Chapter 8

M. O. Odetayo

D. Dasgupta

Department of Computer Science
D Montfort University

Leicester LE1 9BH

U.K.

odetayo@cs.unm.edu

Controlling a Dynamic Physical System Using Genetic-Based
Learning Methods

Abstract

Introduction

8.1 The Control Task

8.2 Previous Learning Algorithms for the Pole-Cart Problem
8.2.1 BOXES
8.2.2 AHC
8.2.3 CART

8.3 Genetic Algorithms(GA)

8.4 Generating Control Rules Using a Simple GA
8.4.1 Population of Learning Controllers
8.4.2 Representation
8.4.3 Performance Evaluator

8.5 Implementation Details

8.6 Experimental Results

8.7 Difficulties with GAPOLE Approach

8.8 A different Genetic Approach for the Problem

8.9 The Structured Genetic Algorithm

8.10 Evolving Neuro-Controllers Using sGA

8.11 Fitness Measure and Reward Scheme

8.12 Simulation Results

8.13 Discussion

Abstract

This chapter presents two different approaches of designing genetic-based
controllers for an unstable physical system (a simulated pole-cart system). One
approach induces rule-base controller using a simple genetic algorithm (GA) and
the other evolves neuro-controller applying a recently developed Structured
Genetic Algorithm (sGA) which appears to offer improvements over a simple GA
approach. The control task here is a typical unstable, multi-output, dynamic
system in which a pole is supposed on a controllable cart, and the controller must
keep the pole upright (within a specified vertical angle) and the cart within the
limits of the given track. In this chapter, we first describe a simple GA based
learning method for inducing control rules, and then demonstrate the evolvability
of neuro-controller using a Structured GA.

© 1995 by CRC Press, Inc.

Introduction

When building a controller for a dynamic system, traditional control theory
requires a mathematical model to predict the behaviour of the system. In many
cases this cannot be done, either because the system is too complicated or because
insufficient information about its environment is available. The pole balancing
problem is one such inherently unstable classical control problem. The
complexity of the task is significant enough to make the problem interesting
while still being simple enough to make it computationally tractable.

We have chosen this task for several reasons, they include:

Many learning algorithms [19][1][24][5][23] have solved the problem in the form
considered here and therefore we have a good test bed for evaluating the
effectiveness of the genetic algorithm-based learning method.

The task is regarded as an example of the inherently unstable, mutiple-output,
dynamic systems present in many balancing conditions such as the aiming of a
rocket thruster [1][4][13]. The system is non-linear and has multi-output
interacting parameters that are to be controlled. It is inherently unstable — the
system can only be controlled by an appropriate thrust at the base of the cart.

* The way the task is set up creates a genuinely difficult credit-assignment
problem and therefore poses a great challenge to a learning method.

* The complexity of the problem could be increased to a desired level by
balancing 1, 2, ..., etc. poles each on top of the next [19].

We shall discuss how the time to learn and the amount of computation required
by GAPOLE compares with those taken by learning methods that have
previously solved the problem [23]. We show that it copes well with changing
conditions and that it is an effective alternative technique.

Genetic Algorithms (GAs) are a class of adaptive general purpose methods, for
machine learning and optimisation, based on the principles of population
genetics and natural evolution. However, not much has been done to determine
their suitability as a machine learning and adaptive control tool for other more
general applications. Knowledge in this field is being advanced rapidly, however.

This chapter is divided into two main sections. The first section discusses our
experiments using a simple genetic algorithm and compares the performance with
other classical Al methods. We developed and implemented a simple GA-based
program (GAPOLE) for inducing control rules for a dynamic physical system: a
simulated pole-cart system. The second section describes the use of a structured
genetic algorithm for automatic designing neuro-controller for the same task.

In the following, we briefly describe the principle of genetic algorithms and
develop a Simple GA-based learning system, called GAPOLE, and assign it the
task of inducing control rules for a dynamic system — a simulated pole-cart
system. The dynamics of the pole-cart system are not made available to the
algorithm. The only evaluative feedback indicating how well it is performing is a

© 1995 by CRC Press, Inc.

failure signal which occurs when the system is out of control. That is, either
when the cart has gone beyond the track limit or the pole has fallen past a
predefined vertical angle. This presents a big challenge to a learning method as
the effect of a wrong action may not be known until several steps later. Thus
training information may be delayed making it difficult to correctly credit
individual actions.

The GAPOLE program was used to derive (or 'breed’) a species of controllers that
give a specified level of performance. Comparison of its performance (time to
learn and the amount of computation) with the best available alternatives showed
that it compares well, but it is noteworthy that it performs well in a "noisy" and
changing control environments.

8.1 The Control Task

The task is to move a wheeled cart, with a rigid pole hinged on top of it, along a
bounded straight track without the pole falling beyond a predefined vertical angle
and without the cart going off the ends of the track limits. This is achieved by
applying a force of fixed magnitude (a 'bang-bang' force) to the left or right of the
cart (Figure 8.1).

The state of the pole-cart system at any time t is specified by four variables:
x = position of the cart on the track, where:

x = velocity of the cart.

0 = angle of the pole with the vertical.

6 = angular velocity of the pole.

The pole-cart system was simulated using the following equations of motion
derived by Anderson [1] with the given parameter values:

6 - mgsin 6, —cos6,[F, + mpLé,2 sin 6, |
T L[(4/3)m—m, cos’ 6,]

. F, +mpL[9,2 sin 6, —é, cosf,]
X, =

m

where
m, = 1.0 kg = mass of the cart.

m, = 0.1 kg = mass of the pole.
m=m_+m, = 1.1 kg = total mass of the system.
L = 0.5 m = distance of centre of mass of pole to the pivot.

g=938 ms? = acceleration due to gravity.
F, = force applied to cart (of specified magnitude).

A time step of r = 0.02 seconds and the following discrete-time state equations
were also used in the simulation.

X =X, +TX, X, =X, +TX,
9t+l = 9[+ Tet 9r+1 = 9[+ Ter

© 1995 by CRC Press, Inc.

The state space can be regarded as a four dimensional space and a state variable
defines each dimension. The dynamics of the physical system being unknown to
the controlling system; the only information for evaluating performance is a
failure signal indicating that the pole-cart system is out of control. The pole-
balancing problem consists of: 1) how to divide the quantity space of each
variable into a small set of intervals; 2) what action to select for each
combination of intervals describing the state of the pole-cart system in a way
such that

* the poles are balanced i.e do not fall.
* the cart does not leave a predetermined limited track.

It is a good test bed for evaluating the effectiveness of investigating the learning
performance of the genetic-based systems because:

e there is randomness in the task;
* the dynamics of the system are not known to the learning program; and
« it is a difficult and challenging task.

V4
Yy 4
L
6, 0
Pole
L]
X X
- A Wheeled-Cart
7 N\ 7N\
{ \ / \
\] |)
\ / \, /
- "

Bounded Track

Figure 8.1: A pole-cart system on a bounded track.

The dynamics of the pole-cart system are unknown to the learning controller. The
only information available to it at discrete time steps is either a vector indicating
the current state of the system or a failure signal telling it that the system is out
of control. In this experiment, the system is out of control when the cart has

gone beyond +2.4 meters from the centre or the pole has fallen beyond 12° from
the vertical. These limits were employed for the three alternative methods for the
same task [23].

The learning ability of the genetic-based system which can carry out a complex
task was demonstrated by our work on the pole-balancing system[22].
Comparison of its performance with the best available alternatives showed that it

© 1995 by CRC Press, Inc.

compares well, but it is noteworthy that it is robust, and performs well in noisy
and changing control environments.

In the following subsections, we briefly state the previous learning methods for
the pole-cart problem and discuss the working principle behind GAs. We then
give a detail description of the experiments for inducing simple GA-based control
rules and the comparative results with other Al methods.

8.2 Previous Learning Algorithms for the Pole-Cart Problem

We review the three best learning algorithms — BOXES, AHC and CART —
that have been applied to the problem of learning to control a simulated pole-cart
system.

8.2.1 BOXES

Miche and Chambers [19] developed a program known as BOXES for learning to
control the pole-cart system. They reduced the problem space into manageable
proportion by partitioning it into disjoint regions called boxes. This was achieved
by quantizing the four state variables. The quantization thresholds were predefined
before the experiments started. They used a total of 225 partitions or boxes.

Each box is imagined as having a local demon that decides where the pole-cart
system should move next (left or right) whenever it enters its box. In order to do
this, a demon gathers data about its box through the following sets of variables
[19]:

LL, the 'left life' of its box, which is a weighted sum of the 'lives' of left
decisions taken on entry to its box during previous runs. (The 'life' of a decision
is the number of further decisions taken before the run fails.)

RL, the 'right life' of its box.

LU, the 'left usage' of its box, which is a weighted sum of the number of left
decisions taken on entry to its box during previous runs.

RU, the 'right usage' of its box.

TARGET is a figure supplied to every box by the supervising demon, to indicate
a desired level of attainment, for example, a constant multiple of the current mean
life of the system.

T1, T2, ..., Ty times at which its box has been entered during the current run.

Time is measured by the number of decisions taken in the interval being
measured, in this case between the start of the run and a given entry to the box.

It uses a function of these variables to rate how good a decision to go right or left

was. If the right value is greater than the left value then the demon would move
the system to the right and vice versa.

© 1995 by CRC Press, Inc.

Weighted averages of the lifetimes of the pole-cart after a decision to go left or
right are used because estimates of the worth of a decision are inaccurate in the
early stages of a trial (a trial is the period the system is kept under control from a
starting position before failure occurs). For example, the direction in which the
system should go whenever it enters a box may be correctly set, say to go right,
but if the directions for the boxes around it are not properly set, then its decision
to go right may appear bad [23].

Another interesting feature of the algorithm is its solution to the problem of
getting stuck at a local peak. In order to prevent a box from settling down to a
seemingly good direction (left or right), it compares an optimistic projection of
how well each decision may perform [19][23]. For example the value of going
left is determined as follows:

value, = LL + K » TARGETLU+K where K was set to 20.

8.2.2 AHC

AHC (Adaptive Heuristic Control Algorithm) partitioned the problem state space
into predefined regions like the BOXES. However, unlike BOXES, learning takes
place during a trial as well as at the end of it.

It uses four parameters to evaluate the performance of a box and to decide which
action to take whenever the system enters the box. The parameters for a box are
[23]:

* ACTION, a real number that is used to determine whether to go left or right.
e MERIT, a measure of its ability to predict the correct action.

* ELIGIBILITY determines if it is eligible to change from going one way to the
other.

* FREQUENCY, a weighted count of the number of entries into the box.

A negative value of ACTION represents a tendency to go left, while a positive
value represents a tendency to go right. The bigger the magnitude the greater the
tendency. The actual direction is determined by mapping the action into a range
from zero to one, then generating a random number between zero and one, and
comparing the two. If the random number is less than the mapped number then
go left, if not, go right.

8.2.3 CART

CART [5] does not partition the state space into regions. It has as its main goal
the ability to accurately estimate the desirability of a state and therefore tries to
avoid bad ones. Thus its main thrust is the search for a more desirable state.

CART chooses an action that is estimated to lead to a desirable state. At every
step, it decides whether the same action as the last should be repeated or the

action should be changed. If it is estimated that the pole-cart system will move to

© 1995 by CRC Press, Inc.

a more desirable state by continuing with an action, then the action is chosen; if
not the other action is selected.

As learning progresses it gathers information that enables it to improve its
ability to estimate the degree of desirability of the pole-cart states. It does this by
labelling certain states in the trial as desirable or undesirable. This is achieved in
three ways:

(1) It starts the learning process from the state when the pole is upright, the cart
is centred, and the velocites (angular and cart) are zero. This initial state is
labelled as a desirable state.

(2) An undersirable state is reached when the pole-cart is out of control (when the
pole falls or cart has gone past the defined limits). The state immediately
preceding the failure is labelled as undesirable, unless its degree of desirability is
already less than -0.98.

(3) At the end of a trial that lasted more than 100 time steps, it backs up 50
states from the failure point; and from then on, searches for a state in which at
least three of the state variables are approaching zero in magnitude, i.e., are
approaching the starting state. This point is labelled as desirable.

The algorithm uses a function to interpolate from a chosen set of states (known
as the training set) that have been labelled (as desirable or undesirable) in order to
improve its accuracy in estimating the desirability of a pole-cart state. In order to
do this, it views the desirability of a state as the height of a surface in five
dimensional space. The first four dimensions represent the state, and the fifth
represents its degree of desirability. The surface is changed after each trial as new
points are used to evaluate the interpolating function.

8.3 Genetic Algorithms (GA)

Genetic Algorithms (GAs) are iterative adaptive general-purpose search strategies,
based on the principles of population genetics and natural selection [14][12].
They simulate the mechanics of population genetics by maintaining a population
of knowledge structures, analogous to the gene pool of a species, which is made
to evolve.

An outline of the generic Genetic Algorithm is given below:

Initialise P(t=0); /, P(0O) = initial population ,/
Evaluate members of P(t);
While (not termination condition)
{
Generate P(t+l) from P(t) as follows:
{select individuals from P(t) on basis of fitness;
recombine those selected;
}
t = t+1;
evaluate members of P(t);

© 1995 by CRC Press, Inc.

A GA therefore learns by evaluating its knowledge structures using the fitness
function, and forming new ones to replace the previous generation by breeding
from more successful individuals in the population using the crossover and the
mutation operators.

) Simulated
Evolving
——————»| Pole-Cart
Controller
System
GA-Bgsed ‘ Performance
Learning Evaluator
Methods

Figure 8.2: A genetic-based control system (GAPOLE).

8.4 Generating Control Rules Using a Simple GA

A simple GA-based learning program (GAPOLE) we developed for the pole-cart
balancing problem described above. It consists of 4 components: A fixed
population size of learning (rule-base) controllers; the learning algorithm; the
performance evaluator; and the simulated pole-cart system. Their interaction is
shown in Figure 8.2.

The following pseudo code shows how the chromosomal information (a set of
directions) is used to control the pole-cart system:

while (state_of_pole != FALLEN and time_pole_held< MAX_HOLD)
{Increment time pole_held; move_system; }

8.4.1 Population of Learning Controllers
A learning controller is a set of production rules for controlling the pole-cart
system. A production rule has a format as follows:

condition then action

The specified action will be performed when the condition is satisfied. A
controller is regarded as a chromosome by the learning algorithm. We use the two
names interchangeably without any loss of meaning.

8.4.2 Representation

As we stated in defining the control task, the state of the pole-cart system is
specified by four real-valued variables. The state space can therefore be regarded as
a four dimensional space. A state variable defines each dimension. At each point
in the state space, the learning controller is required to decide whether the pole-
cart system should go left or right so as to keep it under control. This implies
that it has an infinite number of points and so the state space is reduced to
manageable proportions by partitioning it into predefined regions as in [19] so
that points within a region are mapped into the same decision.

© 1995 by CRC Press, Inc.

We experimented with a number of partitions, taking full advantage of those used
in [19]. The set of partitions we found that gave the best results and which we
employed in our experiments are:

x (cart position): - 2.4 to 2.4 metres [1 region]

x (cart velocity): e ms~1 to - 0.5,-0.51t00.5,0.5t0 e ms~1 [3 partitions]

0 (pole angle): 129to -6, -6to-1,-1to 0, 0 to 1, 1 to 6, 6 to 12° [6
partitions]

0 (angular velocity): 00”571 10 - 50, - 50 t0 50, 50 to o 51 [3 partitions]

This creates a total of 54 regions (1*3*6*3). Conceptually a region can be
regarded as a production rule with its condition part specified by the values of the
state variables it covers and its action part specified by the direction of the pole-
cart system whenever it is in that region. Thus the learning algorithm is required
to evolve a set of 54 rules that will be able to keep the system under control.

We represent a sequence of these 54 regions (rules) — a controller — as a
chromosome with a region regarded as a gene. A gene takes on a 'l' indicating a
left move or a '0' indicating a right move. At a time step, t, the pole-cart system
will be at a gene (region) and the direction it moves next depends on whether the
gene has a 'l" (left move) or a '0' (right move). An individual chromosome,
therefore, is made up of a string of 'l's and '0's.

8.4.3 Performance Evaluator

The performance evaluator rates a chromosome (controller) by assigning it a
fitness value. The value indicates how good the chromosome is in balancing the
pole-cart system. The evaluator uses the length of the time (number of discrete
time steps) that a chromosome holds the pole-cart system (from an initial
position or state) without a failure as its fitness value.

8.5 Implementation Details

The population size affects the performance and efficiency of Simple Genetic
Algorithm-based systems. A small size provides an insufficient sample, which
makes them perform poorly. A large population size will undoubtedly raise the
probability of the algorithm performing an informed and directed search.

However, a large population requires more evaluations per iteration or generation,
possibly resulting in the method developing redundant controllers and becoming
very slow especially when implemented serially. We experimented with different
population sizes, they include 100, 150, 300 and 400. We found a population of
300 to be optimal for our task, but in general we assert that the optimum
population size depends on the complexity of the domain, and in particular, on
the shape of the fitness function.

We implemented a modified overlapping population in our simulations. First we
do not replace a fixed percentage of the population from generation to generation,
instead the percentage is allowed to vary dynamically within a fixed interval. Our
aim is to strike a good balance between exploration and exploitation.

© 1995 by CRC Press, Inc.

Secondly, we do not select those to be replaced randomly; we use the fitness
value of an individual chromosome and the average fitness value of the
population to determine whether or not a particular individual is to be replaced.

Since we do not generate a completely new population at each generation, some
population members will continue unchanged into the next generation. This is at
variance with the natural evolving process in which no member passes unchanged
to the next generation. However, advantage can be taken of this 'immortality’
when implementing a GA method on a computer system so as to minimise
computation of evaluations of new entrants to the population. Also, in our
application, we are interested in maintaining high performance levels as the
algorithm learns to control the system; we therefore need to preserve the best
rules so far discovered while we continue to search for better ones. This will
ensure that the best information gained about the environment is not lost between
generations. Our earlier simulations showed that it is difficult to preserve the best
information with nonoverlapping populations.

Since we use a population of fixed size, some members have to be removed to
make room for the newly generated ones. We decide on population members to be
retained, if the termination condition has not been reached is as follows:

At the end of a generation, the average fitness of the current population is
calculated. Individuals whose fitness values fall below the population average are
replaced except when

(a) less than 20% of the population will survive (by 'survive' we mean continue
into next generation unchanged) to the next generation; the best 20% of the
population are retained,;

(b) more than 60% of the population will survive; the best 60% are retained
provided this has not been the case for more than 3 consecutive generations.

These measures are designed to discourage very few individuals from dominating
the population, to ensure that adequate points are sampled in a generation and to
increase diversity as soon as the algorithm detects that it has become low. The
values of the parameters presented above were arrived at through experimentation.

Each offspring produced by crossover has a small probability (0.01) of being
mutated. The number of offspring a survivor is allowed to produce by crossover
is proportional to its fitness value. An individual is regarded as reproducing
through crossover if it is the first of a couple to be chosen.

A mate is chosen randomly for a reproducing chromosome among the remaining
survivors until all its children have been produced. When the number of children
produced this way is less than the total needed, the remaining ones are produced
by randomly choosing pairs from survivors for the crossover operation.

One of the main problems with implementing simple GA-based applications
using finite population sizes is the possibility of premature convergence; that is,
the possibility of the system converging onto suboptimal peak. Premature

© 1995 by CRC Press, Inc.

convergence takes place when population members are identical in their gene
composition before the true optimum solution has been found [17]. That is, it
occurs when there is a loss of diversity in the gene pool.

In order to minimise the loss of diversity, we introduced some innovative
measures in our implementation that enable the program to dynamically alternate
between exploiting the accumulated knowledge and exploring the solution space
as the need arises. In that section, we specified that the percentage of population
members retained to go unchanged (‘survive') into the next generation varied
between a minimum value (20%) and a maximum value (60%). In addition to the
above measures, we introduced a new individual into a population only if it is
different from every other member of the population by at least one bit. An
offspring that is identical to a member present in a population is regarded as
stillborn.

The GAPOLE is required to learn to control the simulated pole-cart system for
10,000 time steps continuously without a failure signal. A learning session is
completed when at least one population member achieves this level of
performance or when the total number of points sampled exceeds 100,000 points.
No population sampled points close to this limit before at least one of its
members achieved the required level of performance.

8.6 Experimental Results

The simulation program was written in C and to two sets of experiments were
carried out on a Sequent Balance B8000 computer. Each set consists of running
our GA program 50 times; each time initialising the Unix's random number
generator with a new seed. Directions were randomly fixed for the chromosomes
at the start of a run.

In the first set of experiments with a simple GA, a force of 10 Newtons was
applied to the right or left (-10 for a left direction) of the base of the cart while a
force of 5 Newtons was applied to right and 10 Newtons (-10) to left of the base
of the cart in the second set of experiments.

Pop. Generations Failures Time taken(hr:min:sec)
Size | Min | Max | Mean | Min | Max | Mean | Min Max Mean

100 6 544 28 | 472 [28853 | 1643 | 2:46 [6:37:21 | 23:24
150 2 42 14 1 259 [3571 [1301 [0:41 [1:56:39 | 16:13
300 3 21 9 729 | 3808 | 1842 | 1:48 | 2:14:31 | 17:04
400 4 21 9 122 | 5297 | 2394 | 2:58 | 2:55:25] 23:06

8

Table 8.1: Performance summary of GAPOLE for population sizes of 100, 150,
300 and 400 when pushing left and right with a force of 10 Newtons.

Pop. Generations Failures Time taken(hr:min:sec)
Size | Min | Max | Mean | Min | Max | Mean | Min Max Mean
100 4 321 43 290 | 17260 | 2382 | 0:48 |13:50:21] 41:12
150 6 97 30 702 | 7612 | 2477 | 3:16 | 2:09:10 | 23:50
300 4 51 16 876 | 8324 | 2876 | 1:41 1:53:02 | 19:29

© 1995 by CRC Press, Inc.

Table 8.2: Performance summary of GAPOLE for population sizes of 100, 150
and 300 when using a force of 5 Newtons to push right and a force of 10
Newtons to push left.

The results of the experiments on simulated pole-cart system are shown in Table
8.1 and Table 8.2.

Table 8.1 and Table 8.2 show that population size of 300 produced the best
average computational times (17:04 and 19:29 minutes, respectively) for two
experiment sets.

The simple GA-based learning program was regarded to have succeeded in
balancing the pole-cart as soon as it was able to hold the system continuously
without a failure signal for 10,000 discrete time steps. This is in line with the
performance level set by Sammut [23].

Sammut [23] evaluated three best alternative learning algorithms (reviewed in the
previous subsection) — BOXES [19], AHC [24] and CART [5] — that solved
the pole-cart balancing task in the form considered in this chapter. He used 162
regions for BOXES and AHC in his experiments while we employed 54 for ours.
CART does not divide the solution space into regions. These three algorithms are
point-based (i.e., they generate, test and modify single solutions) while GAPOLE
is population-based. At a generation or an iteration, therefore, they sample only
one point in the solution space while the number of points sampled by our
simple genetic algorithm-based program is equal to the number of new
individuals introduced into the population at that generation. For our
comparisons, a generation (or an iteration) when used for the point-based
algorithms is equivalent to a trial or a sampled point.

The average number of generations and the average points sampled by the genetic-
based method (GAPOLE), BOXES, AHC and CART to learn to balance the pole-
cart system for 10,000 time steps using a force of 10 Newtons are in Table 8.3.

GAPOLE BOXES AHC CART
Iterations 9 225 90 13
Points 1842 225 90 13

Table 8.3: Average iterations and points sampled using a force of 10 Newtons.
Averages for BOXES, AHC and CART were over 5 runs (Sammut [23]).

When the force applied to the pole-cart system was changed, i.e., a force of 5
Newtons was applied when going right and a force of 10 Newtons applied when
going left, the average number of generations and the average points sampled by
the four algorithms are given in Table 8.4.

GAPOLE BOXES AHC* CART+

Iterations 16 837 2562 terminated
Points 2876 837 2562 terminated

© 1995 by CRC Press, Inc.

Table 8.4: Average iterations and points sampled using 5 Newtons to push right,
and 10 Newtons to push left. * The averages for AHC were taken over 4 runs.
The fifth was stopped after it failed to achieve the performance level within
50,000 iterations (Sammut [23]) - the maximum number allowed. + CART
terminated with a floating point exception (Sammut [23]).

The percentage increases in the number of generations and the number of points
sampled by these algorithms when the force applied changed from being even to
uneven is given in Table 8.5.

GAPOLE BOXES AHC CART
Generations 77.78% 272.00% 2746.67% -
Points 56.13% 272.00% 2746.67% -

Table 8.5: Percentage (%) increases in generations k points sampled when the
force changed from even to uneven.

BOXES and AHC collect some statistical data for each box or partition in order
to determine what their actions should be whenever the system is in that region.
CART assumes that the control surface is described by a smooth function and
thus cannot be used for surfaces that are discontinuous. Our technique neither
keeps statistical information for each box nor assumes a particular type of
surface. Also, it acts on the knowledge structures (controllers) syntactically. That
is, it manipulates them without taking into consideration any interpretations
given to these structures. Any knowledge structures can therefore be substituted
for the population of controllers.

Our program uses a table you look up to make a control decision (the same holds
true for BOXES) and thus makes the decision quickly. AHC takes a longer time
to choose a control action since it revises the settings of its boxes after each step.
CART computes two vectors and their inner product before it decides on a control
action. As these calculations take quite sometime to perform, CART takes a
considerably longer time to choose a control action than our technique.

AHC and CART are, however, able to learn during and after trials compared to
GAPOLE that only learns after trials.

8.7 Difficulties with GAPOLE Approach

The GAPOLE simulation also showed that the evolution of viable rule-set
(candidate solution) requires that parameters are restricted to a particular range,
which alone is searched. Moreover, altering the direction of several boxes
(regions) simultaneously in a generation could arrive at the solution point faster.
But increasing mutation rates could be harmful to simple genetic algorithm-based
systems as the search could degenerate to a random search with many non-viable
offspring generated.

Another difficulty with the present (GAPOLE) approach is the partitioning of the

search space (as in BOXES), the number of partitions to be used needs to be
decided. If the number of partitions are too small than the control rules will be

© 1995 by CRC Press, Inc.

coarse and inaccurate, however, use of too many partitions may results in fine
control action, but will be very difficult to induce control rules, using the
GAPOLE approach, within a reasonable time and with reasonable -effort.
Moreover, static partitioning of state space appears to be inefficient for precise
control in a dynamic system. An alternative genetic approach for generating a
more robust viable controller will be investigated next for solving the problem.

8.8 A Different Genetic Approach for the Problem

In previous sections, we have seen that the pole balancing problem has often
been used as an exercise in the control of dynamic systems and has been studied
extensively by researchers in different fields. Other than classical control theory
approaches, it has been solved mostly using different techniques of Artificial
Intelligence (AI). They include machine learning [19], fuzzy logic [3, 20],
qualitative modelling [16], neural networks [1, 2, 13], genetic algorithms [18,
25], etc.

In genetic approaches [21, 25], the problem state-space was divided (discretised)
into a number of predefined partitions (as in the BOXES method). The genetic
encoding was a binary string where each gene represented each partition and its
value determined the appropriate action (push left or right). However, with these
approaches the performance of the controller (or control rule) depends on thc
number of partitions used and has difficulty in generalising the control rules [26].

For this pole-balancing problem, neural-based methods are widely used. The
advantage of using neural networks is twofold: versatile mapping capabilities
from input to output and its learning ability without explicit knowledge of
mathematical basis of the system. It is widely recognised that the architecture of a
neural network can have a significant impact on the network's function and
processing capability. In most cases, predefined architectures are used for
performing tasks with neural nets. Though genetic algorithms can replace the
effort of human designers in determining network structures and also can be used
for training predefined neural nets, but until recently, GAs were used for one or
the other purposes (designing network structure or optimising neural net
weights).

A combination of neural networks and genetic algorithms has also been used
where a fixed network has been trained with genetic reinforcement learning [26].
The Genetic Cascade Learning algorithm was employed [15] to sequentially build
the net to perform the task.

The method described below is an alternative neurogenetic approach, in which
both the network architecture and its weights evolve together in an implicitly
parallel fashion. In the remainder of this subsection we will give a brief
description of Structured Genetic Algorithms (sGA) and then describe the
application of sGA for the automatic design of neurocontrollers using genetic
reinforcement learning.

8.9 The Structured Genetic Algorithm
The Structured Genetic Algorithm (sGA) [8][11] uses genetic redundancy and

hierarchical genomic structures in its chromosome. Genes at different levels may

© 1995 by CRC Press, Inc.

be active (on) or passive (off) phenotypically. The primary mechanism for
eliminating the conflict of redundancy is through higher level genes which act as
switching operators for expressing genes at lower levels. The model also uses
conventional genetic operators and the survival of the fittest criterion to evolve
increasingly fit individuals. These characteristics allow the model to solve
complex multi-stage problems.

In an sGA a chromosome is usually represented as a set of substrings. It also
uses conventional genetic operators and the 'survival of the fittest' principle.
However, it differs considerably from the Simple Genetic Algorithms in encoding
genetic information in the chromosome and in its phenotypic interpretation. The
fundamental differences are as follows:

* Structured Genetic Algorithms utilise chromosomes with a multi-level genetic
structure (a directed graph). As an example, SGA's having a two-level structure of
genes are shown in Figure 8.3a, and chromosomal representations of these
structures are shown in Figure 8.3b.

* Genes at any level can be either active or passive.

* 'High level' genes activate or deactivate the lower level genes.

level 1

Y2 Y3 M1t 3 30833 level2
(a) A 2-level structure of sGA

(al a2 a3 allal2al3 a2l a22 a23 a3l a32 a33) - a chromosome
and
@10 1 0 1 01 0 1 0 0) -abinary coding

(b) An encoding process of sGA
Figure 8.3: A simple representation of a two-level sGA.

While applying to the field of neural networks, the model can define the network
structure and its connection weights in its chromosome, and these parameter sets
can be optimized, in parallel, as a single unified process. In each generation,
while some members of the population are engaged in searching for the feasible
topology; others, which already have feasible structures, are searching for a set of
optimal weights, and the process continues until a fully trained network evolves
which can solve the task. The details of the model and its application for full
designing of neural nets were explained in our previous work [6][7].

© 1995 by CRC Press, Inc.

performance genetic
measure operation
i New
population .
of neural population EVf)lYed
#| optimised
networks of neural
networks neural net
Evolutionary process

Figure 8.4: Genetic process of evolving neural networks.

Figure 8.4 shows the working principle of the sGA for designing an application
specific neural network architectures.

8.10 Evolving Neuro-Controllers Using sGA

For this empirical study we adopted a two-level sGA for encoding the complete
neural network. Each individual (chromosome) has a two-level genomic structure
in Figure 8.5c. The higher level defines the network configuration, while the
lower level encodes the connection weights and biases. As mentioned before the
high-level of the sGA searches the connectivity space of N units (to evolve an
efficient network structure), while the low-level searches for an optimal set of
weights to control the system. The fitness of each individual is determined by the
combined performance of these two components [6]. A set of individuals
(population) is generated randomly to initialise the evolution-learning process.

input

output
nodes node H H
. connectivity (L\ A
unit to: 1 234567859 ld_ctinn:ion of K]3_(
1 0 000O0O0101 a feed-forward
2 0N OOOO1IO0T1 L_petwerk
unit from:
3 001 000101
4 000IN0OO101 |

5 00011 0000
6 ooono\&qooo \\l

7 0110100 o0
1
8 0100000\;\"1 Y
9 OOOOOOOI‘O\Q]

10 01 0001000 ON
(b) An evolve

(a) Connectivity matrisx

high-level low-level

i000000101o ----010i-.12 .24 -.19 .89 .32 .03 -.25 .57-.91 .11% = s &

Figure 8.5: A two-level sGA representing neuro-controller.

© 1995 by CRC Press, Inc.

Here we considered two vertical angles (120 or 350) for balancing. As in previous
sections, the initial starting position of the cart is randomly set between +0.1

meters, the starting pole angle between +6; the cart velocity and pole's angular
velocity are set to 0.0 at the start of each training phase [18]. These values are
considered as the initial inputs for each individual neural net at every generation.
The input state vector is normalised so that the values lie in the range O and 1.
The algorithm terminates if at least one evolved net holds the pole for 120,000
time steps (i.e., 40 minutes of simulated time) or the allowed number of
iterations are used up (2000 generations).

8.11 Fitness Measure and Reward scheme

In every generation, each chromosome is decoded into its phenotype (a network
structure with its weights), and its fitness is evaluated by taking into account the
feasibility of the structure and its ability to learn the control task. More
specifically, since a sGA is used to find both an architecture and the synapse
weights, the evaluation function must include not only a measure the learnability
of a net, but also a feasibility measure of network structure and its complexity
(i.e., number of nodes and their connectivities).

In a randomly-generated initial population there are likely to be a large number of
individuals which show poor performance due to two reasons:

1. They have a infeasible network structure i.e., improper connectivity pattern;

2. Arbitrary values of weight-bias parameters which may be far from optimum
(even though the structure is feasible).

A network structure is infeasible
* If there exists no path from input nodes, and/or to output nodes,

* If there is fan-in to a hidden node but no fan-out or vice versa,
« If there is any unreachable substructure, etc.

Neural Network Evolver

Pole-cart
Simulator

=s

Failure Sigmal

State of
the System

']

Figure 8.6: Reinforcement learning of neuro-controllers using sGA.

The infeasibility measures quantify the amount by which an individual structure
exhibits 'congenital defects' (deformation).

© 1995 by CRC Press, Inc.

It is necessary to avoid destructive interference between the two searches in their
different spaces. For this reason, if an individual decodes to a feasible structure, it
is rewarded by keeping its high-level portion stable (i.e., no changes are
subsequently allowed to occur), and only the weight-bias space is then explored.
However, while training a feasible net, if no improvement is noticed in balancing
the pole for 50 successive generations, the individual then loses its structural
stability and is downgraded or eliminated. Feasible individuals which have fewer
nodes and links also get a selection advantage for reproduction relative to the
competing feasible individuals with more complex structures. Since we are
rewarding only the feasible structures, there is no chance of an individual structure
getting reward by pruning all its connections and nodes so as to become
infeasible.

For 12°case

Figure 8.7: The evolved neural net controllers and their weights.

© 1995 by CRC Press, Inc.

Thus each feasible net (individual) is trained through genetic reinforcement
learning [26], where the learning process is also an object of evolution. Figure
8.6 shows the functional blocks involved during learning phase of feasible nets
(controller's). The approach considers two 'black boxes' communicating with each
other, neither knowing the internal dynamics of the other. The first 'black box'
designs the controller to adapt the environment of the other through an
evolutionary process. The second responds to the control action of the first, and
feedback the system response at each time step. The only information for
evaluating performance is a failure signal which indicates that the pole-cart
system is/is not out of control.

The learning process of a feasible net starts by providing the initial state of the
system to the net and the net's output response is applied to the simulated
system. The output of the net is either 0.0 (push left) or 1.0 (push right)
representing the direction of a bang-bang control force. The output of the system
is a new state vector which is then reintroduced as new inputs to the net. This
continues until failure occurs or successful control is performed for the prescribed
maximal period of time. The balancing time is the measure of what has been
learned by each feasible net.

The individuals decoding to infeasible structures are penalised according to their
deformation and undergo a higher rate of mutation in their high level, structural
portion of their genome when being selected for reproduction. They thus have the
chance to reproduce by changing their connectivity pattern (which may result in
feasible offspring) and thus becoming stable members of the population.
Exploration of new feasible structures and evolution of weights of the existing
stable networks continues until a near optimised network architecture evolves or
the whole population converges to a feasible network architecture.

8.12 Simulation Results

Following our general methodology for neural network design and training
(Section 5.3), in this experiment we used a mixed encoding technique, where the
high-level portion of the chromosome is binary-coded representing the topology
of a neural net. The low-level is real-valued encoding the weight-bias space in the
range of (-1.0, +1.0) and crossover points are allowed to occur only between the
weights. A simple bit mutation is applied on the high level and a floating point
mutation is used on the low level such that a random value within 0.1 is added
to the existing active weight space rather than replacing it. The mutation rate is
varied between 5 and 10% adaptively in two levels of sGA. Different GA
parameters were tested in a number of trial runs of the experiment. The reported
results used a population size of 80 and a two-point crossover operator with a
probability of 75% along with a ranking selection scheme for reproduction. The
size of connectivity matrix used is 10 by 10 along with a logistic transfer
function for all the nodes.

In most trial runs, the algorithm takes less than 1000 generations to evolve a net
that could successfully perform the balancing task. It is found that during different
runs many feasible network structures evolved, but ones which could learn
quickly proliferate in the population in the later stages. When no restriction is
imposed on evolving nets, most of the rapidly-learned structures are highly

© 1995 by CRC Press, Inc.

irregular and have direct links between inputs and the output (these are, however,
fully effective controllers) [10]. Our preliminary results [9] also showed that
regular structures may be evolved by modifying the evaluation function. Figure
8.7 shows two network structures which evolved in two different runs for
balancing the pole at different cut-off angles. Figure 8.8 shows the displacement
of the pole and the cart. The performance of the best evolved net in one typical
run shown in Figure 8.9.

l T T

CART ——

0.6 F POLE - |
w2
z
o 02r /\-
I e iy ey A R
2 02 P N\ T~ N N
[~

-0.6 | -

1 . " N

0 30000 60000 90000 120000

TIME STEP

Figure 8.8: Graphs shown the position of the pole and cart with the evolved
neuro-controller at different time step (in 12° case).

© 1995 by CRC Press, Inc.

BestNet — /

"\
e | RN
OWww

TIME STEPS BALANCED

0 250 500 750 1000

Figure 8.9: The best individual net's performance for balancing task (in 12° case).

8.13 Discussion

We applied sGA for evolving neuro-controllers which could learn a mapping
between a dynamic system's state space and the space of possible actions. The
significance of the sGA result is considerable. It makes possible to automatically
design neuro-controller for a complex dynamic control task, by the expenditure of
a relatively small amount of computational resource. The structured GA approach
offers the following advantages:

1. It can evolve network structures and their weights in a single evolutionary
process;

2. Each individual net can be trained using genetic reinforccment learning;

3.The method does not require partitioning of the state space of the problem;

4. No supervisory training data is required for performing the balancing task;

5.1t uses global search rather than local search;

6. It can be implemented in parallel to improve the speed of convergence.

© 1995 by CRC Press, Inc.

Since the results are encouraging, further work should examine generalising this
evolutionary neuro-controller to enable it to operate over all possible initial input
states of the system, in a similar way to that reported by [26].

References

[1] C. W. Anderson. Strategy learning with multilayer connectionist
representations. In Proceedings of the Fourth International Workshop on Machine
Learning, pages 103-114. Morgan Kaufmann, Los Altos, 1987.

[2] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuron-like
adaptive elements that can solve difficult learning control problems. IEEE
Transactions on Systems, Man and Cybernetics, Smc-13(5):834-846, Sept/Oct
1983.

[3] Hamid R. Berenji and Pratap Khedkar. Learning and tuning fuzzy logic
controllers through reinforcements. IEEE Transaction on Neural Networks,
3(5):724-740, September 1992.

[4] Ka C. Cheok and K. Loh. A ball-balancing demonstration of optimal and
disturbance-accommodating control. IEEE Control Systems Magazine, pages 54-
57, 1987.

[5] Margaret E. Connell and Paul E. Utgoff. Learning to control a dynamic
physical system. In Proceedings AAAI-87 Sixth National Conference on
Artificial Intelligence, pages 456-460, 1987.

[6] Dipankar Dasgupta and D. R. McGregor. Designing Application-Specific
Neural Networks using the Structured Genetic Algorithm. In Proceedings of the
International workshop on Combination of Genetic Algorithms and Neural
Networks (COGANN-92), pages 87-96. IEEE Computer Society Press, June 6,
U.S.A 1992.

[7] Dipankar Dasgupta and D. R. McGregor. Designing Neural Networks using
the Structured Genetic Algorithm. In Proceedings of the International Conference
on Artifical Neural Networks (ICANN), pages 263-268, Brighton, UK., 4-7
September 1992.

[8] Dipankar Dasgupta and D. R. McGregor. Nonstationary function optimization
using the Structured Genetic Algorithm. In Proceedings of Parallel Problem
Solving From Nature (PPSN-2), Brussels, 28-30 September, pages 145-154,
1992.

[9] Dipankar Dasgupta and D. R. McGregor. Evolving Neurocontrollers for Pole
Balancing. In Proceedings of the International Conference on Artificial Neural
Networks (ICANN), pages 834-837, Amesterdam, The Netherlands, 13-16
September 1993.

© 1995 by CRC Press, Inc.

[10] Dipankar Dasgupta and D. R. McGregor. Genetically Designing Neuro-
controllers for a Dynamic System. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN), pages 2951-2955, Nagoya, Japan, 25-
29 October 1993.

[11] Dipankar Dasgupta and Douglas R. McGregor. A More Biologically
Motivated Genetic Algorithm: The Model and some Results. To appear in
Cybernatics and Systems: An International Journal, 25(3), May 1994.

[12] David E. Goldberg. Genetic Algorithms in Search, Optimisation and
Machine Learning. Addison-Wesley, first edition, 1989.

[13] E. Grant and Bing Zhang. A neural-net approach to supervised learning of
pole balancing. In Proceedings of IEEE International Symposium on Intelligent
Control, pages 123-129, Albany, New York, 25-26 September 1989.

[14] John H. Holland. Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, 1975.

[15] N. Karunanithi, D. Whitley and R. Das. Genetic Cascade Learning for
Neural Networks. In Proceedings of International Workshop on Combinations of
Genetic Agorithms and Neural Networks, pages 134-145. IEEE Computer
Society Press, 1992.

[16] A. Makarovic. A qualitative way of solving the pole balancing problem,
volume 12, chapter 16, pages 241-258. Oxford University Press, 1988.

[17] M.L. Mauldin. Maintaining diversity in genetic search. In Proceedings of
the National Conference on Artificial Intelligence, pages 247-250, 1984.

[18] D. R. McGregor, M.O. Odeytayo, and D. Dasgupta Adaptive control of a
dynamic system using genetic-based methods. In IEEE International Symposium
on Intelligent Control, August 11-13 1992. Glasgow, U.K.

[19] D. Miche and R.A. Chambers. Boxes: An experiment in adaptive control.
Machine Intelligence, 2:137-152, 1968.

[20] N.J. Hallman, N. Woodcock, and P. D. Picton. Fuzzy boxes as an
alternative to neural networks for difficult problems. In G. Rzevski and R. A.
Adey, editors, Application of Artificial Intelligence in Engineering VI
(AIENG/91), pages 903-919, 1991.

[21] M.O. Odetayo and D. R. McGregor. Genetic algorithm for control rules for a
dynamic system. In Proceedings of ICGA-89, pages 177-181, 1989.

© 1995 by CRC Press, Inc.

[22] Michael Omoniyi Odetayo. On Genetic Algorithms in Machine Learning and
Optimisation. PhD thesis, Department of Computer Science, University of
Strathclyde, Glasgow, U. K., December 1990.

[23] Claude Sammut. Experimental results from an evaluation of algorithms that
learn to control dynamic systems. Proceedings of the Fifth International
Conference on Machine Learning, 1988.

[24] Oliver G. Selfridge and Richard S. Sutton. Training and tracking in robotics.
In Proceedings of the Ninth International Conference on Artificial Intelligence
(1IJCAI). Morgan Kaufmann, Los Altos, 1985.

[25] Dirk Thierens and Leo Vercauteren. A topology exploiting genetic algorithm
to control dynamic systems. In G. Goos and Hartmanis, editors, Lecture Notes in
Computer Science, pages 104-108. Springer-Verlag, 1991. Proceedings of PPSN-
I, 1990.

[26] D. Whitley, Stephen Dominic, and R. Das. Genetic reinforcement learning

with multilayer neural networks. In 4th International Conference on Genetic
Algorithms, pages 562-569, 1991.

© 1995 by CRC Press, Inc.

	Practical Handbook of GENETIC ALGORITHMS: New Frontiers, Volume II
	Table of Contents
	Chapter 8: Controlling a Dynamic Physical System Using Genetic-Based Learning Methods
	Abstract
	Introduction
	8.1 The Control Task
	8.2 Previous Learning Algorithms for the Pole-Cart Problem
	8.2.1 BOXES
	8.2.2 AHC
	8.2.3 CART

	8.3 Genetic Algorithms (GA)
	8.4 Generating Control Rules Using a Simple GA
	8.4.1 Population of Learning Controllers
	8.4.2 Representation
	8.4.3 Performance Evaluator

	8.5 Implementation Details
	8.6 Experimental Results
	8.7 Difficulties with GAPOLE Approach
	8.8 A Different Genetic Approach for the Problem
	8.9 The Structured Genetic Algorithm
	8.10 Evolving Neuro-Controllers Using sGA
	8.11 Fitness Measure and Reward scheme
	8.12 Simulation Results
	8.13 Discussion
	References

	© 1995 by CRC Press, Inc: © 1995 by CRC Press, Inc.

