

PRACTICAL ALGORITHMS FOR

3D COMPUTER
GRAPHICS

S E C O N D E D I T I O N

K18939_FM.indd 1 11/15/13 1:51 PM

This page intentionally left blankThis page intentionally left blank

PRACTICAL ALGORITHMS FOR

3D COMPUTER
GRAPHICS

S E C O N D E D I T I O N

R. STUART FERGUSON
THE QUEEN’S UINVERSITY OF BELFAST

UK

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A N A K P E T E R S B O O K

K18939_FM.indd 3 11/15/13 1:51 PM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131112

International Standard Book Number-13: 978-1-4665-8253-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface ix

I Basic principles 1

1 Introduction 3

1.1 A note on mathematics for 3D computer graphics 4

1.2 Getting up to speed and following up 5

1.3 Assumed knowledge . 7

1.4 Computer graphics and computer games 8

1.5 The full spectrum . 9

2 Basic theory and mathematical results 11

2.1 Coordinate systems . 11

2.2 Vectors . 14

2.3 Homogeneous coordinates . 14

2.4 The line in vector form . 16

2.5 The plane . 17

2.6 Intersection of a line and a plane 18

2.7 Closest distance of a point from a line 19

2.8 Closest distance of approach between two lines 20

2.9 Reflection in a plane . 21

2.10 Refraction at a plane . 22

2.11 Intersection of a line with primitive shapes 23

2.12 Transformations . 26

2.13 Parametric curves . 41

2.14 Interpolation . 42

2.15 Bézier curves . 46

2.16 Splines . 50

2.17 Parametric surfaces . 56

2.18 Angular interpolation (quaternions) 58

v

vi CONTENTS

3 Data structures for 3D graphics 69

3.1 Integer coordinates . 69
3.2 Vertices and polygons . 70
3.3 Algorithms for editing arrays of structures 76
3.4 Making an edge list from a list of polygonal faces 79
3.5 Finding adjacent polygons . 81
3.6 Finding polygons adjacent to edges 84

4 Basic visualization 87

4.1 The rendering pipeline . 88
4.2 Hidden surface drawing and rasterization 92
4.3 Anti-aliasing . 110
4.4 Lighting and shading . 114
4.5 Materials and shaders . 128
4.6 Image and texture mapping . 134
4.7 Perlin noise . 144
4.8 Pseudo shadows . 149
4.9 Line drawing . 154
4.10 Tricks and tips . 163

5 Realistic visualization 165

5.1 Radiometric lighting and shading 167
5.2 Ray tracing . 168
5.3 Ray tracing optimization . 171
5.4 Multi-threading and parallel processing 184

6 Computer animation 187

6.1 Keyframes (tweening) . 187
6.2 Animating rigid motion . 189
6.3 Character animation . 202
6.4 Inverse kinematics . 215
6.5 Physics . 237
6.6 Animating cloth and hair . 246
6.7 Particle modeling . 252

II Practical 3D graphics 259

7 Real-time 3D: OpenGL 263

7.1 The basics . 266
7.2 Native programming . 273
7.3 The GL shading language . 277
7.4 The P-buffer and framebuffer objects 290
7.5 Rendering a particle system using OpenGL 290

CONTENTS vii

7.6 Summing up . 292

8 Mobile 3D: OpenGLES 293

8.1 OpenGLES . 294
8.2 3D on iOS . 296
8.3 3D on Android . 304
8.4 Summing up . 313

9 The complete package: OpenFX 319

9.1 Using OpenFX . 321
9.2 The OpenFX files and folders structure 324
9.3 Coordinate system and units 327
9.4 User interface implementation 328
9.5 The Animation module . 331
9.6 The Designer module . 341
9.7 The Renderer module . 350
9.8 Adding to the software . 362
9.9 Continuing to dissect OpenFX 369

III Practical algorithms for modeling and procedural textures 371

10 Modeling with polygonal datasets 375

10.1 Triangulating polygons . 376
10.2 Triangulating polygons with holes 385
10.3 Subdividing polygonal facets 391
10.4 Lofting . 394
10.5 Surfaces of revolution . 400
10.6 Beveling . 401
10.7 Orienting surface normals . 405
10.8 Delaunay triangulation . 407
10.9 Boolean modeling . 413
10.10Metaball modeling and marching cubes 429
10.11Texture coordinate generation 442
10.12Building polygonal primitives 451

11 Algorithms for procedural textures 453

11.1 A standard interface . 454
11.2 CPU textures . 463
11.3 GPU textures . 492
11.4 Fur and short hair . 497

Bibliography 499

Index 504

This page intentionally left blankThis page intentionally left blank

Preface

Taken as a whole, the topics covered in this book will enable you to create a
complete suite of programs for three-dimensional computer animation, modeling
and image synthesis. It is about practical algorithms for each stage in the creative
process. The text takes you from the construction of polygonal models of objects
(real or imaginary) through rigid body animation into hierarchical character
animation and finally down the rendering pipeline for the synthesis of realistic
images of the models you build.

The content of the first edition of the book, published in 2001, arose from my
experience of working on two comprehensive commercial 3D animation and mod-
eling application programs (Envisage 3D and SoftFX) for the personal computer
in the 1990s. In that time the capabilities of both the hardware and software for
creating computer graphics increased almost unimaginably.

Back in 2001 it was hard to envisage how radically the graphics scene would
change again as the special purpose graphics processors (GPUs) rolled out, with
ever increasing capabilities. Since 2001 we have been finding new and exciting
ways to take advantage of the advancements in graphics technology through
an open source 3D animation and modeling program called OpenFX and in
investigating how to enhance the immersive experience with virtual reality [59].
I am sure that the computer games of the future will have to interact with all
the human senses and not just our sight. Glimpses of this are here now in the
Nintendo Wii and the Microsoft Kinect.

Getting the opportunity to bring this book up to date in a second edition
is a marvelous opportunity to include some interesting algorithms that were
either still to be found useful or had a very low profile back in 2001. Whilst
algorithms and most of the basic principles of computer graphics remain the
same, the practicalities have changed unrecognizably in the last twelve years.
So the second edition allows us to look at implementations in a new way and
part II of the first edition has been completely re-written with three new chapters
covering the modern approach to real-time 3D programming and an introduction
into 3D graphics for mobile devices.

I’ve chosen in part II to focus on OpenGL as the preferred API for gaining
access to the high-speed hardware, primarily because of its simplicity, long pedi-
gree and platform independence. Many books cover OpenGL in great depth and

ix

x Preface

we have only space in the text to distill and focus on the most important aspects
of using the API in practice. But hopefully you will find it useful to see how
much can be achieved in a few lines of computer code.

We can also take the opportunity of having the source code of OpenFX
available to demonstrate how to deploy our algorithms in practice and get the
most out of the programmable graphics hardware through its two rendering
engines, one based on the principles we cover in part I and the other on GPU
acceleration. One of the new chapters provides a rich set of clues to the design
of OpenFX and with the narrative that it provides you should be able to take
the OpenFX source code and, for example, write your own radiosity renderer.

As with OpenGL, we do not have space to present long listings in our discus-
sion on OpenFX, so the listings that do appear in the book have been curtailed
to focus on the most important members of the key data structures and the entry
points and variables used in the functions that constitute in the primary paths
of execution in the program.

Like 3D computer graphics, publishing is evolving and so to get the most
out of the book please use its website too. Computer codes are more useful
in machine readable form, and some topics can benefit from additional briefing
papers that we don’t have space to include. The example projects associated
with part II are only mentioned briefly in the text, but they are accompanied by
a comprehensive narrative on the website, including building instructions and
platform specifics that really need to be kept up to date on almost a month-by-
month basis.

Target readership

I hope that this book will be useful for anyone embarking on a graphics research
program, starting work on a new 3D computer game, beginning a career in an
industry associated with computer graphics or just wanting a reference to a range
of useful graphics algorithms.

I would also hope that the algorithms presented in part III might prove useful
for more experienced professional software developers, typically any of you who
wish to write plug-in modules for any 3D application program or shader code for
a games engine commercially available today.

References to websites and other Internet resources

In this edition we are not going to provide references in the form of URLs. We
are only providing one URL, and that is to the website for the book. On our
website you will find a list of the web references we use in the book; by doing
this we can continually update the web references and remove or re-vector any

Preface xi

links that become outdated, and even add new ones. So, our web address is:
http://www.pa3dcg.org/ and for OpenFX: www.openfx.org.

Acknowledgments

In this second edition I would especially like to thank Sarah Chow at Taylor &
Francis, not only for offering me the opportunity to update the original book,
but also for providing encouragement and very helpful support over the last few
months that I have been working on the new book. I’d of course also like to
thank Taylor & Francis CRC Press for publishing the work, and its editorial and
production team, who have smoothed the production process.

I am very grateful to “JM,” who reviewed the manuscript and made, in an
amazingly short time, some really valuable observations on how the draft could
be improved and reorganized.

I’d also like to reiterate my thanks to those who provided invaluable encour-
agement to start the project and see it through to first edition: Dan Sprevak,
Quamer and Mary Hossain and Ron Praver. And of course, the book would
never have seen the light of day without the support of Alice and Klaus Peters
at A K Peters.

Finally, I’d of course like to thank my chums at Queen’s University, especially
the members of the Pensioners’ Tea Club, Karen, Merivyn, George and Mr.
Moore, who actually are not real pensioners at all, they keep me just on the
right side of sanity.

This page intentionally left blankThis page intentionally left blank

Part I

Basic principles

This page intentionally left blankThis page intentionally left blank

1
Introduction

Computer graphics embraces a broad spectrum of topics including such things
as image processing, photo editing, a myriad of types of computer games and of
course special effects for the movies and TV. Even a word processor or presen-
tation package could be said to fall into the category of a graphics program.

Three-dimensional computer graphics (3DCG), the topic covered in this book,
began as a separate discipline in the early 1980s where those few fortunate in-
dividuals who had access to computing hardware costing tens or hundreds of
thousands of dollars began to experiment with the wondrous science of pro-
ducing, through mathematics alone, pictures that in many cases could not be
distinguished from a photograph. The “Voyager” animations of Jim Blinn for
NASA were perhaps the first really well publicized use of computer graphics.
The title from a television program of the period sums up perfectly the subject
of computer graphics: It was Painting by Numbers.

We can think of four main applications for 3DCG: computer-aided design,
scientific visualization, the ever growing entertainment businesses (cinema and
TV animation) and computer games.

There is some overlap between these categories. At the level of the mathe-
matical theory on which graphics algorithms are based they are exactly the same.
At the program level however it is usually possible to identify an application as
belonging to one of these four categories.

1. In a computer-aided design (CAD) application the most important feature
is to be able to use the graphics to present accurate and detailed plans that
have the potential to be used for further engineering or architectural work.

2. Scientific visualization is the process of using graphics to illustrate ex-
perimental or theoretical data with the aim of bringing into focus trends,
anomalies, or special features that might otherwise go unnoticed if they are
presented in simple tabular form or by lists of numbers. In this category
one might include medical imaging, interpreting physical phenomena and
presentations of weather or economic forecasts.

3. Computer animation for the entertainment industry is itself a broad subject
where the primary driver is to produce realistic pictures or sequences of

3

4 1. Introduction

pictures that would be very difficult, impossible or too expensive to obtain
by conventional means. The movie, TV and advertising industries have
adopted this use of 3D computer animation with great enthusiasm and
therefore perhaps it is they who provided the main driving force behind
the rapid improvements in realism that can be achieved with 3DCG.

4. In the case of computer game development fast and furious is the watch-
word, with as many twists and turns as can be accomplished in real-time.
The quality of images produced from game rendering engines improves at
what seems like a constantly accelerating pace and the ingenuity of the
game programmers ensures that this is a very active area of computer
graphics research and development.

Essentially, this book is targeted at those who work on applications un-
der the broad heading of computer animation, rendering and 3D modeling. If
you are interested in scientific visualization the book by Schroeder, Martin and
Lorensen [77] is an extensive and valuable resource. Many of their algorithms
complement those described here (in chapter 10) and they provide readily adapt-
able code. In the engineering arena, 3D modeling software is used to design
everything from plastic bottles to aircraft. Nowadays the CAD design tools
also offer some excellent product visualizations as well as the rigorous technical
drawings and plans. With the drawing parts of packages such as Solid Edge [73]
achieving maturity the latest developments in these packages has tended to take
them into the realm of analysis, for such things as stresses and strains, using
mathematical techniques such as finite elements. From the graphics point of
view visualizing the results of analysis closes the circle into scientific visualiza-
tion again. As a result CAD type software lies somewhat outside the scope of
this book. Our discussions on the topic will be limited to modeling with prim-
itive planar shapes. The essentials of computer-aided geometric design are well
covered in Farin’s book [29] and information on solid modeling for CAD/CAM
(computer-aided manufacture) can be found in the book by Mortenson [62].

For computer game developers the key element is the ability to render large
numbers of polygons in real time. This is probably the most rapidly advancing
area of application development and virtually every computer game now relies
on the dedicated graphics hardware. A clear distinction is starting to emerge
with, on one hand, ever more powerful console systems, whilst on the other hand,
3D games are starting to become popular as cell phone apps. Nearly everything
that we discuss in this book has utility on the technical side of the computer
games business.

1.1 A note on mathematics for 3D computer graphics

Geometry is the foundation on which computer graphics and specifically 3DCG
is built. A familiarity with the basic concepts of geometry and what I can only

1.2. Getting up to speed and following up 5

express as a “feel” for three dimensions will make the understanding of existing,
and creation of new, 3D algorithms much more straightforward.

In this book only two assumptions are made about the reader’s mathematical
prowess. First, that you have an appreciation of the Cartesian frame of reference
which is used to map three-dimensional space and second, you know the rules
for manipulating vectors and matrices. For any reader who wishes to brush up
on their vector geometry a general introduction is given by Kindle [49].

A recent and excellent compendium of all aspects of the mathematics used in
computer graphics is given by Lengyel [54], and the timeless classic Numerical
Recipes by Press et al. [74] is a hugely valuable resource of source code for algo-
rithms that solve more mathematical problems than we need to think about for
computer graphics. And it has excellent accompanying computer codes as well.

1.2 Getting up to speed and following up

This book is not a general introduction to the subject of computer graphics (CG)
or even to 3DCG. If you want to acquire background knowledge of hardware,
software packages or the current state of what is now a huge industry there are
many other excellent sources of information available.

The quantity of reference material that is available and our access to it has
changed utterly since the first edition of the book was published. I think it is
fair to say that there is nothing you cannot find out about 3D computer graphics
in the semi-infinite universe of the the World Wide Web. A search engine may
be a magnificent and powerful tool, but only if you have a clue about what you
are looking for. So there remains a real need for the carefully crafted book, and
the classic references have as much value today as they did a decade ago.

Of course, it would be quite ridiculous to dismiss the World Wide Web’s
semi-infinite library and resources, but its real value comes about because it lets
you get what you need, when you need it. But we must be selective and have
a pointer to follow. This is not as easy as it sound, because pages move, pages
get changed, and pages get deleted or become outdated. Our aim is to preserve
as much longevity in this book as we can, so all our web references will appear
through our online content. There are only two web addresses you need to open
the door: the book’s website (the address is quoted in the Preface) and that of
our open-source 3D application OpenFX (also referenced in the Preface).

As we’ve just discussed, there will always be a need to refer to some of the
classic texts of computer graphics. They not only offer an insight into how
the topic evolved but they also provide some of the best explanations for the
major breakthroughs in 3D graphics. The following sections cover books that I
personally have found very useful in my work.

6 1. Introduction

1.2.1 Classic references

Many of the references cited in the first edition are timeless classics, and although
some may be out of print, all can be obtained in a good library or with the click
of a mouse from a secondhand bookstore. Some of the most useful ones, then
and now are: Real-Time Rendering by Akenine-Mōller and Haines [1], which
describes the most important algorithms in the rendering pipeline and provides
links to a wealth of research material. It has proved very popular and several
revisions continue to be printed regularly. Watt [89] provides a good introduction
to the main concepts of 3D computer graphics, and a comprehensive (but a bit
dated) reference on all aspects of CG is that of Foley, Van Dam, Feiner and
Hughes [31]. The book by Watt and Watt [87] is useful for filling in specific
details on rendering and animation. For the mathematically inclined a rigorous
evaluation on a very broad range of CG algorithms can be found in Eberly’s
book [21].

1.2.2 Specialist references

If you cannot find the algorithm you are looking for in the chapters forming
part III then try looking into the five volumes of the Graphics Gems series [6,
34,41,50,66].

The GPU Gems series [30, 64, 71] and the GPU Pro [27] series reinvigorate
many of the classic Graphics Gems and packages them for GPU programming.
Unfortunately, the GPU Gems series tend to be a bit hard to follow in places
and it takes a bit more effort to get good value from the ideas presented there.

As already alluded, computer graphics publications have, in recent years,
been carrying titles referring to the programmable graphics hardware (the Graph-
ics Processing Unit, GPU) or to programming for computer games, but unless
they are practical works focusing on OpenGL or DirectX programming, they are
pretty much presenting the same material as in the classics. However there can
be subtle differences of emphasis and terminology and reading the way different
authors present the same idea can often lead to a eureka moment. Game En-
gine Architecture by Gregory [36] was one of the first books to put the focus on
rendering algorithms specifically tailored for computer games programs.

Writing programs for the GPU (called shaders) has virtually become a science
in itself and many of the ideas put forward in Programming Vertex and Pixel
Shaders [28], Shaders for Game Programmers and Artists [53], ShaderX 3 [24],
ShaderX 4 [25] and ShaderX 5 [26] provide fascinating reading. Some gems of
particular use for game developers can be found in Deloura’s volume, Game
Programming Gems [20].

For background and to complement the procedural textures described in
chapter 11, the book by Ebert et al. [23] is ideal. It goes on to explore the
use of fractals in computer graphics and demonstrates the techniques of volume
shading and hypertextures with which realistic images of hair and fur can be
created.

1.3. Assumed knowledge 7

1.2.3 Practical references

Probably the best and most practically useful book in relation to geometric
modeling algorithms is O’Rourke’s Computational Geometry [65], which provides
a useful alternative view of some of the modeling algorithms that we discuss in
chapter 10 and its C code is a masterful implementation of the algorithms.

We already mentioned The Visualization Toolkit by Martin and Lorensen [77],
an extremely useful library of software and not just a book. And of course the
(code with) Numerical Recipes in C++ [74] is a delight to have on hand when
you need code for a mathematical algorithm.

The OpenGL books, the Red Book [82] and the OpenGL SuperBible [78],
form a powerful duo of reference and how-to material. There is nothing these
books will not show you how to do in real-time 3D graphics with OpenGL.

There are many practically useful references one can call on in the arena of
programming the mobile and tablet devices. These specific texts will be identified
in chapter 8.

And of course, we could not end this section without mentioning the World
Wide Web, but there are just far too many useful references to acknowledge here.
And anyway, who wants a 256 character web reference in a book? Consult our
website for a collection of our favorite links.

1.3 Assumed knowledge

As stated earlier the assumption is that the reader is familiar with the concepts
of the vector and has a basic knowledge of coordinate geometry. Some experience
of using 3D graphics application software would also be an advantage, at least
enough to know the significance of the terms vertex, face/facet, polygon and pixel.

For the programming sections, a knowledge of a C like programming lan-
guage is essential, but since most languages have C (or C++) like syntax some
programming experience in any language should let you get to grips with all the
practical material. The biggest real challenge in developing computer programs
comes in devising algorithms for tasks so that they can be carried out by the
rather stupid computer, which after all can only do three things: move, add, and
decide which of two things to do next, depending on what the outcome of the add
was, think about it! 1

The chapter on graphics programming for mobile devices has to develop its
examples using the the C++ like languages of: Objective-C, in the case of Apple’s
iOS devices, and JAVA for the myriad of Android phones and tablets.

1And the second biggest challenge is not in coding up the algorithm in C, Java, Fortran,
Python, Basic and so on. It is in knowing what Application Programmer Interface (API)
function to use to get the computer’s operating system or library to give you control of its user
interface and peripherals: screen, disk, mouse, keyboard, WiFi and so forth.

8 1. Introduction

To be able to make full use of the Windows example programs, it would be
a decided advantage if you have used one of the versions of the Visual Studio
Integrated Development Environment (IDE) and the Windows (Win32) Soft-
ware Development Kit (SDK). For iOS programming there is little alternative
but to develop within the Xcode project environment, and whilst Android appli-
cations can be built with commands in a shell or terminal using makefiles, the
recommended IDE is one of the versions of Eclipse.

However, when you strip away the details, Visual Studio, Xcode and Eclipse
all do basically the same thing and in pretty much the same way, so if you’ve used
one of them, getting started with another is eased considerably. On the down
side, mobile device application development is a rapidly evolving scene; not only
do system versions change every two or three months but the APIs and even the
development environments do too. We are fortunate that, by choosing to focus
our mobile programming discussions on the mature OpenGL standard, even if
everything else changes, our programs for 3D should not be affected too much.

1.4 Computer graphics and computer games

The theory of computer graphics is now a fairly mature subject, so it is possible
to reflect on and examine the mathematics and algorithms safe in the knowledge
that they have longevity. The ever increasing computer power and its availability
allow the quest for perfection to continue, but the frenetic pace of fundamental
research in the 1980s and ’90s has relaxed a little. This is not true in the computer
games world; the frenzy continues, perhaps with a little more emphasis now on
interacting with the non-visual senses, for example as is done in games that make
use of the Nintendo Wii-mote, balance board or the Microsoft Kinect.

Despite the interest in new sensors, touch and feel devices and stereoscopy,
the games developers are still striving for greater realism in real-time graphics.
The current best thinking is that the specialized programmable hardware, the
GPU, will continue to improve. GPU manufacturers continue to release ever
more powerful processors. One day soon you will be able to ray-trace a million
polygons in real-time. Real-time graphics programing forms a significant part of
this book.

Programming a GPU poses its own challenges and despite the hardware’s
standard provision of many of the basic algorithms of 3D graphics, it is essential
that you are completely comfortable with the fundamentals in order to squeeze
that last few cycles out of the processor; to make your game more realistic and
exciting than the next guy’s game. Gaming is not just about realistic graphics.
The importance of movement and its physical simulation are a vital part of the
realism quest. In this book we rank computer animation and realistic physical
dynamics as being just as important as realistic rendering. It says a lot, to learn
that games developer companies make use of many more artists and actors than
they do programmers and software engineers.

1.5. The full spectrum 9

1.5 The full spectrum

This book covers the full spectrum of 3D computer graphics. Starting with a
blank canvas we must have tools to build numerical descriptions of objects and
embed them in a virtual universe, or at least be able to mesh, optimize and
decorate the point cloud delivered by a laser scanner. Just having a numerical
description of the buildings of a city, the people in it, the mountains of the
moon or the flowers in the garden, is like having a computer with no screen,
so we must be able to turn the numbers into a beautiful picture. But not even
a crystal clear snapshot can do justice to simulating reality. We must also be
able to move around, look at things and watch, while the virtual world and its
inhabitants go about their lives. Being able to do these things from a basic set
of numbers is what this book is about.

The word practical in the title highlights the aim of taking the algorithms of
computer graphics all the way from their theoretical origins right through into
a practical implementation. The book has a companion website where a suite of
practical codes and references can be found. And, to really reinforce the focus
on practical programs a chapter is devoted to lifting the lid on the OpenFX
open source software package to show how it does its modeling, animation, and
visualization. After reading chapter 9 you will be able to delve into the OpenFX
source code, modify it and use it as a platform for all sorts of interesting projects.

The book is divided into three parts. The first, “basic principles,” covers
the key concepts of 3D computer graphics. After this brief introduction the
focus moves to the fundamental mathematical ideas (chapter 2) that lie at the
heart of all the other algorithms discussed in the book. Personally, I find it very
satisfying that in just a few pages we can set out all the maths you need to
produce beautiful photo-realistic pictures.

A computer-generated image of a 3D universe requires that the objects which
inhabit it are described using numbers and stored in some form of structured
database. Chapter 3 discusses the pros and cons of 3D data organization and
describes several algorithms that are useful in manipulating faceted models of
the universe’s inhabitants.

Chapters 4 and 5 cover the topic of rendering and take a step-by-step ap-
proach to the design of algorithms, from the fastest scanline Z buffer procedure
to the high-quality ray-traced approach. I have tried to include those little things
that generally get overlooked in the grand theoretical texts but are of practical
importance, for example, how to optimize your 3D data for ray tracing.

The principles of computer animation discussed in chapter 6 have resonances
not just in the business of making animated movies because, when they are used
in real-time they underlie some of the vital features of a computer game’s engine.
Chapter 6 outlines the basic principles of animation techniques and discusses
character animation and other motions governed by the laws of physics rather
than by having to move them by hand. The principles of inverse kinematics are

10 1. Introduction

introduced and presented in a way specific to computer animation and for use
in computer games.

Part II is devoted to the topic of real-time 3D rendering, and dissecting the
OpenFX software. In chapter 7 we look at how to use the OpenGL library to
take maximum advantage of the computer hardware specifically designed for 3D
graphics. With the growth of the use of the so-called smart-phone and the fact
that these devices include specialist hardware for rendering 3D graphics, it seems
very timely to show how easy it is to move a 3D application from the desktop
into the pocket. Chapter 8 will show you how to build an environment on the
most popular mobile devices for deploying a 3D game or other 3D application.
To complete part II, chapter 9 examines the code for OpenFX, which is an open
source, fully functional, 3D modeling, animation and visualization application
program that puts into practice the algorithms of the book.

Part III is intended for the professional plug-in or game engine developer and
provides (hopefully) a rich collection of algorithms covering such diverse topics
as polygonal modeling procedures (chapter 10) and procedural textures for use
with a photo-realistic Z buffer or ray tracing renderer (chapter 11), or in the
fragment programs of a GPU.

The chapter on pseudo three-dimensional video transition effects from the
first edition has been removed and may now be found in an updated form on the
book’s website.

The subject of 3D graphics has matured very significantly since the first
edition of the book was written back in 2001. Twelve years on, despite the many
new algorithms and vast advances in hardware, the core algorithms are just as
valid as they were back then, so that’s where we will start—read on.

2
Basic theory and mathematical

results

This chapter describes the essential mathematical concepts that form the basis
for most 3D computer graphics theory. It also establishes the notation and con-
ventions that will be used throughout the book. There are many texts that cover
3D computer graphics in great detail, and if you are unfamiliar with the details
considered in this chapter consult other references [2, 15, 89]. For books that
cover the mathematical theory in more detail you might consult Foley et al. [31],
Rogers and Adams [76] or Mortenson [61].

If you wish you can skip directly to chapter 4 where the main topics of the
book begin with details of algorithms for the rendering pipeline. Refer back to
the appropriate sections in this chapter when required.

2.1 Coordinate systems

A coordinate system provides a numerical frame of reference for the 3D universe
in which we will develop our ideas and algorithms. Two coordinate systems are
particularly useful to us, the ubiquitous Cartesian (x, y, z) rectilinear system and
the spherical polar (r, θ, φ) or (angular) system. Cartesian coordinates are the
most commonly used, but angular coordinates are particularly helpful when it
comes to directing 3D animations where it is not only important to say where
something is located but also in which direction it is looking or moving.

2.1.1 Cartesian

Figure 2.1 illustrates the Cartesian system. Any point P is uniquely specified
by a triple of numbers (a, b, c). Mutually perpendicular coordinate axes are
conventionally labeled x, y and z. For the point P the numbers a, b and c can
be thought of as distances we need to move in order to travel from the origin to
the point P . (Move a units along the x axis then b units parallel to the y axis
and finally c units parallel to the z axis.)

11

12 2. Basic theory and mathematical results

Left-Handed
Coordinate System

Two Equivalent Right-Handed
Coordinate Systems

X

Y
a

b

c

P
X

Z

Z

Y

Y

Z

X

Figure 2.1: Right- and left-handed coordinate systems with the z axis vertical.

In the Cartesian system the axes can be orientated in either a left- or right-
handed sense. A right-handed convention is consistent with the vector cross
product and all algorithms and formulae used in this book assume a right-handed
convention.

2.1.2 Spherical polar

Figure 2.2 shows the conventional spherical polar coordinate system in relation
to the Cartesian axes. r is a measure of the distance from the origin to a point
in space. The angles θ and φ are taken relative to the z and x axes respectively.
Unlike the Cartesian x, y and z values, which all take the same units, spherical
polar coordinates use both distance and angle measures. Importantly, there are
some points in space that do not have a unique one-to-one relationship with an
(r, θ, φ) coordinate value. For example points lying on the positive z axis can
have any value of φ; (100, 0, 0) and (100, 0, π) both represent the same point.

Also, the range of values which (r, θ, φ) can take is limited. The radial dis-
tance r is such that it is always positive 0 ≤ r < ∞, θ lies in the range 0 ≤ θ ≤ π
and φ takes values 0 ≤ φ < 2π. There is no unique way to specify a range for φ;
one could equally well choose −π ≤ φ < π, but to avoid confusion it is best to
adhere rigidly to one interval.

It is quite straightforward to change from one coordinate system to the other.
When the point P in figure 2.2 is expressed as (r, θ, φ) the Cartesian coordinates
(x, y, z) are given by the trigonometric expressions:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

2.1. Coordinate systems 13

x

y

z

r

P

θ

φ

Figure 2.2: The spherical polar coordinate system.

Conversion from Cartesian to spherical coordinates is a little more tricky; it
requires an algorithm that tests for the special cases where P lies very close to
the z axis. A suitable implementation is presented in listing 2.1.

i f (x2 + y2) < ǫ {
r =| z |

θ = 0
φ = 0

}
else {

r =
√

x2 + y2 + z2

θ = arcsin(
√

x2 + y2/r)
i f (y < 0) {

φ = 2π −ATAN2(y, x)
}
else {

φ = ATAN2(y, x)
}

}

Listing 2.1: Algorithm for conversion from Cartesian to spherical coordinates.

The parameter ǫ is necessary because no computer can calculate with total
accuracy. What value is chosen depends on the relative size of the largest and
smallest measurements. For example a 3D animation of atomic and molecular
processes would have a very different value of ǫ from one illustrating planetary
dynamics.

14 2. Basic theory and mathematical results

The function ATAN2(y, x) is provided in the libraries of many computer
languages. It returns a value in the range (−π, π), which is the angle made with
the x axis by a line from (0, 0) to (x, y). In the first quadrant this is equivalent
to arctan(y/x), which is of course not defined at π/2.

2.2 Vectors

The vector, the key to all 3D work, is a triple of real numbers (in most computer
languages these are usually called floating point numbers) and is noted in a
bold typeface, e.g., P or p. When hand written (and in the figures of this book)
vectors are noted with an underscore, e.g., P .

Care must be taken to differentiate between two ways in which we use vectors
in computer graphics: see figure 2.3.

• Position Vector
A position vector runs from the origin of coordinates (0, 0, 0) to a point

(x, y, z) and its length gives the distance of the point from the origin. Its compo-
nents are given by (x, y, z). The essential concept to understand about a position
vector is that it is anchored to specific coordinates (points in space). The set of
points or vertices that are used to describe the shape of all models in 3D graphics
can be thought of as position vectors.

Thus a point with coordinates (x, y, z) can also be identified as the end point
of a position vector p. We shall often refer to a point as (x, y, z) or p.

• Direction Vector
A direction vector differs from a position vector in that it is not anchored

to specific coordinates. Frequently direction vectors are used in a form where
they have unit length; in this case they are said to be normalized. The most
common application of a direction vector in 3D computer graphics is to specify
the orientation of a surface or ray direction. For this we use a direction vector at
right angles (normal) and pointing away from the surface. Such normal vectors
are the key to calculating lighting and surface shading effects.

2.3 Homogeneous coordinates

Section 2.2 focused on two ways of using vectors that are particularly pertinent in
3D computer graphics. However vectors are a much more general mathematical
concept, an n-tuple of numbers (a1, a2, .., an), where n > 1 is a vector. A one-
dimensional array in a computer program is a vector; a single column matrix
[a1, a2, a3, ...an]

T is also a vector.
One of the most obvious differences between position and direction vectors

is that directions are independent of any translational transformation, whereas
the coordinates of a point in 3-space are certainly not independent when the

2.3. Homogeneous coordinates 15

Position vectors
for points P and Q Direction vector d

x

y

z

x

y

z

d

P(x1, y1, z1)

Q(x2, y2, z2)
Q

P

d

Figure 2.3: Position and direction vectors.

point is moved. In order to be able to treat these vectors consistently we need
to introduce the concept of homogeneous coordinates. Since 3D vectors are
a logical extension of 2D vectors, and it is easier to understand the concept
of homogeneous coordinates in 2D, we will consider these. Hopefully you will
be comfortable with the idea of extending them to 3D by adding in a third
component, the result of which we present without rigorous proof.

A general two-dimensional line is represented by the well-known equation:

ax+ by + c = 0 (2.1)

Any point in a plane (xp, yp) that lies on the line must satisfy 2.1, that is,
axp + byp + c must be identically zero. It is quite legitimate to write 2.1 using
matrix notation:

[a, b, c][x, y, 1]T (2.2)

This conveys the same information as 2.1, but it can now be clearly seen that two
pairs of triple numbers are involved, (a, b, c) and (x, y, 1) Any triple of numbers
conforms to the definition of a 3-vector and so the line in 2.1 is fully defined
by the vector (a, b, c). The triple (x, y, 1) is also a 3-vector and represents any
point that satisfies the equation, i.e., lies on the line in 2.1, for example the point
(xp, yp, 1).

Equation 2.1 and the line it represents is unchanged if we multiply it by a
constant, say w to give:

wax+ wby + wc = 0 (2.3)

or equivalently:
[a, b, c][wx,wy,w]T (2.4)

From this it is clear that, in this situation, the family of vectors (wx,wy,w)
for any w are equivalent. Vectors with this property are called (in the trade)

16 2. Basic theory and mathematical results

homogeneous vectors. Thus, for our specific case where the vector (wx,wy,w)
represents the coordinates of a point on a 2D plane it is known as a homogeneous
coordinate.

In its simplest form we can think of the homogeneous coordinate of the 2D
point (x, y) as (x, y, 1). For a point in 3D (x, y, z) we can propose that the
equivalent homogeneous coordinate will be (wx,wy,wz, w), or in its simplest
form (x, y, z, 1). The last element, the 1, is essential because if it was zero then
c in 2.1 would disappear and only lines that pass through the coordinate origin
could be specified.

Considering 2D vectors again, we ask, what sort of two-dimensional vector
might be represented by the homogeneous vector (x, y, 0) (or more generally
(wx,wy, 0))?

We know from basic geometry that the constant c in equation 2.1 defines a
whole family of lines with the same gradient (parallel lines) lying in the plane.
These lines are not anchored to any point. The representation in equation 2.2
shows us that if the homogeneous vector has a third component of zero, then the
c value of the line (a, b, c) is irrelevant in satisfying 2.1. Thus a 2D homogeneous
vector (x, y, 0) can be used to define a direction vector that is independent of
any origin of coordinates. A 3D direction vector may be similarly described by
the homogeneous 4-vector (x, y, z, 0).

After transformations are discussed in section 2.12 it should be evident that
3D direction vectors written in the homogeneous form (x, y, z, 0) are invariant
to translational transformations whereas 3D position vectors, written in homo-
geneous form (x, y, z, 1) and representing points, are not.

There are other subtleties related to 2D and 3D homogeneous coordinates
that have a fourth element of zero, but we refer you to books such as those by
Zisserman [39] for elaboration.

This way of representing vertex coordinates and surface normal vectors is
exactly what we need to handle transformations in 3D graphics.

2.4 The line in vector form

There are two useful ways to express the equation of a line in vector form. For
a line passing through a point P0 and having a direction d̂, then any point p
which lies on the line is given by:

p = P0 + µd̂

P0 is a position vector and d̂ is a unit length (normalized) direction vector.
Alternatively any point p on a line passing through two points P0 and P1 is

given by:

p = P0 + µ(P1 −P0)

2.5. The plane 17

x

y

x

y

z z

P0

P0

P1

Line

d

Line

Figure 2.4: Specifying a line.

The parameter µ takes values in the range −∞ < µ < ∞. Note that when
µ = 0 then p = P0.

On a line passing through two points p = P0 when µ = 0 and p = P1 when
µ = 1.0.

Using two points to express an equation for the line is useful when we need
to consider a finite segment of a line. (There are many examples where we need
to use segments of lines such as calculating the point of intersection between a
line segment and a plane.)

Thus if we need to consider a line segment we can assign P0 and P1 to the
segment end points with the consequence that any point on the line p will only
be part of the segment if its value for µ in the equation above lies in the interval
[0, 1].

2.5 The plane

A plane is completely specified by giving a point on the plane P0, and the
direction n̂ perpendicular to the plane.

To write an equation to represent the plane we can use the fact that the
vector (p−P0) which lies in the plane must be at right angles to the normal to
the plane, thus:

(p−P0) · n̂ = 0

Alternatively a plane could be specified by taking three points, P2, P1 and
P0, lying in the plane. Provided they are not co-linear it is valid to write the
equation of the plane as:

18 2. Basic theory and mathematical results

x

x

y

P0

P0 P1

P2

n̂

y

z

z

Figure 2.5: Specifying a plane.

(p−P0) ·
(P2 −P0)× (P1 −P0)

| (P2 −P0)× (P1 −P0) |
= 0

Figure 2.5 illustrates these two specifications for a plane. It should be noted
that these equations apply to planes that extend to infinity in all directions. We
shall see later that the intersection of a line with a bounded plane plays a very
important role in rendering and modeling algorithms.

2.6 Intersection of a line and a plane

The intersection of a line and a plane is a point pi that satisfies the equation of
the line and the equation of the plane simultaneously. For the line p = Pl + µd̂
and the plane (p−Pp) · n̂ = 0 the point of intersection pI is given by:

i f (|d̂ · n̂| < ǫ) there is no intersection
else {

µ =
(Pp −Pl) · n̂

d̂ · n̂
pI = Pl + µd̂
}

Note that we must first test to see whether the line and plane actually inter-
sect. The parameter ǫ allows for the numerical accuracy of computer calculations
and since d̂ and n̂ are of unit length ǫ should be of the order of the machine
arithmetic precision.

2.7. Closest distance of a point from a line 19

a = P0 −Pp

b = P1 −Pp

da = a · n
db = b · n
i f |da| ≤ ǫ0 and |db| ≤ ǫ0 {
both P0 and P1 lie in the plane

}
else {

dab = dadb
i f dab < ǫ1 {
The line crosses the plane

}
else {

The line does not cross the plane
}

}

Listing 2.2: Algorithm to determine whether the line joining two points crosses a plane.

2.6.1 Intersection of a line segment with a plane

Given a line segment joining P0 to P1 and a plane (p−Pp) · n̂ = 0 the algorithm
of figure 2.2 determines whether the plane and line intersect. Note that this does
not actually calculate the point of intersection. It is a good idea to separate the
calculation of an intersection point by first testing whether there will be one
before going on to determine the point. This is especially useful when we need
to consider clipping, see section 4.2.6.

The parameters ǫ0 and ǫ1 are again chosen as non-zero values because of the
numerical accuracy of floating point calculations.

2.7 Closest distance of a point from a line

Consider the line L passing through the points P1 and P2 as shown in figure 2.6.
To find the closest distance, l, of the point p from L we recognize that the
projection of the vector p − P1 onto PL allows us to find the point, q, on L
which is closest to p. Thus, the closest distance is given by the steps:

Let d = (P2 −P1)

then µ =
(p−P1) · d

d · d and q = P1 + µd

thus l = |p− q|
When (µ < 0 or µ > 1.0) {

p is closer to the line outside of the segment from P1 to P2

}

20 2. Basic theory and mathematical results

x

z

y

d

P1

P2

L

l

p

q

Figure 2.6: Closest distance of a point from a line segment.

As illustrated in figure 2.6 it is only when 0 < µ < 1 that the perpendicular
from p to the line meets the position vector d, i.e., between the points P1, P2.

This algorithm is useful for a 3D application program where it is necessary
to interactively pick a line by touching it, or pointing to it on a display with a
user input device such as a mouse.

2.8 Closest distance of approach between two lines

In three-dimensional space two arbitrary lines rarely intersect. However it is
useful to be able to find the closest distance of approach between them. In the
geometry shown in figure 2.7 the segment AA′ (vector b) joins the points of
closest approach between the lines:

p = P1 + λr̂

p = P2 + µd̂

At the points of closest approach b is perpendicular to both lines and therefore:
b · d̂ = 0 and b · r̂ = 0.

To determine the length of b consider the alternative ways of specifying the
point x, i.e., following alternative paths from O to x:

x = P1 + λr̂

x = P2 + µd̂+ b

Thus:
µd̂− b = λr̂+ (P1 −P2) (2.5)

2.9. Reflection in a plane 21

Line 1

Line 2

P2

P1

x

b

A

A´
d

r

x

y

z

O

^

^

Figure 2.7: Closest distance of approach between two lines.

Once λ and µ are determined the length of b is readily found:

l =
∣

∣

∣
P1 + λr̂− (P2 + µd̂)

∣

∣

∣
(2.6)

Taking the dot product of 2.5 with r̂ will eliminate b and give an expression for
λ:

λ = µ(d̂ · r̂)− (P1 −P2) · r̂ (2.7)

The dot product of 2.5 with d̂ eliminates b and substituting λ using 2.7 gives:

µ =
((P1 −P2) · d̂)− ((P1 −P2) · r̂)(d̂ · r̂)

1− (d̂ · r̂)2
(2.8)

With µ known 2.7 gives λ and then the distance of closest approach follows
from 2.6.

Note: If the lines are parallel
∣

∣(d̂ · r̂)
∣

∣ < ǫ (where ǫ is the machine tolerance of
zero, approximately 1×10−6 for single precision calculations), then the algorithm
is terminated before it reaches equation 2.8.

2.9 Reflection in a plane

In many rendering algorithms there is a requirement to calculate a reflected
direction given an incident direction and a plane of reflection. The vectors we
need to consider in this calculation are of the direction type and assumed to be
of unit length.

If the incident vector is d̂in, the reflection vector is d̂out and the surface
normal is n, we can calculate the reflected vector by recognizing that because
d̂out and d̂in are normalized (the argument would work equally well provided

22 2. Basic theory and mathematical results

Reflective Surface

θ

θ

^
dout

^
din

^n

Figure 2.8: Incident and reflection vector.

dout and din are the same length) then vector (d̂out − d̂in) is co-linear with n̂;
figure 2.8 illustrates this, therefore:

d̂out − d̂in = αn̂ (2.9)

where α is a scalar factor. As the incident and reflected angles are equal

d̂out · n̂ = −d̂in · n̂ (2.10)

Taking the dot product of both sides of Equation 2.9 with n, substituting in
equation 2.10 and using the fact that n is normalized we obtain for the reflected
direction:

d̂out = d̂in − 2(d̂in · n̂)n̂

2.10 Refraction at a plane

Photo-realistic renderers require to be able to simulate transparent surfaces
where rays of light are refracted as they pass through the boundary between
materials of different refractive index. Figure 2.9 shows a refractive surface with
an incident vector d̂i, surface normal n̂ and refracted vector d̂r. All three vectors
are of the direction type.

The physical model of refraction is expressed in Snell’s law which states:

nr

ni

=
sin θi
sin θr

2.11. Intersection of a line with primitive shapes 23

where ni and nr are transmission constants for the media in which the incident
and refracted light rays travel. Snell’s law can also be written in vector form:

ni(d̂i × n̂) = nr(d̂r × n̂)

Since d̂i, d̂r and n̂ all lie in a plane, d̂r can be expressed as a linear combination
of d̂i and n̂:

d̂r = αd̂i + βn̂ (2.11)

Taking the vector product of both sides of equation 2.11 with n̂ and substituting
it for the right-hand side of the vector form of Snell’s law gives a value for α
which is:

α =
ni

nr

The dot product of both sides of equation 2.11 produce a quadratic in β:

d̂r · d̂r = 1 = α2 + 2αβ(n̂ · d̂i) + β2

Only one of the roots of this equation is a physically meaningful solution. The
appropriate root is determined by considering an incident ray perpendicular to
the surface. Once this is done the meaningful value of β is substituted into 2.11
and rearranged to give a two step calculation for the refracted direction:

r = (n̂ · d̂i)
2 +

(

nr

ni

)2

− 1

d̂r =
ni

nr

(

(
√
r − n̂ · d̂i)n̂+ d̂i

)

Note that if the term r is negative, reflection (section 2.9) rather than refraction
occurs.

2.11 Intersection of a line with primitive shapes

Many 3D algorithms (rendering and modeling) require the calculation of the
point of intersection between a line and a fundamental shape called a primitive.
We have already dealt with the calculation of the intersection between a line and
a plane. If the plane is bounded we get a primitive shape called a planar polygon.
Most 3D rendering and modeling application programs use polygons that have
either three sides (triangles) or four sides (quadrilaterals). Triangular polygons
are by far the most common because it is always possible to reduce an n sided
polygon to a set of triangles. Most of the modeling algorithms in this book will
refer to triangular polygons. An algorithm to reduce an n sided polygon to a set
of triangular polygons is given in chapter 10.

Other important primitive shapes are the planar disc and the volume solids,
the sphere and cylinder. There are more complex shapes that can still be termed

24 2. Basic theory and mathematical results

x

y

^
z

p

θr

Refractive
Boundary

θi

dr

^
di

n̂

Figure 2.9: Tracing a refracted ray. Note that the incident, refracted and surface
normal directions all lie in a plane.

primitive though they are used much less frequently. It is possible to set up
analytic expressions for shapes made by lofting a curve along an axis or by
sweeping a curve round an axis; see Burger and Gillies [15] for examples. There
are a large number of other primitive shapes such as Bézier, spline and NURBS
patches and subdivision surfaces to mention a few.

In this section we will examine the most important intersection in the context
of software that uses planar polygons as the basic unit for modeling objects.

2.11.1 Intersection of a line with a triangular polygon

This calculation is used time and time again in modeling algorithms (Booleans,
capping and normal calculations) and in rendering algorithms (image and tex-
ture mapping and in ray tracing). The importance of determining whether an
intersection occurs in the interior of the polygon, near one of its vertices, or at
one of its edges, or indeed just squeaks by outside, cannot be over emphasized.

This section gives an algorithm that can be used determine whether a line
intersects a triangular polygon. It also classifies the point of intersection as being
internal, or a point close to one of the vertices or within some small distance from
an edge.

The geometry of the problem is shown in figure 2.10. The point Pi gives the
intersection between a line and a plane. The plane is defined by the points P0,
P1 and P2, as described in section 2.6. They also identify the vertices of the
triangular polygon. Vectors u and v are along two of the edges of the triangle
under consideration. Provided u and v are not co-linear the vector w,

w = Pi −P0

2.11. Intersection of a line with primitive shapes 25

Pi

u

w

v

P0

P2

P1

x

O

z

y

Figure 2.10: Intersection of line and triangular polygon.

lies in the plane and can be expressed as a linear combination of u and v:

w = αu+ βv (2.12)

Once α and β have been calculated a set of tests will reveal whether Pi lies
inside or outside the triangular polygon with vertices at P0, P1 and P2.

Algorithm overview:

1. To find Pi we use the method described in section 2.6.

2. To calculate α and β take the dot product of 2.12 with u and v respectively.
After a little algebra the results can be expressed as:

α =
(w · u)(v · v)− (w · v)(u · v)

(u · u)(v · v)− (u · v)2

β =
(w · v)(u · u)− (w · u)(u · v)

(u · u)(v · v)− (u · v)2

Since both expressions have the same denominator it need only be calcu-
lated once. Products such as (w · v) occur more than once and therefore
assigning these to temporary variables will speed up the calculation. It
is very worthwhile optimizing the speed of this calculation because it lies
at the core of many time critical steps in a rendering algorithm, particu-
larly image and texture mapping functions. C++ code for this important
function is available with the book.

The pre-calculation of (u ·u)(v ·v)− (u ·v)2 is important, because should
it turn out to be too close to zero we cannot obtain values for α or β. This
problem occurs when one of the sides of the triangle is of zero length. In

26 2. Basic theory and mathematical results

practice a triangle where this happens can be ignored because if one of its
sides has zero length, it has zero area and will therefore not be visible in a
rendered image.

3. Return hit code as follows:

i f (α < −0.001 or α > 1.001 or
β < −0.001 or β > 1.001) miss polygon

i f ((α+ β) > 1.001) miss polygon beyond edge P1 → P2

i f (α ≥ 0.0005 and α ≤ 0.9995
and β ≥ 0.0005 and β ≤ 0.9995
and (α+ β) ≤ 0.9995) inside polygon

else i f (α < 0.0005) {
along edge P0 → P1

i f (β < 0.0005) at vertex P0

else (i f β > 0.9995) at vertex P1

else On edge P0 → P1 not near vertex
}
else i f (β < 0.0005) {
along edge P0 → P2

i f (α < 0.0005) at vertex P0

else i f (α > 0.9995) at vertex P2

else On edge P0 → P2 not near vertex
}
else i f ((α+ β) > 0.9995) on edge P1 → P2

else miss polygon

Note that the parameters −0.001 and so on are not dependent on the
absolute size of the triangle because α and β are numbers in the range
[0, 1].

Alternative algorithms for ray/triangle intersection are shown in Badouel [34]
and Moller [60].

2.12 Transformations

Transformations have two purposes in 3D graphics: to modify the position vector
of a vertex and change the orientation of a direction vector. It is useful to express
a transformation in the form of a matrix. In the previous sections we discussed
vectors; a vector itself is just a special case of a matrix. If you are unfamiliar
with matrices, vectors or linear algebra in general it might be useful to consult
other references [7, 17,57].

The vectors we have used so far apply to the 3D universe and thus have
three components (x, y, z). In matrix form they also have three elements and

2.12. Transformations 27

are written in a single column:




x
y
z





This matrix is said to have three rows and one column, a 3× 1 matrix. Matrices
can have any number of rows and columns; for example a 4× 4 matrix might be
represented by:









a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33









It turns out that all the transformations appropriate for computer graphics work,
moving, rotating, scaling etc., can be represented by a matrix of size 4× 4. Ma-
trices are mathematical objects and have their own algebra just as real numbers
do. You can add, multiply and invert a matrix.

Several different notations are used to represent a matrix. Throughout this
text we will use the [] bracket notation. When we discussed vectors we used a
bold type to represent a vector as a single entity. When we want to represent
a matrix as an individual entity we will use the notation of a capital letter in
square brackets, e.g., [P]. Since a 3D vector and a 3 × 1 matrix represent the
same thing we will use the symbols P and [P] interchangeably.

If a transformation is represented by a matrix [T], a point p is transformed
to a new point p′ by matrix multiplication according to the rule:

[p′] = [T][p]

The order in which the matrices are multiplied is important; [T][p] is different
from [p][T], and indeed one of these may not even be defined.

There are two important points which are particularly relevant when using
matrix transformations in 3D graphics applications:

1. How to multiply matrices of different sizes.

2. The importance of the order in which matrices are multiplied.

The second point will be dealt with in section 2.12.4. As for the first point,
to multiply two matrices the number of columns in the first must equal the
number of rows in the second. For example a matrix of size 3 × 3 and 3 × 1
may be multiplied giving a matrix of size 3 × 1. However a 4 × 4 and a 3 × 1
matrix cannot be multiplied. This poses a small problem for us because vectors
are represented by 3 × 1 matrices and transformations are represented as 4× 4
matrices.

The problem is solved by using homogeneous coordinates in the transfor-
mations. We will not make use of all the extra flexibility that working in ho-
mogeneous coordinates offers and restrict ourselves to taking advantage of the

28 2. Basic theory and mathematical results

promotion of a 3D coordinate by adding a fourth component of unity to the
vectors that represent positions. Thus the first three elements of a homogeneous
coordinate are the familiar (x, y, z) values and the fourth is set to ‘1’ so that
now a vector appears as a 4 × 1 matrix. A transformation applied to a vector
in homogeneous coordinate form results in another homogeneous coordinate vec-
tor. For all the work in this book the fourth component of vectors will be set
to unity and thus they can be transformed by 4 × 4 matrices. We will also use
transformations that leave the fourth component unchanged. Thus the vector p
with components (p0, p1, p2) is expressed in homogeneous coordinates as:

p =









p0
p1
p2
1









Note that many texts use the fourth component for certain transformations
and the OpenGL library (used in chapter 7) also offers facilities to use a non-
unity value.

The transformation of p into p′ by the matrix [T] can be written as:









p′0
p′1
p′2
1









=









t00 t01 t02 t03
t10 t11 t12 t13
t20 t21 t22 t23
t30 t31 t32 t33

















p0
p1
p2
1









2.12.1 Translation

The transformation:

[Tt] =









1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1









moves the point with coordinates (x, y, z) to the point with coordinates (x +
dx, y + dy, z + dz).

The translated point [p′] = [Tt][p] or:









1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

















x
y
z
1









=









x+ dx
y + dy
z + dz

1









2.12. Transformations 29

2.12.2 Scaling

The transformation matrix:

[Ts] =









sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1









scales (expands or contracts) a position vector p with components (x, y, z) by
the factors sx along the x axis, sy along the y axis and sz along the z axis. The
scaled vector of p′ is [p′] = [Ts][p].

2.12.3 Rotation

A rotation is specified by an axis of rotation and the angle of the rotation. It
is a fairly simple trigonometric calculation to obtain a transformation matrix
for a rotation about one of the coordinate axes. When the rotation is to be
performed around an arbitrary vector based at a given point, the transformation
matrix must be assembled from a combination of rotations about the Cartesian
coordinate axes and possibly a translation.

Rotate about the z axis To rotate round the z axis by an angle θ, the transfor-
mation matrix is:

[Tz(θ)] =









cosθ −sinθ 0 0
sinθ cosθ 0 0
0 0 1 0
0 0 0 1









(2.13)

We can see how the rotational transformations are obtained by considering
a positive (anti-clockwise) rotation of a point P by θ round the z axis (which
points out of the page). Before rotation P lies at a distance l from the origin
and at an angle φ to the x axis, see figure 2.12. The (x, y) coordinate of P is
(l cosφ, l sinφ). After rotation by θ P is moved to P′ and its coordinates are
(l cos(φ + θ), l sin(φ + θ)). Expanding the trigonometric sum gives expressions
for the coordinates of P′:

Px
′ = l cosφ cos θ − l sinφ sin θ

Py
′ = l cosφ sin θ + l sinφ cos θ

Since l cosφ is the x coordinate of P and l sinφ is the y coordinate of P the
coordinates of P′ become:

Px
′ = Px cos θ − Py sin θ

Py
′ = Px sin θ + Py cos θ

30 2. Basic theory and mathematical results

Viewed with the axis of rotation pointing out of the page

Rotation round
the Z axis

Rotation round
the X axis

Rotation round
the Y axis

x

x

y

z z z

y y

x x

P

P

P

P´

P´

P´

y z x

zy
θ θ

θ
θ

θ

θ

Figure 2.11: Rotations, anti-clockwise looking along the axis of rotation, toward the
origin.

Writing this in matrix form we have:
[

Px
′

Py
′

]

=

[

cos θ − sin θ
sin θ cos θ

] [

Px

Py

]

There is no change in the z component of P and thus this result can be
expanded into the familiar 4×4 matrix form by simply inserting the appropriate
terms to give:









Px
′

Py
′

Pz
′

1









=









cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

















Px

Py

Pz

1









Rotation about the y axis To rotate round the y axis by an angle θ, the transfor-
mation matrix is:

[Ty(θ)] =









cosθ 0 sinθ 0
0 1 0 0

−sinθ 0 cosθ 0
0 0 0 1









2.12. Transformations 31

x

φ + θ

P´

P

y

φ

Figure 2.12: Rotation of point P by an angle θ round the z axis.

Rotation about the x axis To rotate round the x axis by an angle θ, the transfor-
mation matrix is:

[Tx(θ)] =









1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1









Note that as illustrated in figure 2.11 θ is positive if the rotation takes place
in a clockwise sense when looking from the origin along the axis of rotation. This
is consistent with a right-handed coordinate system.

2.12.4 Combining transformations

Section 2.12 introduced the key concept of a transformation applied to a position
vector. In many cases we are interested in what happens when several operations
are applied in sequence to a model or one of its points (vertices). For example:
move the point P 10 units forward, rotate it 20 degrees round the z axis and shift
it 15 units along the x axis. Each transformation is represented by a single 4× 4
matrix and the compound transformation is constructed as a sequence of single
transformations as follows:

[p′] = [T1] [p]

[p′′] = [T2] [p
′]

[p′′′] = [T3] [p
′′]

where [p′] and [p′′] are intermediate position vectors and [p′′′] is the end vector
after the application of the three transformations. The above sequence can be
combined into:

[p′′′] = [T3][T2][T1][p]

32 2. Basic theory and mathematical results

x

x xx

y

y yy

z

z z z

z

y

x

Rotate round
x by π/2 Rotate round

z by π/2

Rotate round

z by π/4

Rotate round

z by π/2

P´

P´

P

P´́

P´́

Figure 2.13: Effect of transformations applied in a different order.

The product of the transformations [T3][T2][T1] gives a single matrix [T]. Com-
bining transformations in this way has a wonderful efficiency: If a large model has
50,000 vertices and we need to apply 10 transformations, by combining the trans-
formations into a single matrix, 450,000 matrix multiplications can be avoided.

It is important to remember that the result of applying a sequence of trans-
formations depends on the order in which they are applied. [T3][T2][T1] is not
the same compound transformation as [T2][T3][T1]. Figure 2.13 shows the effect
of applying the transformations in a different order.

There is one subtle point about transformations that ought to be stressed.
The parameters of a transformation (angle of rotation, etc.) are all relative
to a global frame of reference. It is sometimes useful to think in terms of a
local frame of reference that is itself transformed relative to a global frame and
this idea will be explored when we discuss key frame and character animation.
However it is important to bear in mind that when a final scene is assembled for
rendering, all coordinates must be specified in the same frame of reference.

2.12. Transformations 33

After
rotation

Before
rotation

Axis of
rotation

y

P0

P1

x

z

Figure 2.14: Rotation round an arbitrary vector.

2.12.5 Rotation about an arbitrary axis

The transformation corresponding to rotation of an angle α around an arbitrary
vector (for example that shown between the two points P0 and P1 in figure 2.14)
cannot readily be written in a form similar to the rotation matrices about the
coordinate axes.

One way to obtain the desired transformation matrix is through the combi-
nation of a sequence of basic translation and rotation matrices. (Once a single
4 × 4 matrix has been obtained representing the composite transformations it
can be used in the same way as any other transformation matrix.)

The following outlines an algorithm to construct a transformation matrix to
generate a rotation by an angle α around a vector in the direction P1 −P0:

1. Translate P0 to the origin of coordinates.

2. Align rotation axis P1 −P0 with the x axis.

3. Rotate by angle α round x axis.

4. Make inverse transformation to undo the rotations of step two.

5. Translate origin of coordinates back to P0 to undo the translation of step
one.

The full algorithm is given in listing 2.3. Moller and Haines [1] give a more
robust method of rotating around any axis.

It is possible to combine rotational transformations together into a single 3×3
matrix in the case of a rotation by θ around a directional vector u = [ux, uy, uz]

T .
In this case any translational element would have to be removed first and then
re-applied and θ is anti-clockwise when looking in the direction of u. Thus:

[T (θ)] = [I]cosθ + sin θ[Tc] + (1− cos θ)[Tt] (2.14)

34 2. Basic theory and mathematical results

Let d = P1 −P0

[T1] = a translation by −P0

dxy = d2x + d2y
i f dxy < ǫ {
rotation axis is in the z direction
i f dz > 0 make [T2] a rotation about z by α

else [T2]is a rotation about z by −α
[T3]is a translation by P0

return the product [T3][T2][T1]
}
dxy =

√

dxy
i f dx = 0 and dy > 0 φ = π/2
else i f dx = 0 and dy < 0 φ = −π/2
else φ = ATAN2(dy, dx)
θ = ATAN2(dz, dxy)
[T2]is a rotation about z by −φ
[T3]is a rotation about y by −θ
[T4]is a rotation about x by α
[T5]is a rotation about y by θ
[T6]is a rotation about z by φ
[T7]is a translation by P0

Multiply the transformation matrices to give the final result
[T] = [T7][T6][T5][T4][T3][T2][T1]

Listing 2.3: Algorithm for rotation round an arbitrary axis. dx, dy and dz are the
components of vector d.

where:

[Tc] =





0 −uz uy

uz 0 −ux

−uy ux 0





is the cross product matrix and:

[Tt] =





u2
x uxuy uxuz

uyux u2
y uyuz

uzux uzuy u2
z





is the tensor product. This neat expression is a matrix form of Rodrigues’ rota-
tion formulae.

2.12.6 Rotational change of frame of reference

In working with objects that have curved surfaces, or even those with flat surfaces
that are not orientated in the direction of one of the axes of the global frame of
reference, it is sometimes desirable to define a local frame of reference on every

2.12. Transformations 35

(a) (b) (c)

x

x

y
n

nn
zz

by

z

x

t

t
t

b
P

P
P

Figure 2.15: Surface local coordinates: (a) A point on an object with position P in
the global (world) frame of reference has a surface local frame of reference, (b) in a
two-dimensional section. (c) The relative orientations of the local and global frames of
reference.

point on the surface. For any point on a surface P the normal vector n is used
to define the orientation of the surface and is an important variable in all the
lighting models.

The normal is defined through its components (nx, ny, nz) relative to the
global frame of reference. However locally at the surface, the normal is always
vertical. If we can define two other mutually perpendicular vectors at P we
would have a frame of reference in which the normal was always vertical and
any other point or direction could be defined with respect to the local frame
of reference. Such a local frame of reference is important when the texturing
procedures of image mapping, and especially bump mapping (see section 4.6.2),
are considered. Figure 2.15 illustrates the relationship between the local frame
of reference and the global frame of reference.

A complete frame of reference requires two additional coordinate vectors. If
we stipulate that the frame of reference is orthogonal, then only one additional
vector is really needed. It must be perpendicular to n and thus it lies in the plane
of the surface at P. In texture mapping applications, this additional vector is
also used to define one of the edges of the map. Even curved surfaces tend to
be locally flat when one is close enough to P. This additional vector lying in
the surface is termed the tangent vector t. The third vector is easily obtained
by taking the cross product: b = n × t. Each of these local frame vectors are
specified by their components in the global frame of reference, thus: (nx, ny, nz),
(tx, ty, tz) and (bx, by, bz).

Given a local frame of reference’s basis vectors it is easy to build a rotational
transformation that will transform any direction vector, defined in the local frame
of reference, to its equivalent direction defined in terms of the global frame of
reference’s basis vector. If the direction d is specified relative to the local frame
by its components (du, dv, dw) then in terms of its direction in the global frame
of reference it will be given by d′ = dun+dvt+dwb. This linear transformation

36 2. Basic theory and mathematical results

can be expressed as a 3× 3 matrix:





dx
′

dy
′

dz
′



 =





tx bx nx

ty by ny

tz bz nz









du
dv
dw



 (2.15)

Equation 2.15 transforms a direction vector specified in the surface local
frame of reference to the equivalent in the global frame, that is local to global
[d′] = [Tlg][d]. However in order to determine the direction of a vector, for
example the relative location of a light to P, the transformation needed is the
one from the global to the local reference frame, that is, [Tgl], the inverse of
[Tlg]. It is a well known result that for rotational transformations the inverse of
its matrix representation is simply its transpose, that is [Tgl] = [Tlg]

−1 = [Tlg]
T .

Thus when the surface normal and surface tangent vectors are known at a
point P, any direction vector, specified relative to the global frame of reference,
can be transformed into a direction vector relative to the surface local reference
frame by multiplying it by the matrix:





tx ty tz
bx by bz
nx ny bz



 (2.16)

Note: This only applies to direction vectors, so for example if we want to get the
relative direction of a light at Lp to the surface at P (both specified in a global
frame of reference), it is the direction vector Lp −P that has to be transformed
with the matrix in equation 2.16.

2.12.7 Viewing transformation

Before rendering any view of a 3D scene (see chapter 4) one has to decide from
where to view/photograph the scene and in which direction to look (point the
camera). This is like setting up a camera to take a picture. Once the camera
is set we just click the shutter. The camera projects the image as seen in the
viewfinder onto the photographic film and the image is rendered. This is a two
stage process: the projection stage will be discussed in section 2.12.8, and now
we will consider how to set a viewpoint and direction of view.

In mathematical terms we need to construct a suitable transformation that
will allow us to choose a viewpoint (place to set up the camera) and direction
of view (direction in which to point the camera). Once we have this view trans-
formation it can be combined with any other transformations that need to be
applied to the scene or to objects in the scene.

We have already seen how to construct transformation matrices that move
or rotate points in a scene. In the same way that basic transformation matrices
were combined in section 2.12.5 to create an arbitrary rotation we can build a
single matrix, [To], that will transform all the points (vertices) in a scene in such

2.12. Transformations 37

After alignment to the x axis
the direction of view is still

tilted by angle α to the right.

Direction of view

View point

(cameral location)

z

y

x

O

x

z

y

y

z

x

O

θ

α

φ

Figure 2.16: Viewpoint and direction of view.

a way that the projection of an image becomes a simple standard process. To do
this we arrange that the camera is fixed at the center of the universe, (0, 0, 0),
and locked off to point in the direction (1, 0, 0) (along the x axis).

There is nothing special about the direction (1, 0, 0); we could equally well
have chosen to fix the camera to look in the direction (0, 1, 0), the y axis, or even
(0, 0, 1), the z axis. But since we have chosen to let z represent the up direction
and it is not a good idea to look directly up, (0, 0, 1) would be a poor choice for
viewing. (Note: The OpenGL and Direct3D software libraries for 3D graphics
have their z axis parallel to the viewing direction.)

Once [To] has been determined it is applied to all objects in the scene. If
necessary [To] can be combined with other transformation matrices to give a
single composite transformation [T].

A viewing transformation depends on:

1. Position of the view point (camera location). (A vector po, see figure 2.16.)

2. The direction in which we wish to look: north, south, east or west. This is
measured by an angle φ which is relative to the x axis and lies in the xy
plane. φ is positive to the right of the x axis when looking along x from
the view point.

3. The amount by which we look up or down. The angle θ measures this
relative to the xy plane. It is positive when looking down. Note that when
determining a viewing transformation the effect of looking up or down
comes into play after the direction of view has been accounted for and
therefore it is equivalent to a rotation around the y axis.

4. The degree to which our head is tilted to the left or right. This is measured
by the angle α. To be consistent with the right-handed frame of reference

38 2. Basic theory and mathematical results

and sense of rotation α is positive when the camera tilts to the right as it
looks from po along the x axis.

A viewing transformation appears to operate in reverse to ordinary transfor-
mations. For example, if you tilt your head to the left, the world appears to
tilt to the right. Note carefully that the angle θ is positive if we are looking
down, and negative if we are looking up. If you prefer, you can think of: φ as
the heading, θ as the pitch and α as the degree of banking. The viewing
transformations are also combined in the reverse order to the order in which
a transformation is assembled for objects placed in a scene. In that case the
rotation around x is applied first and the translation by po is applied last.

Given the parameters po, φ, θ and α (illustrated in figure 2.16) the transfor-
mation [To] is constructed by the following algorithm:

Place observer at (0, 0, 0) with the transformation:
[T1] = a translation by −po

Rotate the direction of observation into the xz plane with:
[T2] = a rotation about z by −φ

Align the direction of observation to the x axis with:
[T3] = a rotation about y by −θ

Straighten the camera up with transformation:
[T4] = a rotation about x by −α

Multiply the individual transformation matrices to give
one composite matrix representing the viewing transformation:
[T0] = [T4][T3][T2][T1]

2.12.8 Projection

We saw in section 2.12.7 that after setting up a camera to record an image the
view must be projected onto film or electronic sensing device. In the conventional
camera this is done with a lens arrangement or simply a pinhole. One could also
imagine holding a sheet of glass in front of the viewer and then having them
trace on it what they see as they look through it. What is drawn on the glass
is what we would like the computer to produce: a 2D picture of the scene. It’s
even showing the right way up as in figure 2.17.

It is straightforward to formulate expressions needed to perform this (non-
linear) transformation. A little thought must be given to dealing with cases
where parts of the scene go behind the viewer or are partly in and partly out
of the field of view (this topic is discussed in section 4.2.6). The field of view
(illustrated in figure 2.18) governs how much of the scene you see; it can be
changed. In photography telephoto and fish-eye lenses have different fields of
view. For example the common 50mm lens has a field of view of 45.9◦. Because
of its shape as a truncated pyramid with a regular base the volume enclosed by
the field of view is known as a frustum.

One thing we can do with a projective transformation is to adjust the aspect
ratio. The aspect ratio is the ratio of height to width of the rendered image.

2.12. Transformations 39

Viewing plane

Y

X

Figure 2.17: Project the scene onto the viewing plane. The resulting two-dimensional
image is then recorded or displayed.

For television work it is 4 : 3 and 16 : 9 for basic cine film. The aspect ratio is
related to the vertical and horizontal resolution of the recorded image. Get this
relationship wrong and your spheres will look egg shaped.

Before formulating expressions to represent the projection we need to define
the coordinate system in use for the projection plane. It has become almost
universal (however not in the OpenGL library discussed in chapter 7) to rep-
resent the computer display as a pair of integers in the range 0 → (Xmax − 1)
horizontally and 0 → (Ymax − 1) vertically. The coordinate origin (0, 0) is in the
top left corner, see figure 2.17.

The distance of the projection plane from the viewpoint can be chosen ar-
bitrarily; setting it to one unit simplifies the calculations. Thus if the plane of
projection is located at (1, 0, 0) and orientated parallel to the yz plane (i.e., the
viewer is looking along the x axis) then the screen coordinates (Xs, Ys) for the
projection of a point (x, y, z) are given by:

Xs =
Xmax

2
− y

x
sx (2.17)

Ys =
Ymax

2
− z

x
sy (2.18)

The parameters sx and sy are scale values to allow for different aspect ratios and
fields of view. This effectively lets us change the zoom settings for the camera.

40 2. Basic theory and mathematical results

Direction of view

x

y

Viewpoint

φ

Figure 2.18: The field of view φ governs how much of the scene is visible to a camera
located at the viewpoint. Narrowing the field of view is equivalent to using a zoom
lens.

Obviously, Xs and Ys must satisfy 0 ≤ Xs < Xmax and 0 ≤ Ys < Ymax.
If ff (measured in mm) is the focal length of the desired camera lens and the

aspect ratio is Ax : Ay then:

sx =
Xmax

2

ff
21.22

Ax

sy =
Ymax

2

ff
21.22

Ay

The numerical factor 21.2 is a constant to allow us to specify ff in standard
mm units. For a camera lens of focal length ff the field of view θ can be expressed
as:

θ ≃ 2ATAN2(21.22, ff)

Any point (x, y, z) for which x < 1 will not be transformed correctly by
equations 2.17 and 2.18 and steps must be made to eliminate them before the
projection is applied. This process is called clipping. How the clipping is done
depends on whether a wireframe or shaded solid is to be rendered and it is
discussed in section 4.2.6.

It is possible to express the perspective transformation as a 4 × 4 matrix.
However, when the matrix is applied to a point’s homogeneous coordinate in
order to find its projected location on the viewing plane, one has to remember to
divide the first three components by the fourth before using the 3D coordinate
value. Since the projection plane is usually chosen to be perpendicular to one of
the coordinate axes, then the value along that axis will become the location of

2.13. Parametric curves 41

Curve suitable for specification
in the form: y = f(x) form

A curve better suited to
specification in parametric form

x x

yy
x = f(t)
y = g(t)

Figure 2.19: Two-dimensional curves.

the clipping plane. For example, the projection matrix for a xz clipping plane
located at y = d would be:









1 0 0 0
0 1 0 0
0 0 1 0
0 1

d
0 0









(2.19)

This transformation sends a homogeneous point (x, y, z, 1) to the homogeneous
point (x, y, z, y

d
), which after projective division becomes (dx

y
, d, d z

y
, 1), equiva-

lent to the 2D coordinate (dx
y
, d z

y
) on the viewing plane (located at y = d).

2.13 Parametric curves

In two dimensions a curve is generally expressed as a function in the form y =
f(x). Unfortunately this can be a cumbersome representation to work with. It’s
fine for curves like the one shown in figure 2.19 (left) but when the curve is closed
or loops, like the one in figure 2.19 (right), then a parametric representation is
better.

The difficulties of expressing a curve in the form y = f(x) can be illustrated
by considering the equation of a circle: y = ±

√
x2 − r2. The problem here is

that to draw a curve with a ± in its equation requires special purpose handling.

A better alternative is to obtain separate functions for x and y in terms of a
single parameter θ:

x = r cos θ (2.20)

y = r sin θ (2.21)

42 2. Basic theory and mathematical results

Start of
curve: τ = 0

P

P (x,y,z) = P(u(τ), v(τ), w(τ))

x

z

y

Figure 2.20: A three-dimensional parametric curve.

where θ is an angle in the range [0, 2π). Equations 2.20 and 2.21 are well
behaved: given a θ each returns one value only. This is ideal for plotting because
it wouldn’t matter if the curve twisted, turned or looped.

Actually, since angles are measured in radians, and radians are a measure of
the arc length of a unit circle, θ could also be thought of as a length along the
curve.

The idea of the parameter having a physical meaning like length is a very
useful one for curves in both two and three dimensions. We shall use it in sec-
tion 6.2.2 when studying the animation of objects following paths. An alternative
and equally useful parameter is time.

Equations 2.20 and 2.21 are specific to a two-dimensional circular curve. For
work in three dimensions a set of parametric functions that apply to a general
curve can be written in the form:

x = u(τ) (2.22)

y = v(τ) (2.23)

z = w(τ) (2.24)

Here τ is the parameter. Any curve (we shall call it a path) in 3D space, be
it a straight line, a Bézier curve, a cubic spline or even a curve constructed from
pieces of other curves, can be specified by three functions. Figure 2.20 illustrates
a typical three-dimensional parametric curve.

2.14 Interpolation

Suppose we have a set of data containing n (n > 1) pairs of values (x0, y0),
(x1, y1), (x2, y2), ... (xi, yy), ... (xn−1, yn−1). These can be plotted on a two-
dimensional diagram as shown in figure 2.21. Joining the points (xi, yi) together

2.14. Interpolation 43

3

0

1

2

4

x

y

Figure 2.21: Data points for interpolation.

Start

End

3

2

1

0

y

x

4

Figure 2.22: Joining up the data points to make a path.

in the order, 0 → 1 → 2 → ... → i → ... → n − 1 will create a path
through the points. The path will have a beginning and an end as illustrated
in figure 2.22. To draw the path we had to use interpolation, that is, we had
to assume what the path looks like as it goes through the data points. For the
path of figure 2.22, with all its kinks, we might be forgiven for thinking that our
assumption on how it behaves between the points is a poor one because the path
shown in figure 2.23, which also passes through the data points, looks smoother,
and for many applications it is therefore a better path.

Since we know nothing more about the path other than the points it passes
through, the which is better argument is unresolvable. The paths shown in
figures 2.22 and 2.23 are only two out of an infinite number of possible paths,
all of which pass through the points (x0, y0), etc.

The path shown in figure 2.22 was drawn by using the following simple pro-
cedure to join up the points:

1. Take the points two at a time and obtain the equation of a straight line

44 2. Basic theory and mathematical results

3

0

1

2

4

x

y

Figure 2.23: Smoothly joining up the data points.

passing through them in parametric form. For example, for points 0 and 1,

x = x0 + µ(x1 − x0)

y = y0 + µ(y1 − y0)

2. For each line use its equations to obtain (select values of µs in the range
(0, 1)) x and y values corresponding to points lying on the line. Plot the
points on the diagram. When enough of them have been plotted the line
will look continuous.

This procedure of finding extra points on the line joining consecutive data points
is called linear interpolation. To draw a smoother path through the same set of
data another type of interpolation is required.

Interpolation procedures that use curves rather than straight lines to plot the
path between data points use more than two consecutive points. For example, by
taking groups of three points at a time it is possible to specify a quadratic curve
for the path between the data points. This is illustrated in figure 2.24 where
three quadratic curves make up the path through seven points. Unfortunately
there are kinks (discontinuous first derivatives) at the points where the curves
join. The path looks smooth near point 1 but at point 2 there is a kink. To
eliminate the kinks we could consider using four points at a time, but then the
kinks would appear at every fourth point. So why not build an (n− 1)th order
curve to go through all the n data points in the path? The reason we cannot
consider more than about four or five points as a group is because the calculation
becomes ill-conditioned. There are ways round the ill-conditioning problem but
even when that is solved a very wiggly path will be produced that looks totally
unrealistic. A better approach is to group three or four points together and
blend them so that the kinks disappear. For example, a good blend is achieved
with the curves making up the path shown in figure 2.25.

The path of figure 2.25 was obtained by blending pieces of cubic curves. A
cubic curve was constructed to pass through points 0− 1− 2− 3 but it was only

2.14. Interpolation 45

3

0

1

2

4

5

6

x

y

Figure 2.24: Quadratic interpolation using points (0− 1− 2) and then (2− 3− 4), etc.

3

0

1

2

4

6

5

x

y

Figure 2.25: Blending cubic curves to make a smooth path.

used to draw that part of the path between points 0 − 2. Another cubic was
designed to pass through points 1− 2− 3− 4 but this time it was used to draw
(by interpolation from the cubic) the piece of the path between points 2− 3.

There are more elaborate ways to blend curves together and much analysis
has been done on the topic. A detailed discussion of such issues can be found in
Burger and Gillies [15].

An alternative but effectively similar strategy to that of blending pieces of
curves together over a range of points is to insist that at all data points, the
slope or gradient of the curve is the same on both sides of the point. This will
eliminate kinks such as those that are so obvious in figure 2.24.

2.14.1 Linear interpolation

Given two points with position vectors P0 and P1 any point lying on a straight
line between them satisfies:

p = P0 + µ(P1 −P0)

46 2. Basic theory and mathematical results

End of curve

Start of curve

Off curve
control points

Figure 2.26: Basic Bézier curve with two control points on and two control points off
the curve.

Choosing µ such that 0 ≤ µ ≤ 1 returns a linearly interpolated point. When
µ = 1

2 then p = P 1

2

will lie midway between P0 and P1.

In terms of the (x, y, z) coordinates of p three interpolating equations can be
written as

x = x0 + µ(x1 − x0)

y = y0 + µ(y1 − y0)

z = z0 + µ(z1 − z0)

(x0, y0, z0) are the coordinates of P0 and (x1, y1, z1) is P1.

2.14.2 Quadratic interpolation

Quadratic interpolation fits a quadratic to three points P0, P1 and P2 to be
taken together. The equation

p = (2(P2 −P0)− 4(P1 −P0))µ
2 − ((P2 −P0)− 4(P1 −P0))µ+P0

gives the point p as µ varies between 0 and 1. When µ = 1
2 the point is p = P1

and p = P2 is reached when µ = 1.
Note that in this case µ is not the length of the curve.

2.15 Bézier curves

In the preceding discussion on interpolation it was assumed that to describe a
path by a number of component curves they all pass through points from which

2.15. Bézier curves 47

End

Start

Other control points

Figure 2.27: Bézier curve with two control points (knots) on and n − 2 other knots
(control points).

their shape was derived. This doesn’t have to be the case. It is true however,
that for computer graphics work, it is likely that our interest is in paths and
curves that do pass through all their control points. Nevertheless there is one
important exception, the Bézier curve.

Curves of this form are named after Pierre Bézier, who worked for the French
company Renault and first used them in the design of automobiles. Today per-
haps their most common usage is to provide a mathematical descriptions of
typefaces and scalable character fonts for the printing industry. The text you
are reading was printed by instructing a printer to fill in the outline of each
character that has been described by a closed path made up from straight line
and Bézier curve segments. PostScript and TrueType fonts that are used by vir-
tually every personal computer to display and print text are specific variants of
this method of describing character and other shapes. Figure 2.26 shows a basic
Bézier curve constructed from four points. It is readily seen that the curve itself
only passes through the first and last point. Bézier curves can have as many
control points as desired but only the first and last will lie on the curve. For all
Bézier curves the direction of the curve as it leaves the first point is toward the
second (off curve) point. The direction in which the curve approached the last
point is from the penultimate one, see figure 2.29. Many books and journal arti-
cles refer to the control points of Bézier and spline curves as knots. Figure 2.27
shows a Bézier curve with n knots (control points).

As the number of knots in a Bézier curve increase the properties that make
it so useful become diluted, the curve just gets lazy and meanders from start to
finish paying little heed to the intervening knots. The most useful Bézier curve
turns out to be the simplest 4 knot curve. These 4 knot curves can be readily
joined together to make the most complex shapes. Figure 2.28 shows a path
with four Bézier segments. Using Bézier segments has the advantage that whilst

48 2. Basic theory and mathematical results

Off path control points

On path control points

Figure 2.28: Path made from several 4 knot Bézier curves.

it is not too difficult to avoid kinks in the path on the occasions when kinks are
desirable they can be easily incorporated.

The mathematical form of the general Bézier curve of degree n defined by
the n+ 1 control points P0,P1,P2, . . . ,Pn is given by:

B(u) =

n
∑

i=0

Bn,i(u)Pi (2.25)

where the blending functions Bn,i are the Bernstein polynomials defined by:

Bn,i(u) =
n!

i!(n− i)!
ui(1− u)n−i (2.26)

In computer graphics the most commonly used Bézier curves are of degree 3.
There are several algorithms for drawing Bézier curves: one suitable for any
number (n) of knots is the de Casteljau recursive procedure [15]. De Castlejau’s
algorithm is relatively short but because it is recursive its calculation can be
quite slow especially when n is large.

In the case of Adobe’s Postscript language [44], font and other curved shapes
are described by a set of 4 knot Bézier curves and straight line segments. A 4 knot
Bézier curve is specified by a cubic polynomial in parametric form. Figure 2.29
illustrates the effect on the Bézier of moving the knots to different positions. By
linking 4 knot Bézier curves together the most complicated calligraphic shapes
as illustrated in figure 2.30.

For the four knots (x0, y0), (x1, y1), (x2, y2) and (x3, y3), a point (x, y) on
the Bézier can be interpolated using:

x(t) = axt
3 + bxt

2 + cxt+ x0 (2.27)

y(t) = ayt
3 + byt

2 + cyt+ y0 (2.28)

2.15. Bézier curves 49

(x3, y3)(x0, y0)

(x0, y0)(x0, y0)

(x3, y3)

(x2, y2)

(x2, y2)

(x2, y2)

(x3, y3)

(x1, y1)
(x1, y1)(x1, y1)

Figure 2.29: Two-dimensional Bézier curves showing the effect of different placement
of the intermediate points (the knots).

Figure 2.30: Calligraphic shape (the letters CG) made from many 4 knot Bézier curves.

where t is the parameter and

x1 = x0 +
cx
3

(2.29)

x2 = x1 +
cx + bx

3
(2.30)

x3 = x0 + ax + bx + cx (2.31)

Usually the (x0, y0), (x1, y1) etc. are known. ax, bx and cx can be calculated
by rearranging equations 2.29, 2.30 and 2.31 to give:

cx = 3(x1 − x0)

bx = 3(x2 − 2x1 + x0)

ax = x3 + 3(x1 − x2)− x0

Similar expression for ay, by etc., can be obtained.

Equations 2.27 and 2.28 are readily extended to give a description of a 4 knot
curve in three dimensions. The knots are specified by position vectors and the
interpolated points can be obtained by varying the parameter t.

50 2. Basic theory and mathematical results

2.16 Splines

Spline is a term that owes it origins to the flexible strip of wood draftsmen used
to use to draw curves. Weights would hold the spline in place at the points
on the drawing which the curve must pass through. Tracing along the wooden
strips produced a smooth and pleasing curve. An examination of the properties
of the physical spline suggests a suitable mathematical model for it is a cubic
function. A good example of a cubic function is the Hermite curve which is
specified in terms of the curve passing through two end points at which two
tangent directions are also specified.

The spline that will be examined in this section has the greatest utility in
computer graphics because it is constructed so that it passes through all the data
points. Since a cubic curve requires four parameters to define it, a spline curve
that will fit through more than four data points is usually handled piecewise,
where four data points are taken in turn, with the spline function used to de-
termine the course of the curve between the middle two. This form of piecewise
spline is ofter referred to as a Catmull-Rom spline.

A cubic spline is written in the form:

p(τ) = K3τ
3 +K2τ

2 +K1τ +K0 (2.32)

or equivalently (to speed up its calculation)

p(τ) = (((K3τ +K2)τ +K1)τ +K0)

The unknown vector constants K0, K1, K2 and K3 have to been determined;
their components are independent of each other. τ is a parameter having values in
the interval [0, 1] such that when τ = 0, p(0) = Pi, and when τ = 1, p(1) = Pi+1

To determine the unknown vector constants we impose four conditions on 2.32:

1. The spline passes through the point Pi at the start of the curve.

2. The spline passes through the point Pi+1 at the end of the curve.

3. The derivative P′
i of the spline at Pi is given.

4. The derivative P′
i+1 of the spline at Pi+1 is given.

These apply to each of the components of p, i.e., for its x component we need
to consider the values: xi , xi+1, x

′
i , x

′
i+1. Differentiating equation 2.32 w.r.t.

τ gives:

p′(τ) = 3K3τ
2 + 2K2τ +K1 (2.33)

Substituting for xi and xi+1 in (2.32) with τ = 0 and τ = 1 respectively and
then with x′

i and x′
i+1 in (2.33) while τ = 0 and τ = 1 gives four simultaneous

2.16. Splines 51

equations for the x component of the Ks. Written in matrix form these are:








0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

















K3x

K2x

K1x

K0x









=









xi

xi+1

x′
i

x′
i+1









On solution the following expressions are obtained:

K3x = 2xi − 2xi+1 + x′
i + x′

i+1

K2x = −3xi + 3xi+1 − 2x′
i − x′

i+1

K1x = x′
i

K0x = xi

If Pi and Pi+1 are part of a set of points making up a path, such as, ... Pi−1,
Pi, Pi+1, Pi+2 ..., the Ks are obtained using the value of p at Pi−1, Pi, Pi+1

and Pi+2 as follows:

K3x = −1

2
xi−1 +

3

2
xi −

3

2
xi+1 +

1

2
xi+2 (2.34)

K2x = xi−1 −
5

2
xi + 2xi+1 −

1

2
xi+2 (2.35)

K1x = −1

2
xi−1 +

1

2
xi+1 (2.36)

K0x = xi (2.37)

Similar expressions may be written for K3y , K3z , etc., and thus the constant
vectors Ki become:

Ki =





Kix

Kiy

Kiz





for i = 0, 1, 2, 3.
In summary: The calculations we used to obtain the Ki vectors are local.

That is, they only depend on coordinates of the two points between which the
cubic is used for interpolation and the two other nearest neighbors. Therefore,
when we draw pieces of a path with many points, segments can be drawn inde-
pendently. There is no need to take a global view of the whole path in order to
draw just a little piece of it.

A couple of notes on splines:

• Extending this type of spline for use in three dimensions is relatively easy.
A parameter, τ , replaces the variable x and there are two additional poly-
nomials, one in each of the other coordinates.

• Usually τ takes integer values at the control points, i.e. −1, 0, 1, 2. In this
case there is no relationship between the parameter τ and the distance
between the points.

52 2. Basic theory and mathematical results

Lagrange
polynomial

Spline

Figure 2.31: Effect of displacing a control point on the shape of spline and Lagrange
polynomials.

2.16.1 The natural spline

An alternative view of the calculation of the spline constants arises by consid-
ering all the fixed points of the spline together in a single step. A set of cubic
curves, one for each pair of fixed points, is still obtained but the blending is
done implicitly and the overall curve is smooth and well behaved. Well behaved
means that if one of the control points is moved the curve will change shape only
in its vicinity. Far away, the shape of the curve will not be affected. Contrast
this with other interpolation methods, Lagrange polynomial interpolation for
example: If a Lagrange polynomial is fitted to the data a change in one control
point will show a ripple effect throughout the curve. Some examples of this effect
are shown in figure 2.31 where spline and Lagrangian interpolating functions are
compared.

To study the idea of a global spline curve we shall examine a two-dimensional
set of n points, (xi, yi), where the data is ordered so that x0 < x1 < x2 < ... <
xn−2 < xn−1. Figure 2.32 illustrates the setup.

For the ith interval, between the points (xi, yi) and (xi+1, yi+1), the form of
the cubic is:

y = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di (2.38)

This curve must be satisfied by both (xi, yi) and (xi+1, yi+1). Blending is
achieved by assuming that at (xi, yi) the slope and curvature are the same as
in the previous interval (between points (xi−1, yi−1) and (xi, yi)). Slope and
curvature are given by first and second derivatives respectively.

2.16. Splines 53

h1

0
1

2

(xi, yi)

i

n–2

n–1

x

y

Figure 2.32: A two-dimensional spline curve passing through n data points.

Letting hi = (xi+1 − xi) and Si represent the second derivative at the point
(xi, yi) an equation in which the Sis are unknown may be written for a general
point i,

hi−1Si−1 + 2(hi−1 + hi)Si + hiSi+1 = 6

(

yi+1 − yi
hi

− yi − yi−1

hi−1

)

(2.39)

Equation (2.39) is obtained by differentiating (2.38) twice, rearranging and mak-
ing use of the assumptions about slope and curvature at point i.

Since equation (2.39) applies at the points on the spline (except the first and
last) a set of n−2 simultaneous equations may be written for the n values of Si,
that is, an equation for each of the internal points 1, 2, ... (n− 2).

A set of n− 2 equations in n unknowns does not have a unique solution and
so two additional equations, for S0 and Sn−1, are obtained by specifying some
pertinent end conditions. Possible end conditions are:

1. The end cubics approach linearity, S0 = Sn−1 = 0, the so-called natural
boundary conditions.

2. The end cubics approach parabolas, S0 = S1 and Sn−1 = Sn−2.

3. S0 is a linear extrapolation from S1 and S2, and Sn−1 is a linear extrapo-
lation from Sn−3 and Sn−2.

Using the natural boundary conditions a set of n − 2 linear equations in
n − 2 unknowns (the Si) are established. In matrix form, these are written as
[H][S] = [Y] where:

54 2. Basic theory and mathematical results

[H] =

















2(h0 + h1) h1 0 0 .. 0
h1 2(h1 + h2) h2 0 .. 0
0 h2 2(h2 + h3) h3

..
0 .. 0 hn−4 2(hn−4 + hn−3) hn−3

0 .. 0 0 hn−3 2(hn−3 + hn−2)

















[S] =

















S1

S2

S3

..

..
Sn−2

















[Y] = 6

































(

y2 − y1
h1

− y1 − y0
h0

)

(

y3 − y2
h2

− y2 − y1
h1

)

(

y4 − y3
h3

− y3 − y2
h2

)

..

..
(

yn−1 − yn−2

hn−2
− yn−2 − yn−3

hn−3

)

































The matrix [H] is very sparse (it has many zero elements) and tridiagonal. Linear
equations with this structure are amenable to very rapid solution by using an
algorithm such as the one in McCalla [58].

Once the Si have been found the constants ai, bi, ci and di in equation 2.38
are obtained from:

ai =
Si+1 − Si

6hi

bi =
Si

2

ci =
yi+1 − yi

hi

− 2hiSi + hiSi+1

6
di = yi

After that, the cubic polynomial equation (2.38) is used to yield values for y
given x in the interval between (xi, yi) and (xi+1, yi+1).

2.16. Splines 55

2.16.2 Other splines

Splines come in many flavors. The basis splines, uniform B-spline, non-uniform
B-splines and recursive B-splines have other mathematical properties that make
them useful in different situations. The common feature among all these splines
is that they are constructed piecewise by blending together a series of functions
Bi(t) within each of the pieces. The Bi(t) are called the basis functions, hence
the B in the name. They are functions of a single parameter t. It is then possible
to determine the location of any point on the curve defined by n+1 control points
from:

P(t) =

n
∑

i=0

Ni(t)Pi (2.40)

where the Pi are the control points and, in the case of the uniform B-splines:

Ni(t) =























B0(t− ti+1) if t ∈ [ti+1, ti+2)
B1(t− ti) if t ∈ [ti, ti+1)
B2(t− ti−1) if t ∈ [ti−1, ti)
B3(t− ti−2) if t ∈ [ti−2, ti−1)
0 otherwise

(2.41)

Of course, any single piece in which of P(t) is to be determined is only affected
by four control points. Thus for segment k

Pk(t) =
3
∑

i=0

Ni+k−1(t)Pi+k−1 (2.42)

The ti values in equation 2.41 are called the knot values, since they correspond
to the parameter at each of the curve’s knots. The knots are the points on the
curve where it begins and ends as well as those points where the pieces of the
spline join together. Thus a curve with n+1 control points will have n−1 knots.
The full collection of knot values for a curve is known as the knot vector.

In B-splines the ti are equally spaced; in the non-uniform B-splines they may
take any value of t, even the same value. The Bi(t) are determined so that the
properties we require for the spline are satisfied. In the case of the non-uniform
and rational B-splines the Ni(t) are determined through a recursive formula that
also depends on the order of the curve, which for cubic splines is 3.

To plot a B-spline curve specified by n+1 control points, incremental values
of the parameter t ∈ [0, n− 1] are substituted into 2.40 and the resulting points
P joined up. For example, for a curve with 8 control points, the uniform B-spline
knot vector will be [0, 1, 2, 3, 4, 5] and there will be 5 segments.

We have only touched on the rich mathematics of spline curves in this section.
Bartels et al. [8] present a useful general study of spline theory for both curves
and surfaces. They introduce the highly useful non-uniform rational B-spline
(NURBS) that has proved its utility in CAD applications. Lengyel [54] provides
a detailed derivation of the basis functions for all splines in the family.

56 2. Basic theory and mathematical results

Control points

Moved control points

Oblique view of patch

Oblique view
Polygonal mesh

Patch

Figure 2.33: A basic NURBS patch is controlled by its network of control points.
(Taken from OpenFX.)

2.17 Parametric surfaces

In section 2.16 methods of working with curves in computer graphics were dis-
cussed. The Bézier and spline curves introduced there can be extrapolated into
a two-dimensional space to facilitate modeling curved surfaces. However, Bézier
and simple polynomial based curves cannot model every form of curve, for exam-
ple a circle cannot be exactly modeled by a Bézier curve. Rational polynomials
(one polynomial divided by another) offer the potential to model any shape.
Extending rational polynomials into a two variable parameter space offers the
potential to represent a surface with any degree of curvature. Making up mod-
els from patches described by rational polynomials with the added constraints
of position, tangent and curvature continuity offers the potential to model any
shapes. Two-dimensional NURBS fulfills all the requirements for patch modeling
and have proved popular with CAD designers. Most CAD tools and 3D model-
ing software offers the facility to use NURBS surfaces, which are straightforward
extensions of NURBS curves.

NURBS patches are specified in terms of their control points. Figure 2.33
illustrates a 2D patch with its control points and how it is possible to move

2.17. Parametric surfaces 57

the control points interactively to distort the patch into shape to be modeled,
whilst the control points of a NURBS patch are the main way in which the patch
of a CAD software program is specified by the designer. There are two other
attributes that are needed for a full specification of the patch, the knot and the
order. The order of a NURBS patch is the number of control points used in the
calculation of the coordinate of any point on the patch. The knots determine
how the control points affect the patch. They effectively give weight to how much
influence the control points have on determining the coordinate of any point on
the surface.

By definition, NURBS patches are 2D surfaces embedded in 3D space, the
shape of which is determined by a network of control points pi,j(x, y, z). The
control points are arranged in a 2D grid of surface local coordinates (u, v), where
0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. The 3D location of any point on the surface P of
a patch is obtained by specifying a value of the patch local coordinate system
(u0, v0), and use:

P(u, v) =

k
∑

i=1

l
∑

j=1

Ri,j(u, v)pi,j (2.43)

Here, R(u, v) is the rational polynomial that gives a NURBS its properties, l
is the number of control points across the surface in the u direction,and l the
number in the v direction.

To generate a polygonal mesh for a NURBS patch, a regular array of (u, v)
coordinates is passed through equation 2.43 to give an array of 3D coordinates
that are connected together in a polygonal mesh, an example of which is depicted
in figure 2.34.

The term Ri,j(u, v) in equation 2.43 is obtained through a combination of
basis functions, Ni,n, which are polynomials of degree n. The degree of polyno-
mial may be chosen depending on the desired properties, curvature etc., of the
surface, and based on this, additional control points are brought into play in cal-
culating R(u, v). Typically Ni,n (where i identifies a control point) is obtained
in a recursive formulation:

Ni,n = fNi,n−1 + gNi+1,n−1

f is a linear function that rises from 0 to 1 and g falls from 1 to 0 over the
intervals where N is non-zero. Ni,0 is a constant function with a value of 1 over
the interval between control points [i, i+ 1] and 0 elsewhere.

Bringing these terms together allows the expression for Ri,j(u, v) to be eval-
uated:

Ri,j(u, v) =
Ni,n(u)Nj,m(v)wi,j

∑k
p=1

∑l
q=1 Np,n(u)Nq,m(v)wp,q

(2.44)

wi,j is the control point’s weighting value. For a good practical implementa-
tion of the NURBS patch see Peterson’s Graphics Gem [41] and further details

58 2. Basic theory and mathematical results

Control pointsPatches

Polygonal
mesh

Shaded view

Figure 2.34: NURBS patches can take up any curvature. In this figure, 32 patches are
combined to form the model of a highly curved surface. For visualization purposes the
patches are converted to a polygonal mesh of the most suitable resolution, which might
be viewpoint dependent.

of the basic mathematics of NURBS curves and surfaces may be obtained in
Lengyel [54].

2.18 Angular interpolation (quaternions)

Implicit in the previous discussion on interpolation was the use of the Cartesian
coordinate system. This is ideal for interpolating position vectors. On the other
hand there are many scenarios where it will be required to interpolate direction
vectors.

Consider the following:

You are standing on the top of a hill with a camera on a motorized
tripod looking North. You wish to set the camera so that it pans round
to face East taking pictures every 10◦.

2.18. Angular interpolation (quaternions) 59

Two possible interpolation angles

θ2θ2θ2

θ1 θi θ1
θ1

θi

Figure 2.35: In this example of angular interpolation there are two possible values for
an angle bisecting the angles θ1 and θ2.

This is a job for angular interpolation, first direction 0◦, last direction 90◦, and
8 intermediate steps. In this case linear interpolation of the angle is the natural
way to obtain the directions to use for the intermediate shots. As we shall see
when we consider computer animation a combination of interpolated positions
and interpolated angles is a very efficient method of directing the action.

Angles are cyclic of period 2π, therefore the angle α is the same angle as
α+2π, α+4π, . . . , α+2nπ. This makes interpolation a little tricky. As shown
in figure 2.35 there are two possible solutions to the problem of finding the angle,
θi, that lies half way between the two angles θ1 and θ2.

This problem of interpolation gets more complex when three dimensions are
involved. First, to be able to specify an arbitrary orientation three angles are
needed. Section 2.12.7 introduced three measures that describe the orientation
of a camera observing a collection of objects. There they were referred to as
heading, pitch and roll (bank). Three angles specifying an orientation are known
as Euler angles. However, there are 12 possible conventions for describing Euler
angles making their specification rather confusing. We will choose the convention
for orientation illustrated in figure 2.36. Thus, in three dimensions, interpolation
between two orientations reduces to the problem of obtaining the triple (φ, θ, α)
given two or more sets of angles (φ0, θ0, α0), (φ1, θ1, α1), etc.

Unfortunately, orientations specified with Euler angles (φ, θ, α) cannot be in-
terpolated in the same way that positions are interpolated because of the periodic
way in which angles are defined. This poses something of a problem; however an
excellent solution has been waiting in the wings since 1843 when Hamilton [37]
developed the mathematics of the quaternion as part of his attempt to find a
generalization of the complex number. The significance of the quaternion for
computer graphics was first recognized by Shoemake [81].

For the work in this book it is unnecessary to explore the details of the quater-
nion in depth. We are only interested in using quaternions to help us achieve
angular interpolation between given orientations and this simply requires that we

60 2. Basic theory and mathematical results

Viewed from
the rear

(looking forward)

Heading pitch and
roll directions

y

y

z

θ

x

z

x

Viewed from
below

(looking up)

Viewed from the
right hand side
(looking left)

y

φ

α

x

z

P

Figure 2.36: One set of Euler angles (φ, θ, φ) used to specify orientation. In each of
the views the third axis is directed into the page. Each angle is specified by a radian
measure relative to a base axis and is considered to be positive when the orientation
is clockwise if observed from the coordinate origin while looking in the direction of
the base axis. For computer animation work it is appropriate to think of an object as
having a rest orientation, say directed along the x axis without any tilt (roll or bank).
To pivot the object into some other orientation a series of rotations are applied until
it has taken up the orientation specified by the Euler angles (φ, θ, α) relative to the
reference direction.

can interpolate between quaternions and switch back and forth1 between equiv-
alent representations of orientation, i.e., Euler angles, quaternions and rotation
matrices.

2.18.1 The quaternion

A quaternion q is an ordered pair (w,v) of a scalar and three-dimensional vector
v with components (x, y, z). Like vectors, a unit length or normalized quaternion
must satisfy:

w2 + x2 + y2 + z2 = 1

1Users of application software generally prefer to specify orientations in terms of Euler
angles, pitch, elevation and headings rather than as abstract quaternions.

2.18. Angular interpolation (quaternions) 61

Quaternions have their own algebra with rules for addition and multiplication.
Addition is straightforward: add the scalar components and the vector compo-
nents. Multiplication is more interesting. Given two quaternions q1 and q2 the
product is the quaternion:

q1q2 = (w,v) = (w1w2 − v1 · v2, w1v2 + w2v1 + v1 × v2)

A conjugate quaternion to q is defined as q = (w,−v). Thus, the squared
magnitude of q is:

qq = |q|2 = w2 + |v|2

Note that if q is of unit magnitude its inverse q−1 equals its conjugate, q−1 = q
and qq = 1.

2.18.2 Quaternions and rotations

We have seen in section 2.12.3 that the action of rotating a vector r from one
orientation to another may be expressed in terms of the application of a trans-
formation matrix [R], which when applied to r to r′ = [R]r gives it a new orien-
tation. The matrix [R] is independent of r and will perform the same (relative)
rotation on any other vector.

One can write [R] in terms of a succession of Euler angle rotations, i.e., as a
function [R(φ, θ, α)] (the order being vital). However, the same rotation can be
achieved by specifying [R] in terms of a unit vector n̂ and a single angle γ. That
is, r is transformed into r′ by rotating it round n̂ through γ.

The angle γ is positive when the rotation takes place in a clockwise direction
when viewed along n̂ from its base. The two equivalent rotations may be written
as:

r′ = [R(φ, θ, α)]r

r′ = [R′(γ, n̂)]r

At first sight it might seem difficult to appreciate that the same transformation
can be achieved by specifying a single rotation round one axis as opposed to
three rotations round three orthogonal axes; figure 2.37 illustrates this process.
There are also a whole range of other subtleties surrounding this issue that are
only really resolved through the use of quaternions; Wolf [38] discusses these in
depth.

It is also quite difficult to imagine how (γ, n̂) might be calculated given the
more naturally intuitive and easier to specify Euler angles (φ, θ, α). However,
there is a need for methods to switch from one representation to another.

In a number of important situations it is necessary to use the (γ, n̂)
representation. For example the Virtual Reality Modeling Language
(VRML) [40] uses the (γ, n̂) specification to define the orientation
adopted by an object in a virtual world.

62 2. Basic theory and mathematical results

(a)

x
x

y

r

z

r´

r´

r´
r

z

x

y

n̂

rb

ra

ra

y

θ

α

rb

r

x

y

z

z

φ

(b)

γ

Figure 2.37: Rotation about an arbitrary axis, n̂, chosen to point in a direction that
is at right angles to both the initial and final results. (b) will achieve the same result
as three consecutive rotations around orthogonal basis vectors (a). Here r is the initial
vector and r′ the result after re-orientation. ra and rb are intermediate steps.

Watt and Watt [86] derive an expression that gives some insight into the
significance of the (γ, n̂) specification of a rotational transform by determining
[R]r in terms of (γ, n̂):

r′ = [R]r = cos γr+ (1− cos γ)(n̂ · r)n̂+ (sin γ)n̂× r (2.45)

This expression is the vital link between rotational transformations and the use
of quaternions to represent them. To see this consider two quaternions:

1. p = (0, r), a quaternion formed by setting its scalar part to zero and its
vector part to r (the vector we wish to transform)

2. q = (w,v), an arbitrary quaternion with unit magnitude: qq = qq−1 = 1

The product qpq−1 gives the quaternion:

qpq−1 = (0, ((w2 − (v · v))r+ 2(v · r)v + 2w(v × r))) (2.46)

Since q is an arbitrary quaternion of unit magnitude there is no loss of gen-
erality by expressing it in the form:

q = (cos
(γ

2

)

, sin
(γ

2

)

n̂) (2.47)

2.18. Angular interpolation (quaternions) 63

Substitute cos
(γ

2

)

for w and sin
(γ

2

)

n̂ for v in equation 2.46. The vector part

of qpq−1 is identical, term for term, with the rotation expressed by equation 2.45.
Therefore if we express a rotation in the form [R(γ, n̂)] its action on a vector r
is equivalent to operating the following four steps:

1. Promote the vector r to the quaternion p = (0, r).

2. Express [R(γ, n̂)] as the quaternion q = (cos
γ

2
, sin

γ

2
n̂).

3. Evaluate the quaternion product p′ = qpq−1.

4. Extract the transformed vector r′ from the vector component of p′ = (0, r′).
(Note that the scalar component of operations such as these will always be
zero.)

This isn’t the end of our story of quaternions because, just as rotational
transformations in matrix form may be combined into a single matrix, rotations
in quaternion form may be combined into a single quaternion by multiplying their
individual quaternion representations together. For example consider rotations
[R1] and [R2] represented by quaternions q1 and q2 respectively. Applying them
in turn to p′ = q1pq

−1
1 and p′′ = q2p

′q−1
2 gives:

p′′ = q2p
′q−1

2

p′′ = q2(q1pq
−1
1)q−1

2

p′′ = (q2q1)p(q
−1
1 q−1

2)

p′′ = qcpq
−1
c

Here qc = q2q1 and as quaternions satisfy (q2q1)
−1 = q−1

1 q−1
2 . We can write

(q−1
1 q−1

2) = (q2q1)
−1.

2.18.3 Converting Euler angles to quaternions

From the Euler angles (φ, θ, α) shown in figure 2.36 a quaternion that encapsu-
lates the same information is constructed by writing quaternions for rotation φ
about the z, θ about the y and α about the x axes:

qx =
[

cos
α

2
, sin

α

2
, 0, 0

]

qy =

[

cos
θ

2
, 0, sin

θ

2
, 0

]

qz =

[

cos
φ

2
, 0, 0, sin

φ

2

]

64 2. Basic theory and mathematical results

and then multiplying them together as q = qzqyqx. The components of q are:

w = cos
α

2
cos

θ

2
cos

φ

2
+ sin

α

2
sin

θ

2
sin

φ

2

x = sin
α

2
cos

θ

2
cos

φ

2
− cos

α

2
sin

θ

2
sin

φ

2

y = cos
α

2
sin

θ

2
cos

φ

2
+ sin

α

2
cos

θ

2
sin

φ

2

z = cos
α

2
cos

θ

2
sin

φ

2
− sin

α

2
sin

θ

2
cos

φ

2

2.18.4 Converting a quaternion to a matrix

In section 2.12.3 it was shown that a rotational transformation in matrix form
could be applied to a position vector to pivot it into a new orientation [p′] =
[Tθ][p]. A quaternion contains rotational information but it cannot be directly
applied to a position vector in the same way that a matrix can. Therefore
it is useful to have a method of expressing the rotational information in the
quaternion directly as a matrix which, in turn can be used to rotate position
vectors.

For a normalized quaternion [w, x, y, z] the corresponding 4× 4 matrix is:








1− 2y2 − 2z2 2xy + 2wz 2xz − 2wy 0
2xy − 2wz 1− 2x2 − 2z2 2yz + 2wx 0
2xz + 2wy 2yz − 2wx 1− 2x2 − 2y2 0

0 0 0 1









It is important to note that a 4× 4 matrix can encapsulate positional trans-
formations as well as rotational ones. A unit quaternion only describes pure
rotations. So, when quaternions are combined the complex rotation they repre-
sent is with respect to axes passing through the coordinate origin (0, 0, 0).

2.18.5 Converting a matrix to a quaternion

If the rotational matrix is given by:

[M] =









a00 a01 a02 0
a10 a11 a12 0
a20 a21 a22 0
0 0 0 1









and the quaternion q by:
q = [w, x, y, z]

Shoemake’s [81] algorithm in listing 2.4 obtains q given [M]. The parameter ǫ
is the machine precision of zero. A reasonable choice would be 10−6 for floating
point calculations. Note only elements of [M] that contribute to the rotation are
considered in the algorithm.

2.18. Angular interpolation (quaternions) 65

w = 1

4
(1 + a00 + a11 + a22)

i f w > ǫ {
w =

√
w w4 =

1

4w
x = w4(a12 − a21) y = w4(a20 − a02) z = w4(a01 − a10)

}
else {
w = 0
x = − 1

2
(a11 + a22)

i f x > ǫ {
x =

√
x x2 =

1

2x
y = x2a01 z = x2a02

}
else {

x = 0 y = 1

2
(1− a22)

i f y > ǫ {
y =

√
y z =

a12

2y
}
else {

y = 0 z = 1
}

}
}

Listing 2.4: An algorithm for the conversion of rotational transformation matrix M
with coefficients ai,j to the quaternion q with coefficients (w, x, y, z).

2.18.6 Converting a quaternion to Euler angles

To convert the quaternion to the equivalent Euler angles, first convert the quater-
nion to an equivalent matrix, and then use the matrix to Euler angle conversion
algorithm. Sadly matrix to Euler angle conversion is unavoidably ill-defined be-
cause the calculations involve inverse trigonometric functions. To achieve this
conversion use the algorithm shown in listing 2.5 which converts the matrix [M]
with elements aij to Euler angles (φ, θ, α).

The angles (φ, θ, φ) lie in the interval [−π, π] but they can be biased to [0, 2π]
or some other suitable range if required.

2.18.7 Interpolating quaternions

One major advantage of using quaternions in 3D computer graphics is that the in-
terpolation between two orientations defined by the Euler angles, say (φ0, θ0, α0)
and (φ1, θ1, α1), is easily done when the orientations are expressed in a quater-
nion form. It is not possible to interpolate between two orientations when they
are specified as a rotation matrices. To illustrate the advantage of quaternions
we recall that linear interpolation between two position vectors gives a straight

66 2. Basic theory and mathematical results

sin θ = −a02

cos θ =
√

1− sin2 θ
i f | cos θ| < ǫ {
It is not possible to distinguish heading from pitch and the convention that
φ is 0 is assumed, thus:
sinα = −a21 cosα = a11

sinφ = 0 cosφ = 1
}
else {

sinα =
a12

cos θ
cosα =

a22

cos θ
sinφ =

a01

cos θ
cosφ =

a00

cos θ
}
α = ATAN2(sinα, cosα)
θ = ATAN2(sin θ, cos θ)
φ = ATAN2(sinφ, cosφ)

Listing 2.5: Conversion from rotational transformation matrix to the equivalent Euler
angles of rotation.

line and in Cartesian geometry a straight line is the shortest path between two
points. A similarly simple interpolation for quaternions is desirable. Therefore
for quaternions the question arises: What is equivalent to a straight line?

A clue to the answer comes from the concept of latitude and longitude. Lati-
tude and longitude are angular directions from the center of the earth to a point
on its surface whose position is to be specified. Thus a pair of values (lat,long)
represent a point on the earth’s surface. To go from one place to another by
the shortest route one follows a great circle, illustrated in figure 2.38. The great
circle is the line of intersection between a sphere and a plane that passes through
the center of the sphere. Intercontinental flight paths for aircraft follow great
circles; for example the flight path between London and Tokyo passes close to the
North Pole. We can therefore say that just as the shortest distance between two
points in a Cartesian frame of reference is by a straight line, the shortest distance
between two (latitude, longitude) coordinates is along a path following a great
circle. The (latitude, longitude) coordinates at intermediate points on the great
circle are determined by interpolation, in this case by spherical interpolation.

Quaternions are used for this interpolation. We think of the end points of
the path being specified by quaternions, q0 and q1. From these a quaternion qi
is interpolated for any point on the great circle joining q0 to q1. Conversion of qi
back to (latitude, longitude) allows the path to be plotted. In terms of angular
interpolation we may think of latitude and longitude as simply two of the Euler
angles. When extended to the full set (φ, θ, α) a smooth interpolation along the
equivalent of a great circle is the result.

2.18. Angular interpolation (quaternions) 67

AB = Great Circle

XY = Points on
 Great Circle

S

A

x

C

y

N

B

NS = Poles

C = Centre

Figure 2.38: A great circle gives a path of shortest distance between two points on the
surface of a sphere. The arc between points X and Y is the shortest path.

σ = w0w1 + x0x1 + y0y1 + z0z1
i f σ > 1{

normalize q0 and q1 by
dividing the components of q0 and q1 by σ

}
θ = cos−1(σ)
i f |θ| < ǫ {

β0 = 1− µ β1 = µ
}

else {
β0 =

sin(1− µ)θ

sin θ
β1 =

sinµθ

sin θ
}
wi = β0w0 + β1w1

xi = β0z0 + β1x1 yi = β0y0 + β1y1 zi = β0z0 + β1z1

Listing 2.6: Implementation of the slerp function.

Using the concept of moving along a great circle as a guide to angular in-
terpolation a spherical interpolation function, slerp(), may be derived. The
form of this function that works for interpolating between quaternions q0 =
[w0, x0, y0, z0] and q1 = [w1, x1, y1, z1] is given by Shoemake [81] as:

slerp(µ, q0, q1) =
sin(1− µ)θ

sin θ
q0 +

sinµθ

sin θ
q1

where µ, the interpolation parameter, takes values in the range [0, 1]. The angle
θ is obtained from: cos θ = q0 · q1 = w0w1 + x0x1 + y0y1 + z0z1. The algo-
rithmic implementation in listing 2.6 of the slerp() function for the interpolated
quaternion qi = [wi, xi, yi, zi] avoids the problem of division by zero when θ is
close to zero.

This page intentionally left blankThis page intentionally left blank

3
Data structures for 3D graphics

The visual appearance of 3D models representing all kinds of objects is dictated
by the properties of their surfaces with color being the most important. Often
the surface of a model is constructed by building it up from a series of primitive
shapes. A polygon with three sides (a triangle) is the simplest form of primitive
shape. In chapter 2 other simple primitives like the sphere were discussed. Today
in computer-aided design (CAD) application programs more complex surface
shapes referred to as patches have proved popular. These include Bézier and
NURBS (non-uniform rational B-spline) patches which have curved edges and
continuously varying internal curvature. A model can usually be accurately
represented by combining a lot fewer of these more sophisticated surface shapes.
Whether using primitive polygons or curved patches to describe a model there are
advantages and disadvantages. The simplest polygon is fast to render and easy
to manipulate; the more complex patches usually give a better approximation to
the original object, especially if it has many curved parts. Occasionally, it is a
matter of personal preference which sort of patch to use. For example, a cube is
modeled just as effectively with triangular polygons as it is with Bézier patches.
Figure 3.1 shows the famous Utah teapot in polygonal and Bézier patch form.

Whatever type of patch is used to describe the surface of a 3D model it must
be located in space, which means attaching it to three or more vertices or points
somewhere in 3D space. With appropriate transformations applied to the vertex
coordinates a visualization (more commonly called a rendering) can be produced
on the computer monitor or other output device.

3.1 Integer coordinates

When the topic of coordinate systems is discussed, Cartesian or possibly polar are
the words that come to mind. Very little thought is given to the numbers system
used to map out the spaces; it is more or less taken for granted that floating point
decimals will be used. In the perfect world of mathematics there is no need to

69

70 3. Data structures for 3D graphics

Figure 3.1: Polygonal and Bézier patch surface representations.

pay the slightest thought to approximation; if two numbers are equal, then they
are equal, and their magnitude is irrelevant. Unfortunately, in the practical and
imperfect world where calculations have to be done by machine, the behavior of
numbers is far from perfect. Only in the case of the integer numbers (lying inside
the range of precision of the computer’s word length) can one really say that x
is equal to y when they are being compared in a computer program; otherwise
all one can really say is that if |x − y| < ǫ we will accept the fact that x and y
are equal.

Being able to say that x equals y is an essential part of most of the algorithms
used in computer graphics: Does this edge hit that polygon, is often a key
question. Three-dimensional computer graphics is founded on 3D geometry,
and 3D geometry is very good at finding those situations where our numerical
mathematics is challenged the most: Does the line hit the polygon on its edge,
or inside, is a very hard question to answer. Using one computer that calculates
to an accuracy of ten decimal places may give a different answer to one that
calculates to 20 places of decimals. For this reason we often choose to store the
coordinate data for vertices and other points using integers, and where possible
working with algorithms that manipulate things using only integers, we can then
say with certainty whether x equals y or whether two lines actually are parallel
or not.

A number of the most significant computational geometry algorithms used in
CGI are written to work best with integer coordinates; see O’Rourke [65]. The
OpenFX program (chapter 9) uses integer coordinates to record its 3D data.

3.2 Vertices and polygons

The minimal description of a 3D model requires a list of surface patches and a
list of vertex coordinates. Each entry in the surface patch list must identify the
vertices to which it is connected and have some way of allowing its surface to
take on the appearance of wood, marble, glass or chrome etc. Indeed, one of
the most popular ways to provide a comprehensive set of surface attributes is

3.2. Vertices and polygons 71

for each surface patch to store an index into a table of materials. The material
provides a color and many other properties. With careful choice of parameter
an extremely realistic look to the model can be achieved.

Despite the fact that real-time shading can now be done routinely on basic
personal computers it can still be useful to use a wireframe display when design-
ing interactive 3D animations or complex models. Shaded rendering is done in
a subsequent step to whatever degree of realism is required, a process that can
take minutes or even hours.

A wireframe model is a set of straight lines that join vertices together. The
edges of each polygonal surface constitute the members of this set. Sometimes it
can be useful to maintain a separate list of edges rather than to have to generate
it from the polygons each time a drawing of the wireframe is made. This policy
has the advantage of a faster display and since edges are not normally rendered,
they can be used to link various parts of a model together for editing purposes.

There are three alternative schemes for storing the geometric description of
a model:

1. For the n vertices of each surface polygon store n integers. Each integer
identifies an entry in the vertex list. For each entry in the vertex list
store the coordinates (x, y, z) of a position vector. Most 3D programs
store (x, y, z) as single precision floating point numbers, but a few use
integers. If polygon edges are needed then they can be obtained by pairing
consecutive vertices.

2. For each surface polygon that is connected to n vertices store n integers.
Each integer identifies an entry in the vertex list. For each entry in the
vertex list store a position vector giving its (x, y, z) coordinates. If required
a separate list for the m edges can be included. It holds two integers for
each edge that index entries in the vertex list.

3. For each surface polygon with k edges store k integers identifying the en-
try in an edge list. An edge list identifies connections between vertices.
Normally edges are part of the boundaries of polygons but it is possible to
have edges in a model that have no connection with its polygonal surfaces.
These will show up in a wireframe drawing of the model but will not be
visible in either a hidden line or shaded rendering. For each edge, store
two integers to index entries in the vertex list corresponding to the vertices
at the end of the edge. For each entry in the vertex list store a position
vector giving its (x, y, z) coordinates.

These organizations are summarized in figure 3.2.

72 3. Data structures for 3D graphics

Organization 3

0 0 0 01

3

2

0

1

4 1

0 0

3

2

0

1

1

0

3

2

2

2 3

3

4
1

1

1

0

0

0

1

1

1

1 1

0

12

0 2

2

0

1

0

(x0, y0, z0)

(x1, y1, z1)

(x2, y2, z2)

(x0, y0, z0)

(x1, y1, z1)

(x2, y2, z2)

(x0, y0, z0)

(x1, y1, z1)

(x2, y2, z2)

1

0

1

0

1

1

0 33

2 20

Organization 2

Organization 1

Polygon List

Polygon List

Vertex List

Vertex List Edge List

Polygon List Edge List Vertex List

4 Vertices
2 Polygons
(triangular)

Polygonal Mesh

Figure 3.2: Data organization for the description of a 3D piecewise planar model.

3.2. Vertices and polygons 73

To complete the requirements for a useful data structure we add a mate-
rial index for each polygon and texture coordinates to every vertex. Texture
coordinates allow a two-dimensional frame of reference to cover the surface of a
model, rather like the way latitude and longitude are a two-dimensional coordi-
nate system that are used to reference any point on the surface of the earth (a
3D spheroid). Just using a two-dimensional texture coordinate for each vertex
has a slight disadvantage because the texturing is only visible in the polygons
attached to the vertices; therefore if two adjacent polygons share a common pair
of vertices it is not possible to provide a different mapping in the two polygons.
Despite the addition of 2n numbers per N-gon it is better to record the texture
coordinates for all the vertices of a polygon with the polygon.

There is also a good case to be made for including an additional three-
dimensional texture coordinate system. It might be local to the whole object
mesh, or apply to all surfaces with a specific material, or be defined on a per-
vertex, or per-polygon-vertex basis. The reason for this inclusion is that pro-
cedural shaders are often three-dimensional; an object might look like it was
carved out of marble, granite etc., rather than just look like the material was
just painted over its surface.

In addition to this information it is a good idea to add a few temporary vari-
ables to the structure for use by modeling and rendering algorithms. For exam-
ple, some of the algorithms described in chapter 10 require additional members
in the data structures for vertices, edges and faces.

3.2.1 Skeletons, bones and materials

Partitioning a polygonal model into sub-units that are linked in a parent–child–
grandchild relationship is useful. For example hierarchical linkages are very
significant in character animation. An easily implemented and practically useful
scheme is one that is analogous to the familiar file-store structure of computer
systems, i.e. a root directory with files and subdirectories which themselves con-
tain files and subdirectories and so on to whatever depth you like.

A doubly linked list of hierarchy entries is the best way to organize this data.
In addition to previous and next pointers each entry will have a pointer to its
parent, see figure 3.3. Other data can easily be appended to the structure as
necessary. When using the structure for character animation or to reference
parts of big model the entries can be given symbolic names, an example of which
is shown in figure 3.3.

To complete a hierarchical description every polygon or vertex in the model
is identified with one of the hierarchical names. A similar concept is one in which
files on a computer disk are identified by the folders in which they are stored.

In a connected network of vertices and facets it is probably more useful to
associate vertices, rather than polygons with one of the hierarchical names. To
implement this association the vertex data structure shown in figure 3.10 must be
extended with the entry hid where, for a vertex hid, identifies which hierarchical

74 3. Data structures for 3D graphics

name the vertex is associated with. The new structure is shown in figure 3.4. A
basic version of a structure that specifies a polygonal surface patch is illustrated
in figure 3.5.

Grandchild

Child

Parent Head

Body

Left Foot

Left Leg
Hand

Arm

Figure 3.3: A hierarchical data structure for editing and character animation.

p position vector of vertex
ν, µ surface texture coordinates
x temporary integer index
n number of adjacent vertices
Vadj list of adjacent vertices
hid pointer to hierarchical element vertex is assigned to

Figure 3.4: Vertex data structure with hierarchical identifier.

Vid list of vertex ids to which polygon is attached
idmat pointer to a material in materials list
idmap pointer to a texture map in the list of image maps
(νi, µi) texture coordinates for each vertex
n normal to surface plane

Figure 3.5: Typical surface patch data structure.

Notes:

1. The hierarchical names do not record any information about which vertices
are assigned to them. Thus if it becomes necessary to modify the vertex
lists (by adding or deleting for example) there is no need to update the
hierarchy. However, the converse is not true. If a name in the hierarchy

3.2. Vertices and polygons 75

is removed then all the vertices must be checked for any reference to the
deleted hierarchical name and that reference removed.

2. When used for character animation, assigning each vertex to be attached
to only one bone is not always the best strategy. For example, a vertex
in the mesh of a forearm of a character that lies close to the elbow should
have its position influenced to a certain extent by the bone in the upper
arm. There are two ways in which we might try to enhance the model.
First, it is easy to arrange that the movement of any of the bones in the
skeleton could influence a displacement of a vertex in proportion to their
distance from the vertex, with the added possibility of weighting how a
particular bone amplifies or attenuates its influence. Or second, a list of
bones (instead of just one) can be assigned to influence each vertex and
only those in the list used to modify the movement of the vertex, again
possibly in proportion to their distance from the vertex.

Both approaches have advantages and it is a good idea to assign extra at-
tributes to each bone’s data structure (see figure 3.3), so that additionally:
(1) a weight, (2) a range of influence and possibly (3) a rate of influence
that declines with distance, may be attributed to each bone. Also, since
both two- and four-legged animals can be modeled with at most two bones
influencing a third, the inclusion of a second vertex pointer per vertex
would allow the influence of sufficient bones to be applied without being
polluted by influence from other bones, just because they happen to be
close by, but not directly connected.

3.2.2 Material data structures

In section 3.2 it was pointed out that in order to provide details of a surface
texture the most efficient way is to maintain a list of materials, any one of
which can be applied to the surface. The efficiency of this scheme is easily seen
because there will always be a very much larger number of polygons defining
an object’s shape than there will be materials from which that surface could be
built. Another advantage could ensue because separating the material data from
the geometric data allows the number of properties that define the material to
be increased (or decreased) without the need to modify the geometry describing
structures.

The most basic material property that should be included to describe a sur-
face is its color, but there are many other possibilities, e.g., its transparency
and reflectivity. These will be discussed later in the book. Painting an image
across a surface is perhaps the next most significant technique of giving texture
to a surface that would otherwise look very unrealistic if just left a plain color.
Painting a picture from an image file is usually referred to as texture mapping or
image mapping and it plays a very important role, because an image map can
also be used to simulate reflectivity, surface roughness and transparency. It is

76 3. Data structures for 3D graphics

probably worth separating the image map from the other material properties by
using a separate list. Then one or the other or both can be applied to the same
surface.

Often materials, or image maps, or texture maps, or algorithmic textures, are
just called shaders, but whatever they are called they play an equally important
role to the geometry that describes an object’s shape.

3.3 Algorithms for editing arrays of structures

When a modeling tool requires making many changes to the contents of its vertex,
edge and face data, an organization based on a doubly linked list is very efficient,
for example when deleting a vertex from the middle of the list. However, when it
is not possible to use a doubly linked list data organization, fast editing functions
are needed for things like inserting and or removing items from a basic indexed
list.

For 3D data, the order in which polygons and vertices appear in a list is
usually unimportant. Therefore, when items are added to a list, they can simply
be tagged on to the end. Of course, the memory has to be dynamically extended
to accommodate the extra items. To delete items from the list is more complex
and if not done efficiently can be unacceptably time consuming. This section
presents a very efficient algorithm for the removal of one or more items from
anywhere in a list of vertex or polygon data structures.

n–1 n0 1 2 3

Figure 3.6: Array of polygon structures numbered 1 to n.

Figure 3.6 illustrates a representation of the list of polygon structures. Those
to be deleted are marked with a *. Each structure will be composed of perhaps
16 to 32 bytes. The last entry n could be removed simply by reallocating the
memory space to hold n − 1 polygons, but to eliminate polygon 2 the data
for polygons 3 to n must be shifted to lower memory before the memory is
reallocated. However this shifting operation is very slow and it gets slower if
there are other entries to be removed later. Note that the vertex and polygon
lists are dependent, because each polygon list entry points to an entry in the
vertex list; therefore if the vertex list is modified, even if the polygon list is
not, the polygon vertex identifiers will need to be updated, a process termed
re-vectoring.

A very fast scheme can be developed by using the fact that the order of items
in the list is unimportant. In this case all that has to be done is to copy the

3.3. Algorithms for editing arrays of structures 77

last entry in the list into the place held by the item to be deleted. The list may
then be shortened by one entry. If several items are deleted the reduction in the
size of the list is done in one step. In the example shown in figure 3.6 copy item
n− 1 to item 2 (remember item n is also to be deleted).

2 3 n–1

n–2n–1

n

Copy

Shorten

10

0 1 3

Figure 3.7: Deleting two items from the list of structures.

The whole of the structure can be copied with one call to a fast memory copy
function (usually available as part of any system API, Application Programming
Interface). The algorithm works through the list and when it finds an entry to
be deleted it copies an entry from the end of the list and shortens the list by
one. See the examples illustrated in figures 3.7 and 3.8. When all the entries
have been processed one call to the reallocation function tidies up the memory.

The algorithm for removing unwanted entries from a list of Poly structures
with Npolys entries is summarized in listing 3.1.

Note that by not indexing k when the structure is to be deleted we get the
chance to immediately delete the one replacing it if it too is flagged for deletion.

This algorithm can be applied to the polygon and vertex lists in exactly the
same way. However, as mentioned above, any change to the vertex list will
invalidate entries in the polygon and edge lists that point to items in the vertex
list. For example, if a polygon is attached to vertices 100, 101, 102 in the vertex
list but vertex 2 is removed from the list then vertices indexed as 100, 102 or 103
may have moved to a different place in the vertex list. So, if we don’t fix up
the polygon data a memory violation will probably occur; at the very least the
model will be a mess.

The fix is easily done by employing a dummy index variable in the vertex
structure. As the algorithm steps through the vertex list copying down from the
end to over-write the entries to be erased, it writes into the dummy index of the
copied entry the location where the copy has moved to. At the end of the pass,
but before the vertex list is resized, the polygon list is scanned again so that

78 3. Data structures for 3D graphics

743890

0 1 2 3 4 5 6 7 8 9

0 1

Shorten and re-number

Copy

2 3 4 5

Figure 3.8: Deleting multiple items from the list.

i = 0 ,k = 0 and newN = Npolys
r epeat while i < Npolys {

i f Poly(k) flagged for deletion {
i f i < Npolys− 1 {

copy size of Poly structure (bytes)
from Poly(newN − 1) to Poly(k)

}
newN = newN − 1

}
else k = k + 1
i = i+ 1

}
Npolys = newN

Listing 3.1: Outline of an algorithm to remove unwanted entries from a list of Npoly
Poly structures. The unwanted entries will be flagged in some convenient manner.

each reference to an entry in the vertex list is tested. If it points to one of the
vertices that has been moved then it is replaced by the new location (stored in
the dummy index) that was determined in the first pass. Memory reallocation
completes the algorithm. This algorithm is shown in detail in listing 3.2.

Such a scheme is very efficient and uses as few operations as possible when
removing items from a 3D data structure which has been stored in a contiguous
memory block.

3.4. Making an edge list from a list of polygonal faces 79

3.4 Making an edge list from a list of polygonal faces

When producing a wireframe drawing of a model or converting between the data
formats of alternative 3D CAD and animation packages it is important to be
able to build a list of edges from a list of polygons.

It is straightforward to make a list of edges by creating one edge for each
polygon side, but most polygons will share edges. The task of removing multiple
entries from the edge list becomes excessively time consuming as the number of
polygons increases. In the case of n polygons approximately 3n2 tests need to
be performed to make sure that the same edge is not recorded more than once
in the edge list. When dealing with more than a few hundred polygons it is
essential to find a more efficient procedure.

The following gives the outline of an algorithm that deals with the issue more
efficiently:

• For each vertex i in the model set up a list to hold the identity of other
vertices in the model attached to vertex i by an edge. Initially these lists
will be empty.

• Take each polygon in the model in turn and with every edge of the polygon
consider the vertices at both ends of the edge.

• Label the vertices j and k. For vertex j look at j’s list of adjacent vertices.
If it is empty or does not contain vertex k then add k to j’s list. For vertex
k look at its list of adjacent vertices and if it is empty or does not contain
vertex j then add j to k’s list.

• When all the polygons have been examined consider each vertex in turn.
Call the current one i. For vertex i create an edge between vertex i and all
the vertices in i’s list of attached vertices. For an example see figure 3.9.

Vertex

0

1

2

3

n

.

.

Vertex attached to...

0

1

2

3

n

.

.

Edges

0 – 1

0 – 2

0 – 3

1 – 4

1 – 9

1 – 6

1,2,3

1,4,6,9

...

7,11,19

Figure 3.9: Building an edge list from a polygon list.

The advantage of this procedure comes from the fact that the number of
comparison tests will be much fewer than would be required by the simplistic
approach of checking all polygons against all polygons.

80 3. Data structures for 3D graphics

Erase items from the Polygon list but don’t
release the recovered memory yet
s e t i = 0 ,k = 0 ,j = 0 and newN = Nverts
r epeat while i < Nverts {

i f V ert(k) f l a gg ed for d e l e t i o n {
i f i < Nverts− 1 {

copy size of V ert structure (bytes) from V ert(newN − 1) to V ert(k)
V ert(newN − 1).x = j (extra index in V ert structure)

}
newN = newN − 1

}
else {

k = k + 1
j = j + 1

}
i = i+ 1

}
Nvert = newN

Now process the dependent Poly data structure to fix it up
s e t i = 0
repeat while i < Npolys {

s e t j = 0
repeat while j < NvertPerPoly {

i f Poly(i).Vid(j) ≥ Nvert {
Poly(i).Vid(j) = V ert(Poly(i).Vid(j)).x

}
j = j + 1

}
i = i+ 1

}

To finish: Tidy up the memory allocation for Poly and V ert structures

Listing 3.2: Details of the algorithm to remove unwanted entries from a polygonal
database when the database uses a contiguous list rather than a doubly linked list to
record the polygons and vertices.

To accommodate the adjacency list it is necessary to augment the vertex
data structure with two items, n and Vadj as shown in figure 3.10. Vadj is a
dynamically sized array of vertex identifiers.

Pseudo-code for the above algorithm is given in listings 3.3 and 3.4. Part 1
of the algorithm calls to a subroutine which inserts vertices in the adjacency list
and extends it if necessary.

In the subroutine (part 2) the adjacency lists for vertices V1 and V2 are checked.
If an entry is already present in the list the subroutine returns immediately.

3.5. Finding adjacent polygons 81

p position vector of vertex
ν, µ surface texture coordinates
x temporary integer index
n number of adjacent vertices
Vadj list of adjacent vertices

Figure 3.10: Entries in the vertex data structure.

Part 1 Recording
s e t i = 0 and repeat while i < Npolys {

I n s e r t I nVe r t exL i s t (Poly(i).Vid(0), Poly(i).Vid(1))
I n s e r t I nVe r t exL i s t (Poly(i).Vid(1), Poly(i).Vid(2))
I n s e r t I nVe r t exL i s t (Poly(i).Vid(2), Poly(i).Vid(0))
i = i+ 1

}

Part 2 Building Edges
s e t i = 0 and repeat while i < Nvert {

i f V ert(i).n > 0 {
s e t j = 0 and repeat while j < V ert(i).n {
Create edge between vertices i and Nvert(i).Vadj(j)

j = j + 1
}

}
i = i+ 1

}

Listing 3.3: Part 1 of the algorithm to make an edge list from a list of connected
polygonal facets.

3.5 Finding adjacent polygons

Some of the algorithms to be discussed in later chapters require that every poly-
gon (in a mesh model) knows the identity of its neighboring polygons. A neigh-
boring polygon is one that shares an edge. For the example in figure 3.11 poly-
gons 1 and 2 share an edge as do polygons 2 and 3.

Algorithms that need this information include:

• Delaunay triangulation.

• Subdivision of surfaces.

• Algorithms to make surface normal orientations consistent.

Like the procedure for finding edges given a set of polygons (section 3.4) finding
adjacent polygons can be a prohibitively lengthy task if an exhaustive comparison
is used.

82 3. Data structures for 3D graphics

Subroutine InsertInVertexList(V1, V2)
V1 and V2 are indexes into the vertex list

i f V ert(V1).n > 0 {
s e t i = 0 and repeat while i < V ert(V1).n {

i f V ert(V1).Vadj(i) = V2 then already present so return
i = i+ 1

}
}
i f V ert(V2).n > 0 {

s e t i = 0 and repeat while i < V ert(V2).n {
i f V ert(V2).Vadj(i) = V1 then already present so return
i = i+ 1

}
}

Extend the list V ert(V1).Vadj by 1
V ert(V1).Vadj(V ert(V1).n) = V2

V ert(V1).n = V ert(V1).n+ 1

Listing 3.4: Part 2 of the algorithm to make an edge list from a list of connected
polygonal facets. In part 2 the subroutine checks to see if an edge already has an entry
in the edge list.

3 2 –1 –1

2 1 –1 3

1 0 2 –1

0

0 1

2

3

–1

Polygon Adjacent to

–1 1

Figure 3.11: Identity of adjacent triangular polygons.

The following algorithm describes a procedure that will be significantly faster
than an exhaustive comparison. It is known to work with many thousands of
triangular polygons. In principle this procedure is quite similar to the edge
generating algorithm of section 3.4. However, before it can be used the vertex
data structure must be enhanced by adding a counter for the number of adjacent
polygons and a list to identify them. Also, the polygon data structure needs a
list in which to store the identity of the adjacent facets.

3.5. Finding adjacent polygons 83

In the case of a triangular polygon the adjacent facet identifier list will be
required to hold up to a maximum of three integers. When polygons have one
or more edges that are not adjacent to other polygons this can be flagged by
storing a −1 as the identity of the neighboring polygon. The augmented data
structures are illustrated in figure 3.12.

p position vector of vertex
ν, µ surface texture coordinates
x temporary integer index
nV number of adjacent vertices
Vadj list of adjacent vertices
hid pointer to hierarchical element to assign vertex to
nF number of adjacent polygons
Fadj list of adjacent polygons

Vid list of vertex ids to which polygon is attached
idmat pointer to a material in materials list
idmap pointer to a texture map in the list of image maps
Aid(3) list of the ids of polygons with a common side
n normal to surface plane

Figure 3.12: Vertex and polygon data structures to accommodate calculation and
storage of polygon adjacency information.

The detailed pseudo-code implementation of the algorithm is presented in
listings 3.5 and 3.6. However, before presenting the algorithm in detail the
following gives a simple overview:

1. For each vertex create a list to hold the identity of polygons which are
attached to it. Initially all the lists will be empty.

2. Work through all the triangular polygons, j, and consider each of its ver-
tices in turn. For each vertex (call it k) of j add j to k’s polygon adjacency
list Fadj . (For each vertex this builds up a list of which polygon is attached
to which vertex.)

3. Again work through all the polygons, call the current one j, and then taking
each side in turn, identify the two vertices to which it is attached. Call them
i1 and i2. For vertices i1 and i2, look through each one’s list of attached
polygons and see if any have an edge between i1 and i2 (remembering

84 3. Data structures for 3D graphics

to exclude the current polygon j). If they have, then this is the polygon
adjacent to polygon j along the side between vertices i1 and i2. This can be
done by checking all polygons adjacent to i1 against all polygons adjacent
to i2 and if they have a polygon in common it can only be polygon j or
another one with vertices i1 and i2 in common, which is the one adjacent
to polygon j.

Part 1: Build polygon adjacency list for each vertex
s e t i = 0 and repeat while i < Npolys {

s e t j = 0 and repeat while j < 3 {
id = Poly(i).Vid

n = V ert(id).nF

extend the list V ert(id).Fadj to n+ 1 spaces
V ert(id).FAdj(n) = i
V ert(id).nF = n+ 1
j = j + 1

}
i = i+ 1

}

Listing 3.5: Part 1 of the algorithm to make a list of polygons attached to each vertex
from a Facet/Vertex 3D database.

3.6 Finding polygons adjacent to edges

Some of the algorithms to be discussed in later chapters require that every edge
knows the identity of its neighboring polygons. For most closed surfaces ap-
proximated by a network of polygons an edge will have at most two neighboring
polygons.

The algorithm itself is very similar to that for finding polygons adjacent to
polygons, described in section 3.5, and example code implementation can be
obtained from the website.

3.6. Finding polygons adjacent to edges 85

Part 2: Build polygon adjacency list for each polygon
i1 and i2 are vertex id’s for polygon edges
set i = 0 and repeat while i < Npolys {

set l = 0 and repeat while l < 3 {
check all polygons adjacent to i1 and i2 to see if any of them
have an adjacent polygon in common (it must not be of course be i)
Poly(i).Aid(l) = −1 /∗ record −1 if nothing adjacent ∗/
i f l = 0 {

i1 = Poly(i).Vid(0)
i2 = Poly(i).Vid(1)

}
else i f l = 1 {
i1 = Poly(i).Vid(1)
i2 = Poly(i).Vid(2)

}
else i f l = 2 {
i1 = Poly(i).Vid(2)
i2 = Poly(i).Vid(0)

}
i f V ert(i1).nF > 0 and V ert(i2).nF > 0 {
s e t j = 0 and repeat while j < V ert(i1).nF {
t = V ert(i1).Fadj(j)
s e t k=0 and repeat while k < V ert(i2).nF {

u = V ert(i2).Fadj(k)
u and v are polygons adjacent to i1 and i2, if they are the same
then the edge between i1 and i2 is a boundary of polygons
t and u. it is either i or the desired polygon
i f u = t and u 6= i {

Poly(i).Aid(l) = u
jump to l a b e l /* no need to continue */

}
k = k + 1
}

j = j + 1
}

}
l a b e l :

l = l + 1
}

i = i+ 1
}

Listing 3.6: Part 2 of the algorithm to make a list of adjacent polygons from a
Facet/Vertex 3D database.

This page intentionally left blankThis page intentionally left blank

4
Basic visualization

In this chapter the mathematical principles of chapter 2 and the structures of
chapter 3 come together to produce a collection of algorithms that are used to
synthesize images from purely numerical data so that the viewer should instantly
be able to exclaim “That’s a . . . !” This synthesis is termed rendering, and
from the scientific point of view this is a mathematical modeling process of the
way light interacts with surfaces, how light travels to the observer’s location and
how they perceive it.

In the decade or so since publication of the first edition of this book the
major mathematical models used in the rendering process have been refined but
not radically changed. Most of the physical models and their mathematical im-
plementations were worked out in the 20th century. What has changed and
continues to change is the power of the computer used to carry out the calcu-
lations. The invention of the specialized graphics processor, the GPU, lies at
the heart of these changes and it has enabled visualization models that were
previously thought to be impractical to use to become mainstream. Of course,
the primary purpose of the GPU is in rendering images in real-time which is
principally fueled by the huge market for computer games.

Good as it is, the GPU is still orders of magnitude too slow to calculate in real-
time a complete physical model of the light transport process. Even to be able
to model some of the most important rendering challenges GPU shaders1 have
to resort to some empirical and heuristic approximations. The GPU hardware’s
architecture is designed around the rendering pipeline concept. A number of the
algorithms described in this chapter have their place in the rendering pipeline.
Whilst the GPU builds these algorithms in hardware there are always going to
be occasions where a software implementation is still essential, especially if you
are looking for images with particular qualities. In fact, because the GPU is
programmable, a knowledge of the algorithms it uses, how they work and the
principles that underlie them is essential if you are going to write programs for
the GPU and make the most of its incredible power. The procedural textures
(one type of shaders) to be discussed in chapter 11, the OpenGL programs and
GPU hardware discussed in chapter 7 and the implementation of an extensible

1The programs that run in a GPU are called shaders.

87

88 4. Basic visualization

software rendering pipeline in chapter 9, can all be ported to GPU programs, but
only if you have a knowledge of the basics that are covered in this chapter.

In the context of computer graphics, rendering is the process of artificially
generating a picture of something from a numerical dataset or other form of
specification. This usually involves billions of calculations as the picture is syn-
thesized. Continuing advances in computer technology are allowing pictures to
be produced more and more rapidly. Some algorithms can deliver an image in
only a few milliseconds. However the quest for more and more lifelike pictures
requires calculating processes of rapidly increasing complexity. Consequently,
no matter how quickly developments in processor technology deliver increased
performance, there are always grumblings of discontent among the artists and
designers who use computer graphics in their work.

From the point of view of describing algorithms for the rendering task there
is a point where a quantum leap in the time it takes to render a picture (an
image) occurs. Thus it is useful to classify rendering algorithms in two groups:
those that are very fast and those that are not. At one end of the fast rendering
spectrum are the real-time rendering engines. Engine is a term with its origin
in the computer games industry where rendering a standard TV or video sized
image usually takes a few milliseconds. The real-time engines are relying more
and more on the GPU hardware and programmer APIs like OpenGL [82] or
DirectX. See for example Sherrod and Jones [79] which is focused on the latest
version of DirectX.

It is interesting to note that most of the recent books in the area of real-time
graphics tend to place their focus on 3D games programing, which just goes
to highlight the dominance of computer games within the 3D graphics scene.
A comprehensive introduction to the algorithms for real-time rendering may be
found in Akenine-Mōller and Haines [1], and an excellent and comprehensive
source of demonstrator programs exemplifying all aspects of OpenGL is the
OpenGL SuperBible [78]. We highlight the most salient features of OpenGL in
chapter 7 and especially how to use it with the rapidly emerging market of tablet
computers and mobile phones in chapter 8.

More realistic rendering (the subject of chapter 5) still requires minutes, or
possibly hours, to generate a single picture; however in many cases the result is so
good that it is impossible to tell a computer-generated image from a photograph
of the real thing.

4.1 The rendering pipeline

The rendering algorithm is termed a pipeline because the steps that are under-
taken can be thought of as a progression through a series of actions that are
performed in a specific order and with never any need to take a step back, or
repeat a step. As the operations of one step are being performed on some of the

4.1. The rendering pipeline 89

Figure 4.1: An example of the input to and output from a renderer.

object/scene description data, say at the start of the pipeline, other parts of the
data can be undergoing final processing.

4.1.1 The basics of rendering

The basic rendering procedure takes a list of polygons and vertices and produces
a picture of the object they represent. The picture (or image) is recorded as an
array (sometimes referred to as a raster) of a large number of little regions of
the picture called pixels (shortened “picture element”). The raster is organized
into rows and each row holds a number of pixels.

Each pixel in the array holds a number to give value to the color or intensity
at the equivalent location in the image. Because the number of pixels in a
raster is finite (the pixel value represents a small area, not a single point) there
will always be some inaccuracy when they are used to display the image they
represent. The quality of an image is primarily related to the accuracy with
which the pixel color value is recorded and to the number of pixels in the raster.
A raster is regarded as a two-dimensional array with a height and a width. For
example the high-definition video resolution is of the order of 1920× 1080.

All computer monitors use the three primary colors (red, green and blue)
model to represent shades of color. At least 7 bits will be required for each
primary in order to represent all the ≈ 350, 000 different shades of color that the
human eye can distinguish. Since computers like to work in byte sized chunks
each pixel is most commonly represented by three bytes, one byte each for the
red, green and blue primary colors (the so called 24 bit system).

When making movies where the minimum frame rate is at least 30Hz it is
essential that some form of digital compression is brought into play to store the

90 4. Basic visualization

image sequences. A lot of work has been done on image and movie compression
through standards like the H264 MPEG-4 encoder algorithm. Most animation
software can record its output using at least one form of compression codec.
Image and movie compression is outside the scope of this book. June’s book [47]
offers some practical code in this area as a starting point for further experiments.
The personal computer is now such a powerful video processor and has such
large storage capacity that the ability to record, edit and assemble video in high
definition is quite possible on virtually every machine sold. Coupled with the
availability of a high-definition camera in every phone, everyone has, more or less,
a movie production studio on their lap. Now all they need is a 3D animation
program to allow them to make and mix-in special effects to match Hollywood’s
best efforts.

Even though there are many algorithms that can be classified as rendering
procedures they are probably variations on the general theme set out in the
following short list of sequential steps (called the graphics pipeline [12]):

1. Load the data describing objects in the scene into memory (RAM).

2. Use translation, scaling and rotational transformations to move each object
into their appointed position.

3. Apply the viewing transformation. After this step keep a record of the 3D
coordinates of each vertex in the scene.

4. Apply the projection transformation to find equivalent coordinates in the
viewing plane for all vertices in the scene. Store these 2D projected screen
coordinates along with the data recorded in step 3. Store all coordinate
data in floating point form.

Note: The number of instructions the computer must perform in each of
the preceding steps is primarily proportional to the number of vertices in
the scene.

5. For each pixel in the output raster calculate what is visible and record this
information.

The number of instructions the computer must perform in this last step
will depend on the rendering algorithm but, more importantly, it will be
proportional to the number of pixels in the raster. However on some hard-
ware the number of times a pixel is overwritten can also make a significant
contribution to the execution time. Therefore, for something even as simple
as a cube (8 vertices and 6 polygons) you might still be drawing it into a
raster with 500, 000 pixels. Any optimization that can be done in this last
step will be immensely rewarding.

It is usual to retain the pixel information in the computer’s fast memory
until the whole raster has been filled. This block of data is called a frame-
buffer. Once rendering is complete the contents of the framebuffer can be

4.1. The rendering pipeline 91

transferred to a mass storage device or copied to the screen. The frame-
buffer is also an ideal environment in which to carry out additional image
processing.

All the renderers we will discuss perform steps 1–4 above and it is only in step 5
that significant differences occur. Procedures for the execution of step 5 form
the bulk of the topics to be discussed in this chapter. As we go along we shall
see that most of the calculations that a renderer must perform have already been
covered in chapter 2.

4.1.2 Hardware rendering and the GPU

There is some flexibility in the order in which some of the rendering algorithm’s
steps may be be performed. The graphics hardware has tended to set up its
pipeline to perform the steps in the specific order: geometry transformation,
lighting, rasterization (to map the points, lines, and polygons in the input data
onto the pixels in the output image), followed by texture and image mapping,
and framebuffer operations (hidden surface removal). In a software renderer it
is not necessary to stick to the rigid order that hardware imposes. For example
the lighting model could be applied at the stage where the pixel is being shaded
(colored, etc.) instead of before rasterization. Indeed, until the programmable
GPU became widely available, the hardware based engines did not do a very
realistic job of lighting and shading because they only performed a simple Lam-
bertian lighting model at the vertices. Figure 4.2 illustrates the key stages in
three variants of the rendering pipeline. Each box is a self contained unit, and
in a hardware implementation every stage can be working on different data at
the same time. It also shows where programmability is typically added into the
pipeline.

By looking at figure 4.2 is should be easy to see why the programmability is
primarily separated into the vertex and pixel processors. They are at different
parts of the pipeline and are operating on very different entities. It should
also be evident that the pixels processing is done further down the pipeline and
consequently there is no way that any output from the pixel processing can be
fed back to the place where its vertices and the scene geometry are processed.
However, the normal direction of information flow does allow for some additional
data to be passed from the level of the vertex to the level of the pixel and in
this the rasterizer plays an important role. This topic is discussed in section 7.3
where OpenGL GPU programming is discussed.

However the pipeline is envisioned, even if it were to do no texturing and no
lighting, just to be able to present the viewer with a drawing in which they can
perceive a three-dimensional solid object, it is necessary to avoid drawing those
parts of solid objects that aren’t visible from the viewpoint. This is the topic of
the next important section.

92 4. Basic visualization

Materials
and

textures

Materials
and

textures

Materials
and

textures

Pixels

(c)

(b)

(a)

Vertices

F
ac

es
 l

in
es

 p
o

in
ts

F
ac

es
 l

in
es

 p
o

in
ts

F
ac

es
 l

in
es

 p
o

in
ts

Vertices

Vertices

Lighting

Lighting

Lighting

Geometry
transform

and
project

Geometry
transform

and
project

Geometry
transform

and
project

Rasterize

Rasterize

Rasterize

Pixel shader programVertex shader program

Pixels

Pixels

Output
buffers
color
alpha

Output
buffers
color
alpha

Output
buffers
color
alpha

D
ep

th
 b

u
ff

er

D
ep

th
 b

u
ff

er

D
ep

th
 b

u
ff

er

Im
ag

e
Im

ag
e

Im
ag

e

Figure 4.2: The graphics pipeline: (a) This is the basic hardware pipeline in which
all the output buffers are located at the end of the pipeline. The lighting model is
applied on a per-vertex basis, texturing is done on a per-pixel basis. (b) This variation
is used in most software implementations because the lighting is done on a per-pixel
basis and the depth (visibility) buffer may be used to eliminate any polygons that are
not visible before any lighting or shading calculations are undertaken. (c) A variation
on (a) that illustrates stages in the pipeline that are controlled by the GPU programs.
However, because of the programmability, the lighting calculations can be postponed
until rasterization is performed and the pixels are processed.

4.2 Hidden surface drawing and rasterization

Working with a faceted polygonal specification of an object to be rendered (and
after it has been moved into the required position relative to the observer), the
first and very simple test for visibility is to remove (cull) any polygons that are
at the back of the object when viewed from the observer’s location. The only
requirement to ensure that this test always works is that the object is closed and
that there is a consistent labeling of the surface normal vector for each polygon.
The usual convention is that the normal n points away from the object, from

4.2. Hidden surface drawing and rasterization 93

Figure 4.3: A hidden surface drawing.

its surface into the outside. Using this convention, the test for a back-face is
simply: if (n · v) < 0), then it is a back-face; here v is the viewing direction
vector. Sometimes the surface normal for each face is specified explicitly, but
often the direction of n is implied by the order in which the vertices that surround
each face are stored in the object’s data structure.

A hidden surface drawing is supposed to shade all the pixels lying inside the
polygon after it has been projected onto the viewing plane. However, the only
information available about where the projection of a polygon lies in the viewing
plane is where its projected vertices lie.

To shade inside the projected polygons it is necessary to devise a procedure
that will fill all the pixels that lie within the boundary of the polygon. Filling
areas inside a border on a 2D pixel display used to be a very significant task,
and is still something that is needed by software like presentation packages that
draw bar graphics and pie charts, for example. In the context of 3D surface
rendering it is the projections of the polygons onto the viewing plane that need
to be filled, a process known as rasterization. Some common algorithms used for
rasterization are described in section 4.2.5 after the critically important hidden
surface procedures are described.

In contrast to a wireframe drawing, in which only the visible edges of the
polygons are drawn, the hidden surface procedure attempts to color in the draw-
ing so that the edges separating adjacent polygons of the same shading, and also
polygons that are out of sight (hidden by others), are not shown. For example
if you look at a solid cube you will be able to see at most 3 of its 6 facets at any
one time, or from any one viewpoint. Unlike a wireframe drawing, where a list
of edges is sufficient to complete the drawing, a list of polygons must be used to
render a hidden surface picture.

94 4. Basic visualization

Figure 4.4: Examples of non-convex polygons. Any polygon that has a hole in it is
always non-convex.

To construct a hidden surface view, each polygon edge is projected onto the
viewing plane; then, instead of just drawing the projected edges, pixels lying
inside the boundary formed by the projected edges of a polygon are given an
appropriate color.

Sadly, if all we did was work through the list of polygons sequentially and fill
in appropriate pixels it is certain that the drawing would be a mess. At the very
least we would see parts of the model that should have remained hidden. It is
the purpose of section 4.2 to describe algorithms that will make sure that those
parts of a model which should be obscured from view never get drawn.

Before considering the hidden surface algorithm it is worth pausing to con-
sider the implications of the statement:

Pixels lying inside the boundary formed by the projected edges of a
polygon are given an appropriate color.

Finding which pixels lie inside a polygon is itself not always a trivial task espe-
cially when the polygon is non-convex. A convex polygon is one in which any
point in the interior can be joined to any vertex on the boundary by a line that
does not cross any edge of the polygon. Because there are so many pixels in a
raster and in most cases such a high number of polygons are to be filled, any pro-
cedure to implement the filling task must be very efficient. We will look at three
potential algorithms in section 4.2.5. An even more important task than filling
pixels within a specified outline is the calculation of the appropriate color with
which to fill those pixels. Determining the color value for any pixel in the output
raster is the most significant task any rendering algorithm has to perform. It
governs the shading, texturing (e.g., wood, marble or decals), and quality of the
final image.

4.2. Hidden surface drawing and rasterization 95

Sort the list of polygons so that it is ordered by distance from the viewpoint with the
polygon furthest away at the start of the list.

Repeat the following for all polygons in the ordered list {
Draw projected polygon into the framebuffer using the procedure
described in section 4.2.5.

}

Listing 4.1: An outline of the painter’s rendering algorithm.

4.2.1 The painter’s algorithm

This is the simplest of all the hidden surface rendering techniques. It does not
deliver true hidden surface behavior because it cannot resolve polygons which in-
tersect each other or overlap in certain ways. Some shapes that are not amenable
to rendering with the painter’s algorithm are illustrated in figure 4.5. It does
give very good results if there are a large number of similarly sized polygons in
a scene because the small inaccuracies are less noticeable.

The painter’s procedure relies on the simple observation that if you paint
on a surface, you paint over anything that had previously been there, hiding it.
Therefore if the list of polygons can be arranged so that those polygons nearest
the viewer occur at the end of the list you can just paint every polygon into the
framebuffer and the nearest ones will overwrite those further away. Once all the
polygons have been drawn the result is a hidden surface view. This simple idea
can be summarized in the steps given in listing 4.1, which constitutes a possible
procedure for step 5 in the basic rendering algorithm of section 4.1.1.

As noted earlier there are occasions where this simple procedure fails. The
reason it fails is that in the depth sorting step we have to assume that each
polygon is represented by only one depth. Polygons however are not just points
lying at one value of depth. They cover large portions of the projection plane
with different areas on the polygon visible in different pixels. Consequently the
depth of the polygon in each of the pixels that it covers will not necessarily be
the same. We really need to look at depth on a pixel-by-pixel basis not on a
polygon-by-polygon basis. Therefore, if it were possible to depth sort for every
pixel covered by a polygon we would have a true hidden surface procedure. A
method that accomplishes this is discussed in section 4.2.3.

4.2.2 Sorting

The painter’s algorithm needs to sort a list of items using a specific criterion
(depth from observer). There are many good algorithms that perform the sorting
required by the painter’s algorithm. One that is in common use is the standard
quicksort; another is the basic shell sort.

96 4. Basic visualization

Figure 4.5: Polygon arrangements that confuse the painter’s algorithm.

4.2.3 The Z buffer hidden surface algorithm

In the comment at the end of section 4.2.1 the observation was made that the
painter’s algorithm was inadequate because depth sorting was done on a per
polygon basis rather than at every pixel in the raster or framebuffer. Because of
the very large number of pixels making up the raster it is quite impractical to
carry out a depth sort amongst every polygon for every pixel; this is one of the
drawbacks of a simple ray tracing algorithm. However an alternative procedure
that accomplishes the same task is available, the Z buffer algorithm.

Look at figure 4.6; it shows a polygon and its projection onto the viewing
plane where an array of pixels is illustrated. Imagine adding a matching array
of similar dimension that is capable of recording a real number for each pixel;
this is the Z buffer. The main action of the algorithm is to record in the Z buffer
at address (i, j) the distance from V the viewpoint, to P the point where a line
through V and pixel (i, j) intersects polygon k. This action is repeated for all
pixels inside the projection of polygon k.

When it comes to drawing another polygon, say l, it too will paint into a
set of pixels some of which may overlap those previously filled with data from
polygon k. It is now that the Z buffer comes into play. Before information for
polygon l is written to the pixel at location (i, j) the Z buffer is checked to see
whether polygon l appears to be in front of polygon k. If l is in front of k then
the data from l is placed in the framebuffer and the Z buffer depth at location
(i, j) is updated to take account of l’s depth.

The algorithm is known as the “Z buffer algorithm” because the first pro-
grams to use it arranged their frame of reference with the viewpoint at the origin
and the direction of view aligned along the z axis. In these programs the dis-
tance to any point on the polygon from the viewpoint was simply the point’s
z coordinate. (OpenGL and Direct3D use this direction for their direction of
view.) The Z buffer algorithm is summarized in listing 4.2.

4.2. Hidden surface drawing and rasterization 97

(x3, y3, z3)

(x2, y2, z2)

(x1, y1, z1)

(X3, Y3)

Scanline j

Projection plane
(the screen or
framebuffer)

Polygon k

P

(X1, Y1)

Pixel (i, j)

Y
z

y

x

Viewpoint (0,0,0)

(X2, Y2)

X

Figure 4.6: Projecting back from the viewpoint through pixel (i, j) leads to a point in
the interior of polygon k. (It is also common, in OpenGL for example, for the view
vector to be aligned with the z axis.)

There are some important details regarding the Z buffer procedure: Following
the convention established in section 2.12.7 the viewpoint V occurs at (0, 0, 0)
and the direction of view is along the x axis. It is therefore the x component of
the point P that is inserted into the Z buffer.

Note that the x coordinate of P is not quite the same thing as the
distance between V and P . However, so long as one is consistent
this not important and using the x coordinate requires much less
computation than the actual Euclidean distance.

To find P , and hence its x coordinate, we call on the ideas of section 2.6 for the
intersection of line and plane. The plane in this case is the polygonal facet k
with surface normal n. To find a point in the plane we can choose any of the
vertices of polygon k, say P0. It is usual to pre-calculate the normals and record
them as part of the data structure associated with every polygon as suggested
in chapter 3.

98 4. Basic visualization

Fill the depth buffer at Z(i, j) with a ‘far away’ depth.
i.e. Set Z(i, j) = ∞ for all i, j.

Repeat for a l l polygons k {
For polygon k find pixels (i, j) covered by it. Fill these with the color of
polygon k. Use the procedure outlined in section 4.2.5.

With each pixel (i, j) covered by k repeat {
Calculate the Depth (∆) of P from V (see figure 4.6)
I f ∆ < Z(i, j) {

Set pixel (i, j) to color of polygon k
Update the depth buffer Z(i, j) = ∆

}
}

}

Listing 4.2: The basic ideas of the Z buffer rendering algorithm.

For the equation of the line we know that it originates at (0, 0, 0) and that
it passes through a pixel in the raster given by equations 2.17 and 2.18 in sec-
tion 2.12.8. Rearranging these equations and arbitrarily choosing a value of
x = 1 gives the direction vector d, (with components dx, dy, dz):

d =

















1
(

Xmax

2 −Xs

sx

)

(

Ymax

2 − Ys

sy

)

















Following the analysis of section 2.6, the point of intersection is given by P = µd
where:

µ =
P0 · n
n · d

Since the x component of d is unity the x component of P is µ and in the frame
of reference that we are using this is the value that is written into the Z buffer
for pixel (i, j).

Using general expressions to determine the Z depth is not an efficient way
to do the calculation. It is possible to take advantage of some of the special
circumstances under which the depth is determined:

1. The constant (P0 ·n) is dependent only on the polygon. It could therefore
be calculated at the same time as the polygon’s normal is determined
and stored along with the normal in the data structure allocated to every
polygon: say we call it ck.

4.2. Hidden surface drawing and rasterization 99

2. Filling pixels one scanline after another implies that those parts of the ex-
pression for Z which are independent of the horizontal coordinate need only
be calculated once per scanline. This will save many arithmetic operations
since most pixels on each scanline will need to have a Z depth determined.
The z component of d is constant across the scanline and therefore if we
let d2 = nzdz, the calculation of Z at pixel (i, j) simplifies to:

Z =
ck

nx + nydy + d2

One division, one multiplication and two additions, quite a significant sav-
ing over the direct use of the general expressions.

In practice, graphics hardware often uses normalized depth (after perspec-
tive division), because this makes it possible to linearly interpolate depth
in screen space from pixel to pixel within the viewport. Screen space and
the viewport are discussed more fully in chapter 7 on OpenGL.

Comments:

1. Since the Z buffer works on a per-pixel basis it solves all the problems
of the painter’s algorithm and (up to the resolution of a pixel) it gives a
perfect hidden surface visualization.

2. Spending time determining the color to write into framebuffer or display
on a monitor only to have it be replaced later when a polygon is found
lying closer to the viewpoint is very unsatisfactory. It may have taken
quite a bit of effort to calculate that color, shading, texturing etc. Here is
what might be regarded as an important clue to fast rendering:

First calculate what you can see, then calculate what you do see.

Instead of calculating a pixel’s color and then storing that in the frame-
buffer, store the identity of the polygon that can be seen at that pixel.
(Imagine you are standing at the viewpoint and are looking at the scene
through a wire grid held at the projection plane. Through each square you
will see a polygon in the scene.) Once the Z buffer algorithm has run its
course go through the identity buffer, extract the identity of which poly-
gon is visible in the pixel and calculate the appropriate color value, then
write that color into the framebuffer. This way the expensive calculations
are not wasted and there may be an advantage when one needs to ap-
ply anti-aliasing techniques as described in section 4.3. Perhaps a little
more memory will be needed but it is certainly worth the expense. When
memory resource is scarce the next algorithm is an ideal alternative.

100 4. Basic visualization

repeat for all scanlines, j, in the raster {
repeat for all pixels i on scanline, 0 ≤ i < Xmax

Z(i) = ∞ set the scanline Z buffer to a far away depth
Id(i) = −1 set the polygon ID buffer to indicate no polygon visible

}
repeat for all polygons, k, such that 0 ≤ k < Npoly {

i f polygon k does not span scanline j {
skip on to next polygon

}
find first, i1, and last, i2, pixels covered by polygon k on scanline
j, use the procedure of section 4.2.5.
repeat with each i such that i1 ≤ i ≤ i2 {

calculate the depth, ∆, of P (see figure 4.6)
i f ∆ < Z(i) {

Id(i) = k record ID of polygon k for pixel i, j
Z(i) = ∆ update the depth buffer

}
}

}
repeat for all i, on scanline j, such that 0 ≤ i < Xmax {

i f Id(i) ≥ 0 set pixel (i, j) to color of polygon Id(i)
}

}

Listing 4.3: The scanline Z rendering algorithm.

4.2.4 The scanline Z buffer algorithm

This version of the Z buffer algorithm was preferred in practice because it did not
need to maintain a full screen Z buffer and so would work in the much smaller
memory of an early PC. In most respects it involves the same calculations as the
full Z buffer procedure but with a buffer size that is only required to store one
row of pixels, called a scanline, at a time. For example, to generate an image
at a resolution of 1024× 768 requires a full Z and framebuffer of some 786, 000
elements (5.25Mb); using a scanline Z procedure one can get away with a storage
requirement for 1, 024 elements or 16kb.

Now of course if the Z buffer is only one row high, it must be applied to each
row in the raster (with respect to the example above, 768 times). This means
that every polygon has to be checked every time a raster row is processed. In
theory this should be much slower than using a full Z buffer but in practice this
is not usually the case. To see why just remember that to build up the depth
information in the Z buffer each polygon has to be scanline filled over a number
of rows anyway. In fact if there is a polygon that nearly fills the whole raster
then there is almost exactly the same work to do in both full Z and scanline Z
procedures. With a careful organization of the algorithm rendering speed can

4.2. Hidden surface drawing and rasterization 101

approach that of the full Z buffer, especially when the slow step of rendering the
pixel (to record what you do see) is taken into account.

A typical implementation of the scanline Z algorithm is given in listing 4.3.
The very low memory requirement of the scanline Z buffer algorithm has the

added advantage that if you want to simulate transparent or semi-transparent
surfaces then two or more scanline buffers can be easily accommodated. Separate
scanline buffers are used for the opaque and transparent surfaces visible in pixel
(i, j). A comparison of the depth between buffers will tell us whether transparent
parts of the surface lie in front of the opaque parts or vice versa. Maintaining
two scanline buffers for transparent surfaces allows two overlapping transparent
surfaces to be rendered correctly. After about four transparency buffers are
employed synthetic images of glass objects can look pretty good.

A trick very often used to draw complex shapes (e.g., trees in an architectural
flyby) is to paint them on transparent quadrilateral polygons and then render the
scene. See section 4.6.1 on transparency mapping.

4.2.5 Rasterization and polygon filling

Three potential algorithms that fill a closed polygonal region specified by a set of
coordinates at the vertices of the boundary, (x0, y0) → (x1, y1) → (x2, y2)... →
(xn−2, yn−2) → (xn−1, yn−1) → (x0, y0), are:

1. Recursive Seed Fill

This is the simplest of all the methods but it is also the slowest. A pixel
that lies inside the region to be filled is taken as a seed; it is set to record
the chosen color. Then the seed’s nearest neighbors are found and with
each in turn this procedure is executed recursively. The process continues
until the boundary is reached.

2. Ordered Seed Fill

This is a method that many paint packages use to color in regions of a
drawing. The procedure works by first choosing a seed pixel inside the
region to be filled. Each pixel on that row in the raster, to the left and
right of the seed, is filled, pixel by pixel, until a boundary is encountered.
While scanning that row a series of extra seeds are placed on the rows
above and below subject to certain conditions. After all the pixels in the
row have been filled any additional seeds placed on other rows are processed
in exactly the same manner. This algorithm is also recursive but it has
the advantage that the number of recursive calls is dramatically reduced.
A full explanation of this and the Recursive Seed Fill can be found in
Burger [15].

3. Scanline Fill

The polygon is filled by stroking across each row in the raster and coloring
any pixels on that row if they lie within the polygon, see figure 4.8.

102 4. Basic visualization

Pixels

Figure 4.7: Scanline fill by stroking the rows of the output raster.

Line 1

Line 0

Line 2

(x0, y0)

(x1, y1)

(x2, y2)

x

y

Scanline i

Figure 4.8: Scanline filling a triangular polygon.

This is the most useful filling procedure for a 3D polygon rendering al-
gorithm because it works very efficiently for simple convex shapes. The
drawing stage in a large number of rendering algorithms is commonly per-
formed with triangles because a triangle is the simplest polygon and it is
also planar. All triangles are convex. Quadrilaterals are easily divided into
two triangles and higher order polygons are rare. In any case it is always
possible to divide up polygons with more than three sides into two or more
triangular facets.

An algorithm to scanline fill a triangular polygon Let the three vertices projected
onto the view plane have coordinates (x0, y0),(x1, y1) and (x2, y2), and let c be
the color to assign to the pixel. For the geometry illustrated in figure 4.8 the
following six step procedure will fill pixels with color c that occur within the
triangle (x0, y0) → (x1, y1) → (x2, y2):

4.2. Hidden surface drawing and rasterization 103

1. Find minimum and maximum y coordinates of the polygon’s vertices:

ymin = min(y0, y1, y2)

and

ymax = max(y0, y1, y2)

2. Find the largest integer i0 such that i0 ≤ ymin and the smallest integer i1
such that i1 ≥ ymax. Note that this step requires mixing real and integer
arithmetic and therefore care must be exercised in coding these statements.
After this step we know that horizontal scanline i, such that i0 ≤ i ≤ i1,
will cross the polygon somewhere.

3. For all scanlines i0 ≤ i ≤ i1 repeat the following steps.

4. Consider each of the lines, 0, 1 and 2 in figure 4.8 in turn; if a line crosses
the scanline between the vertices at either end of the segment find the x
coordinate of the intersection with i. If any of the lines are horizontal
assume there is no intersection. There will be either two or three such
values; three values may occur because one of the vertices of the triangle
may lie on scanline i. To obtain the x coordinate of the intersection between
scanline i and the side joining (x1, y1) to (x2, y2), for example, a simplified
2D line intersection calculation is all that is required. The algorithm given
in listing 4.4 takes advantage of the fact that the scanline is horizontal and
the first thing it does is to check and see if the scanline crosses the triangle
at all. (This step will be performed many times, proportional to both the
number of polygons and the resolution of the framebuffer so the tests are
ordered with the least common one performed first.)

5. Find the minimum and maximum x coordinates, xmin and xmax of the
intersection.

6. Step, j, across the row of pixels from xmin to xmax setting pixel (j, i) to
color c at each step. Use the nearest integer values of xmin and xmax.

4.2.6 Culling and clipping

For the final two steps (4 and 5) of the basic rendering algorithm to work cor-
rectly, it is imperative that the vertices of all facets have an x coordinate x > 0
(i.e., in front of the viewpoint) and that the projected coordinates (X,Y) are
such that 0 ≤ X < Xmax and 0 ≤ Y < Ymax. In all the topics we have discussed
before, this has been implicitly assumed. However these conditions are not al-
ways satisfied in practice. Indeed in some common uses of 3D graphics, e.g.,
walk throughs, these conditions will be met by only a very few of the vertices in
the scene.

104 4. Basic visualization

i f y1 < i and y2 < i then no intersection
i f y1 > i and y2 > i then no intersection
∆y = y2 − y1
i f |∆y| < 1

2
then line horizontal ⇒ no intersection

∆x = x2 − x1

d =
(i− y1)∆x

∆y
xint = x1 + d

Listing 4.4: Determining the intersection between raster scanline i and the side joining
points (x1, y1) to (x2, y2).

In order to reduce the number of calculations and remove artifacts that can
occur when the conditions given earlier are violated it is necessary to perform
culling and clipping. For our work the term culling will apply to the action of
discarding complete polygons, i.e., those polygons with all their vertices outside
the field of view, or in the case of a wireframe drawing, the vertices at both ends
of an edge. Clipping will refer to the action of modifying those polygons (or
edges) that are partially in and partially out of the field of view. Culling should
always be performed first because it is likely to give you the biggest performance
gain.

4.2.7 Culling

For 3D graphics there are three important types of cull:

1. Remove polygons behind the viewpoint.

If the x coordinate of all vertices for polygon k are such that x ≤ 1 then
cull polygon k. Note that this is equivalent to removing any polygons that
lie behind the projection plane.

2. Remove polygons projected to lie outside the raster.

If the projected coordinates (X,Y) for all the vertices of polygon k are
such that X < 0 or X ≥ Xmax or Y < 0 or Y ≥ Ymax then cull polygon k.

3. Cull any back-faces.

A back-face is any polygon that faces away from the viewpoint. It is called
a back-face because if the model were solid then any polygons facing away
from the viewer would be obscured from view by polygons closer to the
viewer.

In order to say whether a polygon faces toward or away from an observer
a convention must be established. The most appropriate convention to
apply is one based on the surface normal vector. Every polygon (which
is essentially a bounded plane) has a surface normal vector as defined in

4.2. Hidden surface drawing and rasterization 105

Polygon 1

7

8

2

4

1 1 3
6

7

1

1

2

4

6 5

3

7 8

6 5

5

8

Vertices6
n n

n1

Vertices 1,2,3,4

Figure 4.9: Surface normal vectors for a cube and a plan of the vertices showing
a consistent ordering of the vertices round each polygonal face. For example n1 =
(P2 −P1)× (P3 −P1).

section 2.5. Since it is possible for a surface normal to point in two opposite
directions it is usual to assume that it is directed so that, in a general sense,
it points away from the inside of an object. Figure 4.9 shows a cube with
the normal vectors illustrated.

If the dot product of the normal vector with a vector from the viewpoint
to a point on the polygon is negative the polygon is said to be a front-face;
if the dot product is positive the polygon is a back-face.

Comments:

• There are a number of alternative ways to organize culling. One can use
a bounding volume for groups of polygons and organize them in a hi-
erarchical way with one bounding volume, containing multiple bounding
volumes containing yet more bounding volumes, etc. Two other culling
techniques, view frustum cull and occlusion culling, are proving popular in
game engines but their discussion is outside the scope of this chapter. For
more information on these culling techniques consult Akenine-Mōller and
Haines [1].

• Since the normal to a plane can be determined from the position vectors
of three points in that plane, a consistent ordering of the vertices around a
polygon should be observed whenever possible. Figure 4.9 includes a plan
of a cube with vertex orderings consistent with the outward facing normals.

• A cube has a definite inside and outside, it is solid. Some shapes, particu-

106 4. Basic visualization

larly if in one dimension they are very thin with respect to the other two,
might be represented by a single layer of polygons, for example a model
of a CD (compact disk) could be made from a fan of triangles. A model
made in this way has no sense of inside and outside. In such cases it is
necessary to think of each polygon as double sided and therefore ignore
any back-face culling step altogether.

4.2.8 Clipping

We need to consider clipping in both two and three dimensions. Two-dimensional
clipping is important so that memory access violations do not occur in the screen
buffer. The algorithm due to Sutherland and Cohen and described by Angel [3]
has achieved almost universal usage as the most pertinent procedure for drawing
lines in a 2D pixelated raster. The algorithm orders the clipping of lines in a
series of tests which eliminate the most common cases first:

1. Both points inside

2. The line does not span the visible area.

The tests are followed by a step to calculate one or two points on the line where
it crosses the boundary of the visible area.

In a 3D rendering algorithm, the 2D tests are applied after each polygon has
been projected onto the viewing plane. There is no need for intersection calcu-
lations since all drawing occurs on one scanline at a time. Thus, the following
modifications to the Z buffer algorithm will accomplish 2D clipping:

1. Begin by adding the instructions given in listing 4.5 to the loop that is
processing the polygons; a flag is used to indicate whether the polygon
should be culled or not.

2. Conclude by inserting the instructions given in listing 4.6 in the procedure
to scanline fill the projected polygon.

In a general Z buffer algorithm any 3D clipping should be done before the
polygons are projected onto the viewing plane. Clipping is usually done against
a set of planes that bound a volume. Polygons (or parts of polygons) that lie
inside the volume are retained for rendering. A cubic volume is the simplest to
create but since the field of view establishes a pyramidal shaped volume, this is
commonly used as the clipping volume. This frustum is arranged so that its sides
correspond to the edges of the field of view. The top and bottom of the frustum
form the so-called front and back clipping planes. The front clipping plane is
used to prevent polygons from extending to the wrong side of the projection
plane. The front and back clipping planes are at right angles to the direction
of view, see figure 4.10. For the purposes of a Z buffer rendering algorithm, it
is essential to use the front clipping plane. A back clipping plane is required

4.2. Hidden surface drawing and rasterization 107

While repeating for all polygons k add the following:
{

Set flag
repeat for all vertices i of polygon k {

let (X,Y) be projected coordinates of vertex i
i f X ≥ 0 and X < Xmax {\

clear the flag and jump to next polygon
}
i f Y ≥ 0 and Y < Ymax {

clear the flag and jump to next polygon
}

}
if the flag is set cull the polygon

}

Listing 4.5: Amendments to the Z buffer algorithm to cull polygons which lie outside
the field of view.

Check scanline, i, to see if it is inside the raster.
i f i < 0 or i ≥ Ymax skip to next scanline

On scanline i polygon k spans pixels x1 to x2.
Before setting pixel values apply limits to x1 and x2.

x1 = max(0, x1)
x2 = max(0, x2)
x1 = min((Xmax − 1), x1)
x2 = min((Xmax − 1), x2)

Listing 4.6: Amendments to the Z buffer algorithm to clip polygons partially lying
outside the field of view.

because the Z buffer has finite resolution, an important point if the Z buffer is
implemented in hardware using 16 or 24 bits per pixel. Other necessary clipping
can be accomplished in the 2D projection plane. For multiple clipping planes
it is sufficient to apply them one at a time in succession; for example clip with
the back plane, then the front plane, then the side plane, etc. An interesting
application of the use of clipping planes is to produce animated cut away views;
for example by moving the clipping plane through a model the inside can be
revealed gradually.

Clipping a triangular polygon with a clipping plane To see how 3D clipping is
achieved we consider the following: Look at figure 4.11. It shows a triangular
polygon ABC which is to be clipped at the plane PP ′ (seen end on). Clipping
is accomplished by splitting triangle ABC into two pieces; BDE and ACED.

108 4. Basic visualization

Only this bit of the rectangle
is visible after clipping

Rear clipping plane

Front clipping plane

Figure 4.10: Cubic and truncated pyramidal clipping volumes penetrated by a rectan-
gular polygon. Only that portion of the rectangle which lies inside the clipping volume
would appear in the rendered image.

Clipping plane

P´x

C

z
E

A D
B

P
XP

A D

E

C

B

Figure 4.11: Clipping a triangular polygon, ABC, with a yz plane at PP ′, at (xp, 0, 0).
Clipping divides ABC into two pieces. If the polygons are to remain triangular the
piece ADEC must be divided in two.

The pieces are then either removed from, or added to, the polygon database as
necessary. For example, when PP ′ is the back clipping plane triangles ADE
and AEC are added to the database, whilst triangle BDC is removed. Points
D and E are determined by finding the intersection between the lines joining
vertices of the polygon and the clipping plane. The calculation is straightforward
(section 2.6 considered a general case) but, since the clipping plane is at right
angles to the x axis and because clipping to such a plane is commonly used,
it is worth writing expressions specifically for these particular circumstances.
Therefore the intersection point, p, between a line joining points P1 and P2 and

4.2. Hidden surface drawing and rasterization 109

There are three possible cases to consider as illustrated in figure 4.12.

i f edges AB and BC cross PP ′ {
calculate point D on edge AB
calculate point E on edge BC
Re-label the triangle ABC to have vertices DBE
Add new triangles ADC and DEC to database

}
else if edges AB and CA cross PP ′ {

calculate point D on edge AB
calculate point E on edge CA
Re-label the triangle ABC to have vertices ADE
Add new triangles DBE and BCE to database

}
else if edges BC and CA cross PP ′ {

calculate point D on edge CA
calculate point E on edge BC
Re-label the triangle ABC to have vertices CDE
Add new triangles DAE and ABE to database

}

This procedure has ensured that there will be an edge actually in the
clipping plane. Polygons will lie on one side or the other. No polygons
will span the clipping plane. Despite this it is useful to keep a record
of all polygons because another clipping plane might be added later.
A flag can be used to indicate which triangle lies inside the
appropriate clipping volume.

Listing 4.7: Algorithm to clip the triangular polygons ABC with a plane PP ′ (seen in
cross section) as illustrated in figure 4.11.

the yz plane at xp is given by:

px = xp

py = P1y +
(xp − P1x)

(P2x − P1x)
(P2y − P1y)

pz = P1z +
(xp − P1x)

(P2x − P1x)
(P2z − P1z)

Once the coordinates of the points D and E are known the algorithm to clip
the triangular polygon ABC is complete and it is given in listing 4.7.

110 4. Basic visualization

BP´

P´
P´

CC

E

C

D
A

A

PP
P B

B

E

E

D
D

A

Figure 4.12: Possible configurations for clipping a triangular polygon. Note that in
figure 4.7 there is a consistent counterclockwise ordering of the vertices for all the poly-
gons created. This is vital for a consistent sense of inside and outside to be maintained.
Although the second and third configurations look the same they are in fact different
because the clipping plane crossed edges AB and AC in the second but edges BC and
AC in the third.

4.3 Anti-aliasing

Aliasing is a term arising from the theory of sampled signals. The manifestation
of aliasing depends on how the signal is interpreted, audio, video etc., but in all
cases aliasing effects are regarded as undesirable and at least some effort should
be devoted to minimizing their interference. Anti-aliasing refers to the steps
taken to minimize the deleterious effects of aliasing. For our purposes the only
significant problem with aliasing is due to the fact that the output device or
framebuffer is of finite resolution. In computer graphics work the artifacts of
aliasing are often referred to as the jaggies because the finite dimensions of the
raster causes a straight line drawn at an angle across it to take on the appearance
of a staircase rather than a straight line. Aliasing artifacts are also a significant
problem in rendering image maps and textures, as discussed in section 4.5.

The obvious way to reduce the aliasing effect is to increase the resolution of
the raster or framebuffer. An alternative approach is to use the range of color or
brightness provided by the display to smooth out the obvious aliasing artifacts.
Figure 4.13 illustrates this alternative technique; on the left it shows a couple of
characters from a text font that have been rendered into a pixelated raster. By
fading the edges with lighter shades of gray (shown on the right) the curves look
smoother and angled straight lines look less jagged. At the bottom of figure 4.13
the effect of the same technique on a straight line is also illustrated. To consider
anti-aliasing further it is useful to investigate procedures to anti-alias the drawing
of points, lines and pictures.

4.3. Anti-aliasing 111

Rs Rs

Figure 4.13: Anti-aliasing by fading the brightness in pixels near the edge of lines and
shapes.

4.3.1 Anti-aliasing points

In the context of 3D graphics the most common need to draw points in the
framebuffer or on a screen is as the result of a particle model of some sort, for
example rain, snow, fireworks etc.

After projection a point p will have coordinates (X,Y) which are scaled
to lie within the dimensions of the raster, but X and Y will be floating point
numbers and to record a color value it is necessary to fill the best guess pixel
at some integer coordinate (Xi, Yj). Unfortunately simply rounding X or Y to
the nearest integer will result in aliasing artifacts. The effect will be especially
noticeable in a sequence of images where the particles will appear to jitter and
move about in fits and starts.

A point can be successfully anti-aliased by spreading out its color value over
not only the nearest integer pixel but also into those adjacent to it in the raster.
For example, if the projected point is at raster coordinates (1.3, 3) and it has
a brightness value of 0.7 (on a [0, 1] scale) pixel the (1, 3) will be assigned a
brightness of 0.7 and pixel (2, 3) a brightness of 0.4. This blending will give
the point the appearance of being located to the left side of pixel (1, 3). Using
the notation given in figure 4.14 the instructions in listing 4.8 will draw, with
anti-aliasing, a point P with brightness c.

4.3.2 Anti-aliasing lines

To minimize the aliasing effect when drawing lines in a pixelated raster blend
the brightness in the pixels of adjacent rows and columns (see figure 4.13). This
can be accomplished by modifying the Bresenham line drawing algorithm to that
given in listing 4.9.

112 4. Basic visualization

Pixel rows

Pixel columns

j+1

i+1i–1

x
0,0

y

i j–1

j

fb

fr

ft
fL

Figure 4.14: When a point, P , is projected to the view plane its coordinates, (X,Y),
will not always be dead center in pixel i, j. Blending the brightness of P into adjacent
pixels i, j + 1 ,i+ 1, j and i+ 1, j + 1 will help to lessen the effect of the display raster
(or framebuffer) being composed of discrete elements.

The projected point is (X,Y) (float data types)
Function frac(x) returns the fractional part of x *
Each pixel is one unit square

i = X //rounded down to integer
j = Y
fl = 1− frac(X)
fr = frac(X + 1)
ft = 1− frac(Y)
fb = frac(Y + 1)
set pixel (i, j) to value c× ft × fl
set pixel (i+ 1, j) to value c× ft × fr
set pixel (i, j + 1) to value c× fb × fl
set pixel (i+ 1, j + 1) to value c× fb × fr

Listing 4.8: Using the notation given in figure 4.14 this algorithm will draw, with
anti-aliasing, a point P with brightness c.

4.3.3 Anti-aliasing pictures

The simplest way to anti-alias synthesized images is to supersample. That is:
Divide each pixel into a number of subpixels, render each of them as if they were
individual pixels and then average the results. For example divide each pixel
into 4 subpixels. An alternative way of doing this is to render into a raster that
is twice as wide and twice as high and then average over adjacent groups of 4

4.3. Anti-aliasing 113

∆x = x2 − x1

∆y = y2 − y1
δ = −∆x/2
set x = x1 and y = y1
draw pixel at (x, y) with color c
while x < x2 do {

δ = δ +∆y
i f δ ≥ 0 {

y = y + yinc

δ = δ −∆x
}
x = x+ 1
/∗ modi f i ed s e c t i on ∗/
draw pixel at (x, y) with color c(1− δ

∆x
)

draw pixel at (x, y + 1) with color c
δ

∆x
/∗ end mod i f i ca t i on ∗/

}

Listing 4.9: A modified Bresenham’s algorithm for rendering anti-aliased lines.

pixels. For example rendering to a raster of 1280× 960 and averaging pixels i, j,
i+ 1, j, i, j + 1 and i+ 1, j + 1 will give the same result as rendering to a raster
of 640× 480 with each pixel divided into 4. This box filtering is quick and easy
to apply but in theory the best results are obtained from a sin x

x
filter function.

Because a supersample of n requires (n − 1) additional pixel values to be
determined the rendering process slows down as anti-aliasing is applied. For
example if it takes one minute to render a frame of TV resolution without anti-
aliasing it will take about nine minutes to anti-alias it on a 3 × 3 supersample.
Sadly, for a good enough quality TV sized image it is necessary to use at least
a 3× 3 supersample.

There are a couple of tricks that can be employed to accelerate the anti-
aliasing process and both of them rely on the fact that the most noticeable
aliasing artifacts occur near edges where color or brightness changes occur.

Techniques to accelerate supersampled anti-aliasing

1. Once the first supersample has been obtained for pixel (i, j) the remaining
samples are only rendered if the color differs from that for pixels (i− 1, j)
or (i, j − 1) by more than a certain threshold.

2. Use the fact that relatively few calculations are required to determine the
identity of the polygon visible in each of the supersamples for pixel (i, j).
If the same polygon appears in each supersample then there is no need to
perform the more time consuming work of determining a color value for all

114 4. Basic visualization

Figure 4.15: (Top) Hidden surface visualization of a group of colored spheres made
up from 320 triangular polygons in each sphere, and (bottom) the same view with a
simple lighting model.

the supersamples. Simply do it once and record that as the value for pixel
(i, j). If different polygons appear in each supersample then we must get
color values for those that are different and average the results for pixel
(i, j).

Using either of these techniques can lead to significantly reduced rendering times
without much loss in picture quality.

4.4 Lighting and shading

Figure 4.15(top) illustrates a simple scene of a colored spheres rendered with a
hidden surface algorithm. Only those triangular polygons that should be visible
are visible but there is definitely still something not very realistic about the
image: It certainly doesn’t look like a photograph. Figure 4.15 (bottom) shows
the same scene after the simplest possible lighting model has been included in
the renderer and the level of realism is certainly improved.

It is without doubt the way in which light interacts with surfaces of a 3D
model that is the most significant effect that we can simulate to provide visual

4.4. Lighting and shading 115

Spotlight

Directional

Point

θ2

θ1

Figure 4.16: Three types of light source.

realism. A hidden surface procedure may determine what you can see but it is
mainly the interaction with light that determines what you do see.

To simulate lighting effects it stands to reason that at least the location and
color of one or more lights must be known. In addition to this we need to classify
the light as being one of the three types illustrated in figure 4.16:

1. A point light source that illuminates in all directions.

2. A directional or parallel light source. In this case the light comes from
a specific direction which is the same at all points in the scene. (The
illumination from the sun is an example of this type of illumination.)

3. A spotlight illumination is limited to a small region of the scene. The beam
of the spotlight is normally assumed to have a graduated edge so that the
illumination is a maximum inside a cone of half angle θ1 and falls to zero
intensity inside another cone of half angle θ2, naturally θ2 > θ1.

For a lot of scenes the type 1 source gives the best approximation to the lighting
conditions. In simulated outdoor scenes the sun is so far away that its illumina-
tion is simulated as a directional light source with all rays arriving at the scene
in a parallel direction.

Before proceeding we should consider the format for recording a value for the
surface color and illumination, call it c. In CG programs a model to describe
color must be employed. A detailed description of various color models may
be found in Watt and Watt [87]. The simplest color model that fulfills all the
requirements is one with three components, one for each of the primary colors,
red, green and blue, the so-called RGB values. Any color the eye can perceive
can be expressed in terms of an RGB triple. Thus c is recorded as cR, cG, cB
which are usually stored as unsigned 8 bit integers giving a range for each of 256

116 4. Basic visualization

Object

Light

Object

Object

Camera

Figure 4.17: Lights, camera, action. Reflected light finds its way to the observer.

discrete values. For preliminary calculation it is more usual to assume that cR,
cG and cB are recorded as floating point numbers in the range [0, 1]. We will
also assume that any light or surface color is also given as an RGB triple in the
same range.

There are other models to describe color. HSV (Hue, Saturation Value), and
CMYK (Cyan,Magenta,Yellow, blacK) are alternatives that have advantages in
certain situations. It is possible to convert back and forward between any of
these models if necessary.

To determine the color that is recorded in a pixel the effect of lights need
to be combined with the surface properties of the polygon visible in that pixel.
The simplest way to do this is to break up the mathematical model for light–
surface interaction into a number of terms, each one of which represents a specific
physical phenomenon.

In the following expressions sR, sG, sB represent the color of the surface, and
lR, lG, lB the color of the light. Ia, Ic, Id and Is are the four contributions to
the lighting model and we will discuss them shortly. Using this terminology the
color c calculated for the pixel in question may be expressed as:

cR = IasR + Ic(Is + IdsR)lR (4.1)

cG = IasG + Ic(Is + IdsG)lG (4.2)

cB = IasB + Ic(Is + IdsB)lB (4.3)

Writing the expressions in this form with sR and so forth as separate terms facili-
tates the calculation because the surface color may be determined independently
of the remainder of the terms in the lighting model; indeed it might possibly be
calculated in a separate module.

To obtain expressions for the four components in our illumination model
(Ia, Ic, Id and Is) we must consider the spatial relationship between the lights,

4.4. Lighting and shading 117

Light

^
d

Light^
d

n

(a) (b)

n

Figure 4.18: Diffuse illumination. (a) The brightest illumination occurs when the
incident light direction is at right angles to the surface. (b) The illumination tends to
zero as the direction of the incident light becomes parallel to the surface.

the camera and the action; this is illustrated in figure 4.17. In the following
expressions we will assume that p is the point to be illuminated on the visible
polygon which has a surface normal n̂ at p. We will now proceed to consider
models for the components:

1. Ambient reflection (Ia)
When there are no lights in a scene the picture will be blank. Including a
small fraction of the surface color, sR and so on, helps to simulate the effect
of light reflected from the world around the scene. Without it pictures of
objects would look like they had been taken in outer space. An image
rendered with an ambient light factor of unity is equivalent to a simple
hidden surface drawing such as that which produced the flat look shown in
figure 4.15. The component of a lighting model due to ambient reflection
is designated as Ia and it is always constant, i.e., Ia = k.

2. Diffuse reflection (Id)
Diffuse lighting is the most significant component of an illumination model.
The term reflection is used here because it is light reflected from surfaces
which enters the camera. The model we choose to describe in this chapter
is a simple Lambertian illumination where a polygon is most brightly il-
luminated when the incident light strikes the surface at right angles. The
illumination falls to zero when the direction of the beam of light is parallel
to the surface. This behavior is known as the Lambert cosine law and is
illustrated in figure 4.18. The diffuse illumination component Id for a point
light source located at Pl is thus given by:

Id =
Pl − p

|Pl − p| · n̂

118 4. Basic visualization

In the case of a directional light source with incident direction d̂ the diffuse
component becomes:

Id = −d̂ · n̂

For a spotlight located at Pl, pointing in direction d̂ and having light cone
angles θ1 and θ2:

Id =



















Pl − p

|Pl − p| · n̂ if θ < θ1
(

Pl − p

|Pl − p| · n̂
)(

1− (θ − θ1)

(θ2 − θ1)

)

if θ1 ≤ θ ≤ θ2

0 if θ2 < θ

where cos θ = d̂·(p−Pl)
|(p−Pl)| .

Section 5.1 in chapter 5 delves a little more deeply into the physics of
illumination and offers some pointers to illumination models that are more
accurate but at the expense of taking longer (sometimes much longer) to
calculate.

3. Specular reflection (Is)
It is the specular component of the light reflected from a surface that
makes it look shiny. In practice the effect of specular reflection is to add
a highlight to parts of a model that have been designated as shiny. The
specular highlight takes the color of the light and not that of the surface
on which it is visible. To set up a model for specular reflection we need to
consider in a little more detail something of its origin.

A perfect mirror reflects all rays of light perfectly and the angle of reflection
is equal to the angle of incidence. However shiny surfaces that are not
perfect mirrors introduce small random fluctuations in the direction of the
reflected rays. These random fluctuations in the direction of the reflected
rays of light tend to be small so that they all lie within a cone-shaped
volume that has its apex at the point of reflection and its axis lying in
the direction that a ray would take if the surface was a perfect mirror (see
figure 4.19).

In the lighting model the specular illumination component Is is normally
modeled with the empirical expression suggested by Phong [72]:

Is = cosm φ

in which φ is the angle between the reflection vector and the vector leading
from the viewpoint at Pv to p on the surface. To determine φ from the
known geometry shown in figure 4.19 it is necessary to use a few interme-
diate steps.

4.4. Lighting and shading 119

First calculate the vector b which bisects the vectors between p and the
viewpoint and between p and Pl. The vector b takes an angle β between
these vectors. From that the angle α is easily determined because cosα =
b̂ · n̂ (the surface normal n̂ is known) while b is given by:

b = − p−Pl

|p−Pl|
− p−Pv

|p−Pv|

b̂ =
b

|b|

In figure 4.19 we note that:

β = φ+ θ − α

and that:

β = θ + α

Eliminating β and canceling θ gives:

α =
φ

2

In terms of the known geometry Is therefore becomes:

Is = cosm φ or,

Is = (2 cos2 α− 1)m or,

Is = (2(b̂ · n̂)2 − 1)m

The cosine power, m, is the parameter which governs the shininess of a
surface. Very shiny surfaces have a high m; typical values lie in the range
10 to 99.

If accelerated hardware or fast processors are not available the presence of
a power function in the calculation of specular reflection can be quite slow.
In this situation it is a good idea to establish a two-dimensional lookup
table with a few values of m and the dot product (b · n). The table can be
quite small because the visual appearance of specular highlights does not
change too rapidly, perhaps 16 values of m and 1000 values covering the
interval [0, 1] in which the dot product b · n lies. Setting aside a 64k block
of memory to store the table will be a very good investment when the time
saved in rendering is taken into account. When very fast processors or
accelerated hardware is available the memory access time can often exceed
the time for a power calculation and in this case it is better to do the
calculation.

120 4. Basic visualization

Light^
b

n
PL

Pv

β

p

β

φ

Cone of
specular reflection

θθ

r

α

Figure 4.19: Specular reflection.

4. Depth cueing (Ic)
Like any electromagnetic radiation light is attenuated as it travels away
from its source. The reflected light (mainly diffuse) arriving at the view-
point has traveled from the light source to the object where it was reflected
on to the observer. In theory the light intensity should be attenuated with
distance from its source using an inverse square law but in practice a linear
fall-off looks much more realistic. Quite often depth cueing can be omitted
entirely from the model with only mildly noticeable effect. A linear model
is usually written in the form:

Ic =
1

do + d

where do is a constant and d is the distance of p from the viewpoint.
Assuming that the viewpoint is at (0, 0, 0) and the observer is looking along
the x axis, a good assumption is to let d = px, the x coordinate of p.

If depth cueing is to be used it is also a good idea to perform an exposure
test by examining all the polygons and scaling the light intensities so that
the maximum is always unity. If this is not done then it can require quite
a lot of trial and error testing to generate a picture that is neither under-
or overexposed.

4.4. Lighting and shading 121

Figure 4.20: Shading of two similar polygon models of a sphere. Flat shading on the
left and basic Gouraud smooth shading on the right.

Once each component of the illumination model in equation 4.1 is known a
general expression for the effect of lighting a surface in the scene at some point
p with n lights becomes:

cR = IasR + Ic

n−1
∑

i=0

(Is(i) + Id(i)sR)lR(i)

cG = IasG + Ic

n−1
∑

i=0

(Is(i) + Id(i)sG)lG(i)

cB = IasB + Ic

n−1
∑

i=0

(Is(i) + Id(i)sB)lB(i)

Id and Is depend on the position of light i and on which type of light it is, for
example spotlight. If n > 1 each term in the lighting model must be limited so
that it falls in the range [0, 1], otherwise an overexposed picture will be produced.

Look at figure 4.20. It shows two pictures of the same faceted model of a
sphere. The one on the right looks smooth (apart from the silhouetted edges
which we will discuss later). It is the way a sphere should look. The one on
the left looks like just what it is, a collection of triangular polygons. Although
the outline of neither is perfectly circular it is the appearance of the interior
that first grabs the attention. This example highlights the main drawback of
the representation of an object with a model made up from polygonal facets. To
model a sphere so that it looks smooth by increasing the number (or equivalently
decreasing the size) of the facets is quite impractical. Tens of thousands of facets
would be required just for a simple sphere. However both the spheres shown in
figure 4.20 contain the same number of facets and yet one manages to look
smooth. How?

The answer is the use of a trick that fools the eye by smoothly varying the
shading within the polygonal facets. The point has already been made that if

122 4. Basic visualization

Figure 4.21: After lighting and Phong shading have been added to a hidden surface
rendering, the image starts to look much more realistic.

you look at the outlines of both spheres you will see that they are made from
straight segments. In the case of the smooth looking sphere it is because the
discontinuities in shading between adjacent facets have been eliminated that it
looks smooth. To the eye a discontinuity in shading is much more noticeable
than a small angular change between two edges.

So how is the smooth shading achieved? There are two useful possibili-
ties: one, the Phong approach, gives a more realistic look than the other, the
Gouraud approach. Unfortunately Phong’s shading model achieves its realism
at the expense of a greater number of calculations, so we will look at them both.
Combining shading with lighting makes another major contribution to obtaining
a realistic picture of an object from its numerical model as illustrated in fig-
ure 4.21, which shows the effect on the test image of adding a shading procedure
to the renderer.

4.4.1 Gouraud shading

To simulate smooth shading across a polygon the Gouraud approach is a two
step process:

1. Calculate the intensity of the light at each vertex of the model.

2. Use a bi-linear interpolation to obtain the intensity at any point within a
polygon from the intensity at the vertices of the polygon.

To calculate the light intensity at vertex i, as shown in Figure 4.22, it is necessary
to take account of all the polygons attached to vertex i. Section 4.4 showed how
the intensity of the light falling on a point within a polygon can be calculated.

4.4. Lighting and shading 123

j+2
j+3

j+4

j+1

li+1

li+2

li

j

Figure 4.22: Averaging light intensities in polygons j to j +4 adjacent to vertex i will
provide an appropriate intensity, Ii, at vertex i. Similarly light intensities Ii+1 and
Ii+2 are determined from the light falling on polygons adjacent to those vertices.

for all vertices i < n {
set vertex intensities Ii = 0

}
for all polygons k < m {

set running average intensity Il = 0
for vertices i of polygon k {

calculate light intensity at vertex
l = Poly(k).Vid(i) and update running average intensity Il
make sure that 0 ≤ Il ≤ 1

}
}

Listing 4.10: The Gouraud shading procedure.

We then average the intensity of the light falling on polygons attached to vertex
i. For example: In figure 4.22 polygons j, j + 1, j + 2, j + 3 and j + 4 will
contribute to the average shading at vertex i. Thus to calculate light intensities
at n vertices withm polygons recorded in a list, (say Poly(k), remember polygons
store the ID of the vertices that they are attached to, see figure 3.12), use the
short algorithm of listing 4.10.

To interpolate the intensity Ip at the point p, as shown in figure 4.23, there
are two alternatives:

1. Work directly in three dimensions from the known intensities I0, I1, I2
and the vertices at P0 and so forth which have coordinates (x0, y0, z0),
(x1, y1, z1) and (x2, y2, z2), respectively. Use the procedure described in
section 2.11.1 to obtain α and β and then interpolate bilinearly to obtain

124 4. Basic visualization

(X1, Y1)

(X0, Y0)

(x1, y1, z1)

(x2, y2, z2)

(x0, y0, z0)

Scanline

I1

Ip

I0

I2

j j´

Figure 4.23: To calculate the light intensity at an internal point of a triangular polygon
interpolate from the intensity at the polygon’s vertices.

Ip:
Ip = I0 + (I2 − I0)α+ (I1 − I0)β

Finding Ip directly in three dimensions is slow. It would be better if we
could do the calculation after the polygon’s vertices have been projected
onto the viewing plane. We can indeed do this because shading is the last
step in the rendering algorithm and all the necessary 3D calculations have
already been carried out. This leads to our second alternative.

2. Use the two-dimensional coordinates after projection of the polygon’s ver-
tices to the viewing plane, i.e., to points (X0, Y0), (X1, Y1) and (X2, Y2).
Further, because the rendering procedure will normally be filling pixels
sequentially across a scanline a few additional arithmetic operations can
be saved by calculating an increment in intensity I which is added to the
value obtained for the previous pixel on the scanline.

For a triangular polygon, k, which spans scanline j (see figure 4.23) starting
at pixel i the intensity Ii,j can be obtained from the following equations:

∆ = (Y2 − Y0)(X1 −X0)− (X2 −X0)(Y1 − Y0)

α =
(Y2 − Y0)(i−X0)− (X2 −X0)(j − Y0)

∆

β =
(j − Y0)(X1 −X0)− (i−X0)(Y1 − Y0)

∆
Ii,j = I0 + α(I1 − I0) + β(I2 − I0)

The intensity in adjacent pixels Ii+1,j and so forth is determined by calcu-
lating an increment δI from:

δI =
(Y1 − Y2)I0 + (Y2 − Y0)I1 + (Y0 − Y1)I2

∆

4.4. Lighting and shading 125

Then for all the remaining pixels on scanline j covered by polygon k the
intensity is given by:

Ii+1,j = Ii,j + δI

4.4.2 Phong shading

The Gouraud shading procedure works well for the diffuse reflection component
of a lighting model but it does not give a good result when specular reflection
is taken into account. Specular highlights occupy quite a small proportion of
a visible surface and the direction of the normal at precisely the visible point
must be known so that the specular reflection can be determined. Thus Phong’s
approach was to interpolate the surface normal over a polygon rather than in-
terpolate the light intensity. In the other aspects the procedure is similar to the
Gouraud shading algorithm.

Gouraud’s algorithm still has its uses because Phong’s [72] approach requires
much more work. The additional calculations include vector instead of scalar
interpolation and a time-consuming square root calculation to normalize the
resultant normal before it can be used in the lighting equations. However most
of the additional calculation occurs because the diffuse lighting scalar product
must be evaluated for every pixel covered by the projection of the polygon and
not just its vertices.

Phong shading is done in the following two stages:

1. Calculate a normal vector for each vertex of the model.

2. Use two-dimensional interpolation to determine the normal at any point
within a polygon from the normals at the vertices of the polygon.

In stage 1 an analogous procedure to the first step of the Gouraud algorithm is
used. In this case however averaging takes place with normal vectors instead of
illumination intensities. Figure 4.24 shows a cross section through a coarse (6
sided) approximation of a cylinder. In (a) the facet normals are illustrated, (b)
shows the vertex normals obtained by averaging normals from facets connected
to a particular vertex and in (c) the effect of interpolation on normal vectors is
shown. A smoothly varying surface normal will interact with the incoming light
beam to give smoothly varying shading which will also work correctly with the
model for specular highlights.

In stage 2 expressions very similar to those that occur in the Gouraud model
are derived. For a triangular polygon k that spans scanline j at the leftmost

126 4. Basic visualization

(a) (b) (c)

Figure 4.24: In Phong smoothing the surface normals are averaged at the vertices and
then the vertex normals are interpolated over the flat facets to give an illusion of a
continuously varying curvature.

pixel i the normal vector n̂i,j is given by:

∆ = (Y2 − Y0)(X1 −X0)− (X2 −X0)(Y1 − Y0)

α =
(Y2 − Y0)(i−X0)− (X2 −X0)(j − Y0)

∆

β =
(j − Y0)(X1 −X0)− (i−X0)(Y1 − Y0)

∆




nx

ny

nz





i,j

=





n0x + α(n1x − n0x) + β(n2x − n0x)
n0y + α(n1y − n0y) + β(n2y − n0y)
n0z + α(n1z − n0z) + β(n2z − n0z)





n̂i,j =
ni,j

|ni,j |

For the remaining pixels on scanline j, i.e., pixels i+1, i+2 etc., the normals
(ni+1,j , ni+2,j) are determined by calculating an incremental vector δn given by:





δnx

δny

δnz



 =
1

∆





(Y1 − Y2)n0x + (Y2 − Y0)n1x + (Y0 − Y1)n2x

(Y1 − Y2)n0y + (Y2 − Y0)n1y + (Y0 − Y1)n2y

(Y1 − Y2)n0z + (Y2 − Y0)n1z + (Y0 − Y1)n2z





Normals in the remaining pixels on scanline j covered by polygon k are thus
determined sequentially from:

ni+1,j = ni,j + δn

n̂i+1,j =
ni+1,j

|ni+1,j |

Remember: The normal n̂i,j found by interpolation in the two-dimensional
projection plane is still the three-dimensional normal vector at p on polygon k
(which is the point visible in pixel (i, j)).

4.4. Lighting and shading 127

(d) (e)

(b)(a) (c)

BA

X´

X
α

α

Figure 4.25: A cross section through a cylinder that has been cut in half along its axis.

Before we finish discussing Phong shading there is one very important point
that requires a little more thought. Look at figure 4.25: in (a) we see a rendered
half cylinder approximated by 6 rectangular facets on the curved side and 1
rectangular facet on the flat (cut) side; in (b) a plan of the section at plane
XX ′ shows the facet normals. Now imagine what happens as stage 1 of Phong’s
procedure is applied. In (c) the averaged vertex normals are shown and (d) gives
the interpolated normals. Even at the points labeled A and B the normal vector
varies smoothly including round the sharp corner. This is not quite the desired
result because the corner will be smoothed out and the distinct edge will just
merge into the smooth shading. At points A and B the corners should really be
retained. To achieve this make the following modification to the algorithm at
stage 1:

• Do not update the running average for the vertex normal unless the angle

α <
π

2
or the user overrides the decision. (α is illustrated in figure 4.25.)

Figure 4.25(e) shows the effect after this correction is applied. On a practical
level to achieve this correction the vertex normals must be stored as part of
the polygon data structures (see chapter 3) because a discontinuity between the
normals of adjacent polygons cannot be represented if a single vector is stored for
each vertex. Thus the data structure associated with each polygon in a model,
from figure 3.12, must be updated to that shown in figure 4.26.

128 4. Basic visualization

Vid list of vertex identifiers to which polygon is attached
idmaterial pointer to material in materials list
Aid(3) list of the id’s of polygons with a common side
n normal to surface plane
eid list of Phong vertex normals

Figure 4.26: Vertex and polygon data structures with vertex normals eid .

4.5 Materials and shaders

Now we consider how the appearance of objects can be enriched without having
to go to the computational expense of using a more sophisticated lighting model,
or by building a much more highly detailed polygonal model. The basic idea is
simple enough. Every surface polygon is assigned a number of attributes, such as
color, roughness, shininess, and transparency. It has become common in graphics
application software not to record all the surface attributes for every polygonal
facet in a model. For one thing, a lot of attributes and an excessive number of
polygons will lead to a requirement for excessive storage; however, in practice,
the number of different sets of attributes is likely to be quite smaller, an object
with 100,000 polygons might only use two colors. Realizing that any face can be
assigned a whole range of attributes by building a separate list of materials and
then assigning a material to a face with a single integer identifier reduces the
data storage considerably and significantly increases the flexibility, because, if
the list of surface attributes were to change, then it is only necessary to change
the format of the few items in the materials list and not the many thousands of
polygons.

The idea of a materials list fits very neatly with the hardware rendering
engines which do not like to have to change their surface attribute states (color,
shininess, smoothing etc.) too often. By sending polygons, grouped together by
material, along the rendering pipeline one after another, the number of changes
of state is kept to a minimum.

So what does a material contain? Even the best images synthesized from a
polygonal model still lack the detail and richness of real surfaces. Imperfections
due to wear and tear, regular color variations or natural material properties are
very difficult to represent with polygons. Something as simple as text painted
onto surfaces or detailed colored patterns would require polygon meshes to have
prohibitively large numbers of facets and vertices. Two complimentary tech-
niques, image mapping and procedural texturing, allow for realistic detail to be
added to the images of polygonal or patched models without increasing the num-
ber of polygons.

The terms procedural texture and image map nicely discriminate these two
approaches, because the procedural (or algorithmic) texture can be thought of as
occupying a volume and the image map as being draped over a surface. The pro-

4.5. Materials and shaders 129

cedural texture matches well with the idea of an extended material description,
color is a volume filling attribute, and we can think of the object as being carved
from a block of material X. Sometimes the 2D image map and the 3D material
are recorded in separate lists. The OpenFX software considered in chapter 9 does
this. Other terms are often used in computer graphics to refer to a procedural
texture or an image map: in OpenGL and DirectX the term texture map is used
instead of image map. In the last few years the term shader has become popular
to describe programs that run in the GPU, and whilst a GPU shader can do a
lot more than deliver a surface material, texture or image map, the term shader
is often associated with the algorithms accompanying procedural textures.

Image mapping is probably the first choice of the 3D computer artist or CAD
engineer when faced with the need to enhance a plain mesh model; it can make
even the simplest model look tremendously lifelike and is the easiest and most
adaptable way to add fine detail. The most popular real-time rendering libraries
use image mapping extensively (see chapter 7). The theory of image mapping is
discussed in section 4.6.

Procedural or algorithmic textures provide some of the most beautiful sur-
faces seen in computer-generated images. They have the advantage over the
image mapping approach that they can be rendered in any resolution and there-
fore do not exhibit the problems that an image map can suffer from when it
is rendered in close up. They do sometimes however show aliasing effects; see
Apodaca and Gritz [4].

The aliasing effect from which mapped images suffer is due to the fact that
they must be recorded on an array of finite size and thus their pixelated na-
ture becomes all too apparent in close up snapshots. Procedural textures have
the additional advantages that they don’t require the large amount of memory
that may be required to record an image nor is the problem that arises when
an essentially flat (two-dimensional) image is mapped on to space filling solids
evident. In section 4.4 equations 4.1, 4.2 and 4.3 described how the surface color
S, at a point p, is combined with the lighting conditions to produce a color value
to represent what is seen at p. The surface color S with its three components
sR, sG, sB can encapsulate not just a plain color but perhaps a blend or some
other elaborate combination of shades. However, no matter how complex the
procedure used to calculate S, the only variables on which it may depend are
the position of p, coordinates (x, y, z) or the two-dimensional texture coordinates
(X,Y) first introduced in chapter 3; they are also commonly referred to as the
u and v coordinates. This can be expressed formally as:

S = f(x, y, z,X, Y) (4.4)

It is unusual for f(x, y, z,X, Y) to depend on x, y, z at the same time as it
depends on X,Y and therefore the term volume texture tends to be used for cases
where f() is independent of X or Y . Most volume textures tend to be generated
from a fixed set of rules, and they are therefore called “procedural textures”.

130 4. Basic visualization

Spherical Dots
Procedural Texture

Spherical Dots
Procedural Texture

Surface ModeVolume Mode

Figure 4.27: Procedural texture in volume and surface modes. Note the way the dots
cling to the surface when texture coordinates are applied to the surface of the shape
and how the shape appears to be carved out of a block of colored spheres when volume
coordinates are used.

When f() is independent of x, y or z the texture is called a surface texture and
all image mapping methods fall into this category.

In addition to providing a way to alter the surface color S at p, a texturing
procedure might also modulate the direction of the surface normal or modify
the transparency of the surface. In fact with a combination of these techniques
and some ability to simulate reflections it can become difficult to distinguish a
rendered image of the model from a photograph of the real thing.

Procedural textures can be used equally easily with functions of the form
f(x, y, z) (volume) or f(X,Y) (surface). Figure 4.27 shows an example of a
procedural texture applied to the same object in volume and surface modes.
They are excellent for simulating naturally occurring surfaces, wood, marble,
granite, clouds, tree bark, veins, etc. The list is almost endless. Chapter 11
details some algorithms to simulate a significant variety of surfaces.

We can establish two general types of procedural texture:

1. Those that use regular geometric patterns.

2. Those that use random patterns.

In many cases an enhanced appearance is achieved by combining the two
types. The pattern of irregular paving slabs is one such example. Discolored and
weathered bricks is another. Indeed this work has been extended to the concept
of volume textures with the possibility of creating realistic clouds, smoke, coral,
hair and fur.

4.5. Materials and shaders 131

The input to the algorithm is a position coordinate (x, y, z), the
mortar % thickness tm and the colors for brick and mortar.
The output is a color triple sR, sG, sB and a function
Floor(a) is called to return the nearest lower integer to a.

In the C language Floor would be implemented as follows
#de f i n e Floor (a) ((a) < 0 .0? ((long) (a)−1L : (long) (a))

if integer part of z is divisible by 2 \{
x = x+ 1

2

y = y + 1

2

}
x = x− Floor(x)
y = y − Floor(y)
z = z − Floor(z)

A collection of i f ’s divide the brick from the mortar
i f z > 1− tm or y > 1− tm or

(y > 1

2
− tm and y < 1

2
) or

(y < 1

2
and ((x > 1

2
− tm and

x < 1

2
) or x > 1− tm)) or

(y > 1

2
and ((x > 1

3
− tm and

x < 1

3
) or (x > 7

10
and x < 7

10
+ tm))) {

return the mortar color
}
else {

return the brick color
}

Listing 4.11: An algorithm that creates a brick and mortar procedural texture. For
a given point p which has coordinates (x, y, z) it determines whether p is inside the
brick or the mortar.

4.5.1 Basic geometric procedural textures

Listing 4.11 presents an algorithm for generating a very simple geometric texture,
i.e., a three-dimensional system of bricks and mortar. Other simple textures that
fall into this category include checks, dots, triangular shapes, stars, hexagonal
patterns and even a digital readout such as might appear on a clock.

The algorithm given in listing 4.11 illustrates a compact interface between
the texturing function and its host renderer. An input of a position, a small set
of parameters and an output of color value are sufficient to control all procedural
functions. In fact we could standardize the parameter list so that the same func-
tion can be used by scanline, Z buffer or ray tracing renderers interchangeably.
In fact texturing functions are ideal candidates for implementation as run time
definable libraries, as for example DLLs under the Windows operating system.

132 4. Basic visualization

4.5.2 Basic random procedural textures

Simply generating random numbers does not lead to the creation of very in-
teresting textures. What is required is a random function which is spatially
correlated, that is, the surface attributes at two different locations are similar
if the points are close together but if the points are far apart then calculated
surface attributes will be quite independent of one another.

A random number generator with just these properties was originally pro-
posed by Perlin [69] in what turned out to be a seminal paper on the topic.
Textures based on Perlin’s ideas call upon one basic function: the noise genera-
tor. Section 4.7 explains in detail the elegance of the noise generator algorithm.
Given a position, p, the noise generator returns a scalar value in the range [0, 1];
we will write it as: u = sNoise(p). This function has the essential property
quoted above and of equal importance for application in rendering: if called with
the same value of p it returns the same noise, therefore although it has random
properties they are quite repeatable.

From sNoise(p) three other useful functions are easily derived:

1. A noise generator that returns a vector given a position, v = vNoise(p).

2. A function called turbulence, which is similar to the noise function but is
smooth in some places while varying rapidly in others, something like the
effect achieved when two colors of paint are stirred together. u = sTurb(p)
generates a scalar turbulence value.

3. v = vTurb(p) returns a vector valued turbulence.

These noise functions have statistical properties (translational and rotational
invariance) that make them particularly useful for 3D graphics work.

The turbulence functions are examples of a fractal or 1/f noise. They can be
easily calculated by adding basic Perlin noises. The idea is that the noise signal is
built up by adding a number of components with the amplitude of each component
inversely proportional to its frequency. Thus low frequency components have
large amplitude but the high frequency components have small amplitude.

Comment: The fractal noise function can also be useful for building models
of natural shapes, e.g., trees and mountain landscapes.

There are many ways to implement the Perlin noise function. See Ward’s
gem in Avro [6] for example.

One of the shortest and fastest ways to write a Perlin noise generator is to
establish a three-dimensional array of random numbers and then to interpolate
linearly from that to obtain a noise value for a specific point p.

Perhaps the most versatile noise texture is that called bozo (see chapter 11
for examples). With appropriate scaling and level setting it can represent many
natural phenomena such as clouds and solar corona. An algorithm for the bozo
texture is given in listing 4.12. The appearance of the brick and bozo textures
are illustrated in figure 4.28.

4.5. Materials and shaders 133

Figure 4.28: The brick and bozo textures generated by the algorithms given in list-
ings 4.11 and 4.12.

The input to the algorithm is a position coordinate (x, y, z), two
threshold values t1 and t2, three color triples
c1R, c1G, c1B , c1R, c1G, c1B and c1R, c1G, c1B
and a turbulence parameter τ which give the texture its swirly look.
The output is a color triple sR, sG, sB The Bozo texture is a threshold of
the noise function. At each threshold a color change occurs.

i f τ 6= 0 {
v = vTurb(p)
p = p+ τv

}
n = sNoise(p)
i f n < t1 {

assign color s = c1 (R,G and B)
}
else i f n < t2 {

assign color s = c2 (R,G and B)
}
else {

assign color s = c3 (R,G and B)
}

Listing 4.12: An algorithm to create a bozo procedural texture. It calls upon the Perlin
noise functions and returns a color setting at a point P with coordinates (x, y, z).

For some practical hints on implementing procedural textures you might con-
sult Worley’s book [22].

Procedural textures, especially the noise based ones, give beautiful, richly
detailed and realistic looking effects when the vector noise function is used to
perturb the direction of the surface normal at P . Doing this has the effect

134 4. Basic visualization

No rough texture Rough texture added
to cylindrical surface

Figure 4.29: A procedural texture that uses the vNoise() function can be used to bend
the surface normal.

of giving a rough, bumpy, or pitted appearance to the surface because of the
way the Phong lighting model interacts with the surface normal. Figure 4.29
illustrates a procedural texture that modulates the surface normal to give a rough
surface. The noise function can also be called upon to alter the transparency or
reflectivity of the surface at P . When all of these effects are combined some of
the most visually stunning computer-generated images emerge, even from shapes
described with only a few hundred polygons.

Before ending this section it is worth pointing out that in step 2 of the
rendering algorithm, models are moved or rotated to place them at appropriate
positions in the scene. If any surface of that model is covered with a volume
texture then the position argument to the noise function should be specified
with respect to a frame of reference attached to the model and not some global
frame. If a global frame of reference for the argument to the noise function were
used then an animation of a moving model will give the disturbing appearance
that the model is moving through a kind of three-dimensional sea of the texture.

4.6 Image and texture mapping

An image map performs a very similar task to that of a two-dimensional pro-
cedural texture. It adds detail to surfaces without the need for a very large
number of small polygons. In contrast to a procedural texture, image maps pro-
vide the model designer much greater control over the appearance of the texture.
In essence any image may be used as the source for the image map. (2D draw-
ings or scanned photographs are common sources.) This is particularly useful
in product design applications where text, manufacturers’ logos or labels can be
added to a 3D model of the product.

In this section we will consider how two-dimensional pictures are attached
to a polygonal 3D model. Figure 4.31 shows a simple rectangular polygon
mapped with a small picture applied in several useful ways and we shall consider
these later.

4.6. Image and texture mapping 135

The expressions needed to determine the color s at a point, p, within a
triangular polygon due to the application of an image map are analogous to those
we obtained when considering a procedural texture applied in surface mode. If
the vertices of a triangular polygon are P0, P1 and P2, then s, the color to
be substituted into the lighting model, is determined by executing the following
steps:

1. Use the coordinates of the vertices of the surface polygon relative to p to
determine parameters α and β, where:

(p−P0) = α(P1 −P0) + β(P2 −P0) (4.5)

Section 2.11.1 explains the necessary analysis.

2. Given texture coordinates of (X0, Y0), (X1, Y1) and (X2, Y2) at P0, P1

and P2, respectively, a texture coordinate for the point p, say (X,Y), is
determined by:

X = X0 + α(X1 −X0) + β(X2 −X0) (4.6)

Y = Y0 + α(Y1 − Y0) + β(Y2 − Y0) (4.7)

3. From (X,Y) an index (i, j) into an array of pixels An,m which record an
image of resolution n×m is determined as follows:

i = nearest integer to (nX)

j = nearest integer to (mY)

4. Copy the pixel color from Ai,j to s. How the information in A is stored
and addressed is a matter of personal choice as is whether the image is
true color (16.7 million colors), hicolor (65536 colors) or paletted (one byte
used to address a palette of 256 colors).

Figure 4.30 illustrates the mapping process.
There are two important issues that arise in step 3 above. First to obtain

a valid address in A both i and j must satisfy simultaneously 0 ≤ i < n and
0 ≤ j < m or, equivalently, by scaling to a unit square: 0 ≤ X < 1 and
0 ≤ Y < 1. Thus the question arises as to how to interpret texture coordinates
that fall outside the range [0, 1]. There are three possibilities all of which prove
useful. They are:

1. Do not proceed with the mapping process for any point with texture coor-
dinates that fall outside the range [0, 1]; just apply a constant color.

2. Use a modulus function to tile the image over the surface so that it is
repeated as many times as necessary to cover the whole surface.

136 4. Basic visualization

O

P2

P0

P1

β

p

α

Figure 4.30: Mapping an image into a rectangle with texture coordinates of (0, 0) at P0,
(1, 0) at P1 and (0, 1) at P2. At the point p an appropriate pixel color is determined
from the image using the steps given in the text.

Repeated mozaic
Repeated image

Texture coordinates

2,01,00,0

Single image

3d R

3d R 3d R

3d R 3d R

3d R

3d R 3d R

3d R

0,1

0,2

Figure 4.31: Different ways of interpreting mapping coordinates over a flat surface.
(a) No mapping outside unit rectangle. (b) Tiling by repeatedly copying the image
map. (c) Mosaic tiling. In this case the image map is carefully arranged so that no
discontinuous edges are visible when the map is tiled.

3. Tile the image over the surface but choose a group of four copies of the
image to generate blocks that themselves repeat without any seams, i.e.,
a mosaic pattern. To generate a mosaic pattern the α and β values in
equation 4.6 and 4.7 are modified to αm and βm (a procedure described
in the algorithm of listing 4.13).

These three methods of applying an image map to a polygon’s surface are
illustrated in figure 4.31.

4.6. Image and texture mapping 137

the Floor function is given in figure 4.11
αm = (float)Floor(α)
βm = (float)Floor(β)
bx = ((truncate αm)(bitwise AND) 1)
by = ((truncate βm)(bitwise AND) 1)
αm = α− αm

βm = β − βm

i f bx 6= 0 {
i f by 6= 0 {

αm = 1− αm

βm = 1− βm

}
else {

αm = 1− αm

}
}
else i f by 6= 0 {

βm = 1− βm

}

Listing 4.13: Generating a mosaic repeat pattern for seamless image mapping.

The second issue is the rather discontinuous way of rounding the floating
point texture coordinates (X,Y) to the integer address (i, j) (i = truncate(x)
and j = truncate(y)) used to pick the color from the image. A better approach
is to use a bilinear (or higher order) interpolation to obtain s which takes into
account not only the color in pixel (i, j) but also the color in the pixels adjacent
to it. Thus, if the texture coordinates at p are (X,Y) we obtain s by using color
values from Ai−1,j , Ai+1,j , Ai,j−1 and Ai,j+1 in addition to the color from Ai,j .
The procedure for this is given in listing 4.14.

Notes:

1. Bilinear interpolation gives good results when the image map is being mag-
nified but not in cases where the image is being reduced in size, as the
object being mapped moves away from the camera for example.

2. We have not discussed how the vertices are assigned texture coordinates.
This topic is covered in chapter 10, section 10.11.

3. The determination of α and β in equation 4.5 is done in three dimensions.
Other approaches to texture mapping (as would be done in a hardware
rasterizer for example) will implement the interpolation after projection
onto the viewing plane. In those circumstances the use of a linear interpo-
lation to obtain the texture look-up coordinates is incorrect and another
approach such as perspective-correct barycentric interpolation [54] would
need to be used.

138 4. Basic visualization

δX = X − float (i)
δY = Y − float(j)
i f δX > 1

2
{

δX = δX − 1

2

i f δY > 1

2
{

δY = δY − 1

2

s = Ai,j(Ai+i,j −Ai,j)δX + (Ai,j−1 −Ai,j)δY
}
else {

δY = 1

2
− δY

s = Ai,j(Ai+i,j −Ai,j)δX + (Ai,j+1 −Ai,j)δY
}

}
else {

δX = 1

2
− δX

i f δY > 1

2
{

δY = δY − 1

2

s = Ai,j(Ai−i,j −Ai,j)δX + (Ai,j−1 −Ai,j)δY
}

else {
δY = 1

2
− δY

s = Ai,j(Ai−i,j −Ai,j)δX + (Ai,j+1 −Ai,j)δY
}

}

Listing 4.14: Bilinear interpolation to calculate a color value, s, at texture coordinate
(X,Y) from an image with color recorded in the pixel array A which has dimension
n×m.

4.6.1 Transparency mapping

Transparency mapping follows the same steps as basic image mapping to deliver
a color value, s, for use at a point p on polygon k. However instead of using
s directly as a surface color it is used to control a mixture between the color
settings for polygon k and a color derived from the next surface recorded in the
transparency buffer. (Remember that the Z buffer algorithm can be modified
to hold several layers so that if any of them were transparent the underlying
surface would show through.) Note that when mixing the proportion of s due
to the underlying surface no lighting effects are applied. That is, when you
look through a window from inside a room it is not the light in the room that
governs the brightness of the world outside. Figure 4.32 illustrates the use of a
combination of two maps applied to a simple quadrilateral polygon. Incidentally,
painting trees on glass is a very useful trick for decorating animated tours of
architectural fantasies!

4.6. Image and texture mapping 139

Image used for
surface map

Image used for
transparency

map

Figure 4.32: An image of a model with just 11 rectangular polygons (some obscured).
Ten of them have both a standard image map and a transparency map applied. The
polygon representing the ground is made rough by applying a bumpy procedural texture.

4.6.2 Bump mapping

Bump mapping, introduced by Blinn [11], uses the color from an image map to
modulate the direction of the surface normal vector. Again there is a similarity
with those procedural textures that cause the surface normal vectors to tilt
away from the direction determined by the Phong shading model. For example
this technique can be used to produce the appearance of embossed text. Many
animators use a sequence of bump maps to give the illusion of waves on the
surface of a lake or the sea although such surfaces are probably more realistically
simulated by the noise type procedural texture of Perlin [69].

To implement a bump map it is the change in color from one pixel to another
which determines the displacement vector that is added to the surface normal
of polygon k at point p. Most of the analysis we need in order to calculate the
perturbing vector, ∆n, has been covered already. Bump mapping usually uses
the same texture coordinates as are used for basic image mapping. In fact it is
essential to do so in cases where an image and bump map are part of the same
material; for example a brick surface can look very good with a bump map used
to simulate the effect of differential weathering on brick and mortar.

140 4. Basic visualization

To determine ∆n we need to find incremental vectors parallel to two of the
sides of polygon k, call them ∆n1 and ∆n2. Do this by first finding texture
coordinates at points close to p (at p the texture coordinates are (X,Y) given
by equations 4.6 and 4.7). The easiest way to do this is to make small increments,
say δα and δβ , in α and β and use equations (4.6) and (4.7) to obtain texture
coordinates (Xr, Yr) and (Xb, Yb).

Before using the texture coordinates to obtain “bump” values from the map
it is necessary to ensure that the distance in texture space between (X,Y) and
(Xr, Yr) and between (X,Y) and (Xb, Yb) is small. To achieve this write:

∆t =
√

(Xr −X)2 + (Yr − Y)2

Xr = X + δ
(Xr −X)

∆t

Yr = Y + δ
(Yr − Y)

∆t

and do the same thing to (Xb, Yb). These equations include an additional scaling
factor δ that will be discussed shortly. The next step is to obtain values from
the bump image at texture coordinates (X,Y), (Xr, Yr) and (Xb, Yb). Using the
bilinear interpolation algorithm given in Figure 4.14 three bump values s0, s1
and s2, are obtained. It only remains to construct ∆n and add it to the normal,
n̂, for polygon k. Thus:

d1 = (P1 −P0)

d2 = (P2 −P0)

∆n1 = (s1 − s0)

(

d1

|d1|

)

∆n2 = (s2 − s0)

(

d2

|d2|

)

n = n+ h(∆n1 +∆n2)

n̂ = n/|n|

h is a parameter that facilitates control of the apparent height of the bumps. Its
range should be [0, 1].

The choice of δ, δα and δβ will determine how well the algorithm performs.
They should be chosen so that they are small relative to the texture coordinate
range across the polygon.

4.6.3 Reflection mapping

True reflections can only be simulated with ray tracing or other time-consuming
techniques but for quite a lot of uses a reflection map can visually satisfy all
the requirements. Surfaces made from gold, silver, chrome and even the shiny

4.6. Image and texture mapping 141

paint work on a new automobile can all be realistically simulated with a skillfully
created reflection map, a technique introduced by Blinn and Newell [10].

An outline of a reflection map algorithm is:

1. With the knowledge that polygon k, at point p, is visible in pixel (i, j)
determine the reflection direction d of a line from the viewpoint to p. (Use
the procedure given in section 2.9.)

2. Because step 3 of the basic rendering algorithm transformed the scene so
that the observer is based at the origin (0, 0, 0) and is looking in direction
(1, 0, 0) the reflected direction d must be transformed with the inverse of
the rotational part of the viewing transformation. The necessary inverse
transformation can be calculated at the same time as the viewing trans-
formation.
Note: The inverse transformation must not include any translational com-
ponent because d is a direction vector.

3. Get the Euler angles that define the direction of d. These are the heading φ
which lies in the range [−π, π] and pitch θ which lies in the range [−π

2 , π
2].

Scale the range of φ to cover the width, Xmax, of the reflection image.
Scale the range of θ to cover the height, Ymax, of the reflection image.

X =
(π + φ)

2π
Xmax

Y =
(π2 − θ)

π
Ymax

4. Use the bilinear interpolation algorithm of figure 4.14 to obtain a color
value s from the image in the vicinity of (X,Y).

5. Mix s with the other sources contributing to the color seen at pixel (i, j).

You can think of the reflection mapping process as one where the reflected
surface is located at the center of a hollow sphere with the image map painted
on its inside. Figure 4.33 illustrates the relationship of object to reflection map.
Another reflection mapping procedure that gives good results is the cubic envi-
ronment due to Greene [35].

When procedural textures, pseudo shadows and reflection maps are added to
the Phong shaded rendering of Figure 4.21 a highly realistic looking image (for
example, figure 4.34) can be generated without having to pay the very heavy
time penalty that ray traced rendering procedures impose.

4.6.4 Mip-mapping

Imagine a tiled floor that extends into the far distance with the textured ap-
pearance being the result of applying an image map, something like that shown

142 4. Basic visualization

Wrap the
reflection
map round
the sphere

^

View
projection

plane

Viewpoint

d

p

nz

x

Figure 4.33: A reflection map can be thought of as an image painted on the inside of
hollow sphere with the reflective model placed at its center.

Figure 4.34: Final image of models first shown in figure 4.3 now using a pseudo shadow,
procedural texture and reflection map.

in figure 4.35(a). Rendering two adjacent pixels near the bottom of the image
where the viewing vector intersects the floor close to the camera will most likely
result in a texture look-up that results in the same color value being obtained.
Rendering two adjacent pixels near the top of the image where the viewing vec-
tor intersects the floor at a great distance from the viewpoint could result in the
texture look up returning very different color values. The result of this is that an
unpleasant moiré pattern because the image map sampling is subject to aliasing
effects and the integrating effect of the imperfect natural vision processes is not
present in the basic mathematical imaging model.

4.6. Image and texture mapping 143

(a) (c)

(b)

Figure 4.35: (a) A checkerboard texture mapped on a plane viewed from an oblique
angle. (b) A mip-map that would be suitable to use for the checker texture in (a). (c)
Two polygons located at a far distance from the camera, one using the original texture
and the other using the mip-map.

However, it is possible to modify the texture look-up process in a way that
mitigates seeing the aliasing errors. This process is known as mip-mapping. In
mip-mapping the original texture map is augmented by making filtered versions
of the original image drawn at smaller and smaller resolutions, where each copy
has the appearance of being viewed from farther and farther away. Making mip-
maps puts control of how a textured surface changes as it moved away from the
observer back in the hands of the artist. For example, a black/white checker
texture applied to a wall in the far distance will probably just look blandly gray,
rather than an unpleasant and high contrast moiré patter.

Which level of the mip-map to use is determined by using the depth z (dis-
tance) to the point on the surface that is to be mapped. When a texture map
value is needed, the two levels in the mip-map that bracket z, that is [zmi, zmi+1]
are accessed. The color values found in each of the bracketing levels are blended
together in the ratio of z to the the interval [zmi, zmi+1]. Figure 4.35(b) shows
a mip-map that would be a suitable candidate for a checkerboard texture. It is
usual to make the top level image in a mip-map a square with the dimension
of 2n, and each sub-level a dimension of one quarter the size of the level above
it. This allows the mip-map to be packed into an image that is only twice the
size of the original and allows the lookup software to work with the appropriate
levels without too much extra computation. In figure 4.35(c) the effect of using
the mip-map is evident. Two polygons (enlarged) are placed far away from the
camera and tiled with the image map. On the left the original image is sampled

144 4. Basic visualization

resulting in a high contract pattern with obvious misalignment of the checks. On
the right the lowest resolution bitmap, a 1× 1 pixel image, is sampled, resulting
in a uniform gray shading.

Akenine-Mōller and Haines [1] discuss the mip-map process in detail and
consider other possible application algorithms.

4.7 Perlin noise

Most of the rich and beautiful procedural textures and shaders that arise from
the theory of fractals [67] are created in practice by using a self similar noise
generator, often called a Perlin noise function [69], named after its creator. This
noise function has the following properties:

• The noise function is not totally random (i.e., white noise).

• It must not have frequency components that exceed the sampling frequency.

• It should be reproducible (in the sense of animation.)

• It should be spatially invariant, and periodic (in that it can be used to cover
an arbitrary volume of space without exhibiting any edge discontinuities.)

• It should be quick to calculate.

The Perlin noise function (and many other variants) builds on the idea of a
space filling integer lattice. When a noise value needs to be calculated at any
3D point (x, y, z) the eight neighboring lattice points are identified as (ix, iy, iz),
(ix + 1, iy, iz), (ix, iy + 1, iz) etc. Values of some quantity computed at these
lattice points are then interpolated throughout the cell to give a noise value at
(x, y, z).

The Perlin noise is constructed by generating a smooth function that has the
value zero at the integer lattice points and has a given derivative (or gradient)
value at the same integer lattice points. This derivative takes the form of a
specified 3D gradient vector at each lattice point. The overall function can be
called on in computer code simply as:

n=(f loat) Noise (f loat x , f loat y , f loat z) ;

which takes the position (x, y, z) as input arguments and returns a noise value
in the range 0 to 1.

4.7.1 The algorithm

It is not possible to store gradients for all possible coordinate points (x, y, z),
so one uses a hash function to identify which gradient vector to use at a par-
ticular cell corner when calculating the noise value. Thus, a hashed value is

4.7. Perlin noise 145

z

y

x

Figure 4.36: The Perlin noise vectors. The 12 vectors are each directed from the center
of the cell toward the mid-points of the cubic cell edges.

used to look up gradient vectors from a manageably sized table. The algorithm
first calculates the integer coordinates of the base corner of the cell contain-
ing (x, y, z), i.e., ix=(int)x; iy=(int)y; iz=(int)z. This cubic cell lies between
ix and ix+1, and iy and iy+1, and iz and iz+1. Thus, the coordinate for
which the noise value is to be calculated has an offset from the base corner of
dx=x−ix; dy=y−iy; dz=z−iz.

Using ix , iy , iz and dx,dy,dz, the eight weight values are computed, one for
each corner of the cell. Then trilinear interpolation is used to determine a noise
value at (x, y, z). A corner’s weight is calculated by randomly selecting a special
gradient vector and taking its scalar product with the fractional vector, from
(dx, dy, dz), to that corner. This may seem a very simple algorithm but its
implementation is ingenious and the results of its use speak for themselves.

4.7.2 Defining the gradient vector candidates

Perlin chose 12 possible vectors from which 8 are pseudo-randomly selected, one
for each corner of the cell containing (x, y, z). The directions of the candidate
vectors are shown in figure 4.36.

To allow for a quick selection, the list of 12 vectors is augmented by dupli-
cating 4 of the vectors, giving a total of 16 candidate gradient vectors. (Doing
this will allow us to select a vector by using the low order 4 bits of a random
number to identify one of the 16 possibilities.) The key to removing directional

146 4. Basic visualization

bias in the gradients is to skew the set of gradient directions away from the co-
ordinate axes and long diagonals. Note: It is not necessary for the direction of
the vectors to be random at all, since choosing the 8 corner vectors at random
and combining them provides plenty of randomness.

If we allow any of the x, y, or z coordinates to take values of either 0, 1 or −1
we can make 27 different vectors. Of course (0, 0, 0) is not a well formed direction
vector, so we must exclude that. Also, if we choose a vector so that: (1) it avoids
the main axis and long diagonal directions, thereby avoiding the possibility of
axis-aligned clumping, and (2) it allows the eight dot products to be carried out
without requiring any multiplications (thus speeding up the calculations), we are
left with 12 candidate vectors from the original 27.

These 12 vectors are defined by the directions from the center of a cube to
its edges. They are (1,1,0), (-1,1,0), (1,-1,0), (-1,-1,0), (1,0,1), (-1,0,1), (1,0,-1),
(-1,0,-1), (0,1,1), (0,-1,1), (0,1,-1) and (0,-1,-1). As mentioned before, to help
increase the performance of the process of gradient vector selection, the list of 12
vectors is augmented with four additional vectors: (1,1,0), (-1,1,0), (0,-1,1) and
(0,-1,-1). These additional vectors form a regular tetrahedron, so adding them
redundantly introduces no visual bias in the texture.

4.7.3 Selecting the gradient vectors

At each cell corner we need to pick randomly one of the gradient vectors (from
the list of 16) and form the scalar product of it with the vector from that corner
to the point at which we wish to calculate the noise value. For example for corner
(ix, iy, iz) the vector product must be formed with (dx, dy, dz). Remember that
the randomness must be reproducible, but we can achieve this and make the
selection process very fast if we pre-build a table of random associations between
the (ix, iy, iz) cell corner positions and gradient vectors. The table will typically
have 256 entries. Each entry corresponds to a different combination of the 8 cell
corners identifiers. The entry to be selected from the table is chosen by passing
the cell corner coordinates (ix, iy, iz) through a hash function (modulo 256.)

4.7.4 Hashing

If the table of pre-computed random numbers contains N (where N is a power
of 2) entries, then any ix, iy, and iz values can be mapped into a value between
0 and N − 1 by using: ix mod (N) etc. This is accomplished very rapidly by
using the C/C++ & operator, i.e., ix = ix & (N−1). The result is a mapping
of any ix into an integer in the range 0 to N − 1.

A random selection that still ensures that all cases have a possibility of being
selected can be made by: begin with a look-up table populated with the numbers
in sequence 0, 1, 2, 3, . . . , 254, 255 then shuffle the sequence randomly. The
final table might look like this:

Ntab []={95 ,42 ,81 , . . . 251 ,255 ,11 } ;

4.7. Perlin noise 147

To choose a random vector for integer coordinate ix we simply look up the table
k=Ntab[ix mod (N−1)] and use vector k from the list. (As there are only 16
vectors in the table the actual vector used is k&15.)

To choose one of the vectors based on three lattice corner coordinates, we
can still use a single table by repetition of the look-up three times in succession,
as in:

id = Ntab [Ntab [Ntab [i x] + iy] + i z] ;

This hash function is chosen because it returns results that are more irregular
than id=Ntab[ix+iy+iz];, for example.

Note that Ntab has 256 entries whose values lie in the range 0 to 255, so the
sum Ntab[ix] + iy could produce a value in the range 0 to 511, which would lie
outside the table. However, if the size of the table is doubled, by appending a
copy, then the lookup will function perfectly and the result of looking up a value
for (ix , iy , iz) will be a random integer in the range 0 to 255.

4.7.5 Calculating the gradient vector and corner weights

The corner weights are obtained for each corner in turn. A cell corner weight is
obtained by calculating the dot product of one of the randomly selected gradient
vectors with the vector from that corner to (dx, dy, dz). For example at cell
corner (ix + 1, Iy + 1, iz + 1) the dot product is formed between the gradient
vector and (dx− 1, dy − 1, dz − 1).

The random gradient vector look-up and the scalar product calculation can
be done very efficiently in C program code, for example in the function grad (...):

(f loat) grad (int ix , int iy , int i z ,
f loat dx , f loat dy , f loat dz){

int id ;
f loat u , v , grad ;
id=Ntab [Ntab [Ntab [i x&(N−1)]+ iy&(N 1)]+ i z&(N−1)] ; // Hash
// Modulo 16 divide by mask off the low order 4 bits.
id = id & 15 ;
i f (id < 8 | | id == 12 | | id == 13)u=dx ; else u=dy ;
i f (id < 4 | | id == 12 | | id == 13)v=dy ; else v=dz ;
i f (id&1)u = −u ;
i f (id&2)v = −v ;
grad = u + v ;
return grad ;

}

Note that we have been very careful to define all our gradient vectors so that
they have the property that any two of their elements will have either the value
−1, or +1, and that the third element will always have the value 0. With this
property the gradient calculation can be done without doing any multiplication.

The function begins by hashing the integer coordinate (ix, iy, iz) and looking
up a random vector identifier in the range 0 to 255. It then selects one of the

148 4. Basic visualization

16 gradient vectors by extracting and using the four low order bits in the vector
identifier id.

Since the values of dx, dy and dz all lie in the range [0, 1] and the cell size
is unity, the output of the grad function could lie in the range [−2, 2]. This
function is applied at the 8 corners of the cell giving rise to 8 gradient values:

g000 = grad (ix , iy , i z , dx , dy , dz) ;
g100 = grad (ix+1, iy , i z , dx−1,dy , dz) ;
g010 = grad (ix , i y +1, i z , dx , dy−1,dz) ;
g110 = grad (ix+1, i y+1, i z , dx−1,dy−1,dz) ;
g001 = grad (ix , iy , i z +1, dx , dy , dz−1);
g101 = grad (ix+1, iy , i z +1, dx−1,dy , dz−1);
g011 = grad (ix , i y +1, i z +1, dx , dy−1,dz−1);
g111 = grad (ix+1, i y+1, i z +1, dx−1,dy−1,dz−1);

4.7.6 Interpolation

After calculating the gradient values at the cell corners we need to interpolate
them in order to get the noise value at (x, y, z) (i.e., the point offset by (dx, dy, dz)
from (ix, iy, iz)). However, using linear interpolation among the g000, g100,
. . . etc. values does not give us a very smooth function, nor does it guarantee
that the noise function has continuous first and second derivatives as (x, y, z)
moves from one cell into another.

If we pass (dx, dy, dz) through a polynomial function first, we will gener-
ate a smooth variation in the noise value and endow it with the properties of
continuous first and second derivatives. The polynomial function:

f(t) = 6t5 − 15t4 + 10t3

(with t in the range [01]) satisfies the requirement.
Thus, the interpolation uses the values (wx,wy,wz) at each corner of the

cell, where wx = f(dx), wy = f(dy) and wz = f(dz) and each wx, wy, wz
lie in the range [0, 1]. Consequently, given gradient values g000, g100, etc., we
calculate the final value using trilinear interpolation as follows:

(f loat) l i n I n t ((f loat)v , (f loat) a , (f loat)b)){
//perform the linear interpolation:
return v∗a + (1−v)∗b ;

}
. .
x00 = l i n I n t (wx , g000 , g100) ;
x10 = l i n I n t (wx , g010 , g110) ;
x01 = l i n I n t (wx , g001 , g101) ;
x11 = l i n I n t (wx , g011 , g111) ;
y0 = l i n I n t (wy , x00 , x10) ;
y1 = l i n I n t (wy , x01 , x11) ;
Np = l i n I n t (wz , y0 , y1) ;
. .

4.8. Pseudo shadows 149

g100
x00

g000

g001

g011

x11

g111

g010

Np

y1

y0

x010
g110

g101

x01

Figure 4.37: The final noise value is obtained by trilinear interpolation between the
gradient values obtained at each corner of the cube.

The resulting variable Np is the final value for the Perlin noise at point (x,y,z).
Figure 4.37 illustrates the intermediate values in the trilinear interpolation.

This very clever algorithm lies at heart of some of the most beautiful textures
and effects that have been seen in CGI images, movies and computer games.

4.8 Pseudo shadows

Shadows are perhaps the most important consequence of lighting that an observer
uses when looking at photographs to assess the relative positions of objects. For
example, figure 4.38 shows a simple scene with a twisted ribbon that is located
somewhere above a flat plane extending to infinity in all directions, what we might
call a ground plane. If you were asked: How close to the ground is the ribbon?
How would you decide from this two-dimensional picture? From the image on the
left it’s hard to tell, but add the shadow as shown on the right and you can easily
tell that the ribbon is located well above the ground. You can also work out the
relative position of the light. Unfortunately the calculations that allow perfect
shadows to be determined are amongst the most time consuming a renderer can
be called upon to execute. Techniques such as “ray tracing” need to be used
to determine perfect shadows. This will be considered separately in chapter 5.
However, shadows are so important that much faster, but approximate, methods
have been developed to render shadows. It is these pseudo shadow techniques

150 4. Basic visualization

Figure 4.38: Adding shadows to a computer-generated image gives the viewer some
very powerful visual clues as to the relative position of objects in a scene.

that will be discussed in this section. The shadow shown in figure 4.38 was
generated with just such a technique.

We will consider two approaches to pseudo shadowing which cover most even-
tualities. They are planar shadows and shadow maps.

4.8.1 Planar shadows

If the surface on which the shadow falls is flat then it is straightforward to find
the shadow cast by a polygon. Once found the shadow is projected to the viewing
plane where a buffer analogous to the Z buffer is used to hold a shadow mask.
Because shadows are either on or off, a one byte per pixel mask can accommodate
up to 8 different planar shadowed surfaces.

The contents of the shadow mask must be determined in a step that precedes
step 5 in the basic rendering algorithms (section 4.1.1). In the final rendering
step, as the Z or scanline buffers are being filled at pixel i, j, the following test
is added:

If the point p on polygon k is visible in pixel i, j and polygon k is
part of one of the planes that has a shadow on it then the shadow
buffer at coordinate i, j is checked to see if polygon k is in shadow or
not. If it is then the color of pixel i, j is dimmed.

Figure 4.39 illustrates the geometry used to produce a shadow mask for the
shadow cast on a plane (normal n̂ position Pp) by a triangular polygon (vertices
P0, P1 and P2) lit from a point light source at Pl.

In the shadow buffer the shadow cast by a triangular polygon is always tri-
angular too. If we let (X0, Y0), (X1, Y1) and (X2, Y2) be the coordinates in the
shadow buffer equivalent to vertices P0 etc., we can use a scanline filling pro-
cedure to set all the appropriate flags in the shadow buffer. To calculate the
coordinates (X0, Y0) in the shadow buffer equivalent to vertex P0 in the polygon

4.8. Pseudo shadows 151

Viewpoint

z
Shadow buffer

Shadow cast on plane
by triangluar polygon

^

PL

P0 P1
P2

Pp

n

(X0, Y0)

y x

Figure 4.39: Filling the shadow mask with the shadow cast on a flat plane by a
triangular polygon.

casting the shadow, first obtain the intersection point of the line passing through
Pl and P0 and the plane (p−Pp) · n̂ = 0. Then project that point to (X0, Y0)
with the same scale factor and aspect ratio used in step 4 of the basic rendering
algorithm. Those calculations are detailed in sections 2.6 and 2.12.8.

Planar shadows have sharply defined edges and are essentially perfect, which
sometimes is an advantage but at other times may lead to less realistic results.
The amount of memory required to hold the shadow buffer is not particularly
excessive and depends on the resolution of the output raster. The disadvantage
of planar shadows is that they cannot simulate realistic shadows falling on curved
or non-planar surfaces. Shadow mapped lights, which we will consider next, do
give pretty good looking shadows across any shape of surface.

4.8.2 Shadow maps

Look at figure 4.40. It shows a viewpoint (with associated projection plane) and
spotlight directed toward the point p in the scene. The viewpoint is located at
the origin of coordinates and the spotlight is at PL. Imagine now a viewpoint
at the position of the light source PL which is looking in the direction of the
spotlight, toward the target at p. For a field of view that just encloses the
spotlight’s cone a projection plane capable of showing everything visible from
the light’s point of view can be defined. We can use a Z depth buffer associated
with this imaginary projection plane to help us render a shadow due to the
spotlight. This technique requires us to pre-render a view of the scene for each
spotlight and fill its shadow Z buffer, or what we will call its shadow map, as in
the standard Z buffer algorithm.

During rendering of the scene when it comes time to determine if a point p
lies in shadow or not, we imagine a line from p to PL; it must pass through

152 4. Basic visualization

Projection plane

Spotlight angle
Plane of the spotlight buffer

p

PL

Viewpoint

y

z

x

Figure 4.40: A scene with spotlight illumination.

one of the cells in the shadow map associated with the imaginary viewpoint at
PL. That cell records the distance of the nearest point in the scene from the
imaginary camera (and spotlight), say dmin.

Here then is our test to see if p lies in shadow: if the distance from p to PL

is greater that dmin then point p lies in shadow.

This procedure works because the spotlight shines on a limited area, and so
its cone of illumination is bounded and therefore the pseudo camera’s field of view
can be set to include all parts of the scene illuminated by the spotlight. Because
the light’s shadow map is of finite resolution the outline of the shadow will be
subject to aliasing effects. The more memory allocated to hold the shadow map
or the narrower the angle of the spotlight cone the less noticeable the aliasing
will be. To reduce the visual impact of the aliasing at the edges of the shadow a
degree of blurring can be introduced by averaging shadow values over a number
of adjacent cells. This will cause the shadow to have a soft (blurry) edge but
that is sometimes more realistic than the harsh crisp shadows produced by the
shadow plane approximation.

To implement this technique the instructions in listing 4.15 are inserted in
the rendering algorithm after the viewing transformation has been performed.
Note that the viewing transformation has been applied to the lights too.

For the scene illustrated in figure 4.40 where the spotlight direction is given
by the vector d = p−PL, i.e., a heading of:

φ = ATAN2(dy, dx)

and pitch:

θ = ATAN2(dz,
√

d2x + d2y)

4.8. Pseudo shadows 153

Repeat for all spotlights {
Build a viewing transformation, [T] for an imaginary camera located at the
position of the spotlight. Apply [T] to vertices in scene.
Repeat for all polygons k {

Project vertices of polygon k onto the shadow buffer
plane and fill each entry with the depth to visible surface.

}
}

Listing 4.15: Procedure to fill the shadow map associated with a spotlight.

are used. Transformation [T] is the product [T] = [T3][T2][T1] where

[T1] = a translation by −PL

[T2] = a rotation round z axis (up) by −φ

[T3] = a rotation round y axis by −θ

The projection is scaled so that the spotlight’s outer cone (half angle θ2) just
fits inside the field of view. Thus, for a shadow buffer resolution of n × n and
vertex coordinates (x′, y′, z′), after pre-multiplication by [T], the shadow buffer
coordinates (X,Y) are obtained from

d =
n

2 tan θ2
(4.8)

X =
n

2
− d

y′

x′ (4.9)

Y =
n

2
− d

z′

x′ (4.10)

The shadow map technique is completed by adding the following actions to
the final rendering step after the surface color, shading and lighting at p have
been determined; repeat them for all spotlights:

1. Apply transformation [T] to p to give position (x′, y′, z′), in the frame of
reference where the spotlight is at origin.

2. Apply the projection equations (4.8, 4.9, 4.10) to give (X,Y) and its nearest
integer indices (Xi, Yi).

3. Extract the shadow distance from the shadow map, dmin = Z(Xi, Yi).

4. If x′ > dmin then p is in shadow with respect to the spotlight.

154 4. Basic visualization

Comment:

While the above procedure works well in most cases it can be subject
to some unpleasant moiré patterning. This is due to the fact that each
cell in the shadow map equates to quite a big area in the scene and
within which there might be a significant depth variation, especially
when the resolution of the buffer is low. As a result of this when the
time comes to compare the depth of point p with values in the buffer
then sometimes it will appear to be in and sometimes it will appear
to be out of shadow. It is very important to set near and far planes
as close to each other as possible as this gives better precision in the
shadow map and therefore yields better results.

A simple procedure due to Woo [50] can eliminate the visual distur-
bance. To apply it, a second (temporary) copy of the light shadow
map is needed. In this second copy record the depth of the second
closest polygon from the light and when the full shadow is rendered
we simply average the depth between the two and use this as the
shadow depth. In the case when there is only one surface (the sec-
ond buffer holds infinity) then it cannot cast shadows on anything so
ignore it. After each spotlight buffer has been checked the memory
used for the temporary shadow map can be released. One final point:
The shadow map only needs to be rebuilt in a non-static scene.

4.9 Line drawing

Before the days of the photographic quality printer and the proliferation of the
multi-monitor desktop computer most 3D drawing was presented in line-drawn
form. For 3D diagrams in a book or working drawings, or in an equipment
manual produced by a CAD package, the line-drawn form of a 3D scene or
object still has its uses. Indeed, an outline or (edge and major fold) drawing of
an object is an important component of many automatically generated cartoons.
By superimposing an outline drawing on a scene illuminated with ambient light
only, one has a very passable approximation to the beautiful hand drawn cartoons
generated by the skilled artist. Using a lighting model, like the Gooch shading,
can enhance the cartoon look by producing appropriate specular highlights, and
when combined with a hidden surface line drawing, cartoons can be produced on
an industrial scale without the need for an artist skilled in the art of perspective.
This section will briefly consider the production of line drawn 3D images.

4.9.1 Wireframe

The simplest way to visualize the numerical model for an object is to draw it
in wireframe. A wireframe drawing involves relatively few calculations to render

4.9. Line drawing 155

Figure 4.41: A wireframe drawing.

it. The action of step 5 in the rendering algorithm is simply to work through all
the polygons that describe the model and taking each side in turn:

1. Check to see if it has been drawn already.

2. If not identify the vertices it is connected to.

3. Retrieve the screen coordinates determined in step 4 of the rendering al-
gorithm.

4. Draw a line connecting these two points in the frame buffer.

If a list of edges in the model is available so much the better since there is no
need to check whether or not the edge has been drawn before.

For a wireframe drawing, such as that shown in figure 4.41, to be recorded in
the framebuffer or drawn on a raster display, a procedure for rendering lines is
required. Both framebuffer and output display are composed of pixels, thus to
draw a line from a to b, the pixels through which the line passes must be given
an appropriate value to represent the color of the line.

The line drawing procedure should be fast and as simple as possible to im-
plement. Perhaps the most commonly used procedure yet established is due to
Bresenham [14] and we will consider this now for the case of a raster equivalent
to a two-dimensional array of integer coordinates in the range (0 → Xmax) and
(0 → Ymax). The algorithm works incrementally from a starting point (x1, y1)
and the first step is to identify in which one of 8 octants the direction of the
end point lies. These octants are identified in figure 4.42. How the algorithm
proceeds depends on which octant contains the end point of the line in question.

156 4. Basic visualization

2

y

Step y
increment x

Step y
decrement x

3

4

5

6 7

8

Step x decrement y

Step x increment y

Line in first

octant

x
1

Figure 4.42: The Cartesian octants. Note that the positive y coordinate is downward.
When drawing lines the center of the octants is taken to lie at the same place as the
first point on the line. The illustrated line lies in the first octant.

A faster procedure reported by Wyvill [34] could be considered, if there are a
huge number of lines to be drawn but since most line rendering is done by some
library API and, for any 3D application the amount of time spent drawing lines
is insignificant, Bresenham’s procedure is sufficient for most purposes.

In the case of a line lying in the first octant, say between points (x1, y1) and
(x2, y2), it is drawn by stepping one horizontal pixel at a time from x1 to x2

and at each step making the decision whether or not to step ±1 pixel in the y

direction. Since the gradient or slope of the line is ∆ =
y2 − y1
x2 − x1

each horizontal

increment will contribute a y displacement of ∆. Of course increments in y must
be in integer steps (one pixel at a time) and since ∆ ≪ 1 is a common occurrence
it is usual to accumulate an error term δ that adds small changes at each step,
i.e., δ = δ +∆. When δ = 1 the current y coordinate is incremented by 1 while
δ is reset to zero. The cycle continues until x2 is reached.

This basic procedure can be optimized by reformulating the equations so that
the calculation is done with integer arithmetic alone and by making comparisons
with zero rather than unity. The enhanced procedure goes by the name of
the integer differential line generator and an algorithm for it is presented in
listing 4.16.

For lines in the first octant yinc = 1 in the algorithm of figure 4.16. To draw
a line in the second octant where xinc = 1 the roles of x and y are reversed in
figure 4.16, initially δ = −∆y/2. The x coordinate is incremented and δ reduced
by ∆y at each step.

For a general line between any two points the drawing algorithm starts by
making appropriate choices for xinc and yinc, if necessary x1 ↔ x2 or y1 ↔ y2

4.9. Line drawing 157

∆x = x2 − x1

∆y = y2 − y1
δ = −∆x/2
set x = x1 and y = y1
draw pixel at (x, y) with color c
while x < x2 do {

δ = δ +∆y
i f δ ≥ 0 {

y = y + yinc

δ = δ −∆x
}
x = x+ 1
draw pixel at (x, y) with color c

}

Listing 4.16: The basic integer differential line generator algorithm.

∆x = x2 − x1

∆y = y2 − y1
i f |∆x| > |∆y| {

i f ∆x < 0 {
swap x2 ↔ x1

swap y2 ↔ y1
}
i f y2 > y1 then yinc = 1
else yinc = −1
Call the first octant algorithm

}
else {

i f ∆y < 0 {
swap x2 ↔ x1

swap y2 ↔ y1
}
i f x2 > x1 then xinc = 1
else xinc = −1
Call the second octant algorithm

}

Listing 4.17: Algorithm for the drawing of an arbitrarily directed straight line in a
raster display.

are swapped, and in the final step a call is made to first or second octant line
drawing procedures. This algorithm is presented in listing 4.17.

As a final thought on wireframe drawing it is worth making the following brief
comment: In drawing the wireframe on the projection plane it is assumed that

158 4. Basic visualization

Figure 4.43: A hidden line drawing from a set of triangular polygons.

straight edges in 3D space project to give straight edges on the 2D projection
plane. Fortunately this assumption is true.

4.9.2 Hidden line drawing

A hidden line drawing looks quite similar to a wireframe drawing except that
the drawing has a look of some solidity about it. We achieve this by not drawing
edges which are hidden behind polygons lying closer to the viewpoint. We might
call this a kind of hybrid hidden line–hidden surface procedure. Hidden line
drawings are very useful in CAD applications because it allows engineers to see
something of the structure of their design as well as its appearance.

There are two procedures that can be used to generate an accurate hidden line
drawing such as that shown in figure 4.43 and of course there are approximate
procedures that are fast but can be confused by all but the simplest shapes.
Quite a reasonable hidden line drawing of convex shapes can be achieved if a
culling process to remove faces that cannot be seen is performed before all the
edges of the remaining polygons are drawn as a wireframe. The two procedures
we will consider are:

1. As a spin-off from the hidden surface Z buffer procedure.

2. Draw the edges in the scene where they are not obscured by any polygons
(the visible edges procedure).

4.9.3 The hidden surface spin-off

This algorithm is summarized in the short algorithm of listing 4.18.

4.9. Line drawing 159

Use either the scanline or full Z buffer procedure to record at each pixel
the identity of which polygon is visible.

Work though the raster in the order shown in figure 4.44 and check
for a change of recorded value both above and to the left of the current
pixel, pixels i− 1, j and i, j − 1

If a difference is detected place a foreground color value in the
framebuffer otherwise place a background color.

Listing 4.18: Rendering a hidden surface image as a “spin off” from the basic Z buffer
procedure.

Scan left to
right on
each row

Pixel Column iRow

0

j–1

j
i–1, j

i, j

i, j–1

1

Figure 4.44: Working through a raster to produce a hidden line drawing.

Working from a Z buffer procedure has the big advantage that it accurately
represents edges in a hidden line drawing which occur because polygons might
intersect. These are edges that can’t exist as entries in any polygon and/or edge
list describing the scene. For example a drawing of a cylinder poking through a
cube (figure 4.45) will have edges that are not part of any polygon in either the
cube or the cylinder.

An interesting effect can be achieved with a hidden line drawing based on
hidden surface procedures. It arises because adjacent polygonal faces with nor-
mal vectors pointing in the same direction are planar and in most situations little
benefit is gained by drawing the common edge between adjacent co-planar faces:
indeed a picture in which these are omitted can have a much cleaner look. (The
drawing in figure 4.43 had a few such edges removed.) However edges between
adjacent polygons should not be omitted if the polygons have different colors
even if they are co-planar. This idea can be pushed to the limit by relaxing the
planarity condition, n1 · n2 = 1, say to: n1 · n2 > θ with θ ≈ 1

2 . Doing this will
lead to cartoon like drawings like that in figure 4.46 for example.

160 4. Basic visualization

Edges are introduced where cylinder and cube
intersect. �ey are not in the polygon database

Figure 4.45: A hidden surface drawing showing edges that must be drawn but are not
part of the specification of the models in the drawing.

Figure 4.46: A hidden line drawing with edges drawn only if they are adjacent to the
background, a different model or another polygon such that (1) the color is different
or (2) the angle between them is > 60◦.

4.9.4 A visible edge hidden line algorithm

Look at figure 4.47 which shows a wireframe drawing of a cube (with the top
removed so that we can see inside it). It has 6 polygons and 12 edges. The edges
labeled 1, 2, 3, 4, 6, 7, 10, 11, 12 will be fully visible in a hidden line drawing. Edge
9 will be partially visible. To decide whether edge i is visible it has to be tested
against each of the polygons to see whether it lies behind any of them. However
it is not sufficient to treat edge visibility as simply either visible or not visible

4.9. Line drawing 161

Places where
projected

edges cross

10
5

2

6

11
7

3

8

9

1

4

12

Projected
vertices

Figure 4.47: Wireframe cube labeling edges and crossovers.

for the whole edge because a case can arise where part of an edge will be visible
and part will be obscured. So, before the visibility test can be made the edges
must be broken up into appropriate segments.

To see how we can do this look again at figure 4.47, but this time think
of it purely as a two-dimensional drawing. Anywhere that the lines cross is a
potential site for one of the edges to change from being visible to hidden. These
crossing points are the only places where the visibility status of an edge can
change. Dividing the lines at these crossing points gives us the segments we
need to test for visibility against the polygons in the model. For example, edge
11 will be composed of two segments because it is crossed by edge 5. After the
edges have been divided into segments the segments can be tested to see if they
are obscured by any polygons. If a segment is not obscured then it is drawn.

Most of the geometric calculations for this algorithm have been covered in
chapter 2 and thus only the logical steps in the algorithm are summarized in
listing 4.19.

As discussed previously this approach to hidden line drawing does not allow
for edges that are introduced by the intersection of polygons. However because
the output is a list of line segments the drawing can be made on an output device
in any resolution, i.e., it is not subject to the aliasing effect (see section 4.3) that
the hidden surface algorithms suffer from. Therefore, it is not necessary to render
the picture again in order to work at a higher resolution. This form of output
is ideal for recording in the device independent encapsulated postscript format.
Another useful alternative procedure for the production of hidden line drawings
was developed by Janssen [45].

162 4. Basic visualization

In the 2D projection plane find the intersections of all projected
edges with all the other projected edges. For each edge make
a list of the segments it is divided into. (Including the coordinates
at the ends of the segments.)

With each line segment make the following tests to see if that segment is
visible, if it is then draw it.

Repeat for every projected edge i {
Repeat for every segment j of edge i {

Project back from the ends of segment j to the polygon of which
edge i is a boundary. This gives a depth that can be
associated with the line segment. Call these points p1

and p2 and let their x coordinates be x1 and
x2, which we will use as the depths.

Repeat tests 1-3 below for every polygon k {
Test 1:
In projection: Test if segment j of edge i is inside polygon k.
If it is not then move on to the next polygon
Test 2:
If x1 and x2 are both greater than the maximum x coordinate
of vertices of polygon k then segment i is obscured so jump
on to next segment.
Test 3:
Find the points q1 and q2 on polygon k where the
lines from the viewpoint through p1 and p2

intersect it.
If the x coordinate of q1 < x1 and the x coordinate
of q2 < x2 then segment i is obscured so jump on
to the next segment.

}
If this point is reached then segment j of edge i is not obscured
so draw it.

}
}

Listing 4.19: The visual edges algorithm.

4.10. Tricks and tips 163

4.10 Tricks and tips

The key to fast rendering is smart algorithms but efficient programming can also
help. Here are a few tricks and tips to speed up the code.

1. Try not to calculate the same things more than once, particularly if it is
a time-consuming calculation. After calculation store it in a temporary
variable. For example normalizing a vector is slow because it requires a
reciprocal square root.

2. When rendering, try to calculate as much as possible on a per-polygon basis
before proceeding to the rendering pass. A big scene may have 200,000
polygons and a medium sized anti-aliased image might have the equivalent
of 9,000,000 pixels. (This is true for a software renderer; in a hardware
pipeline there may be more pixel processors than vertex processors.)

3. When testing several things that will result in a calculation being avoided
make the most common test first. See section 4.2.4.

4. Arrange nested loops so that complex calculations are as high in the nest
as possible and therefore done as infrequently as possible.

5. Use inline code for short, very often used functions.

6. Sometimes it is more efficient to repeat code than to call a function. For
example, in C or C++ programs use macros to add, subtract, copy and
take dot and cross products of vectors.

7. Where possible use look up tables. The Perlin noise functions are an ex-
cellent case in point. Another candidate is the replacement of the power
function in the calculation of specular reflection.

This page intentionally left blankThis page intentionally left blank

5
Realistic visualization

To improve on the rendering approach described in chapter 4 the first technique
that comes to mind is ray tracing. There are other techniques for generating
high-quality synthetic images but they will not be discussed here. Ray tracing
may be slow but it does give superb, almost photographic quality, images and
better algorithms are being developed all the time, so that under certain condi-
tions it is even possible to achieve real-time ray tracing. There are many books
that describe the theory of ray tracing in detail. One of the most cited books
that comprehensively examines the physics of the rendering process is Physically
Based Rendering From Theory to Implementation [70]. Watt [88] in chapters 7
and 8 covers all the basics of ray tracing and in Glassner [33] the story is con-
tinued. Shirley [80] specializes in realistic ray tracing. A full description of a
complete package is given by Lindley [56] and there are also quite a few good
publicly available freeware and shareware ray tracing programs with code that
can be retrieved from many FTP sites and open source repositories.

The idea on which ray tracing is based seems almost too simple to be true
but suppose you could:

Follow the paths taken by particles of light (photons) on their journey
from source, through the scene (as they are scattered back and forth
between objects), and on until they are either captured by a camera
or eye. Or head off to infinity.

Then you would be simulating the physical mechanism that enables us to see
and take photographs.

In practice this is a hopeless task because of the huge number of photons
emitted by a light source and the fact that all but a minute fraction of them
will ever be scattered into the camera. Therefore, ray tracing does it in reverse.
It sends feelers or rays from the camera out into the scene. If the feeler rays
find anything, they work back toward the sources of illumination and give us
a path for the photons to follow from source to photographic plate. To a first
approximation the sources of illumination are simply the lights in a scene, but
light can be scattered onto a surface from other adjacent surfaces and in the
simple ray tracing model these are not accounted for. It is possible to feel

165

166 5. Realistic visualization

around, looking for other light emitters, but because the secondary illumination
feeler rays cannot look in every possible direction, a finite number are dispatches
in pseudo-random directions.

Sometimes all the feeler rays may encounter reflective surfaces and when that
happens they have to follow a new path and continue their journey. There are
lots of other things that can happen to feeler rays. Sometimes they may divide,
with each sub-ray following separate paths. The way in which the ray tracing
algorithm handles such situations, and the sophistication of the mathematical
models it uses for light/surface interaction, governs the quality of the images
produced.

So, we can get away with following a few rays of light, but what about the next
question: How few? Our digital camera records its image at a finite number of
pixels in a raster and since each pixel holds one value we need send only one feeler
ray per pixel—well almost. In section 4.3 we saw that pixelated displays suffer
from aliasing. Ray traced images are no exception and thus they require some
anti-aliasing. Dispatching more than one ray per pixel and averaging the result
is equivalent to the technique of super-sampling. Again here, the additional
feeler rays are dispatches in somewhat random directions. The additional of
a random element in the ray tracing algorithm sometimes endows it with the
moniker Monte Carlo ray tracing.

This chapter is primarily concerned with the the ray tracing algorithm be-
cause it is very successful, and conceptually it is the simplest realistic visual-
ization procedure. The option to render a scene using ray tracing is offered by
most of the mainstream 3D visualization packages, and the code for the OpenFX
package which is dissected in chapter 9 exemplifies how it can be done in practice
when rendering objects described by a very large number of planar polygons.

Despite the popularity of the ray tracing algorithm some would argue that it
does not implement a true model of the illumination process and cannot easily
image things like the penumbra of soft shadows, particulate light scattering or
the caustics due to light passing through refractive glass. A lot of work has been
done on an alternative approach know as radiosity, and this has been used to
produce some of the most realistic images ever synthesized. However radiosity
is not the perfect solution either. It cannot account for specular reflections for
example. Radiosity tends to be explained in abstract mathematical terms in
most texts, but a more practically orientated introduction can be found in the
book by Ashdown [5]. Although quite old it offers a practical perceptive.

Neither ray tracing nor radiosity are perfect rendering algorithms. Recently
it has been suggested by Jensen [46] that both approaches should be augmented
by a technique called photon mapping to fill in some of the gaps. It is likely
that a hybrid approach will win out. A hybrid rendering engine would include
all three ideas, as well as the basic Z-buffer hidden surface approach, so that
the advantages of each are used. One thing is certain; whether you go to the
computational expense of ray tracing or radiosity it is likely that you will want to
use a better illumination model than the simple Lambertian cosine law presented

5.1. Radiometric lighting and shading 167

in section 4.4. Before delving in to study ray tracing in detail we will digress a
little in the next section to consider the physics of light-material interaction and
how more elaborate illumination models may be obtained.

5.1 Radiometric lighting and shading

Light is an electromagnetic (EM) radiation and physicists assign it a wave-
particle duality, which means that they can model its behavior using either the
behavior of waves or ballistic particles. As observers we mostly perceive light as
a reflection from the world around us. This can be the scattered light in a blue
sky or the yellow light reflected from a white object lying in the shadow of a
yellow object that is in bright sunlight. Accounting for multi-path illumination
realistically is one of the major challenges in computer graphics. The light that
we perceive has a wavelength lying in that part of the EM spectrum between
about 390nm and 700nm, and what we see when a scene is illuminated is the
refection due to the way the light interacts with surface materials.

The way light or any other electromagnetic radiation interacts with a surface
is usually modeled using the wave approach and is based on the assumption of
conservation of energy in which the incident light is either absorbed, transmitted,
or reflected. There can also be an emissive component. This model is known as
the radiometric model as it is valid across the EM spectrum.

A very detailed study of all aspects or the radiometric model of light transport
in the context of computer graphics and all other aspects of physical rendering
may be found in Pharr and Humphreys [70], which includes a detailed description
of a C++ implementation and some beautiful examples of rendered scenes.

In reality, light enters the scene from the light sources. It bounces around
the scene, passes through transparent materials or is absorbed, sometimes to
be re-emitted. Once an equilibrium has been established, every point on every
surface is acting as a small radiator and will be emitting some light, in addition
to the active sources (what we call the lights). With the exception of the active
emitters, most of the emission will be due to reflection. Sampling the light
emanating from a point on a surface gives the color that we perceive with our
eyes or record in a photograph. Trying to calculate the light emerging from every
point on a surface due to the illumination from light emerging from every other
point on the surface is the essence of the radiosity algorithm.

This book does not delve into the details of radiosity or the radiometric
approach to photo-realistic rendering, however a briefing document on the topic
and a closely allied area with high potential, called photon mapping, can be
obtained from the website.

168 5. Realistic visualization

5.2 Ray tracing

The standard algorithm for ray tracing follows the first three steps of the basic
rendering procedure described in section 4.1.1.

1. Load the data describing objects in the scene to memory.

2. Move each model into its appointed position.

3. Apply the viewing transformation. (Not all ray tracing applications use
this step.)

After step 3 instead of projecting the polygons from the scene onto the viewing
plane a ray tracer calculates the direction of a feeler ray, d̂, from (0, 0, 0) so that
it passes through the point in the projection plane equivalent to pixel (i, j) of the
display raster (which is of size Xmax by Ymax). For a projection plane located
at (1, 0, 0) we can obtain the same field of view for the ray tracer as we get from

the Z buffer renderer by using equations 2.17 and 2.18 to calculate d̂ as follows:





dx
dy
dz



 =

















1
(

Xmax

2 − float(i) + 1
2

sx

)

(

Ymax

2 − float(j) + 1
2

sy

)

















d̂ = d/|d|

The fraction (12) is included so that the feeler ray passes through the center of
the pixel. To jitter the feeler ray for anti-aliasing purposes a different offset in
the range [0, 1] would be used. The scaling factors sx and sy account for field of
view and aspect ratio.

When using ray tracing to render a scene it is inappropriate to cull or clip
any model or model facet because rays can bounce back and strike models lying
behind the camera or out of the field of view.

In the visualization step the feeler ray (origin (0, 0, 0) direction d̂) is followed
(traced) out into the scene until it intersects a polygon. Once the point of
intersection, p, is located the surface properties can be determined and the pixel
set to the appropriate color value, a process that is illustrated in figure 5.1.

If on first hit the ray isn’t totally absorbed we can continue to trace its path
until it reaches a final destination or is so attenuated that there is nothing to
see. It is usual to do this recursively so that the same code is used to trace all
rays, not just those originating from the viewpoint. Each time the ray hits a
surface a calculation is made of the illumination using the methods described in
sections 4.4 and 4.4.2.

While the spotlight shadow effect (described in section 4.8.2) with its soft
edges is sometimes used by a ray tracer, the normal procedure to trace shadows

5.2. Ray tracing 169

Projection plane

z

x

Row j

Column
i

Ray

Scene

p

y

Figure 5.1: Tracing a ray from the viewpoint out through pixel (i, j) until it hits an
object in the scene.

Load model descriptions and move them into position.
Apply viewing transformation.
Repeat for all rows, j, in the raster {

Repeat for all columns, i, in the raster {
Initialize color value, s, (RGB components)

For pixel (i, j) calculate ray direction d̂

Set ray origin, p, to (0, 0, 0)
Call recursive function to return s for pixel (i, j)

DoRay(p, d̂, s)
Copy s into the pixel array at address (i, j)

}
}

Listing 5.1: Ray tracing, part 1: Set up the geometry (view direction, etc.), launch a
feeler ray for every pixel and store the color it returns.

is done by checking the path from the visible point p to each light source. If
any facet in a model in the scene intersects this path then p is deemed to be in
shadow.

So the full basic ray tracing algorithm can be summarized in the two parts
presented in listings 5.1 and 5.2.

Note the recursive use of the DoRay() function in the algorithm of figure 5.2.
In the practical implementation of any recursive function care is often taken to
ensure that the function doesn’t become stuck in an infinite loop. In DoRay()
this might happen if a ray hits a reflective surface which bounces it to another
reflective surface which reflects it back to the first so that it continues to bounce

170 5. Realistic visualization

DoRay(p, d̂, s) {
Find the identity of the polygon, k, that intersects the ray p+ µd̂
at pi and is closest to p.

Calculate surface color ss for polygon k at pi d̂t

use procedural texture or image map if required

If the material properties of k indicate that it is partially
reflective or transparent then cast extra rays.

If reflective get reflective direction d̂r

DoRay(pi, d̂r, sr) ;

If transparent get transparent direction d̂t

DoRay(pi, d̂t, st)

Get surface normal, n̂i at pi, use Phong’s interpolation
and any procedural or bump mapping if necessary.

From pi send feeler ray to each light source. Test every polygon
n the model to see if feeler ray intersects
it. If it does then the surface is in shadow. .

Combine ss with sr and st and apply lighting to give
the final s value that is returned.

}

Listing 5.2: Ray tracing, part 2: The key recursive function DoRay(p, d̂, s) that does
the key work of a ray tracing algorithm. For a given ray, origin p, direction d̂, determine
the color, s, of the surface seen.

back and forward forever unless the mirrors are less than perfect. In practice the
recursion must be terminated at some preset depth. For most scenes after three
or four reflections the ray can be assumed to have left the scene.

All the calculations and procedures needed for the steps in the basic ray
tracing algorithm have already been studied in chapters 2 and 4. Sophisti-
cated extensions to the basic algorithm tend to be directed at simulating surface
properties, color patterns, transparency lighting and inter-object reflections. By
using more and more rays a better approximation to ambient lighting conditions
and the penumbra of shadows can be included. The red, green and blue primary
color model is only an approximation to the continuous spectrum of illumination
from natural light. Other color models need to be employed in order to develop
more sophisticated physical models of the way light interacts with surfaces. The

5.3. Ray tracing optimization 171

dispersion of light through a prism is one example. Recent developments [68] in
procedural textures can deliver realistic models of smoke plumes, steam, cloud,
hair and fur. However it is the realistic shadows and true reflections that are the
most significant reasons to call on the use of a ray tracer.

The basic algorithm in figures 5.1 and 5.2 involves an almost impossibly large
number of calculations when it is applied to rendering realistic models with more
than a few hundred primitive shapes. Note the term primitive shape. This could
include spheres, torii, swept or lofted analytic curves and even more complex
structures built by Boolean operations on basic primitives. Nevertheless your
main observation probably was the hours it took the computer to trace even
an image of moderate resolution. What is worse is that the rendering time
increases as the number of models in the scene increases, thus if you need to
render a scene with models made up from thousands of polygonal facets, a basic
ray tracing renderer is virtually useless.

So the main question is: Why is ray tracing so much slower? The answer
lies in the first two lines of the algorithm given in figure 5.2. For each pixel,
test every polygon and find the one closest to the origin of the ray. This is
potentially an enormous number of operations. If the raster is of size n×m and
the scene is described with k polygons, ≈ n×m×k×r (r is the average recursion
depth) testing and swapping operations must be performed. For example, to
synthesize an image of size 640 × 480 using a 2 × 2 anti-aliasing supersample
with a scene with 20, 000 polygons requires ≈ 24 billion tests. With each test
taking many processor cycles you could be waiting a very long time for the image
to materialize.

The remainder of this chapter is devoted to techniques that can be used to
speed up the ray tracing algorithm. Given favorable circumstances it is possible
to produce ray traced images with thousands of polygons in a fraction of the
time that it would take using the basic algorithm and perhaps only five or ten
times slower than a Z buffer procedure.

5.3 Ray tracing optimization

A huge step in optimizing the ray tracing algorithm would result if we could
reduce the number of pixels through which we need to trace rays. So consider
this: In section 5.2 the ray tracing algorithm was designed so that it used the
same viewpoint, view direction and field of view as the basic Z buffer renderer.
As a consequence both rendering algorithms will see the same polygons in the
same pixels. For the most part the same equations and algorithms are used to
determine illumination, Phong shading, procedural texturing and image map-
ping. Thus we can use a Z buffer algorithm to render the scene and trace
additional rays to track reflections, refractions, ambient lighting or for shadow
determination.

172 5. Realistic visualization

5.3.1 Hybrid tracing

Just adding a Z buffer to the ray tracing procedure alone will result in a huge sav-
ing in execution time especially if shadow determination is not required. Without
shadows perhaps as few as 1 to 5 % of the image pixels will need to be traced. If
shadows are required one of the pseudo techniques described in section 4.8 could
still be included as an option in a ray tracing renderer.

Another factor that adds to the advantage of a hybrid algorithm is that the
shape of most models is such that often (particularly in animated sequences)
there can be a substantial proportion of pixels showing the background color.
Making a Z buffer rendering first will identify which pixels are showing back-
ground and as a result don’t need to be traced at all. Thus, combining Z buffer
and ray tracing renderers produces a hybrid tracer which performs the steps:

1. Use the Z or scanline buffer to determine the identity of which polygon is
visible in each pixel. Store the identity in a list.

2. Jump into the ray tracing procedure using the identity of the polygons
from the list as the surface of first hit.

3. Continue with the standard ray tracing procedure from there.

Note:

For a hybrid tracer it is probably better to use a scanline Z buffer
procedure. It saves on memory because the additional buffer which
records the identity of the visible polygon has to accommodate only
one row of pixels at a time.

Switching to hybrid tracing is particularly useful in saving execution for those
scenes with a significant amount of background showing. However if a model
should, after projection, cover the whole raster and every visible point on it re-
quires to have its shadow status determined, then other optimization techniques
will need to be developed as well.

In essence, what all ray tracing optimization techniques try to do is minimize
the number of intersection tests a ray needs to make. This includes secondary
rays and shadow feelers. There are two approaches that have received much
investigation:

1. Bounding volumes

2. Spatial subdivision

We will look at both of these but in the case where models are constructed from a
large number of convex planar polygons. Spatial subdivision will probably be the
easiest method to implement, so we will consider that technique in much greater
detail. Both optimization methods work by creating some form of hierarchical
subdivision prior to tracing any rays. When it comes to following a ray it is
hoped that the use of the hierarchical data will obviate the need for a large
number of intersection tests.

5.3. Ray tracing optimization 173

Ray misses extent

Ray intersects the
extent. �e polygons
in the model must be
tested.

Bounding extent

Observation point

Ray misses
extent

Figure 5.2: A ray need only be tested against surface polygons if it also intersects a
bounding extent.

Extents Hierarchy

1
2

34

4 5

3

1

2

6

5
6

Figure 5.3: Nested bounding volumes and their hierarchical relationship.

5.3.2 Bounding volumes

Bounding volumes, sometimes called extents, are a simple primitive shape, sphere
or cube for example, that encloses the whole model. When a ray is traced the
first hit test is against a very few of these bounding volumes and only when
an intersection occurs is it necessary to test the ray against individual surface
pieces; figure 5.2 illustrates the idea.

Within a bounding volume it is possible to create nested bounding volumes
that gradually break the scene up into smaller and smaller regions with fewer
and fewer polygons in each. Figure 5.3 illustrates nested spherical extents and
their hierarchical relationship. Should a ray not intersect an extent at one level
in the hierarchy then there is no need to test any extent (or polygon bounded
by that extent) if it is a descendant of that level.

So the idea of extents is simple in theory but unfortunately it is more difficult
to apply it in practice. Look again at the situation in figure 5.2. How would you

174 5. Realistic visualization

Division of space

Collection of objects

Figure 5.4: Subdividing a two-dimensional space into small rectangles so that at most
one object is contained in each.

proceed to generate descendant extents for that model after the first and most
obvious? It is necessary to do so because unless the number of polygon tests can
be limited to a few hundred per extent we will still have an interminable wait
for the image to develop.

A lot of experiments have been conducted on the use of unusual bounding
volumes (see Arvo and Kirk [33], figure 6) but in most cases very good optimiza-
tion seems only to be obtained when the shape of the models are known and
appropriate extents can be designed. For general work a spatial subdivision is
probably a better bet.

5.3.3 Spatial subdivision

The idea here is again to break up space into a number of small boxes so that
there are as few polygons in each little box as possible. In many ways a very
similar idea to that of the bounding extent except that no attempt is made to
optimize the fit of the extent round the whole or parts of a model. In addition,
the regularity of the subdivision means that it is easy to trace rays from one box
to another as they pass through the scene.

For explanatory purposes in this section, because it is easier to illustrate the
spatial subdivision procedure in two dimensions, most of the diagrams used to
illustrate the process are two-dimensional. We should however remember that
in reality the process is taking place in three dimensions.

To begin, consider the scene shown in figure 5.4. On the left it illustrates six
objects and on the right a spatial subdivision which arranges for each little rect-
angle to contain at most one object. The subdivision was produced successively
with vertical and horizontal cuts so that at any stage rectangles are only divided
if they contain more than one object. From figure 5.4 note the following:

5.3. Ray tracing optimization 175

(l)

(k)

8

7

3
2

1

6

5

4

Figure 5.5: Part of a model made from a connected network of polygonal facets.

1. The subdivision is hierarchical. It continues until each rectangle holds only
one object or until you reach a maximum user defined depth.

2. The size of the rectangles are not uniform: some are large, some are small.
The size is chosen so that the objective, of “one object in each subdivision”,
is achieved with the fewest number of subdivisions. One way to do this
is to recursively choose a dividing line at each step that places half the
objects to the right and half to the left of it.

3. The example shows discrete separated objects.

All this looks great in theory until we come to consider a model made from
a connected network of polygonal facets, then we have a bit of a dilemma! Look
at figure 5.5; it shows a small network of connected polygonal facets. No matter
how hard we try (how many times we subdivide), there is no way that we can
separate each polygon so that a rectangle in the subdivision contains only one
polygon. The fact that the polygons are connected is responsible for that. The
very best we could probably do is associate polygons 1, 2, 3, 4, 5, 6 with rectangle
k and polygons 2, 3, 4, 5, 7, 8 with rectangle l. We are going to have to accept
that in practice a one polygon to one subdivision goal is unattainable. There
are two possible solutions: Any polygon that spans a subdivision is split. For
example triangle 2 in figure 5.5 could be split into three smaller triangles, one
piece will be in rectangle l and two pieces will fall in rectangle k; see figure 5.6.
This approach will increase the number of triangles in the model and increase
the complexity of the code since image mapping coordinates and so forth will
need to be recalculated. An alternative solution is to accept that in some cases
the maximum limit of number of polygons per subdivision may be exceeded and
design the subdivision algorithm carefully so that it recognizes when further
division is pointless.

176 5. Realistic visualization

(l)

(k)

84

7

3

13
15

2
1

6 5

15

10

11

12
14

9

Figure 5.6: Split any polygon that spans a plane of subdivision.

To develop an algorithm for spatial subdivision we begin with the principles
illustrated in figure 5.4. Thus the procedure starts with a big region that en-
closes all polygons: in two dimensions a rectangle, in three dimensions a box.
After that, split the region into four (two dimensions) or eight (three dimen-
sions). Continue recursively splitting each subdivision until all of them satisfy
the terminating condition.

In 3D this algorithm is called octree decomposition, because it divides a
volume into sub-units eight at a time.

5.3.4 Octree decomposition

Before developing the algorithm further let us be clear as to the inputs that are
available and what outputs we require.

The inputs are a list of polygons and a list of vertices typically recorded
using one of the alternative data structures described in chapter 3. The output
we need is a hierarchical representation of the octree decomposition and for each
small box, at the ends of the branches of the octree, a list of the polygons which,
at least partially, lie inside it. With this information rays can be traced as
they travel through the scene moving from one box in the octree to another.
Figure 5.7 shows a cubic region of space and how that might be divided up into
cubic volumes. That particular subdivision would occur as a result of most of
the polygons being located in one corner at the top of the cube.

The algorithm to build an octree will be based on a recursive function that
calls itself eight times, once for each branch of the octree. The recursive function
will consist of a number of short steps. The data structure that we shall use for
each node in the octree is listed in figure 5.8.

The first stage in the octree building algorithm shown in listing 5.3 launches
the recursive function. After that recursive subdivision proceeds until the full

5.3. Ray tracing optimization 177

Subdivision planes

Octree components

Figure 5.7: The first few subdivisions of a spatial octree decomposition.

xmin, xmax Dimensions of the box associated with
ymin, ymax octree node k.
zmin, zmax

n Number of polygons falling inside box for node k.
Poly(i) List of identities of the n polygons falling inside

the box associated with node k.
Child(i) List of 8 pointers to child nodes of node k.
Parent Pointer to parent node of node k.

Figure 5.8: Data recorded at each node, k, in the octree.

octree has been established; the steps executed within the recursive function are
given in listing 5.4.

Before illustrating the octree decomposition process with an example, a little
more detail needs to be given for some of the steps carried out by the recursive
function of figure 5.4. Consider the following after looking at figure 5.4:

Step 1 The procedure can be terminated if:

1. The number of polygons attached to node O is less than a preset threshold.

2. The size of the box is smaller than a preset minimum.

3. The octree depth has exceeded a preset limit.

Step 2 There are a number of criteria that could be used. A coordinate average
in each of x, y and z at the centroid of the polygons is a logical choice.

178 5. Realistic visualization

Create the first, root, node in the octree.

Determine a bounding box that encloses all the polygons in the model.
It might be useful to include a small guard region so that nothing
is missed when it comes to tracing rays.

Assign all polygons in the model to the root node’s polygon list.

Assign the child and parent pointers to indicate that this node has
no descendants or parent.

Start the recursive procedure by subdividing the root node.

Call function Xtend (Root) ;

Listing 5.3: The first step in decomposing the octree creates a root node and launches
the recursive subdivision.

Step 3 A fairly quick test is needed here. The centroid of each polygon is a
possible candidate point with which to test for inclusion in one of the subdivided
volumes.

Step 4 This is the most significant step in the algorithm and will require a test
that is capable of determining if any part of a polygon falls within one of the
subdivisions. The test can be performed in a sequence of increasingly complex
checks with the simplest and most clear cut performed first. The following checks
rely on the fact that the box has 12 edges and thus for triangular polygons there
will be an intersection if either: one of the 12 sides of the box intersects the
triangle, or one of the 3 sides of the triangle intersects one of the 6 sides of the
box.

Thus the checks to apply for polygon k against the volume associated with
node i are:

1. If the maximum x coordinate of every vertex of polygon k is less than the
minimum x coordinate of the sides of the box for node i then the polygon
does not overlap the box. The same criteria is applied to the y and z
coordinates.

2. If the minimum x coordinate of every vertex of polygon k is greater than the
maximum x coordinate of the sides of the box for node i, then the polygon
and box do not overlap. The same applies to the y and z coordinates.

3. Having performed these simple checks to eliminate candidate overlaps there
is another quick check that will detect certain overlaps: If any of polygon
k’s vertices lies inside the box for node i, then the box and polygon do
overlap.

5.3. Ray tracing optimization 179

Step 1:
Check the terminating conditions to see if node O should be
further subdivided or not. If not then exit the function.

Step 2:
Using the location of all n polygons assigned to node O find
suitable planes parallel to the x, y, and z axes which
divide the box associated with node O into 8 smaller boxes.

Step 3:
Check to see that the division has accomplished something!
i.e. each subdivided box will contain < n polygons.If not then ext

Step 4:
Create 8 child nodes for node O and then
repeat the following for each: 0 ≤ i < 8. {

Step 4a:
Indicate that node i has no descendants, no associated polygons
and that it is descended from node O.

Step 4b:
Assign bounding limits using the planes determined in step 2.

Step 4c:
For all the polygons k, assigned to node O check to see
if they intersect the box associated with child i.
If there is an intersection then add k to the polygon
list Poly(nc) = k and increment nc, the counter
for the number of polygons assigned to child i.

}
Step 5:
Clear the list of polygons associated with node O. All polygons will
now have been reassigned to one or more of node O’s descendants.

Step 6:
Extend the octree by calling function Xtend() for
each of node O’s descendants in turn.

Listing 5.4: Function Xtend(O) which uses recursion to subdivide the volume associ-
ated with node O.

The following two checks are relatively slow to apply.

4. Each edge of polygon k is tested against each side of the box. This is a two-
part check: First determine that the edge crosses the plane containing the
side and then check whether the intersection point lies within the bounds
of the rectangular side.

Since the box’s sides are conveniently parallel to the reference axes, the
general geometry for line–plane intersection described in section 2.6 can be
considerably simplified. For example if the side lies in the xy plane at z
coordinate z0, and it is bounded between [Xmin−Xmax] and [Ymin−Ymax],
then an edge from p0 to p1 may be checked by the following procedure:

180 5. Realistic visualization

i f p1z − p0z < ǫ {
return no intersection line does not cross plane

}
Let µ =

z0 − p0z
p1z − p0z

and α = p0x + µ(p1x − p0x)
Then i f α ≤ Xmin or α ≥ Xmax {

return no intersection crosses plane outside box
}
Let β = p0y + µ(p1y − p0y)
i f β ≤ Ymin or β ≥ Ymax {

return no intersection crosses plane outside box
}
return intersection

5. The 12 edges are checked against the polygon using the line triangle inter-
section algorithm described in section 2.11.1.

Even though the above steps have been described for triangular polygons
there is no reason why the procedure could not be applied to any convex planar
polygon.

5.3.5 A simple octree decomposition example

Let’s examine an example of the construction of an octree from the six connected
triangular polygons shown in figure 5.9(a). Figures 5.9 and 5.10 illustrate the
progressive subdivision and growth of the octree. For ease of illustration the
example is restricted to two dimensions.

Figure 5.9(b) shows the box associated with the octree’s root node and the
identity of the polygons assigned to the root, at this stage all of them. In 5.9(c)
the dividing planes at XX ′ and Y Y ′ are shown as added. Using these planes,
polygons are assigned to the nodes of the octree as illustrated in figure 5.10(a).
Dividing the area for node A into AA, AB, AC and AD as shown in 5.10(b)
produces the assignments given in 5.10(c). After this stage we will assume that
further subdivision is unnecessary.

One thing to note about the octree spatial subdivision is that sometimes a
polygon cannot be uniquely assigned to only one of the subdivided spaces, i.e.,
to one of the nodes of the octree. There are two ways forward. First, the polygon
can simply be assigned to all the octree voxels that it passes through. Of course
this will increase the number of polygons that need to be tested as a ray traverses
the octree, and it may not be possible to reduce the number of faces in a octree
voxel below an acceptable threshold. Second, as an alternative the polygons
can be split, i.e., clipped, along the sides of the voxel so that each part (itself a
polygon) may be assigned to only one node. Splitting a polygon increases the
polygon count and one has to be very careful not to split a polygon when one of
its vertices happens to lie in the splitting plane, or if an edge of a polygon lies in

5.3. Ray tracing optimization 181

(a) (b) (c)
R

D

666

1, 2, 3, 4, 5, 6

555

444

333 222

111

B

AR Y C

X X´

Y´

Figure 5.9: Building a very simple octree for 6 connected triangles. (a) The system.
(b) The root node, its associated box and octree polygon assignments. (c) Add the
dividing lines.

the plane of a split. In these special cases the polygon must be assigned to only
one of the adjacent octree voxels. Detecting these special cases are facilitated by
using integer coordinates for the vertices and the splitting planes.

Another useful practical trick is to make a copy of the mesh and split the
copy leaving the initial mesh intact. The copy that was split is not used for
rendering directly. Each split face in the copy keeps a record of the face it was
built from in the original mesh. When rays are being traced through the octree,
the split copy is used for the ray–polygon intersection tests. When the ray hits a
face in the split mesh, the pointer to the face that the split face originated from
lets us use the original face to carry out the lighting and shading calculations.
By leaving the original mesh intact it is not necessary to fix up vertex normals in
the split mesh, or re-interpolate color intensities or texture coordinates at each
of the vertices created due to the split, hence the code can be shorter and less
prone to errors.

One final comment: The depth of the octree never need grow too deep. A
depth of 20 can accommodate a range of feature sizes as large as from 1 to 106.

5.3.6 Tracing rays through an octree

Once a subdivision of space containing the scene is obtained the basic ray tracing
algorithm can proceed. However it must be modified so that as a ray is traced
through the scene, it moves in increments. Each increment takes the ray from
one subdivided volume into the next one along its path, i.e., into one of those

182 5. Realistic visualization

4, 5, 6

1, 2, 4, 3

2, 4, 5, 6

4, 2, 1A

B

R

C

R

A
AA 1,2

1,2

2,4

2, 4, 5, 6

1, 2, 4, 3

4, 5, 6

2AB

AC

AD

B

C

D
D

(a) (b) (c)

D

CACAA

AB

B

AD

6
5

4

3

1
2

Figure 5.10: Continuing the example from figure 5.9. (a) Octree data after first divi-
sion. (b) Add the division for node (A). Assume boxes C, D and E have attained their
target limit for division so they are not divided again. (c) The octree data and polygon
assignments after division of box A.

that are adjacent to the current location of the ray. At each incremental step
the following actions are carried out:

1. Identify the octree node i which is the node associated with the volume of
space where the ray is currently located.

2. Test the ray for intersection with any polygons in the list held at node i
and record the identity id of the polygon which is closest to the origin of
the ray. Also note the point of intersection p between polygon id and the
ray.

3. Using polygon id’s material and the point p calculate appropriate surface
texture and lighting. If necessary dispatch additional rays to determine
reflections, shadows etc.

To determine which node in the octree we should use for i in the above, we have
to descend through the tree starting at its root and taking branches according
to the rule that p lies within the box associated with that branch and its node.
When we can descend no further down the tree: this is node i.

As a simple example consider the case illustrated in figure 5.11 with the
equivalent octree given (figure 5.12.) We will assume that the ray originates
at p, so the first set of polygons we need to test for intersection are those that
intersect the rectangle in which p lies. To determine this we start at the root R of
the octree (figure 5.12), and perform a simple if–then–else test to see whether
p lies in the rectangle associated with R; it does. Next, the same test is applied

5.3. Ray tracing optimization 183

B

DA

C
Pi Pi

+

^

p

d

p

pi

Figure 5.11: Tracing a ray originating at p through a subdivided space (a two-
dimensional representation of the division).

AA

A

R

D

AB AC AD B C DA DB DC DD

Figure 5.12: The hierarchical octree corresponding to the spatial subdivision shown in
figure 5.11. (Again this is a two-dimensional representation of an octree.)

to all immediate descendant nodes, those labeled A, B, C and D. The test shows
that p does not lie in A but that it does lie in B. Since B has no descendants,
we have reached the end of the search and can proceed to test for intersection
with any polygon in the list attached to the data structure for octree node B.

If there are no intersections at this stage we need to track the ray into an
adjacent box, for this example, the rectangle labeled DA in figure 5.11. This we
can do in three steps:

1. Project the ray in direction d̂ to find the spot on the sides of the box
associated with node B where the ray leaves box B; call it the point pi.

2. Project the ray forward by a small amount to get another point; call it p+
i

given by:
p+
i = pi +∆d̂

3. Work down through the octree to find the node whose boundaries are such
that p+

i lies in its associated box.

184 5. Realistic visualization

Once a new octree node has been identified the process is repeated using
p+
i as the starting point for the next increment of the ray.

Notes:

1. The small increment ∆ used to extend the ray into the next box should be
chosen carefully. A magnitude somewhat less than the smallest dimension
of the smallest box in the octree will be satisfactory because then there is
no chance of p+

i falling in a non-neighboring box. In addition ∆ must be
greater than zero so that even glancing rays get into the neighboring box.

2. The time penalty incurred by tracking rays in this way is not as great as
it may seem because finding which branch of the octree holds p+

i involves
checking relatively few levels of the tree with quite simple comparison tests.

3. The same tracking procedure can be used equally well for rays that origi-
nate as a result of a reflection or refraction and for feeler rays checking for
shadows.

5.3.7 Following reflected rays

The procedure set out in section 2.9 deals with reflection by generating a sec-
ondary ray with its origin at the point where the primary ray intersects the
reflective surface. Like all other rays the secondary ray is passed to the basic
tracing function DoRay() (figure 5.2). The value DoRay() returns is mixed with
lighting and texture values as usual.

5.3.8 Following refracted rays

Using the procedure set out in section 2.10 a secondary ray is generated with its
origin at the point where the primary ray intersects the transparent surface. Like
all other rays the secondary ray is passed to the basic tracing function DoRay()
(figure 5.2). The color value DoRay() returns is mixed with lighting and texture
values as usual.

5.3.9 Tracing shadows

A feeler ray from the point p where the shadow status is to be tested is tracked
through the octree subdivision toward each light in the same way as any other
ray. If in each subdivision a polygon intersects the ray, then p is deemed to be
in shadow and consequently there is no need to follow the ray any further.

5.4 Multi-threading and parallel processing

Multi-threading can be regarded as the modern term for parallel/concurrent
processing. It allows several tasks, even within the same program, to execute

5.4. Multi-threading and parallel processing 185

at the same time, or appear to execute at the same time. One could perhaps
say that the concept was ahead of its time and until recently most computer
programs were not written as multi-threaded applications. However, now multi-
threading’s time has come because virtually every new computer is designed
around a multi-core processor that truly allows a program to do several tasks at
the same time.

In theory, ray tracing is an ideal application for implementation in a parallel
processor because each ray is, to all intents and purposes, independent of all the
others. Thus in systems which provide hardware to take advantage of concurrent
tasks it makes sense to design a ray tracing algorithm which farms out the
tracing of individual rays to different threads of execution. However, there is
no advantage and perhaps even a significant penalty to be incurred if a multi-
threaded algorithm is executed by a system with just one processor.

Threaded algorithms must conform to the following standards:

1. Have a separate function which when called carries out all calculations and
can be used re-enterently.

2. Variables needed for temporary use within a thread must not be placed in
memory locations that are available to concurrently executing threads. In
practice this means storing all intermediate data on a stack.

3. So-called global variables (accessible to all threads) are usable for read
only or write only access, but not read and write unless some kind of lock
is applied when working with these data.

In the case of a ray tracing application program, the geometry of a scene may
be recorded in global memory. This description is read and used simultaneously
by different threads to trace a ray and calculate a pixel color value which is
placed in another globally accessible matrix (the output raster) at an address
unique to each thread.

From a practical point of view perhaps the most significant design decision
for a multi-processor rendering algorithm is the strategy for dispatching tasks
to the host processors. Do we use a separate thread for each pixel, scanline or
something else? Since we have already stated that it is very undesirable to create
more threads than processors the best idea is to divide the output raster into as
many regions as there are processors in the hardware and direct each processor
to render all the pixels in its region. This has a little drawback because part of
the image might need very little processing, say background only, while another
might be showing a complex model with multiple reflective surfaces.

A good practical compromise is to use what one might call interlaced scan-
lines. For example in a dual processor environment, processor A renders rows 1,
3, 5, 7 etc., while processor B renders rows 2, 4, 6, 8 etc. The advantages of this
approach are first that in any image there will be high correlation between the

186 5. Realistic visualization

content of adjacent rows so calculation times will be very similar for all proces-
sors. Second, the overheads of spawning threads will not be too great, as might
happen if every pixel’s calculation dispatched a new thread.

You can observe this strategy in action in the OpenFX application’s code
that is examined in chapter 9.

6
Computer animation

This chapter starts with an introduction to the most commonly used approach to
3D computer animation, i.e., keyframe in-betweening (tweening). It shows how
this is used for the animation of rigid body behavior and illustrates possibilities
for the extension of the keyframe approach to cover the more complex topic of
character animation. Following the discussion on character animation we will
proceed with an explanation of a technique often used for character animation,
namely inverse kinematics or IK for short. IK has applications in non-character
animation but it is probably its association with articulated models (i.e., charac-
ters) that animators would find it most useful. Finally there is a discussion and
a few examples of aspects of the simulation of realistic motion that arise from
some basic physical laws.

6.1 Keyframes (tweening)

The idea of the keyframe is well known to paper-and-pencil animators. It is
a “description” of a scene at one instant of time, a key instant. Between key
instants it is assumed that nothing “startling” happens. It is the role of the
key animators to draw the key scenes which are used by a team of others to
draw a series of scenes filling in the gaps between the keys so that jumps and
discontinuities do not appear. This is called “tweening” (derived from the rather
long and unpronounceable word inbetweening).

To convince an observer that the animation is smooth and flicker free a
number of pictures must be flashed quickly before them. Cine film presents
24 pictures per second and television either 25 or 30 per second depending on
the system in use. A 30 minute animated feature will require upward of 54,000
images. Each of these pictures, whether for TV or the movies, is known as a
frame.

The task of tweening is a fairly monotonous repetitive one and thus it is ideally
suited to some form of automation with a computer. A half-hour animated movie
may only need a couple of thousand keyframes, about 4% of the total length.
Some predefined and commonly used actions described by library “scripts” might

187

188 6. Computer animation

cut the work of the animators even further. For example engineering designers
commonly need to visualize their design rotating in front of the camera; a script
or template for rotation about some specified location at a fixed distance from
the camera will cut the work of the animator even further.

Thus in computer animation the basic idea is:

Set up a description of a scene (place models, lights and cameras in
three dimensions) for each keyframe. Then use the computer to calcu-
late descriptions of the scene for each frame in between the keyframes
and render appropriate images.

Most (if not all) computer animation application programs give their users
the task of describing the state of the action in keyframes and then they do
their best to describe what happens in the snapshots taken during the remaining
frames. This is invariably done by interpolating between the description of at
least two but possibly three or four keyframes.

Applications programs offer quite a lot of diversity in the power they provide
to their users and in how they implement the interpolation but most of them
offer the following features:

1. As many models as required can be included in a scene and each can
be independently instructed how to behave. A viewpoint emulates the
behavior of a camera and can take a specific field of view and other lens
properties.

2. Each model is associated with a number of keyframes which specify dif-
ferent features of the actions they might undertake. Probably the most
important is to specify where in the scene a model is located. The anima-
tor specifies which frame is a keyframe and assigns a location the model is
to occupy in the scene corresponding to that frame.

3. The animator is allowed some control of parameters governing the interpo-
lation algorithm used in determining the position of a model at the time
of the non-keyframe snapshots.

4. Many other actions of a model in an animation can also be described in
terms of a keyframe with parameter values determined by interpolation.
To supplement the specification of position, all application programs give
the animator the option to specify an orientation (or attitude) for the model
in a keyframe. Typically, with the three angles, heading, pitch and roll,
the angles will be interpolated during the “tween” frames.

5. The option for hierarchical behavior, for example a formation air display,
can be animated by describing the motion of the leading aircraft with the
others instructed to follow it. Hierarchical motion allows quite complex
action to be produced with ease. An aerobatic display by a helicopter is

6.2. Animating rigid motion 189

a good example of hierarchical motion. The fuselage follows the display
path and the main and tail rotor blades all follow the fuselage whilst at
the same time rotating in appropriate planes which themselves tilt as the
machine rolls, dives and loops the loop.

In the remaining sections of this chapter we will investigate some details of
the theory underlying these features.

6.2 Animating rigid motion

Rigid objects are things like motor vehicles, airplanes, buildings or even people
who do not move their arms or legs about. All fly by and walk through type
animations fall into this category. Rigid motion is the simplest type of animation
because each model is considered as an immutable entity and the animator only
has to specify parameters for its position and orientation.

We saw in section 6.1 that an animation is built up frame by frame with
the position and orientation being either specified (because it is a keyframe) or
interpolated from at least two keyframes. In three dimensions a point in space
is specified by a position vector, p = (x, y, z). To specify an orientation three
parameters are required. There are a number of possibilities but the scheme
illustrated in figure 2.36 where values of heading, pitch and roll (φ, θ, α) are given
is a fairly intuitive and easy to work with description of a model’s orientation.
Once the six numbers (x, y, z, φ, θ, α) have been determined for each model a
transformation matrix is calculated and inserted into the standard rendering
pipeline which then proceeds to paint a picture for that frame. All the other
frames are rendered in the same way.

In an animation it is not only the models in view that exhibit action; some
of the most important uses for computer graphics arise because the camera (the
viewpoint) can move, pivot and tumble. However it doesn’t matter whether it
is a model built from vertices and polygonal facets, or a light or viewpoint, the
behavior of every element associated with a snapshot is uniquely specified by the
set of the six numbers (x, y, z, φ, θ, α). Chapter 2, section 2.12.7 describes how
to calculate terms in the view matrix, given an (x, y, z, φ, θ, α) for the camera.

Taking all this into account we can write a modified form of the basic ren-
dering algorithm first introduced in section 4.1.1 that serves as quite a compre-
hensive template for any animation algorithm:

1. Load the description of the action of the animation. The action is described
by a list of keyframes for each participating element; an element is either
a model, a light or camera. Each keyframe will record the position and
orientation of an element for a specific frame. For every model participating
in the animation, load its vertex, edge and facet data.

2. Repeat all the remaining steps for every frame i in the animation.

190 6. Computer animation

3. Determine the parameters (x, y, z, φ, θ, α) for the camera in frame i by
interpolation from the record of its keyframes. Build the associated viewing
transformation matrix [Tc] by following the steps given in section 2.12.7.

4. Repeat the following for every model k in the animation:

(a) Determine the parameters (x, y, z, φ, θ, α) for model k at frame i by
interpolation from the record of these at two or more of the model’s
keyframes.

(b) Build a transformation matrix, say [Tk], which will be applied to the
vertices of model k so that in effect the vertex coordinates of all mod-
els participating in the animation will be based on the same global
frame of reference. [Tk] is obtained by the combination of transfor-
mations for orientation and position. The orientation transformation
is obtained with sequential rotations about the x, y and z axes by
angles α, θ and φ, respectively. Moving the model to its position
(x, y, z) is given by a translation through po = [x, y, z]

T
. Thus [Tk] is

given by:

[Tp] = a translation by po

[Rx(α)] = a rotation about x by α
[Ry(θ)] = a rotation about y by θ
[Rz(φ)] = a rotation about z by φ
[Tk] = [Tp][Rz(φ)][Ry(θ)][Rx(α)]

Note that the rotational transformations are applied before the model
is moved into position.

(c) Combine [Tk] with [Tc] to give a single transformation for application
to the vertices of model k.

[Tck] = [Tc][Tk]

(d) Apply [Tck] to the vertices of model k. Note that because each frame
will probably require a model to alter its location it is essential to
hold a copy of the original vertex positions and apply [Tck] to that.

The final two steps below are taken from the basic rendering algorithm of
section 4.1.1.

5. Apply the projection transformation to all vertices.

6. For each pixel in the output raster determine what is visible and record
this information.

6.2. Animating rigid motion 191

40

2015

1

Figure 6.1: Using linear interpolation to plot the movement of an object at, and
between, keyframes. The keyframes are plotted with a • and labeled with the frame
when they occur.

Note:
In practice animation software will probably not have one long list of
vertices and facets. There will be several lists, one for each model
in the animation. However, because all vertex coordinates are known
relative to the same axes (thanks to the application of the [Tck]) no
further processing is required.

6.2.1 Position tweening

To find the position of any object (camera, light or model) in an animation during
a non-keyframe frame, say i where there are n keyframes such that 0 ≤ i < n,
an interpolation of one form or another is performed. The simplest way to do
this is by linearly interpolating from the position in two keyframes.

Using the notation of section 2.14.1, let P0 be the position associated with
keyframe l which is chosen so that l < i and there is no other k such that k < i
and k > l. Then find P1 which is the position associated with keyframe m
chosen so that m > i and there is no other k such that k > i and k < m. If we
let parameter µ be given by:

µ =
i− l

m− l

then during frame i the position of the object is given by:

p = P0 + µ(P1 −P0)

For an animation with several keyframes linear interpolation will direct the
object to move from the positions plotted at the keyframes as illustrated in
figure 6.1.

There are two things to note about the movement shown in the example of
figure 6.1:

192 6. Computer animation

1. The path taken by the object has abrupt changes of direction at a keyframe.
In some situations this might be desirable behavior but for most of the
time we would expect a simulation of realistic behavior to make the object
follow a smooth curve which passes through the points associated with the
keyframes.

2. Unless the ratio of distance between keyframes to time interval between
keys is approximately constant in adjacent sections of the path, the ob-
ject will appear to move erratically and make abrupt changes of speed at
keyframes. In the example depicted by figure 6.1 it takes approximately
four times as long to cover the distance between keyframes 20 and 40 as it
does to cover twice the distance between keyframes 15 and 20.

Avoiding erratic behavior requires some skill on the part of the animator in
choosing when to make a keyframe and where the associated position should be.
As an alternative it is possible to specify a path which is to be followed during a
specific time interval (say between frames fl and fm) and instruct the computer
to calculate where a model or camera is during the snapshot at frame i.

Higher order interpolation, e.g., with a quadratic polynomial (section 2.14.2)
or a cubic spline (section 2.16), will remove the abrupt changes of direction
during keyframes. It is important to appreciate that for spline interpolation the
movement of any element in an animation must be specified by at least four
keyframes. Splines have the big advantage that they will be well behaved; they
can have their flexibility adjusted by user-specified parameters so that even for
the same control points (at the keyframes) a wide variety of paths are possible.
Figure 6.2 illustrates the effect of increasing and decreasing the “tension” in a
spline.

To obtain the position p of camera or model during frame i, using a cubic
spline requires the position of four keyframes, P−1 in frame a, P0 in frame b,
P1 in frame c and P2 in frame d. These must be chosen so that a < b < c < d
and b < i < c. This situation is illustrated in figure 6.3.

Equation 2.32 repeated as 6.1 below provides an expression for the determi-
nation of any point p on the spline in terms of parameter τ .

p(τ) = K3τ
3 +K2τ

2 +K1τ +K0 (6.1)

The constants K0 etc., are determined from P−1, P0, P1 and P2 as given by
equations 2.34, 2.35, 2.36 and 2.37.

To make use of the spline it only remains to relate parameter τ to frame i for
which p is required. Before writing an expression let us consider the following:

1. When τ = 0 equation 6.1 gives p = P0 and this occurs when i = b.

2. If τ = 1 then p = P1 and this occurs when i = c.

6.2. Animating rigid motion 193

Increasing
tension

Decreasing
tension

Figure 6.2: Changes in the flexibility (or tension) of a spline allow it to represent many
paths through the same control points.

The first relationship between τ and time that one might consider is a linear one,
effectively parameterizing the spline by time with:

τ =
i− b

c− b

Although this approach is acceptable it can give rise to a problem when the spline
is highly curved. To see this look at figure 6.4; it shows part of a spline curve
with four keyframes and three “tween” frames in the interval between the keys.

The curve has a sharp loop between frames 14 and 18. The position of each
tween frame is plotted with a cross and corresponds to τ values of 0.25, 0.5 and
0.75. It is evident that the τ values are 0.25 units apart but (and this is the
problem) in the highly curved segment the distance between the points on the
curve corresponding to successive frames is not uniform.

This effect is even more evident on the insert graph of time vs. distance
along curve which shows significant discontinuities near keyframes 14 and 18.
Discontinuities such as these are very noticeable to the observer. An object
following this spline will appear to slow down near keyframes and speed up in
the middle of segments. Such disturbing behavior may be minimized by reducing
the curvature of segments but this requires that the number of keyframes be
increased and even then it will not be eliminated.

194 6. Computer animation

d

t

cb

b

d

a

Time
line

a

c

P1

P0

P–1

P2

P

Figure 6.3: Building a spline for interpolation of position in frame i. Below the spline
the figure depicts a “timeline” diagram illustrating the time (in frames) of the oc-
currence of position keyframes. Most animation software packages give some form of
graphical presentation of such information.

Distance/Time

0.25

0.25

0.5

0.5

0.75

0.75

0.75

0.25

0.5

10

14

18

22

Speed/Time
s

d

t

t

Figure 6.4: Non-uniform distribution of spline interpolated positions for tween frames.
The insert graph illustrates the relationship between distance along the curve and time
(i.e., which frame).

The reason that tween frames aren’t uniformly distributed along the path
is that the relation between τ and time is not a simple linear one. To achieve
a uniform velocity between keyframes (or as uniform as is possible given the
number of tween frames) we need to parameterize the spline not by time but by
arc length.

6.2. Animating rigid motion 195

For the spline segment determine the constant vectors K0, K1, K2 and K3

Define the function p(τ) = (((K3τ +K2)τ +K1)τ +K0)

Set n to the number of intervals in the summation, a value between 20
and 30 should be accurate enough in context of computer animation.

Set length L = 0
Set step counter j = 0
Repeat the following while j < n {
Calculate the incremental vector using the function p(τ) as follows:

Let τ0 =
j

n
and τ1 =

(j + 1)

n
∆p = p(τ1)− p(τ0)
Increment L by the length of ∆p

L = L+ |∆p|
j = j + 1

}

Listing 6.1: Calculating the length of a segment of a cubic spline.

The arc length is the length of the segment between two keyframes. For
example, in the case of the segment between frames 14 and 18 of figure 6.4, if
we let L be the length of the segment then we need to find τ ’s which give p’s at
distances along the curve of L/4, L/2 and 3L/4 from the point P0.

The phrase “along the curve” is of key importance. The length of a curve is
determined by working out the distance traveled on the curve from P0, to P1.
If we represent the segment between P0 and P1 by the curve C then:

L =

∫

C

ds

This is known as a “line integral” and for our purposes it to be evaluated numer-
ically as an approximate sum with n steps. The larger n is the more accurate the
approximation to L. A value for n of between 20 ∼ 50 is usually good enough
for most animation calculations. Remember that any point on the curve is given
by equation 2.32. An algorithm to determine L based on the simple trapezoidal
numerical integration method is presented in listing 6.1.

This algorithm allows us to calculate L but suppose we were to stop adding
while j < n. We would get a distance somewhat short of L, say d. With
some trial and error we could choose to stop (say when j = n′) so that d (the

cumulative distance along C) equals L/4. Suppose we let τ =
n′

n
and substitute

this in equation 6.1. Then a point p (on C) will be obtained which is at a
distance L/4 from P0.

196 6. Computer animation

Use the algorithm given in listing 6.1 to define the function p(τ),
calculate the length of the segment L and evaluate the vector constants
Kj , 0 ≤ j ≤ 3

Calculate the distance along the spline from point P0 to the point where the
object should be in frame i (assuming uniform speed).

d =

(

i− b

c− b

)

L

Call the function τd = Bisect(d) to determine by iteration the parameter
for substitution in equation 6.1 to give the location on the spline during frame i.
p = (((K3τd +K2)τd +K1)τd +K0)

Listing 6.2: An algorithm to determine the position p of an object during keyframe
i when it follows a path described by a spline.The spline is given by the four points
P−1 at frame a, P0 at frame b, P1 at frame c and P2 at frame d. Keyframes must
satisfy the condition a < b < c < d and frame c and d must be chosen so that b < i < c.

By defining τ =
n′

n
the algorithm effectively provides a functional relationship

d = f(τ) but to parameterize by arc length we need to know τ given d, i.e.,
τ = f−1(d). This cannot be written directly. It can only be obtained by the
systematic equivalent of trial and error, i.e., iteration.

There are many iterative procedures we could use to find a τ that satisfies
f(τ) = d. Since we know that τ = 0 ⇒ d = 0 and τ = 1 ⇒ d = L, the easiest
to implement and most reliable procedure is the simple bisection method [32].
Bisection may not be the most rapidly convergent procedure for finding the root
of a non-linear equation but when we know that there is only one possible τ
and that it lies in the interval [0, 1] the bisection method is guaranteed to find
the answer. There is no point in a practical animation program issuing an error
message “root not found.”

A bisection algorithm to determine the position p during keyframe i by in-
terpolation from a spline passing through points P−1 etc., subject to the same
end conditions is given in listings 6.2 and 6.3.

Figures 6.3 and 6.4 illustrated that part of the curve between the central
two points of a cubic spline fit through four points lying on the curve. A spline
path must start and end somewhere and when interpolating in the first or last
segment then the algorithm must be modified. For the example in figure 6.5
tween frames 2 through 9 and 21 through 59 fall into this category.

There are a number of possible approaches which can be applied to determine
a position near the beginning or end of a spline path. One that works well is to
introduce fictitious control points P′

−1 and P′
2 given by:

P′
−1 = P0 − (P1 −P0) At the start of spline.

P′
2 = P1 + (P1 −P−1) At the end of spline.

6.2. Animating rigid motion 197

Function B i s e c t (d) {
Bi s e c t (d) returns a τ in the interval [0, 1] which when substituted in
P(τ) will return a point at a distance d from P0. Start by settings
upper and lower bounds for the interval in which τd lies: τ1 = 0 and τ2 = 1.0
LOOP:
Test whether the interval in which τd lies is small enough so that
the iteration can be terminated: ǫ < 10−3

i f (τ2 − τ1 < ǫ) jump on to DONE:

Call the function given in listing 6.4 to calculate the distance along
the spline up to the point determined by τd = 1

2
(τ1 + τ2)

dm = SegLength(τd)
i f (dm < d) {
Reduce the interval size by lowering the upper bound: Set τ2 = τd

}
else {
Reduce the interval size by raising the lower bound: Set τ1 = τd

}
jump back to LOOP: to repeat iteration

DONE:
Rreturn the value of τd which is accurate to within ǫ of the exact
value of τ corresponding to d

}

Listing 6.3: The Bisect() function used by the algorithm in listing 6.2.

1

10

20

60

P–́1

P1́

Figure 6.5: Interpolating over the first and last segments of a cubic spline.

Finally in this section it is worth stressing the following two points:

1. We have assumed that interpolation is done on groups of four keyframes
at a time. For example animating the motion over the 400 frames depicted
in figure 6.6 involves interpolation with the following groups of points:

198 6. Computer animation

Tween Frames Use Key Frames

2 to 9 1, 10 and 60 (with fictitious point)
11 to 59 1, 10, 60 and 100
61 to 99 10, 60, 100 and 200
101 to 199 60, 100, 200 and 300
201 to 299 100, 200, 300 and 400
301 to 400 200, 300 and 400 (with fictitious point)

2. There is no guarantee that the motion in different segments will take place
at the same velocity but at least within a segment it will be constant.

Function SegLength(τd) {

Use the constants K0 etc. and function p(τ) determined
in the algorithm of listing 6.1

Set n to the number of intervals in the summation a value between 20
and 30 should be accurate enough.

Set length d = 0 and parameter τ = 0
Calculate the increment in parameter ∆τ

∆τ =
τd
n

Repeat the following while τ < τd {
Calculate the incremental vector using the function p(τ)
∆p = p(τ +∆τ)− p(τ)

Increment d by the length of ∆p d = d+ |∆p|
Increment parameter τ = τ +∆τ

}
Return the calculated distance d

}

Listing 6.4: Determining the length of the part of the spline segment up to the point
where the parameter τ = τd. This function is similar to the function given in figure 6.1.

6.2.2 Motion along 3D paths

In section 6.2.1 it was observed that it is quite difficult for an animator to
describe a complex three-dimensional movement by placing the object executing
that motion in appropriate locations at key times. Even when the path followed
by the object is interpolated from a spline curve the motion may still appear
jerky because the ratio of distance between key locations to their time interval
may vary from interval to interval.

Probably the simplest way to avoid such difficulties is to dispense with the
hard and fast rule that during a keyframe the object has to be located exactly
at the location recorded for that keyframe. This can be achieved by defining a

6.2. Animating rigid motion 199

300200

100

60
400

10

1

Figure 6.6: An example of position interpolation for a 400 frame animation with 7
keyframes.

path along which the object is to move during a preset interval. The shape of the
path is described by as many control points as may be needed to push it through
given locations. A model following a path will thus embark on its journey at a
specific frame and arrive at its destination again at a specified time but how it
behaves during its travels is determined by the computer.

To find the location of a model during the interval a calculation similar to
that for a spline segment must be performed (see section 6.2.1). However, for a
path the summation applies to the full length of the spline. In cases where the
path is composed of several segments from different cubic splines the summation
switches from spline to spline as it works out the length. For example the path
shown in figure 6.7 contains seven control points; to determine its length involves
repeating the summation algorithm of figure 6.1 six times using cubic splines
passing through the points:

Path segment Control points

A (-1) 1 2 3
B 1 2 3 4
C 2 3 4 5
D 3 4 5 6
E 4 5 6 7
F 5 6 7 (8)

Points (-1) and (8) are fictitious points which influence the way in which the
path approaches the points at its start and finish.

Finding where on the path any element may be during frame i uses a pro-
cedure similar to that for basic tweening as set out in figure 6.2. The only
significant difference is that a path may be composed of several different spline
segments and the one to be used must first be identified before the bisection
algorithm is applied. Once an appropriate τ has been obtained, equation 6.1
yields the location p of any object following the path.

If we assume that the length of the path L is known and each control point
records its distance from the start of the curve, determining on which segment
p lies is simply a matter of comparing the distance d (from the start of the

200 6. Computer animation

(–1)

1

A

2 3

B

C

D

E

4 5

6

F

7

(8)

Figure 6.7: A path through seven control points.

curve to p) with the distance of the control points from the start of the path.
When two are found which bracket d then they are the ones we need. Thus the
distance d is given by:

d =

(

i− s

f − s

)

L

where s identifies the frame in which the object is at the start of the path and
f is the frame where it reaches the end.

6.2.3 Orientation tweening

An overall transformation that places a model in the scene includes components
of translation and rotation. In this section we turn our attention to how to obtain
the rotation to apply in a tween frame, given known rotations (or attitudes) in
adjacent keyframes. The transformation matrix that represents the combined
translation and rotation [T] may be written as the product:

[T] = [Tp][Ta]

where [Tp] expresses the translational component and [Ta] expresses the rota-
tional component. Writing the matrices in this order is equivalent to applying
the rotation before the translation. Whilst it is possible to use the reverse order,
applying the rotation first means that we can interpolate orientations indepen-
dently from positions.

Determining the orientation taken by model or camera in a tween frame
therefore requires the interpolation of angles. However, angles cannot be inter-
polated in the same way that position coordinates are. Section 2.18 discussed
this problem and introduced the quaternion as a mathematical entity with prop-
erties that are ideally suited to the specific problem of orientation tweening.

6.2. Animating rigid motion 201

It is how [Ta] is obtained during tween frame k (say [Ta]k) that is the subject of
this section.

We have seen already that it is not possible to interpolate angles (φ, θ, α) for
frame k given angles in adjacent keyframes l and m by saying:

αk = αm

(

k − l

m− l

)

+ αl

Therefore [Ta]k cannot be determined by composing individual rotations:

[Ta]k = [Rz(αk)][Ry(θk)][Rx(αk)]

Neither is it possible to obtain [Ta]k during frame k by interpolating directly
with matrices expressing the orientation at keyframes l and m (see section 2.18).

During the keyframes l and m the matrices [Ta]l and [Ta]m are determined
from the known values of (φl, θl, αl) and (φm, θm, αm), respectively. It may not
be possible to interpolate matrices but it is possible to interpolate a quaternion
associated with a rotation matrix. This was discussed in section 2.18.7 where the
slerp() function was introduced. Section 2.18 showed how the same orientation
could be expressed in terms of Euler angles (φ, θ, α), a quaternion [w, x, y, z] or
a matrix T which pivots the object into that orientation. Algorithms were given
for conversion from any representation into any other.

The quaternion provides a solution to our angular interpolation problem and
its use can be summarized in the following three steps:

1. Given an orientation expressed in Euler angles at two keyframes, l and m,
calculate equivalent quaternions ql and qm, using the algorithm given in
section 2.18.3.

2. Interpolate a quaternion qk that expresses the orientation in frame k using:

µ =
k − l

m− l

ρ = cos−1 ql · ql
qk =

sin(1− µ)ρ

sin ρ
ql +

sinµρ

sin ρ
qm

See section 2.18.7 for details.

3. Use the expressions in section 2.18.4 to obtain [Ta]k given the quaternion qk.

And there we have it: [Ta]k so obtained is a matrix representing the orienta-
tion adopted in frame k so that the orientation of any model changes smoothly
during the interval between keyframes l and m.

In practice it is not essential to record orientation explicitly with Euler angles.
Most practical animation software sets up the direction in which a model is

202 6. Computer animation

pointing interactively. In this case the keyframe could record an orientation as
a matrix or possibly even as a quaternion directly; there is no need to use Euler
angles. The visual feedback from a refreshed display of the object is usually
sufficient for the animator to decide that the orientation they require has been
adopted.

6.2.4 Hierarchical animation

Hierarchical animation occurs when the action of one element is specified rela-
tive to the action of another element. The simplest example of an hierarchical
animation is for one model to follow another. Using recursive calls, very little
programming effort is required to allow an animation program to support hier-
archical behavior. The only noteworthy event from a programming point of view
is that an infinite recursion must be prevented. Infinite recursion will occur if
for example an element ends up following itself.

There are an almost infinite variety of ways in which hierarchical links can
be established involving not only the relative positions of elements but also their
orientation. For example it is usually easier for an animator to tell the camera
to keep “looking at” some target which can then be instructed to move or follow
a model. The result is that the model will always remain in the center of the
field of view.

Here is a list of a few potentially useful hierarchical links:

1. One item follows another.

2. One item follows another at a fixed distance from the first.

3. One item follows another with the artificial condition that any of the x, y
or z coordinates do not participate in the hierarchical link.

4. One item remains orientated so that its x axis always points at a fixed
location or at another item.

5. One item rotates round an axis, without the need for orientation tweening,
while it moves about.

6. One item’s orientation mimics that of another item.

6.3 Character animation

The computer has proved a very effective tool in generating animated sequences.
It has been particularly effective when it is the observer/camera that is mov-
ing, for example in fly by or walk through animations. The basic algorithm of
section 6.2 showed how several models may be placed in a global scene and in-
dividually directed how to behave. This approach works very well provided the

6.3. Character animation 203

Figure 6.8: An example of the use of hierarchical links in animation. The figure
illustrated has 20 separate models (boxes bounding the models, wireframe and hidden
surface drawings are shown). The models are linked hierarchically. Each model has
been instructed to follow another at a point offset relative to the coordinate system
of the one it is following; they have then been aligned individually. Taken together,
various arrangements of the models lead to the appearance of a single entity. Tweening
the orientation between linked models at given key instances (keyframes) will produce
an animation with the composite object moving smoothly from one pose to another.

model is rigid; in this context rigid means that its behavior is specified by setting
only a few parameters.

Sadly, characters, both human and animal, usually behave in a far from rigid
way and in order to make animations that include characters a way must be found
to allow them to behave as realistically as possible. The motion of characters is
very complex but one can think of them as having a “global” behavior similar to
that of a rigid object; they move about from place to place for example. They
also have superimposed on their general motion an internal (local) behavior that
arises from internal flexibility. If we insisted on animating every last detail of
a character’s local behavior then it would quickly become quite impossible to
achieve anything. Some form of compromise will have to be accepted. In many
ways this is a similar problem to that in modeling the fine detail of a surface;
polygonal patches cannot be made small enough to represent perfectly every

204 6. Computer animation

detail and other techniques such as image mapping and procedural textures are
required.

In animation it is possible that some types of action might be initiated algo-
rithmically so that the animator does not have to move every vertex in a model
by hand at a few keyframes. Some physical actions such as the flexible behavior
of fabric, plastic deformation, flapping in the wind, twisting and bending etc.,
can be simulated directly from the laws of physics. Section 6.5 discusses a few
examples of this approach to animation.

Perhaps some of the more autonomous behavior of a character might be sim-
ulated from a set of rules or repetitive patterns of action. Character animation
is still a very active area of research in computer graphics and therefore there is
at present no correct answer to the question: what is the best method to adopt?
So, what is the best way to proceed? Obviously a stiff wooden performance is
unacceptable and the simulation of every muscular twinge is currently imprac-
tical; the goal then is to achieve as good a result as practically possible with
the equipment at our disposal and within the resources available for software
development, i.e., time. We saw in section 6.2.4 and figure 6.8 that an internal
action can be given to a character by constructing it from many components
which behave in a hierarchical way.

A large number of animal species have their movements primarily controlled
by some form of skeleton that is in essence hierarchical; for example a finger is
attached to a hand which is connected to a lower arm, etc. The skeleton imposes
constraints on how an animal behaves (it cannot suddenly double the length of
its legs for example). For animation purposes the idea of a skeleton is very useful.
In traditional clay animation a rigid wire skeleton is embedded in the clay and
this allows the animator to manipulate the model in a realistic way. (The Oscar
winning Wallace and Gromit are excellent examples of clay characters with a
wireframe skeleton.) We can use a skeleton in computer animation too; it fulfills
two functions:

1. It provides a rigid framework which can be pivoted, twisted and rotated.
Vertices and polygons are assigned to follow a specific bone in the skeleton
and thus the model will appear to take up various poses, just as does the
clay model.

2. The hierarchical nature of the skeleton allows for natural behavior, for
example pivoting the upper arm about the shoulder in a model of a human
figure will cause the lower arm and hand to execute the same pivot without
the animator having to do it explicitly.

Consider the example shown in figure 6.9, where the model is pictured on the
left, in the center is its skeleton shown as a thick black line and on the right is a
diagrammatic representation of the hierarchical links in the skeleton. Using the
skeleton, the animator has the option to pivot parts of the model about the end
points (nodes) of any of its bones. Taking the model in figure 6.9 as an example,

6.3. Character animation 205

body
centre

top
rear

bl-hip

bl-u
bl-l

bl-foot
br-hip

br-u
br-l

br-foot

fl-hip

fl-hip

fl-u

fl-l
fl-foot

fr-u
fr-l

fr-foot
I-neck

neck

head

Front right upper leg (fr-u)

Front right lower leg (fr-l)

Front right foot (fr-foot)

(c)(b)(a)

Front

Figure 6.9: A model with its skeleton: In (a) the model is shown; (b) shows the
skeleton (the thick lines). A pivot point is shown at the end of each bone. The thin
lines represent boxes that contain all the parts of the model attached to each bone.
In (c) a hierarchical representation of all the bones and how they are connected is
illustrated.

(a) (b)

Figure 6.10: Pivoting the leg of the model shown in figure 6.9 into two poses.

a rotation of the front right upper leg around the hip joint moves the whole front
right leg (see figure 6.10(a)). If this is followed by rotations of the lower leg and
foot the pose illustrated in figure 6.10(b) results.

Using a skeleton in the context of well-designed interactive software which lets
the animator see what is happening from multiple viewpoints, the key elements
of character animation can be achieved despite the fact that control is restricted
to a mouse and the display is only on a flat screen. In the next four subsections
we will look at one possible way to describe the skeleton, record its pose and
interpolate between two keyframe poses.

206 6. Computer animation

Hierarchy

2

10

Bone 1

P2

4

3

2 P1

P4

P3

P0

z0

y0

x0

3 4

Figure 6.11: Specifying a rest pose of a skeleton with four bones 1−4. In addition to the
positions Pi of the nodes at the end of the bone, a local frame of reference (xi,yi, zi)
is attached to each node. On the right a hierarchical diagram of the skeleton is shown.
P0 is a root node which has no bone attached and acts as the base of the skeleton.

6.3.1 Specifying character poses

Any skeleton has what we can term a rest pose, which is simply the form in which
it was created, before any manipulation is applied. The skeleton illustrated in
figure 6.9 is in a rest pose. With the knowledge of hierarchical connectivity in a
skeleton, a position vector giving the location of the end (the node or the joint)
of each bone uniquely specifies the skeleton’s rest position. To behave like the
wireframe of a clay animation figure any other pose adopted by the skeleton
should satisfy the criteria:

1. Be obtained with a rotational transformation about an axis located at one
of the nodes of the skeleton.

2. If a transformation is deemed to apply to a specific bone, say i, then it
must also be applied to the descendant (child) bones as well.

For example consider the simple skeleton illustrated in figure 6.11; it shows
four bones. Bones 2 and 3 are children to bone 1 and bone 4 is child to bone 3.
Each bone is given a coordinate frame of reference (e.g., (x3, y3, z3) for bone 3).
(For the purpose of this example the skeleton will be assumed to lie in the plane
of the page.) P0 is a node with no associated bone; it acts as the base of the
skeleton and is referred to as the root.

Suppose that we wish to move bone 3. The only option is to pivot it around
a direction vector passing through node 1 (to which bone 3 is attached). We
saw in chapter 2, sections 2.12, 2.12.4 and 2.12.5 how to specify a rotational
transformation as a 4× 4 matrix, and to combine rotations round different axes
to give a single matrix [M] that encodes information for any sequence of rotations

6.3. Character animation 207

P0

P2 P1

x1
y1

y2

z2 z1

z3́

y3́

x3́

x4´

y4´

z4´

P3́

P4́
x2

Figure 6.12: Specifying a pose for the skeleton in figure 6.11 by a rotation of bone 3
and its descendants round the node at the end of bone 1.

performed at a point. This matrix takes the form:

[M] =









a00 a01 a02 0
a10 a11 a12 0
a20 a21 a22 0
0 0 0 1









(6.2)

The last row and column contain zeros because there are no translation compo-
nents when manipulating a skeleton, and all rotations are relative to a coordinate
system with its origin at the point around which the skeleton is pivoted.

Once [M] has been calculated, its application to P3 and P4 will move them
to appropriate locations for the new pose. The example pose in figure 6.12 was
obtained by a rotation of π round axis y2. There are a few important observations
that emerge from this simple example:

1. Node 4 is affected by the transformation because it is descended from node
3.

2. Nodes 0, 1 and 2 are unaffected and remain at locations p0, p1 and p2.
Importantly the node about which the rotation is made is not disturbed
in any way.

3. The coordinate frames of reference attached to nodes 3 and 4 are also
transformed. They become (x′

3,y
′
3, z

′
3) and (x′

4,y
′
4, z

′
4).

4. Although node 4 (at p4) is moved, its position is unchanged in the local
frame of reference attached to node 3.

5. When [M] is applied to nodes 3 and 4 it is assumed that their coordinates
are expressed in a frame of reference with origin at P1.

208 6. Computer animation

P0

P2 P1

x1
y1

y2

z2 z1

z3́

y3́

x3́

x4˝
y4˝

z4˝

P3́

P4̋
x2

Figure 6.13: Co-positional nodes do not imply that two poses are identical. The nodes
in this pose of the skeleton from figure 6.11 are at the same location as the nodes in
the pose shown in figure 6.12 but the local frames of reference do not take the same
orientation.

It is possible to apply additional rotational transformations until any desired
pose is achieved for a specific keyframe in the animation. To attain the pose de-
picted in figure 6.10(b) several successive transformations from the rest position
of figure 6.9 were necessary.

Note that even if the position of the nodes in two poses is identical it does
not mean that the poses are identical. Look at figure 6.13; this shows 4 bones (4
nodes) co-positional with the nodes in the pose of figure 6.12. A close inspection
reveals that the local frames of reference are very different. The skeletons look
the same because they have cylindrical symmetry but a network of polygons and
vertices attached to the bones would not necessarily exhibit this property and
therefore the model might look quite different. (The pose depicted in figure 6.13
was obtained in two steps, a rotation round x1 followed by rotation round x′

3.)

6.3.2 Interpolating character poses

Character animation using a skeleton is similar in principle to rigid body anima-
tion. Given a pose for keyframes l and m we need to determine how the skeleton
is posed for some frame k : l < k < m.

In the last section we saw that it might take several operations to manipulate
the skeleton into the desired pose. In interpolating how the skeleton changes
between the two poses it does not necessarily follow that operations used to
position the skeleton should be mimicked. We would like the character to flow
from one pose to another with the minimum of fuss. To achieve this we will need
to think of interpolating the angular change between linked bones, i.e., between
a child and its parent bone.

6.3. Character animation 209

(b)

(c)

2 3

(a)

3

2

1

0 0

1

0

1

3

2

Figure 6.14: (a) and (b) show two poses of a simple skeleton with three bones. (The
circles represent the nodes at the end of the bones). (c) shows an interpolated pose
midway between (a) and (b).

To see how this will work look at the example in figure 6.14 where two poses
of a very simple skeleton are shown. In pose (a) the second and third bones

are orientated π apart from their respective parents. In (b) they are
π

2
apart.

Interpolation should proceed smoothly as the skeleton moves from pose (a) to
pose (b). This is accomplished by changing the angle between bones 1 and 2 and

between bones 2 and 3 simultaneously; in both cases from π to
π

2
. Interpolating

in this way leads to the pose depicted in (c) half way through the move.

Note how the angular changes are always relative (child to parent) so that
a rotation of a child is expressed in the frame of reference of the parent. The
parent bone and its frame of reference may themselves be pivoting and this in
turn adds an additional rotation to any children which accentuates the children’s
global movement. Simultaneous angular changes in two bones often leads to a
realistic motion. The act of raising an arm will involve pivoting the whole arm
round the shoulder whilst simultaneously bending it at the elbow.

If we extrapolate the two-dimensional concept depicted in figure 6.14 into a
three-dimensional one, we will have a pretty good method of simulating “animal”
behavior, with the animator required to provide only a few key poses. Indeed
it is quite possible to imagine building up a library of poses from which the
animator can choose the appropriate ones for the computer to link together over
a specified time interval.

Thus, we return to the question of how to interpolate the difference in the
angle between child to parent of the same two bones in two poses. Angular
interpolation has been discussed in chapter 2, section 2.18 and in section 6.2.3
where the quaternion was introduced as the mathematical entity of choice for

210 6. Computer animation

ui+1

vi+1
vi

wi+1

wi
ui

i+1

i

Figure 6.15: Part of skeleton at rest. Two bones are shown with their nodes (i and
i+ 1) and local coordinate systems.

angular interpolation. In character animation we have the little complication of
determining just what are the appropriate quaternions for interpolation. This
will be considered in the next section.

6.3.3 Interpolating one bone relative to its parent

Figure 6.15 shows two bones that form part of a simple skeleton that we will use
in this section. The skeleton is in its rest position. For each bone their associated
nodes i and i+1 and local frames of reference given by basis vectors (ui,vi,wi)
and (ui+1,vi+1,wi+1) are illustrated. The local basis vectors are labeled u, v
and w so that they are not confused with the global x,y, z coordinate system.

Suppose now that a number of rotations of node i + 1 around the axes at
node i are made so that node i+1 takes up the position and orientation depicted
in figure 6.16. The rotational transformation which moves node i + 1 between
the two orientations in figures 6.15 and 6.16 can be expressed as a single matrix
[M] of the form given by equation 6.2. The elements a00 etc., of [M] may be
calculated from the local basis vectors in the two orientations, (ui+1,vi+1,wi+1)
and (u′

i+1,v
′
i+1,w

′
i+1).

Another way to think about matrix [M] is that when it is applied to node
i+ 1 at Pi+1 in figure 6.15, it will move node i+ 1 to the new position at P′

i+1

as shown in figure 6.16. Remember, this assumes that the position of node i is
used as the origin while executing the rotation.

We can now propose that given [M] (which pivots node i + 1 from Pi+1 to
P′

i+1) the following three-step algorithm will return a matrix [Mk] which pivots
node i + 1 part way along an arc through Pi+1 and P′

i+1. How far along the
arc [Mk] takes Pi+1 depends on the parameter:

τ =
k − f

l − f
: f ≤ k < l

6.3. Character animation 211

Position before
pivot

i+1

i

i+1

Pi+1

ui+1

u í+1

v í+1

w í+1

P í+1

vi+1

wi+1

wi

ui

vi

Position
after pivot

Figure 6.16: A combination of rotational movements of node i + 1 around node i
produces another pose of the part of the skeleton given in figure 6.15.

where f and l are the frames in which the movement begins and ends, respec-
tively.

The algorithm:

1. Convert the matrix [M] to an equivalent quaternion qm. (An algorithm for
this appears in section 2.18.5.)

2. Use the slerp function (from section 2.18.7) to obtain a quaternion:

qk = slerp(τ, qi, qm)

qk is a quaternion that holds the same information that in [M] will pivot
Pi+1 into its position during frame k.

qi is the unit quaternion. It is used here because Pi+1 is the rest position
for node i+ 1.

3. Convert qk to the equivalent rotational transformation matrix [Mk] which
when applied to Pi+1 will pivot it round Pi into position (for frame k) on
the arc joining Pi+1 to P′

i+1.

6.3.4 Hierarchical interpolation

The previous section demonstrated how angular interpolation is used to animate
a child node pivoting around its parent’s axes. In a skeleton there is likely to be
a long chain of parent-to-child linkages and any parent bone is thus also likely to
execute some rotation around its own parent. In this scenario we have a situation
in which the frame of reference for the orientation of a child relative to its parent
is a moving one. This greatly complicates the issue and it is the purpose of this

212 6. Computer animation

0

1 1

0

2

3

2

3

v2

v1

v2́

u3˝

u1

v3˝

v1

v3

u2

u1

u3

Figure 6.17: A simple skeleton in two poses with local frames of reference given by
vectors u, v and w. All the w vectors are at right angles to both u and v and therefore
they point into the page and thus are not visible in the diagram.

section to develop a strategy for hierarchical interpolation which minimizes the
complexity.

The main difficulty with a moving frame of reference can be illustrated by
looking back to the example in figure 6.14, which is reproduced in figure 6.17
with additional vectors depicting the local frames of reference at the nodes on
the end of the bones.

Consider what happens to node 3 and its frame of reference as the skeleton
changes from the pose on the left to the pose on the right of figure 6.17. In
absolute terms the vectors u3 and v3 undergo a complete reversal, i.e., u′

3 = −u3

and v′
3 = −v3. Interpolating between these two sets of directions is not possible

because node 3 could swing either clockwise or anti-clockwise since the result
would be the same. It is only by considering the relative change between node
3 to its parent (node 2) that it becomes obvious that node 3 must rotate in an

anti-clockwise sense by
π

2
round the vector w2.

From this example we can see that the orientation of a child relative to
its parent’s frame of reference must be taken into account when performing
interpolation. There are two ways in which this might be done:

1. Use the frames of reference of child and parent to calculate rotational
transformations that relate:

(a) The child’s frame of reference to the parent’s in the first pose, say
[T1].

6.3. Character animation 213

(b) The child’s frame of reference to the parent’s in the second pose, say
[T2].

Interpolation proceeds as described in section 6.3.3 between quaternions
representing the matrices [I] and [T2][T1]

−1.

2. Specify every pose in terms of the rest pose. Thus if:

(a) [T1] is a transformation matrix that rotates node i+1 round its parent
so as to adopt the first pose, and

(b) [T2] is a transformation matrix that rotates node i+1 round its parent
so as to adopt the second pose,

then interpolation proceeds as described in section 6.3.3 between quater-
nions representing the matrices [I] and [T2][T1]

−1. If [Mk] is the matrix
equivalent to the interpolated quaternion then the product [T1][Mk] is the
matrix that pivots node i+ 1 (and all its descendants).

In either of the above approaches we will have a collection of transformation
matrices (one for each node) that describe their local behavior, i.e. relative
to their parent only. To render the model based on the pose of a skeleton,
the skeleton itself and the vertices attached to each bone must be moved into
position.

If we use the second approach as an example then the poses (a) and (b) shown
in figure 6.18 are recoded in the sequence of transformations [Ma]1, [Ma]2, [Ma]3
and [Mb]1, [Mb]2, [Mb]3, respectively. (An interpolated pose would be determined
by the sequence [Mk]1, [Mk]2, [Mk]3.) To bend the skeleton into poses (a) and
(b) the sequence of operations illustrated in figure 6.19 and outlined below is
performed:

1. Start with skeleton at rest.

2. Multiply on the left and right the matrix [Ma]1 by translations [T (−P1)]
and [T (P1)], respectively, so that its rotation is centered on skeleton node
1 at P1:

[M ′
a]1 = [T (P1)][Ma]1[T (−P1)]

Apply transformation [M ′
a]1 to skeleton nodes 2 and 3 and all vertices

attached to bones 2 and 3.

This is depicted in figure 6.19(a); note that skeleton nodes P2 and P3 have
moved to P′

2 and P′
3.

3. Modify matrix [Ma]2 so that its rotation is centered on skeleton node 2 at
P′

2 by pre- and post-multiplying by translations [T (−P′
2)] and [T (P′

2)],
respectively:

[M ′
a]2 = [T (P′

2)][Ma]2[T (−P′
2)]

214 6. Computer animation

Pose b

Pose a

2

1

0

0

1

2

Res
pose [ma1]

[ma2]

[ma3]

[mb1]

[mb2]

[mb3]
3

3

3

21

0

Figure 6.18: Specifying a specific pose with a series of rotational transformations based
on the skeleton’s rest position.

Apply transformation [M ′
a]2 to skeleton node 3 and all vertices attached

to bone 3.

This is depicted in figure 6.19(b); note that skeleton node P′
3 has moved

to P′′
3.

4. Modify matrix [Ma]3 so that its rotation is centered on skeleton node 3 at
P′′

3 by pre- and post-multiplying by translations [T (−P′′
3)] and [T (P′′

3)],
respectively:

[M ′
a]3 = [T (P1)][Ma]2[T (−P′′

2)]

Apply transformation [M ′
a]3 to all vertices attached to bone 3.

This is depicted in figure 6.19(c); note that skeleton node P′′
3 has not

moved; only the local frame of reference at node 3 and any vertices attached
to the last bone in the hierarchy will be affected.

It must be stressed that it is only the final result of these successive trans-
formations that is rendered or displayed.

6.3.5 The quest for more realistic character animation

A rigid skeleton with polygons and vertices attached to a specific bone is ideal
for robots like the model depicted in figure 6.9. It also works pretty well for
human figures but in reality the surface of an animal might well have a detailed
texture, e.g., hair or fur, and this will tend to move flexibly as muscles expand
and contract and skin stretches and bends.

To simulate these effects a polygonated mesh covering the surface of an object
is still quite applicable provided it is fine enough and a procedure is provided to

6.4. Inverse kinematics 215

00 33

321

0

11
22

[mb]3
[mb]2

(b)2

1

0 0 0 0

1 1 1

2

3

3 32 2

3

(a)

[mb]1

[ma]1

[ma]2 [ma]3

Figure 6.19: Applying the transformations down the chain. Attaining pose (a) from
figure 6.18 is depicted at the top and pose (b) at the bottom. (This example is discussed
in the text.)

the animator that enables them to specify appropriate behavior without having
to move every vertex in the model by hand.

One approach that is used in a few commercial animation packages is to use
a “field” which behaves in a way that is analogous to the effect a magnetic or
electric field has on charged or magnetic materials. The effect of the field is pro-
portional to the distance from its source and two or more sources can be called
into play to provide a combined effect. In the context of a polygon/vertex/skele-
ton computer model the vertices attached to the bone of a skeleton can have
their position perturbed by a force proportional to their distance from adjacent
bones or other structures (muscles) which themselves might be attached to one
or two adjoining bones in the skeleton.

Another approach to attaining realistic behavior with the minimum of amount
of work on the part of the animator is to use goal directed motion. Using this ap-
proach the animator does not have to manipulate every bone in the structure to
set up a particular pose. For example to make a figure walk, all the animator has
to do is drag the feet into position and the rest of the body will follow. Perhaps
this is a little bit of an oversimplification but it serves to illustrate the intention
of goal directed animation. At the center of goal directed animation lies the
technique of inverse kinematics which we will discuss in section 6.4. What we
have been investigating thus far is basically called forward kinematics.

6.4 Inverse kinematics

Inverse kinematics or just IK for short is popular as a technique employed by
animators to reduce their workload in setting up complex actions particularly

216 6. Computer animation

those involving hierarchical motion. Just as tweening helps in making it much
quicker to compile animations of many frames by getting the computer to fill in
the gaps between keyframes, IK helps by reducing the number of adjustments an
animator has to make to set up a keyframe. Animating characters with all the
complexity of posing the figure springs immediately to mind as a good example
but other actions can also benefit from the application of an IK engine. The
term IK engine is often used to describe a “black box” mathematical function
which applies an IK solution to a specific hierarchically linked set of models
according to IK theory. For example a moving chain or any folding structure
can be animated much more quickly with the help of IK. Animators also use IK
to describe complex motions such as a figure riding a bicycle. The figure’s feet
are told to follow the pedals and its hands the handlebars. All the animator has
to do is set up the motion of the bicycle itself and the character will follow it.

A good discussion of the basics of IK, the pros and cons of forward versus
inverse kinematics and IK applied to skeletons is provided by Watt and Watt [86].
They also introduce the theory but leave out some of the detail. In this section
we will look in a detailed way at how IK calculations are set up and solved. We
will adopt a different approach to that of Watt and Watt but we will obtain the
same results.

Perhaps we should begin by stating that IK calculations are not trivial. They
involve solving non-linear systems of equations in which there are always more
unknowns than equations. Thus the system is either poorly constrained or not
constrained at all. As we proceed to look at IK we will see how these problems
are solved and a couple of demonstrator applications are provided to allow you
to see the effect of IK in practice.

A 3D computer animation’s use of IK is obviously going to require a 3D IK
engine. However it is much simpler to understand a 2D IK engine and therefore
this is where we will begin. The solution of the 3D IK problem follows exactly
the same procedure as that used in 2D. It is only in setting up the problem that
differences occur; thus we will use a 2D example to present a method of solution.

6.4.1 The IK problem

Most of the work on which the concept of IK is based originated in the field of
robotics, robotics in the sense of the machines used in automation and manu-
facturing processes. The articulated linkages that form the arms and hands of
machines designed to fulfill a manipulation role must be able to reach any point
within a working region and the hand at the end of the robot’s arm must also
be able to adopt any orientation.

For a robot used as a surrogate human on a production line an important
feature of its design is that the hand can approach the working materials at the
correct angle. To do this there must be enough linkages from the place where
the robot is anchored to its hand and each link must have sufficient degrees
of freedom. If the robot can put its hand in the correct place then the next

6.4. Inverse kinematics 217

question is: how does it get there? It may be starting from a rest position or
the place in which it has just finished a previous task. From the operator’s
point of view it would be very helpful if they only had to move the hand, not
adjust every link from base to hand. However the hand must be at the end of
the articulated linkage and it is the relative orientation of the links that dictate
where the hand is.

Thus, given the relative orientation of articulated linkages, say Θ (which
represents the angles that establish how each link is orientated, e.g., by the set:
θ1, θ2, . . . , θn), the location of the end of the articulation X is given by some
function:

X = f(Θ) (6.3)

This is called forward kinematics because the links are set by the operator
who gives values to elements of Θ.

However in the ideal operating environment the robot’s operator would like
to set X; thus the problem is: given X can we find a suitable Θ? Posed in this
way it is an inverse kinematic problem. To solve it we must find the inverse of
the function f() so that we can write equation 6.3 as:

Θ = f−1(X) (6.4)

Thus we can summarize in a single statement the IK problem:

How, given the design of an articulation and a desired position for the
last linkage, do we obtain f−1() and hence from it the configuration
of all the links?

It must be stressed that it may not be possible for the articulation to reach
the desired position X and hence we call it a goal.

SinceX andΘ are both vectors we might hope to be able to write equation 6.3
in matrix form:

[X] = [A][Θ] (6.5)

and solve it by calculating the inverse of A and hence Θ from the set of linear
equations:

[Θ] = [A]−1[X]

Unfortunately f() is in most cases a non-linear function and thus it is not possible
to express equation 6.3 in the form given by equation 6.5. To solve the problem
we must use an iteration technique which is essentially the same as that used for
finding the solution of a set of simultaneous non-linear equations. McCalla [58]
describes the usual procedure. The procedure essentially linearizes equation 6.3
by expressing it in differential form:

∆X = f ′(Θ)∆Θ (6.6)

218 6. Computer animation

and then incrementally stepping toward the solution. Since f() is a multi-variable
function f ′() is the Jacobian matrix of partial derivatives given by:

J(Θ) =



















∂X1

∂θ1

∂X1

∂θ2
...

∂X1

∂θn
∂X2

∂θ1

∂X2

∂θ2
...

∂X2

∂θn
...

∂Xm

∂θ1

∂Xm

∂θ2
...

∂Xm

∂θn



















By calculating an inverse for J equation 6.6 may be written:

∆Θ = J−1∆X

J is of course dependent on Θ so an initial guess must be made for the values θ1,
θ2 . . . , θn. In the case of the IK problem the initial guess is simply the current
configuration. After the first step we proceed to find a new Θ by iterating:

Θn+1 = Θn +∆Θ

where n is a count of the number of iterations and at each step J−1 is recalculated
from the current Θn.

Iteration will be discussed in detail when we come to consider the procedure
for two-dimensional IK in section 6.4.2, when we will also address some outstand-
ing issues such as how an inverse of a non-square Jacobian matrix is obtained
and how we iterate toward the desired goal.

6.4.2 Solving the IK problem in two dimensions

We will look at an example of a three-link articulation. Restricted to two dimen-
sions it moves only in the plane of the page. When equations have been obtained
for this specific case we will see how they may be extended to a system with n
links. The links are fixed at one end, which we will designate as the origin (0, 0).
The other end, at point (x, y), is moved toward a goal point, which it may or
may not reach. Where it gets to is what we hope a solution to the IK problem
will reveal.

A solution of equation 6.4 gives us the orientation of each link in the chain
and from that we can find out how close to the goal the end point actually gets.
Figure 6.20 illustrates several possible configurations for a three-link articulation
and figure 6.21 presents the notation used to specify and solve the three-link IK
problem.

Figure 6.21 shows us that if we know the values of P1 (anchor point), l1, l2,
l3 (lengths of the links) and θ1, θ2 and θ3 (the relative orientation between one
link and the next), then the current position of every joint in the link is fully
specified (including the end point P4).

6.4. Inverse kinematics 219

(1)

(3)

(4)(2)

Figure 6.20: Several possible orientations for a three-link two-dimensional articulated
figure. In configurations 1 and 2 the articulation reaches to the same end point. We
may therefore surmise that simply specifying the location of an end point does not
guarantee a unique configuration for the links.

P1

P3

End Point

l3

l2

l1

y

θ2

θ1

θ3

P4

P2

x

Figure 6.21: Specifying the three-link articulation. The first link is anchored at (0, 0)
and lies at an angle of θ1 to the x axis. The lengths of the links are l1, l2 and l3 and
link 2 makes an angle of θ2 from link 1. The end point P4 lies at coordinate (x, y).

Since P1, l1, l2 and l3 are constant and independent of the orientation of the
linkage, it is only the θi that are the unknowns in our IK function, equation 6.4.
For our specific example:

P4 = f(θ1, θ2, θ3)

220 6. Computer animation

Note carefully how θi is specified as an angle measured anti-clockwise from
the direction in which link (i − 1) is pointing to the direction in which link
i is pointing. The first link angle θ1 is referenced to the x axis. Using this
information we can write an expression for the (x, y) coordinate of P4:

[

x
y

]

=

[

l1 cos(θ1) + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)
l1 sin(θ1) + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3)

]

(6.7)

Equation 6.7 shows that f(θ1, θ2, θ3) is as we suspected, a non-linear function.
Therefore we will need to solve the IK problem by linearizing 6.7 and iterating
toward the desired goal position of P4. The first step in this procedure is to
obtain the Jacobian and for the 2D IK problem of three links, this is the 2 × 3
matrix:

J =







∂x

∂θ1

∂x

∂θ2

∂x

∂θ3
∂y

∂θ1

∂y

∂θ2

∂y

∂θ3







The terms ∂
∂θi

are obtained by differentiating equation 6.7 to give:

J =

[

J11 J12 J13
J21 J22 J23

]

(6.8)

where:

J11 = −l1 sin(θ1)− l2 sin(θ1 + θ2)− l3 sin(θ1 + θ2 + θ3)

J12 = −l2 sin(θ1 + θ2)− l3 sin(θ1 + θ2 + θ3)

J13 = −l3 sin(θ1 + θ2 + θ3)

J21 = l1 cos(θ1) + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)

J22 = l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)

J23 = l3 cos(θ1 + θ2 + θ3)

With J calculated we are nearly ready to go through the iteration process
that moves P4 toward its goal. An algorithm for this will be based on the
equations:

Θn+1 = Θn + J(Θn)
−1

∆X

Xn+1 = f(Θn+1)

Before we can do this we must investigate how J−1 is obtained from J .

The generalized inverse The definition of the inverse of a matrix A is a matrix
A−1 such that if |A| 6= 0 then A and A−1 satisfies:

AA−1 = A−1A = I

6.4. Inverse kinematics 221

This definition of the inverse only applies to square matrices. In the case of any
matrix A it is possible to define a generalized inverse A− which satisfies:

AA−A = A (6.9)

If A is square and |A| 6= 0 then A− = A−1. Post-multiplying both sides of 6.9
by the transpose of A gives us:

AA−(AAT) = AAT

AAT is a square matrix and therefore if |AAT | 6= 0 we can find its conventional
inverse (AAT)−1 and write:

AA−(AAT)(AAT)−1 = AAT (AAT)−1 or

AA− = AAT (AAT)−1

The implication here is that for any (not necessarily square) matrix if we need
its inverse we may use its (generalized) inverse A− given by:

A− = AT (AAT)−1 (6.10)

This is exactly the expression that we need in order to invert the n×m Jacobian
matrix.

For more information on generalized inverses and their properties and limita-
tions consult Bouillion and Odell [13]. Specifically the two points most important
for IK are the existence of an inverse for AAT and the fact that normally we
have more unknowns than equations (i.e., m > n). The practical implication of
m > n is that the articulation can attain its goal in more than one configuration.

Iterating toward the goal Having found a way to invert J we develop an algorithm
to iterate from one configuration toward the goal. A suitable algorithm is given
in listing 6.5.

Step 4 of the algorithm given in listing 6.5 provides the mechanism to test
for convergence of the IK solution procedure. It is based on ensuring that the
norm of the vector ∆X− J(Θ)∆Θ is smaller than a specified threshold:

‖∆X− J(Θ)∆Θ‖ < ǫ

If we substitute for ∆Θ and call J− the generalized inverse of J then in matrix
form:

‖(I − JJ−)∆X‖ < ǫ

We use this criteria to determine a ∆X that satisfies the condition on the norm.
We also use this to determine whether the iteration can proceed or if we must
accept that the goal cannot be reached. A simple test on the magnitude of ∆X
will suffice: when it is less than a given threshold then either the goal has been
reached or it is so small that the end will never get there.

222 6. Computer animation

Start with the linkage configuration defined by the set of angles:
θ1, θ2, θ3...θn (which we will write as Θ),
and end point located at P i.e. at coordinate (x, y)
Apply the steps below to move the end point towards its goal at Pg

(i.e. at :(xg, yg))
Step 1 :
Calculate the incremental step ∆X = Pg −P

Step 2
Calculate J(θ1, θ2, θ3, ...θn) (use the current values of θ1 etc.)
Step 3 :
Find the inverse of J which we will call J− then:J− = JT (JJT)−1

(if J is a 2× n matrix J− is a n× 2 matrix)
Step 4 :
Test for a valid convergence of the iteration:
i f (‖(I − JJ−)∆X‖ > ǫ) the step towards the goal

the ∆X) is too large, so set ∆X =
∆X

2
and repeat step 4 until the norm is less than ǫ.
If the inequality cannot be satisfied after a certain number of steps then it is
likely that the goal cannot be reached and the IK calculations should be
terminated (This step is discussed in more detail in the text)
Step 5 :
Calculate updated values for the parameters θ1 etc.
Θ = Θ+ J−∆X

Θ is the vector of angles for each link [θ1, θ2, ...]
T

Step 6 :
Calculate the new state of the articulation from θ1, θ2 etc. check the end
point P4 to see if is close enough to the goal. It is likely that ∆X will
have been reduced by Step 4 and thus the end point will be somewhat short
of the goal. In this case go back and repeat the procedure from Step 1
Otherwise we have succeeded in moving P4 to the goal point Pg

Listing 6.5: Iterative algorithm for solving the IK problem to determine the orientation
of an articulated linkage in terms of a number of parameters θi given the goal of moving
the end of the articulation from its current position X toward Xgoal.

Equations for a general two-dimensional articulated linkage At the beginning of
this section we said that it was easy to extend the problem from one involving
three links to one which can take any number, say n links. In essence we use

the same algorithm but the expressions for (x, y) and the Jacobian terms
∂x

∂θi
become:

6.4. Inverse kinematics 223

x =
n
∑

i=1

li cos(
i
∑

j=i

θj)

y =

n
∑

i=1

li sin(

i
∑

j=i

θj)

∂x

∂θk
= −

n
∑

i=k

li sin(

i
∑

j=1

θj)

∂y

∂θk
=

n
∑

i=k

li cos(
i
∑

j=1

θj)

k = 1 → n

6.4.3 Solving the IK problem in three-dimensions

All the steps in the solution procedure for the 2D IK problem presented in
the algorithm of figure 6.5 are equally applicable to the three-dimensional IK
problem. The calculation of generalized inverse, iteration toward a goal for the
end of the articulation and termination criteria are all the same.

Where the 2D and 3D IK problems differ is in the specification of the orien-
tation of the links, the determination of Jacobian and the equations that tell us
how to calculate the location of the joints between links.

Although the change from 2D to 3D involves an increase of only one dimension
the complexity of the calculations increases to such an extent that we cannot
normally determine the Jacobian by differentiation of analytic expressions. In
this section we will take an “engineering approach” to obtain the information
we need. Watt and Watt [86] give a rigorous analysis but basically obtain the
same result although they express it in a different form. No matter what way
the analysis proceeds we recognize that a greater number of variables will be
needed to specify the state of a 3D articulation. You will remember that one
angle per link is sufficient for a 2D articulation, since in that case each link had
only one degree of freedom, i.e., rotation. In a 3D system with three degrees of
freedom for each link we must choose to use three parameters for each link. It
turns out that indeed three parameters per link is sufficient and the three Euler
angles which are sometimes used to define the orientation of objects in the scene
being rendered by a computer animation program is one possibility.

For our explanation we will start by considering the three-link articulation
depicted in figure 6.22.

Just as in the 2D IK problem we will obtain a differential formulation relating
small changes in the orientation of the links to changes in the location of the end
point. Later we will extend this to accommodate changes in the orientation of
the local frame of reference at the end of the linkage. Thus as for the 2D case

224 6. Computer animation

P3
P1

P4
P2

az3

ax3

az4

ax4

ay4

ay2

az2

ay3

ax2az1

ay1

ax1

l3
l2l1

Figure 6.22: A three-dimensional articulated linkage. It has an orthogonal frame of
reference given by the basis vectors (âx, ây, âz) attached to the joint at the end of each
link. Any structure associated with a link is regarded as fixed relative to the frame of
reference for that link. As the linkages move and pivot to reach toward a new goal, the
local frames of reference twist and turn and their bases move. The first link is attached
to a fixed base at P1.

we will write an equation relating a small change in end point to a change in
parameters for each linkage:

∆X = J(Θ)∆Θ (6.11)

In this case X is a 3D vector and ∆Θ measures, in some as yet to be defined
sense, the orientation of each link. The inverse of equation 6.11 will provide the
information on how to arrange the linkage so that its end point moves toward
its goal.

As far as the iterative steps for the 3D algorithm are concerned they
mirror exactly the 2D algorithm; it is only the dimensions of the
vectors and matrices that change.

With a solution procedure for the 3D IK problem based on equation 6.11
in place we need only consider how the 3D Jacobian is obtained and in what
form ∆Θ must be expressed. Unfortunately the one thing we cannot do is write
an analytic expression for X given Θ and obtain J by analytic differentiation.
An alternative method will have to be found. It is here that we use a so-called
“engineering approach” to determine J . Hopefully the assumptions we make

6.4. Inverse kinematics 225

regarding how a rotation propagates through a linkage and how it affects the
end points will be fairly obvious, but if you insist on a rigorous proof then one
can be found in Watt and Watt [86].

Our goal is to write an expression that relates a small change in the ori-
entation of each link to a small change in position of the final link: this is J .
Two assumptions are made during this calculation and they are justifiable be-
cause only infinitesimal changes in link orientation are being considered. These
assumptions are:

1. In rotational transformations the trigonometric functions sin θ 7→ θ and
cos θ 7→ 1 for small θ.

2. The order in which rotational transformation are applied does not affect
the outcome of a rotation.

With these assumptions in mind we proceed by considering the effect of small
changes in orientation at each link of the structure shown in figure 6.22. These
rotations are made by rotating all links lying farther away from the base of the
linkage by ∆θ around some axis n̂. In section 2.18.2 it was stated that any rota-
tion can be expressed as a single angle of rotation and an axis for that rotation.
Equation 2.45 reproduced below as equation 6.12 expresses the equivalence of a
rotational transformation, acting on an arbitrary vector r, as a matrix R or a
vector equation for rotation by angle θ round the direction vector n̂ on:

r′ = Rr = cos θr+ (1− cos θ)(n̂ · r)n̂+ sin θ(n̂× r) (6.12)

In the limit where rotation is by a very small angle equation 6.12 may be
written as:

r′ = Rr = r+∆θ(n̂× r) (6.13)

The incremental change in the position of r given by:

∆r = ∆θ(n̂× r) (6.14)

We are now in a position to consider the effect on the end of an articulation
of incremental rotations at each link. Look at figure 6.24(a); it shows the effect
on a three-link structure of a rotation of ∆θ1 round the vector n̂1 based at point
P1. From equation 6.14 we can calculate that the change in position of P4 by
this single rotation is:

(∆P4)1 = (∆θ1n̂1)× (P4 −P1)

Figure 6.24(b) shows the effect of subsequently rotating the linkage by ∆θ2
round n̂2 which is based at the point P2. Again equation 6.14 lets us write an
expression for the change in P4 due to that rotation:

(∆P4)2 = (∆θ2n̂2)× (P4 −P2)

226 6. Computer animation

P2

P1

P1

n2
^

n1
^

n3
^

P3∆θ P4́
Change in
location of
end of the
articulation

P2́

P3́

P4

l1 l2
l3

Figure 6.23: The articulated linkage from figure 6.22 before and after a small rotation
is applied to each link. The rotation may be specified by giving an angle ∆θ and an
axis n̂ around which the rotation is made.

We can see that a rotation round a vector based at P3 will also have an effect
on the position of P4 and that the accumulated change in the position of P4 is
the sum of the effects of rotations round the vectors based at points 1 to 3, that
is:

∆P4 = ∆θ1n̂1 × (P4 −P1) +∆θ2n̂2 × (P4 −P2) +∆θ3n̂3 × (P4 −P3) (6.15)

Equation 6.15 gives a linear relationship between the change in position at the
end of an articulation and a rotation applied to each link. We have almost
achieved our goal of obtaining the Jacobian matrix.

Before making the final step little further exploration of the result of an
incremental rotation defined in equations 6.13 and 6.14 is necessary. One reason
for this is that we have not explained how the vectors n̂i are obtained. We
shall now see how these are in fact not needed explicitly because we can work
directly from the frames of reference (the âxi, âyi and âzi basis vectors depicted
in figure 6.22) attached to the end of every link.

Using the components of n̂, r and ∆r we can express equation 6.14 as a
matrix:





∆rx
∆ry
∆rz



 =





0 −nz∆θ ny∆θ
nz∆θ 0 −nx∆θ
−ny∆θ nx∆θ 0









rx
ry
rz



 (6.16)

6.4. Inverse kinematics 227

Arrows and dots show how
the end point moves as each
rotation is applied.

P1

P1

P4n2

n1

P1

(c)

(b)

(a)

P1

P1 P1

n3

P4̋

Figure 6.24: Accumulating the small rotations occurring at each link of a three-link
articulation leads to an accumulated change in the position of the end point of the
linkage P4. In (a) the linkage is slightly repositioned by a small rotation round n̂1. For
(b) and (c) the small rotations only apply to links lying between the point of rotation
and the end of the articulation at P4.

In section 2.12.3 matrices were given which would rotate a vector by a spec-
ified angle around either the x, y or z coordinate axis. If rotations around all
three axes are performed on a vector r we can write a matrix expression for the
change in r:

∆r = (Rx(∆θx)Ry(∆θy)Rz(∆θz)− I)r (6.17)

Rx(∆θx) represents a rotation of ∆θx radians round the x axis. I is the identity
matrix.

For pure rotations R is a 3 × 3 matrix and if as stated in our prerequisite
assumptions cosθ 7→ 1 and sin θ 7→ θ then the rotation matrices for axial rotation

228 6. Computer animation

by angles ∆θx etc., become for x, y and z, respectively:




1 0 0
0 1 −∆θx
0 ∆θx 1









1 0 ∆θy
0 1 0

−∆θy 0 1









1 −∆θz 0
∆θz 1 0
0 0 1





Using the assumption that the order of multiplication is unimportant for
small angle rotations and neglecting second order product terms like ∆θx∆θy
equation 6.17 becomes:





∆rx
∆ry
∆rz



 =





0 −∆θz ∆θy
∆θz 0 −∆θx
−∆θy ∆θx 0









rx
ry
rz



 (6.18)

Note the similarity between equations 6.18 and 6.16; if terms such as ∆θx are
identified with terms such as ∆θnx there is a one-to-one correspondence. Thus
we can say that in the case of incremental rotations:

A small rotation of θ around a single axis n̂ can be accomplished
equivalently by performing three small rotations around three basis
vectors.

Returning now to equation 6.15 and the term associated with link i:

∆θin̂i × (P4 −Pi)

For the specific three-link example in equation 6.15 i satisfies 1 ≤ i < 4, and we
may express n̂i in terms of the known basis vectors for frame i as:

∆θi(αâxi + βâyi + γâzi)× (P4 −Pi)

where α, β and γ are constants. Now, writing α∆θi as ∆θxi , β∆θi as ∆θyi and
γ∆θi as ∆θxi we may express ∆θin̂i × (P4 −Pi) as:

∆θxiâxi × (P4 −Pi) + ∆θxiâyi × (P4 −Pi) + ∆θxiâzi × (P4 −Pi)

Substituting this expression into equation 6.15 for i = 1, i = 2 and i = 3 gives
a set of unknowns, the ∆θxi etc. There is a simple linear relationship between
them and their contribution to ∆P4 which when written in matrix form gives
the Jacobian that we have been seeking.

[∆P4] =
[

Jx1 Jy1 Jz1 Jx2 Jy2 Jz2 Jx3 Jy3 Jz3

]





























∆θx1
∆θy1
∆θz1
∆θx2
∆θy2
∆θz2
∆θx3
∆θy3
∆θz3





























(6.19)

6.4. Inverse kinematics 229

where:

Jx1 = âx1 × (P4 −P1)

Jy1 = ây1 × (P4 −P1)

Jz1 = âz1 × (P4 −P1)

Jx2 = âx2 × (P4 −P2)

Jy2 = ây2 × (P4 −P2)

Jz2 = âz2 × (P4 −P2)

Jx3 = âx3 × (P4 −P3)

Jy3 = ây3 × (P4 −P3)

Jz3 = âz3 × (P4 −P3)

From equation 6.19 it is relatively straightforward to see how a Jacobian
matrix can be obtained for an articulation with any number of links. Since ∆P4

is a vector the dimension of the Jacobian for an n link articulation is 3×3n with
the three terms associated to link i given by:

[

... âxi × (Pn+1 −Pi) âyi × (Pn+1 −Pi) âzi × (Pn+1 −Pi) ...
]

Having found a way of calculating the Jacobian for the 3D IK problem we
can summarize the procedure used to apply IK in the manipulation of a 3D
articulated linkage such as that illustrated in figure 6.22. The steps are:

1. A linkage (e.g., the one shown in figure 6.22) is established in its initial
configuration. The location of the end points of all links are known and
the frames of reference associated with each link are defined. A goal point
for the end of the link to move toward is given.

2. From the coordinates of end points of each link and the reference frames
axes a Jacobian matrix is calculated and its inverse is used to determine
small angles of rotation to apply to the structure.

3. The linkage is pivoted by carrying out rotation by these angles around the
basis vectors. This establishes new coordinates for the end points of the
linkage; it also changes the direction of the basis vectors.

4. If the end point has not reached its goal the previous two steps are repeated
until either the end point does reach its goal or it is not possible for it to
move any closer to the goal. The procedure given in figure 6.5 details the
iterative process because it applies equally well to both 2D and 3D IK
problems.

230 6. Computer animation

Setting a goal for the orientation at the end of the chain If you look back at
figure 6.22 you will see that at the end of the chain (the point P4) there is a
reference frame whose basis vectors are (âx4, ây4, âz4). Nothing has been said
about how they move as P4 is dragged towards its goal. If no prescription is
placed on the base vectors at P4 they will pivot in the same way that the other
base vectors pivot when the articulation is rotated in the incremental steps which
take P4 toward its goal.

To obtain an expression for the change in direction of these base vectors
consider the effect of the incremental changes in equation 6.15 for the example
in figure 6.23. There:

1. A rotation around n̂1 based at P1 pivots base vectors at P2, P3 and P4.

2. A rotation around n̂2 based at P2 pivots base vectors at P3 and P4.

3. The rotation experienced by a base vector at P4 is subject to the accumu-
lated rotations at all the other joints in the linkage.

To obtain an expression for the effect of accumulated rotations we consider
again equation 6.13 but this time write it in the form of a small rotation round
vector n̂1:

r′ = r+ (∆θ1n̂1 × r) (6.20)

A subsequent rotation of r′ round n̂2 can be expressed in the same terms:

r′′ = r′ + (∆θ2n̂2 × r′) (6.21)

Substituting for r′ from 6.20 in 6.21 we obtain an expression for the accumulation
of two rotations on r:

r′′ = r+ (∆θ2n̂2 +∆θ1n̂1)× r+ (∆θ2∆θ1)(n̂2 × (n̂1 × r))

For very small rotations second order terms may be neglected giving:

r′′ = r+ (∆θ2n̂2 +∆θ1n̂1)× r

Comparing this with equation 6.20 it is evident that the accumulation of two
rotations may be expressed as a single rotation around one axis:

∆θn̂ = (∆θ2n̂2 +∆θ1n̂1)

Extending the argument by induction results in an expression for the change in
r due to n small rotations, it is:

∆r = (

n
∑

i=1

∆θin̂i)× r (6.22)

6.4. Inverse kinematics 231

Applying the above results shows that the accumulated rotation at the end
of a three-link articulation is equivalent to a single rotation given by:

∆θ4n̂4 = ∆θ3n̂3 +∆θ2n̂2 +∆θ1n̂1 (6.23)

The n̂i vectors in equation 6.23 can be expanded in an analogous way to
that used in the derivation of equation 6.15. When this is done equation 6.23
becomes:

∆θ4n̂4 =

i=3
∑

i=1

(∆θxiâxi +∆θxiâyi +∆θxiâzi) (6.24)

Since this involves the same incremental rotations to those of equation 6.19 it
is appropriate to augment the Jacobian given in equation 6.24 and solve the
position and orientation problems together. Thus equation 6.19 becomes:

[

∆P4

∆θ4n̂4

]

=

[

Jx1 Jy1 Jz1 Jx2 Jy2 Jz2 Jx3 Jy3 Jz3

âx1 ây1 âz1 âx2 ây2 âz2 âx3 ây3 âz3

]





























∆θx1
∆θy1
∆θz1
∆θx2
∆θy2
∆θz2
∆θx3
∆θy3
∆θz3





























(6.25)
(Jx1 etc., are unchanged from equation 6.19.)

By using the solution of equation 6.25 in the iterative algorithm of figure 6.5
we have a comprehensive IK solution for a 3D articulated linkage in which it
is possible to specify a goal for both the position and the orientation (of the
reference frame) at the end point.

An alternative view of the basis vectors Throughout this section we have described
articulation in terms of a set of position vectors for the end point of each link in
the articulation (the Pi) and a set of basis vectors (the âx, ây, âz) located there.
However one can take an alternative view of how these positions and bases might
be determined. Such an alternative view is sometimes useful because of the way
in which most computer animation programs describe the hierarchical linking of
models in an articulation.

For example one might want to animate with IK the raising of a “chain”
from a heap lying on the ground until it becomes fully extended as shown in
figure 6.25 for example. The chain in this example is made up from a number
of “links” and since all the links look the same it is only necessary to build a
vertex/polygon model for one of them. The vertices in the model are specified
relative to the frame of reference used for construction, usually the global frame.

232 6. Computer animation

A single link in the
chain built in a global
frame of reference

Figure 6.25: IK is used to animate the raising of a chain from a pile of links on the
floor until it dangles from a hook.

To build the multi-link chain the individual model is copied and then rotated
and/or translated as necessary to assemble the chain.

What we will show in this section is that it is possible to obtain all the
necessary terms for the calculation of the Jacobian in equations 6.19 or 6.25
from the same series of transformation matrices used to position copies of a
model in some hierarchical combination such as the chain example.

To see how this is done consider the illustrations in figure 6.26. They depict
a series of actions which start from a point P1 located at the origin of the global
frame of reference and proceed as follows:

1. A rotation (say around the vector n̂1) is applied to P1 and also to a copy
of the original basis axes (x̂,ŷ,ẑ). The rotation is followed by a trans-
lation that takes P and the rotated basis frame to P′

1. The composite
transformation [T1] is a 4× 4 matrix:









r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1









The elements rij represent the rotation and the ti the translation.

If we imagine a link existing between P′
1 and P1 the illustration labeled (b)

resembles closely a 3D articulated structure with one link. It has an end
point at P′

1 and a set of basis vectors which are no longer coincident with
the global frame even through they were derived from it. For the moment
we will label these x̂′

1, ŷ
′
1 and ẑ′1.

2. Suppose we now repeat the process (i.e., apply a transformation T2 to
effect a rotation round the vector n̂2 followed by a translation), P′

1 will

6.4. Inverse kinematics 233

z z

y

Rotate

Translate

[T1]

Rotate and
translate

[T2]

x

^

(a)

P1

n1

n̂2

z 1́

z 1́

z 1́

P1́

P2́

P2

P3

P1
P1́

z2́

x2́

y2́

P1̋

y 1́

y 1́

y1̋

x1̋

z1̋

ax3

ay3

az3
az2

ax2

ay2

x 1́

x 1́

y

y
y

y

y 1́

x 1́

y

x

z

zz
z

(b)

(c) (d)

x

x x x

P2

P2

Figure 6.26: Assembling an articulation by repeated transformation of a point at the
origin of a global frame of reference and a copy of the global frame’s basis vectors. The
illustrations are discussed in the text.

move to P′′
1 and the copy of the original base axes will reorient themselves

as illustrated in (c). A point P2 at the origin in (b) will move to P′
2.

Now it doesn’t take too much imagination to recognize the emergence of
a linkage suitable for the application of IK. A comparison between illus-
tration (c) and figure 6.22 will show us that illustration (c) is equivalent
to a two-link articulated system. A two-link system using the notation of
figure 6.22 and mirroring illustration (c) is given in (d) and this illustrates
the one-to-one correspondence. Figure 6.27 gives a table listing the items
which correspond.

3. With a correspondence established between the points and bases used in
the derivation of J and the application of a transformation to a point at
the origin and global coordinate frame we can proceed to obtain Pi and
âxi etc., directly from the transformation matrices [T1] and [T2].

234 6. Computer animation

Illustration (c) Illustration (d)

Origin P1

P′

2 P2

P′′

1 P3

Global x âx1

Global y ây1

Global z âz1

x′

2 âx2

y′

2 ây2

z′2 âz2

x′′

1 âx3

y′′

1 ây3

z′′1 âz3

Figure 6.27: Table giving correspondence between points and axes in illustrations (c)
and (d) of figure 6.26.

Point P1 is at the origin and is just (0, 0, 0), point P2 is given by ap-
plying [T2] to (0, 0, 0) and point P3 is given by applying the composite
transformation [T21] = [T2][T1] to (0, 0, 0).

A similar argument applies to the basis vectors, for example ây3 is obtained
by applying [T21] to the vector (0, 1, 0).

Immediately we can see that these simple multiplications have the effect
of extracting elements of rows or columns from the appropriate transfor-
mation matrix. Thus the matrix which establishes link i is effectively:









(ax)x (ax)y (ax)z Px

(ay)x (ay)y (ay)z Py

(az)x (az)y (az)z Pz

0 0 0 1









where (ax)x is the x component of the âx basis vector for link i and Pi =
(Px, Py, Pz).

Finally it is worth just reiterating that these values are extracted from the
transformations that built the linkage by moving a copy of the model from
its reference frame into position along the chain. So for the point at the
end of an n link system its location and base axes orientation are read from
the composite transformation: [T] = [Tn][Tn−1]...[T2][T1]

6.4.4 The cyclic coordinate descent method

The Jacobian IK algorithm is well defined analytically and can be rigorously
analyzed and investigated, but in practice it can sometimes fail to converge. In

6.4. Inverse kinematics 235

Step 1 :
Start with the last link in the chain (at the end effector).
Step 2 :
Set a loop counter to zero. Set the max loop count to some upper limit.
Step 3 :
Rotate this link so that it points towards the target. Choose an axis of
rotation that is perpendicular to the plane defined by two of the linkages
meeting at the point of rotation. Do not violate any angle restrictions.
Step 4 :
Move down the chain (away from the end effector) and go back to Step 2
Step 5 :
When the base is reached, determine whether the target has been reached
or the loop limit is exceeded. If so, exit; if not, increment the loop counter
and repeat from Step 2 .

Listing 6.6: The cyclic coordinate descent iterative algorithm for manipulating an IK
chain into position. It works equally well in two or three dimensions.

Base Base Base Base

(a) (b) (c) (d)

0 1 1
0

2

Target End
effector

Target Target Target

Figure 6.28: The cyclic coordinate descent algorithm. Iteration round 1 (loop count =
1). The original position of the linkage is shown in light grey.

fact, all iterative algorithms can sometimes fail to converge. However, when the
Jacobian method fails to converge, it goes wrong very obviously. It does not just
grind to a halt; it goes way over the top! For computer animation applications it
would be preferable to have a simple algorithm that can be applied in real time
and is stable and robust.

A heuristic algorithm called the cyclic coordinate descent (CCD) method [90]
works well in practice. It is simple to implement and fast enough to use in real
time, even though it doesn’t always give an optimal solution. It consists of the
five steps given in listing 6.6.

The algorithm is best explained with reference to the example given in fig-
ures 6.28 and 6.29. The steps are labeled (a) to (h), where (a) is the starting
configuration. A line joining pivot point 2 to the target shows how the last link

236 6. Computer animation

Base Base Base Base

(e) (f) (g) (h)

0

1 1

0

2

Target Target Target Target

Figure 6.29: The cyclic coordinate descent algorithm. Iteration round 2 (loop count =
2) completes the cycle because the end effector had reached the target.

in the chain should be rotated about an axis perpendicular to the plane in which
links 1 and 2 lie. After this rotation, the linkage will lie in the position shown
in (b). Next, the linkage is rotated about point 1 so that the end effector lies on
the line joining point 1 to the target point. This results in configuration (c), at
which time a rotation about the base at point 0 is made to give configuration (d).
This completes round 1 of the animation. Figure 6.29 configuration (e) is the
same as figure 6.29(d), and a pivot at point 2 is made to give configuration (f).
Further pivots about point 1 result in configuration (g). Finally, a pivot about
point 0 leads to configuration (h), by which time the end effector has reached
the target and the iteration stops.

Of course, there are many other configurations that would satisfy the goal
of the end effector touching the target, but the configuration achieved with the
CCD algorithm is the one that feels natural to the human observer. It is also
possible that in certain circumstances, the end effector may never reach the
goal, but this can be detected by the loop count limit being exceeded. Typically,
for real-time work, the loop count should never go beyond five. The Jacobian
method has the advantage of responding to pushes and pulls on the end effector
in a more natural way. The CCD method tends to move the link closest to the
end effector. This is not surprising when you look at the algorithm, because if
a rotation of the last linkage reaches the target, the algorithm can stop. When
using these methods interactively, there are noticeable differences in response;
the CCD behaves more like a loosely connected chain linkage whilst the Jacobian
approach gives a configuration more like one would imagine from a flexible elastic
rod. In practical work, the CCD approach is easy to implement and quite stable,
and so is our preferred way of using IK in real-time interactive programs for
virtual reality applications .

A program that illustrates the CCD algorithm in practice is available from
the website. It consists of a stylized representation of a pair of industrial robots
designed to move their tool head to a working position and perform some form
of manipulation. In the simulation, the working point’s location and tool head

6.5. Physics 237

Working tool head

Figure 6.30: An inverse kinematic simulation of two idealized 5 degree of freedom
robots performed using the cyclic coordinate descent algorithm.

orientation are set interactively by the user; the articulated linkage then follows
these points. The angular orientation of each of the joints is determined by
the algorithm. A screenshot of the program is illustrated in figure 6.30. The
visualization was created using a combination of the basic primitive cylinders
and cubes rendered using OpenGL and the GLUT and adapted from the basic
template program presented in section 7.1.5.

6.5 Physics

When computer game programmers discuss animation they talk about physics
because in a game the action is not usually pre-scripted and the action is sup-
posed to mimic the real world. In the real world how things behave when they
move, how they react when they are subjected to a force, for example gravity,
how they stretch and bounce, and how they behave when they collide with some-
thing is determined by the basic laws of physics, or to be more precise the laws
of motion.

Often the mathematical models that are to be used to simulate the physical
behavior of objects and the computer codes derived from them are provided in
a library or component that is added to the games engine. This section presents
a few examples of an approach to animation where the action is not specified in
a set of keyframes; rather models follow paths, twist, turn, deform or accelerate
using the same physical laws that govern the dynamics of objects in the real
world. Before looking at the examples it is worth considering how such physical
processes are used in the context of 3D graphics. There are two main aspects to
consider:

1. How is the effect of a physical process applied to the model?

238 6. Computer animation

2. How is the effect determined given that the animator wants to retain some
degree of control over the action but not to the extent of violating the
physical laws the effect is trying to simulate?

Let’s look at each of these aspects in a little more detail.

How is an effect applied? Since a physical effect usually either moves or distorts
the model in some way it should affect the coordinates of the vertices that give
the model its form. There are two points in the basic animation algorithm where
it is possible to consider introducing the effect of a physical process. Vertices
can be displaced either before or after the model is moved into position.

For example the side to side flapping motion of a swimming fish simulated by
a lateral wave should be applied to a model of a fish before the fish is directed
to swim in circles. In this case the effect acts in the local coordinate frame of
the model. Alternatively an object falling under gravity might be tumbling as
it falls; tumbling is simulated by angular interpolation. In this case the effect of
gravity must act in the global frame of reference; otherwise the object might at
times appear to fall upward.

There is another important issue to consider when using an effect that moves
individual vertices in a model: the number and location of its vertices. This is
important because there is little point applying a distortion to a model if the
vertices are located so far apart that the detail created by the effect is missed.
For example, one way to simulate the animation of a wave is to take a planar
mesh and apply a time dependent displacement to the vertices in it. Since a flat
plane can be represented with a mesh of very few vertices the wave will appear
very rough unless some redundant vertices are built into the original flat plane.
This example is illustrated in figure 6.31.

How is an effect controlled? Let’s consider the example of an effect that simulates
the action of gravity on an object so that it falls to the floor and bounces a couple
of times before coming to rest.

In a keyframe system the animator might direct that the whole action is to
occur over a period of 100 frames and the object is to bounce twice. Unless the
distance from release point to the floor and coefficient of restitution (bounciness)
fit the equation of motion under gravity the object will not behave as directed
and at the end of the 100 frame period it might be left hanging in mid-air.

The question then is do we let the physics overrule the animator? The answer
is equivocal. For the example cited it is possible to achieve a compromise that
lets the animator have control over the duration and number of bounces whilst
still giving the appearance of realistic behavior by “massaging” the value used
for g, the acceleration of gravity.

6.5. Physics 239

(a)

(b)

Figure 6.31: Simulating a radial wave by displacing vertices in a mesh. In (a) the wave
is represented by an array of nine vertices whilst in (b) there are 225 vertices. When
flat (on the left) both meshes have the same appearance whilst it is only the finer mesh
that gives a good representation of the wave effect when it is applied.

6.5.1 Standardization

An important practical concern when you need to implement a large variety of
effects is that they should act through some sort of a common interface.

For physically based effects implemented in the C or C++ languages, one
approach uses a table of pointers to functions. Each function in the table imple-
ments one effect and they all use the same parameters.

The first function parameter defines a range of frames [fs, ff], over which the
effect acts and from this calculation a parameter τ : 0 ≤ τ < 1 is determined by:

τ =
currentframe− fs

ff − fs + 1

Written in this form the effect can be implemented in a way that is independent
of the number of integer frames in the interval during which it is to occur. The
other essential parameters are the number of vertices and access to the list of
vertices in the model being affected.

All functions will behave in a standard way such that when τ = 0 the vertex
data will be modified to reflect the initial state of the effect, and when τ = 1
the final state is put into effect. The function would be called during two of the
steps in the basic animation algorithm:

1. Before the model is moved into position. (In the coordinate frame of ref-
erence used for design and specification of the model.) In this frame of
reference the point (0, 0, 0) is the so-called hold point.

2. After the model has been moved into position but before the viewing trans-
formation is applied. (In the global coordinate frame of reference.)

240 6. Computer animation

Time

Bounce #2
occurs in

this interval

t2t1t0

d0

d1
d2

Figure 6.32: Graph of position against time for an object falling and making several
bounces.

Now we turn to consider three examples of animation effects arising from
some simple physical laws.

6.5.2 Falling and bouncing

On earth objects fall because they are subject to the constant gravitational force
and if dropped their velocity increases linearly until they hit a solid surface
at which point they may rebound. In this section we will develop a model
that conforms to the constraints discussed in the previous section. Our model
will allow the animator to specify parameters that correspond to useful control
variables. In this case the control variables of choice are:

1. The height to fall is d0.

2. The number of bounces to be performed is nb.

3. The coefficient of restitution is µ.

The coefficient of restitution is a measure of how elastic the bounce is; it is
defined as:

µ =
velocity after impact

velocity before impact

To satisfy our standardization criteria the fall must be completed when the
parameter τ = 1.

Figure 6.32 illustrates graphically how a dropped object behaves by plotting
a curve of its height above the ground against time since dropped.

In our computer simulation we have two options as to how we apply the
effect to a model built around a network of vertices. The first idea that comes
to mind is to treat the model as a single entity and then use the distance from
the model’s center to the rebound plane for d0. Every vertex in the model is

6.5. Physics 241

moved by the same amount and as a result the whole model behaves as a rigid
entity. An alternative idea (and perhaps a more interesting one) treats each
vertex individually so that d is the distance of a vertex to the rebound plane.
This can give the illusion of a floppy or flexible model.

The algorithm that we will use must be based on the standard equations
for motion under constant acceleration but in order to satisfy the constraints
above we will have to determine an artificial acceleration. In other words g, the
acceleration due to gravity, will not be 9.8ms−2. From a visual point of view
this will not be a problem because the acceleration of an object will still look
quite realistic. To obtain a suitable value of g we recognize that the time to first
impact t0 is related to the distance fallen d0, by:

d =
gt0

2

2

Thus if t0 is known g can be found.
Determining t0 involves calculating the time intervals t1, t2, . . . , tnb−1 (illus-

trated in figure 6.32) and using the fact that the overall time is scaled to unity
thus we have:

t0 + 2(t1 + t2 + tnb−1) = 1

The relationship between ti and ti+1 is known because ti+1 = µti and thus g
may be determined from:

t0 =
1.0

1.0 + 2(µ+ µ2 + . . .+ µnb−1)

g =
2d0
t20

The height of any rebound di is given by di = µid0 and the position at any
instant of time (τ) is calculated with the usual expression d = viτ +

1
2gτ

2, where
vi is the initial velocity for bounce i in which τ will satisfy:

t0 + 2(t1 + ...+ ti) ≤ τ < t0 + 2(t1 + . . .+ ti + ti+1)

6.5.3 Projectiles

The behavior of a projectile forms the basis for the simulation of explosions,
fireworks, etc. The same equations governing the behavior of an object falling
under gravity also apply to a projectile. This time however the projectile is fired
with an initial velocity in the direction d of magnitude V = |d|; see figure 6.35.

Under the influence of gravitational acceleration g and assuming that the
projectile is fired from the point (0, 0, 0) parametric equations for the motion are
written as:

r = V cosαt

z = −1

2
gt2 + V sinαt

242 6. Computer animation

Gravity is assumed to act in the negative z direction and r is a radial coordinate
along the direction in which the projectile will fly.

From the point of view of describing the action in the context of practical
animation software the initial velocity V and projection angle α are probably
less desirable user controlled parameters than say the point where the projectile
is to hit the ground or where it is to reach maximum height. If either of these
are specified then the equations can be rearranged so that not only appropriate
V and α are determined internally but the direction in which the projectile is
launched is also uniquely specified.

6.5.4 Explosions

To simulate an object exploding a combination of dynamic motion applied to
individual polygons in the model and some sort of post-process to add a glow
or smoke clouds can result in very realistic images. Probably the four most
significant elements are:

1. Each polygon from which a model is constructed is treated as a projectile
and fired off with a high initial velocity in a direction away from the center
of the explosion.

2. A bright flash of light centered on the site of the explosion is expanded
radially away from its origin over a short time interval.

3. A large number of particles (pixels of bright color) are projected away from
the center of explosion; their color is faded to black after a few frames.

4. Draw a waxing and waning bright halo around and within the polygons as
they fly off; this simulates burning and fire.

The last three effects in this list do not involve polygons or vertices in the model
and are created by processing the image after it has been rendered and stored in
a framebuffer. Figures 6.33 and 6.34 illustrate a variety of explosions simulated
by combining one or more of these elements.

Ballistic projectiles To simulate the first element in the list above involves treating
each polygonal facet in a model as if it were a projectile with the center of the
polygon acting as its center of mass. We can imagine several scenarios:

1. The projectiles are influenced by gravity, falling back to a ground plane.
Some polygons will be projected downward and consequently they hit the
ground at high velocity; they may bounce back up.

2. Polygons might not be affected (noticeably) by gravity, e.g., some fireworks
which simply burst away radially from the center of explosion and gradually
fade away.

6.5. Physics 243

43

21

Figure 6.33: Simulating an explosion by breaking the model up into its component
polygons and ballistically firing them off from the center of the explosion. A few of the
larger components are retained as single entities and a bright flare is painted over the
image at the seat of the explosion.

3. Polygons which are not simply point projectiles will be subjected to rota-
tional forces causing them to tumble randomly.

4. Because explosion is a time-dependent process, polygons farther away from
the origin of the explosion will be projected at later times. This simulates
the action of a shockwave traveling through the model.

One of the most difficult things to achieve with simulations of this type is
to provide meaningful control to the animator. For the simulation it is proba-
bly desirable that the explosion occurs over a fixed-time interval, say unit time.
A function executing the effect moves the polygons into appropriate positions
according to some parameter τ (0 ≤ τ ≤ 1) derived from the frame being ren-
dered. Other possible control parameters might include how big the effect is to
look (this can be achieved by specifying the maximum displacement a polygon is
to achieve or in the case of gravitational influence the maximum height reached
by the projected polygons).

Let us consider the example of an explosion occurring at a point Pe some-
where inside an object built from n polygonal facets, the centers of which are
located at Pi : 0 ≤ i < (n − 1). The direction in which polygon i is projected
is therefore: d = Pi −Pe. Assuming that gravitation forces are significant and
that the animator has specified the explosion must rise to a maximum height
of ∆z above the model’s position and then fall to a ground plane at z = 0 the
equations of projectile motion allow us to obtain a value for g (acceleration due
to gravity) that will have all the polygons on the ground at the latest when
τ = 1. The geometry of projectile motion is illustrated in figure 6.35.

244 6. Computer animation

(a) (b)

Figure 6.34: Simulating explosions: The sphere is broken up into its polygonal com-
ponents and they are projected away from the point of the blast. In (a) the effect is
enhanced by an image processor which uses an alpha channel to draw a fire-like glow
round the model. The glow increases in intensity and size as the explosion progresses.
In (b) the polygons are blasted out after a delay which is proportional to their distance
from the seat of the explosion; this simulates a shock front.

The longest time of flight will occur when polygon k (the one with maximum
z coordinate) is thrust vertically. Thus from the equations for parabolic motion:

r = V cosαt

z = −1

2
gt2 + V sinαt

we can see that the time it takes a projectile to reach its apex is:

V sinα

g

As expected, this will be a maximum when α = π
2 . At the apex of its motion

a projectile fired vertically will have zero velocity and the time it takes for it to
fall back to the ground, a distance ∆z +∆f (∆f = Piz the height of polygon i

6.5. Physics 245

∆f

∆z

d

z

αPi

Figure 6.35: The trajectory of a projectile released from point Pi in direction d.

above ground) is given by:

tfall =

√

2(∆z +∆f)

g

The time it takes a projectile to reach the highest point is determined from the
usual equations:

∆z =
V sinα

2g

tup =
V 2 sin2 α

g

Given:

tup =

√

2∆z

g

By assuming that the total flight time is normalized to unity the acceleration
g must be:

g = (
√
2∆z +

√

2(∆z +∆f))2

and the initial velocity V is:
V =

√

2g∆z

Using V and g, the location of all the exploding polygons at any τ is given
by substituting for t in the equations of parabolic motion. Each polygon will
have a different α depending on its position relative to the center of explosion.

Polygons reaching the ground before τ = 1 will need to be prevented from
falling farther.

246 6. Computer animation

6.6 Animating cloth and hair

These two topics are considered together because some of the same mathematical
principles on which their behavior is modeled have similarities. The modeling of
hair and cloth is being discussed in this chapter on animation because both of
these materials are generally non-rigid and move in an unscripted way according
to the simple laws of motion and elasticity. Indeed, one of the simplest models
for both hair and cloth envisages them as a spring mass system. Alternatively, it
is possible to model hair that is soft and semi-rigid in the same way that textures
like fur are simulated; see section 11.4.

Cloth The simulation of animated figures that are wearing loose fitting clothing
is a major challenge. It is still the subject of ongoing research and many technical
papers on new or more realistic models appear regularly in the scientific press.
One problem with most of the new sophisticated algorithms is that they are not
very practical. Sometimes they only work when the cloth fulfills certain design
constraints, or perhaps the dynamics are fine, but the collision detection does
not work well. These problems are considerably accentuated if the simulation is
to be part of a real-time application program. To animate cloth realistically in
real-time is still a major challenge. A good and wide-ranging introduction to the
challenges of animating cloth, and some of the best mathematical models can
be found in House and Breen [43]. The extensive list of references in House and
Breen [43] is a good place to start following up on the latest state of research.

One approach in which the movement of a cloth texture can be simulated
(and that does work very well in practice, is also good for real-time systems and
is robust and mostly stable) is through an extension of the spring mass model
for elastic and Jello-like deformation. In McMenemy [59] chapter 18 a practical
algorithm and computer code is described for the simulation the deformation
of elastic objects. This code works well for objects that enclose a volume and
for objects that are sheet-like. It is the sheet-like objects that interest us here.
When some sections of a sheet’s boundary are free to move, as the object is
pulled around by another point on or inside the sheet, the whole object produces
a motion that quite closely resembles a piece of cloth being moved about. The
only drawback of this spring-mass model is that it stretches whereas cloth is
mostly an inelastic material. However it only takes a minor iterative extension
of the algorithm to effectively remove the elasticity and give a resulting motion
that is a pretty good representation of a piece of cloth being moved around.
Before looking at the algorithm’s extension, it is necessary to consider a few
details of the spring-mass model.

The mathematical model The mathematical model on which the dynamics of
cloth simulation will be based is that of a spring mass particle system, as illus-
trated in figure 6.36. In (a) a 3D shape is represented by a mesh network of
interconnecting springs along each edge in the shape. The vertices are repre-

6.6. Animating cloth and hair 247

(d)(b)

(a)

(c)

(e)

(f)

p´

p´

Fixed
point

∆x

F = k∆x

p

p1

F4

F 3́

F 2́F 1́

F 4́

F3

F2

F1
p

pp2

p 2́

Figure 6.36: A spring mass particle system model for elastic deformation. (See the
discussion in the text.)

sented by particles at points such as p. In (b), pulling p away from its original
position establishes restoring forces in the springs that would tend to return the
mesh to its original shape when we release the vertex at point p′. In a simple
one-dimensional spring (c), the restoring force is proportional to the extension
in the length of the spring. (d) When two or more springs are connected, all
the non-fixed points such as p1 may move. All new positions must be obtained
simultaneously; in this 1D case an analytic solution of the math model may be
obtained. (e) If the springs form a complex 3D network then the effect of a
distortion must be obtained using a numerical solution technique. (f) When the
point p is moved to p′, the forces in all attached springs will change and the
shape of the network will adjust to a new state of equilibrium.

When an object’s surface is constructed as a series of polygonal faces the
edges in our mesh correspond to the little springs in the network joining the
vertices together. The original configuration of the model is its rest state, and
as one or more of the vertices are pulled, the whole network of springs adjusts
to take on a new shape, just as they would if the model was built out of real
springs and one of them was pulled or pushed.

The behavior of this network of springs is modeled mathematically by using
the well-known laws of Hooke and Newton. Hooke’s law says that the restoring
force F in a spring is proportional to the extension in the spring ∆p. That is,
F = k∆p, where k is the constant of proportionality. Newton says that the
acceleration a of a particle (in this case a vertex in the mesh) with a mass m
is proportional to the force applied to it. That is, F = ma. And of course,
the acceleration is given by the second derivative of the distance moved, so this
equation can be rewritten as F = m

..
p. This differential equation would be

relatively easy to solve for a single vertex and one spring, but in a mesh with
hundreds of vertices interconnected by springs in three dimensions, a numerical
approximation to the modeling equations and a computer are needed.

248 6. Computer animation

Several numerical techniques can be used to solve the equations that simu-
late how the vertices respond to an applied disturbance (House and Breen [43]
discuss this in depth). One technique that is fast and simple and has been used
by physicists for solving dynamic particle problems has also been shown by com-
puter game developers to be particularly good for our type of problem. It is
called Vertlet integration [85], and whilst it allows us to avoid the complexity of
carrying out an implicit solution for the equations, we can also still avoid some
of the instabilities that occur in the simpler explicit solution techniques.

Combining the laws of Hooke and Newton gives a second order differential
equation:

a =
..
pi=

F

m
=

k

m

n
∑

j=1

∆(pj − pi) (6.26)

which we must solve at every vertex in the mesh. The term
∑n

j=1 ∆(pj − pi)
sums the change in the length of each of the n edges that are connected to vertex
i. We must discretize equation 6.26 by replacing the second order differential

..
pi

with an approximation. The key feature of Vertlet integration recognizes that
the first order differential of p, that is

.
pi, is a velocity and that if we are given

initial values for position and velocity, we can write an iterative pair of equations
which may be used to determine how a vertex moves in a short time interval ∆t.
If p is the current position of a vertex and v is its current velocity then the
updated position p′ and updated velocity v′ are given by:

v′ = v + a∆t

p′ = p+ v′∆t

Normally, the velocity is not calculated explicitly and is approximated by a
finite difference expression for the differential. If the previous position is given
by p then v = p−p

∆t
. The expression may be re-written to obtain p′ as:

p′ = 2p− p+ a∆t2

And of course, the previous position has to be updated once it as been used.
That is, p = p. By substituting for a as given in equation 6.26, the result is a
remarkably simple iterative algorithm that can be used to solve for the transient
behavior of a mesh. With the right choice of parameters, it offers a visually
reasonable approximation to the behavior of a squashy/elastic/flexible object.

The model of equation 6.26 can be slightly improved by adding in the effect
of a damper in parallel with the spring. This helps to make the object appear
less elastic. It is easy to model this effect mathematically because the damper
provides a force which is proportional to the velocity of a vertex: Fd = kd(p −
p)/∆t. This force is added to the spring restoration force in equation 6.26.

6.6. Animating cloth and hair 249

(c)
F

(b)

(a)

Fl l

l

l

l

l + ∆l

l + 2∆l

F

Figure 6.37: Applying the relaxation algorithm to eliminate any elasticity in the spring-
mass model for cloth materials. In (a) a force F pulls the network of polygons in the
direction of the force; each edge spring extends to reach an equilibrium, shown in (b).
In (c) the relaxation has restored each edge to its original length, but the cloth vertices
have taken up new positions.

The stability and type of behavior of the simulation is governed by the choice
of values for the coefficients ∆t, m, k and kd. The code accompanying McMen-
emy and Ferguson [59] is a very good base from which to start to build a cloth
simulator.

Stiffening things up The spring mass system and its mathematical model is ideal
for simulating the behavior of a material that is elastic as it is stretched or pulled
around by points along part of its boundary. There are some numerical issues
relating to the stability of the equations, especially as the material becomes stiffer
(the term stiff equations is not used without reason). This is one reason why
more sophisticated simulations move from an explicit numerical integration to an
implicit one. Unfortunately cloth is stiff; it has very little elasticity. Indeed for
most types of cloth it should have no elasticity at all. However, as the stiffness
tends to infinity, the problem of stability goes away and it is possible to add a
very simple iterative step in the Vertlet algorithm which basically prevents any
of the springs in the spring mass model from extending. Yes, it’s that simple.
This approach is called relaxation and it, and variants of it, have been used for
many years in the solution of partial differential equations.

To see what this extra step entails, look at figure 6.37 which shows a few
polygons making up a cloth sheet. One edge of the sheet is fixed and the edge at

250 6. Computer animation

the other end of the sheet is subject to a force (e.g., gravity, or just an inertial
force due to boundary movement) that causes the edge to move. In a spring
mass elastic model the polygon vertices will move and the sheet will stretch.
However, if at the end of each time step, any edge that has changed in length
is pulled back, by moving the two vertices at each end of the edge back toward
each other, the original length will be restored.

Of course, pulling on one edge will elongate the next and so on, with these
effects reverberating throughout the whole chain, or in the case of a 2D piece of
cloth, across the whole cloth. So, this process has to be repeated until stability
has been restored and all the edges have relaxed to their original length. This
refinement takes a number of steps. The refinement process iterates until the
relaxation is complete. Fortunately iterative relaxation is a stable numerical
process that converges rapidly, so it is ideal for use in real-time simulations.
When successive relaxation is added to the Vertlet spring-mass model the result
is a very usable model for the dynamic behavior of cloth material.

Several refinements can be applied to the relaxation process. First the Vertlet
time step is usually small and consequently during each time step the change in
length of any one spring will be small. Therefore, usually only one relaxation
iteration is necessary at each time step. In essence, this just adds a single step
to the calculation. Second, where lengths need to be calculated a square root
operation is needed, because the edge lengths only change by a very small fraction
at each step. An approximation can be used to obtain the root without explicitly
calculating the square root. The approximation is based on a first order Taylor
series expansion of the function f(x) =

√
x. If vertices at positions pi and

pi+1 are joined by an elastic edge e, then the length of e is e = (r · r) 1

2 where

r = pi+1−pi. The original length of each side e0 is given by e0 = (r0 ·r0)
1

2 , where
r0 is the vector between pi+1 and pi in their original (undisturbed) positions.

Now consider (up to first order) the Taylor expansion for the function f(x) =

x
1

2 in the region of a:

f(x) = x
1

2 ≈ a
1

2 + (x− a)
1

2a
1

2

(6.27)

If we let x = e2 = r · r and a = e20 in 6.27 then we can write an expression
for e in terms e0 and r · r:

e ≈ e0 + (r · r− e20)
1

2e0

for a small stretch. Written in this way we avoid the calculation of a square root
in determining the length of every edge during every iteration and at every time
step. In an initialization phase, on a one-off basis, the values of e0, e

2
0 and 1

2e0
are calculated for each edge. Listing 6.7 summarizes the steps in the algorithm.

The relaxation algorithm of listing 6.7 discussed in this section makes no at-
tempt to prevent cloth-to-object or cloth-to-cloth collision. Adding inter-object
collision detection, where the cloth drapes itself over solid objects, could be built

6.6. Animating cloth and hair 251

nVertices, (there will be one less edge.)
while (1){ while running the model

update the vertex positions
UpdateNextTimestep () ;
S leep (T) ; wait T ms until next step

}

void UpdateNextTimestep (){
dt = t ime s t ep ;
Mass = p a r t i c l e mass ;
nVer t l e t = dt/nSteps ; number of steps to reach dt
for (l =0; l<nVer t l e t ; l++){

for (k=0;k<nRelaxat ions ; k++) relaxations
for (i =0; i<nVert i ces −1; i++){

Restore the edges to original length
}

}
for (i =1; i<nVer t i c e s ; i++){ Vertlet model

Ccalculate vertex forces due to springs damping etc.
Force = getForce (. .) ;
Calculate new vertex position.
Xnew = 2∗Xcurrent − Xold + (dT∗dT/Mass)∗ Force ;
Update old and current positions
Xold = Xcurrent ; Copy to previous
Xcurrent = Xnew ; Update current

}
}

}

Listing 6.7: The spring-mass Vertlet algorithm with relaxation to restore the original
edges of the polygons.

into the algorithm without adding too much code. Whilst adding a significant
number of calculations, it is still possible to do a first order collision detection
in real-time unless the colliding objects are very complex. Unfortunately adding
intra-object collision detection and preventing self-intersection within the cloth
mesh will increase the computation time considerably. Except for quite modestly
sized cloth meshes the calculation times significantly exceed any processing that
can be done in real-time.

The argument above was expressed in terms of a network of polygon edges,
but the edges do not have to form the boundary of a shape. Joining edges
together to form a chain of springs with small weights at each joint is just as
valid and will behave stably. A chain of inextensible dynamic segments is an
excellent model for the behavior of long hair when it is anchored at one end.
The simulation of hair is discussed next.

252 6. Computer animation

Hair When discussing the practical algorithm for simulating the dynamic behav-
ior of cloth, it was suggested the relaxation-Vertlet algorithm could be adapted
to simulate the movement of hair. Thought of as a rigid chain of small segments
attached at one end (at the root of the hair) and free at the other, each segment
carries a small mass that is subjected to inertial and gravitational forces. As the
root is moved, the rest of the hair follows with its motion determined using an
algorithm similar to that used for cloth in listing 6.7. To be realistic it will be
necessary to build the model with many hundreds of individual chains. Unlike
the cloth model, where the polygons of the material can be illuminated in the
usual way with a simple Lambertian calculation, the hairs do not have a unique
surface normal vector to work with in the lighting calculations. One approach
to resolving this issue is to assume that the hairs are cylindrical within each
segment and to derive a lighting model based on the general appearance of a
cylinder, possibly with some fraction of transparency and translucency.

One of the best real-time simulations of hair can be found in the Nalu demon-
stration from nVidia that is described in chapter 22 by Nguyen and Donnelly in
GPU Gems 2 [71]. Their chapter explains how a point-sphere collision detec-
tion and a dynamical simulation of a small fraction of guide hairs may be used
to reduce the computation time. The behavior of other hairs is determined by
interpolation from the guides.

At SIGGRAPH 2008 a major course called “Realistic Hair Simulation, Ani-
mation and Rendering” was organized by Bertails [9]. The notes from this course
(150 pages) are readily available from several websites. The course covers the
whole topic from dynamics to rendering and illumination. It is certainly the
place turn next for an in-depth study of this topic.

6.7 Particle modeling

Mesh models are an excellent way of representing solid shapes; even shapes that
deform internally or move in a very flexible way are well represented by a network
of polygons or lines. However, some things do just not lend themselves to being
rendered from a mesh model description. Flames, breaking waves, smoke, cloud
and flowing fluids are all examples of elements that are found in nature and
are phenomenon that should definitely be represented in the CGI world. Of
course, some of these phenomena can be created using fractals [67] or volume
rendering techniques, but often volume rendering techniques just take too long,
and thus are very unsuitable for any real-time use. Also, many phenomenon
change continuously with time, and trying to render them volumetrically gets
just too complex. An example of a phenomenon that is not suitable for either
mesh modeling or volumetric rendering is water flowing from a tap, hitting the
ground, kicking up a spray and flowing away to form a puddle on the floor. This
is where a particle-based model comes in. By thinking of a phenomenon as a
collection of particles, tens, or even hundreds of thousands of particles, all acting

6.7. Particle modeling 253

Figure 6.38: Examples of a particle model in action.

like tiny objects, it is possible to simulate some wonderful effects. The waterfall
at the cliff top, the clown having a bucket of water thrown over them at the
circus, the flames and smoke emanating from a pile of burning logs, or the spray
from ocean waves breaking over rocks are all readily modeled by a collection of
particles.

But why is it so simple? It is simple because the particles are modeled
as points and there is no need to worry about collision. Each point behaves
like a mini-projectile and is subject only to some very simple dynamics so their
movement is easily calculated. Of course there is a very large number of particles,
but this large number obscures the appearance of the individual particles and
they start to look like they are a single entity. Figure 6.38 illustrates a few

254 6. Computer animation

examples of particle models in action. Even though individual particles behave
autonomously, all the particles participating in a particular effect have properties
in common. Things such as their trajectory, color, transparency and how these
properties vary over time (to make them eventually disappear; their lifetime) will
all have been defined by the particle generator. To highlight the fact that many
thousands of particles will usually collaborate, the term a particle system is used
to describe how the group behaves and is configured. In a practical sense it
allows all the properties of the particle system to be defined in a single structure
which releases individual particles as and when required. See the code example
in section 7.5 and the discussion on OpenFX in section 9.7.5 for greater detail
about implementation.

The idea underlying the simulation of a particle system could not be simpler:
Each particle is rendered as a partially transparent, image-mapped polygon that
always faces the viewer. The movement of the polygon in three dimensions is
governed by the equations of projectile motion using parameters such as: direc-
tion and velocity of ejection, lifetime, and the time dependence of other factors
such as size, brightness color and transparency. Each particle may be subject to
elastic (or inelastic) collision with other objects (but not other particles). This
calculation is fast since the particle is considered to be a point. The final impor-
tant action in rendering a particle system is how to blend the rendered polygons
into the image buffer. For example, to render flames, additive blending would
be used; to render bubbles in a liquid, replacement blending might be used.

A good way to see how a particle system is configured and controlled is to
look at a specific example: The OpenFX software explored in chapter 9 includes
a particle effects simulator. The examples illustrated in figure 6.38 were created
with it. The OpenFX particle system emits a number of particles with a well
defined set of initial attributes. The particles may be be created on a one-off or
on a rolling basis. Their attributes determine how the particles will behave. As
time elapses the individual particles evolve until they are finally exhausted and
disappear.

In each particle system there may be anything from as few as one, to as
many as 10,000 particles. The up (vertical or Z) direction often has a particular
significance, e.g., smoke rising above a fire. The particles are the only visible
parts of a particle system. They are dynamic and behave like a set of projectiles
that are fired off from the center of the particle system. One good way to initially
think of a particle system is as a sort of exploding firework; the bright sparks
in the firework are the particles, each firework itself is a particle system. Of
course a CGI particle system can do more than look like a bursting firework. It
can arrange for a continuous stream of particles to be ejected from the center
of the particle system. It can arrange for the particles to remain active (alive)
for longer. It can arrange for the particle to be ejected with high speed or
slow speed. The particles can be affected by pseudo-gravitational forces and/or
appear to be affected by a degree of randomness in their ejected direction or
speed, or anything else.

6.7. Particle modeling 255

Figure 6.39: Typical particle image texture maps.

By carefully choosing these settings a wide range of phenomena can be sim-
ulated. For example:

• For a firework effect, a short burst of about 20–30 particles is sent off
from the origin of the particle system in a random radial directions with a
lifetime of about 2–3 seconds. During this time the particles are subjected
to a gravitational deceleration and they change color and gradually fade
away (by increasing the transparency). Note that this is a short burst of
particles.

• For the flame effect, a continuous stream of particles with a small upward
velocity is emitted. These have a lifetime of a few seconds. During this
time the particles change color and fade away. Emitting more particles per
second results in a brighter flame. As the particles near the end of their
lifetime they fade away. By keeping the velocity low, the particles don’t
move too far away from the center of the flame. The continuous stream of
particles appears to keep the fire going.

• For a fluid fountain effect, a continuous stream of quite a large number of
particles are emitted with a high velocity in one specific direction. The
particles have a lifetime so that they never disappear. The particles are
given a fixed color and no change is made in their transparency during
their lifetime. The particles are subjected to a downward gravitational
acceleration and they should also bounce off the ground or objects in order
to give some illusion of a splash effect.

In addition to the major properties of a particle system (lifetime, etc.) the re-
alism is increased by adding some random fluctuations to each of the particle’s
parameters. For example, in the firework effect the direction in which the par-
ticles are emitted is totally random. In the case where no randomness is given
to the direction of particle emission, by default they are ejected vertically. One
last point concerns the particles themselves. They are not just points of color;
they are actually small monochrome bitmaps, like those shown in figure 6.39.

Usually the bitmaps are also used to modulate the transparency of the poly-
gons onto which they are painted. In the bitmaps shown in figure 6.39 the pixels
that are colored white are replaced with the color specified for the particle and

256 6. Computer animation

the bitmap’s alpha channel is used to set the particle’s transparency (white =
opaque, black = transparent). So the controls of a particle system consist of set-
tings for: emission rate (the number of particles generated per second), speed of
emission, lifetime color alpha (how transparent a particle is), acceleration (grav-
ity may speed the particle up, or slow it down), variation in direction of ejection,
random fluctuations in the speed, lifetime and color.

The simple idea behind a particle model and its relative ease of implementa-
tion focuses attention on the 3D artist. It is up to the artist to choose the values
of the parameters and settings, for example the color, number of particles etc.
Getting a good looking particle system is therefore a problem of usage rather
than a problem of algorithm or software design. Probably the best thing the
software engineer can do is to write a very careful description of the action of
each of the settings and what various values of these might achieve.

For example, the images in figure 6.40(a) and (b) illustrate what happens
when a particle system moves during an animation. The particles will keep their
positions relative to the moving particle system (a) or they can detach from the
local coordinate system and become free to drift away from the moving object.

6.7. Particle modeling 257

Particles behave as if in frame of
reference of particle system

In the local
frame of reference
this is the ‘down’
direction; gravity
acts in this direction

After creation the particles behave
as if they were moving in a global
frame of reference

Global
down
direction

Local
down
direction

Particles ejected in this direction
in both cases

(c)

(a)

(d)

(b)

Figure 6.40: Top: A particle emitter at the center of the frame is moving from left to
right. In (a) the particles remain in the local frame of reference. In (b) the particles
are emitted in the local frame of reference but complete their life by moving in a global
frame of reference. (c) Particles are emitted and continue to move in a local frame of
reference. (d) The particles’ movement switches to a global frame of reference as soon
as they leave the emitter.

This page intentionally left blankThis page intentionally left blank

Part II

Practical 3D graphics

This page intentionally left blankThis page intentionally left blank

Introduction to part II

The algorithms discussed in part I are designed to be implemented in a software
package that delivers everything an application needs for building, animating
and visualizing a virtual world. Rather than working up the algorithms into
a contrived program to demonstrate them in practice, this part leads up to a
description of the code in a comprehensive tool that we have been developing
for several years. Chapter 9 opens the door on OpenFX which directly uses all
the algorithms of part I as well as those of the more sophisticated ideas that
are coming in part III. It is our hope that it will be useful for you to see the
algorithms in the context of a wide ranging practical backdrop to all aspects of
3D computer graphics. You might consider augmenting OpenFX, say by writing
a radiosity-renderer, or simply use it for the exemplification of how modeling,
rendering and animation algorithms can be implemented in a practical setting.

Before looking at OpenFX it would leave yawning gaps in any practical con-
sideration of 3D graphics if we did not consider how to make use of the algorithms
that are now implemented in the electronic hardware of nearly every computer,
be it a powerful workstation, desktop, laptop, tablet or even a cell phone.

In this book we choose to do this using the highly respected OpenGL ap-
plication programmer interface (API). Chapter 7 explains how the rendering
algorithms discussed in part I fit into the OpenGL framework and gives some
key pointers on how to use it. Chapter 8 follows this through for the specific
approach needed when working with the hand-held and tablet devices that have
much more limited resources.

Whole books cover the topics of chapters 7 and 8, so we choose to focus
on only the absolute essentials as we see them: those key features that will
help you map your algorithm designs onto the hardware and build them into
prototype apps as quickly as possible. The book’s accompanying website contains
additional briefing documents and several highly annotated example projects to
fill in the details we do not have space to put in print.

261

This page intentionally left blankThis page intentionally left blank

7
Real-time 3D: OpenGL

With the insatiable demand for more and more realistic computer games, atten-
tion has focused on hardware acceleration of the rendering pipeline. To derive
maximum benefit from hardware implementations of such things as geometric
transformations, rasterization and shading, application programmers are now
commonly using standard libraries such as OpenGL and Direct 3D for their 3D
programming.

The capabilities of the graphics hardware are rapidly increasing, and to keep
pace with this, the software APIs are evolving at an alarming rate. Thus, one
of the major challenges in writing programs is to be aware of these changes and
how they affect your existing and future software creations.

For many years, workstations have had access to the very successful OpenGL
API. Designed originally by the graphics specialist system manufacturer Silicon
Graphics Inc, for UNIX based systems it first appeared on Windows PCs with
the Windows NT version 3.51 release.

The only real alternative in high-level programming to OpenGL is to use Mi-
crosoft’s Direct3D. This first appeared in the August 1996 release of the MSDN.
Both OpenGL and the Direct3D APIs provide quite a lot of functionality in com-
mon but the way this functionality is achieved is somewhat different. Although
Direct3D has evolved away from the pure Component Object Model (COM) to
provide its API, the fact that it is restricted to Microsoft platforms means that
we will not consider it further.

In this chapter we will highlight some essentials of the structure of OpenGL
programs and point you to the book’s website for up-to-date information on
development processes and documented sample projects.

Why do we choose OpenGL to illustrate the practical implementation of 3D
graphics? Answer: It has a long pedigree of stability, simplicity, powerfulness
and most important it has cross-platform compatibility. which means that that
no one manufacturer or operating system can hold you to ransom.

It is worth mentioning how OpenGL has evolved. In the initial specification
OpenGL was exceptionally powerful and as a result there was little need for
radical changes in the API over a long period of time. Small additions occurred
in each minor version increment. The developer could call on an API that

263

264 7. Real-time 3D: OpenGL

was rich in functions for manipulating geometry, lighting, image mapping and
frame buffer operations. All this functionality was built into the hardware of
the graphics adapters. Thus, this rendering pipeline became known as the fixed
functionality pipeline. When (in the early years of the 21st century) the hardware
manufacturers created graphics pipelines that were user programmable, OpenGL
adapted by introducing a new language (called the GL Shading Language, GLSL)
for driving the programmable hardware and a few additional API functions to
provide access to the programmable pipeline.

As Silicon Graphics faded from the scene, the Kronos group took up the baton
and the rate of change has accelerated in recent years, so that the OpenGL API
keeps up with the new hardware, including mobile and embedded devices. This
however does pose a challenge for the application programmer. If you look at
the most recent edition of the Red Book [82] you will find that the it is very
different from the first edition. There has been a particular revolution between
editions seven and eight, and many aspects of the original philosophy have been
deprecated.

Evolution continues, with added functionality that makes it more efficient for
3D CAD and modeling applications to render using the hardware acceleration
and there is a convergence between the versions for workstation/desktop and
embedded/mobile devices. Mobile device programming will be considered as a
separate topic in chapter 8.

On the bright side, OpenGL allows for old programs to be maintained, and
even developed, through what is known as the compatibility mode, whilst newer
applications take advantage of the core mode using those features that best suit
the graphics hardware.

It is a good idea to know a little of how the graphics hardware works before
doing 3D graphics application development with OpenGL because keeping this
information in the back of your mind helps in planning how you structure your
programs and in what way you implement them.

Three main elements—geometry, lighting and mapping (mapping may be
referred to as either texture mapping or image mapping because it makes use
of pictures to add detail to the surfaces presented as a mesh of polygons)—
constitute the principal stages in the original rendering pipeline; see figure 7.1.
The geometry and lighting calculations apply to the vertices. The mapping cal-
culations apply to the pixels (OpenGL calls them fragments) just before they are
written into the output framebuffer. The graphics adapter’s internal memory is
used for the storage of images, vertex data and the output framebuffers. The
main input to the pipeline is a stream of vertices. These pass through the trans-
formation stage to determine where their two-dimensional projection is placed
in the output buffers. The lighting calculations are also done at the same time
on a per-vertex basis. The job of the rasterizer is to determine what pixels in the
output buffer are covered by any points, lines or polygons. The rasterizer also
interpolates the vertex-based attributes (such as position, normal, texture coor-
dinate and color) and Z depth across a polygon and uses the interpolated data

265

Read back
to RAM

Pixels in

Transform
& light

Clip

Unpack
pixels

Rasterizer

Texture memory

Pack
pixels

Fragment
process

Frame
buffer

ops

F
ra

m
e

b
u

ff
er

Vertices in

Host

Figure 7.1: The original hardware graphics pipeline.

to present a single attribute value and depth to the fragment processing stage.
In the fragment stage a texture/image lookup is performed and the pixel color
modified when appropriate. The framebuffer ops stage combines the output of
the fragment processing stage with the contents of the visible output buffer, and
uses the depth buffer to determine whether that pixel should indeed be recorded
or discarded.

The graphics hardware depicted in figure 7.1 is immutable, hence the descrip-
tion the fixed functionality pipeline. This was the starting point for the evolution
of graphics hardware which has brought increasing stages of user programma-
bility into the pipeline, now awarded the same status as the computer’s central
processing unit and given the title the GPU (graphics processing unit).

Thus the original pipeline (figure 7.1) has developed into that of figure 7.2
where short programs are written in the OpenGL Shading Language (GLSL)
and loaded into their respective processors. Some of the programmable stages
shown in figure 7.2 are essential for graphics and others offer enhanced actions
that will not be discussed further here. It is also probable that in the future
other stages in the pipeline or other functional units may become programmable
to facilitate use of the massive parallelization that the GPU offers.

From our point of view it is still vertex and fragment processing that are
most important. The compute unit is used for general processing (at the time of
writing this is latest addition to the hardware and requires OpenGL version 4.3
or later to make use of it). This will not be discussed further.

266 7. Real-time 3D: OpenGL

OpenGL SL

Compiler

OpenGL SL Final blend (depth,
stencil. alpha)

Compiler

OpenGL SL

Compiler

Vertex,
tesselation &

geometry
processors

Vertices in

Pixels in Unpack
pixels

Clip

R
as

te
ri

ze
r

Fragment
processor

Pixel
processor

F
ra

m
e

b
u

ff
er

Texture
ram

Compute
unit

Pack pixelsRead back
to RAM

A
p

p
li

ca
ti

o
n

 m
em

o
ry

Figure 7.2: The GPU hardware graphics pipeline. Programs are written in a high-level
language, compiled and loaded into their respective processing units.

7.1 The basics

This section delves into a little more detail about the OpenGL approach to
geometry manipulation, lighting, and materials and texture/image mapping, and
how it is evolving.

7.1.1 Geometry

The shape of a model is defined by its vertices. The polygonal surface that we see
is either defined by an implicit ordering of the vertices, or can be specified using
a list similar to that described in section 3.2. Individual object models are built
relative to a local frame of reference (called object coordinates). Several objects
can be combined by applying different transformations to arrange them in a
global frame of reference (called world coordinates). To setup a viewpoint and
direction of view, a further transformation is applied that has the effect of moving
all the objects so that the viewpoint is located to (0, 0, 0) and the direction of
view is along the −z axis. Figure 7.3 illustrates this frame of reference. OpenGL
calls this frame of reference eye coordinates.

7.1. The basics 267

Projection perspective

Orthographic
projection

y

z

z

y

x

z

z

y

y

x

y (up)

z (behind) x (right)

Viewpoint
Direction of view (–z)

Figure 7.3: The OpenGL coordinate system and default viewing position and direction.
The two main types of projection are shown with the shaded front and back clipping
planes.

To produce a 2D picture of the scene a projection matrix is used. There
are two forms of projection, perspective and orthographic (again illustrated in
figure 7.3). OpenGL calls the coordinates (after projection) clip coordinates. In
the compatibility mode of operation the projection matrix is stored and manip-
ulated separately, and simply called the Projection matrix. After the projection
transformation is applied the coordinates are still three dimensional; in other
words the division by the depth (the z) coordinate in a perspective projection
has not yet occurred. OpenGL then clips the polygons so that only those parts
of the model lying inside the clipping volume are retained. The clipping volume
is a cuboid in the case of an orthographic projection, and a frustum in the case
of a perspective projection.

The final stage of geometry processing is to carry out the perspective divi-
sion (see section 2.12.8). In the case of an orthographic projection the Z coordi-
nate is simply ignored. This coordinate division results in each vertex having a
two-dimensional coordinate (called normalized device coordinates) that is then
converted to the integer window coordinates. Figure 7.3 illustrates this process.

A number of interesting effects can be achieved with the projection matrix
by varying its elements: for example, different fields of views, different cam-
era aspect ratios, and left-right stereoscopic asymmetry. Originally, and when

268 7. Real-time 3D: OpenGL

working in compatibility mode, this can be handled by some utility functions,
gluPerspective(), glOrtho(); and glFrustum(); but in the core mode the
task of building these various matrices is left to the application program.

How the projection is mapped into the integer window/screen coordinates
is defined by the API function glViewport();. Correctly matching the aspect
ratio with the window size is important so that circles don’t become ellipses if
the user changes the dimensions of the output window. This is an essential part
of any OpenGL program and will require an adjustment to the Viewport and
the projection’s properties in response to a change in window size.

Turning to consider the model and view matrix, suppose we wish to use the
same model in two different locations in the world coordinate system. Then
suppose that pi is a vertex in the model (represented as a column vector). We
can re-position and re-orientate this to represent the first instance of the ob-
ject with a homogeneous transformation [Tm1]. The second instance’s position
(in world coordinates) will be determined by the transformation, [Tm2]. If the
transformation required to view the objects is [Tv] and the camera projection
transformation is given by [Tp], then the coordinates for vertex pi in the first
instance of the object prior to perspective division will be given by:

[p′] = [Tp][Tv][Tm1][p]i

and for the second instance it will be given by:

[p′′] = [Tp][Tv][Tm2][p]i

As an example of the application of a projection matrix, suppose that the
coordinates of p′′

i are (0.5, 0.5, 2.0, 1.0) and the window viewport is 100 × 100
pixels. Then in an orthographic projection the window coordinates of p′′

i will
be (50, 50) and for a perspective projection it would be (25, 25).

In compatibility mode, the matrix [Tmv] = [Tv][Tm1] is termed the ModelView
matrix. OpenGL’s transformations take the same form as that discussed in
section 2.12, and going forward it is essential that you know how to construct
your own matrices and use them in the programmable stages of the OpenGL
pipeline.

In the compatibility mode, and in any hardware that only supports fixed
functionality, the current transformation is accumulated by successive multipli-
cations of an identity matrix by the matrices representing the basic operations
of translation, scale and rotation, using functions like glRotatef(...). When
you have access to the programmable pipeline the transformation matrices are
computed directly by the application itself and fed into the vertex processing
stage (as uniform variables).

This discussion sums up the major points about geometry operations in
OpenGL, but as a final comment let us consider again the order of the transfor-
mations.

7.1. The basics 269

Transformation ordering Section 2.12.4 explained that the order in which a trans-
formation is applied is crucial in getting the desired result. As just mentioned,
the correct projection onto the viewing plane of a vertex is determined by the
combination of three transformation matrices:

[T] = [Tp][Tv][Tm] (7.1)

When working in compatibility mode the first transform to be defined in the
code is the last to be applied to a vertex [p]i. Thus the viewing transformation
must be defined first (by a call to gluLookat(..) for example). And, if the
vertex is first translated and then rotated within the world coordinate system
with a composite transformation [Tm] = [Tmr

(θ)][Tmt
](dx) then the order of the

function calls to set up the same transformation must be given as:

glOrtho(..); //for an orthographic projection
gluLookat();
glRotate(..);
glTranslate();
...draw the vertex

When working in core mode and creating your own transformation matrices,
say [MV P] for the combined model, view and projection matrices, they must
be assembled in the same order as given in equation 7.1. So for the steps in the
code above:

[MV P] = [P][V][Mr(θ)][Mt(dx)] (7.2)

where [V] is the viewing matrix, [Mr(θ)] is a rotation matrix and [Mt(dx)] is a
translation matrix. This can be done in either the application program itself or
in a vertex shader program.

One of the most important aspects of this internal ordering comes about
when we want to pass any transformation matrices into the rendering pipeline,
as must now be done in the core mode of operation. The functions that send the
transformation matrices into the pipeline pass their values as a linear array of 16
elements. In all computer languages a two-dimensional array is stored linearly
in memory, and in C and C++ the ordering is called row major. This means
that the order of the storage of a 4× 4 array:









a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33









is a00, a01, a02, a03, a10, a11, . . . , etc. where the first subscript identifies the row.
Because OpenGL expects its matrices to be presented in column major order,

any 4×4 matrix declared in C or C++ code as M[4][4]; must first be transposed
before it is passed into either the fixed functionality pipeline or to a GLSL vertex
shader program. This is a very important concept.

(The robot simulator project on the website is a good example of combina-
tions of transformations in action.)

270 7. Real-time 3D: OpenGL

7.1.2 Lighting

In compatibility mode, when polygons are dispatched into the rendering pipeline
the surface normal vector that accompanies them is used in a basic Lambertian
illumination model to generate a light intensity for that vertex. OpenGL only
allows up to eight lights, and very few hardware systems support that full num-
ber. The light intensity calculated at the vertices of a polygon is interpolated in
the rasterizer so that when processing moves into the fragment processing stage
it is combined with the material settings to calculate a color value to be written
into the output framebuffer.

The fixed function pipeline has the option to perform a Gouraud shading
during rasterization and a very simple specular model may also be used. In
the programmable pipeline the programmer has complete freedom to define any
lighting model they choose. The application must pass information about the
position and attributes of any lights to the appropriate shader programs. Nev-
ertheless:

Grouping vertices by their surface color, or by transparency, or tex-
ture/image map is a useful pre-processing step, because it reduces
the traffic between host computer and adapter. Also, several repe-
titions of the rendering process for the same sets of vertices may be
required in order to achieve a particular effect (e.g., a fur texture).

7.1.3 Texture mapping

As discussed in section 4.6 pictures from image files are often painted across a
mesh of polygons to provide texture detail that would otherwise not be possible
to see using different materials because the mesh cannot be made sufficiently
detailed. To position the picture in the desired location, the polygons must be
metricized with a two-dimensional coordinate frame of reference. A surface’s 2D
frame of reference is defined by specifying texture coordinates at each vertex of
the surface’s mesh. Texture coordinate values must be passed into the graphics
pipeline. In the fixed functionality pipeline and when using a GPU in com-
patibility mode the the texture coordinates are normally set using the function
glTexCoord2f(...); for each vertex in the object. Again in this mode texture
coordinates can also be generated automatically; one of the built-in automatic
texture coordinate generators produces coordinates suitable for mapping an im-
age to give the illusion that the surface is reflecting any image mapped onto it.
In the core mode the texture coordinates for a vertex or a group of vertices are
passed to the vertex shader using the same mechanism as the vertex position co-
ordinates and any other vertex attribute such as its surface normal or a surface
color.

To use a texture map, the image has first to be loaded into the video card’s
memory. Then, before any polygon is rendered with a mapped image, the texture
must be selected and texturing enabled. Shrinking the code down to the absolute

7.1. The basics 271

GLuint nTexture;

glEnable(GL_TEXTURE_2D);
// load the texture from a file into computer RAM
pix=LoadBmp("picture.bmp",&w,&h);
glGenTextures(1, &nTexture);
glBindTexture(GL_TEXTURE_2D, nTexture);
// install the image into the texture RAM
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, w, h,

0, GL_RGB, GL_UNSIGNED_BYTE, pix);
// how is texture to blend with underlying color
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
// how is the texture to be scaled
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
// how is the texture to appear outside interval [0,1]
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
free(pix); // the computer’s memory copy is no longer required
glDisable(GL_TEXTURE_2D);

Listing 7.1: Loading a texture map image into graphics memory.

glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, nTexture);

// draw the object

glDisable(GL_TEXTURE_2D);

Listing 7.2: Using a texture loaded in texture memory and identified by an image
identifier handle. When using the programmable shaders in the GPU there is a little
more work involved because the texture must be sampled and the value from it applied
to the fragment.

minimum required to setup and display an image we end up with a two-step
process. The two steps in texturing are performed with code such as that shown
in listings 7.1 and 7.2, (you can find the whole working program on the website).

Basic texture maps only permit one map to be applied to one group of vertices
at one time. This is something of a limitation, especially if you want to simulate
a surface that is partially reflective (using a reflection map) and rough (using a
bump map). Most graphics hardware now supports multi-textures, where several
maps can be used at the same time on the same vertex group.

7.1.4 Output buffers

A set of framebuffers records several pieces of information about each pixel.

272 7. Real-time 3D: OpenGL

• The Z buffer contains the value of the Z coordinate after the transforma-
tions have been applied. This depth is used in the hidden surface deter-
mination algorithm. It is possible to configure it so that writing to it, or
reading from it can be enabled or disabled as required.

• The stencil buffer can be used to form a mask into the output buffers.

• The accumulation buffer is typically used in an algorithm that renders
motion blur.

• There are at least two output image buffers to record RGB values for
each pixel. Often a transparency value (an alpha) that allows transparent
polygons to be mixed into the scene is also stored. One of these buffers
(the G FRONT) buffer is used by the display hardware to present output
images to the user. The other (the GL BACK) buffer is targeted for output
by the rendering pipeline (thus the assembly of the image is hidden from
the user). There might also be one or more GL AUX0 buffers that can
be used for temporary output, and to facilitate stereoscopy some hardware
will provide front and back versions of a GL LEFT and GL RIGHT buffer.

One point worth highlighting about the output buffers: They will have the same
dimensions as the window they are supporting. Thus the largest window that can
be created is equal to the size of the desktop display. This is quite a limitation
and OpenGL now supports framebuffer objects (FBOs) and renderbuffer objects
(RBOs) to circumvent this limitation. FBOs and RBOs are discussed later in
section 7.4. The various buffers can be enabled and disabled as required, with
code such as:

glEnable(GL_DEPTH_TEST);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glFrontFace(GL_CW);

7.1.5 Practical implementation

When it comes to desktop programs that use OpenGL there are two approaches:
write native platform specific code or use one of the environments that abstract
the platform away allowing the application to focus on the core drawing tasks.
Currently there are two good libraries that we use for the examples accompanying
the book (references to these can be found on the website). The GL Utility
Toolkit (GLUT) has been around for many years but has not been updated
recently. A like-for-like replacement called FreeGLUT is well maintained and
is recommended in the Red Book. Any application program that is written
for the GLUT can be adapted to use FreeGLUT simply by changing libraries.
The GLUT/FreeGLUT is readily available for all platforms. Pre-built DLLs are
available for Windows and pre-built packages can be readily installed on all the
GNU/LINUX flavors. On Apple Mac OSX the original GLUT is installed by
default with the developer tools package.

7.2. Native programming 273

Another platform encapsulating library the GLFW can be an alternative to
using the GLUT/FreeGLUT. It has the slight advantage that it is available for
OSX platforms as well as Windows. Currently it does not support menus but
this may change.

In all the abstraction libraries the programming metaphor is for the developer
to provide callback handler functions for such things as: a change of screen
resolution, a re-drawing of the OpenGL enabled display window and handling
mouse and keyboard events. A simple cross platform example package for the
fixed function pipeline using the GLUT/FreeGLUT libraries can be obtained
from the website.

A third and pretty-much essential library to include with your OpenGL pro-
grams is the GLEW (The GL Extension Wrangler). Many of the functions
introduced into OpenGL after version 1 have not found their way into the stub
libraries on Windows or X-Windows or OSX or within the mobile development
tools. The only way to gain access to these (extension functions as they are
called, even though they are mainstream functionality) is to use a few special
platform dependent functions that delve into the OpenGL drivers and return
pointers to the functions so that the functions can be called. Under Windows
this function is wglGetProcAddress().

It would be a significant chore to have to call this function repeatedly for
each of the functions now in the OpenGL core model and resolving this issue is
precisely the function of the GLEW library. Once initialized it makes available
to the programmer all the OpenGL API functions under their API name whether
a particular platform has them in its DLL or SO library.1

7.2 Native programming

7.2.1 Native Windows

Two approaches may be used to develop a native Windows application:

1. Follow a basic template program that calls directly to the Window’s Appli-
cation Programming Interface (the Win32 API) functions as described in
the Software Development Kit (SDK). Such a template will exhibit the core
features of message loop, Window Class and message handling function.
The API functions are provided in a set of libraries that are implemented
as dynamic link libraries (DLLs). Most of the DLLs that an application
will use are components of the operating system itself. SHELL32.DLL,

GDI32.DLL and USER32.DLL are examples of these components. The SDK
also includes a large number of “header” files which define constants and
provide prototypes for the myriad of API functions.

1The GLEW is recommended in the Red Book and is likely to be maintained for the fore-
seeable future. On Windows it, at time of writing, supports functions at least up to OpenGL
version 4.3.

274 7. Real-time 3D: OpenGL

..
case WM_CREATE:{
// create the OpenGL display context
// based on the normal Windows GDI context
HGLRC hRC;
HDC hDC;
hDC = GetDC(hWnd);
// the properties of surface are defined
// in a PixelFormat
bSetupPixelFormat(hDC);
hRC = wglCreateContext(hDC);
wglMakeCurrent(hDC, hRC);
...
}
break;

Listing 7.3: Create a display context for OpenGL, specify a pixel format for the under-
lying display surface and carry out any further initialization specific for the application
(analogous to that shown in listing refglcode:glutinit).

2. The Microsoft Foundation Class (MFC) library [75] provides a framework
for constructing programs by deriving classes from an extensive class hier-
archy that encapsulates all the WIN32 API functionality such as toolbars
and dialog boxes. It includes suitable default processing so that an appli-
cation program can be built with quite a sophisticated user interface with
only minimal effort on the part of the developer.

These approaches present code that looks very different to the programmer.

An application based on calls to functions in the SDK libraries has an entry
point in the conventional C language sense. In programs that use the MFC
library the main elements of a Windows application are hidden inside the library
classes.

However, whether one is using the native API or the MFC classes, all the
OpenGL code is the same and it can be divided up into the same basic tasks
covered in section 7.1.

In native mode the initialization requires a display surface to be created and
this must be attached to the window that is to view the surface. The term dis-
play surface is a generic one and applies to all platforms. The window in which
the OpenGL output appears can be thought of as a view of this surface. The best
place in the code to perform this initialization is in response to a WM CREATE

message in the message handler function for the window. The steps are shown
in listing 7.3. To set up a pixel format, the function shown in listing 7.4 is used.
The PixelFormatDescriptor provides the programmer with the opportunity to
request that the display windows are assigned particular properties like stere-
oscopy and color depth. Two Windows API functions ChoosePixelFormat(..);
and SetPixelFormat(..)’ are used to configure a Windows drawing surface.

7.2. Native programming 275

static BOOL bSetupPixelFormat(HDC hDC){
// define the requested format
static PIXELFORMATDESCRIPTOR pfd = {
sizeof(PIXELFORMATDESCRIPTOR),
1, // version number
PFD_DRAW_TO_WINDOW | // support window
PFD_SUPPORT_OPENGL | // support OpenGL
PFD_DOUBLEBUFFER, // double buffered
PFD_TYPE_RGBA, // RGBA type
24, // 24-bit color depth
0, 0, 0, 0, 0, 0, // color bits ignored
0, // no alpha buffer
0, // shift bit ignored
0, // no accumulation buffer
0, 0, 0, 0, // accum bits ignored
32, // 32-bit z-buffer
0, // no stencil buffer
0, // no auxiliary buffer
PFD_MAIN_PLANE, // main layer
0, // reserved
0, 0, 0 // layer masks ignored
};

int pixelformat;
if (WantStereo)pfd.dwFlags |= PFD_STEREO;
if ((pixelformat = ChoosePixelFormat(hDC, &pfd)) == 0) {
//.. error ...
return FALSE;
}
if (SetPixelFormat(hDC, pixelformat, &pfd) == FALSE) {
//... error..
return FALSE;
}
return TRUE;

}

Listing 7.4: Create a pixel format for the display surface. This example shows how to
setup a stereoscopic surface.

A third API function GetPixelFormat(..); may be used to check what pixel
format is currently in use by the window.

Note: It is at the context creation stage that you can choose to configure
your display surface for OpenGL operating in the compatibility mode or the core
mode.

To render the 3D scene using OpenGL library functions, appropriate code is
added in the WM PAINT message handler. In the case of an MFC program the
same code is added to the OnPaint(); handler method. In the example shown
in listing 7.5 the drawObjects(..); function will apply a transformation for the
left or right eye of a stereoscopic view, or for a monoscopic view, and then call
on other code to draw all the objects in the scene.

276 7. Real-time 3D: OpenGL

//
case WM_PAINT:
HDC hDC;
PAINTSTRUCT ps;
BeginPaint(hWnd, &ps);
// OpenGL code
glClearColor(gbRed,gbGreen,gbBlue,1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

drawScene(.);

// show the back buffer
hDC = wglGetCurrentDC();
SwapBuffers(hDC);
// end of OpenGL code
EndPaint(hWnd, &ps);
break;

Listing 7.5: Render the scene using OpenGL.

7.2.2 Native OSX

Using OpenGL natively on OSX is a little more involved than using the GLUT,
but there is a built-in Cocoa class that handles most of the work for us. Deriving
an application’s View class from NSOpenGLView will enable that View as an
OpenGL rendering surface and provide methods that can be delegated in order
to endow the window with the properties required. Simply by starting with a
new Cocoa project in Xcode and adding a view class derived from NSOpenGLView

is all that is required to start building a native OSX OpenGL application.
A commentary on, and code for, a basic OSX application may be found on the

website. It is worth mentioning briefly what happens as a Mac OSX application
prepares to execute. OSX does not use a single .EXE program to store all the
executable code and resources. It uses a folder called a bundle which is given the
filename extension .APP. OSX hides the contents of the bundle from the user,
making it look like a single file. Inside the bundle are two important components:
the executable program’s binary code and a NIB file (now called an XIB file). As
well as describing menus and dialog boxes the XIB file can contain instructions
to tell the loader to create instances of important objects for the application; the
language of Cocoa is called Objective C after all. The main(); function of an
OSX Cocoa program usually only consists of one line of executable code:

#import <Cocoa/Cocoa.h>
int main(int argc, char *argv[]) {

return NSApplicationMain(argc, (const char **) argv);
}

The immediate call to NSApplicationMain() causes an object of the application
class that is described in the XIB file to be created and its delegated method
applicationDidFinishLaunching() to be called. With the chain of execution
to applicationDidFinishLaunching() confirmed an object of a class derived

7.3. The GL shading language 277

from NSOpenGLView is created. The creation of the object also leads to the auto-
matic execution of the intiWithFrame : method where the pixel format for
the display surface is defined and applied to the display surface. The developer is
saved some work through the use of the library class NSOpenGLView which hides
much of the very low level detail. Once the OpenGL View has been created any
Setup(..) method can be called from applicationDidFinishLaunching : to
complete the application’s own specific initialization.

Unless you are familiar with the Objective-C language and have some Cocoa
programming experience it might be worth reading Hillegass and Preble [42]
which will help build up your knowledge. For a comprehensive explanation of
how to to use OpenGL on the Mac take a look at the book by Kuehne and
Sullivan [51].

7.2.3 Native GNU/Linux

OpenGL was devised originally to run on Silicon Graphic’s workstations and so it
sits very naturally with the X windows Linux environment. To setup and render
the ubiquitous teapot using OpenGL into an X window mapped onto an OpenGL
drawing surface takes just a few simple function calls; see the accompanying
example and commentary on the website.

7.3 The GL shading language

The way forward for OpenGL is now firmly established along the lines of the
hardware pipeline described in figure 7.2. Introduced in OpenGL version 2 the
programmable pipeline opened phenomenal potential in the world of real-time
3D applications. Because of the programmability of the pipeline the hardware
has a lot of the attributes that we would attribute to a computer, thus the
programmable graphics processor is generally referred to as the GPU. To en-
able programs using OpenGL to access this powerful feature of the hardware, a
special programming language was devised to control the new hardware. The
language has a C-like syntax with some additions to allow programs to match
onto hardware features like vector and matrix arithmetic.

The current syntax of the shading language is fully documented in the Red
Book but its syntax has changed since its introduction and it continues to evolve
as the hardware improves. Fortunately older shader codes can still be used in
compatibility mode. So far, the most significant changes concern the way data
(vertices, etc.) is introduced into the pipeline and the way it is passed from stage
to stage. Other stages in the pipeline have been endowed with programmability
in addition to the original vertex and fragment processing steps.

However, for most applications that deal with rendering triangular polygons
the vertex and fragment processors remain the most important. Fortunately too,
nearly all the syntax of the executable statements in the language have remained

278 7. Real-time 3D: OpenGL

constant, so it does not take a lot of effort to upgrade a shader program for
use with the most recent syntax or make it ready for enhancement with tasks
performed in the newer processing stages, such as the tessellation and geometry
processors.2

With regard to the GLSL syntax, it should not be difficult to follow the
logical statements for anyone who is familiar with C. In our book on virtual real-
ity [59] there is a comprehensive introduction to using the GL shading language
in compatibility mode, and our OpenFX software offers a GPU version of its
renderer that provides all the same features as the software renderer. OpenFX
will be examined in chapter 9.

However, because of the way in which the hardware is designed the GPUs are
not just CPUs, and while this offers advantages it also means that you cannot
just approach the design of a GPU shader program as if it was a normal CPU
algorithmic texture, such as those examined in chapter 11.

So, it is important to appreciate the special features and restrictions which
arise in the GPU because of the close relationship with the language of 3D
graphics and the need to prevent a shader code from doing anything that does
not match well with the GPU hardware, for example, trying to access vertex
data in a fragment shader. This is because at the fragment processing stage in
the rendering pipeline, the vertex data has been interpolated by rasterization
and the fragment does not know from which polygon it came. So it is not
possible to determine whether the fragment came from a triangular polygon, or
a quadrilateral polygon, or what the coordinates of the polygon’s vertices were.

Perhaps the most important concept in basic shader programming is this:

The output from the vertex shader, which includes all the globally
defined output variables that have been calculated in the vertex shader
or set on a per-vertex basis, are interpolated across a polygon and
passed to the fragment shader as a single value specifically for that
fragment (or pixel) alone.

Looking back at figure 7.2 the two most important stages in the pipeline are:

1. Programmable vertex shaders perform calculations that relate to per-vertex
operations, such as transformations, transients, lighting mapping coordi-
nates.

2. Programmable fragment shaders do the calculations for per-fragment oper-
ations, such as coloring and texturing. Some lighting can be done in these
processors as well.

The term programmable shader is used for all these, even though a vertex shader
may modify the geometry (as in mesh skinning) and have nothing to do with

2We will not discuss any of these new features in this book. Good examples of using the
geometry and tessellation shaders can be found in the Red Book, or at the time of writing in
Wolff [92].

7.3. The GL shading language 279

surface shading at all. The fragment shader is usually combined with a pixel
shader, and they both can be referred to as either fragment or pixel shaders.

Having this hardware picture clear in our minds is very useful when designing
GPU programs. It makes it clear why there are restrictions regarding what can
and can’t be done in a shader program. It also illustrates why the flow of
execution is as follows: Run the vertex program first for every vertex and then,
later on in the pipeline, run the fragment program. The fact that all vertices
have the same function applied to each of them and that fragment processing
can be done simultaneously allows for massive parallelism to be employed.

Different GPUs from different manufacturers, such as nVidia, Intel and AMD,
will require different machine codes to drive the hardware, and so the GLSL
compiler needs to be implemented as part of the graphics device driver which is
supplied with a specific GPU. After compilation, the device driver forwards the
machine instructions to the hardware.

7.3.1 Sending information into the pipeline

In the original concept of OpenGL vertex data was passed into the pipeline
one vertex at a time using functions like glVertex3fv(...). This can be quite
inefficient for various reasons and it soon became clear that it is better to transfer
blocks of vertices (and other vertex data, like normal vectors) together, hold
them in buffers in the GPU and draw them as a single unit using functions
like glDrawArrays(...) or glDrawElements(...). In version 3 and later this
approach is defined as core and the old drawing functions have been deprecated.
Whilst it is still possible to drive the pipeline in the compatibility model, the
preferred wisdom is to pass the geometry of a model into the pipeline using the
process of:

• Create one or more vertex array objects (VAO) and/or one or more vertex
buffer(VBO). These buffers exist in graphics memory and are filled with
vertex attribute data.

• Fill the vertex buffers with vertex attribute data, e.g. position, normals,
colors, texture coordinates, etc.

• Connect the vertex attribute data to named (or indexed) global variables
in the vertex shader code.

• Command the pipeline to draw the contents of a buffer using one of the
Draw...() functions.

Whilst this is a simplification, with some necessary detail omitted, it conveys
the essence of the core process.

Listing 7.6 presents an example of a minimal piece of code that an application
program could use in order to load a group of vertices into the rendering pipeline
and draw them.

280 7. Real-time 3D: OpenGL

GLfloat vertexbufferdata1[] = { .. }; // some data
GLfloat vertexbufferdata2[] = { .. }; // some data

// create a vertex array object (VAO)
glGenVertexArrays(1, &VertexArrayID);
glBindVertexArray(VertexArrayID);

// set up a buffer bind it to the VAO
glGenBuffers(1, &vertexbuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
vertexbuffersize=sizeof(vertexbufferdata1);
glBufferData(GL_ARRAY_BUFFER,

vertexbuffersize,
vertexbufferdata1,
GL_STATIC_DRAW);

glEnableVertexAttribArray(0);
glVertexAttribPointer(

0,
3,
GL_FLOAT,
GL_FALSE, 0, (void*)0);

// repeat for any other buffers as necessary

// draw the vertices in groups of 3 as triangles
glDrawArrays(GL_TRIANGLES, 0, vertexbuffersize/3);

//reload the buffer and draw again with different data
// does not have to be the same side

vertexbuffersize=sizeof(vertexbufferdata2);
glBufferData(GL_ARRAY_BUFFER,

vertexbuffersize,vertexbufferdata2,GL_STATIC_DRAW);
glDrawArrays(GL_TRIANGLES, 0, vertexbuffersize/3);

// unbind and delete buffers when not needed

Listing 7.6: Setting up vertex data using a Vertex Array Object and one or more Vertex
Buffer Objects.

The preceding itemized steps can pass large quantities of data to the vertex
processor of the pipeline where it is subjected to the actions of the vertex shader
code. To send smaller items of data, for example the transformation matrices
that move the vertices into position within the global coordinate system, another
special type of variable, called a uniform variable, may be used. Any uniform
variables set in the application program’s code are readable in all the processors
in the pipeline.

7.3.2 Passing information from one shader to another

Within any shader simply qualify global variables that you want to pick up from
an earlier stage in the pipeline with the keyword in, and global variables that
you want to pass down the pipeline with the keyword out.

7.3. The GL shading language 281

Variables that you want to pick up from a buffer that that has been filled by
the application program’s code are further identified with a location that they
have been given by the application program.

Any uniform variables that you want to use are declared as global variables,
qualified with the keyword uniform. In the shaders programs uniform variables
are read-only. The code in listing 7.7 shows the form of a pair minimal shaders.

7.3.3 The GLSL syntax and built-in variables

The GLSL supports the usual C data types of float, int etc. To these it adds
various types of vector and matrix, which are declared as vec3 (a 3× 1 vector),
vec2, mat4 (a 4 × 4 array) for example. Vectors and matrices are particularly
pertinent for 3D work. Whilst these additional data types occur frequently
in shader codes, perhaps the most interesting part of a GLSL variable is its
qualifiers, e.g., uniform. The qualifiers are important because when applied to
global variables (declared outside the main or other functions) they provide a
mechanism for parameters to be passed to the shader code from the application.
They also provide a mechanism for the vertex shader to pass information to
the fragment shader and to interact with the built-in variables which provide
such things as the transformation matrices calculated in the fixed-functionality
pipeline.

A good understanding of the meaning and actions of the qualifiers is essential
if one wants to write almost any kind of shader. We will now consider a brief
outline of each:

• const. As the name implies, these are constants and must be initialized
when declared,

• uniform. Variables declared with this qualifier are available in both ver-
tex and fragment shaders because they are uniform across the whole prim-
itive. They are expected to change infrequently. For example, a vertex
and fragment shader might declare uniform vec3 BaseColor;.
The application program would set this uniform variable with a call to
glUniform3f(getUniLoc(Prog, "BaseColor"), 0.75, 0.75, 0.75);.

• in Global variables with this qualifier are used to acquire data that has
been set in a previous stage of the rendering pipeline.

• out Global variables with this qualifier carry information on the next stage
in the pipeline.

In both vertex and fragment shaders the ability to read from and write to a
few predefined (called built-in) qualified variables provide an interface with the
pipeline. The built-in variable vec4 gl Position; must be assigned a value at
the end of the vertex shader so as to pass the vertex coordinates into the rest
of the pipeline. A vertex shader must also apply any transformations that are

282 7. Real-time 3D: OpenGL

#version 330 core

layout(location = 0) in vec3 vertexPosition;

uniform mat4 MVP;

void main(){
gl_Position = MVP * vec4(vertexPosition,1);
}

#version 330 core

layout(location = 0) out vec4 color;

uniform vec4 Colour;

void main(){
color = Colour;

}

Listing 7.7: Minimal shader programs.

in operation. In compatibility mode this can be done with a built-in function
called ftransform(); but to conform to the core approach. The best approach
is to do-it-yourself by passing in a 4 × 4 matrix through a uniform variable
containing the appropriate transformation.

In the early versions of the GLSL, named built-in variables played a more
significant role, but many of these have now been withdrawn.

Thus a minimal pair of shaders can consist of just a couple of lines of code;
see listing 7.7.

7.3.4 Template shader codes

The book’s website contains a number of template and example shader codes that
execute in both compatibility and core modes. These demonstrate in principle
how to set up Phong’s illumination model; some more advanced shader codes
are discussed in chapter 11 and in relation to the OpenFX program of chapter 9.

Image mapping In the GLSL, information from texture maps is acquired with
the use of a sampler. We will keep it simple in our example, and show the
minimal code required so a shader program pair can paint image texture maps
on fragments. The code for these shader programs is given in listing 7.8.

Reflection mapping Many objects exhibit reflection of their environment. List-
ing 7.9 shows the outline of a suitable fragment shader. For reflection maps, we
do not want to use any surface lighting models, and so this is omitted.

7.3. The GL shading language 283

// Vertex Shader - for traditional image mapping
#version 330 core
layout(location = 0) in vec3 Vertex;
layout(location = 1) in vec3 Normal;
layout(location = 2) in vec2 Texture;

uniform mat4 MVP;
uniform mat4 MV;
uniform mat4 NM;
uniform vec3 LightPos;

out float Diffuse; // diffuse light intensity
out vec2 TexCoord; // texture coordinate (u,v)

void main(){
gl_Position = MVP * vec4(Vertex,1); // buit in variable
vec3 PP = MV * vec4(Vertex,1); // vertex position world coodinates
vec3 PN = normalize(NM * Normal);// normal vector
// light direction vector
vec3 LV = normalize(LightPos-PV);
Diffuse = max(dot(LV, PN), 0.0); // diffuse illumination
// Get the texture coordinates - choose the first -
// we only assign one set anyway
TexCoord = Texture; // pass to fragment shader

}

// Fragment Shader - simple 2D texture/image map, diffuse lighting

#version 330 core

layout(location = 0) out vec4 Color;

in float Diffuse; // from vertex shader
in vec2 TexCoord; // from vertex shader

uniform sampler2D Rsf; // from calling program

void main (void){
// Get the fragment color by addressing the texture map pixel
// date - the "texture2D" built in function takes the texure
//sampler "Rsf" // and fragment interpolated texture
// coorinates as arguments and the ".RGB" (what SL calls
// a "swizzle") extracts the RGB values from the
// texture2D() return value.
vec3 color = (texture2D(Rsf, TexCoord).rgb * Diffuse);
// promote the 3 element RGB vector to a 3 vector and output
Color = vec4 (color, 1.0);

}

Listing 7.8: The image mapping shader program pair.

284 7. Real-time 3D: OpenGL

// Fragment Shader - reflection mapping
#version 330 core
// pass on the Color into the next pipeline stage
layout(location = 0) out vec4 Color;

const vec3 Xunitvec = vec3 (1.0, 0.0, 0.0);
const vec3 Yunitvec = vec3 (0.0, 1.0, 0.0);

// this is our sampler to identify the iamge map
uniform sampler2D RsfEnv;

varying vec3 Normal; // from vertex shader
varying vec3 EyeDir; // from vertex shader

void main(){
// Compute reflection vector - built-in function :-)
vec3 reflectDir = reflect(EyeDir, Normal);
// Compute the addess to use in the image map - we need an
// address in the range [0 - 1] (angles of looking up /down)
vec2 index;
index.y = dot(normalize(reflectDir), Yunitvec);
reflectDir.y = 0.0;
index.x = dot(normalize(reflectDir), Xunitvec) * 0.5;
// get the correct range [0 - 1]
if (reflectDir.z >= 0.0) index = (index + 1.0) * 0.5;
else{
index.t = (index.t + 1.0) * 0.5;
index.s = (-index.s) * 0.5 + 1.0;
}
// copy the addressed texture pixel to the output
Colour = texture2D(RsfEnv, index);
}

Listing 7.9: The reflection map fragment shader.

Bump mapping Our portfolio of shader programs would not be complete without
the ability to use an image texture as a source of displacement to the surface
normal, i.e., bump mapping. Bump mapping requires us to use a sampler2D and
provide a tangent surface vector. Vertex and fragment shaders for bump mapping
are given in listing 7.10 and listing 7.11. A few of comments are pertinent to the
bump mapping procedure:

• To minimize the work of the fragment shader, the vertex shader calculates
vectors for light direction and viewpoint (eye location) direction in a coor-
dinate frame of reference that is in the plane of the polygon which will be
rendered by the fragment shader (this is called surface-local space).

Figure 7.4 illustrates the principle; in the world (global) coordinate frame
of reference, the eye is at the origin. The polygon’s normal (n), tangent (t)
and bi-normal (b) are calculated in the global frame of reference. Transfor-
mation of all vectors to a surface-local reference frame allows the fragment
shader to perform position-independent lighting calculations because the
surface normal is always given by the vector (0, 0, 1).

7.3. The GL shading language 285

// Vertex Shader - Bump mapping
#version 330 core
// input vertex attributes
layout(location = 0) in vec3 Position;
layout(location = 1) in vec3 Normal;
layout(location = 3) in vec3 Tangent;
layout(location = 4) in vec2 Texture;
layout(location = 5) in vec3 Color;

uniform mat4 MVP; // full transform
uniform mat4 MV; // model and view
uniform mat4 NM; // normal transform
uniform vec3 LightPos;

// These two vectors pass the direction from vertex to light
// and viewpoint (IN A COORD REFERENCE FRAME of the polygon!!!)
out vec3 LightDir;
out vec3 EyeDir;
// this passes surface texture coords to fragment shader
out vec2 TexCoord;
// pass on surface color
out vec3 Vcolor;

void main(){
gl_Position = MVP * vec4(Position,1); // must pass on
// get a coordinate system based in plane of input surface
vec3 n = normalize(NM * Normal);
vec3 t = normalize(NM * Tangent);
EyeDir = vec3 (MV * vec4(Position,1));
// pass on texture coords to fragment shader
TexCoord = Texture;
// Get normal, tangent and third vector to make curviliner coord frame
// of reference that lies in the plane of the polygon for which we are
// processing one of its vertices.
vec3 n = normalize(gl_NormalMatrix * gl_Normal);
vec3 t = normalize(gl_NormalMatrix * Tangent);
vec3 b = cross(n, t);
// get the light direction and viewpoint (eye) direction in this new
// coordinate frame of reference.
vec3 v;
vec3 LightPosition=vec3(gl_LightSource[0].position);
v.x = dot(LightPosition, t);
v.y = dot(LightPosition, b);
v.z = dot(LightPosition, n);
LightDir = normalize(v);
v.x = dot(EyeDir, t);
v.y = dot(EyeDir, b);
v.z = dot(EyeDir, n);
EyeDir = normalize(v);

Listing 7.10: Bump mapping vertex shader program.

By doing this, we ensure that the surface normal vector is always given
by coordinates (0, 0, 1), and thus it is easily displaced (or bumped) in the
fragment shader by adding to it the small changes ∆u and ∆v obtained
from the bump map.

286 7. Real-time 3D: OpenGL

// Fragment Shader - Bump mapping
#version 330 core

layout(location = 0) out vec4 color;

in vec3 LightDir; // input from vertex shader
in vec3 EyeDir;
in vec2 TexCoord;
// pass on surface color
in vec3 Vcolor;

uniform sampler2D Rsf;

// fraction of light due to specular hightlights
const float SpecularFactor = 0.5;
// range [4.0 - 0.1] bump gradient [large - small]
const float Gradient = 4.0;

void main (void){
vec3 SurfaceColor = Vcolor; // get the color
// get the surface normal perturbation vector
// - it is encoded in the texture image
vec2 grad = (texture2D(Rsf, TexCoord).rg);
// calculate the new surface normal - perterb in (x,y) plane
vec3 normDelta=normalize(vec3((grad.x-0.5)*Gradient,
(grad.y-0.5)*Gradient,1.0));

// now apply the lighting model
vec3 litColor = SurfaceColor* max(dot(normDelta, LightDir), 0.0);
vec3 reflectDir = reflect(LightDir, normDelta);
float spec = max(dot(EyeDir, reflectDir), 0.0);
spec *= SpecularFactor;
litColor = min(litColor + spec, vec3(1.0));
color = vec4(litColor, 1.0);
}

Listing 7.11: Bump mapping fragment shader program.

To obtain the surface-local coordinates, we first set up a rectilinear co-
ordinate system with three basis vectors. We have two of them already:
the surface normal n = (nx, ny, nz) and the tangent vector t = (tx, ty, tz)
(passed to the vertex shader as a vector attribute from the application
program). The third vector b = (bx, by, bz) (known as the bi-normal) is
defined as b = n × t. Vectors dw (such as viewpoint and light direc-
tions) are transformed from world coordinates to the surface-local frame
by ds = [Tws]dw where [Tws] is the 3× 3 transformation matrix:

[Tws] =





tx ty tz
bx by bz
nx ny nz





(More details of this transformation can be found in section 2.12.6.)

• The normal displacement is usually encoded as an image map. This is
done by preprocessing the image pixel map after it is read/decoded and

7.3. The GL shading language 287

Surface-local coordinates

v1

v1

n

b

t

v3

Light
Eye

point

y

z

x

v2

v2

n

z´

y´

Viewpoint

Light

Global coordinates

v3 t

Figure 7.4: Surface local coordinates.

before it is copied into texture memory. It is first converted to a gray-scale
and then the gradient is encoded by storing the ∂nu

∂u
as the red pixel com-

ponent and the v gradient (∂nv

∂v
) as the green component. The gradient

map is copied to texture memory and thus the surface normal displace-
ment vector is easily extracted from the texture by ∆n = (∆n1,∆n2, 0) =
(Mr(u, v),Mg(u, v), 0) (where Mr(u, v) is the red component of map M
at texture coordinate (u, v)). Because we are working with a normal now
relative to the surface-local coordinates n = (0, 0, 1) the coordinates of the
displaced normal (n = n+∆n) vector are (∆n1,∆n2, 1).

• An alternative method of generating the displacement vector allows it to
be calculated within the fragment shader program. This eliminates the
preprocessing step, at the expense of a little extra GPU processing in the
fragment shader. By sampling the texture map at four points that have
a small texture coordinate offset, the image’s intensity gradient can be
obtained. The following shader code fragment illustrates the idea:

288 7. Real-time 3D: OpenGL

const float d=0.01;
// Assumes gray color, get value
float y1 = (texture2D(Rsf, TexCoord+vec2(0.0, d)).r);
// above and below sample point.
float y2 = (texture2D(Rsf, TexCoord+vec2(0.0,-d)).r);
// and to left
float x1 = (texture2D(Rsf, TexCoord+vec2(d, 0.0)).r);
// and right
float x2 = (texture2D(Rsf, TexCoord+vec2(-d, 0.0)).r);
vec3 normDelta=normalize(vec3((y2-y1)*Gradient,

(x1-x2)*Gradient,1.0));

Procedural textures It is in the area of procedural textures that the real power of
the programmable GPU becomes evident. More or less any texture that can be
described algorithmically can be programmed into the GPU and rendered much
faster than with any software renderer. Chapter 11 provides a rich collection of
algorithms for procedural textures that are quite amenable to implementation
as GPU textures.

7.3.5 Setting up the transformation matrices

With the removal of the internally handled matrix transformations through the
GL MODELVIEW and GL PROJECTIONmatrices it is important to be able to replicate
their behavior in an application’s code. The elements of projection matrices
arising from calls to either glOrtho(...) and glFrustum(..) are defined in the
Red Book but the utility functions that previously helped us set up a projection
based on a field of view and a viewpoint that looks at a specific target are not
quite so readily available. To achieve the same result of these functions requires
the functions given in listing 7.12.

The only point worthy of note about listing 7.12 is in the LookAt(..) func-
tion where the LookAt transformation is made up of a translation, which positions
the eye point at (0, 0, 0) and a rotation that aligns the frame of reference of the
camera (defined by the direction between eye and target and an up direction).
The rotation matrix is basically the same as that derived in section 2.12.6, how-
ever OpenGL defines the y axis to be vertical, so, if we express the up direction
as the vector (0, 1, 0) (i.e., along the y axis) we must reverse the order of rows 2
and 3 and change the sign of the elements in row 3 (as is done in listing 7.12).

Finally for this section, two very important reminders:

1. The OpenGL world is mapped with a right-handed coordinate system, the
y axis is vertical, and we observe from (0, 0, 0) looking down the −z axis.

2. Transpose any C/C++ transformation matrices before passing them into
the pipeline.

7.3. The GL shading language 289

#define DEGRAD .. // converts devress to radians
#define CROSS(v1,v2,r) .. // vector cross product r=v1*v2
#define LENGTH2(a) ... // length of vector
// copy matrix toiut=tin
static void c4to4(GLfloat tin[4][4], GLfloat tout[4][4];
//multiply matrix tr=t1*t2
static void m4by4(GLfloat t1[4][4],GLfloat t2[4][4],GLfloat tr[4][4]);
// set to Identity matrix t = I
static void null_transform(float t[4][4]);

void gl_Ortho(GLfloat m[4][4], GLfloat l, GLfloat r,
GLfloat b, GLfloat t, GLfloat n, GLfloat f){
// l=left r=right b=bottom, t=top, n=near f=far
null_transform(m);
m[0][0]= 2.0f/(r-l); m[0][3]= -(r+l)/(r-l);
m[1][1]= 2.0f/(t-b); m[1][3]= -(t+b)/(t-b);
m[2][2]= -2.0f/(f-n); m[2][3]= -(f+n)/(f-n);

}

void gl_Frustum(GLfloat m[4][4], GLfloat l, GLfloat r,
GLfloat b, GLfloat t, GLfloat n, GLfloat f){
// l=left r=right b=bottom, t=top, n=near f=far (clip planes)
null_transform(m);
m[0][0]= 2.0f*n/(r-l); m[0][2]= (r+l)/(r-l);
m[1][1]= 2.0f*n/(t-b); m[1][2]= (t+b)/(t-b);
m[2][2]= -(f+n)/(f-n); m[2][3]= -2.0f*f*n/(f-n);
m[3][2] = -1; m[3][3]= 0;

}

void glu_Perspective(GLfloat m[4][4], GLfloat fovy,
GLfloat a, GLfloat n, GLfloat f){
// fovy = horizontal field of view a = aspect ratio width/height
// n = near f = far (clipping planes)
GLfloat t,b,l,r;
t = n*(GLfloat)tan(DEGRAD*fovy/2.0);
b = -t; l = -a*t; r = a*t;
gl_Frustum(m,l,r,b,t,n,f);

}

void glu_LookAt(GLfloat m[4][4],
GLfloat ex,GLfloat ey,GLfloat ez, // eye
GLfloat cx,GLfloat cy,GLfloat cz, // target
GLfloat ux,GLfloat uy,GLfloat uz){// up
GLfloat f[3],s[3],u[3],l,m1[4][4],m2[4][4];
null_transform(m); null_transform(m2);
f[0]=cx-ex; f[1]=cy-ey; f[2]=cz-ez;
u[0]=ux; u[1]=uy; u[2]=uz;
l=1.0/LENGTH(f); VECSCALE(l,f,f)
CROSS (f,u,s)
l=1.0/LENGTH(s); VECSCALE(l,s,s)
CROSS (s,f,u)
translate(m1,-ex,-ey,-ez); null_transform(m2);
m2[0][0]= s[0]; m2[0][1]= s[1]; m2[0][2]= s[2];
// re-order because Y Z axes are reversed (Y is UP!)
m2[1][0]= u[0]; m2[1][1]= u[1]; m2[1][2]= u[2];
m2[2][0]= -f[0]; m2[2][1]= -f[1]; m2[2][2]= -f[2];
m4by4(m2,m1,m);

}

Listing 7.12: Creating transformation matrices that match the functionality of the old
GLU utility functions.

290 7. Real-time 3D: OpenGL

7.4 The P-buffer and framebuffer objects

It was mentioned earlier that in addition to the front and back output buffers
OpenGL may offer a few additional buffers, AUX0, AUX1 etc. However, many
display adapters do not support these buffers. Even if the AUXn buffers are
supported they have a major limitation in that they cannot exceed the current
size of the output window. More specifically, they cannot exceed the size of
the underlying drawing surface. An output window is just a system dependent
view of the drawing surface OpenGL renders onto a drawing surface attached
to a window. This is a problem if you want to render a scene at a resolution
that is greater than the desktop size. It is also a major problem if you want
to render to a texture (an image map) to be used later (for example, an image
may be required at a resolution of twice the maximum window size, and include
an automatically generated mip-map, taking its resolution even higher). Being
able to render to very large off-screen buffers of any size has advantages. The
modern way to render into large output buffers that can also be used as textures
for subsequent mapping is through the use of framebuffer objects (FBOs). The
older way was through the use of Pixel (or P) buffers. Both of these techniques
are used in the OpenFX renderer (see chapter 9), and a document describing
how to use framebuffer objects is available on the website.

7.5 Rendering a particle system using OpenGL

To round off this chapter on OpenGL programming we return briefly to consider
the practical implementation of a real-time particle system. Section 6.7 looked
into the very powerful contribution that particle models can play in enriching
CGI movies and computer games. Because of the simplicity of the concept,
particle models are ideal for use in real-time applications and OpenGL provides
all the capabilities needed for rendering a particle system, i.e. alpha blended
texture mapping, integrated transformations and a wide range of framebuffer
combiner operations.

In this short section a couple of listings provide a framework that can act as
a progenitor for a comprehensive particle system. Indeed, the OpenFX particle
actor, as described in section 9.7.5, is little more than a scaled up version of
the ideas given in listings 7.13 and 7.14. Listing 7.13 draws attention to the
importance of a couple of data structures, one for the particle system itself,
where its image texture, its number of particles and an array of particles are
defined. The second structure represents each particle and is needed so that the
particle can evolve from its generation by the particle system. The two functions
in listing 7.13 perform the tasks of (1) setting up the particle texture and particle
system parameters, and (2) updating the position and attributes of each particle
as time elapses. The most significant steps in rendering the particle system are
presented in listing 7.14. Each particle is a small texture mapped GL QUAD

7.5. Rendering a particle system using OpenGL 291

// Structures for a particle system

typedef struct ParticleTag {
GLfloat p[3]; // position
float c[3]; // colour
Alpha; //transparency
..
.. // other properties

} Particle;

typedef struct ParticleSystemTag {
int type; // image blending type
int np; // number of particles
Particle *P;// list of particles
int iid; // texture map image

} ParticleSystem;

// global texture IDs
GLint g_particle_textures[NTEXTURES];

void MakeParticleTextures(void){ // Setup particle textures
..
// ask for the number of particle image textures needed
glGenTextures(nParticleImages, &g_particle_textures[0]);
..
// load image and copy to GPU txture memory.
..

}

void UpdateParticle(double time, ParticleSystem *Ps){
..
// Timed function to take each particle through its
// evolution. Details will depend on the nature of
// the particle system.
for(i=0;i<Ps->np;i++){ // process each particle
..
}
..

}

Listing 7.13: Data structures for a particle system.

that is rendered by modulating how it is blended into the output buffer with
the texture map. How the QUAD is blended is the secret of producing the
appearance of hot fire or the spray form breaking waves on the sea shore. The
geometry transformations must place the particles in the correct location with
respect to the viewpoint and any objects associated with the particle system.
However, the transformations must ensure that no rotation is applied to the
textured QUAD and that it is always perpendicular to the viewing direction.

When these simple guidelines are followed, the full beauty of many natural
phenomenon can be brought to the computer screen in real-time, like those in
figure 6.38 for example.

292 7. Real-time 3D: OpenGL

void DrawParticleSystemGL(ParticleSystem *Ps){
..
// activate texture mapping
glBindTexture(GL_TEXTURE_2D,g_particle_textures[Ps->iid]);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glEnable(GL_BLEND);
if(Ps->type == 1)glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
else glBlendFunc(GL_SRC_ALPHA,GL_ONE);
glDepthMask(GL_FALSE);
glBegin(GL_QUADS);
for(i=0;i<Ps->np;i++){ // process each particle
..
p=Ps->P[i];
// set the particle’s attrubue
glColor4f(p->c[0],p->c[1],p->c[2],p->Alpha);
..
// get the particle’s position
xc=p->p[0]; yc=p->p[0]; zc=p->p[2];
// rectangle is alwaays draw perpendicular to the viewing direction
// and filling the textured QUAD
glTexCoord2f(1.0f, 1.0f); glVertex3f(xc+psize, yc+psize, zc);
glTexCoord2f(0.0f, 1.0f); glVertex3f(xc-psize, yc+psize, zc);
glTexCoord2f(0.0f, 0.0f); glVertex3f(xc-psize, yc-psize, zc);
glTexCoord2f(1.0f, 0.0f); glVertex3f(xc+psize, yc-psize, zc);

}
glEnd();
glDepthMask(GL_TRUE);
glDisable(GL_BLEND);
glBindTexture(GL_TEXTURE_2D,0);
..
}

Listing 7.14: Draw a particle system.

7.6 Summing up

This chapter has shone the spotlight onto how to do a number of the most useful
tasks in 3D graphics by using the OpenGL 3D real-time graphics library. In the
limited space available we have not been able to consider in depth a couple of
interesting examples that you can find via the book’s website:

1. The dual robot manipulation simulator that demonstrates how to use in-
verse kinematics and a complex combination of transformation systems.

2. The fly-by demonstrator that shows how an OpenGL application can be
made seamlessly compatible across desktop and mobile platforms.

3. The metaballs demonstrator that illustrates how to implement a marching
cubes algorithm and render it using OpenGL in either the compatibility
or core .rendering models.

For a full presentation of many more things that you can do with OpenGL
consult the OpenGL SuperBible [78] which covers just about everything you are
ever likely to want to know how to do with OpenGL.

8
Mobile 3D: OpenGLES

This chapter investigates how to extend the power and simplicity of OpenGL
in the world of mobile devices, smart phones and tablets. Apps, as they are
popularly known, can be endowed with the same high-powered 3D graphics that
we have become used to on the desktop and laptop platforms. The distinction
between traditional laptop/notebook computers and mobile devices like the Ap-
ple iPad or the Google Nexus phone is getting more and more blurred. Is there
a significant difference between a notebook using an Intel i7 processor with de-
tachable keyboard and touch screen, say running Windows 8, and an iPad with
an ARM processor and bluetooth keyboard? Both of these devices have a similar
look and feel, both run the same range of programs, e-mail clients, browsers, pre-
sentation software etc. Many Apps depend on high-speed 3D graphics, and not
just the computer game Apps. The powerful geometric transformations of 3D
graphics can endow applications and even operating systems with lively effects
like spins, page turns, image flips etc.

From the program developer’s perspective there is a very significant difference
between building apps for the desktop platform and apps for a mobile device. It
is not possible to develop programs for a tablet or phone on the tablet or phone
themselves. It is perfectly possible to develop programs for any Windows 8
computer on a Windows 8 computer, but it is not possible to develop programs
for a Windows Phone 8 on a Windows Phone! The same applies to Apple’s
devices and to the Android devices, so this is quite a useful way to classify
a platform as either desktop or mobile. Since OpenGL is designated a cross-
platform graphics library, the way we will choose to designate a host as a mobile is
to say: those platforms that offer the full OpenGL specification are desktops and
notebooks, and those that use OpenGLES as tablet/phones/hand-held devices.

OpenGLES [63] (or OpenGL for Embedded Systems) has a much shorter
pedigree than OpenGL. A powerful graphics library capable of rendering in 3D
requires a significant hardware resource; unless a program requires the full power
of a high-end device all mobile devices already do an excellent job. With the
exception of a few restrictions, once an application has carried out the specific
platform dependent initialization then the same OpenGL drawing function calls
can be used in OpenGLES.

293

294 8. Mobile 3D: OpenGLES

OpenGLES is the 3D drawing system used by Apple’s iOS devices and by
Google’s Android systems. It was also used by Nokia in the Symbian smart-
phones. Unfortunately Microsoft’s current Windows phone uses their Direct3D
graphics and will not be discussed further here. In this chapter we will briefly
review the few differences between OpenGL and OpenGLES and then look at a
couple of examples that can be used to form templates for some iOS and Android
apps making use of 3D graphics.

8.1 OpenGLES

In the short history of OpenGLES (GLES) the specification has undergone quite
a rapid development. This is mainly because the graphics hardware available for
embedded systems is catching up fast on the hardware that has been available on
the desktop PCs for some time. Perhaps the most significant change in GLES has
occurred during the introduction of version 2 when the GLES rendering pipeline
became programmable.

As the OpenGLES and OpenGL APIs converge, the fixed functionality func-
tions in the API are being deprecated. However, the GLES never offered the
display list, or the glVertex(..) family of functions, and so it should not re-
quire such a radical change in the coding of applications to update them to use
the version 2/3 API as would be required for a very mature desktop program.

The GLES-2 (and subsequent versions, version 3 being the most recent at
time of writing) pipeline does not support any fixed functionality, and all appli-
cation programs must create a minimal set of shaders. Even GLES 1 uses the
modern method of specifying geometry, with polygon lists and/or vertex buffers
providing a better way of defining geometry. These types of structures were dis-
cussed in chapter 3 and therefore OpenGLES (and indeed the latest version of
OpenGL) match very well the data structures used in the algorithms described
in part III.

The source codes and projects that accompany this chapter provide examples
of how to use these modern data structures.

An OpenGLES application has to create and initialize a drawing surface and
obtain a handle to a rendering context in much the same way that an application
would do for the full OpenFX. We will elaborate on the setup phase because, once
a GLES surface has been defined and a drawing/device context obtained for it,
the actual process of rendering is platform independent and we can pretty much
use the same code that we use on the desktop. For example, the usage of texture
mapping lighting and shader codes will be identical. Indeed, if you have built
your desktop programs using the VertexPointer() and glDrawElements() or
glDrawArrays(..) functions then OpenGL programs should port seamlessly to
GLES.

Listings 8.1, 8.2 and 8.3 highlight the key steps in rendering with the
DrawElements() function, that is, the geometry, topology and surface attributes

8.1. OpenGLES 295

// The vertices give the model
// its shpae
int num_model_vertices=0;
GLfloat *model_vertices=NULL;

// The surface normals are
// needed by the lighting model
GLfloat *model_normals=NULL;

// The indices list the vertices associated
// the the faces the give the model its
// surface.
int num_model_indicies=0;
short *model_indicies=NULL;

// The simplest surface attibute is its
// color which is specified for each
// vertex
GLubyte *model_colours=NULL;

Listing 8.1: A minimal set of data is needed to describe a 3D model. These variable
are used to reference it.

FILE *fp;
..
// how much data
fread(&num_model_vertices,sizeof(),1,fp);
fread(&num_model_indicies,sizeof(),1,fp);
// provide memory buffers of suffficent size
// to hold the data for vertices and triangular faces
if((model_vertices=(GLfloat *)malloc(// 3 coords per vertex

num_model_vertices * 3 * sizeof(GLfloat))) == NULL){ ... /* error */ }
if((model_normals=(GLfloat *)malloc(// one vector per vertex

num_model_vertices * 3 * sizeof(GLfloat))) == NULL){ ... /* error */ }
if((model_colours=(GLubyte *)malloc(// RGBA color

num_model_vertices * 4 * sizeof(GLubyte))) == NULL){ ... /* error */ }
if((model_indicies=(short *)malloc(// Triangles have 3 vertex IDs each

num_model_indicies * 3 * sizeof(short))) == NULL){ ... /* error */ }
// obtain the main data
fread(model_vertices,sizeof(GLfloat),num_model_vertices * 3,fp);
...

Listing 8.2: Before any 3D data can be drawn it must be assembled in a form that
may be passed to the rendering functions. The source of the data might be anything.
In this piece of code it is simply assumed to be obtained from a file previously opened
for reading.

must be specified in memory buffers in the correct order. In some ways, loading
data into graphics memory with the VertexPointer() and glNormalPointer()

functions is similar to setting up a display list. Using DrawElements() ful-
fills many of the actions that might otherwise be done by calling an old style
display list.

296 8. Mobile 3D: OpenGLES

..
// indicate that the data also contains some
// basic surface attribites
glEnableClientState(GL_COLOR_ARRAY);
// Load the data into the GPU
glVertexPointer(3 ,GL_FLOAT, 0, model_vertices);
glNormalPointer(GL_FLOAT, 0, model_normals);
glColorPointer(4,GL_UNSIGNED_BYTE,0,model_colours);

//apply any transformations here

glDrawElements(GL_TRIANGLES, // data represents triangles
num_model_indicies*3, // how may triangles
GL_UNSIGNED_SHORT, // format of each uumber
&model_indicies[0]); // pointer to the first one

...

Listing 8.3: Pass geometry and attribute data to the pipeline and render it. Repeat as
necessary.

In the next sections we illustrate how to use OpenGLES on iOS and Android
platforms. Our aim is to provide a minimum of code on which to base applica-
tions, so that it is easy to extend them into a wide spectrum of potential apps.

8.2 3D on iOS

To develop iOS applications there is no real alternative but to use the Xcode
tools suite on an Apple computer. There are many similarities between an iOS
application and a Cocoa program for OSX (as described in section 7.2.2), in-
cluding the detail of the way in which a container window is created in code
or an object is loaded from a NIB/XIB file. Developing for a real iOS device
can be quite awkward because the programs must be electronically signed before
they may be executed on a device. Device signing requires a profile generated
on the Apple developer’s website for specific devices. Before this can be done
the developer must be a registered developer, which costs real money. However,
the emulator does an excellent job of simulating the operation of 3D graphics
without the need for registration.

The code examined in this section demonstrates how to render using either
GPU shaders in GLES versions ≥ 2 or switch back to the fixed functionality
behavior. The example is based on a program from the SDK that has been
edited to bring the essential detail of a GLES iOS App into sharp focus. The full
project codes and a commentary on the development process can be obtained
from our website with versions that are set up for the various form factors of the
iOS devices, iPad, iPhone etc.

8.2. 3D on iOS 297

One of the nice things about a program that uses OpenGL is that once a
drawing surface has been established the need to interact with the host system
can be kept to a minimum.

Any iOS App that is going to use GLES may be built by extending on code
associated with the following basic steps:

1. Create the code for a class, derived from the UIView API class (e.g., called
EAGLView), to represent the View.

2. Add an object of this class to the XIB file using interface builder (Xcode).

3. Provide code in the AppDelegate class for the delegated functions.

4. Provide code for the class that will represent the OpenGL view. Since an
object of this class has been defined in the XIB file, an instance of it will
be created and its method called automatically:
(id)initWithCoder:(NSCoder*)coder.
It is within initWithCoder that the properties of the OpenGL display
should be established. Also, since the EAGLView class is derived from the
UIView class the delegated method (void)drawView:(id)sender will
be called automatically when the display needs to be refreshed. It is in
drawView that we can place all our OpenGL drawing code.

Once these iOS specific tasks have been completed the addition of two (non-iOS
specific) functions that

1. do anything that can be done as a one-off set up and

2. draw whatever is needed (this function is called in response to a regular
timer)

will give a complete template for any App that wants to present itself on a 3D
canvas. Listings 8.4 to 8.14 fill in a little more of the detail.

The AppDelegateClass of listings 8.4 and 8.5 provides overridden meth-
ods that are called when the application object is created and when it is de-
stroyed. This gives us the opportunity to control the behavior of the View
object which is defined in the XIB and linked to the glView member variable of
the AppDelegateClass.

Our View object is an instance of the EAGLView class, which is derived from
the standard iOS class UIView. To endow the EAGLView class with an OpenGL
rendering surface a standard documented process has to be followed. In this
example we are going to enhance the basic properties by offering the potential
to use either the OpenGLES version 1 or version 2 approach. (Remember that
the GLES version 2 does not have a fixed functionality pipeline and all programs
must render through a pair of GPU shader codes.)

The derived View class is specified in listing 8.6 with its most relevant
members and methods highlighted in listing 8.7. Since the View object is

298 8. Mobile 3D: OpenGLES

#import <UIKit/UIKit.h>

// forward class reference to main application class
@class EAGLView;

@interface glesIosAppDelegate : NSObject <UIApplicationDelegate> {
UIWindow *window;
EAGLView *glView; // will point to the OpenGL View object
}

// connect to object in XIB file
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet EAGLView *glView;

@end

Listing 8.4: The application delegate header file defines sub-class with its application
specific members.

defined in the XIB (resource) file the standard approach of iOS is to call its
initWithCoder: method during creation. It is in this method that all the hard
work of configuring the View is done.

Before looking at the configuration of the rendering surface for either GLESv1
(version 1, fixed functionality) or GLESv2 (version 2 GPU shader) we shall
consider the methods in the EGALView class that start and stop the timed display
update. In listing 8.8 the startAnimation: method starts a timer that calls
the drawView: method, when the timer fires. The timer function then instructs
the appropriate renderer (for GLESv1 or GLESv2) to draw the scene.

Returning to consider the drawing code, the objects that perform either fixed
function or programmable rendering are of classes that have similar form; the
version 2 class is presented in listing 8.9. The difference between a class repre-
senting a version 1 (fixed function) drawing surface and one to be used with
the programmable version 2 pipeline lies not in their members but in what
commands the initialization and rendering method have to issue. Under iOS,
rendering is done into a framebuffer object (FBO) with attached renderbuffer.
FBOs and renderbuffers were discussed in section 7.4 for desktop platforms and
their use in the mobile context is no different, except that the actual presen-
tation of the rendered output is done by calling the display context’s method
presentRenderBuffer; as in:

// GLES version 1
[context presentRenderbuffer:GL_RENDERBUFFER_OES];
// GLES version 2
[context presentRenderbuffer:GL_RENDERBUFFER];

In listing 8.10 the preparation of a drawing surface to receive output rendered
through the programmable pipeline is shown. It includes a call to a method to

8.2. 3D on iOS 299

#import "glesIosAppDelegate.h" // class definition
#import "EAGLView.h" // main class definition

@implementation glesIosAppDelegate // over-ridden methods

@synthesize window; // link pointer to object in XIB
@synthesize glView; // link pointer to object in XIB

// This method is called by system when object is created
- (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
// Apply any launch specific code here.
[window makeKeyAndVisible];
// Start the timer associated with the view, to refresh
// the display
[glView startAnimation];
return YES;

}
// The class also delegates method that are called by the system
// when other events occur, such as activation of another app.
// They are omitted here for brevity.

// IOS programs call this method on exit to allow for clean-up.
// We release the resources in the usual way.
- (void)dealloc {
[window release];
[glView release];
[super dealloc];

}

@end // end of the class

Listing 8.5: The application delegate source.

load, compile and install the shader programs. (The code for a loadShaders;

method would be similar to those used on a desktop with the exception that the
source will either be explicitly given in a text string in the code or a file within
the application bundle.)

If the drawing window’s dimensions change then the View’s dimensions have
to be change. On mobile devices with their small screens a change of window size
is much less likely to occur than in a desktop program; however, the possibility
must still be serviced, not least because a change of size always happens when a
window is first created. As one would expect there are slight variations between
resizing a FBO for fixed-function and for GPU-programmable rendering. Since
the output surface is represented as a FBO, it and its attached renderbuffers have
to be resized accordingly. Fortunately, the same code can be used for every app,
so the brief template, taken from the iOS API reference examples and shown in
listing 8.11, is sufficient to handle all re-sizing eventualities.

It is always good programming practice to perform a smooth shutdown and
release of resources; listing 8.12 shows the way.

And now, after all the preamble we come to the actual drawing. Everything
that you draw using OpenGLES—geometry, transformations, texture maps—can

300 8. Mobile 3D: OpenGLES

#import <UIKit/UIKit.h>
#import <QuartzCore/QuartzCore.h>
#import <OpenGLES/EAGL.h>
#import <OpenGLES/EAGLDrawable.h>

// methods that are implemented by the rendering class
@protocol ESRenderer <NSObject>
- (void)render;
- (BOOL)resizeFromLayer:(CAEAGLLayer *)layer;
@end

// This class wraps the CoreAnimation CAEAGLLayer
@interface EAGLView : UIView
{
@private
id <ESRenderer> renderer; // will point at renderer object
BOOL displayLinkSupported;
NSInteger animationFrameInterval;
id displayLink;
NSTimer *animationTimer;
// add any other members would go here
}

@property (readonly,nonatomic,getter=isAnimating) BOOL animating;
@property (nonatomic) NSInteger animationFrameInterval;

// overridden methods
- (void)startAnimation;
- (void)stopAnimation;
- (void)drawView:(id)sender;

@end

Listing 8.6: The GLES derived class EGALView. The listing presented here follows the
instructions set out in the developer’s documentation and Apple’s distributed examples.

be done with the same code that you would use in a desktop application; even
the GPU shaders are identical. Rendering is done in the render: method of the
respective GLES version classes, ES1Renderer and ES2Renderer. Remember,
render: is called via the timer created during initialization; see listing 8.8. The
code required for rendering, apart from drawing the application specific compo-
nents, only requires that the display context is first set, the framebuffer object is
bound, and the renderbuffer content is presented to the user. Listing 8.13 exem-
plifies these salient points in the case of a version 2 rendering context. GLES 2
has no fixed-function capability and therefore a pair of GLSL shaders must be
activated and used. Listing 8.14 presents a short pair of shaders that perform the
bare minimum of transforming the vertices into position. The color assignment
highlights the process of passing attributes on a per vertex basis to the vertex
shader, which then passes the vertex colors on through the rasterizer which in-
terpolates them for the fragment shader. (Note: There is usually a one-to-one
correspondence between fragments and pixels.)

8.2. 3D on iOS 301

#import "EAGLView.h" // class definition
#import "ES1Renderer.h" // GLES version 1 renderer class
#import "ES2Renderer.h" // GLES version 2 renderer class

@implementation EAGLView

@synthesize animating;
@dynamic animationFrameInterval;

+ (Class)layerClass{ // class method must be implemented
return [CAEAGLLayer class];

}

// The EAGL view is stored in the XIB file.
// When it’s loaded -initWithCoder: is called
- (id)initWithCoder:(NSCoder*)coder {
if ((self = [super initWithCoder:coder])){
// Get the layer and set its properties
CAEAGLLayer *eaglLayer = (CAEAGLLayer *)self.layer;
eaglLayer.opaque = TRUE;
eaglLayer.drawableProperties = [...] // properties
// try to allocate a GLES version 2 renderer
renderer = [[ES2Renderer alloc] init]; // call the init method
if(!renderer){ // no version 2 renderer
// try to allocate a version 1 renderer
renderer = [[ES1Renderer alloc] init]; // and call "init"
if(!renderer){ // no renderer available

[self release]; return nil;
}

}
... // any other code for this method
}
return self;

}
// other overridden methods
- (void)drawView:(id)sender { // draw the view
[renderer render]; // call the chosen drawing method

}
- (void)layoutSubviews { // resize the view
[renderer resizeFromLayer:(CAEAGLLayer*)self.layer];
[self drawView:nil]; // and draw again

}
... // other methods
}
@end

Listing 8.7: Initialising the GLES view and preparing the surface for OpenGLES ren-
dering using either GLES version 1 or version 2.

8.2.1 Some example iOS 3D projects

The iOS application we have described is very basic. It does not use any texture
maps or elaborate shaders; however it is readily extended. The View class and
the appDelegate class afford opportunities to access the device’s internal sensors,
accelerometers, compass etc., and to make use of the multi-touch screen. In
this book we don’t have the space to work through a number of interesting
applications, but there is no page limit on the website, and there you will find

302 8. Mobile 3D: OpenGLES

- (void)startAnimation {
if (!animating){

animationTimer =
[NSTimer scheduledTimerWithTimeInterval:(
NSTimeInterval)((1.0/60.0) * animationFrameInterval)
target:self selector:@selector(drawView:)
userInfo:nil repeats:TRUE];

}
.. // call any "execute once" OpenGL configuration from here
animating = TRUE;

}
}

- (void)stopAnimation {
if (animating){ // remove the timer

[animationTimer invalidate];
animationTimer = nil;

}
animating = FALSE;

}
}

- (void)drawView:(id)sender {
// call the render function in the active GLES class object
[renderer render];
}

Listing 8.8: A system timer mechanism is used to re-draw the display at regular inter-
vals, thus achieving an animated view.

the code for a few projects that elaborate on the basics covered in this section
and use a few more of the features of the iDevices.

Two of the examples are:

• Porting the SanAngles city: The SanAngles program (figure 8.1) is a widely
available OpenGL program which uses no external data, no image maps
and a pre-programmed set of camera changes and object movement. It also
has a high polygon count and no unusual aspects of OpenGL rendering
are used. For these reasons the program is a good benchmarking example
across platforms. The SanAngles examples was one of the first applications
used to demonstrate how to use native code on the Android platforms. On
the book’s website you will find projects and code for our implementations
of the program for iOS (as well as for Nokia’s Symbian Smartphone OS
and Windows, Mac OSX and Ubuntu Linux).

• The 3D map: This example demonstrates how to render a 3D map using
terrain data and textured with a satellite image. The challenge in this ex-
ample does not come from the OpenGL rendering of a polygonal mesh and
texture map. It comes from the combination of a 3D display with standard
on-screen dialog buttons and edit boxes, how to change the viewpoint and

8.2. 3D on iOS 303

// File ES1Renderer.h // for GLES version 2
#import "EAGLView.h"

#import <OpenGLES/ES2/gl.h>
#import <OpenGLES/ES2/glext.h>

@interface ES2Renderer : NSObject <ESRenderer>
{
@private
EAGLContext *context; // the device context
// The pixel dimensions of the CAEAGLLayer
GLint backingWidth,backingHeight;
// The OpenGL ES names for the framebuffer and
// renderbuffer used to render to this view
GLuint defaultFramebuffer, colorRenderbuffer;
// The identity of the GPU shader program
// required by GLES version 2 (or greater)
GLuint program;

}

s- (void)render; // srawing method
- (BOOL)resizeFromLayer:(CAEAGLLayer *)layer;

@end

Listing 8.9: The classes that encapsulate the rendering process are very similar for
both GLES versions 1 and 2. This listing presents the specification of the version 2
classes.

Figure 8.1: The SanAngles application rendered on iPad.

view direction using the touch screen interface, and how to load the map
and 3D data from the application bundle. The application’s code, which is
available from the website, should be readily followed and will build into a
product (see figure 8.2) for either the emulator or any of the iOS devices.

304 8. Mobile 3D: OpenGLES

- (id)init { // (class ES1Renderer) called from the initWithCoder:
if ((self = [super init])) {
context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES2];
if (!context ||

![EAGLContext setCurrentContext:context] ||
![self loadShaders]) { // NOTE: Call to load shaders

[self release]; // If this point is reached then something
return nil; // went wrong - no renderer available.

}
// Create default framebuffer object.
// The backing will be allocated for the current
// layer in method "-resizeFromLayer"
glGenFramebuffers(1, &defaultFramebuffer);
glGenRenderbuffers(1, &colorRenderbuffer);
glBindFramebuffer(GL_FRAMEBUFFER, defaultFramebuffer);
glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);
glFramebufferRenderbuffer(GL_FRAMEBUFFER,

GL_COLOR_ATTACHMENT0,
GL_RENDERBUFFER,
colorRenderbuffer);

}
return self;
}

Listing 8.10: Initializing the display surface to receive output rendered using GLES
version 2 or greater (with programmable shaders).

// Code for resizing a GLES version 2 layer
- (BOOL)resizeFromLayer:(CAEAGLLayer *)layer {
// Allocate color buffer backing based on the current layer size
glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);
[context renderbufferStorage:GL_RENDERBUFFER fromDrawable:layer];
glGetRenderbufferParameteriv(GL_RENDERBUFFER,

GL_RENDERBUFFER_WIDTH, &backingWidth);
glGetRenderbufferParameteriv(GL_RENDERBUFFER,
GL_RENDERBUFFER_HEIGHT, &backingHeight);

if (glCheckFramebufferStatus(GL_FRAMEBUFFER)
!= GL_FRAMEBUFFER_COMPLETE){ ... } // fail

return YES;
}

Listing 8.11: Resize the display window, code taken from the GLES version 2 rendering
classes.

8.3 3D on Android

Android has proved very popular as a smart-phone operating system, and there
are a wide variety of tablet devices that use the Android OS. Android is an
open-source project and therefore development is not handicapped by needing
to pay to run your program on your devices as it is on the iOS platforms. The
principle environment in which apps are executed is a JAVA virtual machine
(VM) called Dalvik. In the devices themselves, the VM executes on top of a

8.3. 3D on Android 305

// Code to smoothly release the GL buffers and drawing contexts
// for GLES version >= 2

- (void)dealloc {
// Delete GL buffers
if (defaultFramebuffer) {
glDeleteFramebuffers(1, &defaultFramebuffer);
defaultFramebuffer = 0;
}
if (colorRenderbuffer) {
glDeleteRenderbuffers(1, &colorRenderbuffer);
colorRenderbuffer = 0;
}
if (program){
glDeleteProgram(program);
program = 0;
}
// Release context
if ([EAGLContext currentContext] == context)
[EAGLContext setCurrentContext:nil];
[context release];
context = nil;
[super dealloc];

}

Listing 8.12: Closing down: Before an iOS application terminates, the framebuffers
and any GPU shader programs should be deleted so that no resources are lost for other
apps.

Figure 8.2: A mapping application.

UNIX/Linux kernel; thus it is also possible to write Android applications in a
native language, and execute them outside the VM. The Native Development
Kit (the NDK) provides all the information the developer needs to write and
execute apps written in C. Writing an app that uses some JAVA code running
in the VM and some C code compiled and used natively is also possible. Whilst
the Android API provides a rich collection of JAVA classes for making use of any

306 8. Mobile 3D: OpenGLES

- (void)render{
// bind the frame buffers
[EAGLContext setCurrentContext:context];
glBindFramebuffer(GL_FRAMEBUFFER, defaultFramebuffer);

// Set up the display - this code could be ued in "init"
glViewport(0, 0, backingWidth, backingHeight);
glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);

// Choose the vertex and fragment programs to run
glUseProgram(program);

/* DRAW USING OPENGL FUNCTION CALLS **/

glUseProgram(0); // Release GPU shader program
// bind the buffer that has been rendered and display it in the View
glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);
[context presentRenderbuffer:GL_RENDERBUFFER];
}

Listing 8.13: Render function of class ES2Renderer. Note the function call used to
specify which GLSL program to run.

specialized device hardware, it is also possible to write native apps that access
the underlying hardware, e.g., the accelerometers, the wireless and bluetooth
networks, but this is undesirable. Accessing the hardware natively is complex
and often depends on the specific hardware. One thing that is easy to do natively,
however, is to render to the screen using OpenGL; thus if you are developing a
game app for say both iOS and Android doing everything using OpenGL you
should be able to maximize the amount of common code used.

Three-dimensional graphics is a very small corner of the Android realm and
apps that depend on it may not be so well known. Getting started with Android
application development is a little harder than with iOS and Cocoa touch because
documentation and example programs are not so centrally controlled and devices
available from a wide range of suppliers tend to have their little quirks. A good
book that covers the basics is worth looking for if you have not written an
Android app before. Which one to choose can be a matter of personal taste.
Darcy [18] worked for me. Any others that become available after we go to press
will get a mention on the website.

One unfortunate consequence of the unbelievably rapid change in the mobile-
phone/tablet arena (from zero to sophisticated multi-sensor image processing
computer in less than four years) is that the developer’s tools and the SDKs can
change unrecognizably in less than a year. Every few months there is a new iOS
or Android version. However in both cases, the fundamentals that are of interest
to us have been established and when you look beyond the superficial changes in
developer’s tool appearance, everything we discuss in this chapter should remain
relevant so long as there is an iPhone or Android tablet still on sale.

8.3. 3D on Android 307

// Vertex Shader ////
#version 150 core
// passed in from App to shader on a per-vertex basis
layout(location = 0) in vec3 vertexPosition;
layout(location = 1) in vec4 color;

uniform mat4 MVP; // vie and projecton transformation

//pass this to fragmet shader
out vec4 colorVarying;

void main() {
// set the built in variable
gl_Position = MVP * vec4(vertexPosition_modelspace,1);
colorVarying = color;

}

// Fragment shader ////
#version 150 core

in vec4 colorVarying;
layout out (location = 0)gl_FragColor;

void main(){
// set the output
gl_FragColor = colorVarying;

}

Listing 8.14: The minimal code needed for a pair of shaders to render scene geometry.

We have two choices when it comes to using OpenGLES on an Android
platform: use the JAVA class wrappers for OpenGL, or go native and write in C
using the native development kit (NDK). In this section the key stages of code
development for both approaches will be outlined. As with all our examples in
the book, the listings will identify significant fragments whilst the full programs
will be are available with added commentary on the website.

8.3.1 Rendering with the GLSurfaceView class

Android apps are based around the activity and possibly several activities. Often,
each activity is associated with a specific task with a specific screen layout,
showing buttons, text boxes and other user interface elements. As the user
switches from activity to activity, the display switches from screen to screen.

The screen layout is defined as an XML script located in one of the project’s
resource folders. Apps can contain several activities and it is possible to put the
3D elements in their own activity with their own full screen display. A GLES
activity can access hardware (e.g., accelerometers) and use the touch screen
interface in the same way as any other activity. To make the developer’s work
easier, the Android SDK provides a JAVA wrapper class for OpenGL functions
and a straightforward way of defining the drawing surface.

308 8. Mobile 3D: OpenGLES

No special permissions are required to draw on the display and a default
manifest file covers all necessary application settings.

For an activity to make use of OpenGL the additional API imports required
are:

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import android.opengl.GLSurfaceView;

Setting up the activity to use the programmable shader pipeline, available
in GLES version 2 or later, is not that different from setting up for a GLES
version 1.x output.1 A few method changes are required, but perhaps the most
significant addition is the need to compile, link and install the shader programs.

For an activity that makes use of OpenGLES 2 a couple of extra API imports
are needed:

import android.opengl.GLES20; // additional include
import android.opengl.Matrix; // for matrix operations

A pair of very basic shaders need be defined. The easiest way to do this is
as a couple of JAVA strings:

public final String vertexShaderCode = " ";
"uniform mat4 uMVPMatrix;" +
"attribute vec4 vPosition;" +
"void main() {" +
" gl_Position = vPosition * uMVPMatrix;" +
"}";

public final String fragmentShaderCode =
"precision mediump float;" +
"uniform vec4 vColor;" +
"void main() {" +
" gl_FragColor = vColor;" +
"}";

Transformation matrices must be built in the application and passed to the
shaders because OpenGL is phasing out the use of the built-in matrix stack.
Listings 8.15 and 8.16 show how to implement the three most important methods
of the GLSurfaceView interface.

Listings 8.17 and 8.18 provide a few lines of code to exemplify how a user-
defined class might define a mesh that can be rendered using the glDrawEle-
ments(..) function. Note that in Android the glXXX() functions are wrapped as
methods of the gl.glXXX() and GLES20.glXXX classes.

At the time of writing GLES version 3.01 has been released. Whilst it adds
some features, the basic principles described here remain valid.

8.3.2 3D rendering with the NDK

Using OpenGL through the Android SDK wrapper class is fine for most appli-
cations but if you have an app that is only based around 3D graphics and you

1A document describing setting up a GLES version 1 display can be found on the website.

8.3. 3D on Android 309

class PA3DRenderer implements GLSurfaceView.Renderer {

private MyMesh mMesh; // the mesh
// the projection matrices
private final float[] mProjMatrix = new float[16];
private final float[] mVMatrix = new float[16];
private final float[] mMVPMatrix = new float[16];

private final int mProgram; // the shader program
// define a pair of simple shaders as strings
public final String vertexShaderCode = " ... ";
public final String fragmentShaderCode = "... ";

public void onSurfaceCreated(GL10 gl, EGLConfig config) {
// defnine the GLES surface background
GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
// load and compile the shaders
int vertexShader = loadShader(GLES20.GL_VERTEX_SHADER,vertexShaderCode);
int fragmentShader = loadShader(GLES20.GL_FRAGMENT_SHADER,fragmentShaderCode);
// create/attach/link the shader program
mProgram = GLES20.glCreateProgram();
GLES20.glAttachShader(mProgram, vertexShader);
GLES20.glAttachShader(mProgram, fragmentShader);
GLES20.glLinkProgram(mProgram);
// load a mesh
mMesh = new MyMesh();
// put any other initialization code HERE
}

public static int loadShader(int type, String shaderCode){
// create a vertex shader type (GLES20.GL_VERTEX_SHADER)
// or a fragment shader type (GLES20.GL_FRAGMENT_SHADER)
int shader = GLES20.glCreateShader(type);
// add the source code to the shader and compile it
GLES20.glShaderSource(shader, shaderCode);
GLES20.glCompileShader(shader);
return shader;
}

}

Listing 8.15: The rendering class and its method create the OpenGL output surface
and define a couple of very simple shaders.

want to execute on several platforms then avoiding as much use of the Java VM
as possible is a worthy alternative. It is possible to build an app based entirely
on OpenGL and that makes no connection with a JAVA Activity class. However
there may be occasions where it will be necessary to make use of some standard
JAVA activity type classes. For this type of app, it is still possible to perform
all the major tasks in a native library with its functions accessed from a JAVA
activity. Such an app is readily organized so that the native code provides three
functions to perform the tasks of initialization, drawing (in response to a timer)
and release of resources.

All Android native code is compiled into a shared object library (a .SO li-
brary) using the Android NDK tools and libraries. The functions that are re-

310 8. Mobile 3D: OpenGLES

public void onSurfaceChanged(GL10 gl, int w, int h) {
// Adjust the viewport based on geometry changes,
// such as screen rotation
GLES20.glViewport(0, 0, width, height);
float ratio = (float) width / height;
// this projection matrix is applied to object coordinates
// in the onDrawFrame() method
Matrix.frustumM(mProjMatrix, 0, -ratio, ratio, -1, 1, 3, 7);
// put any view dependent code HERE

}

public void onDrawFrame(GL10 gl) {
// Draw background color
GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT);
// Set the camera position (View matrix)
Matrix.setLookAtM(mVMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
// Calculate the projection and view transformation
Matrix.multiplyMM(mMVPMatrix, 0, mProjMatrix, 0, mVMatrix, 0);
// Draw the mesh
mMesh.draw(mMVPMatrix,mProgram);

}

Listing 8.16: The rendering class and its method create the OpenGL output surface
and define a couple of very simple shaders.

quired to be externally visible have special wrapper methods written for them
using the notation of the Java Native Interface (the JNI) that makes them ex-
ecutable within any Java program where they are declared as private static

native void MethodName(...) ... class methods.
Our NDK example project is based on a slightly modified version of the

SanAngeles program that ships with the NDK. (The SanAngles example is a
well-known benchmark program for OpenGLES. It has already been referenced
in section 8.2.1 and multiple platform versions may be found on our website.)

Full details on the development process and code descriptions are given in
the commentary that accompanies the project’s downloadable archive but it is
worth highlighting the details of the function naming and argument referencing
that must be adopted when linking Android JAVA VM code with code compiled
into a native shared object library. This is the JNI.

JNI nomenclature and NDK naming conventions The Java Native Interface (JNI)
is not an Android-specific specification. It applies to any situation where Java
code running in a VM wishes to access native code written in a native language,
typically C. The NDK uses the JNI as its definition of how to define function
names and arguments in native code so that they can be used with the method
names and calling conventions in the Java code. Because Java uses very different
storage conventions for its variables (for example, Java strings are not simply
byte character arrays,) the matching of parameters passed back and forth will
need to undergo translation and use a highly structured naming convention. This
is well documented in the JNI specification [55].

8.3. 3D on Android 311

class MyMesh {

private final FloatBuffer vertexBuffer;
private final ShortBuffer drawListBuffer;

private int mPositionHandle;
private int mColorHandle;
private int mMVPMatrixHandle;

// some mesh data;
// number of coordinates per vertex in this array
static final int COORDS_PER_VERTEX = 3;
static float Coords[] = { ...};
// order of the vertex data
private final short drawOrder[] = {};
// 4 bytes per vertex
private final int vertexStride = COORDS_PER_VERTEX * 4;

// Set color & alpha
float color[] = { .. };

public MyMesh() { // set up the mesh
// initialize vertex byte buffer
ByteBuffer bb = ByteBuffer.allocateDirect(

// (# of coordinate values * 4 bytes per float)
Coords.length * 4);

bb.order(ByteOrder.nativeOrder());
vertexBuffer = bb.asFloatBuffer();
vertexBuffer.put(Coords);
vertexBuffer.position(0);
// initialize byte buffer for the draw list
ByteBuffer dlb = ByteBuffer.allocateDirect(
// (# of coordinate values * 2 bytes per short)

drawOrder.length * 2);
dlb.order(ByteOrder.nativeOrder());
drawListBuffer = dlb.asShortBuffer();
drawListBuffer.put(drawOrder);
drawListBuffer.position(0);

}

}

Listing 8.17: The geometry of a 3D scene is typically rendered with the use of
glDrawArrays() or glDrawElements().

One of the trickiest things to do with the NDK is to pass data and make
function calls back and forth between the native functions and the Android API.
The rules of the JNI describe how to interpret data passed to the native functions,
and how to package data to be returned to the JAVA code. In terms of function
calls it is also likely that one would want to:

• Call native functions from JAVA class methods

• Call JAVA class methods from the native code

• Create JAVA objects from the native code

312 8. Mobile 3D: OpenGLES

public void draw(float[] mvpMatrix, int mProgram) {
// Use our shader to render
GLES20.glUseProgram(mProgram);
// get handle to vertex shader’s member
mPositionHandle = GLES20.glGetAttribLocation(mProgram, "vPosition");
// Enable a handle to the vertices
GLES20.glEnableVertexAttribArray(mPositionHandle);
// Prepare the coordinate data
GLES20.glVertexAttribPointer(mPositionHandle, COORDS_PER_VERTEX,

GLES20.GL_FLOAT, false,
vertexStride, vertexBuffer);

// get handle to fragment shader’s vColor member
mColorHandle = GLES20.glGetUniformLocation(mProgram, "vColor");
// Set color for drawing the mesh
GLES20.glUniform4fv(mColorHandle, 1, color, 0);
// get handle to mesh’s transformation matrix
mMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");
MyGLRenderer.checkGlError("glGetUniformLocation");
// Apply the projection and view transformation
GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mvpMatrix, 0);
// Draw the mesh
GLES20.glDrawElements(GLES20.GL_TRIANGLES, drawOrder.length,

GLES20.GL_UNSIGNED_SHORT, drawListBuffer);
// Disable vertex array
GLES20.glDisableVertexAttribArray(mPositionHandle);

}

Listing 8.18: The geometry of a 3D scene is typically rendered with the use of
glDrawArrays() or glDrawElements().

The best way to see the steps involved is to look at a minimalist example
that does the things needed and that can provide template code snippets that
we can call on when we ask how can I do that.

This example illustrates how to do some of the things you might wish to do
using the NDK. The code has been kept to a minimum but it illustrates how
to call a native method, and how to call object and static class methods from a
native function.

We do not have space to explain the full JNI notation and refer you to
the specification [55]; however the example we have chosen to describe includes
passing integers, floats, and text strings, so with a bit of intelligent guessing you
should be able to work out how to use two, three, or more arguments in the
functions.

Using the JNI notation Listings 8.19 and 8.20 present an example of how to use
the JNI in an Android activity. Listing 8.20 defines a class with a static method
that will be called from the native functions. The main activity indicates that
three native functions in a shared object library called libndk1 will be used. The
AndroidNDK1SampleActivity has four methods. The first three are attached to
three buttons on the screen and they execute when one of the buttons is pressed.
The fourth method is used to illustrate how to call an object method from a

8.4. Summing up 313

function in the native library. The method in class CRsf; (listing 8.21) is used
to illustrate how to call a static method in a class that has not been instantiated
with any objects. Method onCallNative1 passes a text string to the native
function helloLog. Method onCallNative2 passes two integers to the native
function getString that returns a string. Method onCallNative3 calls the
native function setup that calls back to the two JAVA methods: onRSFinstance
and onRSFstatic.

Listing 8.22 contains two functions. The first JNI OnLoad() is called when-
ever the native library is loaded and affords the developer the opportunity to
perform any tasks that must be done before any of the exported functions are
called. The second function getString() serves two purposes. First it illus-
trates the rather odd naming convention that must be used for functions that
are to be called from the JAVA code. The naming convention is relatively easy
to work out because it is made up by using these instructions:

Start with Java , then append the name of package that is to con-
tain the functions (but replace the “.” with an “ ”) then append
the name of the activity (with “ ”s pre-pended and appended,) and
finally add the name of the function. Thus, for example, to call
a native function using the method name setup from an activity
called AndroidNDK1SampleActivity contained in a package called
org.openfx.sample.ndk1 , the native code function name will need
to be:

Java_org_openfx_sample_ndk1_AndroidNDK1SampleActivity_setup (...)

Quite a mouthful.

The second function in listing 8.22 (getString) demonstrates how to convert
a C language string into the form required by JAVA and pass that back to the
method that called it.

Listing 8.23 completes the code for this short demonstration. Here setup()

uses the NDK’s API functions to demonstrate how to get access to a method in
a JAVA class and call that method with appropriate parameters. For example
the AndroidNDK1SampleActivity class’ method onRSFinstance(...) requires
one integer argument passed by reference. The JNI code for a single integer
argument is “(I)I”.

8.4 Summing up

This chapter has lifted the lid and peeped into the future of 3D graphics because
mobile computing is almost certainly going to be where the future is for most
people’s use of computers. By being there at the start, OpenGL is likely to
dominate the 3D mobile app market for the foreseeable future. And the reason
that OpenGL can be delivered on these platforms is down to the skillful, efficient

314 8. Mobile 3D: OpenGLES

// the app will be packaged here
package org.openfx.sample.ndk1;

import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.Toast;

public class AndroidNDK1SampleActivity extends Activity {
private static final String DEBUG_TAG = "RSF-NDK1";
/** Called when the activity is first created. */

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

// class methods go here

// Native fuctions that will be called are listed
// here with their return and argument data types.
private native void helloLog(String logThis);
private native String getString(int value1, int value2);
private native void setup();

// the NDK library to load is
static {

System.loadLibrary("ndk1");
}

} // end of class

Listing 8.19: The main activity code.

design and implementation of the GLES. Our single chapter can only scratch the
surface of everything that can be done with the OpenGL for embedded systems.
Check out Munshi et al. [63] to delve in more deeply. The significant change
of approach that has been seen in moving from GLES version 1 to version 2
points to quite a bit of work in re-coding application programs. Fortunately in
moving from version 2 to version 3 (the latest at time of writing) there are no
significant changes and version 2 programs should update without a problem
(because version 3 adds rather than deprecates functionality).

However, just because you can draw in 3D on a mobile device doesn’t mean
that you should. Directly porting a successful 3D app from a desktop to a
different media rarely works. While a tablet device may be forgiving, the much
smaller screen on a phone or media player is so different that any app that has
buttons, controls or displays text should be re-thought. Touch and multi-touch,
and an exciting range of sensors are also likely to revolutionize the way the user
interacts with their device and its applications.

Of critical importance in the mobile world is the awareness of battery life,
and the the need for an application to give way, for example when receiving a
phone call.

8.4. Summing up 315

// methods to be included in main Activity class

public void onCallNative1(View view) {//Act on button
// call to the native method
helloLog("This string will go to the log");
}

public void onCallNative2(View view) {// Act on button
String result = getString(5,2); // native method
long
Log.v(DEBUG_TAG, "Result: new "+result);
result = getString(105, 1232);
}

public void onCallNative3(View view) {// act on button
// call to the native method
Log.v(DEBUG_TAG, "Calling Setup new");
setup();
}

public int onRSFinstance(int i) { // called from NATIVE
String d=String.format("%d",i);
Log.v("RSF-C new", "Result:"+d);// c
return i+8; // return something
}

Listing 8.20: The main activity’s methods.

package org.openfx.sample.rsf1;

import android.os.Bundle;
import android.util.Log;

// a second class with a "static" method
// to be called from the native code

public class CRsf {
// called from ntive function
static public int onRSFstatic(int i) {
Log.v("RSF-CA new", "Result: ");
return i+8; // return something
}

}

Listing 8.21: A class with a static method declared in a second JAVA file.

Like all 3D apps this chapter has, I hope, shown that the coding is the easy
part. In reality the appeal of any 3D app is going to be in its models, artwork and
animation. Good programming only helps by delivering high-speed performance
to make the models dance.

316 8. Mobile 3D: OpenGLES

#include <jni.h>
#include <string.h>
#include <stdio.h>
#include <android/log.h>
#define DEBUG_TAG "NDK_AndroidNDK1SampleActivity"

// pointers and references used in the native code
JavaVM *vm;
JNIEnv *env;
jclass manager_class;
jclass rsf_class;
jobject self;

// Always called on library load
jint JNI_OnLoad(JavaVM *curVM, void *reserved) {
return JNI_VERSION_1_4;
}

//function name and return value (helloLog)
void Java_org_openfx_sample_ndk1_AndroidNDK1SampleActivity_helloLog
// arguments
(JNIEnv * env, jobject this, jstring logThis) {
jboolean isCopy;
const char *szLogThis;

*szLogThis = (*env)->GetStringUTFChars(env, logThis, &isCopy);
(*env)->ReleaseStringUTFChars(env, logThis, szLogThis);
__android_log_print(ANDROID_LOG_DEBUG,DEBUG_TAG,"NDK:LC: [%s]",

szLogThis);
}

//function name and return value (getString)
jstring Java_org_openfx_sample_ndk1_AndroidNDK1SampleActivity_getString
// arguments
(JNIEnv * env, jobject this, jint value1, jint value2) {
char *szFormat = "The sum of the two numbers is: %i";
char *szResult;
// add the two values
jlong sum = value1+value2;
// malloc room for the resulting string
szResult = malloc(sizeof(szFormat) + 20);
// standard sprintf
sprintf(szResult, szFormat, sum);
// get an object string
jstring result = (*env)->NewStringUTF(env, szResult);
// cleanup
free(szResult);
return result;
}

Listing 8.22: The native code: Loading function and examples of sending and receiving
a text string.

Tablet and mobile devices do open up a brave new world because they give the
3D app developer access to unique features like the accelerometers and compass
that have no real meaning for the desktop. Location-based services, GPS sensors,
3D maps etc. can be the progenitor of many novel 3D-enabled applications.

8.4. Summing up 317

//function name and return value
void Java_org_openfx_sample_ndk1_AndroidNDK1SampleActivity_setup
// arguments
(JNIEnv * env, jobject this){
int id = 88; // test value to be passed to JAVA methods
..
// call instance method
// get pointer to class
manager_class = (*env)->FindClass

(env,"org/openfx/sample/ndk1/AndroidNDK1SampleActivity");
// get the method
jmethodID mid = (*env)->GetMethodID

(env, manager_class, "onRSFinstance", "(I)I");
// call the method (the "this" parameter is used here because
// we are calling a method in the object that called this funciton)
id=(*env)->CallIntMethod(env, this, mid, id);
..
// calling class static method
// get pointer to class
rsf_class = (*env)->FindClass

(env,"org/openfx/sample/rsf1/CRsf");
// get the method
jmethodID mids = (*env)->GetStaticMethodID

(env, rsf_class, "onRSFstatic", "(I)I");
// call the method
id=(*env)->CallStaticIntMethod(env, rsf_class, mids, id);
..

}

Listing 8.23: The native code: Example of native code calling static and instance
methods in a JAVA class.

This page intentionally left blankThis page intentionally left blank

9
The complete package:

OpenFX

The aim of this book is to put the algorithms of computer graphics into a prac-
tical setting and make them usable. There can be no better way to do this than
by showing how this is done in a comprehensive application program with all the
features that one expects to find in a mainstream 3D animation tool. I have cho-
sen to do this by examining the open source application suite called OpenFX.1

It is mature software, having been in continual development for over 10 years. It
has a reputation of being robust and very comprehensive, and it has wide range
of support materials available on its OpenFX.org website. The code is docu-
mented extensively and there are many briefing notes on the OpenFX website,
so this chapter aims to act as a description of how all the parts of OpenFX fit
together to turn it into a practical modeling, animation and rendering program.

There are two advantages of using OpenFX. First it covers almost every-
thing one needs to consider in a book such as this. It has modules for building
polygonal 3D models, animating them and rendering images of the scenes us-
ing conventional software algorithms and a near-real-time GPU engine. Second,
despite an immediate reaction you might have that an application written by
one man and a dog will be a big disadvantage, we disagree! Precisely because
it is the product of a small team working part time, the code is short (enough),
the implementation efficient and it will be much easier for you to follow than it
would otherwise be if it was the product of hundreds of person years of program-
mer time. So that’s the rationale for shifting the focus in the second edition to
examine the code of a really useful 3D authoring tool. We will be able to see
how all the theory and algorithms that you’ve been reading about can be made
practical.

It’s not unreasonable to expect that after reading this chapter you will be
able to take the code and adapt it for your own specific needs, for example to
read, modify and write an editor for almost any polygon based 3D data.

1I designed the software architecture and engineered most of the code.

319

320 9. The complete package: OpenFX

OpenFX is written in ANSI C and uses the Windows native API and the
OpenGL API. No other libraries, APIs or third-party software are required in
order to build it. It has been compatible with all version of Windows since
Windows NT version 3.1 and is just at home on Windows 8. We originally
built the code using the Watcom C compiler and had DOS batch and makefiles
to bring everything together.2 However, as the industry standard for Windows
applications development is now Visual Studio, that’s what we use. Our preferred
IDE is Visual Studio 2003. (We much prefer this to the later versions, but the
VS2003 solution and project files can all be easily upgraded for use with the
later editions of Visual Studio. OpenFX builds just as happily with an upgraded
solution file in Visual Studio 2012 as it did in VS2003.)

OpenFX is not a single program. It is based around three executable pro-
grams, a collection of dynamic link libraries, and a number of other stand-alone
utility programs. The three core applications behave (and appear to the user)
as if they are one single application program. They are:

1. The Animator is where animations are staged and directed. Every element
on the stage is called an actor. Polygonal models move and turn in front
of a camera. Lights, backgrounds, non-mesh actors, for example a particle
system, and even several cameras are also scripted in the Animator. The
action is rehearsed and previewed in real-time, using wireframe visualiza-
tion and when the director is satisfied with the clip, a script is written for
the Renderer to turn into a shaded image or movie. The Animator is the
program that the user first sees. It loads the Designer and other programs
as needed.

2. The Designer is used to design and build the polygonal mesh models that
will be used as costumes for the Animator’s main actors. The models use
conventional triangular polygons to represent the surfaces of the object.
The Designer uses three main lists to record the geometry and its topol-
ogy: (1) the polygonal faces, (2) the network of vertices that the faces are
attached to, and (3) the edges in the model. The edges are not borders
on the polygonal faces; any two vertices can be connected by an edge even
if they are not part of a face. The Designer is also used to build a list of
materials and texture maps and apply them to the polygonal surfaces.

3. The Renderer is the module that creates the photographic images of models
built in the Designer and animated in the Animator. The Renderer per-
forms most of its work in the background using either a software scanline
Z-buffer hidden surface algorithm with an optional hybrid ray-tracing al-
gorithm, or the GPU accelerated hardware accessed through the OpenGL
library. The Renderer is used by both the Animator and Designer and will
continue to execute in the background while activity continues in the other

2Yes! The program actually ran under DOS (in its first version).

9.1. Using OpenFX 321

modules. The Renderer module can be used in a mode (called the Script
Renderer) that does not need either the Animator or Designer modules to
be loaded. The Script Renderer may also be run on several other platforms
at the same time.

OpenFX can be said to conform to the Document-View architecture of many
application programs. Word, Excel and Photoshop are all applications of this
type. The Microsoft Foundation Class (MFC) discussed in section 7.2.1 uses the
Document View design as one of its core concepts.

In the case of the Animator, the document is a description of a scene and the
action in the scene. The document is represented in memory as a collection of
objects arranged as a tree structure held together using doubly-linked list data
structures. The view comes in two forms: a diagrammatic view of the tree and
a three-dimensional map of the scene with a director’s camera view. The user
can use either view to alter the scene’s data and its inter-relationships.

In the case of the Designer the document is a description of a polygon mesh
model, its spatial design and the appearance of its surfaces. This document is
represented in memory by lists of vertex positions, mesh topologies and surface
materials. The view does just what it says; it allows the user to see the mesh
and alter it through a three-dimensional plan and oblique view.

This chapter begins with a brief review how OpenFX works from the user’s
perspective. Then we will focus on the three main modules in turn, examining
their key data structures, how the plug-in modules work and how the code is
constructed. The whole book could have been devoted to exploring the OpenFX
code, and in a way it is. The theory on which computer graphics is based, the
rendering, modeling and shading algorithms, the structures used for describing
3D models and the hardware visualization using OpenGL that preceded this
chapter are OpenFX. Of course, we don’t have space to forensically examine
every one of the lines of code in the program but we can look at the most
important components of the data structures, the core program variables and
the flow of execution through the algorithms. The story that this tells is not
available on the OpenFX website, but to make the most of this chapter it should
be read in conjunction with the code itself and especially the links provided
on the book’s website which hook into the OpenFX developers’ web pages and
Doxygen-generated reference documentation.

9.1 Using OpenFX

For reasons of space, we will say only a very little about the usage of OpenFX.
There is no substitute for trying things yourself, so before we explore the code,
why not download and install OpenFX and grab a copy of the source code too.

The best way to set up a development environment and explore the source
code is to start by installing the binary release and then superimpose the source
code onto the same folder structure.

322 9. The complete package: OpenFX

(c)

(b)(a)

Figure 9.1: The OpenFX user interfaces. (a) Animation, (b) Design and Modeling, (c)
Timelines and Keyframes.

9.1.1 The OpenFX approach to animation and modeling

The program observes the standard conventions of:

• Click on an item to select it.

• Double click for extended information.

• Click and drag to move the item.

All the user actions take place in a cubic volume called the working-volume. A
3D cursor may be placed anywhere inside the working-volume by moving it in
one or more of the view windows.

The Animator and Designer modules have two main user interface compo-
nents, (1) tools and (2) actions. Tools are appropriate for repeated use and ac-
tions are usually applied one at a time. When a tool is activated it stays active
until another tool is selected. In the Designer, actions are normally prohibited
unless the default tool is in use.

9.1. Using OpenFX 323

The language of animation and modeling Amesh of triangular polygons represents
the objects that are to be animated. Objects can be anything, a car, a plane, a
dog or a human figure. Deciding how many triangles to use in the model is not
an exact science. The triangular faces can be given additional attributes such
as color and texture. They can also have a picture or movie painted onto their
surface.

The triangular facets (faces of the model) are positioned using a vertex at
each corner. Each triangular face is surrounded by three edges. The edges make
up a “wireframe” description of the model. The mouse (or stylus) is used to move
the vertices of the model in 3D space and thus change the shape of the model.
Models are built inside a cubic region of space know as the working-volume. The
size and position of the “working-volume” is easily changed.

Animation takes place over a number of frames. A Keyframer tool specifies
costume, movement, orientation and scale in keyframes. In an animation the
term actor is used to describe each directable element. An actor can be: a star
that performs in front of the camera, or a camera from which the animation is
filmed, or one of a number of lights, or a path along which other actors can move.
The actors wear a costume which is a model created in the Designer. Actors can
change costume during the animation; this allows model morphing (changes of
shape). For example, a fish can turn into a bird.

Actors fulfill all the roles in an animation and as a consequence they take a
number of specific forms. The most common actor is a normal actor that can
wear any mesh model as its costume. These actors will be the principal visible
elements in the rendered movies. Actors also represent other key elements: The
Camera actor does what its name implies. The Sky actor represents the back-
ground. The Ground is a flat plane that extends to the horizon in all directions.
A Director coordinates camera switching. The Post-process applies an image
filter to the output. The last type of actor, and possibly the most interesting,
is called a Robot. It is a special form of the Normal actor specifically used for
character animation.

Animating The Animator module is where animations are set up. Three orthog-
onal views and a camera view show the world where the action takes place. The
visible region of the world, the working-volume, may be moved through space
and changed in size. A major component of the Animator is the Keyframer. The
Keyframer shows the timelines and keyframes for all the actors in a spreadsheet-
like format.

Keyframer To direct the activity of an actor during an animation requires the
use of timelines and keyframes. The Keyframer is a module where the timelines
and keyframes of all actors can be viewed and edited in one display. Normally
timelines and keyframes are created implicitly as actors are added and the tools
are used to move them into position and tell them what to do. In the Keyframer
window, time runs in the horizontal direction and for each actor the extent

324 9. The complete package: OpenFX

of timelines and position of keyframes is displayed. The timelines are the red
horizontal lines and the colored dots at the end of the timelines are the keyframes.

Designing The Designer module is where polygonal models are built. Three
orthogonal views give working access to the working-volume, where vertices,
edges and faces may be placed. The mesh of polygons and vertices gives a
triangular faceted model for real or imagined objects. The orthogonal view in
the upper right corner of the screen displays a rendered preview of the contents
of the working volume.

9.2 The OpenFX files and folders structure

Figure 9.2 shows a list of the sub-folders within the OpenFX main folder in which
the source code is located. It is very important when building the application
that these folders retain their names and relative path locations. Preferably the
OpenFX main folder should be located in the root on drive C:; however all the
build files use relative path specifications and therefore building OpenFX on an
alternative drive or in a sub-folder of some other path should only throw up
minor issues.

There are a number of other folders used during the execution of the program,
and to hold sample models, animations, images, movies etc. However, these do
not contain code and they have been omitted in figure 9.2.

As mentioned in the chapter’s opening remarks, although OpenFX appears to
the user as one application it is in fact structured as three main .EXE programs,
plus a number of other utility programs that play movies, display images or
convert from one data format to another. The appearance of an integrated
application is achieved by launching one application from another using the
WinExec() API function. Using the knowledge that each application is based
around a window of a unique Windows Class and that when an application is
loaded it will respond to messages sent to its window. For example, the designer
module (main window class name of OFX:ModelerClass) can be instructed to
become active using the code:

..
if((hWnd=FindWindow("OFX:ModelerClass",NULL)) != NULL){

SetForegroundWindow(hWnd);
BringWindowToTop(hWnd);

}
else{

strcpy(modulename,gszHomeDir);strcat(modulename,"design.exe");
result=WinExec(modulename,SW_SHOW);
if(result < 32){ ... /* error */ }
if((hWnd=FindWindow("OFX:ModelerClass",NULL)) != NULL){

SetForegroundWindow(hWnd);
BringWindowToTop(hWnd);

}
else .. // eror did not start

}
...

9.2. The OpenFX files and folders structure 325

Figure 9.2: The main folders containing the OpenFX code.

And the renderer module (with a main window class name of OFX:RenderClass,
which is based around a window of window class OFX:RenderClass, can be
instructed to terminate itself by sending it a message with the code:

..
if((hWnd=FindWindow("OFX:RenderClass",NULL)) != NULL){

SendMessage(hWnd,WM_COMMAND,IDM_CALLBACK_SHUTDOWN,0);
}

..

Each of the three main executable programs of OpenFX uses a number of
additional dynamic link libraries (.DLLs). They are either loaded with the main
program when it is loaded, or they are loaded and unloaded as necessary. The
DLLs that are loaded at the start contain essential components of the programs.
Resources for the menus, dialog boxes and text strings are provided to the
Designer, Animator and Renderer in separate files: des res.dll, ani res.dll and
rnd res.dll. Providing resources in this way allows for easy internationalization
of the application. It has been translated for use with the Japanese language just
by changing these three files. Many essential modeling tools (boolean modeling
for example) are also provided through DLLs. These DLLs apply to optional
components, material shaders, animation effects and image post-processors. For
example, many of the modeling actions in the Designer are loaded, executed and
released through calls to the DLL handling functions in the Win32 API, using
the code:

326 9. The complete package: OpenFX

.BMP .GIF .TGA Image file formats supported

.JPG .PNG .TIF for input and output

.AV I Movies for input and output

.STL Stereo lithography data

.3DS Mesh objects in 3D Studio format

.DXF Autocad drawing format.

.WRL VRML formats.

Table 9.1: Well-known file types that OpenFX supports.

BOOL LoadInternalAction(char *library){
..
HMODULE hLib;
FARPROC fpFun;
X__STRUCTURE *Evs;
BOOL (*fpFun1)(HWND, HWND, X__STRUCTURE *);
Evs=&EviStructure;
strcpy(lname,gszHomeDir); strcat(lname,library);
if((hLib=LoadLibrary(lname)) != NULL){

if((fpFun=GetProcAddress(hLib,"_Xmodeler")) != NULL){
fpFun1 = (void *)fpFun;
status=(*fpFun1)(ghwnd_main,ghwnd_info,Evs);

}
else return FALSE;
FreeLibrary(hLib);

}
else return FALSE;
return TRUE;
}

OpenFX uses a special structure, in this case an X STRUCTURE, to pass point-
ers that give access to most of its global variables and functions to the attaching
DLL. This is discussed in detail in section 9.8 on building plug-ins.

9.2.1 Filename extensions

Like all application programs OpenFX uses filename extensions to hint at the
type of information a file contains. A number of file extensions are used in
addition to the well-known file types that the program supports. The well-
known filenames are mainly used to contain images and movies. Tables 9.1 and
9.2 show the list of filename extensions used and supported by OpenFX. The
rendering module uses a temporary script file (filename extension .SCR) that is
created by the Animator. It is not normally of any concern to the user because
it is written automatically and removed when the program terminates. However
it can be created for off-line rendering on multiple hosts.

9.3. Coordinate system and units 327

.OFX An animation.

.MFX A mesh model.

.SCR Intermediate Renderer’s file.

.EFX An animation plug-in effect.

.AFX A Designer action plug-in.

.DFX A Designer tool plug-in.

.XFX An image post processor.

.PFX An Animator’s preset animation.

.TFX A plug-in-shader.

.RSQ A robot actor sequence.

.PTH A path for actors to move along.

Table 9.2: OpenFX specific file formats.

9.3 Coordinate system and units

Before one can make sense of the code of OpenFX it is essential to know how
OpenFX represents its data in three-dimensional space. The most significant
feature of the coordinate system is that it is integer based. Floating point (ei-
ther float or double type) numbers are used in intermediate calculations and
during final transformations in the renderer and depth buffer. The reasons that
the mesh models have their vertex coordinates recorded as integers is because
comparisons can be done exactly. Many geometric algorithms can be done more
robustly when using integers for coordinates and the optimizing step made prior
to ray-tracing can be made much more efficient.

Given these advantages there is the disadvantage that the scale of objects
is limited to the maximum size of a 32-bit integer, about 4 × 109. Since the
animator can scale models up by many orders of magnitude a compromise has
to be accepted and the models built in the Designer are limited to sizes between
±2048 and ±33554432 integer units. The zoom function is limited to work within
these limits. In the Animator the limits are ±2048 and ±1073741824. The lower
limit allows for some detail to be presented at higher detail than maximum zoom
permits and the upper limit gives space for movement at maximum zoom out.
These restrictions really only limit the level of detail that can be recorded in a
scene, and pose no practical limitations on the scope of animations or models
that can be used.

The coordinates used by OpenFX differ from those used in OpenGL. In
OpenFX the Z axis is vertical; models are built so that they face forward along
the +Y axis. In the animator, when models move forward they move in the
direction of their local +Y axis. The coordinate system is right handed and this
defines the direction of the X axis as lying toward the right.

328 9. The complete package: OpenFX

Figure 9.3 illustrates how the 2D screen is arranged so that the user can
work in a 3D volume, and how the windows into to the working-volume relate
to the coordinate system. There are two important reference points highlighted
in figure 9.3. First, the coordinate axis has to be defined. This is called the
center point and it is the point by which the model is positioned and moved in
the animator. Second, because it is necessary to use a 2D computer screen, via
mouse or pen, a way must be found to move and work at a 3D location in the
working-volume. This can be done by defining a 3D cursor. To move the 3D
cursor to a 3D location, the user has to position it using at least two of the view
windows. The program variables NpointerX, NpointerY and NpointerZ hold
this value.

9.4 User interface implementation

To build 3D models and set up animated scenes, an application program requires
a fairly comprehensive user interface. The Animator and Designer programs
present a very similar similar appearance to the user, but there are minor differ-
ences. The Animator’s fourth view window presents a wireframe representation
of the scene as visualized by a camera. The Designer’s fourth window shows
the object as seen from an arbitrary view pointer. The Designer’s fourth win-
dow may be optionally rendered using the OpenGL shading library (the other
wireframe views are rendered using Win32 GDI3 functions) and most of the
interactive tools can be used in this window. The Animator’s camera view is
purely passive. However, the renderer, which is a completely separate program,
can be commanded to draw a 3D shaded view into the Animator’s camera view
windows (demonstrating the power of the inter-process communication outlined
in section 9.2).

The Renderer does not need a sophisticated user interface, so its presentation
is simply that of a tabbed Windows dialog box. The Renderer’s dialog layout
is loaded from a resource file. The majority of the Renderer’s code is platform
independent, and porting this module to other hosts would be a fairly simple
task.

The user interfaces of the Animator and Designer modules is based on a collec-
tion of hierarchical windows. The application’s main windows has a blank client
area and a menu. The three rectangular view windows and the perspective/cam-
era windows are created as child windows. The toolbar buttons are implemented
as child windows of another window representing the toolbar, which itself is a
child window of the main window. The main window receives and processes
messages from the application’s menu bar.

The window class names and their message processing functions are given in
table 9.3 for the Animator, and in table 9.4 for the Designer.

3Future versions of OpenFX will render all views using OpenGL at some point.

9.4. User interface implementation 329

Menu bar

Top view

+y

3

2

33

+x

+z

+y+x

+z

Side viewRear view

Status bar

View window

Toolbar

1

Figure 9.3: The OpenFX screen layout depicts three main user windows showing views
into the working volume. The views show a view from the top looking down, a view
from the rear looking forward and a view from the right side looking to the left. In
the coordinate system used by OpenFX the Z axis is vertical and the X axis points to
the right. This figure also shows the other main screen elements and identifies three
important markers. (1) The center (hold) point, (2) an offset point, and (3) the 3D
cursor used to move the work position in 3D space.

The Animator’s menu commands are handled by the function called
AnimatorMenuCmd(... LOWORD(wparam), hwnd, lparam);, and the Designer’s
menu commands are processed in DesignMenuCommand(LOWORD(wparam), hwnd,

lparam);. These functions take the standard Windows message parameters as
arguments, and dispatch actions, tools and all the major tasks undertaken by
the program.

Other window messages are handled in the window functions for each class
of windows, for example the mouse button, mouse move and keyboard messages.

330 9. The complete package: OpenFX

Class Name Message Handling Function Window

OFX:AnimatorClass MainAnimatorWndProc Main appli-
cation

OFX:AnimatorViewClass AnimatorViewWndProc Camera
OFX:AnimatorTriViewClass AnimatorTriViewWndProc Working

volume view
OFX:AnimatorQuicktimeClass QuicktimeWndProc Frames

progress
bar.

OFX:AnimatorToolboxClass ToolboxWndProc Tool panel
container

OFX:AnimatorToolBtnClass ToolBtnWndProc Button in
tool panel

Table 9.3: Window class names, message handling functions in the Animator.

Class Name Message Handling Function Window

OFX:ModelerClass MainModelerWndProc Main applica-
tion

OFX:ModelerViewClass ModelerViewWndProc Oblique view
OFX:ModelerTrivViewClass ModelerTriViewWndProc Each working

volume
OFX:ModelerToolboxClass ToolboxWndProc Tool panel

container
OFX:ModelerToolBtnClass ToolBtnWndProc Button in tool

panel

Table 9.4: Window class names, message handling functions in the Designer.

The three windows that show the top, rear and side views are all handled by the
same window function.

Rendering of the client areas of all the windows is not done directly in re-
sponse to a WM PAINT message because for very large meshes this would be
too slow, especially when re-sizing a window. Instead, only when a tool is used
or an action is performed rendering takes place using the GDI API functions
into an off-screen bitmap. The off-screen bitmap is rendered to the display using
PatBlt() when a WM PAINT message occurs, or is generated internally.

The Designer’s optional shaded perspective/orthographic view, rendered us-
ing OpenGL, is created in a DLL (built with project “gldesign”) loaded at run-
time. The OpenGL window replaces the OFX:ModelerViewClass window with
one of class OFX:OpenGL. All its messages are processed by the handler func-
tion OpenGLWndProc(), whose source code can be found in the file “gldesign.c”,
that is one of the build files for the DLL gldesign.dll.

9.5. The Animation module 331

In addition to the program’s main windows there are a small number of
modeless dialogs used for defining user-specified units, some of the tools, and in
the Designer for working with materials and image maps.

A few other window classes are used to handle some floating tool panel win-
dows, for example the coordinates dialog box.

9.5 The Animation module

The Animator program is the launching point for all the other applications of
OpenFX. It provides a window into a four-dimensional world where the actions
of the actors are directed in space and time. The Animator’s interface imple-
mentation is described in section 9.4. This section provides a commentary on
the way the Animator organizes its data structures and a tour of the main route
in the path of execution.

9.5.1 The data structures

The numerical description of the action and the scene is recorded externally in
the .OFX file, and stored internally in a series of data objects for the various
components. These are arranged in a series of doubly linked lists that are in-
terconnected via object pointers that topologically resemble a tree. Figure 9.4
illustrates how the data is organized. Each actor in a scene is represented by
an instance of a node object whose data structure is presented in listing 9.1.
The key program variable FirstNp points to the first node in the doubly linked
list of nodes and may be used to gain access to every piece of data used in the
Animator. There must always be at least one actor in a scene; this must be a
camera actor. In figure 9.4 the list of nodes can be see at the left-hand side.

For each node, the behavior of the actor is fully specified by providing up to
four additional linked lists for the key events. The list of key events map onto
a timeline with each event being described to the user as a key frame. The four
types of key events are:

• Costume: This type of event is defined by the variables in an object (or
sky or director) data structure and the first item is pointed to by the
variable fobj / fsky/ fposition in the actor’s node structure.

• Position: This list of events, stating that the actor will be located at
(x, y, z) in frame i, is pointed to by the variable fpos in the actor’s node
structure.

• Alignment: This list of events, stating that the actor’s local y axis will be
rotated by angles (φ, θ, ρ) around the global (world) (x, y, z) axes in frame
k, is pointed to by the variable fali in the actor’s node structure.

332 9. The complete package: OpenFX

FirstNp

Nodes

MainNp

fobj/fsky/fdirector
fpos
fali

fsiz

1 20 150frames
actor
position

size
alignment

155

Figure 9.4: The Animator’s scene is specified by and represented by a tree-like struc-
ture, where each actor is based on a node. The actions of the actor is described by up
to four other types of data objects that exist.

• Size: This list of events, stating that the actor’s dimensions will be scaled
by a factor of (∆x,∆y,∆z) in frame k, is pointed to by the variable fsiz
in the actor’s node structure.

The common data structure members firstframe and lastframe identify
the segment of the animation throughout which the costume/position/alignmen-
t/size applies. The information presented to the user carries the implication that
a keyframe lies at the end of each of these segments. Although not essential, it
is assumed that the order of the timeline objects is the same as their temporal
progression. For example, a timeline segment (also known in the program as
a channel) covering the interval between frames 1 and 30 precedes a segment
covering frames 31 and 51. Note, however, that gaps in the time sequence are
quite normal and some timelines may have no keyframe channels/segments at
all. For example, in a 100-frame animation a camera may have two position
channels from frames 10-90 and 100-100 (i.e., a single frame specification).

The costume or object data structure is used to specify actors of several
types. The members of the structure are shown in listing 9.2. The structure
applies to all objects that use a mesh model, including the ROBOT actor type.

9.5. The Animation module 333

typedef struct Animator_NODE {
struct Animator_NODE *last; /* pointer to previous object */
struct Animator_NODE *next; /* pointer to next object */
struct Animator_SKY *fsky; /* pointer to the first sky object

for SKY actors otherwise NULL */
struct Animator_DIRECTOR_tag

fdirector; / pointer to the first director
if not DIRECTOR then NULL */

struct Animator_OBJECT *fobj; /* pointer to the first OBJECT object
represents all other actor */

struct Animator_POSITION *fpos; /* pointer ot the first POSITION
timeline segment for this actor */

struct Animator_ALIGN *fali; /* pointer ot the first ALIGNMENT
segment for this actor */

struct Animator_SIZE *fsiz; /* pointer ot the first SCALING
segment for this actor */

short type, /* Identifies the type of actor
e.g. NORMAL CAMERA etc. */

ID; /* Unique identifier given by
Animator to represent the actor*/

char actorname[128]; /* Text string for the Actor’s name */
} node;

Listing 9.1: The node data structure is a doubly linked list of actors in the scene. It
contains pointers to the other objects that describe what the actor is doing, where it
is doing it and when it is doing it.

The ROBOT actor type, PATH actors and even the PostProcessor actor use this
structure. Any member variable that is not used for a particular actor is set to
NULL.

The costume object is the largest object in OpenFX because it has to encom-
pass such a disparate range of data. Listing 9.2 highlights the most important
data pointers. Two of the pointers and two long structure members require
further consideration. These are npoints, nedges, *points and *edges. These
members are significant because they are associated with the wireframe data
for costumes based on mesh models that have been built in the Designer and
loaded from an .MFX type file (points are equivalent to vertices). The arrays
these pointer address can be large (perhaps > 100, 000 vertices) and will oc-
cupy a large block of RAM memory. Some animations might need to instance
thousands of these meshes and so, to save memory, if different actors use the
same mesh only one instance of each model (loaded from an MFX file) is held
in memory. Since the same memory might be used by several costumes careful
reference counting is required to ensure that this memory is only released when
the last costume, that was using it, is deleted. Care also needs to be taken
when costumes are being changed (i.e., a different mesh is being loaded into the
costume). There is also the question of when a costume is being changed does
the change only apply to the selected actor, or does it apply to all actors using
this mesh. The functions CreateCostume() and DeleteCostume() handle this
reference counting.

334 9. The complete package: OpenFX

typedef struct Animator_OBJECT {
// for all actor types
struct Animator_OBJECT *last; // Doubly-linked lsit of timeline
struct Animator_OBJECT *next; // segments (last and next pointers)
short type; /* Actor type NORMAL ROBOT GROUND PATH etc */
short firstframe, /* The first frame of this segment of the timeline */

lastframe; /* The last frame of this segment of the timeline */
short morph; /* Indicates Actor’s costume is morphing */
// Followed by actor type specific members
..
// Selected other members
long nNurbs; /* Number of NURBS patches inNORMAL actor */
nurbs *Nurbs; /* NURBS patch data for any NURBS in OBJECT */
/* If this is a particle system actor then thi smember is valid */
ParticleSystem particles;
/* for IMAGEPROCESS actors the name of the effect*/
char *xip;
object;

Listing 9.2: The Costume (object) data structure. Some members have been removed
from this listing to help highlight the most important items. (Consult the web references
for a link to a full list of member variables.) Listings 9.3, 9.4 and 9.5 contain details of
the actor-specific structure members.

// NORMAL AND SKELETON specific members
point origin, /* origin of a mesh object */

offset; /* offset point */
long npoints; /* Number of vertices in the model */
long nedges; /* Number of edges in the model */
long nskeleton; /* For ROBOT actors number of skelton bones */
point *points; /* Array of vertices MAIN DATA FOR MESH OBJECT */
Sedge *edges; /* Array of edges MAIN DATA FOR MESH OBJECT */
long *skid; /* Vertx -> skeleton node it is attached to*/
skel *skeleton; /* pointer to skeleton structure */
char name[255]; /* The name of the MFX file for NORMAL and ROBOT */
awire w_frame; /* A wireframe for use a bounding box */
point outline[8]; /* Corners of the bounding box of the object */
// external effect
char *effect; /* The name of any Animation effect */
HMODULE hEffect; /* Handle to any animation effect DLL */

Listing 9.3: Members of the costume (object) structure specifically for NORMAL and
ROBOT actors.

Two types of actors have customized costume objects, the Sky and the Direc-
tor. Neither of these actors have any connection with a mesh or extended data,
whereas, a Path for example uses extended data to define its control points. The
key members of the Sky and Director actors are highlighted in listing 9.6.

Looking back at the object (costume) data structure (listing 9.2), it can be
seen that some members use instances of other data structures. The Robot
actor uses an array of skel (see listing 9.7) types to specify the location and

9.5. The Animation module 335

// light and ground specific members
unsigned char colour[3], /* colour */
acolour[3]; /* secondary colour */
short groundtype; /* Type (PLAIN/TEXTURED etc.) */
short lighttype; /* OMNIDIRECTION SPOTLIGHT NOSHADOW etc. */
double light_intensity; /* light intensity [0 - 1] */
short depth_cue; /* Is the light intgensity to fall off */
..
short self_shadow, /* This actor self shadows */
cast_shadow, /* This actor does or does not cast a shadow. */
show_shadow; /* Show or do not show shadows */
RAMIMAGE image; /* Any image that is needed by a GROUND */

Listing 9.4: Members of the costume (object) structure specifically for LIGHT and
GROUND actors.

// Path specific members
short pathtype, /* type of path OPEN CLOSED etc. */
double *v; /* pointer to velocity profile array */
npathpoints; /* this holds the number of pathpoints. */
pathpoint *firstpathpoint; /* pointer to their first pathpoint */
double pathlength; /* path length (in internal units) */
int npec; /* Number of pathedit control points */
PATHEDITCONTROL *pec; /* Pointer pathedit control points */

Listing 9.5: Members of the costume (object) structure specifically for PATH actors.

orientation of the bones in the skeleton. It also uses a list to identify which mesh
vertex is attached to which bone. A ground actor might require an image map
and this is defined in a RAMIMAGE structure. Path type actors require a list
of path control points (data type pathpoint, see listing 9.8) and a further set of
spline control points (data type patheditcontrol) are used to determine how
fast objects following the path travel along the path, where they accelerate or
decelerate etc. Particle system actors have their own special structure to hold
the parameters and settings that define that particle system’s behavior.

The particle system implemented within OpenFX follows very closely the
principles set out in section 6.7 but some special circumstances need to be taken
into account. These are the position, orientation and scale of the system, as well
as the time interval over which the effect takes place. No temporal scaling is
applied. The effect plays out in absolute time, but it may be curtailed if the
timeline segments are too short, or have finished completely if the segments are
too long. Each costume timeline segment is designated as one performance of the
particle system. The behavior starts in frame one of the segment and continues
for the duration of the segment. Some particle systems may have the appearance
of a flow that continues until the end of the segment. Some may burn themselves
out and have to be reignited with another segment.

336 9. The complete package: OpenFX

typedef struct Animator_SKY {
char name[128]; /* The name of the Sky actor */
short type; /* The type of sky (simple Backdrop etc.) */
unsigned char colour[3], /* The sky’s horizon colour */
zcolour[3]; /* The Sky’s zenith colour */

/* The first and last frames of this segment of the timeline */
short firstframe,

lastframe;
long aff,/* For animated Sky this is the first frame */

alf,/* For animated Sky this is the last frame */
ast;/* For animated Sky this is the frame interval */

RAMIMAGE image; /* the image associated with this sky. */
..
} sky;

typedef struct Animator_DIRECTOR_tag {
/* The first frame of this segment of the timeline */
short firstframe, lastframe;
/* Pointer to the Camera actor that is to be used */
struct Animator_NODE *ActiveCamera;
..
} director;

Listing 9.6: The Sky and Director costume structures. Some members have been
removed from this listing to help highlight the most important items. (Consult the
web references for a link to a full list of member variables.)

Listing 9.9 presents the particle system actor’s data structure. Since this
actor is only represented by a bounding box in the Animator’s view windows,
the structure needs to do little more than record the properties that the user
has set. By default the particle effect is located at (0, 0, 0) and enclosed in a
unit cube. In the Animator the unit cube is 32768 integer units on each side.
(“Enclosed” is a loose term here because the particles could travel beyond the
enclosing cube but the great majority of the action of the actor will take place
within the cube.)

9.5.2 The OFX file format

The animation file format is based on the idea of a series of chunks. A chunk has
a four byte identifier and a four byte size block. By grouping data in this way it
is possible for file readers to jump over chunks that it cannot recognize. However,
the .OFX format records most of its information in a single chunk. The first four
bytes of a .OFX file always contains the four byte character sequence “OFXA”
followed immediately by a long integer giving the size of the file. OpenFX always
stores integer data so that the high order byte of a two or four byte integer occurs
first in the file. The main chunk that records the internal data structures is
identified by the characters “STAG” (short for stage). The specific details of this
chunk are best obtained by looking at the functions SaveAnimationFile(...)
and LoadAnimationFile(...) in the file “loader.c”.

9.5. The Animation module 337

typedef struct Animator_SKELETON {
long id; /* index of parent node in skeleton */
char name[16]; /* name for skeleton element */
vector u,v,w, /* u,v,w are original axes */

uu,vv,ww; /* transformed axes directions */
double R[4][4], /* R is the rotational matrix */

Q[4][4], /* Q quaternion tweened R matrix */
T[4][4]; /* T is the transformation matrix */

point p, /* p is original skeleton vertex */
pp, /* transformed point */
pt, /* pp after Actor’s transformation */
wk, /* work point */
bx[8]; /* bx is original bounding box */

double weight; /* bone weight */
double wrange; /* bone weight range in % of length */
double wzone ; /* bone weight falloff zone % */
...

}skel;

Listing 9.7: The Robot actor data structure. Some members have been removed from
this listing to help highlight the most important items. (Consult the web references for
a link to a full list of member variables.)

typedef struct Animator_PATHPOINT {
struct Animator_PATHPOINT *last; /* previous item */
struct Animator_PATHPOINT *next; /* to next item */
short status;
point p; /* The coordinates of the path point.*/
double distance; /* The distance of the point from path start */
double ptheta, /* Tension related parameter - not used */

pfi; /* Tension related parameter - not used */
/* Between path points the path curve is drawn as a spline

under tension these parameters holds the tension parameter
to both sides of the point*/

double tension_p,
tension_n;

} pathpoint

Listing 9.8: The pathpoint data structure. Some members have been removed from
this listing to help highlight the most important items. (Consult the web references for
a link to a full list of member variables.)

9.5.3 Program execution

The program begins at the usual Windows WinMain(..) entry point (file Ani-
mate.c) where the classes for the user interface windows are registered and the
message processing loop executes. In this respect, OpenFX is nothing more than
a standard Win32 API program. Messages from the main window menu are pro-
cessed as described in section 9.4 by function MainAnimatorWndProc(..). When
the user engages a tool from the tool menu a command is passed up through
its hierarchical windows to the function AnimatorMenuCmd(...). Tools and ac-

338 9. The complete package: OpenFX

typedef struct Animator_PARTICLESYSTEM_tag {
long id; /* Integer identifier */
long NumP; /* Number of particles in the particle system */
long iid; /* Type of particle system */
char ImageName[256]; /* Name of particle’s texture map */
/* The remainder of the values in this structure hold parameters
* that define the particle system. */
...
} ParticleSystem;

Listing 9.9: The particle system and particle structure. Some members have been
removed from this listing to help highlight the most important items. (Consult the
web references for a link to a full list of member variables.)

tions behave slightly differently. When a tool button is activated by the user
(by clicking on it in the toolpanel) it remains active and the mouse cursor takes
up an icon that is representative of the tool’s behavior. Tools have to be ex-
plicitly turned off by the user. All the tool initiation commands are eventually
passed to function EngageTool(..) and tool termination-of-use commands to
DisengageTool(...).

The commands from tools and menu actions will commonly influence the
animation stored in memory, for example, by creating or deleting nodes, or by
creating or deleting one or more timeline segments. Some of the tools change
the viewpoint (zooming or panning) or allow actors to be selected and moved.
The other key functions in the code are those already mentioned for loading and
saving the .OFX file and for creating the intermediate script files (.SCR) that
pass the description of the scene to the Renderer.

The .SCR files are simple text files that describe each frame in the animation
in terms of which actors are to be included (mostly loaded from .MFX mesh
files), where they are to be located and to what direction are they to be turned.
The script files are written by function MakeScript(...) in file “writescript.c”.
Once the Animator writes a script, the Renderer can be instructed to load it and
execute it by posting a message to the Renderer’s main window as follows:

// get a handle to the Renderer’s window
if((hWnd=FindWindow("OFX:RenderClass",NULL)) != NULL){
// tell the renderer to load the script file and act on its contents
PostMessage(hWnd,IDM_CALLBACK_SETUP_ANIMATOR,0,

MAKELPARAM((WORD)CurrentFrame,(WORD)Nframes));
}
// show and activate the Renderer’s dialog
SetForegroundWindow(hWnd);
BringWindowToTop(hWnd);
ShowWindow(hWnd,SW_SHOW);

The important clues given in this section and the description of the data
structures in the last section should be all you need to jump in and follow the
logic of the program’s code (with the help of the on-line code documentation of
course too).

9.5. The Animation module 339

typedef struct Animator_POSITION {
/* First frame of the ’bar’ of this segment of the timeline

for specified actor. */
short firstframe,

/* Last frame (at the time of keyframe) of bar in timeline */
lastframe;

short type; /* Linear or Quadratic tweening */
point finish; /* Position of actor in keyframe */
struct Animator_NODE *onpath; /* This actor is following a path */
/* When following a path this is the name of the followed object */
char pnodename[128];
/* When positions are being determined using spline tweening

these set hhe Spline parameter at start/end of the timeline */
double tension_s,

tension_e,
..

} position;

typedef struct Animator_ALIGN {
short firstframe,lastframe; /* same as position */
short type, /* Linearly or Quadratic interpolion */

im; /* Internal rotation (=0) or about an axis (= 1/2/3) */
double theta, /* Banking (angles are in degrees) */

phi, /* Direction (around) 0 along +x X to right
range is (-180 to +180) degrees */

alpha, /* Elevation */
ima; /* Internal rotation 0=none 1=clock 2=anti-clock */

/* When aligned to a path this points to the path object */
struct Animator_NODE *topath;

/* When aligned to another actor this string is the name of the
actor this one uses for alignment */

char anodename[128];
..
} align;

typedef struct Animator_SIZE {
/* The scaling values in X Y Z (local coordinates) */
double Sx,Sy,Sz;

/* Type of interpolation - linear to last keyframe, or
quadratic back to last two keyframes */

short firstframe, lastframe; /* same as position */
short tweentype; /* Linear or Quadratic tweening */
..

} size;

Listing 9.10: The Position Orientation and Size data structure. Some members have
been removed from this listing to help highlight the most important items. (Consult
the web references for a link to a full list of member variables.)

9.5.4 Character animation

The Robot is a type of actor introduced in version 2 specifically to facilitate
character animation. Because it is based on a mesh model it uses the same
basic costume structure (listing 9.2 with the skel pointer playing an important
role). Each bone in the skeleton is specified by the structure given in listing 9.7.
The member variables R[4][4], Q[4][4] and T[4][4] play the pivotal role of
representing the rotational transformation of the bone in its parent’s frame of

340 9. The complete package: OpenFX

Skeleton hierarchy view and editor Skeleton pose preview

Selected
bone

Skeleton bone
with joint

Figure 9.5: The Robot actor manipulator. The hierarchy viewer is implemented us-
ing a TreeView dialog box control and the pose preview is rendered in a floating
window using OpenGL in function DrawViewRobotGL(...) or the GDI in function
DrawViewRobot(...). All Robot actor code is grouped together in file “robot.c”.

reference. The Animator’s vertex manipulator tool offers the user two modal
dialog boxes to allow them to select view and alter the appearance of a robot
actor as shown in figure 9.5. The presentation of this dialog occurs through a
call to SkeletorOn() which in turn is called from EngageTool(...). The global
variable tool identifies which tool has been selected from the tool panel.

The costume data structure records every joint orientation for a specific
keyframe. The linked list of costume timeline segments can then be used to
interpolate the joint orientations during the inter-keyframe intervals, thus de-
livering smooth kinematic animation within the Robot actor. All the functions
relating to the Robot actor are grouped together in the file “robot.c”.

Creating a script for the renderer from an animation that includes Robot
actors requires a number of additional temporary files. These are stored in a
temporary folder (one for each robot) along side the script file. Within the
temporary folder, the pose orientations for every joint in the robot are written
into a separate file for each keyframe.

9.6. The Designer module 341

9.5.5 Extending the animation module

When the desire to add new functionality cannot be satisfied through the pro-
duction of new plug-ins as discussed in section 9.8 then it is necessary to modify
the Animator’s source code directly. How this is done would of course depend
on what that task is. The most likely additions might be the inclusion of a new
tool or command action, or possibly a new type of actor.

Adding a command action is probably the least complex modification, not
because the action itself is less complex but because the changes to the code
would be minimal. Adding a menu item and handler is relatively simple, the
steps involved being: (1) create identifiers for a menu item and text string hint to
the resource header files, (2) add the menu and string themselves to the resource
DLL (project “ani res”), (3) add a case in the function AnimatorMenuCmd(...),
(4) add a new function (possibly in a new file) to perform the action, (5) call it
from the added case block and when it returns and (6) call the functions that
update the display and status information by:

ReDrawStageDisplay(TRUE); // Update the view windows
PerspectiveView(0,1); // Update the camera window
UPDATETIMELINES(IDC_TIMEL_UPDATE) // Update the keyframe window.

Adding a tool would require an extra tool button to be inserted into the
tool panel. Bitmaps to represent the tool would need to be added to the tool
images (located in the resource folder, e.g., tools-b.bmp), but it would not be
difficult to extend the number of number of tools in the tool panel. Modifying
the N ICONS define statement, adding to the aTools[] array and providing a
defined command message (e.g., IDM ACTOR TOOL MYTOOL will augment the user
interface. The new message should be handled in the AnimatorMenuCmd(...)

function and the actual tool code executed via the EngageTool(...0 function.
Of course the tool will need to know what to do with the particular type of actor
that is selected and how to respond to mouse messages in the view windows
(handled in the AnimatorTriViewWndProc(...) function.

9.6 The Designer module

The Designer program is normally launched from the Animator but can operate
independently. It provides a window into the three-dimensional world where its
tools are used to build mesh models of almost any complexity. The Designer’s
user interface is implemented using similar coding to that described in section 9.4
and differs from the Animator’s user interface only because the idea of a camera
viewing a scene makes no sense and there is no aspect that needs to be a function
of time.

In the Designer the fourth window is used to provide a view, from any direc-
tion, of the contents of the working-volume. The fourth view is normally pre-
sented using a hidden surface and shaded drawing implemented using OpenGL.

342 9. The complete package: OpenFX

The functions that deliver the shaded view have been implemented within a self-
contained DLL (called glview.dll) that also gives the user a real-time indication
of the alignment of any image maps or material shaders.

Like the Animator, the Designer uses integer coordinates for its vertex loca-
tions and other key points. Each vertex is assigned a selection state from the
list: selected, deselected, hidden or ineditor. This status is recorded in the vertex
object and is used by the tools and actions, and the drawing functions. Tools
and actions only apply to selected vertices, or faces or edges. An edge is deemed
to be selected if the vertices at both ends are selected. Faces are deemed selected
if all three face vertices are selected.

9.6.1 The main data structures

The data that describes the mesh models in OpenFX mirrors almost exactly
the structures discussed in chapter 3. The model data fall into two classes.
First, the geometry is specified using lists of vertices, edges, faces and skeleton
bones. Second, the appearance of the visible surfaces are defined by assigning
the polygons an identifier for either a material, or an image map. The material’s
properties and the image map’s images are recorded in two lists.

In other software from which OpenFX evolved the lists of vertices etc., were
built as doubly linked lists of individual objects. This data arrangement makes
it much easier to add, delete and re-order the data but the Windows implemen-
tation of the memory management functions were not fast enough to use this
approach in models that might contain in excess of 100,000 vertices and 500,000
faces. Chapter 3 showed how such limitations could be overcome with a little
effort, thus the OpenFX Designer uses dynamically allocated arrays of objects
to store the data. The structures that represent the objects are described in this
section. The global variables that give access to the data are listed in table 9.5.
Note that the skeleton bone structure is a much shorter list and therefore the
skeleton bone data is represented as a doubly linked list of objects each one of
which represents a single bone.

Geometry data structures Whilst there are a few data structures used for minor
purposes the essentials of the geometry are described by lists of vertices, edges
and faces. The most important members of these structures are presented in
listings 9.11, 9.12 and 9.13. Consult the online references for a link to a full list
of member variables.

The Skeleton data serves two purposes. First, because it describes a hier-
archical relationship that allows groups of vertices in a model to be associated
with a node (or bone) in the hierarchy it can make the process of vertex selec-
tion significantly more convenient for the user. Vertex selection (and the implied
edge and face selection that goes with it) is the first step the program user has
to do before applying tools or actions. Anything that eases this task for the
user is useful in itself. Second, because the skeleton’s nodes can also be given a
3D position that is meaningful to the vertices attached to that node, it is pos-

9.6. The Designer module 343

Name Data type Function

Nvert int Number of vertices
Nedge int Number of edges
Nface int Number of faces
Nskel int Number of skeleton bones
MainVp vertex * Pointer to array of vertices
MainEp edge * Pointer to array of edges
MainFp face * Pointer to array of faces
iMap[] IMAGEMAP Array of image maps
iMat[] SURFACEMATERIAL Array of surface materials
nImaps int Number of image/texture maps
nMats int Number of materials
MainSp skel * Pointer to the end of skeleton bone list
FirstSp skel * Pointer to start of skeleton bone list

Table 9.5: The global variables that give access to the Designer’s main data most of
which is represented as user-defined data types.

typedef struct Designer_VERTEX_tag {
/* This vertex belongs to this Skeleton node */
struct Designer_SKELETON_tag *sp;
/* The status of the vertex SELECTED DESELECTED HIDDEN etc.*/
char status,status_undo;
float x,y; /* Vertex texture coords */
long xyz[3]; /* vertex coordinates */

} vertex;

Listing 9.11: The vertex data structure. Some members have been omitted to help
highlight the most important items.

sible to apply rotational transformations to those vertices using a local frame of
reference attached to that bone. The hierarchical (parent–child etc.) skeleton
arrangement also allows the same rotation transformations to be applied to any
descendant nodes and their associated vertices. The same effect of these trans-
formation would be exceptionally difficult to obtain using only rotations about
one of the coordinate axes or even any about any arbitrary axis. Building a
hierarchical skeleton into a model gives it the potential to be articulated. This
forms the basis of the manipulation of a Robot actor in the Animator.

Having a hierarchical data relationship facilitates the potential for future
developments, for example allowing the Skeleton to become part of an IK chain
(see section 6.4) or be part of a muscle/skin deformation model where vertices
representing the surface of a limb of an animal moves as the skeletal bones change
their relative orientations.

344 9. The complete package: OpenFX

typedef struct Designer_EDGE_tag {
long V[2]; /* List of vertices at the end of the edge. */
} edge;

Listing 9.12: The edge data structure. Some members have been omitted to help
highlight the most important items.

typedef struct Designer_FACE_tag {
long V[3]; /* The vertices around the face. */
/* Which material is to be applied to this face */
short material;
/* Which Image/Texture map is to be applied to this face*/
short imagemap;
/* These are the Image/Texture coordinates for the vertics

of the face, they are done on a PER FACE basis so that
adjacent faces cna have a different mapping*/

float x[3],y[3];
BOOL gp; /* The mapping coordinates are valid for this face*/
..
} face;

Listing 9.13: The face data structure. Some members have been omitted to help
highlight the most important items.

Looking at the Skeleton’s data structure in listing 9.14 one should especially
note the local frame of reference vectors u,v,w and the rotational transformation
matrix t. The axis vector u is always aligned with the bone (from the node at
the end toward the parent node to which it is attached). The other axes are
orthogonal to u and are also mutually orthogonal. The user can change the
rotation orientation of the v and w axes relative to u. Once the nodes at the
ends of the bones have been positioned and the bone’s local frame of reference
has been defined, then this is considered as the rest pose of the skeleton. The
rest pose is used in the animator when a Robot actor is animated.

The Designer’s Skeleton can also fulfill a third function, when no vertices are
assigned to a specific bone. This phenomenon is known as rubber-bones and it is
based on the idea of a potential field surrounding the bones. When the rubber-
bones tool is in use, the vertices are said to be influenced by their proximity to
the bones. If a bone is moved, it appears to pull the vertices with a strength
that is proportional to their distance from the bone. Of course, all the bones
influence the vertex and any bones that are not moved opposes this pull effect.
How this effect works out depends on the weights and range parameters that the
user can assign to each bone. Member variables that record this information are
also present in the Skeleton node data structure (listing 9.14).

The functions in the Designer’s code that provide all the Skeleton manipula-
tion and data management are located in the file “skeleton.c”.

9.6. The Designer module 345

typedef struct Designer_SKELETON_tag {
struct Designer_SKELETON_tag *at, /* The parent of this bone */

*next,*last; /* Doubly linked list items */
/* The bone’s frame of reference at the end of the bone */
vector u,v,w;

/* Transformation and Inverse Transformation applied to the Bone */
double t[4][4],tr[4][4];
point xyz; // coordinate of endpoint
point bx[8]; // bounding box
char name[16]; //name
..
// bone attributes
double wrange,wzone; // range(in % of length of bone influence)
double weight,r_scale; // bone influence weight
..

} skel;

Listing 9.14: The Skeleton/Hierarchy data structure. Some members have been omit-
ted to help highlight the most important items.

Material and image map data structures The geometry of a mesh model only tells
half the story. The surface’s appearance is just as important. This could be
as simple as a basic color, but to achieve any form of realism something more
sophisticated is required. OpenFX provided two ways to describe the appearance
of a surface: its materials and image maps. Each polygonal face carries two
integers that identify the index into the two lists of surface materials and image
maps. If these integers in the face data structure are set to −1 then no material
or image map is applied. For legacy reasons each face also carries values for
surface color and a couple of other attributes but it is uncommon for these to
have much usage in any model.

In OpenFX the materials cover basic settings properties, transparency etc.
The image maps provide a way of layering up to four images over the surface.
The materials also provide the mechanism for assigning procedural shaders to
the surface. Up to four shaders (implemented as external plug-in DLLs or GLSL
programs) can be combined in a single material. All image maps and some ma-
terials require texture coordinates. OpenFX records texture coordinates on a
per-vertex and a per-face basis. The reason for the per-face storage is because
two faces that may share common vertices could require different texture coordi-
nates at a common vertex. Materials do not use a 2D texture coordinate system
based on vertices or faces. They use a 3D system based on a unit cell defined by
a MATERIALAXIS structure that is part of the material. The ax member of the
SURFACEMATERIAL structure (listing 9.15) holds the details of the reference cell.
The concept of a texture is explained in section 11.1.1.

Listing 9.15 identifies the main members of the material data structure. Wor-
thy of note is the four element array of shader objects. The shader objects are
implemented as external DLLs that are loaded when required. The persistent
information that is needed for each shader is the name of the DLL and its user-

346 9. The complete package: OpenFX

typedef struct Designer_SURFACEMATERIAL_tag {
char name[32]; /* Name of the material */
// material colors Integer in [0 - 255]
unsigned char mcolour1[3],mcolour2[3];
// other properties integer [0 - 255]
unsigned char gloss; // specularity
unsigned char refl; // reflectivity
unsigned char transp; // transparency
long refractive_index;
/* The axis in use for this material */
struct Designer_MATERIALAXIS_tag ax;
/* The list of up to 4 external shaders per material */
struct Designer_XSHADER_tag Shader[4];
// On/Off switches
BOOL bSmooth,bShiny,bClear,bGlassEdge,bUseSurfaceMapping;
..
} SURFACEMATERIAL;

Listing 9.15: The material and shader data structures. Some members have been
omitted to help highlight the most important items.

typedef struct Designer_IMAGEMAP_tag {
..
char N[32],*S,*R,*B,*T;/* ImageMap name and filenames */
RAMIMAGE si,ri,bi,ti; /* Image Is stored in RAM */
short sp,rp,bp,tp; /* Fraction of map mxsed with material*/
char TypeR,TypeB,TypeT,/* Is it an Amim/Still map */

Map, /* Planar/Cylindrical/Spherical */
point P,X,Y; /* Map position */
long Vlock[3]; /* control point locked to vertex */
..
} IMAGEMAP;

Listing 9.16: The image map data structure. Some members have been omitted to
help highlight the most important items.

defined parameters. The user’s parameters are stored as a text string because
this method allows external developers to choose the format of the parameters
(for their plug-ins) but still permit them to be recorded in the Designer’s memory
space and data file.

The image map structure, of listing 9.16, provides up to four classes of map.
Starting with OpenFX version 2, the image source files are stored in memory
and also in the .OFX file so that there is no danger of the user losing them or
having path location problems if they send models to another use. The images
are stored as a byte-for-byte copy of the original file and thus there is no need
to decode them in the Designer.

The oblique shaded view window has the option to display the model superim-
posed with its surface image maps. To achieve this, small thumbnail images are
made whenever the image maps are updated. The thumbnail images are stored

9.6. The Designer module 347

in a list of GLMAP structures. The global pointer variable GLMAP *glMapList;

locates this list and it is updated in the “gldesign.dll” function BuildMapList();

called from GluCommands(..), which in turn is driven by sending a WM LOAD MAPS

message to the OpenGLWndProc(..) window message handler for window class
OFX:OpenGL.

9.6.2 The MFX file format

The format used for the file to record the mesh models is based on the idea of
a chunk of data. In this it behaves in a similar way to the animation .OFX file,
described in section 9.5.2. The file itself begins with a four character header
“FORM” followed by a long integer giving the size of the file. The integer
is stored with the high byte stored first. (This is not the natural order for
Windows platforms and so an internal function is used for reading and writing
long integers.) The fact that the file contains an OpenFX mesh model is evident
by another four character sequence “OFXM” following immediately. After that,
the file contains a number of chunks holding the appropriate data to describe
the mesh geometry, the materials and image maps, and a few other essentials,
like the coordinate origin point and the coordinate scaling between internal and
user units.

Each chunk of data begins with a four byte identifier and a long integer that
gives the length of the chunk. The code functions that handle reading and writing
of the .OFX files is located in file “loader.c” with SaveObject(..) writing the
data and LoadObject(...) reading it.

Other functions in file “loader.c” support the undo functionality. Some opera-
tions that only involve moving vertices are easily undone by simply copying their
position before the action and replacing the current location with the backup if
the operation is to be undone. Operations that increase the number of vertices
can be easily undone by discarding the extra data that is always added to the
end of the data lists. Other operations, those that involve the deletion of parts of
the data, cannot be so easily undone. For those, the saving and loading functions
make, and restore, temporary copies of the data.

9.6.3 Program execution

The Designer program is very similar in many respects to the Animator. The
tool panel and its buttons, the menu commands, status bar and orthogonal view
windows are all created using very similar code in both programs. Execution
of the Designer begins at the usual Windows WinMain(..) entry point (file de-
sign.c) where the classes for the user interface windows are registered and the
message processing loop executes. Messages from the main window menu are pro-
cessed as described in section 9.4 by function MainModelerWndProc(..). When
the user engages a tool from the tool menu a command is passed up through
its hierarchical windows to the function DesignMenuCommand(...). Tools and

348 9. The complete package: OpenFX

actions behave differently. When a tool button is activated by the user (by
clicking on it in the toolpanel) it remains active and the mouse cursor takes up
the representative of the tool’s behavior. Tools have to be explicitly turned off
by the user. All the tool initiation commands are eventually passed to func-
tion EngageDesignerTool(..). The Skeleton tools are engaged from a menu
command and they call EngageSkeletonTool(..) to commence execution.
The one-shot actions are initiated in function ExecuteDesignerAction(..).
Some of the actions are built as external DLLs and their action is performed
in LoadExternalAction(...).

The commands from tools and menu actions will commonly influence the
model geometry data stored in memory. Some of the tools change the viewpoint
(zooming or panning) or allow vertices to be selected and moved. When tools are
engaged, the mouse and keyboard messages sent to the message handler function
have to be interpreted and appropriate actions taken. For example, when the
pan-view tool is engaged (the global variable tool takes the value PAN) and if
the user left-clicks the mouse in the client area of one of the view windows, a
WM LBUTTONDOWN message is sent to the handler ModelerTriViewWndProc(..),
where the code:

else if(tool == PAN){
SetCapture(hwnd); // capture mouse messages to this window
ClipCursor(...); // keep the mouse within the window
PanToolDown(...); // start the tool action
bTrackPan=TRUE; // flag that tool is in working

is executed. Now, when the mouse is moved and the WM MOUSEMOVE message is
received, the code checks for the bTrackPan flag and executes:

else if(bTrackPan){ // using the pan tool
PanToolMove(...); // change the working volume reference point
..

}

When the user releases the mouse button the WM LBUTTONUP message results in
the capture being released and the bTrackPan flag lowered:

else if(bTrackPan){
ClipCursor(NULL); // release the cursor
ReleaseCapture(); // stop capturing messages
PanToolUp(); // fully re-draw
bTrackPan=FALSE; // flag that tool is no longer working

}

The response to receipt of mouse messages for the other tools is handled in
other branches of the if (...) then ... else if (..) else ... code
groups.

9.6. The Designer module 349

9.6.4 GLdesign

The provision of a window into the working-volume that provides an orthographic
view from a user-defined direction is provided in the external DLL “gldesign”.
This DLL is built with its own project in the design solution. The DLL’s exported
function AttachViewOpenGL() is called by the Designer to create an OpenGL
window as a child of the main applications window and although implemented
in its own DLL it has access to all the Designer’s global variables and main
functions through the mechanism to be discussed in section 9.8. Rendering a
network of triangular polygons using OpenGL was discussed in section 7.2.1 and
the “gldesign” module follows those basic principles. The window’s messages are
handled in OpenGLWndProc(...) where the Designer’s tools can perform their
functions in response to the mouse move and button messages in the same way
that they do for the rectangular view windows. The shaded view is drawn in
function drawScene(...) which provides the option for stereoscopic rendering.
To maintain as high a refresh rate as possible, the geometry, material and image
maps are written into a display list which only needs to be updated if the contents
of the working-volume change. A basic change of viewing direction does not
require the display list to be re-created.

The display lists are rebuilt in response to a WM UPDATE message being sent
from the Designer’s refresh functions:

case WM_UPDATE:
if(!bCanUseShaders)Make3dDisplayList(); // Fixed functionality version
else Make3dDisplayListProg(); // Programmable shader version
InvalidateRect(hWnd, NULL, FALSE);
break;

This code fragment initiates the shaded rendering which is done using either
the OpenGL fixed functionality or programmable pipeline. By supporting both
OpenGL pipelines OpenFX maintains the widest applicability possible. Building
the display list is simply a matter of looping through all the Nfaces faces in the
MainFp list. Since the Designer does not record vertex normals these have to be
created and stored in a temporary array.

9.6.5 Extending the Designer module

Unless a tightly integrated tool is required, the best approach to extending the
Designer module is through an external tool or action. The material shaders
library can also be extended through the use of the plug-ins. In this case the
Designer is only peripherally involved. All it has to do is to load and display a
modal dialog box for the user to define parameters. Writing plug-ins is discussed
in section 9.8.

350 9. The complete package: OpenFX

9.7 The Renderer module

The Renderer application program is a Windows Win32 application controlled
by the user through a dialog box from which the output image/movie file, image
size and format can be set. Normally the Renderer is loaded implicitly from
either the Animator or Designer by executing the .EXE file using the Wind32
API function WinExec(..).

The Renderer program uses DLL library files loaded as necessary to:

• Unpack texture maps

• Render specific texture effects (shaders)

• Generate animation effects (such as flapping, morphing)

• Write output image or movie files in a number of formats

• Post-process the image, e.g., to add blurring, lens/optical effects and 3D
fog

Within the renderer there are actually two renderers:

1. A software scan-line, Phong shading, hidden surface renderer with a ray-
tracing extension.

2. A hardware-based engine for use with graphics cards that have a pro-
grammable OpenGL pipeline.

The GPU renderer is implemented using the OpenGL techniques introduced
in chapter 7. It relies on an off-screen P-buffer or renderbuffer and framebuffer
object (FBO) in order to render at a resolution that is larger than the output
window. The GPU renderer renders in near real-time because there are still
a number of steps that need to be executed in the CPU, things like loading
the data files and the need to read back from the GPU the rendered images so
that they can be written to a file using a well known image/movie file format.
However, even at resolutions in excess of 2048 by 2048 it still takes a fraction
of a second to render a frame, even when an accumulation buffer is used eight
times per frame for the purposes of anti-aliasing.

Most of the work of the Renderer is done without the need for any visible
presentation and user interaction. Although written as a Windows application all
the Windows platform dependent functions are located in one file “winmain.c”.
The user interface is implemented as a dialog-based application, two buttons on
the dialog run either the GPU or CPU renderer by calling render(...) with
a list of arguments that mimic the way a C or C++ main(int argc, char **

rgv); is passed its command line arguments by the system. The reason for
this unusual way of passing data is that the Renderer used to be a completely
platform independent command line application program only. The path of
execution through the application will be explored in section 9.7.2 after the data
structures needed for the application are introduced.

9.7. The Renderer module 351

Stepping from frame to frame The Renderer is driven from a script file created in
the Animator. The script lists all the actors that are to appear in a scene on a
frame-by-frame basis. The Renderer reads the scene description, loads the mesh
actors from their OFX file, positions them according to the instructions in the
script, renders the frame, then discards the scene data and returns to read again
from the script file to process the next frame. Often a single frame is all that
is required; however in an animated sequence the Renderer may have to re-load
mesh models and texture map images, if they are needed in subsequent frames.
Re-loading models and images from disk is a slow process and it could take up
to 99% of the rendering time when using the GPU. To alleviate this inefficiency,
the Renderer does not discard mesh models and image maps when working on
an animation of more than one frame; instead it caches the models, and before
loading data from a file it checks the cache to see whether there is a copy already
there. The mechanism by which the cache is implemented can be found in file
“loadscpt.c”. When the script calls for a mesh object to be loaded a call is made
to CheckForExistingObject(..) . If it returns a non-negative identifier then
that identifies the object (see listing 9.17) in the object list that has already
been used and is cached. If a model is loaded, it is added to the cache by calling
CopyObjectToBackup(ObjectID); The object cache does not exist in a separate
list. Each object maintains a copy of the original vertex and face list. When the
Renderer has finished rendering the script it calls FreeAllObjects() to empty
the cache and release the memory buffers.

9.7.1 The main data structures

The Renderer does not need to use such a rich set of data structures as are
needed in the Designer or Animator modules. All the mesh models used in a
scene give rise to the addition of an object to the object list which is pointed to
by the global variable object *Object. The number of mesh models that are
held in the cache is given by the global variable ObjectCount. When a scene is
being rendered, the member variable in use.of the object structure is used to
indicate whether that particular object is needed in that particular frame. Using
a flag in this way avoids including mesh models when rendering a frame in which
that mesh is not required. Listing 9.17 presents the mesh object data structure.
In any frame there will only be one active camera, and up to one ground plane,
and one background sky, so the specifications of these actors is recorded as single
instances of ground and sky objects, in global variables Ground and Sky. The
edge data in a .MFX file is not used in the Renderer so the edge chunks in the
.MFX file are bypassed.

Listing 9.18 highlights the most significant members in the principle geomet-
ric data needed in the Renderer.

The Renderer also needs to load and store the material properties and image
maps associated with the mesh objects. Structures similar to those used in
the Designer are used in the Renderer. Each object identifies its material list

352 9. The complete package: OpenFX

typedef struct Renderer_OBJECT_tag {
BOOL in_use; /* Used to indicate object already loaded */
// position information
vector Centre; /* Coordinate of centre */
axis Abase; /* The object’s base axis */
// Counts of each type of data
long NoFaces,NoVertices,NoNurbs, NoMaps,NoMats, NoSkeleton;
long NoTraceVertices,NoTraceFaces;
long NoFbackup,NoVbackup,NoTbackup;
..
// Pointers to key object data
vertex *Vbase,*Vbackup; /* Pointers to the vertices*/
face *Fbase,*Fbackup; /* List of faces with back up */
long *Skids; /* Points vertices at their skeleton bone */
skel *Skeleton; /* The object’s skeleton */
imap *Mbase; /* Materials used in object */
matl *Tbase,*Tbackup; /* Image (Texture) maps */
nurbs *Nbase; /* Nurbs in model */
..
// Vertices and faces used in ray-tracing to traverse the octree
tvertex *Vtracebase;
tface *Ftracebase;
..
/* Bounds for this object when projected onto framebuffer */
long xmin,xmax,ymin,ymax;
/* Transformation applied to this object and its inverse */
double trpos[4][4],trinv[4][4];
double fi,theta,alpha,ima; /* Orientation */
double sx,sy,sz; /* Scaling */
...
} object;

Listing 9.17: The mesh object data structure. Some members have been omitted to
help highlight the most important items.

typedef struct Renderer_VERTEX{/* structure for each vertex */
vector p; /* real position 3D space */
ivector ip; /* integer vertex coordinates */
double u,v; /* texture coordinates */
double x,y; /* screen location pixel space */
...
} vertex;

Listing 9.18: The vertex structure as used during rendering.

through the pointer *Tbase, and its image map list via *Mbase. Loading and
uncompressing image data from files of type JPG, PNG and GIF can also slow
the rendering process significantly and so the Renderer caches the image data
in a list called ImageStoreList which is a pointer to a dynamically allocated
array of ImageStoreEntry structures that store the uncompressed image data
in a raw 24 bit format. The functions and variables that relate to image map
management are located in code file “loadmaps.c”.

9.7. The Renderer module 353

typedef struct Renderer_FACE {
UNSIGNED V[3]; /* Vertex identifier */
..
short ffmap; /* identifies which image map is in use. */
short ffmat; /* identifies which material is in use. */
/* screen bounds for projected face 0 -> XMAX 0 -> YMAX */
short top,bottom,left,right;
vector n; /* normal to face */
vector pn[3]; /* The phong normals */
double uu[3],vv[3];/* mat/map coordinates of face vertices */
double ww[3]; /* volume material coordinate */

} face;

Listing 9.19: The face structure as used during rendering.

The image cache is built up as each model’s image maps are created. It
is emptied by calling ReleaseImageStore(); when rendering of the script is
complete. The task of reading and decoding an image file format is carried out
in an external DLL and so it would not require a major code revision to add an
additional type of image to the supported list.

The scanline software renderer is multi-threaded. The way OpenFX uses the
full power of the processor is to dispatch rendering of all pixels in a scanline to a
thread of execution. Normally the Renderer determines how many processors/-
cores are available and breaks up the number of rows in the output image into
n = H/Nc threads, where H is the output image height and Nc is the number
of processors or cores. The operating system is then responsible for scheduling
thread execution. The Renderer groups the scanlines in an interlaced pattern so
that alternate lines are sent to different cores. This usually helps in balancing
the rendering load without any additional scheduling. (There is an argument for
organizing the rendering into a tile based rasterization as that might be more
cache friendly, but this does not fit in well with the scanline rendering approach.)

Of course there are some stages in the rendering process that are not prac-
tical to carry out concurrently, (reading the script and loading the mesh and
image data are good examples,) so the Renderer performs all loading and trans-
formation stages in a single thread. It then dispatches Nc threads to render a
group of n scanlines each. The dispatching thread waits until all the threads
have completed. It then runs the post-processors and cleans up.

To render a scanline, a number of temporary buffers are needed: a Z depth
buffer, and object and face lists. The buffers are sized to the width of the
output image. If several scanlines are going to be rendered concurrently it will
be necessary to use different temporary storage locations for each thread. The
Renderer does this by setting aside memory blocks, breaking them up into the
necessary buffers, assigning pointers to appropriate locations, recording these
pointer values in a special object (its structure is shown in listing 9.20) and
passing a pointer to copies of these objects to each worker thread.

354 9. The complete package: OpenFX

typedef struct THD_tag {
/* Pointer to the base memory, other variables offset from here*/
UCHAR *ram;
/* Array: identity of face visible in each pixel on the scanline */
long *Zbuffer,
/* Array: identifying face on previous line. Used in anti-aliasing */

*Xbuffer,
/* Array: identity of object visible in each pixel on the scanline */

*Zobject,
/* Array: face on previous line */

*Xobject,
/* Identity of face in glass layer */

*Zglass[NGLASS],
/* Identity of object in, up to NGLASS, glass layers */

*ZglassO[NGLASS];
/* Depth buffer value in pixels on scanline */
double *Zdepth,
/* fractional pixel offset in pixels on scanline */

*Zposn,
/* Depth buffer for glass faces in pixels on scanline */

*Zglassd[NGLASS],
/* Fractional ratio for ground pixels (accelerate calculation */

*Zground;
/* The scanline renderer’s output buffers for THIS thread. */
/* over 3 anti-alias rows. */
UCHAR *Red, *Green, *Blue, *Alfa,

*L_Red, *L_Green, *L_Blue, *L_Alfa,
*LL_Red,*LL_Green,*LL_Blue,*LL_Alfa;

} THD;

Listing 9.20: The thread structure.

9.7.2 Program execution flow

All the Windows specific code is located in file “winmain.c”. The resources are
built using a separate project into the dynamic link library called “rnd res.dll”.
An instance handle to the dialogs etc., is obtained by calling ResourceX() in
the DLL that is linked with the renderer using its stub library.

The GPU renderer code is held in files “rendergl.c”, “rendergl1.c” and “ren-
dergl2.c”. Program execution begins at the traditional WinMain(..) entry point;
a window of class OFX:RenderClass is created in RendererMainLoop(..) where
the message processing loop keeps the application alive and dispatches mes-
sages. The OFX:RenderClass window does not have a menu and serves only
as a container for three dialog based windows. Its window message handler,
RendererMainWndProc(), has the task of handing messages that are passed to
and from the Animator or Designer and dispatching the rendering task and
presenting the appropriate contained dialog depending on the context, e.g., ren-
dering is in progress. The functions handling the behavior of the three dialog
sub-windows are listed in table 9.6. The tabbed dialog DLG TAB provides the
interface which allows the user to tell the Renderer what to do. It divides the
user settings into four dialog tab pages that are implemented in the standard

9.7. The Renderer module 355

Window Handle Resource ID Dialog Function Comment

hwndcontrol DLG TAB TabbedDlgProc Tabbed dialog
hwndupdate RD UPDATE UpdateDlgProc Progress bars
hwndupdageX RD UPDATEX UpdateXDlgProc Progresswith preview

Table 9.6: The embedded dialog windows used by the Renderer to present its user
interface.

way described in the Win32 API documentation. The user settings are recorded
in an instance of the PARAMLIST structure. These settings are passed to the
function render(...) when it is called to commence the rendering process.

The tabbed dialog container has two large buttons that pass the command
message MENU FILE RENDERN to RendererMainLoop() to initiate the rendering
process. It is at this point that there is an exchange of messages with the Ani-
mator: The Renderer sends a message IDM CALLBACK ASCRIPT to the Animator
to instruct it to write a .SCR script file. When the Animator has written the
script file, it sends back a message to the Renderer IDM CALLBACK SETUP telling
it (the Renderer) that the script is written and rendering should commence. On
receipt of the callback message the Renderer sends itself the go-code via message
IDM CALLBACK SETUP and function render(...) is called.

This seemingly convoluted message exchange allows the Renderer to appear
to the user as if it is seamlessly integrated with the Animator. It can even render
its output image into the camera window within the Animator without appearing
to have any user involvement at all.

Once render(...) gets started the rendering process needs no further in-
tervention. The script is written and the remainder of the code is pretty much
independent of the platform on which it operates. Inside render(..) the com-
mand parameters are processed, variables are initialized, the script is read frame
by frame, mesh data loaded, and either the software or hardware renderer exe-
cuted. Listing 9.21 presents the key steps of function render(..).

9.7.3 The software renderer

This was the first renderer written for OpenFX and it has evolved over the years
to include hybrid ray-tracing and concurrent rendering.

The arguments of the render() function are in the form of a list of text
strings (a legacy from the non-Windows entry point). These arguments specify
things like: image resolution, output format, controlling script file name, and
ray-tracer parameters. In function render() the script file is opened, and its
description of each frame in an animation or the objects in a specific scene are
loaded. Then for each frame (or a single scene) the following steps are performed:

• GetCommand() (file loadscpt.c) reads all the .MFX files and assembles the

356 9. The complete package: OpenFX

int render(int argc, char **argv){
..
while(i < argc) /* process arguments */ .. i++; }
}
..
if(AllocateRamBuffers() == FAIL)return FAIL // Allocate memory buffers
}
// open script file
if((CF=fopen((char *)scriptfile,"r")) == NULL)goto EXITPOINT;
..
NEXTFRAME:
.. // process the script, load meshes etc.
GetCommand(...);
SetPerspectiveView(); /* build view transformations */
TransformSceneForRendering(..); /* move objects */
// Rrender the scene using either the GPU or Software
if(bRenderOpenGL){

RenderGL(...); // GPU renderer
..

}
else{ // Software Renderer

if(RenderHide() == FAIL)failure=FAIL;
..

}
// store image in output buffer and output files
..
FREEPOINT:
.. // end of frame
FreeFrameObjects();
if(Lights != NULL){X__Free(Lights); Lights = NULL;}
if(trace_reflections || trace_refractions || trace_shadows)freeBST();
goto NEXTFRAME;
EXITPOINT:
.. // clean up
FreeAllObjects();
FreeRamBuffers();
free_render_discarded_list();
ReleaseImageStore();
if(CF != NULL)fclose(CF);
return (int)failure;
}

Listing 9.21: The render(..) function’s key steps.

data that describes the 3D models into the Renderer’s data structures (see
later). Objects are loaded in function R LoadObject() (file loadmesh.c).

• Once the objects have been loaded their vertex coordinates are transformed
into the coordinate system used by the Renderer. This is done in function
TransformSceneForRendering(). The coordinate system places the view-
point at (0,0,0) with the direction of view (0,1,0) and the up vector (0,0,1).
After this, the scene is rendered into the image memory buffer. This is
done by function RenderHide() (file render.c).

• The RenderHide() function is responsible for breaking up the scene into
scanline groups and dispatching them to each processor for rendering. It

9.7. The Renderer module 357

also applies some tricks to try and speed up the rendering process by
switching between two versions of the actual rendering algorithm: one for
use when anti-aliasing is to be applied, and one for use when anti-aliasing
is not to be used.

Each scanline is passed to a function that does the actual rendering of the
pixels in that scanline. Ultimately, the outcome of the calculations at a
pixel level are combined to form the final image.

• The function that carries out the rendering of a single scanline is
RenderMultiThreaded().

Function RenderMultiThreaded() (file Render.c) is responsible for work-
ing through the pixels on the given scanline. RenderMultiThreaded()

begins by obtaining any background value (e.g., from the sky or ground
plane). It then loops through each object determining first strike polygons,
and writing into the scanline buffer the identity of the polygon and object
that are visible at each pixel on the scanline. (This process implements
the hidden surface algorithm).

• Once the hidden surface algorithm determines what is visible, the ren-
dering process can begin to determine the color values for the pixels on
the scanline. On completion of the rendering task the pixel image val-
ues are stored temporarily so that anti-aliasing can be applied; they are
then written into the output buffer. (Functions AntiAliasLine() and
ScanlineToZbuffer() and ScanlineToZobject() carry out this task.)

• The core of the rendering process takes place in function ShadedScanLine()
and its anti-aliasing equivalent FastAntiAliasedSchadedScanLine().
ShadedScanLine() uses the information abut which object and polygon
are visible in a pixel to commence the pixel rendering process.

• For every pixel on the scanline, the function GetRowPixelValue() is called.
The arguments passed to this function contains all the information neces-
sary to render what is visible in this pixel. GetRowPixelValue() is a thin
wrapper for GetPixelValue() which renders each individual pixel. The
arguments to GetPixelValue() are:

1. the (i,j) image coordinates (of the pixel),

2. an identifier of the surface material properties of the polygon that is
visible in pixel (i,j),

3. the surface normal vector, and

4. the Z depth of that point.

It returns the (RGB) value to be written into the final output image.

358 9. The complete package: OpenFX

• GetPixelValue() (file Material.c) applies the lighting model and deter-
mines the surface properties using information recorded about the surface
materials data.

The pixel lighting model used in OpenFX is a simple diffuse illumina-
tion model like that described in chapter 4 with the surface color being
determined from either a material specification (possibly including an al-
gorithmic shader) or an image map that has been painted over the surface.
Surface image maps, reflection maps, bump maps or transparency maps
are other possible options.

• When ray tracing is turned on, any surface with a material that has re-
flectivity > 0 or transmissivity > 0 is further processed by calling one of
the functions: trace transmission ray() or trace reflection ray()

to complete the rendering process. The trace xxx ray() (file Raytrace.c)
functions are recursive. They call the function GetSurfaceValue() which
in turn calls GetPixelValue() to obtain the surface values.

An additional ray tracing function is used to determine shadows by tracing
shadow rays from the surface point to each light source.

This brief tour through the Renderer’s code should give you all the clues
you need to augment the software or to see how the algorithms described in
chapters 4 and 5 can be applied in practice.

9.7.4 The hardware renderer

The GPU renderer is called into action after all the scene descriptions of a frame
in an animation have been read, the mesh models and picture maps loaded,
material settings configured and geometric transformations applied. Thus, the
coordinates of all polygon vertices, and even the ground and sky, are positioned
relative to a frame of reference with the viewpoint located at (0, 0, 0) an up axis
vertical along the z axis and the direction of view along the y axis. Of course
OpenGL uses a different arrangement of a right-handed coordinate system so in
order to maintain the same sense an additional axis mapping has to be included:
x → x, y → −z and z → y.

The GPU renderer can target its output to an on-screen window, but since
this limits the resolution it also offers an option to target its output to either a
p-buffer or a renderbuffer attached to a FBO. It uses code based on the ideas
explained in section 7.4. In order to achieve an image quality to match the soft-
ware renderer only hardware that supports a programmable pipeline can be used
for this renderer. The choice of output is made in the function RenderGL(..)

which then dispatches execution to configure the output buffers. Again, most of
the code required to prepare the output media has been discussed in chapter 7
and it will not be discussed here again. Since OpenFX offers the simultaneous
use of four textures, surface, reflection, transparency and bump, a larger num-
ber of two-dimensional textures have to be initialized. When rendering has been

9.7. The Renderer module 359

completed the OpenGL color buffers (and the depth buffer) have to be copied
into the CPU buffers for writing to the output files. This done in two of the
functions in the file “renergl.c”, CopyGLtoFSB() and CopyGLtoZdepth().

Irrespective of which output target is chosen, the scene is rendered from the
camera view in function RenderCameraView(...) in file “rendergl1.c”. As all
the vertices were transformed to match a camera located at (0, 0, 0) the scene
can be rendered without the need for any further transformations. However,
to be able to deliver an anti-aliased result, the scene is drawn using a function
Draw3dScene() so that its output can be captured in an OpenGL display list
that is run several times with appropriate viewpoint pixel jitter. This approach
to performing anti-aliasing on OpenGL generated images is discussed in the Red
Book [82].

Function Draw3dScene(...) is the heart of the GLSL rendering engine. It
relies on a number of sub-functions to render the mesh models: the ground and
the sky backdrop. The ground is presented as a flat quadrilateral. Using the first
light and a reflection transformation, a shadow and reflection of the mesh models
may be rendered on the ground. By switching to an orthographic projection, a
quadrilateral that fills the viewport is rendered into the background to represent
the sky.

The rendering of the mesh models is achieved by partitioning their faces into
those that use (1) materials, (2) image maps or (3) neither materials nor maps.
Faces exhibiting materials are further subdivided into those that are opaque and
those that are transparent or semi-transparent, with those that are opaque being
rendered first. Within this subdivision the polygons are rendered in the order of
their material or image map. This allows external textures or image maps to be
set up only once per frame. The small overhead of looping through all the faces
in the mesh for every map and material is a small overhead when compared to
switching images in a 2D texture. The vertex and fragment shader codes that
are needed for the GPU renderer are located in the shaders folder. They are
read and compiled as part of the initialization process (at the same time as the
renderbuffer or p-buffer are created, function SetupRenderOpenGL()) by calling
ShadersInit(..) which may be found in file “shaders.c”.

This brief tour of the code of the GPU renderer has brought into focus how
OpenFX deploys the GLSL and off-screen rendering to deliver a renderer that
almost matches for quality, and exceeds for speed its software renderer. Hopefully
it will help you drill down into the code and follow it in detail so that you see
how the GLSL can be used in a real practical program.

9.7.5 The particle systems

The particle-system actors in OpenFX behave in a very similar way to the general
principle described in section 6.7 but with the extension that they are positioned,
scaled and orientated using values obtained from the position, alignment and
scaling timelines. If the script file, written by the Animator, directs a particle

360 9. The complete package: OpenFX

system to be present in a scene it will also define the properties of the system.
However, a particle system actor is not like a normal actor because its appearance
in a frame also depends on the time difference between the time of the frame and
the time at which the effect was initiated (e.g., in a burst of fireworks, where each
particle of fire is located, during frame k depends on what frame the fireworks
were set off). Particle systems evolve; the position of the particles at frame n are
usually determined from their positions during frame n− 1 often with a random
element thrown in. Thus, in order to work out the appearance of a particle
system for frame n, even when only rendering frame n, it is necessary to follow
the evolution of the particle system, frame by frame, from its creation, right up
to, and including frame n, even to the extent of making sure that the sequence
of any random numbers used gives the same result. This makes the task for the
Renderer much harder.

The Renderer resolves the difficulties, outlined in the previous paragraph,
by performing a full particle system evolution for every particle system that
exists during the rendering of frame n. Thus, for example, suppose a particle
system has a costume that spans frames 10 to 20. When the renderer is working
on frame 12 it starts by working out the particle positions in frame 10 (at the
start). It then uses the frame 10 positions as the starting point for working out
the positions in frame 11. Then it uses the frame 11 particle states to work
out the positions in frame 12. Having calculated what particles are where, what
they look like, even if if they still exist (in frame 12), it will render them into
the output image buffer.

In any animation there could be many particle systems, these are recorded in
a dynamically allocated list of ParticleSystem objects pointed to by the global
pointer variable *ParticleS . The global variable Nparticles gives a count of
the total number of particle systems. The ParticleSystem and particle object
structures are summarized in listing 9.22.

As each frame is loaded and while the objects are being moved into their
global position the particle systems are initialized by calling SetupParticles(..)
from within the TransformSceneForRendering(..) function. Particle images
are also loaded before rendering starts and if the OpenGL renderer is used,
the images are converted into 2D textures. The set-up functions also perform
the task of moving the state of the particle systems (and their particles) into
the state that they should be in during the frame being rendered, by calling
UpdateParticleSystem(..);. (This step will take an increasing calculation
time as the animation progresses.)

All the code related to particle systems can be found in the file “particles.c”.
Whilst there are a significant number of lines of code needed to deliver OpenFX’s
particle system’s behavior, it is basically repetition of the steps set out in the
OpenGL example presented in section 7.5. The GPU and CPU renderers use
common code to initialize and update the particle systems but they have to call
their different functions to draw in their respective image buffers. The drawing
functions are named RenderParticlesGL(...) and RenderParticles(..) and

9.7. The Renderer module 361

typedef struct Renderer_PARTICLE_tag{
vector p,pl; /* position */
vector v,g,dg;/* velocity and gravity */
vector c; /* colour (0 - 1) */
double fAlpha, ... ;/* Transparency */
..

} Particle;

typedef struct Renderer_PARTICLESYSTEM_tag {
vector pin; /* Base Position */
..
/* Transformation of particle system object */
double particle_object_transformation[4][4];
long Rate; /* rate of creation per second */
long NumP; /* number of particles */
char ImageName[256]; /* Image filename */
...
/* Pointer to the particles in this particle system */
Particle *particles;
...

} ParticleSystem;

Listing 9.22: The particle system and particle data structures. Some of the member
variables have been omitted from this listing to force focus onto the Renderer significant
member variables.

they are called after the rendering of all the other elements in the scene have
been completed.

9.7.6 Loading plug-ins

The Renderer uses three types of plug-ins: the Animator’s motion effect, the
surface material shaders and the image post-processors. All of these plug-ins are
loaded as needed and released after rendering is complete. All are implemented
as DLL libraries. The surface material shader differs from the other two types
of plug-ins because it has to remain active during the rendering process, and
functions in the DLL will need to be called on a per-pixel basis. The motion
effect only need to be accessible during the preprocessing stage when the vertices
of the mesh models are moved into their positions in the global frame of reference.
By their very name, the image post-processors are only needed once rendering
has been completed and just before the image buffer is dumped into a picture or
movie file. Within the Renderer’s code all the plug-in modules are handled in the
file “plugins.c”. The mechanism of loading, accessing functions and unloading
DLL modules mimics that for the Animator and Designer.

The External material shader DLLs are loaded at the same time as the mesh
models are loaded by calling (LoadExternalTexture(...). At the same time as
the DLLs are attached, pointers to the external functions that render the shader
during pixel calculations are obtained and stored in a shader structure so that
rendering of pixel is not penalized by having to find the function’s address every

362 9. The complete package: OpenFX

time it is needed. The shader structures are stored in a list that is pointed
to by the global variable *Shader. If an external shader needs to be applied
to a polygon’s surface while rendering a pixel, the Shader list provides a direct
lookup for a pointer to the right function in the right library. Rendering of a pixel
that requires an external shader is done through RenderExternalTexture(...)

called from the core rendering function GetPixelValue(...).
The animation motion effect is loaded and executed in ExternalFX(...) is

called from EffectObjectVertices(..) which executes as part of the set up
phase. Image post-processing is done from within ExternalImageProcess(..)

which is called after all rendering has finished (at the end of function render(...)).
Any DLL loaded by the Renderer remains attached until all frames have

been rendered. The number of loaded libraries is recorded by static variable
nLibraryHandleListItems in file “allocmen.c”. Each library handle is recorded
in a list of objects containing information about all the loaded DLLs. The list is
addressed by the static pointer LibraryHandleList. All external DLLs remain
attached until the Renderer terminates, at which time they are released by calling
FreeLibraryHandleList().

9.8 Adding to the software

To enhance the the range of modeling tools, imaging and animation effects, it is
not necessary to work directly with OpenFX’s Animator, Designer or Renderer
codes. The software is designed in such a way that most of its functionality
can be enhanced by writing plug-in modules. It is relatively easy to provide the
following additional components. The plug-in components are:

1. Modeling tools, used exclusively by the Designer.

2. Modeling actions, used exclusively by the Designer.

3. Animation templates, used exclusively by the Animator.

4. Material surface shaders, used by the Designer and the Renderer.

5. Animation motion effects, used by the Renderer and the Animator.

6. Image processors, used by the Designer and the Animator.

All instances of these plug-ins are created as Window’s DLLs that are loaded
at runtime. Some may remain attached until the parent program terminates;
others may complete their task and then be unloaded.

Full details of how to write these plug-ins are given on the OpenFX website,
but it is worth explaining a couple of the important principles of this process.
The most important thing to be able to do in a plug-in module is to gain access
to the data that the parent program is holding. It is also important to be able

9.8. Adding to the software 363

to use some of the functions that exist within the main program. Sometimes
this is called an API or library. In the case of OpenFX there is a mechanism in
place that provides access to most global variables and functions of the parent
programs, without the need to link any of the DLLs with an API or other library.

9.8.1 Accessing global variables and main program functions

OpenFX uses a pointer mechanism for granting the plug-ins access functions
in the parent program and the parent program’s global variables. Since all
OpenFX plug-ins are DLLs that are loaded into the main application’s address
space, all global functions and variables can be accessed by any loaded DLL. It
is only a matter of knowing where they reside in memory. OpenFX facilitates
this by providing a collection of C/C++ pointers. The plug-in DLLs are not
loaded when the main application starts.4 They are loaded when required and
unloaded when the user is finished using them. In the case of plug-ins that
are used in the Designer or Animator and are needed by the Renderer (e.g.,
procedural textures) then the Renderer loads all the needed plug-ins when it
reads the script file during initialization. The Renderer unloads the plug-ins
when it is finished with the script.

In the case of an external animation template plug-in, when the Animator
wishes to use the template it calls the ExternalPreset(..) function with two
arguments: (HWND parent, and ANI STRUCTURE *lpevi). The first argument is
a handle to the container’s window that is used in the generation of the modeless
dialog box that allows the user to enter the template’s parameters. The third pa-
rameter, the lpevi parameter, is a pointer to the instance of the ANI STRUCTURE

data structure. This instance contains pointers to the Animator’s global vari-
ables and its most useful functions. Part of this structure is shown in listing 9.23.

Full details of the members of the ANI STRUCTURE structure can be found
in the code documentation; here we mention the most important. The global
variables and functions referenced in this structure allow the developer to pro-
grammatically generate animations of any complexity and length. Some of the
variables and function arguments refer to other OpenFX specific data types. Def-
initions for these as well as many useful constants are included in the “struct.h”
file. The Animator keeps only one copy of this structure. It is initialized at
start-up, and passed to the preset plug-in. By using the members of this struc-
ture any plug-in can access the functions used internally by the Animator. This
method is a very simple and a very flexible method of allowing plug-ins to access
global data and functions in the calling programs.

In order that the contents of structures like ANI STRUCTURE can be made
available to all functions and files in a plug-in the pointers passed to the func-
tions are normally transferred to a global variable. The global variable is then

4Many of the built-in actions are also implemented as DLLs that are loaded when the
program starts.

364 9. The complete package: OpenFX

typedef struct tagANI_STRUCTURE {
..
short *Nnodes,*Nground,*Nrobots,

*Nskys,*Ncameras;
struct NODE **MainNp,**FirstNp,

SelectedCamera,SelectedNode;
..
long *Nframes,*CurrentFrame;
short (*fpGetTransform)(short, ...);
void (*fp_scal)(double [4][4], double, double, double);
struct OBJECT * (*fpCreateActor)(struct NODE *, long, long);
struct NODE * (*fpCreateNode)(void);
..
void *dummyf[64];
} ANI_STRUCTURE;

Listing 9.23: The Animator’s structure used for passing API information to a Preset
template.

symbolically substituted into variable references and function calls using a num-
ber of #defines of the same name. For example, in the Designer an external
action is initiated through a call to:

BOOL _Xmodeler(HWND parent_window,HWND info_window,X__STRUCTURE *lpevi){

The X STRUCTURE structure pointer is immediately copied into the global vari-
able:

X__STRUCTURE *lpEVI;

by a statement lpEVI=lpevi;.
Accessing the Designer’s global variables and functions in a DLL module

through direct use of a pointer to the X STRUCTURE (or through the ANI STRUCTURE

in the Animator) is very tiresome. For example, to use the Designer’s number of
selected vertices global variable (called NvertSelect), it would be necessary to
refer to it using the code ((*(lpevi->NvertSelect))). This is very messy! To
overcome this issue and provide an interface to the functions so that they can be
made to look (in the code) just like normal function calls, a number of #defines
are included in the header files: “define.h” for the designer, “dstruct.h” for the
animator, and “defines.h” for the plug-in shaders.5 A similar strategy is used by
the memory management functions in the Designer and Animator to make its
functions accessible to all the plug-ins through the X MEMORY MANAGER structure
and its defines in file “memdef.h”. Table 9.7 summarizes the structures used to
pass access pointers to the different types of plug-ins.

By using these #defines, calls to functions and access to global variables can
be made as if they were part of the module code.

5This is located in folder “textures” to match the X SHADER structure which is used by the
Renderer to make its internal variables and functions accessible in a shader.

9.8. Adding to the software 365

Structure Modules Used with

X STRUCTURE Designer Tools and Actions
ANI STRUCTURE Animator Presets and Post-

processor
X MEMORY MANAGER Designer, Animator and

Render
All plug-ins

X SHADER Renderer Shaders
XIMAGE Renderer Post-processors
SFXINFO Animator and Renderer Animation Effects
SFXDATA Animator and Renderer Animation Effects

Table 9.7: Structures used to pass internal references from main module functions and
variables (Animator, Designer and Renderer) to the plug-ins.

9.8.2 Post-processor plug-ins

Two of the OpenFX post-processor plug-ins, discussed in this section, afford
good examples of the wide range of extensions to OpenFX that it is possible to
create using an image post-processor alone. This flexibility comes about because
the XIMAGE structure passes to the plug-ins not only pointers to the output color
and depth buffers, but also details of the viewing transformation with camera
viewpoint and viewing direction, and details of all the lights and targets in the
scene. With this information it would be possible to carry out a further rendering
pass that inserts a collection of additional elements that, as far as the viewer is
concerned, look like they are an integral part of the image. The most significant
entries in the XIMAGE structure are highlighted in listing 9.24. A pointer to an
instance of this structure is passed to the function exported by the DLL called:

// text string with process’ parameters
long _RenderImageProcess(char *PrmList,

// pointer to structure that gives access to Renderer global variables
XIMAGE *lpXimage

){}

The function is called once rendering is complete.

Lens flare camera effect The lens flare effect is a good example of how to use the
lights in the scene, how they are geometrically arranged relative to the viewpoint
and how to draw into the color buffers. It also illustrates how to use the depth
buffer to determine whether a light source is actually visible or is obscured behind
objects already rendererd. Figure 9.6 illustrates two variants of a lens flare effect.

The appearance of a lens flare is obtained by mixing a series of programmat-
ically drawn shapes, mostly circles and faded lines, into the output image buffer.
The shapes are arranged so that they are spaced out along a line from the center

366 9. The complete package: OpenFX

typedef struct Renderer_XIMAGE_tag {
double ViewTransform[4][4]; /* viewing transformation matrix */
double Xscale,Yscale; /* scaling for camera field of view */
long Frame; /* frame being rendered */
long Xmax,Ymax; /* dimensions of the image */
long Nlights; /* number of lights present */
light *Lights; /* pointer to array of light structures*/
long Ntargets; /* not used yet */
vector *Targets; /* not used yet */
fullscreenbuffer *Screen; /* pointer to screen buffer */
double *Zbuffer; /* pointer to Z depth buffer */
.... (omitted)
double *ViewPoint; /* Camera viewpoint (vector) */
double CamPhi; /* Camera setting */
double CamTheta; /* " */
double CamAlpha; /* " */
double CamSx; /* " */
double CamSy; /* " */
double CamSz; /* " */
char *aParameters; /* parameter list for current effect */
char *mParameters; /* morph parameters (morphing from) */
long version; /* version LITE / PRO /DEMO */
short (*fp_Terminate)(void);/* test for termination */
void (*fp_Yield)(void); /* yield for app messages */
.. (omitted)
} XIMAGE;

Listing 9.24: The structure used to pass references for the Renderer’s data to the
post-processor plug-ins.

of the image to the location of the light that is giving rise to the effect. Drawing
shapes is probably not the best way to render the visual elements of a lens flare;
a better approach would be to design the lens effect in an art program, divide
it up into a number of elements, save these as individual images and then scale
and blend the images into the output buffer.

The lens flare effect is delivered in two source files: “lens.c” and “lens1.c”.
The effect’s entry point in is “lens1.c”. Three types of flare are simulated and
most of the code is contained within the entry function RenderImageProcess(..).
In a case where the position of a light is specified as a parameter of the effect, its
coordinates have to be transformed to match the camera view point and orienta-
tion. This is done using the viewing transformation made available through the
XIMAGE structure. It is applied in the utility function TransformIntoView(..)

which performs a straightforward 4 × 4 matrix multiplication. Any lights in
the scene will have already been moved by the Renderer and if one of those
is involved in the effect then its identity will have been stored as part of the
parameter settings.

Most of the remainder of the code is associated with (1) drawing the parts of
the effect into the framebuffer which is referenced through the XIMAGE pointer
lpXimage->Screen, or (2) providing a modal dialog for use by the Animator
to define the parameters of the effect. The user’s configuration dialog is cre-

9.8. Adding to the software 367

ated and used in response to a call from the Animator to the exported function:
SetExternalParameters(...). This effect’s dialog is relatively complex be-
cause it offers tabbed pages in which the user can set multiple parameters. It
also offers a small window in which the appearance of the lens flare can be sim-
ulated. Despite these complexities, the dialog coding conforms very closely to
that of a standard Win32 API tabbed dialog.

An example atmospheric effect The atmospheric effect is a good example of how
an additional rendering step can be added in post-production. Post-production
can add a volume rendering step, in which the depth buffer and the spotlight
shadow buffers can be used to provide the appearance of a dusty atmosphere.
To render the volume effect, a ray originating at the viewpoint is traced through
the scene until it passes beyond the rear-clipping plane. Each ray is traced in
small incremental steps gradually accumulating a small (and randomly gener-
ated) increase in the proportion of scattered light seen in that pixel. This is a
very approximate model, to be physically accurate, a real model for scattering
would need to be made. However, tracing a ray in small steps even with only a
few steps, for every pixel is a considerable computational burden, and therefore
this approximation is made.

Figure 9.6 illustrates a couple of examples of the use of this effect where a
spotlight shines into a dusty (highly scattering) environment. The effect offers a
few variants. This section will only discuss the model in the case of spotlights.
Spotlights are the only type of light that can usefully be used in OpenFX be-
cause in order to simulate the appearance of the shadowing one sees in a dusty
environment it is necessary to determine the shadow state that applies at each
point along the line that is traced out into the scene. Using the shadow state,
the fraction of the scattered light to be mixed into the image from dust/parti-
cles/water vapor etc., in the environment may be determined. The shadow state
of any point along a ray may be determined by working out where that segment
lies in 3D space and (for spotlights) looking up their shadow depth buffer to see
if that point is in the shadow of some object or not.

Using this explanation of the concept that underlies the method of
rendering the effect, it is not difficult to follow the logic of the code.
RenderImageProcess(..) is the entry point. Each light is then considered
in turn, followed by execution of the nested loops to work through every pixel
in the image. In the case of spotlights, the tracing ray is checked to see if it
passes through the cone of illumination. When it does not, there is no need to
proceed further as the viewing ray is not illuminated and therefore does not scat-
ter any light. When the viewing ray does pass through the spotlight cone, it is
necessary to integrate along the ray summing up the scattering component over
those stretches in which it is not obscured from the light source by any interven-
ing objects. Any point that falls within a spotlight’s shadow volume can have
its shadowing state determined without tracing a shadow ray through the scene.

368 9. The complete package: OpenFX

Figure 9.6: Examples of OpenFX post-processors: a lens flare effect and an atmospheric
effect.

All that we have to do is compare its distance from the light with the shadow
depth recorded in the light’s depth buffer.

Looking into the code, as each pixel (i, j) is processed, the line-of-sight ray
is integrated over its passage through the spotlight cone for light k in function
TracePixel(...). Within TracePixel(...) Nsamples steps are taken along the
ray; at each step the shadow relationship is checked by PointInShadow(...). If
no shadowing object is present the scattering fraction is increased. Once the ray
has been traced out to a point in the far distance, the accumulated scattering
fraction is used to blend the current value in the image buffer with the color
of the scattered light. Of course this model is still very approximate because
the scattered light color is simply assumed to be a constant value. Nevertheless,
the appearance is reasonable (as can be seen in the images at the bottom of
figure 9.6) and the execution time is still practically usable even for large image
sizes.

9.9. Continuing to dissect OpenFX 369

9.9 Continuing to dissect OpenFX

This chapter has provided the major clues that should let you get to grips with
the OpenFX program code and follow the fine detail of algorithm implemen-
tation that we don’t have the space to cover here in great, or even modest,
detail. OpenFX is a fully practical code and implements most of the algorithms
discussed in the rest of this book. It even uses the OpenGL coding concepts of
chapter 7. The code presents a complete picture of how to do it in practice—and
remember, this 3D package probably has the shortest and most compact code of
any 3D application program of comparable power.

I hope that this chapter and the preceding ones in part II will provide you
with a good reference on how to do what you want to do with 3D graphics
and gives you some practical code that you can plug and adapt in your own
applications.

This page intentionally left blankThis page intentionally left blank

Part III

Practical algorithms for modeling

and procedural textures

This page intentionally left blankThis page intentionally left blank

Introduction to part III
The two chapters in part III leave behind basic principles and introduce some
specific and more sophisticated, yet still practically useful, topics.

The modeling algorithms described in chapter 10 were chosen because they
constitute some of the most essential tools for constructing polygonal models
algorithmically (as opposed to a simple tool that allows a program’s user to
draw a curve in 3D); for example, triangulating an arbitrary polygon (that might
contain holes) is a very tedious job when done manually. As another example, the
boolean operations that are easy to perform on a model made up from a collection
of procedurally defined primitives are very difficult to create in an arbitrary
network of triangular polygons. But since many shapes are very difficult to
build using any other method, it is something that we must be able to do.6 These
algorithms pose an interesting technical challenge (due mainly to the inability
of any computer to perform arithmetic to arbitrary precision) as opposed to
something simple, but still useful, like duplicating parts of a model.

The textures developed in chapter 11 have been chosen, first, because they
are visually appealing and have some novelty. But they are presented primarily
because they cover a comprehensive range of classes of textures:

• Geometric: with well defined shapes and patterns, e.g., dots.

• Periodic: based on oscillatory functions, sinusoids, or combinations of si-
nusoids, e.g., water waves.

• Random: based on pseudo random numbers, the famous fractal textures
are a form of these. However in chapter 11 the textures show how to extend
the Perlin noise based textures by mixing in some regularity.

And of course all these classes can be subdivided into those that perturb the
surface color, those that perturb (bump) the surface normal vector, or those
that do both. Equipped with the code for these classes of shader it should be
easy for you to combine them, or adapt them to build your own unique designs.

Note: Consult the website to obtain the annotated code listings for these
algorithms and both C and GLSL code versions of the shaders. Examining the
OpenFX package source code is also a good way to see how these algorithms fit
into a fully equipped practical package.

6Even deciding whether a polygonated 3D model has a hole in it or not is considerable
challenge in practice—something that is necessary for boolean operation.

373

This page intentionally left blankThis page intentionally left blank

10
Modeling with polygonal

datasets

In creating models of objects for use in computer animation and visualization
programs the most popular and versatile approach is to build them from a large
number of very simple primitive planar polygons. Highly successful professional
3D animation programs and most computer games use this approach. It would
be quite impractical to build polygonated models by entering lists of facets and
vertex positions on a keyboard. In all useful programs the computer provides
pre-built collections of flat triangular or rectangular polygons to represent prim-
itive shapes such as cylinders, spheres and torii. It is rarely sufficient to limit
the modeling process to a simple combination of primitive shapes and therefore
application programs must provide a wide variety of algorithmic procedures to
help the user combine and manipulate the basic shapes as well as creating other
more complex ones.

It is within this context that we may state: The primary goal of a modeling
algorithm is to construct medium to high complexity shapes automatically from
basic planar polygons. For example the helical tube illustrated in figure 4.27 and
the ribbon in figure 4.38 were both constructed algorithmically by creating and
combining many triangular polygons.

Any algorithm which builds models by combining polygonal shapes (trian-
gles or quadrilaterals) must do so within a framework imposed by the way the
specification of the model is recorded. Chapter 3 investigated a number of com-
monly used recording strategies and data structures to hold the specification
of the model. Those components of a model’s specification that are essential
for the procedures described in this chapter are: the vertex, the edge and the
(planar polygonal) facet. Since any planar polygonal facet can be reduced to a
set of triangular facets (by the first algorithm to be discussed) all the remaining
algorithms we will consider use triangular polygons.

Even the longest and most involved procedures can be broken down into a
number of steps which themselves can usually be further subdivided. All of
them will be written as a sequence of logical steps that are readily translated
into whatever computer language happens to be currently in favor. Most call
upon the geometric mathematics discussed in chapter 2.

375

376 10. Modeling with polygonal datasets

In order to keep the length of each algorithm as short as possible it is appro-
priate to define a few procedures that perform basic tasks. The most fundamental
of these create new elements in the description of a model, a vertex, an edge, or
a facet (polygon). These procedures which we call:

newV (x, y, z) Create a new vertex at coordinates (x, y, z).
newE(v0, v1) Create a new edge joining vertices v0 and v1.
newF (v0, v1, v2) Create a new facet with v0, v1 and v2 as its vertices.

belong to a group that manages data structures of the type described in chapter 3.
Each function returns an index for the new item in the array of items. In an
alternative implementation the same functions might instead return a pointer to
a new item at the end of a linked list. We will assume that in practice these
procedures handle any internal failure, possibly as a result of shortage of storage
space. In the same class of function, procedures to remove one or more objects of
each type from the database will be needed. A neat way to do this is to use a flag
in the data structure for each element which if set will cause that element to be
deleted during the execution of a deleting procedure (for that type of element).
This is discussed in section 3.3 and figure 3.7.

deleteV () Remove all flagged vertex objects from the description database.
deleteE() Remove all flagged edge objects from the description database.
deleteF () Remove all flagged facet objects from the description database.

Other helper procedures will be called upon to make lists, for example, make
a list holding the identity of a group of vertices connected together, or make a
path among a list of connected edges as illustrated in figure 10.1.

10.1 Triangulating polygons

This is one of the longer algorithms to be considered in this chapter, but it
plays a key role in a number of others too. It is used not only to reduce an
n sided polygon to a combination of triangular polygons but also to add facets
that cover or cap the inside of a curve recorded as a set of edges. Capping is
a vital step in building 3D models of text characters, such as those shown in
figure 2.30. TrueType or postscript font systems describe their characters as a
set of outlines. For a 3D model of a text character to be of any use the interior
of the characters must be filled with facets so that they can be colored, textured
and interact with the lighting. Incidentally, reducing an n sided polygon to a set
of triangles to all intents and purposes requires the same algorithm as one that
caps a closed path of n line segments. So we really only need to consider one
algorithm.

10.1. Triangulating polygons 377

List of vertices in path

10

10

15

15

23

23

1111

2
2

7

7

6

6

9

9 4

4

Figure 10.1: The action of a helper function GetPath(sid) to build a list (shown on
the right) which sequentially identifies each vertex starting at sid and is connected by
edges forming a path. The procedure will stop when the path can go no further or a
loop back to the start occurs.

One final comment in the preamble to this chapter: an enormous simplifica-
tion can be made in cases where a polygon to be triangulated is convex. However,
a significant complication is introduced if the polygon has a hole in it, so much
so that a discussion about capping of polygons with holes is postponed until
section 10.2.

10.1.1 The case of convex polygons

Let’s look at the simple case first: Section 4.2 gave a definition of a convex
polygon, say called P , the implication of which is that a triangulation may
be simply obtained by adding a vertex V anywhere inside the polygon, edges
joining V to all vertices of P , and facets between V and two adjacent vertices of
P . This forms a structure known as a triangle fan, one of which is illustrated in
figure 10.2. The algorithm given in listing 10.1 creates a triangle fan.

10.1.2 Non-convex polygons

When it comes to filling non-convex (concave) polygons the approach described
in section 10.1.1 will not work. Figure 10.3 illustrates the problem. Some of the
new edges fall outside the polygon and some of the new facets overlap each other.
A strategy must be devised that does not let new edges or facets fall outside the
original boundary of the polygon. It does not really matter whether additional
vertices are added or not.

Before developing an algorithm for a capping procedure that applies to non-
convex polygons consider the following tentative procedure for capping the 8
sided polygon shown in figure 10.4. Start with the 8 sided polygon, then: (a) Add
an edge between vertices 0−2. This makes a facet with vertices 0−1−2. (b) Add

378 10. Modeling with polygonal datasets

3

n–2

n–2

n–1

V

Vn–1
n–2

n–1

2

3

2

1

1

V

0

0

0

1

2

3

Figure 10.2: Triangulating a convex n sided polygon. Once additional vertex V is
created, edges and facets are added linking V to the original n vertices.

Find a point (xc, yc, zc) that lies inside the polygon.

(Possibly, a point halfway between vertices 0 and
n

2
)

Add a vertex: newV (xc, yc, zc)
(This is vertex number n.)
Repeat for 0 ≤ i < n {

Add edge between vertices n and i: newE(n, i)
}

Repeat for 0 ≤ i < n− 1
Add facet: newF (n, i, (i+ 1))
}

Add facet (linking back to the start): newF (n, (n− 1), 0)

Listing 10.1: Algorithm to replace an n > 2 sided convex polygon with n triangular
facets. The vertices are labeled 0, 1, 2, . . . , (n− 1).

another edge, 2− 4. Again a facet is made between vertices 2− 3− 4. Similarly
add edges 4 − 6 and 6 − 0. (c) Having returned to vertex 0 this completes the
first pass through the algorithm. The original 8 sided polygon has been partially
capped but a hole is left in the center.

Suppose we now consider the edges joining vertices 0− 2 − 4 − 6 − 0 as a 4
sided polygon. To cap this all we would have to do is go back and repeat the
process. Joining vertices 0− 4 adds a facet with vertices 0 − 2− 4. This leaves
a single three sided polygon 0 − 4 − 6 which can be immediately turned into a
facet to complete the capping procedure as shown in figure 10.4(d).

With a little refinement this simple idea can be automated to give an algo-
rithm that will cap (triangulate) any nearly planar (convex or concave) outline
(polygon boundary) provided that there are no holes in it. The ‘little’ refinement
mentioned is necessary because it is not always possible to join vertices like 0−2

10.1. Triangulating polygons 379

V

Figure 10.3: A concave polygon cannot be triangulated by simply joining its vertices
to an extra vertex placed somewhere inside. In fact there is no point inside that would
be satisfactory.

4 3

25

6

7 0

(d)

1

4 3

25

6

7 0

(c)

1

4 3

25

6

7 0

(b)

1

4 3

25

6

7 0

(a)

1

Figure 10.4: Steps in a possible capping procedure for a convex 8 sided polygon.

without that edge lying outside the polygon. However because the boundary of
the polygon is closed there must exist some place where it is possible to make
a connection between some vertices i and i + 2 and thus reduce the number of
sides in the polygon by 1. Consequently after at most n − 2 repetitions of the
above procedure the polygon will be capped.

From this tentative set of instructions it is now possible to write a general
algorithm that follows the ideas set out in the example of figure 10.4. However it
is not easy to write specific logical instructions that are equivalent to some rather

380 10. Modeling with polygonal datasets

vague statements. For example, to comply with the wishes of the instruction “...
this reduces the number of sides by one, repeat the procedure with the remaining
sides ...” some way of logically recognizing that an edge has been removed from
the polygon must be found. Probably the best approach to resolve this specific
issue is to design and use temporary data structures. The temporary structures
will be used only during the execution of a particular algorithm. When it finishes
resources allocated temporarily will be released.

The advantage of using temporary structures is that the primary vertex, edge
and facet structures that record the description of a model don’t have to change
to facilitate specific needs of the procedure.

A suitable format for recording the temporary information is a list of n struc-
tures, List(i). Each structure (List(i)) will correspond to one of the vertex/edge
pairs that constitute the border of the outline to be capped and it will record
the following information:

Vid A pointer to (identifier for) the vertex associated with this item.
Ll An index into the list indicating the previous vertex that has not yet

been eliminated.
Ln An index into the list indicating the next vertex that has not yet been

eliminated.
ff A flag to indicate whether this item needs no further consideration.
p The position vector recording the location of the vertex Vid.
n̂ The normal to the edge associated with this item.

The n items in List(i) will be ordered sequentially round the border of the
polygon (a border which must form a closed loop). The edge associated with
item i in the list joins the vertex for item i to the vertex for item i+1. The edge
associated with item n− 1 joins the vertex for item n− 1 to the vertex for item
0. For the example illustrated by figure 10.4 the initial state of the list is shown
in figure 10.5.

The purpose of the entries Ll and Ln are to allow the algorithm to skip over
those edges that have been eliminated as the reduction continues. The members
n̂i and pi are important in determining whether it is possible to join vertex i
with vertex i + 2 (i.e., determining whether the candidate edge lies inside the
border). The normal to the plane in which the polygon lies, n̂, is also necessary
for this determination.

At first sight it would appear that it should be obvious whether an edge
joining vertices i and i+2 lies inside or outside a closed polygon (see figure 10.4)
but there are two problems:

1. In three dimensions what does it mean to say: Inside of a polygon? The
answer is: There is no meaning, unless we assume that the curve is planar
and the concept of inside and outside is applied in the two-dimensional
sense to the plane in which the polygon lies.

10.1. Triangulating polygons 381

List Vid

0

1

2

3

4

5

6

7

1 (105)

0
(103)

2 (143)

3 (121)4

5

6

7

p0

103

105

143

121

171

192

201

111

LI

7

0

1

2

3

4

5

6

Ll

1

2

3

4

5

6

7

0

ff

1

n

n
0

n0

Edge 0

p

p
0

1

1

1

1

1

1

1

Figure 10.5: The contents of the temporary vertex/edge list before the first step of the
example given in figure 10.4. The numbers shown in brackets beside the list of indices
are vertex identifies; for example the first vertex in the list is vertex number 103.

2. Even in two dimensions how does one algorithmically tell if a point lies
inside or outside a curve? A human observer seems to find this a simple
thing to do provided the curve is not too convoluted.

To test whether an edge joining vertices i and i+ 2 lies inside the boundary
or not it is sufficient to test the mid-point, given by:

pm =
1

2
(List(i).p+ List(i+ 2).p)

lies inside the boundary. A test should be made to see if this new edge intersects
other edges in the boundary. The latter requirement need only be satisfied by
edges not adjacent to either vertices i or i+ 2. Edges adjacent to vertices i and
i+ 2 cannot possibly intersect an edge joining vertices i and i+ 2.

Thus, referred to a two-dimensional plane containing a closed curve C, the
test of whether a point P lies inside C is a three-step process:

1. From P draw a line in any direction until it is far away from C. (Say out
to a circle which is large enough so that it encloses all of C and contains
P .)

2. Move along the line from P counting the number of times C crosses the
line.

3. If the count is an odd number then P is inside C; otherwise P is outside
the curve.

This is called the Jordan curve theorem (see Haines [33]). Figure 10.6 illustrates
some examples of the use of this test. This simple procedure works because: To
go from being inside to being outside C (or vice versa), C must be crossed. To
go from inside to outside and back to inside, or outside to inside to outside C
has to be crossed an even number of times.

382 10. Modeling with polygonal datasets

(d)

L

P
c

(e) (f)

(a) (b) (c)

Figure 10.6: Some examples of testing whether the point P lies inside the curve C.
(a) 0 crossings outside. (b) 3 crossings inside. (c) 0 crossings outside. (d) 1 crossing
inside. (e) 4 crossings outside. (f) 2 crossings outside.

It is important to keep in mind that in all the algorithms described in this
chapter curves are represented by a finite number of straight line segments. Thus
to test how many times the line L, from P , crosses C we have to only to check
L against each segment of C. There is no need to worry about going far enough
along L because we are essentially checking every point on C. Since L can in
theory be any line at all it is appropriate to choose something simple, say a line
at right angles to the edge for which pm is the mid-point.

Unfortunately, the accuracy of computer calculations can cause even this
simple test to go wrong. To see this look at the example in figure 10.7(a). Does
the test line cross C within edge i or edge i+1? The answer is critically important
because if the calculation shows that it crosses both then the test will deliver an
erroneous result. The only way to ensure a correct answer is to be very careful
in determining intersections that occur near the ends of the edges that make up
C. For example one might say that if L intersects edge i within a very small
distance of the end joined to edge i+ 1 the test for intersection with edge i+ 1
would not be done. This would work for cases like figure 10.7(a) but in 10.7(b),
alas, another mistake would occur.

To avoid all these problems the following action can be taken: If the inter-
section between L and C is near the end of edge i don’t check edge i+1, instead
check to see if vertices Vi and Vi+2 are on the same side of L. If they are, then
L does not cross C, otherwise it does. One final complication: If a piece of C is
parallel to L ignore it, e.g., as in Figure 10.7(c), but don’t forget that the vertex
comparison now applies to Vi and Vi+3.

In the preceding discussion it was assumed that containment was tested for in
two dimensions. The capping algorithm requires that the polygon be planar but

10.1. Triangulating polygons 383

(b)

(a)

(c)

L

Vi+1

Vi

Vi+2

i+1

i+1

i+2L

Vi+2

Vi+3

Vi+1
Vi

P

P L

i

Edge
i

P

Figure 10.7: The tricky question: Does line L cross C in segment i or segment i+1 or
not at all?

Fence

ni
^

n̂

Figure 10.8: Fencing in a polygon prior to testing whether or not an edge lies inside a
polygon’s boundary.

not necessarily lying in the (x, y) plane, i.e., that all the vertices lie in some plane
so that it is possible to determine a single n̂ for the plane of the polygon. The
plane may however be orientated in any direction. Therefore, all the calculations
for containment must be performed in the plane of the polygon. One could
imagine finding an inverse transform that brings n̂ in line with say the z axis,
apply it to the vertices around the polygon and make the edge crossing tests in
the xy plane. The alternative is to make the edges take on a three-dimensional
character by placing small rectangular planes parallel to n̂ and lying along each
edge of the polygon, what might be described as fencing it in; see figure 10.8. It
doesn’t really matter how the test is done; both approaches are subject to the
same problems of accuracy and the result they deliver is the same.

Once allowance is made for these complications we can set out an algorithm
for capping any closed polygon C, given that it is recorded as n straight edges
in an array of structures List(i). The algorithm is presented in listing 10.2.

384 10. Modeling with polygonal datasets

For the n edges making up C build the array holding
List(i), the temporary data discussed in the text.

Set the current index indicator i = 0.
Set the number of edges remaining to be eliminated: m = n.

Repeat the following while m > 3 {
Get the next two entries in the list. j = List(i).Ln and k = List(j).Ln

Test whether an edge joining vertices List(i).Vid and List(k).Vid

lies inside the polygon. If it does then: {
Add an edge: newE(List(i).Vid, List(k).Vid)
Add a facet: newF (List(i).Vid, List(j).Vid, List(k).Vid)
Flag list entry j as begin invalid: List(j).ff = 0
Switch it out of the list: List(i).Ln = k and List(k).Ll = i
Reduce the number of valid entries in the list: m = m− 1

Update the normal List(i).n̂ to take account of the fact that
edge i replaces edges i and j and therefore
joins vertices List(i).Vid and List(k).Vid.

Move on to the next edge. Set i = k
}

Otherwise {
Move on to the next edge to try again. Set i = j

}
}

Make a facet with the remaining three valid edges.
(with the vertices for those entries for which List().ff = 1)

Listing 10.2: An algorithm to cap a planar polygon. It can also be used to cap a single
closed piecewise linear curve, one that does not loop or consist of several pieces.

Revisiting the inside outside question Associated with the decision as to whether
an edge falls inside or outside the bounding outline are two problems that warrant
additional comment. They are illustrated in figure 10.9.

1. In the case of the polygon illustrated in figure 10.9(a) an edge e, joining
vertices i and i + 2, lies along the border of the polygon C. If inserted
it would create a triangle with zero area. To prevent the need to ask the
question whether the mid-point of e is inside or outside C (which is not an
easy question to answer) a preemptive test for co-linearity between lines
joining vertices i to i+ 1 and i to i+ 2 should be performed. This can be
done by creating vectors for the direction of these lines and testing that the
dot product > (1− ǫ) where ǫ is of the order of magnitude of the precision
of the calculation.

10.2. Triangulating polygons with holes 385

(a)

i

i+1
i–1

i+2

i+1

Pm

i+2
C

C

(b)

i

Figure 10.9: Additional tests will need to be added to the procedure for determining
whether a point lies inside an polygon. In (a) an edge joining vertices i with i+2 would
form a triangle with zero area. In (b) the edge joining vertices i with i+ 2 is partially
outside the polygon.

2. In the situation illustrated in figure 10.9(b) the mid-point of the edge
joining vertices i and i+2, pm is inside C but other edges of C intersect it.
In this case vertex i should not be joined to vertex i+2. To prevent edges
being falsely labeled as internal an additional test should be performed to
check whether any edge in C crosses the proposed edge (the one between
vertices i and i + 2). In making this test all the edges in C should be
checked except those linked to vertices i and i+ 2, i.e., the edges i− 1, i,
i+ 1 and i+ 2.

Notes:

1. For a polygon that is planar any three vertices which are not co-linear can
be used to determine the normal n̂ of the plane in which the polygon lies.

2. No matter how careful one is in making the calculation there will always
be the potential for the algorithm to make a mistake. So in any practical
implementation care should be taken to build in an escape mechanism.

O’Rourke [65] and De Berg [19] offer a rich source of algorithms for computational
geometry problems like capping.

10.2 Triangulating polygons with holes

The algorithm developed in section 10.1 was restricted to capping an area en-
closed by a single curve. It would very useful if it were possible to extend it to
automatically cope with more elaborate situations. Three typical examples are
depicted in figure 10.10. The first labeled (a) shows three simple closed curves.

386 10. Modeling with polygonal datasets

(a) (b) (c)

Figure 10.10: Some examples of more elaborate shapes that commonly arise and need
to be capped. The shaded areas are the parts of the figures that should be covered
with triangular polygons.

A fairly straightforward extension of the basic procedure could cope with this. In
the second, diagram (b), a closed outline is shown containing three holes. This
is a much more difficult case to cap satisfactorily and a procedure to accomplish
this is the subject we will turn to now. The third, illustration (c), shows an-
other potentially troublesome situation with three separate pieces to be capped
one of which lies inside the hole in another. In fact it turns out that once an
algorithm capable of capping separate pieces which have holes is developed any
of the examples in figure 10.10 can be capped successfully.

Most of the steps described in section 10.1 can be used again here by care-
fully preprocessing the set of outlines to be capped. Consider the example in
figure 10.11 where the shaded area represents the interior of the outlines that are
to be capped. The example shows two separate shapes, labeled A and B, which
if they could be treated separately would be directly amenable to capping with
the algorithm of section 10.1. Note that piece B lies inside a hole, and that the
holes themselves could be described as an outline associated with the boundary
of the shape that contains the hole.

Using these ideas as a guide we can write down three preprocessing steps that
will prepare almost any combination of shapes for capping with the algorithm
we have just discussed:

1. Make a list of all separate pieces in the outline; call these Ci. Check that
each piece forms a closed curve. Checks could also be done to make sure
that the curve does not cross itself or bifurcate, but these are probably
less necessary. Record the information about each piece in an array, say
List(i), of the data structures described in section 10.1.

2. After step 1 each piece in the outline will either be the outline of a hole
or the outline of part of the shape. Determine into which category all the

10.2. Triangulating polygons with holes 387

A

B

Figure 10.11: Example of a complex outline to be capped. The shaded area represents
the interior. Curves labeled A and B are referred to in the text.

pieces fall. Deciding whether a curve Ci is the outline of a hole or the
outline of a shape or indeed the outline of a shape lying within a hole is
essentially the same as determining whether a point P (any point on Ci)
lies inside a curve.

3. If the piece Ck is the outline of a hole determine which of the curves Ci

is holed by Ck. Then amalgamate curves Ck with Ci and any other holes
inside Ci to form a single curve. Order the structures in the list List(i) so
that a continuous path occurs round the augmented outline.

After preprocessing each separate piece of the outline can be passed to the algo-
rithm given in figure 10.2 for capping.

(1)
(2)

(3)

4

Figure 10.12: Preprocessing the example in figure 10.11 to eliminate holes and prepare
for capping each piece of the outline by using the algorithm of figure 10.2.

Taking the outlines shown in figure 10.11 as an example the preprocessing
steps will reduce 7 discrete pieces to the 4 outlines shown in figure 10.12. The
pieces labeled A and B in figure 10.11 become the outlines labeled 2 and 4.

388 10. Modeling with polygonal datasets

The holes lying inside outline 1 have been joined to it. A consistent direction
has been assigned to the outline and at the joins a small gap has been inserted
to emphasize the fact that there are no holes. The small gap does not really
exist but it is essential to include it in the position vectors that are part of the
List(i) structures. This is so that the inside/outside test does not get confused
by coincident edge segments.

Well, that’s the theory, we should now consider the preprocessing steps in a
little more detail.

Listing the pieces of the outline The simplest way to do this is to define an array of
List() structures. Let’s call it ListOfLists(). Each entry records the following:

List(i) Array of List structures. The List structure is defined in sec-
tion 10.1.

n The number of List structures in this piece of the outline.
fi Identity of closest enclosing piece if this is the outline of a hole.
fd A flag to indicate whether this piece has been processed.
n̂ A normal vector for the plane in which this piece lies.

Determining the status of a piece of the outline This procedure follows closely
the arguments used to determine whether a point lies inside or outside a closed
polygon. For this situation the test does not have to be quite so rigorous because
we can assume that the pieces of the outline don’t overlap. The test can take
the coordinates of the vertex at the start of the first edge in each piece (i.e.,
ListOfLists(i).List(0).p) as the point to determine whether or not it lies inside
the other outlines (i.e., those which are 6= i).

If the point ListOfLists(i).List(0).p lies inside an odd number of pieces
then it is the boundary of a hole and the identity of the piece 6= i closest to it is
recorded in the variable ListOfLists(i).fi.

Joining holes to make a single outline to be capped Each hole H should be joined
to the piece of the outline B, surrounding it by linking the vertices Vh and Vb in
each that are closest together. These vertices are found by comparing distances
between every pair and choosing the smallest, provided the following conditions
are satisfied:

1. An edge joining Vh to Vb does not cross H.

2. An edge joining Vh to Vb does not cross B.

3. An edge joining Vh to Vb does not cross any other hole inside B.

Once a valid Vh and Vb have been found a new outline B′ that combines B and H
is constructed by building a replacement for the ListOfLists() entries holding
curves H and B. The combined list will contain two additional edges in the

10.2. Triangulating polygons with holes 389

outline. These link Vb to Vh as the path goes from B to H and Vh to Vb as the
path rejoins B.

After that, as hinted earlier, the vertices at the ends of the two additional
edges are pulled back by a small displacement to prevent numerical problems
in the capping stage. The distance to pull back can be a small fraction of the
length of the edges. This perturbs some of the ListOfLists(i).List(j).p vectors
but because they are copies of vertex positions the vertices themselves will not
be moved.

Completing the jigsaw A C language code for this algorithm is included with
the book. It takes as input an array of n of the ListOfLists data structures
described earlier and uses the functions newE and newF to create the edges
and facets that complete a triangulation of the outlines described by the List
members of each structure in the ListOfLists array.

The code uses the approach of bounding the outline with a series of planes
parallel to the normal n̂ as illustrated in figure 10.8. This means that the cal-
culations to determine whether or not a piece of the outline is part of a hole, or
if an edge joining two vertices lies inside or outside, must find the intersection
between a line L and a bounded plane P :

L is a feeler ray designed to detect the number of times it crosses
a boundary. It starts at the point to be tested for containment,
pm, which is usually the mid-point of an edge between two ver-
tices. L is directed at right angles to the edge and to n̂. P (the
piece of the fence) is a plane perpendicular to the plane in which
the curves lie. For any edge i it is given by the equation:
(p− List(i).p) · List(i).n̂ = 0.

The piece of the fence along edge i is bounded by two lines parallel
to n̂ (perpendicular to the plane of the curve) and passing through
List(i).p and List(i + 1).p, respectively. The geometry is pictured
in figure 10.13.

The test is divided into two parts:

1. Find pi the point of intersection between L and P .

2. Establish whether pi lies between the vertices i and i+1. Specif-
ically in this case we know that pi will lie on the line through
the points pa = List(i).p and pb = List(i + 1).p. Therefore a
parameter µ may be determined from:

(pi − pa) = µ(pb − pa) (10.1)

390 10. Modeling with polygonal datasets

Test whether an edge
joining these two vertices
of C lies inside C

pm

pi i

i+1
N

C

P

Figure 10.13: Part of the test for containment of a point pm inside a piecewise linear
curve C. The test line L is checked for intersection with a piece P of the fence bounding
the curve.

After cappingBefore capping

Figure 10.14: Triangulating the shape shown on the left gives the result on the right.
The shape contains nested holes.

If 0 ≤ µ ≤ 1 then C is crossed by L in C’s edge segment between
vertices i and i + 1. Note that in equation 10.1 any one of the
components of the vectors could be used to determine µ. To
prevent division by zero, we choose the component of (pi − pa)
with the largest magnitude. To determine pi use the expressions
given in section 2.6.

When all the preceding steps are combined the algorithm is complete. The
results of its action when presented with an outline containing multiple nested
shapes and holes is shown in figure 10.14.

10.3. Subdividing polygonal facets 391

Basic 20 facet
approximation

Subdiving each facet in
4 produces a better
looking sphere.
(phone shading included)

�ree subdivisions of the
basic 20 facet shape.

Figure 10.15: Approximating a sphere by repeated subdivision of the facets of which
it is composed.

10.3 Subdividing polygonal facets

The major reason to subdivide a polygon is to provide additional mesh elements
so that finer detail in a model may be included. For example: A sphere might
be represented by 20 carefully arranged triangular polygons. However such an
approximation is very coarse and if rendered from a nearby viewpoint it would
be hard to convince any observer that it actually represented a sphere. Dividing
each edge of the 20 polygons will produce an approximation to the sphere with
80 triangular facets. After moving the additional vertices at the mid-point of the
edges to the surface of a sphere a much better, but still faceted, approximation
is produced. Subdividing these 80 facets in the same way and repeating the
operation once more produces an excellent approximation to a sphere which after
rendering is hard to distinguish from a mathematically perfect CSG sphere.

CSG: Constructive solid geometry, is a method of building models
from the functional description of a number of simple primitives. A
CSG sphere is represented by its mathematical equation and thus will
appear perfectly spherical when rendered at all resolutions and from
all viewpoints.

The example of constructing better and better approximations to a sphere
by repeated subdivision of a faceted model is illustrated in figure 10.15.

Interior subdivision places a vertex at the center of each triangular facet and
thus divides it into three. The important thing to note about this is that no
edges in the model are divided. Thus in this form of subdivision, changes made
to one facet has no effect on facets sharing a common edge. Interior subdivision
is illustrated in figure 10.16.

392 10. Modeling with polygonal datasets

(a)

(b)

Figure 10.16: (a) Subdividing the interior of a triangular facet. In (b) it may be
seen that a subdivision in one facet does not affect the vertex network of other facets.
Compare this to the subdivision shown in figure 10.17.

(3)

(2)

(1)

2

3

4

1

(b)

(a)

A

B

A

Figure 10.17: Subdividing a facet: (a) Vertices are added along the mid-points of the
edges of the facet. This necessarily effects adjacent facets if a triangulated polygonal
network is to be maintained. Part (b) shows the effect of subdividing a facet on its
neighbors; either the facet labeled B is subdivided or it becomes a quadrilateral (which
may not be planar). The cases labeled (1), (2) and (3) are the outcomes discussed in
the text.

Subdividing internally a triangular polygon is straightforward since (as il-
lustrated in figure 10.16) there are no knock on effects in adjacent facets. It is
simply a matter of modifying the data structure for the facet being subdivided
(to re-vector its vertex entries). Two additional facets with appropriate vertex
data are created and if an edge list is required then three new entries go into
that too.

10.3. Subdividing polygonal facets 393

(a)

5

4

0

3

2
8

7

6
1

(b) (c)

Figure 10.18: The knock on effect of subdividing one facet at a time.

A subdivision that involves the insertion of a vertex at the mid-point of the
edges of a facet is more difficult to accomplish since we want to avoid creating
a polygon with more than three vertices. The case shown in figure 10.17(b)
illustrates one aspect of the problem. For the facet labeled B there are three
possible outcomes:

1. Only the edge common with facet A is divided.

2. All its edges are divided.

3. It is not divided but is modified to become a quadrilateral with four ver-
tices.

The last outcome is undesirable because if the vertex labeled 3 is moved then the
quadrilateral facet B will no longer be planar and it is possible to open up a gap
in the previously closed network of facets. The first two outcomes will ensure
that the subdivisions of B are triangular and planar but the second case has
knock on implications for any facets attached to B along the edges not common
to A.

Before the algorithm can be declared complete there is another practical
problem that needs to be addressed. To see what this is look at figure 10.18(a).
It shows a connected network of 8 triangular facets each one of which is to be
subdivided. They have to be processed in order, but subdividing facet 0 also
affects facets 1, 3 and 4. It would not be a good idea to modify facets 1, 3 and
4 as illustrated in (b) because when it comes time to subdivide them it would
then not be possible to obtain the optimal subdivision shown in (c). Yet another
minor annoyance is that every facet must know the identity of its neighbors (e.g.,
facet 0 is a neighbor of facets 1, 3 and 4). If this information is not available
then every facet will have to be tested against every other facet to see if they
share a common edge, or equivalently, have two vertices in common.

The algorithm given in listings 10.3 and 10.4 builds a subdivision by using
an auxiliary list to record the identity of vertices which divide the edges of the

394 10. Modeling with polygonal datasets

Establish a temporary list, List(j), to record for each facet the identity
of the vertices that may be inserted in the three sides of a facet.
Each entry in the list will record up to three items.
1) The ID of vertex inserted between Poly(i).V id(0) and Poly(i).V id(1)
2) The ID of vertex inserted between Poly(i).V id(1) and Poly(i).V id(2)
3) The ID of vertex inserted between Poly(i).V id(2) and Poly(i).V id(0)
Use the algorithm of section 3.6 to find the
identity of the facets adjacent to the edges in the network.

Repeat the following for all edges i in the network {
Create a vertex, say Vn at the mid point of edge i
Create an edge between Vn and Edge(i).V id(1)
Modify edge i so that it now connects vertices
Edge(i).V id(1) and Vn

i f Edge(i).F id(0) ≥ 0 {
If edge i joins vertex Poly(Edge(i).F id(0)).V id(0) to
vertex Poly(Edge(i).F id(0)).V id(0) record Vn in the first
item in the temporary list for facet Edge(i).F id(0).
If it does not try the other two sides.

}
Do the same thing for facet Edge(i).F id(1)

}

Listing 10.3: Part 1 of the key steps in an algorithm to subdivide a network of connected
triangular facets. Edge(i) is a list of structures that defines the edges. Edge(i).F id(j) :
j = 0, 1 are the identities of the facets adjacent to edge i. Edge(i).V id(j) : j = 0, 1 are
the identities of the vertices to which edge i is connected. Poly(i) is a list of structures
that describe each facet in the network.

facets. This list is called on to provide vertex information as new facets are
added; three for each original facet. The algorithm assumes that a list of facets
adjacent to edges has been prepared using the procedure given in section 3.6.

10.4 Lofting

The name lofting is given to the procedure that takes a set of closed curves lying
in parallel planes and joins them up to form a surface. For example the curves
shown on the left of figure 10.20 can be automatically linked with edges and
facets to form the solid surface shown on the right. The curves are recorded as
a list of vertex-edge pairs. (This data structure was introduced in the discussion
on capping in section 10.1.)

The core part of the algorithm involves linking two adjacent curves with edges
and facets. The whole set of curves is then linked by considering pairs of curves
in turn. For example in figure 10.20 the loft was produced by linking curves 1

10.4. Lofting 395

Repeat the following for all facets j in the network {
[Note that at this stage the list List(j) will have a
[vertex identity for all three items in each element because
[every side of all facets will have been subdivided.
[Note also that it is very important that a consistent ordering
[of vertices for new facets is maintained so that the surface
[normal vectors will point in the outward direction for all facets.
Add three facets between the vertices below:
Facet 1) List(j).V01, List(j).V12, List(j).V20

Facet 2) List(j).V01, Poly(j).V id(1), List(j).V12

Facet 3) List(j).V12, Poly(j).V id(2), List(j).V20

And three edges between the vertices below:
Edge 1) List(j).V01, List(j).V12

Edge 2) List(j).V12, List(j).V20

Edge 3) List(j).V20, List(j).V01

[These are illustrated in figure 10.19
Modify facet j and so that it is attached to vertices
Poly(j).V id(0), List(j).V01 and List(j).V20.

}

Listing 10.4: Part 2 of the key steps in an algorithm given in listing 10.3 that subdivide
a network of connected triangular facets.

With additional edge,
facets and vertices.

Original

Vid(0)

Vid(1)

Facet
(j)

Vid(2) Vid(2)

Vid(1)

Vid(0)

V01

(j)

V12

V20

Figure 10.19: Labeling of vertices for the subdivision algorithm given in Figure 10.3.

and 2, then curves 2 and 3, then curves 3 and 4, followed by curves 4 and 5 and
finally curves 5 and 6.

For any two planar closed curves with n and m vertex/edge pairs respectively
it is essential that the join is made with triangular facets and that vertices near
each other are connected together. In other words: vertices from one side of the
first curve must not be connected to the far side of the second. It would also
be desirable to make the connections so that the triangular facets are as near
equilateral as possible. For some curves it is almost impossible to automatically

396 10. Modeling with polygonal datasets

After lofting

Piecewise
linear curves

6

5

4

3

2
1

x

y

z

Figure 10.20: Lofting involves joining a set of closed curves to form a solid surface. In
this example the curves lie in xy planes and are displaced from one another in the z
direction.

decide what form the join should take. Even by eye it can sometimes be none
too easy either. Figure 10.21 illustrates how the simple act of displacing two
curves can lead to very different arrangements of edges and facets in a join.

Given the above caveats the following procedure will loft a set of k planar
curves recorded in an array of lists identifying the vertex/edge pairs that make
up each closed curve. For example the two curves depicted in figure 10.21 are
composed of 11 and 20 vertex/edge pairs in the upper and lower curves respec-
tively.

The algorithm consisting of 8 main steps is:

1. Pick the curves in pairs, 0 and 1, 1 and 2 etc., and repeat the following
steps to join them. We will think of these curves as paths with a starting
point that may or may not be the first vertex/edge in the list. The paths
will be labeled Pn and Pm with n elements (vertex/edge pairs) in Pn and
m in Pm.

2. Find the elements in Pn and Pm that are closest together. Label these fn
and fm.

3. Re-make the lists for Pn and Pm so that fn and fm are the first elements
in each list. This is the step that requires the curves to be closed. (It is
possible to modify this algorithm to loft a set of open curves by arranging
the elements in the list so that the first ones are fn and fm.)

4. The procedure requires that Pn has fewer elements than Pm so if m > n
swap the curves.

This completes the preparation, but before we can build the join which in-
volves simultaneously moving along the paths stitching together elements
that are “close”, we must decide in which directions to move.

5. To decide in which direction to move compare the distance lx between the
second vertices in Pn and Pm with the distance ly between the second

10.4. Lofting 397

Original curves Joined curves

Plan

Elevation

Elevation

Displacing the curves
after the join has been

effected results in a
very different network

of edges and faces.

Plan

Figure 10.21: The effect on the join between two curves when one is displaced from
the other before the join is executed. The curves are shown in plan and elevation view.

vertex in Pn and the last vertex in Pm. If lx > ly then the curves are
oriented the wrong way round so one of them must be reversed; reverse
Pm. This is illustrated in figure 10.22.

Getting the curves the right way round allows us to follow both curves in
ascending vertex order and basically join them up, vertices 1 to 1, 2 to 2
etc. Because Pm may have more vertices than Pn a protocol will have to
be adopted to allow the extra ones to join in. These actions occur in the
next two steps.

6. For every element i, in Pn, find the element j in Pm so that vertex j is
closest to the vertex for i. Element j must be chosen so that no vertex
further along Pm is already connected to any vertex in Pn. (This is very
important.) While this step is proceeding record in the data structure for
the elements of Pn the identity of the element in Pm to which each one is
attached.

398 10. Modeling with polygonal datasets

Curves orientated correctly to link 1 to 1 etc.

m–1 m–1

0

0

n–1

n–1

3

2 1

0

0

13

4

3

2

2

1 1

4
3

2

Linking 1 to 1, 2 to 2 etc. will not work correctly

Figure 10.22: If curves are not orientated appropriately then the join will not work.

1

2

1
0

6
4

2

3
3

Pm

4
5

4

5

6

0

1

2

3

2
4

0
Pn

1

3

Figure 10.23: An example of joining two curves before and after the execution of step 6
in the algorithm.

After this step every vertex in Pn will be connected to a vertex in Pm. There
may be some vertices in Pm not connected and triangular facets need to be
created but we have achieved a framework that has a reasonable geometry
and no overlapping edges. Figure 10.23 illustrates an example of the state
of the join after this step.

7. Make a second pass along path Pn to join in the unconnected vertices of
Pm and build the facets. For each element i in Pn do the following:

(a) Set an index, i0, to the identity of the element in Pm to which the
vertex i is attached. If i is not at the end of Pn set another index, i1,
to the element in Pm to which vertex i + 1 in Pn is attached. If i is
at the end of Pn set i1 to some value > m.

10.4. Lofting 399

Pm

Add one edge and two facets

(a)

(b)

Add one facet herePm

Pm

Pn

Pn

Pn

Figure 10.24: Inserting one or two facets to make up the join. (a) Adding one facet.
(b) Adding two facets requires an edge too.

Pm

Pn

Pn
Before

After

Pm

Figure 10.25: Linking a longer gap in Pm to two adjacent vertices in Pn.

(b) If i1 = i0 then vertices i and i + 1 in Pn are attached to the same
vertex in Pm and it is only necessary to add one facet as illustrated
in figure 10.24(a).

(c) If i1 = i0+1 then two facets are required as shown in figure 10.24(b).

(d) If i1 > i0 + 1 then a variable number of facets and edges need to link
i and i + 1 in Pn to j in Pm such that i0 + 1 ≤ j < i1. There are
a number of arrangements that can accomplish this. In the example
shown in figure 10.25 the vertices in Pm are joined to vertex i until
one of them gets closer to vertex i+ 1. After that they are linked to
vertex i+ 1.

8. The final step is to add the facets where the ends of Pn and Pm link back
to the start.

This procedure will work in the vast majority of cases but it may run into
problems where one oriented curve has a very large number of points whilst the
one next to it has only a few.

400 10. Modeling with polygonal datasets

A

C

Figure 10.26: The surface of revolution on the right was produced by revolving the
curve C around the axis A, shown on the left.

10.5 Surfaces of revolution

A surface of revolution is the formal way to describe the shape produced in a
workshop with a lathe. It has an axis around which some curve is rotated to
build a network of vertices and facets. The curve could be expressed analytically
or it could be a piecewise linear approximation to a smooth curve. An analytic
description is often used in constructive solid geometry applications but in the
context of the polygon faceted description of surfaces used in this chapter it is
appropriate to use a piecewise linear description of the curve.

A typical example of a model built with a single surface of revolution is the
torus illustrated in figure 10.26.

Typically the axis of revolution will be parallel to one of the Cartesian axes.
Other parameters required are:

1. The angle through which the revolution occurs. A positive angle will result
in a counter-clockwise direction of rotation. A full revolution of 360◦ will
produced a closed surface; in this case the direction of rotation is irrelevant.

2. Because the surface is to be approximated by a finite number of polygonal
pieces the number of steps (sections) in the rotation must be specified.
For a 360◦ rotation more steps will result in a better approximation to a
smooth surface of revolution. (The example of figure 10.26 used a section
placed every 15◦ which is about the minimum acceptable.)

Producing a surface of revolution is one of the most fundamental actions in
constructing 3D models because some of the most commonly used primitive
shapes are surfaces of revolution. The sphere, ellipse and torus may all be
constructed by revolving the appropriate curve.

An algorithm that builds a 3D surface of revolution will need to construct
a network of connected facets and edges from vertices placed at the position of
the sections. The algorithm proceeds one section at a time and if the revolution
is for a full 360◦ a final step will add facets to connect the last section back to
the first. Care will also be needed to account for the revolution of a curve which
is closed (such as that in figure 10.26) because in those cases the last vertex in
the piecewise representation is assumed to be connected to the first.

10.6. Beveling 401

Start with a curve
to be rotated

Add a copy and
rotate into position

Link the new curve to
build edge and facets

Figure 10.27: Link on the next section as part of the process of building a surface of
revolution.

Starting with a curve (in the form of a set of vertices and edges) for the outline
of one half of the final shape each section is added by the following actions:

1. Copy the original curve: Its vertices and edges.

2. Rotate the copied vertices into position; the copied edges will automatically
follow.

3. Build edges and facets to link the new curve onto the old one as illustrated
in figure 10.27.

The code for a function to implement this algorithm is included with the
book. The input takes: an ordered list of n vertex identifiers List(i) describing
the curve, a flag floop indicating if the curve is closed, a vector p which is a point

on the axis of rotation d̂, the direction of the axis of rotation, ns, the number of
steps in the revolution and finally θ, the counter-clockwise angle of revolution.
It is important that the algorithm creates facets with a consistent ordering so
that all the facet normal vectors point outward. Of course if a full revolution is
not completed then there will be a viewpoint from which the rear of the facets
will be visible.

10.6 Beveling

Beveling (alternatively called filleting) removes sharp corners from objects. As
such it therefore plays an important role in many CAD application programs.
In 3D graphics beveled edges are commonly used to enhance the appearance of
models of text strings.

Adding a bevel to a model built from triangular polygons is difficult because
it involves cutting and modifying polygons. It is much easier to build the bevel

402 10. Modeling with polygonal datasets

Bevel

Hidden surfaceHidden line

Figure 10.28: Models for the letters A and S showing a bevel on the front face.

After capping

After bevel is added

Outline curve

Figure 10.29: Beveling an outline.

into the model as it is constructed. This is the way the model of the letters
shown in figure 10.28 was constructed.

The generation of a beveled shape can begin with a set of closed curves using
a modified version of the triangulation algorithm described in section 10.1. Once
the curve has been beveled it can be capped with the triangulation algorithm to
produce a closed shape; see figure 10.29 for an example.

To create a bevel from a series of closed outlines there are two issues to be
addressed:

1. To which side of the curve is the bevel formed? This is tied in with the
idea of a curve with a hole in it because the bevel round a hole should slant
in the opposite direction to the bevel round the outside of the curve. The
curves shown in figure 10.29 contain both a series of outside outlines and
a hole; you should be able to see how the bevel is made accordingly.

2. How does the bevel behave as it goes round a bend? This will depend on
whether:

(a) The bevel is to appear on the inside of the bend as you go round
(shorter path).

10.6. Beveling 403

(d)(c)(b)(a)

Bevel

Bevel

Bevel

BevelC C

C

C

Figure 10.30: Beveling a curve that goes round a bend. (a) The bevel is on the inside
of the curve C. (b) The bevel is on the outside of C. (c) On the outside of a hairpin
bend. (d) On the inside of a hairpin bend.

(b) The bevel is to appear on the outside of the bend as you go round
(longer path).

These cases are shown in figure 10.30(a and b). Since all the curves used
in this chapter are built from straight edges (piecewise linear) the problem
of how to arrange the facets in the bevel is accentuated when the curves
go round a bend that is greater than about 270◦. The question therefore
is: How to how to build the bevel?

A first guess for a procedure might be: Add one edge lying parallel to each
edge in the original curves, offset it by the depth of the bevel and link it to
the main curve with edges and facets. However, this won’t work for curves
with hairpin bends, Figure 10.30(c and d), because the repositioned edges
overlap or leave a gap as shown in Figure 10.31. Even though this first idea
may not work immediately it is a good starting point for a better procedure
because an edge can be inserted to fill any gap and edges that would overlap
can be shortened. This approach leads to satisfactory looking bevels; see
figure 10.32.

A reasonable algorithm that produces such a bevel round a set of outline
curves requires the following three steps:

1. Given a list of closed curves (closed curves are needed so that the bevel
can be placed to the inside) determine whether each curve represents the
outline of a hole or an outside edge.

2. For each vertex/edge pair Vi, determine a normal to the edge; call it n̂i.
Choose n̂i so that it lies in the plane of the curve and points in the direction
in which the bevel is to be made. In addition, for each Vi obtain the average

404 10. Modeling with polygonal datasets

Edge added to make bevel

(b)(a)

Vi–1

Vi

C C

Overlap

C C

F

L

B

A

Gap
α α

Figure 10.31: Beveling a hairpin bend either leaves a gap or causes an overlap.

Shorten
adjacent
edges

Fill with extra
edge & facet

C

C
C

C

Figure 10.32: Beveling a hairpin bend with the gap filled in and overlapping edges
shortened.

of the normals to the curve at Vi and its neighbor Vi−1; call this v̂i. Use v̂i

to obtain the necessary extension or shortening for the edges in the bevel.

3. Travel round each curve and consider in turn the individual vertex/edge
pairs Vi making up the curve. With each Vi (we assume that the bevel has
been constructed up to Vi−1), check the angle α between Vi and Vi−1 (on
the side where the bevel is to be built) and do the following:

If α > 270◦ (figure 10.31(a)), add a vertex in the bevel beside Vi, (labeled
A) and link it with an edge to the last vertex in the bevel (labeled L
beside Vi−1). Add another vertex, B, again beside Vi (but offset in a
direction perpendicular to the edge Vi). Join B to A with an edge and add
appropriate facets. The vertex B becomes the last vertex in the bevel.

If α < 270◦, determine the position of the point labeled F in figure 10.31(b).
Add a vertex at F , join it to the last vertex and add other edges and facets
as appropriate to build the bevel. The case shown in Figure 10.31(b) has an
α for which the edge of the bevel is shorter than the edge parallel to it in the

10.7. Orienting surface normals 405

Curve

(a) (b)

E

Bevel

Overlap

Figure 10.33: Resolving the problem that can occur if the curvature is too great to
accommodate the required bevel depth. In (a) the edges in the bevel overlap. By
preventing the creation of a vertex and edge associated with edge E in the original
curve, the overlap is avoided (b).

curve C. This will be true for cases where α < 180◦. If 180◦ < α < 270◦

the edge in the bevel will be longer than the one it is parallel to in the
curve C.

Figure 10.32 illustrates the result of applying this procedure to the curve
fragments of figure 10.31.

There is one irritating complication when beveling part of a curve like that
shown in figure 10.31(b). What happens if the edge segments are shorter than the
depth of the bevel? In such cases the location of the point F (figure 10.31(b)),
determined from two consecutive edges would cause an overlap as shown in
figure 10.33(a). To avoid this a test should be inserted before creating a vertex
at F to see if an overlap is going to occur. If the result of the test is positive then
F should not be created and the algorithm will just skip forward to consider the
next edge.

10.7 Orienting surface normals

Sometimes the order in which the vertices to which a polygon is attached is
not listed in a consistent order. That is, if you look at a plan of a network
of facets, some facets have their vertices listed in a clockwise sense and some
have their vertices listed in a counter-clockwise sense. An example is illustrated
in figure 10.34. If this happens a renderer cannot determine if the front or
back of a polygonal is the one facing the camera. Thus it is not possible to
perform a back-face cull (see section 4.2.7) because this might lead to holes
appearing in the model. Consequently all facets have to be rendered and this
slows the rendering procedure. A further complication of inconsistent orientation

406 10. Modeling with polygonal datasets

Note the direction
in the two faces on

either side of
edges like these

An inconsistent network A consistent network

Figure 10.34: The order in which the vertices bordering a polygon are recorded can
produce a consistent or an inconsistent network. A consistent network is one in which
the surface normals (formed by a vector cross product between two non co-linear edges)
of connected polygons are directed toward the same side of the network.

in surface patches is that it is very difficult to calculate appropriate normal
vectors and as a consequence unpleasant artifacts can appear when the Phong
or Gouraud shading procedures are used to simulate curved surfaces.

This section presents a procedure that will orientate a network of connected
triangular facets by making the order in which the vertices of any facet are
recorded consistently counter-clockwise when looking at the facets from the “out-
side” of the model. Although some models do not have a definite inside or outside
(a flat sheet of facets for example) one side can be arbitrarily designated the out-
side. Models that consist of several pieces can be orientated simply by treating
each piece as a separate network.

For the purposes of this algorithm a facet is part of a network only if it is
connected to other facets along at least one of its edges. Facets that meet only
at a vertex are considered as separate networks.

The algorithm which is recursive can be summarized in the following five
steps:

1. Add an integer identifier sid to the data structure describing each polygon.
This will be used to identity separate pieces in the model.

2. Flag every polygon as being unidentified, i.e., set sid = −1.

3. For every polygon work out the identity of the polygons adjacent to it, i.e.,
those that have a common edge will have two of their vertices the same as
the polygon being checked. A suitable procedure is given in section 3.5.

4. For each polygon k, check if it is unidentified. If it is, then call the recursive
function IdentifyConnected(LastOneSet, SetThisOne) to assign it and

10.8. Delaunay triangulation 407

all facets connected to it. The function also makes all connected facets
adopt the same counter-clockwise vertex ordering scheme.

The function will be called with the identity of the polygon to be checked
(the parameter SetThisOne), and the identity of the last one that has
been checked (parameter LastOneSet). Since 0 ≤ k we can use −1
as the starting value for LastOneSet. The initial call then takes the
form IdentifyConnected(−1, k). A counter c is initialized c = 0 which
will count the number of discrete pieces in the model. On execution
IdentifyConnected() performs the following functions:

(a) For polygon SetThisOne check if its flag sid ≥ 0. If it is then return
from the functions because facet SetThisOne has already been set
and therefore this test stops further recursion.

(b) If LastOneSet ≥ 0 make the orientation of polygon SetThisOne the
same as LastOneSet by swapping two vertices in the vertex list if
necessary. However if LastOneSet < 0 then increment the count c
because as yet there are no adjacent facets.

(c) Assign the flag sid = c for polygon SetThisOne.

(d) Call IdentifyConnected() once for the polygons adjacent to polygon
SetThisOne, with of course the LastOneSet parameter now specify-
ing the polygon identified by SetThisOne.

5. With each individual piece, i.e., all those facets having the same values of
sid, do the following:

(a) Find a bounding box.

(b) Choose an arbitrary point P outside the bounding box. (If rendering
is taking place the best choice for P is the viewpoint.)

(c) Find the polygon closest to P , say k. If k’s normal is directed so
that the back of k is visible from P reverse all the normal vectors and
vertex orderings of polygons identified with the same sid as k.

10.8 Delaunay triangulation

Sometimes an arbitrary collection of points is encountered without any details as
what happens between them. Perhaps they represent samples from a scientific
experiment for example. To be able to visualize them (by rendering) they must
be connected together by a network of polygons. This specific problem occurs
frequently in engineering design and analysis. If the number of points is large,
then doing it by hand, say in an interactive design application, is out of the
question and an automated procedure must be sought.

408 10. Modeling with polygonal datasets

For any set of more than three points building a network of triangular poly-
gons is always possible. Grouping more than three points to form the basic
polygonal unit has the advantage that fewer polygons will need to be rendered.
However there are many drawbacks, not the least of which is the complexity of
the procedure to determine the polygonization.

Invariably the triangulated mesh used in a mathematical analysis requires
that it should be as regular as possible, that is: The triangles should be approx-
imately equiangular (or to put it another way: No long thin triangles). This
requirement is exactly the one we strive to attain in producing models for 3D
visualization because it makes the writing of a good quality renderer so much eas-
ier. All the numerical pitfalls that occur because of long thin facets are avoided
when the triangles are nearly equiangular. A method that guarantees to deliver
a locally equiangular arrangement of edges and facets has been devised. It goes
by the name of Delaunay triangulation.

The Delaunay triangulation technique is particularly helpful in visualizing
functions of two variables: z = f(x, y), especially when the sample points (x, y)
are arranged randomly. A very good example of this is: Geographic Information
Systems (GIS) which record topographic data. The height z is sampled at a
set of (x, y) coordinates. A triangulation based on the (x, y) coordinates with
the z coordinate derived from the height value at each point gives a 3D surface
that can be sent to a standard renderer to produce informative images such
as that illustrated in figure 10.35. The locations of the data points for the
scene in figure 10.35 and mesh created by Delaunay triangulation are shown
in figure 10.36. A GIS therefore does not need to record any edge or facet
information.

Many other scientific and engineering disciplines find this approach to visu-
alizing information very useful and it is one use for 3D graphics. Another reason
for us to consider the Delaunay procedure for triangulating a set of points is
that it forms an important step in the construction of faceted models using the
technique of Boolean operations to be discussed in section 10.9.

The algorithm presented in this section will follow the approach of Sloan [83]
with the exception that we will allow the plane in which the triangulation is built
to lie in any orientation rather than a horizontal xy plane. (An arbitrary plane
of triangulation is essential for the Boolean procedure of section 10.9.) Delaunay
triangulations are produced on a flat plane. The third dimension is irrelevant
because a surface cannot be assigned to an arbitrary collection of points in three
dimensions.

The essence of the Delaunay triangulation algorithm is relatively straightfor-
ward. The basic premise is:

Take one point from the data set at a time and insert it into a
pre-existing triangulation making any necessary adjustments to the
edge/facet information so that all the facets remain as equiangular
as possible.

10.8. Delaunay triangulation 409

Figure 10.35: Making a Delaunay triangulation from a collection of geographic data
allows a 3D renderer to produce a visualization of the landscape that the data repre-
sents. An animation of the fly by type is readily generated over a model of a landscape
from earth or some other world.

(a) (b)

Figure 10.36: The data points and mesh from which the image in figure 10.35 was
generated. (a) The location of the sample points. (b) The mesh generated by Delaunay
triangulation.

The process is started by making a dummy facet big enough to enclose all the
points. After completing the Delaunay triangulation the vertices of this enclosing
triangle are removed and consequently any edges or facets attached to them
disappear too. The basic idea of the algorithm is illustrated in figure 10.37.

410 10. Modeling with polygonal datasets

(a) (b) (c) (d)

Figure 10.37: The triangulation of a set of points. (a) The points, (b) enclosed by a
supertriangle, (c) triangulated and (d) with the supertriangle removed (enlarged view).

The basic steps are:

1. Add a triangular facet in the same plane in which the points lie. Make it
large enough so that all points are inside it. Thus the initial triangulation
contains just a single triangle. Call this the supertriangle.

2. With each point P in the list of points to be inserted, do the following:

(a) Find an existing triangle that encloses P , say it is triangle k.

(b) Form three new triangles by connecting P to the vertices of k. The
net gain of triangles is two and three new edges are created.

(c) The new triangulation is updated so that the properties of a Delaunay
triangulation again apply to the whole network of edges and facets.
This is the main step in the algorithm and it will be discussed below.

3. Once all the points have been inserted in the triangulation the vertices that
form the supertriangle are removed. Any edge or facet attached to one of
these supertriangle vertices must also be removed. Figure 10.37 illustrates
the outcome after the main steps in the algorithm.

In step 2 above it was stated that: After a point P is inserted in the triangu-
lation the triangulation is updated so that the properties of a Delaunay network
are re-established. This is accomplished by the following three steps:

1. All the triangles that have a common edge with one of the three triangles
adjacent to P are placed on a last-in, first-out stack. The facets labeled
X, Y , and Z in figure 10.38 are adjacent to P and the facets A, B and C
are opposite to P .

2. If the stack is empty this phase of the algorithm is complete. Otherwise, a
triangle is popped off the stack and a test made to see if the edge common
to it and its neighbor with P as a vertex should be switched, e.g., pairs
A and X, B and Y etc. (See figure 10.38.) This test effectively decides

10.8. Delaunay triangulation 411

P
A

X
Z

Y

C

B

Figure 10.38: The triangles A, B and C, share a common edge with the (three) triangles
X, Y and Z, which have P as one of their vertices. A,B and C are said to be opposite
P .

(b)(a)

X
X

A

A

U U

V V

P P

Figure 10.39: Should the edge common to triangles A and X shown in (a) be swapped
to give the configuration shown in (b)? If configuration (b) is adopted then the triangles
labeled U and V will need to be reconsidered because they will now be opposite P and
we need to check whether their common edge needs to be swapped.

whether the internal angles of the triangles X and A in figure 10.39 are
closer to being equiangular in configuration (a) or configuration (b).

If a swap from configuration (a) to configuration (b) is made then two
triangles replace two triangles so no new edges or facets are created. How-
ever the action of making such a swap will have implications for the other
triangles adjacent to that labeled A in figure 10.39(a) and this must be
accounted for in the next step.

3. If a swap is made any triangles that become opposite P are pushed onto
the stack. There will be at most two; see those labeled U and V in the
example of figure 10.39.

Execution then loops back to step 2 to continue processing the (possibly
extended) stack.

412 10. Modeling with polygonal datasets

Don’t swap

P

P

Swap

A

A

Figure 10.40: Swap the common edge if P lies inside the circumcircle of the triangle,
A, opposite P .

Finally, to complete the description of the algorithm we must discuss the test
that determines whether to swap the common edge. In two dimensions this
is equivalent to deciding whether P lies inside the circumcircle of the triangle
opposite P . If it does the edge is swapped, if it does not then no change is
necessary; see figure 10.40.

The point P (in figure 10.41) lies on the circumcircle of the triangle V1, V2,
V3 if α + β = π. It lies inside the circumcircle if α + β > π and outside if
α + β < π. To calculate α and β directly would involve inverse trigonometric
functions (which is always undesirable) but since α + β < 2π the point P will
lie inside the circumcircle if sin(α + β) < 0. Using this formulation avoids the
inverse trigonometric function but there are some numerical difficulties due to
round off errors when α + β ≈ π; however the four-step algorithm due to Cline
and Renka [16] can solve such problems. We can extend their two-dimensional
procedure to apply to any plane where the points P , V1 etc., in figure 10.41
are given by position vectors v1, v2, v3, and p. This algorithm is presented in
listing 10.5.

In the coding of the Delaunay algorithm that accompanies the book the
following points should be noted:

1. For this implementation the plane in which the points to be triangulated
lie may be selected to be parallel to the xy, yz or zx planes.

2. The supertriangle, which may be specified arbitrarily, is chosen by first
finding the rectangle enclosing all the points in the plane. Let the center
of this rectangle be (xc, yc) and d its longest dimension. An equilateral
triangle with the circle, radius d center (xc, yc), inscribed inside it will
also enclose all the points. The vertices of the supertriangle are therefore
located at (xc, yc + 2d), (xc −

√
3d, yc − d) and (xc +

√
3d, yc − d).

3. In order to swap an edge the data structure representing the facets needs to
keep a record of which facets are adjacent to which facets; and which edge

10.9. Boolean modeling 413

V3

V2

V1

P β
α

Figure 10.41: The geometry used to test whether P lies inside the circumcircle of the
triangle V1 - V2 - V3.

is adjacent to which facet. When an edge is swapped it is not only vital to
update the adjacency information in the facets directly affected but also
to update the information in those adjacent to the modified facets both
before and after the swap. For example: Swapping the edge E shown in
figure 10.42 will affect the adjacency information not only in the triangles
labeled A and B but also in triangles X and Y . The triangle Z is not
affected because it remains adjacent to A.

4. Care must be taken when swapping edges so that the order in which the
vertex data is recorded remains consistent. We don’t want some of the
normal vectors pointing to one side of the plane and the remainder pointing
to the other.

5. The code for this algorithm will generate a mesh from 10,000 points in a
few seconds on a standard personal computer.

10.9 Boolean modeling

Boolean modeling is the name given to a procedure for building models from a
combination of primitive shapes or indeed from other models. The name is taken
from the algebra of mathematical logic devised by George Boole in 1847 because
its operations provide a very useful analogy to describe the way in which shapes
may be combined.

The simplest way to combine two models is to add them together. This can
be represented by a Boolean operation called an or operation which is written
using the + symbol. For example if we let the symbol A represent an eight sided

414 10. Modeling with polygonal datasets

Start by calculating the vectors below:

v̂13 =
v1 − v3 |v1 − v3|

v̂23 =
v2 − v3 |v2 − v3|

v̂1p =
v1 − p |v1 − p|

v̂2p =
v2 − p |v2 − p|

Then make the scalar products:
cosα = v̂13 · v̂23

cosβ = v̂1p · v̂2p

Now apply the test:
i f (cosα ≥ 0 and cosβ ≥ 0) Do not swap.
else i f (cosα < 0 and cosβ < 0) Do swap.
else {

Calculate:
sinα = |v̂13 × v̂23|
sinβ = |v̂2p × v̂1p|
Then : i f (sinα cosβ + sinβ cosα < 0) Do swap.
else Do not swap.

}

Listing 10.5: Algorithm to test whether the edge of the triangle between v1 and v2

should be swapped to join p to v3; see figure 10.41.

After swapping EBefore swapping E

P

B
X

E E

X

B

A
Z Z

A

Y Y
P

Figure 10.42: Swapping the edge E will alter which triangles are adjacent to which
other triangles not only in those directly affected, those labeled A and B, but also those
labeled X and Y . However triangle Z is not affected because it remains adjacent to A
irrespective of the orientation of edge E.

polygonal cube then a model made from two cubes can be described symbolically
as A+ TA (where T represents a translation). If you need a model of a cylinder
C with a sphere S sitting on top of it you can build a model for C and a model
for S and then or them together, result C + S.

Suppose however you want a model where C pokes through S; something like
the illustration of figure 10.43(a). It would be quite difficult to design by hand a

10.9. Boolean modeling 415

(a) (b) (c)

Figure 10.43: (a) OR-ing a sphere and cylinder, expressed in Boolean algebra S + C.
(b) AND-ing a sphere and cylinder, Boolean notation: S · C. (c) The result of the
Boolean expression SC̄. We can think of this as subtracting a cylinder from a sphere.
Notice that the cylinder, which is not visible, appears to cut a hole in the sphere.

mesh of facets to cover such a surface. However since this shape is just another
manifestation of S +C if there was an automatic way to go from the meshes for
S and C to one for S + C a very useful modeling procedure would result.

Incidentally: To generate an image of the combination S + C with a hidden
surface renderer there is no need to work out a mesh for S + C. The two
components can be used in their original form and the renderer will avoid drawing
those parts of the facets of C that lie inside S because they are obscured by S.

If S +C was the only Boolean combination then (from a 3D modeling point
of view) there would be no advantage in using it. However S+C is not the only
possibility that Boolean algebra allows. The other relevant Boolean operations
are:

• not, written as Ā. It’s not possible to show a picture of S̄ or C̄ because
such a solid fills the whole universe except that small volume occupied by
S or C. You might argue that not is not a very useful operation; on its
own that’s true but when it is used in conjunction with the next operation
the true power of “Booleans” as a 3D modeling tool is evident.

• and, written as S · C or simply SC. Again and is an unfortunate name.
The symbols +, and . are much more revealing as to the actual effect of
operations if you liken them to the add and multiply operations of basic
algebra. So what of SC (S AND C): This is a solid that occupies the
space where S and C overlap; an example is illustrated in figure 10.43(b).

The real power of a Boolean operation as a modeling idiom is that it allows
shapes like that shown in figure 10.43(c) to be produced from simple primitives,
S and C in that example. We can think of the shape Figure 10.43(c) being the
result of the removal of that part of S where S and C overlap. One might call it

416 10. Modeling with polygonal datasets

a subtractive operation but strictly speaking it is SC̄ (that part of the universe
occupied by the sphere and not by the cylinder). This subtractive operation is
exceptionally useful. A number of very important constructional methods are
based on the principles of drilling a hole or cutting a bit off.

In theory it should be possible to build a model of any shape by emulating
some combination of Boolean operations on a very small subset of primitive
shapes. Indeed this topic is so important it is given the name constructive solid
geometry. Most CAD applications use some CSG. A number of ray tracing
programs are based on the CSG concept because it can reduce the number of
elements that need to be rendered in any one scene whilst not restricting the
models to a few textured spheres or cubes.

One way to model an object using boolean primitives is to use Boole’s no-
tation for combination of primitives and build the model out of primitives. A
ray-tracing algorithm is just at home tracing rays through a model described
with functional primitives (spheres, cylinders etc.) as it is tracing rays through
a set of planar polygonal faces. Alternatively, the surface of a model described
by a Boolean combination of primitives can be readily turned into a network of
polygonal faces using the marching cubes algorithm described in section 10.10.2.

In the context of a model made with polygonal faces it is more difficult to
use the Boolean concept on the mesh because:

1. The models are not based on a relatively small number of primitive shapes
but on a large number of flat planar pieces. Therefore there are many more
possible configurations that need to be considered and this can take a long
time.

2. CSG objects always have a very well defined sense of inside and outside.
Faceted models do not necessarily have that sense. Suppose we build a
faceted model for a sphere but decide to remove a few facets from one side
of it. How could we then use this open sphere in Boolean operations?

3. Whereas a CSG representation of say a sphere and a cylinder will produce
an intersection that is smooth, if we try the same thing with faceted models
the line of intersection will be a jagged edge. This is especially noticeable
when the faceted approximation is a coarse one. There is nothing much
can be done about this except increase the resolution of the mesh.

4. The facets that result from a Boolean cutting operation tend to be poorly
shaped, long thin facets. These often occur and tend not to render very
well and preclude a lot of additional processing.

5. The algebra of the intersections of bounded planes in three dimensions is
very sensitive to the round off errors that occur in computer calculations.

Despite these difficulties some shapes are much more easily modeled using
a Boolean subtraction operation; for example, the holes in a Swiss cheese. It

10.9. Boolean modeling 417

Delete these pieces

to produce
a sphere with

a hole

Combine the
remaining

pieces

Keep these
piecesCylinder overlaps

sphere

Figure 10.44: The intersection of the faceted models for a sphere S and a cylinder
C cuts them into three pieces each. By discarding unwanted pieces a model of the
Boolean subtraction SC̄ is obtained.

is therefore essential to devise an algorithm that can provide Boolean-like func-
tionality to as good an approximation as possible.

Such an algorithm is presented in this section. The algorithm takes care to
produce a triangulation that minimizes the number of small and thin facets and
to avoid (where possible) the problems due to round off errors. The algorithm is
quite long but it is possible to break it up into a number of sections that can be
considered separately and a relatively simple overview of the strategy it uses can
also be given. The procedure owes some of its heritage to the ideas of Laidlaw
et al. [52].

Before presenting the strategy of the procedure there are a few points that
are worth considering:

1. For a computer graphics application we do not need to consider an opera-
tion equivalent to Boolean addition. Indeed because a polygonated model
might not have a definite inside subtraction is also meaningless in some
cases. A better way to think of the process is of a model being cut into
pieces, some of which will be discarded to leave the appropriate shape; see
figure 10.44.

2. With a model made from a collection of triangular facets we must know
which facets are doing the cutting and which are being cut. This can be
accomplished by making a list of facets that fall into these two groups, we
will call these lists:

(a) The Work list

(b) The Tool list

For the example shown in figure 10.44 the facets that make up the sphere S
are placed in Work list while those in the cylinder C belong to the Tool list.

418 10. Modeling with polygonal datasets

Polygon A is triangulated
(but not split) by B
so than an edge
occurs along the
line of intersection
with B

Neither polygon A nor B
is split (because there
is no clean cut) but both
are triangulated so that
both have edges along
the line of intersection.

Polygon B is
split in two
by polygon A

A

A
B

B

B

A

A

(b)(a)

Figure 10.45: An intersection between two triangular polygons. In (a) the polygon
labeled B is split in two by polygon A. In (b) neither polygon is split.

3. Breaks in the model occur where the facets from these two lists intersect
each other and both sets need to be divided. We can achieve this by first
breaking the facets in the Work list along the line of intersection with the
facets in the Tool list. When that has been done the lists may be swapped
and the algorithm repeated.

4. The intersection occurs along one or more piecewise linear sections which
form a path across the surface. Each linear segment occurs as the result
of the intersection of two planes. Some of these paths might form closed
loops. For example the line of intersection between cylinder and sphere in
figure 10.44 will consist of two circles on the sphere and two circles on the
cylinder.

5. The SC̄ operation depicted in figure 10.44 results in both S and C being
completely cut into 3 pieces each. However, any Boolean modeling proce-
dure that is based on a network of planar polygons must be able to cope
with the possibility that some shapes may not be completely dissected.
For example an intersection between two triangular facets might not split
either or might split just one of them; see figure 10.45.

Taking these observations into account we can propose a possible algorithm
to cut two sets of facets along their line(s) of their intersection as follows:

1. With all facets in the model make two lists: (1) the Work list and (2) the
Tool list.

10.9. Boolean modeling 419

2. Find the line of intersection through the facets of the Work list due to in-
tersection with the facets in the Tool list. Since all the facets are planar the
line of intersection will consist of a finite number of straight line segments.

3. Build the line of intersection into the facets of the Work list.

4. Split the facets in the Work list along the line of intersection.

5. Swap the facets in the Tool and Work list and repeat the previous three
steps.

Steps 2, 3 and 4 above cover the main actions of the algorithm. However,
adding a series of edges into a network of facets is very difficult and so it is
preferable to carry out the actions of creating and inserting (steps 2 and 3) at
the same time. Thus the line intersection is built into the facets from the Work
list at the same time as it is determined.

If we are able to implement these ideas we will have an acceptable procedure
for creating separated pieces that are the best approximation to Boolean prod-
ucts one can obtain from a network of polygonal facets. The next sections will
expand on the detail of the two main stages (2 and 3).

10.9.1 Determining and incorporating the line of intersection

The first main action of the algorithm is to determine the line of intersection
between facets in the Tool and Work lists and to make sure that this is built into
the network of Work facets. To see how this works consider the small network
shown in plan view in figure 10.46. In (b) the line of intersection is shown and
for ease of illustration we will assume that facets in the Work list lie in the plane
of the page and facets in the Tool list lie perpendicular to it. Hence they appear
as a line in the diagram. Note that the intersection line appears as a number of
straight line segments.

Consider now how the line of intersection is determined: It is made up from
a number of line segments. So finding the points where these segments begin
and end determines the line of intersection. Thus the algorithm is based on the
idea that:

The segments that go to make up the line of intersection have their
end points at the locations where either an edge of a facet in the Work
list intersects a facet in the Tool list or where an edge of a facet in
the Tool list intersects a facet in the Work list.

Once we know where these points are everything else follows fairly readily from
that; we proceed in two phases:

• Phase 1: For every edge of a facet in the Tool list find its point(s) of
intersection with a facet in the Work list.

420 10. Modeling with polygonal datasets

Points of
intersection

Work facet Line of intersection

(c)(b)(a)

Figure 10.46: (a) A plan view of some facets in the Work list. (b) Adding the (edge on)
view of facets in the Tool list shows the line of intersection. (c) The line of intersection
will pass through the points of intersection between edges of facets in the Tool list and
facets in the Work list and vice versa. There are no other places where it can change
direction.

• Phase 2: For every edge of a facet in the Work list find its point(s) of
intersection with a facet in the Tool list.

Figure 10.46(c) highlights where these points are for that particular example.
Now consider another question: How is the line of intersection built into the

triangular polygon network given we know the points through which it must
pass? And the answer:

The line of intersection emerges automatically if we insist that as
vertices are inserted at the points where edges meet facets the network
is constantly updated to make sure that all the facets in it remain
triangular.

Figure 10.47 illustrates the progress of these phases of the algorithm for
the example of figure 10.46 and shows how the line of intersection becomes
evident with edges along it. In figure 10.47(a) is the initial network; the line of
intersection is shown dotted. (b) and (c) insert the two points where the edge
of the facets in the Tool list intersect facets in the Work list. In (d), (e), (f),
(g) and (h) five points are inserted where the edges of facets in the Work list
intersect facets in the Tool list. By the time all points have been inserted, at
(h), edges along the full length of the intersection have been created. Diagram
(i) highlights the resultant line of intersection along these edges.

All of this looks quite straightforward and for the example shown it is. Un-
fortunately however both phases can be plagued by the creation of too many
edges and facets. To see how this might occur consider again the example shown
in figure 10.47. After Phase 1 is complete, in diagram (c), six new edges are as-
sociated with facets in the Work list; there are four additional facets too. These
edges must themselves be used during Phase 2 to check for intersection with the

10.9. Boolean modeling 421

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10.47: Inserting the points of intersection between the edges of facets in the
Work and Tool lists one at a time into the network of Work facets produces edges lying
along the line of intersection. Illustrations (a) to (i) are discussed in the text.

Tool facets. In the example of figure 10.47 they don’t intersect any of the tool
facets but that’s just the case in this particular example.

There is another problem that is manifest in Phase 1 itself. Look at the
example in figure 10.48. The Work list consists of one facet only and all the
facets in the Tool list intersect it. Inserting the points of intersection in the order
1, 2, 3, 4 gives configuration (d) at the end of Phase 1. Phase 2 completes the
triangulation but at the price of the inclusion of another point P as shown in (e).

To be specific: In (a) the single facet is cut by facets in the Tool list (shown
edge on, this is equivalent to the line of intersection too). This gives rise to four
intersection points as shown in (b) and labeled in the order in which they are to
be inserted. After the first point is inserted the Work facet is shown divided in
three (c). When Phase 1 is completed the triangulation (d) is the result. After
checking all the edges in the work facet for intersection with facets in the Tool list
the final triangulation with edges along the full length of the intersection line is

422 10. Modeling with polygonal datasets

(f)

(c)(b)(a)

2 4

31

(e)(d)

E
P

Facet in work list

Edge on view of facets in tool list Points to be inserted

Figure 10.48: Triangulating an insertion in the Boolean algorithm. Details of illustra-
tions (a) to (f) are discussed in the text.

produced (e). However, if the edge E in (d) had been “flipped” the triangulation
(f) would have been produced. None of the edges in (f) intersect any of the Tool
facets and the full length of the line of intersection is completely covered without
the need for the extra point P .

Configuration (e) is unsatisfactory because the extra point P is unnecessary.
Configuration (f) is much more acceptable but to achieve it the edge labeled
E had to be flipped so that it joined points 3 and 4. Fortunately we have
already discussed an algorithm that does just this (Delaunay triangulation) in
section 10.8. To apply the Delaunay procedure to Phase 1 of this stage in the
Boolean algorithm we consider each facet in the Work list separately. Every
facet in the Work list is considered as a Delaunay supertriangle and is used to
produce a best triangulation with any intersection points that fall inside it. After
all the intersection points are inserted however the supertriangle is not deleted.
Figure 10.49 illustrates the result of performing two Delaunay triangulations in
two work facets A and B.

Thus the algorithm for Phase 1 may be summarized as follows:

Repeat the following with all the edges i of the facets in the Tool list {
Repeat the following with all the facets j in the Work list {

if edge i intersects facet j at point P {
Add P into a Delaunay triangulation with
facet j as the original supertriangle.

}
}

}

10.9. Boolean modeling 423

Build Delaunay triangulation
in both triangles A and B

Facets in the work list

B

A

Edge on view of facets in the tool list

Figure 10.49: Delaunay triangulations are built (independently) in facets A and B
which are the entries in the Work list at the start of the algorithm.

There are a couple of observations that we will need to consider carefully
when implementing the algorithm for Phase 1:

1. If it turns out that a point to be inserted just happens to hit an edge e of
the growing Delaunay triangulation it must be left out. We do this because
in Phase 2 the intersection of e with a facet in the Tool list will create a
point at the same place and if it were inserted in Phase 1 it would create
an infinitesimally thin facet which might not be removed by the Delaunay
procedure.

2. We must also be careful to use not only edges from Tool facets that cross
Work facets but also edges where the vertex at one end actually lies in the
plane of the Work facet.

These two observations are made because they are significantly influenced
by round-off error in calculations. Numerical problems caused by the limited
accuracy to which computers calculate implies that there are always going to be
a few configurations of Work and Tool facets that result in a Boolean operation
failing.

Now consider the actions of Phase 2:

Take each edge of the facets in the Work list (including the edges
and facets added in Phase 1), find their point of intersection with the
facets in the Tool list and build these points into the network of Work
facets.

We cannot use a Delaunay procedure in this phase because the intersections
are occurring at the edge of a facet rather than in its interior. This will affect
facets on both sides of the edge and they will have to be divided so that both
remain triangular. We will also have to be careful because when an edge is
created in Phase 2 it has the potential to intersect other facets in the Tool list,
indeed possibly one that has already been checked.

424 10. Modeling with polygonal datasets

Edge on view of facets in the tool list

Points that
will need to be
inserted

Facets in the
work list

(a) (b) (c)

(f)(e)(d)

Figure 10.50: The first part of Phase 2 finds the point of intersection between Tool
facets and the edges of Work facets. If an intersection occurs then the edge is divided
in two and the facets on both sides are split.

It turns out that by a careful re-arrangement, somewhat analogous to the
Delaunay triangle flipping procedure, it is possible to ensure that edges created
in Phase 2 will not intersect any facet. They will either:

1. stop short of a facet, or

2. lie in the plane of a Tool facet and thus be part of the line of intersection.

In Phase 2 the edges associated with facets in the Work list are processed
twice. In the first pass those edges arising from facets in the Work list as it
stands after Phase 1 are tested. If an intersection occurs a vertex is added at
the point of intersection and the facets on both sides of the edges are split. Note
that the four facets and two edges created by the split are considered to be in
the Work list but they play no role in the first pass. This process is illustrated
in figure 10.50.

In the first pass any edges that lie in the plane of a Tool facet are marked
because they contribute a segment to the line of intersection. The second pass
uses an iterative procedure to rearrange the edges added in the first pass and it
terminates when no edges of a Work facet cross any of the Tool facets.

To see what the iterative procedure does consider the example shown in
Figure 10.51. In (a) a single facet is held in the Work list and the facets in
the Tool list form two separate pieces. In this example no edge of any facets in
the Tool list intersects a facet in the Work list and therefore the only points of
intersection arise in Phase 2 at the four points indicated in (b). The points are
to be inserted in the order 1, 2, 3, 4. The triangulations shown in (c), (d), (e)
and (f) illustrate the network as each point is built in.

10.9. Boolean modeling 425

Edge on view of facets in the tool list

Facet
in the
work list

4

4

4 4

3 3
1 1

3

3

A
B

E E´ X

3

4

3

4

3

4

C

2

1

2

1

2

1

1

1

2

2

2 2

(a)

(e) (f) (g) (h)

(b) (c) (d)

Figure 10.51: This example is discussed in the text.

On comparing triangulation (f) (figure 10.51) with the view (a) it can be seen
that the edge joining points (2−4) lies in the plane of one of the Tool facets and
is therefore part of the line of intersection. Of the other internal edges created
in Phase 2 it is only the edge E, joining point 2 to vertex B (B is a vertex of
the original triangle), which still intersects a facet in the Tool list. All the other
edges do not cross a facet in the Tool list. For the next step the edge labeled
E will either have to be split, as in diagram (h), or flipped, as in diagram (g)
so that E′ joins vertices (1 − 3). Triangulation (h) with its extra vertex X is
obviously less desirable than triangulation (g) and it is the job of the iterative
procedure to seek out edges like E and flip them.

Unfortunately, simply looking for internal edges created in the first part of
Phase 2 which intersect a Tool facet and then flipping them is not satisfactory
in some cases. The example shown in figure 10.52 illustrates the problem. Both
edges, e1 and e2, intersect a facet in the Tool list. However if edge e1 is flipped the
resulting triangulation will have overlapping facets and this is most undesirable.
The reason that facets overlap is that after flipping, the edge e1 no longer lies
inside the quadrilateral formed by facets f1 and f2. In fact a flip will result in
overlapping facets if either of the angles α or β are ≥ π. Thus we must not allow
edges such as e1 to be flipped if α ≥ π or β ≥ π.

Of course it is unacceptable to leave e1 so that it crosses a Tool facet. Fortu-
nately the edge e2 can be flipped and when that is done it becomes possible to
also flip edge e1. As a result an appropriate triangulation is created with edges
along all parts of the line of intersection. This is illustrated in figure 10.53.

426 10. Modeling with polygonal datasets

Flipping edge e1 results in two faces
overlapping here which has unsatisfactory
consequences.

f2

e2

e1

f1
β

�ese sections of the line of intersection
are completed. �ey should be joined but
edges e1 and e2 are in the way.

α

Figure 10.52: A configuration in which the edges e1 and e2 intersect a facet in the
Tool list. Flipping e1 will result, at best, in a triangulation with overlapping facets or
at worst cause subsequent steps to get stuck in an infinite loop!

Swap e2 first
(this permits e1 to be swapped later) �en swap e1

e1

α

e2

e1
f2

f1
β

Figure 10.53: Flipping edge e2 first allows edge e1 to be flipped without creating an
overlap and produce a triangulation with edges covering the line of intersection.

Because an algorithmic procedure can only consider edges in the order in
which they are stored and cannot know which edge to flip first, it must iterate.
All candidate edges are tested for intersection with a Tool facet. If they intersect
but can’t be flipped a flag is raised and the process continues trying to flip the
remainder. After all the edges have been tested and if the flag is raised the tests
are repeated (iterated) until no edges intersect a Tool facet. This process relies on
the fact that if an edge to be flipped does not currently satisfy the interior angle

10.9. Boolean modeling 427

First pass of Phase 2
Repeat the following for each Tool facet i {

Repeat the following for each edge j of the Work facets {
if edge j lies in the plane of facet i {

Mark edge j as a boundary edge
}
else if edge j intersects facet i {

Split j in two at the point of intersection and divide the
two facets that lie on either side of j

}
}

}
Second pass of Phase 2
Repeat the following for each Tool facet i {

LOOP: This is the loop back to point of the iteration.
Set iteration flag: f = 0
Repeat the following for each edge j of the Work facets {

Skip any edge that was not added during the first part of Phase 2
Skip any edge that is part of the line of intersection.
(Both these type of edges must be left in place because
they are important in defining the outline shape of the model.)
if edge j lies in the plane of facet i {

Mark edge j as a boundary edge
}
else if edge j intersects facet i {

if edge j cannot be flipped raise the flag: f = 1
else {

Flip edge j so that it becomes the other diagonal of the
quadrilateral formed by the two facets on either side of edge j.
If (after flipping) edge j lies in the plane of facet i mark it as
part of the line of intersection.

}
}

}
if f = 1 (flag raised) jump back to LOOP

}

Listing 10.6: The procedure for Phase 2 of the first part of the Boolean cutting algo-
rithm.

constraint then flipping another edge will cause conditions to change making it
possible to achieve the required flip (in a subsequent iteration). Fortunately this
will always happen because of the way in which the original configuration was
derived.

Taking all these features into account Phase 2 of this part of the algorithm
is summarized in listing 10.6.

428 10. Modeling with polygonal datasets

Split

Lines of
intersec-
tion

Figure 10.54: Lines of intersection that split a network of facets. Note that the part
of the line of intersection labeled X does not cause a split.

10.9.2 Splitting facets along the line of intersection

Having built the line of intersection into the facets in the Work list it only
remains to split them along it. Of course the network or Work facets will not be
split unless segments of the line of intersection form a complete cut, either by
forming loops or crossing from one outside edge to another. This is illustrated
in figure 10.54.

This stage of the algorithm is quite straightforward because the procedure
of section 10.9.1 has already marked which edges in the model are part of the
line of intersection. With this knowledge the following steps will cut the facets
in the work list along the line(s) of intersection if they split the network:

1. Set a counter l (initially to: l = −1). This will be used to count the number
of pieces and identify to which piece each facet belongs. Label all facets in
the work list as unidentified. This can be done by assigning a member of
the facet data structure Facet(i).l = l.

2. Repeat steps (a) and (b) below until all Work facets are identified. (This
procedure is very similar to the “orienting” algorithm of section 10.7.)

(a) Increment l and pick an unidentified facet, say it is k. We could choose
it to be the first one for which Facet(k).l = −1. Assign Facet(k).l = l.

(b) Find the neighboring facets to facet k; this information is recorded
in the Fid(j) member variables for the facet data structure. Let
n = Facet(k).F id(j) with 0 ≤ j < 3 in turn. If the edge common to
facets n and k (given by Facet(k).Eid(j)) is not part of the line of
intersection then n is in the same piece as k and we repeat (recursively)
this step in facet n and in n’s neighboring facets until progress is
blocked either by the line of intersection or the edge of the model.

10.10. Metaball modeling and marching cubes 429

Note that the Eid and Fid can be determined by the algorithm given
in section 3.5 and that they are also kept up to date by the Delaunay
algorithm, as it flips edges and facets around.

3. Once all facets have been identified as belonging to one of the l pieces
repeat step (a) below for each i : 0 ≤ i < l.

(a) Make a copy of all the facets with Facet(k).l = i.

When copying facet k remember that the vertices it is attached to and
the edges which bound it must also be copied. Care will be needed
to make sure that no edge or vertex is copied twice, for example from
adjacent facets with a common edge.

4. Remove from the database all the facets, edges and vertices recorded in
the Work list.
Note: It may be easier to make copies of all the relevant bits and remove
the originals rather than to try and copy the structure along the line of
intersection.

Figure 10.55 illustrates the identification of facets up to a boundary or line
of intersection. Note that if the edge of intersection does not completely split
the network of facets then they will be identified as part of the same piece; this
is desirable. To be specific: In figure 10.55: (a) The edges that form the line of
intersection are highlighted. (b) Choose any facet at random and label this as
being part of the first piece. (c) Label the facets adjacent to the first one chosen
unless that facet is on the other side of the outline. (d) Finish labeling all facets
adjacent to those identified with a 0; remember a boundary may not be crossed.
When there are no facets adjacent to 0 remaining choose another at random and
label this 1. (e) Label with a 1 the facets adjacent to the facet labeled 1 in (d).
(f) Label with a 1 the facets adjacent to the facets labeled 1 in (e). (g) Finish
labeling all possible facets adjacent to those facets labeled 1 in (f). Pick another
at random and label this 2. (h) Label all possible facets adjacent to the one
labeled 2 in (f). Since there are no unidentified facets left the identification is
complete. (i) Copy all the facets labeled 1, 2 and 3 as separate pieces and delete
the originals. This gives us the three pieces formed by the cutting operation.

10.10 Metaball modeling and marching cubes

There are shapes that do not lend themselves to modeling with any of the algo-
rithms considered in this chapter, or even with an interactive design tool in which
the user has a free hand. This is especially true of many organic shapes. Another
source of three-dimensional data, laser scanners and stereoscopic imaging sys-
tems produce a point cloud of data that represents the shape of the object. Before
a point cloud of 3D data can be visualized the surface needs to be meshed into

430 10. Modeling with polygonal datasets

First facet chosen
at random

Lines of intersection

(a)
(b) (c)

(f)(e)(d)

(g) (h)
(i)

0 0
0

0

00
0

0

0
0

0

0

0

0
0

0

0

0
0

0

00
2

2

2
2 2

2
2

2
2

0
0

0

0
0

0

0

11
1

1

1 1

1
1

11 1
11

1
111

1
1 1

11

1
1 1 1

1
1

1
1

1
1 1 1

1 1 1
1

1
1

1 1 1

1
1

1

1
1

1

1

1

1
1

1

1
1

1
1

1

1
1

1

1

1 1

1 1
1

11

1

1 1

1

1 1 1

1
1

1
11

11

1

1

Figure 10.55: Identifying the pieces to be split up. Illustrations (a) - (i) are discussed
in the text.

a network of polygonal faces. This is not a trivial task, and a mesh generated in
this way can be very messy. Some manual tidying up is often inevitable. A third
source of data that is often visualized as a 3D model is a potential field, where the
visualization takes the form of a triangular mesh built across an equi-potential
surface. Several layers may be superimposed with transparency. Medical image
data and the results of scientific experiments are excellent examples of this sort
of problem.

This section will dive into the concept and the algorithms of two techniques
that allow us to visualize volume data and build mesh models through a combi-
nation of potential fields. Some of the plug-in modules of OpenFX (chapter 9)

10.10. Metaball modeling and marching cubes 431

Figure 10.56: An example of a metaball model. Three metaballs are shown here, with
two of them overlapping to form an amalgamated shape.

offer source code examples for the algorithms discussed here. We start by look-
ing at metaballs and move on to consider the marching cubes algorithm for
meshing and rendering equi-potential surfaces. The visualization of a metaball
(or as it is sometimes known, blobby modeling) requires the visualization of an
equi-potential surface, which is done using marching cubes.

10.10.1 Metaballs

A metaball model (see figure 10.56) is made up by combining a number of po-
tential fields and generating a surface that joins up every place where the field
takes the same value. This is known as an equi-potential or iso-surface. Each
metaball is defined as a function in n-dimensions. In three dimensions this is
simply a function of position f(x, y, z). Metaballs can also be used to generate
two-dimensional contours, in which case the function is f(x, y).

The algorithm starts by specifying a threshold value and potential function
to define the surface of the metaball, thus,

n
∑

i=1

fi(x, y, z) ≤ t (10.2)

represents the volume enclosed by the surface. (f is the potential function and

432 10. Modeling with polygonal datasets

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10.57: Metaballs form by amalgamating potential fields.

t is the threshold value.) A typical function chosen for metaballs is:

f(x, y, z) =
1

((x− x0)2 + (y − y0)2 + (z − z0)2)
(10.3)

where (x0, y0, z0) is the center of the metaball. The fall-off function should go
to zero at a maximum distance. When evaluating the metaball field, any points
beyond the maximum distance from the center point are ignored. Because the
iso-surface is the result of adding the fields together, its smoothness is dependent
on the smoothness of the fall-off curves. When metaball fields start to interact
the result is shown in figure 10.57.

The arrangement of metaballs shown in figure 10.56 was created by three
metaballs using the field function p(x,y,z) given by:

(

n
∑

i=1

r2i
|d2

i |

)

− t = 0 (10.4)

where: ri is the radius of the metaball, and di is the vector between P(x,y,z) and
the center of the metaball.

Metaballs do not have to be based on spherical fields surrounding a point.
They can be based on a cylindrical field surrounding a line, or even lie around an
planar polygon, or any 3D shape, and they can be very effective when animated.
Figures 10.58 and 10.59 illustrate how a set of metaballs can be visualized; this
is taken from OpenFX.

10.10.2 Marching cubes

At the core of the visualization of metaball generated equi-potential surfaces
is the marching cubes algorithm. The same algorithm will render any equi-
potential surface in a potential field, and can be used to render a non-convex
hull around a point cloud, such as that shown in figure 10.59.

10.10. Metaball modeling and marching cubes 433

Figure 10.58: Three spherical metaballs are triangulated using the marching cubes
algorithm of section 10.10.2.

The marching cubes algorithm is a natural extension of the two-dimensional
marching squares algorithm that is used to draw a contour at a specific value of a
2D potential field. Marching squares has great utility in drawing height contours
on a map or isobars on a weather map. It is much easier to understand the
algorithm’s concept in two dimensions and there are many fewer configurations
that have to considered.

To appreciate the marching squares algorithm consider the grid shown in
figure 10.60. Each point of this grid is given a weight (a potential value), and in
this example the reference potential value is 5. To draw a curve whose value is
constant and equal to the reference value, each square in the grid is individually
considered. Those grid squares where every one of its four vertices is either
below the reference value, or every one of its four vertices have a value above the
reference value, will have no segments of the contour passing through them.

Where some corner potential values lie above and below the reference value
then the contour will pass through that square. Careful consideration of all
possible combinations (above/below) indicates there are only 16 possible con-
figurations required to represent all possible ways the contour can pass through
the 2D squares. There are some possible combinations illustrated in figure 10.61
that are ambiguous; these are labeled A. The ambiguity, which is illustrated in
figure 10.62, does not imply any real error because the contours remain closed.

434 10. Modeling with polygonal datasets

Figure 10.59: A point cloud of vertices gives rise to a meta-surface by placing a metaball
at each vertex and meshing the equi-potential surface.

The concept of the marching squares algorithm can be naturally extended to
three dimensions where the squares become cubes that have 8 vertices per cube
and the line segments that made up the contour become polygonal faces that
make up the equi-potential surface (iso-surface). Each cube will either lie inside
the iso-surface, or outside the iso-surface, or it will straddle the iso-surface. With
each cube having 8 vertices there are 256 (i.e., 28) possible arrangements of its
corners being inside or outside the volume enclosed by the iso-surface. However,
taking into account symmetries (rotation, mirroring and re-labeling) this reduces
to only 16 possibilities. Figure 10.63 depicts the possible combinations and the
triangulations that have to be constructed to produce the closed surface for that
part of the iso-surface that lies inside the cube.

In order to be able to determine which of the 16 cases apply to a specific set
of vertex potential values, each of the 16 cases is assigned an index formed from
a binary interpretation of whether a corner (vertex) potential value is above or
below the equi-potential surface; see figure 10.64.

In this way, vertices from 1 to 8 are weighted from 1 to 128 (v1 = 1, v2 = 2,
v3 = 4, etc.); for example, the case 3 (figure 10.63) corresponds to the number
5 (v1 and v3 are outside, 1 + 4 = 5). By using the corner weights in this way a
fast look-up table can be constructed to define how many polygons need to be
created for each of the 16 possible configurations and along which edges of the

10.10. Metaball modeling and marching cubes 435

33

3 7 8 6 2

8 9 7 3

2 6 6 1

3

1

1 12 20

1 42

Figure 10.60: A square grid with potential field values (of some nominal unit) at each
grid point. A contour with the value of 5 is shown after interpolation. The shaded area
equates to the area where the potential field’s value is greater than 5.

A

A

InsideOutside

Figure 10.61: The 16 combinations of grid square crossings that depend on the values
of the field at the corner vertices relative to the contour.

(b)(a)

Outside

Inside

Figure 10.62: In the ambiguous cases the contours could be connected in two different
ways for the same pattern of vertex potential field values.

436 10. Modeling with polygonal datasets

0

1

1 2 2

2 2 3 3

4 4 4 4

4 4 4 8

1
5

4
0

3

7
6

2

5

4
0

3

7
6

2

Figure 10.63: The 16 possible combinations of in/out cube vertices and their associated
triangulation.

cube, and where their surface vertices have to be positioned. Thus the algorithm
can be expressed in a few simple steps:

1. Break up space into small cubes (> 1,000,000,000).

2. Consider each cube in turn.

3. Calculate an index by comparing the 8 corner density values with the iso-
surface value.

4. Using this index look up the list of edges from a pre-calculated table (the
edges around each triangle).

5. Interpolate the position of the intersection along the edge using the density
values at the vertices at each end of the edge.

6. Calculate a normal at each vertex.

10.10. Metaball modeling and marching cubes 437

id = v8|v7|v6|v5|v4|v3|v2|v1

v1 v2

e10

v6
v5

v3

e1

e5

e9

e4

e8

v4

e2

e6

e12

e7

e3

e11

v8
v7

x

y

z

Figure 10.64: Weights assigned to each cube’s vertices.

7. Output the triangle vertices and normals.

To implement this algorithm in practice we need to define some data struc-
tures, first a 3D vector. There are many ways to do this, for this example we
choose:

typedef struct {
f loat x ;
f loat y ;
f loat z ;

} VECTOR3D;

Next, a structure is needed for each grid point in the cubic lattice. This
structure might include other data that is interpolated across the cell.

// cube g r i d v e r t e x
typedef struct {
VECTOR3D po s i t i o n ; // po s i t i o n o f the g r i d v e r t e x
f loat value ; // the va lue o f the s c a l a r f i e l d
. . // o ther data

} CUBE GRID VERTEX;

New vertices will be inserted along edges where the potential values at either
end of the edge bracket the iso-surface value. This structure might include the
identity of the CUBE GRID VERTICES that it separates.

// v e r t e x crea t ed from the l i n e a r i n t e r p o l a t i o n a long edge
typedef struct {
VECTOR3D p ; // po s i t i o n
. . . . o ther data

438 10. Modeling with polygonal datasets

} SURFACEVERTEX;

Each cube in the lattice will need to identify which vertices (data points)
surround it.

typedef struct {
CUBE GRID VERTEX ∗ v e r t i c e s [8] ; // po in t e r s to v e r t i c e s

} CUBE GRID CUBE;

And finally we will use a structure to reference the whole system by providing
references to the vertices and cubes in the lattice.

typedef struct {
int numVertices ; // number o f v e r t i c e s
CUBE GRID VERTEX ∗ v e r t i c e s ; // l i s t o f v e r t i c e s
int numCubes ; // number o f cubes
CUBE GRID CUBE ∗ cubes ; // l i s t o f cubes

} CUBE GRID;

The full code is available as a download. Here we highlight the important
structures that map onto the algorithm. Probably the most important data
structures are the lookup tables that allow us to use the inside/outside data for
each cube’s vertices to build the surface triangles on the part of the iso-surface
lying within that cube. Listing 10.7 shows a few of the entries in these three
vital tables.

The verticesAtEndsOfEdges[] table has two entries for each of the 12 edges
of the cube. Each pair indicates which of the eight vertices, numbered 0 to 7, lie
at the ends of the edges. It is used in interpolating the position of any surface
vertex that will lie somewhere along the edge.

The edgeTable[] uses the inside/outside code (the ID value in figure 10.64)
calculated from the combination of field values at the vertices to identify which
of the 12 cube edges will cross the iso-surface. The pattern of triangles to be
built among the vertices added on the cube edges due to its intersection with
the iso-surface, is given in the last table: triTable [] . In triTable [] , there are up
to 5 triples of identifiers for the list of iso-surface vertices that will be positioned
somewhere along the edges of the cube. A (-1) in the data indicates that there
are no further triangles needed for this inside/outside arrangement of cube vertex
potential values.

A single instance of the CUBE GRID structure is used to define the cubic
lattice that fills the space around the region of the potential field that is to have
one of its equi-potential surfaces (iso-surface) triangulated. A maximum grid
size needs to be defined so that we can determine the resolution of the surface
mesh, and memory buffers for this data can be created dynamically:

// maxGridSize defines the dimensions of the lattice
// enclosing the potential field
BOOL CUBE GRID CreateMemory(CUBE GRID ∗g){
g−>v e r t i c e s=(CUBE GRID VERTEX ∗)

10.10. Metaball modeling and marching cubes 439

//Table gives the vertices at the end of each edge
int vert icesAtEndsOfEdges [24]=
{0 , 1 ,
. . ,
3 , 7} ;

// Table identifies which of 12 cude edges will cross the iso-surface.
// Each entry is a bit pattern corresponding with an edge either crossing
// or not crossing the threshold value. There is one entry for each of
// the 256 possible arrangements of the 8 vertex states (in/out)
int edgeTable [256]={
0x0 , 0x109 , 0x203 , 0x30a , 0x406 , 0 x50f , 0x605 , 0x70c ,
0x80c , 0x905 , 0 xa0f , 0xb06 , 0xc0a , 0xd03 , 0xe09 , 0 xf00 ,
. .
0x70c , 0x605 , 0 x50f , 0x406 , 0x30a , 0x203 , 0x109 , 0x0 } ;

//This table gives which of the vertices, added along the cube edges where
//they cross the iso-surface, to join to form triangles for the surface
//(-1) indicates no more groups of 3 (max of 5 triangles per cube
int t r iTab l e [2 5 6] [1 6] ={
{−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1} ,
{0 ,1 ,9 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1} ,
. .
{1 ,8 ,3 ,9 ,8 ,1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1} ,
. .
{2 ,8 ,3 ,2 ,10 ,8 ,10 ,9 ,8 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1} ,
. .
{−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1}
} ;

Listing 10.7: The lookup tables for the marching cubes algorithm.

mal loc (s izeof (CUBE GRID VERTEX)∗
(maxGridSize+1)∗(maxGridSize+1)∗(maxGridSize +1)) ;
i f (! g−>v e r t i c e s) { return FALSE; }
g−>cubes=(CUBE GRID CUBE∗) mal loc (s izeof (CUBE GRID CUBE)∗
maxGridSize∗maxGridSize∗maxGridSize) ;

i f (! g−>cubes) { return FALSE; }
return TRUE;

}

The instances of the structure representing the cubes need to be initialized,
the vertices at the lattice points within each cube need to be positioned and
given a value or the potential field, and each cube needs to have its list of corner
vertices assigned. This is done in listing 10.8.

440 10. Modeling with polygonal datasets

BOOL CUBE GRID Init (CUBE GRID ∗g , int g r i dS i z e){
int i , j , k ;

int currentCube ;
int currentVertex=0;
g−>numVertices=(g r i dS i z e +1)∗(g r i d S i z e +1)∗(g r i d S i z e +1);
// assign lattice vertex positions, this example is based on a cubic
// lattice centred on (0,0,0) and filling the cube [-10,10]
for (i =0; i<g r i dS i z e +1; i++) {
for (j =0; j<g r i dS i z e +1; j++){
for (k=0; k<g r i dS i z e +1; k++){
g−>v e r t i c e s [currentVertex] . p . x=

(i ∗20 .0 f)/ (g r i d S i z e)−10.0 f ;
. . // other positions
currentVertex++;

}
}

}
g−>numCubes=(g r i dS i z e)∗ (g r i d S i z e)∗ (g r i d S i z e) ;
currentCube=0;
// assign the vertices around each cube
for (i =0; i<g r i dS i z e ; i++) {
for (j =0; j<g r i dS i z e ; j++) {

for (k=0; k<g r i dS i z e ; k++) {
g−>cubes [currentCube] . v e r t i c e s [0]=
&g−>v e r t i c e s [(i ∗(g r i d S i z e+1)+ j)∗ (g r i d S i z e+1)+k] ;
g−>cubes [currentCube] . v e r t i c e s [1]=

&g−>v e r t i c e s [(i ∗(g r i d S i z e+1)+ j)∗ (g r i d S i z e+1)+k+1] ;
. . . // other vertex assignments

currentCube++;
}

}
}
return TRUE;

}

Listing 10.8: Setting up the lattice coordinates with their field values.

Once the lookup tables are established and the preparatory work done in
listings 10.7 and 10.8 completed, the implementation of the marching cubes
algorithm in listing 10.9 can be executed.

The implementation of the algorithm proceeds by considering each cube in
turn as a individual entity. The code in listing 10.9 fulfills the following logic:

1. Work out which of the patterns (using the ID value of figure 10.64) of iso-
surface faces is required for the cube, based on the value of the field at the
cube’s vertices. This is the variable cubeIndex.

10.10. Metaball modeling and marching cubes 441

void CUBE GRID DrawSurface (CUBE GRID ∗g , f loat th r e sho ld){
//local storage up to 12 possible vertices for any iso-surface in cube
stat ic SURFACEVERTEX edgeVer t i c e s [1 2] ;
for (i =0; i<g−>numCubes ; i++){//loop through cubes
//calculate which vertex pattern to apply
//based on cube vertex values
i f (g−>cubes [i] . v e r t i c e s [0]−> value < th r e sho ld)

cubeIndex |= 1 ;
i f (g−>cubes [i] . v e r t i c e s [1]−> value < th r e sho ld)

cubeIndex |= 2 ;
. . . // set indices for the other vertices
//look-up this value in edge table to see which edges to interpolate along
usedEdges=edgeTable [cubeIndex] ;
//if the cube is entirely within/outside surface, or has no faces
i f (usedEdges==0 | | usedEdges==255)continue ;
//check each edge to see if it should have an iso-surface vertex
for (currentEdge=0; currentEdge <12; currentEdge++) {
i f (usedEdges & 1<<currentEdge) {
CUBE GRID VERTEX ∗v1 ,∗ v2 ; // get the cube edge’s vertices
ve1=vert icesAtEndsOfEdges [currentEdge ∗ 2] ;
ve2=vert icesAtEndsOfEdges [currentEdge ∗2+1] ;
v1=g−>cubes [i] . v e r t i c e s [ve1] ;
v2=g−>cubes [i] . v e r t i c e s [ve2] ;
// intepolate to put iso-surface vertex along cube edge
de l t a=(th r e sho ld − v1−>value)/ (v2−>value − v1−>value) ;
edgeVer t i c e s [currentEdge] . p o s i t i o n . x=

}
}
//make the triangular faces in this cube 3 vertices per face
for (k=0; t r iTab l e [cubeIndex] [k]!=−1; k+=3){
MakeTriangleFaceAt (

&edgeVer t i c e s [t r iTab l e [cubeIndex] [k +0]] . p ,
&edgeVer t i c e s [t r iTab l e [cubeIndex] [k +1]] . p ,
&edgeVer t i c e s [t r iTab l e [cubeIndex] [k +2]] . p)

}
}

}

Listing 10.9: Executing the marching cubes algorithm.

2. Using cubeIndex, look up the edge table to identify which of the cube’s
edges will cross the iso-surface.

3. Consider each edge of the current cube in turn: If it crosses the iso-surface
determine where, and record this in the edgeVertices [] list. If none of the
cube’s edges cross the iso-surface just ignore this cube.

442 10. Modeling with polygonal datasets

2, 20, 2

0, 0 2, 0

3d R

Figure 10.65: The result of assigning texture coordinates to the vertices of two trian-
gular facets.

4. Finally, build the triangular mesh by using the pattern of faces appropriate
for the cube’s ID. Table triTable [] holds the triangular face information by
indexing the edgeVertices [] list. The coordinates of the triangles’ vertices
will be found in the edgeVertices [] list.

In this implementation of the marching cubes algorithm each polygon is cre-
ated as a separate face. The network is not connected and each face’s vertices
are independent of all the other vertices. To be useful in a 3D modeling package
where vertices from neighboring faces occur at the same point, the faces should
really share the same vertices, and where the edges of a face are common to other
faces then only one edge should be inserted into the data structures. This could
be done in a post-creation sorting stage, but it would be preferable if the code
presented here were modified to do this as the face data is being created. To do
this would require that each cube keeps a record of its 26 immediate neighbors
so that when a new face is added a check is made to see whether any of its edges
or vertices have been created before in a neighboring cube. The use of an integer
based coordinate system for vertices makes this step very much more robust.

10.11 Texture coordinate generation

In section 4.6 the use of texture coordinates was discussed. It was not stated there
how texture coordinates are generated. It was stated that images were applied
to a two-dimensional texture coordinate system (X,Y) (commonly referred to as
(u, v) coordinates) and that a single copy of the image occupied the region in
which the coordinates satisfied: 0 ≤ X < 1.0, 0 ≤ Y < 1.0.

One obvious way to assign texture coordinates is by hand. The example in
Figure 10.65 shows two triangular facets with texture coordinates and a rendered
picture with the image shown mapped across the facets.

Manual assignment is however only satisfactory if very few facets are involved.
An automatic procedure that assigns mapping coordinates according to some

10.11. Texture coordinate generation 443

(a) (b) (c)

Figure 10.66: Projected image texture mapping: (a) A planar map. (b) A cylindrical
map. (c) A spherical map.

more usable scheme is essential if we are to apply maps to models with many
facets and non-planar geometry. It turns out that three basic formats provide
map coverage for almost all situations. They are:

1. Planar mapping

2. Cylindrical mapping

3. Spherical mapping

These are illustrated in figure 10.66.
Planar mapping is the most appropriate method of application when the sur-

face to be covered is approximately flat. Cylindrical and spherical mapping are
most appropriate when the surfaces to be painted are approximately cylindrical
or spherical. Since it is impossible to achieve an undistorted mapping from a
plane to a cylinder or plane to a sphere it is obvious that at least these three
types of mapping must be available. Most potential uses for an image map are
covered by one of these three cases.

From a usability point of view each of these mapping methods requires only
a few parameters for their specification. Texture coordinates for each vertex are
readily calculated from one of these mapping methods.

10.11.1 Planar mapping

Figure 10.67(a) illustrates the mapping relationship. A network of triangular
facets is shown overlapped by a rectangle R, which is assumed to bound the
image being mapped. The question then is: What are the mapping coordinates
of any vertex, V , in the network of facets?

The case shown in figure 10.67(a) doesn’t tell the whole story because the
facets are located in three dimensions and whilst ideally they should be planar
so that the map is not distorted, they don’t have to be. Neither do they have to

444 10. Modeling with polygonal datasets

(a)

V

V

R
R

P0

n̂

Pi

Pα

Pβ

(b) (c)

Figure 10.67: (a) A rectangle bounding the image to be mapped is shown overlapping
a network of facets. (b) A three-dimensional view of the same situation that shows
how the mapping rectangle R is projected on to the surface at right angles to R.
(c) Rendering the facets after assignment with mapping coordinates.

lie in the plane of R and therefore to obtain mapping coordinates for V we must
assume that the mapping coordinates are determined by a projection in three
dimensions from R to V ; this is illustrated in figure 10.67(b).

The procedure for determining mapping coordinates at V is as follows: A
straight line through V (given by position vector Pv) is constructed in the di-
rection of the normal to the plane of R, i.e., parallel to the normal to R (say n̂).
It intersects the plane in which R lies at the point Pi. Since Pi is in the plane
of R it can be expressed as a linear combination of the two vectors along the
sides of R. Thus if R is defined by the three points P0, Pα and Pβ , the vectors
along the edges are: Pβ −P0 and Pα −P0. The algorithm from section 2.11.1
will allow us to find an α and β which satisfy:

Pi = P0 + α(Pα −P0) + β(Pβ −P0)

Pi is obtained by calculating the intersection point in the plane of R: (p−P0) ·
n̂ = 0 and the line: p = Pv + αn̂. (See Section 2.6.)

The mapping coordinates of V follow by assuming that at P0 the mapping
coordinates are (0, 0), atPα they are (1, 0) and atPβ they are (0, 1) and therefore
at V the (Xv, Yv) are simply:

Xv = α

Yv = β

If this procedure to assign texture coordinates to all vertices is followed, an
image will be painted on the facets so that it lies inside the projection of R in a
perpendicular direction to the plane in which R lies. The top left corner of the
image will occur at P0, the top right corner of the image at Pα and the bottom
left corner of the image at Pβ .

10.11. Texture coordinate generation 445

Note that the planar mapping described here uses three points to define the
location of the map and therefore the opposite sides are always parallel even
though the angle between Pα and Pβ does not have to be 90◦.

It would be possible to define a map using four points, one at each corner
of the rectangle but it is considerably more complex to determine the mapping
coordinates from such a map because the opposite sides would not necessar-
ily be parallel. Haines [33] gives expressions (without derivation) for a convex
quadrilateral mapping that could form the basis of the necessary procedure.

10.11.2 Cylindrical mapping

In cylindrical mapping one imagines that the picture is wrapped around a cylin-
der enclosing the surface to be textured (see figure 10.66(b)). The texture co-
ordinates are assigned to a vertex V by finding the point on the cylinder where
a line from the axis of the cylindrical map passing through V (at Pv) intersects
the cylindrical surface, at Pi. This is illustrated in figure 10.68. Since Pi lies
on the cylinder its position in a frame of reference associated with the cylinder
can be specified as a fraction of the distance between the top and bottom of the
cylinder d and a fraction of a full rotation round the cylinder θ. The angle of
rotation is specified relative to a line where the left hand edge of the image is
stuck to the cylinder.

To define a cylindrical map the radius of the cylinder used to define the map
is not important. We can assume r = 1, but the following must be specified:

• The axis of the cylinder. The best way to do this is with a point on the
axis at the top of the cylinder P1 and a point at the bottom of the cylinder
P2. We will assume that the Y mapping coordinate is zero at the top of
the cylinder and unity at the bottom.

• The location of the left-hand edge of the map on the curved surface of the
cylinder. An easy way to do this is by specifying some point PL which
may be any point that is not on the axis of the cylinder.

The left-hand edge is a line running parallel to the axis of the cylinder
through a point unit distance from the cylinder’s axis in the direction of
PL.

• The angle of rotation, φ, from the left-hand edge of the map round the
cylindrical axis which is to be equivalent to one copy of the image. This
is the location where the X mapping coordinate is unity. When φ = 2π it

takes one copy of the map to go all the way round the cylinder. If φ =
π

4
the map occupies one eighth of the cylinder, or to put it another way, it
takes eight copies to paint all around it.

This geometry is illustrated in figure 10.68.

446 10. Modeling with polygonal datasets

Axis of cylindrical map

Left edge here

Vertex to be
mapped Plan view

r

r

q

n

Pi

P1

P2

Pv

PL

d θ

θ

φ

�e map rolls round the
cylinder in this direction

Figure 10.68: Cylindrical mapping.

In view of the discussion above the assignment of mapping coordinates at
any vertex is made using the following procedure:

Given that φ is the angle round the cylinder equivalent to an X
mapping coordinate of unity and the distance between the top and
bottom of the cylinder is assumed to cover one unit of the Y mapping
coordinate, vertex V will be assigned texture coordinates according
to:

Xv =
θ

φ

Yv = d

d and θ are illustrated in figure 10.68. They may be calculated in
terms of P1, P2 and PL using the algorithm given in listing 10.10.
Here Pv is the position vector for vertex V .

10.11.3 Spherical mapping

A spherical mapping can be described in a very similar way to a cylindrical
mapping except that the central axis serves only to define the position of the
north or south poles of the sphere. One can imagine the image being squeezed
onto the sphere as illustrated in figure 10.66.

To map the image to the sphere we use the angular components (φ, θ) of
spherical polar coordinates (defined in section 2.1.2) where θ and φ satisfy: 0 ≤
θ < π and −π < φ ≤ π. The parameters θ and φ will need to be equated to
mapping coordinates (X,Y) in the range 0 ≤ Y < 1 and 0 ≤ X < 1. For any
vertex V a φ and θ are obtained by drawing a line from V (with position vector
Pv) to a point at the center of the spherical map, and calculating the point
where this line intersects the unit sphere.

10.11. Texture coordinate generation 447

Firstly find d:
Let y = P2 −P1 (the axis of the cylinder)
Thus d is the projection of (PV −P1) onto the axis of the cylinder.

d =
(PV −P1) · y

y · y

Secondly find θ:
Let x = PL −P1 (a direction towards the ‘seam’)
Let q = (PV −P1)− dy
(q is the direction of PV from the cylinder’s axis)

Set q̂ =
q

|q|
We need a direction perpendicular to the cylinder’s axis that is towards

the seam: Let l =
(PL −P1) · y

y · y
and r = (PL −P1)− ly
(r is the direction of PL from the cylinder’s axis)

Set r̂ =
r

|r|
Then θ = arccos(q̂ · r̂)

This only specifies θ in the range: 0 ≤ θ < π we need to know
whether θ lies in quadrant 3 or 4. Determine this by forming
the vector n̂ which is perpendicular to the plane in which
P1, P2 and PL lie.

n̂ =
x× y

|x× y|

if q̂ · n̂ < 0 then θ = −θ

This algorithm gives θ in the range −π < θ ≤ π other ranges
can be obtained by appropriate scaling.

Listing 10.10: Algorithm to determine the cylindrical mapping parameters d and θ for
the geometry illustrated in figure 10.68.

Once the point where this line intersects a unit sphere is known in terms of
angle θ (from the north pole) and φ (longitude) the mapping coordinates for
vertex V , (Xv, Yv), are given by:

Yv =
θ

π

Xv =











φ

2π
: 0 ≤ φ ≤ π

2π + φ

2π
: − π < φ < 0

448 10. Modeling with polygonal datasets

P2

P1
x

y

z
θ

φ

PL

North pole Pv

Figure 10.69: Spherical mapping.

This maps a picture with its top located at the north pole and its bottom at
the south pole. Angles θ and φ are obtained by following an argument similar
to the one used to derive the cylindrical mapping coordinates. This geometry is
illustrated in figure 10.68.

In the geometric specification illustrated in figure 10.69 the center of the
mapping sphere is at P1. We will assume that the south pole is located at P2

and that PL is an arbitrary point, not on the polar axis. In an analogous way
to the way it was used for cylindrical mapping PL specifies where the “seam”
of the map lies. Given this information the algorithm presented in Figure 10.11
will determine the θ and φ.

10.11.4 Automatic map coordinate generation

Generating image map coordinates is not always easy in a modeling tool. Pro-
jections such as those just discussed can provide a great starting point because
many objects have a high degree of topological similarity with the plane or cylin-
der. When it is possible to start with a basic surface texture coordinate system,
an interactive design tool that unrolls the mapping coordinates onto a 2D display
can be written so that its user may interactively tweak the 2D texture coordi-
nates corresponding to a 3D vertex so that it is positioned at the place in the
image map that they desire. The OpenFX software has such a tool; figure 10.70
illustrates it in action. For this tool to be successful a good initial guess of the
mapping coordinates is essential, otherwise many 2D coordinates will overlap
and it will be impossible for the artist to separate them.

Sometimes however it is not possible to get a good initial texture coordinate
mapping, and another approach is worth exploring. When a surface is modeled
by a mesh of polygons that are connected together in a coherent way, that is,
there are no gaps in the mesh, and it does not twist back on itself, or bifurcate
in a strange way, then it is possible to use the 2D mapping coordinates of just
one polygon to establish a mapping over the whole surface of an object.

Of course there are going to be cases where this will not work very well; for
example trying to texture-map a cube made up from six quadrilaterals, when

10.11. Texture coordinate generation 449

First a right handed frame of reference relative to the given
spherical map must be established.
Let:
z = P1 −P2

y = z× (PL −P1)
x = y × z

normalize:

x̂ =
x

|x|
ŷ =

y

|y|
ẑ =

z

|z|

Now determine φ:
Let: r = Pv −P1

and : r̂ =
r

|r|
then: φ = ATAN2((r · x), (r · y))

To determine θ use:
θ = arccos(r · z)

Listing 10.11: Determining θ and φ relative to a specification of the spherical map for
a vertex at Pv.

just one of them is initially mapped, is unlikely to produce a pleasing result. In
this case a spherical map centered within the cube is likely to come much closer
to the desired result.

In principle the automatic generation of a 2D coordinate system over a curved
surface is relatively simple if we make the assumption that two adjacent faces can
be unrolled, by rotating the second face around the common edge so they they
lie in a plane. Once unrolled the coordinate system can be mapped out across
the adjacent face and mapping coordinates assigned to the non-common vertex.
Figure 10.71 illustrates the idea: (a) shows a flat mesh of triangular polygons in
which vertices 1, 2 and 3 of triangle A have been assigned mapping coordinates
using a frame of reference with the x axis lying along the edge from vertices 1
to 3 and the y axis lying along the edge from 1 to 2. Since triangles B and E
are adjacent to A their non-common vertices 4 and 7 can have their mapping
coordinates assigned using the local frame of reference in triangle A. Now, as
triangle B has a full 2D frame of reference its vertices’ mapping coordinates can
be used to establish a frame of reference relative to triangle B, which in turn
can then be used to assign mapping coordinates to the non-common vertices in
the triangular faces adjacent to B.

Once triangle B has been mapped, the algorithm can simply recurse across
the connected mesh establishing mapping coordinates at every vertex until the

450 10. Modeling with polygonal datasets

(a) (b)

Figure 10.70: Interactively moving the texture map coordinates by superimposing the
2D texture coordinates mesh over an image. (a) The 3D mesh model. (b) The 2D
texture coordinates and image to be wrapped around the mesh.

whole mesh is triangulated. When the mesh represents a non-planar surface,
the faces adjacent to the reference frame will need to be temporarily rotated
around the common edge with the reference face, so that both faces lie in a
plane. Once aligned in a plane, a 2D mapping coordinate can be generated
at their non-common vertex. A suitable transformation can be obtained by
recognizing that it has to align the faces’ normal vectors by a rotation around
the vector joining the vertices at the ends of the common edge. For example, in
figure 10.71(b) the vectors nA and nB should be aligned by rotation around the
vector d; section 2.12.5 describes suitable algorithms to achieve this.

In figure 10.71(a) the surface triangulation is totally consistent, because each
triangle is only adjacent to a maximum of three other triangles and the surface is
flat. This algorithm would not work for the case shown in figure 10.71(c) because
of the single vertex joining the two pieces.

If we now imagine folding the mesh in figure 10.71(a) around a surface to
take the shape, shown in cross-section in (b), there is no reason why the vertices
cannot carry the same texture coordinates. Indeed there is no reason why the
texture coordinate generation has to start with a flat mesh because the connec-
tions among the faces remains the same. For example faces A and B virtually
lie in the same plane and it is easy to see that an assumption of continuing to
apply the frame of reference from A into B is not a bad one.

The cross-section in figure 10.71(b) illustrates a mapping on to a spiral object
in which the map (defined in just one triangular face) winds round the spiral,
something that could not be achieved with the use of a cylindrical map for
example. There are, of course, some cases where this algorithm will not work
very well. A triangle that is joined to two others along a common edge could lead
to inconsistencies, figure 10.71(d). Applying the algorithm, starting at face A, to
the three sides of a cube shown in (e) could lead to different mapping coordinates

10.12. Building polygonal primitives 451

(e)

v

A

A

A

B

C

D
A

B

C

D
G

F

E

nA nB

3

4

6

1, 2

2, 3

5

1

2

(1, 0)

(0, 0) (1, 0)

A

(d)

(a)

G
F

E

(b)

(c)

Figure 10.71: Recursively generating texture coordinates using the local frame of ref-
erence established in an adjacent polygon. (a) Flat mesh, (b) rapping mesh around a
curved surface, (c) a mesh that cannot be mapped, (d) and (e) cases that could result
in an inconsistent mapping.

assigned to vertex V , depending on the order in which the adjacency is processed
by the recursive algorithm.

But, all-in-all, the algorithm can provide a very useful tool to the 3D artist
when it comes to painting 2D mapping coordinates onto their 3D models, or at
least starting to assign a model’s vertices with 2D mapping coordinates.

10.12 Building polygonal primitives

Most primitive shapes are readily constructed using one or more of the algorithms
we have now considered.

In general it is therefore only necessary to specify a very small amount of
structural information because the automatic procedures will do the bulk of the
work. For example we saw that a torus can be constructed by specifying a circle
of edges and vertices followed by the generation of a surface of revolution.

The following list suggests how the most basic primitives might be con-
structed:

• Cube
Start with a square, 4 vertices, 5 edges, 2 facets, copy it, move the copy
and loft the two outlines.

452 10. Modeling with polygonal datasets

• Pyramid
Start with a square, add the rest by hand, one vertex, 4 edges and 4
triangular facets.

• Cone
Start with an angled line, 2 vertices, 1 edge. Construct a surface of revo-
lution about an axis that passes through one of the vertices. If necessary,
cap the base of the cone (which is a convex polygon).

• Tube
Start with a line (2 vertices, 1 edge). Construct a surface of revolution
about an axis parallel to, but offset from, the line.

• Cylinder
Build a tube as above then proceed to cap the top and bottom; both are
convex polygons.

• Sphere
Two possible methods:

1. Start with a set of vertices and edges describing a semi-circle. Then
build a surface of revolution around an axis passing through both ends
of the semi-circle.

2. Start with a very basic approximation to a sphere. Subdivide the
edges and facets and move the additional vertices radially until they
lie on a sphere. If necessary repeat this process until the faceted
appearance is reduced to an acceptable degree.

• Disk
Start with a set of vertices and edges describing a circle, then cap the circle.

• Torus
Start with a set of vertices and edges describing a circle, construct a surface
of revolution about an axis outside the circle.

11
Algorithms for procedural

textures

In chapter 4 the basic idea of the procedural (or algorithmic) texture was in-
troduced. In this chapter we will look at some examples that take advantage of
those ideas to produce a collection of interesting surface textures. We will con-
centrate on what one might describe as following the basic principles of mixing
geometric and noise patterns.

It is important to realize that the procedural textures described in this chapter
do not have any basis in physical or biological principles; they are essentially just
“computer hacks” that look good and do the job.

All the textures considered in this chapter have been implemented as either
DLL plug-ins or as GLSL shaders for OpenFX. After reading this chapter and
chapter 9 you should be able to follow the finer details of a practical imple-
mentation of the algorithms in the OpenFX code. Since the first edition of this
book was printed it has become routinely possible to make use of the hardware
acceleration offered by the GPU, so algorithmic textures can now be generated
in real-time and with increasing sophistication. Despite their programmability,
GPUs are still specialized processors that are nowhere near as flexible as the
CPU of a traditional general purpose processor. They also have quite a limited
memory, especially for storing the shader codes. Despite the C like form of the
GLSL it is usually necessary to re-engineer an algorithm’s implementation, from
the way it would be written in a standard high level language, to the way it
must be structured as a pair of GLSL shader programs. For example, rather
than generate a noise value using the Perlin algorithm an image map is used as
a lookup table.

Another reason for adopting a different approach to texture implementation
is the fact that the GPU is expected to render textures repeatedly in real-time,
and therefore, moving as many operations as possible into a execute once set-up
step becomes essential. For these reasons we offer two versions of the procedural
texture algorithms in this chapter, one that is usable within the limits imposed
by the GPU hardware and another for the general software approach where there
are no limits.

453

454 11. Algorithms for procedural textures

Almost any natural pattern can be simulated with a procedural texture.
Perlin has greatly extended his original work and others have developed the
procedural texture so that now almost any surface appearance can be simulated.
For example: Turk [84] and Witkin and Kass [91] have shown that reaction
diffusion is a very successful technique for developing fascinating procedural
textures including many animal skin patterns (giraffe, zebra), coral and weaved
surfaces. Other useful sources of information may be found in the book by Ebert
et al. [23].

The range of possible uses of algorithmic is not limited to painting patterns
on 2D surfaces. Perlin and Hoffert [68] and Kajiya and Kay [48] introduced
the concept of the hypertexture which one could describe as a three-dimensional
equivalent of the procedural texture. Rather than applying a texture to a meshed
surface a volume of some sort is specified and calculations proceed to determine
the opacity at points within that volume. To determine what is visible when
looking at a hypertexture the opacity must be calculated at a number of sample
points along the viewing direction (or ray as it passes through the hypertexture
volume). As a result hypertextures are extremely slow to compute and therefore
very careful thought is needed before embarking on their use. In this chapter
we do not discuss hypertextures but for more information the aforementioned
references are a good place to look.

11.1 A standard interface

It is a good idea to arrange that procedural textures interface to their host
renderer with a few standard parameters. All those rendering applications that
offer their users the ability to write plug-in textures communicate with their
plug-ins through a standard interface. It is also useful to design a standard set
of variables to communicate with the GPU shader programs so that different
shaders can be called into action without having to call on a whole collection of
special cases.

11.1.1 An interface for procedural textures

For a renderer that uses textures through shared object libraries or DLLs, a com-
prehensive interface can be achieved with the function prototype and argument
set given in listing 11.1.

The function returns the Boolean value FALSE if the function fails for any
reason, otherwise TRUE is returned. The function’s parameters fall into five
groups:

1. (Vectors: p, n)
p is a position vector of the spot on the textured surface for which we wish
to calculate the texture value, i.e., the surface color.

11.1. A standard interface 455

BOOL TextureProcedure (
VECTOR p , // coordinate of surface point
VECTOR n , // surface normal at ”p” (unit length)
VECTOR P, // position vector to origin of texture parallelepiped
VECTOR U, // normalized basis vectors of texture parallelepiped
VECTOR V,
VECTOR W,
f loat u , // relation between ”p” and texture parallelepiped
f loat v , // i.e. p = P + uU + vV + wW
f loat w,

MATRIX3 T, //Transform vector from (x,y,z) to (U,V,W) coordinates
f loat ∗ opacity , //Opacity of surface
f loat ∗ r e f l e c t i v i t y , // Reflectivity of the surface
VECTOR co l o r // return the surface RGB color (0.0 - 1.0)
)
{
. . Body of the texturing procedure
. .
//Return FALSE if function fails, otherwise return TRUE
return TRUE;

}

Listing 11.1: A prototype for a wide variety of texturing functions.

n is a unit direction vector normal to the surface being textured at p.
Many textures redirect n away from its input direction. Some bend it
in combination with a color variation but a number of the most effective
textures involve shifts in the direction of n alone.

2. (Vectors: P,U,V,W, and scalars: u,v,w)
These important parameters allow a texture to be applied in a way that
is relative to a coordinate system that may move, be non-orthogonal or
differentially scaled. Perhaps this frame of reference follows an object in
an animation so that we don’t get the unpleasant appearance of the object
moving through a sea of texture! Many textures are repetitive. A regular
checkerboard or wallpaper pattern for example is readily simulated with an
appropriate use of u, v and w. Section 11.1.1 discusses these parameters
further.

3. (Matrix: [T])
A 3 × 3 transformation matrix that allows direction vectors (such as the
surface normal n) which are specified in a global (x, y, z), frame of reference
to be used in the (U,V,W) frame. Whilst it is possible to calculate [T] in
the body of a texture function from U, V and W it is much more efficient

456 11. Algorithms for procedural textures

to do this only once, before rendering the image, rather than every time a
pixel is rendered.

If the components of U etc., are (Ux, Uy, Uz) etc., then [T] is given by:

[T] =





Ux Vx Wx

Uy Vy Wy

Uz Vz Wz





−1

In those cases whereU, V andW form an orthogonal basis there is no need
to calculate an inverse matrix because [T] may be written immediately as:

[T] =





Ux Uy Uz

Vx Vy Vz

Wx Wy Wz





4. (Scalars: *opacity and *reflectivity)
If the client renderer is a ray tracer then modifications to the opacity or
reflectivity of the surface by a procedural texture might have interesting
practical use. For example a texture simulating “clouds” would have zero
opacity in the gaps between the clouds, a rapid transition to a unit value
at the edge and unit opacity in the cloudy areas. Passing a pointer to these
floating point values allows the texture function to modify the value or just
leave it alone (in C++ a reference could be used). Both parameters lie in
the range [0, 1].

5. (Vector: color)
This is a floating point triple (specified as a vector purely for convenience)
that returns the red, green and blue (RGB) components of the texture
color observed at p. Each component is scaled into the range [0, 1]. When
TextureProcedure() is called this parameter should hold a basic underlying
surface color that for certain textures (e.g. bumpy) will remain unchanged.

Also consult the OpenFX code in the “textures” folder (see chapter 9) which
implements all the algorithms described in this chapter.

A reference frame The vector parameters P, U, V and W, introduced in sec-
tion 11.1, are illustrated in figure 11.1. They define a unit texture cell (or paral-
lelepiped) that we regard as being a bounding volume inside which the essential
features of the texture will be created. The basis vectors U, V and W do not
have to be orthogonal and this allows skewed or sheared texture patterns to be
readily simulated. The base vectors have an origin at P and if U, V, W and
P are transformed in the same way as any object the texture is applied to then
the texture will look as if it is fixed to the object and not like some field through
which the object is moving; see figure 11.2.

11.1. A standard interface 457

�e texture parallelepiped

Universal
reference

frame

y

w

v
u

β

x

z

O

P

w

v
u

�e texture
frame to
reference

A spherical
object

n

p

α

Figure 11.1: A frame of reference in which to specify a volume texture.

If the object moves
then the axes u, v
and w transform
so that they maintain
the same relationship
to the object

u

v

P
w

y

x

z

Figure 11.2: Transforming the texture cell keeps it in the same relative position to the
object whose surface exhibits the texture.

Any point p on the surface of an object is specified relative to the texture
cell by:

p = P+ uU+ vV + wW

458 11. Algorithms for procedural textures

Step

Step

Ramp

Hermite
x

x

x

Ramp

Figure 11.3: Applying a ramp transition between the colored dot and the background
removes the unpleasant aliasing effects that are very noticeable when a step transition
is used.

The coefficients u, v and w are used as texture coordinates in calculating the
surface shading. To make the texture appear larger or smaller or be distorted,
they can be scaled before calling the texture function.

As we have seen, if U, V and W form an orthogonal basis then u, v and w
may be easily calculated. For a non-orthogonal basis a set of three simultaneous
equations must be solved every time the u, v and w are needed.

Color blending Textures that include color changes exhibit unpleasant aliasing
effects when change is abrupt. On the other hand if the change is blended over
a small distance the aliasing effect is much less noticeable. Several blending
functions have been proposed but a simple ramp is often acceptable although
some texture developers recommend using Hermite interpolation. Figure 11.3
illustrates alternative ramp shapes and the effect of a simple ramp on the edges
of a large colored dot.

Noise functions Many textures make use of the Perlin noise generators which
were introduced in chapter 4, section 4.5.2. Four fundamental functions were
introduced there. In the algorithms described in this chapter and the code that
accompanies them single and vector valued Noise and Turbulence functions are
specified in listing 11.2.

Note that in this case the position coordinates x,y,z are specified as three
separate values rather than as a VECTOR data type.

The implementations of fNoise() etc., used in producing the textures illus-
trated in this chapter were written to return single values in the range [0, 1] or
vectors that are of unit length. There are many other codes that could be used
to generate noise with the necessary statistical properties.

It is important to appreciate that these noises are adjusted so that they
give a reasonable correlation between returned values when the input points
are spaced one unit apart. That is v1 (given by v1 = fNoise (0.0,0.0.0)) will
be fairly close to v2 (given by v2 = fNoise (1.0,0.0.0)) whereas v3 (given by

11.1. A standard interface 459

Return a ”Noise” value in the range [0.0 - 1.0]
f loat fNo i s e (
f loat x , //Coordinates of the point at which the Noise value
f loat y , //is to be calculated.
f loat z) ;

Return a ” 1/f Noise” value in the range [0.0 - 1.0]
f loat fTurbulence (
f loat x , //Same as for fNoise function. Note that each
f loat y , //function will return the same number if called
f loat z // with the same ”x y z” values.

) ;

Return a normalized random vector with the
void vNoise (
VECTOR v , //Returned vector
f loat x , //Coordinates of the point at which the vector
f loat y , //is to be calculated.
f loat z) ;

Return a ” 1/f” random vector
void vTurbulence (
VECTOR v , //Returned vector
f loat x , //Same as for fNoise function.
f loat y , // ””
f loat z // ””

) ;

Listing 11.2: Noise function definitions.

100

1001

010

Figure 11.4: (a) Noise texture at a resolution of one unit. (b) The same noise texture
at a resolution of 100 units.

v3 = fNoise (100.0,0.0.0)) will be virtually independent of v1. This point is il-
lustrated in figure 11.4 which shows a texture based on the same noise function
viewed at two different scales.

460 11. Algorithms for procedural textures

Texture unit cell 3D tiled
texture

Figure 11.5: Tiling a texture by repeating the unit texture cell shown on the left
produces a wallpaper effect.

Repetitive patterns To repeat a texture pattern the idea of the texture unit cell
is a useful one. The unit cell depicted in figure 11.1 can be tiled to fill space.
Three of the sides of the cell lie in planes formed by pairs of the vectors U,
V and W with the others lying in parallel planes. Thus the texture cell is a
parallelepiped with edges of unit length. Any point p with texture coordinates
(u, v, w) may be tiled by first calculating:

u′ = u− floor(u)

v′ = v − floor(v)

w′ = w − floor(w)

where floor(x) returns the nearest lowest integer to x. The (u′, v′, w′) are then
substituted in the remainder of the texture calculation in place of (u, v, w).

This technique of modifying p through its (u, v, w) coordinates before cal-
culating a texture can also be used to differentially scale the appearance of a
texture. For example the dots illustrated in figure 11.3 can appear flattened

along one or two of their axes if the values of u and v are prescaled by
1

2
.

Figure 11.5 illustrates a repetitive array of elliptical dots produced using the
function given in listing 11.3.

Tiling a texture in this way makes it applicable for filling 3D space and
not just covering a two-dimensional surface. On those surfaces where mapping
coordinates (section 4.6) are available at p they can be used to determine the
value returned by a procedural texture, however since there are only two mapping
coordinates we must choose to set the third to some arbitrary value, say zero.

As you have probably guessed, the example dot texture is generated by plac-
ing a colored sphere at the center of the texture cell and making the calculations
in three dimensions. As a result the dots on the surface appear because the
visible surfaces cut through the array of texture cells, the voxels.

11.1. A standard interface 461

#define EDGE 0.05 // give the spot a soft edge

BOOL TextureProcedure (
VECTOR p , VECTOR n ,
VECTOR P,VECTOR U, VECTOR V, VECTOR W,
f loat u , f loat v , f loat w,
MATRIX3 T,
f loat ∗ opacity , f loat ∗ r e f l e c t i v i t y ,
VECTOR co l o r
){
double r ;
VECTOR spo t c o l o r ={1 . 0 , 0 . 0 , 0 . 0} ; // Red spot
double rad iu s =0.25;// Spot occupies half the unit cell

u ∗= 0 . 8 ; // Apply differential scaling
v ∗= 0 . 8 ; // for elliptical shapes

u=(u−f l o o r (u)) −0 .5 ;// Leave these lines out
v=(v−f l o o r (v)) −0 .5 ;// for a single dot at the
w=(w−f l o o r (w)) −0 .5 ;// center of the texture cell

i f ((r=sq r t (u∗u+v∗v+w∗w)) < rad iu s) {
c o l o r [0]= sp o t c o l o r [0] ; // Inside the spot copy the spot color
c o l o r [1]= sp o t c o l o r [1] ;
c o l o r [2]= sp o t c o l o r [2] ;

}
else i f (r < rad iu s+EDGE){// blend the colors at the edge of

// the spot to avoid aliasing.
r= (r−rad iu s)/EDGE;
c o l o r [0] = co l o r [0] ∗ r + sp o t c o l o r [0]∗ (1 .0 − r) ;
c o l o r [1] = co l o r [1] ∗ r + sp o t c o l o r [1]∗ (1 .0 − r) ;
c o l o r [2] = co l o r [2] ∗ r + sp o t c o l o r [2]∗ (1 .0 − r) ;

}
return TRUE;

}

Listing 11.3: A repetitive “dot” texture.

11.1.2 An interface for GPU shaders

If you are not familiar with GPU shader programming please read section 7.3
before continuing.

When a texture function is to be implemented through GPU programs, the
interface to the shader codes will require the same information to be communi-
cated to it that would be passed to a function executing in a CPU DLL. However,
the GPU shaders do not pick up its parameters through function arguments. The

462 11. Algorithms for procedural textures

shader’s parameters are passed by using memory locations in the GPU that the
application program can write into. All our shader examples will use GLSL
uniform qualified variables that can be referenced through their names by the
application program.

The main geometric data (vertex positions and normal vectors) are passed to
the shader through GLSL built-in variables, 2D or 3D texture maps are passed
though a small collection of samplers, a texture’s frame of reference is passed
as three uniform variables and the texture coordinate of each vertex is passed
through a buffer attached to a vertex array object.

The other major differences in using a GPU texture are (1) the need to use
a texture map as a lookup table for the self-similar noise function, and (2) the
need to also implement other aspects of the rendering process, e.g., lighting.

In all the GLSL code examples the following GLSL code is included in the
vertex shader:

//Input of the vertex position relative to the texture base axes
layout (l o c a t i o n = 4) in vec3 ShaderPos i t ion ;

// Input of material base axes for the texture unit cell
uniform vec3 Uvector ;
uniform vec3 Vvector ;
uniform vec3 Wvector ;

In the fragment shader, the map that will be used as a noise lookup needs to
be made available:

uniform sampler3D NoiseMap ; // Map for 3D noise

It is also necessary to declare several variables that are assigned values in the
vertex shaders and are used (after interpolation in the rasterizer) in the fragment
shader:

out vec3 tnorm ; //normal vector
out vec4 PP; //position
out vec3 texpos ; //texture position

out vec3 uvec ; //the three texture cell axes
out vec3 vvec ;
out vec3 wvec ;

Note: These in/out variables are assigned on a per-vertex basis in the vertex
program, but when used in the fragment shader they apply to the location on the
surface visible in the fragment being rendered.

The GPU is highly efficient at carrying out interpolation and generating re-
peating patterns. GLSL functions floor (..) , roof (..) , mix(..) and clamp(..)
are provided to facilitate the tasks of blending color and determining fractional
positions within a texture’s unit cell.

11.2. CPU textures 463

11.2 CPU textures

In this section we will examine algorithms to generate seven classes of procedural
textures built using three principles: regular patterns, irregular patterns, per-
turbation to surface normal vectors or a combination all three. The algorithms
do not assume any particular restriction on their implementation. Versions of
some of them for GPU use will be examined further in section 11.3.

11.2.1 Regular dots

In section 11.1.1 we saw how to produce a repetitive pattern of dots by embedding
a sphere in the basic texture cell. It would take only a small modification to place
cubes or other patterns at the center of the cell. We can think of an analogy
with the crystallographic arrangement of atoms in a solid. A dot at the center
of the texture cell corresponds to a body centered cubic (BCC) structure. There
are other crystallographic arrangements that produce regular patterns of dots.
In fact an hexagonal close packing (HCP) arrangement has proved to be very
useful because quite a few of the textures to be described later are based on it.

On their own neither the HCP nor the face centered cubic (FCC) are partic-
ularly exciting but they do raise an interesting and important issue:

Neither the FCC or HCP packaging arrangements can be tiled in
a way so that all the spheres making up the basic repeat unit lie
completely within the unit cell.

This complicates the task of producing repetitive patterns because when we need
to determine what texture feature occurs at some coordinate (u, v, w) we must
take account of adjacent texture cells so that the patterns match along their
borders. If the patterns from neighboring cells don’t match exactly some dots
in the pattern might look like they have been cut in half. (A problem analogous
to aligning the wallpaper pattern when hanging adjacent strips.)

11.2.2 FCC dots

In an FCC pattern there is one spherical dot at the center of each face of the
texture cell. Thus to determine the color at (u, v, w) six spherical intersection
tests must be performed for each cell. In addition we must remember that each
sphere is shared with an adjacent texture cell. To make sure that no discontinuity
occurs the dots on opposite faces of the texture cell need to be the same size and
color.

This introduces another important point that we should remember as other
textures are developed:

We are determining the texture at one given point (either p or equiva-
lently (u, v, w)) on each function call, not the texture of many points
that satisfy some given property of the texture.

464 11. Algorithms for procedural textures

(a) (b) (c)

Figure 11.6: The unit cell for an FCC dots texture and an example of its application to
a solid object. (a) Solid cell showing spheres protruding into adjacent cells. (b) Semi-
transparent unit cell showing the 6 spheres. (c) Soft edged dots applied to a sphere.

For example we cannot set the color of all points inside a dot in one
call to the texturing function. This may seem like a trivial point but it
is very significant in practice and for many textures, especially those
based on random dots. It can significantly complicate the coding.

Figure 11.6 illustrates the relation of the FCC dots to the texture cell and
pictures an example of the texture applied to a solid object. Details of the
algorithm which consists of a simple test as to whether a point lies inside one of
six spheres can be found by following the code that accompanies the book.

11.2.3 HCP dots

In contrast to BCC and FCC dots an hexagonal close packed (HCP) arrangement
of spheres forms the closest packing that it is possible to obtain. This pattern is
of particular interest mainly because the hexagonal mesh, leopard, amphibian,
honeycomb and vein textures are derived from it.

Like the FCC dots we must be careful to remember that spheres from one
cell will overlap into adjacent texture cells. In this case to obtain a repeatable
texture cell we require 22 spheres. Compare this to the single test required for a
BCC dot pattern. Figure 11.7 visualizes the arrangement of the spheres in the
unit HCP cell. Because of the regularity, any spheres that lie partly outside the
texture cell exactly overlap spheres in adjacent cells and thus when working in
adjacent cells they are automatically considered. That is, a sphere on the right
of cell i overlaps one from the left of cell i+ 1.

The HCP unit cell is not rectilinear. For a cell of unit width its length and

height are both

√
3

2
. Three layers of spheres are needed to fill the texture cell;

the middle layer is an offset copy of layer one and the top layer is a repeat of the
bottom one. This arrangement of spheres in the layers is depicted in figure 11.8

11.2. CPU textures 465

Layer 2Layer 1
Layer 3

Unit cell

Figure 11.7: Visualizing the spherical units that make up the HCP unit texture cell.

where the dimensions are also presented. Note that this illustration depicts the
case where the spheres just touch (as would be the case in a real HCP crystal).
As we will see later some very interesting textures arise when the sphere radii
vary from this nominal value, a situation that is of course impossible in a real
crystal. Seven spheres are needed for layers 1 and 3; eight spheres must be used
in layer 2.

In the HCP texture (as with those considered earlier) the actual pattern seen
on any given surface is that which appears as the surface cuts through an infinite
lattice of texture cells. This is depicted in figure 11.9 where an angled plane is
shown cutting through a single texture cell.

The implementation of the algorithm for an HCP dot pattern follows closely
the same principles used in the FCC procedure. It basically tests to see if the
point p lies inside (or on the edge of soft edges) any of the 22 spheres in the unit
cell. If the test proves positive then the color or other surface attribute assigned
to the dot is returned.

11.2.4 Regular bumps

The BCC, FCC or HCP dot pattern can be used to generate regular arrays of
raised bumps or sunken dimples if the surface normal vector is pushed off the
vertical at points lying inside the dots. For example the bumps illustrated in
figure 11.10 were produced from a basic BCC dot pattern but instead of changing
the color of the surface inside the dot the surface normal was perturbed in the way
illustrated in the cross-sections. It is relatively straightforward to make bumps
on a surface when the bumps are derived from a two-dimensional function that
covers the surface. However, more thought is necessary when the bumpy surface
is to be derived from a texture that fills a 3D volume. In this case the surface
bumps are formed at those locations where the surface intersects spheres in the
texture cell. We must ensure that not only is the normal bent in the desired
direction (bump or pimple) but also that the direction is consistent for adjacent
points on the surface. For example the bumps on the left, right, top and bottom

466 11. Algorithms for procedural textures

Layers 1 and 3 shown in plan view

�e radius of each sphere is 1/4

Texture cell repeat unit

�e centers of spheres
in layer 2 lie at A, B and C

Layer 2 in relation to
the texture cell

1

1

Elevation

B

A
C

1/2

1/2

Layer 3

Layer 1

Layer 2

3

1/2 3

3/4

3/4

3/4

3/2

Figure 11.8: Constructing the HCP unit cell from three layers of close packed spheres.

Each sphere is of radius
1

4
but the unit cell is not a precise cube.

surfaces of the cubes in figure 11.10 must all bump outward irrespective of on
which side they lie.

In figure 11.11 a cross-section is shown through the texture cell so that it also
intersects one of the spheres inside it. The normal at any point p on the surface
between points a and b is pushed away from the perpendicular in proportion
to its distance from the center of the texture cell sphere at c. Working from
a specification of the geometry of the cell a little vector algebra determines c.
Once c has been found the direction in which to bend n is calculated; call this
∆n. The new normal vector (nb after bumping) is given by:

nb = n+ γ∆n

where γ is the proportion of the bump to apply at p.

11.2. CPU textures 467

(a) (b) (c)

Figure 11.9: (a) The texture cell with the planar surface cut through. (b) A cut away
view. (c) The pattern as it appears in the surface.

Since the surface normal n is determined with respect to a global frame of
reference but the texturing algorithms require that all calculations are done in
the (U,V,W) reference frame we must transform n and p so that they can be
used relative to the (U,V,W) frame. The surface normal n in the (U,V,W)
frame of reference is obtained by applying:

n′ = [T]n

To obtain an equivalent for p, say p′ we use the known texture coordinates
(u, v, w) at p and by letting p = (u′, v′, w′) with:

u′ = u− floor(u)

v′ = v − floor(v)

w′ = w − floor(w)

Account is taken of the fact that the texture cells repeat ad infinitum.
After transformation, p′, like n′, can be manipulated relative to the texture

cell coordinate system. If calculation for the bumped surface normal proceeds
with respect to the texture cell axes then the repetition of the texture cell will
occur automatically.

To determine the change in surface normal due to the bumps we proceed as
follows: Let r < 0.5 be the radius of a sphere at the center of the texture cell, i.e.,
at: C = (0.5, 0.5, 0.5). Find the point p′

c (at c in figure 11.11(a); c is the point
on the surface closest to C) using p′ = (u′, v′, w′) (the position vector relative
to the texture cell for the point p). We can write:

p′
c = C− ((p′ −C) · n′)n′

and therefore the direction in which we must bend the surface normal, relative

468 11. Algorithms for procedural textures

Normals Normals DepressionsRaised bumps

Figure 11.10: Regular bumps and depressions formed by modulating the surface normal
of a solid object. The amplitude and direction of the modulation at a point p is
determined by its distance from a sphere placed at the center of a texture cell. The
figure illustrates how the surface normal behaves in a cross-section through one of the
bumps. Bumps are shown on the left and depressions on the right.

to the texture cell axes, is given by:

∆n′ =
p′ − p′

c

|p′ − p′
c|

If |C− p′| < r then the point of interest lies inside the sphere and the
normal will be pushed in the direction of ∆n′ by an amount that depends on
the proportion of the distance γ, at which p′ lies between the points labeled a
and c in figure 11.11(a). γ is given by:

γ = 1− |p′ − p′
c|

√

r2 − (|C− p′
c|)2

γ = 1 when p is at c and γ = 0 when p is at either a or b.
The form of the rule used to mix ∆n′ with n determines the apparent shape

of the bump, but before it is added to n it must be transformed back to a global

11.2. CPU textures 469

Texture cell
reference frame

Global reference
frame

p

(a)

(c)

(b)

Inside

a c b

∆n
n

n

Inside

b
c

a

n

C
p´

Figure 11.11: A cross-section through a surface intersecting one of the spheres in the
texture cell. (a) Case where the inside of the surface is on the left and (b) when it is
on the right. (c) Shows a plane view and again ∆n is the direction in which n is bent
at p.

frame of reference using:

∆n = ∆n′
uU+∆n′

vV +∆n′
wW

11.2.5 Pimples

The raised bump (or pimple) textures illustrated on the left of figure 11.10 were
produced by adding ∆n with n when γ < 1 according to the equation:

n = αn+ (1− α)∆n

The parameter α is determined as follows for the three cases illustrated in the
figure with the rules:

1. Rounded pimples

α = sin
π

2
γ

470 11. Algorithms for procedural textures

2. Buttons

α =

{

1 : γ < 0.5
1
2 (1− cos 4πγ) : γ ≥ 0.5

3. Studs

α =

{

0.5 : γ < 0.5
1 : γ ≥ 0.5

11.2.6 Dimples

The depression (or dimple) textures illustrated on the right of figure 11.10 were
produced by adding ∆n with n when γ < 1 using:

n = αn− (1− α)∆n

Again α is determined as follows for the three cases:

1. Rounded dimples, the same as for rounded pimples above: α = sin π
2 γ

2. Flat dimples, the same as for buttons above:

α =

{

1 : γ < 0.5
1
2 (1− cos 4πγ) : γ ≥ 0.5

3. Conical pits
α = 0.5

In all cases if γ ≥ 1 no modulation is applied to n.

11.2.7 A hexagonal mesh

Producing an hexagonal ridge pattern such as that illustrated in figure 11.12
is relatively straightforward on a flat two-dimensional plane. To construct an
equivalent pattern that fills three-dimensional space and at the same time sat-
isfies the repetitive requirements of a procedural texture is a bit harder. One
interesting method that leads to the 3D hexagonal honeycomb texture of fig-
ure 11.12 and has potential as a technique for further development (e.g., the
textures of section 11.2.23) arises from the same ideas that produced the dim-
pled texture.

In essence the procedure is: Spheres used to produce the bumps of an HCP
dimple pattern are expanded until they start to overlap. If the overlap is pre-
vented the rounded edges of the dimples flatten out so that hexagons start to
appear. A Z buffer (which only needs one value) may be used to prevent spheres
overlapping. This process is illustrated in figure 11.13.

11.2. CPU textures 471

Figure 11.12: An hexagonal ridge pattern produced by overlapping the HCP texture
spheres.

Overlapping spheres
give a network of

hexagons

Spheres slightly
overlapping

Spheres just
touching

Figure 11.13: A 3D hexagonal mesh produced by growing spheres.

In the case of the unit texture cell illustrated in figure 11.7 spheres of radius
0.25 give maximum space filling, i.e., they just touch. If the radius is increased

to
√
3
2 perfect hexagonal shapes are the result. The algorithm presented in list-

ing 11.4 uses a Z buffer to determine inside which of the texture cell’s 22 spheres
(one sphere equates to one hexagon) any point p lies.

To produce the ridges along the edges of the hexagonal cells we need to
determine whether a point lies within a small distance from the edge of the cell,
i.e., inside the ridge. We can do this by considering the value in the Z buffer.
When p lies near the edges of the hexagon its Z buffer value (call it Zp) will be
of similar magnitude to the values in the Z buffers of adjacent spheres. Thus if
the difference in value for two adjacent spheres is within some small tolerance
then p is said to be on the ridge between hexagons.

To bend the normal on the beveled sides of the hexagon the change in normal
direction is approximated with a vector ∆n derived in a manner analogous to

472 11. Algorithms for procedural textures

Set the depth buffer Z = 0

Given point of intersection p check each of the 22 spheres (i),
to see if it lies inside. i.e. is (δi = |p− ci|) < r?
If it does and δi > Z then {
Set Z = δi and record the identity of sphere i : id = i
(after all the sphere have been checked this reveals which
sphere has its center closest to p)

}

Set another depth buffer Zb = 0

To determine how close to the edge of the hexagon p is work through
all spheres (i) again.
i f (i 6= id) {
i f (δi > 0 and (r − δi) > Zb) {
Set Zb = (r − δi)

}
}
i f (|Zb − Z| < a1) {

p lies on the hexagonal ridge.
}

else i f (|Zb − Z| < a2) {
p lies on beveled side.

}
else {

p lies in the hexagonal depression.
}

Listing 11.4: Algorithm to generate the basic elements of an hexagonal mesh pattern.
a1 and a2 are parameters that determine the width of the ridges and their sloping sides.

that used for the regular dimples. Strictly speaking this will not exhibit a crease
at the point where two edges of the hexagon meet but this will hardly be noticed.
The ridges in figure 11.13 do not have such a crease.

11.2.8 Textures derived from the noise functions

Apart from the basic bozo texture (section 4.5.2) and those simply derived from
it by color blending and added turbulence (e.g., wood, marble etc.) a number of
interesting patterns can be produced by passing the output from Perlin’s noise
generators through a number of functions.

11.2. CPU textures 473

Figure 11.14: A contour pattern which with some added turbulence and appropriate
blend of color could resemble a three-dimensional wood grain pattern.

11.2.9 Contours

The contour pattern illustrated in figure 11.14 is derived from the basic bozo
texture by passing it through a periodic function, in this case a sinusoid, and
then thresholding the result as follows:

Given the point of interest as a (u, v, w) coordinate.

nu,v,w = 1

2
(1 + sin(2πfq fNoise(u, v, w))

i f (nu,v,w > (1.0− t)) {
return the color of the contour

}
else return the background

The parameter t governs how thick the contours appear and fq is a measure
that can be most accurately described as a sort of frequency of the contours.
Values of about 0.1 for t and 20 for fq usually give good results, as illustrated in
figure 11.14.

11.2.10 Plasma

The texture illustrated in figure 11.15 resembles the appearance of a brightly
colored plasma field. It is produced by adding differently scaled noises and pass-
ing the result through a sinusoidal function to generate red, green and blue color
components with different frequencies and phases. If the phases and frequencies
are the same for each color a monochrome pattern will be observed.

Red, green and blue (r, g, b) values of the plasma at coordinate (u, v, w) are
determined by the algorithm in listing 11.5.

474 11. Algorithms for procedural textures

Figure 11.15: A texture that gives the illusion of a plasma field.

//Given the point of interest as a (u, v, w) coordinate.
//the r, g, b color values are obtained as follows:

n1 = fNoise(u, v, w)
n2 = fNoise(1

2
u, 1

2
v, 1

2
w)

n3 = fNoise(1
4
u, 1

4
v, 1

4
w)

N = n1 + n2 + n3

r = 1

2
(1 + cos(2πfrN + φr))

g = 1

2
(1 + cos(2πfgN + φg))

b = 1

2
(1 + cos(2πfbN + φb))

Listing 11.5: Algorithm to generate a plasma texture.

11.2.11 Underwater (caustics)

The caustic pattern that appears on the bottom and sides of swimming pools and
underwater surfaces can be simulated by another modification of the basic noise
pattern with appropriate color mixing. In the underwater pattern the noise is
passed to a function that folds high values down to lower values and then scales
and mixes the color of the caustic with a background shade. Two parameters
govern the appearance of the caustics: the sharpness (s) controls the rapidity of
color transitions, and the coverage (c) gives an overall increase in the percentage
of the surface area covered by the caustic. The algorithm used to produce the
caustic pattern in figure 11.16 and return an RGB triple on the interval [0, 1] is
given in listing 11.6.

11.2. CPU textures 475

Figure 11.16: A caustic pattern gives the appearance of the patterns of light that play
on underwater surfaces. The features have a sharpness of 0 and a coverage of 0.8.

//Given the point of interest as a (u, v, w) coordinate.

n = fNoise(u, v, w)
//Use a triangular function on the noise value:
i f (n > 0.5)n = 2(1− n)
else n = 2n
//Rescale the noise as follows:
n = 0.3 + 0.9n
//Mix the caustic color with the background:
i f (n > c) {

n =
n− c

1.2− c
n = n(1 + s)
i f (n > 1) n = 1
r = nRc + (1− n)Rb

g = nGc + (1− n)Gb

b = nBc + (1− n)Bb

}

Listing 11.6: Algorithm to generate a caustic texture.

11.2.12 Other worlds

A simple combination of the basic noise and turbulence functions with differential
scaling can give a very good approximation to the appearance of a gas planet,
like Jupiter. It is especially effective when applied to a spherical object such as
that depicted in figure 11.17.

The algorithm in listing 11.7 (where n, β, ff and fs are parameters that affect
visual appearance) outlines the main steps in producing the textured surface of
figure 11.17.

476 11. Algorithms for procedural textures

Figure 11.17: Simulating the appearance of the banding in the atmosphere of a large
gaseous planet by differentially scaling the basic noise function.

//Given the point of interest as a (u, v, w) coordinate.
//Note the differential scaling applied to the w coordinate.

t = fTurbulence(20u, 20v, 10w)
w′ = w + ff t
s = fNoise(u

1000
, v
1000

, βw′)
s′ = s+ n(fNoise(50u, 50v, 25w′)− 0.5)
//Limit s′ to lie in range [0, 1]
s = 0.5 + (s′ − 0.5) ∗ fs
//Finally blend the banding color with the background:
r = sBr + (1− s)Cr

g = sBg + (1− s)Cg

b = sBb + (1− s)Cb

Listing 11.7: Procedure to create the texture illustrated in figure 11.17. If ff > 0
eddies and vortices appear in the atmosphere. If b = 10 then approximately 10 bands
of gas lie in the unit cell. If n > 0 local perturbations in the atmospheric color appear.
As fs → 0 the bands tend to fade. The input point is at coordinate (u, v, w) and the
RGB triple r, g, b is the result of mixing the background color (Br, Bg, Bb) with the
band color (Cr, Cg, Cb).

11.2.13 Clouds

Another simple use of the noise function is to simulate a cloudy sky. Appropriate
color mixing gives the clouds white edges and dark gray centers. Wispy clouds
can be produced by differential scaling and the degree of shearing (a blustery day)
is simulated by adding some turbulence. A point of interest is the way in which
the turbulence is put into effect. Given a (u, v, w) coordinate at which a color is
to be determined the turbulence is added to the position (u+∆u, v+∆v, w+∆w)
before it is passed to the position dependent noise generator. This approach to
modifying a texture, i.e., pre-modulating the position, is a useful one with utility

11.2. CPU textures 477

Figure 11.18: A cloudy day.

for generating other interesting textures. Figure 11.18 illustrates the cloudy
texture.

The algorithm in listing 11.8 outlines the main steps in producing the tex-
tured surface of figure 11.18.

11.2.14 Regular dots perturbed by noise

In the discussion of the cloud texture it was pointed out that perturbing the
position coordinate before passing it to the noise function was a useful way of
producing textures. The following sections look at three textures produced by
perturbing the (u, v, w) coordinate before passing it to an HCP dot or bump
generator.

11.2.15 Leopard

The pattern illustrated in figure 11.19 was generated from a regular cell of HCP
spheres by perturbing the position (u, v, w) with a number of sinusoids prior to
testing for containment within one of the 22 HCP spheres.

The algorithm in listing 11.9 outlines the main steps in producing the tex-
tured surface of figure 11.19.

11.2.16 Reptile

If the regular bump pattern (of section 11.2.4) is changed to an HCP arrange-
ment and the radius of each bump is increased and allowed to overlap, then a
texture resembling a “scaly” skin is the result. Modulating the pattern with a
combination of sinusoids adds to the realistic appearance which can be further
enhanced by color blending near the edges of the bumps as shown in figure 11.20.
The algorithm used to produce the texture is given in listing 11.10.

478 11. Algorithms for procedural textures

//Given the point of interest as a (u, v, w) coordinate.

//Displace the sampling point (u, v, w) by obtaining a turbulence vector ∆p

vTurbulence(∆p, u, v, w,)
u′ = u+ t∆pu
v′ = v + t∆pv
w′ = w + t∆pw
//Sample the noise function at (u′, v′, w′) and blend colors:
n = fNoise(u′, v′, w′)
i f (n < 0.5) //return the background color
else i f (n < 0.6) {

//Blend to white from background: B
f = 10(n− 0.5)
r = r + f(1−Br)
g = g + f(1−Bg)
b = b+ f(1−Bb)

}
else {

//Blend to gray:
f = 1− 5(n− 0.6)
r = fr
g = fg
b = fb

}

Listing 11.8: Procedure to create the texture illustrated in figure 11.18. The parameter
t governs the wispiness of the clouds.

11.2.17 Veins

The regular honeycomb pattern of section 11.2.7 is readily transformed into the
veined pattern of figure 11.21 if the point of interest, (u, v, w), is perturbed by
a noise value before executing the algorithm of listing 11.4. The beveled sides
of the hexagonal ridges are organized so that they form a trough rather than a
ridge.

The changes shown in listing 11.11 transform the regular hexagonal mesh of
figure 11.12 into the veined surface of figure 11.21.

11.2.18 Random dots and crystals

One might think that producing random dots would be one of the easier textures
to create. After all one is just laying out a few spheres randomly in space
and then determining whether a point p or (u, v, w) lies inside one of them.
Unfortunately however because the texture must extend throughout an infinite
volume we would need to make an infinite number of tests to see whether p lies
inside one of the random dots or not. Clearly this is not a practical proposition
and another method will have to be found.

11.2. CPU textures 479

Figure 11.19: An animal skin pattern.

//Given the point of interest as a (u, v, w) coordinate.

//Displace the sampling point (u, v, w)
u′ = u+ 0.11 sin(fmod(3u, 2π))
u′′ = u′ + 0.2 sin(fmod(0.1v, 2π))
v′ = v + 0.15 cos(fmod(4u′′, 2π))
v′′ = v′ + 0.2 sin(fmod(0.1w, 2π))
w′ = w + 0.15 cos(fmod(5v′′, 2π))
w′′ = w′ + 0.2 sin(fmod(0.1u′′, 2π))

//Check each of the 22 spheres of radius 0.25 in the HCP texture cell,
//if (u′′, v′′, w′′) lies inside sphere i at a distance r from its center then mix
//from the background color to the texture’s color.

Listing 11.9: Procedure to create the texture illustrated in figure 11.19. The fmod(a, b)

function returns the remainder of
a

b
.

Again one might think that considering the texture as a repetition of the
unit cell would help because then we could confine our tests to a finite number
of randomly placed dots inside the cell. Unfortunately there are two problems
here. First, dots placed near the edge of the cell will overlap adjacent cells and
unless we organize things so that the arrangement of dots within the cell allows
it to tile seamlessly then a disjoint pattern will be visible. This is analogous to
what happens when the adjacent strips of patterned wallpaper are not lined up
correctly. Second, even when a wallpaper tiling is correctly set or if the dots are
kept away from the edges of the cell then the pattern will not appear random
and areas near the edges of the unit cells will stand out visually. Thus, to create
a random array of dots an approach is needed that can be used on a texture cell

480 11. Algorithms for procedural textures

Figure 11.20: A perturbed regular array of overlapping HCP bumps can resemble a
scaly skin.

//Given the sampling point as the (u, v, w) coordinate.

//Displace the sampling point: (u, v, w)
u′ = u+ 0.16 sin(fmod(2w, 2π))
v′ = v + 0.16 cos(fmod(3u, 2π))
w′ = v + 0.16 cos(fmod(4v, 2π))

//Check each of the 22 spheres of radius 0.5 in the HCP texture cell stopping
//when (u′, v′, w′) lies inside one of them, say at a distance r from its center.
//Bend the surface normal in proportion to r.

I f (r > 0.15) //blend from the background color to the texture color.

Listing 11.10: Procedure to create the scaly texture illustrated in figure 11.20.

basis whilst still allowing the random placement of dots, at least to the tolerance
of a visual inspection.

Consider a single dot of radius r ≤ 0.5 placed randomly in a unit cell, say
as that shown in figure 11.22. Unless it is placed dead center it will overlap
into adjacent cells. However at most it will only intrude into the immediate
neighbors. Therefore if we construct a random dot texture by placing one sphere
somewhere in every unit cell when the time comes to check whether a point at
(u, v, w) lies inside the sphere (which forms the dot) only the spheres from the
cell in which (u, v, w) lies and its 26 immediate neighbors need be considered.
Since one dot is put somewhere in each texture cell the pattern will be quite
pleasing to the eye because there will be no large gaps between dots nor will the
dots tend to cluster. Each dot in the texture cell is readily drawn with different
colors or radii to add to the effect.

11.2. CPU textures 481

Figure 11.21: This veined texture could be used to represent leaded glass when the
surface is partially transparent.

//Given the point of interest is the coordinate (u, v, w).

//Get the random vector d from the noise function: vNoise(d, u, v, w)
//Disturb the input point:
u = u+ 0.7du
v = v + 0.7dv
w = w + 0.7dw
//Proceed with the honeycomb pattern.
//Note: d = (du, dv, dw) is a vector in the texture cell’s frame of reference.

Listing 11.11: Procedure to create a veined texture.

There are two apparent difficulties in implementing the algorithm suggested
in the previous paragraph. These are:

1. The first is that the random placement of dots must be done in a repro-
ducible manner. To put it another way: If points (u, v, w) and (u′, v′, w′)
both lie in cell i, j, k the set of spheres used throughout the algorithm
(which will basically be the same as that discussed in section 11.2.14) must
be consistent. We must also remember that in practice points will not be
passed to a texture generating function in any particular order (this was
one of the criteria under which Perlin’s noise function was developed).

2. Our second difficulty is that in considering points lying in texture cell i, j, k
we must consider the effect of cells i− 1, j, k etc., and therefore we need to
be able to reproduce the random placements of the dots in these cells as
well.

482 11. Algorithms for procedural textures

i – 1.j i, j i + 1, j

Figure 11.22: A random dot in texture cell i, j will overlap into at most cell i, j’s
nearest neighbors. (In this two-dimensional example the dot in cell i, j could lie in at
most 9 cells.)

The solution to both of these problems is straightforward in practice because
the numbers that emerge from a pseudo random number generator are a repro-
ducible sequence based on some seed value. Therefore if a seed is derived from
the identity (the i, j, k) of the cell under test the random position of the sphere
within it may be reproduced exactly. Two alternative ways to generate such a
seed are:

1. Use fNoise(i, j, k).

2. Use i, j, k and a hashing function to generate a pointer to an entry in a
table of random numbers.

The first way is easier to implement but the second is faster and can be used in
cases where we need more than one dot per unit cell.

11.2.19 Random dots

The random dots illustrated in figure 11.23 are the results of the implementation
of the method described above with an index into a table of 2000 random vectors
obtained by the hashing functions:

#define IMOD(z , a) ((z) − ((z)/ (a))∗ (a))
#define PATTERN(x , y , z) (((z)+16384L)∗64536L + \

((y)+16384L)∗32768L + \
((x)+16384L))

index=IMOD(PATTERN(i , j , k) , 1 9 9 9) ;

Once selected a random vector is used to place each sphere at some point in
the texture cell. Random vectors from the same table are also used to vary the
color and radius of the dot. Blending dot and background color near the dot
edge helps to alleviate aliasing artifacts.

11.2. CPU textures 483

Figure 11.23: Variably sized random colored dots.

Figure 11.24: Random colored crystals. (Basically a random dot texture but with a
dot radius that exceeds the size of the unit cell.)

11.2.20 Crystals

By allowing the dot radius to increase until adjacent dots overlap and then
bringing into effect a Z buffer as used in section 11.2.7 the dots will appear to
lock together into a matrix of colored crystals. Figure 11.24 illustrates a basic
one sphere per unit cell texture after crystallization with the color of each dot
chosen at random.

11.2.21 Blisters

Blisters are another example of the extension of the random dots texture. In this
case the surface normal inside the dots is perturbed in much the same way as was
done for the case of the regular bumps. Blisters are flatter than bumps but this

484 11. Algorithms for procedural textures

Figure 11.25: Random blisters: Raised random dots.

Figure 11.26: Peas: Rounded high density blisters.

is readily produced by using a slightly different mix of normal and perturbing
vectors. Points that lie near the center of the dots can be colored differently for
added effect.

11.2.22 Peas

The pea texture is yet again another version of the blisters texture. A greater
density of random bumps is produced by placing 3 spheres in each unit cell. No
flattening of the bumps is used, but by changing the sphere radius, the surface
can be covered to a lesser or greater extent; see figure 11.26.

11.2.23 Sharply edged features

These textures are constructed by a combination of the ideas already derived
and include the honeycomb and paving stones.

11.2. CPU textures 485

Figure 11.27: Honeycomb: a hexagonal mesh.

Figure 11.28: Paving stones and chipped fragments.

Honeycombs The honeycomb cube shown in figure 11.27 uses the steps from the
hexagonal mesh algorithm (section 11.2.7), but without applying an inner limit
to the extent of the beveled edge.

Paving stones The paving stone and fractured texture (figure 11.28) are derived
from the crystal texture (section 11.2.20). By simply beveling the edges of the
crystals the cracks between the paving stones appear. Points near the crystal
edges are identified using the same calculation that identified whether points
were on the ridges of a regular hexagonal mesh. In the case of the cracked
texture very wide ridges were used.

A neat trick is to make the interior of the paving stones look dirty or weath-
ered by mixing in a dark color modulated by fNoise(u, v, w). Additionally, if
each stone is given a slight color variation (a toned down multi-colored crystal)
the whole surface looks more natural.

486 11. Algorithms for procedural textures

Figure 11.29: Some examples of basic undulating textures.

11.2.24 Rough surfaces

Rough surfaces fall into two categories:

1. Those with smooth changes to the direction of the surface normal, which
are derived from combinations of vector noises.

2. Those with sharp changes to the surface normal direction vector. Often
some smooth undulations are mixed with the more pronounced sharp fea-
tures.

A basic rough surface is a straightforward mix of surface normal n and output
from vNoise(∆n, u, v, w). Many different appearances are achieved by:

1. Scaling: calculate ∆n from vNoise(∆n, su, sv, sw) after scaling the input
coordinate (u, v, w) by s.

2. Amplification: vary the bumpiness through the parameter α and perturb
n by:

n = n+ α∆n

The bumpy cubes shown in figure 11.29 represent examples of different s and
α values.

An almost infinite variety of other continuous rough and bumpy surfaces can
be achieved by adding vNoise() and vTurbulence() vectors in different propor-
tions and at different scales. Experimentation is very often the best way of
finding pleasing effects.

The remaining three rough textures discussed next are primarily based on the
algorithm for the Pea (section 11.2.22), which is a discontinuous bumpy surface.
Each adds a new component to ∆n either a vNoise() or a scaled version of the
Pea itself with minor features superimposed on it.

11.2. CPU textures 487

Figure 11.30: Crusted surfaces.

11.2.25 Crusts

The crusted texture shown in figure 11.30 is the result of the following modifi-
cations to the Pea texture algorithm:

1. Add a vector noise displacement to (u, v, w) before applying the Pea algo-
rithm.

2. The radius of the peas are chosen from a random distribution in the range
[0.6− 1.8] (relative to the size of the unit texture cell).

3. A power law, (a′ = a2), is applied to the fraction of ∆n mixed with n by:

n = a′n+ (1− a′)∆n

4. A continuous noise at a magnified scale is added to the final result. This
adds a little fine detail to the gnarled look of the crusted texture.

The overall appearance will change depending on the resolution at which the
texture is rendered as is evident from the examples illustrated in figure 11.30.

11.2.26 Crumpled

A crumpled surface that can resemble used aluminum foil is an example of an
angular texture and is produced by adding inverted Pea textures at smaller
and smaller scales and with different amplitudes. Usually there is no need to
go beyond about three overlapping textures. The illustration in figure 11.31
was produced by perturbing (u, v, w) prior to computing the second and third
components. Each component is calculated at a scale which is twice as small as
the previous one and added in the proportions: 1.0, 0.8 and 0.95.

488 11. Algorithms for procedural textures

Figure 11.31: Scaly skin surface showing ridge features at decreasing scales.

11.2.27 Faceted

Crumpled surfaces exhibit features of a combination of basic rough surfaces
with decreasing amplitudes and reducing scales. A faceted texture uses the
same idea of summing effects at decreasing scales but without changing the
amplitudes. Flat surfaces (which give the texture the appearance of some sort
of naturally occurring mineral) are produced by quantizing ∆n using integer
arithmetic before mixing it with the surface normal.

The Pea texture (11.2.22) forms the basis for this texture. This time the
hemispherical peas are inverted so that they appear to be pushed into the sur-
face. The normal vector is quantized as shown in the following C/C++ code
fragment. This example gives approximately 16 flat quadrilaterals per hemi-
spherical depression:

dn //is the vector that bends the surface normal.
Normalize (dn) ;
dn [0]=0 . 5∗ (double) ((int) (dn [0] ∗ 2 . 0)) ; //Quantize the 3 components
dn [1]=0 . 5∗ (double) ((int) (dn [1] ∗ 2 . 0)) ; //components of ”dn” using
dn [2]=0 . 5∗ (double) ((int) (dn [2] ∗ 2 . 0)) ; //integer arithmetic.
Normalize (dn) ;

Faceted rectangular surfaces are illustrated in figure 11.32. The sample on the
right depicts an alternative version in which three unquantized faceted textures
are mixed by offsetting their position and only making a slight change of scale.
The following code fragment documents the offset and scale change made during
each of the 3 steps in the original version:

//offset the (u,v,w) coordinate and scale
//it before adding the next ’inverted Peas’
u += 20 . 0 ; v += 21 . 0 ; w += 22 . 0 ;
u ∗= 1 . 2 ; v ∗= 1 . 2 ; w ∗=1.2;

11.2. CPU textures 489

Figure 11.32: Two example of a faceted surface with angular and rounded features.

Canyons RidgesPlateau

Figure 11.33: Stucco surfaces.

11.2.28 Stucco surfaces

Stucco textures are very useful in situations where rich surface detail is desirable
but without it becoming the center of attention. All the stucco textures involve
bending the surface normal to form ridges, troughs or raised plateau-like features.
Figure 11.33 illustrates three typical variations. The curved edges of the features
may themselves twist gently, tightly or be very ragged indeed.

Stucco surfaces are simulated by thresholding the noise function:

n = fNoise(u, v, w)

For example: In the plateau effect, illustrated in figure 11.33, points on the
surface where n > 0.5 are on the plateau and points where 0.55 < n < 0.6 are
on the slope. The ridge effect requires points satisfying 0.4 < n < 0.45 to be on
the up slope and points where 0.55 < n < 0.6 to be on the down slope.

Determining the direction in which to bend the normal on the slopes requires
the calculation of the gradient of fNoise() at the point (u, v, w), i.e., ∆n =
−∇fu,v,w or:

∆n = −
(

∂f

∂u
û+

∂f

∂v
v̂ +

∂f

∂w
ŵ

)

490 11. Algorithms for procedural textures

Figure 11.34: Leather: (a) A derivative of Stucco textures and (b) Truncated Peas.

In practical terms this means using finite differences to determine the partial
differentials. Thus the change in surface normal ∆n = (∆nu,∆nv,∆nw) is
given by:

∆nu = − (fNoise(u+ δ, v, w)− fNoise(u− δ, v, w))

∆nv = − (fNoise(u, v + δ, w)− fNoise(u, v − δ, w))

∆nw = − (fNoise(u, v, w + δ)− fNoise(u, v, w − δ))

δ is a small increment in the coordinates of magnitude about 0.01. This value
is chosen because the texture cell is of unit size and we are only interested in
features whose sizes are of the order of about 0.05 units on this scale.

The steepness of the slopes of the features are governed by a parameter α
which scales ∆n before adding it to n:

n = n+ α∆n

Applying a turbulent perturbation to (u, v, w) before proceeding with the stucco
algorithm will give very ragged and irregular boundaries and mixing the stucco
surface with other bumpy textures also makes interesting surfaces.

11.2.29 Leather and cauliflower

In this section we will look at a couple of interesting combination textures.
Leather is a natural material in common use and it would be nice to have a
computer-generated texture that approximates to it. There is no one correct
leather pattern so we will look at two variations. The first is produced by mixing
stucco textures and the second is yet another variant of the ubiquitous Pea. In
some circumstances the cauliflower pattern, so called because it resembles the
florets of that vegetable, could even be used as a leather texture. The leather
textures are illustrated in figure 11.34 and the cauliflower in figure 11.35.

The stucco leather is composed with the sum of 4 stucco (canyon) tex-
tures (using thresholds of 0.48, 0.54, 0.60 and 0.66) preprocessed by perturbing
(u, v, w) with a little turbulence, viz.:

11.2. CPU textures 491

Figure 11.35: A Cauliflower.

vTurbulence (D, u , v , w) ;
u += D[0] ∗ 0 . 4 ;
v += D[1] ∗ 0 . 4 ;
w += D[2] ∗ 0 . 4 ;

As each of the texture layers are added they are scaled and offset by:

u += 30 ; v += 40 ; w += 50 ; // offset
u ∗= 1 . 0 1 ; v ∗= 1 . 0 2 ; w ∗= 1 . 0 3 ; // scale

The only slight complication in this texture compared with a basic stucco
is that special consideration must be given to those points where the canyons
overlap. A canyon within a canyon must not be allowed to develop. One way to
achieve this is by using a flag to indicate if point (u, v, w) is on the floor or side
of a canyon; the floor takes precedence. After all 4 patterns have been processed
the flag is used to select the correct ∆n.

The second potential leather pattern follows the Pea algorithm until the
slope α of the pea at (u, v, w) is determined. Then α is modified as follows:

1. Thresholded: (if α < 0.4 do not bend n).

2. Subjected to a functional transformation α = α0.25.

3. Perturbed by an attenuated standard noise vector vNoise() at 1
5 scale.

For the cauliflower surface the Crumpled algorithm is followed with the fol-
lowing exceptions:

1. The point (u, v, w) (input coordinate) is not perturbed after the addition
to ∆n.

2. The “bumps” are inverted so that they bump out.

3. The amplitude of ∆n is not attenuated during the phase in which the Pea
procedure is repeated 3 times.

4. The feature size is reduced much more rapidly; 4 times on each loop.

492 11. Algorithms for procedural textures

Vertex position, normal and color (input)
layout (l o c a t i o n = 0) in vec3 VertexPos i t i on ;
layout (l o c a t i o n = 1) in vec3 VertexNormal ;
layout (l o c a t i o n = 2) in vec4 VertexColour ;
Vertex position relative to the texture base axes
layout (l o c a t i o n = 3) in vec3 ShaderPos i t ion ;

Material base axes for the texture unit cell
uniform vec3 Uvector ;
uniform vec3 Vvector ;
uniform vec3 Wvector ;

geometric Transformations
uniform mat4 NormalMatrix ;
uniform mat4 ModelViewMatrix ;
uniform mat4 ModelViewProjectionMatrix ;

Variables to pass to fragment shader
out vec3 tnorm ; Vertex normal vector
out vec4 PP; Vertex position
out vec3 texpos ; Texture position
out vec3 Color ; Vertex color
The three texture cell axes
out vec3 uvec ;
out vec3 vvec ;
out vec3 wvec ;

Listing 11.12: The global variables used for input and output to a GLSL vertex shader
for all algorithmic and procedural textures.

11.3 GPU textures

The texture algorithms described in section 11.2 can, for the most part, be
adapted to execute as part of a pair of GPU shader codes. Like the CPU pro-
cedural textures the GPU textures make use of a repeating unit cell, and some
other attributes that are passed to the GPU from the CPU application programs.
In this section, the GPU specific features of an algorithm that has already been
discussed in section 11.2 will be elaborated.

Most of the work in surface texturing which has to be done on a per-pixel
basis takes place in the GPU’s pixel (or fragment) program. The vertex program
has usually to do little more than pass on the texture cell coordinates, vertex
position, and surface normal vector. Listings 11.12 and 11.13 gives a GLSL
vertex shader that is sufficient to work for all the textures in this chapter.

Note: The code that follows from the fragment programs makes use of the
output variables defined in listing 11.12.

11.3. GPU textures 493

void main (void){
Compute the transformed normal
tnorm = NormalMatrix∗VertexNormal ;
Set the built in variable with the vertex position
g l P o s i t i o n = ModelViewProjectionMatrix ∗VertexPos i t i on ;
Copy the vertex position
PP= ModelViewMatrix ∗ VertexPos i t i on ;
Pass the vertex position in the texture cell and
the texture cell edge vectors to fragment program
texpos = ShaderPos i t ion ;
vvec = normal ize (NormalMatrix ∗ Vvector) ;
wvec = normal ize (NormalMatrix ∗ Wvector) ;
uvec = normal ize (NormalMatrix ∗ Uvector) ;
Set color ouptut variable
Color = VertexColor ;

}

Listing 11.13: The code for the GLSL vertex shader that is used for all the algorithmic
and procedural textures.

11.3.1 Regular patterns

Dots and checks and many other regular patterns are easily generated in a few
lines of fragment shader code, for example, a 3D space filling checker texture
that repeats once per unit cell can be coded as:

//Assign interpolated input to a shader variable
vec4 s u r f a c e c o l o u r=g l Co l o r ;
//Offset into cell (from varying variable)
vec3 p=f l o o r (texpos) ;
int id = int (p . x)+ int (p . y)+ int (p . z) ; which octet ?
//Override shader color value
i f (((id /2)∗2) != id) {
s u r f a c e c o l o u r=vec4 (s econd co lo r , 1 . 0) ;

}
//other code and pass on value of s u r f a c e c o l o u r

The FCC dots pattern of section 11.2.2 requires a static array of six vectors
vec3 ppp[6]. During execution each vector is tested against the texture cell
coordinate. When the texture coordinate of the pixel lies within a spherical
volume centered on one of the list of vectors (ppp[]) it is colored according to
the code in listing 11.14.

11.3.2 Regular bumps

Equivalent GPU textures for the bumps, pimples and dimples (section 11.2.4)
require an array of 35 cell relative positions for the center of the bumps, and

494 11. Algorithms for procedural textures

vec3 p = texpos ; p=f r a c t (p) ;
vec4 s u r f a c e c o l o u r=g l Co l o r ;
f loat e= // the edge fraction
for (i =0; i<6 ; i++){ // for each sphere
i f ((a=length (p−ppp [i])) < S i z e){ // built in length function
i f ((S ize−a) > zb){
zb=(Size−a) ;
i f (i == 0 | | i == 2){
s u r f a c e c o l o u r=vec4 (Colour1 , 1 . 0) ; // alternative colors

}
else i f (i == 1 | | i == 3){
s u r f a c e c o l o u r=vec4 (Colour2 , 1 . 0) ; // for the crystal layers

}
else {

s u r f a c e c o l o u r=vec4 (Colour3 , 1 . 0) ;
}
i f (a > e){ // use mix function to blend sphere edges

s u r f a c e c o l o u r=mix (su r f a c e c o l ou r , g l Co lo r ,
(a−e)/ (Size−e)) ;

}
}

}
}

Listing 11.14: Generating a volume dot pattern.

a procedure for bending the surface normal. The perturbation of the normal
vector can follow closely the form of the code in the non-GPU C code whilst
taking advantage of the GLSL’s vector operations and built in functions. A few
key lines in the shader are shown in listing 11.15.

11.3.3 Textures involving noise

Noise-based textures in a GPU require the use of a texture lookup. A 3D texture
can be thought of as a large table of random numbers that will give a reproducible
and periodic random number when looked-up for a 3D texture coordinate. Our
noise texture array contains 64× 64× 64 entries; the OpenFX code in file “glde-
sign noise.c” that can be found in folder “render2” shows how to build a suitable
noise texture for shaders using Perlin’s algorithm.

In the case of the contour texture of section 11.2.9 the noise value from the
3D noise texture lookup at the texture cell coordinate is passed through a cyclic
smoothing function to amplify/attenuate the underlying surface color as given
in listing 11.16.

This texture lookup will naturally repeat for any input coordinate outside the
range [0, 1]. Other textures like clouds and caustics follow this approach closely
in their GPU implementations.

11.3. GPU textures 495

vec3 vnorm = normal ize (tnorm) ; // use built in function
. .
p = texpos ; // texture cell relative position
for (i i =0; i i <35 ; i i ++){// find which sphere is holding the bump
i f (l ength (p−ppp [i i]) < BumpSize)pnn=ppp [i i] ;

}
. .

nw=abs (dot (vnorm , wvec)) ; // get normal vector’s direction
nu=abs (dot (vnorm , uvec)) ; // relative to the texture cell
nv=abs (dot (vnorm , vvec)) ; // axes and assume surface local frame
// Calculate the direction to bend the normal vector
// relative to the cells base axes.
vec2 c=p . xy ;
nDelta = nw∗(c . x∗uvec + c . y∗vvec) ;
c=p . yz ;
nDelta = nDelta + nu∗(c . x∗vvec + c . y∗wvec) ;
c=p . zx ;
nDelta = nDelta + nv∗(c . x∗wvec + c . y∗uvec) ;
// bend the normal vector
vnorm += nDelta∗ s f a c t o r ; // add normal displacement

Listing 11.15: Generating regular bumps in a GPU fragment shader.

f loat s in tab (in f loat value){// periodic smoothing function
return 0 .5∗ (1 .0+ s i n ((value−f l o o r (va lue))

∗3 . 141592657∗2 . 0)) ;
}
. .
vec4 s u r f a c e c o l o u r ;
// look up the 3D texture
vec4 Ns=texture3D (NoiseMap , texpos) ;
f loat noiseH=(Ns [0] ∗ 2 . 0) ; // just use the first value
noiseH = s in tab (noiseH ∗ 1 0 . 0) ;
i f (noiseH > 1.0−Thickness){

s u r f a c e c o l o u r=vec4 (noiseH∗C1 , 1 . 0) ;
}
. .

Listing 11.16: A contour texture shader.

11.3.4 Perturbation of regular textures

The leopard and reptile textures are obtained by perturbing a regular pattern,
such as that set up in section 11.3.1. The GPU implementation can then follow
the logic given in figures 11.9 and 11.10.

496 11. Algorithms for procedural textures

#define PATTERN(x , y , z) (((z)+127 .0)∗511 .0 + \
((x)+127 .0)∗255 .0 + \
((y)+127 .0))

. . .
f loat zb = 4 ; // maximum value of texture Z buffer
vec3 pf = texpos ; // texture position from varying variable
vec p=f r a c t (pf) ; // fractional part
pf=f l o o r (pf) ;
// 27 cell patterns are needed to fill the texture cell
int i i ; for (i i =0; i i <27; i i ++){
// choose a random pattern using hashing functions..
// ppp[] is the centre of pattern cell
f loat pat=PATTERN(ppp [i i] . x+

pf . x , ppp [i i] . y+pf . y , ppp [i i] . z+pf . z) ;
. . .

// NoiseData is a 2D table of random numbers to make different
// crystal sizes using uniform variables ”bradius” and ”lradius”
// that define the user’s choice texture properties
vec3 v c l r i=texture2D (NoiseData , pat) . rgb ;
rad iu s=brad ius+l r a d i u s ∗(v c l r i [1] −0 . 5) ;
p l=ppp [i i]+ v c l r i ; // offset the pattern entry
p l=p−pl ;
i f ((d l=length (p l)) < rad iu s){ // inside the cell
// is this a larger value ?
i f (d l < zb){ // zb is the Z-buffer
z l=zb ;
zb=dl ; // update cell Z buffer
id=f loat (i i) ; // which pattern
c l r=v c l r i ;
pnn=ppp [i i] ; // which pattern cell center

}
}

}

Listing 11.17: A crystal texture.

The crystal-like textures of figure 11.24 are obtained by randomizing the
pattern of cell positions and using a random number from a lookup table to give
a variability to the size of the crystals in the pattern. Listing 11.17 highlights
the main steps in a suitable shader implementation.

By also varying the direction of the surface normal vector throughout the
cell, as was done in section 11.3.2, textures based on the peas of figure 11.26 are
obtained.

Having now written GPU programs for the the crystal and pea textures
then the other texture discussed in section 11.2 (the paving stones, the cracked,

11.4. Fur and short hair 497

Surface
normals

Shells

Figure 11.36: A fur texture. Shells around the surface of the object are displaced along
the surface normal (a part of the shell is shown with exaggerated displacement). The
shell is transparency mapped using a noise texture to give random regions of dense and
light fur.

crusted, crumpled and faceted surfaces, and the cauliflower) may be generated
by extension of the GPU codes for the crystal and pea, as was done for the
CPU code.

In this section only the key feature of the fragment program have been high-
lighted. To gain a full appreciation of the details of the code, and see how to
deploy them in a powerful rendering engine, the GPU programs on the website
(and those of the OpenFX program) should be studied.

11.4 Fur and short hair

The challenge in rendering a texture like animal fur and short stubbly hair arises
because the boundary silhouette of an object cannot be changed by simply alter-
ing the appearance of the faces, or the surface normal vector, and unfortunately
this is the most significant visual cue used by an observer to tell that the surface
is furry. When viewing a furry material back down the local surface normal there
is also a perception of depth with some places on the surface being farther away;
however this is a second-order effect. Despite these difficulties, and provided
that the fur or hair does not have any dynamic properties, a very reasonable ap-
proximation to a furry texture can be created using the a combination of surface

498 11. Algorithms for procedural textures

displacement and transparency mapping. An example of a furry texture can be
seen in figure 11.36 where the edge silhouette has become streaked and blurred
and the normal view gives a depth perception that is only really discernible in a
stereoscopic rendering.

The combination of surface displacement and transparency mapping is gen-
erally referred to as the Shells algorithm because the idea is to build a series of
surface layers, shells, around the object by moving the vertices a small distance
along the direction of the normal vector at each vertex. Typically 10 to 20 shells
may be needed and each one is transparency mapped with a noise texture that
alters the alpha across the displaced surface polygons. As the additional surface
attenuations build up, the fur takes on the appearance of growing out of the orig-
inal surface with a random orientation. Since the vertices are being moved for
each shell, the object’s silhouette loses its uniform appearance and looks blurry.
The realism of fur generated in this way could be improved by adding a few
polygons extending in the normal direction from the object’s surface and image
mapped with side views of the fur.

Bibliography

[1] T. Akenine-Mōller and E. Haines. Real-Time Rendering. Natick MA: A. K. Peters,
1999.

[2] V. B. Anand. Computer Graphics and Geometric Modeling for Engineers. New
York NY: John Wiley and Sons, 1993.

[3] E. Angel. Computer Graphics. Reading MA: Addison Wesley, 1990.

[4] A. A. Apodaca and L. Gritz. Advanced Renderman: Creating CGI for Motion
Pictures. San Francisco CA: Morgan Kaufmann, 1999.

[5] Ian Ashdown. Radiosity: A Programmer’s Perspective. New York NY: John Wiley
and Sons, 1994.

[6] J. Avro (Ed.). Graphics Gems II. Cambridge MA: Academic Press, 1991.

[7] F. Ayres. Theory and Problems of Matrices (Schaum’s Outline Series). New York
NY: McGraw-Hill, 1975.

[8] R. H. Bartles, J. C. Beatty, and B. A. Barsky. Introduction to Splines for Use in
Computer Graphics and Geometric Modeling. Los Altos CA: Morgan Kaufmann,
1987.

[9] J. Bertails. “Realistic Hair Simulation, Animation and Rendering.” In SIGGRAPH
Course Notes, SIGGRAPH Course Notes. Los Angeles CA: SIGGRAPH, 2008.

[10] J. Blinn and M. E. Newell. “Texture and reflection in computer generated images.”
Communications of the ACM 19:10.

[11] J. Blinn. “Simulation of wrinkled surfaces.” Computer Graphics 12.

[12] J. Blinn. Jim Blinn’s Corner: A Trip Down the Graphics Pipeline. San Francisco
CA: Morgan Kaufmann, 1996.

[13] T. Boullion and P. Odell. Generalized Inverse Matrices. New York NY: John
Wiley and Sons, 1971.

[14] J. E. Bresenham. “Algorithm for computer control of a digital plotter.” IBM Syst
J. 4:1 (1965), 25 – 30.

[15] P. Burger and D. Gillies. Interactive Computer Graphics. Reading MA: Addison
Wesley, 1989.

[16] A. K. Cline and R. L. Renka. “A storage efficient method for construction of a
Thiessen triangulation.” Journal of Mathematics 14.

499

500 Bibliography

[17] R. H. Crowell and R. E. Williamson. Calculus of Vector Functions. Englewood
Cliffs NJ: Prentice Hall, 1962.

[18] L. Darcey. Android Wireless Application Development. Upper Saddle River, NJ:
Addison-Wesley, 2010.

[19] M. De Berg. Computational Geometry: Algorithms and Applications. Germany:
Springer Verlag, 2000.

[20] M. DeLoura (Ed.). Game Programming Gems. Rockland MA: Charles River
Media, 2000.

[21] D. H. Eberly. 3D Game Engine Design. San Francisco CA: Morgan Kaufmann,
2000.

[22] D.S. Ebert and S. Worley. Texturing and Modeling a Procedural Approach. Cam-
bridge MA: Academic Press, 1994.

[23] D. Ebert, F. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing and
Modeling a Procedural Approach. Cambridge MA: Academic Press, 1994.

[24] W. Engel (Ed.). Shader X3: Advanced Rendering Techniques with DirectX and
OpenGL. Hingham MA: Charles River Media, 2005.

[25] W. Engel (Ed.). Shader X4: Advanced Rendering Techniques. Hingham MA:
Charles River Media, 2006.

[26] W. Engel (Ed.). Shader X5: Advanced Rendering Techniques. Boston MA: Charles
River Media, 2007.

[27] W. Engel (Ed.). GPU Pro. Natick MA: A. K. Peters, 2010.

[28] W. Engel. Programming Vertex and Pixel Shaders. Boston MA: Charles Rivers
Media, 2004.

[29] G. Farin, D. Hansford, and G. E. Farin. The Essentials of CAGD. Natick MA: A.
K. Peters, 2000.

[30] R. Fernando (Ed.). GPU Gems. Boston MA: Addison Wesley, 2004.

[31] A. Foley, S. Van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles
and Practice, Second Edition. Reading MA: Addison-Wesley,, 1990.

[32] C. F. Gerald. Applied Numerical Analysis. Reading MA: Addison Wesley, 1978.

[33] A. S. Glassner (Ed.). An Introduction to Ray Tracing. London U.K.: Academic
Press, 1989.

[34] A. Glassner (Ed.). Graphics Gems. Cambridge MA: Academic Press, 1990.

[35] N. Greene. “Environment mapping and other applications of world projections.”
IEEE Computer Graphics and Applications 6:11.

[36] J. Gregory. Game Engine Architecture. Natick MA: A. K. Peters, 2009.

[37] W. R. Hamilton. “On quaternions: Or on a new system of imaginaries in algebra.”
Philosophical Magazine 25 (1844), 10–14.

[38] A. Hanson. Visualizing Quaternions. San Francisco CA: Morgan Kaufmann, 2006.

[39] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge U.K.: Cambridge University Press, 2011.

Bibliography 501

[40] J. Hartman and J. Wernecke. The VRML 2.0 Handbook: Building Moving Worlds
on the Web. Reading MA: Addison Wesley, 1996.

[41] P. Heckbert (Ed.). Graphics Gems IV. Cambridge MA: Academic Press, 1994.

[42] A. Hillegass and A. Preble. Cocoa Programming for Mac OS X. Upper Saddle
River NJ: Pearson Education, Inc., 2012.

[43] D. H. House and D. E. Breen (Ed.). Cloth Modeling and Animation. Natick, MA:
A. K. Peters, 2000.

[44] Adobe Systems Inc. Postscript Language Reference Manual. Reading MA: Addison
Wesley, 1990.

[45] T. L. Janssen. “A simple efficient hidden line algorithm.” Computers and Struc-
tures 17:4 (1983), 563 – 571.

[46] H. W. Jensen. Realistic Image Synthesis Using Photon Mapping. Natick, MA: A.
K. Peters, 2001.

[47] F. June. An Introduction to Video Compression in C/C++. On Demand Publish-
ing LLC: Create Space, 2010.

[48] J. T. Kajiya and T. L. Kay. “Rendering fur with three-dimensional textures.”
Computer Graphics 23:3.

[49] J. H. Kindle. Plane and Solid Geometry (Schaum’s Outline Series). New York
NY: McGraw-Hill, 1950.

[50] D. Kirk (Ed.). Graphics Gems III. Cambridge MA: Academic Press, 1992.

[51] R. P. Kuehne and J. D. Sullivan. OpenGL Programming on Mac OS X. Upper
Saddle River NJ: Addision Wesley, 2008.

[52] D. H. Laidlaw, W. B. Trumbore, and J. F. Hughes. “Constructive solid geometry
for polyhedral objects.” Computer Graphics 20:4.

[53] S. St Laurent. Shaders for Game Programmers and Artists. Boston MA: Thompson
Course Technology, 2004.

[54] E. Lengyel. Mathematics for 3D Game Programming and Computer Graphics.
Boston MA: Course Technology (Cengage), 2012.

[55] S. Liang. The Java Native Interface: Programmer’s Guide and Specification. Palo
Alto CA: Sun Microsystems Inc., 1999.

[56] C. Lindley. Practical Ray Tracing in C. New York NY: John Wiley and Sons,
1993.

[57] S. Lipschutz. Linear Algebra (Schaum’s Outline Series). New York NY: McGraw-
Hill, 1975.

[58] T. R. McCalla. Introduction to Numerical Methods and FORTRAN Programming.
New York NY: John Wiley and Sons, 1967.

[59] K. McMenemy and S. Ferguson. A Hitchhiker’s Guide to Virtual Reality. Wellesley
MA: A. K. Peters, 2007.

[60] Moller and Trumbore. “Journal of Graphics Tools.” www.acm.org/jgt, 1990.

[61] M. E. Mortenson. Mathematics for Computer Graphics Applications: An Intro-
duction to the Mathematics and Geometry of CAD/CAM, Geometric Modeling,
Scientific Visualization. New York NY: Industrial Press Inc., 1999.

502 Bibliography

[62] M. E. Mortenson. Geometric Modelling. New York NY: Industrial Press Inc.,
2006.

[63] A. Munshi, D. Ginsburg, and D. Shreiner. OpenGL ES 2.0. Upper Saddle River
NJ: Addision Wesley, 2009.

[64] H. Nguyen (Ed.). GPU Gems 3. Upper Saddle River NJ: Addison Wesley, 2005.

[65] J. O’Rourke. Computational Geometry in C. Cambridge U.K.: Cambridge Uni-
versity Press, 1993.

[66] A. Paeth (Ed.). Graphics Gems V. Cambridge MA: Academic Press, 1995.

[67] H.-O. Peitgen, H. Jurgens, and D. Saupe. Chaos and Fractals New Frontiers of
Science. New York NY: Springer-Verlag, 2011.

[68] K. Perlin and E. M. Hoffert. “Hypertexture.” Computer Graphics 23.

[69] K. Perlin. “An image synthesizer.” ACM SIGGRAPH Computer Graphics 19:3
(1985), 287 – 296.

[70] M. Pharr and G. Humphreys. Physically Based Rendering from Theory to Imple-
mentation. Burlington MA: Morgan Kaufmann, 2010.

[71] M. Pharr (Ed.). GPU Gems 2. Upper Saddle River NJ: Addison Wesley, 2005.

[72] B. T. Phong. “Illumination for computer generated pictures.” CACM 18:6.

[73] Majenta PLM. “Solid Edge.” www.majentaplm.com/solidedge/, 2012.

[74] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipies in C++. Cambridge U.K.: Cambridge University Press, 2002.

[75] J. Prosise. Programming Windows with MFC. Redmond WA: Microsoft Press,
1999.

[76] D. F. Rogers and J. A. Adams. Mathematical Elements for Computer Graphics.
New York NY: McGraw-Hill, 1990.

[77] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit and Object-
Orientated Approach to 3D Graphics. New Jersey: Prentice Hall PTR, 1996.

[78] G. Sellers, R. S. Wright Jr., and N. Haemel. OpenGL SuperBible, sixth edition.
Upper Saddle River NJ: Addison Wesley, 2013.

[79] A. Sherrod and W. Jones. Beginning DirectX 11 Game Programming. Boston
MA: Course Technology (Cengage), 2012.

[80] P. Shirley. Realistic Ray Tracing. Natick MA: A. K. Peters, 2000.

[81] K. Shoemake. “Animating rotation with quaternion curves.” In Proceedings of
SIGGRAPH-85, pp. 245–254. ACM, 1985.

[82] D. Shreiner, G. Sellers, J. Kessenich, and B. Licea-Kane. OpenGL Programming
Guide: The Official Guide to Learning OpenGL Version 4.3 eighth edition. Upper
Saddle River NJ: Addision Wesley, 2013.

[83] S. W. Sloan. “A fast algorithm for constructing Delaunay triangulations in the
plane.” Advances in Engineering Software 1.

[84] G. Turk. “Generating textures on arbitrary surfaces using reaction-diffusion.”
Computer Graphics 25:4.

Bibliography 503

[85] L. Vertlet. “Computer experiments on classical fluids.” Physics Review 159:6
(1967), 98–103.

[86] A. Watt and M. Watt. Advanced Animation and Rendering Techniques: Theory
and Practice. Reading MA: Addison Wesley, 1992.

[87] A. Watt and M. Watt. 3D Computer Graphics. London U.K.: Longman Higher
Education, 1999.

[88] A. Watt. Fundamentals of Three-Dimensional Computer Graphics. Reading MA:
Addison Wesley, 1989.

[89] A. Watt. 3D Computer Graphics. London U.K.: Longman Higher Education,
1999.

[90] C. Welman. “Inverse Kinematics and Geometric Constraints for Articulated Figure
Manipulation.” MSc Thesis, Simon Frazer University.

[91] A. Witkin and M. Kass. “Reaction-diffusion textures.” Computer Graphics 25:4.

[92] D. Wolff. OpenGL 4.0 Shading Language Cookbook. Birmingham U.K.: PACKT
Publishing, 2011.

	Front Cover
	Contents
	Preface
	Part I: Basic principles
	1. Introduction
	2. Basic theory and mathematical results
	3. Data structures for 3D graphics
	4. Basic visualization
	5. Realistic visualization
	6. Computer animation

	Part II: Practical 3D graphics
	7. Real-time 3D: OpenGL
	8. Mobile 3D: OpenGLES
	9. The complete package: OpenFX

	Part III: Practical algorithms for modeling and procedural textures
	10. Modeling with polygonal datasets
	11. Algorithms for procedural textures

	Bibliography

