
1

Chapter 3

Peter J.B. Hancock
Department of Psychology
University of Stirling,
Scotland, FK9 4LA

pjh@compsci.stirling.ac.uk

Selection Methods for Evolutionary Algorithms

Abstract
3.1 Fitness Proportionate Pelection (FPS)
3.2 Windowing
3.3 Sigma Scaling
3.4 Linear Scaling
3.5 Sampling Algorithms
3.6 Ranking
3.7 Linear Ranking
3.8 Exponential Ranking
3.9 Tournament Selection
3.10 Genitor or Steady State Models
3.11 Evolution Strategy and Evolutionary Programming Methods
3.12 Evolution Strategy Approaches
3.13 Top-n Selection
3.14 Evolutionary Programming Methods
3.15 The Effects of Noise
Conclusions
References

Abstract
Selection pressure can have a decisive effect on the outcome of an evolutionary
search. Try too hard, and you will end up converging prematurely, perhaps on a
local maximum, perhaps not even that. Conversely, too little selection pressure,
apart from wasting time, may allow the effects of genetic drift to dominate, again
leading to a suboptimal result. In nature, there are two aspects to breeding
success: surviving long enough to reach reproductive maturity, and then
persuading a mate to be your partner. In simulations, such subtleties are mostly
the province of artificial life experiments where, for example, an animal that fails
to find enough food may die. In such systems it is possible for the whole
population to die out, which may be realistic but does rather terminate the search.
In most Evolutionary Algorithms (EA), therefore, a more interventionist
approach is taken, with reproductive opportunities being allocated on the basis of
relative fitness. There are a variety of selection strategies in common use, not all
of which use the fitness values directly. Some order the population, and allocate
trials by rank, others conduct tournaments, giving something of the flavour of the
natural competition for mates. Each of the schools of EA has its own methods of
selection, though GA practitioners in particular have experimented with several

2

algorithms. The aim of this chapter is to explain the differences between them,
and give some indication of their relative merits.

At its simplest, selection may involve just picking the better of two individuals.
Rechenberg's earliest Evolution Strategy proceeded by producing a child by
mutation of the current position and keeping whichever was better. Genetic
algorithms require a substantial population, typically of the order of a hundred, in
order to maintain diversity that will allow crossover to make progress. Holland's
original scheme for GAs assigned each individual a number of offspring in
proportion to its fitness, relative to the population average. This strategy has been
likened to playing a two-armed bandit, with uncertain payoffs. How should one
best allocate trials to each arm, given knowledge of the current payoff from
each? The best strategy turns out to be to give an exponentially increasing
number of trials to the apparently better arm, which is exactly what fitness
proportional selection does for a GA. However, the approach suffers from a
variety of problems, which will be illustrated, along with possible solutions,
below.

A full comparison of selection methods might involve their use on a range of
tasks and the presentation of large tables of results. These would probably be
ambiguous, since it seems unlikely that there is any one best method for all
problems. Instead, this chapter follows the lead of Goldberg and Deb, who
compared a number of the common GA selection methods in terms of their
theoretical growth rate and time complexity. They considered an extremely
simple problem, where there are just two string values, arbitrarily 1 and 1.5. The
initial population contains one copy of 1.5. They then looked at how quickly
different selection methods would cause this string to take over the population,
without any mutation or other genetic operators. Three similar simple problems
are used here. In all cases, results reported are the average of 100 runs.

1. Take-over. A population of N=100 individuals are initialised with random
values between 0 and 1, except for one, which is set to 1. This population is
acted on by selection alone, to give take-over curves analogous to those
produced by Goldberg and Deb. However, the range of values in the initial
population allows observation of the worst values, as well as the best. If poor
individuals are removed too quickly, genetic diversity needed for the final
solution may be lost.

2. Growth. Some of the selection schemes considered produce exponential take-
over rates. To allow comparisons under slightly more realistic conditions,
mutation was added. The whole population is initialised with random values in
the range 0-0.1. When an individual is reproduced, the copy has added to it a
Gaussian random variable, with standard deviation of 0.02, subject to staying
within the range 0-1. The population gradually converges towards 1, at a rate
mostly determined by the selection pressure, though clearly limited by the size of
the mutation.

3. Noise. Many target objective functions are noisy, and one of the claims made
about Genetic Algorithms is that they are relatively immune to its effects. As
will be seen, the degree of immunity depends on which selection method is used.

3

The task is the same as the previous one, except that another Gaussian random
variable is added to each individual's value. The noisy score is used to determine
the number of offspring allocated, the true value is then passed on to any
children, subject to small mutation as before.

The time complexity of the different algorithms is not considered here, because it
is rarely an issue in serious applications, where the time taken to do an
evaluation usually dominates the rest of the algorithm. If this is not the case, then
the whole run will probably only take a few seconds: one or two more shouldn't
hurt!

On the other hand, stochastic effects, ignored by Goldberg and Deb, are
considered here. A selection algorithm might specify 1.6 offspring for a given
individual. In practice, it will have to get a whole number, and there are different
ways to do the required sampling. Some methods are prone to errors, such that
even the best individual may not get any offspring. Where this happened during
the take-over simulations, the best value was replaced, arbitrarily overwriting the
first member of the population. If this were not done, the graphs would be more
affected by the particular number of runs that lost the best value than by real
differences in the take-over rate in the absence of such losses. Suppose two sets
of 100 runs of an algorithm are conducted, where the best string is lost with
probability 0.5 on any one run. One set of runs might lose the best, say, 48 times,
the other 55. The latter will appear to grow more slowly, simply because more
zero values are being averaged in. The number of occasions such replacement
was needed will be reported.

The results of the simulations require interpretation — it is certainly not simply
the case, for example, that faster growth rates are "better". A working
assumption behind the interpretation offered below is that, other things being
equal, greater diversity in the population is beneficial.

This chapter is only concerned with single "panmitic" population models, where
all individuals compete for selection in a single pool. There are a variety of
interesting parallel models, including multiple small populations that
occasionally exchange individuals, and spatial populations, where each
individual sees only its immediate neighbours. Such models would be difficult to
compare meaningfully by the simple methods employed here.

Also not considered here are a variety of methods used to influence selection,
usually to encourage diversity in the population. This might simply be to
improve the search by preventing premature convergence or perhaps to allow
multiple solutions to be found. Techniques such as niching (Deb and Goldberg
1989), sharing (Goldberg and Richardson, 1987), crowding (De Jong, 1975),
mate-selection (Todd and Miller, 1991) and incest prevention (Eshelman, 1991)
all find their place in the literature.

4

3.1 Fitness proportionate selection (FPS)
The traditional GA model selects strings in proportion to their fitness on the
evaluation function, relative to the average of the whole population. Holland's
original scheme actually suggested picking only one parent according to fitness.
If a second is required for crossover, this is picked at random. This produces
rather lower selection pressure, but results that are qualitatively similar to the
now more common practice of picking both according to fitness (Schaffer,
1987). FPS unfortunately suffers from well-known problems to do with scaling.
Suppose you have two strings, with fitness 1 and 2, respectively. The second
string will get twice as many reproductive opportunities as the first. Now
suppose that the underlying function is altered simply by adding 10 to all the
values. Our two strings will now score 11 and 12, a ratio of only 1.09. It might
be hoped that such a simple translation of the target function would have no
effect on the optimisation process. In practice the selection pressure would be
significantly reduced.

This scaling effect causes another problem. Suppose we are optimising a
function with a range of 0-10. Initially, the random population might score
mostly in the range 0-1. A lucky individual with a score of 3 will then be given a
large selective advantage. It will take over the population, reducing, and
eventually removing, the genetic diversity. If this potential hazard is avoided, the
fitness of the population might improve, say to the range 9-10. Now, for the
reason described in the previous paragraph, there will be very little selection
pressure, and the search will stagnate. In summary: if there is little variation in
the fitness of the strings, there will be little selective pressure. The problem of
stagnation has been addressed by using a moving baseline: windowing and sigma
scaling.

3.2 Windowing
One way to ameliorate the problem is to use the worst observed score as a
baseline, and subtract that value from all the other fitnesses. This then converts
our stagnating population in the range 9-10 back to the range 0-1. However, it
will give the worst string a fitness of zero, and, as noted above, it is not generally
wise to exclude weaker strings completely. The selection pressure is therefore
usually reduced by using the worst value observed in the w most recent
generations as a baseline, where w is known as the window size, and is typically
of the order of 2-10. The dramatic effect of this moving baseline is shown in
Figure 3.1a, which shows the increase in the number of copies of the optimal
value under selection only. FPS initially converges rapidly, but then tails off as
all of the population approaches a score of 1. Moving the baseline maintains the
selection pressure, more strongly for smaller window size. Subtraction of the
worst value also solves the problem of what to do about negative values. A
negative number of expected offspring is not meaningful. Simply declaring
negative values to be zero is not sufficient, since with some evaluation functions
the whole population might then have a score of zero.

5

Evaluations

N
um

be
r

in
 p

op
ul

at
io

n

0

2 0

4 0

6 0

8 0

100

0 10000 20000 30000 40000

w=2

w=10

FPS

a)

Figure 3.1a) Take-over rates for fitness proportionate selection, with and without
baseline windowing.

3.3 Sigma scaling
As noted above, the selection pressure is related to the scatter of the fitness
values in the population. Sigma scaling exploits this observation, setting the
baseline s standard deviations (sd) below the mean, where s is the scaling factor.
Strings below this score are assigned a fitness of zero, with a consequent
potential for the loss of diversity. This method helps to overcome a potential
problem with particularly poor individuals ("lethals") which with windowing
would put the baseline very low, thus reducing selection pressure. Sigma scaling
keeps the baseline near the average. It also allows the user to adjust the selection
pressure, which is inversely related to the value of s. By definition, the average
fitness of the scaled population will be s times sd. Thus an individual that has an
evaluation one standard deviation above the average will get (s+1)/s expected
offspring. Typical values of s are in the range 2-5, with stronger selection again
given by smaller values. The effect on take-over rate is shown in Figure 3.1b, for
s values of 2 and 4: selection pressure is rather greater than with a window of
size 2.

Evaluations

N
um

be
r

in
 p

op
ul

at
io

n

0

2 0

4 0

6 0

8 0

100

0 1000 2000 3000

w=2

s=2

s=4

b)

6

Figure 3.1b) Take-over rates for window, and sigma-scaling baseline
methods. Note the x scale change.

These moving baseline techniques help to prevent the search from stagnating, but
may exacerbate the problem of premature convergence caused by a particularly
fit individual because they increase its advantage relative to the average. The
sigma scaling method is slightly better, in that good individuals will increase the
standard deviation, thereby reducing their selective advantage somewhat.
However, a better method is desirable.

3.4 Linear scaling
Linear scaling adjusts the fitness values of all the strings such that the best
individual gets a specified number of expected offspring. The other values are
altered so as to ensure that the correct total number of new strings are produced:
an average individual still expects one offspring. Exceptionally fit individuals are
thus prevented from reproducing too quickly.

The scaling factor s specifies the number of offspring expected for the best string
and is typically in the range 1.2 to 2, again giving some control on the selection
pressure. The expected number of offspring for a given string is given by:

1+ (s −1)(fitness − avg)

(best − avg)

It may be seen that this returns s for the best, and 1 for an average string. There is
still a problem for low-scoring strings, which may be assigned a negative number
of offspring. It can be addressed by assigning them zero, but this would require
that all the other fitness values be changed again to maintain the correct average.
It also risks loss of diversity. An alternative is to reduce the scaling factor such
that just the worst individual gets a score of zero:

s = 1+ (best − avg)

(avg − worst)

The algorithm may be summarised in the following C-code, which adds another
variable ms, set to 1 less than the modified s value to save a subtraction in the for
loop:

if (s > 1 + (best-avg)/(avg-worst))
ms = (best-avg)/(avg-worst);

else
ms = s - 1;

for (i = 0; i< N; i++)
fitness(i) = 1 + ms * (fitness(i) - avg)/(best - avg);

The effects on convergence rate are shown in Figure 3.2a. As expected,
increasing the scaling factor increases the convergence rate. With a linear scaling
factor of 2, the convergence is between that obtained from a window size of 2,
and a sigma scaling factor of 2. At low selection pressures, the convergence rate
is proportional to s. Thus in this simulation, the best value takes over the
population in 4000 evaluations for s=1.2. With s=1.1, it takes 8000 evaluations.

7

This would suggest convergence in less than 1000 evaluations when s=2, where
in fact it takes 2000. The reason is the automatic reduction in selection pressure
caused by the need to prevent negative fitness values. In this application the
convergence produced with s=2 is very similar to that produced with s=1.5. The
effective selection pressure is therefore still determined to some extent by the
spread of fitness values in the population. A very poor individual will effectively
terminate the search, so it is worth monitoring the actual value of s during the run
and if necessary discarding such lethals.

Evaluations

N
um

be
r

in
 p

op
ul

at
io

n

0

2 0

4 0

6 0

8 0

100

0 1000 2000 3000 4000

Window 2

Sigma 2

Scale 2
Scale 1.2

a)

Figure 3.2a) Take-over rates for baseline window, sigma and linear scaling.

The growth rates in the presence of mutation for these scaling methods are
shown in Figure 3.2b. All are quite similar, simple FPS being able to maintain
selection pressure because of the range of fitness values caused by the mutation.
Windowing and sigma scaling come out ahead precisely because they fail to
limit particularly fit individuals. Fortuitous mutations are therefore able to
reproduce rapidly.

Evaluations

B
es

t
va

lu
e

in
 p

op
ul

at
io

n

0

0 .2

0.4

0.6

0.8

1

0 2000 4000 6000 8000

Scale 1.4

Window 2

FPS

Sigma 4

b)

Figure 3.2b) Growth rates for FPS and three scaling methods.

8

3.5 Sampling algorithms
The various methods just described all deliver a value for the expected number
of offspring for each string. Thus with direct fitness measurements, a string with
twice the average score should be chosen twice. That is straightforward to
implement, but there are obvious problems with non-integer expected values.
The best that can be done for an individual with half the average fitness score,
that expects 0.5 offspring, is to give it a 50% probability of being chosen in any
one generation. Baker, who considered these problems in some detail, refers to
the first process as selection, and the second as sampling (Baker, 1987).

A simple, and lamentably still common way to perform sampling may be
visualised as spinning a roulette wheel, the sectors of which are set equal to the
fitness values of each string. The wheel is spun once for each string selected. The
wheel is more likely to stop on bigger sectors, so fitter strings are more likely to
be chosen on each occasion. Unfortunately this simple method is unsatisfactory.
Because each parent is chosen individually, there is no guarantee that any
particular string, not even the best in the population, will actually be chosen in
any given generation. This sampling error can act as a significant source of
noise. The problem is well-known: De Jong suggested ways to overcome it in his
1975 thesis. The neatest solution is Baker's Stochastic Universal Sampling (SUS)
algorithm (Baker, 1987), which produced the results of Figures 3.1 and 3.2.
Figure 3.3 shows the difference in results for the two methods with fitness
proportional selection. The rate of take-over of the best value is reduced, a
reflection of the fact that the roulette wheel simulation lost the best value from
the population an average of 9.1 times per run. Conversely, the worst value
current in the population increases more rapidly, because it is quite likely for
poor strings to be missed by the random selection. Both effects are likely to be
deleterious to performance.

Evaluations

N
um

be
r

in
 p

op
ul

at
io

n

0

2 0

4 0

6 0

8 0

0 5000 10000 15000 20000

SUS

RW

a)

Figure 3.3a) Take-over rates for simple FPS, using roulette wheel (RW) and
Baker's Stochastic Universal Sampling algorithm (SUS).

9

Evaluations

W
or

st
 i

n
po

pu
la

tio
n

0

0 .2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

SUS

RW

b)

Figure 3.3b) Rise in the worst value in the population.

Baker's algorithm does the whole sampling in a single pass, and requires only
one random number. The essence is to sum up the expected values, crediting the
current string with an offspring every time the total goes past an integer. Thus if
the initial random number is 0.7, and the first string expects 1.4 offspring, it will
get two, since the total will be 2.1. If the random number is less than 0.6, it will
get only one, since the total will be less than 2.

num = rand();
picked =1;
for (i=0; i<N; i++)
{

num+= expected_off(i);
while (picked < num);

{
parent[picked - 1] = i;

picked++;
}

The only catch is that there will be sampling errors if the population is sorted, as
it will be, for instance, for rank selection (see below). If two adjacent individuals
each expect between 0.5 and 1 (exclusive) offspring, you can guarantee that one
will get a child, while the other will not. The population should therefore be
shuffled, adding to the complexity of the process. Many of the more obvious
ways to do a shuffle produce a surprisingly biased result. An unbiased shuffle of
the strings is given by the following code, where random_int returns an integer
in the range i to N-1 inclusive:

for (i=0;i<N;i++)
{

j=random_int(i ,N-1);
temp = sorted_pop[j];
sorted_pop[j]=sorted_pop[i];
sorted_pop[i]=temp;

}

10

Alternatively, since copies of the strings will be required at some stage in the
reproduction process, it may be better to shuffle them during the copying
process. Baker's sampling algorithm can then be used to copy the winners back
into the original array, ready for the application of reproduction operators:

for (i=0;i<N;i++)
{

j = random_int(i ,N-1);
new_pop[i] =sorted_pop[j];
sorted_pop[j] =sorted_pop[i];

}

3.6 Ranking
Baker (1985) suggested rank selection in an attempt to overcome the deficiencies
of the direct fitness based approach. First the population is ordered according to
the measured fitness values. A new fitness value is then ascribed, inversely
related to the string's rank. Two methods are in common use.

3.7 Linear ranking
The best string is given a fitness s, between 1 and 2. The worst string is given 2-
s. Intermediate strings' fitness values are given by interpolation, assuming a C
type array that starts at 0 for rank 1:

f (i) = s − (2i(s −1))

(N −1)

Since this prescription automatically gives an average fitness of 1, the fitness
values translate directly as the expected number of reproductive opportunities. If
s is set to 2, the worst string gets no chance of reproduction. In principle, s could
be increased beyond 2 to achieve higher selection pressures, but then some of the
worst strings would be given negative expected offspring. These could be
truncated to zero, but then the remaining fitness values would need rescaling to
give the correct total number of offspring. A simpler method of achieving higher
selection pressures, which also gives some chance to the worst members of the
population, is to use a non-linear ranking, such as that described in the next
section. However, such high pressures are rarely needed. The selection pressure
generated by linear ranking is proportional to s-1. Thus with s=1.1, convergence
takes about 12,000 evaluations, with s=1.2 it takes 6000, and with s=2 it takes
1000.

In his 1985 paper, Baker discusses methods of preventing premature
convergence. He proposes a measure of percentage involvement, being the
proportion of the population that gets to produce an offspring in any generation.
He suggests a target of at least 94%, which is given by linear ranking with s of
about 1.1. Using s=2 gives only 75% involvement.

3.8 Exponential ranking
The best string is given a fitness of 1. The second best is given a fitness of s,

typically about 0.99. The third best is then given s2 and so on down to the last,

11

which receives s(N-1). The ascribed fitness values need to be divided by their
average to give the expected number of offspring for each string.

s=0.99 ## or whatever ##
tot_fitness=0;
fitness=1;
for (i =0; i<N; i++)
{

f(i) = fitness;
tot_fitness += fitness;
fitness *= s;

}
avg_fitness = tot_fitness/N;
for (i=0; i<N; i++)

f(i) /= avg_fitness;

Those who are particularly conscious of cpu cycles may wish to trade storage for
time and construct an array containing the expected number of offspring for each
rank. Depending on the program's internal data structures, such an approach
might do away with the need for any assignment of fitness at this stage of the
selection procedure. However, some workers recommend varying the selection
pressure during the run, in which case the array would need updating whenever s
is changed.

The selection pressure is proportional to 1-s, thus s=0.994 gives twice the
convergence rate of s=0.998. With s=0.999, convergence takes about 25,000
evaluations, with s=0.968, it takes about 700. Figure 3.4 shows a family of take-
over curves, confirming that doubling the selection pressure halves the take-over
time. For s below 0.98, the expression N(1-s) gives a good approximation to the
expected number of offspring for the best individual. In fact s=0.98 gives about
2.3 offspring to the best of a population of 100, but s=0.95 gives almost exactly
5, should that much pressure be wanted for some reason.

12

Evaluations

N
um

be
r

in
 p

op
ul

at
io

n

0

2 0

4 0

6 0

8 0

100

100 1000 10000 100000

0.999

0.998

0.996

0.992

0.984

0.968

Figure 3.4. A family of take-over curves for exponential rank-based
selection, at varying values of s.

The difference between the two ranking methods is illustrated in Figure 3.5.
Figure 3.5a shows the expected number of offspring against rank for linear
ranking with s=1.8 and exponential ranking with s=0.986. The expectation for
the best individual is very similar, and as a consequence, so is the take-over time
and the growth rate in the presence of mutation. However, the rate of loss of the
worst value is considerably less for exponential ranking, as shown in Figure
3.5b, because of the increased chance given to weaker strings. For equivalent
growth rates, exponential ranking ought to give a more diverse population, albeit
at the expense of more average individuals.

Rank

E
xp

e
ct

e
d

 o
ff

sp
ri

n
g

0

1

2

0 5 0 100

a)
Exponential

Linear

Figure 3.5a) Expected number of offspring for individual of given rank, for
exponential ranking with s=0.986, and linear ranking with s=1.8.

13

Evaluations

W
or

st
 i

n
po

pu
la

tio
n

0

0 .2

0.4

0.6

0.8

1

0 500 1000 1500 2000

Exp 0.986

Lin 1.8

b)

Figure 3.5b) Increase in worst value in the population, during take-over
simulation.

Other kinds of non-linearity are possible, and possibly desirable. For instance,
inverting the curve given by exponential ranking would improve the chances of
above-average individuals at the expense of the worst. This would implement a
softer version of the Top-n selection described below. Kuo and Hwang (1993)
implement what they call disruptive selection, which uses a non-monotonic
fitness function that gives more trials to good and bad strings, at the expense of
intermediate values.

3.9 Tournament selection
In tournament selection, n individuals are chosen at random from the population,
with the best being selected for reproduction. A fresh tournament is held for each
parent-to-be. This method is quite popular, perhaps partly because of the echoes
of the mating battles often seen in nature. Goldberg and Deb show that the
expected result for a tournament with n=2 is exactly the same as linear ranking
with s=2. That this is the case may be seen intuitively by considering various
cases. Every string should expect to be picked twice. The best string in the
population will win both its tournaments, while the worst will never win, and
thus never be selected. A string with performance equal to the average will
expect to win half its tournaments, and so be picked half as often as the best
string, exactly as linear ranking specifies.

Tournament selection can be made to emulate linear ranking with s<2 by making
it only probable that the better string will win. If the better string wins with
probability of 0.5, the process reduces to random selection, with no bias in
favour of better strings. This is equivalent to linear ranking with s=1. The
conversion between probability in tournament selection and s in linear ranking is
to double the probability, thus a probability of 0.8 is equivalent to s=1.6. The
selection pressure generated by the tournaments may be increased by using n>2.
With n=3, an average string can expect to win only a quarter of its tournaments.
Since it should be selected for 3 tournaments, it can expect 0.75 offspring. The
graph of expected offspring against rank becomes non-linear, resembling that
produced by exponential ranking. Figure 3.6a shows the comparison: when the

14

best string gets four offspring, exponential ranking still favours the worst strings
at the expense of those somewhat above average.

Rank

E
xp

e
ct

e
d

 o
ff

sp
ri

n
g

0

1

2

3

4

5

0 2 0 4 0 6 0 8 0 100

Exponential rank

Tournament size 4

a)

Figure 3.6a) Expected number of offspring for individual of given rank, for
exponential ranking with s=0.96 and tournament selection with n=4.

Figure 3.6b shows the convergence of the population under tournament and
linear ranking selection methods. The difference is caused by stochastic errors in
tournament selection. Because each tournament is carried out individually, the
method suffers from exactly the same sampling errors as roulette wheel selection
and linear ranking, with Baker's selection procedure, should usually be used
instead. It is interesting that Goldberg and Deb, who omitted consideration of
stochastic effects, concluded that tournament selection was preferable to linear

Evaluations

N
um

be
r

in
 p

op
ul

at
io

n

0

2 0

4 0

6 0

8 0

100

0 500 1000 1500

Linear rank
Tournament

b)

Figure 3.6b) Take-over rates for linear ranking, s=2 and tournament
selection, n=2.

ranking because of the lower time complexity. This can be particularly
significant in parallel models where a local tournament may be appropriate. Each
processor can carry out the tournaments needed to generate the strings it will
evaluate, whereas linear ranking selection needs to be carried out centrally, with
the remaining processors waiting for the results to be distributed. Some models
such as ASPARAGOS (Gorges-Schleuter, 1989) use a spatially distributed

15

population, with tournaments being held only amongst nearby members of the
population. However, those using tournament selection should be aware of the
implied sampling errors.

Occasionally, holding tournaments may be the only way to do the evaluation, for
instance when evolving game-playing programs. Generation of a rank ordering
by playing every program against every other may be too time-consuming. In
this case also, tournament selection is the natural way to proceed.

3.10 Genitor or steady state models
A major argument in the GA camp centres on whether to replace the whole
population at a go (generational model), or some subset, often one or two
(incremental model). Whitley, with his Genitor system, is one of the major
proponents of one-at-a-time, or steady-state reproduction (Whitley and Knuth,
1988). Any of the above methods of selection could be used to pick the parents
of the single offspring, but Whitley uses linear ranking (Whitley, 1989), and
provides a neat algorithm for picking an individual from the population with the
desired probability.

 n = N ×
s − (s × s − 4 × (s −1) × rand())

2 × (s −1)

Steady-state reproduction inevitably carries the same kind of sampling errors as
roulette wheel selection. Some users therefore employ stochastic tournament
selection to pick the two parents, since it can't add any extra error and it obviates
the need to sort the population.

Evaluations

N
um

be
r

in
 p

op
ul

at
io

n

0

2 0

4 0

6 0

8 0

100

0 1000 2000 3000 4000 5000

Kill worst 1.4

Kll worst 1.2

Kill oldest 1.4

Kill oldest 1.2

Linear 1.4

Figure 3.7. Take-over rates for incremental algorithms, with kill-worst
and kill-oldest, and generational model using linear ranking.

Goldberg and Deb show that the Genitor model produces very high selection
pressure. Most of this comes from always replacing the worst member of the
population. Changing the linear ranking scale factor has very little effect. There
are various ways to reduce the selection pressure. One is to pick an individual

16

from the population to be replaced at random. This produces growth curves
almost identical to a generational model with the same selection pressure
(Syswerda, 1991).

An alternative is to replace the oldest member of the population. Figure 3.7
compares kill-oldest with kill-worst. In all the graphs, the x-axis units are
evaluations, to allow direct comparison between the different population models.
Kill-oldest is comparable with a generational model of the same selection
pressure. However, it is faster at the start of run, and slower to finish off,
probably the opposite of what is desirable. As might be expected, loss of the
worst is much more rapid as well (not shown). Slow finishing is the consequence
of the sampling errors, like those of roulette wheel selection, that inevitably
result from breeding one at once. With s=1.4, kill-oldest lost the best value an
average of 2.5 times per run.

Figure 3.8 shows that, for growth in the presence of mutation, kill-oldest is
closer to kill-worst than to a generational model with the same nominal selection
pressure. One reason may be that the effects of sampling error are less significant
in this task — in the take-over task, it is rather crucial if the best individual is
lost. Another may be a manifestation of the claim sometimes made for steady-
state reproduction that they can exploit good new individuals more rapidly,
because they are immediately available for reproduction. In the simple take-over
example, this has no effect, because the additional copies of better strings are
exactly balanced by the increase in average fitness (De Jong and Sama, 1991).
Even where progress is obtained because of genetic operators, the effects may
not be that big, because although a new string may be selected immediately, it is
more likely to have to wait a significant fraction of N evaluations at normal
selection pressures. Because of the stochastic sampling effects, it may have to
wait more than N evaluations, if it is allowed to live that long, or even fail to be
selected at all. Clearly, the stronger the selection pressure, the more significant
the effect becomes.

Evaluations

B
es

t
in

 p
op

ul
at

io
n

0

0 .2

0.4

0.6

0.8

1

0 2000 4000 6000 8000

kill worst 1.4

kill oldest 1.4

Linear 1.4

Figure 3.8. Growth rates in the presence of mutation for incremental
and generational models, all using linear rank selection with s=1.4.

17

A third alternative is to delete worse members of the population preferentially,
for instance by inverse ranking. Syswerda typically uses this method, and shows
that it produces growth curves similar to kill-worst (Syswerda, 1991). However,
he is using inverse exponential ranking with s=0.9, which is a very high selection
pressure. A more typical usage might be to select for reproduction from the top
with linear ranking, s=1.2, and kill from the bottom with the same selection rate.
If we ignore for a moment the possibility that it will be superseded during its
lifetime, the best string can expect s/(2-s) offspring before being deleted.
However, part of this comes from its increased life-expectancy, and during any
period of N evaluations, equivalent to one cycle of a generational model, it will
only expect 1/(2-s) offspring: 1.25 for s=1.2. Added to this will be a factor
caused by the preferential deletion of worse individuals, which will cause the
average fitness to rise. The net result is a growth rate that rises faster than s.
Figure 3.9 shows that a steady-state model, with selection from top and bottom
with s=1.2, produces a near identical growth rate to a generational model with
linear ranking, s=1.4. However, the steady-state model with s=1.4 is faster than
generational with s=1.8, while it is slower for smaller values of s. The
approximate equivalence at s=1.2/1.4 appears to be genuine, and is not affected
by things such as the size of the mutation. For those wishing to compare the
techniques on their own problems, equivalent values for lower selection
pressures are 1.13/1.2 and 1.085/1.1.

Evaluations

B
es

t
in

 p
op

ul
at

io
n

0

0 .2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000 12000

Generational 1.2

Generational 1.4

Generational 1.8

Incremental 1.1

Incremental 1.2

Incremental 1.4

Figure 3.9. Growth rates for generational model, with linear ranking,
and incremental model, with rank-based selection for reproduction, and

inverse rank-based selection for deletion.

GA practitioners repeatedly claim significantly faster convergence using steady-
state reproduction. In practice, this may often be the result of inadvertently high
selection pressure acting on a fairly easy problem. However, another potentially
crucial difference is that steady-state models are often run with the elimination of
duplicates. Any new string is only admitted to the population if different from
those already present. This will have a radical effect on the behaviour of the

18

algorithm, which cannot be illustrated with the simple simulations used here, but
is certainly worth trying on real problems.

A serious drawback with steady-state reproduction is the effect of noise in the
evaluation function. This will be considered below, suffice it now to say that it
does not do well.

3.11 Evolution strategy and evolutionary programming methods
The selection methods used in ES and EP algorithms are rather similar,
producing high take-over rates. The approach differs from that typical of GAs,
being more like selection of the fittest than fitness proportional reproduction.
However, in some guises the effects can be very similar.

3.12 Evolution strategy approaches
There are two main methods of selection used in ESs, known as (m+l) and (m,l),
where m is the number of parents and l is the number of offspring (for a review,
see Hoffmeister and Bäck, 1992). The top m individuals form the next
generation, selection being from parents and children in the (m+l) case, children
only for (m,l). Typically, l is one to five times m (it obviously must be bigger
than m for the (m,l) model). With these schemes, take-over by the best value is
exponential. Thus for a (100,200) ES, it takes log2(100) = 7 generations, for
(100+200), it takes log3(100) = 5 generations. The CHC genetic algorithm
(Eshelman, 1991) uses an (m+m) selection procedure, combined with
recombination operators designed to promote search.

3.13 Top-n selection
Some workers select the n best individuals, and give them each N/n offspring
(Nolfi, 1990). This clearly has the potential for extremely rapid take-over — with
n=10, the best value will take over in two generations. It differs from the ES
(m,l) approach only in what is called the population, thus Top-n with n=50 and
N=100 is equivalent to a (50,100) ES. Bäck and Hoffmeister (1991) term such
selection algorithms as extinctive, in that some individuals are guaranteed to get
no offspring. They show, as might be expected, that such harsh selection is
appropriate for unimodal objective functions.

3.14 Evolutionary programming methods
The canonical EP selection algorithm is a stochastic version of a (m+l) ES. Each
individual produces one offspring, each of the 2N individuals plays c others
chosen at random (with replacement) in a tournament. The N with most wins
forms the next generation. If the tournaments are deterministic, the result will
converge to that of an (N+N) ES as c increases. The size of c has little effect on
the simple task used here: the best value always wins its competitions, and takes
over the population in 7 generations.

As before, the selection may be softened by making the tournaments stochastic.
Note a problem with terminology here: what is referred to above as a
deterministic tournament, because the better individual always wins, Fogel refers
to as a stochastic tournament (Fogel, 1994), because the opponents are picked at
random. Here, a stochastic tournament is one in which the fitter individual may

19

lose. One approach to this is to make the probability of the better string winning
depend on the relative fitness of the two strings: pi=fi/(fi+fj) (Fogel, 1988). This
has the effect of reducing selection pressure to zero as the population becomes
uniform, and produces a take-over curve remarkably similar to simple
proportionate selection, Figure 3.10a. However, loss of the worst is more rapid,
since poor strings initially get little chance to reproduce (not shown). Note,
however, that since EP does not use recombination, there may be less
requirement for diversity than in a GA.

Evaluations

N
um

be
r

in
 p

op
ul

at
io

n

0

2 0

4 0

6 0

8 0

100

0 10000 20000 30000 40000

FPS

EP

a)

Figure 3.10a) Take-over rates for fitness proportional selection and stochastic
evolutionary programming selection, with tournament size.

Figure 3.10b shows growth rates under mutation of a number of the selection
methods described. Genitor produces the highest growth rate, but note that
exponential ranking can be made to converge similarly fast, or much the most
slowly, by varying the selection pressure. Linear ranking and linear scaling can
also be set to give similarly slow growth rates (not shown). Despite the very
rapid take-over given by the ES methods, growth rate is less spectacular, and
actually very similar to that provided by simple fitness proportionate selection.
This does relatively well because of the high number of offspring allocated to
particularly fit individuals, not in general a good idea.

Evaluations

B
es

t
in

 p
op

ul
at

io
n

0

0 .2

0.4

0.6

0.8

1

0 5000 10000 15000

Genitor

Exp 0.968

Exp 0.999

ES (N+N)

FPS

b)

20

Figure 3.10b) Growth rates for Genitor (incremental, kill-worst), with
s=1.2, exponential ranking, (100+100) ES and FPS.

3.15 The effects of noise
It is often claimed that Genetic Algorithms are relatively immune to the effects
of noise in the evaluation function. However, it is to be expected that the various
selection schemes would differ in their susceptibility. This was assessed by
adding noise to the evaluation, and observing the effect on the growth in the
presence of mutation. Another Gaussian random variable was added to the true
value of each individual and used to allocate its number of offspring. The true
value was then passed to any offspring, subject to the small mutation as before.
In order to have a significant effect on the rate of convergence, it was found to be
necessary to add noise with a standard deviation of 0.2: 10 times that of the
mutation. This is not so much a signal-to-noise ratio as a noise-to-signal ratio,
and gives some credence to the claimed noise immunity.

Figure 3.11a shows the effects of adding noise on two traditional GA methods,
linear ranking and sigma scaling. Even with this level of noise, the time to
convergence is less than halved. However, note that sigma scaling deteriorates
rather less than the ranking method. The obvious conclusion is that sigma scaling
is more noise tolerant, but this would be a mistake. The real reason for the result
is quite subtle, but similar to that responsible for the growth rates in Figure 3.2b.
The effect of the noise is to reduce the accuracy of the selection procedure. In the
limit, if noise swamps the evaluation entirely, all individuals would expect one
offspring. Here, the best individual can expect somewhat more than one, but less
than it should get in the absence of noise. With ranking and s=1.8, it will
therefore get somewhere between 1 and 1.8 offspring. Figure 3.11b shows the
actual number of offspring allocated to the best individual, averaged over the 100
runs. Linear ranking scores about 1.2 at the start of run. Sigma scaling sets the
baseline according to the spread of values in the population, which will be
determined mostly by the noise. Lucky individuals can appear 2 or 3 standard
deviations above the mean. Because there is not the upper limit imposed by
ranking, the best individual averages higher, about 1.5 initially in this case. The
faster growth rate is therefore effectively a case of premature convergence, but
since the problem is so simple, there is only the correct solution for it to
converge to.

21

Evaluations

B
es

t
in

 p
op

ul
at

io
n

0

0 .2

0.4

0.6

0.8

1

0 5000 10000

Lin rank, no noise

Lin rank, noise
Sigma, no nose

Sigma, noise

a)

Figure 3.11a) Growth rates with and without noise for linear ranking with s=1.8
and sigma scaling with s=4.

Evaluations

O
ff

sp
in

g
fo

r
be

st
 i

nd
iv

id
u

a
l

1

1 .2

1.4

1.6

1.8

2

0 4000 8000

b)

Figure 3.11b) Measured number of offspring for the best individual in
the population during the same simulations.

Figure 3.12 shows the effects on steady-state reproduction. Because Genitor kills
the apparent worst in the population, lucky individuals that got a much better
evaluation than they merited will remain in the population. The effects on
convergence rate are disastrous. Killing the oldest performs much better, echoing
the findings of Fogarty (1993). Not shown is the effect on a model using inverse
rank based deletion of worse individuals. As expected, it also deteriorates, so that
steady state with s=1.2 from both ends converges in around 14,000 evaluations,
compared with 10,000 for generational linear ranking, with s=1.4. As noted
above, these two are almost identical in the absence of noise. Compared with
kill-oldest, the deterioration is somewhat worse.

22

Evaluations

B
es

t
in

 p
op

ul
at

io
n

0

0 .2

0.4

0.6

0.8

1

0 5000 10000 15000 20000

Genitor, no noise

Genitor, noise

Kill-oldest, no noise

Kill-oldest, noise

Figure 3.12. Effect of adding noise to growth rate of Genitor (kill-
worst) and kill-oldest incremental models.

In theory, the noise sensitivity of steady-state models may be reduced by re-
evaluating existing members of the population. One approach is to pick an
individual at random for each new offspring produced. Since most of the
problem appears to come from fortuitous individuals that are ranked higher than
they should be, it might seem better to select high ranks preferentially, as for
reproduction. The old and new evaluations should be averaged, to improve the
estimate of the true value. When tried, the latter approach did perform slightly
better, but the improvement given by either method was not nearly sufficient to
discount the extra evaluations. They just took slightly less than twice as many.
The most robust way of handling noise in incremental algorithms appears to be
to kill the oldest.

Figure 3.13 tells a similar story for the ES selection methods. Without noise,
(100+100) converges rapidly. Allowing the parents to pass to the next generation
ensures that nothing is lost, giving rapid gains on the simple task. A (100+200)
ES converges more rapidly in terms of generations, but requires more
evaluations in total. Comparison with the (100,200) model illustrates the
advantage of conserving the best parents. In the presence of noise, however, the
conservative approach again fails. The (100,200) ES deteriorates by a similar
amount to other generational techniques, (100+100) deteriorates dramatically.
The deterministic version of EP selection performs very similarly to a (100+100)
ES, depending on the number of tournaments held (not shown).

23

Evaluations

B
es

t
in

 p
op

ul
at

io
n

0

0 .2

0.4

0.6

0.8

1

0 5000 10000 15000

(100+100), no noise

(100+200), no noise

(100,200), no noise

(100+100), noise
(100,200), noise

Figure 3.13. Effect of noise on growth rate of ES selection methods.

Conclusions
By now it should be apparent that there are fewer significant differences between
the various selection schemes than might be thought. The decisions to be made
include the following:

1. Whether to use direct fitness measures, with appropriate scaling, or rank-based
selection. The latter provides better control over selection pressure, at the
expense of the link between fitness and reproductive success.

2. Whether to use a generational or incremental model. The latter suffers in the
presence of noise and also from the same kind of sampling errors as the roulette
wheel. Its benefit is the ability to exclude duplicates, the advantage of which
could not be illustrated here.

3. Whether to introduce a deliberate non-linearity between fitness and allocated
offspring. Exponential rank selection benefits the worst members, at the cost of
above-average individuals. Top-n selection goes to the opposite extreme, giving
all the offspring to the top few. It may be appropriate to alter the balance during
a run, keeping worse individuals initially, and moving towards harsher selection.

4. Whether to use fitness or rank proportional reproduction (GA) or selection of
the fittest (ES/EP). It is probably relevant that the latter stress the importance of
mutation as a search operator, while GAs rely on recombination.

A common technique that has not been mentioned yet is the elitist strategy (De
Jong, 1975), which simply ensures that the best individual survives into the next
generation. This is not simply to ward off errors in sampling, since the best string
may be correctly selected, but be disrupted by recombination or mutation. It is a

24

conservative strategy, often found to give an improvement in performance, but
again suspect with noisy evaluations. It can also hinder progress, by anchoring
the population to a local maximum. A softer alternative is to lose the best if no
progress has been made for some number of generations (e.g. 5).

Selection is only one part of the algorithm, and decisions about which to use
need to be made in parallel with decisions about recombination operators. For
instance, Eshelman (1991) deliberately combines a conservative "survival of the
fittest" selection method with disruptive recombination operators. It isn't possible
to say which is best without defining evaluation criteria. Thus Goldberg and Deb
preferred tournament selection to linear ranking because they considered time
complexity, but not stochastic effects. Freisleben and Härtfelder (1993) used a
meta-level GA to tune the parameters of another GA. It was able to alter
parameters such as population size, mutation rates and the selection method. The
choice was tournament, rank and two forms of FPS. Tournament was the clear
winner, which is odd, because it is just rank with added noise.

How could adding noise help? Their task was learning the weights for a neural
net simulation. This is plagued with symmetry problems — many different
genetic string produce identical nets, because the order of hidden units is
immaterial, while that of the genetic string is not. Crossover therefore does not
work successfully. The GA has to decide which of the permutations to use. The
most likely explanation for Freisleben and Härtfelder's result is that the noise of
tournament selection allowed one permutation to get its nose ahead of the rest
and take over the population, thus resolving the problem. Had the meta-GA had
available recombination operators able to handle the permutations, it might well
have chosen a different selection procedure. Hopefully this chapter willbe of
some assistance in making such decisions.

Acknowledgements
This work was partly supported by grant no. GR/H93828 from the UK Science
and Engineering Research Council.

References
Bäck, T. and Hoffmeister, F. Extended selection mechanisms in genetic
algorithms. Pages 92-99 of Proceedings of the fourth international conference on
Genetic Algorithms, Belew, R.K. and Booker, L. (Eds), Morgan Kaufmann.
1991.

Baker, J.E. Adaptive selection methods for Genetic Algorithms. Pages 101-111
of Proceedings of an international conference on Genetic Algorithms,
Grefenstette, J.J. (ed), Lawrence Earlbaum. 1985.

Baker, J.E. Reducing bias and inefficiency in the selection algorithm. Pages 14-
21 of Proceedings of the second international conference on Genetic Algorithms,
Grefenstette, J.J. (ed), Lawrence Earlbaum. 1987.

De Jong K.A. An analysis of the behavior of a class of genetic adaptive systems.
Ph.D. thesis, Department of Computer and Communication Studies, University
of Michigan, 1975.

25

De Jong K.A. and Sarma J. Generation gaps revisited. In Foundations of Genetic
Algorithms 2, Whitley, D. (Ed). Morgan Kaufmann. 1991.

Eshelman, L.J. The CHC adaptive search algorithm: how to have safe search
when engaging in nontraditional genetic recombination. In Foundations of
Genetic Algorithms, Rawlins, G.J.E. (ed), Morgan Kaufmann. 1991.

Fogel, D.B. An evolutionary approach to the travelling salesman problem.
Biological Cybernetics 60, 139-144, 1988.

Fogel D.B. An introduction to simulated evolutionary optimization. IEEE
Transactions on Neural Networks 5, 3-14, 1994.

Fogarty, T.C. Reproduction, ranking, replacement and noisy evaluations:
experimental results. Technical report, Faculty of Computer Studies and
Mathematics, University of the West of England, 1993.

Freisleben, B. and Härtfelder, M. Optimization of genetic algorithms by genetic
algorithms. In Artificial Neural Networks and Genetic Algorithms, Albrecht,
R.F. and Reeves, C.R. and Steele, N.C. (Eds). 1993.

Goldberg, D.E. and Richardson, J. Genetic algorithms with sharing for
multimodal function optimization. Pages 41-49 in Genetic algorithms and their
applications: proceedings of the second international conference on Genetic
Algorithms, Lawrence Earlbaum. 1987.

Goldberg, D.E, and Deb, K. A comparative analysis of selection schemes used in
Genetic Algorithms. Foundations of Genetic Algorithms, Rawlins, G.J.E. (Ed),
Morgan Kaufmann, 1991.

Gorges-Schleuter, M. ASPARAGOS: An asynchronous parallel genetic
optimization strategy. Pages 422-427 of Proceedings of the third international
conference on Genetic Algorithms, Schaffer, J.D. (Ed), Morgan Kaufmann,
1989.

Hoffmeister, F. and Bäck, T. Genetic algorithms and evolution strategies:
similarities and differences. Technical report SYS-1/92, University of Dortmund,
1992.

Kuo, T. and Hwang, S.-Y. A genetic algorithm with disruptive selection. In
proceedings of the fifth international conference on Genetic Algorithms, Forrest,
S. (Ed), 1993.

Nolfi, S., Elman, J.L. and Parisi, D. Learning and Evolution in Neural Networks,
Technical report CRL TR 9019, UCSD, July 1990.

Schaffer, J.D., Some effects of selection procedures on hyperplane sampling by
genetic algorithms. Pages 89-103 of Genetic Algorithms and Simulated
Annealing, Davis, L. (Ed), Pitman, London. 1987.

26

Syswerda, G. A study of reproduction in generational and steady-state genetic
algorithms. In Foundations of Genetic Algorithms, Rawlins, G.J.E. (ed), Morgan
Kaufmann. 1991.

Todd P.M. and Miller. G.F. On the sympatric origin of species: mercurial mating
in the quicksilver model. Pages 547-554 of Proceedings of the fourth
international conference on Genetic Algorithms, Belew, R.K. and Booker, L.
(Eds), Morgan Kaufmann. 1991.

Whitley, D., and Knuth, J. GENITOR: a different genetic algorithm. Pages 118-
130 of Proceedings of the Rocky Mountain Conference on Artificial Intelligence,
Denver, Colorado. 1988.

Whitley, D. The Genitor algorithm and selection pressure: why rank-based
allocation of trials is best. Pages 116-121 of Proceedings of the third
international conference on Genetic Algorithms, Schaffer, J.D. (ed), Morgan
Kaufmann. 1989.

	Practical Handbook of GENETIC ALGORITHMS: New Frontiers, Volume II
	Table of Contents
	Chapter 3: Selection Methods for Evolutionary Algorithms
	Abstract
	3.1 Fitness proportionate selection (FPS)
	3.2 Windowing
	3.3 Sigma scaling
	3.4 Linear scaling
	3.5 Sampling algorithms
	3.6 Ranking
	3.7 Linear ranking
	3.8 Exponential ranking
	3.9 Tournament selection
	3.10 Genitor or steady state models
	3.11 Evolution strategy and evolutionary programming methods
	3.12 Evolution strategy approaches
	3.13 Top-n selection
	3.14 Evolutionary programming methods
	3.15 The effects of noise
	Conclusions
	Acknowledgements
	References

	© 1995 by CRC Press, Inc: © 1995 by CRC Press, Inc.

