+1

X=> zF;, Cp=)> aF;, Dy=> BF;
i=1 i=1 i=1

and converting Egs. (14.91a) and (14.91b) into a linear system of equations
fora =[a; ag - ap+1]T and 3 =[5 B2 - Bp+1]T, respectively.
Applying Algorithm 14.4, solve the SDP problem

minimize ¢! x

4
subectto: F(x)=F; + szFz =0
i=1

wherec = [1 02 —1]T and F; fori = 0, 1, ..., 4 are given in Example
14.3.
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14.17 Show that the Wolfe dual of the primal SOCP problem in Eq. (14.101)
assumes the form in Eq. (14.102).

14.18 Show that the SOCP problem in Eq. (14.102) is equivalent to the SOCP
problem in Eq. (14.104).

14.19 Given a column vector u and a nonnegative scalar ¢ such that ||u|2 < ¢,
the matrix

tI u
ul’ ot

can be constructed. Show that the matrix is positive semidefinite.
14.20 Show that w? < uw, v > 0, and v > 0 if and only if

14.21 Solve the shortest distance problem in Prob. 13.13 by using Algorithm
14.5.

14.22 Solve the least-square minimization problem in Prob. 13.15 by using Al-
gorithm 14.5.

{2w

fl<ere
u—v



Chapter 15

GENERAL NONLINEAR OPTIMIZATION
PROBLEMS

15.1 Introduction

The most general class of optimization problems is the class of problems
where both the objective function and the constraints are nonlinear, as formu-
lated in Eq. (10.1). These problems can be solved by using a variety of methods
such as penalty- and barrier-function methods, gradient projection methods, and
sequential quadratic-programming (SQP) methods [1]. Among these methods,
SQP algorithms have proved highly effective for solving general constrained
problems with smooth objective and constraint functions [2]. A more recent
development in nonconvex constrained optimization is the extension of the mod-
ern interior-point approaches of Chaps. 12—14 to the general class of nonlinear
problems.

In this chapter, we study two SQP algorithms for nonlinear problems first with
equality and then with inequality constraints. In Sec. 15.3, we modify these
algorithms by including a line-search step and an updating formula such as
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) updating formula to estimate
the Hessian of the Lagrangian. In Sec. 15.4, we study an interior-point algo-
rithm for nonconvex constrained problems, which is a direct extension of the
primal-dual interior-point methods for linear-programming (LP) and quadratic-
programming (QP) problems.

15.2 Sequential Quadratic Programming Methods

SQP methods for the general nonlinear constrained optimization problem in
Eq. (10.1) were first studied during the sixties by Wilson [3], and a great deal
of research has been devoted to this class of methods since that time. A recent
survey of SQP algorithms can be found in [4].
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15.2.1  SQP problems with equality constraints

Consider the optimization problem
minimize f(x) (15.1a)

subjectto:  a;(x) =0 fori=1,2,...,p (15.1b)

where f(x) and a;(x) are continuous functions which have continuous sec-
ond partial derivatives. We assume that the feasible region R described by
Eq. (15.1b) is nonempty and that p < n. From Chap. 10, we know that the
first-order necessary conditions for x* to be a local minimizer of the problem
in Eq. (15.1) are that there exists a A* € RP such that

VL(x*, A*) =0 (15.2)

where £(x, ) is the Lagrangian defined by

P
L(x, A) = f(x) =D Nai(x)
i=1
and the gradient operation in Eq. (15.2) is performed with respect to x and A,

1.€.,
\%
7=
VA
(See Sec. 10.5.2 for the details.)

If set {xx, A} is the kth iterate, which is assumed to be sufficiently close to
{x*, A"}, i.e., x; = x* and A\ & A", we need to find an increment {d,, d,}
such that the next iterate {Xy4+1, Ag+1} = {Xx + 0z, Ax + )} is closer to
{x*, A*}. If we approximate V L(Xj1, Ai+1) by using the first two terms of
the Taylor series of VL for {xx, Ax}, i.e.,

0y
VL(Xk1, Mer1) = VL(Xg, M) + VEL(XE, Ag) [5/\}

then {Xj11, Ag+1} is an approximation of {x*, A*} if the increment {d,, d,}

satisfies the equality

V2£(xk, )\k) |:gi:| = —Vﬁ(Xk, Ak) (15.3)

More specifically, we can write Eq. (15.3) in terms of the Hessian of the La-
grangian, W, for {x, A} = {xx, Ax} and the Jacobian, A, for x = x;, as

W, —A{ 0| AgAk_gk:
[—Ak 0 } Lsx} B [ ay, (15.42)
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where
p
Wi, = Vaf(xe) — Y (An)iVaiai(xy) (15.4b)
=1
Viai(x)
vT
Ay = M?(Xk) (15.4¢)
VT, (xs)
gr = Vaf(Xk) (15.4d)
ap = [a1(xz) aa(xg) - ap(xp)]t (15.4¢)

If Wy, is positive definite and Ay has full row rank, then the matrix at the
left-hand side of Eq. (15.4a) is nonsingular and symmetric and the system of
equations in Eq. (15.4a) can be solved efficiently for {d;, d,} as shown in
Chap. 4 of [5].

Eq. (15.4a) can also be written as

Wids + 8c = Af Ayt (15.52)
Akéw = —ag (155b)

and these equations may be interpreted as the first-order necessary conditions
for §,, to be a local minimizer of the QP problem

minimize %6TW,§6 +67gy, (15.6a)
subjectto: Axd = —ay (15.6b)

If W, is positive definite and A has full row rank, the minimizer of the
problemin Eq. (15.6) can be found by using, for example, the methods discussed
in Sec. 13.2. Once the minimizer, d,, is obtained, the next iterate is set to
Xp41 = X}, + 0, and the Lagrange multiplier vector! A;_ 1 is determined as

Aor1 = (ARAL)TTAL(Wd, + g1) (15.7)

by using Eq. (15.5a). With xj1 and Ax1q known, W1, gr11, Agt1, and
aj1 can be evaluated. The iterations are continued until ||d,|| is sufficiently
small to terminate the algorithm. We see that the entire solution procedure
consists of solving a series of QP subproblems in a sequential manner and,
as a consequence, the method is often referred to as the sequential quadratic-
programming (SQP) method.

From Eq. (15.3), we observe that the correct increments &, and d , are actually
the Newton direction for the Lagrangian £(x, ). For this reason, the above

Hereafter this will be referred to as the Lagrange multiplier for the sake of simplicity.
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method (along with the method for SQP problems described in Sec. 15.2.2)
is sometimes referred to as the Lagrange-Newton method in the literature [1].
It should be stressed at this point that the involvement of the Lagrangian in
this method is crucial. To see this more clearly, note that for an increment &
satisfying the constraints in Eq. (15.6b), we can write

6"g, = 6" (g — AL k) + 6T AL N,
= 6" (g1 — AL AR) —a A
= 0TV, L(xp, AR) + i

where ¢, is independent of §. Therefore, the problem in Eq. (15.6) can be stated
as the QP problem

minimize {367 [V2L(xx, Ag)]6 + 67 VoL (xk, Ag) + ci} (15.8a)
subjectto: Apd = —ay (15.8b)

Ineffect, the QP problem in Eq. (15.6) essentially entails minimizing the second-
order approximation of the Lagrangian L(x, \) rather than the objective func-
tion f(x).

The SQP method can be implemented in terms of the following algorithm.

Algorithm 15.1 SQP algorithm for nonlinear problems with equal-
ity constraints

Step 1

Set {x, A} = {x0, Ao}, k = 0, and initialize the tolerance ¢.

Step 2

Evaluate Wy, Ay, g, and ag, using Egs. (15.4b) — (15.4e).

Step 3

Solve the QP problem in Eq. (15.6) for § and compute Lagrange multi-
plier Ay using Eq. (15.7).

Step 4

Set xp+1 = Xk + 0. If ||02]| < €, output x* = xj41 and stop;
otherwise, set £ = k + 1, and repeat from Step 2.

Example 15.1 Apply Algorithm 15.1 to the minimization problem

minimize f(x) = —z] — 2x5 — x5 — ¥z — a3

subjectto: a1(x) = o] + x5 + x5 —25=0
as(x) = 83 4 1423 + 7x2 —56 =0
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Solution With x;, = [z1 22]” and A\, = [\ Xo]7, Step 2 of Algorithm 15.1
gives

[ 1222 — 222 — 222 —4x129 —4xq123
—12\122 — 16X

W —4x1x9 —241’% — Zx% 0
k= —12\123 — 28)9
—4xx3 0 —12x§ — 2x%
i —12\17% — 14X |
(15.9)

gr = —8$§ — 2x%m2
—4x3 — 22313
A, — 4a3  day  Aad
16.7}1 281‘2 14%’3
ri+ 25+ 25 — 25
A7 8ad + 1402 + Tad — 56
1 2 3
With xg = [3 1.5 3|7, A\g = [-1 —1]7, and ¢ = 1078, it took Algorithm 15.1
10 iterations to converge to

1.874065

43 2 2
—4a] — 2x125 — 23:1:103]

(15.10)

1.884720 —0.274937

and f(x*) = —38.384828. To examine whether or not x* is a local minimizer,
we can compute the Jacobian of the constraints in Eq. (15.10) at x* and perform
the QR decomposition of A7 (x*) as

where Q € R3*3 is an orthogonal matrix. Since rank[A (x*)] = 2, the null
space of A(x*) is a one-dimensional subspace in E3 which is spanned by the
last column of Q, i.e.,

0.222861
0.681724

where Q(:, 3) denotes the third column of matrix Q. This leads to
NT(x*)V2L(x*, A*)N(x*) = 20.4 > 0

Therefore, x* is a local minimizer of the problem.

[—0.696840]
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15.2.2  SQP problems with inequality constraints

In this section, we extend Algorithm 15.1 to the case of inequality constraints.
Let us consider the general optimization problem

minimize f(x) (15.11a)
subject to: ¢j(x) > 0 for j=1,2,...,¢q (15.11b)

where f(x) and ¢;(x) are continuous and have continuous second partial deriva-
tives, and the feasible region R described by Eq. (15.11b) is nonempty. Mo-
tivated by the SQP method for equality constraints studied in Sec. 15.2.1, we
need to find an increment {&,, &, } for the kth iterate {x;,, p,;} such that the
next iterate {Xy11, My 1} = {Xix + 04, py + 6, } approximates the Karush-
Kuhn-Tucker (KKT) conditions

V.L(x, p) =0
cj(x) >0 for j=1,2,...,¢q
nw=>0
pici(x) =0 for j=1,2,...,¢q

in the sense that

vxﬁ(xlﬁ-lv /Lk+1) ~ vw‘c(xka “k) + v?c‘c(xka “k)‘sw

+V2,L(Xk, py)8, =0 (15.12a)

cj(xp +02) = cj(xp) + 0L Vaucj(xg) > 0forj=1,2,...,¢q
(15.12b)
Ly, > 0 (15.12¢)

and
[cj(xk) + 6LV ej(xp) (ps1); =0 for j=1,2,..., ¢ (15.12d)

The Lagrangian £(x, ) in this case is defined as
q
L(x, p) Z,u]c] (15.13)
Hence

(Hk) chj(xkr) =8k — Afﬂk

MQ

Vxﬁ(xk, “k) = vxf(xk)

.
Il
_

MQ

V2L(xp, pg) = V2F(x5) = > () Viei(xi) = Yy (15.14a)

.
Il
_
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and
viuﬁ(xlﬁ l’l’k’) - _Ag

where Ay is the Jacobian of the constraints at xy, i.e.,

Ve (xz)

Ve (x
A = ?( ) (15.14b)
vch(xk)

The approximate KKT conditions in Eq. (15.12) can now be expressed as

Y6 +gr— Afpy =0 (15.15a)
Apd, > —c (15.15b)
Pip1 > 0 (15.15¢)

(Mps1)j(Apdy +c); =0 for j=1,2,...,q (15.15d)

where
Cr = [Cl(Xk) CQ(Xk) PN Cq(Xk)]T (15.16)

Given (xx, py), Eq. (15.15) may be interpreted as the exact KKT conditions
of the QP problem
minimize 67 Y6 + 67 g (15.17a)

subjectto: Agd > —ci (15.17b)

If §,, is a regular solution of the QP subproblem in Eq. (15.17) in the sense that
the gradients of those constraints that are active at x;, are linearly independent,
then Eq. (15.15a) can be written as

Y0, +gr— A:}Fkﬂkﬂ =0

where the rows of A, are those rows of Ay, satisfying the equality (Axd, +
cr); = 0 and fr; | denotes the associated Lagrange multiplier vector. Hence
[ty can be computed as

P = (A AL) A (Y0, + 1) (15.18)

It follows from the complementarity condition in Eq. (15.15d) that the Lagrange
multiplier y1;, | can be obtained by inserting zeros where necessary in fi;, ;.
Since the key objective in the above method is to solve the QP subproblem in
each iteration, the method is referred to as the SQP method for general nonlinear
minimization problems with inequality constraints. As in the case of equality
constraints, the quadratic function involved in the QP problem in Eq. (15.17) is
associated with the Lagrangian £(x, p) in Eq. (15.13) rather than the objective
function f(x) and, as can be seen in Eq. (15.12a), the increment §, obtained
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by solving Eq. (15.17) is the Newton direction of the Lagrangian with respect
to variable x.

The above SQP method can be implemented in terms of the following algo-
rithm.

Algorithm 15.2 SQP algorithm for nonlinear problems with in-
equality constraints

Step 1

Initialize {x, p} = {x0, py} where x( and p are chosen such that
cj(x0) >0(j=1,2,...,q)and py > 0.

Set k = 0 and initialize tolerance ¢.

Step 2

Evaluate Y, A, g and ci, using Egs. (15.14a), (15.14b), (15.4d), and
(15.16), respectively.

Step 3

Solve the QP problem in Eq. (15.17) for 4, and compute Lagrange mul-
tiplier ft.,, using Eq. (15.18).

Step 4

Set Xp11 = Xk + 0. If ||02]| < ¢, output x* = xp41 and stop;
otherwise, set k = k + 1, and repeat from Step 2.

Example 15.2 Apply Algorithm 15.2 to solve the shortest distance problem
discussed in E