


Petascale comPuting
algorithms and aPPlications

C9098_FM.indd   1 11/15/07   1:38:55 PM



Chapman & Hall/CRC 
Computational Science Series

PETASCALE COMPUTING: Algorithms and Applications
Edited by David A. Bader

PuBliSHED TiTlES

SERiES EDiToR

Horst Simon
Associate Laboratory Director, Computing Sciences

Lawrence Berkeley National Laboratory

Berkeley, California, U.S.A.

AiMS AND SCoPE

This series aims to capture new developments and applications in the field of computational sci-
ence through the publication of a broad range of textbooks, reference works, and handbooks. 
Books in this series will provide introductory as well as advanced material on mathematical, sta-
tistical, and computational methods and techniques, and will present researchers with the latest 
theories and experimentation. The scope of the series includes, but is not limited to, titles in the 
areas of scientific computing, parallel and distributed computing, high performance computing, 
grid computing, cluster computing, heterogeneous computing, quantum computing, and their 
applications in scientific disciplines such as astrophysics, aeronautics, biology, chemistry, climate 
modeling, combustion, cosmology, earthquake prediction, imaging, materials, neuroscience, oil 
exploration, and weather forecasting. 

C9098_FM.indd   2 11/15/07   1:38:55 PM



Petascale comPuting
algorithms and aPPlications

EditEd by

daVid a. Bader
Georgia institute of technology

Atlanta, U.S.A.

C9098_FM.indd   3 11/15/07   1:38:56 PM



Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487‑2742

© 2008 by Taylor & Francis Group, LLC 
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid‑free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number‑13: 978‑1‑58488‑909‑0 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted 
material is quoted with permission, and sources are indicated. A wide variety of references are 
listed. Reasonable efforts have been made to publish reliable data and information, but the author 
and the publisher cannot assume responsibility for the validity of all materials or for the conse‑
quences of their use. 

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information 
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 
222 Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. CCC is a not‑for‑profit organization that 
provides licenses and registration for a variety of users. For organizations that have been granted a 
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and 
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Petascale computing : algorithms and applications / editor, David A. Bader.
p. cm. ‑‑ (Computational science series)

Includes bibliographical references and index.
ISBN 978‑1‑58488‑909‑0 (hardback : alk. paper) 1. High performance 
computing. 2. Petaflops computers. 3. Parallel processing (Electronic 
computers) I. Bader, David A. II. Title. III. Series.

QA76.88.P475 2007
004’.35‑‑dc22 2007044024

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

C9098_FM.indd   4 11/15/07   1:38:56 PM



To Sadie Rose

v





Chapman & Hall/CRC
Computational Science Series

Computational science, the scientific investigation of physical processes through
modelling and simulation on computers, has become generally accepted as the
third pillar of science, complementing and extending theory and experimen-
tation. This view was probably first expressed in the mid-1980s. It grew out
of an impressive list of accomplishments in such diverse areas as astrophysics,
aeronautics, chemistry, climate modelling, combustion, cosmology, earthquake
prediction, imaging, materials, neuroscience, oil exploration, and weather fore-
casting. Today, in the middle of the first decade of the 21st century, the pace
of innovation in information technology is accelerating, and consequently the
opportunities for computational science and engineering abound. Computa-
tional science and engineering (CSE) today serves to advance all of science and
engineering, and many areas of research in the future will be only accessible
to those with access to advanced computational technology and platforms.

Progress in research using high performance computing platforms has been
tightly linked to progress in computer hardware on one side and progress
in software and algorithms on the other, with both sides generally acknowl-
edged to contribute equally to the advances made by researchers using these
technologies. With the arrival of highly parallel compute platforms in the mid-
1990s, several subtle changes occurred that changed the face of CSE in the
last decade. Because of the complexities of large-scale hardware systems and
the increasing sophistication of modelling software, including multi-physics
and multiscale simulation, CSE increasingly became a team science. The
most successful practitioners of CSE today are multidisciplinary teams that
include mathematicians and computer scientists. These teams have set up
a software infrastructure, including a support infrastructure, for large codes
that are well maintained and extensible beyond the set of original developers.

The importance of CSE for the future of research accomplishments and
economic growth has been well established. “Computational science is now
indispensable to the solution of complex problems in every sector, from tradi-
tional science and engineering domains to such key areas as national security,
public health, and economic innovation,” is the principal finding of the re-
cent report of the President’s Information Technology Advisory Committee
(PITAC) in the U.S. (President’s Information Technology Advisory Commit-
tee, Computational Science: Ensuring America’s Competitiveness , Arlington,
Virginia: National Coordination Office for Information Technology Research
and Development, 2005, p. 2.)
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As advances in computational science and engineering continue to grow at
a rapid pace, it becomes increasingly important to present the latest research
and applications to professionals working in the field. Therefore I welcomed
the invitation by Chapman & Hall/CRC Press to become series editor and
start this new series of books on computational science and engineering. The
series aims to capture new developments and applications in the field of com-
putational science, through the publication of a broad range of textbooks, ref-
erence works, and handbooks. By integrating mathematical, statistical, and
computational methods and techniques, the titles included in the series are
meant to appeal to students, researchers, and professionals, as well as interdis-
ciplinary researchers and practitioners who are users of computing technology
and practitioners of computational science. The inclusion of concrete exam-
ples and applications is highly encouraged. The scope of the series includes,
but is not limited to, titles in the areas of scientific computing, parallel and
distributed computing, high performance computing, grid computing, cluster
computing, heterogeneous computing, quantum computing, and their appli-
cation in scientific areas such as astrophysics, aeronautics, biology, chemistry,
climate modelling, combustion, cosmology, earthquake prediction, imaging,
materials, neuroscience, oil exploration, and weather forecasting, and others.

With this goal in mind I am very pleased to introduce the first book in
the series, Petascale Computing: Algorithms and Applications, edited by my
good colleague and friend David Bader. This book grew out of a workshop at
Schloss Dagstuhl in February 2006, and is a perfect start for the series. It is
probably the first book on real petascale computing. At the beginning of an
exciting new phase in high performance computing, just as we are about to
enter the age of petascale performance, the chapters in the book will form an
ideal starting point for further investigations. They summarize the state of
knowledge in algorithms and applications in 2007, just before the first peta-
scale systems will become available. In the same way as petascale computing
will open up new and unprecedented opportunities for research in computa-
tional science, I expect this current book to lead the new series to a deeper
understanding and appreciation of research in computational science and en-
gineering.

Berkeley, May 2007

Dr. Horst Simon
Series Editor

Associate Laboratory Director,
Computing Sciences

Lawrence Berkeley National Laboratory



Foreword

Over the last few decades, there have been innumerable science, engineering
and societal breakthroughs enabled by the development of high performance
computing (HPC) applications, algorithms, and architectures. These powerful
tools have provided researchers, educators, and practitioners the ability to
computationally translate and harness data gathered from around the globe
into solutions for some of society’s most challenging questions and problems.

An important force which has continued to drive HPC has been a commu-
nity articulation of “frontier milestones,” i.e., technical goals which symbolize
the next level of progress within the field. In the 1990s, the HPC community
sought to achieve computing at the teraflop (1012 floating point operations
per second) level. Teraflop computing resulted in important new discoveries
such as the design of new drugs to combat HIV and other diseases; simula-
tions at unprecedented accuracy of natural phenomena such as earthquakes
and hurricanes; and greater understanding of systems as large as the universe
and smaller than the cell. Currently, we are about to compute on the first
architectures at the petaflop (1015 floating point operations per second) level.
Some communities are already in the early stages of thinking about what
computing at the exaflop (1018 floating point operations per second) level will
be like.

In driving towards the “<next frontier>-flop,” the assumption is that achiev-
ing the next frontier in HPC architectures will provide immense new capacity
and capability, will directly benefit the most resource-hungry users, and will
provide longer-term benefits to many others. However, large-scale HPC users
know that the ability to use frontier-level systems effectively is at least as
important as their increased capacity and capability, and that considerable
time and human, software, and hardware infrastructure are generally required
to get the most out of these extraordinary systems.

Experience indicates that the development of scalable algorithms, models,
simulations, analyses, libraries, and application components which can take
full advantage of frontier system capacities and capabilities can be as chal-
lenging as building and deploying the frontier system itself.

For application codes to sustain a petaflop in the next few years, hundreds
of thousands of processor cores or more will be needed, regardless of proces-
sor technology. Currently, few real existing HPC codes easily scale to this
regime, and major code development efforts are critical to achieve the poten-
tial of the new petaflop systems. Scaling to a petaflop will involve improving
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physical models, mathematical abstractions, approximations, and other appli-
cation components. Solution algorithms may need to be improved to increase
accuracy of the resulting techniques. Input data sets may need to increase in
resolution (generating more data points), and/or the accuracy of the input
data for measured data may need to increase. Each application or algorithmic
improvement poses substantial challenges in developing petascale codes, and
may motivate new computer science discoveries apart from the new “domain”
results of application execution.

This book presents efforts of the individuals who will likely be the first pio-
neers in petascale computing. Aggregating state-of-the-art efforts from some
of the most mature and experienced applications teams in high performance
computing and computational science, the authors herein are addressing the
challenging problems of developing application codes that can take advan-
tage of the architectural features of the new petascale systems in advance
of their first deployment. Their efforts in petascale application development
will require intimate knowledge of emerging petascale hardware and systems
software, and considerable time to scale, test, evaluate and optimize petascale
codes, libraries, algorithms, system software, all on new systems that have yet
to be built.

This is an exciting period for HPC and a period which promises unprece-
dented discoveries “at scale” which can provide tangible benefits for both
science and society. This book provides a glimpse into the challenging work
of petascale’s first wave of application and algorithm pioneers, and as such
provides an important context for both the present and the future.

Dr. Francine Berman
San Diego Supercomputer Center, May 2007



Introduction

Science has withstood centuries of challenges by building upon the commu-
nity’s collective wisdom and knowledge through theory and experiment. How-
ever, in the past half-century, the research community has implicitly accepted
a fundamental change to the scientific method. In addition to theory and ex-
periment, computation is often cited as the third pillar as a means for scientific
discovery. Computational science enables us to investigate phenomena where
economics or constraints preclude experimentation, evaluate complex models
and manage massive data volumes, model processes across interdisciplinary
boundaries, and transform business and engineering practices. Increasingly,
cyberinfrastructure is required to address our national and global priorities,
such as sustainability of our natural environment by reducing our carbon
footprint and by decreasing our dependencies on fossil fuels, improving hu-
man health and living conditions, understanding the mechanisms of life from
molecules and systems to organisms and populations, preventing the spread of
disease, predicting and tracking severe weather, recovering from natural and
human-caused disasters, maintaining national security, and mastering nan-
otechnologies. Several of our most fundamental intellectual questions also
require computation, such as the formation of the universe, the evolution of
life, and the properties of matter.

Realizing that cyberinfrastructure is essential to research innovation and
competitiveness, several nations are now in a “new arms race to build the
world’s mightiest computer” (John Markoff, New York Times, August 19,
2005). These petascale computers, expected around 2008 to 2012, will perform
1015 operations per second, nearly an order of magnitude faster than today’s
speediest supercomputer. In fact several nations are in a worldwide race to
deliver high-performance computing systems that can achieve 10 petaflops or
more within the next five years.

While petascale architectures certainly will be held as magnificent feats of
engineering skill, the community anticipates an even harder challenge in scal-
ing up algorithms and applications for these leadership-class supercomputing
systems. This book presents a collection of twenty-four chapters from some of
the international researchers who are early thought leaders in designing appli-
cations and software for petascale computing systems. The topics span several
areas that are important for this task: scalable algorithm design for massive
concurrency, computational science and engineering applications, petascale
tools, programming methodologies, performance analyses, and scientific visu-
alization.
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The concept for this book resulted from a week-long seminar held at Schloss
Dagstuhl, Germany, in February 2006, on “Architecture and Algorithms for
Petascale Computing,” organized by Ulrich Rüde, Horst D. Simon, and Peter
Sloot. The Dagstuhl seminar focused on high end simulation as a tool for
computational science and engineering applications. To be useful tools for
science, such simulations must be based on accurate mathematical descrip-
tions of the processes and thus they begin with mathematical formulations,
such as partial differential equations, integral equations, graph-theoretic, or
combinatorial optimization. Because of the ever-growing complexity of sci-
entific and engineering problems, computational needs continue to increase
rapidly. But most of the currently available hardware, software, systems, and
algorithms are primarily focused on business applications or smaller scale sci-
entific and engineering problems, and cannot meet the high-end computing
needs of cutting-edge scientific and engineering work. This seminar primarily
addressed the concerns of petascale scientific applications, which are highly
compute- and data-intensive, cannot be satisfied in today’s typical cluster
environment, and tax even the largest available supercomputer.

This book includes a number of chapters contributed by participants of
the Dagstuhl seminar, and several additional chapters were invited to span
the breadth of petascale applications. Chapter 1 recognizes that petascale
systems will require applications to exploit a high degree of concurrency and
examines the performance characteristics of six full codes that are good po-
tentials for the first wave of applications to run on early petascale systems.
Chapter 2 discusses challenging computational science and engineering appli-
cations that are mission-critical to the United States’ National Aeronautics
and Space Administration (NASA). Chapters 3 and 4 focus on multiphysics
simulations, using today’s fastest computer at Lawrence Livermore National
Laboratory (LLNL), and for the Uintah code that combines fluid-flow and
material point (particle) methods using scalable adaptive mesh refinement,
respectively. Chapter 5 discusses Enzo, a code for simulating cosmological
evolution, from individual galaxies up to groups and clusters of galaxies, and
beyond, providing a direct route to studying two of the most mysterious sub-
stances in modern physics: dark matter and dark energy. Chapter 6 de-
scribes numerical weather prediction at the mesoscale and convective scale,
that captures weather events such as floods, tornados, hail, strong winds, light-
ning, hurricanes, and winter storms. The Community Climate System Model
(CCSM), software for petascale climate science, is presented in Chapter 7.
Chapter 8 moves into the area of petascale software and discusses a multi-
physics application for simulating galaxies based on petascale Grid computing
on distributed systems. Chapters 9, 10, and 11, discuss different aspects of
performing molecular dynamics simulations on petascale systems. Chapter
9 is based on the popular NAMD code that simulates proteins and systems
of molecules on highly-parallel systems using Charm++ (a petascale software
framework presented in Chapter 20). Chapter 10 gives a special-purpose hard-
ware solution called MD-GRAPE systems tailored for this problem. Chapter
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11 looks at several leading candidate codes for biomolecular simulation on
petascale computers, that can be used for predicting the structure, dynam-
ics, and function of proteins on longer timescales. Large-scale combinatorial
algorithms solve a number of growing computational challenges, and Chapter
12 presents several multithreaded graph-theoretic algorithms which are used
in a variety of application domains. As petascale systems are likely to involve
significantly more components, Chapter 13 presents a number of key areas in
software and algorithms to improve the reliability of applications, such as disk-
less checkpointing and fault-tolerant implementation of the message passing
interface (MPI) library. Chapter 14 describes a new supercomputer cluster
installed at Tokyo Institute of Technology in Tokyo, Japan, called TSUB-
AME (Tokyo-Tech Supercomputer and Ubiquitously Accessible Mass-storage
Environment). Understanding that large-scale systems are built from collec-
tions of symmetric multiprocessor (SMP) nodes, in Chapter 15, programming
methodologies are given for petascale computers, such as using MPI with
OpenMP together. Naturally, benchmarks are needed to understand the per-
formance bottlenecks in high-performance computing systems, and Chapter
16 discusses APEX-Map, which can be used to evaluate the performance and
productivity of current and future systems. To fully exploit the massive capa-
bility provided by petascale systems, programmers will need to have on hand
several different types of tools that scale and can provide insight on these large
platforms. Chapter 17 gives a detailed summary of several types of perfor-
mance analysis tools that are geared for petascale systems. Chapters 18 and
19 discuss finite elements, a popular method for solving partial differential
equations on supercomputers. Chapter 18 presents a scalable multilevel finite
elements solver called ParExPDE that uses expression templates to generate
efficient code for petascale computing systems, while Chapter 19 describes
a software framework for the high-level production of efficient finite element
codes. Charm++ is a parallel programming system, overviewed in Chapter 20,
that aims to enhance the programmer’s productivity while producing highly
scalable application codes. This chapter also illustrates several computational
science and engineering applications enabled by Charm++. In Chapter 21,
an annotation language is described that is embeddable in general-purpose
languages and improves the performance and productivity of the scientific
programmer. Managing locality in parallel programming is a critical concern
as we employ petascale computing systems, and Chapter 22 discusses new
productivity languages, such as Chapel, that support general parallel compu-
tation via a global-view, locality-aware, multithreaded programming model.
Chapter 23 provides an historic perspective on architectural and program-
ming issues as we move to petascale systems with the use of architectural
accelerators and other technology trends. Finally, Chapter 24 discusses Cac-
tus, an astrophysics framework for numerical relativity that simulates events
from black holes to gamma ray bursts.



xiv

In addition to the contributing authors of this book, there are a few people
I must mention by name who have influenced me and deserve a special thanks
for their role in completing this book. First, I thank Uli Rüde, Horst Simon,
and Peter Sloot, for organizing an intensive Dagstuhl seminar that included
a full week of stimulating discussion surrounding the challenges of petascale
computing, and for giving me the opportunity to create this book as an out-
come of this ground-breaking meeting. I give additional thanks to Horst, who
serves as the Chapman & Hall/CRC Computational Science Series editor, not
only for helping to shape this book, but also for sharing his insights and ex-
pertise in computational science with me, for guiding me professionally, and
for his great friendship. I am inspired by Horst’s dedication to computational
science, his exuberance in high-performance computing, and his leadership in
the community.

The development and production of this book would not have been possible
without the able support and assistance of Randi Cohen, computer science ac-
quisitions editor for Chapman & Hall/CRC Press. Randi brought this project
from concept to production, and has been a wonderful colleague and friend
throughout the process. She deserves the credit for all of the tedious work
that made my job as editor appear easy. Randi’s warm personality made this
project fun, and her advice significantly improved the quality of this book.

I would like to express my deep appreciation to my research group at Geor-
gia Tech: (in alphabetical order): Virat Agarwal, Aparna Chandramowlish-
waran, Manisha Gajbe, Seunghwa Kang, Kamesh Madduri, and Amrita Math-
uriya. They are an amazing bunch of graduate students, and have assisted me
with the preparation of this book by organizing the book chapters, reading
various drafts of the chapters, and proofreading the manuscript.

Finally, I thank my wife, Sara Gottlieb, and my daughter, Sadie Rose Bader-
Gottlieb, for their understanding as I tried, not always successfully, to combine
family time with computer time during the preparation of the book.

High-performance computing will enable breakthrough science and engi-
neering in the 21st century. May this book inspire you to solve computational
grand challenges that will help our society, protect our environment, and im-
prove our understanding in fundamental ways, all through the efficient use of
petascale computing.

Dr. David A. Bader
Georgia Institute of Technology, May 2007
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Abstract After a decade where HEC (high-end computing) capability was
dominated by the rapid pace of improvements to CPU clock frequency, the
performance of next-generation supercomputers is increasingly differentiated
by varying interconnect designs and levels of integration. Understanding the
trade-offs of these system designs, in the context of high-end numerical simu-
lations, is a key step towards making effective petascale computing a reality.
This work represents one of the most comprehensive performance evaluation
studies to date on modern HEC systems, including the IBM Power5, AMD
Opteron, IBM BG/L, and Cray X1E. A novel aspect of our study is the
emphasis on full applications, with real input data at the scale desired by
computational scientists in their unique domain. We examine five candidate
ultra-scale applications, representing a broad range of algorithms and compu-
tational structures. Our work includes the highest concurrency experiments
to date on five of our six applications, including 32K processor scalability
for two of our codes and describes several successful optimization strategies

1



2 Performance Characteristics of Potential Petascale Scientific Applications

on BG/L, as well as improved X1E vectorization. Overall results indicate
that our evaluated codes have the potential to effectively utilize petascale re-
sources; however, several applications will require reengineering to incorporate
the additional levels of parallelism necessary to utilize the vast concurrency
of upcoming ultra-scale systems.

1.1 Introduction

Computational science is at the dawn of petascale computing capability,
with the potential to achieve simulation scale and numerical fidelity at hith-
erto unattainable levels. However, harnessing such extreme computing power
will require an unprecedented degree of parallelism both within the scientific
applications and at all levels of the underlying architectural platforms. Un-
like a decade ago — when the trend of HEC (high-end computing) systems
was clearly towards building clusters of commodity components — today one
sees a much more diverse set of HEC models. Increasing concerns over power
efficiency are likely to further accelerate recent trends towards architectural
diversity through new interest in customization and tighter system integra-
tion. Power dissipation concerns are also driving high-performance comput-
ing (HPC) system architectures from the historical trend of geometrically in-
creasing clock rates towards geometrically increasing core counts (multicore),
leading to daunting levels of concurrency for future petascale systems. Em-
ploying an even larger number of simpler processor cores operating at a lower
clock frequency, as demonstrated by BG/L, offers yet another approach to
improving the power efficiency of future HEC platforms. Understanding the
trade-offs of these computing paradigms, in the context of high-end numer-
ical simulations, is a key step towards making effective petascale computing
a reality. The main contribution of this work is to quantify these trade-offs
by examining the effectiveness of various architectural models for HEC with
respect to absolute performance and scalability across a broad range of key
scientific domains.

A novel aspect of our effort is the emphasis on full applications, with real
input data at the scale desired by computational scientists in their unique do-
main, which builds on our previous efforts [20, 21, 5, 19] and complements a
number of other related studies [6, 18, 31, 11]. Our application suite includes
a broad spectrum of numerical methods and data-structure representations
in the areas of magnetic fusion (GTC), astrophysics (Cactus), fluid dynamics
(ELBM3D), materials science (PARATEC), and AMR gas dynamics (Hy-
perCLaw). We evaluate performance on a wide range of architectures with
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varying degrees of component customization, integration, and power consump-
tion, including: the Cray X1E customized parallel vector-processor, which uti-
lizes a tightly coupled custom interconnect; the commodity IBM Power5 and
AMD Opteron processors integrated with custom fat-tree based Federation
and 3D-torus based XT3 interconnects, respectively; the commodity Opteron
processor integrated with the InfiniBand high-performance commodity net-
work; and the IBM Blue Gene/L (BG/L) which utilizes a customized SOC
(system on chip) based on commodity, low-power embedded cores, combined
with multiple network interconnects.

This work represents one of the most comprehensive performance evalu-
ation studies to date on modern HEC platforms. We present the highest
concurrency results ever conducted for our application suite, and show that
the BG/L can attain impressive scalability characteristics all the way up to
32K processors on two of our applications. We also examine several appli-
cation optimizations, including BG/L processor and interconnect-mappings
for the SciDAC [24] GTC code, which achieve significant performance im-
provements over the original superscalar version. Additionally, we implement
several optimizations for the HyperCLaw AMR calculation, and show signif-
icantly improved performance and scalability on the X1E vector platform,
compared with previously published studies. Overall, we believe that these
comprehensive evaluation efforts lead to more efficient use of community re-
sources in both current installations and in future designs.

1.2 Target Architectures

Our evaluation testbed uses five different production HEC systems. Ta-
ble 1.1 presents several key performance parameters of Bassi, Jacquard, BG/L,
Jaguar, and Phoenix, including: STREAM benchmark results [28] showing
the measured EP-STREAM [13] triad bandwidth when all processors within
a node simultaneously compete for main memory; the ratio of STREAM
bandwidth to the peak computational rate; the measured inter-node MPI la-
tency [7]; and the measured bidirectional MPI bandwidth per processor pair
when each processor simultaneously exchanges data with a distinct processor
in another node.

Bassi: Federation/Power5: The Power5-based Bassi system is located

‡Ratio of measured STREAM bandwidth to peak processor computational rate.
∗Minimum latency for the XT3 torus. There is a nominal additional latency of 50ns per
hop through the torus.
†Minimum latency for the BG/L torus. There is an additional latency of up to 69ns per
hop through the torus.
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TABLE 1.1: Architectural highlights of studied HEC platforms. An MSP
is defined as a processor for the X1E data.

Network P/ Clock Peak STREAM BW STREAM MPI Lat MPI BW
Name Arch Network

Topology Node (GHz) (GF/s/P) (GB/s/P) (B/F)‡ (μsec) (GB/s/P)

Jaguar Opteron XT3 3D Torus 1 2.6 5.2 2.5 0.48 5.5∗ 1.2

Jacquard Opteron InfiniBand Fat-tree 2 2.2 4.4 2.3 0.51 5.2 0.73

Bassi Power5 Federation Fat-tree 8 1.9 7.6 6.8 0.85 4.7 0.69

BG/L PPC440 Custom 3D Torus 2 0.7 2.8 0.9 0.31 2.2† 0.16

Phoenix X1E Custom 4D-Hcube 4 1.1 18.0 9.7 0.54 5.0 2.9

at Lawrence Berkeley National Laboratory (LBNL) and contains 122 8-way
symmetric multiprocessor (SMP) nodes interconnected via a two-link net-
work adapter to the IBM Federation HPS switch. The 1.9 GHz RISC Power5
processor contains a 64KB instruction cache, a 1.9MB on-chip L2 cache as
well as a 36MB on-chip L3 cache. The IBM custom Power5 chip has two
Synchronous Memory Interface (SMI) chips, aggregating four DDR 233 MHz
channels for an impressive measured STREAM performance of 6.8GB/s per
processor. The Power5 includes an integrated memory controller and inte-
grates the distributed switch fabric between the memory controller and the
core/caches. The experiments in this work were conducted under AIX 5.2.
Several experiments were also conducted on the 1,532 node (12,256 processor)
Power5-based Purple system at Lawrence Livermore National Laboratory.

Jacquard: InfiniBand/Opteron: The Opteron-based Jacquard system
is also located at LBNL. Jacquard contains 320 dual-processor nodes and
runs Linux 2.6.5 (PathScale 2.0 compiler). Each node contains two 2.2 GHz
Opteron processors, interconnected via InfiniBand fabric in a fat-tree configu-
ration. The Opteron uses a single-instruction multiple-data (SIMD) floating-
point unit accessed via the SSE2 instruction set extensions, and can execute
two double-precision floating-point operations per cycle. The processor pos-
sesses an on-chip DDR memory controller as well as tightly-integrated switch
interconnection via HyperTransport. Jacquard’s Infiniband network utilizes
4X single-data-rate links, configured in a 2-layer CLOS/fat-tree configuration
using Mellanox switches.

Jaguar: XT3/Opteron: The Jaguar experiments were conducted on the
5,202 node XT3 system operated by the National Leadership Computing Fa-
cility (NLCF) at Oak Ridge National Laboratory running the Catamount mi-
crokernel on the compute nodes. Each node of the Cray XT3 contains a single,
dual-core 2.6 GHz AMD Opteron processor. The processors are tightly inte-
grated to the XT3 interconnect via a Cray SeaStar ASIC through a 6.4GB/s
bidirectional HyperTransport interface. All the SeaStar routing chips are in-
terconnected in a 3D-torus topology, where — similar to the BG/L system
— each node has a direct link to six of its nearest neighbors on the torus
with a peak bidirectional bandwidth of 7.6GB/s. Note that Jaguar is similar
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to Jacquard in terms of the processor architecture and peak memory band-
width; however, in addition to having vastly different interconnect technolo-
gies, Jaguar uses dual-core technology as opposed to Jacquard’s single-core
processors.

BG/L: Multiple Networks/PPC440: The IBM Blue Gene/L (BG/L)
system represents a unique approach to supercomputing design, which allows
unprecedented levels of parallelism, with low unit cost and power consump-
tion characteristics. Our work presents performance results on the 1024-node
BG/L located at Argonne National Laboratory (ANL) running OS SLES9,
as well as the 20K-node system at IBM’s Watson Research Center system
(BGW), currently the world’s third most powerful supercomputer [17] (16K
nodes available at time of testing). Each BG/L node contains two 700MHz
PowerPC 440 processors, on-chip memory controller and communication logic,
and only 512MB of memory. The CPU’s dual FPUs (called double hummer)
are capable of dispatching two MADDs per cycle, for a peak processor perfor-
mance of 2.8 GFLOPS. However, the second FPU is not an independent unit,
and can only be used with special SIMD instructions — thus, making it diffi-
cult for the core to perform at close to peak except for specially hand-tuned
code portions. Our experiments primarily examine performance in coproces-
sor mode where one core is used for computation and the second is dedicated
to communication. Additionally, several experiments were conducted using
32K processors of BGW in virtual node mode where both cores are used for
both computation and communication.

The BG/L nodes are connected via five different networks, including a torus,
collective tree, and global interrupt tree. The 3D-torus interconnect is used
for general-purpose point-to-point message-passing operations using 6 inde-
pendent point-to-point serial links to the 6 nearest neighbors that operate at
175MB/s per direction (bidirectional) for an aggregate bandwidth of 2.1GB/s
per node. The global tree collective network is designed for high-bandwidth
broadcast operations (one-to-all) using three links that operate at a peak
bandwidth of 350MB/s per direction for an aggregate 2.1GB/s bidirectional
bandwidth per node. Finally, the global interrupt network provides fast bar-
riers and interrupts with a system-wide constant latency of ≈ 1.5μs.

Phoenix: Custom Network/X1E: The Cray X1E is the recently released
follow-on to the X1 vector platform. Vector processors expedite uniform oper-
ations on independent data sets by exploiting regularities in the computational
structure. The X1E computational core, called the single-streaming processor
(SSP), contains two 32-stage vector pipes running at 1.13 GHz. Each SSP
contains 32 vector registers holding 64 double-precision words, and operates
at 4.5 GFLOPS. The SSP also contains a two-way out-of-order superscalar
processor (564 MHz) with two 16KB caches (instruction and data). Four SSPs
can be combined into a logical computational unit called the multi-streaming
processor (MSP), and share a 2-way set associative 2MB data Ecache, with
a peak performance of 18 GFLOPS. Note that the scalar unit operates at
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1/4th the peak of SSP vector performance, but offers effectively 1/16 MSP
performance if a loop can neither be multi-streamed nor vectorized. The
X1E interconnect is hierarchical, with subsets of 16 SMP nodes (each con-
taining 8 MSPs) connected via a crossbar, these subsets are connected in a
4D-hypercube topology. All reported X1E experiments were performed on
a 768-MSP system running UNICOS/mp 3.0.23 and operated by Oak Ridge
National Laboratory.

1.3 Scientific Application Overview

Five applications from diverse areas in scientific computing were chosen to
compare the performance of our suite of leading supercomputing platforms.
We examine: GTC, a magnetic fusion application that uses the particle-
in-cell approach to solve nonlinear gyrophase-averaged Vlasov-Poisson equa-
tions; Cactus, an astrophysics framework for high-performance computing
that evolves Einstein’s equations from the Theory of General Relativity; ELBM3D,
a Lattice-Boltzmann code to study turbulent fluid flow; PARATEC, a first
principles materials science code that solves the Kohn-Sham equations of den-
sity functional theory to obtain electronic wave functions; HyperCLaw, an
adaptive mesh refinement (AMR) framework for solving the hyperbolic con-
servation laws of gas dynamics via a higher-order Godunov method. Table 1.2
presents an overview of the application characteristics from our evaluated sim-
ulations.

TABLE 1.2: Overview of scientific applications examined in
our study.

Name Lines Discipline Methods Structure

GTC 5,000 Magnetic Fusion Particle in Cell, Vlasov-Poisson Particle/Grid

Cactus 84,000 Astrophysics Einstein Theory of GR, ADM-BSSN Grid

ELBD 3,000 Fluid Dynamics Lattice-Boltzmann, Navier-Stokes Grid/Lattice

PARATEC 50,000 Materials Science Density Functional Theory, FFT Fourier/Grid

HyperCLaw 69,000 Gas Dynamics Hyperbolic, High-order Godunov Grid AMR

These codes are candidate ultra-scale applications with the potential to
fully utilize leadership-class computing systems, and represent a broad range
of algorithms and computational structures. Communication characteristics
include: nearest-neighbor and allreduce communication across the toroidal
grid and poloidal grid (respectively) for the particle-in-cell GTC calculation;
simple ghost boundary exchanges for the stencil-based ELBM3D and Cactus
computations; all-to-all data transpositions used to implement PARATEC’s
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3D FFTs, and complex data movements required to create and dynamically
adapt grid hierarchies in HyperCLaw. Examining these varied computational
methodologies across a set of modern supercomputing platforms allows us
to study the performance trade-offs of different architectural balances and
topological interconnect approaches.

To study the topological connectivity of communication for each applica-
tion, we utilize the IPM [27] tool, recently developed at LBNL. IPM is an
application profiling layer that allows us to noninvasively gather the commun-
ication characteristics of these codes as they are run in a production environ-
ment. By recording statistics on these message exchanges we can form an
undirected graph which describes the topological connectivity required by the
application. We use the IPM data to create representations of the topolog-
ical connectivity of communication for each code as a matrix — where each
point in the graph indicates message exchange and (color coded) intensity be-
tween two given processors — highlighting the vast range of communication
requirements within our application suite. IPM is also used to collect statis-
tics on MPI utilization and the sizes of point-to-point messages, allowing us to
quantify the fraction of messages that are bandwidth- or latency-bound. The
dividing line between these two regimes is an aggressively designed bandwidth-
delay product of 2Kb. See [14, 25] for a more detailed explanation of the
application communication characteristics, data collection methodology, and
bandwidth-delay product thresholding.

Experimental results show either strong scaling (where the problem size
remains fixed regardless of concurrency), or weak scaling (where the problem
size grows with concurrency such that the per-processor computational re-
quirement remains fixed) — whichever is appropriate for a given application’s
large-scale simulation. Note that these applications have been designed and
highly optimized on superscalar platforms; thus, we describe newly devised
optimizations for the vector platforms where appropriate. Performance results
measured on these systems, presented in GFLOPS per processor (denoted as
GFLOPS/P) and percentage of peak, are used to compare the time to solu-
tion of our evaluated platforms. The GFLOPS value is computed by dividing
a valid baseline flop-count by the measured wall-clock time of each platform
— thus the ratio between the computational rates is the same as the ratio of
runtimes across the evaluated systems. All results are shown using the fastest
(optimized) available code versions.

1.4 GTC: Particle-in-Cell Magnetic Fusion

GTC is a 3D particle-in-cell code developed for studying turbulent trans-
port in magnetic confinement fusion plasmas [15, 8]. The simulation geometry
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is that of a torus, which is the natural configuration of all tokamak fusion
devices. As the charged particles forming the plasma move within the exter-
nally imposed magnetic field, they collectively create their own self-consistent
electrostatic (and electromagnetic) field that quickly becomes turbulent under
driving temperature and density gradients. The particle-in-cell (PIC) method
describes this complex interaction between fields and particles by solving the
5D gyro-averaged kinetic equation coupled to the Poisson equation. In the
PIC method, the interaction between particles is calculated using a grid on
which the charge of each particle is deposited and then used in the Poisson
equation to evaluate the field. This is the scatter phase of the PIC algo-
rithm. Next, the force on each particle is gathered from the grid-base field
and evaluated at the particle location for use in the time advance.
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FIGURE 1.1: GTC (a) communication topology and intensity for point-to-
point messaging; (b) cumulative distribution function of point-to-point mes-
sage buffer sizes with the horizontal dividing line representing the border be-
tween bandwidth-bound (right of line) and latency-bound (left of line) message
sizes; and (c) breakdown of MPI calls counts.

An important approximation in GTC comes from the fact that fast particle
motion along the magnetic field lines leads to a quasi-two-dimensional struc-
ture in the electrostatic potential. Thus, the Poisson equation needs only to
be solved on a 2D poloidal plane. GTC utilizes a simple iterative solver since
the linear system is diagonally dominant [16]; note that this differs from most
PIC techniques that solve a spectral system via FFTs. For 10 particles per
cell per processor, the solve phase accounts only for 6% of the compute time, a
very small fraction compared to the 85% spent in the scatter and gather-push
phases. The primary direction of domain decomposition for GTC is in the
toroidal direction in order to take advantage of the locality of the 2D Poisson
solve. GTC uses a logically non-rectangular field-aligned grid, in part, to keep
the number of particles per cell nearly constant. The mesh effectively twists
along with the magnetic field in the toroidal direction.

GTC utilizes two levels of distributed memory parallelism. The first, based
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on the original GTC implementation, is a one-dimensional domain decomposi-
tion in the toroidal direction (long way around the torus) while the second is a
particle distribution within each toroidal slice. The processors in charge of the
same toroidal slice have a complete copy of the local grid. However, each pro-
cessor within the toroidal slice holds only a fraction of the particles, and data
is exchanged between slices via a local MPI sub-communicator when updating
grid quantities. In the toroidal direction, a separate MPI sub-communicator
supports communication between the toroidal slices to support movement of
particles between the slices.

Figure 1.1 (a) shows the regular communication structure exhibited by
GTC. This particle-in-cell calculation uses a one-dimensional domain decom-
position across the toroidal computational grid, causing each processor to ex-
change data with its two neighbors as particles cross the left and right bound-
aries. Additionally, there is a particle decomposition within each toroidal slice
as described above. Therefore, on average each MPI task communicates with
4 neighbors, so much simpler interconnect networks will be adequate for its
requirements. The cumulative distribution function of message buffer sizes in
Figure 1.1 (b), shows that the communication requirements are strongly band-
width bound, where more than 80% of the message sizes are in the bandwidth-
bound regime — the horizontal reference line represents the border between
bandwidth-bound (right of line) and latency-bound (left of line) message sizes,
(see [25] for more details). The distribution of MPI call counts shown in Fig-
ure 1.1 (c) are strongly biased towards collective calls that have very small
(<128 byte) latency-bound messages sizes; at the petaflop scale level, scalable
and efficient collective messaging will become an increasingly important factor
for maintaining scalable performance for GTC and other PIC codes.

1.4.1 Experimental results

The benchmarks in our study were performed using 0.2 to 2 billion particles
on a 2 million cell mesh (100 particles per cell per processor core). Figure 1.2
shows the results of a weak-scaling study of GTC on the platforms under
comparison in both (a) raw performance and (b) percentage of peak. The
size of the grid remains fixed since it is prescribed by the size of the fusion
device being simulated, while the number of particles is increased in a way
that keeps the same amount of work per processor for all cases.

Looking at the raw performance we see that the Phoenix platform clearly
stands out with a GFLOPS/P rate up to 4.5 times higher than the second
highest performer, the XT3 Jaguar. This was expected since the version of
GTC used on Phoenix has been extensively optimized to take advantage of
the multi-streaming vector processor [21]. In the latest improvements, the
dimensions of the main arrays in the code have been reversed in order to
speed up access to the memory banks, leading to higher performance. This
change is not implemented in the superscalar version since it reduces cache
reuse and hence slows down the code. Although still high, the performance
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FIGURE 1.2: GTC weak-scaling performance using 100 particles per cell
per processor (10 for BG/L) in (a) runtime and (b) percentage of peak. All
performance data on the BG/L system were collected in virtual node mode.

per processor on the X1E decreases significantly as the number of processors,
or MSPs, increases. This is probably due to the increase in intra-domain com-
munications that arises when the number of processors per toroidal domain
increases. An allreduce operation is required within each domain to sum up
the contribution of each processor, which can lead to lower performance in
certain cases. Optimizing the processor mapping is one way of improving the
communications but we have not explored this avenue on Phoenix yet.

Jacquard, Bassi, and Jaguar have very similar performance in terms of
GFLOPS/P although Bassi is shown to deliver only about half the percentage
of peak achieved on Jaguar, which displays outstanding efficiency and scaling
all the way to 5184 processors. The percentage of peak achieved by particle-in-
cell codes is generally low since the gather-scatter algorithm that characterizes
this method involves a large number of random accesses to memory, making
the code sensitive to memory access latency. However, the AMD Opteron
processor used in both Jacquard and Jaguar delivers a significantly higher
percentage of peak for GTC compared to all the other superscalar processors.
It even rivals the percentage of peak achieved on the vector processor of the
X1E Phoenix. This higher GTC efficiency on the Opteron is due, in part,
to relatively low main memory latency access. On all systems other than
Phoenix, GTC exhibits near perfect scaling, including up to 5K processors on
Jaguar.

The percentage of peak achieved by GTC on BG/L is the lowest of the sys-
tems under study but the scalability is very impressive, all the way to 32,768
processors! The porting of GTC to the BG/L system was straightforward
but initial performance was disappointing. Several optimizations were then
applied to the code, most of them having to do with using BG/L-optimized
math libraries such as MASS and MASSV to accelerate the performance of
transcendental functions such as sin(), cos(), and exp(). Whereas the orig-
inal code used the default GNU implementations for the transcendentals, the
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MASS and MASSV libraries include vector versions of those functions that
can take advantage of improved instruction scheduling and temporal locality
to achieve substantial improvements to the throughput of these operations in
loops.∗ By replacing the default math intrinsics with their MASSV equiva-
lents, we obtained a 30% increase in performance. Other optimizations con-
sisted of loop unrolling and replacing calls to the Fortran aint(x) intrinsic
function by real(int(x)). aint(x) results in a function call that is much
slower than using the equivalent real(int(x)). These combined optimiza-
tions resulted in a performance improvement of almost 60% over original runs.
We note that the results presented here are for virtual node mode where both
cores on the node are used for computation. GTC maintains over 95% of
its single-core (coprocessor-mode) performance when employing both cores
on the BG/L node, which is quite promising as more cores will be added to
upcoming processor roadmaps.

Another useful optimization performed on BGW was processor mapping.
BG/L’s 3D-torus interconnect topology used for point-to-point communica-
tions is ideally suited for the toroidal geometry of GTC’s computational do-
main. Additionally, the number of toroidal-slice domains used in the GTC
simulations exactly match one of the dimensions of the BG/L network torus.
Thus by using an explicit mapping file that aligns GTC’s point-to-point com-
munications along these toroidal slice domains (used for moving particles be-
tween the toroidal slices) to the BG/L link topology, the performance of the
code improved by an additional 30% over the default communication mapping.

1.5 ELBM3D: Lattice-Boltzmann Fluid Dynamics

Lattice-Boltzmann methods (LBM) have proven a good alternative to con-
ventional numerical approaches for simulating fluid flows and modeling physics
in fluids [29]. The basic idea is to develop a simplified kinetic model that in-
corporates the essential physics, and reproduces correct macroscopic averaged
properties. These algorithms have been used extensively since the mid-1980s
for simulating Navier-Stokes flows, and more recently extended to treat multi-
phase flows, reacting flows, diffusion processes, and magneto-hydrodynamics.
As can be expected from explicit algorithms, LBM are prone to numerical
nonlinear instabilities as one pushes to higher Reynolds numbers. These nu-
merical instabilities arise because there are no imposed constraints to enforce
the distribution functions to remain nonnegative. Entropic LBM algorithms,
which do preserve the nonnegativity of the distribution functions — even in
the limit of arbitrary small transport coefficients — have recently been de-
veloped for Navier-Stokes turbulence [2], and are incorporated into a recently
developed code [30].

∗The authors thank Bob Walkup for his BG/L optimization insights.
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FIGURE 1.3: ELBM3D (a) communication topology and intensity; (b) cu-
mulative distribution function of point-to-point message buffer sizes; and (c)
breakdown of MPI calls counts.

While LBM methods lend themselves to easy implementation of difficult
boundary geometries (e.g., by the use of bounce-back to simulate no slip wall
conditions), here we report on 3D simulations under periodic boundary con-
ditions, with the spatial grid and phase space velocity lattice overlaying each
other. Each lattice point is associated with a set of mesoscopic variables,
whose values are stored in vectors proportional to the number of streaming
directions. The lattice is partitioned onto a 3-dimensional Cartesian processor
grid, and MPI is used for communication — a snapshot of the communica-
tion topology is shown in Figure 1.3 (a), highlighting the relatively sparse
communication pattern. As in most simulations of this nature, ghost cells are
used to hold copies of the planes of data from neighboring processors.

For ELBM3D, a nonlinear equation must be solved at each time step for
each grid-point, so that the collision process satisfies certain constraints. Since
this equation involves taking the logarithm of each component of the dis-
tribution function the whole algorithm becomes heavily constrained by the
performance of the log() function.

The connectivity of ELBM3D shown in Figure 1.3 (a) is structurally similar
to Cactus, but exhibits a slightly different communication pattern due to
the periodic boundary conditions of the code. This topology is not quite
isomorphic to a mesh or toroidal interconnect topology, but would vastly
underutilize the available bisection bandwidth of a fully connected network
like a fat-tree or crossbar. Figure 1.3 (c) demonstrates that like Cactus,
ELBM3D is dominated by point-to-point communication while Figure 1.3 (b)
shows that the point-to-point message buffer sizes are very large and therefore
strongly bandwidth-bound.
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1.5.1 Experimental results

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

64 128 256 512 1024
Processors

G
fl

o
p

s/
P

ro
ce

ss
o

r

Bassi
Jacquard
Jaguar
BG/L
Phoenix

(a)

15%

17%

19%

21%

23%

25%

27%

29%

31%

64 128 256 512 1024

Processors

P
er

ce
n

t 
o

f 
P

ea
k

Bassi
Jacquard
Jaguar
BG/L
Phoenix

(b)

FIGURE 1.4: ELBM3D strong-scaling performance using a 5123 grid by (a)
GFLOPS and (b) percentage of peak. ALL BG/L data were collected on the
ANL BG/L system in coprocessor mode.

We note that LBM codes are often compared on the basis of mega-updates-
per-second as it is independent of the number of operations that the compiler
generates for the LBM collision step. Our work, on the other hand, compares
GFLOPS based on the flop count of a single baseline system and normalized
on the basis of wall-clock time (see Section 1.3). Thus the relative results
maintain consistent comparisons of delivered performance between different
system architectures offered by the mega-updates-per-second.

Strong-scaling results for a system of 5123 grid-points are shown in Fig-
ure 1.4 for both (a) raw performance and (b) percentage of peak. For each
of the superscalar machines the code was restructured to take advantage of
specialized log() functions — MASSV library for IBM and ACML for AMD
— that compute values for a vector of arguments. (The benefits of these li-
braries are discussed in Section 1.4.) Using this approach gave ELBM3D a
performance boost of between 15–30% depending on the architecture. For the
X1E, the innermost grid-point loop was taken inside the nonlinear equation
solver to enable full vectorization. After these optimizations, ELBM3D has
a kernel of fairly high computational intensity and a percentage of peak of
15–30% on all architectures.

ELBM3D shows good scaling across all of our evaluated platforms. This is
due to the dominance of nearest-neighbor point-to-point messaging, and lack
of load balance issues. As expected, the parallel overhead increases as the
ratio of communication to computation increases. The parallel efficiency as
we move to higher concurrencies shows the least degradation on the BG/L
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system (although the memory requirements of the application and MPI im-
plementation prevents running this size on fewer than 256 processors). Both
Phoenix and Jaguar are very close behind, followed by Jacquard and Bassi.

Our experiments bear out the fact that the higher computational cost of the
entropic algorithm, as compared to traditional LBM approaches, can be cast
in a way that leads to efficient computation on commodity processors. We are
thus optimistic that ELBM3D will be able to deliver exceptional performance
on planned petascale platforms.

1.6 Cactus: General Relativity Astrophysics

One of the most challenging problems in astrophysics is the numerical solu-
tion of Einstein’s equations following from the Theory of General Relativity
(GR): a set of coupled nonlinear hyperbolic and elliptic equations contain-
ing thousands of terms when fully expanded. The BSSN-MoL application,
which makes use of the Cactus Computational ToolKit [3, 10], is designed
to evolve Einstein’s equations stably in 3D on supercomputers to simulate
astrophysical phenomena with high gravitational fluxes – such as the colli-
sion of two black holes and the gravitational waves radiating from that event.
While Cactus is a modular framework supporting a wide variety of applica-
tions, this study focuses exclusively on the GR solver, which implements the
ADM-BSSN (BSSN) formulation [1] with Method of Lines (MoL) integration
to enable stable evolution of black holes. For parallel computation, the grid is
block domain decomposed so that each processor has a section of the global
grid. The standard MPI driver (PUGH) for Cactus solves the partial differ-
ential equation (PDE) on a local grid section and then updates the values at
the ghost zones by exchanging data on the faces of its topological neighbors
in the domain decomposition.

In the topology chart of Figure 1.5 (a), we see that the ghost-zone exchanges
of Cactus result in communications with “neighboring” nodes, represented by
diagonal bands. In fact, each node communicates with 6 neighbors at most
due to the regular computational structure of the 3D stencil application. This
topology is isomorphic to a mesh and should work well on mesh or toroidal
interconnect topologies if mapped correctly. The communication is strongly
bandwidth- bound and dominated by point-to-point messaging as can be seen
in Figures 1.5 (b) and (c) respectively.

1.6.1 Experimental results

Figure 1.6 presents weak-scaling performance results for the Cactus BSSN-
MoL application using a 603 per processor grid. In terms of raw performance,
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FIGURE 1.5: Cactus (a) communication topology and intensity; (b) cumu-
lative distribution function of point-to-point message buffer sizes; and (c)
breakdown of MPI calls counts.
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FIGURE 1.6: Cactus weak-scaling experiments on a 603 per processor grid
in (a) runtime and (b) percentage of peak. All BG/L data were run on the
BGW system. Phoenix data were collected on the Cray X1 platform.

the Power5-based Bassi clearly outperforms any other systems, especially the
BG/L where the GFLOPS/P rate and the percentage of peak performance
is somewhat disappointing. The lower computational efficiency of BG/L is
to be expected from the simpler dual-issue in-order PPC440 processor core.
However, while the per-processor performance of BG/L is somewhat limited,
the scaling behavior is impressive, achieving near perfect scalability for up
to 16K processors. This is (by far) the largest Cactus scaling experiment to
date, and shows extremely promising results. Due to memory constraints we
could not conduct virtual node mode simulations for the 603 data set, however
further testing with a smaller 503 grid shows no performance degradation for
up to 32K (virtual node) processors. This strongly suggests that the Cactus
application will scale to extremely high-concurrency, petascale systems. All of
the experiments were performed with the default processor topology mapping
where the communication topology matched the torus topology of the physical
interconnect. Additional investigations with alternative processor topology
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mappings on the BG/L showed no significant effects.
The Opteron-based Jacquard cluster shows modest scaling, which is prob-

ably due to the (relatively) loosely coupled nature of its system architecture
as opposed to the tight software and hardware interconnect integration of the
other platforms in our study. Separate studies of Jacquard InfiniBand inter-
connect also show increased messaging contention at higher concurrencies that
are typical of multi tier source-routed fat-tree networks [26]. Bassi shows ex-
cellent scaling but the size of the largest concurrency was significantly smaller
compared to that of the BG/L so it remains to be seen if IBM’s Federation
HPS interconnect will scale to extremely large systems. Likewise, Jaguar,
the Cray XT3 system, shows excellent scaling up to 8192 processors. The
performance per processor for Jaguar’s 2.6 GHz dual-core Opteron processors
is somewhat lower than for Jacquard’s single-core 2.2GHz Opteron system.
The effect is primarily due to the differences in the quality of code generated
by the compilers (PGI v1.5.31 on Jaguar and PathScale v2.4 on Jacquard).
Moving from single core to dual core on Jaguar resulted in a modest 10%
change in performance that was consistently less than the performance differ-
ence attributed to the compilers.

Phoenix, the Cray X1 platform, showed the lowest computational perfor-
mance of our evaluated systems. The most costly procedure for the X1 was the
computation of radiation boundary conditions, which continued to drag per-
formance down despite considerable effort to rewrite it in vectorizable form.
In previous studies [5], the vectorized boundary conditions proved beneficial
on a number of vector platforms including the NEC SX-8 and Earth Simula-
tor; however the X1 continued to suffer disproportionally from small portions
of unvectorized code due to the relatively large differential between vector and
scalar performance, highlighting that notions of architectural balance cannot
focus exclusively on bandwidth (bytes per flop) ratios.

1.7 PARATEC: First Principles Materials Science

PARATEC (PARAllel Total Energy Code [22]) performs ab initio quantum-
mechanical total energy calculations using pseudopotentials and a plane wave
basis set. The pseudopotentials are of the standard norm-conserving variety.
Forces can be easily calculated and used to relax the atoms into their equi-
librium positions. PARATEC uses an all-band conjugate gradient (CG) ap-
proach to solve the Kohn-Sham equations of density functional theory (DFT)
and obtain the ground-state electron wave functions. DFT is the most com-
monly used technique in materials science, incorporating a quantum mechan-
ical treatment of the electrons to calculate the structural and electronic prop-
erties of materials. Codes based on DFT are widely used to study properties
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such as strength, cohesion, growth, magnetic, optical, and transport for ma-
terials like nanostructures, complex surfaces, and doped semiconductors.

PARATEC is written in F90 and MPI and is designed primarily for mas-
sively parallel computing platforms, but can also run on serial machines. The
code has run on many computer architectures and uses preprocessing to in-
clude machine specific routines such as the FFT calls. Much of the compu-
tation time (typically 60%) involves FFTs and BLAS3 routines, which run
at a high percentage of peak on most platforms. For small atomic systems,
PARATEC tends to be dominated by the FFTs, and becomes dominated by
the BLAS3 operations for larger atomic systems. The performance of the
3D FFTs tends to suffer at high concurrencies, but it can be controlled to a
limited extent by using message aggregation (described below).

In solving the Kohn-Sham equations using a plane wave basis, part of the
calculation is carried out in real space and the remainder in Fourier space
using parallel 3D FFTs to transform the wave functions between the two
spaces. PARATEC uses its own handwritten 3D FFTs rather than library
routines as the data layout in Fourier space is a sphere of points, rather
than a standard square grid. The sphere is load balanced by distributing
the different length columns from the sphere to different processors such that
each processor holds a similar number of points in Fourier space. Effective
load balancing is important, as much of the compute intensive part of the
calculation is carried out in Fourier space [4].
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FIGURE 1.7: PARATEC (a) communication topology and intensity; (b) cu-
mulative distribution function of point-to-point message buffer sizes; and (c)
breakdown of MPI calls counts.

Figure 1.7 shows the communication characteristics of PARATEC. The
global data transposes within PARATEC’s FFT operations — as captured
in Figure 1.7 (a) — accounting for the bulk of PARATEC’s communication
overhead, and can quickly become the bottleneck at high concurrencies. In
general, with a fixed problem size the message sizes become smaller and in-
creasingly latency bound at higher concurrencies, as can be seen in Figure 1.7
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(b). In a single 3D FFT the size of the data packets scale as the inverse of
the number of processors squared. The PARATEC code can perform all-band
calculations that allow the FFT communications to be blocked together, re-
sulting in larger message sizes and avoiding latency problems. However, the
buffering required for such message aggregation consumes additional mem-
ory, which is a scarce resource on systems such as BG/L. Finally, observe in
Figure 1.7 (c) that the vast majority of messaging occurs in a point-to-point
fashion.

1.7.1 Experimental results

Figure 1.8 presents strong-scaling performance results for a 488 atom cdse
(cadmium selenide) quantum dot (QD) system which has important techno-
logical applications due to its photoluminescent properties. Due to the use of
BLAS3 and optimized one-dimensional FFT libraries, which are highly cache
resident, PARATEC obtains a high percentage of peak on the different plat-
forms studied. The results for BG/L are for a smaller system (432 atom bulk
silicon) due to memory constraints.

Results show that the Power5-based Bassi system obtains the highest ab-
solute performance of 5.49 GFLOPS/P on 64 processors with good scaling
to larger processor counts. The fastest Opteron system (3.39 GFLOPS/P)
was Jaguar (XT3) running on 128 processors. (Jacquard did not have enough
memory to run the QD system on 128 processors.) The higher bandwidth
for communications on Jaguar (see Table 1.1) allows it to scale better than
Jacquard for this communication-intensive application. The BG/L system
has a much lower single processor performance than the other evaluated plat-
forms due to a relatively low peak speed of only 2.8 GFLOPS. BG/L’s percent
of peak drops significantly from 512 to 1024 processors, probably due to in-
creased communication overhead when moving from a topologically packed
half-plane of 512 processors to a larger configuration. The smaller system
being run on the BG/L (432 atom bulk silicon) also limits the scaling to
higher processor counts. Overall, Jaguar obtained the maximum aggregate
performance of 4.02 TFLOPS on 2048 processors.

Looking at the vector system, results show that the Phoenix X1E achieved
a lower percentage of peak than the other evaluated architectures; although
in absolute terms, Phoenix performs rather well due to the high peak speed
of the MSP processor.∗ One reason for this is the relatively slow performance
of the X1E scalar unit compared to the vector processor. In consequence,

†Purple, located at LLNL, is architecturally similar to Bassi and contains 12,208 IBM
Power5 processors. The authors thank Tom Spelce and Bronis de Supinksi of LLNL for
conducting the Purple experiments.
∗Results on the X1E were obtained by running the binary compiled on the X1, as running
with an optimized X1E generated binary (-O3) caused the code to freeze. Cray engineers
are investigating the problem.



FIGURE 2.1 Full SSLV configuration including orbiter, external tank, solid rocket boost-
ers, and fore and aft attach hardware. (a) Cartesian mesh surrounding the SSLV; colors 
indicate 16-way decomposition using the SFC partitioner. (b) Pressure contours for the 
case described in the text; the isobars are displayed at 2.6 Mach, 2.09 degrees angle-of-
attack, and 0.8 degrees sideslip corresponding to flight conditions approximately 80 sec-
onds after launch.

FIGURE 2.4 Liquid rocket turbopump for the SSME. (a) Surface grids for the low-pres-
sure fuel pump inducer and flowliner. (b) Instantaneous snapshot of particle traces colored 
by axial velocity values.
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FIGURE 2.7 Four-day forecasts of Hurricane Rita initialized at 0000 UTC September 21, 
2005. (a) Tracks predicted by fvGCM at 0.25° (line with diamond symbols), 0.125° (line 
with crosses), and 0.08° (line with circles) resolutions. The lines with hexagons and squares 
represent the observation and official prediction by the National Hurricane Center (NHC). 
(b-d) Sea level pressure (SLP) in hPa within a 4° × 5° box after 72-hour simulations ending 
at 0000 UTC 24 September at 0.25°, 0.125°, and 0.08° resolutions. Solid circles and squares 
indicate locations of the observed and official predicted hurricane centers by the NHC, 
respectively. The observed minimal SLP at the corresponding time is 931 hPa. In a climate 
model with a typical 2° × 2.5° resolution (latitude × longitude), a 4° × 5° box has only four 
grid points.
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FIGURE 3.4 Simulation of a moving interface via a hybrid continuum-atomistic method. 
The white grid blocks show where a direct simulation Monte Carlo particle method is 
applied at the finest AMR grid scale to resolve the physics at interface between two flu-
ids. A continuum-scale method is applied elsewhere in the fluid. (Adapted from Hornung 
et al. [13])

FIGURE 3.5 Three-dimensional molecular dynamics simulation of nucleation and grain 
growth in molten tantalum. Three snapshots in time are shown for two simulations. The 
top row corresponds to a simulation using 16 million atoms on the Blue Gene/L supercom-
puter at LLNL. This 2005 Gordon Bell Prize-winning calculation was the first to produce 
physically correct, size-independent results. The rich 3D detail is seen in the planar slices. 
The bottom row used 64,000 atoms on a smaller supercomputer. Periodic boundary condi-
tions were used to generate the entire domain, resulting in the unphysical replicated pat-
tern. (Image from Streitz et al. [17])
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FIGURE 5.1 Enzo hydrodynamic simulation of cosmic structure in a 700 Mpc volume 
of the universe. Up to seven levels of adaptive mesh refinement resolve the distribution of 
baryons within and between galaxy clusters, for an effective resolution of 65,5363. Volume 
rendering of baryon density. Image credit M. Hall, NCSA.

FIGURE 6.4 24-hour WRF-predicted (left) and observed (right) radar reflectivity valid at 
00 UTC on June 5, 2005. Warmer colors indicate higher precipitation intensity. The WRF 
model utilized a horizontal grid spacing of 2 km and forecasts were produced by CAPS on 
the Terascale Computing System at the Pittsburgh Supercomputing Center as part of the 
2005 SPC Spring Experiment.
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FIGURE 6.6 (a) Predicted surface reflectivity field at 13.75 minutes of the 50-m forecast 
valid at 2213:45 UTC and (b) observed reflectivity at the 1.45° elevation of the Oklahoma 
City radar observation at 2216 UTC. The domain shown is 55 km × 40 km in size, repre-
senting the portion of the 50 m grid between 20 and 75 km in the east-west direction and 
from 16 to 56 km in the north-south direction.

FIGURE 8.1 The Andromeda nebula, M31. A mosaic of hundreds of Earth-based tele-
scope pointings were needed to make this image.
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FIGURE 9.4 Example biomolecular simulations: (a) aquaporin in membrane with sol-
vent, (b) potassium channel in membrane with solvent, (c) ribosome, (d) poliovirus with 
cell surface receptors, (e) photosynthetic chromatophore, (f) BAR domain vesicle cross 
section.

FIGURE 11.1 Biomolecular simulations of a system with >1 million atoms. This figure 
shows a schematic representation of of satellite tobacco mosaic virus particle. The viral 
particle was solvated in a water box of dimensions 220 Å × 220Å × 220 Å, consisting of 
about 1.06 million atoms. The protein capsid (green) is enveloping the RNA and part of 
the capsid is cut out to make the RNA core of the particle visible. The backbone of RNA 
is highlighted in red; ions were added to make the system charge neutral. Figure courtesy 
of Theoretical and Computational Biophysics Group. Reprinted with permission from 
P.L. Freddolino et al., Structure (2006), 14, 437-449. ©Elsevier 2006.
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FIGURE 11.2 The dynamic personality of proteins. An integrated view of protein struc-
ture, dynamics and function is emerging where proteins are considered dynamically 
active molecular machines. Biomolecular simulations spanning multiple timescales are 
providing new insights into the working of protein systems. Computational modeling of 
enzymes is leading to the discovery of a network of protein vibrations promoting enzyme 
catalysis in several systems including cyclophilin A, which is shown here.

FIGURE 11.4 Full quantum calculation of a protein with 20,581 atoms. Electron densi-
ties of the photosynthetic system were computed at the quantum level (RHF/6-31G*) with 
the FMO method: (a) an electron density of the whole system, and (b) a differential electron 
density around the special pair. Reprinted with permission from T. Ikegami et al., Pro-
ceedings of the 2005 ACM/IEEE Conference on Supercomputing 2005. ©ACM 2005.

C9098_ColorInsert.indd   7 10/25/07   1:02:22 PM



FIGURE 16.7 P-C Map for parallel systems based on efficiencies [accesses/cycle]. Hori-
zontal axis is performance P in [accesses/100 cycles] and the vertical axis is complexity PC 
in [accesses/cycles]. Systems fall with few exceptions into 4 categories: PGAS languages 
(UPC, CAF), one-sided block-access (SHMEM, UPC block-mode), MPI-vector (X1-MPI and 
SX6), and superscalar-based MPI systems.

FIGURE 24.1 Left: Gravitational waves and horizons in a binary black hole in spiral 
simulation. Simulation by AEI/CCT collaboration, image is by W. Benger (CCT/AEI/ZIB). 
Right: A rotationally deformed proto-neutron star formed in the iron core collapse of an 
evolved massive star is pictured. Shown are a volume rendering of the rest-mass den-
sity and a 2D rendition of outgoing gravitational waves. Simulation by [28], image by R. 
Kähler.
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FIGURE 1.8: PARATEC strong-scaling performance on a 488 atom CdSe
quantum dot. Power5 data for P = 1024 was run on LLNL’s Purple system.†

The BG/L data, collected on the BGW, are for a 432 atom bulk silicon due
to memory constraints. Phoenix X1E data were collected with an X1 binary.

the X1E spends a smaller percentage of the total time in highly optimized
3D FFTs and BLAS3 libraries than on any of the other machines. The other
code segments are handwritten F90 routines and have a lower vector operation
ratio.

PARATEC results do not show any clear advantage for a torus versus a
fat-tree communication network. The main limit to scaling in PARATEC are
the handwritten 3D FFTs, where all-to-all communications are performed to
transpose the data across the machine. In a single 3D FFT the size of the data
packets scales as the inverse of the number of processors squared. PARATEC
can perform an all-band calculation, allowing the FFT communications to
be blocked, resulting in larger message sizes and avoiding latency problems.
Overall, the scaling of the FFTs is limited to a few thousand processors.
Therefore, scaling PARATEC to petascale systems with tens (or hundreds) of
thousands of processors requires a second level of parallelization over the elec-
tronic band indices as is done in the QBox code [11]. This will greatly benefit
the scaling and reduce per-processor memory requirements on architectures
such as BG/L.

1.8 HyperCLaw: Hyperbolic AMR Gas Dynamics

Adaptive mesh refinement (AMR) is a powerful technique that reduces the
computational and memory resources required to solve otherwise intractable
problems in computational science. The AMR strategy solves the system of
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partial differential equations (PDEs) on a relatively coarse grid, and dynam-
ically refines it in regions of scientific interest or where the coarse grid error
is too high for proper numerical resolution. HyperCLaw is a hybrid C++/
Fortran AMR code developed and maintained by CCSE at LBNL [9, 23]
where it is frequently used to solve systems of hyperbolic conservation laws
using a higher-order Godunov method.
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FIGURE 1.9: HyperCLaw (a) communication topology and intensity; (b)
cumulative distribution function of point-to-point message buffer sizes; and
(c) breakdown of MPI calls counts.

The HyperCLaw code consists of an applications layer containing the physics
classes defined in terms of virtual functions. The basic idea is that data blocks
are managed in C++ in which ghost cells are filled and temporary storage is
dynamically allocated so that when the calls to the physics algorithms (usu-
ally finite difference methods implemented in Fortran) are made, the same
stencil can be used for all points and no special treatments are required.

The HyperCLaw problem examined in this work profiles a hyperbolic shock-
tube calculation, where we model the interaction of a Mach 1.25 shock in air
hitting a spherical bubble of helium. This case is analogous to one of the ex-
periments described by Haas and Sturtevant [12]. The difference between the
density of the helium and the surrounding air causes the shock to accelerate
into and then dramatically deform the bubble. The base computational grids
for the problems studied are 512×64×32. These grids were adaptively refined
by an initial factor of 2 and then a further factor of 4, leading to effective sizes
of 2048 × 256 × 256 and 4096 × 512 × 256, respectively.

HyperCLaw is also dominated by point-to-point MPI messages with mini-
mal collective communication requirements as shown in Figure 1.9 (c). Most
of the communication overhead occurs in the FillPatch operation. FillPatch
starts with the computational grid at a given level, adds ghost cells five layers
thick around each grid, and then fills those cells either by copying from other
grids at that level, or by interpolating from lower level (coarser) cells that are
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covered by those ghost cells. FillPatch has a very complicated sparse nonlin-
ear communication pattern as shown in Figure 1.9 (a). Once it completes, all
the ghost cells for each grid are filled with valid data, a higher-order Godunov
solver is applied to each resulting grid.

Although the communication topology appears to be a many-to-many pat-
tern that would require a high bisection bandwidth, the message sizes shown
in Figure 1.9 (b) are surprisingly small. Such small messages will have only
ephemeral contention events and primarily be dominated by the interconnect
latency and overhead of sending the message. Further analysis shows that
if we focus exclusively on the messages that dominate the communication
time, the number of important communicating partners drops significantly.
Therefore, despite the complexity of the communication topology and large
aggregate number of communicating partners, bisection bandwidth does not
appear to be a critical factor in supporting efficient scaling of this AMR ap-
plication. Architectural support for petascale AMR codes therefore depend
more on reducing the computational overhead of sending small messages. Un-
derstanding the evolving communication requirements of AMR simulations
will be the focus of future work.

1.8.1 Experimental results

The HyperCLaw problem examined in this work profiles a hyperbolic shock-
tube calculation, where we model the interaction of a Mach 1.25 shock in air
hitting a spherical bubble of helium. This case is analogous to one of the ex-
periments described by Haas and Sturtevant [12]. The difference between the
density of the helium and the surrounding air causes the shock to accelerate
into and then dramatically deform the bubble. The base computational grids
for the problems studied are 512×64×32. These grids were adaptively refined
by an initial factor of 2 and then a further factor of 4, leading to an effective
resolution of 4096 × 512 × 256.

Figure 1.10 presents the absolute runtime and percentage of peak for the
weak-scaling HyperCLaw experiments. In terms of absolute runtime (at P=128),
Bassi achieves the highest performance followed by Jacquard, Jaguar, Phoenix,
and finally BG/L (the Phoenix and Jacquard experiments crash at P≥256;
system consultants are investigating the problems). Observe that all of the
platforms achieve a low percentage of peak; for example at 128 processors,
Jacquard, Bassi, Jaguar, BG/L, and Phoenix achieve 4.8%, 3.8%, 3.5%, 2.5%,
and 0.8% respectively. Achieving peak performance on BG/L requires double
hummer mode (as described in Section 1.2), which has operand alignment
restrictions that make it very difficult for the compiler to schedule efficiency
for this application. Therefore BG/L delivered performance is most likely to
be only half of the stated theoretical peak because of its inability to exploit
the double-hummer. With this in mind, the BG/L would achieve a sustained
performance of around 5%, commensurate with the other platforms in our
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FIGURE 1.10: HyperCLaw weak-scaling performance on a base computa-
tional grid of 512 x 64 x 32 in (a) runtime and (b) percentage of peak. All
BG/L data were collected on an ANL system (the BG/L system was unable
to run jobs over 256 processors due to memory constraints).

study. Note that although these are weak-scaling experiments in the num-
bers of grids, the volume of work increases with higher concurrencies due to
increased volume of computation along the communication boundaries; thus,
the percentage of peak generally increases with processor count.

Although Phoenix performs relatively poorly for this application, especially
in terms of its attained percentage of peak, it is important to point out that
two effective X1E optimizations were undertaken since our initial study into
AMR vector performance [32]. Our preliminary study showed that the knap-
sack and regridding phases of HyperCLaw were largely to blame for limited
X1E scalability, cumulatively consuming almost 60% of the runtime for large
concurrency experiments. The original knapsack algorithm — responsible for
allocating boxes of work equitably across the processors — suffered from a
memory inefficiency. The updated version copies pointers to box lists during
the swapping phase (instead of copying the lists themselves), and results in
knapsack performance on Phoenix that is almost cost-free, even on hundreds
of thousands of boxes.

The function of the regrid algorithm is to replace an existing grid hierarchy
with a new hierarchy in order to maintain numerical accuracy, as important
solution features develop and move through the computational domain. This
process includes tagging coarse cells for refinement and buffering them to en-
sure that neighboring cells are also refined. The regridding phase requires
the computations of box list intersection, which was originally implemented
in an O(N2) straightforward fashion. The updated version utilizes a hashing
scheme based on the position in space of the bottom corners of the boxes,
resulting in a vastly improved O(NlogN) algorithm. This significantly re-
duced the cost of the regrid algorithm on Phoenix, resulting in improved
performance. Nonetheless, Phoenix performance still remains low due to the
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non-vectorizable and short-vector-length operations necessary to maintain and
regrid the hierarchical data structures.

Overall, our HyperCLaw results highlight the relatively low execution effi-
ciency of the AMR approach as measured by the flop rate. This is due (in
part) to the irregular nature of the AMR components necessary to maintain
and regrid the hierarchical meshes, combined with complex communication
requirements. Additionally, the numerical Godunov solver, although com-
putationally intensive, requires substantial data movement that can degrade
cache reuse. Nevertheless, the algorithmic efficiency gains associated with
AMR and high-resolution discretizations more than compensate for the low
sustained rate of execution as measured by flop rates. It points to the dan-
ger of measuring efficiency of an algorithm in terms of flop throughput alone
rather than comparing performance on the basis of time to solution. Other
key results of our study are the knapsack and regridding optimizations, which
significantly improved HyperCLaw scalability [32]. These improvements in
scaling behavior suggest that, in spite of the low execution efficiency, the
AMR methodology is a suitable candidate for petascale systems.

1.9 Summary and Conclusions

The purpose of any HEC system is to run full-scale scientific codes, and per-
formance on such applications is the final arbiter of a platform’s utility; com-
parative performance evaluation data must therefore be readily available to
the HEC community at large. However, evaluating large-scale scientific appli-
cations using realistic problem sizes on leading supercomputing platforms is an
extremely complex process, requiring coordination of application scientists in
highly disparate areas. Our work presents one of the most extensive compara-
tive performance results on modern supercomputers available in the literature.

Figure 1.11 shows a summary of results using the largest comparable con-
currencies for all five studied applications and five state-of-the-art parallel
platforms, in relative performance (normalized to the fastest system) and per-
centage of peak. Results show that the Power5-based Bassi system achieves
the highest raw performance for three of our five applications, thanks to dra-
matically improved memory bandwidth (compared to its predecessors), and
increased attention to latency hiding through advanced prefetch features. The
Phoenix system achieved impressive raw performance on GTC and ELBM3D,
however, applications with non-vectorizable portions suffer greatly on this ar-
chitecture due the imbalance between the scalar and vector processors. Com-
paring the two Opteron systems, Jacquard and Jaguar, we see that, in gen-
eral, sustained performance is similar between the two platforms. However,
for some applications such as GTC and PARATEC, the tight integration
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FIGURE 1.11: Summary of results for the largest comparable concurrencies;
(a) relative runtime performance normalized to the fastest system; and (b)
sustained percentage of peak. Cactus Phoenix results are on the X1 system.
BG/L results are shown for P=1024 on Cactus and GTC, as smaller BG/L
concurrencies are not available.

of Jaguar’s XT3 interconnect results in significantly better scalability at high
concurrency compared with Jacquard’s commodity-based InfiniBand network.
The BG/L platform attained the lowest raw and sustained performance on
our suite of applications, however, results at very high concurrencies show
impressive scalability characteristics and potential for attaining petascale per-
formance.

Results also indicate that our evaluated codes have the potential to ef-
fectively utilize petascale resources. However, some applications, such as
PARATEC, will require significant reengineering to incorporate the additional
levels of parallelism necessary to utilize vast numbers of processors. Other
applications, including the Lattice-Boltzmann ELBM3D and the dynamically
adapting HyperCLaw simulation, are already showing scaling behavior with
promising prospects to achieve ultra-scale. Finally, two of our tested codes,
Cactus and GTC, have successfully demonstrated impressive scalability up
to 32K processors on the BGW system. A full GTC production simulation
was also performed on 32,768 processors and showed a perfect load balance
from beginning to end. This, combined with its high efficiency on a multi-
core processor, clearly puts GTC as a primary candidate to effectively utilize
petascale resources.

Overall, these extensive performance evaluations are an important step to-
ward conducting simulations at the petascale level, by providing computa-
tional scientists and system designers with critical information on how well
numerical methods perform across state-of-the-art parallel systems. Future
work will explore a wider set of computational methods, with a focus on irreg-
ular and unstructured algorithms, while investigating a broader set of HEC
platforms, including the latest generation of multicore technologies.
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2.1 Introduction

To support its diverse mission-critical requirements, the National Aero-
nautics and Space Administration (NASA) solves some of the most unique,
computationally challenging problems in the world [8]. To facilitate rapid yet
accurate solutions for these demanding applications, the U.S. space agency
procured a 10,240-CPU supercomputer in October 2004, dubbed Columbia.
Housed in the NASA Advanced Supercomputing facility at NASA Ames Re-
search Center, Columbia is comprised of twenty 512-processor nodes (rep-
resenting three generations of SGI Altix technology: 3700, 3700-BX2, and
4700), with a combined peak processing capability of 63.2 teraflops per second
(TFLOPS). However, for many applications, even this high-powered computa-
tional workhorse, currently ranked as one of the fastest in the world, does not

29
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have enough computing capacity, memory size, and bandwidth rates needed
to meet all of NASA’s diverse and demanding future mission requirements.

In this chapter, we consider three important NASA application areas: aero-
space analysis and design, propulsion subsystems analysis, and hurricane pre-
diction, as a representative set of these challenges. We show how state-of-
the-art methodologies for each application area are currently performing on
Columbia, and explore projected achievements with the availability of peta-
scale computing. We conclude by describing some of the architecture and
algorithm obstacles that must first be overcome for these applications to take
full advantage of such petascale computing capability.

2.2 The Columbia Supercomputer

Columbia is configured as a cluster of 20 SGI Altix nodes, each with 512
Intel Itanium 2 processors and one terabyte (TB) of global shared-access mem-
ory, that are interconnected via InfiniBand fabric communications technology.
Of these 20 nodes, 12 are model 3700, seven are model 3700-BX2, and one is
the newest-generation architecture, a 4700. The 3700-BX2 is a double-density
incarnation of the 3700, while the 4700 is a dual-core version of the 3700-BX2.
Each node acts as a shared-memory, single-system-image environment running
a Linux-based operating system, and utilizes SGI’s scalable, shared-memory
NUMAflex architecture, which stresses modularity.

Four of Columbia’s BX2 nodes are tightly linked to form a 2,048-processor
4 TB shared-memory environment and use NUMAlink4 among themselves,
which allows access to all data directly and efficiently, without having to move
them through I/O or networking bottlenecks. Each processor in the 2,048-
CPU subsystem runs at 1.6 GHz, has 9 MB of level-3 cache (the Madison 9M
processor), and a peak performance of 6.4 gigaflops per second (GFLOPS).
One other BX2 node is equipped with these same processors. (These five BX2
nodes are denoted as BX2b in this chapter.) The remaining fourteen nodes:
two BX2 (referred to as BX2a here) and twelve 3700, all have processors
running at 1.5 GHz, with 6 MB of level-3 cache, and a peak performance of
6.0 GFLOPS. All nodes have 2 GB of shared memory per processor.

The 4700 node of Columbia is the latest generation in SGI’s Altix product
line, and consists of 8 racks with a total of 256 dual-core Itanium 2 (Mon-
tecito) processors (1.6 GHz, 18 MB of on-chip level-3 cache) and 2 GB of
memory per core (1 TB total). Each core also contains 16 KB instruction
and data caches. The current configuration uses only one socket per node,
leaving the other socket unused (also known as the bandwidth configuration).
Detailed performance characteristics of the Columbia supercomputer using
micro-benchmarks, compact kernel benchmarks, and full-scale applications
can be found in other articles [7, 10].



Petascale Computing: Impact on Future NASA Missions 31

2.3 Aerospace Analysis and Design

High-fidelity computational fluid dynamics (CFD) tools and techniques
are developed and applied to many aerospace analysis and design problems
throughout NASA. These include the full Space Shuttle Launch Vehicle (SSLV)
configuration and future spacecraft such as the Crew Exploration Vehicle
(CEV). One of the more commonly used high-performance aerodynamics sim-
ulation packages used on Columbia to assist with aerospace vehicle analysis
and design is Cart3D. This software package enables high-fidelity characteri-
zation of aerospace vehicle design performance over the entire flight envelope.

Cart3D is a simulation package targeted at conceptual and preliminary de-
sign of aerospace vehicles with complex geometry. It solves the Euler equations
governing inviscid flow of a compressible fluid on an automatically generated
Cartesian mesh surrounding a vehicle. Since the package is inviscid, boundary
layers and viscous phenomena are not present in the simulations, facilitating
fully automated Cartesian mesh generation in support of inviscid analysis.
Moreover, solutions to the governing equations can typically be obtained for
about 2–5% of the cost of a full Reynolds-averaged Navier-Stokes (RANS) sim-
ulation. The combination of automatic mesh generation and high-quality, yet
inexpensive, flow solutions makes the package ideally suited for rapid design
studies and exploring what-if scenarios. Cart3D offers a drop-in replacement
for less scalable and lower-fidelity engineering methods, and is frequently used
to generate entire aerodynamic performance databases for new vehicles [1, 3].

2.3.1 Methodology

Cart3D’s solver module uses a second-order cell-centered, finite-volume
upwind spatial discretization combined with a multigrid-accelerated Runge-
Kutta scheme for advance to steady-state [1]. As shown in Figure 2.1 (a),
the package uses adaptively refined, hierarchically generated Cartesian cells
to discretize the flow field and resolve the geometry. In the field, cells are sim-
ple Cartesian hexahedra, and the solver capitalizes on regularity of the mesh
for both speed and accuracy. At the wall, these cells are cut arbitrarily and
require more extensive data structures and elaborate mathematics. Neverthe-
less, the set of cut-cells is lower-dimensional, and the net cost remains low.
Automation and insensitivity to geometric complexity are key ingredients in
enabling rapid parameter sweeps over a variety of configurations.

Cart3D utilizes domain decomposition to achieve high efficiency on parallel
machines [3, 6]. To assess performance of Cart3D’s solver module on realistic
problems, extensive experiments have been conducted on several large ap-
plications. The case considered here is that of the SSLV. A mesh containing
approximately 4.7 million cells around this geometry is shown in Figure 2.1 (a)
and was built using 14 levels of adaptive subdivision. The grid is painted to
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FIGURE 2.1: (See color insert following page 18.) Full SSLV configuration
including orbiter, external tank, solid rocket boosters, and fore and aft attach
hardware. (a) Cartesian mesh surrounding the SSLV; colors indicate 16-way
decomposition using the SFC partitioner. (b) Pressure contours for the case
described in the text; the isobars are displayed at 2.6 Mach, 2.09 degrees
angle-of-attack, and 0.8 degrees sideslip corresponding to flight conditions
approximately 80 seconds after launch.

indicate partitioning into 16 sub-domains using the Peano-Hilbert space-filling
curve (SFC) [3]. The partitions are all predominantly rectangular, which is
characteristic of sub-domains generated with SFC-based partitioners, indicat-
ing favorable compute/communicate ratios.

Cart3D’s simulation module solves five partial differential equations for each
cell in the domain, giving this example close to 25 million degrees-of-freedom.
Figure 2.1 (b) illustrates a typical result from these simulations by showing
pressure contours in the discrete solution. Surface triangulation describing the
geometry contains about 1.7 million elements. For parallel performance ex-
periments on Columbia, the mesh in Figure 2.1 (a) was refined so that the test
case contained approximately 125 million degrees-of-freedom. These investiga-
tions included comparisons between the OpenMP and MPI parallel program-
ming paradigms, analyzing the impact of multigrid on scalability, and under-
standing the effects of the NUMAlink4 and InfiniBand communication fabrics.
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FIGURE 2.2: Comparison of execution time and parallel speedup of the
Cart3D solver module on single BX2a and BX2b Columbia nodes using
(a) MPI and (b) OpenMP parallelization strategies.

2.3.2 Results

The domain-decomposition parallelization strategy in the Cart3D flow sim-
ulation package has previously demonstrated excellent scalability on large
numbers of processors with both MPI and OpenMP libraries [6]. This behav-
ior makes it a suitable candidate for comparing performance of Columbia’s
BX2a and BX2b nodes using varying processor counts on a complete appli-
cation. Figure 2.2 shows charts of parallel speedup and execution timings
for Cart3D using MPI and OpenMP. Line graphs in the figure show paral-
lel speedup between 32 and 474 CPUs; the corresponding execution time for
five multigrid cycles is shown via bar charts. This comparison clearly demon-
strates excellent scalability for both node types, indicating that this particular
example did not exceed the bandwidth capabilities of either system. The bar
charts in Figure 2.2 contain wall-clock timing data and show comparisons
consistent with the slightly faster clock-speeds in the BX2b nodes.

The memory on each of Columbia’s 512-CPU nodes is globally sharable
by any process within the node, but cache-coherency is not maintained be-
tween nodes. Thus, all multi-node examples with Cart3D are run using the
MPI communication back-end. Numerical experiments focus on the effects
of increasing the number of multigrid levels in the solution algorithm. These
experiments were carried out on four of Columbia’s BX2b nodes. Figure 2.3
(a) displays parallel speedup for the system, comparing the baseline four-level
multigrid solution algorithm with that on a single grid, using the NUMA-
link4 interconnect. The plot shows nearly ideal speedup for the single grid
runs on the full 2,048-CPU system. The multigrid algorithm requires solution
and residual transfer to coarser mesh levels, and therefore places substantially
greater demands on interconnect bandwidth. In this case, a slight degrada-
tion in performance is apparent above 1,024 processors, but the algorithm still
posts parallel speedups of about 1,585 on 2,016 CPUs.

Figure 2.3 (b) shows that the InfiniBand runs do not extend beyond 1,536
processors due to a limitation on the number of connections. Notice that
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FIGURE 2.3: (a) Parallel speedup of the Cart3D solver module using one and
four levels of mesh in the multigrid hierarchy with a NUMAlink4 interconnect.
(b) Comparison of parallel speedup and TFLOPS with four levels of multigrids
using NUMAlink4 and InfiniBand.

the InfiniBand performance consistently lags that of the NUMAlink4, and
that there is an increased penalty as the number of nodes goes up. Using the
standard NCSA FLOP counting procedures, net performance of the multigrid
solution algorithm is 2.5 TFLOPS on 2,016 CPUs. Additional performance
details are provided in [2].

2.3.3 Benefits of petascale computing to NASA

In spite of several decades of continuous improvements in both algorithms
and hardware, and despite the widespread acceptance and use of CFD as
an indispensable tool in the aerospace vehicle design process, computational
methods are still employed in a very limited fashion. In some important flight
regimes, current computational methods for aerodynamic analysis are only
reliable within a narrow range of flight conditions — where no significant flow
separation occurs. This is due, in part, to the extreme accuracy requirements
of the aerodynamic design problem, where, for example, changes of less than
one percent in the drag coefficient of a flight vehicle can determine commercial
success or failure. As a result, computational analyses are currently used in
conjunction with experimental methods only over a restricted range of the
flight envelope, where they have been essentially calibrated.

Improvements in accuracy achieved by CFD methods for aerodynamic ap-
plications will require, among other things, dramatic increases in grid reso-
lution and simulation degrees-of-freedom (over what is generally considered
practical in the current environment). Manipulating simulations with such
high resolutions demands substantially more potent computing platforms.
This drive toward finer scales and higher fidelity is obviously motivated by
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a dawning understanding of error analysis in CFD simulations. Recent re-
search in uncertainty analysis and formal error bounds indicates that hard
quantification of simulation error is possible, but the analysis can be many
times more expensive than the CFD simulation itself. While this field is just
opening up for fluid dynamic simulations, it is already clear that certifiably
accurate CFD simulations require many times the computing power currently
available. Petascale computing would open the door to affordable, routine,
error quantification for simulation data.

Once optimal designs can be constructed, they must be validated through-
out the entire flight envelope, which includes hundreds of thousands of simu-
lations of both the full range of aerodynamic flight conditions, and parameter
spaces of all possible control surface deflections and power settings. Gener-
ating this comprehensive database will not only provide all details of vehicle
performance, but it will also open the door to new possibilities for engineers.
For example, when coupled with a six-degree-of-freedom integrator, the vehi-
cle can be flown through the database by guidance and control (G&C) system
designers to explore issues of stability and control. Digital Flight initiatives
undertake the complete time-accurate simulation of a maneuvering vehicle and
include structural deformation and G&C feedback. Ultimately, the vehicle’s
suitability for various mission profiles or other trajectories can be evaluated
by full end-to-end mission simulations, and optimization studies can consider
the full mission profile. This is another area where a petascale computing
capability can significantly benefit NASA missions.

2.4 Propulsion Subsystem Analysis

High-fidelity unsteady flow simulation techniques for design and analysis
of propulsion systems play a key role in supporting NASA missions, includ-
ing analysis of the liquid rocket engine flowliner for the Space Shuttle Main
Engine (SSME). The INS3D software package [11] is one such code devel-
oped to handle computations for unsteady flow through a full-scale, low- and
high-pressure rocket pump. Liquid rocket turbopumps operate under severe
conditions and at very high rotational speeds. The low-pressure fuel turbo-
pump creates transient flow features such as reverse flows, tip clearance effects,
secondary flows, vortex shedding, junction flows, and cavitation effects. The
reverse flow originating at the tip of an inducer blade travels upstream and
interacts with the bellows cavity. This flow unsteadiness is considered to be
one of the major contributors to high-frequency cyclic loading that results in
cycle fatigue.
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2.4.1 Methodology

To resolve the complex geometry in relative motion, an overset grid ap-
proach [9] is employed where the problem domain is decomposed into a num-
ber of simple grid components. Connectivity between neighboring grids is
established by interpolation at the grid outer boundaries. Addition of new
components to the system and simulation of arbitrary relative motion be-
tween multiple bodies are achieved by establishing new connectivity without
disturbing existing grids.

The computational grid used for the experiments reported in this chap-
ter consisted of 66 million grid points and 267 blocks or zones. Details of
the grid system are shown in Figure 2.4. The INS3D code solves the incom-
pressible Navier-Stokes equations for both steady-state and unsteady flows.
The numerical solution requires special attention to satisfy the divergence-
free constraint on the velocity field. The incompressible formulation does not
explicitly yield the pressure field from an equation of state or the continuity
equation. One way to avoid the difficulty of the elliptic nature of the equations
is to use an artificial compressibility method that introduces a time-derivative
of the pressure term into the continuity equation. This transforms the elliptic-
parabolic partial differential equations into the hyperbolic-parabolic type. To
obtain time-accurate solutions, the equations are iterated to convergence in
pseudo-time for each physical time step until divergence of the velocity field
has been reduced below a specified tolerance value. The total number of re-
quired sub-iterations varies depending on the problem, time step size, and
artificial compressibility parameter. Typically, the number ranges from 10–30
sub-iterations. The matrix equation is solved iteratively by using a non-
factored Gauss-Seidel-type line-relaxation scheme, which maintains stability
and allows a large pseudo-time step to be taken. More detailed information
about the application can be found elsewhere [11, 12].

2.4.2 Results

Computations were performed to compare scalability between the multi-
level parallelism (MLP) [17] and MPI+OpenMP hybrid (using a point-to-
point communication protocol) versions of INS3D on one of Columbia’s BX2b
nodes. Both implementations combine coarse- and fine-grain parallelism.
Coarse-grain parallelism is achieved through a UNIX fork in MLP, and through
explicit message-passing in MPI+OpenMP. Fine-grain parallelism is obtained
using OpenMP compiler directives in both versions. The MLP code utilizes
a global shared-memory data structure for overset connectivity arrays, while
the MPI+OpenMP code uses local copies.

Initial computations using one group and one thread were used to establish
the baseline runtime for one physical time step, where 720 such time steps are
required to complete one inducer rotation. Figure 2.5 displays the time per
iteration (in minutes) versus the number of CPUs, and the speedup factor for
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FIGURE 2.4: (See color insert following page 18.) Liquid rocket turbopump
for the SSME. (a) Surface grids for the low-pressure fuel pump inducer and
flowliner. (b) Instantaneous snapshot of particle traces colored by axial ve-
locity values.

both codes. Here, 36 groups have been chosen to maintain good load balance
for both versions. Then, the runtime per physical time step is obtained using
various numbers of OpenMP threads (1, 2, 4, 8, and 14). It includes the
I/O time required to write the time-accurate solution to disk at each time
step. The scalability for a fixed number of MLP and MPI groups and varying
OpenMP threads is good, but begins to decay as the number of OpenMP
threads becomes large. Further scaling can be accomplished by fixing the
number of OpenMP threads and increasing the number of MLP/MPI groups
until the load balancing begins to fail. Unlike varying the OpenMP threads,
which does not affect the convergence rate of INS3D, varying the number
of groups may deteriorate it. This will lead to more iterations even though
faster runtime per iteration is achieved. The results show that the MLP and
MPI+OpenMP codes perform almost equivalently for one OpenMP thread,
but that the latter begins to perform slightly better as the number of threads
is increased. This advantage can be attributed to having local copies of the
connectivity arrays in the MPI+OpenMP hybrid implementation. Having the
MPI+OpenMP version of INS3D as scalable as the MLP code is promising
since this implementation is easily portable to other platforms.

We also compare performance of the INS3D MPI+OpenMP code on mul-
tiple BX2b nodes against single node results. This includes running the
MPI+OpenMP version using two different communication paradigms: master-
worker and point-to-point. The runtime per physical time step is recorded us-
ing 36 MPI groups, and 1, 4, 8, and 14 OpenMP threads on one, two, and four
BX2b nodes. Communication between nodes is achieved using the InfiniBand
and NUMAlink4 interconnects, denoted as IB and XPM, respectively.

Figure 2.6 (a) contains results using the MPI point-to-point communication
paradigm. When comparing performance of using multiple nodes with that of
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FIGURE 2.5: Comparison of INS3D performance on a BX2b node using two
different hybrid programming paradigms.

a single node, we observe that scalability of the multi-node runs with NUMA-
link4 is similar to the single-node runs (which also use NUMAlink4 internally).
However, when using InfiniBand, execution time per iteration increases by
10–29% on two- and four-node runs. The difference between the two- and
four-node runs decreases as the number of CPUs increases. Figure 2.6 (b)
displays the results using the master-worker communication paradigm. Note
that the time per iteration is much higher using this protocol compared to
the point-to-point communication. We also see a significant deterioration in
scalability for both single- and multi-node runs. With NUMAlink4, we ob-
serve a 5–10% increase in runtime per iteration from one to two nodes, and an
8–16% increase using four nodes. This is because the master resides on one
node, and all workers on the other nodes must communicate with the master.
However, when using point-to-point communication, many of the messages
remain within the node from which they are sent. An additional 14–27% in-
crease in runtime is observed when using InfiniBand instead of NUMAlink4,
independent of the communication paradigm.

2.4.3 Benefits of petascale computing to NASA

The benefits of high-fidelity modeling of full-scale multi-component, multi-
physics propulsion systems to NASA’s current mission goals are numerous
and have the most significant impact in the areas of: crew safety (new safety
protocols for the propulsion system); design efficiency (provide the ability
to make design changes that can improve the efficiency and reduce the cost
of space flight); and technology advancement (in propulsion technology for
manned space flights to Mars).

With petascale computing, fidelity of the current propulsion subsystem
analysis could be increased to full-scale, multi-component, multi-disciplinary
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FIGURE 2.6: Performance of INS3D across multiple BX2b nodes via NU-
MAlink4 and InfiniBand using MPI (a) point-to-point, and (b) master-worker
communication.

propulsion applications. Multi-disciplinary computations are critical for mod-
eling propulsion systems of new and existing launch vehicles to attain flight
rationale. To ensure proper coupling between the fluid, structure, and dynam-
ics codes, the number of computed iterations will dramatically increase, de-
manding large, parallel computing resources for efficient solution turnaround
time. Spacecraft propulsion systems contain multi-component/multi-phase
fluids (such as turbulent combustion in solid rocket boosters and cavitating
hydrodynamic pumps in the SSME) where phase change cannot be neglected
when trying to obtain accurate and reliable results.

2.5 Hurricane Prediction

Accurate hurricane track and intensity predictions help provide early warn-
ing to people in the path of a storm, saving both life and property. Over the
past several decades, hurricane track forecasts have steadily improved, but
progress on intensity forecasts and understanding of hurricane formation/ge-
nesis has been slow. Major limiting factors include insufficient model resolu-
tions and uncertainties of cumulus parameterizations (CP). A CP is required
to emulate the statistical effects of unresolved cloud motions in coarse reso-
lution simulations, but its validity becomes questionable at high resolutions.
Facilitated by Columbia, the ultra-high resolution finite-volume General Cir-
culation Model (fvGCM) [4] has been deployed and run in real-time to study
the impacts of increasing resolutions and disabling CPs on hurricane fore-
casts. The fvGCM code is a unified numerical weather prediction (NWP) and
climate model that runs on daily, monthly, decadal, and century timescales,
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TABLE 2.1: Changes in fvGCM resolution as a function of time
(available computing resources). Note that in the vertical direction, the
model could be running with 32, 48, 55, or 64 stretched levels.

Resolution Grid Points Total 2D Major Implementation
(lat×long) (y×x) Grid Cells Application Date
2o × 2.5o 91 × 144 13,104 Climate 1990s
1o × 1.25o 181 × 288 52,128 Climate Jan. 2000

0.5o × 0.625o 361 × 576 207,936 Climate/Weather Feb. 2002
0.25o × 0.36o 721 × 1000 721,000 Weather July 2004

0.125o × 0.125o 1441 × 2880 4,150,080 Weather Mar. 2005
0.08o × 0.08o 2251 × 4500 11,479,500 Weather July 2005

and is currently the only operational global NWP model with finite-volume
dynamics. While doubling the resolution of such a model requires an 8-16X
increase in computational resources, the unprecedented computing capability
provided by Columbia enables us to rapidly increase resolutions of fvGCM to
0.25o, 0.125o, and 0.08o, as shown in Table 2.1.

While NASA launches many high-resolution satellites, the mesoscale-resolv-
ing fvGCM is one of only a few global models with comparable resolution to
satellite data (QuikSCAT, for example), providing a mechanism for direct
comparisons between model results and satellite observations. During the
active 2004 and 2005 hurricane seasons, the high-resolution fvGCM produced
promising forecasts of intense hurricanes such as Frances, Ivan, Jeanne, and
Karl in 2004; and Emily, Dennis, Katrina, and Rita in 2005 [4, 14, 15, 16]. To
illustrate the capabilities of fvGCM, coupled with the computational power of
Columbia, we discuss the numerical forecasts of Hurricanes Katrina and Rita
in this chapter.

2.5.1 Methodology

The fvGCM code, resulting from a development effort of more than ten
years, has the following three major components: (1) finite-volume dynam-
ics, (2) NCAR Community Climate Model (CCM3) physics, and (3) NCAR
Community Land Model (CLM). Dynamical initial conditions and sea sur-
face temperature (SST) were obtained from the global forecast system (GFS)
analysis data and one-degree optimum interpolation SST of National Centers
for Environmental Prediction.

The unique features of the finite-volume dynamical core [13] include a gen-
uinely conservative flux-form semi-Lagrangian transport algorithm which is
Gibbs oscillation-free with the optional monotonicity constraint; a terrain-
following Lagrangian control-volume vertical coordinate system; a finite-vol-
ume integration method for computing pressure gradients in general terrain
following coordinates; and a mass, momentum, and total energy conserving al-
gorithm for remapping the state variables from the Lagrangian control-volume
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to an Eulerian terrain-following coordinate. The vorticity-preserving horizon-
tal dynamics enhance the simulation of atmospheric oscillations and vortices.
Physical processes such as CP and gravity-wave drag are largely enhanced
with emphasis for high-resolution simulations; they are also modified for con-
sistent application with the innovative finite-volume dynamics.

From a computational perspective, a crucial aspect of the fvGCM devel-
opment is its high computational efficiency on a variety of high-performance
supercomputers including distributed-memory, shared-memory, and hybrid
architectures. The parallel implementation is hybrid: coarse-grain paral-
lelism with MPI/MLP/SHMEM and fine-grain parallelism with OpenMP. The
model’s dynamical part has a 1-D MPI/MLP/SHMEM parallelism in the y-
direction, and uses OpenMP multi-threading in the z-direction. One of the
prominent features in the implementation is the permission of multi-threaded
data communications. The physical part inherits 1-D parallelism in the y-
direction from the dynamical part, and further applies OpenMP loop-level
parallelism in this decomposed latitude. CLM is also implemented with MPI
and OpenMP parallelism, and its grid cells are distributed among processors.

All of the aforementioned features make it possible to advance the state-of-
the-art of hurricane prediction to a new frontier. To date, Hurricanes Katrina
and Rita are the sixth and fourth most intense hurricanes in the Atlantic,
respectively. They devastated New Orleans, southwestern Louisiana, and the
surrounding Gulf Coast region, resulting in losses in excess of 90 billion U.S.
dollars. Here, we limit our discussion to the simulations initialized from 1200
UTC August 25, and 0000 UTC September 21, for Katrina and Rita, and show
improvement of the track and intensity forecasts by increasing resolutions to
0.125o and 0.08o, and by disabling CPs.

2.5.2 Results

The impacts of increased computing power and thus enhanced resolution (in
this case, to 0.125o), and disabling CPs on the forecasts of Hurricane Katrina
have been documented [15]. They simulated comparable track predictions at
different resolutions, but better intensity forecasts at finer resolutions. The
predicted mean sea level pressures (MSLPs) in the 0.25o, 0.125o, and 0.125o

(with no CPs) runs are 951.8, 895.7, and 906.5 hectopascals (hPa) with re-
spect to the observed 902 hPa. Consistent improvement as a result of using a
higher resolution was illustrated from the six 5-day forecasts with the 0.125o

fvGCM, showing small errors in center pressure of only ±12 hPa. The notable
improvement in Katrina’s intensity forecasts was attributed to the sufficient
fine resolution used for resolving hurricane near-eye structures. As the hurri-
cane’s internal structure has convective-scale variations, it was shown that the
0.125o run with disabled CPs could lead to further improvement on Katrina’s
intensity and structure (asymmetry).

Earlier forecasts of Hurricane Rita by the National Hurricane Center (rep-
resented by the line in Figure 2.7 (a) with the square symbols) had a bias
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toward the left side of the best track (the line with circles, also in Figure 2.7
(a)), predicting the storm hitting Houston, Texas. The real-time 0.25o fore-
cast (represented by the line in Figure 2.7 (a) with the diamonds) initialized at
0000 UTC 21 September showed a similar bias. Encouraged by the successful
Katrina forecasts, we conducted two experiments at 0.125o and 0.08o reso-
lutions with disabled CPs, and compared the results with the 0.25o model.
From Figures 2.7 (b-d), it is clear that a higher resolution run produces a
better track forecast, predicting a larger shift in landfall toward the Texas-
Louisiana border. Just before making landfall, Rita was still a Category 3
hurricane with an MSLP of 931 hPa at 0000 UTC 24. Looking at Figures 2.7
(b-d) that show the predicted minimal MSLPs (957.8, 945.5, and 936.5 hPa
at 0.25o, 0.125o, and 0.08o resolutions, respectively), we can conclude that
a higher-resolution run produces a more realistic intensity. Although these
results are promising, note that the early rapid intensification of Rita was not
fully simulated in either of the above simulations, indicating the importance of
further model improvement and better understanding of hurricane (internal)
dynamics.

2.5.3 Benefits of petascale computing to NASA

With the availability of petascale computing resources, we could extend
our approach from short-range weather/hurricane forecasts to reliable longer-
duration seasonal and annual predictions. This would enable us to study hur-
ricane climatology [5] in present-day or global-warming climate, and improve
our understanding of interannual variations of hurricanes. Petascale com-
puting could also make the development of a multi-scale, multi-component
Earth system model feasible, including a non-hydrostatic cloud-resolving at-
mospheric model, an eddy-resolving ocean model, and an ultra-high-resolution
land model [18]. Furthermore, this model system could be coupled with chem-
ical and biological components. In addition to the model’s improvement, an
advanced high-resolution data assimilation system is desired to represent ini-
tial hurricanes, thereby further improving predictive skill.

2.6 Bottlenecks

Taking full advantage of petascale computing to achieve the research chal-
lenges outlined in Sections 2.3–2.5 will first require clearing a number of
computational hurdles. Known bottlenecks include parallel scalability issues,
development of better numerical algorithms, and the need for dramatically
higher bandwidths.

Recent studies on the Columbia supercomputer underline major parallel
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FIGURE 2.7: (See color insert following page 18.) Four-day forecasts of Hur-
ricane Rita initialized at 0000 UTC September 21, 2005. (a) Tracks predicted
by fvGCM at 0.25o (line with diamond symbols), 0.125o (line with crosses),
and 0.08o (line with circles) resolutions. The lines with hexagons and squares
represent the observation and official prediction by the National Hurricane
Center (NHC). (b-d) Sea-level pressure (SLP) in hPa within a 4o × 5o box
after 72-hour simulations ending at 0000 UTC 24 September at 0.25o, 0.125o,
and 0.08o resolutions. Solid circles and squares indicate locations of the ob-
served and official predicted hurricane centers by the NHC, respectively. The
observed minimal SLP at the corresponding time is 931 hPa. In a climate
model with a typical 2o×2.5o resolution (latitude × longitude), a 4o×5o box
has only four grid-points.



44 Petascale Computing: Impact on Future NASA Missions

scalability issues with several of NASA’s current mainline Reynolds-averaged
Navier-Stokes solvers when scaling to just a few hundred processors, requir-
ing communication among multiple nodes). While sorting algorithms can
be used to minimize internode communication, scaling to tens or hundreds
of thousands of processors will require heavy investment in scalable solution
techniques to replace NASA’s current block tri- and penta-diagonal solvers.

More efficient numerical algorithms are being developed (to handle the in-
creased number of physical time steps) which focus on scalability while increas-
ing accuracy and preserving robustness and convergence. This means comput-
ing systems with hundreds of thousands of parallel processors (or cores) are
not only desirable, but are required to solve these problems when including
all of the relevant physics. In addition, unlike some Earth and space sci-
ence simulations, current high-fidelity CFD codes are processor speed-bound.
Runs utilizing many hundreds of processors rarely use more than a very small
fraction of the available memory, and yet still take hours or days to run. As a
result, algorithms which trade-off this surplus memory for greater speed are
clearly of interest.

Bandwidth to memory is the biggest problem facing CFD solvers today.
While we can compensate for latency with more buffer memory, bandwidth
comes into play whenever a calculation must be synchronized over large num-
bers of processors. Systems 10x larger than today’s supercomputers will re-
quire at least 20x more bandwidth, since current results show insufficient
bandwidth for CFD applications on even the best available hardware.

2.7 Summary

High performance computing has always played a major role in meeting
the modeling and simulation needs of various NASA missions. With NASA’s
63.2 TFLOPS Columbia supercomputer, high-end computing is having an
even greater impact within the agency and beyond. Significant cutting-edge
science and engineering simulations in the areas of space exploration, shuttle
operations, Earth sciences, and aeronautics research, are continuously occur-
ring on Columbia, demonstrating its ability to accelerate NASA’s exploration
vision. In this chapter, we discussed its role in the areas of aerospace analysis
and design, propulsion subsystems analysis, and hurricane prediction, as a
representative set of these challenges.

But for many NASA applications, even this current capability is insuffi-
cient to meet all of the diverse and demanding future requirements in terms
of computing capacity, memory size, and bandwidth rates. A petaflops-scale
computing power would greatly alter the types of applications solved and ap-
proaches taken as compared with those in use today. We outlined potential
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benefits of petascale computing to NASA, and described some of the archi-
tecture and algorithm bottlenecks that must be overcome to achieve its full
potential.
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3.1 Introduction

The scientific computing and computational science communities have ex-
perienced a remarkable renaissance in recent years with the advent of increas-
ingly powerful supercomputers and scalable application codes. This combi-
nation enables high fidelity simulations of physical phenomena via increased
spatial-temporal resolution and the inclusion of more accurate physics. For
example, today’s codes and computers are able to simulate supernovae in
three dimensions with detailed radiation transport models. Such simulations
facilitate greater insight and advance scientific discovery.

Scientists are increasingly interested in using codes that include multiple
physical models and span multiple scales. In materials science, for exam-
ple, computational scientists wish to simulate extreme materials properties
across scales ranging from the atomistic (via ab initio molecular dynamics)
through the microscale (dislocation dynamics) and mesoscale (aggregate ma-
terials models) to the continuum (finite elements).

Terascale supercomputers have been used to perform detailed (i.e., high-
resolution) simulations within a scale regime, but they lack the computa-
tional horsepower to simulate accurately across scales. Meeting this challenge

47
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demands petascale computing power. The supercomputing industry is ad-
dressing this need through massive parallelism, first by increasing the number
of computing nodes and now by increasing the number of processing cores per
chip (see Section 3.2).

This increased computing power will need to be used in new ways. In past
simulation advances, computational scientists used greater computing power
to resolve a process more finely in space and time, but today’s scientist wishes
to use the computing power to integrate across spatial and temporal scales
and different physics regimes. In other words, instead of using 8n processors
to double the resolution of a 3D simulation previously done on n processors,
one might instead use 2n processors on each of four scales (e.g., atomistic
through continuum).

The convergence of these two trends — multiphysics applications and mas-
sively parallel petascale computers — requires a fundamentally new approach
to large-scale scientific simulation. In the past, most simulations were data
parallel and used all of the machine’s processors to perform similar opera-
tions on distributed data. Multiscale, multiphysics simulations are inherently
task parallel and call for a compatible programming paradigm (Section 3.3).
These applications also demand scalable numerical algorithms suited to the
multiscale and multiphysics nature of the problem being solved (Section 3.4).

3.2 The Next Generation of Supercomputers

In the early 1990s, the architecture of supercomputers began to evolve into
the design that is familiar today: a large number of general-purpose pro-
cessors connected by a high-performance network. The processors are often
identical to those used in workstations or enterprise servers. Using off-the-
shelf components allows system designers to exploit the rapid improvements
in processors developed for high-volume markets and thereby avoid the cost
of developing custom chips for supercomputers. A few vendors, such as Cray
and NEC, continue to offer supercomputers based on vector processors rather
than commodity processors, but vector-based systems account for a small part
of the current supercomputer market: Only seven of the world’s 500 fastest
computers in November 2006 were vector machines [15].

During the past 15 years, improvements in peak processing power have come
both from faster clock rates in individual processors and from larger processor
counts. To illustrate the evolution of these systems, Table 3.1 compares two
machines from Top 500 lists in 1993 and 2006. Each is the highest-ranked
commodity-processor machine from its list. In this example, increasing the
processor count contributed almost as much to the overall performance gain
as the higher clock speeds. The two factors together account for a 3110-fold
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TABLE 3.1: Characteristics of two supercomputers
based on commodity processors. The Intel Delta was ranked
number 8 in June 1993, and the Cray XT3 was number 2 in
November 2006. The CPU total for the Opteron system
counts two cores per processor. (Data from Top 500
Supercomputer Sites Web site [15].)

System Processor CPUs Clock rate Peak FLOPS
Intel Delta i860 512 40 MHz 20.48 × 109

Cray XT3 Opteron 26,544 2.4 GHz 127.4 × 1012

Ratio of increase 51.8 60 6,220

increase in peak performance. (The remaining factor-of-two increase comes
from the use of floating point units that can complete a multiply-add instruc-
tion every clock cycle.)

Faster clock rates give users more performance with essentially no develop-
ment effort, but higher processor counts can require significant development
effort to exploit the added parallelism. Application developers must ensure
that their algorithms scale and that their problems express enough parallelism
to keep all the processors busy.

Unfortunately, the performance of individual processor cores is likely to in-
crease much more slowly in coming years than it has over the past two decades.
The most obvious method for increasing performance is raising the clock rate,
which typically involves shrinking the components on a chip. However, re-
ducing the spacing between components increases the amount of current that
leaks between them, which in turn increases the power consumption for a
given clock rate. Moreover, a smaller processor must dissipate the heat it
produces over a smaller area of silicon. The resulting concentration of heat
degrades reliability and further increases leakage current. These problems
have made it difficult to develop commodity processors that run faster than
about 4 GHz. Other architectural techniques that increase a core’s compu-
tational performance for a given clock rate are also producing diminishing
benefits.

Chip designers have turned instead to multicore designs to increase perfor-
mance [10]. Many current processor designs now incorporate two processing
cores on a single chip. Keeping the clock rate constant while doubling the
number of cores allows the chip to use less power than doubling the clock rate
for a single-core chip. Of course, for the dual-core chip to compute at the same
rate as the higher-frequency single-core chip, there must be work available for
the two cores to do in parallel. Meanwhile, major chipmakers such as Intel,
AMD, and IBM already offer or have announced quad-core processors. The
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trend toward higher levels of internal parallelism seems clear.∗

If processor clock rates remain essentially fixed, performance increases for
supercomputers based on commodity chips can only come from increased par-
allelism. IBM’s Blue Gene [9] line of computers is a forerunner of this trend.
The largest of these systems, Blue Gene/L, has 65,536 processors, each with
two IBM PowerPC 440 cores. These relatively simple processors run at only
700 MHz, limiting both component costs and power usage. However, this mas-
sive parallelism presents a new challenge to application developers who until
recently had to deal with only 10,000-way parallelism. Section 3.5 shows how
some users have risen to this challenge. As the trend toward 100,000-core or
even million-core machines continues, exploiting this level of parallelism will
need to become a mainstream activity.

3.3 Programming Models for Massively Parallel Machines

Most applications written for the current generation of parallel computers
use a data parallel model of computation, also known as single program,
multiple data (SPMD). In this model, all tasks execute the same algorithm
on different parts of the data at the same time. (The tasks need not execute
precisely the same instruction at a given instant, since some regions of the
problem domain may require additional iterations or other special handling.)
In contrast to data parallelism, task parallelism assigns different types of work
to different threads or processes in an application. One way to implement task
parallelism is by giving multiple threads in a process separate tasks to carry
out on a common data set. In practice, however, scientific applications most
often use threading as an extended form of data parallelism, such as running
independent loop iterations in parallel. (Other types of applications, such as
those that do commercial data processing, may have a genuinely task parallel
architecture, but these are outside the scope of this chapter.)

One difficulty in writing an efficient data parallel program is keeping all the
cores busy all of the time. Forcing some tasks to wait while others finish larger
units of work can drastically reduce overall performance. Keeping a program
well load-balanced becomes more difficult with increasing parallelism: There
may not be a natural way to divide a problem into 100,000 or more equal parts
that can be worked on concurrently. Even if partitioning the problem is easy,
there may be so little work for each core to do that the cost of communicating
data between the large number of tasks overwhelms the gains from increased

∗In the rest of this chapter, the term “processor” will refer to a discrete chip, and “core”
will refer to one or more CPUs on those chips. A “node” is a unit of the computer with
one or more processors that share direct access to a pool of memory.
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parallelism. The remainder of this section describes several approaches to
using massively parallel machines efficiently.

3.3.1 New parallel languages

Several research groups are developing new languages for parallel program-
ming that are intended to facilitate application development. Their goals
include improving programmer productivity, using parallel resources more ef-
fectively, and supporting higher levels of abstraction. Three of these new lan-
guages are being developed for the U.S. Defense Advanced Research Projects
Agency (DARPA) program on High Performance Computer Systems (HPCS).
They are Chapel [5] (being developed by Cray), Fortress [1] (Sun), and X10 [6]
(IBM). All three languages feature a global view of the program’s address
space, though in Chapel and X10 this global address space has partitions vis-
ible to the programmer. The languages also include numerous methods for
expressing parallelism in loops or between blocks of code. Although these
languages support task-level parallelism in addition to data parallelism, the
developer still writes a single application that coordinates all activity.

While new languages may simplify writing new parallel applications from
scratch, they are not an attractive means to extract further parallelism from
existing large parallel codes. At the Lawrence Livermore National Laboratory
(LLNL), for example, several important simulation codes have been under
continuous development for more than ten years, and each has a million or
more source lines. Rewriting even one of these applications in a new language,
however expressive and efficient it may be, is not feasible.

3.3.2 MPI-2

Another approach to writing a task parallel application is to use the job-
creation and one-sided communication features in the MPI-2 standard [11].
MPI-2 allows a code to partition itself into several parts that run different ex-
ecutables. Processes can communicate using either the standard MPI message
passing calls or the “one-sided” calls that let processes store data in another
process or retrieve it remotely.

While MPI-2 has the basic capabilities necessary to implement task paral-
lel applications, it is a low-level programming model that has not yet been
adopted as widely as the original MPI standard. One obstacle to broad adop-
tion of MPI-2 has been the slow arrival of full implementations of the standard.
Although at least one complete implementation appeared shortly after MPI-2
was finalized in 1997, MPI-1 implementations remain more widely available.

3.3.3 Cooperative parallelism

To offer a different way forward, LLNL is developing an alternative par-
allel programming model, called cooperative parallelism [14], that existing
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applications can adopt incrementally.
Cooperative parallelism is a task parallel, or multiple program, multiple

data (MPMD) programming model that complements existing data parallel
models. The basic unit of computation is a symponent (short for “simulation
component”), which consists of one or more processes executing on one or
more nodes. In other words, a symponent can be a single-process program
or a data parallel program. A symponent has an object-oriented interface,
with defined methods for carrying out tasks. When an application starts, it
allocates a fixed set of nodes and processors on a parallel machine, and the
runtime system (called Co-op) launches a symponent on a subset of these
nodes. Any thread or process within this initial symponent can launch addi-
tional symponents on other processors in the pool, and these new symponents
can issue further launch requests. Each symponent can run a different exe-
cutable, and these executables can be written entirely separately from each
other.

When a thread launches a symponent, it receives an identifying handle.
This handle can be passed to other threads or processes, and even to other
symponents. Any thread with this handle can issue a remote method invo-
cation (RMI) on the referenced symponent. Remote methods can be invoked
as a blocking, nonblocking, or one-way call. (One-way RMI calls never return
data or synchronize with the caller.)

Except for their RMI interfaces, symponents are opaque to one another.
They do not share memory or exchange messages. Issuing an RMI to a sym-
ponent requires no previous setup, other than obtaining the handle of the
target symponent, and no state information regarding the RMI persists in the
caller or the remote method after the call is completed. This design avoids
potential scaling issues that would arise if each of many thousands of sym-
ponents maintained information on all the symponents it had ever called or
might potentially call in the future.

Symponents can terminate other symponents, either when they detect an
error or for other reasons, and a parent symponent can be notified when its
child terminates. Co-op is implemented using Babel middleware [7], which
supplies the RMI functionality and also allows functions written in different
languages to call each other seamlessly. This means that symponents written
in C, C++, and Fortran can call each other without any knowledge of each
other’s language.

3.3.4 Example uses of cooperative parallelism

Cooperative parallelism enables applications to exploit several different
kinds of parallelism at the same time. Uses for this flexibility include fac-
toring out load imbalance and enabling federated computations.

Factoring out load imbalance. Some simulations incur load imbalance
because extra calculations are necessary in certain regions of the problem
domain. If the application synchronizes after each time step, then all the
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FIGURE 3.1: Cooperative parallelism can improve the performance of unbal-
anced computations. The boxes on the left represent a group of processors
running a data parallel simulation. The highlighted boxes are tasks that have
additional work to do, and they sublet this work to a pool of servers on the
right. Each server is itself a parallel job. A server proxy keeps track of which
servers are free and assigns work accordingly. This arrangement improves load
balance by helping the busier tasks to finish their work more quickly.

tasks may wait while a subset of them complete these extra calculations. To
reduce the time that the less-busy tasks wait for the busy one, the developer
can assign the extra calculations to a pool of server symponents, as shown
in Figure 3.1. Here, a large symponent running on many cores executes a
normal data parallel computation. When any task determines that it needs
additional computations, it sends a request to a server proxy, which forwards
the request to an available server in a pool that has been allocated for this
purpose. To the main simulation, this request looks like a simple function
call, except that the caller can proceed with other work while it waits for the
result. It can even submit additional nonblocking requests while the first one
is executing. The servers themselves may run as parallel symponents, adding
another level of parallelism. The server’s ability to apply several processors
to the extra calculation, combined with the caller’s ability to invoke several
of these computations concurrently, allows the caller to finish its extra work
sooner. This reduces the time that less-busy tasks need to wait, so the overall
load balance improves. We expect this approach to be helpful in materials
science applications and a number of other fields.

Federated computations. A more ambitious use of cooperative paral-
lelism is to build a large application from existing data parallel codes. For
example, a multiphysics model of airflow around a wing could combine a fluid
dynamics model with a structural mechanics model; or a climate application
could combine models of the atmosphere, the ocean, and sea ice. In either
case, a separate symponent would represent each independent element of the
system. Periodically, the symponents would issue RMI calls to update either
a central database or a group of independent symponents with data about
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their current state. A fully general solution would employ a collective form
of RMI, in which multiple callers could send a request to multiple recipients;
however, cooperative parallelism does not yet support this model. Although
federated simulations can be written with current technology, they may en-
counter difficult load balance problems and other complications. Cooperative
parallelism, when fully realized, should provide a simpler way to build multi-
physics simulations as a federation of existing single-physics codes.

3.4 Multiscale Algorithms

Petascale simulations of multiphysics, multiscale phenomena require scal-
able algorithms and application codes that can effectively harness the power
of the computers described above. Specifically, each symponent within a fed-
erated simulation needs to be scalable within its processor space. Scalabil-
ity across symponents may be achieved via cooperative parallelism using an
MPMD paradigm. This section discusses the importance of scalable numer-
ical algorithms within a single physics regime, and it previews some novel
approaches to scaling across multiple physics regimes.

In the scientific applications of interest here, one typically approximates the
solution of a system of partial differential equations (PDEs) describing some
physical phenomenon on a discretized spatial mesh. The choice of discretiza-
tion scheme and numerical PDE solver are closely entwined and together
determine the accuracy and scalability of the resulting simulation. The over-
all application code — consisting of the discretization and solver — must
be scalable in both its underlying numerical algorithms and its parallel im-
plementation. This would result in an application whose time to solution is
constant as the problem size increases proportionally with the machine size
(i.e, weak scaling). In practice, the scalability burden typically falls on the
solver, which is the subject of the next section.

3.4.1 Parallel multigrid methods

Multigrid methods were first introduced in the 1970s and are provably op-
timal solvers for various classes of PDEs. Here optimality means that the
algorithm has complexity O(n), where n is the number of grid points on the
discretized spatial mesh. In contrast, other solution techniques are O(n2) or
worse. The optimality of the multigrid solver translates into mathematical
scalability: The amount of work required for solution is linearly proportional
to the problem (mesh) size. If this numerical method can be efficiently imple-
mented in parallel — for example, by overlapping communication and com-
putation — then the overall algorithm (and that portion of the application
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TABLE 3.2: Execution times (in seconds) for a parallel
multigrid method. The table compares two coarsening
operators (C-old and C-new) for each of two data querying
techniques (global and assumed partition).

Data query via Data query via
global partition assumed partition

Processors Unknowns C-old C-new C-old C-new
4,096 110.6M 12.42 3.06 12.32 2.86
64,000 1.73B 67.19 10.45 19.85 4.23

code) is scalable.
A detailed discussion of multigrid methods is beyond the scope of this chap-

ter, but the key idea is this: Multigrid methods solve successively smaller
problems on a hierarchy of grids to accelerate the solution of the original
fine-grid problem. Specifically, one must properly define coarsening and pro-
longation operators that map the intermediate approximations from one grid
to another. (Coarsening restricts the approximate solution to a coarser grid;
prolongation interpolates the approximate solution onto a finer grid.) These
operators are highly problem-dependent. Most recent mathematical multi-
grid research has concentrated on defining operators in real applications so
that the resulting algorithm retains the hallmark optimality (and mathemat-
ical scalability). Toward this end, considerable work has been done over the
past decade in the area of algebraic multigrid methods. AMG methods, as
they are known, do not presume that the underlying mesh is structured. In-
stead they rely on inferred algebraic properties of the underlying system of
discretized equations. This information is used to define the coarsening and
prolongation operators. Researchers successfully have applied AMG methods
to challenging PDEs discretized on unstructured meshes for a variety of ap-
plications, including computational astrophysics, structural mechanics, and
fluid dynamics.

In the past decade, considerable effort has been focused on improving the
parallel scalability of algebraic multigrid methods. In serial AMG methods,
key aspects of the calculation are inherently sequential and do not parallelize
well on massively parallel machines. In particular, although computational
complexity is optimal, storage and communication costs increase significantly
on parallel computers. This problem has not been solved, but recent advances
in coarsening strategies have ameliorated the complexity and setup costs by
halving the storage requirements and reducing the execution times by an order
of magnitude [8].

The parallel scalability issues become even more pronounced on massively
parallel computers like Blue Gene/L. Consider the kernel operation of answer-
ing a global data distribution query. In a traditional parallel implementation
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(such as one that uses MPI’s MPI Allgatherv collective operation), this re-
quires O(p) storage and communication, where p is the number of processors.
On a machine like Blue Gene/L with more than 100,000 processors — and
future petascale machines with upwards of one million processors — storing
O(p) data is impractical if not impossible. A novel “assumed partition” algo-
rithm [3] employs a rendezvous algorithm to answer queries with O(1) storage
and O(log p) computational costs.

To illustrate the power of efficiently implemented parallel multigrid meth-
ods, consider Table 3.2. It demonstrates the scalability of the LLNL AMG
solver on the Blue Gene/L supercomputer: A problem with nearly two billion
grid points (303 unknowns per processor) is solved in just over four seconds.
The 16-fold improvement over the previous algorithm is a combination of an
improved coarsening algorithm and the faster communication routine men-
tioned above. (It should be noted that the underlying algorithm also is math-
ematically scalable in terms of number of iterations required for convergence.)

3.4.2 ALE-AMR discretization

The preceding discussion touched on the importance of the underlying spa-
tial mesh to the mathematical and parallel performance of the PDE solver.
It is easier to define and implement optimally performing multigrid methods
on structured Eulerian meshes (the regular communication patterns facili-
tate efficient parallel implementation), but such meshes may not adequately
represent important problem features, such as complex moving parts in an
engineering application.

To overcome this deficiency, computational scientists have typically turned
to one of two competing discretization methodologies: adaptive mesh refine-
ment (AMR) or arbitrary Lagrangian-Eulerian (ALE) meshing. In AMR, one
refines the mesh during runtime based on various estimates of the solution
error. This allows one to obtain the accuracy of a much finer mesh at a frac-
tion of the storage and computational costs. The underlying grid still has a
fixed topology, however. In an ALE approach, the mesh moves in response to
evolving problem dynamics. This allows one to track complex physics more
accurately, but the mesh often becomes so tangled that it must be remapped
periodically. Constructing robust mesh motion algorithms for ALE schemes
remains a central challenge.

An interesting recent idea is to combine the best features of ALE and AMR
into a new discretization approach that is better suited to petascale simulation
of multiphysics applications. The method, called ALE-AMR [2], is illustrated
in Figure 3.2. Standard ALE is illustrated in the left graphic: One starts with
an Eulerian mesh, which deforms over time in response to problem dynamics,
and eventually it must be remapped. Intermediate meshes may possess highly
skewed elements which present numerical difficulties. On the other hand, it
nicely resolves complex features, such as shock fronts. A typical AMR grid
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FIGURE 3.2: ALE-AMR (center) combines the moving mesh feature of ALE
(left) with the adaptive refinement of AMR (right) to yield a cost-effective
mesh discretization technique that accurately resolves evolving physical phe-
nomena such as shock fronts.

hierarchy is shown on the right. The meshing is simpler with uniform ele-
ments, but the shock resolution is inferior per grid point compared to the
ALE scheme. The ALE-AMR approach is shown in the center of Figure 3.2.
The essential idea here is that one refines a portion of the mesh as in AMR
through the dynamic insertion and deletion of grid points rather than allow
it to deform too much, thereby combining the advantages of both types of
adaptivity in one method. This helps to avoid many of the undesirable nu-
merical properties associated with the highly skewed elements that arise in
ALE schemes. It also allows one to leverage much of the efficient computer
science machinery associated with AMR grid hierarchy management.

The combination of ALE and AMR technology — each challenging in it-
self — presents many numerical and software challenges that are still being
researched. While some fundamentals of ALE-AMR algorithms have been
established, the incorporation of more specialized physics capabilities such as
sliding surfaces, globally coupled diffusion physics, and multi-material treat-
ments continue to pose research challenges.

3.4.3 Hybrid atomistic-continuum algorithms

The discussion so far has focused on continuum methods, that is, numeri-
cal methods for approximating a solution on a spatial mesh. In multiphysics
applications, however, one needs a range of models to simulate the under-
lying physical phenomena accurately. These applications may include some
combination of continuum and atomistic (e.g., particle) methods. For in-
stance, consider shock-induced turbulent mixing of two fluids, as shown in
Figure 3.3. Continuum computational fluid dynamics (CFD) methods (e.g.,
Euler and Navier-Stokes) adequately describe fluid motion away from the
interface, but they are limited by the smallest scales in the computational
mesh. On the other hand, atomistic methods (e.g., direct simulation Monte
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(Euler, Navier-Stokes) away
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fluid A fluid B

DSMC representation at
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FIGURE 3.3: An illustrative multiphysics simulation of a shock propagating
through two fluids. Continuum methods (e.g., based on Navier-Stokes) ac-
curately describe the fluid motion away from the interface, but one needs an
atomistic method (e.g., direct simulation Monte Carlo, DSMC) to simulate
behavior at the interface. Since the atomistic method is too expensive to use
throughout the domain, the use of a hybrid algorithm is attractive.

Carlo) adequately resolve the shock fronts, but they are too expensive to use
throughout the problem domain.

Several researchers have recently investigated hybrid continuum-atomistic
methods via adaptive mesh and algorithmic refinement (AMAR) [18]. As
noted in the preceding section, traditional AMR allows one to refine a contin-
uum calculation around dynamically moving and growing interfaces. Specif-
ically, AMR refines the mesh around a feature of interest, say a shock front,
and applies the same continuum method within the refined mesh. In a hybrid
algorithm such as AMAR, one instead switches to a discrete atomistic method
at the finest grid scale. This allows one to use an appropriate (but expensive)
method only where it is needed. This is illustrated in Figure 3.4, where one
can see the particles of an atomistic method embedded within an AMR grid
hierarchy.

The implementation of hybrid methods like AMAR could be facilitated by
a MPMD programming paradigm like cooperative parallelism. For example,
one could easily allocate additional processors dynamically to the finer meshes
or to the direct simulation Monte Carlo (DSMC) method. Although this can
be done in a data parallel context, a properly implemented MPMD program-
ming paradigm should make it easier to implement — but this remains to be
demonstrated.
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FIGURE 3.4: (See color insert following page 18.) Simulation of a moving
interface via a hybrid continuum-atomistic method. The white grid blocks
show where a direct simulation Monte Carlo particle method is applied at
the finest AMR grid scale to resolve the physics at the interface between two
fluids. A continuum-scale method is applied elsewhere in the fluid. (Adapted
from Hornung et al. [13])

3.5 Applications Present and Future

The arrival of terascale supercomputers such as Blue Gene/L ushers in a
new era of computational science, in which scientific simulation will emerge as
a true peer to theory and experiment in the process of scientific discovery. In
the past, simulations were viewed largely as an extension of theory. Moreover,
these simulations often were lacking in some fundamental way, for example,
insufficient spatial resolution due to limited computational resources. Today’s
supercomputers finally possess sufficient computing power (and memory) to
enable unprecedented simulations of physical phenomena — simulations that
often suggest new theories or guide future experiments. This section examines
the state of the art in terascale simulation through two illustrative applica-
tions. It also offers a glimpse of the future of petascale simulation by describing
the use of cooperative parallelism to enable a multiphysics simulation.

3.5.1 State of the art in terascale simulation

The LLNL Blue Gene/L supercomputer described in Section 3.2 represents
a milestone in both scientific computing and computational science. In the
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former area, Blue Gene/L is the first computer to exceed 100 TFLOPS on the
LINPACK benchmark [15]. It achieved 280.6 TFLOPS, 76% of the machine’s
theoretical peak. It is the first computer to employ more than 100,000 cores,
thus redefining the term “massively parallel.” This is important because it
challenges the scientific computing community to think anew about paral-
lelism and scalability. Many observers view Blue Gene/L as a stepping stone
to the petascale.

The computational science milestone is even more impressive and impor-
tant: In November 2005, Blue Gene/L ran the first meaningful scientific sim-
ulation to sustain more than 100 TFLOPS. Less than a year later, two ad-
ditional application codes exceeded 100 TFLOPS on Blue Gene/L, including
one that has since sustained 207 TFLOPS. In fact, the last two winners of
the Gordon Bell Prize were LLNL’s ddcMD and Qbox codes. Both codes ran
molecular dynamics (MD) simulations of material properties under extreme
conditions on Blue Gene/L. MD codes are particularly well suited to this
machine, but other codes have been ported with excellent results.

World’s first 100 TFLOPS sustained calculation (ddcMD). The
2005 Gordon Bell Prize was awarded to an LLNL-IBM team led by compu-
tational physicist Fred Streitz for the world’s first 100 TFLOPS sustained
calculation [17]. They simulated the solidification of tantalum and uranium
via classical molecular dynamics using pseudopotentials. They ran a num-
ber of simulations, including some with more than 500 million atoms. These
simulations begin to span the atomistic to mesoscopic scales.

The code, called ddcMD, sustained 102 TFLOPS over a seven-hour run,
thus achieving a remarkable 28% of theoretical peak performance. It was
fine-tuned by IBM performance specialists, and it demonstrated exemplary
strong and weak scaling across 131,072 cores for several different simulations.

The simulation results are scientifically important in their own right. For
the first time, scientists had both sufficient computing power (in Blue Gene/L)
and a scalable application code (ddcMD) to fully resolve the physics of inter-
est. Specifically, their 16 million atom simulation of grain formation was the
first to produce physically correct, size-independent results. In contrast, pre-
vious simulations on smaller machines were able to use at most 64,000 atoms.
In order to simulate the physical system of interest, periodic boundary con-
ditions were imposed, resulting in an unphysical periodicity in the simulation
results. The striking difference between these two simulations is readily seen
in Figure 3.5, where three snapshots in time are shown. In the top row, one
can see the rich 3D detail in the planar slices, whereas in the bottom row
one sees the replicated pattern resulting from the under-resolved simulation.
Moreover, the team proved that for this problem, no more than 16 million
atoms are needed.

Current world record of 207 TFLOPS sustained (Qbox). The 2006
Gordon Bell Prize was awarded to an LLNL-UC Davis team led by computa-
tional scientist François Gygi for their 207 TFLOPS simulation of molybde-
num [12]. This result is the current world record for performance of a scientific
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FIGURE 3.5: (See color insert following page 18.) Three-dimensional molec-
ular dynamics simulation of nucleation and grain growth in molten tantalum.
Three snapshots in time are shown for two simulations. The top row corre-
sponds to a simulation using 16 million atoms on the Blue Gene/L supercom-
puter at LLNL. This 2005 Gordon Bell Prize-winning calculation was the first
to produce physically correct, size-independent results. The rich 3D detail is
seen in the planar slices. The bottom row used 64,000 atoms on a smaller su-
percomputer. Periodic boundary conditions were used to generate the entire
domain, resulting in the unphysical replicated pattern. (Image from Streitz
et al. [17])

application code on a supercomputer. The code, called Qbox, simulates ma-
terial properties via quantum molecular dynamics. It is a first principles ap-
proach based on Schrödinger’s equation using density functional theory (with
a plane-wave basis) and pseudopotentials. This versatile code has been used
to simulate condensed matter subject to extreme conditions (such as high
pressure and temperature) in a variety of applications.

The code is written in C++ and MPI and is parallelized over several physics
parameters (plane waves, electronic states, and k-points). It employs opti-
mized ScaLAPACK and BLACS linear algebra routines, as well as the FFTW
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Fast Fourier Transform library. The test problem involved 1000 molybde-
num atoms.† In November 2005, this code sustained 64 TFLOPS on Blue
Gene/L. Less than one year later, after considerable effort and tuning, the
code achieved 207 TFLOPS on the problem above. It should be mentioned
that this code’s performance is highly dependent on the distribution of tasks
across processors. The best performance was achieved using a quadpartite
distribution across a 64 × 32 × 32 processor grid.

The heroic effort behind the simulations described above should not be
understated: In each case, teams of dedicated computational and computer
scientists toiled to tune their codes to perform well on a radically new archi-
tecture. These pioneers deserve accolades, but future success will be measured
by how routine and easy similar simulations become. The next section hints
at one approach to realizing this vision.

3.5.2 Multiphysics simulation via cooperative parallelism

The two preceding examples illustrate the state of the art in large-scale sim-
ulation using single-physics codes on terascale supercomputers. In many sci-
entific applications of interest, the desire is to integrate across multiple scales
and physics regimes rather than resolve further a single regime. For example,
a computational scientist might wish to federate several extant simulation
codes (each scalable in its own right) into a single multiphysics simulation
program. As discussed earlier, such applications require petascale computing
power. The question is how to harness this computing power in an application
developer-friendly way.

One approach to building such multiphysics application codes is coopera-
tive parallelism, an MPMD programming model discussed in Section 3.3. Al-
though this programming model is still in its early development, some work
is already being done to show how it can facilitate the development of mul-
tiphysics applications. Specifically, a team has modified a material modeling
code so that the coarse-scale material response computation uses parameters
computed from fine-scale polycrystal simulations [4]. If the fine-scale parame-
ters were recomputed each time they were needed, these computations would
overwhelm the execution time of the simulation and make it infeasible to com-
plete in a reasonable period of time. However, using a technique known as
adaptive sampling (derived from in situ adaptive tabulation [16]), the simula-
tion can eliminate many of these expensive calculations. It does so by storing
results from early fine-scale computations in a database. Subsequent fine-scale
computations can interpolate or extrapolate values based on previously stored
results, if the estimated error is not too large. When it does become necessary

†Quantum MD codes are much more expensive than classical MD codes, so Qbox cannot
model as many atoms as can ddcMD. On the other hand, Qbox is much more accurate for
certain classes of problems. These are but two codes in a family of MD codes being used
at LLNL for various scientific and programmatic applications.
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to perform a full fine-scale computation, the simulation assigns the work to
a server, as illustrated in Figure 3.1. So far, this application has run on just
over 4000 cores, but the combined effect of the reduced need for fine-scale
computations (because of adaptive sampling) and the improved load balance
(because of the server pool model) has demonstrated performance gains rang-
ing from one to two orders of magnitude, depending on the problem and the
desired accuracy. Moreover, the application shows how MPMD programming
can exploit several kinds of parallelism concurrently.

3.6 Looking Ahead

The convergence of multiscale, multiphysics applications with rapidly in-
creasing parallelism requires computational scientists to rethink their ap-
proach to application development and execution. The largest current ma-
chine, Blue Gene/L, has challenged developers to utilize effectively more than
100,000 cores. Several teams have achieved notable successes, but accomplish-
ments that now lead the field will need to become commonplace if the scientific
computing community is to fully exploit the power of the next generation of
supercomputers. Heroic efforts in application development and performance
tuning must give way to standardized scalable algorithms and programming
methodologies that allow computational scientists to focus on their science
rather than underlying computer science issues.

Work is now underway at LLNL and other research institutions to find the
best ways to harness petascale computers, but these efforts will not yield near-
term results. When large-scale distributed memory computers began to domi-
nate scientific computing in the early 1990s, there was a period of uncertainty
as developers of hardware, systems software, middleware, and applications
worked to determine which architectures and programming models offered
the best combination of performance, development efficiency, and portability.
Eventually, a more-or-less standard model emerged that embraced data par-
allel programming on commodity processors using MPI communication and
high-speed interconnection networks.

The next generation of applications and hardware will bring about another
period of uncertainty. Multiphysics simulations need programming models
that more naturally lend themselves to MPMD applications. In light of this,
the authors believe that the dominant paradigm for computational science ap-
plications running on petascale computers will be task parallel programming
that combines multiple scalable components into higher-level programs.
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4.1 Introduction

Large-scale multi-physics computational simulations often provide insight
into complex problems that both complement experiments and help define
future physical and computational experiments [13]. A good example of a
production-strength code is Uintah [13, 12]. The code is designed to solve
reacting fluid-structure problems involving large deformations and fragmen-
tation. The underlying methods inside Uintah are a combination of standard
fluid-flow methods and material point (particle) methods. In the case of
codes, like Uintah, which solve large systems of partial differential equations
on a mesh, refining the mesh increases the accuracy of the simulation. Un-
fortunately refining a mesh by a factor of two increases the work by a factor
of 2d, where d is the dimensionality of the problem. This rapid increase in

67
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computational effort severely limits the accuracy attainable on a particular
parallel machine.

Adaptive mesh refinement (AMR) attempts to reduce the work a simulation
must perform by concentrating mesh refinement on areas that have high error
[3, 2] and coarsening the mesh in areas in which the error is small. One
standard parallel AMR method divides the domain into rectangular regions
called patches. Typically each patch contains Cartesian mesh cells of the
same size. Each processor runs the simulation on a subset of the patches
while communicating with neighboring patches. By using a component-based
framework [13, 12, 8, 10] simulation scientists can solve their problems without
having to focus on the intricacies of parallelism. For example, inside Uintah,
parallelism is completely hidden from the simulation scientists [13], by means
of a sophisticated task compilation mechanism.

In order to achieve good parallel performance with AMR, the component-
based frameworks must be enhanced. The framework must drive refinement
by locating regions that require refinement and creating patches on those
regions. We refer to the process of generating patches as regridding. The
patches must be load balanced onto processors in such a way that each pro-
cessor is performing approximately the same amount of work while min-
imizing the overall communication. This can be achieved in the case of
AMR calculations through the use of space-filling curves. Load balancers
based on space-filling curves can create partitions quickly that keep commun-
ication between processors low while also keeping the work imbalance low
[1, 16, 18, 6]. Recent work has shown that space-filling curves can be gen-
erated quickly and scalably in parallel [11]. In addition, the Uintah frame-
work must also schedule the communication between the patches. As the
simulation runs, regions needing refinement change, and as the computa-
tional mesh changes, load balancing and scheduling need to be recomputed.
The regridding can occur often throughout the computation requiring each
of these processes to be quick and to scale well in parallel. Poor scala-
bility in any of these components can significantly impact overall perfor-
mance [19, 20]. The Berger-Rigoutsos algorithm, which is commonly used
for regridding [19, 4], creates patch sets with low numbers of patches that
cover the regions needing refinement. In addition, the Berger-Rigoutsos al-
gorithm can be parallelized using a task-based parallelization scheme [19,
20].

Present state-of-the-art AMR calculations have been shown by Wissink and
colleagues [19, 20] to scale to many thousands of processors in the sense of
the distribution of computational work. The outstanding issues with regard to
AMR are surveyed by Freitag Daichin et al. [7], and in great depth by Steens-
land and colleagues [17]. In this paper we will show how scalability needs to
reevaluated in terms of accuracy and consider how different components of
Uintah may be made scalable.
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4.2 Adaptive Mesh Refinement

Traditionally in parallel computing, scalability is concerned with maintain-
ing the relative efficiency as the problem size grows. What is often missing is
any attempt to ensure that the computational effort is, in comparative terms,
well spent. The following argument was made by Keyes at the Dagstuhl
workshop where his work was presented:

Consider a fixed mesh partial differential equation (PDE) calculation in
three space dimensions with mesh sizes δx, δy, δz defining a regularly refined
box mesh M1 and a time step δt. Then it is possible to write the error obtained
by using that mesh in some suitable norm, defined here by ||E(M1)|| as

||E(M1)|| = Cx(δx)k + Cy(δy)k + Cz(δz)k + Ct(δt)q (4.1)

In many cases of practical interest p and q may be less than three. The com-
putational time, Tcpu, associated with this mesh is (at best) a linear function
of the number of unknowns and the number of time steps and hence may be
written as:

Tcpu(M1) = Ccpu
1

δxδyδzδt
(4.2)

where Ccpu is an appropriate constant.
In order to simplify the discussion from hereon the time dependent nature

of the calculation is neglected. In the case when a new mesh, M2 is defined
by uniformly refining the original mesh by a factor of 2 in each dimension

δx =
δx

2
(4.3)

and similarly for δy and δz, then the computational work increases by

Tcpu(M2) = 8Tcpu(M1) (4.4)

while the error changes by

||E(M2)|| =
1
2k

||E(M1)|| (4.5)

Hence for first and second order methods k = 1, 2 the increase in work is
greater than the decrease in error. The situation becomes worse if the work has
a greater than linear dependency on the number of unknowns. Observations
have spurred much work on high-order methods; see for example comparisons
in the work of Ray and Steensland and others [14, 18].

We now define a mesh accuracy ratio, denoted by Mar by:

Mar =
||E(M2)||
||E(M1)||

(4.6)
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Assuming that the calculation on M1 uses P1 parallel processors and the
calculation on mesh M2 uses P2 parallel processors, and that both solutions
are delivered in the same time, then the Mesh parallel efficiency as denoted
by Mpe, may be defined as

Mpe = Mar
P2

P1
(4.7)

For the simple fixed mesh refinement steady state case above then,

Mpe =
8
2k

(4.8)

It is worth remarking that if the calculation (inevitably) does not scale per-
fectly as far as computational work, or the different numbers of processors
take different amounts of time, then the above expression may be modified to
take this into account:

Mpe = Mar
P2T2

P1T1
(4.9)

where T1 and T2 are the compute times using P1 and P2 processors, respec-
tively.

As a simple example consider the case of the solution of Laplace equation on
the unit cube using a Jacobi method. Suppose that an evenly spaced NxNxN

mesh is decomposed into p sub-cubes each of size N3

p on p processors. A
standard second order method gives an accuracy of C2

N2 while use of a fourth
order method [9], gives an accuracy of C4

N4 and where C2 and C4 are both
known constants. The cost of the fourth order method is twice as many
operations per point with a communications message length that is twice as
long as in the second order case, and with perhaps rI as many iterations, thus
with an overall cost of 2rI of that of the second-order method.

For the same accuracy, and Mar = 1, it follows that

N2 =
√

C4

C2
N2

4 (4.10)

where N2 is the second order mesh size and N4 is the fourth order mesh size.
In order to achieve Mpe = 1 with each run having the same execution time,
as estimated by a simple cost model based on N3

p , the number of processors
used by the second order mesh, P2, must be related to the number used by
the fourth order mesh, P4 by

(N2)3

P2
≈ 2rI

(N4)3

P4
(4.11)

Hence the lower order method needs approximately the square of the number
of processors of the higher order method:

P2 ≈ 1
2rI

(
C4

C2

) 3
2

(P4)2 (4.12)
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The mesh parallel efficiency is also far from one:

Mpe =
C4

C2

2rI

N2N4
(4.13)

Unless the fourth order method has a significantly greater number of iterations
per point than the second order method, the implications of this estimate for
a petaflop machine with possibly O(106) processors are clear.

In considering mesh refinement it is possible to start with a simple one-
dimensional case. Consider a uniform mesh of Nc δxf cells. Next consider
a nonuniform mesh which starts with a cell of width δxf at its left side and
then doubles with each subsequent cell. Suppose that there are q of these
cells, then:

δxf (1 + 2 + 4 + ...2q) = δxfNc (4.14)

Hence after summing the left side of this

δxf (2q+1 − 1) = δxfNc (4.15)

or
q = log2(Nc + 1) − 1 (4.16)

It is worth remarking that it is possible to modify the above expression to
account for a mesh that increases more gradually. For example, an adaptive
mesh in which two cells have the same size before the size changes gives:

q = log2(Nc + 2) − 2 (4.17)

With this simple logarithmic model of mesh changes in mind consider three
cases in which mesh refinement is applied to a three-dimensional box around
either one vertex, one edge or one bounding plane. Suppose that the box is
discretized by using N3

c regular cells. While there are many refinement pos-
sibilities, typically nonuniform refinement takes place on a lower dimensional
manifold than the original mesh. For example:

Refinement at a Point. In this case the mesh can increase in all three
dimensions as in the simple one-dimensional example and so q3 cells are used.
In this case we assume that it is possible to increase the accuracy by only
refining m cells close to the point. Hence the new mesh has q3 + m cells and

Mpe =
q3 + m

q3

1
2k

(4.18)

Refinement on a Line. In this case the mesh can increase in only two
dimensions as in the simple one-dimensional example and so Ncq

2 cells are
used. In this case we assume that it is possible to increase the accuracy by
only refining m cells close to the line. Hence the new mesh has Ncq

2 + mNc

cells and

Mpe =
Ncq

2 + mNc

Ncq2

1
2k

(4.19)
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Refinement on a Plane. In this case the mesh can increase in only one
dimension as in the simple one-dimensional example and so N2

c q cells are
used. In this case we assume that it is possible to increase the accuracy by
only refining N2

c m cells close to the plane. Hence the new mesh has q3 + m
cells and

Mpe =
N2

c q + mN2
c

N2
c q

1
2k

(4.20)

In all three cases a mesh efficiency close to 1 requires:

m

qj
≤ 2k (4.21)

where j = 1, 2 or 3 depending on the case above. Even in the case k = 1 and
j = 1 (refinement of a plane), this simple analysis shows that as long as mesh
refinement needs to be used on less than 50% of the existing cells in order to
reduce the accuracy by half then the increase in accuracy is matched by the
increase in work.

These studies show that if either high order methods or adaptive mesh ap-
proaches are used, then computational resources are used wisely with respect
to the accuracy achieved. This has already been recognized for high order
methods [14], but is not so widely understood for adaptive methods, such as
those discussed below.

4.3 Uintah Framework Background

Uintah is a framework consisting of components such as a simulation com-
ponent, the load balancer, the scheduler, and the regridder. The regridder
component will be described in detail below.

4.3.1 Simulation components

The Uintah simulation components implement different algorithms and op-
erate together or independently [13, 12, 8]. Uintah’s main simulation com-
ponents are based on the implicit compressible Eulerian algorithm (ICE),
material point method (MPM), and Arches [13]. The simulation component
will create tasks, and pass them to the scheduler, which is described below,
instructing it as to what data relative to a patch that task will need. The
scheduler will then execute the simulation component’s tasks, one patch at
a time, thus creating a parallel environment, and enabling the applications
scientist to concentrate on the science issues.
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4.3.2 Load balancer

The load balancer is responsible for determining which patches will be
owned by each processor. There are two main load balancers in Uintah:
the simple load balancer, and the dynamic load balancer. The simple load
balancer simply determines the average number of patches per processor, and
assigns that number of consecutive patches to each processor. This suffices
for simple static problems that are easily load balanced. The dynamic load
balancer attempts to achieve balance for more complicated problems. First,
it orders the patches according to a space-filling curve; and second, it com-
putes a weight for each patch, based on its size and the number of particles.
The curve and the weights are then used to distribute the patches according
to the average work per processor. The patches are assigned in the order of
the space-filling curve placing patches that are close together in space on the
same processor. This reduces the overall amount of communication that must
occur. The patches are assigned so that each processor has approximately the
same amount of work.

The Hilbert [15] space-filling curve is used in Uintah because it may be
generated quickly, [1, 16, 18, 6, 11], in parallel [11], and provides good local-
ity. The curve is formed over patches by using the centroid of the patches
to represent them. The space-filling curve provides a linear ordering of the
patches such that patches that are close together in the linear ordering are
also closer together in the higher dimensional space. The curve is then bro-
ken into curve segments based on the weights of the patches. This provides
approximately equally sized partitions that are clustered locally. Figure 4.1
shows an adaptive mesh partitioned using the Hilbert curve.

FIGURE 4.1: An example of how a space-filling curve is used in partitioning
a mesh.
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The space-filling curve can be generated quickly in parallel. Figure 4.2
shows how the generation performance varies for large numbers of patches
on up to 2048 processors. The load balancer is also responsible to create a

FIGURE 4.2: Scalability of the generating space-filling curves.

processor’s neighborhood, which in essence is every patch on that processor
along with every patch on any other processor that will communicate with a
patch on that processor.

4.3.3 Scheduler

The scheduler orders the simulation component’s tasks in a parallel fashion,
and determines the corresponding MPI communication patterns. Its work is
divided into two phases: compilation and execution. The compilation phase
determines what data is required by each patch from its neighboring patches
for each task. This is determined from the basic communication requirements
that are provided by the simulation component. It accomplishes this by de-
termining which patches are neighbors, and then computes the range of data
the neighboring patch will need to provide [13, 12, 8]. On each processor, this
algorithm is executed for each patch in the processor’s neighborhood, which is
on the order of the number of patches per processor, thus giving a complexity
of nearly O(N

P log N
P

2
), where N is the number of patches and P is the number

of processors. This phase is executed only once for problems without AMR
or dynamic load balancing, hence for fixed meshes its performance is not an
issue. During the execution phase, each task will receive any data it requires
from a neighboring patch’s processor, run the simulation code for the task,
and then send any data it computes to requiring tasks on other processors.
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4.4 Regridder

The regridder’s duty is to create a finer level, which is a set of patches with
the same cell spacing, based on the refinement flags, which are created by
the simulation component. The regridder determines the region of space on
which to create a finer level, and then divides that space into patches with
a finer resolution. It is important that the regridder considers what type of
patches to produce. Producing patches that are too large can result in large
load imbalances and prevent scalability. However, producing patches that are
too small can cause significant overhead in other components.

The Uintah framework has constraints which require the regridder to pro-
duce certain types of patch sets. The first constraint is a minimum patch
size. Each edge of a patch must be at least 4 cells in length. In addition,
patch boundaries can either be coarse or fine but not a combination of the
two. That is, every patch boundary must be completely filled with neigh-
boring patches or have no neighbors at all. For the rest of this chapter we
refer to the location on a boundary that moves from coarse to fine as a mixed
boundary. Figure 4.3 shows two patch sets that cover the same area. The left
patch set is invalid because it contains a mixed boundary; the second patch
set does not contain a mixed boundary and is valid.

Invalid Valid

FIGURE 4.3: Valid and invalid patch sets within Uintah. The left patch set
is invalid because it contains a mixed boundary.

Regridding is commonly accomplished through the Berger-Rigoutsos algo-
rithm [19, 4]. The algorithm starts by placing a bounding box around all of
the refinement flags. A histogram of the refinement flags is then created in
each dimension. This histogram is then used to determine a good location to
split the bounding box in half. The process then recursively repeats on both
halves of the bounding box. By having different processors evaluate different
sections of the recursion this process can be made parallel. A full description
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of the parallel algorithm can be found in [19, 20].
The Berger-Rigoutsos algorithm produces patch sets with low numbers

of patches. However, the constraints within Uintah prevent the use of the
Berger-Rigoutsos algorithm. Berger-Rigoutsos produces patch sets that con-
tain mixed boundaries. Mixed boundaries can be eliminated by splitting
patches at the point where the boundary changes. However, splitting patches
produced by Berger-Rigoutsos can lead to patches that violate the minimum
patch size requirement. Due to the constraints within Uintah we initially
used a tiled regridder. A grid was placed across the domain creating square
patches. Each patch was searched for refinement flags. If a patch did not
contain any refinement flags then the patch was thrown away. This produces
square patches that cannot contain mixed boundaries and are larger than
the minimum patch size. In addition, this regridder simplified the load bal-
ancer because all patches had the same number of cells allowing us to load
balance by using simpler algorithms. Figure 4.4 shows a set of flags and a
corresponding patch set produced by the tiled regridder.

FIGURE 4.4: A patch set produced using the tiled regridder. Patches that
do not contain flags are removed from the computational mesh.

As mentioned above, Uintah cannot use the original algorithm directly.
However, a modified version of the Berger-Rigoutsos algorithm was devised
that creates patches that satisfy Uintah’s constraints. The first modification
is to coarsen the refinement flags by the minimum patch size. To coarsen the
refinement flags, tiles equal to the minimum patch size are laid across the
domain. Each tile represents a single coarse flag. A new flag set is generated
from these coarse flags. This modification guarantees that any patch created
by any regridding algorithm used on these flags is at least the size of the
minimum patch size. The Berger-Rigoutsos algorithm is then run on the
coarse flag set producing a coarse patch set.

Next a fix-up phase is run on the coarse patch set to guarantee the boundary
constraint. Each patch is searched for mixed boundaries. When a mixed
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boundary is found the patch is split at the point where the boundary changes,
eliminating the mixed boundary. Performing this search along each boundary
of each patch guarantees that the boundary condition is met. This search can
easily be performed in parallel by having each processor search a subset of
patches.

The modifications have both advantages and disadvantages over the original
Berger-Rigoutsos algorithm. The coarsening of the flags allows the Berger-
Rigoutsos algorithm to run on a coarser level speeding up the computation
of the patch set. In addition, the minimum patch size can be set larger to
prevent tiny or narrow patches. The disadvantage to coarsening the flags
is that the final patch set will, in most cases, contain more area than it
would with original flags and at best will contain the same area. In addition,
the fix-up phase causes the number of patches to increase. However, this
increase is small and this method is much better than the tiled algorithm.
A comparison of patch sets produced by the two regridders can be found in
Figure 4.5. The coarsened Berger-Rigoutsos regridder produces significantly
fewer patches than the tiled regridder.

FIGURE 4.5: Two patch sets from Uintah. The left patch set is using the tiled
regridder while the right is using the coarsened Berger-Rigoutsos regridder.

Finally, in order to facilitate a better load balance we have implemented one
additional modification to the Berger-Rigoutsos algorithm. After the fix-up
phase, patches may be subdivided further. The weights for each patch are
calculated and any patches that are greater than the average amount of work
per processor are split in half along the longest dimension. Patches that are
larger than the average amount of work are too big and will result in large
load imbalances. In addition, the dynamic load balancer can further split
patches in order to load balance them more efficiently.

Changing the grid is an expensive process. Whenever the grid changes
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the computation must be load balanced, data must be migrated to its new
location, and the task graph must be recompiled. When the grid is changing
often this can greatly hinder the performance of the entire simulation. By
using a process refered to as dilation we can ensure that regridding does not
occur too often. Dilation expands the refinement flags outward in all directions
by applying a stencil to the refinement flags creating a second set of refinement
flags refered to as the dilated flags. At every timestep the refinement flags
are compared to the current grid. If the refinement flags are contained within
the grid then no regridding is necessary. When regridding occurs the dilated
flags are used to create the new grid ensuring the grid is larger than what is
dictated necessary by the refinement flags. This allows the grid to be used for
multiple timesteps before a regrid is necessary.

4.4.1 Extending Uintah’s components to enable AMR

The simulation, scheduling, and load balancing components all need to
be extended for AMR. Any Uintah simulation component that wants to use
AMR must provide a set of functions to: compute refinement flags (so the
regridder can use them to create finer levels); refine the coarse–fine interface,
which interpolates coarse-level data to the fine level along the boundaries of
the fine level; coarsen, which interpolates the computed fine-level data to the
corresponding space on the coarse level; and refine, which interpolates coarse-
level data to a newly generated fine patch. These operations will increase
communication costs as each patch no longer only communicates along its
boundary, but must also communicate with the patches that are coarser and
finer in the same region of space.

4.5 Performance Improvements

In order to analyze the performance of Uintah’s AMR infrastructure we ran
a 3D two-level spherically expanding blast wave problem using 128 processors.
This problem is near the worst case for AMR. It has relatively low compu-
tation per cell and requires lots of regridding. Performing analysis on this
problem provides good insight into where AMR overheads are coming from.
This problem was ran on Zeus, which is a Linux cluster located at Lawrence
Livermore National Laboratory with 288 nodes each with eight 2.4 GHz AMD
Opteron processors. Each node has 16 GB of memory. Nodes are connected
with an InfiniBand switch.

Figure 4.6 shows the runtime of the dominant components using the tiled
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regridder. This graph shows that with the original tiled regridder commun-
ication and regridding time was a major overhead. By using the new load bal-
ancer the communication dropped significantly because the code could greater
exploit intra-node communication. This made the regridder the most time-
consuming portion of the overhead. By switching to the Berger-Rigoutsos
regridder the number of patches was significantly lowered and as a result the
time for regridding and recompiling the task graph was also lowered. However,
a significant amount of overhead was still due to regridding and the following
recompile. By introducing dilation the number of times the grid was changed
was reduced and an improvement in both regridding and recompile time was
observed. These changes in total have reduced the AMR overhead by around
65% for this problem.

FIGURE 4.6: The component times for a 3D blast wave in Uintah on 128
processors on Zeus.
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4.6 Future Work

There is still much room for improvements in the infrastructure that could
decrease the overhead of AMR which will lead to good scalability. Wissink
and Steensland and their colleagues have recently shown that it is possible
but challenging to get specific codes to scale well. The challenge of applying
and extending such ideas to a more general purpose code such as Uintah is
considerable. The central issue is to ensure that the very general task com-
piler and task mapping components scale. Clearly if the substantial overhead
of AMR does not scale then the code as a whole will not scale. One possi-
ble solution is to move toward incremental algorithms, for which AMR is an
ideal problem. Often during execution only the finest level is changing. Incre-
mental algorithms could exploit this by not recalculating on the coarser levels
except when needed. In addition, when level changes are typically small, a few
patches may be added and a few may be removed but the overall patch struc-
ture remains unchanged. Incremental algorithms could take advantage of this,
reducing the AMR overhead considerably. For instance, the task graph com-
piler would only have to compile small subsets of the entire task graph and the
load balancer could take the current placement of patches into consideration
when deciding the placement of new patches. Ideally the entire framework
would be incremental reducing the overhead associated with the framework
and making the dominant costs the task computation and communication.

The communication is still a dominant portion of the runtime. We believe
this is due to synchronization and are working on modifying the infrastructure
to work in a more asynchronous fashion. In addition we are working on ways
to reduce the overall communication needed. The infrastructure of Uintah
can be made quite complex in order to perform communication as efficiently
as possible while keeping the interface for simulation component developers
simple. This provides an ideal scheme for having general purpose simulations
that use highly complex parallel algorithms and at the same time allows sim-
ulation component developers to implement their algorithms without being
hindered by the parallel complexities. Finally, given that redistributing data
is expensive after load balancing it may also be appropriate to take into ac-
count the relative merits of the redistribution cost against computing with a
small imbalance, see [5].

4.7 Acknowledgments

This work was supported by the University of Utah’s Center for the Simula-
tion of Accidental Fires and Explosions (C-SAFE) funded by the Department



Scalable Parallel AMR for the Uintah Multi-Physics Code 81

of Energy, under subcontract No. B524196.
We would like to thank the C-SAFE team for all their hard work on Uintah

and would also like to thank Lawrence Livermore National Laboratory who
graciously gave us access to their computing facilities where we were able to
test Uintah on large numbers of processors.

References

[1] S. Aluru and F. Sevligen. Parallel domain decomposition and load bal-
ancing using space-filling curves. In Proceedings of the 4th International
Conference on High-Performance Computing, pages 230–235, Bangalore,
India, 1997.

[2] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic
partial differential equations. Journal of Computat. Phys., 53:484–512,
1984.

[3] M.J. Berger and P. Colella. Local adaptive mesh refinement for shack
hydrodynamics. Journal of Computat. Phys., 82:65–84, 1989.

[4] M.J. Berger and I. Rigoutsos. An algorithm for point clustering and
grid generation. IEEE Transactions on Systems, Man and Cybernetics,
21(5):1278–1286, 1991.

[5] M. Berzins. A new metric for dynamic load balancing. Applied Math.
Modell., 25:141–151, 2000.

[6] K.D. Devine, E.G. Boman, R.T. Heaply, B.A. Hendrickson, J.D. Teresco,
J. Faik, J.E. Flaherty, and L.G. Gervasio. New challenges in dynamic
load balancing. Applied Numerical Mathematics, 52(2-3):133–152, 2005.

[7] L. Freitag Daichin, R. Hornung, P. Plassman, and A. Wissink. A par-
allel adaptive mesh refinement. In M. Heroux, P. Raghavan, and H. Si-
mon, editors, Parallel Processing for Scientific Computing, pages 143–
162. SIAM, 2005.

[8] J.D. Germain, J. McCorquodale, S.G. Parker, and C.R. Johnson. A
Massively Parallel Problem Solving Environment. IEEE Computer So-
ciety, Washington, DC, 2000.

[9] F. Gibou and R. Fedkiw. A fourth order accurate discretization for the
Laplace and heat equations on arbitrary domains, with applications to
the Stefan problem. Journal of Computat. Phys., 202(2):577–601, 2005.



82 Scalable Parallel AMR for the Uintah Multi-Physics Code

[10] R.D. Hornung and S.R. Kohn. Managing application complexity in the
SAMRAI object-oriented framework. Concurrency and Computation:
Practice and Experience, 14:347–368, 2002.

[11] J. Luitjens, M. Berzins, and T. Henderson. Parallel space-filling curve
generation through sorting. Concurrency and Computation: Practice
and Experience, 19(10):1387–1402, 2007.

[12] S.G. Parker. A component-based architecture for parallel multi-physics
PDE simulation. Future Generation Comput. Sys., 22(1):204–216, 2006.

[13] S.G. Parker, J. Guilkey, and T. Harman. A component-based parallel
infrastructure for the simulation of fluid-structure interaction. Eng. with
Comput., 22(1):277–292, 2006.

[14] J. Ray, C. A. Kennedy, S. Lefantzi, and H.N. Najm. Using high-order
methods on adaptively refined block-structured meshes i - derivatives,
interpolations, and filters. SIAM Journal on Scientific Computing, 2006.

[15] H. Sagan. Space-Filling Curves. Springer-Verlag, Berlin, 1994.

[16] M. Shee, S. Bhavsar, and M. Parashar. Characterizing the performance
of dynamic distribution and load-balancing techniques for adaptive grid
hierarchies. In Proc. of the IASTED Int. Conf., Parallel and Distributed
Computing and Systems, Cambridge, MA, November 1999.

[17] J. Steensland and J. Ray. A partitioner-centric model for structured
adaptive mesh refinement partitioning trade-off optimization. Part I.
International Journal of High Performance Computing Applications,
19(4):409–422, 2005.
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5.1 Cosmological Structure Formation

The universe is homogeneous and isotropic on scales exceeding half a billion
light years, but on smaller scales it is clumpy, exhibiting a hierarchy of struc-
tures ranging from individual galaxies up to groups and clusters of galaxies,
and on the largest scales, the galaxies are aligned in a cosmic web of filaments
and voids. In between the galaxies is a diffuse plasma which is the reservoir
of matter out of which galaxies form. Understanding the origin and evolution
of these structures is the goal of cosmological structure formation (CSF).

It is now understood that CSF is driven by the gravitational clustering of
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dark matter, the dominant mass constituent of the universe. Slight inhomo-
geneities in the dark matter distribution laid down in the early universe seed
CSF. The rate at which structure develops in the universe depends upon the
power spectrum of these perturbations, now well measured on scales greater
than one million light years [18]. It also depends on the cosmic expansion
rate, which in turn is influenced by dark energy, a form of energy which ex-
hibits negative pressure and whose existence was revealed only in 1998 by the
discovery that the expansion rate is accelerating. The quantitative study of
CSF is thus a direct route to studying two of the most mysterious substances
in modern physics: dark matter and dark energy.

The part of the universe that astronomers can see directly is made up of or-
dinary “baryonic” matter. Thus, in order to make contact with observations,
we must simulate the detailed dynamics and thermodynamics of the cosmic
plasma — mostly hydrogen and helium — under the influence of dark matter
and dark energy, as well as ionizing radiation backgrounds. Such simulations
are called hydrodynamic cosmological simulations, and are what we consider
in this chapter. CSF is inherently nonlinear, multidimensional, and involves
a variety of physical processes operating on a range of length- and timescales.
Large scale numerical simulation is the primary means we have of studying it
in detail.

To give a feeling for the range of scales involved, the large scale distribution
of galaxies in the present universe traces out a web-like pattern on typical
scales of 100 million light years. Individual galaxies are 103 to 104 times
smaller in linear scale. Resolving the smallest galaxies with ten resolution
elements per radius yields a range of scales of 2 × 105 throughout the large
scale volume. A uniform grid of this size in 3D is out of the question, now
and in the near future. However, such a high dynamic range is not needed
everywhere, but only where the galaxies are located. Using adaptive mesh
refinement (AMR) techniques we are close to achieving this dynamic range
running on today’s terascale computers including a simple decription of the
baryonic fluid (Figure 5.1). With petascale platforms, even higher dynamic
ranges will be achievable including the complex baryonic physics that governs
the formation and evolution of galaxies.

In this paper we describe Enzo [8] a multiphysics, parallel, AMR application
for simulating CSF developed at University of California, San Diego, and
Columbia. We describe its physics, numerical algorithms, implementation,
and performance on current terascale platforms. We also discuss our future
plans and some of the challenges we face as we move to the petascale.
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FIGURE 5.1: (See color insert following page 18.) Enzo hydrodynamic simu-
lation of cosmic structure in a 700 Mpc volume of the universe. Up to seven
levels of adaptive mesh refinement resolve the distribution of baryons within
and between galaxy clusters, for an effective resolution of 65, 5363. Shown is
a volume rendering of baryon density. Image credit: M. Hall, NCSA.
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5.2 The Enzo Code

5.2.1 Physical model and numerical algorithms

Matter in the universe is of two basic types: baryonic matter composed
of atoms and molecules out of which stars and galaxies are made, and non-
baryonic “dark” matter of unknown composition, which is nevertheless known
to be the dominant mass constituent in the universe on galaxy scales and
larger. Enzo self-consistently simulates both components, which evolve ac-
cording to different physical laws and therefore require different numerical
algorithms.

Baryonic matter is evolved using a finite volume discretization of the Euler
equations of gas dynamics cast in a frame which expands with the universe.
Energy source and sink terms due to radiative heating and cooling processes
are included, as well as changes in the ionization state of the gas [1]. We
use the piecewise parabolic method (PPM), which is a higher-order Godunov
scheme developed by Colella and Woodward for ideal gas dynamics calcula-
tions [7]. The species abundances for H, H+, He, He+, He++, and e- (and
optionally H2, HD and related species) are solved out of equilibrium by in-
tegrating the rate equations including radiative and collisional processes [1].
Radiation fields are modeled as evolving but spatially homogeneous back-
grounds using published prescriptions.

Dark matter is assumed to behave as a collisionless phase fluid, obeying
the Vlasov-Poisson equation. Its evolution is solved using particle-mesh al-
gorithms for collisionless N-body dynamics [11]. In particular, we use the
spatially second-order-accurate cloud-in-cell (CIC) formulation, together with
leapfrog time integration, which is formally second-order-accurate in time.
Dark matter and baryonic matter interact only through their self-consistent
gravitational field. The gravitational potential is computed by solving the
Poisson equation on the uniform or adaptive grid hierarchy using fast Fourier
transform (FFT) and multigrid techniques. In generic terms, Enzo is a 3D
hybrid code consisting of a multispecies hydrodynamic solver for the baryons
coupled to a particle-mesh solver for the dark matter via a Poisson solver.

Matter evolution is computed in a cubic domain of length L = a(t)X, where
X is the domain size in co-moving coordinates, and a(t) is the homogenous
and isotropic scale factor of the universe which is an analytic or numerical
solution of the Friedmann equation, a first order ODE. For sufficiently large X
compared to the structures of interest, any chunk of the universe is statistically
equivalent to any other, justifying the use of periodic boundary conditions.
The speed of FFT algorithms and the fact that they are ideally suited to
periodic problems make them the Poisson solver of choice given the large
grids employed — 1, 0243 or larger.

CSF simulations require very large grids and particle numbers due to two
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competing demands: large boxes are needed for a fair statistical sample of
the universe; and high mass and spatial resolutions are needed to adequately
resolve the scale lengths of the structures which form. For example, in order
to simultaneously describe galaxies’ large scale distribution in space (large
scale structure) and adequately resolve their internal structure, a dynamic
range of 105 per spatial dimension and 109 in mass is needed at a minimum,
as discussed above.

5.2.2 Adaptive mesh refinement

The need for higher resolution than afforded by uniform grids motivated
the development of Enzo. Enzo uses structured adaptive mesh refinement
(SAMR, [3, 6]) to achieve high resolution in gravitational condensations. The
central idea behind SAMR is simple to describe but challenging to implement
efficiently on parallel computers. The idea is this: while solving the desired set
of equations on a coarse uniform grid, monitor the quality of the solution and
when necessary, add an additional, finer mesh over the region that requires
enhanced resolution. This finer (child) mesh obtains its boundary conditions
from the coarser (parent) grid or from other neighboring (sibling) grids with
the same mesh spacing. The finer grid is also used to improve the solution on
its parent. In order to simplify the bookkeeping, refined patches are required
to have a cell spacing which is an integer number divided by the parent’s
spacing. In addition, refined patches must begin and end on a parent cell
boundary. As the evolution continues, it may be necessary to move, resize or
even remove the finer mesh. Refined patches themselves may require further
refinement, producing a tree structure that can continue to any depth. We
denote the level of a patch by the number of times it has been refined compared
to the root grid. If the cell spacing of the root grid (level 0) is Δx, then the
cell spacing of a mesh at level l is Δx/rl where r is the integer refinement
factor (typically 2).

To advance our system of coupled equations in time on this grid hierarchy,
we use a recursive algorithm. The EvolveLevel routine is passed the level of
the hierarchy it is to work on and the new time. Its job is to march the grids
on that level from the old time to the new time.

Inside the loop which advances the grids on this level, there is a recursive call
so that all the levels with finer subgrids are advanced as well. The resulting
order of time steps is like the multigrid W-cycle.

Before we update the hyperbolic gas dynamics equations and solve the ellip-
tic Poisson equation, we must set the boundary conditions on the grids. This
is done by first interpolating from a grid’s parent and then copying from sib-
ling grids, where available. Once the boundary values have been set, we solve
the Poisson equation using the procedure PrepareDensityField and evolve
the hydrodynamic field equations using the procedure SolveHydroEquations.
The multispecies kinetic equations are integrated by the procedure SolveRate
Equations, followed by an update to the gas energy equation due to radiative



88 Simulating Cosmological Evolution with Enzo

EvolveLevel(level, ParentTime)
begin

SetBoundaryValues(all grids)
while (Time < ParentTime)
begin

dt = ComputeTimeStep(all grids)
PrepareDensityField(all grids, dt)
SolveHydroEquations(all grids, dt)
SolveRateEquations(all grids, dt)
SolveRadiativeCooling(all grids, dt)
Time += dt
SetBoundaryValues(all grids)
EvolveLevel(level+1, Time)
RebuildHierarchy(level+1)

end
end

FIGURE 5.2: Enzo AMR algorithm.

cooling by the procedure SolveRadiative Cooling. The final task of the
EvolveLevel routine is to modify the grid hierarchy to reflect the changing
solution. This is accomplished via the RebuildHierarchy procedure, which
takes a level as an argument and modifies the grids on that level and all finer
levels. This involves three steps: First, a refinement test is applied to all
the grids on that level to determine which cells need to be refined. Second,
rectangular regions are chosen which cover all of the refined regions, while
attempting to minimize the number of unnecessarily refined points. Third,
the new grids are created and their values are copied from the old grids (which
are deleted) or interpolated from parent grids. This process is repeated on
the next refined level until the grid hierarchy has been entirely rebuilt.

5.2.3 Implementation

Enzo is written in a mixture of C++ and Fortran. High-level functions
and data structures are implemented in C++ and computationally intensive
lower-level functions are implemented in Fortran. As described in more detail
below, Enzo is parallelized using the MPI message-passing library [10] and uses
the HDF5 data format [16] to write out data and restart files in a platform-
independent format. The code is quite portable and has been run on numerous
parallel shared and distributed memory systems, including the IBM Power N
systems, SGI Altix, Cray XT3, IBM BG/L, and numerous Beowulf-style Linux
clusters.



Simulating Cosmological Evolution with Enzo 89

Processor 1 Processor 2

ghost zone

Distributed hierarchy Grid zones

real grid
ghost grid

real zone

FIGURE 5.3: Real and ghost grids in a hierarchy; real and ghost zones in a
grid.

The AMR grid patches are the primary data structure in Enzo. Each in-
dividual patch is treated as a separate object, and can contain both field
variables and particle data. Individual patches are organized into a dynamic
distributed AMR mesh hierarchy using two different methods: the first is a
hierarchical tree and the second is a level-based array of linked lists. This
allows grids to be quickly accessed either by level or depth in the hierarchy.
The tree structure of a small illustrative 2D AMR hierachy — six total grids
in a three-level hierarchy distributed across two processors — is shown on the
left in Figure 5.3.

Each data field within a grid is an array of zones of 1,2 or 3 dimensions
(typically 3D in cosmological structure formation). Zones are partitioned
into a core block of real zones and a surrounding layer of ghost zones. Real
zones are used to store the data field values, and ghost zones are used to
temporarily store neighboring grid values when required for updating real
zones. The ghost zone layer is three zones deep in order to accomodate the
computational stencil of the hydrodynamics solver, as indicated in the right
panel in Figure 5.3. These ghost zones can lead to significant computational
and storage overhead, especially for the smaller grid patches that are typically
found in the deeper levels of an AMR grid hierarchy.

5.2.4 Parallelization

Parallelization is achieved by distributing the patches, with each grid object
locally resident in memory. Communication between grids on different pro-
cessors is carried out using message-passing. The structure of the hierarchy,
in the form of the set of linked lists described earlier, is stored redundantly on
every processor to facilitate communication. However, if we kept all the grid
data on all processors that would obviously consume too much memory, so
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instead we have developed the concept of a ghost grid, which is a nearly empty
grid structure used to represent those grids that reside on other processors.
For every real grid, which contains all grid data and resides on a given proces-
sor, there are p − 1 ghost grids which represent that grid on other processors
(assuming p processors). This is feasible because ghost grids consume orders
of magnitude less memory than real grids (but see below for a discussion of
how this must change for very large numbers of processors). This structure is
shown graphically in Figure 5.3.

Since child grids depend on parent grids, parallelization can only proceed
over the grids on a given level (different levels must be computed in a serial
fashion). Therefore, all grids on a given level are distributed over processors
separately, starting with the root grid. The root grid is simply tiled and split
into a number of patches which is at least as large as the number of processors.
Then, as grids are added, each grid is placed by default on the same processor
as its parent, minimizing communication. Once the rebuild of the hierarchy
has completed on a given level, the load balancing ratio between processors is
computed and grids are transfered between processors in an attempt to even
the load. Because grids are discrete objects, this cannot in general be done
in an optimal fashion (although we have experimented with grid splitting,
see [15]). For the large problems typical of CSF, there are many grids per
processor so this is not typically a problem.

Communication is overlapped with computation by precomputing commun-
ication pathways and starting non-blocking MPI calls. Care is taken to gen-
erate these as soon as possible so that the data will be ready when required
by another processor. This is one of the reasons why it is important to have
the entire hierarchy in memory on each processor, so that all grid overlaps
can be found and data transfer initiated early in the compute cycle.

5.2.5 Fast sibling grid search

As the code has been expanded and run on more and more processors with
more and more grids, a number of performance bottlenecks have been iden-
tified and eliminated. We describe one such example here. Many binary
operations between grids, such as copying boundary values, require first iden-
tifying which grids overlap. In early versions of the code, this was done using
a simple double-loop to perform a comparison between each grid and all other
grids. This is an O(N2

grid) operation but because the number of operations
per grid comparison is very small, this bottleneck did not appear until we ran
simulations with 100s of processors, generating more than 10,000 grids.

The problem was solved by carrying out a chaining-mesh search to identify
neighboring grids. First, a coarse mesh is constructed over the entire domain
(with 43 times fewer cells than the root grid), and a linked list is begun for each
chaining-mesh cell. Then we loop over all the grids and find which chaining-
mesh cell(s) that grid belongs to, adding that grid to the appropriate linked
list(s). In this way we generate a coarse localization of the grids, so that when
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we need to find the list of neighbors for a given grid, we simply need to check
the grids in the same chaining-mesh (or multiple chaining-meshes if the grid
covers more than one) This reduces the number of comparisons by a factor of
about N−3

chain, and since the number of chaining mesh cells, Nchain, scales with
the problem size, the procedure reduces the operation count back to O(Ngrid)
scaling.

5.2.6 Enzo I/O

All input/output (I/O) operations in Enzo are performed using the Hier-
archical Data Format 5 library (HDF5). HDF5, specifically hdf5 v.1.6.5, has
a number of very attractive features for management of large, complex data
sets and the associated metadata. HDF5 has an excellent logical design and
is available on every major computing platform in the NSF/DOE arena. One
outstanding advantage of HDF5 is that one can easily restart a model on a
different computational platform without having to worry about differences
in endian-ness or internal floating-point format.

The basic data model in Enzo is that a given MPI task “owns” all of the
I/O required by the set of top level grids and subgrids present in that task.
A single method is used to provide checkpointing and restart capability and
for science dumps at specified intervals.

All I/O is designed for moving the largest possible amount of data per op-
eration (subject to chunking constraints described below), and all memory
references are stride 1 for maximum efficiency. Each task performs all of its
I/O independently of the other tasks and there is no logical need for con-
currency, i.e, there is actually no advantage to using the parallel cooperative
interface available in HDF5. Although synchronization is not required in prin-
ciple, it is convenient to synchronize all processes after an entire dump has
been written so that it is safe to hand off to asynchronous processes which
may move the data across a network or to archival storage.

The basic object in HDF5 is a file containing other HDF5 objects such as
data sets and associated metadata attributes. HDF5 also supports a truly
hierarchical organization through the group concept. Enzo uses each of these
features. The group concept, in particular, allows Enzo to pack potentially
huge numbers of logically separate groups of data sets (i.e., one such set
for each subgrid) into a single Unix file resulting in a correspondingly large
reduction in the number of individual files and making the management of the
output at the operating system level more convenient and far more efficient.
In an Enzo AMR application running on N processors with G subgrids per
MPI task with each subgrid having D individual baryon fields and/or particle
lists this results in only N HDF5 files per data dump instead of N*G files
without grouping or N*G*D files in a simplistic case with no groups or data
sets and a separate file for each physical variable.

The packed-AMR scheme necessarily involves many seek operations and
small data transfers when the hierarchy is deep. A vital optimization in Enzo



92 Simulating Cosmological Evolution with Enzo

is the use of in-core buffering of the assembly of the packed-AMR HDF5 files.
This is very simply achieved using the HDF5 routine H5Pset fapl core to set
the in-core buffering properties for the file. Enzo uses a default buffer size of
1 MByte per file. At present, in HDF5 v.1.6.5 this is only available on output
where increases in performance by > 120× have been observed with Lustre
file systems. The lack of input buffering implies that reading restart files can
be relatively expensive compared to writing such files but in a typical batch
run there may be dozens of write operations for a single read operation in the
restart process. When input buffering becomes available in a future version of
HDF5 the cost of I/O operations will be a negligible fraction of the runtime
even for extremely deep hierarchies.

For very large uniform grid runs (e.g., 20483 cells and particles) we en-
counter different problems. Here individual data sets are so large it is neces-
sary to using chunking so that any individual read/write operation does not
exceed certain internal limits in some operating systems. The simplest strat-
egy is to ensure that access to such data sets is by means of HDF5 hyperslabs
corresponding to a plane or several planes of the 3D data. For problem sizes
beyond 12803 it is necessary to use 64-bit integers to count dark matter parti-
cles or compute top grid data volumes. Enzo uses 64-bit integers throughout
so it is necessary to handle MPI and HDF5 integer arguments by explicitly
casting integers back to 32 bits.

5.3 Performance and Scaling on Terascale Platforms

Enzo has two primary usage modes: unigrid, in which a nonadaptive uni-
form Cartesian grid is used, and AMR, in which adaptive mesh refinement
is enabled in part or all of the computational volume. In actuality, unigrid
mode is obtained by setting the maximum level of refinement to zero in an
AMR simulation, and precomputing the relationships between the root grid
tiles. Otherwise, both calculations use the same machinery in Enzo and are
updated according to Figure 5.2. The scaling and performance of Enzo is
very different in these two modes, as are the memory and communication
behaviors. Therefore we present both in this section.

5.3.1 Unigrid application

Figure 5.4(a) shows the results of a recent unigrid simulation carried out
on 512 processors of NERSC Bassi, and IBM Power5 system. The simulation
was performed on a grid of 10243 cells and the same number of dark matter
particles. The simulation tracked 6 ionization states of hydrogen and helium
including nonequilibrium photoionization and radiative cooling. Figure 5.4(a)
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plots the total wall-clock time per time step versus time step as well as the
cost of major code regions corresponding to the procedure calls in Figure 5.2.
Unigrid performance is quite predictable, with the cost per time step for the
different code regions being roughly constant. In this example hydrodynamics
dominates the cost of a time step (45%). The remaining cost breaks down as
follows: radiative cooling (15%), boundary update 2 (11%), self-gravity (7%),
boundary update 1 (7%), rate equations (3%). An additional 12% is spent in
message-passing. Figure 5.4(b) shows the CPU time per processor for the job.
We find that the master processor in each 8-processor SMP node is doing 9%
more work than the other 7, otherwise the workload is nearly uniform across
processors.

5.3.2 AMR application

Figure 5.5(a) plots the wall-clock time per root grid time step versus the
time step for an AMR simulation with identical cosmology and physics as
our unigrid example, only here the base grid has dimensions 5123, and up to
4 levels of refinement are permitted in dense regions. Prior to the onset of
mesh refinement at time step 103, the AMR simulation behaves identically
to a unigrid simulation, with hydrodynamics dominating the cost per time
step. By time step 156, the cost of a root grid time step has increased a
hundred fold. There are several reasons for this. First, we use hierarchical
time stepping in Enzo, which means that for each root grid timestep, a subgrid
of level � will be time-stepped roughly 2� times. The total number of substeps
per root grid time step for a fully refined region is

∑�max

�=1 2�, which is 30
for �max=4. By time step 156, only a small fraction of the total volume is
refined, and the average number of substeps per root grid time step is 8, far
less than the factor 100 we observe. The dominant cause for the upturn is
the cost of procedure boundary update 2, which exchanges ghost zone data
between every subgrid at every level and substep. Secondary causes for the
upturn are the procedures rate equations and radiative cooling. These
routines are both subcycled on a chemical timescale that is short compared
to the hydrodynamic time step. The separation between these two timescales
increases as the gas density increases. AMR allows the gas to become very
dense, and thus the ionization of cooling calculations grows to dominate the
hydrodynamics calculation.

Figure 5.5(b) shows the cumulative CPU time as a function of processor
number. There is considerably more spread between the largest and smallest
time (30,000/10,000=3) compared with the unigrid run (5,800/4,800=1.21).
This is due to true load imbalances arising from mesh refinement, chemistry/-
cooling subcycling, and communication loads. At present our dynamic load-
balancing algorithm in Enzo only trys to equalize the zone-time steps among
processors. It does not attempt to balance communications and subcycling
loads. This is an obvious area for improvement.
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FIGURE 5.4: (a) Wall-clock time per time step versus time step broken down
according to major code region for the 10243 unigrid simulation. Spikes in
total time correspond to I/O events. (b) CPU time per processor versus
processor. Simulations were carried out on 512 CPUs on the NERSC IBM
Power5 system Bassi.



Simulating Cosmological Evolution with Enzo 95

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  20  40  60  80  100  120  140  160

w
al

l-c
lo

ck
 ti

m
e 

(s
)

timestep

Initial AMR Run -- Wall-clock Time (timestep) (log scale)

total
boundary update 1

self-gravity
hydrodynamics
rate equations

radiative cooling
boundary update 2

rebuild hierarchy

(a)

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  100  200  300  400  500  600

C
P

U
 ti

m
e 

(s
)

processor

Initial AMR Rerun -- CPU Time (per processor)

total

(b)

FIGURE 5.5: (a) Wall-clock time per root grid time step versus root grid
time step broken down according to major code region for the 5123 4-level
AMR simulation. (b) CPU time per processor versus processor. Simulations
were carried out on 512 CPUs on the NERSC IBM Power5 system Bassi.
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5.3.3 Parallel scaling

Because the cost per time step of a unigrid simulation is roughly constant,
varying by only a factor of a few as physical conditions change, parallel scaling
tests are easy to perform for even the largest grids and particle counts. The
same is not true of AMR simulations since the load is constantly changing in a
problem-dependent way. Time-to-solution is the only robust metric. Because
large AMR simulations are so costly, it is not possible to run many cases to
find the optimal machine configuration for the job. Consequently we do not
have parallel-scaling results for AMR simulations of the size which require
terascale platforms (for smaller-scaling tests, see [4].) In practice, processor
counts are driven by memory considerations, not performance. We expect
this situation to change in the petascale era where memory and processors
will be in abundance. Here, we present our unigrid parallel-scaling results for
Enzo running on a variety of NSF terascale systems available to us.

Figure 5.6 shows the results of strong-scaling tests of Enzo unigrid simula-
tions of the type described above for grids of size 2563, 5123, 10243 and 20483

and an equal number of dark matter particles. We plot cell updates/sec/CPU
versus processor count for the following machines: Lemieux, a Compaq DEC
alpha cluster at Pittsburgh Supercomputing Center (PSC), Mercury, an IBM
Itanium2 cluster at National Computational Science Alliance (NCSA), and
DataStar, an IBM Power4 cluster at San Diego Supercomputer Center (SDSC).
Ideal parallel scaling would be horizontal lines for a given archictecture, dif-
ferentiated only by their single processor speeds. We see near-ideal scaling
for the 2563 test on DataStar and Lemieux up to 32 processors, followed by
a gradual rollover in parallel performance to ∼ 50% at 256 processors. Non-
ideality sets in at 16 processors on Mercury, presumably due to its slower
communications fabric. As we increase the problem size on any architecture,
parallel efficiency increases at fixed NP, and the rollover moves to higher NP.
Empirically, we find that parallel efficiency suffers if grid blocks assigned to
individual processors are smaller than about 643 cells. Using blocks of size
1282 × 256, we find that the cell update rate for our 20483 simulation on 2048
DataStar processors is ∼ 80% the cell update rate of our 2563 on 4 processors.
Enzo in unigrid mode is very scalable.

5.4 Toward Petascale Enzo

5.4.1 New AMR data structures

For moderate numbers of processors, the current data structure used for
storing the AMR grid hierarchy is adequate. Even though the hierarchy topol-
ogy is stored redundantly on each processor, because the data fields are vastly
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FIGURE 5.6: Enzo strong-scaling results for unigrid cosmology runs of size
2563, 5123, 10243 and 20483 on NSF terascale platforms.

larger than Enzo’s individual C++ grid objects, the extra memory overhead
involved is insignificant. However, as the number of processors increases, this
memory overhead increases as well. For the processor counts required for
petascale-level computing, the storage overhead would overwhelmingly domi-
nate, to the point where the largest computation would actually not be limited
by the number of processors, but rather by the amount of memory available
for each processor. Thus, for Enzo to scale to the petascale level, the memory
overhead for storing the AMR hierarchy must be reduced.

The memory required for storing Enzo’s current AMR data structure can
be approximated as |F | + np|G|, where the first term |F | is the field variable
data, and the second term np|G| is the overhead for storing the grid hierarchy
data structure. Here n is the number of grid patches, p is the number of
processors, and |G| is the storage required by a C++ grid object.

One approach to reducing the size of the overhead term np|G| is to reduce
the size of the grid object by removing unnecessary member variables from
the grid class. Since some member variables are constant for a hierarchy
level, and some are constant for the entire hierarchy, the amount of memory
required would be reduced. This refactoring is indicated by the first transition
in Figure 5.7. Although this would indeed save some memory, preliminary
estimates indicate that the savings would only be about 13.5%.

A second approach to reducing the size of the overhead term would be to
split the grid class into two subclasses grid local and grid remote, and use
grid local objects for local grids that contain field data, and grid remote
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⇒ ⇒

FIGURE 5.7: Reducing AMR data structure storage overhead. Solid dark
squares represent local grid objects, solid lighter squares represent remote
grid objects, and open boxes represent data fields. The first transition illus-
trates reducing the size of all grid objects, and the second transition illus-
trates splitting the single grid class into two grid local and grid remote
subclasses.

objects for grid patches whose data fields reside on another processor. This
refactoring is indicated by the second transition in Figure 5.7. This modifica-
tion would change the overhead storage term from np|G| to n((p − 1)|Gr| +
|Gl|), where |Gr| is the size of the grid remote class and |Gl| is the size of the
grid local class. The advantage of doing this is that the grid remote class
could be made much smaller, since most of the variables in the grid class
are only required for local grids. Also, a vast majority of the grid classes are
these much smaller grid remote objects. Thus the memory savings for this
modification would be quite large — a factor of roughly 14 over the already
slightly reduced grid size from the first approach.

5.4.2 Hybrid parallelism

Another improvement would of course be not to store the entire grid hier-
archy on each processor. The easiest approach would be to store one copy per
shared memory node, which would decrease the memory storage further by a
factor equal to the number of processors per node. This could be implemented
with a hybrid parallel programming model in which instead of assigning one
MPI task per processor which serially executes its root grid tile and all its
subgrids, we assign one MPI task per node. This heavy weight node would
execute a somewhat larger root grid tile and its more numerous subgrids, us-
ing shared memory parallelism wherever possible. For example, every subgrid
at a given level of refinement would be processed concurrently using OpenMP
threads [17].

While the above modifications to the AMR data structure should allow Enzo
to run on machines with on the order of 104 to 105 processors, extending
to 106 processors would require reducing the overhead even further. The
ultimate improvement memory-wise would be to store a single copy of the
grid hierarchy, though depending on the node interconnect that would cause
a communication bottleneck. A refinement on this approach would be to



Simulating Cosmological Evolution with Enzo 99

store one copy of the hierarchy for every M processor, where M is some
machine-dependent number chosen to balance the trade-off between memory
and communication overhead.

5.4.3 Implicitly coupled radiation hydrodynamics

We are working to incorporate radiation transfer processes within the Enzo
framework to improve the physical realism of cosmological modeling of self-
regulated star formation and predictions on the epoch of cosmic re-ionization.
These efforts are unique within the computational astrophysics community,
because unlike traditional approaches to such multiphysics couplings, we are
coupling the radiation transfer implicitly with both the fluid energy and chem-
ical kinetics processes. This approach promises to provide a fully consistent
coupling between the physical processes, while enabling the use of highly scal-
able solvers for the coupled solution.

Through implicitly coupling the radiation–hydrodynamics–chemical kinet-
ics processes together, we have the benefits of numerical stability in time
(regardless of step size) and the ability to use high-order time discretization
methods. On the other hand, this coupling results in a nonlinear system of
partial differential equations that must be solved at each time step. For this
coupled solution we will use inexact Newton methods, which in recent years
have been shown to provide an efficient and scalable approach to solving very
large systems of nonlinear equations [14, 13]. This scalability arises due to a
number of factors, notably the fact that for many problems Newton’s method
exhibits a convergence rate that is independent of spatial resolution, so long
as the inner linear solver scales appropriately [19]. As radiation diffusion
processes are elliptic in nature, and radiative couplings to fluid energy and
chemical kinetics occur only locally, we plan to achieve such optimal scalability
in the linear solver through the use of a Schur complement formulation ([5]) to
reduce the coupled Newton systems to scalar diffusion problems, which will
then be solved through optimally scalable multilevel methods, provided by
the state-of-the-art HYPRE linear solver package [9, 12]. This solver library
has been shown to scale up to massively parallel architectures ([2]), and as
the computational heart of the inexact Newton approach is the inner linear
solver, we are confident that such an implicit formulation and solution will
enable radiation–hydrodynamics–chemical kinetics simulations in Enzo to the
petascale and beyond.

5.4.4 Inline analysis tools

Petascale cosmology simulations will provide significant data analysis chal-
lenges, primarily due to the size of simulation data sets. For example, an Enzo
Lyman alpha forest calculation on a 10243 grid, the current state of the art,
requires approximately 110 GB of disk space per simulation output. Tens or
hundreds of these outputs are required per simulation. If scaled to a 81923
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grid, a reasonable size for a petascale computation, this would result in 56
TB of data per simulation output, and multiple petabytes of data written to
disk in total. Given these data set sizes, analysis can become extremely time-
consuming: doing even the simplest post facto analysis may require reading
petabytes of data off of disk. For more complex analysis, such as spectrum or
N-point correlation function generation, the data analysis may be comparable
in computational cost to the simulation itself. Analysis tools for petascale
data sets will by necessity be massively parallel, and new forms of data anal-
ysis that will be performed hundreds or thousands of times during the course
of a calculation may make it exceedingly cumbersome to store all of the data
required. Furthermore, it will become extremely useful to be able to monitor
the status and progress of petascale calculations as they are in progress, in an
analogous way to more conventional experiments.

For these reasons, among others, doing data analysis while the simulation
itself is running will become necessary for petascale-level calculations. This
will allow the user to save disk space and time doing I/O, greatly enhance
the speed with which simulations are analyzed (and hence improve simulation
throughput), and have access to data analysis strategies which are otherwise
impractical or impossible. Analysis that can be done during cosmological
simulations include the calculation of structure functions and other global
snapshots of gas properties; dark matter power spectra, halo and substruc-
ture finding, and the generation of merger trees; radial profile generation
of baryon properties in cosmological halos; production of projections, slices,
and volume-rendered data for the creation of movies; the generation of syn-
thetic observations, or “light cones”; the calculation of galaxy population
information such as spectral energy distributions and color-magnitude rela-
tions; global and halo-specific star formation rates and population statistics;
ray tracing for strong and weak lensing calculations and for Lyman alpha
forest or DLA spectrum generation; and essentially any other type of anal-
ysis that can be massively parallelized. Analysis of simulations in this way,
particularly if done with greater frequency in simulation time, may enhance
serendipitous discovery of new transient phenomena.

A major constraint to inline analysis of cosmological simulations is that
it requires very careful and possibly time-consuming planning on the part of
the scientists designing the calculation, and is limited to analysis techniques
that can be heavily parallelized. As a result, inline analysis techniques will
not completely negate the necessity of writing out significant amounts of data
for follow-up analysis and data exploration. Furthermore, inline analysis will
require careful integration of analysis tools with the simulation code itself.
For example, the simulation and analysis machinery will, for the sake of effi-
ciency, require shared code, data structures, and parallelization strategies (i.e.,
domain-decomposed analysis if the simulations are similarly decomposed). If
these relatively minors hurdles can be surmounted, however, this sort of anal-
ysis will result in gains far beyond the additional computational power used.
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6.1 Introduction

The so-called mesoscale and convective scale weather events, including
floods, tornadoes, hail, strong winds, lightning, hurricanes and winter storms,
cause hundreds of deaths and average annual economic losses greater than
$13 billion in the United States each year [16, 5]. Although the benefit of
mitigating the impacts of such events on the economy and society is obvious,
our ability to do so is seriously constrained by the available computational
resources which are currently far from sufficient to allow for explicit real-time
numerical prediction of these hazardous weather events at sufficiently high
spatial resolutions or small enough grid spacings.

Operational computer-based weather forecasting, or numerical weather pre-
diction (NWP), began in the late 1910s with a visionary treatise by L.F.
Richardson [18]. The first practical experiments, carried out on the ENIAC
(electronic numerical integrator and computer) some three decades later, es-
tablished the basis for what continues to be the foundation of weather fore-
casting. A NWP model solves numerically the equations governing relevant
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atmospheric processes including fluid dynamics for air motion, thermody-
namic processes, and thermal energy, moisture and related phase changes.
Physical processes related to long-wave and short-wave radiation, heat and
momentum exchanges with the land and ocean surfaces, cloud processes and
their interaction with radiation, and turbulence processes often cannot be ex-
plicitly represented because of insufficient spatial and temporal resolution. In
such cases, these processes are “parameterized,” i.e., treated in a simplified
form by making them dependent upon those quantities which the model can
explicitly resolve. Parameterization schemes are, however, often empirical or
semiempirical; they are the largest source of uncertainty and error in NWP
models, in addition to resolution-related truncation errors.

Operational NWP has always been constrained by available computing
power. The European Center for Medium-Range Weather Forecasting (ECMWF)
operates the world’s highest-resolution global NWP model with an effective
horizontal resolution∗ of approximately 25 km. The model is based on a
spherical harmonic representation of the governing equations, triangularly
truncated at total wave number of 799 in the longitudinal direction with 91
levels in the vertical. The daily forecasts extend to 10 days and are initialized
using the four-dimensional variational (4DVAR) data assimilation method
[17]. At the same time, a 51-member Ensemble Prediction System (EPS) is
also run daily at a reduced 40-km grid spacing. The EPS provides proba-
bilistic information that seeks to quantify how uncertainty in model initial
conditions can lead to differing solutions. Such information is very important
for decision making.

The global deterministic (single high-resolution) prediction model operated
by the U.S. National Weather Service currently has 382 spectral wave num-
bers and 64 vertical levels, while its probabilistic ensemble prediction system
contains 14 members and operates at the spectral truncation of 126. Fore-
casts are produced four times a day. To obtain higher resolution over North
America, regional deterministic and ensemble forecasts also are produced at
12- and roughly 40-km horizontal grid spacings, respectively.

Even at 12-km horizontal grid spacing, important weather systems that
are directly responsible for meteorological hazards including thunderstorms,
heavy precipitation and tornadoes cannot be directly resolved because of their
small sizes. For individual storm cells, horizontal grid resolutions of at least
1-km grid are generally believed to be necessary (e.g., [34]), while even higher
resolutions are needed to resolve less organized storms and the internal cir-
culations within the storm cells. Recent studies have also shown that to
resolve the inner wall structure of hurricanes and to capture hurricane eye

∗The term “resolution” is used here in a general manner to indicate the ability of a model to
resolve atmospheric features of certain spatial scales. In grid-point models, the term “grid
spacing” is more appropriate whereas in spectral or Galerkin models, “spectral truncation”
more appropriately describes the intended meaning.
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wall replacement cycles that are important for intensity forecasts, 1- to 2-
km resolution is necessary [3, 8]. Furthermore, because the smallest scales in
unstable convective flows tend to grow the fastest, the resolution of convec-
tive structures will always benefit from increased spatial resolutions (e.g., [1]),
though the extent to which superfine resolution is necessary for non-tornadic
storms remains to be established. To predict one of nature’s most violent
phenomena, the tornado, resolutions of a few tens of meters are required [31].

Because most NWP models use explicit time-integration schemes with a
time step size limited by the CFL (Courant-Friedrichs-Lewy) linear stability
criterion, the allowable time step size is proportional to the effective grid spac-
ing. Thus, a doubling in 3D of the spatial resolution, and the requisite halving
of the time step, requires a factor of 24 =16 increase in processing power and
a factor of 8 increases in the memory. Data I/O volume is proportional to
memory usage or grid size, and the frequency of desired model output tends
to increase with the number of time steps needed to complete the forecast.

In practice, the vertical resolution does not need to be increased as much
because it is already relatively high compared to the horizontal resolution.
The time step size is currently constrained more by the vertical grid spacing
than the horizontal one because of the relatively small vertical grid spacing
therefore the time step size often does not have to decreased by a factor of
two when the horizontal resolution doubles. However, physics parameteriza-
tions usually increase in complexity as the resolution increases. Taking these
factors into account, a factor of 8 increases in the processing power when the
horizontal resolution doubles is a good estimate. Therefore, to increase the
operational North American model from its current 12-km resolution to 1-km
resolution would require a factor of 123 =1728 or nearly a factor of a two
thousand increase in raw computing power. It is estimated that a 30-hour
continental-U.S.-scale severe thunderstorm forecast using a state-of-the-art
prediction model and 1-km grid spacing would require a total of 3×1011 float-
ing point calculations. Using 3,000 of today’s processors, this forecast will
take 70 hours to complete [25] while for operational forecasts, this needs to
be done within about one hour. This assumes that the code runs at 10% of
peak performance of the supercomputer and there are 10,000 floating-point
calculations per grid point per time step. To operate a global 1-km resolution
model will be an even greater challenge that is beyond the petascale, but such
models are necessary to explicitly resolve convective storms and capture the
mutual interaction of such events with short- and long-term climate. Fur-
thermore, the need to run high-resolution ensemble forecasts will require a
factor of ∼100 increase in the computing power, assuming the ∼100 ensemble
members also have ∼1-km grid spacing.

The development of new high-resolution nonhydrostatic† models, coupled

†In the hydrostatic equations of fluid dynamics, vertical accelerations are assumed to be
small. This approximation is valid for large-scale flows, where the atmosphere is shallow
compared to its lateral extent. In thunderstorms, vertical accelerations are quite large and
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with continued rapid increases in computing power, are making the explicit
prediction of convective systems, including individual thunderstorms, a reality.
Advanced remote-sensing platforms, such as the operational U.S. WSR-88D
(Weather Surveillance Radar – 1988 Doppler) weather radar network, provide
3D volumetric observations at fine scales for initializing convection-resolving
models. Unfortunately, only one dimension of the wind, in the radial direction
of radar electromagnetic wave radiation, is observed, along with a measure of
precipitation intensity in terms of the power of the electromagnetic waves re-
flected by the precipitating particles (raindrops and ice particles). The latter
is called radar reflectivity. From time series volumes, or radar scan volumes,
of these quantities, along with other available observations and specified con-
straints, one must infer the complete state of the atmosphere.

In this chapter, we address the computational needs of convection-resolving
NWP, which refers to predictions that capture the most energetically relevant
features of storms and storm systems ranging from organized mesoscale con-
vective systems down to individual convective cells.

6.2 Computational Methodology and Tools

With upcoming petascale computing systems, routine use of kilometer-scale
resolutions covering continent-sized computational domains, with even higher-
resolution nests over subdomains, will be possible in both research and oper-
ations. Accurate characterization of convective systems is important not only
for storm-scale NWP, but also for properly representing scale interactions and
the statistical properties of convection in long-duration climate models. How-
ever, one cannot overlook the fact that models are not perfect and thus even
with advanced assimilation methods and excellent observations, model error
needs to be minimized. One of the simplest methods is to increase model
resolution, and for this reason, sub-kilometer grid spacing may be required
during radar data assimilation cycles and for short-range convective storm
forecasting.

6.2.1 Community weather prediction models

Two of the community models used most frequently for storm-scale research
and experimental forecasting are the Advanced Regional Prediction System
(ARPS, [30, 29, 28, 34]) and the Weather Research and Forecast (WRF)
model [15, 23]. Both were designed to be scalable (e.g., [11, 4, 19, 20, 21, 15])
and have been run on numerous computing platforms. Owing to the variety

thus the non-hydrostatic equations must be used.



Numerical Prediction of High-Impact Local Weather 107

of architectures available at the time of their design, and because of their
research orientation and the need to serve a large user base, these systems are
not specifically optimized for any particular platform.

Both ARPS and WRF solve a fully compressible system of equations, and
both utilize finite difference numerical techniques and regular computational
grids. The ARPS uses a generalized terrain-following curvilinear coordinate
based on geometric height, and its horizontal grid is rectangular in map pro-
jection space but horizontally nonuniform in physical Earth coordinates [29],
[28]. The same is true for the WRF model except that it uses a mass-based
vertical coordinate [23] that is close to the hydrostatic pressure-based sigma-
coordinate used in large-scale NWP models. However, the WRF does not
invoke the hydrostatic assumption in the vertical so that a prognostic equa-
tion for the vertical equation of motion is solved.

Both ARPS and WRF employ the split-explicit approach of time integration
[22] in which the fast acoustic modes‡ are integrated using a small time step
while the terms responsible for slower processes, including advection, diffusion,
gravity wave modes and physical parameterizations, are integrated using a
large time step. For most applications, the vertical grid spacing, especially
that near the ground, is much smaller than the horizontal spacing. Therefore,
an explicit integration of the vertical acoustic modes would impose a severe
restriction on the small time step size. For this reason, both models use an
implicit integration scheme in the vertical for terms responsible for vertically
propagating acoustic waves. A solver for tri-diagonal systems of equations is
used by the implicit scheme.

6.2.2 Memory and performance issues associated with peta-
scale systems

The upcoming petascale computing systems are expected to be comprised
of hundreds of thousands of processor cores. These systems will rely on mul-
ticore technology and in most cases will contain cache sizes similar to existing
technology (< 10Mb). Most of today’s supercomputers make use of scalar-
based processor technology in a massively parallel configuration to achieve
terascale performance. Such individual processors are capable of billions of
floating point calculations per second but most applications, in particular
weather prediction models and large CFD (computational fluid dynamics)
codes, cannot fully realize the hardware potential, largely due to the fact that
the memory storage hierarchy is not tuned to the processor clock rate. For ex-
ample, the 3.8 GHz Pentium 4 CPU has a theoretical rating of 7.6 GFLOPS.
To achieve this performance, the processor needs to be fed with data at a rate

‡Acoustic modes have no physical importance in the atmosphere, except possibly in the
most intense tornadoes where the Mach number could approach 0.5. They are contained
in the compressible systems of equations, however, and affect the stability of explicit time
integration schemes.
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of 182.4 GB per second assuming no reuse of data in cache. The current RAM
and memory bus (e.g., the 800 MHz front side bus) can only move data at a
theoretical peak of 6.4 GB per second, a factor of 28.5 slower than what is
needed to keep the processor fully fed. This memory access-data supply mis-
match will intensify with the proliferation of multicore processors. To avoid
severe penalties due to a slow memory bus, the efficiency of the fast cache
utilization has to be significantly improved, and to do so usually requires
significant efforts at the level of application software design.

Relatively few supercomputers of today and of the near future use vec-
tor processors with fast memory technology due to economic reasons. An
evaluation of the ARPS on scalar and vector-based computers indicates that
the nested do-loop structures were able to realize a significant percentage
of the peak performance of vector platforms, but on commodity-processor-
based platforms the utilization efficiency is typically only 5–15% (Figure 6.1)
[25]. The primary difference lies with the memory and memory access speeds.
Since weather forecast models are largely memory bound, they contain far
more loads/stores than computations and, as currently written, do not reuse
in-cache data efficiently. One approach, called supernoding [10] or tiling,
can reduce memory access overhead by structuring the computations so as
to reuse data from the high level cache. It holds promise for increasing the
scalar processing efficiency for weather models up to 30–40%. Tiling involves
the further splitting of the original decomposed sub-domains on each proces-
sor into smaller regions so that all of their data used in a series of calculations
fit into the level 2 and/or level 3 cache. This approach allows for the reuse
of data residing in the much faster cache memory and reduces processor wait
states while accessing the main memory. Tiling usually requires changing
loop bounds in order to perform more calculations on a sub-domain and it
is possible to specify the tiling parameters at runtime to match the cache
size. Tiling has been implemented into a research version of the ARPS and
shows approximately a 20% improvement in performance for the small time
step solver [25]. Recognizing that the scalability of software on a massively
parallel computer is largely tied to the parallel processing capability, the tiling
concept must be used in conjunction with efficient message passing techniques
to realize as much of the peak performance as possible.

6.2.3 Distributed-memory parallelization and message pass-
ing

Because of the use of explicit finite difference schemes in the horizontal, it is
relatively straightforward to use 2D domain decomposition for the ARPS and
WRF on distributed memory platforms. No domain decomposition is done
in the vertical direction because of the implicit solver, and because a number
of physical parameterization schemes, including those involving radiation and
cumulus convection, are column based, i.e., their algorithms have vertical
dependencies. MPI is the standard strategy for inter-domain communication,
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while mixed distributed and shared memory parallelization with MPI and
OpenMP, respectively, are supported by WRF.
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FIGURE 6.1: ARPS MFLOPS ratings on a variety of computing platforms.
Mesh sizes are the same for all but the NEC-SX, which employed a larger
number of grid-points and with radiation physics turned off [25].

Domain decomposition involves assigning sub-domains of the full computa-
tional grid to separate processors and solving all prognostic and/or diagnostic
equations for a given sub-domain on a given processor; no global information
is required at any particular grid-point and inter-processor communications
are required only at the boundaries of the sub-domains (Figure 6.2). The
outer border data resident in the local memories of adjacent processors are
supplied by passing messages between processors. As discussed earlier, grid-
point-based meteorological models usually employ two-dimensional domain
decomposition because of common column-based numerics and physical pa-
rameterizations that have global dependencies in the vertical.

In the ARPS, even though the model contains fourth-order advection and
diffusion options that are commonly used, only one extra zone of grid-points
is defined outside the non-overlapping sub-domain. This zone contains values
from the neighboring processors when this sub-domain is not at the edge of the
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Processor boundary
Inner border

Outer border

FIGURE 6.2: Two-dimensional domain decomposition of the ARPS grid.
Each square in the left panel corresponds to a single processor with its own
memory space. The right panel details a single processor. Grid-points having
a white background are updated without communication, while those in dark
stippling require information from neighboring processors. To avoid commun-
ication in the latter, data from the outer border of neighboring processors
(light stippling) are stored locally.

physical boundary. Such a zone is often referred to as the “fake zone.” With
a leapfrog time integration scheme used in the large time steps, advection
and diffusion terms are evaluated once every time step but their calculations
involve 5 grid-points in each direction. This is illustrated for the fourth-order
computational diffusion term [29] in the x-direction, −K∂4φ/∂x4, where K
is the diffusion coefficient. In standard centered difference form this term
becomes

−Kδxxxxφ ≡ −Kδxx [δxxφ]

≡ −K (φi−2 − 4φi−1 + 6φi − 4φi+1 + φi+2) / (Δx)4 (1)
where we define the finite difference operator

δxxφ ≡ (φi−1 − 2φi + φi+1) / (Δx)2 (2)
and i is the grid-point index.

For calculating this term on the left boundary of the subdomain, values at
i−1 and i−2, which reside on the processor to the left, are needed. However,
the ARPS has only one fake zone to store the i − 1 value. This problem is
solved by breaking the calculations into two steps. In the first step, the term
δxxφ is evaluated at each interior grid-point and its value in the fake zone is
then obtained from neighboring processors via MPI. In the second step, the
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finite difference operation is applied to δφ
xx, according to

−Kδxxxxφ ≡ −Kδxx [δxxφ] ≡ −K
(
[δxxφ]i−1 − 2 [δxxφ]i + [δxxφ]i+1

)
/ (Δx)4

(3)

After the entire diffusion term is calculated at interior points, it is used to
update the prognostic variable, φ. Usually, the update of fake zone values
of individual terms in the prognostic equation, including this diffusion term,
is not necessary. The update of the prognostic variable is necessary only af-
ter completion of one time step of the integration. However, for the reason
noted above, one additional set of messages from the neighboring processors
is needed to complete the calculation of fourth-order horizontal diffusion and
advection terms. An alternative is to define more fake zones and fill them with
values from neighboring processors. In this case, the amount of data communi-
cated is about the same, but the number of associated message passing calls is
reduced. In the case of even higher-order diffusion and/or advection schemes,
such as the 6th-order diffusion scheme recommended by [29] and the 5th- and
6th-order advection schemes commonly used in the WRF, more communica-
tions are needed. Furthermore, the WRF model commonly uses the 3rd-order
Rouge-Kutta time integration scheme, which involves three evaluations of the
advection terms during each large time step [26]. As a result, the associated
MPI communications are tippled. Fortunately, this time integration scheme
allows for a larger time step size.

An issue unique to the split-explicit time integration scheme is the need
to exchange boundary values within small time steps, which incurs additional
MPI communication costs. Most of the time, message sizes are relatively small
and thus communication latency is a larger issue than bandwidth. Because
boundary zone values of dependent variables cannot be communicated until
the time step integration is completed, frequent message passing can incur a
significant cost. One possible solution is to sacrifice memory and CPU pro-
cessing in favor of fewer but larger messages. This can be done by defining
a much wider fake zone for each sub-domain. For example, if five small time
steps are needed in each large time step, one can define a fake zone that is five
grid-points wide instead of only one. These fake zone points then can be pop-
ulated with values from neighboring processors at the beginning of each large
time step through a single message-passing call for each boundary. The small
time step integration then will start from the larger expanded sub-domain,
and decrease by one grid zone at each boundary after each small step integra-
tion. This way no additional boundary communication is required throughout
the five small steps of integration. This strategy has been tested with simple
codes but is yet to be attempted with the full ARPS or WRF codes. The
actual benefit will depend on the relative performance of the CPU versus net-
work, and for the network also on the bandwidth and latency performance
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ratio. The sub-domain size and the large–small time step ratio also influ-
ence the effectiveness of this strategy. To further reduce communication over-
head, more sophisticated techniques, such as asynchronous communications
and message overlap or hiding, may be exploited. Computations, performed
between message passing points, are used to “hide” the network processes,
through operation overlapping. To fully utilize the tiling and message-hiding
techniques, it is best that the software is designed from the beginning to ac-
commodate them; otherwise, the “retrofitting” efforts will be very significant,
especially for software that contains a large number of loops with hardcoded
loop bounds. Most applications, including the ARPS and WRF, will need
significant restructuring to take full advantage of these techniques.

6.2.4 Load balancing

Even though all processors run the same code with the ARPS and WRF,
domain decomposition is subject to load imbalances when the computational
load is data-dependent. This is most often true for spatially intermittent phys-
ical processes such as condensation, radiation, and turbulence in atmospheric
models. Because atmospheric processes occur nonuniformly within the com-
putational domain, e.g., active thunderstorms may occur within only a few
sub-domains of the decomposed domain, the load imbalance across proces-
sors can be significant. For sub-domains that contain active thunderstorms,
some 20–30% additional computational time may be needed. Most imple-
mentations of atmospheric prediction models do not perform dynamic load
balancing, however, because of the complexity of the associated algorithms
and because of the communication overhead associated with moving large
blocks of data across processors.

6.2.5 Timing and scalability

The scalability of the WRF on several large parallel systems is shown here
for a relatively simple thunderstorm simulation case. The size of the sub-
domain on each processor is held fixed at 61 × 33 × 51 points as the number
of processors is increased, i.e., the global domain size increases linearly with
the number of processors. When 1000 processors are used, the entire model
contains approximately 92-million grid-points. With the WRF and ARPS
using some 150 3D arrays, the total memory usage is approximately 60 GB
for this problem.

Figure 6.3 shows the timings of the WRF tests on the Pittsburgh Super-
computing Center (PSC) Cray XT3 and Terascale Computing System (TCS),
and the Datastar at the San Diego Supercomputing Center (SDSC). The PSC
Cray XT3 system contains 2,068 compute nodes linked by a custom-designed
interconnect, and each node has two 2.6 GHz AMD Opteron processors with
2 GB of shared memory. The TCS consists of 764 Compaq ES45 AlphaServer
nodes with four 1-GHz Alpha processors and 4 GB of shared memory. The
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nodes are interconnected using a Quadrics network. The SDSC Datastar has
272 IBM P655+ nodes with eight 1.5 or 1.7 GHz CPUs on each node. It is
clear from the plot that the scaling performance§ is reasonable for processor
counts ranging from tens to a couple of hundreds, but it becomes poor for more
than 256 processors for the Datastar and XT3. The scalability deterioration
is particularly severe on the XT3 for more than 512 processors. Interestingly,
the scalability after 512 processors is excellent on PSC TCS, with the curve
remaining essentially flat, indicating perfect scaling when count the processor
increases from 512 to 1024.

WRF 2km  Benchmark Timings 61x33x51 Grid Points Per Processor
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FIGURE 6.3: Performance of the WRF model on various TeraGrid computing
platforms. The WRF is executed using 61 × 33 × 51 grid-points per processor
such that the overall grid domain increases proportionally as the number of
processors increases. For a perfect system, the runtime should not increase as
processors are added, resulting in a line of zero slope.

For all three systems, rather poor scaling performance occurs when the
processor counts increase from one to a few tens, as indicated by the steep
slopes of the timing curves for a small number of processors. In all cases, the
performance is best when running a single sub-domain on the single node,
for which the code has exclusive access to the CPU-memory channel and all
levels of the CPU cache. When every processor on a given node is allocated
a sub-domain, the memory access contention through the shared memory bus

§Ideally, the runtime should remain constant as the number of processors is increased (i.e.,
a horizontal line). Any deviation is due to communication/memory access overhead and
load imbalances.
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degrades performance, and when the program spans multiple nodes, the MPI
communications cause further degradation. Except for PSC TCS, which has
slower processors but a faster network, the other two systems clearly do not
provide the needed scalability for larger numbers of processors. For future
petascale systems having orders of magnitude larger numbers of processor
cores, significantly faster network interconnects as well as aggressive algorithm
optimization and/or redesign will be needed to achieve useful performance.
The expected use of CPUs with dozens of processor cores that share the same
path to memory will make the scaling issue even more challenging.

6.2.6 Other essential components of NWP systems

An equally important component of NWP systems is the data assimilation
system, which optimally combines new observations with a previous model
forecast to arrive at a best estimate of the state of the atmosphere that is also
dynamically compatible with the model’s equations. The four-dimensional
variational (4DVAR) and ensemble-Kalman filter (EnKF) techniques are the
leading methods now available but are also computationally very expensive
[12]. 4DVAR obtains an initial condition for the prediction model by mini-
mizing a cost function that measures the discrepancy between observations
collected within a defined time window (called the assimilation window) and
a model forecast made within the same window. The process involves setting
to zero the gradient of the cost function with respect to control variables, usu-
ally the initial conditions, at the start of the assimilation window. To do so,
the adjoint of the prediction model (mathematically, the adjoint is the trans-
pose of the linear tangent version of the original nonlinear prediction model,
see, [12]) is integrated “backward” in time and an optimization algorithm is
used to adjust the control variables using the gradient information thus ob-
tained. Such an iterative adjustment procedure usually has to be repeated
50 to 100 times to find the cost function minimum, and for problems with
larger degrees of freedom, stronger nonlinearity and/or more observations,
the iteration count is correspondingly larger. The adjoint model integration
is usually 2–3 times the cost of the forward model integration, and domain
decomposition strategies appropriate for the forward model usually apply. Be-
cause of the high computational cost of 4DVAR, operational implementations
usually use coarser resolution for the iterative minimization and the resulting
information is added to the high-resolution prior estimate to obtain an initial
condition for the high-resolution forecast.

The development and maintenance of an adjoint code are extremely labor
intensive though mostly straightforward. 4DVAR is known to exhibit difficulty
with high nonlinearity in the prediction model and/or in the operators used
to convert model-dependent variables (e.g., rain mass) to quantities that are
observed (e.g., radar reflectivity). A promising alternative is the ensemble
Kalman filter [6, 7] whose performance is comparable to 4DVAR. EnKF has
the additional advantage of being able to explicitly evolve the background
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error covariance, which is used to relate the error of one quantity, such as
temperature to the error of another, such as wind, and provide a natural
set of initial conditions for ensemble forecasts. The probabilistic information
provided by ensemble forecasting systems that include tens to hundreds of
forecast members has become an essential part of operational NWP [12].

Efficient implementation of the EnKF analysis algorithms on distributed
memory systems is nontrivial. With the commonly used observation-based
ensemble filter algorithms, the observations need to be sorted into batches,
with those in the same batch not influencing the same grid-point [13, 14].
Such implementations are rather restrictive and may not work well for a large
number of processors and/or when spatially inhomogeneous data have dif-
ferent spatial influence ranges. A variant of the EnKF, the local ensemble
transport Kalman filter (LETKF) [9], is more amenable to parallelization be-
cause of the use of independent local analysis sub-domains. This method
does not, however, ensure processor independence of the results, although it
appears to be the most viable approach to date for parallelization. Finally,
all ensemble-based assimilation algorithms require the covariance calculations
using the model state variables from all ensemble members that are within
a certain radius of an observation or within a local analysis domain. This
requires global transpose operations when individual ensemble members are
distributed to different processors. The cost of moving very large volumes of
3D-gridded data among processors can be very high. Further, owing to the
nonuniform spatial distribution of observational data, load balancing can be a
major issue. For example, ground-based operational weather radar networks
provide the largest volumes of weather observations yet they are only avail-
able over land and the most useful data are in precipitation regions. Orbiting
weather satellites provide data beneath their flight paths, creating nonuniform
spatial distributions for any given time.

Other essential components of NWP systems include data quality control
and preprocessing, data post-processing and visualization, all of which need to
scale well for the much larger prediction problems requiring petascale systems.

6.2.7 Additional issues

In addition to processor speed, core architecture and memory bandwidth,
I/O is a major issue for storm-scale prediction using petascale system. As
the simulation domains approach sizes of order 1012 points, the magnitude of
the output produced will be enormous, requiring very-high-performance par-
allel file systems and distributed parallel post-processing software for analysis,
mining and visualization. Parallel I/O strategies are needed where the sub-
domains in a simulation are stored separately instead of being gathered into
full three-dimensional arrays. However, most analysis and visualization soft-
ware assumes access to full three-dimensional arrays. Such software will have
to be adapted to utilize the sub-domains directly. In fact, the ARPS graph-
ics plotting software, ARPSPLT, reads ARPS output stored in sub-domains
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and the software itself supports MPI. In addition, very-high-resolution graph-
ical displays will be needed for display at scales of one pixel per grid-point.
Interactive visualization software with parallel computational and rendering
backends also will be essential. To aid in analyzing nested-grid simulations,
visualization methods for viewing simultaneously all nested grids within a
simulation will be needed [27].

As petascale systems are expected to contain hundreds of thousands of
processors, the likelihood of node failure increases exponentially. Although
hardware and operating systems, and MPI implementations, should account
for most of such failures, complete dependency on the system is idealistic and
NWP models will require built-in fault tolerance. This includes enhancing
model codes to take advantage of the fault tolerance in the system software
as well as in MPI implementations.

6.3 Example NWP Results

6.3.1 Storm-scale weather prediction

For the purpose of demonstrating and evaluating convective storm-scale
prediction capabilities in a quasi-operational setting, the Center for Analysis
and Prediction of Storms at the University of Oklahoma produced daily 30-
hour forecasts using the WRF model at an unprecedented 2-km resolution,
over 2/3rds of the continental US, during the spring 2005 southern Great
Plains storm season. The project addressed key scientific issues that are vi-
tal for forecasting severe weather, including the development and movement
of thunderstorm complexes, quantitative precipitation forecasting, and con-
vective initiation. Figure 6.4 presents the 24-hour model forecast radar re-
flectivity (proportional to precipitation intensity, with warm colors indicating
heavier rates) at 00 UTC on June 5, 2005 (left) which compares favorably
with the radar-observed reflectivity (right). The forecast required 8 hours of
wall-clock time using 1100 processors on the TCS at PSC.

During the spring of 2007, the above forecast configuration was further
expanded to include 10-member WRF ensemble forecasts at 4-km grid spacing
[32]. Using 66 processors of the PSC Cray XT3 system, each 33-hour forecast
ensemble member took 6.5 to 9.5 hours, with the differences being caused by
the use of different physics options in the prediction model. A single forecast
in the same domain using a horizontal grid spacing of 2 km (1501 × 1321 ×
51 points) and 600 Cray XT3 processors took about 9 hours for a 33-hour
forecast, including full data dumps every 5 minutes. The data dumps into a
parallel Luster file system accounted for over 2 hours of the total time. For
truly operational implementations, such forecasts will need to be completed
within one hour.
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FIGURE 6.4: (See color insert following page 18.) 24-hour WRF-predicted
(left) and observed (right) radar reflectivity valid at 00 UTC on June 5, 2005.
Warmer colors indicate higher precipitation intensity. The WRF model uti-
lized a horizontal grid spacing of 2 km and forecasts were produced by CAPS
on the Terascale Computing System at the Pittsburgh Supercomputing Cen-
ter as part of the 2005 SPC Spring Experiment.

6.3.2 Very-high-resolution tornado simulation

Using the Terascale Computing System at PSC and the ARPS model, the
first author obtained the most intense tornado ever simulated within a real-
istic supercellular convective storm. The highest resolution simulations used
25-m horizontal grid spacing and 20-m vertical spacing near the ground. The
simulation domain was 48 × 48 × 16 km3 in size and included only non-ice
phase microphysics. No radiation or land surface processes were included.
The use of a uniform-resolution grid large enough to contain the entire parent
storm of the tornado eliminates uncertainties associated with the typical use
of nested grids for this type of simulation. The maximum ground-relative
surface wind speed and the maximum pressure drop in the simulated tornado
were more than 120 ms−1 and 8 ×103 Pascals, respectively. The peak wind
speed places the simulated tornado in the F5 category of the Fujita tornado
intensity scale, the strongest of observed tornadoes. This set of simulations
used 2048 Alpha processors and each hour of model simulation time required
15 hours of wall-clock time, producing 60 terabytes of data dumped at 1-
second intervals. These output data were used to produce extremely realistic
3D visualizations of the storm clouds and the tornado funnel. Fig. 6.5 shows
a 3D volume rendering of the model-simulated cloud water content in a 7.5 ×
7.5 × 3 km domain, with a tornado condensation funnel reaching the ground.

In a 600-second long restart simulation using 2048 Alpha processors on
512 nodes, the message-passing overhead consumed only 12% of the total
simulation time. The small time step integration used more than 26%, and
the sub-grid-scale turbulence parameterization used 13%. The initialization



118 Numerical Prediction of High-Impact Local Weather

FIGURE 6.5: Three-dimensional volume rendering of model-simulated cloud
water content in a 7.5 × 7.5 × 3 km domain, showing the tornado condensation
funnel reaching the ground. The lowered cloud base to the left of the tornado
funnel is known as the wall cloud (Rendering courtesy of Greg Foss of the
Pittsburgh Supercomputing Center.)

of this restart simulation that involves the reading of 3D initial condition
fields from a shared file system took over 11%. The 1-second output written
to local disks of each compute node took only 8% but the copying of output
from the node disks to a shared file system using a PSC-built parallel copying
command at the end of the simulation took as much as 1/5th of the total
simulation time. Clearly I/O performance was a major bottleneck.

6.3.3 The prediction of an observed supercell tornado

Using the ARPS and its 3DVAR¶ and cloud analysis data assimilation
system, [32] obtained a successful prediction of an observed thunderstorm
and embedded tornado that occurred on May 8, 2003 in the Oklahoma City
area. The horizontal grid had a spacing of 50 m and was one-way nested,
successively, within grids of 100-m, 1-km and 9-km horizontal spacings. The
80 × 60 km2 horizontal grid of 50-m spacing had 1603 × 1203 grid-points and

¶3DVAR is a subset of 4DVAR that does not include a time integration component.
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FIGURE 6.6: (See color insert following page 18.) (a) Predicted surface
reflectivity field at 13.75 minutes of the 50-m forecast valid at 2213:45 UTC
and (b) observed reflectivity at the 1.45◦ elevation of the Oklahoma City
radar observation at 2216 UTC. The domain shown is 55 km × 40 km in
size, representing the portion of the 50 m grid between 20 and 75 km in the
east-west direction and from 16 to 56 km in the north-south direction.

the 40-minute forecast took 2 days to complete using 1600 processors on the
PSC TCS. A very significant portion of the time was consumed by writing
output at 15-second intervals to a slow shared file system. A single processor
was gathering data from all processors and writing out to this shared file
system.

During the 40-minute forecast, two successive tornadoes of F1-F2 intensity
with life spans of about 5 minutes each were produced within the period of the
actual tornado outbreak, and the predicted tornadoes traveled along a path
about 8 km north of the observed damage track with correct orientations. A
half-hour forecast lead time was achieved by the 50-m forecast nested within
the 100-m grid.

The surface reflectivity at 13.75 minutes for the 50-m forecast (valid at
about 2214 UTC) is plotted in Figure 6.6, together with observed reflectivity
at the 1.45◦ elevation of the Oklahoma City operational weather radar at 2216
UTC. At this time, the predicted tornado shows a pronounced hook-shaped
reflectivity pattern containing a inwardly spiraling reflectivity feature at the
southwest end of the precipitation region (Figure 6.6). The observed low-level
reflectivity approximately 2 minutes later also contains a similar hook echo
pattern (Figure 6.6). Due to resolution limitations of the radar, the observed
reflectivity shows fewer structural details than the prediction.
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6.4 Numerical Weather Prediction Challenges and Re-
quirements

A grand vision of NWP for the next 20 years is a global NWP model running
at 1-km horizontal grid spacing with over 200 vertical levels. Such resolution
is believed to be the minimum required to resolve individual thunderstorms,
which are the main causes of hazardous local weather. To cover the roughly
510-million square kilometers of Earth’s surface, about half a billion model
columns will be needed, giving rise to 100-billion grid cells when 200 levels are
used. With each grid cell carrying about 200 variables so as to accommodate
more sophisticated physical processes, a total of 80 terabytes of memory will
be needed to run a single prediction. If this model is distributed to a petascale
system with 1-million processor cores, each core will have 510 model columns
with which to work. This corresponds to roughly a 26 × 20 × 200 sub-domain,
a relatively small domain in terms of the interior domain-boundary interface
ratio, yet relatively large in terms of fitting required information into the CPU
cache of expected sizes. If 100 forecasts are to be run simultaneously as part
of an ensemble system, each forecast can be run on a subset of the processors.
In this case, each processor will get 100 times more columns to work with,
i.e., the sub-domain size will be 100 times larger, at 255 × 200 × 200. In this
case, the ratio of MPI communication to computation is significantly reduced,
and the memory access will become the dominant performance issue.

Before 100-member global ensembles of 1-km spacing can be carried out
in a timely manner, regional models can be run for smaller domains, say
covering North America. The ARPS and WRF models are mainly designed
for such purposes. Further increases in horizontal resolution are possible and
can be very desirable in order to resolve smaller, less organized convective
storms. To be able to explicitly predict tornadoes, resolutions less than 100
m are essential and a better understanding of storm dynamics, coupled with
better observations and parameterizations of land–atmosphere interactions, is
needed. Because small-scale intense convective weather can develop rapidly
and can be of short duration (e.g., 30 minutes), numerical prediction will
require very rapid model execution. For example, a tornado prediction having
a 30-minute lead time should be produced in a few minutes so as to provide
enough time for response.

The ensemble data assimilation system [24, 33] that assimilates full volumes
of weather radar data poses another grand challenge problem. The current
U.S.-operational Doppler weather radar network consists of over 120 radars.
Producing full volume scans every 5 minutes, roughly 600 million observations
of radial wind velocity and reflectivity are collected by the entire network ev-
ery 5 minutes assuming that all radars operate in precipitation mode. The
planned doubling of the azimuthal resolution of reflectivity will further in-
crease the data volume, as will the upgrade of the entire network to gain
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polarimetric‖ capabilities. These, together with high-resolution satellite data,
pose a tremendous challenge to the data assimilation problem, and there is no
limit to the need for balanced computing resources in the foreseeable future.

In addition to basic atmospheric data assimilation and prediction prob-
lems, the inclusion of pollution and chemistry processes and highly detailed
microphysical processes, and the full coupling of multilevel nested atmospheric
models with ocean and wave models that are important, e.g., for hurricane
prediction [2], will further increase the computational challenge.

6.5 Summary

The challenges faced in numerically predicting high-impact local weather
were discussed, with particular emphasis given to deep convective thunder-
storms. Two community regional numerical weather prediction (NWP) sys-
tems, the ARPS and WRF, were presented and their current parallelization
strategies described. Key challenges in applying such systems efficiently on
petascale computing systems were discussed, along with computing require-
ments for other important components of NWP systems including data as-
similation with 4D variational or ensemble Kalman filter methods. Several
examples demonstrating today’s state-of-the-art simulations and predictions
were presented.
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species.
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7.1 Introduction

Prediction of the Earth’s climate is a computational grand-challenge prob-
lem. Spatial scales range from global atmospheric circulation to cloud mi-
crophysics, and time-scales important for climate range from the thousand
year overturning of the deep ocean to the nearly instantaneous equilibration
of solar radiation balance. Mathematical models of geophysical flows provide
the theoretical structure for our understanding of weather patterns and ocean
currents. These now-classical developments have been extended through nu-
merical analysis and simulation to encompass model equations that cannot be
solved except using supercomputers. That mathematics and physics lie at the
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heart of climate modeling is the primary basis for thinking that we can predict
complex climate interactions. The degree of confidence in climate models is
bounded by their ability to accurately simulate historical climate equilibrium
and variation, as well as their ability to encapsulate the scientific understand-
ing of instantaneous interactions at the process level. Observational weather
data, as well as measurements of physical, chemical, and biological processes,
are a constant check on the validity and fidelity of the models and point to
areas that are poorly understood or represented inadequately. In large part
because of the ability of ever-more-powerful computers to integrate increas-
ingly rich data and complex models, the understanding of coupled climate
feedbacks and responses has advanced rapidly.

Facilities with computers reaching a (peak) petascale capability are ex-
pected in 2009 or before. The Cray XT and IBM Blue Gene lines, with
processor counts ranging from 25,000 to 250,000, are candidate architectures.
Enabling climate models to use tens of thousands of processors effectively is
the focus of efforts in the U.S. Department of Energy (DOE) laboratories and
the National Center for Atmospheric Research (NCAR) under the auspices of
the DOE Scientific Discovery through Advanced Computing (SciDAC) pro-
gram. This exposition describes the software design of the Community Cli-
mate System Model (CCSM) [8, 5], one of the primary tools for climate science
studies in the United States. In particular, it addresses issues and proposed
solutions in readying the CCSM to use petascale computers.

The outline of the chapter is as follows. Section 7.2 describes near-term
climate science goals and the corresponding computational requirements. Sec-
tion 7.3 describes petascale computer architectures that will become available
in the next five years, focusing in particular on how these architectures dif-
fer from current supercomputers and the implications of these differences for
CCSM development. Section 7.4 is a description of the CCSM software ar-
chitecture, including recent and planned functionality introduced to improve
processor and problem-size scalability. Section 7.5 summarizes the promise
and problems introduced by petascale architectures, and how the CCSM is
being readied to exploit the new generation of petascale computers.

7.2 Climate Science

Predicting the climate for the next century is a boundary-value problem
with initial conditions starting in 1870 and boundary data from the histor-
ical, observational record. Parts of the boundary data are the solar input,
including solar variability, and the changing atmospheric chemical composi-
tion, for example, the level of carbon dioxide (CO2) and other greenhouse
gases. Because the future boundary conditions are not known, “scenarios”
are constructed that bracket the likely input parameters. By considering a
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range of scenarios, the possible future climate states can be bounded.
The CCSM is a modern world-class climate code consisting of atmosphere,

ocean, land, and sea-ice components coupled through exchange of mass, mo-
mentum, energy, and chemical species. The time-dependent partial differen-
tial equations for stratified liquids and gases are posed in a spherical geometry
and a rotating frame. As a dynamical system, the climate is weakly forced
and strongly nonlinear [41]. Increases in greenhouse gases in the atmosphere
change the absorption of long-wave radiation and thus alter the energy bal-
ance of the planet. The inherent nonlinearities of the system are evident in
the constantly shifting weather patterns that arise from differential heating of
the Earth’s surface and instabilities of the atmospheric flow. The resolution of
the models, the number of grid-points used to approximate the partial differ-
ential equations representing the physical conservation laws, must adequately
represent the relevant dynamical interactions. For climate simulations that
include a diurnal cycle, the minimum resolution is about 300 km per grid-
point. Regional detail begins to emerge as the grid spacing is decreased to
100 km and smaller.

The dynamical algorithms of the atmosphere and ocean include explicit and
implicit finite-volume methods, as well as transform methods (fast Fourier and
Legendre transforms) to approximate spherical operators and to solve elliptic
equations. The current physical parameterizations, approximations to sub-
grid phenomena, are computed for each horizontal position, or column, inde-
pendently, in parallel. In contrast, the discrete differential operators require
at least nearest-neighbor communication. The computational requirements
projected for future versions of climate models are discussed in the ScaLeS
report [40], where it was shown that a factor of 1012 increase in computing
capability could be exploited by the research community. A limitation on
the increase in resolution is that the allowable time-step size decreases pro-
portionally with grid spacing. So more time-steps are required to simulate a
century of climate as the grid spacing decreases. Since the time-advancement
algorithms are inherently sequential, parallelism is limited, and the software
structure must be designed carefully to expose as much parallelism as possible.

CCSM developers have adopted software-engineering practices intended to
make the model maintainable, extensible, and portable across a wide variety of
computers while maintaining computational performance [15]. However, any
computational experiment, or set of experiments, has an associated through-
put requirement or limitation on computer resources. Thus the configuration
of the model and the specification of the computational experiment must be
balanced with the computer capabilities and speeds, forcing compromises on
grid resolution and accuracy of physical parameterizations. Petascale systems
offer the promise of sufficient computing power to move beyond the current
limitations. With this promise in mind, CCSM developers are focused on
improving the fidelity of the physical climate simulation and providing new
components that better account for the carbon cycle among the atmosphere,
land, and ocean.
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7.3 Petaflop Architectures

Over the past few decades, climate simulation has benefited from the ex-
ponential performance increases that have accompanied the progression of
“Moore’s Law” [30], the doubling of transistor counts in integrated circuits
every two years or less. Until recently, processor performance has followed
a curve similar to the one for transistor counts, primarily through increases
in clock frequency. Frequency increases have stalled in recent years, how-
ever, because of limitations arising from increased power consumption and
heat dissipation, while the increases in transistor counts continue. Instead of
clock frequency, it is the parallelism in integrated-circuit chips that is growing
dramatically.

A visible direction for this growth is the number of processor cores on a sin-
gle chip. In the previous decade, growth in parallelism on a chip was primarily
through increasing the number of functional units in a single processor and
through pipelining those units to process multiple instructions at a time. This
strategy increased performance without requiring explicit parallelism in the
software, but it also dramatically increased the complexity of the processor
architecture. The replication of cores on a chip minimizes added complexity
but requires parallelism in software. Other strategies for taking advantage
of the growth in transistor counts include multi-threading and vectorization,
strategies that can add parallelism to a single core that is then replicated on
a multicore chip.

Emerging petascale computers combine the growth in parallelism in single
chips with increasing numbers of those chips united by high-performance in-
terconnects. The growth in chip counts for individual high-end computers in
recent years seems as dramatic as the growth in transistors in each chip; such
computers may have 5,000 to 50,000 chips.

The path to dramatic increases in the computational rate for climate sim-
ulation is clear; the software must expose more parallelism. Of course, the
details of how the software should do this depend on the specific performance
characteristics of the target computers. Because CCSM combines multiple
complex components, it stresses multiple aspects of computer architectures,
including raw computation rate, memory bandwidth and latency, and parallel-
interconnect bandwidth and latency. CCSM development has been influenced
by the relative balances of these system characteristics in the available com-
puters over time.

Most CCSM components evolved from data-parallel implementations, tar-
geting vector or single-instruction, multiple-data (SIMD) architectures. As
clusters grew in prominence, CCSM components adopted distributed-memory
parallelism. The limited memory performance and interconnect performance
of clusters, along with their incorporation of shared-memory multiproces-
sor nodes, led CCSM developers toward a variety of strategies in pursuit
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of portable performance. These strategies now include block-oriented compu-
tation and data structures, hybrid parallelism, and modular parallel imple-
mentation.

In block-oriented computation, each computational kernel is performed on
a subset, or block, of the data domain at a time, not on the whole domain,
nor on a single element at a time. Each phase then has an outer loop over
blocks. The block size is variable and may be tuned for the specifics of the
target computer. Block sizes are larger than one element to enable efficient
vectorization, pipelining, and loop unrolling by compilers. Block sizes are
smaller than the whole domain to enable efficient reuse of cache memory and
registers.

Hybrid parallelism in general refers to the use of more than one paral-
lel strategy at a time, typically hierarchically. For CCSM components, the
hybrid parallelism specifically combines shared-memory parallelism through
OpenMP [11] with distributed-memory parallelism, primarily through the
Message Passing Interface (MPI) [19]. The shared-memory implementation
may target the same dimension of parallelism as the distributed-memory im-
plementation, such as over parallel blocks, or it may target a different dimen-
sion, such as parallelism within a block. This two-level strategy originally tar-
geted clusters of shared-memory systems, where the number of shared-memory
threads within a distributed-memory process is tuned based on the number of
processors in each cluster node and the capability of the distributed-memory
communication infrastructure.

Within this hybrid parallel implementation, modularity has been a neces-
sity to deal with the multitude of rapidly changing computer architectures.
This modularity allows the use of different communication protocols, differ-
ent parallel algorithms, and varying process counts based on the details of
a given run, such as target computer, problem size, total process count, and
relative performance of each component. Performance tuning can involve run-
time changes in algorithm choices, targeted use of specialized communication
protocols (such as SHMEM [17] or Co-Array Fortran [32]), and load balancing
across components by changing the relative process counts.

These strategies for performance portability of CCSM components are well
suited for the emerging petascale architectures. Block-oriented computa-
tion will help with efficient use of cache within multicore memory hierar-
chies, along with efficient use of the various forms of pipelining and vector-
ization within each processor core. Examples of such vectorization include
the Streaming SIMD Extensions (SSE) in AMD and Intel x86-64 architec-
tures [38], Vector/SIMD Multimedia Extension Technology in IBM Power
processors [39], the SIMD floating-point unit in the PowerPC processors in
IBM’s Blue Gene [2], and the Cray X1E [1] and successors.

Hybrid parallelism continues to be important for many high-end computers,
though the largest computers today, the IBM Blue Gene and the Cray XT4,
support only distributed memory. This should change, however, with the
introduction of higher core counts on each chip. The initial petascale systems,
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successors to the current IBM Blue Gene and Cray XT4, should not only
support but may require hybrid parallelism to reach the extreme levels of
scalability required for a petaflop of performance.

Even with hybrid parallelism, such scaling is likely to require further tuning
of the parallel algorithms and implementation. The CCSM components may
have to specialize for particular interconnect topologies and communication
protocols. Some phases of computation may have limited scalability, such
that adding processes beyond a given point will actually decrease aggregate
throughput, so these phases should use fewer processors than other phases do.
The modular parallel implementation of the components will simplify these
tuning tasks.

Some aspects of potential petascale computers present unresolved ques-
tions and issues for CCSM developers. The need for maximum parallelism
is driving developers toward aggressive elimination of serial bottlenecks and
undistributed memory, such as is found in initialization and checkpointing of
components. In a related issue, parallelization of input and output (I/O) will
be of growing importance.

It is unclear if memory and interconnect bandwidths will be able to keep
up with the continuing increases in the aggregate computation rate, but it is
clear that latencies will not see commensurate improvements. Tolerance of
growing relative latencies will be critical to reaching the petascale. As with
memory and interconnects, it is also unclear if I/O bandwidths will keep up.
Parallelization of I/O may not be adequate to mitigate a growing relative
cost; petascale simulation may require asynchronous I/O or in-memory data
analysis and reduction at runtime.

Finally, there is uncertainty in the basic architecture of the processor, such
that the current software strategies for portable performance, though demon-
strably flexible, may not be flexible enough. Examples of potentially dis-
ruptive shifts in processor architecture include various forms of nonsymmetric
coprocessor architectures, such as the IBM Cell Broadband Engine, the Clear-
Speed accelerator, graphics-processing units, and field-programmable gate ar-
rays. Initial petascale computers will be successors to the current Cray XT
and IBM Blue Gene, with symmetric multicore processors, but scaling to sus-
tained petaflops may require more complex processor architectures, perhaps
incorporating novel coprocessors, or designed more as an integrated system,
such as the “adaptive supercomputing” strategy embodied by the Cray Cas-
cade project [9].
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7.4 Community Climate System Model

7.4.1 Overview of the current CCSM

CCSM3.0 consists of a system of four parallel geophysical components (at-
mosphere, land, ocean, and sea ice) that run concurrently and on disjoint
processor sets and periodically exchange boundary data (flux and state infor-
mation) through a parallel flux coupler. The flux coupler serves to remap the
boundary-exchange data in space and time. CCSM3.0 is implemented with
multiple executables, where each component model is a separate executable,
and all component executables run concurrently on disjoint sets of processors.
Although this multiple-binary architecture permits each component model to
keep its own build system and prevents name-space conflicts, it also increases
the difficulty of porting and debugging. The concurrency of the CCSM com-
ponents is not perfect; the atmosphere, land and sea-ice models are partially
serialized in time, limiting the fraction of time when all five CCSM compo-
nents are all executing simultaneously. (See Figure 7.1.)

To realize the full benefit of approaching petascale computers, each CCSM
component, as well as the entire CCSM model system, must target higher-
resolution configurations and use processor counts that are one to two orders of
magnitude greater than present settings. These new architectures will require
CCSM components and coupling mechanisms to scale in both memory and
throughput to such processor counts.

7.4.2 Community Atmosphere Model

The Community Atmosphere Model (CAM) is a global atmosphere model
developed at NCAR with contributions from researchers funded by DOE and
by the National Aeronautics and Space Administration (NASA) [6]. CAM is
also the atmosphere component of the CCSM and is the largest consumer of
computing resources in typical CCSM simulations.

CAM is a hybrid parallel application, using both MPI and OpenMP pro-
tocols. It is characterized by two computational phases: the dynamics, which
advances the evolution equations for the atmospheric flow, and the physics,
which approximates sub-grid phenomena such as precipitation processes, clouds,
long- and short-wave radiation, and turbulent mixing [7]. Control moves be-
tween the dynamics and the physics at least once during each simulation time
step.

CAM is a community model that is constantly evolving to include new sci-
ence. Thus it has been very important that CAM be easy to maintain and
port to new systems, and that CAM performance be easy to optimize for new
systems or for changes in problem specification or processor count. The soft-
ware design that supports these portability and maintainability requirements
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FIGURE 7.1: Example timing diagram for the CCSM. Dark grey indicates
“busy,” light grey indicates “idle,” and arrows indicate communication be-
tween components.

should also ease the port to petascale computers, but a number of new issues
will need to be addressed. This section begins with a discussion of relevant
features in the existing software architecture. The design is described in more
detail in [29, 33, 43].

An explicit interface exists between the dynamics and the physics, and the
physics data structures and parallelization strategies are independent from
those in the dynamics. A dynamics-physics coupler, internal to CAM and dif-
ferent from the CCSM coupler, moves data between data structures represent-
ing the dynamics state and the physics state. While some minor performance
inefficiency results from the decoupled data structures, the maintainability
and ability to optimize the dynamics and physics independently have proven
very important. Note that the coupler is distributed, and that the dynamics,
physics, and coupler run one at a time, each one in parallel across the same
processors.

The explicit physics/dynamics interface enables support for multiple op-
tions for the dynamics, referred to as dynamical cores or dycores, one of
which is selected at compile time. Three dycores are currently available:
a spectral Eulerian (EUL) [22], a spectral semi-Lagrangian (SLD) [42], and
a finite-volume semi-Lagrangian (FV) [24]. This dynamics modularity makes
it relatively easy to develop new dycores for CAM. Some of the new dycores
currently under development are expected to be better suited to petascale
architectures than the current dycores, as described later.
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Both the physics and dynamics use application-specific messaging layers.
For the most part, these are simple wrappers for calls to MPI routines. How-
ever, by using layers, we have been able to experiment with other messaging
protocols, for example, Co-Array Fortran and SHMEM. The messaging layers
are also used to implement a large number of runtime options, choosing, for
example, between one-sided and two-sided MPI implementations of a required
interprocess communication.

CAM has numerous compile-time and runtime options for performance op-
timization. Primary examples are the MPI protocol options mentioned pre-
viously, static load-balancing options that trade off communication overhead
with improved physics load balance, the aspect ratio of two-dimensional do-
main decompositions in the dynamics, the number of MPI processes and the
number of OpenMP threads per process, and the granularity (block size) of
parallel tasks in the physics (affecting exposed parallelism, memory require-
ments, and vector lengths).

Portable application-specific performance instrumentation allows relevant
performance data to be collected easily when porting and tuning CAM. While
not as powerful as many vendor and third-party performance-analysis tools,
the imbedded instrumentation is sufficient for the majority of performance-
optimization tasks.

Performance scalability in CAM is not yet adequate for petascale compu-
tation. Figure 7.2 describes strong processor scaling for a production-size
problem using the spectral Eulerian dycore and for a large problem (for cli-
mate) using the finite-volume dycore. The scaling problems arise primarily
from the parallel algorithms employed in the dycores. The spectral dycores
use a one-dimensional decomposition of the three-dimensional computational
grid, and, for example, are limited to 128 MPI processes in the production-size
problem. The finite-volume dycore supports the option of a two-dimensional
decomposition of the latitude-longitude-vertical computational grid, but the
two-dimensional decomposition switches from latitude-longitude to latitude-
vertical and back again in each time step, incurring significant communication
overhead. Additionally, the number of vertical levels is small compared to the
longitude dimension, limiting the available parallelism compared to a purely
horizontal two-dimensional decomposition. For the problem size in Figure
7.2, at most 960 MPI processes can be used. Note that additional paral-
lelism is available in the physics, and this can be exploited using OpenMP
parallelism on a computer with shared-memory nodes.

Planned modifications to CAM will impact both performance and perfor-
mance scalability. The introduction of atmospheric chemistry will significantly
increase the number of fields that will be advected in the dycore, increase
the computational complexity, change the nature of the load balance in the
physics, and increase the volume of output. The expectation is that the size
of the horizontal dimensions of the computational grid will also increase for
certain science studies. Expected constraints of initial petascale computers
include limited per-process memory, relatively high-cost I/O, and the need to
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FIGURE 7.2: The graphs detail current CAM scalability (top: EUL dycore
with a production problem instance; bottom: FV dycore with a large problem
instance).
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exploit additional distributed-memory parallelism.
Various approaches to improve the ability of CAM to exploit petascale

computation are being examined. The physics can efficiently exploit more
parallelism than the dynamics, but it is currently restricted to using the same
number of MPI processes as the dynamics. This restriction is not neces-
sary, and efforts are under way to allow the physics to use more MPI pro-
cesses than the dynamics. More speculative research is ongoing into using
a three-dimensional domain decomposition for the atmospheric chemistry in
the physics and parallelizing over the fields being advected in the dynamics.
In both cases, the number of active MPI processes changes as control passes
through the different phases of CAM.

A number of new dycores are currently under development that are ex-
pected to exhibit improved parallel scalability compared to the current CAM
dycores [27, 10, 34]. These new dycores use computational grids and nu-
merical formulations that allow a single two-dimensional horizontal domain
decomposition to be used. These dycores also attempt to minimize the need
for global communications.

In addition to increasing the inherent parallelism in CAM, work is needed
to exploit existing parallelism that is currently hidden within serial implemen-
tations. For example, CAM now employs a single reader/writer approach to
I/O. This is not only a serial bottleneck, not taking advantage of the parallel
file systems that are necessary components of petascale computers, but it also
increases the per-process memory requirements (as currently implemented).
Efforts are underway to evaluate and use parallel I/O libraries such as Parallel
NetCDF [23] to eliminate both the I/O and memory bottlenecks.

For convenience, a number of data structures are currently replicated or
not maximally decomposed. This too increases the per-process memory re-
quirements, making porting to computers with small per-processor memory
difficult, especially when increasing the problem size. An effort is ongoing
to identify these data structures and determine how best to eliminate the
replication.

At the minimum, a careful performance analysis and evaluation will be
required as CAM runs with significantly more processors, much larger grids,
and new physical processes. The current load-balancing schemes will also need
to be modified to take into account the impact of, for example, atmospheric
chemistry, and the exploitation of additional parallelism.

These various development activities are being funded by a number of differ-
ent projects, including internal efforts within NCAR, collaborations between
members of the CCSM Software Engineering Working Group, and multiple
projects funded by the DOE SciDAC program.
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7.4.3 Parallel Ocean Program

The Parallel Ocean Program (POP) is an ocean general circulation model
that solves the incompressible Navier-Stokes equations in spherical coordi-
nates [35]. Spatial derivatives are computed using finite-difference methods.
The time integration is split into the fast vertically uniform barotropic wave
mode and the full three-dimensional baroclinic modes. An implicit free-surface
formulation [16] of the barotropic mode is solved using a preconditioned
conjugate-gradient method, while the baroclinic equations are integrated ex-
plicitly in time using a leapfrog method. POP supports generalized orthogonal
meshes in the horizontal, including displaced-pole [37] and tripole [31] grids
that shift polar singularities onto continental land masses. In the vertical,
a stretched Eulerian (depth) coordinate is used with higher resolution near
the surface to better resolve the ocean mixed layer. A partial bottom cell
option is available for a smoother representation of bottom topography. A va-
riety of options are available for subgrid-scale mixing and parameterizations
of mixed-layer processes [36], all of which can be selected at runtime.

Parallelization of POP is through domain decomposition in the horizontal.
The logical domain is subdivided into two-dimensional blocks that are then
distributed across processors or nodes. The optimal block size depends on
both the chosen horizontal grid and the computer architecture on which POP
will be run. Small blocks can be used as a form of cache-blocking for commod-
ity microprocessors, while large blocks can be specified for vector architectures
where longer vector lengths are desired. Blocks that contain only land points
are eliminated from the computation, so smaller block sizes tend to result in
more land-point elimination. However, because each block maintains a halo
of points to reduce inter-block communication, smaller blocks lead to higher
surface-to-volume ratios and a corresponding reduction in parallel efficiency.

The remaining ocean blocks can be distributed using a few different meth-
ods and can be oversubscribed to nodes, providing a mechanism for hybrid
parallelism. Currently, the model supports three block distribution schemes.
The Cartesian distribution simply divides blocks in a two-dimensional logi-
cally rectangular array and distributes them across a similar two-dimensional
array of processors or nodes. A second load-balanced distribution starts with
a Cartesian geometry and then uses a modified rake algorithm [18] in each
logical direction to shift blocks from nodes with excess work to neighboring
nodes with less work. A third scheme was recently introduced by Dennis [12],
using a space-filling curve algorithm to create a load-balanced distribution of
blocks across nodes. Once the blocks are distributed across nodes, standard
message-passing (MPI) is used to communicate between nodes and thread-
ing (OpenMP) is used to distribute work across processors within a shared-
memory node. Because the messaging routines are packaged in a very few (5)
modules, other messaging implementations based on SHMEM and Co-Array
Fortran have been used, but they are not currently part of the standard re-
lease.
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Performance of POP is determined by the two major components of the
model. The baroclinic section of the model that integrates the full three-
dimensional modes is dominated by computational work per grid-point, with
only two boundary updates required during each time step. Performance of
this section of the model depends primarily on the performance of a given
processor. Both floating-point performance and local memory bandwidth are
important, for the stencil operators used in POP result in a high ratio of loads
and stores to floating-point operations. Scaling of POP is determined by the
barotropic mode solver. The preconditioned conjugate-gradient (PCG) solver
used for the barotropic mode consists of a two-dimensional nine-point operator
followed by a halo update and the global reductions inherent in PCG dot
products. Each iteration of the solver therefore has very little computational
work and frequent small messages and reductions. Performance of this section
is sensitive to both load imbalance and message latency; it limits scalability
because the already small amount of computational work per process decreases
as the processor count increases.

As a component of CCSM, POP is currently run at a fairly coarse resolution
(approximately one degree or 100 km) in order to integrate the full climate
model for multiple centuries in time. At this low resolution, parallel efficiency
on most architectures begins to decrease in the 128–256 processor range [21].
For example, see Fig. 7.3. Future simulations run on petascale computers
are more likely to include an eddy-resolving ocean simulation. Production
simulations of the ocean at one-tenth degree (10 km) resolution have been
performed to resolve mesoscale eddies and simulate their impact on global
circulation [28]. Such high resolution and resolved eddy dynamics are re-
quired to accurately reproduce many of the features of global ocean circula-
tion. High-resolution simulations have been integrated only for decades due
to computational expense, but an effort is currently in progress to use an
eddy-resolving configuration in the full CCSM model.

At high resolution, POP scales effectively up to thousands of processors
(see Figure 7.3). However, scaling of the barotropic solver can still impact
performance at the yet-higher processor counts envisioned for petascale com-
puters. Recently, scaling was improved through the better load balancing of
the space-filling curve scheme described previously and by gathering active
ocean points into a linear list [13] to further eliminate land points. Future
versions of POP may adopt such a structure throughout the entire model
to support variable-resolution unstructured grids and further eliminate land
points from the domain. Such grids will enable higher resolution in regions
where it is needed and will reduce the total number of ocean grid-points,
improving the performance of the baroclinic part of POP.
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FIGURE 7.3: The graphs detail current POP scalability (top: one-degree
horizontal grid resolution; bottom: tenth-degree resolution).
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7.4.4 Community Land Model

The CCSM land component, the Community Land Model (CLM), is a
single-column (snow-soil-vegetation) biophysical model providing surface albe-
dos, upward long-wave radiation, heat and water vapor fluxes, and surface
stresses to the atmosphere component and river runoff to the ocean com-
ponent [14]. Spatial land-surface heterogeneity is represented as a nested
sub-grid hierarchy in which grid cells are composed of multiple land units,
snow/soil columns, and plant functional types. In CCSM3.0, CLM was con-
strained to run on the same grid as the CCSM atmospheric component. The
current CLM has added the capability of running on an independent, higher-
resolution grid, thereby including the influence of fine-resolution, sub-grid land
use/land cover in the climate simulation. The capability to decouple the at-
mosphere and land resolutions (as well as grids) should prove beneficial for the
target resolutions associated with petascale simulations. In particular, new
atmosphere grids that address CAM scalability problems (see Section 7.4.2)
are not well suited for land-surface modeling. Separating these grids provides
the flexibility for each component to choose the grid most appropriate for
both science and computational requirements.

Future CLM software will need to address several issues in order to run
effectively on petascale computers. CLM is fundamentally a scalable code
with no communication between grid cells other than in the computation of
input fields to the river-routing module. Memory scaling, however, is very
poor because of numerous non-distributed arrays and the absence of a par-
allel I/O implementation. Current CLM development efforts are addressing
these problems with the goal that tenth-degree (10-km grid spacing) resolution
stand-alone simulations will be run in 2007.

7.4.5 Community Sea Ice Model

The sea-ice component (CSIM) is based on the Los Alamos CICE model.
It simulates the dynamics of sea ice using an elastic-viscous-plastic formula-
tion [20] with an energy-conserving model of ice thermodynamics [3]. Ice is
transported using an incremental remapping scheme [26]. Though the ice is
mostly two-dimensional at the surface of the ocean, the ice is divided into sev-
eral thickness categories to better simulate its behavior. The sea-ice compo-
nent is run using the same horizontal grid as the ocean (see Section 7.4.3), and
the parallel infrastructure of CICE version 4.0 is based on that of POP [25].

The sea ice poses several challenges for petascale computation. The two-
dimensional nature of the sea-ice model implies fewer degrees of parallelism.
In addition, ice does not cover the globe uniformly, and the ice extent has a
strong seasonal variation. While part of the global domain can be eliminated
for some simulations based on climatology, a substantial area must be retained
in case ice extends beyond known boundaries in climate-change scenarios. To
reduce computational work, the ice model is structured to check for active
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ice regions and gather only ice points for further calculation based on this
dynamic ice mask.

It is likely that future high-resolution ice modeling may require new model
formulations, since treating ice as a viscous-plastic material may be less valid
at these resolutions. More discrete algorithms may be required that can track
individual ice floes and their interactions.

7.4.6 Model coupling

As described eariler, CCSM currently runs as five separate concurrent exe-
cutables, four component models communicating through a fifth, flux-coupling
component. Recent creation of a single-executable concurrent CCSM provides
a model that is simpler to port and debug, but one that still exhibits the load
imbalances and associated performance penalties inherently associated with
a concurrent configuration of components that runs partly serialized in time.
Development efforts are further targeting alternative full sequential and se-
quential/hybrid designs that aim to address this load-balancing problem, es-
pecially as it relates to petascale computation. In a full sequential system,
a top-level application driver replaces the current flux coupler as the coor-
dinator of component communications and the controller of time evolution.
The driver runs each parallel component model sequentially, where only one
component runs at a given time and utilizes all the CCSM processors. Regrid-
ding and redistribution of boundary data between any two model components
occur through coupler modules that are invoked from the top-level driver and
that span the processors associated with the two model components (which
in this case corresponds to the full set of CCSM processors).

The full sequential implementation has several distinct advantages over the
current concurrent design. First, it improves communication efficiency by
eliminating the separate coupler component. In the concurrent flux-coupler
configuration, the atmosphere-to-ocean exchange involves an M-to-N commun-
ication between the atmosphere and coupler components, a regridding calcu-
lation on the coupler processors, and another N-to-P communication between
the coupler and ocean components. In the sequential system, regridding and
redistribution are performed in one step across all processors spanning the
source and destination components. This also has the additional advantage
that MPI communication is eliminated for source and destination grid cells
that reside on the same processor. Secondly, the sequential configuration
eliminates the component load-balancing process required to optimize con-
current throughtput. Since load balancing of model components is currently
a process that involves expert knowledge of the system, the sequential CCSM
greatly simplifies the performance-tuning process. Finally, the sequential im-
plementation makes it generally possible to construct a coupled model sys-
tem where some data can be communicated between model components by
memory copies whereas the remainder are obtained from a small number of
neighboring processes. This feature is expected to prove very beneficial for
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running CCSM on petascale architectures.
Despite the above advantages, a sequential configuration also imposes addi-

tional scaling requirements. In a concurrent configuration, components that
do not scale well can use fewer processors, and the full load can be balanced
to take this limitation into account. The sequential configuration will be less
forgiving of suboptimal component scaling.

As a generalization of the sequential configuration, a hybrid configuration
will permit a subset of the components (e.g., the land and ice components) to
run concurrently with each other, but sequentially with the other components
(e.g., atmospheric and ocean components). This hybrid configuration should
provide the greatest flexibility in creating a model system that will address
scalability requirements while minimizing the inefficiencies inherent in the
original concurrent design.

Petascale computation will require scalability improvements in more than
just communication. Undistributed data structures and I/O will require par-
allelization. As an example, in the current CCSM, mapping weights are read
in by the flux coupler on only a single processor and are subsequently scat-
tered to the other coupler processors. As the model resolution increases, this
mechanism will eventually hit local-memory limitations. Flexible, parallel
I/O functionality (both binary and NetCDF [4]) will have to be implemented
across the CCSM.

7.5 Conclusions

Prediction of the Earth’s climate is a computational grand-challenge prob-
lem, one that will require computers at the petascale and beyond. CCSM is
a modern world-class climate code, and the CCSM research community has
mapped out needs that could exploit a factor of 1012 increase in computing
capability. Over the past few decades, exponential increases in computing
capability have been accessible through sequential or modestly parallel exe-
cution, but petascale computers will require significantly greater parallelism.
The various CCSM components expose parallelism at multiple levels using
a few common strategies, including block-oriented computation, hybrid par-
allelism, and modularity. These strategies are designed for flexibility and
tune-ability in the face of rapidly changing computer architectures.

Beyond these shared strategies, each component has unique features and
challenges for exploiting petascale computers. For example, in CAM, the com-
putation is divided into “physics” and “dynamics” phases, and the introduc-
tion of atmospheric chemistry will affect these differently. The well-defined in-
terface between physics and dynamics will allow the execution of these phases
on different numbers of processors, as it allows dycores and physics modules
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to be interchanged independently. POP already scales to thousands of pro-
cessors, but the barotropic solver is starting to limit scalability even at high
resolutions. A new load-balancing data structure improves scalability and
may be worth incorporating in the baroclinic phase as well. CLM, which
uses land points coupled only through their interaction with the atmosphere,
poses little algorithmic limitation on scalability. CICE, on the other hand,
does pose some limitations because of the dynamic extent of its domain and
its limited inherent parallelism. To enable simpler and more flexible tuning
of the load among these various components, the coupler component is now
under development to allow concurrent, sequential, and hybrid execution of
the model components.

Challenges for all the components include elimination of most remaining
incompletely decomposed data structures, parallelization of I/O, and potential
changes in model formulations required at higher resolutions. Development
work to meet these challenges is underway, driven by the continuing need for
more computing capability.
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8.1 Introduction

Recent advances in experimental techniques have opened up new windows
into physical and biological processes on many levels of detail. The resulting
data explosion requires sophisticated techniques, such as grid computing and
collaborative virtual laboratories, to register, transport, store, manipulate,
and share the data. The complete cascade from the individual components to
the fully integrated multi-science systems crosses many orders of magnitude

147
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in temporal and spatial scales. The challenge is to study not only the funda-
mental processes on all these separate scales, but also their mutual coupling
through the scales in the overall multi-scale system, and the resulting emer-
gent properties. These complex systems display endless signatures of order,
disorder, self-organization and self-annihilation. Understanding, quantifying
and handling this complexity is one of the biggest scientific challenges of our
time [8].

In this chapter we will argue that studying such multi-scale multi-science
systems gives rise to inherently hybrid models containing many different al-
gorithms best serviced by different types of computing environments (ranging
from massively parallel computers, via large-scale special purpose machines to
clusters of PCs) whose total integrated computing capacity can easily reach
the PFLOPS scale. Such hybrid models, in combination with the by now in-
herently distributed nature of the data on which the models ”feed” suggest a
distributed computing model, where parts of the multi-scale multi-science
model are executed on the most suitable computing environment, and/or
where the computations are carried out close to the required data (i.e., bring
the computations to the data instead of the other way around).

Prototypical examples of multi-scale multi-science systems come from bio-
medicine, where we have data from virtually all levels between “molecule
and man” and yet we have no models where we can study these processes
as a whole. The complete cascade from the genome, proteome, metabolome,
physiome to health constitutes multi-scale, multi-science systems, and crosses
many orders of magnitude in temporal and spatial scales [19, 48]. Study-
ing biological modules, their design principles, and their mutual interactions,
through an interplay between experiments and modeling and simulations,
should lead to an understanding of biological function and to a prediction
of the effects of perturbations (e.g., genetic mutations or presence of drugs).
[54].

A good example of the power of this approach, in combination with state-of-
the-art computing environments, is provided by the study of the heart physi-
ology, where a true multi-scale simulation, going from genes, to cardiac cells,
to the biomechanics of the whole organ, is now feasible [43]. This “from genes
to health” is also the vision of the Physiome project [26, 27], and the ViroLab
[49, 55], where a multi-scale modeling and simulation of human physiology
is the ultimate goal. The wealth of data now available from many years of
clinical, epidemiological research and (medical) informatics, advances in high-
throughput genomics and bioinformatics, coupled with recent developments
in computational modeling and simulation, provides an excellent position to
take the next steps towards understanding the physiology of the human body
across the relevant 109 range of spatial scales (nm to m) and 1015 range of
temporal scales, (μs to a human lifetime) and to apply this understanding to
the clinic [5, 26]. Examples of multi-scale modeling are increasingly emerging
(see for example, [15, 30, 32, 50]).

In Section 8.2 we will consider the grid as the obvious choice for a distributed
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computing framework, and we will then explore the potential of computational
grids for petascale computing in Section 8.3. Section 8.4 presents the Virtual
Galaxy as a typical example of a multi-scale multi-physics application, requir-
ing distributed petaFLOPS computational power.

8.2 Grid Computing

The radical increase in the amount of IT-generated data from physical,
living and social systems brings about new challenges related to the sheer size
of data. It was this data “deluge” that originally triggered the research into
grid computing [20, 24]. Grid computing is an emerging computing model
that provides the ability to share data and instruments and to perform high
throughput computing by taking advantage of many networked computers
able to divide process execution across a distributed infrastructure.

As the grid is ever more frequently used for collaborative problem solving
in research and science, the real challenge is in the development of new ap-
plications for a new kind of user through virtual organizations. Existing grid
programming models are discussed in [6, 36].

Workflow is a convenient way of distribution of computations across a grid.
A large group of composition languages have been studied for formal descrip-
tion of workflows [53] and they are used for orchestration, instantiation, and
execution of workflows [37]. Collaborative applications are also supported
by problem-solving environments which enable users to handle application
complexity with web-accessible portals for sharing software, data, and other
resources [56]. Systematic ways to building grid applications are provided
through object-oriented and component technology, for instance the Common
Component Architecture which combines the IDL-based distributed frame-
work concept with requirements of scientific applications [4]. Some recent
experiments with computing across grid boundaries, workflow composition
of grid services with semantic description, and development of collaborative
problem-solving environments are reported in [13, 42, 45]. These new compu-
tational approaches should transparently exploit the dynamic nature of the
grid and virtualization of grid infrastructure. The challenges are efficient us-
age of knowledge for automatic composition of applications [46].

Allen et al. in [3] distinguish four main types of grid applications: (1)
community-centric; (2) data-centric ; (3) computation-centric; and (4) inter-
action-centric. Data-centric applications are, and will continue to be the
main driving force behind the grid. Community-centric applications are about
bringing people or communities together, as, e.g., in the Access Grid, or in dis-
tributed collaborative engineering. Interaction-centric applications are those
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that require “a man in the loop”, for instance in real-time computational steer-
ing of simulations or visualizations (as, e.g., demonstrated by the CrossGrid
Project [45]).

In this chapter we focuss on computation-centric applications. These are
the traditional high performance computing (HPC) and high throughput com-
puting (HTC) applications which, according to Allen et al. [3] “turned to par-
allel computing to overcome the limitations of a single processor, and many
of them will turn to Grid computing to overcome the limitations of a parallel
computer.” In the case of parameter sweep (i.e., HTC) applications this has
already happened. Several groups have demonstrated successful parameter
sweeps on a computational grid (see e.g., [51]). For tightly coupled HPC ap-
plications this is not so clear, as common wisdom is that running a tightly
coupled parallel application in a computational grid (in other words, a parallel
job actually running on several parallel machines that communicate with each
other in a grid) is of no general use because of the large overheads that will
be induced by communications between computing elements (see, e.g., [36]).
However, in our opinion this certainly is a viable option, provided that the
granularity of the computation is large enough to overcome the admittedly
large communication latencies that exist between compute elements in a grid
[25]. For PFLOPS scale computing we can assume that such required large
granularity will be reached. Recently a computation-centric application run-
ning in parallel on compute elements located in Poland, Cyprus, Portugal,
and the Netherlands was successfully demonstrated [23, 52].

8.3 Petascale Computing on the Grid

Execution of multi-scale multi-science models on computational grids will in
general involve a diversity of computing paradigms. On the highest level func-
tional decompositions may be performed, splitting the model in sub-models
that may involve different types of physics. For instance, in a fluid-structure
interaction application the functional decomposition leads to one part mod-
eling the structural mechanics, and another part modeling the fluid flow. In
this example the models are tightly coupled and exchange detailed informa-
tion (typically, boundary conditions at each time step). On a lower level
one may again find a functional decomposition, but at some point one en-
counters single-scale, single-physics sub-models, that can be considered as the
basic units of the multi-scale multi-science model. For instance, in a multi-
scale model for crack propagation, the basic units are continuum mechanics
at the macroscale, modeled with finite elements, and molecular dynamics at
the microscale [12]. Another example is provided by Plasma Enhanced Vapor
Deposition where mutually coupled chemical, plasma physical and mechanical
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models can be distinguished [34]. In principle all basic modeling units can be
executed on a single (parallel) computer, but they can also be distributed to
several machines in a computational grid.

These basic model units will be large scale simulations by themselves. With
an overall performance on the PFLOPS scale, it is clear that the basic units
will also be running at impressive speeds. It is difficult to estimate the number
of such basic model units. In the example of the fluid-structure interaction,
there are two, running concurrently. However, in the case of, for instance, a
multi-scale system modeled with the Heterogeneous Multiscale Method [16]
there could be millions of instances of a microscopic model that in principle
can execute concurrently (one on each macroscopic grid-point). So, for the
basic model units we will find anything between single processor execution
and massively parallel computations.

A computational grid offers many options of mapping the computations to
computational resources. First, the basic model units can be mapped to the
most suitable resources. So, a parallel solver may be mapped to massively
parallel computers, whereas for other solvers special purpose hardware may
be available, or just single PCs in a cluster. Next, a distributed simulation
system is required to orchestrate the execution of the multi-scale multi-science
models.

A computational grid is an appropriate environment for running function-
ally decomposed distributed applications. A good example of research and
development in this area is the CrossGrid Project which aimed at elaboration
of an unified approach to development of and running large scale interactive
distributed, compute- and data-intensive applications, like biomedical simula-
tion and visualization for vascular surgical procedures, a flooding crisis team
decision support system, distributed data analysis in high energy physics,
and air pollution combined with weather forecasting [45]. The following is-
sues were of key importance in this research and will also play a pivotal role on
the road towards distributed PFLOPS scale computing on the grid: porting
applications to the grid environment; development of user interaction services
for interactive start-up of applications, online output control, parameter study
in the cascade, runtime steering, and online, interactive performance analysis
based on online monitoring of grid applications. The elaborated CrossGrid
architecture consists of a set of self-contained subsystems divided into layers
of applications, software development tools and grid services [14].

Large-scale grid applications require online performance analysis. The ap-
plication monitoring system, OCM-G, is a unique online monitoring system
in which requests and response events are generated dynamically and can be
toggled at runtime. This imposes much less overhead on the application and
therefore can provide more accurate measurements for the performance anal-
ysis tool like G-PM, which can display (in the form of various metrics) the
behavior of grid applications [7].

The High Level Architecture (HLA) fulfills many requirements of distributed
interactive applications. HLA and the grid may complement each other to
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support distributed interactive simulations. The G-HLAM system supports
for execution of legacy HLA federates on the grid without imposing major
modifications of applications. To achieve efficient execution of HLA-based
simulations on the grid, we introduced migration and monitoring mechanisms
for such applications. This system has been applied to run two complex
distributed interactive applications: N -body simulation and virtual bypass
surgery [47].

In the next section we explore in some detail a prototypical application
where all the aforementioned aspects need to be addressed to obtain dis-
tributed petascale computing.

8.4 The Virtual Galaxy

A grand challenge in computational astrophysics, requiring at least the
PFLOPS scale, is the simulation of the physics of formation and evolution
of large spiral galaxies like the Milky Way. This requires the development
of a hybrid simulation environment to cope with the multiple timescales, the
broad range of physics and the shear number of simulation operations [29, 39].
The nearby grand design spiral galaxy M31 in the constellation Andromeda,
as displayed in Figure 8.1, provides an excellent bird’s-eye view of how the
Milky Way probably looks.

This section presents the virtual galaxy as a typical example of a multi-
physics application that requires PFLOPS computational speeds, and has all
the right properties to be mapped to distributed computing resources. We
will introduce in some detail the relevant physics and the expected amount
of computations (i.e., floating-point operations) needed to simulate a virtual
galaxy. Solving Newton’s equations of motion for any number of stars is a
challenge by itself, but to perform this in an environment with the number of
stars as in the galaxy, and over the enormous range of density contrasts and
with the inclusion of additional chemical and nuclear physics, does not make
the task easier. No single computer will be able to perform the resulting
multitude of computations, and therefore it provides an excellent example
for a hybrid simulation environment containing a wide variety of distributed
hardware. We end this section with a discussion on how a virtual galaxy
simulation could be mapped to a PFLOPS scale grid computing environment.
We believe that the scenarios that we outline are prototypical and also apply
to a multitude of other multi-science multi-scale systems, like the ones that
were discussed in Sections 8.1 and 8.3.
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FIGURE 8.1: (See color insert following page 18.) The Andromeda nebula,
M31. A mosaic of hundreds of Earth-based telescope pointings were needed
to make this image.

Gas Star clusters Field stars 

Stellar remnants 

FIGURE 8.2: Schematic representation of the evolution of the gas content of
the galaxy.

8.4.1 A multiphysics model of the Galaxy

The Galaxy today contains a few times 1011 the solar mass (M�) in gas
and stars. The life cycle of the gas in the Galaxy is illustrated in Figure 8.2,
where we show how gas transforms to star clusters, which again dissolve to
individual stars. The ingredients for a self-consistent model of the Milky Way
galaxy are based on these same three ingredients: the gas, the star clusters
and the field stellar population. The computational cost and physical com-
plexity for simulating each of these ingredients can be estimated based on the
adopted algorithms.

8.4.1.1 How gas turns into star clusters

Stars and star clusters form from giant molecular clouds which collapse
when they become dynamically unstable. The formation of stars and star
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clusters is coupled with the galaxy formation process. The formation of star
clusters themselves has been addressed by many research teams and most of
the calculations in this regard are a technical endeavor which is mainly limited
by the lack of resources.

Simulations of the evolution of a molecular cloud up to the moment it forms
stars are generally performed with adaptive mesh refinement and smoothed
particles hydrodynamics algorithms. These simulations are complex, and
some calculations include turbulent motion of the gas [10], solve the full mag-
netic hydrodynamic equations [57, 58], or include radiative transport [44]. All
the currently performed dynamical cloud collapse simulations are computed
with a relatively limited accuracy in the gravitational dynamics. We adopt the
smoothed particle hydrodynamics methodology to calculate the gravitational
collapse of a molecular cloud, as it is relatively simple to implement and has
scalable numerical complexity. These simulation environments are generally
based on the Barnes-Hut tree code [9] for resolving the self gravity between
the gas or dust volume or mass elements, and have a O(nSPH log nSPH) time
complexity [31]. Simulating the collapse of a molecular cloud requires at least
∼ 103 SPH particles per star, a star cluster that eventually (after the simula-
tion) consists of O(104) stars then requires about nSPH ∼ 107 SPH particles.
The collapse of a molecular cloud lasts for about τJ � 1/

√
Gρ, which for a

104M� molecular cloud with a size of 10 pc is about a million years. Within
this time span the molecular cloud will have experienced roughly 104 dynami-
cal timescales totaling the CPU requirements to about O(1011) floating-point
operations for calculating the gravitational collapse of one molecular cloud.

8.4.1.2 The evolution of the individual stars

Once most of the gas is cleared from the cluster environment, an epoch
of rather clean dynamical evolution mixed with the evolution of single stars
and binaries starts. In general, star cluster evolution in this phase may be
characterized by a competition between stellar dynamics and stellar evolution.
Here we focus mainly on the nuclear evolution of the stars.

With the development of shell-based Henyé codes [17] the nuclear evolution
of a single star for its entire lifetime requires about 109 floating-point opera-
tions [41]. Due to efficient step size refinement the performance of the algo-
rithm is independent of the lifetime of the star; a 100 M� star is as expensive
in terms of compute time as a 1 M� star. Adopting the mass distribution with
which stars are born [33] about one in six stars requires a complete evolution-
ary calculation. The total compute time for evolving all the stars in the galaxy
over its full lifetime then turns out to be about 1020 floating-point operations.

Most ( >∼ 99%) of all the stars in the Galaxy will not do much apart from
burning their internal fuel. To reduce the cost of stellar evolution we can
therefore parameterize the evolution of such stars. Excellent stellar evolution
prescriptions at a fraction of the cost ( <∼ 104 floating-point operations) are
available [18, 28], and could be used for the majority of stars (which is also
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what we adopted in Section 8.4.2).

8.4.1.3 Dynamical evolution

When a giant molecular cloud collapses one is left with a conglomeration of
bound stars and some residual gas. The latter is blown away from the cluster
by the stellar winds and supernovae of the young stars. The remaining gas
depleted cluster may subsequently dissolve in the background on a time-scale
of about 108 years.

The majority (50–90%) of star clusters which are formed in the Galaxy
dissolve due to the expulsion of the residual gas [11, 22]. Recent reanalysis of
the cluster population of the Large Magellanic cloud indicates that this process
of infant mortality is independent of the mass of the cluster [35]. Star clusters
that survive their infancy engage in a complicated dynamical evolution which
is quite intricately coupled with the nuclear evolution of the stars [59].

The dynamical evolution of a star cluster is best simulated using direct
N -body integration techniques, like NBODY4 [1, 2] or the starlab software
environment [59].

For dense star clusters the compute time is completely dominated by the
force evaluation. Since each star has a gravitational pull at all other stars this
operation scales with O(N2) for one dynamical time step. The good news
is that the large density contrast between the cluster central regions and its
outskirts can cover 9 orders of magnitude, and stars far from the cluster center
are regularly moving whereas central stars have less regular orbits [21]. By ap-
plying smart time-stepping algorithms one can reduce the O(N2) to O(N4/3)
without loss of accuracy [40]. In fact one actually gains accuracy since tak-
ing many unnecessary small steps for a regularly integrable star suffers from
numerical round-off.

The GRAPE-6, a special purpose computer for gravitational N -body sim-
ulations, performs dynamical evolution simulations at a peak speed of about
64 TFLOPS [38], and is extremely suitable for large-scale N -body simulations.

8.4.1.4 The galactic field stars

Stars that are liberated by star clusters become part of the galactic tidal
field. These stars, like the Sun, orbit the galactic center in regular orbits. The
average time-scale for one orbital revolution for a field star is about 250 Myr.
These regularly orbiting stars can be resolved dynamically using a relatively
unprecise N -body technique, we adopt here the O(N) integration algorithm
which we introduced in Section 8.4.1.1.

In order to resolve a stellar orbit in the galactic potential about 100 inte-
gration time steps are needed. Per galactic crossing time (250 Myr) this code
then requires about 106 operations per star, resulting in a few times 107N
floating-point operations for simulating the field population. Note that sim-
ulating the galactic field population is a trivially parallel operation, as the
stars hover around in their self-generated potential
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8.4.2 A performance model for simulating the galaxy

Next we describe the required computer resources as a function of lifetime
of a virtual galaxy. The model is relatively simple and the embedded physics
is only approximate, but it will give an indication on what type of calculation
is most relevant in what state of the evolution of the galaxy.

According to the model we start the evolution of the galaxy with amorphous
gas. We subsequently assume that molecular clouds are formed with power-
law mass function with an index of -2 between 103 M� and 107 M�, with
distribution in time which is flat in log t. We assume that the molecular cloud
lives for between 10 Myr and 1 Gyr (with an equal probability between these
moments). The star formation efficiency is 50%, and the cluster has an 80%
change to dissolve within 100Myr (irrespective of the cluster mass). The other
20% of clusters dissolve on a timescale of about tdiss ∼ 10

√
R3M Myr. During

this period they lose mass at a constant rate. The field population is enriched
with the same amount of mass.

The resulting total mass in molecular clouds, star clusters and field stars
is presented in Figure 8.3. At an early age, the galaxy completely consists of
molecular clouds. After about 10 Myr some of these clouds collapse to form
star clusters and single stars, indicated by the rapidly rising solid (field stars)
and dashed (star clusters) curves. The maximum number of star clusters is
reached when the galaxy is about a Gyr old. The field population continues
to rise to reach a value of a few times 1011 M� at today’s age of about 10Gyr.
By that time the total mass in star clusters has dropped to several 109 M�,
quite comparable with the observed masses of the field population and the
star cluster content.

In Figure 8.4 we show the evolution of the amount of floating-point opera-
tions required to simulate the entire galaxy, as a function of its lifetime. The
flop count along the vertical axis is given in units of numbers of floating-points
operations per million years in galactic evolution. For example, to evolve the
galaxy’s population of molecular clouds from 1000 Myr to 1001 Myr requires
about 1016 floating-point operations.

8.4.3 Petascale simulation of a virtual galaxy

From Figure 8.4 we see that the most expensive submodels in a virtual
galaxy are the star cluster simulations, the molecular cloud simulations, and
the field star simulations. In the following discussion we neglect the other
components. A virtual galaxy model, viewed as a multi-scale multiphysics
model, can then be decomposed as in Figure 8.5.

The by far most expensive operation is the star cluster computations. We
have O(104) star clusters, each cluster can be simulated independent of the
others. This means that a further decomposition is possible, down to the indi-
vidual cluster level. A single star cluster simulation, containing O(104) stars,
still requires computational speeds at the TFLOPS scale (see also below). The
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FIGURE 8.3: The evolution of the mass content in the galaxy via the simple
model described in Section 8.4.2. The dotted curve gives the total mass in
giant molecular clouds, the thick dashed curve in star clusters and the solid
curve in field stars, which come from dissolved star clusters.

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 1e+18

 1e+20

 1e+22

 1  10  100  1000  10000

FL
O

P
/M

yr

t/Myr

FIGURE 8.4: The number of floating-points operations expenditures per mil-
lion years for the various ingredients in the performance model. The solid,
thick short dashed and dotted curves are as in Figure 8.3. New in this figure
are the two-dotted and dash-dotted lines near the bottom, which represent the
CPU time needed for evolving the field star population (lower dotted curve)
and dark matter (bottom curve).
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FIGURE 8.5: Functional decomposition of the virtual galaxy

cluster simulations require 1021 floating-point operations per simulated Myr
of lifetime of the galaxy. the molecular clouds plus the field stars need, on
average over the full lifetime of the Galaxy, 1015 floating-point operations per
simulated Myr of lifetime, and can be executed on general purpose parallel
machines.

A distributed petascale computing infrastructure for the virtual galaxy
could consist of a single or two general-purpose parallel machines to exe-
cute the molecular clouds and fields stars at a sustained performance of 1
TFLOPS, and a distributed grid of special purpose Grapes to simulate the
star clusters. We envision, for instance, 100-next generation GrapeDR sys-
tems∗, each delivering 10 TFLOPS, providing a sustained 1 PFLOPS for the
star cluster computations. We can now estimate the expected runtime on
a virtual galaxy simulation on this infrastructure. In Table 8.1 we present
the estimated wall-clock time needed for simulating the Milky Way galaxy,
a smaller subset and a dwarf galaxy using the distributed petascale resource
described above. Note that in the reduced galaxies the execution time goes
linearly down with the reduction factor, which should be understood as a re-
duction of mass in the molecular clouds and a reduction of the total number
of star clusters (but with the same amount of stars per star cluster).

With such a performance it will be possible to simulate the entire Milky
Way galaxy for about 10Myr which is an interesting timescale on which stars
form, massive stars evolve and infant mortality of young newly born star
clusters operates. Simulating the entire Milky Way galaxy on this important
time-scale will enable us to study these phenomena with unprecedented detail.

At the same performance it will be possible to simulate part (1/10th) of
the galaxy on a time-scale of 100 Myr. This time-scale is important for the

∗Currently some 100 Grape6 systems, delivering an average performance of 100 GFLOPS
are deployed all over the world.
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TABLE 8.1: Estimated runtimes of the virtual galaxy simulation
on a distributed petascale architecture as described in the main text.

Age Milky Way Factor 10 reduction Dwarf Galaxy
Galaxy (factor 100 reduction)

10 Myr 3 hour 17 min. 2 min.
100 Myr 3 year 104 days 10 days
1 Gyr 31 year 3 year 115 days
10 Gyr 320 year 32 year 3 year

evolution of young and dense star clusters, the major star formation mode in
the galaxy.

Simulating a dwarf galaxy, like the Large Magellanic Cloud for its entire
lifetime will become possible with a PFLOPS scale distributed computer.
The entire physiology of this galaxy is largely not understood, as well as the
intricate coupling between stellar dynamics, gas dynamics, stellar evolution
and dark matter.

8.5 Discussion and Conclusions

Multi-scale multi-science modeling is the next (grand) challenge in com-
putational science. Not only in terms of formulating the required couplings
across the scales or between multi-science models, but also in terms of the
sheer computational complexity of such models. The latter can easily result
in requirements on the PFLOPS scale.

We have argued that simulating these models involves high-level func-
tional decompositions, finally resulting in some collection of single-scale single-
science sub-models, that by themselves could be quite large, requiring sim-
ulations on, e.g., massively parallel computers. In other words, the single-
scale single-science sub-models would typically involve some form of high
performance- or high throughput computing. Moreover, they may have quite
different demands for computer infrastructure, ranging from supercomputers,
via special purpose machines, to the single workstation. We have illustrated
this by pointing to a few models from biomedicine and in more detail in the
discussion on the virtual galaxy.

We believe that the grid provides the natural distributed computing envi-
ronment for such functionally decomposed models. The Grid has reached a
stage of maturity that in essence all the necessary ingredients needed to de-
velop a PFLOPS scale computational grid for multi-scale multi-science simu-
lations are available. Moreover, in a number of projects grid-enabled function-
ally decomposed distributed computing has been successfully demonstrated,
using many of the tools that were discussed in Section 8.2.
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Despite these successes the experience with computational grids is still rel-
atively small. Therefore, a real challenge lies ahead in actually demonstrat-
ing the feasibility of grids for distributed petascale computing, and realizing
grid-enabled problem-solving environments for multi-scale multi-science ap-
plications.
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[58] D. Zengin, E. R. Pekünlü, and E. Tigrak. Collapse of interstellar molec-
ular clouds. In B. Uyaniker, W. Reich, and R. Wielebinski, editors, The
Magnetized Interstellar Medium, pages 133–136, 2004.

[59] S. F. Portegies Zwart, S. L. W. McMillan, P. Hut, and J. Makino.
Star cluster ecology - IV: Dissection of an open star cluster: photome-
try. Monthly Notices of the Royal Astronomical Society, 321(2):199–226,
2001.



Chapter 9

Biomolecular Modeling in the Era of
Petascale Computing

Klaus Schulten

Beckman Institute, University of Illinois at Urbana-Champaign

James C. Phillips

Beckman Institute, University of Illinois at Urbana-Champaign

Laxmikant V. Kalé
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9.1 Introduction

The structure and function of biomolecular machines are the foundation on
which living systems are built. Genetic sequences stored as DNA translate
into chains of amino acids that fold spontaneously into proteins that catalyze
chains of reactions in the delicate balance of activity in living cells. Inter-
actions with water, ions, and ligands enable and disable functions with the
twist of a helix or rotation of a side chain. The fine machinery of life at the
molecular scale is observed clearly only when frozen in crystals, leaving the
exact mechanisms in doubt. One can, however, employ molecular dynamics
simulations to reveal the molecular dance of life in full detail. Unfortunately,
the stage provided is small and the songs are brief. Thus, we turn to petascale
parallel computers to expand these horizons.
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Biomolecular simulations are challenging to parallelize. Typically, the molec-
ular systems to be studied are not very large in relation to the available
memory on computers: they contain ten thousand to a few million atoms.
Since the size of basic protein and DNA molecules to be studied is fixed, this
number does not increase in size significantly. However, the number of time
steps to be simulated is very large. To simulate a microsecond in the life of a
biomolecule, one needs to simulate a billion time steps. The challenge posed
by biomolecules is that of parallelizing a relatively small amount of computa-
tion at each time step across a large number of processors, so that billions of
time steps can be performed in a reasonable amount of time. In particular,
an important aim for science is to effectively utilize the machines of the near
future with tens of petaflops of peak performance to simulate systems with
just a few million atoms. Some of these machines may have over a million
processor cores, especially those designed for low power consumption. One
can then imagine the parallelization challenge this scenario poses.

NAMD [15] is a highly scalable and portable molecular dynamics (MD)
program used by thousands of biophysicists. We show in this chapter how
NAMD’s parallelization methodology is fundamentally well-suited for this
challenge, and how we are extending it to achieve the goals of scaling to
petaflop machines. We substantiate our claims with results on large current
machines like IBM’s Blue Gene/L and Cray’s XT3. We also talk about a few
biomolecular simulations and related research being conducted by scientists
using NAMD.

9.2 NAMD Design

The design of NAMD rests on a few important pillars: a (then) novel strat-
egy of hybrid decomposition, supported by dynamic load balancing, and adap-
tive overlap of communication with computation across modules, provided by
the Charm++ runtime system [11].

9.2.1 Hybrid decomposition

The current version of NAMD is over ten years old. It has withstood the
progress and changes in technology over these ten years very well, mainly be-
cause of its from-scratch, future-oriented, and migratable-object-based design.
Prior to NAMD, most of the parallel MD programs for biomolecular simula-
tions were extensions of (or based on) their preexisting serial versions [2, 21].
It was reasonable then to extend such programs by using a scheme such as
atom decomposition (where atoms were partitioned based on their static atom
numbers across processors). More advanced schemes were proposed [16, 8]
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that used force decomposition, where each processor was responsible for a
square section of the N ×N interaction matrix, where N is the total number
of atoms.

In our early work on NAMD, we applied isoefficiency analysis [6] to show
that such schemes were inherently unscalable: with an increasing number
of processors, the proportion of communication cost to computation cost
increases even if one were to solve a larger problem. For example, the communication-
to-computation ratio for the force decomposition schemes of [16, 8] is of order√

P , independent of N , where P is the number of processors. We showed that
spatial decomposition overcomes this problem, but suffers from load balance
issues.

At this point, it is useful to state the basic structure of a MD program: the
forces required are those due to electrostatic and van der Waals interactions
among all atoms, as well as forces due to bonds. A näıve implementation of
the force calculation will lead to an O(N2) algorithm. Instead, for periodic
systems, one uses an O(N log N) algorithm based on three-dimensional (3-D)
fast Fourier transforms (FFTs) called the particle mesh Ewald (PME) method,
in conjunction with explicit calculation of pairwise forces for atoms within a
cutoff radius rc. This suggests a spatial decomposition scheme in which atoms
are partitioned into boxes of a size slightly larger than rc. The extra margin
is to allow atoms to be migrated among boxes only after multiple steps. It
also facilitates storing each hydrogen atom on the same processor that owns
its “mother” atom — recall that a hydrogen atom is bonded to only one other
atom.

NAMD [10, 9] extends this idea of spatial decomposition, used in its early
version in 1994, in two ways: first, it postulates a new category of objects
called the compute objects. Each compute object is responsible for calculating
interactions between a pair of cubical cells (actually brick-shaped cells, called
patches in NAMD). This allows NAMD to take advantage of Newton’s third
law easily, and creates a large supply of work units (the compute objects)
that an intelligent load balancer can assign to processors in a flexible manner.
The Charm++ system, described in Chapter 20, is used for this purpose. As
we will show later, it also helps to overlap communication and computation
adaptively, even across multiple modules. As our 1998 paper [10] states, “the
compute objects may be assigned to any processor, regardless of where the
associated patches are assigned.” The strategy is a hybrid between spatial
and force decomposition. Recently, variations of this hybrid decomposition
idea have been used by the programs Blue Matter [3] and Desmond [1] and
a proposed scheme by M. Snir [19], and it has been called evocatively the
“neutral territory method” [1]. Some of these methods are clever schemes
that statically assign the computation of each pair of atoms to a specific
processor, whereas NAMD uses a dynamic load-balancing strategy that should
be superior due to its adaptive potential (see Section 9.2.2).

NAMD allows spatial decomposition of atoms into boxes smaller than the
cutoff distance. In particular, it allows each dimension of a box to be 1/2 or
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1/3 of the cutoff radius plus the margin mentioned above. This allows more
parallelism to be created when needed. Note that when each dimension of
the cell is halved, the number of patches increases eightfold. But since each
patch now must interact with patches two-away from it in each dimension
(to cover the cutoff distance), a set of 5 × 5 × 5 compute objects must now
access its atoms. Accounting for double counting of each compute and for
self-compute objects, one gets a total of 8×63/14 more work units to balance
across processors. Note further that these work units are highly variable in
their computation load: those corresponding to pairs of patches that share a
face are the heaviest (after self-computation objects) and those corresponding
to patches that are two hops away along each dimension have the least load,
because many of their atom-pairs are beyond the cutoff distance for explicit
calculation. Early versions of NAMD, in 1998, restricted us to either use full-
size patches, or 1/8th-size patches (or 1/27th-size patches, which were found
to be inefficient). More recent versions have allowed a more flexible approach:
along each dimension, one can use a different decomposition. For example,
one can have a two-away X and Y scheme, where the patch size is halved
along the X and Y dimensions but kept the same (i.e., rc +margin) along the
Z dimension.

9.2.2 Dynamic load balancing

NAMD uses measurement-based load-balancing capabilities provided by the
Charm++ runtime [23]. The runtime measures the load of each compute ob-
ject and each processor during a few instrumented iterations and then as-
signs objects to processors based on the collected information. After the first
load-balancing step, many computes are migrated to under-loaded processors
because the initial assignment of computes to processors is arbitrary and as
a result suboptimal. The subsequent load-balancing decisions, which use a
refinement-based strategy, tend to minimize the number of migrations. This
serves to keep communication volume in check and does not break the run-
time’s assumption of predictability of load.

On machines such as Blue Gene/L, the load balancer also uses knowledge of
the three-dimensional (3-D) torus interconnect to minimize the average num-
ber of hops traveled by all communicated bytes, thus minimizing contention
in the network. While doing the initial mapping of cells to processors, the
runtime uses a scheme similar to orthogonal recursive bisection (ORB) [13].
The 3-D torus of processors is divided recursively until each cell can be as-
signed a processor and then the 3-D simulation box of cells is mapped onto the
torus. In subsequent load-balancing steps, the load balancer tries to place the
computes on under-loaded processors near the cells, with which this compute
will interact.
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FIGURE 9.1: Time profile of NAMD running ApoA1 benchmark on 1024
processors of Blue Gene/L for five timesteps. Shades of gray show different
types of calculations overlapping.

9.3 Petascale Challenges and Modifications

When NAMD was designed over ten years ago [14], million-processor ma-
chines were beyond the imagination of most people. Yet, by virtue of its
parallel design, NAMD has demonstrated good scaling up to thousands of
processors. As we moved to terascale machines (typically having tens of thou-
sands of processors), NAMD faced a few challenges to maintain scalability and
high efficiency.

The emergence of Blue Gene/L (which has only 256 MB of memory per
processor) posed the problem of using a limited amount of memory for the
initial startup (loading the molecular structure information), the actual com-
putation, and load balancing. During startup, the molecular structure is read
from a file on a single node and then replicated across all nodes. This is un-
necessary and limits our simulations to about 100,000 atoms on Blue Gene/L.
Making use of the fact that there are some common building blocks (amino
acids, lipids, water) from which biomolecular simulations are assembled and
their information need not be repeated, this scheme has been changed. Using
a compression scheme, we can now run million atom simulations on the Blue
Gene/L as we will see in Section 9.3.1.

The other major obstacle to scaling to large machines was the previous
implementation of the particle mesh Ewald (PME) method. The PME method
uses 3-D fast Fourier transforms (FFTs), which were implemented via a one-
dimensional (1-D) decomposition. This limited the number of processors that
could be used for this operation to a few hundred depending upon the number
of planes in the grid. To overcome this limitation, a commonly used two
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TABLE 9.1: Benchmarks and their simulation sizes

Molecular
System

Atom
Count

Cutoff
(Å)

Simulation Cell (Å3) Time step
(fs)

IAPP 5,570 12 46.70 × 40.28 × 29.18 2
ApoA1 92,224 12 108.86 × 108.86 × 77.76 1
STMV 1,066,628 12 216.83 × 216.83 × 216.83 1

dimensional (2-D) decomposition of the grid into pencils is now used. This
has led to higher efficiency on large numbers of processors and has also helped
to better overlap the FFT with other operations as can be seen in Figure 9.1.

This figure has been generated using the performance analysis tool in the
Charm++ framework called Projections. For each 100 μs time interval (along
the X-axis), the figure shows the execution time of each function added across
all 1024 processors. Various shades of light gray consuming most of the graph
represent the compute work. The black peaks at the bottom represent patch
integration and the deep gray bordering the hills represents communication.
The area in black in the valley in the center represents the PME computation,
which overlaps well with other functions.

9.3.1 Current performance

The performance of NAMD on various platforms substantiates the claims
made in the previous sections. NAMD has shown excellent scaling to thou-
sands of processors on large parallel machines like the Blue Gene/L and Cray
XT3. The benchmarks used for results presented are shown in Table 9.1.
These molecular systems are representative of almost all sizes of the simula-
tions interesting to biophysicists. They range from a few thousand atoms to
millions of atoms.

The Blue Gene/L (BG/L) machine at IBM T. J. Watson has 20,480 nodes.
Each node contains two 700 MHz PowerPC 440 cores and has 512 MB of
memory shared between the two. The machine can be operated in copro-
cessor mode or virtual node mode. In the coprocessor mode, we use only
one processor on each node for computation. In the virtual node mode, both
processors on each node are used for computation. The nodes on BG/L are
connected in a 3-D torus. The Cray XT3 at the Pittsburgh Supercomput-
ing Center (called BigBen) has 2068 compute nodes, each of which has two
2.6 GHz AMD Opteron processors. The two processors on a node share 2 GB
of memory. The nodes are connected into a 3-D torus by a custom C-star
interconnect.

Figures 9.2(a) and 9.2(b) show NAMD scaling to 32,768 processors of the
Blue Gene/L machine and to 4,000 processors of Cray XT3. Different tech-
niques are at work together as we run on machines with large numbers of pro-
cessors. At some point on the plots, depending on the atoms per processors



Biomolecular Modeling in the Era of Petascale Computing 171

NAMD on Watson BG/L

Processors

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
20

48
0

32
76

8

N
an

os
ec

on
ds

 p
er

 d
ay

0.01

0.02

0.04

0.08
0.1

0.2

0.4

0.8
1.0

2.0

4.0

8.0

16.0

32.0

64.0
IAPP (5.5K)
ApoA1 (92K)
STMV (1M)

(a)

NAMD on BigBen XT3

Processors

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
00

40
00

N
an

os
ec

on
ds

 p
er

 d
ay

0.01

0.02

0.04

0.08
0.1

0.2

0.4

0.8
1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0 IAPP (5.5K)
ApoA1 (92K)
STMV (1M)

(b)

FIGURE 9.2: Performance of NAMD on Blue Gene/L and Cray XT3.
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NAMD running on BG/L.

and the machine, we switch from 1-Away to 2-AwayX and then 2-AwayXY de-
composition of the patches. We also shift from 1-D decomposition of grids to
2-D for the PME computation when required. These decisions are automated
so as to relieve the user of the burden of identifying optimal configuration
parameters.

9.3.2 Performance on future petascale machines

To model running large molecular systems (many millions of atoms) on
petascale machines with millions of processors, we plotted number of atoms
per processor versus time step for different molecular systems. As can be seen
in Figure 9.3 we get similar performance for a given ratio of number of atoms
to processors for all the three benchmarks (which are quite varied in their
sizes).

This plot suggests that NAMD will perform well for larger sized molecular
systems on new petascale machines. For example, consider a 100-million atom
molecular system which we wish to run on a hypothetical petascale machine
consisting of 5-million processors. This gives us an atom-to-processor ratio of
20, which is within the regime presented in the above plot. The fraction of
CPU cycles spent of FFT/PME increases as N log N as the number of atoms
(N) increases, but this is a relatively small effect. We also validated these
conclusions using our BigSim performance prediction framework [24] for some
petascale designs.
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9.3.3 Acceleration co-processors

There is currently excitement about the potential of heterogeneous clus-
ters in which the bulk of computation is off-loaded to a specialized (or at
least less-flexible) but higher performance coprocessor. Examples include
the Cell Broadband Engine processor, graphics processors (GPUs), field-
programmable gate arrays (FPGAs), and the special-purpose MD-GRAPE.
Although these application accelerators are capable of sustaining hundreds of
gigaflops for well-suited application kernels, data transfer between the CPU
and the coprocessor limits performance to perhaps a factor of ten over a tra-
ditional CPU core. Since accelerated nodes are likely to outrun interconnect
bandwidth, their impact will be seen most on throughput-oriented clusters,
while leadership-class petascale machines will employ multicore processors for
maximum code portability and a more balanced design. The parallel design of
NAMD would be little-changed by the addition of acceleration coprocessors.

9.4 Biomolecular Applications

Scientifically interesting simulations of biomolecular systems currently range
from ten thousand to a few million atoms, while future simulations may extend
to 100,000,000 atoms. Progress will be on two fronts: supporting simulations
of larger systems and increasing simulation rates on more powerful machines
as they appear. For smaller systems the length of simulation that can be ob-
tained is limited by latency and serial bottlenecks (strong scaling), while for
larger simulations the size of the available machine limits performance (weak
scaling). Table 9.2 summarizes expected simulation capabilities for NAMD
running on the latest leadership-class hardware. Values for years 2004 and
2006 reflect capabilities already achieved. All simulations use a 12 Å cutoff,
PME full electrostatics, and 1 femtosecond time steps. Achieving simulation
rates higher than 100 nanoseconds/day would require significant improvement
in network latencies, which is not easily foreseen in the next 5 years. Exam-
ples of biomolecular simulations in each size range are given in the table,
illustrated in Figure 9.4, and described below.

9.4.1 Aquaporins

Water constitutes about 70% of the mass of most living organisms. Reg-
ulation of water flow across cell membranes is critical for maintaining fluid
balance within the cell. The transportation of water in and out of a cell
is mediated by a family of membrane proteins named aquaporins (AQPs),
which are widely distributed in all domains of life. Through modulating wa-
ter permeability of cellular membranes, AQPs play a crucial role in water
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FIGURE 9.4: (See color insert following page 18.) Example biomolecular
simulations: (a) aquaporin in membrane with solvent, (b) potassium chan-
nel in membrane with solvent, (c) ribosome, (d) poliovirus with cell surface
receptors, (e) photosynthetic chromatophore, (f) BAR domain vesicle cross
section.

homeostasis of living cells. In the human body, there are at least 11 different
AQPs, whose physiological importance is reflected in the many pathophysi-
ological situations associated with their absence/malfunction. For example,
cataracts and diabetes insipidus have been linked to the impaired functions
of AQP0 and AQP2, respectively. A particularly intriguing property of AQPs
is their ability to block protons while allowing water to pass. In the past few
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TABLE 9.2: Forecast of production simulation capabilities
Size 100 K atoms 1 M atoms 10 M atoms 100 M atoms
e.g. aquaporin,

potassium chan.
STM virus,
ribosome

poliovirus chromatophore,
BAR dom. vesicle

2004 4 ns/day
500-core Alpha

2006 10 ns/day 4 ns/day
500-core XT3 2000-core XT3

2008 100 ns/day 10 ns/day 1 ns/day
5,000-core machine

2010 100 ns/day 100 ns/day 10 ns/day 1 ns/day
50,000-core machine

2012 100 ns/day 100 ns/day 100 ns/day 10 ns/day
500,000-core machine

years, MD simulations [20] have contributed significantly to the understand-
ing of this unique property of AQPs, and also of the molecular basis of their
function and selectivity. A single solvated and membrane-embedded AQP
tetramer simulation [22] comprises ∼100,000 atoms.

9.4.2 Potassium channels

Ions crossing potassium channels are responsible for the generation and
spread of electrical signals in the nervous system. A number of high-resolution
crystal structures of potassium channels have been resolved over the last
decade, recognized in part by the 2003 Nobel prize, awarded to Dr. MacKin-
non for his pioneering work on structure-function relationships of these chan-
nels. However, how potassium channels dynamically transit between open,
inactive, or conductive states upon application of voltage remains highly de-
bated. Molecular dynamics simulations seem to be an ideal tool to tackle this
question, but relevant gating events occur on the millisecond timescale, while
current MD simulations only reach nanosecond timescales. Moreover, all-atom
descriptions are required to faithfully model the behavior of the channel, e.g.,
its ion selectivity. A system of 350,000 atoms containing one potassium chan-
nel, a patch of membrane, water, and ions is being simulated already at 100 ns
per month on 512 Cray XT3 CPUs [12]. To study channel gating, however, a
tenfold improvement in simulation speed (1μs per month) is required.
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9.4.3 Viruses

Satellite Tobacco Mosaic Virus (STMV), one of the smallest and simplest
viruses known, consists of a ball-shaped RNA genome enclosed in an icosa-
hedral capsid composed of 60 identical protein units; the complete particle is
roughly 17 nm in diameter. Although small for a virus, the complete simula-
tion of STMV immersed in a water box with ions contains about one million
atoms. Based on the results of the first simulation of the complete STMV
particle [5], researchers were able to propose a possible assembly pathway for
the virus. Further efforts on this project focus on the disassembly of STMV,
which is known to be mediated by a change in pH (this holds for many other
viruses), although the exact mechanism is unclear.

The poliovirus is larger and more complex than STMV (the polio capsid
is about 30 nm in diameter and composed of 240 protein units), and the dis-
assembly is believed to be triggered by contact between the capsid and host
cell membrane and receptor proteins. Structures of the poliovirus itself and
of the virus in complex with the receptor are available, although structure
of the receptor is known only at a low resolution of ∼10 Å. Researchers have
already developed a homology model of the poliovirus receptors and started
MD simulations of a single capsid-receptor bundle (∼250,000 atoms). The
systems intended for further simulations, focusing on capsid disassembly, in-
clude a portion of the capsid in contact with a membrane (about 3 million
atoms) and the complete poliovirus capsid (∼10 million atoms). Further, a
portion of the capsid in contact with a membrane will be simulated (up to
more than 3 million atoms), to elucidate the role of the cellular membrane in
the opening of the capsid and release of the genome. Finally, a simulation of
the complete poliovirus capsid might be necessary for investigation of how the
disassembly proceeds over the surface of the whole virus, which would require
building a system consisting of about 10 million atoms.

9.4.4 Ribosome

The translation of genetic information into protein sequences is essential for
life. At the core of the translation process lies the ribosome, a 2.5–4.5 MDa
ribonucleoprotein complex where protein synthesis takes place. The ribosome
is not only interesting because of its fundamental role in the cell, it is also
a major target for drug discovery and design. Many antibiotics in clinical
use block protein synthesis in the bacterial ribosome. With the emergence of
high-resolution structures of the ribosome complexed with antibiotics, it has
become clear that chemically diverse antibiotics target only a few ribosomal
sites [17]. Structure-based drug design targeting these specific sites is an at-
tractive option for discovering new antibiotics [4]. The Sanbonmatsu team
at Los Alamos National Laboratory performed ground-breaking large-scale
(2,640,000 atoms) all-atom MD simulations of the entire ribosome beginning
in 2003. These simulations, performed with NAMD, discovered a corridor
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of 20 universally conserved ribosomal RNA bases interacting with the tRNA
during accommodation. The study was published in 2005 and also demon-
strated the feasibility of simulating conformational changes in multimillion-
atom molecular machines using NAMD [18].

9.4.5 Chromatophore

One of the most fundamental processes for life on Earth is the transfor-
mation of light energy into the synthesis of ATP. This transformation is
achieved through different specialized organelles, one such organelle being
the chromatophore of the purple bacterium Rhodobacter sphaeroides. Chro-
matophores are sheet-like or bulb-like indentations of the bacterial plasma
membrane. The chromatophore contains six types of proteins: about twenty
photosynthetic reaction centers, about twenty light-harvesting complexes 1
(LH1), about 150 light harvesting complexes 2 (LH2), about ten bc1 com-
plexes, about five cytochrome c2s, and usually one ATP synthase. These
proteins are all individually structurally known, though not all from the same
species. The chromatophore with its 200 proteins carries out a cardinal func-
tion in the bacterium, the absorption of sunlight by about 4,000 chlorophylls
(contained in LH1 and LH2 along with 1,300 carotenoids) and the transfor-
mation of its energy into the synthesis of adenosine-triphosphate (ATP) from
adenosine-diphosphate (ADP). The entire chromatophore model, an archety-
pal example of systems studied in structural systems biology, consists of more
than 200 proteins in a (90 nm)3 system containing about 70 million atoms.

9.4.6 BAR domain vesicle

Proteins containing BAR domains play an important role in essential cel-
lular processes (such as vesicle endocytosis at synaptic nerve terminals) by
inducing or sensing membrane curvature. The U.S. National Science Foun-
dation (NSF) solicitation Leadership-Class System Acquisition—Creating a
Petascale Computing Environment for Science and Engineering provides the
following model problem, involving protein BAR domains, for the proposed
machine:

A molecular dynamics (MD) simulation of curvature-inducing
protein BAR domains binding to a charged phospholipid vesicle
over 10 ns simulation time under periodic boundary conditions.
The vesicle, 100 nm in diameter, should consist of a mixture of
dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylser-
ine (DOPS) at a ratio of 2:1. The entire system should consist
of 100,000 lipids and 1,000 BAR domains solvated in 30 million
water molecules, with NaCl also included at a concentration of
0.15 M, for a total system size of 100 million atoms. All system
components should be modeled using the CHARMM27 all-atom
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empirical force field. The target wall-clock time for completion
of the model problem using the NAMD MD package with the
velocity Verlet time-stepping algorithm, Langevin dynamics tem-
perature coupling, Nose-Hoover Langevin piston pressure control,
the particle-mesh Ewald algorithm with a tolerance of 1.0e-6 for
calculation of electrostatics, a short-range (van der Waals) cut-off
of 12 Angstroms, and a time step of 0.002 ps, with 64-bit floating
point (or similar) arithmetic, is 25 hours. The positions, veloci-
ties, and forces of all the atoms should be saved to disk every 500
time steps.

The requirements for this simulation are similar to the requirements of
the chromatophore simulation described above. In both cases, systems con-
taining hundreds of proteins and millions of atoms need to be simulated to
gain insights into biologically relevant processes. In order to accomplish such
projects, NAMD must be ported to petascale parallel computers.

9.5 Summary

Each time step in a biomolecular simulation is small, yet we need many mil-
lion of them to simulate a small interval of time in the life of a biomolecule.
Therefore, one has to aggressively parallelize a small computation with high
parallel efficiency. The NAMD design is based on the concept of Charm++ mi-
gratable objects and is fundamentally adequate to scale to petascale machines—
this is indicated by the 1–2 milliseconds time per step achieved by NAMD for
some benchmarks, with ratio of atoms to processor in a similar range that
we expect to see on petascale machines. We have demonstrated scalability
to machines with tens of thousands of processors on biomolecular simulations
of scientific importance. Implementation strategies have been reworked to
eliminate obstacles to petascale through memory footprint reduction and fine
grained decomposition of the PME computation. All this has made the study
of large molecules such as the ribosome and entire viruses possible today and
will enable even larger and longer simulations on future machines.
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10.1 Introduction

A universal computer is one of the greatest inventions in the modern history
of technology. It enables us to utilize essentially the same machine for various
applications, and thus, the hardware can be designed independently of the
applications. This feature makes the development of a computer easier, since
its engineering can be focused on the design of a single architecture. Along
with the rapid advancements in semiconductor technologies, an enormous
growth in processor speeds has been observed in the last 60 years. Their
applications have also rapidly expanded — the universal computer probably
has a wider range of applications than any other machine in history.
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Since the invention of integrated circuits, the transistor density in mi-
crochips has been increased in accordance with Moore’s law, which has re-
sulted in an enormous performance increase. A simple floating-point arith-
metic unit uses only about a few hundred thousand transistors, but nowadays
a single microchip can have tens of millions of transistors. Therefore, an ef-
ficient parallel use of multiple arithmetic units is of primary importance in
increasing processor performance. In recent times, multicore technology has
become popular, and an advanced processor can perform 16 or more arith-
metic operations in parallel. However, this is still quite low as compared with
the number that can be achieved by accumulating arithmetic units with a high
density. By using 45-nm technology, it is possible to accumulate thousands of
double-precision floating point units (FPUs) operating around gigahertz speed
in a single LSI. In conventional processors, there are two bottlenecks limiting
parallel calculations — the memory bandwidth bottleneck and heat dissipa-
tion problem. These bottlenecks can be overcome by developing specialized
architectures for specific applications and sacrificing some of the universality.

The GRAvity PipE (GRAPE) project is one of the most successful at-
tempts to develop such high-performance, competitive special-purpose sys-
tems [25, 16]. The GRAPE systems are specialized for simulations of classical
particles such as simulations for gravitational N -body problems or molecu-
lar dynamics (MD) simulations. In these simulations, most of the computing
time is spent on the calculation of long-range forces such as gravitational,
Coulomb, and van der Waals forces. Therefore, the special-purpose engine
calculates only these forces, and all the other calculations are performed by a
conventional host computer that is connected to the system. This style makes
the hardware very simple and cost effective. This strategy of using specialized
computer architectures predates the GRAPE project. Its application to MD
simulations was pioneered by Bakker et al. on the Delft Molecular Dynam-
ics Processor (DMDP) [2] and by Fine et al. on the FASTRUN processor
[6]. However, neither system was able to achieve effective cost performance.
The most important drawback was the architectural complexity of these ma-
chines, which demanded considerable time and money in the developmental
stages. Since electronic devices technology continues to develop very rapidly,
the speed of development is a crucial factor affecting the cost-to-performance
ratio.

Figure 10.1 shows the advancements in the GRAPE computers. The project
began at the University of Tokyo and is now run by two groups, one at the
National Astronomical Observatory/University of Tokyo and the other at the
RIKEN Institute. GRAPE-4 [27] was built in 1995, and it was the first ma-
chine to break the teraflops barrier in nominal peak performance. To date,
eight Gordon-Bell Prizes (1995, 1996, 1999, 2000(double), 2001, 2003, and
2006) have been awarded to simulations using the GRAPE systems. The
GRAPE architecture can achieve such high performances because it solves the
problem of memory bandwidth bottlenecks and lessens the heat dissipation
problem. In 2002, we launched a project to develop the MDGRAPE-3 system,
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a petaflops special-purpose computer system for MD simulations, and we com-
pleted its development in June 2006 [29]. The MDGRAPE-3 is a successor of
GRAPE-2A [9], MD-GRAPE [28, 8], and MDM(MD Machine)/MDGRAPE-2
[18], which are also machines for MD simulations.
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FIGURE 10.1: Advancements in the GRAPE systems. For astrophysics, there
are two product lines. The even-numbered systems, GRAPE-2, 2A, 4, and
6 (dashed line), are the high-precision machines, and the systems with odd
numbers, GRAPE-1, 1A, 3, and 5 (dotted line), are the low-precision ma-
chines. GRAPE-2A, MD-GRAPE, MDM/MDGRAPE-2, and MDGRAPE-3
(thick solid line) are the machines for MD simulations.

In recent years there have been very rapid advances in structural genomics,
and many three-dimensional structures of proteins and other biomolecules
have been solved. In Japan, for example, the national “Protein 3000” project
has successfully solved the structures of 3,000 proteins between 2002 and 2007.
Such MD simulations by means of high-performance, special-purpose comput-
ers will be a very powerful tool for applying the new structural knowledge to
advances in bioscience and biotechnology. The main targets of MDGRAPE-3
are high-precision screening for drug design and the large-scale simulations
of huge proteins/complexes [24]. In this chapter, we describe the hardware
architecture of the MDGRAPE-3 system and report early results of its per-
formance evaluation.
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10.2 Hardware of MDGRAPE-3

Host
Computer

Special-
Purpose
Engine

r,q etc.

f

FIGURE 10.2: The basic architecture of MDGRAPE-3 and the other GRAPE
systems.

First, we will describe the basic architecture of GRAPE systems, as shown
in Figure 10.2. The GRAPE hardware is an accelerator for specific applica-
tions, and it is attached to general-purpose commercial computers. In the
case of MDGRAPE-3, it consists of a host PC cluster with special-purpose
boards for MD simulations. The host sends the coordinates and other data
of particles to the special-purpose engine, which then calculates the forces
between the particles and returns the results to the host computer. In the
MD simulations, most of the calculation time is spent on nonbonded forces,
i.e., the Coulomb and van der Waals forces. Therefore, the special-purpose
engine calculates only the nonbonded forces, and all other calculations are
performed by the host computer. This makes the hardware and the software
quite simple. For the hardware, we have to consider only the calculation of
forces, which is rather simple and has little variation. On the other hand,
in the past on machines like DMDP, almost all the work required for the
MD simulation was performed by the hardware; hence, the hardware was ex-
tremely complex and very time-consuming to build. In the GRAPE systems,
no detailed knowledge on the hardware is required to write programs, and a
user simply uses a subroutine package to perform the force calculations. All
other aspects of the system, such as the operating system, compilers, etc., rely
on the host computer and do not need to be specially developed.

The communication time between the host and the special-purpose engine
is proportional to the number of particles, N , while the calculation time is
proportional to its square, N2, for the direct summation of the long-range
forces, or is proportional to NNc, where Nc is the average number of particles
within the cutoff radius of the short-range forces. Since Nc usually exceeds
a value of several hundred, the calculation cost is considerably higher than
the communication cost. In the MDGRAPE-3 system, the ratio between the
communication speed and calculation speed of the special-purpose engine is
0.2 Gbytes/sec·TFLOPS = 0.2 bytes for one thousand operations. This ratio
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is fairly smaller than that in the commercially available parallel processors.
Such a low communication speed is adequate to make efficient use of the
special-purpose engine.

10.3 The Calculations Performed by MDGRAPE-3

Next, we describe the calculations that are performed by the special-purpose
engine of the MDGRAPE systems. It calculates two-body forces on the ith
particle 	Fi as

	Fi =
∑

j

ajg(bjr
2
s)	rij (10.1)

where 	rij = 	rj − 	ri, r
2
s = r2

ij + ε2i . The vectors 	ri, 	rj are the position vectors
of the i, jth particles, and εi is a softening parameter to avoid numerical
divergence. For the sake of convenience, we hereafter refer to the particles on
which the force is calculated as the “i-particle,” and the particles that exert
a force on the i-particle as the “j-particle.” The function g(ζ) is an arbitrary
smooth function. For example, in the case of Coulomb forces, the force is
given by

	Fi/qi =
∑

j

qj

r3
ij

	rij (10.2)

where qi, qj are the charges of the ith and the jth particles, respectively.
This can be calculated by using aj = qj , bj = 1, g(ζ) = ζ−3/2, εi = 0. The
multiplication by qi is performed by the host computer.

In the case of a force due to Lennard-Jones potential, the force between the
particles is given by

	fij =

[
Aij

r8
ij

− Bij

r14
ij

]
	rij (10.3)

where Aij and Bij are constants determined from the equilibrium position
and the depth of a potential. These constants depend on the species of ith
and jth particles. This force law can be evaluated by choosing g(ζ), aj , bj , εi

as follows:

g(ζ) = ζ−4 − ζ−7

aj = A
7/3
ij B

−4/3
ij (10.4)

bj =
(

Aij

Bij

)1/3

εi = 0

The other potentials, including the Born-Mayer type repulsion (U(r) = A exp(Br)),
can also be evaluated.
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In addition to Equation (10.1), MDGRAPE can also calculate the following
equations:

ci =
∑

j

ajg(	ki · 	rj) (10.5)

	Fi =
∑

j

	kjcjg(	kj · 	ri + φj) (10.6)

φi =
∑

j

ajg(bjr
2
s) (10.7)

Equations (10.5) and (10.6) are used to calculate discrete Fourier transforma-
tions for wave-space sums in the Ewald method [7], and the genetic algorithm-
direct space method for X-ray crystallography [20]. The potential energies and
isotropic virials are calculated by Equation (10.7).

Virial tensors, which are necessary for simulation under a tensile stress by
using the Parrinello-Rahman method [22], can be calculated from the forces.
At first, in the case of open boundary conditions, virial tensors are defined by

Φ =
∑

i

	Fi : 	ri (10.8)

which we can calculate directly from forces 	Fi. In the case of periodic bound-
ary conditions, it has been well established that a different formula must be
used [1]:

Φ =
1
2

∑
i,j,α

	fα
ij : (	ri − 	rα

j ) (10.9)

where α denotes neighboring cells. To calculate this, a force 	Fi must be
divided into several forces from each cell α as

	Fα
i =

∑
j

	fα
ij (10.10)

and then, the virial tensor (10.9) can be evaluated as

Φ =
1
2

∑
i,α

	Fα
i : (	ri − 	Rα) (10.11)

where 	Rα is a translation vector to a cell α. MDGRAPE-3 has a function for
calculating the forces from each periodic cell separately, which is useful for
evaluating a virial tensor.

There are several clever algorithms for the efficient calculation of long-
range forces. In high-precision calculations such as those in MD simulations,
these algorithms use direct summation for the near-field forces. Therefore,
the GRAPE systems can accelerate these algorithms. There are also several
implementations of these algorithms, for example, the tree algorithm [13], the
Ewald method [7, 19], and the modified fast multipole method [10, 11].



Petascale Special-Purpose Computer for Molecular Dynamics Simulations 189

rj

Function
Evaluator

xij

yij

zij

εi2

Σ fij,x

Σ fij,y

Σ fij,z

ri

ki

a,b

FIGURE 10.3: Block diagram of the force calculation pipeline in the
MDGRAPE-3 chip.

10.4 MDGRAPE-3 Chip

In this section, we describe the MDGRAPE-3 chip, that performs force
calculations in the MDGRAPE-3 system [26]. We begin with an explanation
of the LSI because it is the most important part of the system.

10.4.1 Force calculation pipeline

Figure 10.3 shows the block diagram of the force calculation pipeline in the
MDGRAPE-3 chip. It calculates Equations (10.1), (10.5), (10.6), and (10.7)
using the specialized pipeline. The pipeline consists of three subtractor units,
six adder units, eight multiplier units, and one function-evaluation unit. It
can perform approximately 36 equivalent operations per cycle while calculat-
ing the Coulomb force. Here, we assume that both an inversion and a square
root need 10 arithmetic operations. In such a case, the function-evaluation
unit calculates x−3/2, which is equivalent to 20 floating-point operations. The
number depends on the force to be calculated. Most of the arithmetic oper-
ations are performed in a 32-bit single-precision floating-point format, with
the exception of the force accumulation. The force 	Fi is accumulated in a
80-bit fixed-point format and it can be converted to a 64-bit double-precision
floating-point format. The coordinates 	ri and 	rj are stored in a 40-bit fixed-
point format because this makes the implementation of periodic boundary
conditions easy. Since the dynamic range of the coordinates is relatively small
in MD simulations, the use of the fixed-point format causes no trouble.

The function evaluator, which allows the calculation of an arbitrary smooth
function, is the most important part of the pipeline. This block is almost the
same as those in MD-GRAPE [28, 8]. It has a memory unit that contains a
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table for polynomial coefficients and exponents, and a hardwired pipeline for
fourth-order polynomial evaluations. It interpolates an arbitrary smooth func-
tion g(x) using segmented fourth-order polynomials by the Horner’s method

g(x0 + Δx) = (((c4[x0]Δx + c3[x0]) Δx + c2[x0])
Δx + c1[x0]) Δx + c0[x0] (10.12)

where x0 is the center of the segmented interval, Δx = x − x0 is the dis-
placement from the center, and ck[x0] are the coefficients of polynomials. The
coefficient table has 1,024 entries so that it can evaluate the forces by the
Lennard-Jones (6–12) potential and the Coulomb force with a Gaussian ker-
nel in a single precision.

In the case of Coulomb forces, the coefficients aj and bj in Equation (10.1)
depend only on the species of the j-particle, that are read from the j-particle
memories. Actually, the charge of the jth particle qj corresponds to aj , and
bj = 1 is constant. On the other hand, in the case of the van der Waals
force, these coefficients depend on the species of both the i-particle and the
j-particle, as can be seen in Equation (10.4). Thus, these coefficients must be
changed when the species of the i-particle changes. Since considerable time
is required to exchange them with each change in the species, the pipeline
contains a table of the coefficients. The table generates the coefficients from
the species of both i-particles and j-particles. Each pipeline has a table im-
plemented by a random-access memory with a depth of 1024, and thus, the
number of species is limited to 32 (since 1024 = 322). We can combine four
tables of four pipelines into one in order to increase the number of species to
64. In this case, the i-particle species in the combined four pipelines should
be identical. In the MD simulations, we usually must exclude nonbonded in-
teractions between bonded atoms. The MDGRAPE-3 chip has a function to
exclude forces from the specified atoms for each pipeline.

10.4.2 j-Particle memory and control units

Figure 10.4 shows the block diagram of the MDGRAPE-3 chip. It has 20
force calculation pipelines, a j-particle memory unit, a cell-index controller, a
force summation unit, and a master controller. The master controller manages
the timings and inputs/outputs (I/O) of the chip. The j-particle memory unit
holds the coordinates of j-particles for 32,768 bodies, and it corresponds to the
“main memory” in general-purpose computers. Thus, the chip is designed by
using the memory-in-the-chip architecture and no extra memory is necessary
on the system board. The amount of memory is 6.6 Mbits and is constructed
by a static RAM. The memory operates at half the pipeline clock speed. The
same output of the memory is sent to all the pipelines simultaneously. Each
pipeline calculates using the same data from the j-particle unit and individual
data stored in the local memory of the pipeline. Since the two-body force
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FIGURE 10.4: Block diagram of the MDGRAPE-3 chip.

calculation is given by
	Fi =

∑
j

	f(	ri, 	rj) (10.13)

for the parallel calculation of multiple 	Fi, we can use the same 	rj . This
parallelization scheme — “the broadcast memory architecture”— is one of the
most important advantages of the GRAPE systems. It enables the efficient
parallelization at a low bandwidth realized by a simple hardware. In addition,
we can extend the same technique to the temporal axis. If a single pipeline
calculates two forces, 	Fi and 	Fi+1, in every two cycles by time-sharing, we can
reuse the same 	rj . This means that an input 	rj is required every two cycles.
We refer to this parallelization scheme as a “virtual multiple pipeline” [15],
because it allows a single pipeline to behave like multiple pipelines operating
at half the speed. The advantage of this technique is reduction in the “virtual
frequency.” The requirement for the memory bandwidth is reduced by half,
and it can be decreased further by increasing the number of the “virtual”
pipelines. The hardware cost for the virtual pipeline consists of only the
registers for the coordinates and forces, which are very small.

In the MDGRAPE-3 chip, there are two virtual pipelines per physical
pipeline, and thus, the total number of logical pipelines is 40. The physical
bandwidth of the j-particle unit will be 2.5 Gbytes/s, but the virtual band-
width will reach 100 Gbytes/s. This allows a fairly efficient parallelization in
the chip. The MDGRAPE-3 chip has 340 arithmetic units and 20 function-
evaluator units that work simultaneously. The chip has a high performance
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of 180 GFLOPS at a modest speed of 250 MHz. This advantage will become
even more important in the future. The number of transistors will continue to
increase over the next ten years, but it will become increasingly difficult to use
additional transistors to enhance performance. In fact, in a general-purpose
scalar processor, the number of floating-point units in the CPU core appears
to reach a ceiling at around 4–8 because of the limitation in the bandwidth of
the memory, that of the register file, and the difficulties in the software. On
the other hand, in the GRAPE systems, the chip can house more and more
arithmetic units with little performance degradation. Thus, the performance
of the chip exactly follows the performance of the semiconductor device tech-
nology, which is the product of the number of transistors and the speed. In a
general-purpose processor, the performance increases roughly 10 times every
5 years, a rate slower than that of the semiconductor device, which is about 30
times every 5 years. Therefore, a special-purpose approach is expected to be-
come increasingly more advantageous than a general-purpose approach. The
demerit of the broadcast memory parallelization is, of course, its limitation
with respect to applications. However, it is possible to find several applica-
tions other than particle simulations. For example, the calculation of dense
matrices [21] and the dynamic programming algorithm for hidden Markov
models can be accelerated by the broadcast memory parallelization.

The size of the j-particle memory, 32,768 bodies = 6.6 Mbits, is sufficient
for the chip despite the remarkable calculation speed, since MD simulation is
a computation-intensive application and not a memory-intensive application
such as fluid dynamics simulations. Of course, although the number of parti-
cles often exceeds this limit, we can use many chips in parallel to increase the
capacity. We can divide the force 	Fi on the ith particle as

	Fi =
nj∑

k=1

	F
(k)
i (10.14)

by grouping j-particles into nj subsets. Thus, by using nj chips, we can
treat nj times more particles at the same time. However, if a host computer
collects all the partial forces 	F

(k)
i and sums them, the communication be-

tween the host and special-purpose engines increases nj times. To solve this
problem, the MDGRAPE-3 chip has a force summation unit, which calcu-
lates the summation of the partial forces. In the MDGRAPE-3 system, the
12 MDGRAPE-3 chips on the same board are connected by a unidirectional
ring, as explained later. Therefore, each chip receives partial forces from the
previous chip, adds the partial force calculated in the chip, and sends the
results to the next chip. The force summation unit calculates the sum in the
same 80-bit fixed-point format as is used for the partial force calculations in
the pipelines. The result can be converted to a 64-bit floating-point format at
the end of the chain. The summation of the force subsets on different boards
is performed by the host computer. If the number of particles still exceeds
the total memory size, the forces must be subdivided into several subsets, and



Petascale Special-Purpose Computer for Molecular Dynamics Simulations 193

the contents of the j-particle memory should be replaced for each subset. In
this case the number of particles is quite huge, and hence, the overhead for
communication/calculation is not as important. Also, in such cases we usually
use PME or treecode or cutoff methods, where systems are divided into cells.

The j-particle memory is controlled by the cell-index controller, which gen-
erates the addresses for the memory. To calculate the short-range forces, it
is not necessary to calculate two-body interactions with all particles. There
exists a cutoff rc above which forces can be ignored, i.e., when r > rc. If we
calculate the contributions inside the sphere r < rc, the cost of force calcu-
lations decreases by (L/rc)3, where L is the size of a system. Thus, when
L 
 rc, the efficiency increases substantially. The standard technique for
this approach is called the cell-index method [1]. In this method, a system is
divided into cells with sides l. When we calculate the forces on the particles
in a cell, we treat only those that belong to cells within the cutoff.

The implementation of the cell-index method is almost the same as that
for the MD-GRAPE/MDGRAPE-2 systems, except for two new major func-
tions; one is used to calculate forces from different cells separately and the
other is a function to generate cell numbers automatically. These functions
decrease communication with a host. The host computer divides particles
into cells and sorts them by the cell indices. Thus, the particles that belong
to the same cell have sequential particle numbers. Hence, the address of the
particles in a cell can be generated from the start and end addresses. The
cell-index table contains the start and end addresses for all cells. The con-
troller generates the cell number involved in the interaction and looks up the
table to obtain the start address and the end one. The counter then generates
the sequential address for the j-particle memory. When the count reaches
to the end address, the same process is repeated for the next cell. Further,
the chip has a function to translate cells according to the periodic boundary
condition, and a support for the virial tensor calculation. As shown in Equa-
tion (10.11), the forces separated by each mirror image must be evaluated in
order to calculate a virial tensor under periodic boundary conditions. The
cell-index controller controls the force calculation pipelines to calculate these
partial forces.

10.4.3 Chip specifications

By combining all the above-mentioned units, the MDGRAPE-3 chip has
almost all the elements of the MD-GRAPE/MDGRAPE-2 system board other
than the bus interface. The chip is designed to operate at 250 MHz under
the worst conditions (1.08 V, 85◦C, process factor = 1.3). It has 20 pipelines,
and each pipeline performs 36 equivalent operations per cycle; thus, the peak
performance of the chip will reach 180 GFLOPS. This is 12.5 times faster
than the previous MDGRAPE-2 chip. More than 80% of the LSI operates at
300 MHz and 216 GFLOPS. The chip was manufactured by Hitachi Device
Development Center using HDL4N 0.13 μm CMOS technology. It consists of
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6-M gates and 10-M bits of memory, and the chip has a size of 15.7 mm × 15.7
mm. At 300 MHz, the power dissipation of the LSI was measured as 17 W
with full-speed calculations. It will be possible to design a chip having a speed
of gigahertz; however, the power dissipation will become above 80 W and the
number of transistors per operation will increase by at least 80%. Since the
parallelization is very efficient in our architecture, the gigahertz speed will
cause considerable difficulties in the power dissipation and transistor layout,
but this will not result in any performance gain of the system. Therefore, we
chose the modest speed of 250 MHz.

Its power per performance was less than 0.1 W/GFLOPS, which is much
better than those of the conventional CPUs. For example, the thermal design
power of a Pentium 4 3GHz processor produced by a similar 0.13 μm process
is 82 W, while its nominal peak performance is 6 GFLOPS. Therefore, its
power per performance is approximately 14 W/GFLOPS, which is a hundred
times worse than that of MDGRAPE-3. There are several reasons for this
high power efficiency. First, the accuracy of the arithmetic units is smaller
than that of the conventional CPUs. Since the number of gates of a multiplier
is roughly proportional to the square of the word length, this precision has a
significant impact on the power consumption. Secondly, in the MDGRAPE-3
chip, 90% of the transistors are used for arithmetic operations, and the rest are
used for control logic (the transistors for the memory are not counted). The
specialization and broadcast memory architecture make the efficient usage of
silicon possible. Finally, the MDGRAPE-3 chip operates at the modest speed
of approximately 300 MHz. At gigahertz speed, the depth of the pipeline
significantly increases, and the ratio of the pipeline registers tends to increase.
Since the pipeline registers dissipate power but do not perform any calculation,
there is a decrease in the power efficiency. In our applications, it is better to
parallelize calculations instead of increasing the frequency. Thus, the GRAPE
approach is very effective to suppress power consumption. This is another
important advantage of the GRAPE. IBM Blue Gene/L also uses a similar
approach with massively parallel calculations at a modest speed [31]. When
the feature size of the semiconductor decreases, almost all the parameters are
improved other than the power density. Therefore, the power dissipation will
become important in the future, and the GRAPE architecture can alleviate
the problem.
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10.5 System Architecture

In this section, the system architecture of MDGRAPE-3 is explained. Fig-
ure 10.5 shows the photograph and block diagram of the MDGRAPE-3 sys-
tem. The system consists of a PC cluster with special-purpose engines at-
tached. For the host PC cluster we used Intel Xeon R© processors. The system
has 100 nodes with 200 CPUs. For the host network, we use Infiniband (10
Gbit/s). The network topology is two-stage fat-tree, but the bandwidth be-
tween the root and leaf switches is one-fifth of the speed in order to achieve
nonblocking communication. It is implemented by using six 24-port switches.

Each node has the special-purpose engines of two boards with 12 MDGRAPE-
3 chips on each board. Since the MDGRAPE-3 chip has a performance of 216
GFLOPS at 300MHz the performance of the nodes will be 5.18 TFLOPS. In
detail, the system consists of 400 boards, which have the following specifica-
tions

Board with 12 chips at 300 MHz · · · 304
Board with 12 chips at 250 MHz · · · 74
Board with 11 chips at 300 MHz · · · 22

On some boards, a chip is disabled because it malfunctions. Since it is faster
to use 11 chips at 300 MHz than 12 chips at 250 MHz, a chip is disabled by
design for several boards regardless of its operation at 250 MHz in order to
increase the operational frequency. In total, we have 4,778 chips, and among
them, 3,890 chips operate at 300 MHz and 888 chips operate at 250 MHz.
This corresponds to the nominal peak performance of 1.0 PFLOPS.

The MDGRAPE-3 chips are connected to the host by two PCI-X buses
at 100 MHz. Figure 10.6 shows the photograph and block diagram of the
MDGRAPE-3 system board. The board has twelve MDGRAPE-3 chips, and
each chip is connected in series to send/receive the data. Since the memory is
embedded in the MDGRAPE-3 chip, the board is extremely simple. The speed
of the communication between the chips is 1.5 Gbytes/sec, which corresponds
to an 80-bit word transfer at 150 MHz. GTL I/O is used for these connections.
The board has a control FPGA (Xilinx XC2VP30) which performes I/O.
The FPGA has I/O to the MDGRAPE-3 chips, and two high-speed serial
interconnections with a speed of 10 Gbit/sec for both up and down streams.
This was realized by using a bundle of four 2.5 Gbit/sec LVDS channels (Xilinx
RocketIO), and an Infiniband 4X cable is used for a physical connection. Two
boards are mounted in a 2U chassis, and they are connected by a daisy-chain
using the high-speed serial interconnection. Two chassis with a total of 48
MDGRAPE-3 chips are connected to each host via two independent PCI-X
buses. The PCI-X interface board has also been developed for the high-speed
serial interconnection by using Xilinx XC2VP7 FPGA.

The MDGRAPE-3 units and PCs are mounted in 42U-height 19” racks.
The system consists of 22 racks in total, including the storage units and the
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FIGURE 10.5: (a) Photograph and (b) block diagram of the MDGRAPE-3
system.
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control node. The total power dissipation is about 200 kW and it occupies 80
m2. Because of the high-density packaging in addition to the high performance
of the chip, the installation area is fairly small even with a petaflops system.
We have also developed a small board with two MDGRAPE-3 chips that can
be attached directly to a PCI-X bus. The board is commercially available
from a venture company.

10.6 Software for MDGRAPE-3

As mentioned above, in the GRAPE systems, a user does not need to con-
sider the detailed architecture of the special-purpose engine, and all the nec-
essary computation is defined in the subroutine package. In order to use
MDGRAPE-3, we only have to modify the program in order to call the appli-
cation programming interface (API) of this system. We have already ported
AMBER 8 [4] and CHARMM [3] to run with a single board of the MDGRAPE-
3 system. For large-scale parallel simulations, we use a software called MOA
developed by T. Koishi, which is specially designed to operate efficiently with
MDGRAPE systems. In the following discussions, we illustrate the typical
procedure for using the MDGRAPE system.

The typical APIs used in the MD programs are summarized in Table 10.1.
All the routines, except those in the “overlap calculation” category, are identi-
cal to the earlier MDGRAPE-2 routines [19]. APIs for the overlap calculation
have been recently included to ensure an efficient use of the MDGRAPE-3
system. The MDGRAPE-3 board can perform force calculations on many
i-particles without any control from the host computer. Therefore, the host
computer can perform other calculations, while the board performs the force
calculations. On the other hand, the host computer is required to replace the
particle positions in the chip registers and read the calculated forces after ev-
ery calculation by the previous MDGRAPE-2 board. Therefore, it was more
difficult to implement parallel calculations between the host and MDGRAPE-
2 since fine-grain background calculations are required. On the other hand,
this can be conveniently performed by the MDGRAPE-3 system since it can
perform long calculations without a host computer. The core of the MD pro-
gram is shown in Table 10.2. The sequence of calculations for a time step
using the MDGRAPE-3 system is as follows:

1. Set the function table in the MDGRAPE-3 chips to the van der Waals
force (line 4).

2. Set all the coordinates and atom types of the j-particle memory in the
MDGRAPE-3 chips (lines 5–6).

3. Activate overlap calculation mode (line 7).
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TABLE 10.1: APIs used in a typical MD program with the
MDGRAPE-3 system

Name Function
Initialize and Finalize

m3 allocate unit Acquire the MDGRAPE-3 board
m3 set function Change the function table of the

MDGRAPE-3 chips
m3 free unit Release MDGRAPE-3 board

Set j-particle data and van der Waals parameters
m3 set positions Set positions of j-particles
m3 set types Set atom types of j-particles
m3 set charges Set charges of j-particles
m3 set rscale matrix Set the scaled van der Waals radii
m3 set charge matrix Set the well depths of van der Waals

potential
Calculate forces or potentials

m3 set cells Set cell-index information to
MDGRAPE-3

m3 set pipeline types Set atom types of i-particles
m3 calculate forces Calculate forces on specified i-

particles
m3 calculate potentials Calculate potentials on specified i-

particles
Overlap calculation

m3 setup overlap Activate overlap calculation mode
m3 start overlap calculation Start actual calculation on

MDGRAPE-3
m3 wait overlap calculation Wait until MDGRAPE-3 finishes

calculation

4. Loop over cells (line 8).

5. Set the cell information of 27 neighboring cells in the MDGRAPE-3 chips
(line 9). Atoms in these neighboring cells are used as the j-particle in
the subsequent force calculation routine.

6. Set coordinates and atom types of the i-particles in the MDGRAPE-3
chip registers and calculate the forces on these particles (lines 10–12).

7. The Coulomb forces are calculated in a similar manner (lines 14–20).

8. Start direct-memory-access (DMA) transfer to the MDGRAPE-3 board
(line 21). Steps 1–7 prepare only the data and commands in the DMA
buffer in the host memory. The commands include the “start calcula-
tion,” “wait until calculation finishes,” and “transfer calculated forces
to the host memory.”
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TABLE 10.2: Typical MD program to use MDGRAPE-3 system

1 unit=m3_allocate_unit("grav.tblmd3",M3_FORCE,xmin,xmax);
2 Other initialization

3 for(step=0;step<nstep;step++){
4 m3_set_function("lj01.tblmd3",M3_FORCE,xmin,max);
5 m3_set_types(unit, atypej, N);
6 m3_set_positions(unit, posj, N);
7 m3_setup_overlap(unit);
8 for(icell=0;icell<num_icell;icell++){
9 m3_set_cells(unit, neighbor_cells_lj[icell], 27);
10 m3_set_pipeline_types(unit, atypei[icell], ni_lj[icell]);
11 m3_calculate_forces(unit, posi[icell], ni_lj[icell],
12 force_lj[icell]);
13 }
14 m3_set_function("grav.tblmd3",M3_FORCE,xmin,xmax);
15 m3_set_charges(unit, chargej, N);
16 for(icell=0;icell<num_icell;icell++){
17 m3_set_cells(unit, neighbor_cells_cl[icell], 27);
18 m3_calculate_forces(unit, posi[icell], ni_cl[icell],
19 force_cl[icell]);
20 }
21 m3_start_overlap_calculation(unit);
22 Calculate bond, angle, torson (force_bond) by host

23 Calculate van der Waals and Coulomb forces (force_exclude)
24 for bonded part by host

25 m3_wait_overlap_calculation(unit);
26 Get total force by adding force_lj, force_cl and force_bond
27 Subtract force_exclude
28 if (is_potential_calculated_for_this_step?) {
29 Potential calculation with MDGRAPE-3

30 }
31 Update position of atoms

32 Communicate atom position, etc. between the nodes

33 }
34 m3_free_unit(unit);
35 Other finalization

9. Calculate the bonding, Coulomb, and van der Waals forces for the
bonded atoms with the assistance of the host computer (lines 22–24).
These calculations are performed in parallel with the MDGRAPE-3 sys-
tem.
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10. Wait until MDGRAPE-3 finishes the calculation (line 25).

11. Obtain the final forces by adding several forces (lines 26–27). The
Coulomb and van der Waals forces between the bonded atoms must
be subtracted because MDGRAPE-3 basically calculates the forces be-
tween all the pairs of i- and j-particles in the cell list.

12. The Coulomb and van der Waals potentials are calculated by using the
MDGRAPE-3 system in a similar manner (lines 28–30). We can reduce
the calculation time by reducing the frequency of the potential calcula-
tions; this is because their calculation times are the same as those for
the force calculations using the MDGRAPE-3 system. The MD simula-
tions in microcanonical or canonical ensembles do not require potential
energy to proceed to the subsequent coordinates of atoms.

10.7 Performance of MDGRAPE-3

In this section, we briefly explain the early results of sustained performance
evaluations. First, a single-node performance with AMBER-8 is described and
then, the entire system performance with large-scale calculations is shown.

Figure 10.7 shows the comparison of the calculation time using MDGRAPE-
3 and the host machine. Here the protein scytalone dehydratase solvated in
water was treated in all simulations and the number of atoms was controlled
by the number of water molecules. The sander module of AMBER-8 was
used for all the simulations. The time per step was calculated from a mea-
sured wall-clock time of simulations over a thousand steps. In the case of the
free boundary condition with direct force summation, we obtained enormous
accelerations. Here, we use a single core Intel Xeon R© 5160 processor with
2-chip and 12-chip MDGRAPE-3 boards. With the MDGRAPE-3 systems,
we obtained speeds that were more than 100 times faster for systems over
5,000 particles.

Next, we show the results of the particle-mesh Ewald method. Table 10.3
shows the results of the joint-AMBER-CHARMM (JAC) benchmark. Here,
again, we use the same host with a 2-chip MDGRAPE-3 board. In this case,
we obtained a modest acceleration of 5.4, since our machine only accelerates
direct force calculations. The direct part was accelerated nearly 30 times;
however, the reciprocal part still persists. Now, we attempt to accelerate
the reciprocal part by using parallel execution on the host machines. Re-
cently, smart cutoff methods that can substitute PME have been proposed
by several groups [33, 34, 5]. These methods are suitable for the MDGRAPE
accelerators, since they require only the direct part for nonbonded forces. The
implementation of a modified Wolf method using the 12-chip MDGRAPE-3
board was 30 times faster than the PME calculation using the single-core host
[12].
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TABLE 10.3: Breakdown of
calculation time for JAC benchmark.

original MDG3
Cutoff(Å) 9 10.1 10.1
Nfft 64 54 54
Direct (sec) 195.2 264.3 9.0
Reciprocal (sec) 40.9 31.4 27.8
List (sec) 21.2 25.7 0.5
Shake, etc. (sec) 10.0 10.2 12.0
Total (sec) 267.3 331.6 49.3
Acceleration 1 0.8 5.4

Next, we explain the performance of the entire system with large-scale
calculations [17]. In this simulation, we investigated the amyloid-forming
process of the Sup35 protein of yeast. Here, we report a result with the
highest sustained performance. The simulation system contained 462 random
coil peptides with seven residues (GNNQQNY) and 4,276,993 water molecules.
It has no amyloid nucleus. The solute molecules in the system were enclosed
in a box having a size of 400.5Å × 445Å × 712Å filled with water molecules.
The TIP4P water model and a cutoff of 44.5 Åare used. The software used
is the MOA. The host operating system is CentOS 4.3 for x86 64 with the
Voltaire MPI library; further, the Intel C compiler for x86 64 was used. In
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TABLE 10.4: Performance and parameters for the fastest simulation
Description
Number of total particles 17,157,406
Number of particles that interact via van der Waals poten-
tial

4,326,427

Number of particles in a cell 11,915
Number of j-particles 321,701
Number of j-particles via van der Waals potential 81,121
Number of floating-point operations between two particles
that interact by only the Coulomb potential

36

Number of floating-point operations between two particles
that interact by the Coulomb and van der Waals potentials

46

Number of floating-point operations per time step 2.02 × 1014

Number of time steps 10,000
Total number of floating-point operations in the simulation 2.02 × 1018

Total time for the simulation (sec) 5,464
Peak speed for the simulation system (TFLOPS) 822
Calculation speed (TFLOPS) 370
Effective speed (TFLOPS) 185
Efficiency (%) 45

this run, all the system boards are set to 250 MHz, and the nominal peak
performance corresponds to 860 TFLOPS.

Table 10.4 summarizes the obtained performance and system parameters
for the simulation, wherein we achieved a performance of 185 TFLOPS. We
counted the number of floating-point operations only for the Coulomb and van
der Waals force calculations performed on the MDGRAPE-3 board because
other calculations performed by the host computer are negligible. We obtained
the effective speed from the following three steps:

1. Count the number of pairwise force calculations for the Coulomb and
van der Waals forces (lines 2–6 in Table 10.4).

2. Estimate the equivalent floating-point count for a pairwise force calcu-
lation using the MDGRAPE-3 system (lines 7–8 in Table 10.4).

3. Eliminate duplicated calculations on the MDGRAPE-3 system (lines 8
and 14 in Table 10.4).

In the simulation, we truncated the forces at a finite distance by using the
cell-index method. Each atom interacts with the atoms in its neighboring 33

cells. Thus, the number of j-particles Nj is approximated as 27Ncell, where
Ncell denotes the average number of atoms in a cell. It should be noted
that the number of particles that interact with the van der Waals forces —
Nvdw — is roughly one-fourth of the total number of atoms because only oxy-
gen atoms in a water molecule have van der Waals interaction in the TIP4P
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model. The effective number of floating-point operations in a pairwise force
calculation using the MDGRAPE-3 system should be converted to a reason-
able value that is consistent with that of the general-purpose computers for
each force. Since the pipelines in the MDGRAPE-3 system modify the po-
tential functions by updating the coefficient table of segmented polynomials,
the speed in evaluating a pairwise interaction is independent of the poten-
tials. We count both division and square-root operations as ten floating-point
operations. Then, the floating-point operation count for the Coulomb and
van der Waals forces are 36 and 32, respectively. Some pairs of atoms inter-
act with both Coulomb and van der Waals forces. Since the calculation of
an inverse (square) distance between a pair is commonly performed in these
force calculations, we used a conversion count of 46 for the pairs interact-
ing with both Coulomb and van der Waals forces. It should be noted that
when the MDGRAPE-3 system has to perform the force calculation twice,
it performs more calculations than required. By assuming all the abovemen-
tioned estimations, the effective calculation speed is reduced to 370 TFLOPS.
Furthermore, the use of action-reaction symmetry can reduce the calculation
cost to half its value. Hence, from these assumptions, we obtained a final
effective speed of 185 TFLOPS. The action-reaction symmetry is often used
in simulations with general-purpose machines; however, its hardware imple-
mentation inhibits the use of the broadcast memory architecture, and the
hardware costs increase to a considerable extent. Therefore, the MDGRAPE-
3 system calculates the same pairwise interaction twice for each pair of atoms.
By eliminating all these duplicated operations in the MDGRAPE-3 system,
the effective number of floating-point operations per cycle per pipeline is 16.7
for the current simulation. By using this value, the effective peak performance
of the system for the simulation — the performance at 100% efficiency of the
MDGRAPE-3 system — is calculated to be 411 TFLOPS. The efficiency of
the simulations should be examined on the basis of this performance and not
the nominal peak performance of 860 TFLOPS for the Coulomb force calcu-
lations. By taking this into account, the obtained sustained performance of
185 TFLOPS corresponds to an efficiency of 45%, which is fairly appropri-
ate.

10.8 Summary and Future Directions

We have successfully built the MDGRAPE-3, a special-purpose computer
system for MD simulations with a petaflops nominal peak speed. It con-
sists of a host cluster with special-purpose engines having 4,778 dedicated
LSIs. The custom ASIC MDGRAPE-3 chip has a peak performance of 216
GFLOPS at 300 MHz and 17W. The total cost was about 8.6 million U.S.
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dollars including labor costs and no cost for the host computer. We were able
to achieve sustained performance of 185 TFLOPS during the practical sim-
ulation. Currently, we are using the system for various types of simulations
— protein-folding simulations, MD-based drug designs, studies on protein
dynamics, and virus simulations.

Such an accelerator approach will become more popular in the future. Cur-
rently, several projects using heterogeneous processors are running. For exam-
ple, the GRAPE-DR project, which is operated by the National Astronomical
Observatory, University of Tokyo, and RIKEN aims to develop a PC clus-
ter with quasi-general-purpose accelerators of 2 PFLOPS (single precision)
[14]. They have successfully developed its processor with the nominal peak
performance of 512 GFLOPS, which is essentially considered as a SIMD ac-
celerator with the broadcast memory architecture. The TSUBAME system in
the Tokyo Institute of Technology introduced Clearspeed advance accelerator
boards having 35 TFLOPS in total [32]. The Roadrunner was begun by Los
Alamos National Laboratory and IBM as a project to develop a heterogeneous
machine with a sustained performance of 1 PFLOPS by using Cell Broadband
Engine R© and AMD Opteron R© processors. Since it will become more diffi-
cult to utilize an increasing number of transistors in future microprocessors,
these accelerator approaches will become more popular. Another prospective
architecture for future high-performance processors is a tile processor. Sev-
eral projects already exist, for example, the MIT RAW microprocessor [30]
or University of Texas Austin TRIPS [23]. Since the tile processor can be
also considered as reconfigurable pipelines, it is closely related to the special-
purpose approach in the GRAPE architecture. Such a pipelined operation
may be one of its advantages in comparison with SIMD accelerators. The
combination of a tile processor and dedicated units, a function evaluator or
a force pipeline itself, for example, is also promising. Such dedicated units
can be easily inserted into a pipeline implemented in a tile processor, and
will enhance performance considerably for a small number of transistors. For
the next-generation system, MDGRAPE-4, we are currently investigating the
possibility of a tile processor with dedicated units. Such processors will realize
high performance, low power, and reasonable flexibility at the same time.
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11.1 Introduction

Computing continues to make a significant impact on biology. A variety of
computational techniques have allowed rapid developments in design of exper-
iments as well as collection, storage and analysis of experimental data. These
developments have and are leading to novel insights into a variety of biolog-
ical processes. The strength of computing in biology, however, comes from
the ability to investigate those aspects of biological processes that are either
difficult or are beyond the reach of experimental techniques. Particularly in
the last three decades, availability of increasing computing power has had a
significant impact on the fundamental understanding of the biomolecules at
the molecular level. Molecular biochemists and biophysicists, through theo-
retical multi-scale modeling and computational simulations, have been able
to obtain atomistic level understanding of biomolecular structure, dynamics,
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folding and function. The protein-folding problem, in particular, has attracted
considerable interest from a variety of researchers and simulation scientists.
However, it still remains an unsolved problem of modern computational bi-
ology. The lack of sufficient computing power has been commonly cited as
the main factor holding back progress in the area of computational molecular
biochemistry/biophysics.

Simulations of biomolecules are based on molecular dynamics (MD), en-
ergy minimization (EM) and related techniques; in combination with atom-
istic level description of the biomolecular system [27, 31]. MD simulations can
be defined as computer-simulation methodology where the time evolution of
a set of interacting particles is modeled by integrating the equation of mo-
tion. The underlying MD technique is based on the law of classical mechanics,
most notably Newton’s law, F = ma; and a mathematical description of the
molecular energy surface. This mathematical function, known as the potential
function, describes the interactions between various particles in the system as
a function of geometric variables. MD simulations consist of three calcula-
tions: determining energy of a system and forces on atoms’ centers, moving
the atoms according to forces, and adjusting temperature and pressure. The
force on each atom is represented as the combination of the contribution from
forces due to atoms that are chemically bonded to it and nonbond forces due
to all other atoms. For EM and related techniques, the stable conformations
of the biomolecules are searched by minimizing the potential function to reach
local (or global) minima. The lower energy states are associated with native
and functioning conformation of biomolecules, and in the case of interaction of
protein-ligands (or other biomolecules) the lower energy structure represents
favorable interactions, therefore, structures of interest in docking-type studies.
A wide variety of software packages are available for biomolecular simulations.
CHARMM [15], AMBER [16], LAMMPS [37], and NAMD [26] are some of
the popular codes that are in use by a variety of simulation scientists.

In the 1970s, MD simulations were used by Karplus, McCammon and
coworkers to perform simple simulations of a protein in vacuum for about 10
picoseconds (10−11 seconds), a very short duration by today’s standards [32].
These pioneering simulations provided new insights into proteins being dy-
namic entities that constantly undergo internal fluctuations — a shift from
the rigid nature of proteins as made familiar by the ball-and-stick models and
paper drawings. Over the next two decades advances in computing led to
simulations several nanoseconds (>10−9 seconds) in duration and consisting
of an entire protein in explicit water with thousands of atoms [39]. In 1998,
Kollman and coworkers reported a 1 microsecond (10−6 second) simulation of
folding of a small peptide (36-residue) in explicit water [19]. This simulation
represented a major development; it took over two months of computing time
on 256-processor Cray T3D followed by another two months on 256-processor
Cray T3E-600, and provided insights into events during the protein-folding
process.

In 2001, it was suggested that as much as 1 PFLOPS computing power for



Simulating Biomolecules on the Petascale Supercomputers 213

an entire year will be required to simulate the folding process of a medium-
size protein [11]. For biologically relevant length and timescales, it has been
suggested that the computing power available typically falls 4–6 orders of
magnitude short of what is desired. For example, a common subject of in-
vestigation is enzyme catalysis; enzymes catalyze their target reactions on a
variety of timescales [3]. The fastest enzymes catalyze the reaction on the
nanosecond timescale (10−9 seconds), while slower enzymes can take several
seconds or much longer (>100 seconds). The current achievable timescale
combining the best supercomputing power and most scalable software allows
only about 100 nanoseconds, for a biologically relevant protein in a realistic
wall-clock time. Therefore, there is a significant gap between the desired and
achievable simulations. With the arrival of petascale machines, the amount
of computing power available will increase substantially.

In 2007, the petascale machines are around the corner. As indicated by the
“Top500” list published in November 2006, the top machine is able to deliver
280 TFLOPS with two additional machines that are close to the 100 TFLOPS
range [33]. It is expected that the National Center for Computational Sciences
(NCCS) at Oak Ridge National Laboratory will have one of the first petascale
machine in the near future [34, 35]. In December 2006, NCCS housed a 54
TFLOPS supercomputer XT3 built by Cray, which grew to 119 TFLOPS in
March 2007. The NCCS roadmap suggests that this computer is expected to
grow to 250 TFLOPS in December 2007. Finally in December 2008, it will
deliver 1 PFLOPS of computing power [35]. Availability of this unprecedented
computing power provides new opportunities and also brings to light new
challenges for the applications routinely in use by the wide community of
computational molecular biochemists/biophysicists. The software for these
applications was conceived and developed several decades ago, even though
it has been considerably updated over the years, but it has failed to keep up
with the emerging supercomputer architecture. This is particularly evident
with the arrival of petascale computers.

This chapter briefly presents opportunities and challenges in the biomolecu-
lar simulation area to efficiently utilize the computing power at the petascale.
In Section 11.2, we mention several new opportunities that will be opened
up by the availability of petascale computing power and how it will impact
the discoveries in biomolecular investigations. In Section 11.3 we discuss is-
sues pertaining to computer hardware and software technology, as well as
from the simulations methodology that will need to be addressed. Finally in
Section 11.4, we provide a summary and outlook for the biomolecular simu-
lations on petascale machines. We note that the material presented here may
reflect some of our own biases on this topic and that opinions of many other
researchers in the field would have also sufficed.
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11.2 Opportunities

Biomolecular simulations enable the study of complex, dynamic processes
that occur in biological systems and biochemical reactions. MD and related
methods are now routinely used to investigate the structure, dynamics, func-
tions, and thermodynamics of biological molecules and their complexes. The
types of biological activities that have been investigated using MD simulations
include protein folding, enzyme catalysis, conformational changes associated
with biomolecular function, and molecular recognition of proteins, DNA, and
biological membrane complexes. Biological molecules exhibit a wide range of
time and length scales over which specific processes occur, hence the compu-
tational complexity of an MD simulation depends greatly on the length and
timescales considered. The amount of computational work in these simula-
tions is dependent on the number of particles (atoms) in the systems as well
as the number of time-steps that are simulated. The use of explicit or implicit
solvent conditions significantly impacts the number of atoms in the system as
well. Explicit solvents are more realistic but come at an increased computa-
tional cost due to the addition of more atoms, while implicit models are fast
but do not provide important details about the nature of solvent around the
biomolecule. With an explicit solvation model, typical system sizes of inter-
est range from 20,000 atoms to more than 1 million atoms; if the solvation
is implicit, sizes range from a few thousand atoms to about 100,000. The
simulation time period can range from picoseconds (10−12 seconds) to a few
microseconds or longer (>10−6 seconds) on contemporary platforms.

11.2.1 Ability to investigate bigger biomolecular systems

Biomolecules vary considerably in size ranging from a few hundred to mil-
lions of atoms. Moreover biomolecules rarely function alone; therefore, re-
alistic simulations require simulations of entire complexes including protein–
protein complexes, protein–DNA complexes, protein–lipid membrane com-
plexes and other assemblies including entire viral particles. For several decades
the simulations were limited to systems with a few hundred thousand atoms.
In recent years, success has been reported by Schulten and coworkers in sim-
ulating an entire assembly of satellite tobacco mosaic virus (Figure 11.1) [20].
This complex consisted of over 1-million atoms and was simulated using
NAMD. These simulations provided insights into the electrostatic potential,
dynamical correlations and structural features of the viral particle over a
timescale of 50 nanoseconds. Further, the Sanbonmatsu research group at
Los Alamos National Laboratory has also succeeded in simulating the entire
ribosome complex consisting of 2.64 million atoms for 20 nanoseconds [38].
Table 11.1 provides the range of biomolecular complex sizes investigated us-
ing biomolecular simulations.
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FIGURE 11.1: (See color insert following page 18.) Biomolecular simula-
tions of a system with >1 million atoms. This figure shows a schematic
representation of satellite tobacco mosaic virus particle. The viral particle was
solvated in a water box of dimensions 220 Å × 220 Å × 220 Å, consisting of
about 1.06 million atoms. The protein capsid (green) is enveloping the RNA
and part of the capsid is cut out to make the RNA core of the particle visible.
The backbone of RNA is highlighted in red; ions were added to make the
system charge neutral. Figure courtesy of Theoretical and Computational
Biophysics Group. Reprinted with permission from P.L. Freddolino, et al.,
Structure (2006), 14, 437-449. c©Elsevier 2006.

Petascale computing power will provide the ability to simulate multimil-
lion atom simulations for larger complexes in a realistic timeframe. Moreover,
multiple simulation trajectories for these large systems will provide valuable
insights into the mechanistic details through investigations in different con-
ditions including the studies of proteins with mutations or DNA with dif-
ferent sequences. Regular simulations of multimillion atom complexes will
have significant impact on the understanding of complex processes involving
membrane-based systems (such as ion-channels and G-protein-coupled recep-
tors), DNA-replication and the translation process with an entire ribosome.
In the past, these systems have been considered beyond the reach of biomolec-
ular simulations due the requirement of large computing power.
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solvents and the simulation times are based on a time-step of 1 femtosecond (10−15 s). Simulation runs were
performed on the Cray XT3/4 unless otherwise mentioned.

Number of Type of system Example Time to simulate
atoms 10 nanoseconds
20 K - 30 K Small protein 100–200 Enzyme dihydrofolate 1 day (PMEMD

amino-acid residues reductase with substrate on 128 cores)
[26,490 atoms]

50 K- 100 K Medium-size protein 300–400 Protein–DNA complex with 36 hours (PMEMD
amino-acid residues or a small M. HhaI methyltransferase on 512 cores)
protein–DNA complex and 12 base-pair DNA

[61,641 atoms]
100 K - 300 K Large/multi-chain protein Ribulose-1,5-bisphosphate 40 hours (LAMMPS

complex with ≥1,000 amino- carboxylase/oxygenase on 4096 cores)
acid residues (RuBisCO) enzyme

[290,220 atoms]
300 K -800 K Multi-biomolecule complexes Cellulase on cellulose surface;

membrane protein complex
1-2 million Entire viral particles Satellite tobacco mosaic 9 days [20]

virus [∼1.06 million atoms] (NAMD on 256
nodes SGI Altix)

2-5 million Large complexes or cellular Entire ribosome
organelles [∼2.64 million atoms]
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FIGURE 11.2: (See color insert following page 18.) The dynamic person-
ality of proteins. An integrated view of protein structure, dynamics and
function is emerging where proteins are considered dynamically active molec-
ular machines. Biomolecular simulations spanning multiple timescales are
providing new insights into the working of protein systems. Computational
modeling of enzymes is leading to the discovery of network of protein vibra-
tions promoting enzyme catalysis in several systems including cyclophilin A,
which is shown here.

11.2.2 Ability to investigate longer timescales

Biochemical processes span multiple scales of time ranging from a few pi-
coseconds to hours. Simulations covering a wide range of timescales are re-
quired for understanding the mechanistic details of these processes. For exam-
ple, there is wide interest in understanding the link between protein structure,
dynamics and function. Protein structure consists of arrangement of amino-
acid residues in a 3-dimensional shape and intrinsic protein dynamics refers
to the internal motions that occur within the protein at different timescales,
ranging from femtosecond (10−15 second) to second and longer. The internal
motions of the proteins have been implicated in the protein function such
as enzyme catalysis. Enzymes are a class of proteins that catalyze chemical
changes that occur in the cell. Experimental techniques continue to provide
some details at selective timescales for protein dynamics and its link to protein
function.

Multi-scale computational modeling and simulations have provided fasci-
nating details about protein molecules. Novel insights into the detailed mech-
anism of several enzymes have been obtained through simulations. Based
on the results of these computational studies, an integrated view of protein
structure, dynamics and function is emerging, where proteins are considered
as dynamically active assemblies and internal motions are closely linked to
function such as enzyme catalysis (Figure 11.2). Multi-scale modeling of en-
zyme cyclophilin A over the entire reaction path has led to an interesting
discovery that the internal protein dynamics of this enzyme is linked to its
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FIGURE 11.3: Multi-scale modeling and simulations in biology. Com-
putational biochemists/biophysicists are now regularly using molecular simu-
lations to investigate enzyme complexes. The structure, dynamics and func-
tion of enzyme complexes span multiple scales of time and length. Enzymes
catalyze biochemical reactions as fast as billions of times per second on the
right side of the range, while on the left side they can take seconds or longer
for one catalytic cycle. The wide range of internal protein motions occur on
10−15 to >100 seconds, which are linked to a variety of protein functions (such
as enzyme catalysis) on similar timescales. However, the current simulations
fall short by several orders of magnitude. The typical state-of-the-art simula-
tions can only reach 10−7 seconds at best for a real biological system, while
the desired timescale is 10−6 to 100 seconds or higher.

catalytic activity [6, 1, 2]. These modeling studies have identified protein vi-
brational modes that occur at the timescale of the reaction and play a role
in promoting catalysis. Similar results have also been obtained for other en-
zymes including the enzyme dihydrofolate reductase [5]. Further, the role
of hydration-shell and bulk solvent as well as temperature effects in enzyme
mechanisms are now being understood [2].

Figure 11.3 depicts the wide range of timescales for activity of several en-
zymes. The fastest enzyme performs its function over a billion times per
second, while slower enzymes can take seconds or longer to complete one cy-
cle. It is interesting to note that a wide range of internal protein motions
also occur on similar timescales as the enzyme function; therefore, raising
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the interesting question whether enzyme dynamics and function are interre-
lated or not. Currently, computational biochemists and biophysicists can only
simulate a fraction of the biologically relevant timescales for most enzymes.
Most common MD simulations on a single workstation or using a small PC-
cluster explore nanosecond (10−9 s) timescales for a medium-size protein in
an aqueous environment consisting of 5,000-20,000 atoms. Supercomputers
can simulate around 100 nanoseconds for multimillion atom systems. These
simulations continue to provide novel insights into enzymes. The combination
of petascale hardware and scalable software is required to bridge the gap that
exists between desired and achievable simulations.

Another aspect of proteins that has generated considerable interest from
computational molecular biologists is the determination of a 3-dimensional
protein structure from the primary sequence. Moreover, the protein-folding
mechanism, the process by which proteins fold into their native or functional
shape, has also been widely simulated for a number of proteins. The process of
protein folding also involves a wide range of timescales, with faster events of
local structure folding occurring at picosecond-nanosecond timescales while
the overall process takes between milliseconds to seconds. As Figure 11.3
indicates, the commonly investigated timescale for MD simulations is the
nanosecond, which falls 4–6 orders of magnitude short of the desired timescale
of biological activity. It has been suggested that the computational require-
ments for multi-scale modeling of a medium-size protein can be as high as 1
PFLOPS for an entire year [11].

11.2.3 Hybrid quantum and classical (QM/MM) simulations

Understanding of the electronic and quantum effects within the biomolecules
will be significantly impacted by the availability of petascale computing power.
As compared to the MD simulations, quantum mechanical modeling requires
significantly more computing. Methods such as hybrid quantum and classical
simulation (QM/MM) methods will allow for combining the speed of classi-
cal methods with the accuracy of quantum methods. The classical methods
including the MD simulations are fast but limited in their abilities. These
methods do not allow simulation of breakage and formation of covalent bonds
or multiple electronic states. Quantum methods will provide the ability to
investigate systems with multiple electronic states as well as the breakage/
formation of covalent bonds that commonly occur in biochemical processes.
In recent years, several groups have reported success with use of QM/MM
methods to investigate the role of hydrogen tunneling in enzymes including
liver alcohol dehydrogenase and dihydrofolate reductase [13, 4, 21]. It is ex-
pected that more biomolecular systems will be routinely investigated using
these methods.

Full quantum calculations of entire proteins also will be made possible. The
role of long-range interactions in biomolecules is an intensely debated topic;
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FIGURE 11.4: (See color insert following page 18.) Full quantum calcu-
lation of a protein with 20,581 atoms. Electron densities of the pho-
tosynthetic system were computed at the quantum level (RHF/6-31G*) with
the FMO method: (a) an electron density of the whole system; and (b) a dif-
ferential electron density around the special pair. Reprinted with permission
from T. Ikegami, et al., Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing 2005.

they have been suggested as a factor playing a role in the function of en-
zymes, allosteric effects in biomolecules [41]. The calculation of full electronic
density around the biomolecules with the use of quantum methods would
provide valuable insights in the long-range interactions. Recent progress in
theoretical methods and software developments, such as the development of
the Fragment Molecular Orbitals (FMO) method [28], has already demon-
strated that in combination with the available computing power, it is possible
to investigate proteins with >10,000 atoms at the full quantum level. In the
FMO method the system is divided into fragments and the electronic state
for each fragment is separately calculated (special treatment is given for the
bonds between the fragments). The electronic state calculation of a frag-
ment is performed under the electrostatic environment posed by the other
fragments. The fragment electron densities are obtained from these calcula-
tions, from which the environment is computed. The calculation is iterated
until both fragment electron densities and the environment become mutually
consistent. Using the FMO method the full electronic state for the photo-
synthetic reaction center of Rhodopseudomonas viridis has been computed
(Figure 11.4) [25]. The system contained 20,581 atoms and 77,754 electrons.
The calculation performed at the RHF/6-31G* level of theory took 72.5 hours
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with 600 CPUs. With petascale computing power it would be possible to per-
form quantum calculations on bigger systems, investigate quantum effects in
multiple conformations of the proteins as well as investigate dynamics of the
systems at the quantum level.

11.2.4 More accurate simulations

Biomolecules sample many conformations even in the natural state of func-
tioning. The accurate estimate of various energetic components of a biochemi-
cal process requires better sampling of the conformations [29], which had been
severely limited due to availability of limited computing power in the past.
Petascale computing power will allow much more accurate estimates through
better simulations. Methods such as umbrella sampling and empirical va-
lence bond methods that allow computation of free energy changes during
biochemical reactions require multiple simulations along the reaction path-
way [21, 12]. Petascale computing along with new methodologies to perform
simultaneous sampling of the various states along the reaction pathway, will
provide quantitatively accurate information.

11.3 Challenges

Biomolecular simulation codes have been developed by a wide community
of researchers, over a period that has spanned more than three decades. The
earliest versions of the codes were designed for single processor machines and
over the years they have been modified to utilize the computing power of
supercomputers. Performance evaluations studies continue to bring to light
several challenges that these codes will face on the petascale.

11.3.1 Scaling the biomolecular simulations code on >100K
processors

Petascale machines bring a landmark change in the computing architec-
ture paradigm. In the past, biomolecular simulations have benefited consid-
erably from the increase in speed of the individual processors. In the last
ten years alone, over a tenfold increase in processor speed has enabled an
order of magnitude longer simulations, without any significant modifications
to the code and programming paradigms. The petascale machines are ex-
pected to combine computing power of 100,000 or more individual processors
without a substantial increase in the processor speed. The common MD soft-
ware codes that have been developed over the last few decades were designed
for a different programming paradigm. Unfortunately, these software codes
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have failed to keep up with the rapid changes in high-end parallel computer
architectures. Therefore, it has become clear that software scalability and
subsequently achievable performance will be an enormous challenge at the
petascale [9].

The commonly used software in the biomolecular simulations community
includes CHARMM [15], AMBER [16], LAMMPS [37], and NAMD [26].
CHARMM and AMBER have been developed over several decades and have
a wide user base as they provide wide functionalities for simulations and analy-
sis. The potential function and associated parameters (collectively referred as
force field) for these packages has been developed and tested for more than 20
years. However, these codes scale only to a few hundred processors (128–256).
LAMMPS and NAMD on the other hand are more recent efforts that have
been designed keeping the emerging computer architecture in mind; there-
fore, these codes have been demonstrated to scale to several thousand nodes
(see Figure 11.5). [Note, PMEMD that is a newer simulation code available
in AMBER, can scale to about 1024 nodes.] The use of the particle mesh
Ewald (PME) method for calculation of long-range interactions has allowed
significant improvements in simulation performance [18, 17]. PME utilizes
fast Fourier transform (FFT) and is commonly used when simulations are
performed in explicit solvent conditions. LAMMPS and NAMD are expected
to scale to a few tens of thousands of nodes; however, the ability to scale
these codes to effectively utilize the computing power of >100K cores still re-
mains an open question. In recent years, several proprietary MD frameworks
targeting the development of scalable software have also emerged [22, 14].

Bigger sized biomolecular systems. Larger systems are expected to
show better scaling for MD simulations due to an increase in the computa-
tional density (amount of computation on a processor core between commun-
ication steps) as the number of atoms is increased. Particularly, for systems
with >1 million atoms it is expected that reasonable performance will be
achieved on ten thousand nodes and above (see Figure 11.5). On the quan-
tum side, with the use of methods such as the FMO method, it is expected
that bigger biomolecules and protein complexes will efficiently utilize petascale
computing power as well.

Longer timescales. As discussed above, new insights are expected from
simulations that routinely achieve longer timescales and correspond to the
timescale of biomolecular process. Researchers therefore require simulation
that can provide trajectories reaching milliseconds or longer in realistic wall-
clock time. Longer timescales simulations require the number of steps per
simulation per wall-clock second to be increased significantly. The intercon-
nect latency is one aspect of the hardware design that is becoming apparent as
the most limiting factor to achieving longer timescale simulations. It presents
a significant bottleneck to performance, as the ratio between computation and
communication decreases with an increase in the number of parallel tasks. As
an example, let us consider the ability to simulate millisecond timescales in a
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FIGURE 11.5: Scaling behavior of LAMMPS. Biomolecular systems with
512,000, 1,024,000 and 2,048,000 atoms were simulated on an increasing num-
ber of processor cores. Particle–particle–particle mesh (PPPM), closely re-
lated to the PME method, was used for the calculations. The results show
that a performance metric of several picoseconds/day can be achieved.
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day. The problem of biomolecular MD requires that the application synchro-
nizes after every simulated time-step. During this synchronization step the
individual computing tasks share the energy/forces and new coordinates are
distributed. As an individual time-step corresponds to 1 femtosecond (10−15

seconds), a millisecond simulation per day would typically require about 107

time-steps/second or 0.1 microsecond/time-step! This places a strong empha-
sis on the interconnect latency. Currently, the fastest machines have latency
typically around 2–5 microseconds. Therefore, latency will impact the scala-
bility of codes, in turn significantly impacting the outcome of science in this
area.

In order to understand the impact of interconnect latencies on a contempo-
rary massively parallel system, Cray XT, we performed a range of scaling ex-
periments to thousands of dual-core processors. Note that the interconnect la-
tency for the Cray XT system is 6 microseconds, compensated by a high band-
width interconnect [40]. For our evaluation, we selected NAMD as a represen-
tative MD framework that has been designed to scale on massively-parallel
processors (MPPs) [30]. NAMD is a parallel, object-oriented MD program
designed for simulation of large biomolecular systems [26]. NAMD employs
the prioritized message-driven execution model of the Charm++/Converse
parallel runtime system, in which collections of C++ objects remotely invoke
methods on other objects with messages, allowing parallel scaling on both
supercomputers and workstation clusters. We consider two representative
petascale biological systems with approximately one (1M) and five million
(5M) atoms, respectively. The simulation performance is measured in time
per simulation step, which should theoretically decrease as processing units
are added. Figure 11.6 shows the Cray XT4 performance for both the 1M- and
5M-atom simulations. Using the XT4 system in dual-core execution mode, the
1M-atom simulations scale to 4,096 cores and achieve ∼13 ms/step, while the
5M-atom simulations scale to 12,000 XT4 cores, maintaining ∼13 ms/step
performance. Note that the IBM Blue Gene/L system, which has a lower
interconnect latency than the Cray XT systems, achieves approximately 10
ms/step for a simulation of approximately 300 K atoms on 16K processing
cores [30]. Unlike the Blue Gene/L runs, no system-specific optimization and
instrumentation is applied for the XT4 simulation experiments. The analysis
of NAMD trace files enabled us to identify that the scaling for the 1M-atom
system is restricted by the size of the underlying FFT grid computations;
hence, it does not scale beyond 2K processor cores. The larger system, 5M
atoms, scales to 12K cores; however, the parallel efficiency is significantly
reduced beyond 4K processor cores due to the aforementioned reason.

11.3.2 Adapting to the changes in the hardware

Memory. The memory requirements of MD codes are modest as they re-
quire only storage of the atomic coordinates and the topology-related data
(charges, bond, angle constants and other force-field related information) and
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FIGURE 11.6: Wall-clock time per simulation time-step as a function
of the increasing number of cores. These simulations were performed on
the Cray XT4 system using the NAMD simulation framework. Two different
systems with 1-million and 5-million atoms approximately were used for these
studies.
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pair-lists. The available memory of the next generation supercomputers, how-
ever, may also pose some challenges. Memory per core is not expected to
increase considerably, as it is expected that the memory will typically go from
2 Gb to 8 Gb per node, while the number of cores per node increases from
2 to 4 or even as high as 80. Fortunately, as mentioned above, the demand
placed on memory is not typically high. This is particularly true for codes
which have implemented domain decomposition methods. However, in other
codes, particularly the legacy codes which implement the replicated memory
model, the available memory may limit the size of the system that can be
simulated. This has been previously discussed for AMBER (sander) simula-
tion on IBM Blue Gene/L [9]. However, most code developers feel that the
memory available appears to be sufficient for most simulations currently used
but may become an issue when better force fields (particularly polarizable
force fields) and if fault-tolerance strategies are implemented (see below for
further discussions).

Multicore processors and the need new programming models. The
central calculation during a single MD time-step involves calculation of bonded
and nonbonded energy terms and forces. This leads to a high computational
density on processors as compared to little or no communication between pro-
cessors during individual time-steps. As mentioned above, the interconnect
latency and other factors impacting the data communication between nodes
will play a major role in scalability of the calculations. The emergence of mul-
ticore technology introduces new trade-offs as increasingly more computations
could be kept on a single node which reduces the amount of communication
that needs to done between other nodes [10, 7]. The availability of 4 or 8
(and more) cores per node will help increase computational density in com-
parison to the network communications. multicore technology, however, also
brings new challenges, particularly relating to the memory and programming
models. In addition to the reduced amount of memory available per core, the
memory bandwidth is also expected to continually decrease with the increase
in the number of cores. Unless other solutions are made available, this may
impact performance of MD codes. On the programming side, the level of
parallelization on a single node and between nodes will pose complications
for the parallel programming model. It appears that the most promising av-
enue in this regards is possibly the use of hybrid programming models, for
instance, OpenMP shared-memory within a node and message-passing MPI
among nodes.

In order to investigate the impact of shared resources among multiple cores
within a processor, we attempt to quantify the slowdown in the dual-core
execution mode with respect to the single-core execution times. We collected
runtime scaling data on the XT3 platforms in single- and dual-core execution
modes. Figure 11.7 show the percentage slowdown for two test systems, about
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FIGURE 11.7: Slowdown in MD performance on dual-core proces-
sors. These studies were performed using a LAMMPS simulation framework
with two different system sizes on the Cray XT3 system, in dual-core execu-
tion mode and compared to single-core execution mode.

61K and 290K atoms, respectively. Percentage slowdown is measured as:

slowdown(%age) =
100.0 × (Timedual−core − Timesingle−core)

Timesingle−core
(11.1)

The results show that the rate of the slowdown increases with the increase
in the number of MPI tasks, which points to a possible impact of two cores
sharing HyperTransport resources for message-passing MPI operations. Also,
the slowdown percentage is higher for larger systems, i.e., systems with a large
number of atoms. This could be an influence of higher memory and data
transfer requirements on the shared-memory controller. Since the current
software stack on the Cray XT systems does not support hybrid execution
models [40], we have been unable to study the impact of hybrid programming
on MD applications on large-scale systems. Currently, we are investigating
OpenMP and MPI scaling, and memory and processor affinity schemes on
stand-alone dual- and quad-core systems.

11.3.3 Fault-tolerance

As the MD codes start to utilize an increasing number of nodes and cores
on petascale machines, with >100K processors, it is anticipated that hard-
ware failure will not only hinder the performance of the simulation codes but
could also affect the reliability of simulation results. The MD application
frameworks have very little built-in fault-tolerance or check-pointing strate-
gies. The well-known check-pointing strategy is saving the coordinates, ve-
locities and atomic forces on the disk after a pre-determined number of steps.
Even though restarting the simulation from this check-pointed data is triv-
ial, the time spent in queues for restarting these simulations would severely
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FIGURE 11.8: Performance projections for MD simulation on FPGA
devices. The projections are performed by varying application (number of
atoms) and device (clock frequency of FPGA devices and memory bandwidth
to the host) parameters.

impact productivity. Moreover, in other cases when a node fails and the ap-
plication stalls while waiting to receive data from the failed node. If such a
situation occurs, it will also lead to a loss in productivity. There is a need for
built-in fault-tolerance strategies and checks that allow self-health monitor-
ing by the MD code and decision making in the case of detection of a node
failure. One possible solution consists of check-pointing the simulation on the
fly by saving critical data in a neighboring node’s memory (assuming that
enough memory is available without impacting simulation performance). In
case of failure the application continues by reassigning the computation to a
new node by sending the data from the neighboring node’s memory. Such a
strategy may require some interaction with the system-level tools that allow
detection of node and other hardware failure.

11.3.4 Multi-paradigm hardware including reconfigurable
computing

From the perspective of overcoming challenges due to interconnect latency,
emerging multi-paradigm hardware, including systems with field programm-
able gate arrays (FPGAs) accelerators will allow localization of more atoms
on individual nodes. However this poses programming challenges as dis-
cussed above. Moreover, the role of multi-paradigm hardware on emerging
supercomputing machines also remains an open question. From the perspec-
tive of smaller calculations on workstations, the FPGAs could allow signifi-
cant speedup as has been recently shown by porting AMBER’s MD engine
(sander). Figure 11.8 shows the performance projection results that are based
on FPGA acceleration of the direct PME calculations in sander on SRC 6E
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systems using Fortran programming. We altered two FPGA-enabled system
parameters for our experiments: the clock frequency and data bandwidth be-
tween the FPGA device and the host processor [8]. The clock frequency of
our current FPGA implementation was 100 MHz and the sustained payload
bandwidth is 2.8 GB/s (utilizing input and output 1.4 GB/s bandwidth). The
clock speed and data transfer rates have different performance implications
on small and large biological systems (speedup with respect to the micro-
processor runtimes are highlighted in Figure 11.8). Overall, the clock speeds
influence the performance gains of the PME calculations. For smaller bio-
logical systems, the change in the data transfer rates influences the runtime
performance of the application. By contrast, the performance of the larger
systems (100K and more atoms) nearly doubles by doubling the clock speed
of the FPGA devices, while the data transfer rates do not impact the runtime
performance of larger biological systems. Note that a 150K-atom system only
achieves ∼12 picoseconds/day on a dual 2.8 GHz Xeon system today. An
FPGA-enabled system using our current PME implementation can sustain
over 75 picoseconds/day with 200 MHz and over 180 picoseconds/day with
500 MHz and a host bandwidth of 5.6 GB/s. FPGA devices are also being
targeted by other research groups as means to speedup MD simulations [23].

11.3.5 New simulation methodologies enabled by petascale

Development of novel methods for insights into longer timescales.
As discussed above, there is wider interest in simulating biomolecules and bio-
chemical processes at longer timescales (microseconds and longer). It is be-
coming clearer that on the petascale machines addressing the time domain is
a more challenging problem than addressing the length domain problem. Sim-
ulating longer length scales equates to larger numbers of atoms in the system.
For a fixed number of processors, a rise in the number of atoms: increases the
computational density on individual processors leading to better scaling; and
also requires a larger FFT grid for the PME method, which is better handled
on a larger number of processors in combination with domain decomposition
methods. However, equivalent strategies to address the challenges arising for
simulations that target longer timescales currently are not available. There-
fore, interest also exists in developing alternate computational and simulation
methods to reach longer timescale or methods that provide information and
insights equivalent to longer timescales. A possible solution may be offered
by simulations with multiple time-stepping, where the fast and slow degrees
of the system are separated and certain tricks allow taking longer time-steps.
In addition, methods that can be run as several closely coupled simulations
performed simultaneously to sample conformations, may provide information
from multiple timescales. Other strategies may include ways to independently
explore separate windows in the longer timescales and then combining them
through novel methods to obtain information from longer timescales. For
example, umbrella sampling method for investigating reaction pathways and
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replica-exchange methods for conformational searches including protein fold-
ing have been proposed to address this problem on scalable systems. The
availability of petascale computing will allow more trajectories to be com-
puted quickly, therefore allowing access to longer timescales.

Development of new force fields. Another aspect of biomolecular sim-
ulations that requires mention is related to the accuracy of the force field
parameters [24]. This issue does not directly relate to high-performance com-
puting; however, it may impact the efficient utilization of computing resources.
Even though over the last 30 years biomolecular simulations have provided a
wealth of information regarding biomolecules, in recent years, it has become
evident that the most common force fields have defects that are limiting new
discoveries. In particular, the search for the global minimum of a protein,
as a part of simulating the protein folding mechanism, has been considerably
limited by force field defects. To address this challenge new polarizable force
fields currently are being developed. These force fields are expected to require
more computational resources to nonpolarizable counterparts. The availabil-
ity of increasing computing power can possibly automate the procedure of
improvement of force fields, as has been recently demonstrated [36].

11.4 Summary and Outlook

Petascale computing power brings new opportunities to biology. The quest
for understanding the molecular basis of life has been aided considerably by
computing through atomistic-level modeling of biomolecules. The tremen-
dous increase in the computer power available to the scientist holds great
promises. On one hand, petascale computing will provide new insights by
allowing simulations to reach longer timescales as well as allow simulation of
larger and more realistic systems. On the other hand, novel methods would
allow simulation of challenging problems, such as protein folding and enzyme
catalysis, by using a number of tightly coupled runs. A diverse community
of simulation and computer scientists has contributed to a rich set of appli-
cation frameworks available in this area. Developed and enhanced over the
last three decades, these frameworks have some challenges to utilize the com-
puting power of petascale machines. The petascale machines will combine
computing power of >100 K individual processors, an architecture that was
not envisioned during the course of development of current biomolecular sim-
ulation codes. New methodologies including the hybrid classical/quantum or
fully quantum simulations may be able to benefit quickly from the tremendous
increase in computing.

It is anticipated that in the coming years, the combination of algorithm and
hierarchical software development together with petascale computing power
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will lead to vital breakthroughs in our understanding of biomolecular struc-
ture, dynamics, folding and function. Vital insights into the electronic en-
vironment, structural details, dynamic movements of the biomolecules and
mechanistic level details of the biochemical processes will be made available.
Petascale biomolecular simulations, therefore, will have direct and indirect
impact on developments in health, energy and environmental research.
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12.1 Introduction

In this chapter, we consider the applicability of a non-traditional massively
multithreaded architecture, the Cray MTA-2 [13], as a platform for graph
algorithms. Graph-theoretic problems have emerged as a prominent com-
putational workload in the petascale computing era, and are representative
of fundamental kernels in biology, scientific computing, and applications in
national security. However, they pose serious challenges on current parallel
machines due to non-contiguous, concurrent accesses to global data struc-
tures with low degrees of locality [35]. We present multithreaded algorithms
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for two fundamental graph problems – single source shortest paths and con-
nected components – that are designed for processing large-scale, unstructured
graph instances.

Distributed memory, message-passing computers dominate the high per-
formance computing landscape. These machines range from tightly coupled
systems with proprietary interconnects like the Cray XT3 through commodity
clusters with lower network performance and correspondingly lower price tags.
But in all of these machines, each node has its own local memory and data
is exchanged between nodes via a message-passing system (usually MPI). By
using commodity processors and often commodity networks, these machines
are attractively priced. They have proven to be very successful at performing
a wide range of scientific computations.

Despite these many successes, distributed memory machines have widely
recognized shortcomings that limit their applicability.

• The latency associated with accessing non-local data is relatively high
compared to local accesses. Programmers try to mitigate this problem in
several ways. Careful attention to data partitioning reduces the quantity
of remote accesses. A bulk synchronous programming style ensures that
multiple remote accesses are bundled, thereby amortizing latency. Some
degree of pre-fetching or overlapping of computation and communication
can mask the latency. But as we discuss below, there are important
applications for which none of these techniques can be applied.

• Load balancing can be problematic for applications with adaptive or
dynamic computational requirements. A familiar example is adaptive
meshing computations in which the necessary cost of periodic reparti-
tioning can significantly degrade parallel efficiency. But the problem is
even more severe for applications with finer granularities or more highly
dynamic computational requirements.

• Message-passing software is complicated to write and maintain. While
this cost may be bearable for large scientific applications with long life-
times, it is a significant impediment for applications that could benefit
from high performance but which have a limited lifespan.

Fortunately, these shortcomings have not precluded great success on a wide
variety of scientific applications. The inherent locality of most physical phe-
nomena permits successful partitioning, and the structure of most scientific
computations allows for alternating compute/communicate steps which allows
latency to be amortized.

Yet, many important problems are very difficult to solve efficiently on dis-
tributed memory machines. Within the scientific computing community these
include sparse direct methods, many agent-based models, graph algorithms
and more. Outside of scientific computing, communities such as machine
learning have not been able to take much advantage of current parallel ma-
chines, despite a need for high performance.
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As we detail in Section 12.2, the MTA-2 addresses the latency challenge in
a novel manner — tolerating latency by allowing a processor to remain busy
performing useful work while waiting for data. This latency-tolerance mecha-
nism enables the MTA-2 to support unstructured memory-access patterns and
highly variable computations — features that describe many graph computa-
tions. The MTA-2 also provides very lightweight synchronization mechanisms
to facilitate fine-grained parallelism.

12.1.1 The trouble with graphs

A graph consists of a set of entities called vertices and a set of pairwise link-
ages between vertices called edges. Graph abstractions and computations are
foundational to many areas of scientific and other computational applications.
Familiar scientific examples include sparse direct methods, mesh generation
and systems biology [1, 45]. Graphs are also central to placement and layout
in VLSI [34], data mining [27, 30], and network analysis [11, 33].

In some contexts, graphs can have a great deal of structure. For instance,
the connectivity patterns associated with meshes (even so-called unstructured
grids) have structure associated with the geometry that underlies the mesh.
But in more data-centric settings, such as Internet analysis, business intelli-
gence solutions, or systems biology, graphs can be highly unstructured. Such
graphs cannot be easily partitioned into nearly disjoint pieces, and vertices
display a highly variable number of neighbors. Algorithms on these kinds of
graphs are particularly difficult to parallelize on distributed memory machines.

Despite the dearth of successful distributed memory parallelizations, many
graph algorithms are known to exhibit a high degree of concurrency. Evidence
for this is provided by the extensive literature on efficient PRAM algorithms
for graph problems [28]. However, the parallelism in these algorithms tends
to be very fine grained and dynamic. It maps more naturally to the massively
multithreading paradigm than to the constraints of distributed memory ma-
chines. In the succeeding sections, we discuss our parallel implementations of
several graph algorithms on the MTA-2, comparing against traditional par-
allel machines as appropriate. We draw some general conclusions from this
work in Section 12.5.

12.1.2 Limits on the scalability of distributed-memory graph
computations

Despite the challenges facing distributed memory graph algorithm compu-
tations, there is a research community pursing this direction. In particular,
the Parallel Boost Graph Library (PBGL) [24] has been used to produce im-
plementations of the Δ-stepping algorithm described in Section 12.3.2 that
demonstrate strong scaling on instances of Erdös-Renyi random graphs with
up to one billion edges [35]. This implementation owes its performance to the
technique of using ghost nodes. Local copies of the neighbors of the set of
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vertices owned by a single processor are stored on that processor. In social
networks with a small diameter and a nontrivial number of high-degree nodes,
however, the size of the local information that needs to be stored on some pro-
cessors may approach the number of nodes in the graph, exceeding the size of
a local memory. Other work [46] dispenses with ghost nodes and uses a two-
dimensional decomposition of the adjacency matrix in which the adjacency
list of each vertex is distributed across

√
n processors. This approach is more

memory scalable, but loses much of the performance that allowed PBGL to
achieve strong scaling on single source shortest paths.

Let us consider the feasibility of the basic ghost node strategy as the graph
size grows to the terascale and beyond. Suppose that G is a graph with n
vertices that was constructed using some method for generating randomized
graph instances. The particular method is not important. Suppose further
that upon construction of G, a subset S of k vertices of V (G) has q neighbors in
G−S. Now, suppose that the same graph construction process is continued in
such a way to double the number of vertices, while holding the average degree
constant. Since the same process has been used, we expect the set S to
gain q additional neighbors not in S. In other words, we expect the number
of required ghost nodes per processor to grow linearly with the number of
vertices in the graph. As we do not expect the local memory per processor to
grow as fast as the total memory in a supercomputer, we have doubts that the
ghost node strategy is scalable to the instance sizes of concern in this book.

In the sections that follow, we give preliminary evidence that massively
multithreaded supercomputers offer the potential to achieve both memory
and runtime scalability.

12.2 The Cray MTA-2

The Cray MTA-2 [13] is a novel multithreaded architecture with no data
cache and hardware support for synchronization. The computational model
for the MTA-2 is thread-centric, not processor-centric. A thread is a logical en-
tity comprised of a sequence of instructions that are issued in order. An MTA-
2 processor consists of 128 hardware streams and one instruction pipeline. A
stream is a physical resource (a set of 32 registers, a status word, and space
in the instruction cache) that holds the state of one thread. Each stream can
have up to eight outstanding memory operations. Threads from the same
or different programs are mapped to the streams by the runtime system. A
processor switches among its streams every cycle, executing instructions from
non-blocked streams. As long as one stream has a ready instruction, the pro-
cessor remains fully utilized. No thread is bound to any particular processor.
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System memory size and the inherent degree of parallelism within the pro-
gram are the only limits on the number of threads a program can use. The
interconnection network is a modified Cayley graph capable of delivering one
word per processor per cycle. The system has 4 GBytes of memory per pro-
cessor. Logical memory addresses are hashed across physical memory to avoid
stride-induced hotspots. Each memory word is 68 bits: 64 data bits and 4
tag bits. One tag bit (the full-empty bit) is used to implement synchronous
load and store operations. A thread that issues a synchronous load or store
remains blocked until the operation completes, but the processor that issued
the operation continues to issue instructions from non-blocked streams.

The MTA-2 is closer to a theoretical PRAM machine than a shared memory
symmetric multiprocessor system is. Since the MTA-2 uses concurrency to
tolerate latency, algorithms must often be parallelized at very fine levels to
expose sufficient parallelism. However, it is not necessary that all parallelism
in the program be expressed such that the system can exploit it; the goal is
simply to saturate the processors. The programs that make the most effective
use of the MTA-2 are those which express the concurrency of the problem in
a way that allows the compiler to best exploit it.

12.2.1 Expressing parallelism

The MTA-2 compiler automatically parallelizes inductive loops of three
types: parallel loops, linear recurrences and reductions. A loop is inductive
if it is controlled by a variable that is incremented by a loop-invariant stride
during each iteration, and the loop-exit test compares this variable with a
loop-invariant expression. An inductive loop has only one exit test and can
only be entered from the top. If each iteration of an inductive loop can be
executed completely independently of the others, then the loop is termed
parallel. To attain the best performance, one needs to write code (and thus
design algorithms) such that most of the loops are implicitly parallelized.

There are several compiler directives that can be used to parallelize vari-
ous sections of a program. The three major types of parallelization schemes
available are:

• Single-processor (fray) parallelism: The code is parallelized in such a
way that just the 128 streams on the processor are utilized.

• Multiprocessor (crew) parallelism: This has higher overhead than single-
processor parallelism. However, the number of streams available is much
larger, bounded by the size of the whole machine rather than the size of
a single processor. Iterations can be statically or dynamically scheduled.

• Future parallelism: The future construct (detailed below) is used in this
form of parallelism. This does not require that all processor resources
used during the loop be available at the beginning of the loop. The
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runtime growth manager increases the number of physical processors as
needed. Iterations are always dynamically scheduled.

A future is a powerful construct to express user-specified explicit concur-
rency. It packages a sequence of code that can be executed by a newly created
thread running concurrently with other threads in the program. Futures in-
clude efficient mechanisms for delaying the execution of code that depends on
the computation within the future, until the future completes. The thread
that spawns the future can pass information to the thread that executes the
future via parameters. Futures are best used to implement task-level paral-
lelism and the concurrency in recursive computations.

12.2.2 Support for fine-grained synchronization

Synchronization is a major limiting factor to scalability in the case of prac-
tical shared-memory implementations. The software mechanisms commonly
available on conventional architectures for achieving synchronization are often
inefficient. However, the MTA-2 provides hardware support for fine-grained
synchronization through the full-empty bit associated with every memory
word. The compiler provides a number of generic routines that operate atom-
ically on scalar variables. We list a few useful constructs that appear in the
algorithm pseudo-codes in subsequent sections:

• The int fetch add routine (int fetch add(&v, i)) atomically adds in-
teger i to the value at address v, stores the sum at v, and returns the
original value at v (setting the full-empty bit to full).

• readfe(&v) returns the value of variable v when v is full and sets v
empty. This allows threads waiting for v to become empty to resume
execution. If v is empty, the read blocks until v becomes full.

• writeef(&v, i) writes the value i to v when v is empty, and sets v back
to full. The thread waits until v is set empty.

• purge(&v) sets the state of the full-empty bit of v to empty.

12.3 Case Study: Shortest Paths

In this section, we present an experimental study of multithreaded algo-
rithms for solving the single source shortest path (SSSP) problem on large-
scale graph instances. SSSP is a well-studied combinatorial problem with a
variety of practical applications such as network routing and path planning
in transportation networks. Most of the recent advances in shortest path al-
gorithms have been for point-to-point computations in road networks [32, 5].
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However, these algorithms cannot be applied to arbitrary graph instances due
to their reliance on the Euclidean structure of the graph.

In addition to applications in combinatorial optimization, shortest path al-
gorithms are finding increasing relevance in the domain of complex network
analysis. Popular graph-theoretic analysis metrics such as betweenness cen-
trality [21, 7, 29, 3] are based on shortest path algorithms. In contrast to
transportation networks, real-world information networks are typically char-
acterized by low-diameter, heavy-tailed degree distributions modeled by power
laws [4, 20], and self-similarity. They are often very large, with the number
of vertices and edges ranging from several hundreds of thousands to billions.
Our primary focus in this section is on parallel algorithms and efficient im-
plementations for solving SSSP on large-scale unstructured graph instances.

Parallel algorithms for solving the SSSP problem have been extensively re-
viewed by Meyer and Sanders [38, 40]. There are no known PRAM algorithms
that run in sub-linear time and O(m + n log n) work. Parallel priority queues
[18, 9] for implementing Dijkstra’s algorithm have been developed, but these
linear work algorithms have a worst-case time bound of Ω(n), as they only
perform edge relaxations in parallel. Several matrix-multiplication-based al-
gorithms [25, 22], proposed for the parallel All-Pairs Shortest Paths (APSP),
involve running time and efficiency trade-offs. Parallel approximate SSSP
algorithms [31, 12, 41] based on the randomized breadth-first search algo-
rithm of Ullman and Yannakakis [44] run in sub-linear time. However, it is
not known how to use the Ullman-Yannakakis randomized approach for exact
SSSP computations in sub-linear time.

We identify two well-studied algorithms, Δ-stepping [40] and Thorup’s algo-
rithm [43], that exploit concurrency in traversal of unstructured, low-diameter
graphs. Meyer and Sanders give the Δ-stepping [40] SSSP algorithm that di-
vides Dijkstra’s algorithm into a number of phases, each of which can be
executed in parallel. For random graphs with uniformly distributed edge
weights, this algorithm runs in sub-linear time with linear average case work.
Several theoretical improvements [39, 37] are given for Δ-stepping (for in-
stance, finding shortcut edges, adaptive bucket-splitting), but it is unlikely
that they would be faster than the simple Δ-stepping algorithm in practice,
as the improvements involve sophisticated data structures that are hard to im-
plement efficiently. We present our parallel implementation of the Δ-stepping
algorithm in Section 12.3.2.

Nearly all SSSP algorithms are based on the classical Dijkstra’s [17] algo-
rithm. However, Thorup [43] presents a sequential linear-time SSSP algorithm
for undirected graphs with positive integer weights that differs significantly
from Dijkstra’s approach. To accomplish this, Thorup’s algorithm encapsu-
lates information about the input graph in a data structure called the compo-
nent hierarchy (CH). Based upon information in the CH, Thorup’s algorithm
identifies vertices that can be settled in arbitrary order. This strategy is well
suited to a shared-memory environment since the component hierarchy can
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be constructed only once, then shared by multiple concurrent SSSP compu-
tations. We perform an experimental study of a parallel implementation of
Thorup’s original algorithm. In order to achieve good performance, our im-
plementation uses simple data structures and deviates from some theoretically
optimal algorithmic strategies. We discuss the details of our multithreaded
implementation of Thorup’s algorithm in Section 12.3.3.

12.3.1 Preliminaries

Let G = (V,E) be a graph with n vertices and m edges. Let s ∈ V denote
the source vertex. Each edge e ∈ E is assigned a nonnegative real weight
by the length function l : E → R. Define the weight of a path as the sum
of the weights of its edges. The single source shortest paths problem with
nonnegative edge weights (NSSP) computes δ(v), the weight of the shortest
(minimum-weighted) path from s to v. δ(v) = ∞ if v is unreachable from s.
We set δ(s) = 0.

Most shortest path algorithms maintain a tentative distance value for each
vertex, which is updated by edge relaxations. Let d(v) denote the tentative
distance of a vertex v. d(v) is initially set to ∞ and is an upper bound on
δ(v). Relaxing an edge 〈v, w〉 ∈ E sets d(w) to the minimum of d(w) and
d(v)+ l(v, w). Based on the manner in which the tentative distance values are
updated, most shortest path algorithms can be classified into two types: label-
setting or label-correcting. Label-setting algorithms (for instance, Dijkstra’s
algorithm) perform relaxations only from settled (d(v) = δ(v)) vertices, and
compute the shortest path from s to all vertices in exactly m edge relaxations.
Based on the values of d(v) and δ(v), at each iteration of a shortest path
algorithm, vertices can be classified into unreached (d(v) = ∞), queued (d(v)
is finite, but v is not settled) or settled. Label-correcting algorithms (e.g.,
Bellman-Ford) relax edges from unsettled vertices also, and may perform more
than m relaxations. Also, all vertices remain in a queued state until the
final step of the algorithm. Δ-stepping belongs to the label-correcting class,
whereas Thorup’s algorithm belongs to the label-setting type of shortest path
algorithms.

12.3.2 Δ-stepping algorithm

The Δ-stepping algorithm (see Algorithm 12.1) is an “approximate bucket
implementation of Dijkstra’s algorithm” [40]. It maintains an array of buckets
B such that B[i] stores the set of vertices {v ∈ V : v is queued and d(v) ∈
[iΔ, (i + 1)Δ)}. Δ is a positive real number that denotes the “bucket width.”

In each phase of the algorithm (the inner while loop in Algorithm 12.1,
lines 9–14, when bucket B[i] is not empty), all vertices are removed from the
current bucket, added to the set S, and light edges (l(e) ≤ Δ, e ∈ E) adjacent
to these vertices are relaxed (see Algorithm 12.2). This may result in new
vertices being added to the current bucket, which are deleted in the next
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Algorithm 12.1: Δ-stepping algorithm
Input: G(V,E), source vertex s, length function l : E → R

Output: δ(v), v ∈ V , the weight of the shortest path from s to v

foreach v ∈ V do1

heavy(v) ←− {〈v, w〉 ∈ E : l(v, w) > Δ};2

light(v) ←− {〈v, w〉 ∈ E : l(v, w) ≤ Δ};3

d(v) ←− ∞;4

relax(s, 0);5

i ←− 0;6

while B is not empty do7

S ←− φ;8

while B[i] �= φ do9

Req ←− {(w, d(v) + l(v, w)) : v ∈ B[i] ∧ 〈v, w〉 ∈ light(v)};10

S ←− S ∪ B[i];11

B[i] ←− φ;12

foreach (v, x) ∈ Req do13

relax(v, x);14

Req ←− {(w, d(v) + l(v, w)) : v ∈ S ∧ 〈v, w〉 ∈ heavy(v)};15

foreach (v, x) ∈ Req do16

relax(v, x);17

i ←− i + 1;18

foreach v ∈ V do19

δ(v) ←− d(v);20

Algorithm 12.2: The relax routine in the Δ-stepping algorithm
Input: v, weight request x
Output: Assignment of v to appropriate bucket

if x < d(v) then1

B [�d(v)/Δ�] ← B [�d(v)/Δ�] \{v};2

B [�x/Δ�] ← B [�x/Δ�] ∪ {v};3

d(v) ← x;4
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phase. It is also possible that vertices previously deleted from the current
bucket may be reinserted, if their tentative distance is improved. Heavy edges
(l(e) > Δ, e ∈ E) are not relaxed in a phase, as they result in tentative
values outside the current bucket. Once the current bucket remains empty
after relaxations, all heavy edges out of the vertices in S are relaxed at once
(lines 15–17 in Algorithm 12.1). The algorithm continues until all the buckets
are empty.

Observe that edge relaxations in each phase can be done in parallel, as long
as individual tentative distance values are updated atomically. The number
of phases bounds the parallel running time, and the number of reinsertions
(insertions of vertices previously deleted) and re-relaxations (relaxation of
their outgoing edges) costs an overhead over Dijkstra’s algorithm. The per-
formance of the algorithm also depends on the value of the bucket-width Δ.
For Δ = ∞, the algorithm is similar to the Bellman-Ford algorithm. It has a
high degree of parallelism, but is inefficient compared to Dijkstra’s algorithm.
Δ-stepping tries to find a good compromise between the number of parallel
phases and the number of reinsertions. For graph families with random edge
weights and a maximum degree of d, we can show that Δ = θ(1/d) is a good
compromise between work efficiency and parallelism. The sequential algo-
rithm performs O(dn) expected work divided between O(dc

Δ · log n
log log n ) phases

with high probability . In practice, in the case of graph families for which dc is
O(log n) or O(1), the parallel implementation of Δ-stepping yields sufficient
parallelism in each phase.

Parallel Implementation Details

The bucket array B is the primary data structure used by the parallel
Δ-stepping algorithm. We implement individual buckets as dynamic arrays
that can be resized when needed and iterated over easily. To support constant
time insertions and deletions, we maintain two auxiliary arrays of size n: a
mapping of the vertex ID to its current bucket, and a mapping from the vertex
ID to the position of the vertex in the current bucket. All new vertices are
added to the end of the array, and deletions of vertices are done by setting the
corresponding locations in the bucket and the mapping arrays to −1. Note
that once bucket i is finally empty after a light edge relaxation phase, there
will be no more insertions into the bucket in subsequent phases. Thus, the
memory can be reused once we are done relaxing the light edges in the current
bucket. Also observe that all the insertions are done in the relax routine, which
is called once in each phase, and once for relaxing the heavy edges.

We implement a timed preprocessing step to semi-sort the edges based on
the value of Δ. All the light edges adjacent to a vertex are identified in parallel
and stored in contiguous virtual locations, and so we visit only light edges in a
phase. The O(n) work preprocessing step scales well in parallel on the MTA-2.

We also support fast parallel insertions into the request set R. R stores
〈v, x〉 pairs, where v ∈ V and x is the requested tentative distance for v.
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We add a vertex v to R only if it satisfies the condition x < d(v). We do
not store duplicates in R. We use a sparse set representation similar to one
used by Briggs and Torczon [8] for storing vertices in R. This sparse data
structure uses two arrays of size n: a dense array that contiguously stores
the elements of the set, and a sparse array that indicates whether the ver-
tex is a member of the set. Thus, it is easy to iterate over the request set,
and membership queries and insertions are constant time operations. Unlike
other Dijkstra-based algorithms, we do not relax edges in one step. Instead,
we inspect adjacencies (light edges) in each phase, construct a request set of
vertices, and then relax vertices in the relax step.

12.3.3 Thorup’s algorithm

Thorup’s algorithm uses the component hierarchy (CH) to identify vertices
for which d(v) = δ(v). These vertices can then be visited in arbitrary order.
CH is a tree structure that encapsulates information about the graph. Each
CH-node represents a subgraph of G called a component, which is identified
by a vertex v and a level i. Component(v,i) is the subgraph of G composed
of vertex v, the set S of vertices reachable from v when traversing edges with
weight < 2i, and all edges adjacent to {v} ∪ S of weight less than 2i. Note
that if w ∈Component(v,i), then Component(v,i) = Component(w,i). The
root CH-node of the CH is a component containing the entire graph, and
each leaf represents a singleton vertex. The children of Component(v,i) in
the CH are components representing the connected components formed when
removing all the edges with weight > 2i−1 from Component(v,i). See Figure
12.1 for an example CH.

v w

5
5

5

5

5
5

10 Comp(v,3) Comp(w,3)

Comp(v,4)

FIGURE 12.1: An example component hierarchy. Component(v,4), the root
of this hierarchy, represents the entire graph.

The major insight in Thorup’s algorithm is presented in the following
lemma.

Lemma 12.1 (from Thorup [43]) Suppose the vertex set V divides into
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disjoint subsets V1, . . . , Vk and that all edges between subsets have weight of
at least ω. Let S be the set of settled vertices. Suppose for some i, such that
v ∈ Vi\S, that d(v) = min{d(x)|x ∈ Vi\S} ≤ min{d(x)|x ∈ V \S} + ω. Then
d(v) = δ(v) (see Figure 12.2).

...

V
1

V
2

V
k

≥ω ≥ω

≥ω

FIGURE 12.2: The vertex set V divided into k subsets.

Based upon this lemma, Thorup’s algorithm identifies vertices that can
be visited in arbitrary order. Let α = log2 ω. Component V buckets each
of its children V1 . . . Vk according to min{d(x)|x ∈ Vi\S} 
 α. Note that
(min{d(x)|x ∈ Vi\S} 
 α) ≤ (min{d(x)|x ∈ V \S} 
 α) implies that
(min{d(x)|x ∈ Vi\S}) ≤ (min{d(x)|x ∈ V \S} + ω). Consider bucket B[j]
such that j is the smallest index of a non-empty bucket. If Vi ∈ B[j] then
min{d(x)|x ∈ Vi\S} 
 α = min{d(x)|x ∈ V \S} 
 α. This implies that
min{d(x)|x ∈ Vi\S} ≤ min{d(x)|x ∈ V \S} + ω. Thus, each v ∈ Vi\S mini-
mizing D(v) can be visited by Lemma 12.1.

This idea can be applied recursively for each component in the CH. Each
component(v,i) buckets each child Vj based upon min{d(x)|x ∈ Vj\S}. Be-
ginning at the root, Thorup’s algorithm visits its children recursively, starting
with those children in the bucket with the smallest index. When a leaf com-
ponent l is reached, the vertex v represented by l is visited (all of its outgoing
edges are relaxed). Once a bucket is empty, the components in the next high-
est bucket are visited and so on. We direct the reader to Thorup [43] for
details about correctness and analysis.

Parallel Implementation Details

We define minD(c) for component c as min(d(x)|x ∈ c\S). The value of
minD(c) can change when the d(v) decreases for vertex v ∈ c, or it can change
when a vertex v ∈ c is visited (added to S). Changes in a components minD-
value might also affect ancestor component’s in the CH. Our implementation
updates minD values by propagating values from leaves towards the root. Our
implementation must lock the value of minD during an update since multiple
vertices are visited in parallel. Locking on minD does not create contention
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int index=0;

#pragma mta assert nodep

for (int i=0; i<numChildren;

i++) {

CHNode *c = children_store[i];

if (bucketOf[c->id] == thisBucket) {

toVisit[index++] = child->id;

}

}

FIGURE 12.3: Parallel code to populate the toVisit set with children in the
current bucket.

between threads because minD values are not propagated very far up the CH
in practice.

Conceptually, each component c at level i has an array of buckets. Each
child ck of c is in the bucket indexed minD(ck) 
 i. Rather that explicitly
storing an array of buckets, each component c stores index(c), which is c’s
index into its parents’ buckets. Child ck of component c is in bucket j if
index(ck) = j. Thus, inserting a component into a bucket is accomplished by
modifying index(c). Inserting multiple components into buckets and finding
the children in a given bucket can be done in parallel.

Traversing the Component Hierarchy in parallel

The component hierarchy is an irregular tree, in which some nodes have
several thousand children and others only two. Additionally, it is impossible
to know how much work must be done in a sub-tree because as few as one
vertex might be visited during the traversal of a sub-tree. These two facts
make it difficult to efficiently traverse the CH in parallel. To make traversal of
the tree efficient, we have split the process of recursively visiting the children
of a component into a two-step process. First, we build up a list of components
to visit. Second, we recursively visit these nodes.

Throughout execution, Thorup’s algorithm maintains a current bucket for
each component (in accordance with Lemma 12.1). All of those children
(virtually) in the current bucket compose the list of children to be visited,
called the toVisit set. To build this list, we look at all of node n’s children
and add each child that is (virtually) in the current bucket to an array. The
MTA supports automatic parallelization of such a loop with the reduction
mechanism. On the MTA, code to accomplish this is shown in Figure 12.3.

Executing a parallel loop has two major expenses. First, the runtime system
must set up for the loop. In the case of a reduction, the runtime system must
fork threads and divide the work across processors. Second, the body of the
loop is executed and the threads are abandoned. If the number of iterations
is large enough, then the second expense far outweighs the first. Yet, in
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the case of the CH, each node can have between two and several hundred
thousand children. In the former case, the time spent setting up for the loop
far outweighs the time spent executing the loop body. Since the toVisit set
must be built several times for each node in the CH (and there are O(n) nodes
in the CH), we designed a more efficient strategy for building the toVisit set.

Based upon the number of iterations, we either perform this loop on all pro-
cessors, a single processor, or in serial. That is, if numChildren > multi par thr-
eshold then we perform the loop in parallel on all processors. Otherwise, if
numChildren > single par threshold then we perform the loop in parallel on a
single processor. Otherwise, the loop is performed in serial. We determined
the thresholds experimentally by simulating the toVisit computation. In the
next section, we present a comparison of the näıve approach and our approach.

12.3.4 Experimental Results

We report parallel performance results on a 40-processor Cray MTA-2 sys-
tem with 160 GB uniform shared memory. Each processor has a clock speed
of 220 MHz and support for 128 hardware threads. The Δ-stepping code
is written in C with MTA-2 specific pragmas and directives for paralleliza-
tion. The Thorup algorithm implementations are in C++ and leverage the
fledgling MultiThreaded Graph Library (MTGL) [6] to perform operations
such as finding connected components and extracting induced subgraphs. We
compile the codes using the MTA-2 C/C++ compiler (Cray Programming
Environment (PE) 2.0.3) with -O3 and -par flags.

Problem Instances

We evaluate the parallel performance on two graph families that represent
unstructured data. The two families are among those defined in the 9th
DIMACS Implementation Challenge [16]:

• Random graphs: These are generated by first constructing a cycle, and
then adding m − n edges to the graph at random. The generator may
produce parallel edges as well as self-loops.

• Scale-free graphs (R-MAT): We use the R-MAT graph model [10] to
generate scale-free instances. This algorithm recursively fills in an adja-
cency matrix in such a way that the distribution of vertex degrees obeys
an inverse power law.

For each of these graph classes, we fix the number of edges m to 4n. We use
undirected graphs for evaluating performance of Thorup’s algorithm, and both
directed and undirected graphs for Δ-stepping. In our experimental design,
we vary two other factors: C, the maximum edge weight, and the weight dis-
tribution. The latter is either uniform in [1, ..., C] (UWD) or poly-logarithmic
(PWD). The poly-logarithmic distribution generates integer weights of the



Multithreaded Algorithms for Processing Massive Graphs 251

form 2i, where i is chosen uniformly over the distribution [1, log C]. Δ-
stepping is designed for graphs with real-weighted edges, so we normalize
integer edge weights to fall in the interval [0, 1]. In addition to these graph
classes, we also conducted extensive experimental studies on high-diameter
road networks and regular mesh graphs (see [36] and [15] for details). In
the following figures and tables, we name data sets with the convention:
<class>-<dist>-<n>-<C>.

We compare the sequential performance of our implementations to the serial
performance of the “DIMACS reference solver,” an implementation of Gold-
berg’s multilevel bucket shortest path algorithm, which has an expected run-
ning time of O(n) on random graphs with uniform weight distributions [23].
We do this comparison to establish that our implementations are portable
and that they do not perform much extra work. It is reasonable to com-
pare these implementations because they operate in the same environment,
use the same compiler, and use a similar graph representation. Note that
our implementations are not optimized for serial computation. For instance,
in Δ-stepping, the time taken for semi-sorting and mechanisms to reduce
memory contention on the MTA-2 both constitute overhead on a sequential
processor. Regardless of this, both our Thorup and Δ-stepping computa-
tions are reasonably close to the reference SSSP solver – the solver is 1.5 to
2 times faster than Δ-stepping for large problem instances in each family,
while the execution time of Thorup’s algorithm is within 2–4X that of the
solver.

Parallel Performance

On the MTA-2, we compare our implementation running times with the
execution time of a multithreaded level-synchronized breadth-first search [3],
optimized for low-diameter graphs. The multithreaded breadth-first search
(BFS) scales as well as Δ-stepping for all the graph instances considered, and
the execution time serves as a lower bound for the shortest path running time.

We define the speedup on p processors of the MTA-2 as the ratio of the
execution time on 1 processor to the execution time on p processors. The Δ-
stepping implementation performs impressively for low-diameter graphs with
randomly distributed edge weights (see Figure 12.4). We achieve a speedup
of approximately 31 on 40 processors for a directed random graph of nearly a
billion edges, and the ratio of the BFS and Δ-stepping execution time is a con-
stant factor (about 3–5) throughout. The implementation performs equally
well for scale-free graphs, that are more difficult for partitioning-based paral-
lel computing models to handle due to the irregular degree distribution. The
execution time on 40 processors of the MTA-2 for the scale-free graph instance
is within 9% (a difference of less than one second) of the running time for a
random graph and the speedup is approximately 30 on 40 processors. To our
knowledge, these are the first results to demonstrate near-linear speedup for
such large-scale unstructured graph instances.
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(a)

(b)

FIGURE 12.4: Δ-stepping execution time and relative speedup on the
MTA-2 for (a) a Rand directed-UWD-228-228 graph instance and (b) a R-
MAT directed-UWD-228-228 instance
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We also ran Thorup’s algorithm on graph instances from the random and
R-MAT graph families, with uniform and poly-log weight distributions, and
with small and large maximum edge weights. Both the Component Hierarchy
construction and SSSP computations scale well on the instances studied (see
Figure 12.5). We also observe that Δ-stepping performs better in all of the
single source runs presented.

FIGURE 12.5: Scaling of Thorup’s algorithm on the MTA-2 for various prob-
lem instances.

For Thorup’s implementation, we explore the idea of allowing many SSSP
computations to share a common component hierarchy and its performance
compared to a sequence of parallel (but single source) runs of Δ-stepping.
Figure 12.6 presents results of simultaneous Thorup SSSP computations on
random graphs with a uniform weight distribution. When computing for a
modest number of sources simultaneously, our Thorup implementation out-
paces the baseline Δ-stepping computation.

In the previous section, we showed our strategy for building the toVisit set.
This task is executed repeatedly for each component in the hierarchy. As
a result, the small amount of time that is saved by selectively parallelizing
this loop translates to an impressive performance gain. As seen in Table
12.1, the improvement is nearly two-fold for most graph instances. In the
current programming environment, the programmer can only control if a loop
executes on all processors, on a single processor, or in serial. We conjecture
that better control of the number of processors employed for a loop would
lead to a further speedup in our implementation.



254 Multithreaded Algorithms for Processing Massive Graphs

TABLE 12.1: Comparison of näıve strategy
(Thorup A) to our strategy (Thorup B) for building
toVisit set on 40 processors.

Family Thorup A Thorup B
R-MAT undirected-UWD-226-226 28.43s 15.86s
R-MAT undirected-PWD-225-225 14.92s 8.16s
R-MAT undirected-UWD-225-22 9.87s 7.57s
Rand undirected-UWD-225-225 13.29s 7.53s
Rand undirected-PWD-225-225 13.31s 7.54s
Rand undirected-UWD-224-22 4.33s 5.67s

FIGURE 12.6: Simultaneous Thorup SSSP runs from multiple sources using
a shared CH.

12.4 Case Study: Connected Components

The problem of finding the connected components of a graph is fundamen-
tal, and particularly illustrative of the issues facing large-scale parallel graph
algorithm designers. In finding connected components of a graph, we wish to
assign a label to each vertex such that if a path exists between a pair of ver-
tices, then they share a common label. There are simple and efficient classical
PRAM algorithms to find connected components that have been accepted by
the community for decades. However, the advent of machines implementing
the massive multithreading paradigm has caused algorithm designers to revisit
these ideas.
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12.4.1 Traditional PRAM algorithms

We will consider perhaps the most familiar of PRAM algorithms for con-
nected components: the Shiloach-Vishkin algorithm [42]. This elegant algo-
rithm works by manipulating rooted tree structures induced by the component
attributes of a graph’s vertices. These tree structures are grafted onto one
another, and compressed using pointer jumping. The end result of this itera-
tive process is that two vertices are in the same connected component if and
only if they have the same parent in the final forest of rooted tree structures.
We will not give the algorithm in detail here, but JaJa [28] has a thorough
description.

The rooted tree manipulations of the Shiloach-Vishkin algorithm serve the
purpose of selecting a single representative for each connected component. In
recent years, it has been discovered that many real graphs, such as the Internet
and graphs of sexual relationships among large communities of people, tend to
contain a large connected component that encompasses much of the graph [19].
As an implementation of Shiloach-Vishkin forms this large component, the
selected representative becomes a memory hotspot, a location in memory that
is accessed with a high degree of concurrency.

The levels of multithreading in traditional parallel machines have not high-
lighted this hotspot. Even the smaller MTA-2 machines did not experience a
slowdown due to this factor. However, the largest MTA-2 ever built – a 40
processor machine – did indeed demonstrate the seriousness of hotspots like
this and the importance of designing algorithms that avoid them.

12.4.2 Kahan’s multi-level algorithm

A familiar way to deal with large-scale graph problems is to use multi-level
algorithms that collapse the graph in some sense, operate on the collapsed
graph, then expand the result. This approach has been used extensively, for
example, in graph partitioning [26]. Kahan recently demonstrated that it is
an effective way to deal with hotspots in multithreaded graph algorithms. We
describe his algorithm in general terms here; see [6] for a formal description.

The first step in a multi-level algorithm is to compute a coarse-grain repre-
sentation of the input graph. For example, we might find a matching in the
original graph, then collapse the matching edges. Kahan’s algorithm leverages
massively multithreaded architectures to find a coarse-grain representation via
asynchronous, concurrent graph searches.

Conceptually, searches are started from many randomly selected root nodes,
which are analogous to the representative nodes of the Shiloach-Vishkin PRAM
algorithm. The neighbor list of each visited node is processed in parallel, if
its size warrants. As these searches expand, their frontiers sometimes meet.
Meetings between searches rooted at vertices v and w cause the pair (v, w) to
be added to a hash table of colliding searches, and terminate the respective
threads of these searches.
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Once the searches have completed, the pairs added to the hash table induce
the coarse-grain graph to be processed. Each edge in this graph connects
two prospective component representatives. A PRAM-connected components
algorithm such as Shiloach-Vishkin (SV) is then run on this coarse graph,
and the component representatives found during this computation are true
component representatives for the original graph. The final phase of Kahan’s
algorithm consists of concurrent searches started from each of these represen-
tatives to label all vertices in their respective components.

Implementation details are important in order to achieve performance with
Kahan’s algorithm, and other multi-level algorithms. For example, when pro-
cessing graphs with inverse power-law degree distributions, even the MTA-
2 machines can become overwhelmed with threads if too many concurrent
searches are started at once. It is necessary to manage this problem, and
one successful strategy is to process the high degree nodes in serial, starting
a parallel search from each one in turn. When this sub-phase is complete,
the remaining vertices may be processed with large numbers of searches from
low-degree vertices. Such heuristics abound in multithreaded programming,
and a consistent methodology for applying them would be a contribution.

FIGURE 12.7: Scalability of the basic Shiloach-Vishkin algorithm for con-
nected components with Kahan’s multi-level algorithm
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12.4.3 Performance comparisons

Figure 12.7 compares the strong scaling of the basic Shiloach-Vishkin al-
gorithm, as implemented for the MTA-2 in [2], with a C implementation of
Kahan’s algorithm run on the same platform. Kahan’s algorithm on a single
processor of the MTA-2 is nearly twice as fast as a 3-GHz AMD workstation
with 64-GB memory. The plots cross in favor of Kahan’s algorithm after
roughly 30 MTA-2 processors. There is reason to believe that the halt in scal-
ability of the basic Shiloach-Vishkin algorithm will become even more abrupt
in the future as larger machines permit the processing of larger inputs. The
hotspot in such cases will be all the more severe, and future architectures
such as the Cray XMT will have less network bandwidth than the MTA-2
did, and will lack the adaptive network routing of this aging platform. Un-
fortunately, this means that machines themselves will become less tolerant of
hotspots than the MTA-2 was, and hotspot-free algorithms will become even
more important.

12.5 Conclusion

Despite the many undeniable successes of mainstream parallel architectures,
they have significant limitations. These shortcomings preclude successful par-
allelization of some important applications. In this chapter, we have show-
cased the ability of massively multithreaded machines to address graph al-
gorithms, a prototype of a wider class of highly unstructured applications.
Despite its slow clock, the MTA-2 is able to deliver impressive performance
on problems that have eluded parallelization on traditional platforms.

When devising algorithms for distributed memory applications the devel-
oper focuses attention upon the maximization of locality to minimize inter-
processor communication. Most distributed memory algorithms fit into a bulk
synchronous processing framework in which local computation alternates with
global data exchanges. In contrast, algorithm developers on the MTA-2 pay
no attention to locality or to data exchanges. Instead, the key objective is
to identify and express the innate, perhaps low-level, operations that can be
performed at the same time. This requires a very different way of thinking
about parallelism and parallel programming, but one that we have found to
be highly productive and liberating.

It is our belief that the future will see a growth in the kinds of unstructured
and dynamic computations that are well suited to massive multithreading.
Traditional scientific computations are growing in complexity through the in-
clusion of adaptivity, multiscale and multiphysics phenomena. These trends
will likely reduce the efficiencies achievable on message-passing machines. Fur-
ther, we anticipate a continued growth in data-driven science whether from
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new experiments like telescopes or accelerators, from the output of large sim-
ulations or from inherently data-driven sciences like biology. Data analysis
can be much less structured than traditional scientific simulations and so
high-performance analysis may require the flexibility of a massively multi-
threaded architecture. We also hope to see a broadening of the traditional
high-performance computing community to include new domains like machine
learning or information processing. Massively multithreaded machines may
address problems in these fields that existing computers cannot. Cray’s XMT
[14], formerly called Eldorado and the follow-on to the MTA-2, may enable a
range of additional communities to embrace high-performance computing to
the benefit of all.

Even within existing applications, the continuing growth in the relative
cost of memory accesses will further erode the already-dismal utilization of
computational resources. Processing speed is increasingly irrelevant as the
vast majority of time is spent accessing data. Fortuitously, the seemingly
inexorable march of Moore’s Law has created an unprecedented opportunity
for architectural innovation. For the first time in history, designers have a
surplus of transistors with which to work. Although the current focus is
merely on multiple cores, we anticipate a creative renaissance of architectural
exploration in this new world of plenty. As they strive to address the inherent
difficulties of memory-limited applications, we hope that our work on the
MTA-2 can provide an informative case study.
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Ü. V. Çatalyürek. A scalable distributed parallel breadth-first search
algorithm on Bluegene/L. In Proc. Supercomputing (SC 2005), Seattle,
WA, November 2005.



Chapter 13

Disaster Survival Guide in Petascale
Computing: An Algorithmic
Approach

Jack J. Dongarra
University of Tennessee
Oak Ridge National Laboratory
University of Manchester
dongarra@cs.utk.edu

Zizhong Chen
Jacksonville State University
zchen@jsu.edu

George Bosilca
Innovative Computing Laboratory
University of Tennessee, Department of Electrical Engineering and Computer
Science
bosilca@cs.utk.edu

Julien Langou
University of Colorado at Denver and Health Sciences Center,
Mathematical Sciences Department
julien.langou@cudenver.edu

13.1 FT-MPI: A Fault Tolerant MPI Implementation . . . . . . . . . . . . . . . . . . . . . . . 265
13.2 Application-Level Diskless Checkpointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
13.3 A Fault-Survivable Iterative Equation Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
13.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
13.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
13.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

As the unquenchable desire of today’s scientists to run ever-larger simulations
and analyze ever-larger data sets drives the size of high-performance comput-
ers from hundreds, to thousands, and even tens of thousands of processors,
the mean-time-to-failure (MTTF) of these computers is becoming significantly
shorter than the execution time of many current high performance computing
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applications.
Even making generous assumptions on the reliability of a single processor or

link, it is clear that as the processor count in high-end clusters grows into the
tens of thousands, the mean-time-to-failure of these clusters will drop from
a few years to a few days, or less. The current DOE ASCI computer (IBM
Blue Gene L) is designed with 131,000 processors. The mean-time-to-failure
of some nodes or links for this system is reported to be only six days on
average [8].

In recent years, the trend of high-performance computing [17] has been
shifting from the expensive massively parallel computer systems to clusters
of commodity off-the-shelf systems [17]. While commodity off-the-shelf clus-
ter systems have an excellent price–performance ratio, the low reliability of
the off-the-shelf components in these systems leads a growing concern with
the fault tolerance issue. The recently emerging computational grid environ-
ments [14] with dynamic resources have further exacerbated the problem.

However, driven by the desire of scientists for ever-higher levels of detail and
accuracy in their simulations, many computational science programs are now
being designed to run for days or even months. Therefore, the next generation
computational science programs need to be able to tolerate failures.

Today’s long-running scientific applications typically deal with faults by
writing checkpoints into stable storage periodically. If a process failure oc-
curs, then all surviving application processes are aborted and the whole ap-
plication is restarted from the last checkpoint. The major source of overhead
in all stable-storage-based checkpoint systems is the time it takes to write
checkpoints to stable storage [21]. The checkpoint of an application on a, say,
10,000d-processor computer implies that all critical data for the application
on all 10,000 processors have to be written into stable storage periodically,
which may introduce an unacceptable amount of overhead into the check-
pointing system. The restart of such an application implies that all processes
have to be recreated and all data for each process have to be reread from sta-
ble storage into memory or regenerated by computation, which often brings
a large amount of overhead into restart. It may also be very expensive or
unrealistic for many large systems such as grids to provide the large amount
of stable storage necessary to hold all process states of an application of thou-
sands of processes. Therefore, due to the high frequency of failures for next
generation computing systems, the classical checkpoint/restart fault tolerance
approach may become a very inefficient way to deal with failures. Alternative
fault-tolerance approaches need to be investigated.

In this chapter, we study an alternative approach to build fault-tolerant high
performance computing applications so that they can survive a small number
of simultaneous processor failures without restarting the whole application.
Based on diskless checkpointing [21] and FT-MPI, a fault-tolerant version of
MPI we developed [9, 10], our fault-tolerance approach removes stable storage
from fault tolerance and takes an application-level approach, which gives the
application developer an opportunity to achieve as low of a fault-tolerance
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overhead as possible according to the specific characteristics of an application.
Unlike in the traditional checkpoint/restart fault-tolerance paradigm, in our
fault-tolerance framework, if a small number of application processes failed,
the survival application processes will not be aborted. Instead, the application
will keep all survival processes, and adapt itself to failures.

The rest of the chapter is organized as follows. Section 13.1 gives a brief
introduction to FT-MPI from the user point of view. Section 13.2 introduces
floating-point arithmetic encodings into diskless checkpointing and discusses
several checkpoint-encoding strategies, both old and new, with detail. In
Section 13.3, we give a detailed presentation on how to write a fault-survivable
application with FT-MPI by using a conjugate-gradient equation solver as an
example. In Section 13.4, we evaluate both the performance overhead of
our fault tolerance approach and the numerical impact of our floating-point
arithmetic encoding. Section 13.5 discusses the limitations of our approach
and possible improvements. Section 13.6 concludes the chapter and discusses
future work.

13.1 FT-MPI: A Fault Tolerant MPI Implementation

Current parallel-programming paradigms for high-performance computing
systems are typically based on message-passing, especially on the message-
passing interface (MPI) specification [16]. However, the current MPI specifi-
cation does not deal with the case where one or more process failures occur
during runtime. MPI gives the user the choice between two possibilities of
how to handle failures. The first one, which is also the default mode of MPI, is
to immediately abort all the processes of the application. The second possibil-
ity is just slightly more flexible, handing control back to the user application
without guaranteeing, however, that any further communication can occur.

13.1.1 FT-MPI overview

FT-MPI [10] is a fault-tolerant version of MPI that is able to provide basic
system services to support fault-survivable applications. FT-MPI implements
the complete MPI-1.2 specification, some parts of the MPI-2 document and
extends some of the semantics of MPI for allowing the application the pos-
sibility to survive process failures. FT-MPI can survive the failure of n-1
processes in an n-process job, and, if required, can re-spawn the failed pro-
cesses. However, the application is still responsible for recovering the data
structures and the data of the failed processes.

Although FT-MPI provides basic system services to support fault-survivable
applications, prevailing benchmarks show that the performance of FT-MPI is
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comparable [11] to the current state-of-the-art MPI implementations.

13.1.2 FT-MPI: A fault tolerant MPI implementation

FT-MPI provides semantics that answer the following questions:

1. What is the status of an MPI object after recovery?

2. What is the status of ongoing communication and messages during and
after recovery?

When running an FT-MPI application, there are two parameters used to
specify which modes the application is running.

The first parameter, the ”communicator mode,” indicates what the status
is of an MPI object after recovery. FT-MPI provides four different communi-
cator modes, which can be specified when starting the application:

• ABORT: like any other MPI implementation, FT-MPI can abort on an
error.

• BLANK: failed processes are not replaced, all surviving processes have
the same rank as before the crash and MPI COMM WORLD has the
same size as before.

• SHRINK: failed processes are not replaced, however the new communi-
cator after the crash has no ”holes” in its list of processes. Thus, processes
might have a new rank after recovery and the size of MPI COMM WORLD
will change.

• REBUILD: failed processes are re-spawned, surviving processes have the
same rank as before. The REBUILD mode is the default, and the most
used mode of FT-MPI.

The second parameter, the ”communication mode”, indicates how mes-
sages, which are on the ”fly” while an error occurs, are treated. FT-MPI
provides two different communication modes, which can be specified while
starting the application:

• CONT/CONTINUE: all operations which returned the error code
MPI SUCCESS will finish properly, even if a process failure occurs during
the operation (unless the communication partner has failed).

• NOOP/RESET: all ongoing messages are dropped. The assumption be-
hind this mode is, that on error the application returns to its last con-
sistent state, and all currently ongoing operations are not of any further
interest.
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13.1.3 FT-MPI usage

Handling fault-tolerance typically consists of three steps: 1) failure de-
tection, 2) notification, and 3) recovery. The only assumption the FT-MPI
specification makes about the first two points is that the runtime environment
discovers failures and all remaining processes in the parallel job are notified
about these events. The recovery procedure is considered to consist of two
steps: recovering the MPI library and the runtime environment, and recover-
ing the application. The latter one is considered to be the responsibility of the
application. In the FT-MPI specification, the communicator-mode discovers
the status of MPI objects after recovery; and the message-mode ascertains
the status of ongoing messages during and after recovery. FT-MPI offers for
each of those modes several possibilities. This allows application developers
to take the specific characteristics of their application into account and use
the best-suited method to handle fault-tolerance.

13.2 Application-Level Diskless Checkpointing

In order to build fault-survivable applications with FT-MPI, application
developers have to design their own recovery schemes to recover their appli-
cations after failure. Checkpointing, message-logging, algorithm-based check
point-free schemes such as the lossy approach [2, 7] or combinations of these
approaches may be used to reconstruct the required consistent state to con-
tinue the computation. However, due to its generality and performance, the
diskless checkpointing technique [21] is a very promising approach to build
fault-survivable applications with FT-MPI.

Diskless checkpointing is a technique to save the state of a long-running
computation on a distributed system without relying on stable storage. With
diskless checkpointing, each processor involved in the computation stores a
copy of its state locally, either in memory or on a local disk. Additionally,
encodings of these checkpoints are stored in local memory or on local disks of
some processors which may or may not be involved in the computation. When
a failure occurs, each live processor may roll its state back to its last local
checkpoint, and the failed processor’s state may be calculated from the local
checkpoints of the surviving processors and the checkpoint encodings. By
eliminating stable storage from checkpointing and replacing it with memory
and processor redundancy, diskless checkpointing removes the main source of
overhead in checkpointing on distributed systems [21].

To make diskless checkpointing as efficient as possible, it can be imple-
mented at the application level rather than at the system level [19]. There
are several advantages to implementing checkpointing at the application level.
Firstly, application-level checkpointing can be placed at synchronization points
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in the program, which achieves checkpoint consistency automatically. Sec-
ondly, with application-level checkpointing, the size of the checkpoint can be
minimized because the application developers can restrict the checkpoint to
the required data. This is opposed to a transparent checkpointing system
which has to save the whole process state. Thirdly, transparent system-level
checkpointing typically writes binary memory dumps, which rules out a het-
erogeneous recovery. On the other hand, application-level checkpointing can
be implemented such that the recovery operation can be performed in a het-
erogeneous environment as well.

In typical long-running scientific applications, when diskless checkpointing
is taken from the application level, what needs to be checkpointed is often
some numerical data [15]. These numerical data can either be treated as bit-
streams or as floating-point numbers. If the data are treated as bit-streams,
then bit-stream operations such as parity can be used to encode the check-
point. Otherwise, floating-point arithmetic such as addition can be used to
encode the data.

However, compared with treating checkpoint data as numerical numbers,
treating them as bit-streams usually has the following disadvantages:

1. To survive general multiple-process failures, treating checkpoint data
as bit-streams often involves the introduction of Galois field arithmetic
in the calculation of checkpoint encoding and recovery decoding [18].
If the checkpoint data are treated as numerical numbers, then only
floating-point arithmetic is needed to calculate the checkpoint encod-
ing and recovery decoding. Floating-point arithmetic is usually simpler
to implement and more efficient than Galois field arithmetic.

2. Treating checkpoint data as bit-streams rules out a heterogeneous re-
covery. The checkpoint data may have different bit-stream representa-
tion on different platforms and even have different bit-stream lengths
on different architectures. The introduction of a unified representation
of the checkpoint data on different platforms within an application for
checkpoint purposes scarifies too much performance and is unrealistic
in practice.

3. In some cases, treating checkpoint data as bit-streams does not work.
For example, in [15], in order to reduce memory overhead in fault-
tolerant dense matrix computation, no local checkpoints are maintained
on computation processors, only the checksum of the local checkpoints
is maintained on the checkpoint processors. Whenever a failure occurs,
the local checkpoints on surviving computation processors are recon-
structed by reversing the computation. Lost data on failed processors
are then re-constructed through the checksum and the local checkpoints
obtained are from the reverse computation. However, due to round-
off errors, the local checkpoints obtained from reverse computation are
not the same bit-streams as the original local checkpoints. Therefore,
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in order to be able to reconstruct the lost data on failed processors,
the checkpoint data have to be treated as numerical numbers and the
floating-point arithmetic has to be used to encode the checkpoint data.

The main disadvantage of treating the checkpoint data as floating-point
numbers is the introduction of round-off errors into the checkpoint and recov-
ery operations. Round-off errors are a limitation of any floating-point number
calculations. Even without checkpoint and recovery, scientific computing ap-
plications are still affected by round-off errors. In practice, the increased
possibility of overflows, underflows, and cancellations due to round-off errors
in numerically stable checkpoint and recovery algorithms is often negligible.

In this chapter, we treat the checkpoint data as floating-point numbers
rather than bit-streams. However, the corresponding bit-stream version schemes
could also be used as long as the application developer thinks they are more
appropriate. In the following subsections, we discuss how the local checkpoint
can be encoded so that applications can survive failures.

13.2.1 Neighbor-based checkpointing

In neighbor-based checkpointing, a neighbor processor is first defined for
each computation processor. Then, in addition to keeping a local checkpoint
in its memory, each computation processor stores a copy of its local checkpoint
in the memory of its neighbor processor. Whenever a computation proces-
sor fails, the lost local checkpoint data can be recovered from its neighbor
processor.

The performance overhead of the neighbor-based checkpointing is usually
very low. The checkpoints are localized to only two processors: a computation
processor and its neighbor. The recovery only involves the failed processors
and their neighbors. There are no global communications or encoding/decod-
ing calculations needed in the checkpoint and recovery.

Because no floating-point operations are involved in the checkpoint and
recovery, no round-off errors are introduced in neighbor-based checkpointing.

Depending on how we define the neighbor processor of a computation pro-
cessor, there are three neighbor-based checkpointing schemes

13.2.1.1 Mirroring

The mirroring scheme of neighbor-based checkpointing is originally pro-
posed in [21]. In this scheme, if there are n computation processors, an-
other n checkpoint processors are dedicated as neighbors of the computation
processors. The ith computation processor simply stores a copy of its local
checkpoint data in the ith checkpoint processor (see Figure 13.1).

Up to n processor failures may be tolerated, although the failure of both a
computation processor and its neighbor processor cannot be tolerated. If we
assume that the failure of each processor is independent and identically dis-
tributed, then the probability that the mirroring scheme survives k processor
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failures is
Ck

n2k

Ck
2n

When k is much smaller than n, the probability to survive k failures can be
very close to 1.

The disadvantage of the mirroring scheme is that n additional processors
are dedicated as checkpoint processors, therefore,they cannot be used to do
computation.

13.2.1.2 Ring neighbor

In [23], a ring neighbor scheme was discussed by Silva et al. In this scheme,
there are no additional processors used. All computation processors are orga-
nized in a virtual ring. Each processor sends a copy of its local checkpoint to
the neighbor processor that follows on the virtual ring. Therefore, each pro-
cessor has two checkpoints maintained in memory: one is the local checkpoint
of itself, another is the local checkpoint of its neighbor (see Figure 13.1).

The ring neighbor scheme is able to tolerate at least one and up to �n
2 �

processor failures in an n processor job depending on the distribution of the
failed processors.

Compared with the mirroring scheme, the advantage of the ring neighbor
scheme is that there is no processor redundancy in the scheme. However, two
copies of checkpoints have to be maintained in the memory of each computa-
tion processor. The degree of fault tolerance of the ring neighbor scheme is
also lower than the mirroring scheme.
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FIGURE 13.1: Neighbor-based schemes.

13.2.1.3 Pair neighbor

Another possibility is to organize all computation processors as pairs (as-
suming that there are an even number of computation processors). The two
processors in a pair are neighbors of each other. Each processor sends a copy
of its local checkpoint to its neighbor processor (see Figure 13.1).
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Like the ring neighbor scheme, there is no processor redundancy used in the
paired neighbor scheme and two copies of checkpoints have to be maintained
in the memory of each computation processor.

However, compared with the ring neighbor scheme, the degree of fault tol-
erance for the pair neighbor scheme is improved. Like the mirroring scheme,
if we assume that the failure of each process is independent and identically
distributed, then the probability that the pair neighbor scheme survives k
failures in an n processor job is

Ck
n/22

k

Ck
n

.

13.2.2 Checksum-based checkpointing

Checksum-based checkpointing is a modified version of the parity-based
checkpointing proposed in [20]. In checksum-based checkpointing, instead of
using parity, the floating-point number addition is used to encode the local
checkpoint data. By encoding the local checkpoint data of the computation
processors and sending the encoding to some dedicated checkpoint processors,
checksum-based checkpointing introduces a much lower memory overhead into
the checkpoint system than neighbor-based checkpointing. However, due to
the calculating and sending of the encoding, the performance overhead of
checksum-based checkpointing is usually higher than neighbor-based check-
point schemes. There are two versions of the checksum-based checkpointing
schemes.

13.2.2.1 Basic checksum scheme

The basic checksum scheme works as follow. If the program is executing on
N processors, then there is an N+1st processor called the checksum processor.
At all points in time a consistent checkpoint is held in the N processors in
memory. Moreover, a checksum of the N local checkpoints is held in the
checksum processor (see Figure 13.2). Assume Pi is the local checkpoint data
in the memory of the ith computation processor. C is the checksum of the
local checkpoint in the checkpoint processor. If we look at the checkpoint data
as an array of real numbers, then the checkpoint encoding actually establishes
an identity

P1 + . . . + Pn = C (13.1)

between the checkpoint data Pi on computation processors and the checksum
data C on the checksum processor. If any processor fails then the identity in
Equation (13.1) becomes an equation with one unknown. Therefore, the data
in the failed processor can be reconstructed through solving this equation.

Due to the floating-point arithmetic used in the checkpoint and recovery,
there will be round-off errors in the checkpoint and recovery. However, the
checkpoint involves only additions and the recovery involves additions and
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only one subtraction. In practice, the increased possibility of overflows, under-
flows, and cancellations due to round-off errors in the checkpoint and recovery
algorithm is negligible.

The basic checksum scheme can survive only one failure. However, it can
be used to construct a one-dimensional checksum scheme to survive certain
multiple failures.
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FIGURE 13.2: Checksum based schemes.

13.2.2.2 One Dimensional Checksum Scheme

The one-dimensional checksum scheme works as follow. Assume the pro-
gram is running on mn processors. Partition the mn processors into m groups
with n processors in each group. Dedicate one checksum processor for each
group. At each group, the checkpoints are done using the basic checksum
scheme (see Fig. 13.2).

The advantage of this scheme is that the checkpoint are localized to a
subgroup of processors, so the checkpoint encoding in each subgroup can be
done parallelly. Therefore, compared with the basic checksum scheme, the
performance of the one-dimensional checksum scheme is usually better. If
we assume that the failure of each process is independent and identically
distributed, then the probability that the one-dimensional checksum scheme
survives k (k < m) failures is

Ck
m(n + 1)k

Ck
m(n+1)

13.2.3 Weighted-checksum-based checkpointing

The weighted-checksum scheme is a natural extension to the checksum
scheme to survive multiple failures of arbitrary patterns with minimum pro-
cessor redundancy. It can also be viewed as a version of the Reed-Solomon
erasure-coding scheme [18] in the real number field. The basic idea of this
scheme works as follow: Each processor takes a local in-memory checkpoint,
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and m equalities are established by saving weighted checksums of the lo-
cal checkpoint into m checksum processors. When f failures happen, where
f ≤ m, the m equalities becomes m equations with f unknowns. By appro-
priately choosing the weights of the weighted checksums, the lost data on the
f failed processors can be recovered by solving these m equations.
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FIGURE 13.3: Weighted checksum schemes.

13.2.3.1 The basic weighted-checksum scheme

Suppose there are n processors used for computation. Assume the check-
point data on the ith computation processor is Pi. In order to be able to
reconstruct the lost data on failed processors, another m processors are dedi-
cated to hold m encodings (weighted checksums) of the checkpoint data (see
Figure 13.3). The weighted checksum Cj on the jth checksum processor can
be calculated from ⎧⎪⎪⎨

⎪⎪⎩
a11P1 + . . . + a1nPn = C1

...
am1P1 + . . . + amnPn = Cm

(13.2)

where aij , i = 1, 2, ...,m, j = 1, 2, ..., n, is the weight we need to choose. Let
A = (aij)mn. We call A the checkpoint matrix for the weighted checksum
scheme.

Suppose that k computation processors and m − h checkpoint processors
have failed, then there are n − k computation processors and h checkpoint
processors survive. If we look at the data on failed processors as unknowns,
then Equation (13.2) becomes m equations with m − (h − k) unknowns.

If k > h, then there are less equations than unknowns. There is no unique
solution for Equation (13.2). The lost data on the failed processors cannot be
recovered.

However, if k < h, then there are more equations than unknowns. By
appropriately choosing A, a unique solution for Equation (13.2) can be guar-
anteed. Therefore, the lost data on the failed processors can be recovered by
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solving Equation (13.2).
Without loss of generality, we assume: (1) the computational processor j1,

j2, ..., jk failed and the computational processor jk+1, jk+2, ..., jn survived;
(2) the checkpoint processor i1, i2, ..., ih survived and the checkpoint pro-
cessor ih+1, ih+2, ..., im failed. Then, in Equation (13.2), Pj1 , ..., Pjk

and
Cih+1 , ..., Cim

become unknowns after the failure occurs. If we restructure
(13.2), we can get

⎧⎪⎪⎨
⎪⎪⎩

ai1j1Pj1 + ... + ai1jk
Pjk

= Ci1 −
∑n

t=k+1 ai1jt
Pjt

...
aihj1Pj1 + ... + aihjk

Pjk
= Cih

− ∑n
t=k+1 aihjtPjt

(13.3)

and ⎧⎪⎪⎨
⎪⎪⎩

Cih+1 = aih+11P1 + . . . + aih+1nPn

...
Cim = aim1P1 + . . . + aimnPn

(13.4)

Let Ar denote the coefficient matrix of the linear system (Equation (13.3)).
If Ar has full column rank, then Pj1 , ..., Pjk

can be recovered by solving Equa-
tion (13.3), and Cih+1 , ..., Cim

can be recovered by substituting Pj1 , ..., Pjk
into

Equation (13.4).
Whether we can recover the lost data on the failed processes or not directly

depends on whether Ar has full column rank or not. However, Ar in Equa-
tion (13.3) can be any sub-matrix (including minor) of A depending on the
distribution of the fail processors. If any square sub-matrix (including minor)
of A is non-singular and there are no more than m process failed, then Ar

can be guaranteed to have full column rank. Therefore, to be able to recover
from any more than m failures, the checkpoint matrix A has to satisfy any
square sub-matrix (including minor) of A is non-singular.

How can we find such matrices? It is well known that some structured
matrices such as the Vandermonde matrix and Cauchy matrix satisfy any
square sub-matrix (including minor) of the matrix is non-singular.

However, in computer floating-point arithmetic where no computation is
exact due to round-off errors, it is well known [2] that, in solving a linear sys-
tem of equations, a condition number of 10k for the coefficient matrix leads to
a loss of accuracy of about k decimal digits in the solution. Therefore, in order
to get a reasonably accurate recovery, the checkpoint matrix A actually has
to satisfy any square sub-matrix (including minor) of A is well-conditioned.

It is well-known [6] that Gaussian random matrices are well-conditioned.
To estimate how well conditioned Gaussian random matrices are, we have
proved the following theorem:
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THEOREM 13.1
Let Gm×n be an m × n real random matrix whose elements are indepen-

dent and identically distributed standard normal random variables, and let
κ2(Gm×n) be the 2-norm condition number of Gm×n. Then, for any m ≥ 2,
n ≥ 2 and x ≥ |n − m| + 1, κ2(Gm×n) satisfies

P

(
κ2(Gm×n)

n/(|n − m| + 1)
> x

)
<

1√
2π

(
C

x

)|n−m|+1

and
E(lnκ2(Gm×n)) < ln

n

|n − m| + 1
+ 2.258

where 0.245 ≤ c ≤ 2.000 and 5.013 ≤ C ≤ 6.414 are universal positive con-
stants independent of m, n and x.

Due to the length of the proof for Theorem 13.1, we omit it here and refer
interested readers to [3] for the complete proof.

Note that any sub-matrix of a Gaussian random matrix is still a Gaussian
random matrix. Therefore, a Gaussian random matrix would satisfy any sub-
matrix of the matrix is well-conditioned with high probability.

Theorem 13.1 can be used to estimate the accuracy of recovery in the
weighted-checksum scheme. For example, if an application uses 100,000 pro-
cessors to perform computation and 20 processors to perform checkpointing,
then the checkpoint matrix is a 20 by 100,000 Gaussian random matrix. If
10 processors fail concurrently, then the coefficient matrix Ar in the recovery
algorithm is a 20 by 10 Gaussian random matrix. From Theorem 13.1, we can
get

E(log10 κ2(Ar)) < 1.25

and
P (κ2(Ar) > 100) < 3.1 × 10−11

Therefore, on average, we will lose about one decimal digit in the recovered
data and the probability to lose 2 digits is less than 3.1 × 10−11.

13.2.3.2 One-dimensional weighted-checksum scheme

The one-dimensional weighted-checksum scheme works as follows. Assume
the program is running on mn processors. Partition the mn processors into
m groups with n processors in each group. Dedicate another k checksum
processors for each group. At each group, the checkpoints are done using the
basic weighted checksum scheme (see Figure 13.3). This scheme can survive
k processor failures at each group. The advantage of this scheme is that
the checkpoints are localized to a subgroup of processors, so the checkpoint
encoding in each subgroup can be done parallelly. Therefore, compared with
the basic weighted-checksum scheme, the performance of the one-dimensional
weighted-checksum scheme is usually better.
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13.3 A Fault-Survivable Iterative Equation Solver

In this section, we give a detailed presentation on how to incorporate fault
tolerance into applications by using a preconditioned conjugate gradient equa-
tion solver as an example.

13.3.1 Preconditioned conjugate-gradient algorithm

The preconditioned conjugate gradient (PCG) method is the most com-
monly used algorithm to solve the linear system Ax = b when the coefficient
matrix A is sparse and symmetric-positive definite. The method proceeds by
generating vector sequences of iterates (i.e., successive approximations to the
solution), residuals corresponding to the iterates, and search directions used
in updating the iterates and residuals. Although the length of these sequences
can become large, only a small number of vectors needs to be kept in mem-
ory. In every iteration of the method, two inner products are performed in
order to compute update scalars that are defined to make the sequences sat-
isfy certain orthogonality conditions. The pseudo-code for the PCG is given
in Figure 13.4. For more details of the algorithm, we refer the reader to [1].

Compute r(0) = b − Ax(0) for some initial guess x(0)

for i = 1, 2, . . .

solve Mz(i−1) = r(i−1)

ρi−1 = r(i−1)T
z(i−1)

if i = 1

p(1) = z(0)

else
βi−1 = ρi−1/ρi−2

p(i) = z(i−1) + βi−1p
(i−1)

endif

q(i) = Ap(i)

αi = ρi−1/p(i)T
q(i)

x(i) = x(i−1) + αip
(i)

r(i) = r(i−1) − αiq
(i)

check convergence; continue if necessary
end

FIGURE 13.4: Preconditioned conjugate gradient algorithm.
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13.3.2 Incorporating fault tolerance into PCG

We first implemented the parallel non-fault-tolerant PCG. The precondi-
tioner M we use is the diagonal part of the coefficient matrix A. The matrix
A is stored as sparse row compressed format in memory. The PCG code is im-
plemented such that any symmetric, positive definite matrix using the Harwell
Boeing format or the Matrix Market format can be used as a test problem.
One can also choose to generate the test matrices in memory according to
testing requirements.

We then incorporate the basic weighted-checksum scheme into the PCG
code. Assume the PCG code uses n MPI processes to do computation. We
dedicate another m MPI processes to hold the weighted checksums of the
local checkpoint of the n computation processes. The checkpoint matrix we
use is a pseudo-random matrix. Note that the sparse matrix does not change
during computation, therefore, we only need to checkpoint three vectors (i.e.,
the iterate, the residual and the search direction) and two scalars (i.e., the
iteration index and ρ(i−1) in Figure 13.4).

The communicator mode we use is the REBUILD mode. The communica-
tion mode we use is the NOOP/RESET mode. Therefore, when processes
failed, FT-MPI will drop all ongoing messages and re-spawn all failed pro-
cesses without changing the rank of the surviving processes.

An FT-MPI application can detect and handle failure events using two
different methods: either the return code of every MPI function is checked,
or the application makes use of MPI error handlers. The second mode gives
users the possibility to incorporate fault tolerance into applications that call
existing parallel numerical libraries which do not check the return codes of
their MPI calls. In PCG code, we detect and handle failure events by checking
the return code of every MPI function.

The recovery algorithm in PCG makes use of the longjmp function of the
C-standard. In case the return code of an MPI function indicates that an error
has occurred, all surviving processes set their state variable to RECOVER and
jump to the recovery section in the code. The recovery algorithm consists of
the following steps:

1. Re-spawn the failed processes and recover the FT-MPI runtime envi-
ronment by calling a specific, predefined MPI function.

2. Determine how many processes have died and who has died.

3. Recover the lost data from the weighted checksums using the algorithm
described in Section 13.2.

4. Resume the computation.

Another issue is how a process can determine whether it is a survival process
or it is a re-spawned process. FT-MPI offers the user two possibilities to solve
this problem:
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• In the first method, when a process is a replacement for a failed process,
the return value of its MPI Init call will be set to a specific new FT-MPI
constant (MPI INIT RESTARTED PROCS).

• The second possibility is that the application introduces a static vari-
able. By comparing the value of this variable to the value on the other
processes, the application can detect whether every process has been
newly started (in which case all processes will have the pre-initialized
value), or whether a subset of processes has a different value, since each
process modifies the value of this variable after the initial check. This
second approach is somewhat more complex, however, it is fully portable
and can also be used with any other non-fault-tolerant MPI library.

In PCG, each process checks whether it is a re-spawned process or a surviving
process by checking the return code of its MPI Init call.

The relevant section with respect to fault tolerance is shown in the source
code below.

/* Determine who is re-spawned */
rc = MPI_Init( &argc, &argv );
if (rc==MPI_INIT_RESTARTED_NODE) {
/* re-spawned procs initialize */
...

} else {
/* Original procs initialize*/
...

}

/*Failed procs jump to here to recover*/
setjmp( env );

/* Execute recovery if necessary */
if ( state == RECOVER ) {

/*Recover MPI environment*/
newcomm = FT_MPI_CHECK_RECOVER;
MPI_Comm_dup(oldcomm, &newcomm);

/*Recover application data*/
recover_data (A, b, r, p, x, ...);

/*Reset state-variable*/
state = NORMAL;

}

/*Major computation loop*/
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do {

/*Checkpoint every K iterations*/
if ( num_iter % K == 0 )

checkpoint_data(r, p, x, ...);

/*Check the return of communication
calls to detect failure. If failure
occurs, jump to recovery point*/

rc = MPI_Send ( ...)
if ( rc == MPI_ERR_OTHER ) {

state = RECOVER;
longjmp ( env, state );

}

} while ( not converge );

13.4 Experimental Evaluation

In this section, we evaluate both the performance overhead of our fault-
tolerance approach and the numerical impact of our floating-point arithmetic
encoding using the PCG code implemented in the last section.

We performed four sets of experiments to answer the following four ques-
tions:

1. What is the performance of FT-MPI compared with other state-of-the-
art MPI implementations?

2. What is the performance overhead of performing checkpointing?

3. What is the performance overhead of performing recovery?

4. What is the numerical impact of round-off errors in recovery?

For each set of experiments, we test PCG with four different problems. The
size of the problems and the number of computation processors used (not
including checkpoint processors) for each problem are listed in Table 13.1.

All experiments were performed on a cluster of 64 dual-processor 2.4 GHz
AMD Opteron nodes. Each node of the cluster has 2 GB of memory and
runs the Linux operating system. The nodes are connected with a gigabit
Ethernet. The timer we used in all measurements is MPI Wtime.
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TABLE 13.1: Experiment configurations for each
problem

Size of the Problem Num. of Comp. Procs
Prob #1 164,610 15
Prob #2 329,220 30
Prob #3 658,440 60
Prob #4 1,316,880 120

13.4.1 Performance of PCG with different MPI implemen-
tations

The first set of experiments was designed to compare the performance of
different MPI implementations and evaluate the overhead of surviving a single
failure with FT-MPI. We ran PCG with MPICH-1.2.6 [13], MPICH2-0.96,
FT-MPI, FT-MPI with one checkpoint processor and no failure, and FT-MPI
with one checkpoint processor and one failure for 2000 iterations. For PCG
with FT-MPI with checkpoint, we checkpoint every 100 iterations. For PCG
with FT-MPI with recovery, we simulate a processor failure by exiting one
process at the 1000th iteration. The execution times of all tests are reported
in Table 13.2.

TABLE 13.2: PCG execution time (in seconds) with
different MPI implementations

Time Prob#1 Prob#2 Prob#3 Prob#4
MPICH-1.2.6 916.2 1985.3 4006.8 10199.8
MPICH2-0.96 510.9 1119.7 2331.4 7155.6
FT-MPI 480.3 1052.2 2241.8 6606.9
FT-MPI ckpt 482.7 1055.1 2247.5 6614.5
FT-MPI rcvr 485.8 1061.3 2256.0 6634.0

Figure 13.5 compares the execution time of PCG with MPICH-1.2.6, MPICH2-
0.96, FT-MPI, FT-MPI with one checkpoint processor and no failure, and
FT-MPI with one checkpoint processor and one failure for different sizes of
problems. Figure 13.5 indicates that the performance of FT-MPI is slightly
better than MPICH2-0.96. Both FT-MPI and MPICH2-0.96 are much faster
than MPICH-1.2.6. Even with checkpointing and/or recovery, the perfor-
mance of PCG with FT-MPI is still at least comparable to MPICH2-0.96.
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FIGURE 13.5: PCG performance with different MPI implementations.

13.4.2 Performance overhead of taking checkpoint

The purpose of the second set of experiments is to measure the performance
penalty of taking checkpoints to survive general multiple simultaneous proces-
sor failures. There are no processor failures involved in this set of experiments.
At each run, we divided the processors into two classes. The first class of pro-
cessors is dedicated to perform PCG computation work. The second class of
processors are dedicated to performing checkpoint. In Table 13.3 and 13.4,
the first column of the table indicates the number of checkpoint processors
used in each test. If the number of checkpoint processors used in a run is zero,
then there is no checkpoint in this run. For all experiments, we ran PCG for
2000 iterations and performed checkpointing of every 100 iterations.

TABLE 13.3: PCG execution time (in seconds)
with checkpoint

Time Prob #1 Prob #2 Prob #3 Prob #4
0 ckpt 480.3 1052.2 2241.8 6606.9
1 ckpt 482.7 1055.1 2247.5 6614.5
2 ckpt 484.4 1057.9 2250.3 6616.9
3 ckpt 486.5 1059.9 2252.4 6619.7
4 ckpt 488.1 1062.2 2254.7 6622.3
5 ckpt 489.9 1064.3 2256.5 6625.1

Table 13.3 reports the execution time of each test. In order to reduce the
disturbance of the noise of the program execution time to the checkpoint time,
we measure the time used for checkpointing separately for all experiments.
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TABLE 13.4: PCG checkpointing time (in
seconds)

Time Prob #1 Prob #2 Prob #3 Prob #4
1 ckpt 2.6 3.8 5.5 7.8
2 ckpt 4.4 5.8 8.5 10.6
3 ckpt 6.0 7.9 10.2 12.8
4 ckpt 7.9 9.9 12.6 15.0
5 ckpt 9.8 11.9 14.1 16.8

Table 13.4 reports the individual checkpoint time for each experiment. Fig-
ure 13.6 compares the checkpoint overhead (%) of surviving different numbers
of simultaneous processor failures for different sizes of problems.

Table 13.4 indicates, as the number of checkpoint processors increases, the
time for checkpointing in each test problem also increases. The increase in
time for each additional checkpoint processor is approximately the same for
each test problem. However, the increase of the time for each additional
checkpoint processor is smaller than the time for using only one checkpoint
processor. This is because from no checkpoint to checkpointing with one
checkpoint processor, PCG has to first set up the checkpoint environment
and then do one encoding. However, from checkpointing with k (where k > 0)
processors to checkpointing with k +1 processors, the only additional work is
performing one more encoding.

FIGURE 13.6: PCG checkpoint overhead.

Note that we are performing checkpointing every 100 iterations and run
PCG for 2000 iterations, therefore, from Table 13.3, we can calculate the
checkpoint interval for each test. Our checkpoint interval ranges from 25
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seconds (Prob #1) to 330 seconds (Prob #4). In practice, there is an optimal
checkpoint interval which depends on the failure rate, the time cost of each
checkpoint and the time cost of each recovery. A great deal of literature about
the optimal checkpoint interval [12, 22, 25] is available. We will not address
this issue further here.

From Figure 13.6, we can see, even if we checkpoint every 25 seconds (Prob
#1), the performance overhead of checkpointing to survive five simultaneous
processor failures is still within 2% of the original program execution time,
which actually falls into the noise margin of the program execution time. If
we checkpoint every 5.5 minutes (Prob #4) and assume a processor fails one
after another (one checkpoint processor case), then the overhead is only 0.1%.

13.4.3 Performance overhead of performing recovery

The third set of experiments is designed to measure the performance over-
head to perform recovery. All experiment configurations are the same as in
the previous section except that we simulate a failure of k (k equals the num-
ber of checkpoint processors in the run) processors by exiting k processes at
the 1000th iteration in each run.

Table 13.5 reports the execution time of PCG with recovery. In order to
reduce the disturbance of the noise of the program execution time to the
recovery time, we measure the time used for recovery separately for all exper-
iments. Table 13.6 reports the recovery time in each experiment. Figure 13.7
compares the recovery overhead (%) from different numbers of simultaneous
processor failures for different sizes of problems.

TABLE 13.5: PCG execution time (in seconds)
with recovery

Time Prob #1 Prob #2 Prob #3 Prob #4
0 proc 480.3 1052.2 2241.8 6606.9
1 proc 485.8 1061.3 2256.0 6634.0
2 proc 488.1 1063.6 2259.7 6633.5
3 proc 490.0 1066.1 2262.1 6636.3
4 proc 492.6 1068.8 2265.4 6638.2
5 proc 494.9 1070.7 2267.5 6639.7

From Table 13.6, we can see that the recovery time increases approximately
linearly as the number of failed processors increases. However, the recovery
time for a failure of one processor is much longer than the increase of the
recovery time from a failure of k (where k > 0) processors to a failure of
k + 1 processors. This is because, from no failure to a failure with one failed
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TABLE 13.6: PCG recovery time (in seconds)
Time Prob #1 Prob #2 Prob #3 Prob #4
1 proc 3.2 5.0 8.7 18.2
2 proc 3.7 5.5 9.2 18.8
3 proc 4.0 6.0 9.8 20.0
4 proc 4.5 6.5 10.4 20.9
5 proc 4.8 7.0 11.1 21.5

processor, the additional work the PCG has to perform includes first setting
up the recovery environment and then recovering data. However, from a
failure with k (where k > 0) processors to a failure with k + 1 processors, the
only additional work is to recover data for an additional processor.

From Figure 13.7, we can see that the overheads for recovery in all tests
are within 1% of the program execution time, which is again within the noise
margin of the program execution time.

13.4.4 Numerical impact of round-off errors in recovery

FIGURE 13.7: PCG recovery overhead.

As discussed in Section 13.2, our diskless-checkpointing schemes are based
on floating-point arithmetic encodings, therefore introducing round-off errors
into the checkpointing system. The experiments in this subsection are de-
signed to measure the numerical impact of the round-off errors in our check-
pointing system. All experiment configurations are the same as in the previ-
ous section except that we report the norm of the residual at the end of each
computation.
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Note that if no failures occur, the computation proceeds with the same com-
putational data as without checkpoint. Therefore, the computational results
are affected only when there is a recovery in the computation. Table 13.7
reports the norm of the residual at the end of each computation when there
are 0, 1, 2, 3, 4, and 5 simultaneous process failures.

TABLE 13.7: Numerical impact of round-off
errors in PCG recovery

Residual Prob #1 Prob #2 Prob #3 Prob #4
0 proc 3.050e-6 2.696e-6 3.071e-6 3.944e-6
1 proc 2.711e-6 4.500e-6 3.362e-6 4.472e-6
2 proc 2.973e-6 3.088e-6 2.731e-6 2.767e-6
3 proc 3.036e-6 3.213e-6 2.864e-6 3.585e-6
4 proc 3.438e-6 4.970e-6 2.732e-6 4.002e-6
5 proc 3.035e-6 4.082e-6 2.704e-6 4.238e-6

From Table 13.7, we can see that the norm of the residuals is different
for different numbers of simultaneous process failures. This is because, after
recovery, due to the impact of round-off errors in the recovery algorithm, the
PCG computations are performed based on different recovered data. However,
Table 13.7 also indicates that the residuals with recovery do not have much
difference from the residuals without recovery.

13.5 Discussion

The size of the checkpoint affects the performance of any checkpointing
scheme. The larger the checkpoint size is, the higher the diskless-checkpoint
overhead would be. In the PCG example, we only need to checkpoint three
vectors and two scalars periodically, therefore the performance overhead is
very low.

Diskless checkpointing is good for applications that modify a small amount
of memory between checkpoints. There are many such applications in the
high-performance computing field. For example, in typical iterative methods
for sparse matrix computation, the sparse matrix is often not modified during
the program execution, only some vectors and scalars are modified between
checkpoints. For this type of application, the overhead for surviving a small
number of processor failures is very low.
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Even for applications which modify a relatively large amount of memory be-
tween two checkpoints, decent performance results to survive single processor
failure were still reported in [15].

The basic weighted-checksum scheme implemented in the PCG example has
a higher performance overhead than other schemes discussed in Section 13.2.
When an application is executed on a large number of processors, to sur-
vive general multiple simultaneous processor failures, the one-dimensional
weighted-checksum scheme will achieve a much lower performance overhead
than the basic weighted-checksum scheme. If processors fail one after an-
other (i.e., no multiple simultaneous processor failures), the neighbor-based
schemes can achieve even lower performance overhead. It was shown in [5]
that neighbor-based checkpointing was an order of magnitude faster than
parity-based checkpointing, but takes twice as much storage overhead.

Diskless checkpointing could not survive a failure of all processors. Also, to
survive a failure occurring during checkpoint or recovery, the storage overhead
would double. If an application needs to tolerate these types of failures, a
two-level recovery scheme [24] which uses both diskless checkpointing and
stable-storage-based checkpointing is a good choice.

Another drawback of our fault-tolerance approach is that it requires the
programmer to be involved in the fault-tolerance. However, if the fault toler-
ance schemes are implemented into numerical software such as LFC [4], then
transparent fault tolerance can also be achieved for programmers using these
software tools.

13.6 Conclusion and Future Work

We have presented how to build fault-survivable high-performance com-
puting applications with FT-MPI using diskless checkpointing. We have in-
troduced floating-point arithmetic encodings into diskless checkpointing and
discussed several checkpoint-encoding strategies with detail. We have also
implemented a fault-survivable example application (PCG) which can sur-
vive general multiple simultaneous processor failures. Experimental results
show that FT-MPI is at least comparable to other state-of-the-art MPI im-
plementations with respect to performance and can support fault-survivable
MPI applications at the same time. Experimental results further demonstrate
that our fault-tolerance approach can survive a small number of simultaneous
processor failures with low performance overhead and little numerical impact.

For the future, we will evaluate our fault-tolerance approach on systems
with larger numbers of processors. We would also like to evaluate our fault-
tolerance approach with more applications and more diskless-checkpointing
schemes.
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14.1 Introduction — the Road to TSUBAME

It has been 12 years since Tom Sterling and Don Becker proposed the
“Beowulf”-style commodity PC cluster in 1994 [12]. The performance of the
first cluster ever built (called “Wigraf”) was a mere few tens of megaflops
(MFLOPS), but enormous progress has been made, with the fastest systems
reaching 10 teraflops (TFLOPS) or beyond. However, compared to special-
ized and dedicated supercomputers such as the Earth Simulator [3], it was
unknown then whether scaling of 10s to 100s of thousands of processors with
commodity PC clusters would be possible in order to attain 100s of TFLOPS
and even petaflops (PFLOPS), not just in terms of peak performance but
actual stability in operation as well as wide applicability.

TSUBAME (Tokyo-Tech Supercomputer and Ubiquitously Accessible Mass-
storage Environment) is a new supercomputer cluster installed at Tokyo Insti-
tute of Technology in Tokyo, Japan in April 2006, boasting over 85 TFLOPS
of peak compute power with acceleration, 21.7 terabytes of memory, 1.6
petabytes of online disk storage, and “Fat Node” as well as fast parallel in-
terconnect — architectural principles based on traditional supercomputers.
TSUBAME became the fastest and largest supercomputer in Asia in terms
of peak performance, memory and storage capacity, etc., when it became
operational in April 2006. At the same time, being PC-architecture-based,
TSUBAME can also be regarded as a large PC cluster server, being able to
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provide much broader services than traditional supercomputers. As a result,
TSUBAME allows coexistence of so-called capability computing and capac-
ity computing, in that it satisfies both requirements at the same time. This
is in contrast to previous large-scale supercomputers and/or servers where
satisfaction of either of the properties was sacrificed to the other. We term
this architectural and operational property of TSUBAME as “everybody’s
supercomputer,” as opposed to traditional supercomputers with very limited
numbers of users, thus making their financial justifications increasingly diffi-
cult.

Particularly in Japan, supercomputers have not followed the trend of ex-
plosive PC and Internet expansion and growth into an industrial ecosystem of
over 200 billion dollars annually, but rather, have confined themselves to a nar-
row market marred by legacy software and hardware. Such a trend has been
continuing in most of the supercomputer centers in Japan, including those in
the universities, whose missions are to serve a wide range of users.. This is
causing a continuous decrease in the number of users, as the users observe
decreasing benefit in overcoming the high hurdle of leaving their familiar PC-
based notebook and workstation environments to conduct their science and
engineering. This effect is not only limited to low-end users, but rather has
the longer-ranging effect that the incubation of next generation high-end users
will be on the decrease. In particular, users observe the following technical
hindrances on “attempting” to use a supercomputer for the first time:

• Divergent operating system (OS) and middleware platforms from famil-
iar ones such as Linux, Windows, etc.

• Lack of continuity in familiar services, such as file sharing, single sign-on
identity management

• Missing independent software vendor (ISV) as well as open source tools
and applications they are familiar with in their own environment

• Shortcomings in the programming environment especially modern inte-
grated visual source management, debugging such as Visual Studio

Faced with such a situation, it was decided at Tokyo Institute of Technol-
ogy that we would depart from such a legacy, and design a supercomputer
for everyone on campus, or “everybody’s supercomputer”, serving as a core
of Internet-style IT consolidation infrastructure to serve a variety of needs
within the organization, linking to and hosting the IT services from research,
education, computing, archival, as well as administrative departments. This
allows all IT users to be easily cognizant of TSUBAME (Figure 14.1), in that
it is an infrastructure they will be in touch with almost every day.

The design challenge, then, was how to design a supercomputer that would
scale to 10,000 CPUs and 100 TFLOPS with room for growth to a petaflop
machine, while embodying the flexibility to be a multipurpose server. The
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FIGURE 14.1: The TSUBAME 100 TeraScale supercomputer as installed at
Tokyo Institute of Technology, Tokyo, Japan in the Spring of 2006.

purpose of this article is to provide the architectural as well as operational
overview of TSUBAME as “everybody’s supercomputer,” its upgrade growth
path to a petaflop machine, as well as looking forward to the successor ma-
chine, TSUBAME 2.0, in the 2010-11 time frame.

14.2 Architectural Requirements of TSUBAME

In the initial design stages of TSUBAME, the following requirements were
identified as constituting “everybody’s supercomputer”:

• Become the top-performing machine at the time of its installation as of
March-April 2006, in achieving (1) over 40 TFLOPS of total (peak) com-
pute power and a large memory, (2) over 1 petabyte of online secondary
storage capacity, (3) Interconnection by a high bandwidth network that
provide as terabits of aggregate performance, achieved through high-end
but commodity technologies.
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• Provide ubiquitous access as an entity of a (single sign-on) grid in that
all the above mentioned resources be accessible from both internal and
external virtual organizations, including not only academic research in-
stitutions but also private corporations, in a seamless and easy fashion.

• Provide various (web-based and other) services not only for expert, high-
capability users, but also for so-called “light” users to incubate new users
and stem growth of overall supercomputing needs

• Design an architecture with high-cost performance, low-power consump-
tion, and high dependability/stability/reliability, facilitating recognition
of Tokyo Tech’s GSIC (Global Scientific Information and Computing
Center) as one of the leading supercomputer centers in the world.

In particular, the following technical requirements were identified for com-
pute nodes and the machine interconnect:

1. The CPU in the compute node would be a high-performance 64-bit
processor with x86 software compatibility. For modern supercomputing,
high 64-bit floating points as well as integer performance are crucial; at
the same time, generality of the architecture for hosting a variety of
operating systems, middleware, as well as applications is also essential.
Modern x86 processors provide such benefits as well as other favorable
properties such as low cost and low power. To be more specific:

• high floating point performance with multicore CPUs to solve the
cost, power consumption, and stability issues, with a lower parts
count

• general purpose x86 processor to utilize leading-edge process tech-
nology to attain high performance and low power consumption

• native x86 CPU for efficient execution of various OS, middleware,
and applications

2. Also, based on our 20-year supercomputing experience at the GSIC cen-
ter, the individual compute node architecture should be shared memory
and facilitate many CPUs and abundant memory, i.e., “Fat Node” ar-
chitecture. Many traditional supercomputers typically embody shared
memory nodes of 8–32 CPUs, and memory capacity of several 10s of
gigabytes per node, or the so-called “Fat Node” architecture. These are
due to the following reasons:

• Ease of large-scale, parallel programming in a shared memory en-
vironment and a programming model such as OpenMP

• In-core execution of data-intensive and search applications such as
databases and large hash tables for genomics research
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• Lowering of node counts for improving on various system metrics
such as low power, better reliability (due to a lower parts count),
simplification of the overall interconnect topologies for high band-
width, etc.

3. The interconnect itself must satisfy fairly standard desirable properties
such as scalability, high bandwidth, low latency, high-cost performance,
high reliability, and sufficient reachability to span multiple floors. In
addition, the following requirements were identified:

• Future upgradability in performance and scaling: As compute nodes
and storage could be upgraded in the near future, the upgrade of
the network itself with relative ease and low expense were required.

• Compliance to standards and general connectivity: Connectivity
to both our multi-gigabit campus network (Super TITANET) as
well as to the outside world (10Gbps and beyond to the academic
backbone SuperSINET and JGN — Japan Gigabit Network) were
deemed essential for TSUBAME to serve as a core for future na-
tional research grid and other network-based infrastructures.

• Multi-protocol support including TCP/IP: In order to attain per-
formance and reliability at lower acquisition and maintenance cost,
the TSUBAME network was designed to accommodate a variety
of high-performance TCP/IP and UDP/IP based protocols, co-
existing with more propriety high-performance protocols on the
same wire, especially the storage protocols which have been SAN-
oriented for traditional clusters. Such consolidation of compute,
storage, and other traffic was being practiced in some supercom-
puters already (such as the Cray XT3); the added value in TSUB-
AME would be the generality, flexibility and the reliability offered
by IP-protocol families. Indeed, it has been our extensive experi-
ence that disk I/O traffic is commonly “bursty,” but overall minus-
cule compared to MPI traffic, so it makes sense for I/O to utilize
the high-performance network for message passing instead of facil-
itating its own network.

• Fat switches allowing for indirect networks with low cable count:
Employing Fat nodes allows for low overall node count but will
mandate multilane network configuration to attain the necessary
high bandwidth. As such, using smaller switches (e.g., 24–96 ports)
would require a switch array consisting of 10s to 100s of switches
and the resulting inter-switch cabling, resulting in an undesirable
increase in floor space, power, and most importantly, high cable
count and high switch administrative overhead. We required a
network fabric which would allow for 100s of ports at low cost,
which would reduce the overall switch and cable count, and allow
symmetrical, indirect networks such as fat trees and CLOS.
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4. In order to support a much wider range of users, support for powerful
and flexible storage was considered the most important technical at-
tribute of TSUBAME. Indeed, in traditional Japanese supercomputer
centers, storage, in particular its capacity sadly was often neglected and
insufficient. Based on various operational and archival storage systems
at the Earth Simulator Center as well as at the San Diego Supercom-
puter Center, one petabyte was deemed as the minimal storage capacity
requirement. Also, the required bandwidth was estimated to be approx-
imately 40–50Gbytes/s. In terms of reliability, since the overall system
lifetime would be planned as 4 years, high reliability up to that point
would be necessary, but would be acceptable if it could degrade signif-
icantly beyond that period. In addition, the storage system had to be
very cost effective, with very low cost being added over the cost of the
bare drive itself. Finally, low power consumption and a small footprint
were deemed important operationally. Overall, the goal was stated as a
combination of all the properties.

The problem was that, many of the standard, SAN-based commod-
ity or enterprise-class storage systems did not necessarily realize these
properties collectively — either they were low capacity, expensive, slow,
too big and/or power consuming, unreliable, or a combination. In-
stead, we opted to employ a smaller number of large-capacity/high-
bandwidth/high-performance networkd-attached storage (NAS) systems,
and attach directly to the high-performance interconnect as mentioned
above. In particular, for 10Gbps-class networks such as 10GbE or In-
finiband, the internal (RAID-ed) disk array must exhibit over 1GB/s
of streaming I/O bandwidth, which would surmount to nearly 50 chan-
nels of SATA disks. The problem was, most NAS systems only could
accommodate 14 disks per each NAS node, far below the requirement
to sustain the network bandwidth. In the next section we demonstrate
how our infrastructure solves this problem.

5. Acceleration via low power/high density accelerator: The performance
of current generations of x86 processors is now on a par with the fastest
RISC processors in application-level performance metrics, for instance,
as measured by the SpecFP2000 benchmark. Still, for the 100 TFLOPS
of the current day (circa Spring 2006 when TSUABAME was to be
installed) and for future PFLOPS by the next generation TSUBAME
2.0, the power projections with standard processors will require 2–3
megawatts (MW) of electrical power including cooling, far exceeding
the capacity provided by the building. In fact, a post-installation stress
test of TSUBAME revealed that the maximum power consumption of
a single node would exceed 1300W, and to achieve a near 100 TFLOPS
performance would have required over 1,000 nodes. Adding the power
for storage, networks and cooling, the total requirement would have
easily exceeded 2MW.
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In order to “off-load” some of the kernel workloads in a power-efficient
manner, we have decided to invest in SIMD-vector style commodity ac-
celeration. Acceleration is now regarded as one of the key technologies
for future supercomputing for achieving dramatic improvements in the
FLOPS/power ratio, and have seen successful implementations in lim-
ited application in systems such as GRAPE [4]. However, in order for
the accelerator to be much more applicable to wide-ranging applications,
we have imposed the following requirements:

(a) It will accelerate mainstream numerical libraries such as basic lin-
ear algebra (BLA) and fast Fourier transform (FFT) in double
precision IEE754 format, transparently from the users by simple
relinking of the library

(b) It will effectively accelerate popular ISV and public-domain appli-
cations such as Matlab and Amber.

(c) For advanced users, it will allow them to program with program-
ming language and/or software development kit (SDK) support of
SIMD-vector acceleration.

The usages 1. and 2. above will benefit users immediately, while 3.
was deemed as a longer-term goal. In fact, because the accelerated
computations are fundamentally difficult to scale for tightly coupled
applications, due to their greater computation to communication ratios,
it would be better to use conventional CPUs for those purposes; on the
other hand, for simple, non-scaling applications, the use of conventional
CPUs would be a waste in terms of power, cost, etc. Although we are
undertaking research to allow effective, scalable, and combined use of
conventional and accelerated CPUs in our research [2], in production
for the current moment we identify the largest benefit of acceleration
as having the simple kernels to be off-loaded to be “out of their way”
so as to free the general-purpose CPUs to be applied to more complex,
harder scaling problems.

14.3 The Hatching of TSUBAME

Given the requirements thus presented, TSUBAME was designed, procured,
and installed at the end of March 2006. The contract was awarded to NEC,
who with Sun Microsystems jointly built and installed the entire machine, and
also provide on-site engineering to operate the machine. Other commercial
partners, such as AMD (Opteron CPUs), Voltaire (Infiniband), ClearSpeed
(accelerator), CFS (LUSTRE parallel filesystem [1]), Novell (SUSE Linux),
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FIGURE 14.2: Architectural overview of TSUBAME.

provided their own products and expertise as building blocks. It was installed
in just three weeks, and when its operation began on April 3, 2006, it became
the largest academic machine in the world to be hosted by a university.

The overall architecture of TSUBAME is shown in Figure 14.2, and is de-
scribed below:

• Total 5,120 socket/10,480 CPU dual core opterons running at 2.4GHz
(some nodes are 2.6GHz).

• The 8 CPU sockets/16 CPU cores interconnected with Coherent Hy-
perTransport provide fat-node SMP shared memory characteristics per
node allowing packaging in a 4U rack-mount server package. The re-
sulting 655 Sun X4600 nodes constitute approximately 50.4 TFLOPS
worth of computing power.

• For memory, most nodes are 32GBytes/node, with some nodes being
64GBytes and 128GBytes, totaling 21.7 terabytes, This is more than
twice the memory capacity of the Earth Simulator at 10 terabytes, al-
lowing executions of large memory supercomputing applications to be
readily ported to TSUBAME.
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FIGURE 14.3: Tsubame’s network — an Infiniband-based interconnect that
consolidates both parallel computing and storage networks

• As for the interconnect (Figure 14.3), we host dual HCA lane Infiniband
per each node, providing 20Gbps bandwidth per node. (Storage nodes
are single lane.) We employed the largest switch available at the time,
which was the Voltaire ISR 9288 with 288 ports Infiniband 4x ports.
The resulting switching fabric uses just 8 switches, and is configured
in a restricted fat-tree topology, where we have 1,352 end points, each
edge switch hosting 120 x 2 node connections, and 24 x 2 links to the
upper-level core switch. The resulting edge bandwidth is approximately
13.1 terabits/sec, whereas the bisection bandwidth is approximately 2.88
terabits/sec, resulting in approximately a 1:5 ratio. Users enjoy full bi-
section up to 1920+ processors, and the bandwidth beyond is restricted
but fine for most cases in production so far.

• TSUBAME’s storage consists of two subsystems, one being a fleet of
Sun Microsystems x4500, which effectively is a large 4U NAS storage
node with 48 500GB SATA HDDs, totaling 24 terabytes of raw stor-
age capacity, controlled by dual-socket, dual-core AMD Opterons. The
4 HyperTransport channels available for I/O are bridged to 48 SATA
links, providing substantial internal bandwidth. TSUBAME initially
started with 42 nodes/1 petabyte, and has been expanded to 62 units,
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or approximately 1.5 petabytes of raw storage. Each node is inter-
connected to the unified Infiniband fabric in the same fashion as the
compute nodes, providing measured Livermore IOR benchmark speed
of up to approximately 1GB/s, or about 60GB/s, combined. The other
storage subsystem is the NEC’s iStore S1800AT storage system that
provides hardware RAID 6 capabilities and controller redundancy for
high reliability, and is primarily used for the user home directory.

TSUBAME’s flexibility in storage lies in the massive storage bandwidth
over Infiniband, as well as the flexibility of x4500’s ability to host mul-
tiple storage services and file-system types, thanks to its large NAS
and fast Infiniband I/O structure. The storage protocols and services
supported on TSUBAME are as follows:

– The LUSTRE parallel filesystem [1], which provides very fast par-
allel I/O primarily for work and scratch directories.

– NFS, for home directories (both on NEC and Sun x4500 systems,
the latter over the local ZFS file system on Solaris)

– WebDAV, for general remote access from various end terminals
from both inside and outside campus

– CIF, for supporting Microsoft Windows client access

– Tape emulation, for disk-to-disk backup

– We also facilitate running storage-centric services, such as databases,
directly on the Sun x4500

Each x4500 is configured specifically to provide (possibly combinations
of) the above services. The resulting storage system exhibits very high
capacity, very high performance, is highly reliable with considerable
flexibility and variety in the services it provides on its own.

Such a storage system contributes significantly to providing motivating
experiences such that users prefer using TSUBAME over using their
dedicated workstations and clusters. We have found that many appli-
cations could be accelerated by an order of magnitude compared to the
user code running on their own machines due to dramatic storage band-
width improvements — for example, some Gaussian 03 runs exhibited
a 10–30 times speedup due to increased storage bandwidth along with
shared memory parallelization.

• As for the accelerator on each node, we facilitate the ClearSpeed Ad-
vanced Accelerator Board by ClearSpeed Inc. Each accelerator board
plugs into the PCI-X slot of TSUBAME, and sports two CSX600 chips,
each of which are SIMD-vector processors with 96 processing elements,
in addition to the onboard dedicated 1 gigabyte of external memory.
The chip and the board exhibit an extremely high FLOPS/power ratio,
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each chip running at a maximum 250MHz, or the entire board embody-
ing theoretical peak performance of 96 gigaflops (GFLOPS), while only
consuming approximately 25 watts of power, or approximately 9KW of
power, less than 7 TSUBAME nodes. Of the 655 TSUBAME nodes,
360 nodes have one ClearSpeed board each, while the remaining ones
are to be added in the future.

The usage mode of ClearSpeed has been largely that of scenario 1. and
2. as explained in the previous section, predominantly off-loading ker-
nel library workloads as well as some existing applications with embed-
ded ClearSpeed support. We have, however, been conducting research
so that high-scaling applications could also utilize the accelerators in
a combined fashion with the general-purpose processors (Opterons on
TSUBAME). The technical difficulty is that TSUBAME is vastly het-
erogeneous, not only within the node (intra-node heterogeneity) with a
Opterons–ClearSpeed combination, but also between the nodes (inter-
node heterogeneity). By devising methodologies and algorithms for cop-
ing with such heterogeneity, we have been able to successfully modify
and extend HPL (high-performance Linpack) [10], so as to increase the
full-machine Linpack performance from 37.18 TFLOPS in June 2006,
when we only used Opterons, to 47.38 TFLOPS in November 2006 with
their combined use, or about a 25% increase in performance as we ob-
serve in Figure 14.4. With expected kernel BLAS performance on the
ClearSpeed with the new version of the numerical libraries, we expect
additional an performance increase to 50+ TFLOPS in Spring 2007
without changes in the hardware. We are also working to accelerate
more practical applications, such as Amber and Gaussian.

Overall, TSUBAME’s installation space is approximately 350m2 including
the service area, out of the available 600m2 available area in our computer
room. There are approximately 80 compute/storage/network racks, as well
as 32 CRC units for cooling. The total weight of TSUBAME exceeds 60 tons,
requiring minor building reinforcements as the current building was designed
for systems of a much smaller scale. TSUBAME occupies three rooms, where
room-to-room Infiniband connections are achieved via optical fiber connection,
whereas CX4 copper cables are used within a room.

The total power consumption of TSUBAME, including cooling, is about 1.2
megawatts peak. By all means we have and still continue to conduct research
in power efficient computing and achieving cooling efficiency. For example,
one challenging factor in the design was high density and cooling efficiently.
Although TSUBAME is fairly power efficient, sometimes by several times
compared to supercomputers and clusters of similar scale, nevertheless the
overall heat density around the rack area was computed to be approximately
700watts/ft2, which is several times beyond the normal cooling capability of
large commercial data centers, that are usually spec’d at 100watts/ft2. In or-
der to effectively cool the machine while achieving premium power efficiency,
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FIGURE 14.4: TSUBAME Linpack performance in November 2006 — no. 1
in Asia-Pacific.

we custom-designed the cooling configuration instead of retrofitting existing
cooling systems, and with various innovative endeavors, some as exemplified
in [9] and some our own, we were able to perform extremely efficient cooling
(Figures 14.5 and 14.6), with additional capacity to spare for future machines.
We are also conducting research into better use of various power-saving tech-
nologies, such as DVS (dynamic voltage scaling) on Opterons, detecting idle
CPUs and putting them in a low state to save power, for example, without
sacrificing performance.

These are plans to update TSUBAME’s current OS Linux SUSE 9 to fu-
ture versions of SUSE when they are judged to be stable. At the lowest-level
batch scheduling we customize the Sun GridEngine (SGE) to add various
applications support, accommodate our new innovative scheduling and ac-
counting policies, etc. We have also started accommodating portal and other
services, and integrate with the campus-wide PKI infrastructure that had
been launched at the same time as TSUBAME. In the summer of 2007, we
will be testdeploying the beta2 version of NAREGI grid middleware which is
being developed at the National Institute of Informatics as the core middle-
ware of the Japanese national research grid. We are also investigating the
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FIGURE 14.5: TSUBAME cooling and airflow.

feasibility of hosting a virtual private cluster environment [7] to accommo-
date customized user configurations as well as other operating systems such
as Solaris and Windows CCS (compute cluster system) as requested by the
user.

14.4 The Flight of TSUBAME — Performance, and Its
Operations So That Everybody Supercomputes

TSUBAME became the fastest supercomputer in the Asia Pacific area and
seventh in the world in June 2006 according to the Top500 [5] list at 38.18
TFLOPS, besting the Earth Simulator [3] that had held its crown since 2002;
the performance is currently 47.38 TFLOPS with expected upcoming im-
provements as mentioned earlier. In production operation, users regularly
launch MPI jobs beyond 500 CPUs up to approximately 1000 CPUs without
any manual allocation provisioning from the operation. Also, there have been
considerable large-scale parameter-sweep runs of low-parallel codes, with users
submitting up to 20,000 jobs simultaneously. As such, many users and their
applications have experienced a qualitative change in computing capability
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FIGURE 14.6: TSUBAME cooling and airflow photographs — the woman’s
hair is blown vigorously with very strong pressurized cooling air from the
ceiling plenum above.

by using TSUBAME, well exceeding our expectations.
At the same time, TSUBAME is “everybody’s supercomputer” as seen in

Figure 14.7, in that it gives a low usage account to everyone who is a mem-
ber of Tokyo Tech, as well as its research partners. In fact, we are utilizing
TSUBAME as the “core” of overall IT consolidation of the entire institution,
as is typically done in commercial enterprises, but at a much lower scale. This
serves three purposes, one is the vast cost savings achieved by the consolida-
tion, not just in terms of hardware acquisition costs, but also maintenance and
other operational costs — the standard motivation for enterprise IT consolida-
tion, as seen in Figure 14.9. The second is to make the students and staff “feel
at home” in everyday usage of supercomputers, so that there will be increased
adaption and usage to advance their research. Finally, such consolidation al-
lows tighter coupling of Web and other remote services, both mutually and
with back-end supercomputing services, and moreover, enjoyment of the mas-
sive processing and data capability of TSUBAME. We believe such a model
will greatly help to incubate the new generation of users who are accustomed
to Internet-age computing, where services are linked and browser-based inter-
active UI is the norm, instead of cryptic batch scheduling and textual output.
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FIGURE 14.7: TSUBAME as “everybody’s supercomputer”.

To be more concrete, as of this writing the above-mentioned campus au-
thentication/authorization system is partially hosted by TSUBAME, as well
as other services such as e-mail and Microsoft Windows terminal server for
university administration usage. Virtual machine hosting is employed for
smaller-scale services, such as the campus information system and educational
OCW (Open CourseWare). The next generation library system is planned to
be hosted on TSUBAME as well. Hosting of such services only requires a small
portion — approximately1–2% — of TSUBAME’s entire capability. Given the
small sacrifice and the resulting great benefit we are experiencing, we believe
that synergy of supercomputers with IT infrastructure could become predom-
inant in the future, instead of a massive machine serving only 10–20 users.
Such is possible because the building blocks, both hardware and middleware,
are now part of the larger IT ecosystem.

One issue is how to make the traditional high-end usage and such everyday,
low-demanding usage coexist. In particular, what is the scheduling and bro-
kering policy of resources, which will be ultimately limited despite the massive
size of TSUBAME? Our approach is to conduct such resource allocation so
that it will have social metaphors with which both novice and expert users
will be familiar. We also provide a disciplined “market economy”-based ap-
proach, in that as much open information as possible will be provided, along
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FIGURE 14.8: User monitoring tools on TSUBAME — University of Califor-
nia, Berkeley, Ganglia [11] and University of California, Santa Barbara, batch
queue predictor [8] are available as well as other tools to give all users fair
access to as much machine information as possible, so that users can make
their own responsible judgments of resource requests and usages.

with a guarantee of a level playing field, so that individual users or groups
can make their own intelligent decisions, sometimes winning and sometimes
losing out, and will ultimately be satisfied as we provide a very fair and level
playing field for everyone. Such a structure is (deliberately) quite synonymous
to the historically proven market economy, and ultimately the entire “social
benefit” will be optimized in the global view, despite small wins and losses at
a microscopic level.

More concretely, resource allocation on TSUBAME is currently categorized
into three classes of services at different QoS SLA (service level agreements):

1. Small Usage (Free) — This is the default account provided on initial
signup. Up to 16 CPUs could be used at any one time, with limited
storage. The overall amount of CPUs and storage allocated to the ser-
vice are small, and there is no guarantee on job execution except on an
first-come, first-served (FCFS) basis.

2. Best Effort — Users are charged allocation fees per “unit” of usage, each



The Road to TSUBAME and Beyond 305

FIGURE 14.9: TSUBAME as the core of university-wide IT consolidation,
offering not only supercomputing services but hosting many others.

unit corresponding to a maximum flat fee usage of a certain number of
CPUs per month (currently 64 CPUs). Users could “purchase” multiple
units per month to increase the number of CPUs. There is no service
guarantee — nodes could be shared with other users, and a job may be
killed at any time (although this is rarely done). The allocation fee the
user is charged is flat rate per unit, and very inexpensive.

3. Service Level Guarantee — Users are provided a much higher quality
of service, such as exclusive usage of allocated nodes, favored schedul-
ing and backfill for large jobs. The users in turn are charged higher
allocation fees, and for per time metered usage.

In order to allow users to individually make strategic decisions on their own,
we provide as much information as possible, even at which has been considered
“private” to centers in the past. We provide not only past and current dynamic
system status with various monitoring tools such as Ganglia [11], but also
provide benchmark numbers of various applications, every instance of past
failures and service records, as well as future forecasts such as the batch queue
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predictor in collaboration with a group at UCSB [8]. Finally, we declare that
scheduling policies conform to the above without any backdoor policies or
special hidden preferences that may compromise their decisions — this is a
very important principle, to win trust so that users are motivated to make
efforts to optimize their usage. Although this might be obvious if one would
consider stock markets where unfair “insider” treatments are unlawful, one
would be surprised to learn that such impromptu delegation of privileges is
quite a common practice for many centers. This might work if the user base is
small, but will not work for serving a large population with competing goals
and needs.

14.5 Conclusion and into the Future—TSUBAME 2.0

TSUBAME demonstrated that a 100 TFLOPS-scale supercomputer that
accommodates both high-end users and a widespread user base in terms of
organizational IT consolidation can be realized to the scale, with appropriate
selection and combinations of commodity building blocks, advanced research
into various aspects of the machine, as well as novel operational policies. The
philosophical underpinning of TSUBAME is “everybody’s supercomputer,”
in that it not only accommodates the ever-increasing needs of high-end su-
percomputer users, but also establishes a widespread user base, facilitating
a “positive cycle” of a growing user base, in user incubation, training, and
adoption, for these uses to become experts in the future.

TSUBAME’s lifetime was initially designed to be 4 years, until Spring of
2010. This could be extended up to a year with interim upgrades, such as an
upgrade to future quad-core processors or beyond (Figure 14.10). However,
eventually the lifetime will expire, and we are already beginning plans for
designing “TSUBAME 2.0.” But what are the requirements, the constraints,
and the resulting architectural principles necessary in next-generation super-
computers? One thing clear is that the success of “everybody’s supercom-
puter” should be continued; however, simply waiting for processor improve-
ments end relying on CPU vendors would not be sufficient to meet the growing
demands, as a result of the success of “everybody’s supercomputer,” in the
growth of the supercomputing community itself, not just individual needs.

Although we are still conducting considerable research into the next gener-
ation of TSUBAME 2.0, which will become a petaScale machine, one tough
requirement is not to increase the power or the footprint requirement of the
current machine. Our current estimate would only allow us to scale to at
most a petaflop, perhaps less. TSUBAME’s current MFLOPS/watt ratio is
approximately 100MFLOPS/watt; This is about half of IBM Blue Gene/L,
and is vastly superior to similar machines on the Top500. Still, we must
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FIGURE 14.10: Future planned timeline of TSUBAME peformance, until and
beyond TSUBAME 2.0 in 2010–2011.

improve this by a factor of 10 for a petaflop machine, to 1 GFLOPS/watt, in-
cluding memory, network, and storage, marred by various power losses in the
system including power supply and transmission. A multi-petascale machine
will entail an even better MFLOPS/watt ratio. This cannot be achieved by
simple scaling of VLSI process rules, as it will only achieve ×6 improvements
in 4 years, according to Moore’s law.

One hint is in our advanced investment into acceleration technologies, which
will provide a vastly improved MFLOPS/watt ratio. By all means as we have
mentioned, acceleration has its merits in this regard, but currently has its lim-
itations as well, and as such will only facilitate smaller numbers of users. So,
creating a general-purpose supercomputer whose dominant computing power
is derived from current-day acceleration technology would not be appropriate
as a next generation TSUBAME 2.0 architecture; rather, we must generalize
the use of acceleration via advances in algorithm and software technologies, as
well as design a machine with the right mix of various heterogeneous resources,
including general-purpose processors, and various types of accelerators (Fig-
ure 14.11). Another factor is storage, where multi-petabyte storage with high
bandwidth must be accommodated. Challenges are in devising more efficient
cooling, better power control (as we have done in research, such as [6]), etc.,
etc.... Various challenges abound, and it will require advances in a multi-
disciplinary fashion to meet this challenge. This is not a mere pursuit of
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FIGURE 14.11: Rationale for heterogeneous acceleration usage in TSUBAME
2.0.

FLOPS, but rather, “pursuit of FLOPS usable by everyone” — a challenge
worth taking for those of us who are computer scientists. And the challenge
will continue beyond TSUBAME 2.0 for many years to come.
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15.1 Introduction

The number of processor cores in commodity architectures and in particular
in the nodes of high-end computers is increasing. Today only few architectures
in the current TOP500 list, like the IBM Blue Gene/L and some of the Cray
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XT3 systems, employ nodes which are restricted to the MPI-only paralleliza-
tion paradigm. But IBM is building its petaflop machine in the context of
the DARPA High Productivity Computing Systems (HPCS) program based
on Power7 processors [28] and Cray is already providing dual-core Opteron
processors for its leading edge systems.

Other current high-end machines like the TSUBAME at the Tokyo Insti-
tute of Technology (TITech) and the ASCI Purple machine at Lawrence Liv-
ermore National Lab employ standard rack-mounted mid-range systems with
16 and 8 processor cores, respectively, and the opportunity for an increas-
ing degree of shared-memory programming within the nodes. The 8-socket
dual-core Opteron nodes of the TITech machine even exploit a high degree of
ccNUMA-ness (see Section 15.2), which in the past has predominantly been
a challenge for scalable multithreading on larger symmetric multiprocessor
(SMP) machines such as those offered by SGI.

It can be expected that in the future the number of cores per processor chip
will increase further and, in addition, on each of these cores multiple threads
may be running simultaneously.

By the end of 2005, Sun Microsystems presented the UltraSPARC T1 pro-
cessor — code named Niagara — containing 8 cores, which are able to run 4
threads each. More advanced studies on multicore architectures include the
IBM Cyclops-64 with 80 cores and 160 threads on a single chip [8, 16].

Thus, future high-end machines will support substantial multithreading in
combination with message passing. And with these upcoming node architec-
tures, OpenMP, which is the predominant parallelization paradigm for SMP
systems in scientific programming, will gain steam, as it is much more conve-
nient than explicit thread programming.

What it comes down to, is that all the techniques of OpenMP programming
which have been explored in the past on larger SMP machines, will be available
for exploitation on nodes of future high-end systems with a growing number
of cores and even threads per core.

Of course the MPI-only programming style works on SMP nodes as well
and there seem to be good reasons to stick with MPI-only on SMP clusters:

• Programming complexity. Sticking with one parallelization paradigm
simplifies development and maintenance of parallel codes.

• Efficiency. The näıve approach of hybrid parallelization restricts MPI
communication to the serial program regions leaving all slave threads
idle [27]. But communication may be overlapped with (OpenMP-parallel)
computation with asynchronous MPI transfers or by providing addi-
tional threads for communication with nested OpenMP parallelization,
if the MPI implementation is thread-safe.

However upon closer inspection, there are good reasons for adding the com-
plexity of OpenMP parallelization to the MPI approach:
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• Scalability. As soon as the scaling of an MPI program levels off, there
may be an opportunity to speedup the MPI processes by adding another
level of parallelism using OpenMP.

• Network limitations. The more MPI processes run on the single nodes,
the higher the requirement for network bandwidth gets, and multiple
simultaneous communications may increase the latency. A hybrid ap-
proach may help to alleviate bandwidth and latency problems, if it re-
duces the number or the size of MPI messages.

• Memory limitations. Main memory chips account for a considerable part
of the total hardware costs and power consumption. Shared-memory
programming can help to reduce the overall memory requirement.

• Application limitations. The structure of the application may limit the
number of MPI processes. Additional levels of parallelism may be easier
to be exploited by shared-memory parallelization. Fine-grained paral-
lelism cannot be exploited with MPI.

• Programming productivity. It is much easier to apply SMP instead of
distributed-memory parallelization to some algorithms.

• Dynamic thread balancing. If a hybrid application suffers from load
imbalances on the MPI level, the number of threads can be increased
in order to speedup busy MPI processes or decreased to slow down idle
MPI processes, provided these processes reside on the same SMP node
[31, 30].

Thus, as soon as the granularity of a partition of the computation fits within
an SMP node, OpenMP is a vital alternative to MPI.

This chapter is organized as follows:
In Section 15.2 we shortly discuss some architectural aspects of the machines
we are referring to in this chapter.

Then we address OpenMP parallelization on the loop-level in Section 15.3.
Even with loop-level parallelization, an amazing speedup can be obtained if
the OpenMP overhead can be kept to a minimum by making use of OpenMP’s
orphaning capability.

It turns out that C++ programmers need to be aware of certain pitfalls
and machines with nonuniform memory access can easily spoil the fun. We
cover some of the C++ aspects in Section 15.4.

On nodes with many cores, OpenMP can nicely be exploited on multiple
levels. Future OpenMP specifications will have to provide some more support,
but we report on first successes in Section 15.5. Again ccNUMA architectures
may need special attention.
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15.2 Architectures for OpenMP Programming

OpenMP as a programming model has no notion of the hardware a program
is running on. This is adequate on machines having a uniform memory access
(UMA), but may cause performance losses on those with a cache-coherent
nonuniform memory access (ccNUMA) if data is not allocated in the memory
partitions which are close to the threads which most frequently use them.

For our performance studies we used the machines described in Table 15.1.
The 144-way Sun Fire 25K (SFE25K), and even more so the Opteron-based
8-way Sun Fire V40z (SFV40z) and 16-way Sun Fire X4600 (SFX4600) have
such a ccNUMA architecture which makes the OpenMP performance of these
machines very dependent on a good thread/data affinity.

On the SFE25K the two-stage cache coherence protocol and the limited
bandwidth of the backplane lead to a reduction of the global memory band-
width and to an increased latency when data is not local to the accessing
process. The machine has 18 processor boards with 4 dual-core UltraSPARC
IV processors and local memory, thus each locality domain consists of 8 pro-
cessor cores.

On the dual-core Opteron-based SFV40z and SFX4600 machines, data and
cache coherence information is transferred using the HyperTransport links.
Whereas access to the memory which is local to each processor chip is very
fast, multiple simultaneous remote accesses can easily lead to grave congestion
of the HyperTransport links.

TABLE 15.1: List of the computer systems for the
performance studies

Machine model (abbrev.) Processors Remark
Sun Fire E25K (SFE25K) 72 UltraSPARC IV

1.05 GHz dual core
ccNUMA

Sun Fire 15K (SF15K) 72 UltraSPARC III
0.9 GHz

ccNUMA

Sun Fire E6900 (SFE6900) 24 UltraSPARC IV
1.2 GHz dual core

UMA

Sun Fire E2900 (SFE2900) 12 UltraSPARC IV
1.2 GHz dual core

UMA

Sun Fire V40z (SFV40z) 4 Opteron 875 2.2
GHz dual core

ccNUMA

Sun Fire X4600 (SFX4600) 8 Opteron 885 2.6
GHz dual core

ccNUMA

NEC SX-8 (NECSX8) 8 NEC SX-8 2 GHz
vector unit

UMA
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All UltraSPARC- and Opteron-processor-based machines ran Solaris and
the Sun Studio compilers. The Solaris operating system includes the Mem-
ory Placement Optimization facility (MPO) [26] which helps to improve the
scalability of OpenMP applications on ccNUMA architectures. The Solaris
system calls to pin threads to processor cores and to migrate pages to where
they are used (next-touch mechanism) allow for precise control of the affinity
between data and threads.

On Linux we frequently apply the taskset command to bind the threads of
an OpenMP program to a subset of the available processors. Unfortunately,
Linux does not support explicit page migration yet.

15.3 Loop-Level Parallelization with OpenMP

The obvious targets for parallelization are loops. Efficient loop-level par-
allelization requires techniques similar to vectorization. In the case of loop
nests, the optimal loop for parallelization has to be selected, loops may have
to be interchanged, cache effects and scalability have to be taken into account.
The upcoming OpenMP version will eventually include the parallelization of
perfectly nested loops, which will help to improve the scalability and flexibility
of many loop constructs [5].

Another issue that is laborious with OpenMP is the scoping of variables,
i.e., the declaration whether a variable is shared between threads or repli-
cated as private for each thread. To ease this burden on the programmers, a
feature called auto-scoping has been implemented into Sun Studio compilers.
A compiler that supports auto-scoping determines the appropriate scopes of
variables referenced in a parallel region, based on its analysis of the program
and on a set of rules. Special knowledge that the programmer has about
certain variables can be specified explicitly by using additional data-sharing
attribute clauses, thus supporting the compiler in its analysis. Put to use on
the 3D Navier-Stokes solver PANTA [36], auto-scoping automatically gener-
ated correct OpenMP clauses for scoping 1376 variables in some 200 OpenMP
directives, only 13 variables had to be taken care of manually [23].

Attempts to automatically augment a given Fortran program with OpenMP
directives in a preprocessing step culminated in the ParaWise toolkit by Par-
allel Software Products (PSP) [17, 22]. ParaWise is designed with the un-
derstanding that user interaction is desirable and often essential for the pro-
duction of effective parallel code. Furthermore, runtime profiling information
provided by the Sun Performance Analyzer can be fed into ParaWise to guide
further user efforts for improving scalability [21, 20].

To further enhance OpenMP performance, one can extend the parallel re-
gion to contain not just one parallel loop, but multiple or even all loops.
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This technique relies on the so-called orphaning aspect of OpenMP, which
allows worksharing constructs — like parallel-loop constructs — to reside in
routines which are called in parallel regions. Extending parallel regions re-
quires special care by the programmer, however, as variables in the syntactical
context of the parallel construct are shared between all threads by default,
local variables in routines called within parallel regions are private, unless
they are explicitly declared to be static. Static variables within parallel re-
gions can easily introduce data races, if their usage is not protected by critical
regions.

This approach has been implemented in the context of parallelizing Ther-
moflow [11], a finite element solver used for simulating the heat distribution
in a rocket combustion chamber: A sole parallel region encompassed the en-
tire compute-intensive program part, where 69 inner loops were parallelized.
On the 72-way Sun Fire 15K a speedup of 40 was achieved with 64 threads
[2].

15.4 C++ and OpenMP

OpenMP has initially been specified for Fortran (1994), but the C/C++
specification followed a year later. Anyhow, the coverage of C++-specific
language features still has some shortcomings, which will hopefully be over-
come with the next version of OpenMP. As a consequence OpenMP is not yet
widespread in C++ production codes.

In this section we present selected C++-specific problems which we expe-
rienced with several C++ codes. For most topics, we relate to the Navier-
Stokes solver DROPS [35] as an example. DROPS is developed at the IGPM
at RWTH Aachen University to investigate two-phase flow phenomena [10,
29].

15.4.1 Iterator loops

The Standard Template Library’s (STL) iterator loops cannot be paral-
lelized with a for-worksharing construct in OpenMP, because the loop is not
in the required canonical form.

We considered four ways [33] to parallelize these loops: (1) placing the
for-loop into a parallel region and the loop-body in a single work-sharing con-
struct with the ”nowait” clause; (2) using the task-queuing feature of the
Intel C++ compilers; (3) storing the iterator pointers in an array that can
then be processed in parallel; and (4) assigning the value of the incremented
iterator in a critical region to a private iterator which is then used for com-
putation. Depending on the relation of the number of loop iterations to the
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amount of work inside the loop body, the scalability of the four methods
varies. In general, we found method (3) to be the most efficient one. The
upcoming OpenMP specification 3.0 [5] will most likely contain a new feature
named tasking, which will have noticeably less administrative overhead than
the mentioned task-queuing construct.

15.4.2 ccNUMA issues

STL data types like std::valarray are commonly used in scientific pro-
grams. As std::valarray guarantees that all elements are initialized to zero,
on a ccNUMA architecture which supports the first touch principle, the data
will be placed in the memory close to the CPU on which the initial zeroing
thread is running.

A typical solution to this problem of an initialization step predetermining
memory placement is a parallel initialization with the same memory access
pattern as in the computation. The problem with the std::valarray con-
tainer is that the initialization is already done when an object is constructed.
Therefore the programmer cannot take care of proper placement in a parallel
initialization loop.

We implemented three approaches [32] to address this issue:

1. Use of a modification of std::valarray so that the initialization is done
in parallel with a given memory-access pattern. This approach is not
portable, as typically every compiler provides its own STL implementa-
tion.

2. Use of std::vector instead of std::valarray with a custom alloca-
tor. We implemented an allocator that uses malloc() and free() for
memory allocation and initializes the memory in a loop parallelized with
OpenMP.

3. Use of page migration functionality provided currently only by the So-
laris operating system. The madvise() function gives advice to the
virtual memory system for a given memory range, e.g., advising to phys-
ically migrate the memory pages to the memory of that CPU which will
access these pages next.

To control data placement of general C++ classes a mix-in [4] can be used.
Thereby it is possible to overwrite the new and delete operators for a given
class without modifying or having access to the class source code. By using
additional template parameters, the same flexibility as with a custom allocator
can be reached.

15.4.3 Parallelizing OO-codes

In C++ programs making extensive use of object-oriented programming,
a large amount of computing time may be spent inside of member functions
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1 PCG(const Mat& A, Vec& x,const Vec& b,...) {
2 Vec p(n), z(n), q(n), r(n); Mat A(n, n);
3 [...]
4 for (int i = 1; i <= max_iter; ++i) {
5 q = A * p;
6 double alpha = rho / (p * q);
7 x += alpha * p;
8 [...]

FIGURE 15.1: PCG code from DROPS: high-level C++.

of variables of class type. An example is shown in Figure 15.1 where a part
of the preconditioned conjugate gradient (PCG)-type linear equation solver
of DROPS is shown. The data types Vec and Mat represent vector or matrix
implementations, respectively, and hide the implementation by providing an
abstract interface. To parallelize such codes there are two choices:

1. Internal parallelization: a complete parallel region is embedded in the
member function. Thus, the parallelization is completely hidden by the
interface but there is no chance to enlarge the parallel region or to reduce
the number of barriers.

2. External parallelization: the parallel region starts and ends outside of
member functions (in the PCG code example it could span the whole
loop body) and inside member functions orphaned work-sharing con-
structs are used. This can reduce the overhead of thread creation and
termination. The disadvantage is that the interface is changed implic-
itly, because the parallelized member functions may only be called by a
serial program part or out of a parallel region, but not out of another
work-sharing construct and there is no way for a member function to
find out if it is called in a work-sharing construct.

For performance reasons and from a library writer’s point of view (imag-
ine C++ templates) the external parallelization is preferable. The ability to
check for calling situations out of a work-sharing construct would broaden the
applicability of that programming style.

15.4.4 Thread safety

The OpenMP specification, in section 1.5, states “All library, intrinsic and
built-in routines provided by the base language must be thread-safe in a com-
pliant implementation.” Neither the C nor the C++ standard even contain
the word “thread,” so the languages themselves do not provide any guaran-
tees. Hence the level of thread safety is implementation-defined. There is an
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ongoing discussion so that hopefully this issue will be clarified for OpenMP
3.0.

Our experience is the following:

• C++ STL: Simultaneous access to distinct containers are safe, and si-
multaneous read access to shared containers are safe. If multiple threads
access a single container, and at least one thread may potentially write,
then the user is responsible for ensuring mutual exclusion between the
threads during their access to that container.

• C library routines: Most routines can be assumed to be thread-safe.
Most vendors nowadays provide multiple versions, including a thread-
safe one, of their C library. Still, there are some functions that are not
reentrant by their interface (e.g., strtok()) and have to be used with
caution.

15.5 Nested Parallelization with OpenMP

Nested parallelization has been included as an optional feature already in
the first OpenMP specification, leaving the implementer the flexibility to ex-
ecute parallel regions that are nested within an active outer parallel region
with only one thread.

Here we describe experiences gained when employing nested parallelization
using OpenMP in three different production codes:

1 FIRE is a C++ code for content-based image retrieval using OpenMP
on two levels [34]. A nested OpenMP approach turned out to be easily
applicable and highly efficient.

2 NestedCP is written in C++ and computes critical points in multi-
block computational fluid dynamics (CFD) data sets by using a highly
adaptive algorithm which profits from the flexibility of OpenMP to
adjust the thread count and to specify suitable loop schedules on three
parallel levels [9].

3 The multi-block Navier-Stokes Solver TFS written in Fortran90 is used
to simulate the human nasal flow. OpenMP is employed on the block
and on the loop level. This application puts a high burden on the
memory system and thus is quite sensitive to ccNUMA effects [21].
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15.5.1 Nested Parallelization in the current OpenMP spec-
ification

Programming nested parallelization is as easy as just nesting multiple par-
allel regions using the standard OpenMP parallel construct plus activating
nested parallelism [25].

When at the outer level the initial thread encounters a parallel region, a
team of threads is created and the initial thread becomes the master thread.
Now when any or all of these threads of the outer team encounter another
parallel region, and nested support is turned on, these threads create further
(inner) teams of threads of which they are the masters. So the one thread
which is the master of the outer parallel region may also become the master
of an inner parallel region. But also the slave threads of the outer parallel
region may become the masters of inner parallel regions.

The OpenMP runtime library of the Sun Studio compilers, for example,
maintains a pool of threads that can be used as slave threads in parallel
regions and provides environment variables to control the number of slave
threads in the pool and the maximum depth of nested active parallel regions
that require more than one thread [1].

15.5.2 Content-based image retrieval with FIRE

The Flexible Image Retrieval Engine (FIRE) [6] has been developed at the
Human Language Technology and Pattern Recognition Group of the RWTH
Aachen University for content-based image retrieval [34]. It is designed as a
research system and is easily extensible and highly modular.

15.5.2.1 Image retrieval

Given a query image and the goal to find images from a database that are
similar to the given query image, a score for each image from the database is
calculated. The database images with the highest scores are returned. Three
different layers can be identified that offer potential for parallelization:

• Queries tend to be mutually independent. Thus, several queries can be
processed in parallel.

• The scores for the database images can be calculated in parallel as the
database images are independent from each other.

• Parallelization is possible on the feature level, because the distances for
the individual features can be calculated in parallel.

Only the first two layers have been parallelized so far, as the third may require
larger changes in the code for some distance functions and we do not expect
it to be profitable as the parallelization in the first two layers already leads
to sufficient scalability.
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TABLE 15.2: Scalability of FIRE: comparing solely
the outer and solely the inner parallel region to nested
parallelism.

#Threads SFX4600 SFE25K
outer inner nested outer inner nested

4 3.9 3.9 3.9 - 3.8
8 7.5 7.9 7.9 - 7.6
16 15 15.7 15.8 14.8 14.1 15.4
32 - - - 29.6 28.9 30.6
72 - - - 56.52 - 67.6
144 - - - - - 133.3

15.5.2.2 Parallelization

Shared-memory parallelization is more suitable than message-passing for
the image retrieval task, as the image database which can be several giga-
byte in size can then be accessed by all threads and does not need to be
replicated. The object-oriented programming paradigm as employed in the
FIRE C++ code simplified the parallelization by preventing unintended data
dependencies and facilitating the data-dependency analysis.

15.5.2.3 Scalability

Because the computations on both levels are almost independent, because
the load is nicely balanced and because the required memory bandwidth is
rather small and data is mainly read the code scales perfectly well even on
ccNUMA architectures.

Experimental results with the FIRE code on a 16-core Opteron Sun Fire
SFX4600 and a 144-core UltraSPARC-IV Sun Fire E25K exhibit excellent
speedup, which is the ratio of the runtime of the program using one thread
versus the runtime with n threads (see Table 15.2).

15.5.3 Computation of 3D critical points in multi-block CFD
data sets

In order to interactively analyze results of large-scale flow simulations in a
virtual environment, different features are extracted and visualized from the
raw output data. One feature that helps describe the topology is the set of
critical points, where the velocity is zero [9].

15.5.3.1 Critical point algorithm

The algorithm for critical point extraction is organized in three nested loops,
which are all candidates for parallelization, as there is no data dependency
among their iterations. The outermost loop iterates over the time steps of
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unsteady data sets. The middle loop deals with the blocks of multi-block
data sets and the inner loop checks all grid cells within the blocks. As soon
as the number of threads is larger than the iteration count of the single loops,
nested parallelization is obviously appropriate to improve speedup.

We use a heuristic on each cell to determine whether it may contain a
critical point. If so, the cell is recursively bisected and the heuristic is applied
again on each subcell. Noncandidate (sub-) cells are discarded. After a certain
recursion depth, the Newton-Raphson iteration is used to determine the exact
position. The time needed to check different cells may vary considerably as a
result. If critical points are lined up within a single cell, the computational
cost related to this cell may even increase exponentially. Furthermore, the
size of the blocks as well as the number of cells per time step may vary
considerably. Therefore, this code really profits from the flexibility of the
OpenMP loop-scheduling construct.

15.5.3.2 Loop scheduling in OpenMP

The schedule clause can be used to elegantly specify how iterations of
a parallel loop are divided into contiguous subsets, called chunks, and how
these chunks are assigned among threads of a team. In addition to specify-
ing the chunk size, the programmer has a choice of three different schedule
kinds: static, dynamic and guided. Whereas in a static schedule, the chunks
are statically assigned to threads in a round-robin fashion, the chunks are
dynamically assigned to threads in chunks, as the threads request them. The
guided schedule offers a nice compromise by reducing the chunk size over
time according to Equation (15.1):

chunk size = # unassigned iterations/(c · # threads) (15.1)

Here the chunk-size parameter determines the minimum chunk-size. Fur-
thermore the Sun compiler allows for adjustment of the weight parameter c
in Equation (15.1) with an environment variable.

15.5.3.3 Results

We measured the runtime of the parallel feature extraction on the Sun Fire
E25K, varying the loop schedules and the number of threads assigned to each
of the parallelization levels and the loop schedules. Let n be the number of
threads involved. The amount of threads for the time level is denoted as ti
and for block level as bj. The remaining n − i · j threads, denoted as ck, are
assigned to the cell level.

The achievable speedup heavily depends on the selected data set. Data sets
which do not cause severe load imbalance display almost perfect scalability,
such as the output data set of a supersonic shock simulation. A speedup of
115 can be reached by just using all 144 threads on the outer level and a
static loop schedule. The speedup can be increased to 119.9 with nested
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parallelization (t24 b1 c6) and static scheduling.
The situation is quite different on another data set simulating the inflow and

compression phase of a combustion engine. When the valves start to close and
suddenly move in the opposite direction of the inflowing air, plenty of critical
points close to the valve can be detected in the output data of the correspond-
ing simulation. Applying static schedules on this heavily imbalanced data set
limits the speedup to 11 at best.

By choosing an appropriate schedule on all parallelization levels, the speedup
can be considerably increased. The dynamic schedule with a chunk size of one
turned out to work best on both outer parallelization levels. However it was
not possible to find a suitable chunk size for the dynamic schedule on the cell
level for all data sets: it either caused too much overhead or the chunks were
too large to satisfactorily improve the load balance. Here the guided schedule
kind turned out to be optimal such that the critical point computation for the
engine data set scaled up to 33.6 using 128 threads (t4 b4 c8). It turned out,
however, that the weight parameter c in Equation (15.1), which defaults to 2
on Sun’s OpenMP implementation, is not an optimal choice. We reached the
best results using the dynamic schedule with a chunk size of 1 on both outer
loops and the guided schedule with a minimum chunk size of 5 and weight pa-
rameter c = 20 on the innermost level, as shown in Figure 15.2. The speedup
improved for all thread combinations reaching a maximum of 70.2 with t6 b4
c6 threads.

Even the speedup for the supersonic shock data set profits from these
scheduling parameters: it increases to 126.4 with t144 c1 b1 threads (outer-
level parallelization only) and to 137.6 with t12 b1 c12 case, which corresponds
to an efficiency of 96%.

15.5.4 The TFS flow solver

The Navier-Stokes solver TFS developed by the Institute of Aerodynam-
ics of the RWTH Aachen University is currently used in a multidisciplinary
project to simulate the airflow through the human nose [15, 14]. TFS uses a
multi-block structured grid with general curvilinear coordinates.

The ParaWise/CAPO automatic parallelization environment [17, 19] has
been used to assist in the OpenMP parallelization of the TFS multi-block
code and runtime information provided by the Sun Performance Analyzer fed
into it guided further efforts for improving the scalability.

15.5.4.1 Intra-block parallelization

The initial OpenMP version produced by ParaWise/CAPO without any
user interaction was improved in a second step with the help of the ParaWise
GUI, which assists the user to investigate, add to and alter information to
enhance the parallelization. In the TFS code a large work array is dynam-
ically allocated in the beginning of the program and then frequently passed
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FIGURE 15.2: Computing the critical points for a combustion engine.

to subroutines through parameter lists and used throughout the program by
indirect addressing. It is obviously not possible by any static program anal-
ysis to assure that there is no data race in accessing this work array, so the
user must provide further information. The user can exploit his or her knowl-
edge of the program to address the parallelization inhibitors determined by
ParaWise and displayed in its browsers.

Additional manual code modifications lead to increased parallel regions and
a reduction of the number of synchronizations.

15.5.4.2 Inter-block parallelization

Then a version where parallelism is exploited at the block level was gener-
ated with the previous parallel version as a starting point. The major step was
to split the large work array into sections describing the mesh data which have
to be shared among the threads, and sections used for temporary workspace
which need to be privatized due to the reuse for every block.

15.5.4.3 The nested-parallel version

The nested-parallel version was created by merging the two previous inter-
block and intra-block parallel versions. Unfortunately, the persistence of
threadprivate data between parallel regions is not guaranteed when nested
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parallelization is employed, which caused quite some code changes. Instead,
the affected variables had to be passed into the necessary routines as ad-
ditional arguments and then defined as private for the outer (inter-block)
parallel region, but shared by the subsequent inner (intra-block) parallel re-
gion. In the final nested-parallel version, 7 major parallel outer block loops
out of 11 include inner-parallel loops. This version contains some 16,000 lines
of Fortran code with 534 OpenMP directives in 79 parallel regions. Further
manual tuning improved the scalability of the nested version by improving
the load balancing and by taking care of ccNUMA effects.

15.5.4.4 Improving the load balance of the nested-parallel program

Sorting blocks by size. Because of the complex geometry of the human
nose, the blocks of the computational grid vary considerably in size: The
largest block has about 15 times more grid-points than the smallest block and
accounts for about 10% out of the 2,200,000 grid-points. This fact limits the
attainable speedup on the block level to no more than 10. The first approach
of selecting a dynamic schedule for all of the block-level loops in order to
handle the resulting load imbalance works reasonably well. But if a relatively
large block is scheduled to one thread at the end of the loop, the other threads
might be idle. Sorting the blocks in decreasing order, such that the smallest
block is scheduled last, leads to an improvement in runtime of 5–13 %.

Grouping blocks. As the block sizes remain constant during the whole
runtime of the program, the blocks can be explicitly grouped and accordingly
distributed to a given number of threads on the outer-parallel level in order to
reduce the overhead of the dynamic schedule and to avoid idle threads. Sur-
prisingly this did not lead to a measurable performance improvement on the
SFE25K. Further investigations using hardware counters to measure the num-
ber of L2-cache misses revealed that threads working on smaller blocks profit
more from the large size (8 MB) of the external L2 caches of the UltraSPARC
IV-based machines than threads working on larger blocks and therefore ran
at a much higher speed.

Grouping and distributing the blocks was profitable on the SFV40z as the
varying block size did not impact the MFLOPS rate, because of the smaller
L2 cache (1 MB) of the Opteron processor. The performance improved by
6.7% when using 8 threads.

The nested approach leads to an increased speedup for all of the larger SMP
machines.

There is no single strategy which performs best in all cases. Figure 15.3
depicts the best effort speedup of the nested parallel versions on the machines
listed in Table 15.1. On the SFE25K, our target platform, the speedup of the
nested version is close to 20 with 64 threads, whereas the speedup of both
single-level approaches is less than 10 in all cases.
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FIGURE 15.3: Speedup of the nested-parallel version of TFS using Sun’s
regular multitasking library.

15.5.4.5 Improving the memory locality of the nested-parallel pro-
gram

Hardware counter measurements indicated that L2-cache misses led to a
high percentage of remote misses and that the global memory bandwidth
consumption of the code on the SFE25K was close to the maximum value,
which we observed when stressing the memory system with the STREAM
benchmark [24] in earlier experiments with disadvantageous memory place-
ment. We concluded that an improvement in the memory locality would have
a positive impact on the performance of TFS on the SFE25K.

In order to improve memory locality, threads were bound to processors and
also pages were migrated to where they are used (next-touch mechanism) with
the Solaris madvise() system call after a warm-up phase of the program.

Surprisingly, this was only profitable when applied to a single level of par-
allelism.

Unfortunately, applying these techniques to the nested-parallel version was
not profitable at all: As described above, the current implementation of
nested OpenMP parallelization in the Sun Studio compilers employs a pool of
threads. Because these threads are dynamically assigned whenever an inner
team is forked, they lose their data affinity frequently.
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Compiler engineers from Sun Microsystem provided an experimental ver-
sion of the threading library libmtsk which improves the thread affinity by
maintaining the mapping between threads of the pool and the members of the
inner teams. The combination of thread affinity, processor binding and explicit
data migration finally led to a speedup of 25 for 64 threads, an improvement
in scalability of about 25 % on the SFE25K. This finally is a satisfying result
taking into account

• that each locality group (processor board) has 8 cores and thus using 8
threads is a sweet spot for the intra-block version delivering a speedup
of 5–6

• that the largest block dominates the inter-block version with more than
8 threads thus limiting the speedup to about 6

• that there are some serial parts and some parts only suited for one level
of parallelization

15.6 Conclusions and Outlook

Message passing with MPI will be the dominating parallelization paradigm
of high-end computing in the foreseeable future. With nodes of future high-
end machines having a growing number of cores, techniques which have been
used to program large SMP machines in the past will be applicable and may be
very appropriate to increase the scalability of hybrid codes combining message
passing and multithreading (see [7]).

Already today, OpenMP is the de-facto standard for shared memory par-
allelization in the context of scientific programming and has proven to be
much more easily applicable than explicit thread programming in most cases.
Still, there are many opportunities to make OpenMP even more useful in the
near future. In [5] the issues which are currently under consideration for the
upcoming version 3.0 of the OpenMP specification have been disclosed. A
new task concept will greatly facilitate parallelization of control structures
other than simple loops, the support for nested parallelism will be improved,
and features to make OpenMP ccNUMA-aware are extensively discussed, to
mention only a few.

Future multicore node architectures will make the playground for OpenMP
programs even more diverse. The memory hierarchy will grow with more
caches on the processor chips. Whereas the four cores on the future Opteron
processor will share one single L3 cache [12], pairs of two threads share one
L2 cache in the Intel Clovertown quad-core processor [13]. As a consequence,
placing two cooperating threads close together may be a performance benefit
on the latter, if they share data [18]. As multicore processor chips will be
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more and more characterized by sharing resources, the speedup of such nodes
cannot be expected to scale linearly with the number of cores.

And then there may be more threads per core: All 8 cores of the Ultra-
SPARC T1 processor access a common L2 cache, whereas 4 threads running
on each core share one L1 cache. Interestingly, memory load operations of
four threads running on a single core can be nicely overlapped, an impor-
tant capability for memory bandwidth hungry codes [3]. Techniques which
previously have been developed on proprietary hardware platforms like the
Denelcore HEP and the Tera machines to bridge the gap between processor
and memory speed are now available on a single chip which is fully compatible
to the popular UltraSPARC architecture. When the chip is fully loaded with
32 threads, the memory latency only increases by a factor of 1.4, as measured
by a pointer chasing benchmark. Such an architecture cuts down the price
per thread and presents a flat memory which can be nicely programmed with
OpenMP.
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parallelization of the flow solver TFS using the ParaWise parallelization
environment. In IWOMP, Reims, France, 2006.

[22] S.P. Johnson, M. Cross, and M. Everett. Exploitation of symbolic in-
formation. Interprocedural dependence analysis. Parallel Computing,
22:197–226, 1996.

[23] Y. Lin, C. Terboven, D. an Mey, and N. Copty. Automatic scoping of
variables in parallel regions of an OpenMP program. In WOMPAT 04,
Houston, May 2004.

[24] J.D. McCalpin. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. http://www.cs.virginia.edu/stream/.

[25] OpenMP Architecture Review Board. OpenMP application program
interface, v2.5. http://www.openmp.org, 2005.

[26] Sun Technical White Paper. Solaris memory placement optimization
and Sun Fire servers. http://www.sun.com/servers/wp/docs/mpo_
v7_CUSTOMER.pdf.

[27] R. Rabenseifner. Hybrid parallel programming on parallel platforms. In
EWOMP, Aachen, Germany, 2003.

[28] Press release. DARPA selects IBM for supercomputing grand challenge.
http://www-03.ibm.com/press/us/en/pressrelease/20671.wss.

[29] A. Reusken and V. Reichelt. Multigrid methods for the numerical
simulation of reactive multiphase fluid flow models (DROPS). http:
//www.sfb540.rwth-aachen.de/Projects/tpb4.php.

[30] A. Spiegel and D. an Mey. Hybrid parallelization with dynamic thread
balancing on a ccNUMA system. In EWOMP, Stockholm, Sweden, 2004.

[31] A. Spiegel, D. an Mey, and C. Bischof. Hybrid parallelization of CFD ap-
plications with dynamic thread balancing. In J. Dongarra, K. Madsen,
and J. Wasniewski, editors, Proc. PARA04 Workshop, Lyngby, Den-
mark, June 2004, LNCS 3732, pages 433–441. Springer Verlag, 2006.

[32] C. Terboven. Shared-Memory Parallelisierung von C++ Programmen.
Diploma thesis, RWTH Aachen University, Aachen, Germany, 2006.

[33] C. Terboven and D. an Mey. OpenMP and C++. In IWOMP 2006,
Reims, France, June 2006.

[34] C. Terboven, T. Deselaers, C. Bischof, and H. Ney. Shared-memory
parallelization for content-based image retrieval. In Workshop on Com-
putation Intensive Methods for Computer Vision, 2006.

[35] C. Terboven, A. Spiegel, D. an Mey, S. Gross, and V. Reichelt. Paral-
lelization of the C++ Navier-Stokes solver DROPS with OpenMP. In



Petaflops Basics - Performance from SMP Building Blocks 331

ParCo, Vol 33 in the NIC book series, Malaga, Spain, September 2005.
Research Centre Jülich, Germany.
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16.1 Introduction

The unofficial race for the first petaflops computer is on. MDGRAPE-3,
a system with hardware specialized for molecular dynamics simulations was
announced in June 2006 as the first system with a theoretical peak perfor-
mance at this level [12]. An informal survey at the 2006 Dagstuhl workshop
on Petascale Algorithms and Application showed that the first petaflop Lin-
pack performance is widely expected by 2008. At the same time the DARPA
High Productivity Computing Systems (HPCS) program leads the charge to
develop more productive petascale systems, which are easier to program and
should achieve higher effective performance levels. In this chapter we are look-
ing at the general question of how to evaluate performance and productivity
of current and future systems.

For this we look look at current trends and extrapolate from them in Sec-
tion 16.2 to predict some baseline parameters of potential petascale systems.
We give a brief overview on the current state of high-performance comput-
ing (HPC) performance analysis in Section 16.3 and describe the synthetic
performance probe APEX-Map as an example of a modern, parameterized
performance probe in Section 16.4. In Section 16.5 we present a consistent
methodology for calculating average performance values and associated per-
formance complexity numbers, which capture how transparent achieved per-
formance levels are.
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16.2 Architectural Trends and Concurrency Levels for
Petascale Systems

In the early 2000s it has become obvious that performance improvements
due to Moore’s Law cannot be sustained with previously used strategies of
increasing the chip frequencies or the complexity of single processors [1]. To
avoid the potential stall of processor speed, microprocessor companies have
started to integrate multiple processing-cores on single chips. There are cur-
rently several different strategies for this integration: In multicore systems, a
few cores of the previous processor generation are used and slightly adapted
to operate in parallel (IBM Power, AMD Opteron, and Intel Woodcrest —
currently up to two cores each). In many-core systems, a comparable large
number of cores with new slimmed-down architectures designed to maximize
performance and power benefits are placed on a single chip (Intel Polaris -
80 cores, Clearspeed CSX6400 - 96 cores, nVidia G80 - 128 cores, or CISCO
Metro - 188 cores). This approach will lead to thousands of cores on single
chips within a few years [1]. Concurrency levels will jump by an additional
factor of about 50 if high-end HPC systems start utilizing such many-core
chips. In hybrid architectures, a conventional complex core is combined with
an array of smaller, more efficient cores for parallel operations (IBM Cell or
the planned AMD Opteron with integrated ATI graphics).

The HPC community itself is currently using systems with 104–105 chip-
sockets. The data of the TOP500 project shown in Figure 16.1 clearly reflect
the recent stall in chip frequencies and the related accelerated growth rates
of concurrency levels after 2004 [13]. If we extrapolate these recent trends
we arrive at concurrency levels of 106–107 cores for the largest systems in
the 2010–2015 time frame. These extrapolations are based on current mul-
ticore technologies. There is a good chance that we will face a switch from
multi- many-core chip technologies, as many-core chips promise higher peak-
performance and better power and space efficiencies. This could easily lead
to an additional increase in concurrency levels of the order of 10–100.

In the first half of the next decade, we can therefore expect petascale sys-
tems to have on the order of 107–108 cores or even more! These systems will
have strongly hierarchical architectures with large differences in communica-
tion properties between cores close to each other on the same chip and cores
on sockets far from each other in the system. Past attempts to use hierar-
chical parallel-programming models have failed miserably. As a result, this
leaves the HPC community unprepared for the programming challenges it will
face in only a few years. To prepare for the challenges of programming such
a type of system key questions such as the following need to be addressed:
Which programming paradigms allow efficient coding for different algorithms
for many-core chips? How should HPC systems with strong hierarchical archi-
tectures be programmed? How can feedback to chip and systems developers
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FIGURE 16.1: Development and projection of the concurrency levels as
tracked by the TOP500 project [13]. Shown are the maximum, average,
and minimum concurrency levels for each list together with a projection for
multicore-based PCs and laptops.

about the utility of design alternatives for algorithms be provided? How can
different classes of applications be mapped for efficient execution to various
system architectures?

To answer such questions, a set of relevant applications should be used
to analyze the interaction of hardware features, programming paradigms, and
algorithms. However, currently there is no such set of application benchmarks
available, which would be widely accepted as common application references
by the HPC community.

16.3 Current Situation in Performance Characterization
and Benchmarking

During the last few decades the variety and complexity of architectures
used in HPC computing have increased steadily. At the same time we have
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seen an increasing user community with new and constantly changing ap-
plications. The space of performance requirements of HPC applications is
growing more varied and complex. A single architecture can no longer satisfy
the need for cost-effective high-performance execution of applications for the
whole scientific HPC community. Despite this variety of system architectures
and application requirements, benchmarking and performance evaluation are
still dominated by spot measurements using isolated benchmarks based on
specific scientific kernels or applications. Several benchmarking initiatives
have attempted to remedy this situation using the traditional approach of
constructing benchmark suites. These suites contain a variety of kernels or
applications, which ideally represent a broad variety of requirements. Relating
these multiple spot measurements to other applications is however still diffi-
cult, since no general application performance characterization methodology
exists. Using real applications as benchmarks is also very time consuming, and
collections of results are limited and hard to maintain. Due to the difficulty
of defining performance characteristics of applications, many synthetic bench-
marks are instead designed to measure specific hardware features. While this
allows understanding of hardware features in great detail, it does not help to
understand overall application performance.

Due to renewed interest in new architectures and new programming para-
digms, there is also a growing need for flexible and hardware-independent
approaches to benchmarking and performance evaluation across an increasing
space of architectures. These benchmarks also need to be general enough so
they can be adapted to many different parallel-programming paradigms.

16.3.1 Benchmarking initiatives

The memory wall between the peak performance of microprocessors and
their memory performance has become the prominent performance bottleneck
for many scientific application codes. Despite this development, many bench-
marking efforts in scientific computing have in the past focused on measuring
the floating-point computing capabilities of a system and have often ignored or
downplayed the memory subsystem and processor interconnect. One promi-
nent example is the Linpack benchmark, which is used to rank systems in the
TOP500 project [13]. This type of benchmark can provide guidance for the
performance of some compute-intensive applications, but fails to provide rea-
sonable guidance for the performance of any memory bound real applications.
On most platforms, Linpack can achieve over 70% of peak performance, while
on the same systems real applications typically achieve substantially lower
performance rates. Nevertheless, Linpack is still the most widely used and
cited benchmark for HPC systems and its use is a first test for the stability
and accuracy of any new system.

Despite this situation, there is still no standard or widely accepted way to
measure progress in our ability to access globally distributed data. STREAM
[11] is often used to measure memory bandwidth but its use is limited to at
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the most a single-shared memory node. In addition, it emphasizes exclusively
regular stride one access to main memory.

During recent years several new approaches for benchmarking HPC systems
have been explored. The HPC Challenge benchmark [7] is a major community-
driven benchmarking effort backed by the DARPA HPCS program. It pursues
the goal to help define the performance boundaries of future petascale com-
puting systems, and is built on the traditional idea of spanning the range of
possible application performances with a set of different benchmarks. HPC
Challenge is a suite of kernels with memory-access patterns more challenging
than those of the High Performance Linpack (HPL) benchmark used in the
TOP500 list. Thus, the suite is designed to provide benchmarks that bound
the performance of many real applications as a function of memory-access
characteristics, e.g., spatial and temporal locality, and providing a frame-
work for including additional tests. In particular, the suite is composed of
several well-known computational kernels (STREAM, HPL, matrix multiply
- DGEMM, parallel-matrix transpose - PTRANS, FFT, RandomAccess, and
bandwidth/latency tests - beff ) that attempt to span high and low spatial and
temporal locality space. Other than STREAM, the RandomAccess bench-
mark comes closest to being a data-access benchmark by measuring the rate
of integer random updates possible in global memory. Unfortunately, the
structure of the RandomAccess benchmark cannot easily be related to scien-
tific applications and thus does not help much for applications performance
prediction. The major problem with the HPC Challenge benchmark faces is
how to become widely accepted and used as a reference benchmark.

The DARPA HPCS program itself pursues an extensive traditional layered
approach to benchmarking by developing benchmarks on all levels of com-
plexity from simple kernels to full applications. Due to the goal of the HPCS
program of developing a new highly productive HPC system in the petaflops
performance range by the end of the decade, it will also need methodologies
for modeling performance of nonexisting workloads on nonexisting machines.

At the Berkeley Institute for Performance Studies (BIPS) [2], several small
synthetic tunable benchmark probes have been developed. These probes focus
on exploring the efficiencies of specific architectural features and are designed
with a specific limited scope in mind. Sqmat [5] is a sequential probe to ex-
plore the influence of spatial locality and of different aspects of computational
kernels on performance. It is limited to sequential execution only and has no
concept for temporal locality but has tackled the problem on how to charac-
terize the detail of computation for performance characterization purposes.

In many situations application performance is the best measure of perfor-
mance, however using full applications for benchmarking is very time con-
suming and large collections of comparable results are also very hard to get
and to maintain [14, 15]. Applications benchmarks are also not suitable for
simulators and thus hard to use for the evaluation of future systems.
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16.3.2 Application performance characterization

Different characterizations of applications with concepts such as spatial and
temporal data access locality have recently been proposed. APEX-Map [16,
17, 19, 21, 20] is a parameterized, synthetic benchmark which measures global
data-access performance. It is designed based on parameterized concepts for
temporal and spatial locality and generates a global data-access stream ac-
cording to specified levels of these measures of locality. This allows exploring
the whole range of performance for all levels of spatial and temporal local-
ity. Parameterized benchmarks like this have the advantage of being able to
perform parameter sweeps and to generate complete performance surfaces.
APEX-Map stresses a machine’s memory subsystem and processor intercon-
nect according to the parameterized degrees of spatial and temporal locality.
By selecting specific values for these measures for temporal and spatial local-
ity, it can serve as a performance proxy for a specific scientific kernel [19].
APEX-Map will be described in detail in the next section of this chapter.

16.3.3 Complexity and productivity measures of performance

There is a rich collection of research available on the subject of software
complexity. Complexity measures discussed range from code size expressed in
lines of code (LOC), which is used in various places such as the DARPA HPCS
program [4]; Halstead Software Science metrics [6] based on counts of oper-
ators and operands used; McCabe cyclomatic complexity measure [9] based
on the number of linearly independent paths through a program module, and
variants thereof such as design complexity [10]. These software complexity
metrics have also been applied and extended to the context of parallel com-
puting [22].

An active area of research within the DARPA HPCS program is produc-
tivity metrics, which focus on capturing the complexity of the task of coding
itself [4, 8, 3]. The approach presented in Section 16.5 complements research
in software complexity and productivity by considering performance complex-
ity (PC), which represents a measure quite different from the former two as
it characterizes code execution behavior in a second dimension orthogonal to
performance itself. PC is based on performance model accuracy, which has
the advantage of depending only on performance measurements and is not
based on and does not require code inspection or supervision of coding itself.

16.4 APEX-Map

Within the Application Performance Characterization (APEX) project we
developed a characterization for global data-access streams together with a
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X X

FIGURE 16.2: The data access model of APEX-Map.

related synthetic benchmark called memory-access probe (APEX-Map). This
characterization and APEX-Map allowed us to capture the performance be-
havior of several scientific kernels across a wide range of problem sizes and
computational platforms [19]. We further extended these performance char-
acterization and benchmarking concepts for parallel execution [21, 20]. In this
section we describe briefly the principles behind APEX-Map, our experience
implementing it, and the results we obtained using it. We will also give a brief
overview of ongoing work and possible future extensions.

16.4.1 Design principles of APEX-Map

The synthetic memory access probe APEX-Map is designed based on pa-
rameterized concepts for temporal and spatial locality. It uses a blocked data
access to a global array of size M to simulate the effects of spatial locality.
The block length L is used as a measure for spatial locality and L can take
any value between 1 (single-word access) and M . A nonuniform random se-
lection of starting addresses for these blocks is used to simulate the effects
of temporal locality (Figure 16.2). A power function distribution is selected
as nonuniform random distribution and nonuniform random numbers X are
generated based on uniform random numbers r with the generating function
X = r(1/α). The characteristic parameter α of the generating function is used
as a measure for temporal locality and can take values between 0 and 1. A
value of α = 1 generates uniform random numbers while small values of α
close to zero generate random numbers centered towards the starting address
of the global-data array. The effect of the temporal locality parameter α on
cache hit and miss rates is illustrated in Figure 16.3 for a ratio of cache sizes
to utilized memory of 1:256.

APEX-Map uses the same three main parameters for both the sequential
version and parallel version. These are the global memory size M , the measure
of temporal locality α, and of spatial locality L. These three parameters are
related to our methodology to characterize applications. A detailed discussion
of the locality concepts used in APEX-Map can be found in [21, 20].
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Effect of Alpha
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FIGURE 16.3: Effect of alpha on hit/miss rates and on the ratio of local to
remote data requests.
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FIGURE 16.4: APEX-Map performance in cycles/data-access on 256 proces-
sors. The first graph shows MPI on the X1 system, the second graph shows
CAF on the X1E system. Note the difference in scale.
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16.4.2 Comparison of parallel-programming paradigms with
APEX-MAP

The parallel version of APEX-MAP was initially developed in MPI and we
have since ported it to SHMEM, UPC, CAF. We have measured performances
of all these versions on a variety of systems, some of which were reported
earlier [21, 20]. Figure 16.4 shows as an example the performance surfaces for
execution in MPI and CAF on the Cray X1 system on 256 processors. Please
notice the differences in the vertical scale.

We have also investigated a series of simple performance models for APEX-
Map [18]. A simple model with a two-level system hierarchy and a separate
linear latency and bandwidth-access-time model for each level fits experimen-
tal results best on most parallel systems and for most programming languages.
Residual errors of this model allow for investigating performance peculiarities
and anomalies in detail.
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FIGURE 16.5: Residual errors after model subtraction for parallel execution
on 256 processors. The first graph shows MPI on the X1 system, the second
graph shows CAF on the X1E system.

Figure 16.5 shows the residual errors after model subtraction for MPI and
CAF on the Cray X1 for 256 processors. On the X1 system with MPI the
dominant performance anomaly occurs for high temporal localities (small α)
as the system behavior for local memory access is quite different from message
exchange and not resolved in a model with a two-level hierarchy for this
system. For CAF on the X1E, the dominant anomaly occurs for access length
exceeding the vector register length of the system of 64 doubles. The dominant
performance effects are thus very different for CAF and MPI.
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16.5 How to Characterize Performance Complexity

Performance evaluation of code execution focuses on determining perfor-
mance and efficiency levels for specific application scenarios. However, there
is no measure characterizing how complex it is to achieve performance and
how transparent performance results are. In this section we present an exe-
cution time metric called performance complexity (PC) which we developed
to capture these important aspects [18]. PC is based on performance results
from a set of benchmark experiments and related performance models re-
flecting the behavior of a programmer. Residual modeling errors are used to
derive PC as a measure for how transparent a program performance is and
how complex the performance appears to the programmer. PC is independent
from performance (P) itself, which allows for plotting system behavior in a
performance-complexity map (P-C map). We present a detailed description
for calculating compatible P and PC values and use results from a parametric
benchmark to illustrate the utility of PC for analyzing systems and program-
ming paradigms.

Performance of a system can only be measured relative to a workload de-
scription. This is usually achieved by selecting a set of benchmarks repre-
sentative for a particular workload of interest. Beyond this, there cannot be
a meaningful, absolute performance measure valid for all possible workload.
In contrast to performance itself, there are no methodologies for the charac-
terization of performance transparency or the complexity of programming for
performance. The complexity of the task of programming codes that perform
well on a given system also depends on the set of codes in question. Therefore,
a concept for performance complexity (PC) can also be defined only relative
to a workload and not in absolute terms!

However, the situation is even more complex when we consider different pro-
grammers coding the same algorithm in different languages and with different
programming styles. They might easily generate codes, whose performances
are not identical. Even worse, they might experience quite different levels of
control and understanding of the achieved performance levels.

Programming for performance is easy if we understand the influence of
system and code features on performance behavior and if any unexplained
performance artifacts and variations are relatively small. The level of per-
formance transparency, however, does not indicate any level of performance
itself. It only specifies that we understand performance. This understanding
of performance behavior of a code on a system implies that we can develop
an accurate performance model for it. Therefore our approach is to use the
accuracy of one or a suitable set of performance models to quantify the trans-
parency of performance on a system and of performance complexity (PC) in
general.
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In our approach the transparency of performance is expressed in the gen-
erated performance models and, as a consequence, derived PC values will
depend on the selected performance model. This dependency also reflects the
fact that a programmer willing to consider more restrictions on a larger variety
of code features, hopefully, can understand and control performance behav-
ior better than a programmer who codes without considerations for system
architectures.

In the ideal case the selected performance model should incorporate the
effects of all code features easily controllable in a given programming language
and not include any architectural features inaccessible to the programmer. In
essence, the performance models for calculating a PC value should reflect the
(possible) behavior of a programmer, in which case PC reflect the performance
transparency and complexity of performance control this programmer will
experience.

This concept for a PC measure is orthogonal to performance itself — high-
/low performance does not imply high/low complexity. Thus, PC is an ideal
complement to performance itself and we can use these two values to plot per-
formance and complexity of single benchmarks, benchmarks sets, and systems
in a two-dimensional P-C map.

16.5.1 Definition of performance complexity

Goodness of fit measures for modeling measurements are based on the sum
of squared errors (SSE). For a system, Si, the performance, Pij , of a set of
n codes, Cj , is measured. Different measurements, j, might also be obtained
with the same code executed with different problem parameters such as prob-
lem sizes and resource parameters such as concurrency levels. A performance
model, Mkl, is used to predict performance, Mikl, for the same set of exper-
iments. The coefficient of determination, R2, is one widely used measure for
quality of fit between a model and a set of observations.

R2 is a dimensionless and scale-free number between 0 and 1 and a model
with perfect agreement to measurements would achieve a score of 1. By
eliminating the scale of the original performance variation in such a way, we
would lose the basis to compare different codes. Programs with the larger R2

value might have an absolutely larger performance variation. Using R2 for
our purposes would be like using speedup for comparing different computer
systems. Such comparisons have their validity in certain situations, but cannot
be used for general situations such as ranking of systems.

To arrive at a PC measure with the same metric as performance, we have
to use standard deviation (SD), which is the square root of average SSE
and cannot use the more widely used total sum. The average SSEkl for
each system i and model k across all codes j is then given by SSEik =
1
n

∑
j(Pij −Mijk)2. While these SSE values are still absolute numbers (they

carry dimension), they are easily transformed into relative numbers by divid-
ing them by the similarly defined sum of squares (SS) of the measured data
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P : SS =
∑

k(Pk − P̄ )2 and R2 = SSE/SS.
These SSE values are based on absolute errors and, to be meaningful, the

original range of values of P and M should be as small as possible. Otherwise
the difference between absolute and relative errors would become significant.
This can be achieved by a careful selection of the original metric for P and M .
We consider an absolute flat system for which all operations take the same
time as least complex to program. The appropriate metric for such a system
would therefore be of the dimension of “operations/cycle” (or its inverse).

TABLE 16.1: Calculation steps for the values of average
performance P and performance complexity PC (absolute and relative)
along with a dimensional analysis. The index i for different systems is
suppressed.

Operations Dimension∗

Initial data: Pj , Mj [ops/sec]
Transform Pj , Mj to ideal flat metric [ops/cycle]
Log-transformation: P ′

j = log(Pi), M ′
j = log(Mi) [log(ops/cycle)]

Basic Calculations

P̄ = 1
n

∑
j P ′

j [log(ops/cycle)]
SS′ = 1

n

∑
j(P

′
j − P̄ ′)2 [(log(ops/cycle))2]

SSE′ = 1
n

∑
j(P

′
j − M ′

j)
2 [(log(ops/cycle))2]

1 − R2 = SSE′/SS′ []

Back Transformations

P̄ = exp(P̄ ′) = n

√∏
j Pj [ops/cycle]

Absolute PCa = exp(
√

SSE′) − 1 [ops/cycle]

Relative PCr = exp(
√

SSE′/SS′ − 1) []

Back-transformation of P̄ and PCa to
original scale and metrics

[ops/sec]

∗Inverse dimensions could be chosen as well.

To further reduce the range of performance values, a log-transformation
should be applied to the original data. This effectively bases the calculated
SSE values on relative errors instead of absolute errors. It also has the
added benefit, that the initial choice between a time metric [time/ops] or
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a performance metric [ops/time] is irrelevant as they log-transform into the
same absolute values. To obtain numbers in regular dimensions, we transform
the final values of SSE back with an exponential function. The resulting
numbers turn out to be known as geometric standard deviation, representing
multiplicative instead of additive, relative values, which are larger or equal
to one. For convenience we transform these values into the usual range of
larger than zero by subtracting one. For calculating average performance
values on a comparable scale, a similar sequence of log, mean, and exponential
transformations has to be followed. In this case, the resulting performance
value turns out to be the geometric mean of the individual measurements.
The full sequence of the calculation step is summarized in Table 16.1.

The outlined methodology can be applied equally to absolute performance
metrics or to relative efficiency metrics. PCa represents an absolute metric
while PCr would be the equivalent, relative efficiency metric. PCr is in the
range [0,1] and reflects the percentage of the original variation not resolved in
the performance model. Hence, while using PCr, care has to be taken when
comparing different systems, as a system with larger relative complexity PCr

might have lower absolute complexity PCa. This is the same problem as
comparing the performance of different systems using efficiency metrics such
as ops/cycle or speedup.

16.5.2 Performance model selection

We now illustrate the outlined calculations using APEX-Map. Executions
for different parameters are used as different performance experiments and re-
place for this study the experiments with different codes. The derived perfor-
mance and complexity numbers are therefore based on only a single restricted
benchmark, which limits their expressiveness, and their absolute values should
be considered carefully.

In our methodology the selection of the constituent features for perfor-
mance models is as important as the selection of individual benchmarks for
performance measurement. It is widely accepted that there cannot be a sin-
gle measure for performance, which does not relate to specific codes. For
analogous reasons, we argue that there cannot be a measure of performance
transparency and performance complexity independent without relation to
specific codes. For embarrassing parallel codes, most systems will exhibit
only small performance complexity, while this is obviously not the case for
tightly coupled, irregular scientific problems. In addition, the performance
complexities programmers experiences on a system also depends on the pro-
gramming languages and coding styles they use. These differences can be
reflected in different performance models and it is therefore only natural —
and cannot be avoided — that performance complexity values depend on the
chosen performance models.

Ideally, the features of the performance models should reflect characteristics
of our programming languages, which the user can easily control and use to
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influence performance behavior. An example would be vector length as it is
easily expressed in most languages as a loop count or array dimension and
thus is user controllable. Unfortunately, many programming languages do
not complement system architectures well, as they do not have appropriate
means of controlling hardware features. This situation is exacerbated as many
hardware features are actually designed not to be user controllable, which
makes performance optimization often a painful exercise in trial and error until
a desired behavior can be achieved. Cache usage would be a typical example
here as programming languages have little means to control directly which
data should reside in the cache or not. However, in developing performance
models we often have to revert to using such noncontrollable hardware features
to achieve satisfactory accuracy.

For interpreting complexity values derived with our methodology, we have
to carefully consider what the components of the used performance model are,
as they greatly influence any interpretation.

APEX-Map is designed to measure the dependency of global-data access
performance on spatial and temporal locality. This is achieved by a sequence
of blocked data accesses of unit stride with a pseudo-random-starting address.
From this we can expect that any good performance model for it should
contain the features of access length, and for access probabilities to different
levels of memory hierarchy. The former is a loop length and easily controlled in
programs, the latter depends on cache hit rates, which are usually not directly
controllable by the programmer. The metric for APEX-Map performance is
[data-access/second] or any derivative thereof.

In a previous study we analyzed the influence of using different perfor-
mance models on the calculated complexity values by using a sequence of four
models [18]. In this section we present results for the most complex model
and parallel execution only. This performance model assumes a linear timing
model for each level in a memory hierarchy with two levels:

T = P
( c

M

)
∗ (l1 + g1 ∗ (L − 1)) /L +

(
1 − P

( c

M

))
∗ (l2 + g2 ∗ (L − 1)) /L

with the probability to find data in the closer memory level c as:

P
( c

M

)
=

( c

M

)α

M , L and α are APEX-Map parameters and c is a system parameter reflecting
the most important memory or system hierarchy level, which has to be set
to different appropriate levels for different systems and execution conditions.
The probability to find data in c is given by the temporal locality parameter
α as P (c/M) = (c/M)a. l1, g1, l2, g2 are latency and gap parameters for
the two levels of memory hierarchy modeled. These parameters are back-
fitted by minimizing SSE values and thus the prediction error of the model.
Backfitting these effective parameter values, also allows us to compare systems
and programming paradigms in different ways. To check the validity of the
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generated model and the overall approach, we inspect residual error plots and
fitted latency and gap values to rule out any fictitious models or parameter
values.

For complex parallel system hierarchies, it is also not always clear what the
second most important hierarchy level is and what the value of c should be.
It is therefore advisable to at least use a backfitting approach to confirm an
initial choice, or to probe the performance signature of a system, to determine
which level is most influential on performance.

16.5.3 PC analysis of some parallel systems

Analyzing parallel APEX-Map results for 256 processors and a memory
consumption of 512MB/process, we face the problem of a large range of raw
performance values, which span 5 orders of magnitude. This would not be fea-
sible without a sound statistical procedure, such as avoiding the log and expo-
nential transformations. This analysis is of special interest as we had obtained
performance results for implementations with different parallel-programming
paradigms such as MPI, SHMEM, and the two PGAS languages UPC, and
CoArray Fortran (CAF) on the Cray X1 and X1E systems [20]. In UPC, two
different implementations are compared; one for accessing a global-shared ar-
ray element by element and one for a block-transfer access to remote data.

It represents a programmer, who optimizes for long loops, large messages,
and high-data locality. The relative lowest complexities PC are now calculated
for blocked access in UPC and SHMEM on the X1 followed by the SP Power4,
SX6, SP Power3, and Power5, Itanium-Quadrics cluster, CAF on the X1E,
Opteron Infiniband cluster, UPC on the X1 and X1E, and, with somewhat
higher PC values, the X1 with MPI, and the Blue Gene/L system.

The most important level in the memory hierarchy of a system is expressed
by the local memory size of c, which for most systems needs to be set to
the symmetric multiprocessor (SMP) memory rather than process memory to
achieve the best model accuracy. While this is not surprising, there are a fair
number of systems for which best model fit is achieved for even larger values of
c. This is an indication that network contention might be an important factor
for the randomized, non-deterministic communication pattern of APEX-Map,
which is not included at all in any of our models. We tested several more
elaborate models with a third level of hierarchy and with constant overhead
terms for parallel code overhead, but none of these models produced significant
improvements and back-fitted parameter values often did not make sense.

Figure 16.6 shows back-fitted values for the latency l1, l2, and gap parame-
ters g1, and g2 of the performance model. Latencies for PGAS languages are
noticeable lower than for other languages even on the same architecture. In
contrast to this, remote gap values seem to be mostly determined by archi-
tecture. The P-C maps for all four models are shown in Figure 16.7. Due
to the rather large performance difference between PGAS- and MPI-based
systems, we use a logarithmic scale for the horizontal efficiency axis P. We
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FIGURE 16.6: Back-fitted latency l1, l2, and gap parameters g1, and g2 for
both memory hierarchies for parallel executions.
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P-C Map for a Two Level Memory, Linear Timing Model
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FIGURE 16.7: (See color insert following page 18.) P-C map for parallel
systems based on efficiencies [accesses/cycle]. Horizontal axis is performance
P in [accesses/100 cycles] and the vertical axis is complexity PC in [access-
es/cycles]. Systems fall with few exceptions into 4 categories: PGAS lan-
guages (UPC, CAF), one-sided block-access (SHMEM, UPC block mode),
MPI-vector (X1-MPI and SX6), and superscalar-based MPI systems.

notice grouping of systems in three major clusters across all models:
PGAS languages: UPC and CAF on the X1 show higher architectural ef-

ficiencies (horizontal separation). They end up with higher PC values than
one-sided block-access paradigms, as they expose users to more idiosyncrasies
of the architecture in the effort to achieve higher performance.

One-sided block-access paradigms: SHMEM- and UPC-blocked-access mode
on the X1 also show horizontal separation, but most all end up with the low-
est complexity values PC. The exceptions here are UPC on the X1E showing
higher complexity and UPC on the T3E+ showing lower performance.

MPI systems-vector-based: NEC SX6 and the Cray X1 show different
changes in complexity between models than superscalar-based systems.

MPI systems-superscalar-based: They show the lowest performance and
medium complexity, with the exception of Blue Gene/L for model 3, which
was discussed in [18].
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This matches the results of a software complexity comparison [22], which
found programs written in message-passing paradigms (MPI, PVM) to have
consistently higher software complexity than SHMEM, High Performance For-
tran (HPF), or shared-memory programs. Outliers from these clusters typi-
cally show some performance anomalies, which can be revealed and explained
by inspections of the residual errors [18].

Figure 16.7 also shows very clearly that performance and performance com-
plexity of a specific algorithm on a single system can depend heavily on the
programming languages used and that P and PC values are indeed inde-
pendent. For the Cray X1 system family, lowest PC values are achieved
with one-sided message-passing languages, which show medium performance
P values. The highest performing PGAS languages exhibit medium to larger
performance complexity.

16.6 Conclusions

Petascale systems in the middle of the next decade will have on the order
of 107–108 cores. These systems will have strongly hierarchical architectures
with quite different communication capabilities between cores close to each
other on the same chip and between different cores on different chip sockets
far from each other in the system. Parallel programming in general and per-
formance optimization in particular will present new challenges to the HPC
community. Unfortunately, there is still no set of scalable, flexible, but simple
benchmarks available, which could test such systems realistically.

In this chapter we presented a synthetic parameterized benchmark probe,
called APEX-Map. Such parameterized probes are easy to execute or simulate
and allow us to map the performance response of a system for a variety of
execution conditions through simple parameter sweeps. Analyzing system
behavior with performance models proves very beneficial by amplifying any
unusual system responses.

We also described a concept for a quantitative measure of performance
complexity (PC). The transparency of performance behavior is linked to the
complexity of programming and optimizing for performance and can be char-
acterized by a measure for the accuracy of appropriately chosen performance
models. We presented a definition and detailed description on how to calcu-
late average performance (P) and complexity numbers based on performance
numbers from a set of benchmark and accompanying performance predictions
from a performance model.

PC is a measure characterizing code execution behavior on a system. In
the first order, it is independent from performance P itself and serves as a
second dimension to evaluate systems and programming paradigms. Having P
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and PC as two orthogonal code execution metrics, allows for plotting different
systems in a performance-complexity map. This P-C map permits a high level
analysis of performance and complexity determining commonalities between
systems and programming languages used in the experiments.

This combination of advanced parameterized performance probes, perfor-
mance models, and new high level performance metrices promises to be very
helpful in making future petascale systems succesful tools for scientific com-
puting.
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17.1 Introduction

Performance analysis of applications is and certainly will be of even higher
importance on future petascale systems. The reason is that these architectures
will exploit multiple levels of parallelism and deep memory hierarchies to reach
several petaflops (PFLOPS) of peak performance without having automatic
programming tools available.

Current designs for petascale systems employ specialized coprocessors, such
as the Roadrunner system and the system to be built in Japan’s Next Genera-
tion program. Roadrunner, with a peak performance of 1.6 PFLOPS, will be a
hybrid system of 16.000 AMD Opteron cores and 16.000 IBM Cell Broadband
Engine processors. It will be installed at Los Alamos National Laboratory.
Japan’s Next Generation supercomputer targets 10 PFLOPS in 2012 and will
also exploit a combination of several types of processors ranging from vector
to special-purpose coprocessors.

355
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Cray will install at Oak Ridge National Laboratory a Cray XT4 which will
deliver over 1 PFLOPS of peak performance at the end of 2008. Compared
to the previous systems, it will be based on multicore Opteron processors
without coprocessors.

Designing parallel programs exploiting all levels of parallelism efficiently,
taking into account memory access and communication will be extremely dif-
ficult. Therefore program tuning guided by the observed performance behav-
ior of test runs will be very important. In contrast to program debugging,
performance tuning has to be based on experiments on the full number of
processors. Measuring and analyzing the performance of runs on multiple
thousands of processors imposes strong requirements on the scalability of per-
formance analysis tools.

This chapter first revisits the general techniques used in performance anal-
ysis tools in Section 17.2. It then presents four tools with different approaches
to tool scalability. These tools are Paradyn 17.3, SCALASCA 17.4, Vampir
NG 17.5, and Periscope 17.6. The techniques used in these tools are summa-
rized in the concluding section.

17.2 Performance Analysis Concepts Revisited

Performance analysis tools are based on an abstraction of the execution,
an event model. Events happen at a specific point in time in a process or
thread. Events belong to event classes, such as enter and exit events of a
user-level function, start and stop events of a send operation in MPI programs,
iteration assignment in work-sharing constructs in OpenMP, and cache misses
in sequential execution.

In profiling tools, information on events of the same class is aggregated dur-
ing runtime. For example, cache misses are counted, the time spent between
start and exit of a send operation is accumulated as communication time of
the call site, and the time for taking a scheduling decision in work-sharing
loops is accumulated as parallelization overhead. Representatives of profil-
ing tools are the Unix tools prof/gprof and system-specific profilers, such as
Xprof on IBM systems and Vtune on Intel platforms. Profiling tools are also
available for MPI (mpiP [22]) and OpenMP (ompP [6]).

In tracing tools, for each event specific information is recorded in a trace
file. The event record written to the file at least contains a timestamp and
an identification of the executing process or thread. Frequently, additional
information is recorded, such as the message receiver and the message length
or the scheduling time for an iteration assignment. Tracing tools have been
developed in the context of parallel programming where the dynamic behavior
of multiple processes and threads is important. This class includes Tau [21],
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KOJAK [23], as well as Vampir [2]. Tracing tools typically employ elaborate
visualization techniques to illustrate the application’s dynamic behavior.

Especially for tracing tools, but also for profiling tools, scalability is a very
important issue on large systems. The following sections introduce MRNet
and the Distributed Performance Consultant of Paradyn, the parallel anal-
ysis of traces in SCALASCA and Vampir Next Generation, as well as the
distributed performance bottleneck search of Periscope.

17.3 Paradyn

Paradyn [15] is a tool for automated performance analysis developed at
the Universities of Wisconsin and Maryland, with a history dating back to
the early 1990s. A characteristic feature of Paradyn is the usage of dynamic
instrumentation to add, customize, and remove instrumentation code patches
in applications while they are running. To perform the runtime code patching,
Paradyn relies on the Dyninst API. The analysis of observered performance
data is done online to avoid the space and time overhead of trace-based post-
mortem analysis tools.

A number of new ideas have recently been developed in the context of
Paradyn. Deep Start [18] is an approach for augmenting Paradyn’s auto-
mated search strategy with call stack samples. Deep starters are defined to
be functions that arise frequently in call stack samples (either because they
are called frequently or because they are long-running functions) and are thus
likely to be performance bottlenecks. The Deep Start strategy gives prece-
dence to searching performance bottlenecks in deep starters and their callees,
which results in a quicker search and in a detection of more bottlenecks.

A second recent improvement of Paradyn is MRNet [16, 17], which is a
software-based scalable communication infrastructure for connecting the tool’s
daemons to the front end. The original Paradyn approach uses a flat model,
where each daemon process communicates directly with the front end. With
an increasing number of daemons (i.e., performance analysis on larger ma-
chines), the frontend becomes a bottleneck and can be flooded with daemon
data. MRNet therefore introduces a multicast-reduction network of internal
processes arranged as a tree, to distribute the tool’s activities and to keep
the load on the front end manageable. MRNet consists of a library (which
becomes part of the tool daemons) and a set of internal processes that im-
plement data aggregation and synchronization operations as filters on one or
more streams of data.

Even with efficient means for data collection provided by MRNet, the anal-
ysis and the decision process is still performed centrally by the Performance
Consultant in Paradyn. To remedy the bottleneck this centralized approach
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presents for large-scale machines, work towards a Distributed Performance
Consultant (DPC) [19] was recently conducted. The DPC supports a dis-
tributed bottleneck search strategy, where host-specific decisions on instru-
mentation and refinement of hypotheses are made by local search agents run-
ning on the local nodes, while global application behavior is examined by
the front end. A subgraph-folding algorithm was additionally developed to
visualize the search history graphs generated by local search agents. The fold-
ing algorithm places application processes into classes of qualitatively similar
behavior, effectively “folding” similar search history graphs (for different pro-
cesses) into one, which can be visualized readily by the user.

17.4 SCALASCA

SCALASCA [7] is a tool for scalable trace-based performance analysis of
parallel applications. While currently being limited to MPI-1 applications,
it is the follow-up project to Expert which performs an automated post-
mortem performance analysis of C/C++ and Fortran applications using MPI,
OpenMP, SHMEM, or a combination thereof. For both SCALASCA and Ex-
pert, the application is instrumented semiautomatically at compile-time using
a combination of Opari (for OpenMP), the MPI-profiling interface, and TAU
(for user-defined functions). Executing the instrumented application gener-
ates a set of trace files (one per process) in the Epilog format which are then
analyzed after program termination (off-line analysis).

The sequential analysis (of merged trace files) performed by Expert has
been found to be a major obstacle in applying this approach to large-scale
machines. Hence, in SCALASCA the analysis itself is performed in parallel
using a technique termed communication replay. The analysis engine is a
parallel MPI program consisting of the same number of processes that have
been used in the execution of the target application. Each analysis process
analyzes its local trace file (no trace file merge happens) and performance
problems (inefficiency patterns) such as “late sender” are detected by ex-
changing performance data among the involved processes using the same kind
of communication operation. That is, to detect inefficiencies in point-to-point
operations point-to-point operations are used by the analysis engine as well.
Similarly, collective operations are used to combine and exchange performance
data for the detection of collective communication inefficiencies, hence the
term communication replay.

Both Kojak and SCALASCA output their analysis results as an XML file
that can be viewed using a graphical viewer called CUBE with three tree-like
hierarchies. The first hierarchy shows the type of inefficiency (“barrier wait-
ing” is a descendant of “synchronization overhead,” for example), the second
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hierarchy lists the program’s resources (files, functions, and regions), and the
third presents the machine organization (nodes, processes, threads). Color
coding indicates how severe each discovered inefficiency is for the respective
program resource and thread.

17.5 Vampir Next Generation

Vampir NG (VNG) [2] is the new and parallel implementation of the suc-
cessful trace analysis tool Vampir (now Intel Trace Analyzer). Trace files are
recorded while the application executes and then visually and manually ana-
lyzed using a time-line display and various other statistical views on the trace
data.

VNG decouples the analysis part from the visual display component of
Vampir by employing a distributed software architecture. The analysis is con-
ducted by a parallel analysis server that can be located on a part of the actual
parallel production system, while the visualization component is executed on
a standard workstation computer. The two components communicate using
a sockets-based networking protocol that can optionally be encrypted. The
analysis server is itself parallelized using a combination of MPI and POSIX
threads (Pthreads). MPI is chosen for its proven high performance and scala-
bility properties while a multithreaded implementation is required to support
multiple concurrent visualization clients and to support the interactive can-
celation of outstanding analysis requests.

The analysis server consists of a master process and multiple worker pro-
cesses. The master organizes the communication with the visualization clients
and each worker holds a part of the overall tracefile to be analyzed. The
two major benefits of this approach are an increased amount of overall main
memory (summed over all worker processes) to hold the tracefile and the in-
creased computing power for analysis tasks. The visualization client offers
the same kind of functionality as the original sequential Vampir tool, however
the separation of analysis and visualization avoids the transportation of large
quantities of performance data. Instead, the data can be analyzed close to
the place where it is generated.

17.6 Periscope

Periscope [8, 13, 5, 9] is a distributed online performance analysis tool for
hybrid MPI/OpenMP applications currently under development at Technische
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FIGURE 17.1: Periscope currently consists of a front end, a hierarchy of
analysis agents, and two separate monitoring systems.

Universität München. It uses a set of autonomous agents that search for
performance bottlenecks in a subset of the application’s processes and threads.
The agents request measurements of the monitoring system, retrieve the data,
and use the data to identify performance bottlenecks. The types of bottlenecks
searched are formally defined in the APART Specification Language (ASL)
[3, 4].

17.6.1 Architecture

Periscope consists of a front end called the Performance Cockpit, a hierarchy
of analysis agents, and two separate monitoring systems (Figure 17.1).

The user interface allows the user to start up the analysis process and to
inspect the results. The agent hierarchy performs the actual analysis. The
node agents autonomously search for performance problems which have been
specified with ASL. Typically, a node agent is started on each symmetric mul-
tiprocessor (SMP) node of the target machine [10]. This agent is responsible
for the processes and threads on that node. Detected performance problems
are reported to the master agent that communicates with the performance
cockpit.

The node agents access a performance-monitoring system for obtaining the
performance data required for the analysis. Periscope currently supports two
different monitors, the Peridot monitor or Runtime Information Producer
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(RIP) [5] developed in the Peridot project focusing on OpenMP and MPI
performance data, and the EP-cache monitor [14] developed in the EP-cache
project focusing on memory hierarchy information.

The node agents perform a sequence of experiments. Each experiment
lasts for a program phase, which is defined by the programmer, or for a
predefined amount of execution time. Before a new experiment starts, an
agent determines a new set of hypothetical performance problems based on the
predefined ASL properties and the already found problems. It then requests
the necessary performance data for proving the hypotheses and starts the
experiment. After the experiment, the hypotheses are evaluated based on the
performance data obtained from the monitor.

17.6.2 Specification of performance properties with ASL

Periscope’s analysis is based on the formal specification of performance
properties in ASL. The specification determines the condition, the confidence
value, and the severity of performance properties.

PROPERTY ImbalanceInParallelLoop(OmpPerf pd, Experiment exp) {
LET

imbal = pd.exitBarT[0]+...+

pd.exitBarT[pd.threadC-1];

IN

condition : (pd.reg->type==LOOP ||

pd.reg->type==PARALLEL LOOP) &&

(imbal > 0);

confidence : 1.0;

severity : imbal / RB(exp);

}
This property captures the situation of imbalance in the OpenMP work-

sharing constructs parallel FOR or DO. The waiting time at the implicit syn-
chronization point appears in exitBarT and refers only to the waiting time for
the particular construct. The property parameters identify the data structure
containing the OpenMP performance data and the current experiment. The
severity is the time for imbalance relative to the overall execution time. The
confidence value of properties might be less than 1.0 if the condition simply
gives a hint instead of a proof.

17.6.3 The Periscope node agents

The node agents form the lowest level of the Periscope agent hierarchy.
Their task is the analysis of performance data on a single node of a multi-
node system.

The main target systems for Periscope are clusters of symmetric multipro-
cessor (SMP) nodes and an agent is responsible for one SMP node. However,
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FIGURE 17.2: The layered design of the Periscope node agents.

Periscope can also be used on other machine configurations. For example,
on large-scale shared memory nodes, several node agents can be used on the
same node.

Node agents consist of multiple components. The “Agent Core” component
encapsulates the main performance properties search functionality while per-
formance data is acquired by using one or more monitors. A separate monitor
is instantiated for each application process (which can itself be composed of
several threads) which executes on the node. A node agent also contains a
component to handle the communication with other agents by using a custom
communication protocol which is described in Section 17.6.6.

The performance properties knowledge base of Periscope is implemented as
a set of dynamically loadable modules. That is, for each of the ASL perfor-
mance properties a dynamically loadable module is created that implements
the property as a C++ object. At startup, the node agent dynamically loads
the set of properties that reside in a configurable directory. The separa-
tion of performance analysis knowledge from the implementation of the main
tool is beneficial for several reasons. Most importantly, the functionality of
the tool can easily be extended, without requiring any changes to the main
tool. Hence, advanced users or performance analysis experts can easily exper-
iment with new performance properties and develop a custom set of properties
specifically tailored to their requirements.

The loose coupling of the performance properties knowledge base and the
core component of the agent is facilitated by the layered design shown in a
UML-like class diagram in Figure 17.2. The top layer (“Fixed Base Classes”)
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contains abstract classes that represent base entities which are independent
of a concrete instantiation of an ASL model. The class Property represents
the concept of a performance property. A property offers methods to check
whether the specified condition holds and to compute the severity and confi-
dence values. Since the property only specifies how to compute these values
and to check the condition, a concrete Property Context object is needed to
instantiate a concrete property. The component that generates this context
(i.e., the monitoring system) is represented by the abstract Context Provider
base class.

The second layer contains classes that represent an instantiation of ASL for
a particular usage scenario. For example, the formal specification of properties
is transformed one-to-one in a set of classes deriving from the base layer. E.g.,
the formal specification for the ImbalanceInParallelLoop property given in
Section 17.6.2 is translated into a C++ class that derives from the Property
base class. Similarly, a C++ class for the data model OmpPerf is generated
that derives from the Property Context base class. This translation of the ASL
specification into C++ classes is currently performed manually, but since the
process is completely mechanized, it would be feasible to develop an ASL
compiler that performs this translation.

The third layer shown in Figure 17.2 contains classes that represent the
connection to the actual monitoring system used. For example RIP OmpPerf
derives from the class OmpPerf and implements the data model by relying
on the Peridot monitor.

The presented layered design offers flexibility and potential for software
reuse in two respects. Firstly, components can partially be reused in a poten-
tial application of ASL in a different area. If, for example, an ASL data model
and accompanying performance properties are developed for a new program-
ming paradigm, the base-class layer and the Search Strategy object can stay
the same. Naturally, a specific monitoring solution will be required to support
the collection of performance data for the new programming paradigm. Sim-
ilarly, the classes in the monitoring-system-specific layer have to be adapted.

Secondly, the layered design allows new properties for an existing data
model to be integrated into the Periscope system without any change to the
main tool. As mentioned, Periscope node agents dynamically load the set of
properties on startup. This is possible because, as shown in Figure 17.2, the
Search Strategy object only references the abstract base class Property but
references to specific properties are never used.

17.6.4 Search for performance properties

When a node agent receives the request to search for performance properties
via the ACC CHECK command (see Section 17.6.6), it invokes a search strategy
object to conduct the actual search. The search strategy object encapsulates
the sequence of steps needed to instantiate the performance properties. Cur-
rently, a TestAll search strategy is used which simply tries to instantiate all
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performance properties for all property contexts (i.e., regions).
The TestAll search strategy first employs the monitor to instantiate the

ASL data model. That is, for each program region, a corresponding OmpPerf
or MpiPerf data structure is created and filled with performance data. The
ASL data model represents the current view of the program, i.e., the counts
and times contained in the data structures represent the duration from pro-
gram start until the invocation of the properties search.

When the ASL data model has been created, the TestAll search strat-
egy tries to instantiate each loaded property for each property context (i.e.,
each OmpPerf or MpiPerf structure). The condition() method is invoked to
check if the specified property holds for each property context and if, yes, the
severity() and confidence() methods are subsequently used to determine
the severity and confidence values, respectively.

For each detected property, a report is sent to the parent agent that specifies
the name of the property, the severity and confidence values, and the property
context (i.e., the type and location of the region in the application’s source
code). This report of detected properties is passed up the agent hierarchy and
the front end displays the result to the user.

17.6.5 The Periscope high-level agents

The task of the Periscope high-level agents is the efficient and scalable
collection of performance analysis results from the node agents as well as the
dissemination of commands from the front end to the node agents. As shown
in Figure 17.1, the high-level agents are arranged in a tree-like hierarchy. The
root of the tree is represented by a single master agent, which represents the
connection to the Periscope front end.

Periscope high-level agents have always exactly one parent (which is either
another high-level agent or the front end) and one or more child agents (which
are either high-level agents or node agents). The smallest instantiation of
Periscope therefore consists of the front end, a master agent, and a single-
node agent.

The agents and the front end use a custom sockets-based protocol as a
means of communication, by exchanging so-called ACC (agent command and
control) messages. The ACC protocol (described in detail in Section 17.6.6)
developed for Periscope offers platform-independent messaging for maximum
flexibility with respect to the placement of the agents and the front end.
The high-level agents and front end can be executed on any node on a high-
performance computing system or even anywhere on the Internet, as long as
the required sockets-based communication links can be established. However,
the Periscope front end is typically started on a node of the target computing
system which provides interactive access, while the high-level agents reside on
nodes that have been reserved for performance analysis.
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17.6.6 Agent communication infrastructure

As mentioned, the agents and the Periscope front end employ a custom
sockets-based communication protocol by exchanging ACC (agent command
and control) messages. The ACC messages are sent synchronously (the sender
waits for an acknowledgment from the receiver) and cause the invocation of a
message-specific handler function at the receiver side. ACC messages (and also
their acknowledgments) can carry message-specific data that is encoded using
CDR (common data representation), which allows a platform and operating-
system-independent messaging between the agents and the front end.

While high-performance computing systems typically offer a homogenous
compute partition (or several homogenous partitions that are used indepen-
dently), it is not uncommon that the platform used for interactive access is
different from the platform used for the compute partition. The common data
representation used by Periscope therefore offers the benefit of allowing the
front end to run on any system that can establish communication links to the
agents, even on the user’s personal computer. Platform independency is also
important for a possible future application of Periscope in grid computing.
Grids often combine several different computer architectures and support for
heterogeneity is therefore an important requirement for any performance tool
used in a grid environment.

The ACC messages used by the agents and by the Periscope front end are:

ACC INIT: This message is used to initialize the communication link between
peers. The data exchanged with this message is an identification string
such as “Periscope Frontend” or “Periscope nodeagent” that spec-
ifies the particular role of the component in the Periscope performance
analysis system.

ACC QUIT: This message is used to tear down the communication link between
peers.

ACC HEARTBEAT: This message is sent periodically from an agent to its parent
to indicate its status. An agent that receives an ACC HEARTBEAT message
knows that the child agent sending the message and the entire sub-tree
rooted at that child are in a healthy state.

ACC START: This message is used during the coordinated startup procedure of
Periscope and the target application. The target application is started
first, but then halted by the Periscope monitoring library until the agent
network has been instantiated. Once the agents are up and running, the
ACC START message is broadcast from the front end to the node agents
to resume the execution of the target application.

ACC CHECK: This message is sent from the front end to the node agents to
initiate the search process for performance properties. High-level agents
that receive this message simply forward it to their child agents, until
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it arrives at the node agents. At the node agents the message causes
the instantiation of the ASL data model and the search for performance
properties as described in Section 17.6.3.

ACC PROPERTY FOUND: This message is propagated from the node agents up
the agent hierarchy towards the front end. A node agent sends this
message when a performance property was detected. The data carried
by the message include the type of property discovered (i.e., its name),
the node on which it was detected, the severity and confidence values, as
well as the context of the property. The property context is typically the
name of the region for which the property was detected; for OpenMP
locks the context gives the address of the lock instead. For example, the
message

ACC PROPERTY FOUND WaitAtBarrier "opt33" 0.34 1.0 "ssor.f 186"

indicates that the WaitAtBarrier property was detected for an explicit
(programmer-added) OpenMP barrier at line 186 of file “ssor.f” on node
“opt33.” The detected severity and confidence values are 0.34 and 1.0,
respectively.

When a high-level agent receives an ACC PROPERTY FOUND message, it
tries to aggregate and combine all received properties before passing
the results on to its parent agent. Properties with the same property
context and with similar severity and confidence values are combined.
For example, the set of properties

(1) ACC PROPERTY FOUND WaitAtBarrier "opt33" 0.34 1.0 "ssor.f 186"

(2) ACC PROPERTY FOUND WaitAtBarrier "opt33" 0.33 1.0 "ssor.f 207"

(3) ACC PROPERTY FOUND WaitAtBarrier "opt34" 0.30 1.0 "ssor.f 186"

(4) ACC PROPERTY FOUND WaitAtBarrier "opt34" 0.01 1.0 "ssor.f 207"

(5) ACC PROPERTY FOUND LockContention "opt34" 0.01 1.0

"0xBF232343"

is passed on as

ACC PROPERTY FOUND WaitAtBarrier "opt33,opt34" 0.32 1.0

"ssor.f 186"

ACC PROPERTY FOUND WaitAtBarrier "opt33" 0.33 1.0 "ssor.f 207"

ACC PROPERTY FOUND WaitAtBarrier "opt34" 0.01 1.0 "ssor.f 207"

ACC PROPERTY FOUND LockContention "opt34" 0.01 1.0 "0xBF232343"

That is, properties (1) and (3) are combined into a compound property
with averaged severity and confidence values, while (1) and (4) are not
combined, because they have different property contexts. Properties (2)
and (4) are not combined, because their difference in severity exceeds
the predefined threshold of 10%.
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The ACE (adaptive communication environment) framework [1, 20, 11]
is used in Periscope to implement the sockets-based ACC communication
protocol outlined above. ACE is a cross-platform, object-oriented framework
designed to simplify the usage of operating systems mechanisms such as inter-
process communication, threading, and memory management.

The Periscope agents and the front end use ACE’s reactor framework, which
allows an application to handle several tasks concurrently without relying on
multiple threads or processes. Hence, overheads associated with thread or
process creation can be avoided and the complexity of the source code can
be reduced (there is no need to coordinate the access to shared resources, for
example).

17.6.7 Evaluation

This section tests Periscope on eight applications (BT, CG, EP, FT, IS,
LU, MG, and SP) from the NAS parallel benchmark suite [12]. The NAS
benchmark applications exist in many versions utilizing various programming
interfaces (OpenMP, MPI, High Performance Fortran [HPF], and Java, among
others). The rest of this section tests the MPI and OpenMP versions of the
benchmarks.

17.6.7.1 MPI

The applications were executed with benchmark class “C” on 64 processes
of our InfiniBand cluster on 16 nodes. The following text lists the perfor-
mance properties for some application benchmarks detected after program
termination.

BT
Property Name Location Processes Severity
WaitAtMpiBarrier MPI BARRIER all 0.001300
PointToPointCommOvhd MPI RECV all 0.001191
CollectiveCommOvhd MPI BCAST all 0.000166
CollectiveCommOvhd MPI REDUCE all 1.160e-06
PointToPointCommOvhd MPI SEND all 7.411e-08

CG
Property Name Location Processes Severity
PointToPointCommOvhd MPI SEND 26 0.350885
PointToPointCommOvhd MPI SEND 30 0.285780
PointToPointCommOvhd MPI SEND 8 0.036432
WaitAtMpiBarrier MPI BARRIER all 0.000126
PointToPointCommOvhd MPI RECV all 0.000157
CollectiveCommOvhd MPI REDUCE all 3.276e-06



368 Highly Scalable Performance Analysis Tools

EP
Property Name Location Processes Severity
PointToPointCommOvhd MPI RECV 24 0.388950
WaitAtMpiBarrier MPI BARRIER 32 0.388440
PointToPointCommOvhd MPI RECV 40 0.000380
WaitAtMpiBarrier MPI BARRIER 32 0.000362
PointToPointCommOvhd MPI SEND all 9.071e-07

FT
Property Name Location Processes Severity
CollectiveCommOvhd MPI ALLTOALL all 0.846625
PointToPointCommOvhd MPI RECV all 0.004725
WaitAtMpiBarrier MPI BARRIER all 0.004038
CollectiveCommOvhd MPI REDUCE all 0.002983
CollectiveCommOvhd MPI BCAST all 1.764e-05
PointToPointCommOvhd MPI SEND all 6.805e-08

Evidently, most applications contain one dominant MPI call that accounts
for a significant fraction of the total execution time, while other performance
properties could only be identified with very low severity values. Also, in gen-
eral, the applications show very similar behavior among processes. The only
exceptions are the CG and EP benchmarks which show markedly dissimilar
behavior among groups of processors. The exact cause of these dissimilarities
could only be identified by performing a close inspection of the application’s
source code and underlying algorithmic structure.

17.6.7.2 OpenMP

In addition to the MPI version, the OpenMP implementation of the NAS
benchmarks was tested with Periscope. The applications were executed on a
32-CPU SGI Altix system based on Itanium-2 processors with 1.6 GHz and
6MB L3 cache using a batch system. The number of OpenMP threads was
set to eight and the Periscope node agent was executed on a separate CPU
(i.e., nine CPUs were requested for the batch runs).

Table 17.3 shows the three most severe properties identified by Periscope
for the NAS benchmarks. All properties have severity values below 9% and
most are in the range of 3–4%.

17.7 Tool Comparison and Future Research

Developing efficient parallel programs for petascale architectures will re-
quire scalable performance analysis tools. This chapter presents four perfor-
mance analysis tools that apply different techniques to improve scalability.
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Benchmark Property Region Severity

BT ImbalanceInParallelLoop rhs.f 177--290 0.0446
BT ImbalanceInParallelLoop y solve.f 40--394 0.0353
BT ImbalanceInParallelLoop rhs.f 299--351 0.0347
CG ImbalanceInParallelLoop cg.f 556--564 0.0345
CG ImbalanceInParallelRegion cg.f 772--795 0.0052
CG ImbalanceInParallelRegion cg.f 883--957 0.0038
EP ImbalanceInParallelRegion ep.f 170--230 0.0078
EP ImbalanceInParallelLoop ep.f 129--133 0.0001
FT ImbalanceInParallelLoop ft.f 606--625 0.0676
FT ImbalanceInParallelLoop ft.f 653--672 0.0304
FT ImbalanceInParallelLoop ft.f 227--235 0.0269
IS WaitAtBarrier is.c 526 0.0272
IS ImbalanceInParallelRegion is.c 761--785 0.0087
IS ImbalanceInParallelLoop is.c 397--403 0.0020
LU WaitAtBarrier ssor.f 211 0.0040
LU WaitAtBarrier ssor.f 182 0.0032
LU ImbalanceInParallelLoop rhs.f 189--309 0.0011
MG ImbalanceInParallelLoop mg.f 608--631 0.0831
MG ImbalanceInParallelLoop mg.f 779--815 0.0291
MG ImbalanceInParallelLoop mg.f 536--559 0.0248
SP ImbalanceInParallelLoop x solve.f 27--296 0.0285
SP ImbalanceInParallelLoop y solve.f 27--292 0.0265
SP ImbalanceInParallelLoop z solve.f 31--326 0.0239

FIGURE 17.3: The three most severe performance properties with source-
code location and severity value, identified by Periscope (only two properties
were found for EP).

These techniques are:

Distributed online aggregation. Instead of transferring individual data
from all the processes to a front end, the information is aggregated in a
distributed fashion. This approach is implemented by MRNet in Para-
dyn. A similar approach is used in Periscope on a much higher level. The
properties detected by the agents are aggregated. If multiple processes
have the same property only one piece of information is propagated up
the tree of high-level agents.

Automatic search. The tool’s analysis is done automatically. The search
for performance bottlenecks is based on formalized knowledge about
possible inefficiencies. This approach is taken by SCALASCA, Paradyn,
and Periscope. Automation is a requirement for online analysis but it
also improves off-line tools dramatically, e.g., by reducing the amount
of information presented to the programmer.
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Autonomous agents. Autonomous agents are used to search for perfor-
mance bottlenecks in a subset of the application’s processes. This dis-
tribution eliminates the bottleneck in current tools of a centralized anal-
ysis. Both Paradyn and Periscope apply this technique.

Parallel analysis back end. SCALASCA and Vampir NG off-load part of
the analysis process to a parallel back end. While SCALASCA performs
an automatic analysis of trace data on the same processors as the ap-
plication within the same job, Vampir NG computes graphical views of
performance data on a parallel back end.

Scalable visualization. Trace analysis not only suffers from huge trace files
but also from the limitation of visualizing performance data on current
screens. Vampir applies clustering of time lines, zooming and scrolling
to circumvent this problem.

Classification of processes. Typically processes of a parallel application
can be classified into classes with similar behavior. Paradyn and Periscope
use this technique. Paradyn provides subgraph folding, while Periscope
combines performance properties of different processes in the agent tree.

Incremental search. Profiling and tracing both have their advantages. Pro-
filing reduces the amount of information while tracing provides all the
details with the drawback of huge trace files. Paradyn and Periscope
search for properties incrementally assuming a cyclic behavior of the
application. During one execution of a phase coarse measurements are
performed, while in the next execution more precise measurements are
taken. Currently, both tools apply this technique only to profiling data.

The above list of techniques supporting scalability of performance tools
highlights that quite some work is performed in that area.

For the future, we believe that the use of autonomous agents and of process
classification will receive more attention. Autonomous agents can incremen-
tally search for performance bottlenecks where the performance data are gen-
erated. They reduce information instead of communicating and storing huge
amounts of data. The classification of processes will be important as well
since even the automatic detection of performance bottlenecks in processes
will not be sufficient. Imagine that thousands of bottlenecks are presented to
the user even if in each process of a petascale machine only a few bottlenecks
were found.

Both techniques, autonomous agents and classification, can benefit from
additional knowledge about the parallel program’s structure. Frequently, par-
allel programs are based on structures such as master worker, work pool, di-
vide and conquer, or single-program, multiple-data (SPMD). This information
could be used to guide the automatic search, e.g., to identify repetitive regions
that can be incrementally analyzed, as well as for process classification, e.g.,
by specifying that there are two classes, the master and the workers.
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[10] M. Gerndt and S. Strohhäcker. Distribution of Periscope analysis agents
on ALTIX 4700. In Proceedings of the International Conference on Par-
allel Computing (ParCo 07), 2007.

[11] S. D. Huston, J. C. E. Johnson, and U. Syyid. The ACE Programmer’s
Guide. Pearson Education, 2003.

[12] H. Jin, M. Frumkin, and J. Yan. The OpenMP implementation of NAS
parallel benchmarks and its performance. Technical Report, NAS-99-
011, 1999.

[13] E. Kereku. Automatic Performance Analysis for Memory Hierarchies
and Threaded Applications on SMP Systems. Ph.d. thesis, Technische
Universität München, 2006.

[14] E. Kereku and M. Gerndt. The EP-cache automatic monitoring system.
In International Conference on Parallel and Distributed Systems (PDCS
2005), 2005.

[15] P. B. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth,
R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall.
The Paradyn parallel performance measurement tool. IEEE Computer,
28(11):37–46, 1995.

[16] P. C. Roth, D. C. Arnold, and B. P. Miller. MRNet: A software-based
multicast/reduction network for scalable tools. In Proceedings of the
2003 Conference on Supercomputing (SC 2003), AZ, November 2003.

[17] P. C. Roth, D. C. Arnold, and B. P. Miller. Benchmarking the MR-
Net distributed tool infrastructure: Lessons learned. In Proceedings of
the 18th International Parallel and Distributed Processing Symposium
(IPDPS ’04), High Performance Grid Computing Workshop, page 272,
2004.

[18] P. C. Roth and B. P. Miller. Deep start: A hybrid strategy for automated
performance problem searches. In Proceedings of the 8th International
Euro-Par Conference on Parallel Processing (Euro-Par ’02), pages 86–
96, Paderborn, Germany, August 2002. Springer-Verlag.

[19] P. C. Roth and B. P. Miller. The distributed performance consultant
and the sub-graph folding algorithm: On-line automated performance
diagnosis on thousands of processes. In Proceedings of the ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’06), March 2006.

[20] D. C. Schmidt, S. D. Huston, and F. Buschmann. C++ Network Pro-
gramming Vol. 1: Mastering Complexity with ACE and Patterns. Pear-
son Education, 2002.



Highly Scalable Performance Analysis Tools 373

[21] S. S. Shende and A. D. Malony. The TAU parallel performance sys-
tem. International Journal of High Performance Computing Applica-
tions, 20(2):287–311, 2006. ACTS Collection Special Issue.

[22] J. S. Vetter and M. O. McCracken. Statistical scalability analysis of
communication operations in distributed applications. ACM SIGPLAN
Notices, 36(7):123–132, 2001.

[23] Felix Wolf and Bernd Mohr. Automatic performance analysis of hybrid
MPI/OpenMP applications. In Proceedings of the 11th Euromicro Con-
ference on Parallel, Distributed and Network-Based Processing (PDP
2003), pages 13–22. IEEE Computer Society, February 2003.





Chapter 18

Towards Petascale Multilevel
Finite-Element Solvers

Christoph Freundl, Tobias Gradl, Ulrich Rüde

Friedrich–Alexander–Universität, Erlangen, Germany

Benjamin Bergen

Los Alamos National Laboratory, USA

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
18.2 Design Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

18.3 Evaluation and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

18.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

18.1 Introduction

18.1.1 Overview

High-end supercomputers are inevitably massively parallel systems and they
often feature complex architectures for each compute node. Additionally, ex-
ploiting the performance potential even of a single CPU is becoming increas-
ingly difficult, e.g., due to limited memory performance. Such architectural
restrictions pose great challenges to the development of efficient computational
methods and algorithms.

Many supercomputing applications are based on the finite-element (FE)
method for the solution of partial differential equations. Finite-element meth-
ods require the solution of large sparse linear systems, but only few algorithms
qualify as the basis of scalable FE solvers. For a scalable solution only algo-
rithms can be used that obtain linear or almost linear computational com-
plexity in the number of unknowns. Therefore, we will focus on multigrid
methods that can achieve asymptotically optimal complexity. However, due
to the multigrid structure, the efficient parallelization of the algorithms is not
trivial (cf. [16] and the references listed there).

Our contribution addresses these problems by presenting two scalable mul-
tilevel finite element packages that were implemented within projects of the
Bavarian KONWIHR supercomputing research consortium [9, 5].

375
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18.1.2 Exemplary petascale architectures

Petascale architectures, as they will be available in a few years’ time, will
be parallel computers consisting of many thousands of processors similar to
today’s top performance computers. These are usually connected by a high-
speed network with a bandwidth of at least 1 GBit per second. Often small
numbers of processors are grouped together in nodes where the interconnec-
tion of processors on the same node is faster than the connection between the
nodes. Additionally, a growing trend towards multicore processors combines
several single CPU cores together on a chip. The memory configuration of
these architectures can range from distributed memory for each processor,
shared memory access for processors residing on the same node, to virtually
shared memory access for all processors in the computer.

As a first exemplary architecture, we present the meanwhile outdated com-
puter Höchstleistungsrechner in Bayern I (HLRB I), since it has been the
motivation for the two software projects that will be described in the next
section. The Hitachi SR8000-F1 model, which had been in operation at the
Leibniz Computing Center Munich until summer 2006, consisted of 168 SMP
nodes with 8 processors on each node. The processor design was a modified
PowerPC architecture with an increased number of floating-point registers and
a very powerful pre-fetch mechanism. The compilers on the machine were ca-
pable of making use of the COMPAS (cooperative microprocessors in single
address space) feature which enabled the auto-parallelization of loops on the
processors of a node that gave each node characteristics similar to a vector
processor. A single processor had a clock speed of 375 MHz with a theoreti-
cal peak performance of 1.5 GFLOPS, resulting in a LINPACK performance
of 1,645 GFLOPS for the whole machine. At the time of installation, the
HLRB I started at rank 5 in the Top 500 list of June 2000.

In June 2006, the SR8000-F1 was shut down and replaced by HLRB II∗,
ranked number 18 in the Top 500 list of November 2006. This machine is an
SGI Altix 4700 and currently consists of 9728 Intel Itanium2 CPUs and 39
terabytes of main memory. The NUMAlink network helps it to reach 56.5
TFLOPS LINPACK performance, 90% of its theoretical peak performance,
while providing shared memory access to groups of up to 512 CPUs at a time.

Exploiting the performance potential of these supercomputers and future
petascale systems also requires a focused effort in the development of algo-
rithms and programs. In the following, we will highlight the goals of the HHG
and ParExPDE projects, which have been motivated by the HLRB machines
and the associated KONWIHR research effort. Both projects aim at devel-
oping highly scalable finite element solvers. ParExPDE is centered around
the expression template programming paradigm that is being used to hide
technical complexities — such as MPI parallelism — from the user of the
software, while providing a intuitive high level user interface for developing

∗http://www.lrz-muenchen.de/services/compute/ .



Towards Petascale Multilevel Finite-Element Solvers 377

partial differential equation (PDE) solvers. The expression template mecha-
nism is being used to generate efficient code on each processor by keeping the
overhead from operator overloading low.

The HHG package is a prototype of a very memory- and CPU-efficient
implementation of a FE solver. To achieve ultimate performance on a single
node as well as on massively parallel systems, it employs mixed-language
programming, combining C++ and Fortran 77. It provides a highly efficient
multigrid solver capable of solving finite element problems of currently up to
1011 unknowns on 9170 processors.

18.2 Design Paradigms

18.2.1 Hierarchical hybrid grids

Regular refinement and grid decomposition

HHG has been introduced in [2] (also see [1]). Summarizing, the HHG
approach can be described as follows: beginning with a purely unstructured
input grid, regular refinement is applied by adding new vertices along each
edge of the input grid and then connecting the appropriate vertices with new
edges and faces. To illustrate this, Figure 18.1 shows an example of regular
refinement of a two-dimensional input grid. The two-dimensional example is
included because it is easier to visualize, but the current HHG implementation
is designed to accommodate three-dimensional grids.

The refinement results in a new, still logically unstructured grid that is
a superset of the input grid. This process is repeated successively on each
new grid, forming a nested hierarchy of finite-element meshes. Clearly, the
regular refinement process generates a system of structured sub-meshes. In
a conventional FE approach, however, this structure would not be exploited,
but HHG does exploit this structure both for defining the multigrid algorithm,
and as the basis of a very efficient implementation in terms of overall memory
consumption, parallelization, and performance of the solver in each processing
node.

Each grid in the hierarchy is then decomposed into the primitive types:
(3D-) elements, (2D-) faces, (1D-) edges, and vertices. This decomposition
allows each class of primitive types to be treated separately during the dis-
cretization and solver phases of the simulation, so that the structure of the
added points can be exploited: for example, instead of explicitly assembling
a global stiffness matrix for the finite-element discretization element by ele-
ment, we can define it implicitly using stencils. This works when the material
parameters are constant within an element, since then the stencil for each el-
ement primitive is constant for all unknowns that are interior to it for a given
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FIGURE 18.1: A regular refinement example for a two-dimensional input grid.
Beginning with the input grid on the left, each successive level of refinement
creates a new grid that has a larger number of interior points with structured
couplings.

level of refinement. The same approach may be used for the face primitives
and, to some extent, for the edges. Essentially, this results in a variant of
block-structured meshes.

In order to exploit the structure of the refined primitives in terms of proces-
sor performance, data structures with contiguous memory must be allocated
for each primitive. Then the primitives of each type with a regular structure
of unknowns can be treated as independent structured grids. This allows the
use of stencil-based discretization and solver techniques that are more efficient
than those available for use with standard unstructured grid data structures.

HHG in practice

In applying HHG, we make the assumption that the input grid is fairly
coarse and that it primarily resolves only the large-scale features of the do-
main. The most favorable problem type for this approach begins with an input
grid which has patch-wise constant material parameters but requires several
levels of regular refinement to properly resolve the fine-scale features of the
solution. This type of problem leads to a grid hierarchy with large collections
of structured unknowns that have a constant-coefficient discretization within
each patch.

As an example, consider the exterior mirror of a car and the problem of an
acoustic simulation that requires elliptic solvers. We might be interested in
the noise level produced by the air current around the mirror, typically for a
distance much larger than the dimensions of the mirror. Naturally, between
the mirror and the “listener” there is a lot of free space without any geometric
features that would need to be resolved by the grid. Nevertheless, the grid
resolution must be very fine to resolve the sound waves. Such properties make
this application a good candidate for HHG.

The HHG approach does also have limitations. It cannot be used easily for
domains where even the geometry description requires extremely fine meshes
everywhere, such as in a porous medium. The approach would have to be
extended (in a straightforward way) to deal with material parameters that are
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not piece-wise constant. As much as possible, the philosophy of HHG requires
uniform sub-grids, and therefore the flexibility for adaptive grid refinement is
resticted.

HHG and multigrid

Implementing a multigrid algorithm on the HHG data structures is in prin-
ciple quite straightforward, because the grid decomposition in the HHG frame-
work immediately induces the necessary processes quite analogous to a struc-
tured multigrid implementation for the parts of the grid that are within the
structured regions.

The question for the solver on the coarsest grid is nontrivial, since we con-
sider the unstructured input grid as the coarsest one, and this may of course
still involve quite a large system. The current HHG software implements
several alternatives, including the use of simple iterative schemes, such as
successive over-relaxation, that might be suitable if the input grid is really
quite coarse. Alternatives are to use a (parallel) direct solver, or — possibly
the most interesting alternative — to delegate the solution on the input grid
to an algebraic multigrid method. In all cases the basic assumption is that
the input grid has many fewer unknowns than the refined grids and, therefore,
the computational cost for solving the problem is small.

Parallelization strategy

For a parallel implementation, the HHG framework is again an almost
ideal starting point. We employ a distributed-memory parallel communica-
tion model using the message-passing interface (MPI). Again, the idea is that
the mesh distribution is essentially done on the level of the input grid, that
is, with a grid size that can be handled efficiently by standard software, such
as Metis or ParMetis [11].

In order to parallelize the computation, the grid is therefore distributed
among the available MPI processes. Figure 18.2(a) shows a simple 2D exam-
ple with just two triangular elements that are assigned to the two processes
P0 and P1. The unknowns on the edge between the elements are coupled
to both elements and are thus needed by both processes, which introduces
communication (Figure 18.2(b)). This is equivalent to using ghost nodes, as
is typical in parallel mesh algorithms [8]. The HHG edge data structure itself
can be assigned to any one of the two processors. In HHG, every primitive
type (element, face, edge or vertex) has specialized communication methods
implemented for handling message buffers and issuing calls to the MPI library.

In order to avoid excessive latency during inter-node communication, each
type of primitive is updated as a group. If, for example, two processes share
not only one but several faces, the ghost values on all the common faces
are packed into a single MPI message. So, rather than sending many small
messages over the interconnect, only a few large ones have to be sent. This
reduces communication latency and allows a more efficient implementation.
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FIGURE 18.2: Grid distribution among processes. The encircled nodes are
ghost values.

18.2.2 ParExPDE

Similar to the HHG solver, the ParExPDE (parallel expression templates
for partial differential equations) framework aims at providing a highly scal-
able FE solver on massively parallel systems. Different from HHG, it is based
on using expression templates in C++ and FE to provide a user-friendly, yet
efficient framework for developing PDE-based parallel applications. Similar to
HHG, ParExPDE relies on the regular refinement of a relatively coarse input
grid only in it the geometric primitives are hexahedrons instead of tetrahe-
drons.

Expression templates

The term “expression templates” (ET) refers to a programming technique
which uses the C++ template mechanism and allows one to generate efficient
code for the evaluation of arithmetic expressions. It was invented in 1994
independently by Todd Veldhuizen and David Vandevoorde (see. [17]) and
has been made popular by [7].

The ParExPDE library, inspired by [13] and [14], uses the ET programming
technique because of its efficiency in performing vector arithmetics while pro-
viding a user-friendly interface at the same time, and is therefore pursuing a
similar goal as the approach presented earlier in this book (see Chapter 19
[12]). The impacts of ET can be illustrated with a simple vector operation
involving more than one operator:

Vector a, b, c, d;
d = a + b + c;

If a C++ user wants to make use of the object-oriented features, the obvious
approach is

• to overload the “+” operator such that it adds two vectors and returns
the resulting vector, and
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• to implement the assignment operator in a straightforward way, i.e., it
just takes a vector as a parameter and copies all elements to the result
vector

This is, in fact, clean design, however, it has fatal consequences on the ef-
ficiency of the resulting code. In each call to the plus operator a temporary
vector has to be created only to store the values that will be reused immedi-
ately afterwards when the next arithmetic operator or, finally, the assignment
operator is called. So not only the creation and destruction of temporaries
but also unnecessary copying of the temporary values will cost performance.

A C programmer, in contrast, who does not want to handle general arith-
metic expressions would implement the above operation in a single loop:

loop over all components i of the vectors
d[i] = a[i] + b[i] + c[i]

The goal of using ET is to produce this code from the abstract formulation in
the first C++ listing. In order to achieve this, ET does not treat each operator
independently but the expression on the right-hand side of the assignment
operator as a whole. The syntax tree of the expression a + b + c is mapped
to a nested template structure, and the implementation of the assignment
operator loops over all components of the expression. When all necessary
evaluation methods are declared “inline” the result is — at least theoretically
— code that exhibits the same performance as handwritten C or Fortran code.
This becomes possible since expression expansion and code optimization is
performed at compile time. Results have shown that the expression template
performance can in fact be even better (cf. [18]).

Parallel expression templates on hexahedral grids

In order to use ET for a petascale multilevel solver, it has to be embedded
in a parallel context where each processor works just on its subdomain as
defined during the partitioning phase. This does not pose a problem because
the object containing the partitioning information should generally provide
an iterator returning all parts of the whole domain belonging to a specific
processor.

Furthermore, the parallel execution should ideally happen completely trans-
parently to the user. Therefore, we distinguish two types of expressions: those
which require a communication of ghost values (i.e., basically all expressions
containing the application of a differential operator) and those which do not.
The assignment operator is specialized for these two types and performs the
necessary communication accordingly.

It is more difficult to treat the non-homogeneity of the hexahedral grid:
while the regularly refined interior of a hexahedron is perfectly homogeneous
the faces and especially the edges and vertices of the grid can have an arbitrary
number of neighbor hexahedrons (Figure 18.3). These parts of the domain
have to be treated completely different from the hexahedrons’ interiors, e.g.,
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FIGURE 18.3: Left picture: regular neighborhood (8 neighbors) in the inte-
rior of a quadrilateral. Middle picture: irregular neighborhood for corners of
quadrilaterals. The thick dashed lines mark the boundaries of a quadrilateral.
Right picture: ParExPDE grid describing a cylinder.

the first have arbitrary-sized stencils while the latter will always have 27-point
stencils (the term “stencil” refers in this case to the assembled global stiffness
matrix, expressing the dependencies of an unknown just as when using finite
differences).

The introductory expression templates description in the previous section
has assumed a completely regular data structure. For the application of ex-
pression templates in a hexahedral grid we have to provide means to specialize
the expression referring to the whole grid to an expression which refers, e.g.,
only to a certain edge in the grid. The assignment operator in ParExPDE
becomes in pseudo-code:

loop over all local hexahedrons in the grid
specialize the expression for the hexahedron
for all components (i,j,k) of the hexahedron

evaluate the specialized expression at (i,j,k)
loop over all local faces in the grid

specialize the expression for the face
for all components (i,j) of the face

evaluate the specialized expression at (i,j)
loop over all local edges in the grid

specialize the expression for the edge
for all components i of the edge

evaluate the specialized expression at i
loop over all local vertices in the grid

specialize the expression for the vertex
evaluate the specialized expression at the vertex
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18.3 Evaluation and Comparison

Multigrid Convergence Rates

Local Fourier analysis [19] shows that solving, for example, a 3D Poisson
equation with a multigrid using W (1, 1) cycles and a red-black Gauß-Seidel
smoother should exhibit a convergence rate of about 0.19 (see [16], table 3.5).
For the FE discretization, theoretical convergence rates are not readlily avail-
able in the literature, so using the cited values as a yardstick is not the worst
thing to do. However, for the sake of parallel efficiency, some compromises
may be necessary, and therefore the algorithm may not achieve the best con-
vergence rates theoretically possible. For example, HHG ignores a few data
dependencies in the Gauß-Seidel smoother, which, in turn, saves a significant
amount of communication effort. To demonstrate that the multigrid method’s
excellent convergence behavior hasn’t been sacrificed in the race for parallel
efficiency and megaflops, we include experimentally determined convergence
rates.

A solver exposes its asymptotic convergence rate typically after several V
cycles. The convergence rates of HHG and ParExPDE, determined by a vector
iteration, similar to the one described in [16, section 2.5.2], are shown in
Figure 18.4. The asymptotic convergence rate is excellent in ParExPDE,
which uses hexahedral elements and, therefore, 27-point stencils. HHG uses
tetrahedral elements which lead to 15-point stencils. The convergence rates
are still very good.

Serial Results

Before presenting parallel results, we first verify that our codes achieve a
satisfactory performance already on a single processor, otherwise any discus-
sion about speedups or scalability would be meaningless.

Our test case is the application of a constant-coefficient Gauß-Seidel smooth-
ing algorithm on a single geometry element which is a tetrahedron in the con-
text of HHG and a hexahedron in the context of ParExPDE. This test case
represents the best possible situation of a purely structured grid with a con-
stant stencil, and serves in determining the absolute maximum performance
that can be obtained by the frameworks’ data structures. Both programs
traverse the mesh in a red-black ordering to eliminate data dependencies that
could obstruct the computer’s vectorization capabilities. We measure the ex-
ecution performance for various mesh sizes.

The internal structures of HHG allowed us to mix C++ and Fortran77 with-
out sacrificing the usability and flexibility of the program to its performance.
While the framework of HHG exploits the object-oriented features of C++,
the computational kernels are implemented in Fortran 77, which has proved
to deliver higher performance than C++ on a number of systems. However,
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FIGURE 18.4: Convergence rates for HHG and ParExPDE when solving the
Poisson problem with Dirichlet boundaries on the unit cube discretized with
1293 points. Rates are shown for 20 consecutive cycles of the V (2, 2) (solid
lines, —) and V (3, 3) (dashed lines, - - -) type.

ParExPDE relies fully on C++ and the expression template mechanism, even
for the numerically intensive routines.

The serial performance measurements were carried out on a single CPU of
the HLRB II. HHG’s performance increases from about 800 MFLOPS for
a tetrahedron with 15 unknowns on every edge to about 3500 MFLOPS for
a tetrahedron with 511 unknowns on every edge. For ParExPDE we obtain
about 1200 MFLOPS for a 323 hexahedron, and the performance increases
to about 1600 MFLOPS for a 2563 hexahedron. The lower performance com-
pared to HHG is due to the fact that the compiler optimizations which are
applied to the expression templates generate less efficient code than the one
that is generated out of HHG’s specialized Fortran77 routines. Unfortunately,
this is the price that must currently be paid for the flexibility and expressive
power of a more modern language.

This behavior of modern high-end CPUs is quite similar to what one would
expect from classical vector computers: clearly, larger structured regions are
beneficial for performance. This may be unexpected, but has been observed
uniformly (though to a varying degree) for virtually all current architectures.
It has its fundamental reason in the on-chip (or instruction-level) parallelism
that is essential for all state-of-the-art CPUs [10]. To further optimize the
performance, it would be possible to use cache-blocking techniques, such as
in [15, 4].
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Parallel Scalability

The goals of our parallel tests are to show that extremely large problems
can be solved with good efficiency using both the HHG and the ParExPDE
frameworks. In reality, it is likely that we have solved the largest finite-element
system to date with performance rarely achieved by most scientific codes.

In this section, we present the results for solving a Poisson problem with
Dirichlet boundary conditions. For our tests we use domains consisting of
several connected cubes. The choice of this setup is convenient for performing
our scalability tests, because we can easily adjust the domain size to the
number of CPUs used. In HHG, we additionally partition the cubes into
tetrahedrons. However, the grids used for our tests are purely unstructured
and no structural feature of the input grids is exploited in obtaining these
results.

Figure 18.5 shows the weak-scaling results for our programs. The plotted
weak efficiency is defined as

Ew(n, p) =
T (p0 · n, p0)
T (p · n, p)

where T (p0 · n, p0) is the time elapsed during one V cycle on p0 CPUs for a
problem of size p0 · n, and T (p · n, p) is the time elapsed during a V cycle on
p CPUs for a problem of size p · n. To measure Ew, we adjust the domain to
have as many cubes as CPUs used in each test run. p0 is set to 4. The results
show that HHG is faster than ParExPDE, but ParExPDE can sustain good
parallel efficiency up to larger numbers of CPUs.

Figure 18.6 shows the strong-scaling results for our programs. Strong effi-
ciency is defined as

Es(n, p) =
p0 · T (n, p0)
p · T (n, p)

In contrast to Ew, the problem size n is held constant in Es. To measure Es

in ParExPDE, a domain of 510 connected hexahedrons, each discretized with
653 points, is chosen. In the HHG measurements the domain consists of 1008
hexahedrons, each split into 6 tetrahedrons and discretized with 1283 points.

18.4 Conclusions

The weak-scaling results of Figure 18.5 demonstrate that both the ParEx-
PDE and HHG solvers scale quite well up to approximately 500 Altix pro-
cessors, but that the scalability deteriorates slightly beyond 1000 processors.
The analogous behavior is seen also in the strong-scaling measurements in
Figure 18.6.
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Generally, the efficiency and scalability measurements in this chapter should
be seen in the context of our solver. Both packages, HHG and ParExPDE,
use a highly efficient multigrid solver. This algorithm class has a very low
operation count of O(n) in terms of the number of unknowns and a com-
plex hierarchical structure. Therefore, the ratio of computational work to
communication is low and this makes it more difficult to implement it ef-
ficiently on large parallel systems. This is made even more challenging by
our carefully optimized programs that achieve unusually high performance on
each sequential processor.

We wish to point out explicitly that this is absolutely no argument against
multigrid or our implementation technology. It is true that using less carefully
tuned codes would likely make the speedups look more impressive, but it would
also increase the wall-clock run-times. It is a triviality that any speedup result
can be faked to look better by doing redundant work on each processor or
(equivalently) slowing down the execution on each processor, but this is not
of any help in practice.

Similarly, using algorithms other than multigrid ones would likely lead to
effectively slower parallel solvers. But since they would use more operations,
they would make it easier to amortize the communication cost and conse-
quently they might have better values in relative metrics, such as speedup
or scale-up. Nevertheless, they are unlikely to show any benefit in terms of
time-to-solution, the metric that is ultimately the only relevant one.

Therefore it also is important to consider the absolute performance results
achieved with our codes. In the weak-scaling experiments, the HHG solver
is handling 33 × 106 unknowns per processor, and consequently it performs
one multigrid V-cycle for 128 × 109 unknowns on 3,825 processors in 6.90
seconds, each cycle resulting in a convergence factor of 0.14 or better (see
Figure 18.4). Even larger runs on almost 10,000 processors are available in a
technical report [6].

For ParExPDE, the corresponding numbers are 33×109 unknowns on 2040
processors in 25.57 seconds per multigrid V-cycle. The somewhat slower per-
formance of ParExPDE is partly compensated for by its superior convergence
behavior.

In our opinion, the performance in absolute values shows the advantages
of our approach quite impressively. Nevertheless, it is also important to con-
sider the relative measures and the observed drop in efficiency when going
to 1024 processors and beyond. At this time it is unclear what causes the
deterioration. It could be some architectural bottleneck of the Altix system
or a nonoptimal implementation of the communication on our part. Since
both ParExPDE and HHG show similar problems, it is unlikely that this is
a problem of the implementation alone, but it is clear that while the deteri-
oration in efficiency is still acceptable in the processor ranges up to 4000, it
may become highly problematic when we think of future true petascale sys-
tems with possibly hundreds of thousands of processor cores. Therefore, we
are currently exploring this problem in detail and hope to present a clearer
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analysis and solutions in the near future. Another alternative is a hybrid par-
allelization using MPI and OpenMP; also see a previous chapter in this book
by Bischof et al. (Chapter 15 [3]) using shared memory parallelism.
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pression templates and advanced PDE software design on the Hitachi
SR8000. In A. Bode and F. Durst, editors, High Performance Comput-
ing in Science and Engineering, Garching 2004, pages 167–179. Springer
Verlag, 2005.
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19.1 Introduction

Scientific applications that demand petascale computing power often in-
volve very complex mathematical models. For continuum models based on
partial differential equations (PDEs), the model complexity also tends to sig-
nificantly amplify the associated software complexity. This is particularly the

391
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case when the PDEs are solved by finite-element methods involving unstruc-
tured grids on parallel computers. The present chapter aims to present a new
way of developing human- and machine-efficient finite-element software for
challenging scientific applications.

Many approaches have been developed to deal with software complexity in
PDE codes. Among the most successful ones are general libraries based on
object-oriented or generic (template) programming [50, 5, 18, 11, 6, 30, 44, 10].
However, petascale computing makes extreme demands on the computational
efficiency, and meeting these demands with general libraries is very challeng-
ing. Code developers seeking ultimate performance on the most recent super-
computers have therefore traditionally preferred to write their own domain-
specific codes, where particular features of the physical and numerical problem
at hand can be taken advantage of in order to tune the efficiency of arithmetic
operations, memory access, and parallel speedup.

The contradictory strategies of writing a new code more or less from scratch
versus building it on top of general libraries is a fundamental issue to resolve
when targeting new supercomputer architectures. The ideal solution is a
hybrid procedure where general libraries are reused whenever appropriate,
but where large portions of the code can be highly tuned to the application
at hand. Such a hybrid approach is the topic of the present chapter. Our
suggested software development method makes it human-efficient to write a
new PDE application, yet with computational efficiency that may outperform
handwritten, domain-specific codes.

Our key ideas are threefold: (i) the application code is flexibly composed
in a scripting language; (ii) computationally intensive, problem-specific parts
of the code are automatically generated; (iii) highly tuned general libraries
are used whenever appropriate. Point (i) makes it convenient to write new
scientific applications. A particularly important feature of point (ii) is that
the compiler which generates the code is restricted to a particular set of PDE
problems and can therefore analyze the user’s problem and generate highly
optimized, specialized code in Fortran, C, or C++. A human would struggle
to write similar complicated code free of bugs and with comparable efficiency.
Finally, point (iii) contributes to further reliability and efficiency by reusing
mature libraries developed and tuned by lots of skilled people over many
years. Linear solver packages, such as PETSc [4], Trilinos [52], and Hypre
[28], constitute examples on this type of code.

Using scripting languages, and Python [46] in particular, for serial and par-
allel scientific applications is an emerging and promising approach [29, 35, 15,
14]. To gain the required efficiency it is paramount to migrate computation-
ally intensive loops to compiled code. The idea advocated in this paper is to
automatically generate the source for certain parts of the compiled code. This
is not a new idea, e.g., ELLPACK [48] offers the user a high-level PDE lan-
guage from which efficient Fortran 77 code is automatically generated. Fastflo
[21] and FreeFEM [22] are two other examples that adopt similar ideas and
use their own PDE languages as the front end for users. However, employing
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a full-fledged scripting language as the user interface, provides great flexibility
in the composition of the basic steps of the overall solution algorithm. Even
more important is the fact that Python, with its rich collection of libraries,
makes it easy and convenient to deal with all the administrative and non-
numerical tasks that fill up large portions of scientific codes. In the following
sections we explain how to automatically generate a PDE-specific layer of op-
timized C++ code, how this layer is combined with ready-made libraries for
unstructured grids, linear solvers and preconditioners, and how we use Python
“on top” to compose PDE application codes.

Section 19.2 presents some examples on how an end user of our software
framework can write high-level PDE codes. A critical issue for the efficiency
of the high-level codes is the generation of matrices and vectors in the dis-
crete PDE problem. This topic is treated in Section 19.3, where we advo-
cate problem-dependent, automatic code generation for performing intensive
numerics. Section 19.4 describes the format of the generated code and its
relation to external libraries. How the suggested software methodology fits
well in a parallel computing context is outlined in the final section, along with
concluding remarks.

19.2 High-Level Application Codes

Our goal is to have a user-friendly software framework where we can write
algorithms for solving PDEs, while maintaining the speed of compiled lan-
guages. In a sense, we try to create an environment in which one can express
solution algorithms for PDE problems just as easily as one can write algo-
rithms for linear algebra problems in Matlab.

Algorithm 19.1: Newton’s method.
Given F, u, α, and tolerance
ε = ‖F(u)‖

while ε > tolerance
e = J−1F(u)
u = u − αe
ε = ‖F(u)‖
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def Newton(F, u, Jinv, tolerance=1.0e-6, alpha=1.0):
iterations = 0
Fu = F(u)
epsilon = sqrt(inner(Fu,Fu))
while epsilon > tolerance:

e = Jinv(u)*Fu
u - = alpha*e
Fu = F(u)
epsilon = sqrt(inner(Fu,Fu))
iterations + = 1

return u, epsilon, iterations

FIGURE 19.1: Python implementation of Newton’s method (Algorithm 19.1).

As an introductory example, let us show how well Python is suited to im-
plement a basic numerical algorithm in a readable, compact and yet efficient
way. To this end, we consider Newton’s method for solving a system of non-
linear equations F(u) = 0 (Algorithm 19.1) and the corresponding Python
code (Figure 19.1). This implementation of Newton’s method is more general
than corresponding Matlab code because it will work for any objects having
* and () operators and common array data structures. For example, when
the nonlinear system is small, Jinv(u) can be a plain matrix representing
the inverse of the Jacobian (J−1), while for large, sparse systems arising from
discretizing PDEs, e = Jinv(u)*F(u) should imply that a linear system with
the Jacobian J as coefficient matrix and F as the right-hand side is solved.∗

If a user tries to use the above function with objects F and Jinv that
have not implemented these operators, an informative exception is thrown.
Hence, “templatization” as known from C++, comes naturally and for free
in Python. The reason why we adopt Python instead of C++ for writing
the application code is simply that the Python code is cleaner and easier to
understand, and because we think Python is more convenient than C++ for
all the nonnumerical tasks in the application code.

The example above is an illustration of a general Matlab-like code in Python
that utilizes different objects in different occasions to maintain computational
efficiency. In the rest of this section we will discuss how solvers for PDE prob-
lems can be implemented in our PyCC framework [45]. PyCC, which stands

∗This solution approach is easily implemented in Python by letting F and Jinv be classes,
with call operators ( call , corresponding to operator() in C++) such that Jinv(u)

assembles J, while F(u) assembles F. The multiplication operator ( prod in Python,
operator* in C++) in the class for Jinv then solves the linear system Jx = F by some
appropriate method attached to the Jinv object. The low-level implementation of the linear
system solution process should take place in compiled Fortran, C or C++ code.
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for Python Computing Components, aims at developing a user-friendly envi-
ronment for solving PDEs in Python. Until now, our efforts have mostly been
concentrated on implementing schemes for computing the electrical activity
of the heart as described in [39], but we are now working with solvers for
viscous flow and elasticity problems. In the following, we will present code
snippets for a few viscous flow solvers. Incompressible flow is governed by the
following Navier-Stokes equations:

∂v
∂t

+ v · ∇v = −∇p + Re−1Δv + b,

∇ · v = 0

where v is the fluid velocity field, p is the pressure field, Re is the Reynolds
number, and b denotes body forces. The first scheme is an explicit projection
scheme

v∗ = vn − kvn · ∇vn + kRe−1Δvn − k∇pn + kbn,

−Δφ = −1
k
∇ · v∗,

pn+1 = pn + φ,

vn+1 = vn − k∇φ

The superscript n denotes the time step and k is the (local) time step length.
Hereafter, we will present the schemes in their fully discretized “linear algebra”
form. The above scheme can be written as

Mu∗ = Mun − kC(un)un − kRe−1Aun − kBT pn + kMfn (19.1)

Dφ = −1
k
Bu∗ (19.2)

pn+1 = pn + φ, (19.3)
un+1 = un − kBT φ (19.4)

When a finite element method [8, 17, 34, 54] is used for the spatial discretiza-
tion the matrices are given by

Mij =
∫

Ω

Ni · Nj dx (19.5)

Aij =
∫

Ω

∇Ni : ∇Nj dx (19.6)

C(un+1)ij =
∫

Ω

(∇ ·
∑

vn+1
k Nk)Ni · Nj dx (19.7)

Bij =
∫

Ω

∇ · Ni Lj dx (19.8)

Dij =
∫

Ω

∇Li · ∇Lj dx (19.9)

Eij =
∫

Ω

LiLj dx (19.10)
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Here {Ni} and {Li} are the basis functions of the velocity and pressure,
respectively.

gal = Gallery(grid)

M = gal.assemble_mass_matrix(v_element) A =

gal.assemble_stiffness_matrix(v_element) C =

gal.assemble_convection_matrix(u_n, v_element)

B = gal.assemble_div_matrix(v_element, p_element) BT =

B.transposed()

D = gal.assemble_stiffness_matrix(p_element) E =

gal.assemble_mass_matrix(p_element)

FIGURE 19.2: The creation of some predefined matrices in PyCC.

In PyCC, the Python code snippet for assembling the various matrices
takes the form shown in Figure 19.2. The Gallery object supports the cre-
ation of many predefined matrices, such as the mass, stiffness, convection and
divergence matrices. Additionally, it supports creation of matrices based on
user-defined variational forms, which will be described in more detail in the
next section.

Having constructed the matrices, the complete implementation of this ex-
plicit projection scheme is shown in Figure 19.3. This implementation works
for any vector and matrix with addition and multiplication operators, and
for any preconditioner with a preconditioner-vector product. In the present
example the matrices are in PyCC’s own format, while the preconditioners
are created as a thin layer on top of the algebraic multigrid package ML in
the open source parallel linear algebra package Trilinos [52].

Although we used ML as a preconditioner in the above example, there are
several high-quality linear algebra packages, such as PETSc [4] and Hypre
[28], that for some problems might be more suited. All these projects are
fairly mature, have Python bindings, and are scalable on parallel computers.
Since it is not clear which of these linear algebra libraries is the best in a given
situation, we construct our software framework such that the high-level PDE
codes are independent of the underlying linear algebra package. Interfacing a
new linear algebra library is simple; we only have to provide basic operations
for matrices, vectors, and preconditioners, and assembler functions (block
insertion and addition) for matrices and vectors.

Modifying the above simulator to, for instance, the second-order implicit
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precM = MLPrec(M); precD = MLPrec(D) # calc. preconditioners

# time loop T = 1; k = 0.1; Re1 = 1/100.0 while t < T:

t = t + k

# update from previous solution

p_n, u_n = p, u

# assemble right hand side

f = gal.assemble_source_vector(body_force(t=t))

C = gal.assemble_convection_matrix(u_n, v_element)

rhs = M*u_n - k*(C*u_n + BT*p_n + Re1*A*u_n - f)

# compute tentative velocity

M, rhs = bc_velocity(M, rhs) # impose boundary conditions

u_star, iter = conjgrad(M, u_star, rhs, precM, tol=1e-9)

# compute phi

rhs = (-1.0/k)*B*u_star

phi, iter = conjgrad(D, phi, rhs, precD, tol=1e-9)

# update p and u

p = p_n + phi

u = u_n - k*BT*phi

FIGURE 19.3: PyCC code for a first-order explicit projection scheme, see
Equation (19.1)–(19.4).

projection method found in [9] is easy. A variant of this scheme† reads

Mu∗ +
k

2
(Re−1Au∗ + C(un))u∗ = Mun − k

2
Re−1Aun (19.11)

−k

2
C(un)un + kMfn+1/2 (19.12)

Dφ = Bu∗ (19.13)

un+1 = u∗ + BT φ (19.14)

pn+1 = (M + kRe−1A)φ (19.15)

and is displayed in Figure 19.4 together with the Python code. Note that we

†The convective term is approximated as C(un−1/2))un−1/2 ≈ 1
2
(C(un)u∗ + C(un)un),

which is not a second-order approximation. Alternatively, we could include a nonlinear
iteration and handle the C(un−1/2))un−1/2 properly as we do in the final scheme in this
section. In [9] it was computed by a second-order extrapolation.



398 A Hybrid Approach to Efficient Finite-Element Code Development

...

rhs = M*u_n - k/2*A*u_n - k/2*C*u_n + k*M*f

A1 = M + k/2*(Re1*A + C)

A1, f = bc_velocity(A1, f) # impose boundary conditions

precA1 = MLPrec(A1)

u_star, iter = bicgstab(A1, u_star, rhs, precA1, tol=1e-9)

rhs = (1.0/k)*B*u_star

phi, iter = conjgrad(D, phi, rhs, precD, tol=1e-9)

u = u_star - k*BT*phi

p = (M + k*Re1*A)*phi

FIGURE 19.4: Changes in the implementation of a second-order implicit
projection scheme, see Equations (19.11)–(19.15).

display only the lines in the computer code that differ from the program in
Figure 19.3.

The two projection schemes shown so far work for any kind of finite ele-
ments, but they often give poor accuracy close to the boundary. Saddle-point
schemes circumvent this problem at the expense of using mixed finite ele-
ments, which lead to indefinite linear systems. Our next scheme is such a
saddle-point scheme where the convection is handled explicitly:

Mun+1+kRe−1Aun+1+kBT pn+1 = Mun−kMfn+1−kC(un)un (19.16)
kBun+1 = 0 (19.17)

For this scheme there exist order optimal preconditioners of the form [12, 41,
53]:

K ≈ (M + kRe−1A)−1 (19.18)
L ≈ 1/(kRe−1)E−1 + D−1 (19.19)
N = diag(K,L) (19.20)

where K and L can be constructed by standard elliptic preconditioners such as
multigrid or domain decomposition. The scheme is now conveniently written
in block form[

M + kRe−1A kBT

kB 0

] [
un+1

pn+1

]
=

[
Mun − kMfn+1 − kC(un)un

0

]
(19.21)

with a preconditioning matrix[
(M + kRe−1A)−1 0

0 1/(kRe−1)E−1 + D−1

]
(19.22)
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# create block vector and block rhs x = BlockVector([u, p]); rhs =

BlockVector([0, 0])

# create block matrix and block preconditioner Q = BlockMatrix([[M +

k*Re1*A, k*BT], [k*B, Null]]) Q, rhs = bc_velocity(Q, rhs, t=0)

precQ = BlockDiagMatrix([MLPrec(M + k*Re1*A),

1/(k*Re1)*MLPrec(E) + MLPrec(D)])

... # time loop: while t < T:

...

rhs[0] = M*u_n - k*(M*f + C*u_n)

Q, rhs = bc_velocity(Q, rhs, t=t)

x, iter = minres(Q, x, rhs, precQ, tol=1e-9)

...

FIGURE 19.5: Implementation of a saddle-point scheme, see Equations
(19.21)–(19.22), with convection handled explicitly.

The resulting preconditioned system is symmetric and indefinite and can be
efficiently solved with the minimal residual method. A code snippet for this
scheme is shown in Figure 19.5.

The above scheme handles convection explicitly, which is feasible only in
very transient problems. A more robust scheme may apply a Newton iteration
on the fully nonlinear system:

Mun+1+kRe−1Aun+1+kC(un+1)un+1+kBT pn+1 = Mun−kMfn+1(19.23)

kBun+1 = 0 (19.24)

The part of the Jacobian matrix and the right-hand side associated with the
nonlinear convection term are given by‡:

Jc
ij =

∂Fi

∂ui
(19.25)

Fc
i =

∫
Ω

(v · ∇)v · Ni dx (19.26)

The corresponding code is shown in Figure 19.6. This scheme is very stable
in terms of the discretization parameters, but the resulting linear systems are
hard to solve. The matrix is neither positive nor symmetric. The algebraic

‡The rest of the Jacobian matrix and the right-hand side consist of matrices and vectors
described before, i.e., mass, stiffness, divergence matrices, etc.
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# time loop T = 1; k = 0.1; t = 0 while t < T:

t = t + k

f = gal.assemble_source_vector(body_force(t=t))

eps = sqrt(inner(F,F))

while eps > tolerance and iter <= maxiter:

# assemble right hand side corresponding to convection term

FC = gal.assemble_vector(rhs_form, u)

# assemble Jacobian part corresponding to convection term

JC = gal.assemble_matrix(Jacobian_form, u)

F = BlockVector([M*u + k*(FC + Re1*Au - BT*p + f), 0])

J = BlockMatrix([[M + k*(JC + Re1*A), k*BT], [k*B, 0]])

J, F = bc_velocity(J, F) # impose boundary conditions

K = MLPrec(J)

precJ = BlockDiagMatrix(K, L)

e, iter = bicgstab(J, e, F, precJ, tol=1e-9)

x -= alpha*e

eps = sqrt(inner(F,F))

FIGURE 19.6: Implementation of a fully implicit scheme, see Equations
(19.23)–(19.24).
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multigrid preconditioners in ML and BoomerAMG work well as precondi-
tioners for K as long as the convection is not too dominating, in which case
renumbering strategies such as [7, 24] should be used. However, the second
component L is hard to construct efficiently. It is well known that it should
be a cheap approximation of

(BJ−1BT )−1 (19.27)

Since such a preconditioner is currently not available, we use the precondi-
tioner given in (19.19).

It is difficult to know in advance which of the above schemes will be most
efficient in a given physical problem, and it should therefore be easy to switch
between schemes. This is particularly the case in complex flow problems of
the size that may demand petascale computing power. A possibly attractive
approach is to combine the speed of the projection scheme with the accuracy
of the mixed approach by using projection to compute either a start vector
for the mixed approach, or to use it as a preconditioner, as outlined in [36].
Such trial-and-error-based construction of schemes is feasible only in a flexible
software framework, as the one shown. The computational efficiency of the
framework relies heavily on the speed of creating finite-element matrices and
vectors, and these quantities are tightly connected to the specific PDE problem
being solved. The next section deals with how to construct such matrices and
vectors efficiently.

19.3 Code Generation

In the previous section we demonstrated how to write high-level PDE codes
by mapping the time loop with linear algebra problems to Python code. A
fundamental step in these code examples is to generate the matrices and vec-
tors involved. The current section presents ideas and generic tools for auto-
matic, efficient generation of matrices and vectors arising from finite element
discretizations in space.

General systems for the numerical solution of PDEs are often met with
skepticism, since it is believed that the flexibility of such tools cannot be
combined with the efficiency of competing specialized computer programs that
only need to know how to solve a single equation. However, we will argue that
it is possible to design general systems that accept a wide range of inputs,
while competing with or even outperforming specialized and hand-optimized
codes.
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19.3.1 Meta-programming

The key to combining generality with efficiency in scientific software is
code generation, or meta-programming. Meta-programming refers to a col-
lection of programming techniques for writing computer programs that gen-
erate other programs or parts of programs. Examples of meta-programming
include using the C preprocessor cpp to expand macros into code, C++ tem-
plate meta-programming, and using high-level language compilers. A more
direct approach that we will discuss below is explicit generation of code in
some general-purpose language like C or C++ from a set of simple instruc-
tions.

Code generation can be accomplished by inventing a new high-level domain-
specific language and implementing a compiler for that language that trans-
lates a high-level description in the domain-specific language to code in a
general-purpose language, or directly to machine code. Alternatively, one
may embed the domain-specific language in an expressive general-purpose
language. This has the advantage that one may focus on the domain-specific
subsystem and build on top of a mature, well-known language. Another ad-
vantage is that end users can develop application codes in a familiar language.
Choosing Python as this language exposes the end user to a clean, MATLAB-
like syntax, which has proven to be attractive among computational scien-
tists.

By meta-programming, it is possible to combine generality with efficiency
without loss of either. Instead of developing a potentially inefficient general-
purpose program that accepts a wide range of inputs, a suitable subset of
the input is processed at compile-time§ (at little extra cost) to generate a
specialized program that takes a more limited set of inputs, as illustrated in
Figure 19.7.

In the context of an automating system for the solution of PDEs, the subset
of input processed at compile-time (input 1) may include the variational prob-
lem and finite element spaces, while the subset of input processed at run-time
(input 2) may include the mesh and physical input parameters. One can then,
for a given variational formulation of a PDE problem, generate a program that
takes a mesh as input and computes the corresponding matrix A or vector b
as output. The overall system may then be viewed as a system that takes a
variational problem and a mesh as input and computes the matrix or vector.
Thus, if the compiler generating the specialized code from the meta program
accepts a wide range of inputs (variational problems), the overall system may
be both general and efficient. The efficiency comes from the compiler’s knowl-
edge about the problem domain and the possibility of performing case-specific
analysis of the variational problem at hand to introduce smart optimizations

§Note that the distinction between compile-time and runtime is blurred if the compiler that
turns the meta-program into code is implemented as a just-in-time compiler, that may be
called at runtime to generate code on the fly.
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in the generated C, C++, or Fortran code.
Below, we present two particular instances of such a domain-specific com-

piler: FFC and SyFi. For a given finite-element variational problem, these
compilers generate C++ code for a particular set of functions that get called
during the assembly of the matrix A or vector b. In particular, code is gen-
erated for the computation of the element matrix (or element vector) on each
element of a finite element mesh, from which the global matrix or vector may
be assembled. Thus, FFC or SyFi take the role of the generating machine
of Figure 19.7; the input (variational problem) is a subset of the total input
(variational problem and mesh) and the output is computer code that may be
called to produce the global matrix or vector from the remaining input (the
mesh).

FIGURE 19.7: A machine (meta-program) accepting given input data and
producing output by generating a specialized machine (computer program)
from a subset (input 1) of input data. The generated machine accepts the
remaining subset (input 2) of input data to produce output. The overall
system may be viewed as a single system that accepts the full set of input
data.

To limit the complexity of the automating system, it is important to identify
a minimal set of code to be generated at compile-time. It makes little sense to
generate the code for administrative tasks such as reading and writing data to
file, special algorithms like adaptive mesh refinement, etc. Handling data files
is conveniently and efficiently done in Python while a subject like adaptive
mesh refinement calls for specific, very efficient compiled code, preferably in
C++ where sophisticated data structures are well supported. In both cases,
generic software components can be written and collected in reusable libraries.

Meta-programming as described above can be a powerful tool for combining
generality and efficiency. However, constructing such an automating system is
challenging, as the whole meta-programming paradigm is complex. Especially,
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debugging the generating machine is hard, since errors might only be visible
in the final output of the automating system. Also, since the generating
machine is a compiler, the compile-time and the memory usage can sometimes
be difficult to control.

19.3.2 Just-in-time compilation of variational problems

In Section 19.2, we demonstrated the implementation of algorithms for the
solution of PDEs in a high-level scripting language. We then assumed the
existence of a component for the creation of matrices and vectors arising from
finite-element discretizations of variational problems. Such “matrix factories”
may provide functionality for computing a limited set of predefined matrices.
By expressing the variational problem as a meta-program and implementing a
just-in-time compiler for variational problems, one may instead generate the
matrix factory for any given variational problem automatically at runtime.
Below, we discuss two approaches to creating such compilers.

Assume that a physical problem is recast into a standard variational form:
Find U ∈ Vh such that

a(v, U) = L(v) ∀v ∈ V̂h (19.28)

where a : V̂h × Vh → R is a bilinear form, L : V̂h → R is a linear form and V̂h

and Vh are discrete finite-element spaces, typically piecewise polynomials over
a triangulation of a domain. From this variational problem, the finite-element
method generates a linear system with coefficient matrix A and right-hand
side vector b.

Computing the matrix A and vector b is normally expensive. Furthermore,
implementing a completely general-purpose routine for this computation is
difficult since all variational problems look different. Thus, the computation
of the linear system is typically implemented by a different routine for each
variational problem. When using a traditional Fortran, C or C++ library for
finite-element computation, the end user must code by hand the expressions
that generate the matrix and vector corresponding to the bilinear and linear
forms. The code that the user must provide may be heavily decorated by
Fortran, C, or C++ details such that the correspondence between the code
and the mathematical formulation becomes weak. This coding process can be
time-consuming and prone to errors.

19.3.3 FFC

In [32, 31, 33], it is described how efficient code for the computation of
the matrix and vector of the linear system may be generated automatically
for a large class of variational problems. The algorithms described in these
references have been implemented in the open-source form compiler FFC [37],
which is a domain-specific compiler for variational problems. FFC has re-
cently been embedded as a just-in-time compiler inside the DOLFIN [26]
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element = FiniteElement("Vector Lagrange", "tetrahedron", 1)

v = TestFunction(element) u = TrialFunction(element)

def epsilon(w):

return 0.5*(grad(w) + transp(grad(w)))

a = dot(epsilon(v), epsilon(u))*dx

FIGURE 19.8: The specification of the bilinear form, see Equation (19.32),
in the FFC-form language.

Python/C++ problem-solving environment. This allows the specification of
variational problems in Python from which FFC generates efficient code for
the computation of the components of the associated linear system.

As a demonstration, consider the generation of code for the following set of
bilinear forms:

a(v, u) =
∫

Ω

v u dx (19.29)

a(v, u) =
∫

Ω

∇v · ∇u dx (19.30)

a(v, u) =
∫

Ω

v · (w · ∇)udx (19.31)

a(v, u) =
∫

Ω

ε(v) : ε(u) dx (19.32)

The bilinear form (19.29) generates a mass matrix, form (19.30) is the bilin-
ear form for the Poisson equation, the bilinear form (19.31) results from a
linearization of the nonlinear term in the incompressible Navier-Stokes equa-
tions, and the bilinear form in Equation (19.32) is the strain–strain term of
linear elasticity where ε(v) = 1

2 (∇v + (∇v)T ).
In Figure 19.8, we present the Python code specifying the bilinear form in

Equation (19.32) in the FFC-form language (embedded in Python). We note
that by suitable operator overloading in Python, the bilinear form may be
expressed in a form that is close to the mathematical notation (19.32). We
also note that by working on top of a general-purpose language like Python,
the full power of the general-purpose language is in the hands of the user.
In this case, the user can easily specify the operator ε by a standard Python
function epsilon. An excerpt of the generated code (in total, 561 lines of
C++ code are generated) is given in Figure 19.9.

Domain-specific knowledge allows the optimizing compiler FFC to generate
very efficient code for test cases (19.29)–(19.32). We demonstrate this in
Table 19.1, where we present the speedup of the generated code compared to
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void tabulate_tensor(double* A, ...) {

...

const double G0_0_0 = det*Jinv00*Jinv00 + det*Jinv00*Jinv00

+ det*Jinv00*Jinv00 + det*Jinv00*Jinv00

+ det*Jinv01*Jinv01 + det*Jinv02*Jinv02

+ det*Jinv01*Jinv01 + det*Jinv02*Jinv02;

const double G0_0_1 = det*Jinv00*Jinv10 + det*Jinv00*Jinv10

+ det*Jinv00*Jinv10 + det*Jinv00*Jinv10

+ det*Jinv01*Jinv11 + det*Jinv02*Jinv12

+ det*Jinv01*Jinv11 + det*Jinv02*Jinv12;

...

const double G8_2_1 = det*Jinv21*Jinv12 + det*Jinv21*Jinv12;

const double G8_2_2 = det*Jinv21*Jinv22 + det*Jinv21*Jinv22;

const real tmp0_13 = 4.166666666666660e-02*G0_0_0;

const real tmp0_38 = 4.166666666666662e-02*G0_2_1;

const real tmp0_1 = -tmp0_13 + -4.166666666666661e-02*G0_1_0

- 4.166666666666660e-02*G0_2_0;

const real tmp0_37 = 4.166666666666661e-02*G0_2_0;

const real tmp0_25 = 4.166666666666661e-02*G0_1_0;

const real tmp0_26 = 4.166666666666662e-02*G0_1_1;

...

const real tmp8_139 = 4.166666666666662e-02*G8_2_2;

const real tmp8_125 = 4.166666666666661e-02*G8_1_0;

const real tmp8_100 = -tmp8_101 + 4.166666666666661e-02*G8_0_1

+ 4.166666666666661e-02*G8_0_2 + 4.166666666666662e-02*G8_1_1

+ 4.166666666666662e-02*G8_1_2 + 4.166666666666662e-02*G8_2_1

+ 4.166666666666662e-02*G8_2_2;

const real tmp8_126 = 4.166666666666662e-02*G8_1_1;

const real tmp8_113 = 4.166666666666660e-02*G8_0_0;

const real tmp8_138 = 4.166666666666662e-02*G8_2_1;

A[0] = tmp0_0;

A[1] = tmp0_1;

A[2] = tmp0_2;

...

A[141] = tmp6_141;

A[142] = tmp6_142;

A[143] = tmp6_143;

}

FIGURE 19.9: Excerpt of the code generated by FFC for the computation of
the 144 entries of the 12× 12 “element stiffness matrix” corresponding to the
input code of Figure 19.8.
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TABLE 19.1: Speedups in two and three space dimensions as a
function of the polynomial degree q for test cases (19.29)–(19.32): the
mass matrix (M), Poisson’s equation (P), the incompressible
Navier–Stokes equations (NS) and linear elasticity (E).

Form q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8
M2D 12 31 50 78 108 147 183 232
M3D 21 81 189 355 616 881 1442 1475
P2D 8 29 56 86 129 144 189 236
P3D 9 56 143 259 427 341 285 356
NS2D 32 33 53 37 — — — —
NS3D 77 100 61 42 — — — —
E2D 10 43 67 97 — — — —
E3D 14 87 103 134 — — — —

a standard quadrature-based implementation, i.e., an implementation where
all integrals present in the definition of the variational problem are evaluated
by quadrature over each local cell in the mesh at runtime. We also plot the
number of lines of C++ code generated for each of the test cases as a function
of the polynomial degree of the finite-element function spaces in Figure 19.10.
We see from this figure that for basis functions of high degree, the routine
for computing the element matrix and vector may have over 10,000 lines of
optimized code. It is obvious that manual coding of such a routine would be
a tedious and error-prone process.

FFC is able to generate very efficient code by computing a special tensor
representation, see [33], of the variational problem at compile-time, factoring
out all integrals from the definition of the variational problem. This makes it
possible to precompute the integrals once on a reference element and then at
compile-time map the precomputed quantities to each cell in the mesh during
the computation of the matrix A or vector b.

As seen in Table 19.1, the speedup ranges between one and three orders
of magnitude, with larger speedups for higher-degree elements. It should
be noted that the speedup here refers to the speedup of an isolated portion
(computing the “element stiffness matrix”) of the overall solution process of
a PDE. The overall global speedup depends also on the problem being solved,
the efficiency of the interaction with the mesh, the data structure for the
global sparse matrix, the linear solvers and preconditioners, etc.

19.3.4 SyFi

An approach similar to FFC, but which is based on symbolic computa-
tions prior to the code generation, is utilized in SyFi [2, 38, 39]. SyFi is an
open source C++/Python library that supports a variety of different finite
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FIGURE 19.10: The number of lines of C++ code generated by FCC for test
cases (19.29)–(19.32) as a function of the polynomial degree q.

elements¶. The basis functions of these elements are represented as symbolic
polynomials which can be differentiated and integrated over polygonal do-
mains. Hence, the computation of element matrices and vectors based on
variational forms and finite elements is readily available analytically. SyFi re-
lies on the computational engine GiNaC [23], which is a powerful and efficient
C++ package for symbolic computation, and its Python interface Swiginac
[51].

Earlier in Section 19.2 we showed an example of a fully implicit scheme for
incompressible flow which gave rise to a system of nonlinear equations. We
now describe how the linearized systems for the nonlinear convection part are
computed symbolically. The formulas for the Jacobian matrix and the right-
hand side are given in (19.25) and (19.26). The corresponding Python code
for defining this matrix and vector is shown in Figure 19.11. Notice that this
is code for Jc and Fc is completely independent of the element type and that

¶Supported elements include the Arnold-Falk-Winther element [3], the Crouzeix-Raviart
element [19], the standard Lagrange elements, the Nédélec elements [42, 43], the Raviart-
Thomas element [47], and the robust Darcy-Stokes element [40].
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def F(Ni, U, G, Ginv):

gradU = grad(U, Ginv)

UxgradU = (U.transpose() * gradU)

Fi_convection = inner(UxgradU.transpose(), Ni)

return Fi_convection

def J(uj, Ni, U, G, Ginv):

Fi = F(Ni, U, G, Ginv)

Jji = diff(Fi, uj)

return Jji

FIGURE 19.11: Jacobian element matrix and right-hand side for a nonlinear
convection problem.

this code can be used to generate element matrices for arbitrary elements.
Furthermore, the Jacobian matrix is computed directly by differentiating Fc,
i.e., there is no need for tedious calculations with pencil and paper.

In Figure 19.12 we display how the definitions of element matrices and el-
ement vectors from Figure 19.11 are used to generate the C++ code shown
in Figure 19.13, which is then compiled into a shared library/Python exten-
sion module. This extension module is then used in the PyCC framework to
assemble the global matrices and vectors.

We believe code generation with form compilers constitutes a generic ap-
proach for generating efficient code for finite-element methods. We have de-
scribed two different form compilers, each with its strengths and weaknesses.
One of the particular strong sides of FFC is that it produces very optimized
code. The advantage of SyFi is the direct computation of the Jacobian in case

triangle = ReferenceTriangle() order = 2 fe =

VectorLagrange(triangle, order)

JC_form = NLMatrixForm(J, name="Jacobian", num_coefficients=1)

FC_form = VectorForm(F, name="Rhs", num_coefficients=1)

# generate and compile C++ code for the computation of the # element

matrix and vector, return a compiled form object Jacobian_form =

compile_form(JC_form, fe) rhs_form = compile_form(FC_form, fe)

# assemble the linear system JC = gal.assemble_matrix(Jacobian_form,

u) FC = gal.assemble_vector(rhs_form, u)

FIGURE 19.12: Computing the Jacobian in a nonlinear convection-diffusion
problem using SyFi.
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void tabulate_tensor(double* A,

const double * const * w,

const ufc::cell& c) const

{

// coordinates

double x0=c.coordinates[0][0]; double y0=c.coordinates[0][1];

double x1=c.coordinates[1][0]; double y1=c.coordinates[1][1];

double x2=c.coordinates[2][0]; double y2=c.coordinates[2][1];

// affine map

double G00 = x1 - x0;

double G01 = x2 - x0;

double G10 = y1 - y0;

double G11 = y2 - y0;

double detG_tmp = G00*G11-G01*G10;

double detG = fabs(detG_tmp);

double Ginv00 = G11 / detG_tmp;

double Ginv01 = -G10 / detG_tmp;

double Ginv10 = -G01 / detG_tmp;

double Ginv11 = G00 / detG_tmp;

memset(A, 0, sizeof(double)*36);

A[6*0 + 0] = detG*(-w[0][0]*Ginv01/12.0-Ginv11*w[0][3]/48.0

- w[0][5]*Ginv11/48.0+w[0][4]*Ginv01/48.0

+ w[0][2]*Ginv00/48.0-w[0][3]*Ginv10/48.0

- w[0][1]*Ginv10/24.0-Ginv00*w[0][0]/12.0

- w[0][2]*Ginv01/48.0-w[0][5]*Ginv10/48.0

- Ginv00*w[0][4]/48.0 -w[0][1]*Ginv11/24.0);

A[6*0 + 1] = detG*(-w[0][1]*Ginv01/24.0-w[0][1]*Ginv00/24.0

+ Ginv00*w[0][3]/24.0+w[0][5]*Ginv01/24.0);

A[6*0 + 2] = ...

...

A[6*5 + 5] = detG*(w[0][0]*Ginv01/48.0+Ginv11*w[0][3]/48.0

+ w[0][5]*Ginv11/12.0+w[0][4]*Ginv01/24.0

+ w[0][3]*Ginv10/24.0-w[0][1]*Ginv10/24.0

+ w[0][2]*Ginv01/48.0-w[0][1]*Ginv11/48.0);

}

FIGURE 19.13: Generated C++ code for the Jacobian element matrix.
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FIGURE 19.14: Main components in a finite-element assembly application.

of nonlinear PDEs. To enable users to experiment with both form compilers
within the same framework, the systems agree on a common format for the
generated C++ code, which is the topic of the next section.

19.4 A Unified Framework for Finite-Element Assembly

Large parts of a finite-element program are similar from problem to problem
and can therefore be coded as a general, reusable library. Mesh handling,
finite element assembly, linear and nonlinear solvers, preconditioners and other
linear algebra tasks are examples of operations that are naturally coded in a
problem-independent way and made available in reusable libraries [25, 50, 5,
18, 11, 6, 30, 44, 4, 52, 10]. However, some parts of a finite element program
are difficult to code in a problem-independent way. In particular, this includes
the code for evaluation of the so-called element matrix, that is, the evaluation
of the local contribution from a local finite-element during the assembly of
the global sparse matrix representing a discretized differential operator.

In this section, we present a unified framework for finite-element assembly,
where the key is the specification of a fixed interface between the problem-
independent and problem-specific parts of a finite element code. The interface
is named Unified Form-assembly Code (UFC) [1], and is currently being de-
veloped as part of the FEniCS project [25, 20]. The two form compilers FFC
and SyFi discussed in the previous section are both capable of generating code
that conforms to the UFC specification. Thus, code generated by FFC and
SyFi may be used interchangeably in finite-element applications.
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19.4.1 Finite-element assembly

To present the UFC interface, we first outline the standard finite-element
assembly algorithm used in many finite-element codes [54, 27, 34]. In Algo-
rithm 19.2, a global sparse matrix A is assembled by adding the local contri-
butions from each cell K of a finite element mesh T = {K}. On each cell, the
element matrix AK is computed. This computation depends on which discrete
operator (variational form) is being assembled and must thus be implemented
in a problem-specific way. Furthermore, on each mesh the local-to-global
mapping ιK is computed, that is, the mapping from local degrees of freedom
(the row and column indices in AK) to global degrees of freedom (the row and
column indices in A). The local-to-global mapping is used to add the entries
of the element matrix AK to the corresponding entries in the global matrix A.

Algorithm 19.2: Assembling a global matrix A over a mesh.
A = 0
for each K ∈ T

Tabulate the local-to-global mapping ιK
Compute the element matrix AK

Add AK
i to AιK(i),ιK(j) for all (i, j)

The algorithm assembly may be extended to assembly of tensors of ar-
bitrary ranks (including matrices, vectors and scalars) and to assembly of
contributions from boundaries or interior edges/faces.

19.4.2 The UFC interface

The UFC interface isolates the problem-specific parts of the standard finite-
element assembly algorithm. Looking at Algorithm 19.2, we note that it
relies on essentially four different components: (i) communication with the
mesh, (ii) communication with the global sparse matrix, (iii) tabulation of the
local-to-global mapping and (iv) tabulation of the element matrix. The first
two components may be implemented by a mesh library and a linear algebra
library, respectively, while components (iii) and (iv) are problem-specific and
need to be implemented manually for any given variational problem or may
be generated by a form compiler like FFC or SyFi.

What the UFC interface provides is a fixed interface for communication
between the assembly algorithm and the problem-specific components (iii)
and (iv). Thus, the assembly algorithm may itself be implemented as part of
a reusable software library that calls the generated problem-specific code to
tabulate the degrees of freedom and the element matrix.

A complete description of the UFC specification is beyond the scope of this
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chapter, but we briefly mention some key points of the interface. First, a gen-
eral mathematical definition of the element tensor is presented, of which the
element matrix AK in Algorithm 19.2 is a special case. Next the components
of this definition are related to the abstract classes in UFC.

The interface covers the assembly of arbitrary rank forms defined as inte-
grals over the cells, boundary facets and interior facets (edges or faces) of a
finite-element mesh. For {V j

h }r
j=1 a given set of finite element function spaces

defined on a triangulation T of Ω ⊂ R
d, we consider a general form a defined

on the product space V 1
h × V 2

h × · · · × V r
h :

a : V 1
h × V 2

h × · · · × V r
h → R (19.33)

For j = 1, 2, . . . , r, we let {φj
i}

|V j
h |

i=1 denote the (nodal) basis of V j
h and assemble

the rank r tensor A given by

Ai = a(φ1
i1 , . . . , φ

r
ir

; w1, . . . , wn)

=
∑
K∈T

∫
K

CK(φ1
i1 , φ

2
i2 , . . . , φ

r
ir

; w1, w2, . . . , wn) dx (19.34)

+
∑

S∈∂Te

∫
S

ES(φ1
i1 , φ

2
i2 , . . . , φ

r
ir

; w1, w2, . . . , wn) ds (19.35)

+
∑

S∈∂Ti

∫
S

IS(φ1
i1 , φ

2
i2 , . . . , φ

r
ir

; w1, w2, . . . , wn) ds (19.36)

∀i = {i1, i2, . . . , ir} ∈ Πr
j=1[1, |V j

h |]

Here, T , ∂Te and ∂Ti denote the sets of cells, exterior facets (the facets on the
boundary) and interior facets (the facets not on the boundary), respectively.
Similarly, CK , ES and IS denote the integrands on cells, exterior and interior
facets, respectively. The integrands may optionally depend on a set of fixed
functions w1, w2, . . . , wn, defined on an auxiliary set of finite-element function
spaces {V j

h }r+n
j=r+1.

The general form (19.33) is specified by the class ufc::form. This class
provides basic information about the compiled form, like the rank r of the el-
ement tensor and the number of coefficients n, and provides factory functions
to construct concrete implementations of the other UFC classes. Through
these factory functions, a ufc::form can construct a ufc::finite element
and ufc::dof map for each function space V j , j = 1, 2, . . . , r+n. Figure 19.15
shows one of the function tabulate dofs from ufc::dof map for tabulation of
the local-to-global mapping. The form object can also construct any number
of integral objects (ufc::cell integral, ufc::exterior facet integral,
ufc::interior facet integral) representing (19.34-19.36). Each such in-
tegral object has a function tabulate tensor that may be called to compute
the contribution from the cells, exterior and interior facets, respectively. Each
of these three functions has a slightly different signature, with one of them
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namespace ufc {

class dof_map

{

...

virtual void tabulate_dofs(unsigned int* dofs,

const mesh& m,

const cell& c) const = 0;

...

};

class cell_integral

{

...

virtual void tabulate_tensor(double* A,

const double * const * w,

const cell& c) const = 0;

...

};

}

FIGURE 19.15: Part of the UFC interface for tabulation of the local-to-global
mapping ιK and the element tensor AK .

shown in Figure 19.15. Examples of UFC code generated by FFC and SyFi
were given in Figures 19.9 and 19.13.

In order not to introduce dependencies on particular mesh formats, two low-
level data structures ufc::mesh and ufc::cell are used to pass information
about the mesh to the UFC functions. The class ufc::mesh contains basic
information about the size and type of mesh. In the ufc::cell structure,
we include global coordinates of the cell vertices and global indices for each
local mesh entity contained in the cell (vertices, edges and facets). The UFC
data structures ufc::mesh and ufc::cell are not meant to be used to build
a complete data structure for a whole finite-element mesh, but to provide a
view (e.g., in terms of C/C++ pointers) of the necessary mesh and cell data
for the UFC functions.

19.4.3 Implementing the UFC interface

A key design goal for the UFC interface is to allow complicated variational
formulations in combination with most of the finite-element spaces in use to-
day. It is imperative that the interface is flexible enough for complex problems,
and that it allows efficient implementation of finite-element assembly. Since
the interface is in relatively low-level C/C++ code, efficient implementations
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are straightforward to implement. It uses virtual functions for flexibility, and
raw pointers for efficient argument passing. Since the UFC interface consists
of a single header file with no external dependencies, this gives a high degree
of decoupling between the software packages that implement and use it.

It should be noted that the UFC interface is not tied to form compilers
or code generation; the various functions in the interface may well be im-
plemented manually. We also hope that the UFC interface may be adopted
by other PDE software packages in the future. Code that complies with the
UFC specification may then be used interchangeably in different finite-element
software.

19.5 Conclusions

We have presented a new way of designing large-scale finite element codes.
One design goal is to offer the user a simple way to define the problem and
the basic steps in the overall solution algorithm. Another design goal is to
ensure that the numerically intensive parts of the code are highly optimized
and well suited for supercomputers. Reusing mature and well-tested general
libraries is a third design goal. A key idea is to use high-level Python scripts
as the user’s interface to define the problem and the basic steps of the solution
algorithm. The problem-dependent parts of the code are automatically gen-
erated by form compilers, of which FFC and SyFi are two different choices.
Both compilers write out UFC-compliant code such that generic libraries can
reach all information about finite elements and element matrix/vector compu-
tations through a unified interface. We believe that UFC is an important step
for achieving a higher degree of interoperability between various finite-element
packages.

In a complete system for the evaluation and assembly of variational forms,
formalizing the concept of a form compiler might be useful. In such a system
UFC defines the output format of the back end, and SyFi and FFC constitute
concrete compiler implementations. A common language for the front ends is,
however, missing. We plan to define such a language, Unified Form Language
(UFL), to be used by both SyFi and FFC, such that the end user can have
full flexibility in his or her choice of form compiler.

Parallel computing has not yet been explicitly discussed. The simplest way
of parallelization of the proposed type of finite-element codes is to provide
support for parallel assembly in the general library. With parallel, “global”
matrices and vectors, linear algebra libraries like PETSc, Hypre and Trilinos
can be used to solve the linear and nonlinear systems. For many problems, an
efficient parallelization technique is to apply overlapping or nonoverlapping
domain decomposition [16, 49] at the PDE level, either as a direct solution
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algorithm or as a preconditioner. Essentially, this domain decomposition al-
gorithm can be implemented as a new framework “on top” of serial solvers
(following the ideas of [13], for instance). Each subproblem over a subdomain
is then treated by the PyCC code snippets shown in the second section. Again,
the general library must support parallel assembly and parallel matrices and
vectors. The FFC and SyFi parts of the code will not be affected by either of
these parallelization techniques. Also the PyCC code can be kept very much
intact in a parallel context, but the technical demonstration of this assertion
will be the topic of a future paper.

Along with petascale computing, scientists will get multicore desktop ma-
chines. This new architecture constitues great challenges to code writers. Our
suggested way of splitting a finite-element program into different parts also
has significant potential for multicore computers as the high-level problem
definition remains the same, but the generic libraries must support this archi-
tecture. Whether multicore architectures affect the form compilers is an open
question, but for large element tensors (higher-order elements, multiphysics
models), concurrent computing of a single element tensor at the multicore
level might be beneficial. The associated low-level code will be generated by
the form compiler anyway.

The important idea is that a form compiler and a generic library can be
written “once and for all,” while the really human-resource-consuming part
of the problem-solving process lies in the scientists’ application programs.
These programs have a much longer life than the hardware on which they
are running. We believe that the suggested software design in this chapter
helps to keep the numerically intensive core of the applications up-to-date
for decades by occasionally using future form compilers to generate new code
on new architectures and by linking with future generic libraries tailored to
future architectures.
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20.1 Motivation

The increasing size and complexity of parallel machines, along with the in-
creasing sophistication of parallel applications, makes development of parallel
applications a challenging task for petascale machines. The National Science
Foundation has planned the deployment of a sustained petaflops (PFLOPS)
machine by 2010, which is likely to have several hundred thousand processor
cores. The Blue Gene/L already has 128K cores, and some future designs
with low-power processors may have over a million cores. Machines in the
intervening years are slated to perform at over a PFLOPS peak performance.
Further, as portended by the Roadrunner project at Los Alamos National
Laboratory (LANL), some of the large machines will have accelerators along
with commodity processors.

Meanwhile, parallel applications are growing in sophistication: it is under-
stood that “increasing resolution everywhere” is not the best way to utilize
higher compute power. Instead, applications are increasingly using adap-
tive refinement to match the geometric variation over space, and dynamic
refinement and coarsening to deal with variations in the phenomenon being
simulated as it evolves over time. Modern algorithms, such as Barnes-Hut
for gravity calculations, reduce operation counts to make large simulations
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feasible, but in the process make parallelization challenging. Applications of-
ten include independently developed parallel modules that must be effectively
composed. Many applications are now multiphysics in nature, making such
multi-module composition even more important.

MPI is the dominant programming methodology today, and there is some
hope that it will continue to be used for some petascale applications. How-
ever, there is clearly a need for raising the level of abstraction beyond MPI
to increase programmer productivity, especially for the sophisticated next-
generation applications mentioned above.

Charm++ is a parallel programming system developed over the past 15 years
or more, aimed at enhancing productivity in parallel programming while en-
hancing scalable parallel performance. A guiding principle behind the design
of Charm++ is to automate what the “system” can do best, while leaving
to the programmers what they can do best. In particular, we believe that
the programmer can specify what to do in parallel relatively easily, while the
system can best decide which processors own which data units and execute
which work units. This approach requires an intelligent runtime system, which
Charm++ provides.

Thus, Charm++ employs the idea of “overdecomposition” or “processor
virtualization” based on migratable objects. This idea leads to programs that
automatically respect locality, in part because objects provide a natural en-
capsulation mechanism. At the same time, it empowers the runtime system
to automate resource management. The combination of features in Charm++
and associated languages makes them suitable for the expression of parallelism
for a range of architectures, from desktops to PFLOPS-scale parallel machines.

In this chapter, we first present an overview of the Charm++ programming
model. Charm++ is a mature system with libraries and sophisticated perfor-
mance analysis tools that are being adapted to petascale. We describe these
as well as other basic capabilities enabled by its adaptive runtime system.
Adaptive MPI, a full MPI implementation built on top of Charm++, ensures
that the benefits of Charm++ are available to the broad class of applications
written using MPI. We then describe three full-scale applications that have
scaled well to over 16,000 processors. These applications are in active use
by scientists. They illustrate the potential of Charm++ in addressing peta-
scale programming issues. BigSim, described in Section 20.4, is a system
designed to analyze the performance of Charm++ and MPI applications on
petascale machines using emulations and simulations on a relatively smaller
number of processors. In section 20.5, we review a few new parallel program-
ming abstractions on top of Charm++ that we believe substantially enhance
programmer productivity.
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20.2 Charm++ and AMPI: Programming Model

Charm++ programs are C++ programs, along with a few small interface
description files. A computation (running program) consists of C++ objects
that are organized into indexed collections. The indexing allows for sparse or
large multidimensional collections, as well as other arbitrary indexing mecha-
nisms such as strings or bit-vectors. Objects communicate via asynchronous
method invocations. The objects that accept such (remote) method invoca-
tions are called chares. The collections are called chare arrays by analogy
with data arrays; it is important to remember that each element of a chare
array is NOT a base-type, but a chare, which can be migrated across proces-
sors by the runtime system, and typically holds a coarse grain of data and
computation. Typical applications may have tens of chares on each processor,
while for some applications there may be tens of thousands of them.

The execution of a program begins with the creation of a specially desig-
nated main chare, which typically creates multiple chare arrays. The control
on each processor resides with a scheduler which works with a prioritized
queue of messages, each holding (in the simple case of Charm++ programs)
a method invocation for a chare on that processor. In the base model, all
methods are nonblocking; thus, the scheduler repeatedly selects method invo-
cations from its queue and executes them without interruption. The methods
invoked on chares asynchronously are called entry methods and are specified
in the interface description files mentioned above.

Charm++ also supports “threaded” and “sync” methods. A user level,
lightweight thread is associated with each threaded method, which allows the
thread to block and return control to the Charm++ scheduler. One particular
reason to block is provided by the “sync” methods: unlike the asynchronous
entry methods, which have no return value, these methods can return a value;
more importantly, the caller object is blocked until the method is executed
and returns, which also provides an additional synchronization mechanism.

Chares can migrate across processors; messages are delivered to chares cor-
rectly, with an efficient caching and forwarding mechanism. This empowers
the runtime system to optimize program execution in myriad ways, as dis-
cussed later.

The message-driven split-phase style of Charm++ programming is not alien
to developers of event-driven programs on the desktop, which is one reason
why we believe it will be a good language to handle the desktop parallelism
unleashed by multicore chips. However, it is more challenging for the computa-
tional science and engineering (CSE) community, where developers are accus-
tomed to the single-control-thread model of MPI. For this reason, Charm++
supports a notation called structured dagger [13], which allows a clean expres-
sion of the life cycle of a single object. This notation is translated into normal
Charm++ programs without resorting to the use of threaded methods, by the
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Charm++ translator which also handles the interface files.
Charm++’s main strength is its adaptive runtime system (RTS). Its use of

C++, and asynchronous method invocation are orthogonal to this strength.
With this realization, and to further widen the applicability of this RTS,
we developed adaptive MPI (AMPI), which is an implementation of MPI on
top of Charm++: each MPI “process” is implemented as a user-level thread
embedded in a Charm++ object.

20.2.1 Dynamic load balancing

Load balancing is an important and increasing need for large-scale sim-
ulations, as adaptive methods are increasingly being used, and simulations
often deal with evolving physical models. For example, finite element method
(FEM) simulations involve dynamic geometry, and use adaptive techniques to
solve highly irregular problems.

Charm++ provides an application-independent automatic dynamic load-
balancing capability. It is based on migratable objects in Charm++ and mi-
gratable threads in AMPI [33]. By migrating existing tasks among processors,
the Charm++ runtime system distributes computation uniformly across all
processors, taking the object load into account, while minimizing the commun-
ication between them. The most up-to-date application and background load
and the communication structure are automatically instrumented and col-
lected by the runtime system without requiring a priori application knowledge.
This load and communication information can be used to predict the appli-
cation’s behavior in the near future due to the principle of persistence [12].
The principle of persistence is an empirical observation that the object com-
putation times and communication patterns (number and bytes of messages
exchanged between each communicating pair of objects) tend to persist over
time in most scientific and engineering applications.

Charm++ implements a range of object-based load-balancing strategies,
with approaches ranging from centralized to distributed. The centralized load
balancers have been shown to work effectively on up to a few thousand proces-
sors for various applications, but beyond that they start becoming a bottle-
neck due to high memory and CPU overheads; fully distributed load balancers
avoid the bottleneck, but lead to poor quality in the balance they achieve. We
have demonstrated hierarchical techniques that combine aspects of centralized
and fully distributed balancers, in principle, on several Charm++ benchmarks
that can scale to a very large number of processors.

For machines with very large numbers of processors, it becomes impor-
tant to take the topology of the machine into consideration due to the pos-
sible network contention caused by suboptimal object-to-processor mapping.
Charm++ provides several topology-sensitive load-balancing techniques [1]
for typical topologies like the torus of Blue Gene/L and Cray XT3. These
load-balancing strategies minimize the impact of topology by heuristically
minimizing the total number of hop-bytes (the total size of inter-processor
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communication in bytes weighted by the distance between the respective end-
processors) communicated.

20.2.2 Projections

Projections is a sophisticated performance analysis framework developed to
support the discovery of performance problems in large-scale Charm++ and
AMPI applications. It consists of a highly flexible performance instrumenta-
tion and tracing infrastructure built into the Charm++ runtime system as well
as a Java visualization toolkit that reads trace logs generated by the instru-
mentation component to present the performance information in a manner
that is easily understood by application developers seeking to debug perfor-
mance issues.

Performance analysis is human-centric. As illustrated in Figure 20.1, start-
ing from visual distillations of overall application performance characteristics,
the analyst employs a mixture of application domain knowledge and expe-
rience with visual cues expressed through Projections in order to identify
general areas (e.g., over a set of processors and time intervals) of potential
performance problems. The analyst then zooms in for more detail and/or
seeks additional perspectives through the aggregation of information across
data dimensions (e.g., processors). The same process is repeated, usually
with higher degrees of detail, as the analyst homes in on a problem or zooms
into another area to correlate problems. The richness of information coupled
with the tool’s ability to provide relevant visual cues contribute greatly to the
effectiveness of this analysis process.

(a) Overview of 512-
processor run of NAMD
over several seconds.

(b) A time profile of 512
processors over a 70ms
range of interest.

(c) Detailed timeline of
sample processors over
the same 70ms range.

FIGURE 20.1: Projections performance analysis, zooming to different levels
of detail and viewing different data perspectives.

In the drive to scale applications to petascale systems, Projections has been
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enhanced to scalably handle the increase in the volume of performance trace
data generated on systems with many thousands of processors. We take a
two-pronged approach to the problem. First, Projections has to present per-
formance information that is pertinent and avoid overwhelming the analyst.
For instance, it is very tedious to manually identify a small number of pro-
cessor execution profiles that appear to behave poorly or differently from
thousands of other processors. We employ various heuristics and algorithms
to aid the identification of the set of extrema and representative processors
for the analyst. Second, Projections must control the total volume of data
generated. We do this by doing automatic parallel analysis at the end of
a parallel run so that only the trace buffers of processors that are deemed
“interesting” are written. For processors that are “uninteresting,” a much
smaller time-aggregated data format is written in its place.

20.2.3 Summary of other features

Since Charm++ programs typically consist of many more chares than pro-
cessors, each processor houses many chares. As a result, the RTS must have
a scheduler on each processor that decides which object executes next. Note
that this is a user-level scheduler; for the operating system (OS), there is
only one process running, and the OS scheduler is not involved in scheduling
chares. The Charm++ scheduler works with a queue of generalized messages:
each message in a simple Charm++ program corresponds to an asynchronous
method invocation sent to one of the objects on that processor. It selects a
message (by default in first-in, first-out (FIFO) order, but in general in order
of application-specified priorities) from this queue and invokes a method on an
object, both indicated by the envelope of the message. The scheduler allows
the method to run to completion, and then repeats the process by selecting
the next message in the queue. There is no preemption. For more complex
Charm++ programs, as well as for AMPI programs, the object may return
control to the scheduler when it is blocked waiting for some data. In this case,
the method invoked must be a “threaded” method, and it is supported by a
user-level threads package in the RTS.

This message-driven execution renders Charm++ programs automatically
tolerant of communication latencies. If one object is waiting for data, another
object which has its message can continue execution without any user code to
orchestrate such switching. This automatic and adaptive overlap of commun-
ication also extends across parallel modules: two concurrently executing paral-
lel modules may overlap on processors, and yet automatically interleave their
execution adaptively. Such concurrent composition capability is essential for
modularity in parallel programs: without this (as in MPI), a programmer will
be tempted to break abstraction boundaries between two modules (in MPI,
inserting wild-card receives in each module to transfer control to the other
module, for example) to avoid performance penalties resulting from the in-
ability to overlap idle time in one module with useful computation in the other.
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Some of the impressive capabilities of Charm++ follow directly from the
migratability of its objects. Since objects can migrate across processors, au-
tomatic checkpointing is supported by “migrating” a copy of each object to
disk. Charm++ also supports much faster checkpointing in another proces-
sor’s memory for applications which have a small footprint in between time
steps (i.e., at checkpoint times). Charm++ programs gain this capability
without additional user code development, and it is available in the standard
Charm++ distribution. A more ambitious scheme being developed for the
petascale context implements a sender-side message-logging protocol special-
ized to migratable objects. With this, when a fault occurs, all processors
are not rolled back to their checkpoint; rather only the objects on the failed
processors are resurrected on multiple other processors, where they recover
concurrently, while the rest of the computation continues to make progress
to the extent possible. Since recovery is parallelized, the system can make
progress even when the MTBF (mean time between failures) is smaller than
the checkpoint period. This capability is currently available only in a research
version of Charm++.

The sets of processors allocated to a Charm++ job can be changed at run-
time. This shrink/expand capability has been used to design efficient clus-
ter schedulers. When a new job arrives, for example, a running job can be
“shrunk” to make the minimum number of processors needed by the new job
available to it. On a “parallel computer” consisting of idle desktop work-
stations, this same capability can be used to migrate objects away from a
workstation, when its owner desires exclusive use of it.

For applications that require much more memory than a parallel machine
has available, Charm++ can support automatic out-of-core execution by se-
lectively moving chares to and from the disk. This is facilitated by its ability
to “peek” into the scheduler’s queue to decide which objects are needed in
the near future and to prefetch them. This double-buffering capability is
also exploited in the ongoing implementation of Charm++ on the IBM Cell
Broadband Engine (Cell BE) processor. We expect that future machines that
use accelerators of any form (GPGPUs, Cell BEs, etc.) will benefit from this
capability.

Since the Charm++ RTS mediates all communication between chares, it
can observe the patterns of communication and optimize communication; for
example, it can replace one all-to-all algorithm by another at runtime [16].

The Charm++ LiveViz module allows applications to display images while
the simulation is running, on machines where such external communication
is allowed. The client-server library in the RTS used for this purpose is
also leveraged by an online debugger [10], which supports such features as
freeze-and-inspect, memory-visualization and analysis, and record-and-replay
for catching nondeterministic bugs.
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20.3 Charm++ Applications

20.3.1 NAMD

NAMD is a parallel program for simulation of biomolecular assemblies con-
sisting of proteins, DNA molecules, cell membranes, water molecules, etc.
NAMD is one of the earliest CSE applications developed using Charm++. As
a result, several features in Charm++ have coevolved with NAMD, includ-
ing its dynamic load-balancing framework. NAMD exemplifies our research
group’s objective of “application-oriented but computer science-centered re-
search” [11], i.e., we aim to develop enabling technologies motivated by and
in the context of a “real” application, while making sure those technologies
are broadly applicable by honing them with multiple applications.

Parallelization of NAMD is described in earlier in this book (see Chapter 9,
[23]). Here, we only note that adaptive overlap of communication and com-
putation across modules as well as dynamic load balancing are two of the
Charm++ features especially useful for effectively parallelizing NAMD. Fea-
tures such as the topology-aware and hierarchical load balancers (see Section
20.2) being developed in Charm++ will be instrumental in scaling NAMD to
petascale machines.

20.3.2 LeanCP

The Car-Parrinello ab initio molecular dynamics (CPAIMD) method [4, 21]
can model complex systems with nontrivial bonding and events such as chem-
ical bond forming and breaking, and thus has enormous potential to impact
science and technology. Kalé, Martyna, and Tuckerman have collaborated
as part of an interdisciplinary team funded under the U.S. National Science
Foundation’s Information Technology Research program (NSF-ITR, Grant
0121357) in order to (1) improve the methodology and sampling algorithms
to permit larger scale simulations of higher accuracy; (2) employ next gener-
ation software engineering tools to design and implement parallel algorithms
for CPAIMD which scale to thousands of processors and to instantiate them
in a package to be referred to as LeanCP [27]; (3) use the new techniques
and LeanCP software for applications in technologically important areas;
(4) transfer the knowledge thus gained to the community through diversity-
conscious outreach and education programs ranging from the secondary to
graduate levels as well as through international academic and industrial col-
laborations. These goals have been largely realized on IBM’s Blue Gene/L
(see Figure 20.2). Like all Charm++ codes, it is portable to most clusters and
supercomputers, and the specialized adaptations for Blue Gene/L are being
enhanced to perform with similar efficiency on other torus architectures, such
as the Cray XT4.
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FIGURE 20.2: Parallel performance of LeanCP on IBM’s Blue Gene/L (hor-
izontal line is perfect scaling)

The fine-grained decomposition using Charm++ has freed the CPAIMD
method from its traditional limitation of only scaling effectively to number
of processors equal to the number of electronic states in the system being
studied. Due to the O(N2) and O(N3) nature of the computation methods,
where N is the number of states, systems with more than a few hundred states
are considered very large and require a great deal of computational power to
resolve them to convergence for the nanoseconds of simulated time required
to capture interesting events.

Through the use of Charm++’s fine-grained decomposition, adaptive over-
lap of communication with computation, topology aware placement to mini-
mize communication costs, and new methods development, LeanCP has scaled
the CPAIMD method to over 30 or even 60 times the number of processors
as there are electronic states (consuming all 40k processors of the IBM TJ
Watson Blue Gene/L). This extreme scaling is necessary if we are to reduce
the time to solution for interesting problems to within manageable limits by
applying ever larger supercomputers.

Special attention must be given to managing communication in order to
scale efficiently to large torus networks. Unlike traditional fat-tree networks,
the cost of communication in bandwidth and time increases substantially in
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FIGURE 20.3: Mapping LeanCP onto IBM’s Blue Gene/L 3D torus

proportion to the distance in hops from source to destination. If multi-cast and
many-to-many communication operations are naively mapped onto the torus,
they can easily degrade into spanning the entire torus. This will severely limit
scaling for communication-bound algorithms. For complex applications with
multiple interlocking communication patterns, it is critical that the mapping
of tasks to processors be flexible. Charm++ decouples the computational task
from its processor placement so that these issues can be treated separately.

In the case of LeanCP, there are seventeen chare object arrays which must
be placed such that the computation of each phase (represented by one or more
arrays) is well parallelized, while minimizing the communication cost from one
phase to the next. This is accomplished by partitioning the interacting chares
within interlocking sub-tori as shown in Figure 20.3. LeanCP decomposes the
computation along electronic states and along plane-wise slices of each elec-
tronic state. In Figure 20.3, the two sides of the plane wave in “real” space
before a 3D FFT and in “g” space after a 3D FFT are mapped in orthogo-
nal sub-tori. These are chosen to minimize the communication in the three
phases shown in the following manner: the state-wise communication in the
FFT phase operates within sub-tori along the torus Z axis, the plane-wise 3D
ortho-normalization matrix multiplication in “g” space operates within sub-
tori prisms in the torus X and Y axes, and the “real” space plane-wise density
computation operates within sub-tori slabs along the torus X-axis. Charm++
allows us to experiment with intricate mapping schemes independent from the
computation and parallel driver code and to adjust them for different systems
and torus sizes as needed.

Going forward, there are many ways in which petascale machines could be
used to improve scientific studies using LeanCP. The key idea in this area
is to study molecular systems large enough to contain all relevant effects for
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a sufficient duration to capture interesting events, such as bonds forming or
breaking, with enough accuracy to be confident in the predictive power of
the result. Planned modifications to LeanCP include several ways to improve
scalability, to improve accuracy, and to widen the variety of systems suitable
for study.

There are some important algorithmic extensions that parallelize well, or
even trivially, but will yield important scientific advantages. Of particular
interest, we will discuss path integral molecular dynamics [25, 22, 26, 20]
which allows the quantum mechanical treatment of light nuclei, in particular,
hydrogen. In this way, important chemical reactions and physical processes
involving quantum tunneling (isotope effects) can be properly examined. In
the Feynman path integral technique, the classical nuclei are replaced by ring
polymers that interact with each other in an orderly fashion, with all beads
of index i interacting with all other beads of index i on different atoms, via
the external potential. Beads associated with the same atom interact with
nearest-neighbor beads (i, i + 1) via harmonic potentials. The computational
cost of the method is P , the number of beads, times the cost of the standard
computation. The method is easy to parallelize because one simply spawns P
electronic structure computations, one for each bead. The electronic structure
computations do not require communication between them. The interaction
is transmitted by the intra-chain interactions between beads on the same
atom. For a relatively simple system such as water, one would typically choose
P = 64 beads, which would result in 64 times the work of that same system.
Thus, to keep the time to solution for all 64 beads of the system about the same
as that with non-path integral studies, 64 times the number of processors must
be used. Since this additional scalability from path-integral studies comes
with negligible overhead, LeanCP benchmark systems which efficiently scale
non-path integral experiments to 8K processor cores (i.e. systems with 256+
states) will scale similar path-integral studies up to P ∗8k cores (e.g., 64∗8k =
512k cores for water), when such petascale machines become available for use.

20.3.3 ChaNGa

Cosmological simulators are becoming increasingly important in the study
of the formation of galaxies and large-scale structures. The more general
study of the evolution of interacting particles under the effects of Newtonian
gravitational forces, also known as the N-body problem, has been extensively
reported in the literature. A popular method to simulate such problems was
proposed by Barnes and Hut [3]. That method associates particles to a hierar-
chical structure comprising a tree, and reduces the complexity of the problem
from O(N2) to O(N log N), where N is the number of particles.

Hierarchical methods for N-body simulations have been adopted for quite
some time by astronomers [17, 28]. Two of the most widely used codes in
this area are PKDGRAV [6] and GADGET [24]. Both codes contain good
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FIGURE 20.4: Parallel performance of ChaNGa on IBM’s Blue Gene/L.

physical-modeling capabilities, and have been scaled to over a hundred pro-
cessors, but they do not scale effectively on modern machines with thousands
of processors. The main reason for the poor scalability of these codes is the
intrinsic complexities associated with the problem which causes load imbal-
ances and non-negligible communication overheads to arise when the machine
size grows. Thus, it becomes very challenging to use the available processors
efficiently.

To address these problems, we developed a new cosmological simulator in
collaboration with Thomas Quinn from the University of Washington. This
simulator, named ChaNGa (Charm++ N-body Gravity solver), was first pub-
licly released in February 2007. ChaNGa was built as a Charm++ application
that employs a tree data structure to represent the simulation space. This
tree is segmented into elements named TreePieces, and constructed globally
over all particles in the simulation. The various TreePieces are distributed by
the Charm++ runtime system to the available processors for parallel compu-
tation of the gravitational forces. Each TreePiece is implemented in ChaNGa
as a Charm++ chare and can migrate between processors (e.g., during load
balancing) as the simulation evolves.

Because various TreePieces may reside on the same processor, ChaNGa em-
ploys a software-caching mechanism that accelerates repeated accesses to the
same remote particle data. Each processor contains a cache, implemented as a
Charm++ group, to store remotely fetched particles and tree nodes. The code
contains various optimizations that effectively utilize this cache and allow a
significant overlap between computation and communication. This overlap
is essential to achieve good parallel scalability. All these optimizations are
controlled by parameters that can be defined by the user when launching
a simulation. Another important feature in ChaNGa is the use of a multi-
step integration scheme, which on the smallest time step updates only those
particles with the highest accelerations, and only infrequently calculates the
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forces on all the particles. This feature allows large efficiency gains in simu-
lations of interest, because such simulations may span a large dynamic range
of timescales.

Like other Charm++ applications, ChaNGa is portable to a variety of plat-
forms, from commodity clusters to large parallel systems. As an example,
Figure 20.4 shows the gravity calculation performance of ChaNGa on IBM’s
Blue Gene/L with different cosmological data sets (the size of each data set,
in millions of particles, is represented in each data set name). In this diagram,
horizontal plot lines represent perfect scalability, while diagonal lines corre-
spond to reduced scalability. This figure shows that the code scales well to
over 8,000 processors. The good scalability in these plots comes mainly from
the optimizations that overlap computation and communication. Although
ChaNGa is already in production use by astronomers, we continue to work
on enhancements and further extensions for it. In particular, we are working
on a new class of load balancers that can deal with the multiple phases of the
computation separately, which is a requirement arising from the multistep
characteristic of the code. In addition, we intend to add hydrodynamics as a
complement to the current gravitational capability.

20.3.4 Other applications

Several other applications (or their components) have been implemented
using Charm++, including a structural dynamics code Fractography [31] de-
signed for studying crack propagation via cohesive elements, Rocstar[9] for
simulation of solid-motor rockets, a space–time-meshing code based on the
discontinuous Galerkin method, etc.

We believe that significant classes of future petascale applications can ben-
efit from Charm++: the multicomponent, multiphysics applications discussed
by [2] are one example. Also, codes similar to the community climate mod-
els can utilize AMPI to overlap computations of modules across processors.
AMPI currently requires a single executable on all processors, but facilitates
integration of independently developed MPI modules via cross communica-
tors. We think that the combination of features in Charm++/AMPI, including
automatic resource management and fault tolerance, makes it a compelling
platform for petascale applications.

ParFUM [18] leverages the Charm++ runtime system to provide a frame-
work for the parallelization of unstructured meshes and the applications that
use them. ParFUM inherits the many capabilities provided by Charm++
such as processor virtualization, communication and computation overlap,
dynamic load balancing and portability to many platforms. The base Par-
FUM implementation is in AMPI, allowing for rapid porting of existing MPI
simulations to ParFUM. ParFUM provides serial and parallel mesh partition-
ing via METIS [15] and ParMETIS [14], access to remote entities or ghosts
along partition boundaries, updates of ghost data and reductions on shared
nodes along partition boundaries, topological adjacencies and adaptive mesh
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refinement and coarsening.
ParFUM also benefits from Charm++’s load-balancing capabilities [31].

Each partition of a ParFUM mesh is associated with a single VP, and the
domain is typically decomposed into many more partitions than physical pro-
cessors. These partitions can then be migrated to improve load balance during
a simulation. In highly dynamic simulations [19], this ability is key to obtain-
ing good performance scaling. Simulations may use adaptive mesh refinement
and coarsening, involve rapidly evolving geometries, have variation in mate-
rial states and thereby computation times, all of which may apply to confined
regions of the mesh and vary dramatically over time. ParFUM is excellently
suited to such applications.

POSE [29] is a general-purpose optimistically synchronized parallel discrete
event simulation (PDES) environment built with Charm++. It was specifi-
cally designed to handle problematic simulation models with fine computation
granularity and a low degree of parallelism. Simulation entities in POSE are
known as posers and perform sequential computations in response to events
generated by other posers. Posers are designed to be smaller and lighter weight
than the traditional logical processors (LPs) of PDES, and can be migrated
to maintain load balance. POSE was the first system to introduce specula-
tive synchronization strategies that perform potentially out-of-order work on
processors to improve the cache performance and reduce the simulation over-
head. Even though there is a risk that such work may be rolled back, we have
demonstrated that the overall performance improves significantly.

20.4 Simulation of Large Systems

The development of PFLOPS-class computers, both in progress and planned
for the future, points to a need for specialized development tools to prepare
major applications for such architectures before they become operational. The
BigSim project [32, 35, 34] is aimed at creating such tools that allow one to de-
velop, and debug applications, and tune, scale and predict their performance
before these machines are available. In addition, BigSim allows easier off-line
experimentation with parallel performance-tuning strategies — without using
the full parallel computer. To machine architects, BigSim provides a method
for modeling the impact of architectural choices (including the communication
network) on actual, full-scale applications. The BigSim system consists of an
emulator and a simulator, capable of modeling a broad class of machines.

The BigSim emulator can take any Charm++ or AMPI program and “exe-
cute” it on a specified number of simulated processors, P , using the number
of simulating processors, Q, available to the emulator. For example, one can
run an MPI program meant for P=100,000 processors using only Q=2,000
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available processors. If the memory requirements of the application exceed
the available memory on the Q processors, the emulator employs a built-in
out-of-core execution scheme that uses the file system to store the processor’s
data when not in use. The emulator can be used to test and debug an ap-
plication, especially for scaling bugs (such as a data structure of size P ∗ P ).
One can, for example, (a) monitor memory usage, data values and output,
(b) debug for correctness, and (c) address algorithmic-scaling issues such as
convergence of numerical schemes, and scaling of operation counts with prob-
lem size, all at full scale. The emulator can be used to generate traces that
are used for coarse-timing predictions and for identification of performance
bottlenecks, when used together with the BigSim simulator that is described
next.

The BigSim simulator is a trace-driven parallel discrete event simulator
built with POSE, a parallel discrete event simulation environment developed
using Charm++. With reasonable detail, it simulates an integrated model for
computation (processors) and communication (interconnection networks). It
models architectural parameters of the target machine, including (optionally)
a detailed model of the communication network. It can be used to identify
potential performance bottlenecks for the simulated application such as load
imbalances, communication contention and long critical paths. The simulator
also generates performance traces just as a real program running on the target
machine would, allowing one to carry out normal performance visualization
and analysis. To predict performance of sequential code segments, the sim-
ulator allows a variable-resolution model, ranging from simple scale factors
to interpolation based on performance counters (and possibly cycle-accurate
simulators). To analyze performance of communication networks, one can
plug in either a very simple latency model, or a detailed model of the entire
communication fabric. The simulator is parallel, which potentially allows it
to run very large networks.

The BigSim emulator captures traces in log files for a collection of sequential
execution blocks (SEBs) on a number of processors. For each SEB, the traces
store their dependencies and relative timings of messages sent by them, with
source and destinations of those messages, along with additional parameters
that characterize their execution time. The logs are read by the BigSim
simulator which simulates the execution of the original SEBs by elapsing time,
satisfying dependencies, and spawning additional messages that trigger other
SEBs. Messages may be passed through a detailed network contention model
called BigNetSim [30, 5]. This generates corrected times for each event which
can be used to analyze its performance on the target machine.

The network contention component of the BigSim simulator, BigNetSim,
has a modular design: new topologies and routing algorithms can be easily
plugged into the system. We typically use virtual cut-through packet switch-
ing with a credit-based flow control to keep track of packets in the network.
The system supports virtual topologies for virtual channel routing which is
essential for deadlock-free routing algorithms on most topologies. Topologies
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already implemented include N-dimensional meshes and tori, N-dimensional
hypercubes and K-ary N-trees and hybrid topologies. All topologies have
physical and virtual channel-routing algorithms. Some routing algorithms are
adaptive. To support adaptivity based on the network load, we developed a
contention model and a load model for the interconnection network. Each
port of a switch has information which is dynamically updated and fed to the
routing engine to make informed decisions to minimize contention. The load
model maintains load information on each of the neighbors while the con-
tention model maintains information about the number of packets contending
for a particular output port of a switch.

20.5 New Parallel Languages

The message driven runtime in Charm++ makes efficient concurrent compo-
sition of multiple modules possible, as argued earlier. Further, these modules
do not have to be written in Charm++: as long as they are virtualized using
the same run-time system (RTS), each module can use a different coordi-
nation mechanism to communicate and synchronize among its entities. The
common RTS is called Converse, which underlies Charm++ and supports a
common interface to the machine’s communication capabilities in addition to
a user-level threads package. Sometimes, as we saw in the case of AMPI,
languages/paradigms are easier to implement on top of Charm++, instead of
the lower Converse level. We expect this multi-paradigm interoperability to
play a significant role in enhancing productivity in the future, by allowing
adoption of an appropriate parallel programming paradigm for each module.
This will also lead to the reuse of libraries developed in one paradigm in a
broad variety of applications, independent of the paradigm used by them.

On our part, we have developed two higher level mini-languages:

1. Multiphase shared arrays (MSA) allows AMPI (or Charm++) threads
to communicate via shared data arrays. However, each array is assumed
to be in only one mode at a time: either read-only, exclusive-write, ac-
cumulate, or “owner-computes.” At user-demarcated synchronization
points, each array may change its mode. This model provides disci-
plined, race-free access to shared data.

2. Charisma[7] enriches Charm++ by allowing a clear expression of the
global view of control, while separating parallel and sequential code. It
provides object-level parallelism and follows a producer-consumer model
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(or macro dataflow model) in which data is sent out as soon as it be-
comes available. Charisma constructs allow easy expression of vari-
ous communication patterns, such as point-to-point, broadcasts, multi-
casts, and reductions. The Charisma compiler generates an equivalent
Charm++ program.

Each language is expressive enough to capture a significant subset of appli-
cations. However, these languages are not complete by themselves: For each
language, there are classes of programs that it cannot express well or at all.
Yet together they are very useful because they can be used in conjunction with
each other and with other paradigms, due to the interoperability mentioned
above.

In the same spirit, we developed an implementation of ARMCI on top of
Charm++ [8]. We invite implementors of other paradigms to create virtualized
implementations on top of Charm++, to orthogonally take advantage of its
intelligent runtime system and to allow efficient interoperability across a broad
spectrum of languages.

20.6 Summary

In this chapter, we presented features of Charm++ and adaptive MPI, pro-
gramming methodologies that we believe are well-suited for programming
petascale machines. They provide a programming model that is indepen-
dent of the number of processors, automate resource management, and sup-
port concurrent composition. Several full-scale applications developed using
Charm++ were shown to have scaled to tens of thousands of processors, in
spite of their irregular and dynamic nature. The adaptive runtime system
at the heart of Charm++ can be used for supporting multiple programming
models, as well as enabling interoperability among modules developed using
them.

Charm++ has attained a degree of success less common among academ-
ically developed programming models: e.g., 15-20% of the CPU cycles at
two national centers (National Computational Science Alliance (NCSA) and
Pittsburgh Supercomputing Center (PSC)) during a one-year period were
spent on Charm++ applications, mainly NAMD. It is a mature, stable pro-
gramming system, with mature performance analysis tools. Thus, it should
not be dismissed as just an experimental system, but rather be accepted as a
mainstream model that can have an impact on the state of the art in parallel
computing. We hope that the next generation of applications being developed
using Charm++ will further cement its place as one of the significant models
for parallel programming.
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and P. Geubelle. Performance modeling and programming environments
for petaflops computers and the Blue Gene machine. In NSF Next Gener-
ation Systems Program Workshop, 18th International Parallel and Dis-
tributed Processing Symposium (IPDPS), page 197, Santa Fe, NM, April
2004. IEEE Press.





Chapter 21

Annotations for Productivity and
Performance Portability

Boyana Norris
Mathematics and Computer Science Division, Argonne National Laboratory,
9700 S. Cass Ave., Argonne, IL 60439, norris@mcs.anl.gov

Albert Hartono
Department of Computer Science and Engineering, Ohio State University,
2015 Neil Ave., Columbus, OH 43210, hartonoa@cse.ohio-state.edu

William D. Gropp
Mathematics and Computer Science Division, Argonne National Laboratory,
9700 S. Cass Ave., Argonne, IL 60439, gropp@mcs.anl.gov

21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
21.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

21.3 Performance Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
21.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
21.5 Summary and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

21.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

21.1 Introduction

In many scientific applications, a significant amount of time is spent in tun-
ing codes for a particular high-performance architecture. There are multiple
approaches to such tuning, ranging from the relatively nonintrusive (e.g., by
using compiler options) to extensive code modifications that attempt to ex-
ploit specific architecture features. In most cases, the more intrusive code
tuning is not easily reversible and thus can result in inferior performance on
a different architecture or, in the worst case, in wholly non-portable code.
Readability is also greatly reduced in such highly optimized codes, resulting
in lowered productivity during code maintenance.

We introduce an extensible annotation system that aims to improve both
performance and productivity by enabling software developers to insert anno-
tations into their source codes that trigger a number of low-level performance
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optimizations on a specified code fragment. The annotations are special struc-
tured comments inside the source code and are processed by a pre-compiler
to produce optimized code in a general-purpose language, such as C, C++,
or Fortran.

21.2 Implementation

In this section, we describe the current implementation of our annotation
software system. The annotations language is designed to be embeddable in
general-purpose languages, such as C/C++ and Fortran. Our design goal is to
construct an annotation system that is general, flexible, and easily extensible
with new annotation syntax and corresponding code optimizations. In the
following subsections, we describe the overall design of the system, followed by
an overview of the annotation language syntax and code generation modules
implemented to date.

21.2.1 Overall design

Our proposed approach is to exploit semantic comments, henceforth re-
ferred to as annotations, which are inserted into application source code. An-
notations allow programmers to simultaneously describe the computation and
specify various performance-tuning directives. Annotations are treated as reg-
ular comments by the compiler, but recognized by the annotation system as
syntactical structures that have particular meaning.

Figure 21.1 depicts at a high level the structure and operation of the anno-
tation system. The system begins with scanning the application source code
that contains inserted annotations, and then breaking up the code into differ-
ent annotated code regions. Each annotated code region is then passed to the
corresponding code generator for potential optimizations. As a final point,
target language code with various applied optimizations is generated for the
annotated regions.

The annotation system consists of one or more code generators, each imple-
mented as a module. Modules can be added to the system at any time without
requiring modifications to the existing infrastructure. Each code-generation
module can define new syntax or extend the syntax of an existing annotation
definition. Using the information supplied in the annotated region, each mod-
ule performs a distinct optimization transformation prior to generating the
optimized code. These optimizations can span different types of code trans-
formations that are not provided by compilers in some cases, such as mem-
ory alignment, loop optimizations, various architecture-specific optimizations,
high-level algorithmic optimizations, and distributed data management.
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21.2.2 Annotation language syntax

Annotations are specified by programmers in the form of comments and
do not affect the correctness of the program written. We denote annotations
using stylized C/C++ comments that start with /*@ and end with @*/. Both
of these markers are called opening and closing annotation delimiters, respec-
tively. As an example, the annotation /*@ end @*/ is used syntactically to
indicate the end of an annotated code region.

Table 21.1 shows the simple grammar of the annotation language syntax.
The structure of an annotated code region fundamentally comprises three main
parts: a leader annotation, an annotation body block, and a trailer annotation.
An annotation body block can either be simply empty or contain C/C++
source code that may include other annotated regions. A leader annotation
records the name of code-generation module that will be loaded dynamically

Annotation Parser

Annotated
Application 

Source Code

Annotated
Code Regions

Module 1

Module 2

Module N

. . .

Annotation-Based 
Code Generator

Optimized
Code

FIGURE 21.1: Overview of the annotation system.

TABLE 21.1: Annotation language grammar excerpt.
annotated-code-region ::= leader-annotation

annotation-body-block
trailer-annotation

leader-annotation ::= /*@ begin module-name
( module-body-block )
@*/

annotation-body-block ::=
| non-annotation-code annotation-body-block
| annotated-code-region annotation-body-block

trailer-annotation ::= /*@ end @*/
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by the annotation system to optimize and generate the annotated applica-
tion code. Moreover, a high-level description of the computation and several
performance hints are specified in the module body block inside the leader
annotation, and will be used as parametric input information during the opti-
mization and code-generation phases. A trailer annotation is utilized to close
an annotated code region, and it is uniformly defined as /*@ end @*/.

An example of annotated application code can be seen in Figure 21.2, where
lines 2–6 make up the annotated code region with line 2 and line 6 as the leader
and trailer annotations, respectively, and lines 3–5 make up the annotation
body block. The annotation code-generation module identified in this example
has the Variable name, and acquires the “x[],y[]” coding text as one of its
input parameters.

1.
2.
3.
4.
5.
6.
7.

void axpy_1(int n, double *y, double a, double *x) {
/*@ begin Variable (x[],y[]) @*/
int i;
for (i=0; i < n; i++)

y[i] = y[i] + a * x[i];
/*@ end @*/

}

FIGURE 21.2: Example of annotated application source code.

21.2.3 System extensibility

As we have seen in Section 21.2.2, provided with the module name specified
in the leader annotation, the annotation system dynamically seeks the corre-
sponding code-generation module and then loads and utilizes it to transform
and generate code. If the pertinent module cannot be found in the system, an
error message will be reported to the users and then the annotation system
process is suspended. In this fashion, the annotation system becomes flexible
and can be extended easily without evolving the annotation software system
that is currently available.

21.2.4 Code-generation module

Figure 21.3 portrays the general structure of the annotation-based code-
generation module. In order to generate an optimized code, each module
takes two classes of input parameters: code texts that are specified in the
module-body-block and annotation-body-block fields. The module body nor-
mally includes information that is essential for performing code optimization
and generation, such as multidimensional array variables, loop structures,
loop-blocking factors, and so forth. In order to extract such information, new
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Annotation-Based Code-Generation Module

Optimized
Code

Module-Based
Parser

Code
Optimization

Code
Generation

C/C++
Parser

Module-
Body-Block

Annotation-
Body-Block

FIGURE 21.3: Structure of code-generation module.

language syntax and a corresponding parser component are therefore crucially
required to be implemented in each code-generation module. On the other
hand, extracting information from the annotation body segment may neces-
sitate a challenging task to build a full-blown C/C++ parser. Fortunately,
many optimization cases can still be performed properly without parsing the
entire C/C++ source; thus, such a C/C++ parser is optional.

It is to be noted that a nested annotation code is possible when the anno-
tation body block contains other annotated regions. Hence, the optimization
and code generation must be carried out recursively by the annotation system
to handle nested annotations.

Some details on several code-generation modules that have been developed
and incorporated in the annotation systems are given as follows.

21.2.4.1 Memory-alignment module

The objective of this code-generation module is to exploit memory align-
ment optimizations on the Blue Gene/L architecture. The dual floating-point
unit (FPU) of the Blue Gene/L’s PowerPC 440d processor provides special
instructions for parallelizing floating-point computations. The IBM XL com-
piler attempts to pair contiguous data values on which it can operate in par-
allel. Therefore, computations performance can be improved by specifying
floating-point data objects that reside in contiguous memory blocks and are
correctly aligned. In order to facilitate such parallelization, the compiler re-
quires additional directives aimed to remove possibilities of aliasing and to
check for data alignment.

We illustrate the implementation of this module using a simple example
previously shown in Figure 21.2. As we can see at the specification in the
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1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

void axpy_1(int n, double *y, double a, double *x) {
/*@ begin Variable (x[],y[]) @*/
#pragma disjoint (*x, *y)
if ((((int)(x)|(int)(y)) & 0xF) == 0) {

__alignx(16,x);
__alignx(16,y);
int i;
for (i=0; i < n; i++)

y[i] = y[i] + a * x[i];
} else {

int i;
for (i=0; i < n; i++)

y[i] = y[i] + a * x[i];
}
/*@ end @*/

}

FIGURE 21.4: Optimized version of annotated code shown in Figure 21.2.

leader-annotation segment, this module is named Variable. The module
body comprises a list of array variables. In this example, x[] and y[] are the
array variables to be parallelized.

The resulting optimized version that corresponds to the example given
above can be seen in Figure 21.4. A #pragma disjoint directive (line 3)
is injected into the optimized code to inform the compiler that none of the
listed identifiers shares the same storage location within the scope of their use.
Knowing such information will enable the compiler to evade the overhead cost
of reloading data values from memory each time they are referenced, and to
operate on values already resident in registers. Note that this directive de-
mands that the two identifiers must be really disjoint. If the identifiers in fact
share the same memory address, the computations will function incorrectly.

Furthermore, the Blue Gene/L architecture requires the addresses of the two
data values, which are loaded in parallel in a single cycle, to be aligned such
that the loaded values do not cross a cache-line boundary. If they cross this
boundary, a severe performance penalty will be imposed due to the alignment
trap generated by the hardware. So, testing for data alignment is important.
In the optimized code example, checking for data alignment is executed in
line 4. The following two lines (lines 5 and 6) show calls to the alignx in-
trinsic functions. These function calls are used to notify the compiler that the
arriving data is correctly aligned, so the compiler can generate more efficient
loads and stores.

The complete grammar for the new language syntax of memory alignment
module is shown in Table 21.2. In addition to one-dimensional arrays, multi-
dimensional arrays can also be specified in the module-body block. One ex-
ample is a[i][], which will refer the compiler to the starting address location
of the ith row of the two-dimensional array a. The empty bracket is basically
used to refer to the starting address where a sequence of adjacent data to be
computed is stored in the memory. Another legitimate example is b[i][j][].
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TABLE 21.2: New language grammar of the memory alignment
module.

align-module-body-block ::= array-variable-list
array-variable-list ::= array-variable

| array-variable , array-variable-list
array-variable ::= array-variable-name dimension-list
dimension-list ::= dimension

| dimension dimension-list
dimension ::= []

| [ variable-name ]
| [ constant ]

However, the c[][i][j] specification is invalid because the empty bracket
position contradicts with the fact that C/C++ stores its array elements in a
row-major order. The c[][i][j] array variable will only become valid when
used to annotate Fortran source, since Fortran employs a column-major ar-
rangement rule. Such a data arrangement rule can be enforced easily by this
module using a simple semantic analysis.

It is to be noted that the statements in the annotation-body block (lines 3–5
in Figure 21.2) are used directly by this module with no parsing mechanism.
Thus, a complete C/C++ parser component is not needed, simplifying the
implementation of this module.

21.2.4.2 Loop-optimization module

The primary goal of this code-generation module is to provide extensible
high-level abstractions for expressing generic loop structures in conjunction
with a variety of potential low-level optimization techniques, such as loop un-
rolling, skewing, and blocking for cache, including other architecture-specific
optimizations. Two optimization strategies that have been constructed and in-
tegrated into the annotation system are loop unrolling and automated simdiza-
tion.

An overview of the new language syntax introduced by the code-generation
module can be found in Table 21.3. Essentially, a subset of C statements and
a newly defined transformation statement constitute the language grammar
of this module. For compactness, further details on each of the C statement
clauses are not given in this grammar. Many of the C-language features, such
as declarations, variable pointers, switch statements, enumeration constants,
cast expressions, and so forth, are excluded from the language grammar se-
lection due to the purpose of reducing the implementation complexity of this
module.

A new transformation statement clause is added into the grammar to achieve
the flexibility of extending the loop optimization module with new transforma-
tion submodules. Using the provided submodule name, the loop optimization
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TABLE 21.3: Overview of language structure of the loop
optimization module.

loop-opt-module-body-block ::= statement-list
statement-list ::= statement

| statement statement-list
statement ::= labeled-statement

| expression-statement
| compound-statement
| selection-statement
| iteration-statement
| jump-statement
| transformation-statement

transformation-statement ::= transform submodule-name
( keyword-argument-list ) statement

keyword-argument-list ::= keyword-argument
| keyword-argument ,

keyword-argument-list
keyword-argument ::= keyword-name = expression

module dynamically searches the corresponding submodule and then utilizes
it to transform the transformation statement body. Additional data specified
in the keyword argument list are obtained by transformation submodule to
perform its code transformation procedure.

The example in Figure 21.5 demonstrates how to annotate application code
with a simple loop unrolling optimization that aims to increase the cache-hit
rate and to reduce branching instructions by combining instructions that are
executed in multiple loop iterations into a single iteration. The keyword used
to identify the loop-optimization module is LoopOpt. The Loop name denotes
the transformation submodule, of which the most basic function is to represent
general loop structures. There are four fundamental parameters used to create
a loop structure: the index variable name (index), the index’s lower-bound
value (lower bound), the index’s upper-bound value (upper bound), and the
iteration-step size (step). For instance, the simple loop structure shown below

for (i = 0; i <= n-1; i++)
x[i] = x[i] + 1;

can be represented using the following transformation statement.

transform Loop(index=i, lower_bound=0, upper_bound=n-1, step=1)
x[i] = x[i] + 1;

Annotating a loop structure with loop-unrolling optimization is straight-
forward: add another keyword argument of the form “unroll = n,” where n
signifies how many times the loop body will be unrolled/replicated in the gen-
erated code. In the Figure 21.5 example, the loop body is unrolled four times,



Annotations for Productivity and Performance Portability 451

resulting in the unrolled-loop structure shown in lines 15–21. The following
loop (lines 22–23) is generated for the remaining iterations that are not exe-
cuted in the unrolled loop. Additionally, the generated code also includes the
original loop (lines 12–13) that can be executed through setting the ORIGLOOP
(line 11) preprocessor variable accordingly.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

void ten_reciprocal_roots(double* x,
double* f)

{
int i;
/*@ begin LoopOpt(

transform Loop(unroll=4,
index=i, lower_bound=0,
upper_bound=10, step=1)

f[i] = 1.0 / sqrt(x[i]);
) @*/
for (i = 0; i < 10; i++)

f[i] = 1.0 / sqrt(x[i]);
/*@ end @*/

}

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

void ten_reciprocal_roots(double* x,
double* f)

{
int i;
/*@ begin LoopOpt(

transform Loop(unroll=4,
index=i, lower_bound=0,
upper_bound=10, step=1)

f[i] = 1.0 / sqrt(x[i]);
) @*/
#if ORIGLOOP

for (i = 0; i < 10; i++)
f[i] = 1.0 / sqrt(x[i]);

#else
for (i = 0; i <= 10 - 3; i += 4)
{

f[i] = 1.0 / sqrt(x[i]);
f[i + 1] = 1.0 / sqrt(x[i + 1]);
f[i + 2] = 1.0 / sqrt(x[i + 2]);
f[i + 3] = 1.0 / sqrt(x[i + 3]);

}
for (; i <= 10; i += 1)

f[i] = 1.0 / sqrt(x[i]);
#endif
/*@ end @*/

}

FIGURE 21.5: Cache-optimization annotation example: annotated code (left)
and resulting generated code with an unrolled loop body (right) are shown.

As mentioned earlier in Section 21.2.4.1, on Blue Gene/L architecture, the
IBM’s XL C/C++ and XL Fortran compilers enable us to speed up computa-
tions by exploiting the PowerPC 440d’s Double Hummer dual FPU to execute
two floating-point operations in parallel. The XL compilers include a set of
highly-optimized built-in functions (also called intrinsic procedures) that have
an almost one-to-one correspondence with the Double Hummer instruction
set. These functions are designed to efficiently manipulate complex-type vari-
ables, and also include a function that converts noncomplex data to complex
types. Hence, programmers can manually parallelize their code by using these
intrinsic functions.

When simple arithmetic operations (addition, subtraction, and multipli-
cation) involve complex data types, the compiler automatically parallelizes
the computations by using parallel add, subtract, and multiply instructions.
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These parallel arithmetic operations are referred to as single-instruction, multiple-
data (SIMD) operations. Since none of the available intrinsic functions per-
forms complex arithmetic calculations, the compiler is incapable of automati-
cally generating parallel instructions for complex arithmetic operations, such
as the assignment statement below:

z[0] = a[0] + b[0] + 8.5 * c[0];
z[1] = a[1] + b[1] + 8.5 * c[1];

One resolution to parallelize the above expression is first to divide the com-
plex expression into a sequence of simple arithmetic expressions, and then to
translate each simple operation to its corresponding intrinsic functions. We
refer to this process as automated simdization. For the above expression ex-
ample, we can transform it using an intermediate variable i to perform the
following two-step computation:

i[0] = b[0] + 8.5 * c[0];
i[1] = b[1] + 8.5 * c[1];
z[0] = a[0] + i[0];
z[1] = a[1] + i[1];

which can be mechanically simdized into the parallel code fragment below:

double _Complex i, _i_1, _i_2, _i_3, _i_4;
_i_1 = __lfpd(&b[0]) ;
_i_2 = __lfpd(&c[0]) ;
i = __fxcpmadd(_i_1, _i_2, 8.5) ;
_i_3 = __lfpd(&a[0]) ;
_i_4 = __fpadd(i, _i_3) ;
__stfpd(&z[0], _i_4) ;

We have developed a simdization transformation module as an extension
of the loop-optimization module. An example of an automated simdization
annotation can be observed in Figure 21.6. The simdization submodule is
denoted with BGLSimd. This annotated code example shows the case when
the statement to be simdized occurs inside the body of the loop that will
be unrolled. Therefore, simdization and unrolling transformations are ap-
plied simultaneously. In this coupled-transformation process, each simdized
statement must be associated to a particular unrolled loop. To create this as-
sociation, a keyword argument that has a loop id keyword identifier (lines 6
and 10) must be included. Loop identification is especially necessary when the
statement to be simdized is contained within multiple-nested unrolled loops.

We note that automated simdization requires that the associated loop to be
unrolled must have unit-stride access (i.e., step size = 1). Another impor-
tant semantic constraint in this case is that, given the fact that the number
of parallel floating-point units of Blue Gene/L is two, the associated loop-
unrolling factor must be divisible by two.
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1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

void vector_sub(double* x, double* a,
double* b, int n)

{
int i;
/*@ begin LoopOpt(

transform Loop(loop_id=lp1,
unroll=4, index=i,
lower_bound=0,
upper_bound=n-1, step=1)

transform BGLSimd(loop_id=lp1)
x[i] = a[i] - b[i];

) @*/
for (i = 0; i < n; i++)

x[i] = a[i] - b[i];
/*@ end @*/

}

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

void vector_sub(double* x, double* a,
double* b, int n)

{
int i;
/*@ begin LoopOpt(

transform Loop(loop_id=lp1,
unroll=4, index=i,
lower_bound=0,
upper_bound=n-1, step=1)

transform BGLSimd(loop_id=lp1)
x[i] = a[i] - b[i];

) @*/
#if ORIGLOOP

for (i = 0; i < n; i++)
x[i] = a[i] - b[i];

#else
for (i = 0; i <= n - 1 - 3; i += 4)
{
{
double _Complex _i_1, _i_2, _i_3;
_i_1 = __lfpd(&a[i]);
_i_2 = __lfpd(&b[i]);
_i_3 = __fpsub(_i_1, _i_2);
__stfpd(&x[i], _i_3);

}
{
double _Complex _i_1, _i_2, _i_3;
_i_1 = __lfpd(&a[i + 2]);
_i_2 = __lfpd(&b[i + 2]);
_i_3 = __fpsub(_i_1, _i_2);
__stfpd(&x[i + 2], _i_3);

}
}
for (; i <= n - 1; i += 1)

x[i] = a[i] - b[i];
#endif
/*@ end @*/

}

FIGURE 21.6: Annotation example of automatic simdization for Blue Gene/L
architecture: annotated code (left) and resulting generated code with simdized
and unrolled loop body (right) are shown.

We can further speed up the simdized code by exploiting common subex-
pression elimination (CSE), a classical compiler-optimization approach used
to reduce the number of operations, where intermediates are identified that
can be computed once and stored for use multiple times later. Identifica-
tion of effective common subexpressions is employed during the subdivision
of the complex arithmetic expression into a sequence of simple expressions.
We have developed an exhaustive CSE algorithm that is guaranteed to find
optimal solutions. However, the exponential growth of its search time makes
an exhaustive search approach prohibitively expensive for solving complex
arithmetic equations. Therefore, one of our future work goals is to develop a
heuristic CSE algorithm that is able to find a near-optimal solution in poly-
nomial time.
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TABLE 21.4: Memory bandwidth of
a = b + ss ∗ c on the Blue Gene/L, where a, b, and c
are arrays of size n, and ss is a scalar.

Array Size n No Annotations Annotations
(MB/s) (MB/s)

10 1920.00 2424.24
100 3037.97 6299.21

1,000 3341.22 8275.86
10,000 1290.81 3717.88
50,000 1291.52 3725.48

100,000 1291.77 3727.21
500,000 1291.81 1830.89

1,000,000 1282.12 1442.17
2,000,000 1282.92 1415.52
5,000,000 1290.81 1446.48

21.3 Performance Studies

In this section we present some performance results for performance anno-
tations applied to operations for which tuned-library implementations do not
exist or perform inadequately.

21.3.1 STREAM benchmark

Preliminary results from employing simple annotations for uniprocessor op-
timizations are given in Table 21.4. These data describe the performance of
an example array operation from the STREAM benchmark [13]. This com-
putation is similar to some in accelerator-modeling codes, such as VORPAL’s
particle push methods [14]. The achieved memory bandwidth of the compiler-
optimized version is significantly lower than that of the annotated version.
The latter includes annotations specifying that the array variables are dis-
joint and should be aligned in memory, if possible, and that the loop should
be unrolled. The same compiler options were used for both the original and
the annotated versions. Given the annotated code as input, the annotation
tool generates many tuned versions of the same operation, using different op-
timization parameters. This annotation-driven empirical optimization must
be redone only when the semantics or the optimization parameters of the
annotations are changed or the code is ported to a new platform.

Figure 21.7 shows a simple annotation example for the Blue Gene/L that
targets memory-alignment optimizations. Here, the annotations are shown
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void axpy_1(int n, double *y,
double a, double *x)

{ /*@ begin Variable (x[],y[]) @*/
int i;
for (i=0; i < n; i++)

y[i] = y[i] + a * x[i];
/*@ end @*/ }

void axpy_1(int n, double *y,
double a, double *x)

{ /*@ begin Variable (x[],y[]) @*/
#pragma disjoint (*x, *y)
if ((((int)(x)|(int)(y)) & 0xF) == 0) {

__alignx(16,x);
__alignx(16,y);

int i;
for (i=0; i < n; i++)

y[i] = y[i] + a * x[i];
} else {

int i;
for (i=0; i < n; i++)

y[i] = y[i] + a * x[i];
}
/*@ end @*/ }

FIGURE 21.7: Memory-related annotation example: annotated code (left)
and resulting generated code with optimized Blue Gene/L pragmas and align-
ment intrinsic calls (right) are shown.

as C comments starting with /*@. The Variable annotation directive re-
sults in the generation of architecture-specific preprocessor directives, such
as pragmas, and calls to memory-alignment intrinsics, including a check for
alignment. Even these simple optimizations can lead to potentially significant
performance improvements. Table 21.4 shows gains of up to 60% in memory
bandwidth with annotations.

What makes annotations especially powerful is that they are not limited
to certain operations and can be applied to complex computations involving
many variables and assignments containing long expressions. Thus, annota-
tions can be used for arbitrary operations, exploiting the developer’s under-
standing of the application to perform low-level code optimizations. Such
optimizations may not be produced by general-purpose compilers because of
the necessarily conservative nature of program analysis for languages such as
Fortran and C/C++. These optimizations include low-level tuning for deep-
memory hierarchies, through loop blocking, tiling, and unrolling, as well as
composing linear algebra operations and invoking specialized algorithms for
key computations. A simple unrolling optimization example for computations
involving one-dimensional arrays is shown in Figure 21.5. More advanced op-
timizations on higher-dimensional arrays or other data structures, such as ma-
trices, would present even greater opportunities for cache optimizations. Our
aim is to use existing tools for performing such code optimization transforma-
tions where possible; the examples here merely illustrate the sorts of trans-
formations that are sometimes necessary for performance and, because they
are both ugly and system specific, are rarely performed in application codes.
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21.3.2 AXPY operations

We consider generalized AXPY operations of the form y = y + a1x1 +
· · ·+ anxn, where a1, . . . , an are scalars and y, x1, . . . , xn are one-dimensional
arrays. These operations are more general forms of the triad operation dis-
cussed in the previous section. Figure 21.8 shows the performance of this
computation for various array sizes when n = 4 on the Blue Gene/L at Ar-
gonne National Laboratory. Included are timing and memory bandwidth re-
sults for five versions of the code: a simple loop implementation without
any library calls (labeled “Original”), two BLAS-based implementations that
use the Goto BLAS library [5, 6] and the ESSL [4], respectively, and two
annotated versions. The first annotated version contains only variable align-
ment and loop unrolling annotations, while the second additionally contains
a BGLSimd annotation similar to the one illustrated in Fig. 21.6. For our
earliest experiments, the ESSL was the only BLAS library available; Goto
BLAS was added more recently. All versions were compiled with the same
aggressive compiler optimization options. The performance improvement of
the annotated version over the simple loop (original) version is between 78%
and 488% (peaking for array size 100). SIMD operations were significantly
effective only for certain array sizes, resulting in a factor of 6 improvement
over the simple loop version. ESSL exhibited very poor performance com-
pared to Goto BLAS. Both annotated versions outperformed the Goto BLAS
version by 33% to 317% depending on the array sizes. Improvement over
BLAS can be typically expected in most cases where several consecutive in-
terdependent calls to BLAS subroutines are made. The AXPY and similar
computations dominate certain types of codes, such as some automatically
generated Jacobian computations, but tuned library implementations do not
support such operations directly; hence, annotation-driven optimization can
have significant positive impact on performance. Implementations that rely
on calls to multiple tuned library subroutines suffer from loss of both spatial
and temporal locality, resulting in inferior memory performance.

21.4 Related Work

In this section we present a brief overview of other approaches to perfor-
mance optimization through raising the level of abstraction. We have divided
related work into several categories corresponding to the main characteristics
of each approach.
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FIGURE 21.8: Performance on the Blue Gene/L for AXPY-2 (left) and
AXPY-4 (right) operations is shown.
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21.4.1 Self-tuning libraries and code

Active libraries. Active libraries [17, 2] such as ATLAS [20], unlike tra-
ditional libraries, are geared toward the generation and optimization of ex-
ecutable code. Some active libraries, such as the Blitz++ library [16], rely
on specific language features and exploit the compiler to generate optimized
code from high-level abstractions. The Broadway [12] compiler can be viewed
as a specific instance of a system for supporting active libraries. Broadway
gives domain-specific compiler optimizations based on user-specified annota-
tion files expressing domain expertise.

Meta-programming techniques. Expression templates furnish a C++
meta-programming technique for passing expressions as function arguments
[15]. The Blitz++ library [16] employs expression templates to generate cus-
tomized evaluation code for array expressions. This approach remedies per-
formance problems due to the noncomposability of operations when using
traditional libraries such as the BLAS or language features such as operator
overloading.

Programmable syntax macros [19] deliver a portable mechanism for extend-
ing a general-purpose compiler; they enable the person writing the macro to
act as a compiler writer. The macro language is C, extended with abstract syn-
tax tree (AST) types and operations on ASTs. While programmable syntax
macros are general and powerful, the software developer must have significant
compiler-writing expertise in order to implement desired language extensions.

A meta-object protocol (MOP) [11, 1] is an object-oriented interface for
programmers enabling them to customize the behavior and implementation
of programming languages. MOPs supply control over the compilation of pro-
grams. For example, a MOP for C++ can provide control over class definition,
member access, virtual function invocation, and object creation.

Our annotations approach differs from these meta-programming techniques
in that it is meant to be easily extensible without requiring a developer to
have compiler expertise. Because of its generality and extensibility, it is not
specific to a particular library, domain, or programming language.

21.4.2 Compiler approaches

Domain-specific languages and compilers. Domain-specific languages
(DSLs) provide specialized syntax that raises the level of abstraction for a
particular problem domain. Examples of DSLs include YACC for parsing
and compilers, GraphViz for defining directed graphs, and Mathematica for
numerical and symbolic computation. DSLs can be either stand-alone and
used with an interpreter or compiler or they can also be embedded in general-
purpose languages (e.g., as macros) and preprocessed into the general-purpose
language prior to compilation. Our annotations approach includes the use of
an embedded language, but it is a more general, extensible language, not a
domain-specific one.
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Telescoping languages. The Telescoping languages project [10, 9, 8]
defines a strategy for generating high-performance compilers for scientific do-
main languages. To date, these efforts have focused on extensions to Matlab
as defined by domain-specific toolboxes. The compiler generation process
consists of several steps. First, a library-preprocessing phase is applied to
the domain-specific code to extensively analyze and optimize collections of li-
braries that define an extended language. Results of this analysis are collected
into annotated libraries and used to generate a library-aware optimizer. That
optimizer uses the knowledge gathered during preprocessing to directly carry
out fast and effective optimization of high-level scripts.

Aspect-oriented programming. Aspect-oriented programming [3] pro-
vides a way to describe and manage crosscutting parts of a program. The
classic example is support for logging, which is defined in one place (the log-
ging module) but used throughout the code. Aspect-oriented programming
provides a way to make such crosscutting items part of the language, provid-
ing full language support for the aspects. Aspect-oriented programming has
been applied to scientific computing such as sparse-matrix programming [7].
Our annotations approach trades the advantages of such full integration with
the language with the flexibility and speed to quickly adapt to the needs of
applications.

Unlike compiler approaches, we do not implement a full-blown compiler or
compiler generator; rather, we define a pre-compiler that parses the language-
independent annotations and includes code generation for multiple general-
purpose languages, such as C and Fortran.

21.4.3 Performance-related user annotations

User annotations are used for other performance-related purposes not di-
rectly related to code optimization. One example is performance assertions
[18], which are user annotations for explicitly declaring performance expecta-
tions in application source code. A runtime system gathers performance data
based on the user’s assertion and verifies this expectation at runtime. Unlike
our annotations system, this approach does not guide or perform any code
modifications; rather, it automates the testing of performance properties of
specific portions of complex software systems.

The Broadway [12] compiler mentioned earlier also employs annotations to
guide the generation of library calls. Thus, annotation files are associated
with a particular library, and each library specifies its own analysis problems
and code transformations. The annotation language is used to define de-
pendence information about the library interface, as well as domain-specific
analysis problems, which are used in the compiler’s program analyses of the
application. The annotations are also used to describe domain-specific op-
timizations, which are expressed as code transformations contingent on the
analysis results. The annotations language has extensive syntax in order to al-
low the expression of dependencies, analyses, and transformations. Significant
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compiler expertise is needed in order to create an annotation file for a given
library. By contrast, the performance annotations we describe in this chap-
ter are more general, with a simpler syntax, and are meant to be associated
with particular, usually small, code fragments within arbitrary applications.
No compiler expertise is required of the program developer in order to use
performance annotations to specify code optimization hints.

Our annotations system differs from the approaches described above in
that it is general purpose and embedded in a general-purpose language. In
addition to code generation, it includes a performance-evaluation runtime
system that enables the selection of the best-performing version of generated
code. Finally, it is designed to be easily extensible, allowing any developer
to add both general and architecture-specific optimizations without requiring
compiler expertise.

21.5 Summary and Future Directions

We have described the initial implementation of an annotation-based per-
formance tuning system that is aimed at improving both performance and
productivity in scientific software development. The annotations language is
extensible and embeddable in general-purpose languages. We have demon-
strated performance improvements in several computational kernels.

In addition to code optimizations targeting single-processor performance,
we plan to expand our annotation language with syntax for distributed op-
erations and data structures commonly used in scientific computing, such as
parallel grid updates for problems discretized on a regular grid. In that case,
the user annotation will describe the grid at a very high level, using global
dimensions and the type and width of the stencil used. Then, we will de-
fine high-level annotations for initialization and point update using global
grid coordinates (i.e., basically using sequential code). The job of the anno-
tation processor would be to take the annotated source code and generate
efficient parallel implementation of the distributed operations expressed in
the annotations and global-coordinate code. An advantage of annotations
over other language-based approaches is that the data structure support can
be customized to the application. For example, support for staggered grids or
C-grids (semi-regular grids with special properties, particularly at the bound-
aries) can be added quickly with an annotations-based approach.
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22.1 Introduction

Efficient management of locality is a key requirement for today’s high per-
formance computing (HPC) systems, most of which have a physically dis-
tributed memory. The standard programming paradigm for these systems has
been based for more than a decade on the extension of sequential program-
ming languages with message-passing libraries, in a processor-centric model
for programming and execution. It is commonly understood that this ap-
proach leads to complex and error-prone programs, due to the way in which
algorithms and communication are inextricably interwoven.

Some programming languages, such as High Performance Fortran (HPF) [15],
provide high-level support for controlling locality by associating distributions
with arrays, focusing on a set of built-in distribution classes such as block,
cyclic, and indirect. However, such languages have the disadvantages of be-
ing constrained by the semantics of their base language, of providing just
a single level of data parallelism, and of supporting only a limited range of

463
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distributions.
We are working on a new language called Chapel [9, 5] which is being de-

signed to improve productivity for programmers of parallel machines. Chapel
supports general parallel computation via a global-view, locality-aware, multi-
threaded programming model. It strives to narrow the gap between main-
stream sequential languages and current parallel languages by supporting
object-oriented programming, generic programming, and type and value safety.
In Chapel, data locality is expressed via first-class objects called distributions.
Distributions apply to collections of indices represented by domains, which de-
termine how arrays associated with a domain are to be mapped and allocated
across abstract units of uniform-memory access called locales. Chapel offers
an open concept of distributions, supported by a set of classes which estab-
lish the interface between the programmer and the compiler. Components
of distributions are overridable by the user, at different levels of abstraction,
with varying degrees of difficulty. Well-known standard distributions can be
specified along with arbitrary irregular distributions using the same uniform
framework. The vision is that Chapel will be an open-source programming
language, with an open-distribution interface that allows experts and non-
experts the design of new distribution classes and the construction of distri-
bution libraries that can be reused, extended, and optimized. Data-parallel
computations are expressed in Chapel via forall loops, which concurrently
iterate over domains.

Our design is governed by the following goals:

• Orthogonality between data mapping and algorithms: One of
our goals is to separate the specification of data mapping, or distribu-
tion, from the algorithm and thus allow programmers the formulation
of data-parallel programs in a sequential-looking fashion. We approach
this goal through a flexible design, in which algorithms operating on
dense, sparse, or irregular structures can switch between different dis-
tributions without needing to change the core computations on data
aggregates.

• Increased productivity of data parallel programming: Another
goal is to increase the productivity for writing data-parallel applications.
We achieve this goal in two ways, first, through reuse and composition of
distributions, and secondly, by concealing synchronization, communica-
tion, and thread management from the programmer. Once the program-
mer has specified the distribution aspects of the problem such as data
mapping and layout, the compiler transparently handles the aspects of
thread management, synchronization, and communication.

• Increased efficiency of the resulting target programs: The real
end goal of parallel computations is to speed up an application by taking
full advantage of the underlying architecture. We achieve this goal by
giving programmers explicit control of data mapping, layout, and itera-
tion based on their knowledge of the problem. We expect the resulting
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target code efficiency to be similar to that for fully manually parallelized
programs using the Message Passing Interface (MPI) [14] library.

The rest of this chapter describes in detail the object-oriented design of the
distribution interfaces. Section 22.2 describes the main Chapel abstractions
that play a central role in the data-parallel model and thus, in the distribution
framework. Section 22.3 describes in detail the distribution interface, showing
how programmers can incrementally specialize distributions to fine-tune the
efficiency of their parallel algorithms. Section 22.4 provides examples that
show how various complex problems and algorithms can be expressed using
our design and the benefits of this approach. Section 22.5 describes our current
implementation, and outlines efficiency considerations. Section 22.6 contrasts
our approach to related work. Finally, Section 22.7 concludes the chapter and
outlines future research directions.

22.2 Basic Chapel Concepts Related to Data Parallelism

Chapel’s data-parallel-programming model relies on the concepts of do-
mains and arrays. This section provides a brief introduction to these language
features.

22.2.1 Domains

The primary component of a domain is its index set — a set of index
values that can be distributed across multiple locales, used to allocate data
aggregates (arrays), and iterated over to specify serial or parallel computation.
Domains are first-class entities, generalizing the region concept introduced in
ZPL [6]. An example of a simple domain declaration in Chapel is as follows:

var D: domain (1 ) = [ 1 . . n ] ;

This declaration creates a one-dimensional (1D) arithmetic domain, D, and
initializes it to represent the set of indices {1, 2, . . . , n}. Domains can be used
to declare arrays, which represent mappings from the domain’s index set to a
set of variables of a given type. A, as declared below, is an array that contains
a floating-point variable for each index in domain D:

var A: [D] f loat ;

A domain’s index set can consist of tuples of integers as in Fortran 90 arrays,
but it can be much more general using arbitrary values and object references
as in modern scripting languages. Chapel introduces a special index type
which is parameterized by a domain and constrains values of that type to
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be members of the domain’s index set. For example, given the declarations
above, a variable, lo, storing an index of D could be declared as follows:

var l o : index (D) = D. f i r s t ( ) ;

Index types aid readability, since they provide a context for an index vari-
able’s legal values. In addition, they also often allow the compiler to elim-
inate runtime bounds checks, since accessing arrays with index variables of
their defining domains is guaranteed to be a safe operation. As an example,
consider the following loop:

f o ra l l i in D do
A( i ) = . . .

Chapel’s for and forall loop constructs automatically declare the iterator
variable (i in this example) to be of the index type of the domain over which
the iteration is occurring. Thus, i here is of the type index(D). Since A is
declared in terms of domain D, the access of A using i is guaranteed to be in
bounds and no runtime bounds check is required.

For a given domain, subdomains associated with a subset of the domain’s
index set can be defined. Chapel provides general mechanisms for the creation
of subdomains, allowing the construction of arbitrary sparse data structures.
The index type of a subdomain is considered a subtype of the parent domain’s
index type. A simple example of a subdomain declaration is given here:

var In t e r i o rD : subdomain(D) = [ 2 . . n−1] ;

All domains can be queried for their extent, or number of elements. Asso-
ciated iterators specify sequential and parallel pointwise iteration over their
index set.

Arithmetic domains

Arithmetic domains are characterized by index sets that are Cartesian prod-
ucts of arithmetic sequences. The rank of an arithmetic domain specifies the
number of its dimensions; it must be a compile-time constant. The indices in
an arithmetic domain are linearly ordered based on lexicographic ordering.

An arithmetic domain can be declared and optionally initialized as follows:

var aD : domain (3 ) = [ 1 . .m, 0 . . n , −1..p ] ;

The shape of the domain corresponds to the cross product of the arithmetic
sequences which define the bounds of the domain in each dimension.

Chapel also supports strided and sparse arithmetic domains in which sub-
sets of a given Cartesian space can be represented efficiently. By using do-
mains to specify index sets and iteration, Chapel expresses computations over
arrays in a manner independent of whether they are sparse or dense. This
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is attractive due to the fact that sparse arrays are merely a space-efficient
representation of a conceptually dense data aggregate.

Indefinite domains

Indefinite domains can have indices of any legal Chapel value type. Such
indices can be values of primitive types or class references as well as tuples and
records of such. In contrast to arithmetic domains, the index sets of indefinite
domains are inherently unbounded. An indefinite domain of object references
would be declared and initialized as follows:

class C { . . . }
var iD : domain(C) ;
for . . . {

var myC = C( ) ; // cons t ruc t in s t ance
iD . add (myC) ; // add to domain

}

As shown here, indefinite domains can use an explicit add method to add a
new index value. Similarly, indices can be removed from an indefinite domain
by calling the remove method. Calling these methods on indefinite domains
causes the arrays defined on them to be reallocated appropriately. In contrast
to arithmetic domains, no order is defined for the indices in an indefinite
domain.

Indefinite domains are an important concept in the language as they are a
key to expressing irregular problems and supporting associative arrays that
can grow and shrink.

22.2.2 Arrays

Arrays are defined on domains and map domain indices to variables of a
common type. The rank, shape, and order of arrays are the same as for the
domain on which they are defined. Arrays are classified as either arithmetic
or associative, depending on their domain:

Arithmetic arrays are defined on arithmetic domains. For example:

var aA : [ aD ] f loat ;
var aB : [ 1 . . n ] f loat ;

The arithmetic array aA is defined on the arithmetic domain aD and its
elements are of type float. The arithmetic array aB is defined with the
index set [1..n] of float elements. The compiler automatically inserts an
anonymous domain for the array in this case.

Associative arrays are defined on indefinite domains. Every time an in-
dex is added to or removed from the indefinite domain, a new array element
corresponding to the index is defined or removed. Associative arrays are a
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powerful abstraction for applications of a highly dynamic structure; they al-
low the user to avoid less efficient dynamic structures (such as lists) to express
certain problems.

The declarations of arithmetic and associative arrays are virtually identical
since the differences in their structures are factored into their domain decla-
rations. This allows code to be written that iterates over and indexes into
arrays independently of their implementation details.

22.3 Data Distributions

Data distributions are means for the programmer to exploit locality. The
distribution of a domain specifies a mapping from the domain’s index set to
a collection of locales; in addition the arrangement of data in a locale can be
controlled.

22.3.1 Basic approach

Chapel provides a predefined data type called a locale. The number of
locales for a program execution is determined at the beginning of that execu-
tion, and remains invariant thereafter. This is achieved by using a predefined
configuration variable, num locales. The following code fragment illustrates
the predefined declaration of the rank-1 array variable Locale, the elements
of which represent the locales accessible to the execution of the program. This
is called the execution locale set:

config const num loca le s : integer ;
const Loca l e s : [ 1 . . num loca le s ] locale ;

Every variable is associated with a locale, which can be queried in the
form <v>.locale. Likewise, every computation is associated with a locale,
which can be determined by calling the function this locale. This can be
used to reason in a program about the locality of accesses to data structures.
An optional ”on” clause that can be used before any statement allows the
programmer to control where a computation occurs and where variables are
allocated.

The following code excerpt shows the association of a distribution with an
arithmetic domain:

class Block : D i s t r i bu t i on {
. . .
function map( i : index ( source ) ) : index ( t a r g e t ) ;
. . .

}
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read (m, n , p ) ;
var D: domain (3 ) distributed ( Block ( ) ) on Loca l e s

= [ 1 . .m, 0 . . n by 2 , 1 . . p by −1];
var a : [D] f loat ;

f o ra l l i j k in D { a ( i j k ) = . . . }
The class Block is supplied either directly by the programmer, or it is im-

ported from a library. Class Distribution is the root of the distribution hi-
erarchy and all user-defined or library-provided distributions must be derived
from it. The programmer must at least specify the mapping function. We will
discuss other interface functions that can be overriden in more detail in the
next section. Every distribution has a source domain, which in this case is D
and a target domain, which is a subset of the locales available to the program.
The index set of this domain is defined as the Cartesian product of linearly or-
dered sets I×J×K, where I = {1, . . . , m}, J = {j | 0 ≤ j ≤ n, mod(j, 2) = 0},
and K = {p, p − 1, . . . , 1}.

Array a is defined over the domain D and assigned in the forall loop.
The following code excerpt exemplifies the association of a distribution with

an indefinite domain:

class GraphPart : D i s t r i bu t i on {
function map( i : index ( source ) ) : index ( t a r g e t ) ;
. . .

}

class Vertex { . . . }
read ( s i z e ) ;
var D: domain( Vertex ) distributed ( GraphPart ( ) ) on Loca l e s ;
var a : [D] f loat ;
for i in 1 . . s i z e D. add ( Vertex ( i ) ) ;

f o ra l l i in D {a ( i ) = . . . }

In this example the domain is a set of vertices, which are of a user-defined
type Vertex. The GraphPart distribution class is also user or library defined
and may specify a graph-partitioning strategy. The graph has size nodes and
the domain D is initialized to size vertices. The forall loop iterates over the
domain and assigns values into array a.

Our uniform treatment of regular and irregular data structures goes a step
beyond existing approaches to data mapping and support for distributed exe-
cution. This feature is crucial for the relevance of the language. While many
applications deal with linear data structures and regular distributions (e.g.,
block, cyclic), applications that deal with complex data structures and that
require more complicated decompositions abound.

Note that even though the domains and distributions in the two examples
are very different, this does not overtly complicate the code that the Chapel
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programmer must write. Although very simple, the two examples would look
dramatically different if, for instance, they were written in C or Fortran and
MPI.

The next section explains the distribution interface and how it can be in-
crementally refined by programmers for efficient parallel execution.

22.3.2 The distribution interface

The distribution interface in Figure 22.1 shows the methods bound to the
abstract distribution class which are visible to the programmer.

class Di s t r i bu t i on {
var source : domain ; // source domain to d i s t r i b u t e
var t a r g e t : domain ; // t a r g e t domain to map to

function getSource ( ) : Domain ;
function getTargetDomain ( ) : Domain ;
function getTargetLoca l e s ( ) : [ t a r g e t ] locale ;

function map( i : index ( source ) ) : locale ;
iterator Di s tS eg I t e r a t o r ( l o c : index ( t a r g e t ) )

: index ( source ) ;
function GetDistr ibut ionSegment ( l o c : index ( t a r g e t ) ) :Domain ;

FIGURE 22.1: The published distribution interface.

The source and target domains, as well as the subset of target locales of the
distribution are transparently set up upon encountering a domain declaration
containing a distribution specification. Thus, the programmer can query their
values.

For each index in the source domain, the map function specifies a locale in
the target locales. The set of all indices associated with a locale is called its
distribution segment.

The iterator DistSegIterator and the function GetDistributionSegment
specify the inverse computation of the map, in two variants. The former
produces the elements in the distribution segment associated with a locale, as
a sequence of source domain indices. The latter, applied to a locale, defines
the domain associated with its corresponding distribution segment. Although
the compiler by default generates code which inverts the map function, there
are situations when the programmer expresses a more efficient specification
of the inversion. The default version uses an exhaustive search based on the
map function and is described in Figure 22.2. The default implementation of
the GetDistributionSegment function uses a similar mechanism.
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iterator Di s t r i bu t i on . D i s t S e g I t e r a t o r ( l o c : locale ) :
index ( source ){

f o ra l l i in source on l o c do
i f (map( i ) == lo c ) then yield ( i ) ;

}

FIGURE 22.2: The default distribution segment iterator.

Figure 22.3 illustrates the user-defined iterator for a Cyclic distribution. It
is expected that the user-defined version is more efficient than the default one,
since it is a direct computation, based on the symbolic formula corresponding
to the inverse of the mapping function.

class Cyc l i c : D i s t r i bu t i on {
function map( i : index ( source ) ) : locale {
return Loca l e s ( ( i−1 mod num loca le s ) + 1 ) ;
}

iterator Di s tS eg I t e r a t o r ( l o c : locale ) {
for i in l o c a l e 2 i n t e g e r ( l o c ) . . source . extent ( )

by num loca le s { yield ( i ) ; }
}

}

FIGURE 22.3: Programmer-defined distribution segment iterator for a cyclic
distribution.

class LocalSegment : Domain {
function getLoca l e ( ) : locale ;
function l ayout ( i : index ( source ) ) : index ( getLocalDomain ( ) )
function setLocalDomain ( ld : Domain ) ;
function getLocalDomain ( ) : Domain ;

}

FIGURE 22.4: Local-segment interface for controlling on-locale array storage.
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22.3.3 The on-locale allocation policy

One key feature of our approach is the possibility to control the on-locale
allocation policy for data associated with a distribution segment.

For this purpose, the user has access to an interface called LocalSegment.
Logically, this class plays the role of the domain for the local portion of data
within the corresponding arrays. Therefore, it subclasses the Domain class.
The user can extend the LocalSegment interface and override its published
functionality with problem-specific behavior. The user can also affect state. In
turn, the compiler automatically sets up a corresponding LocalArraySegment
class which actually allocates the array data (there is one such instance for
each portion of the arrays associated with the domain). The interface for the
LocalSegment is shown in Figure 22.4.

A locale value is set for each LocalSegment based on the mapping func-
tion. The programmer can query this value in order to reason about locality.

The system uses the layout function in conjunction with the map function
to uniquely identify the location of a data item in a locale. This function
contains the translation of global indices into corresponding local indices as
dictated by the mapping and allocation policies specified by the user or de-
cided by the system.

The user can set and query a LocalSegment’s local domain. The local do-
main is the local index domain for all the arrays associated with the global
domain. The system transparently uses this variable to generate the corre-
sponding local arrays. By default, this domain corresponds to the indices in
the distribution segment and has the same type as the parent domain (the
global domain for which it is defined).

This is an advanced level of difficulty at which the programmer operates.
However, the design aims at making data representation orthogonal to algo-
rithm and thus eases the pressure on the specification of the algorithm. The
vision is that libraries of various layouts, e.g., compressed sparse row (CSR),
will be written and most programmers can simply use these libraries. This
will be illustrated in the following section.

22.4 Examples and Discussion

22.4.1 A load-balanced block distribution

This section presents a concrete example for the explicit specification of a
mapping from source domain to target locales. The arrangement of locale-
internal structures and translation between global and local domain indices
are left to the system. The programmer specializes the Distribution class
overriding the method map and the iterator DistSegIterator.
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Figure 22.5 illustrates a programmer-provided load-balanced multidimen-
sional block distribution. The programmer assigns each index to a locale in
the map function. Then, in the iterator, the programmer computes for a given
locale the subset of global indices which belong to it. Client code for the
distribution might appear as follows:

param n : integer = . . . ;
var N1 , . . . Nn : integer ;
read (N1 , . . . , Nn ) ;
var P1 . . Pn : integer ;
read (P1 , . . . , Pn ) ;
var locDom : domain(n) = [ 1 . . P1 , . . . , 1 . . Pn ] ;
// reshape the l o c a l e s as an n−dimensiona l t opo l o gy :
var l o ca l e s nD : [ locDom ] = reshape ( Loca l e s ) ;
var D: domain(n)
distributed ( LoadBalancedBlock (n ) )

on l o ca l e s nD = [ 1 . . N1 , . . . , 1 . . Nn ] ;

// d i s t r i b u t e d f o r a l l l oop :
f o ra l l i in D do . . .

class LoadBalancedBlock : D i s t r i bu t i on {
param n : integer = . . . ; // compile−t ime cons tant
const t l : [ t a r g e t ] locale=getTargetLoca l e s ( ) ;
const f t : index ( t a r g e t ) = ta rg e t . f i r s t ( ) ;

// A l l v a r i a b l e s be low are n−t u p l e s o f i n t e g e r s :
const N: n∗ integer = source . extent ( ) ;
const P: n∗ integer = ta rg e t . extent ( ) ;
const q : n∗ integer = f l o o r (N/P) ;
const u : n∗ integer = c e i l (N/P) ;
const r : n∗ integer = mod(N,P) ;

function map( i : index ( source ) ) : locale {
const f : index ( source )= source . f i r s t ( ) ;
const tx : index ( t a r g e t ) ;
f o ra l l d in 1 . . n {
tx (d)= i f ( i (d ) <= (q (d) + 1) ∗ r (d) + f s (d) − 1)

then c e i l ( ( i (d)− f s (d)+1)/(q (d)+1))+ f t (d)−1;
else c e i l ( ( i (d)− f s (d)+1−r (d ) )/ q (d))+ f t (d)−1;

}
return t l ( tx ) ;

}
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iterator Di s tS eg I t e r a t o r ( l o c : locale ) : index ( source ){
const k : index ( t a r g e t ) = l o c a l e i n d e x ( l o c ) ;
var cdom : domain(n ) ;
var f i r s t I nd ex InLoc : index ( source ) ;

f o ra l l d in 1 . . n {
i f ( k (d)<=r (d ) ) { // f i r s t r ( d ) l o c a l e s : b l o c k s i z e u(d )
f i r s t I nd ex InLoc (d)=(k (d)− f t (d ) )∗u(d)+source . f i r s t (d ) ;
cdom(d)= f i r s t I nd ex InLoc (d ) . . f i r s t I nd ex InLoc (d)+ u(d)−1;
}
else {// remaining P(d)−r ( d ) l o c a l e s : b l o c k s i z e q (d )
f i r s t I nd ex InLoc (d)=r (d)+(k (d)− f t (d ) )∗ q (d)+ f s (d ) ;
cdom(d)= f i r s t I nd ex InLoc (d ) . . f i r s t I nd ex InLoc (d)+q(d)−1;

}
}
for c in cdom do yield ( c ) ;

}
}

FIGURE 22.5: Specification of a regular load-balanced multi-dimensional
block distribution.

In the code fragment above, an n-dimensional domain is distributed on an
n-dimensional set of locales, with each dimension of the source domain being
distributed over the corresponding dimension in the target domain.

22.4.2 A sparse data distribution

In terms of building the distribution, the generation of a distributed sparse
structure differs from that of a dense domain in at least the following points:

• It is necessary to deal with two domains and their interrelationship: the
algorithm writer formulates the program based on the original dense
domain, i.e., indexing data collections in the same way as if they were
dense. In contrast, the actual representation of the data and the imple-
mentation of the algorithm are based on the sparse subdomain of the
dense domain.

• In many approaches used in practice, the distribution is determined in
two steps:

1. First, the dense domain is distributed, i.e., a mapping is defined for
all indices of that domain, including the ones associated with ze-
roes. In general, this will result in an irregular partition, reflecting
the sparsity pattern and communication considerations.

2. Secondly, the resulting local segments are represented using a sparse
format, such as CRS (compressed row storage).
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The approach for user-defined distributions in Chapel is powerful enough
to deal with this problem. We illustrate this with the example below, which
assumes the sparse structure to be invariant.

Distributed CRS representation for sparse data structures

In the example code of Figure 22.6 we assume the sparsity pattern to be
predefined. This is an approach used in many applications, where the pattern
is derived from an irregular mesh. In the program, this assumption is reflected
by the (unspecified) assignment to DD, which represents the sparse domain.

type eltType ;
const n : integer = . . . ;
const m: integer = . . . ;
const D: domain (2 ) = [ 1 . . n , 1 . .m] ; // dense data domain

// myBRD i n i t i a l i z e d wi th in s tance o f d i s t r i b u t i o n
class BRD: var myBRD: BRD = BRD( . . . ) ;

// d e c l a r a t i on o f sparse subdomain DD of D and i t s l a you t .
// The un s p e c i f i e d assignment i n i t i a l i z e s DD based on the
// pre−determined sparse s t r u c t u r e :
const DD: sparse domain(D) distributed (myBRD, CRS( ) ) = . . . ;
var A: [DD] eltType ;
var x : [ 1 . . n ] e ltType ;
var y : [ 1 . .m] eltType ;
. . .
f o ra l l ( i , j ) in DD {

y ( i ) = sum reduce (dim=2) A( i , j )∗x ( j ) ; . . .
}

FIGURE 22.6: Sparse-matrix vector multiplication.

The original dense domain, D, is an arithmetic domain of rank 2 with in-
dex set [1..n,1..m]. It is partitioned into a set of rectangular “boxes,” based
on the sparsity pattern, load-balancing, and communication considerations.
In general, this partition is irregular; the boxes represent the distribution
segments. The global mapping establishes a one-to-one map between boxes
and the target locales. Two partitioning approaches that have been used in
practice include Binary Recursive Decomposition (BRD) [4] and Multiple Re-
cursive Decomposition (MRD) [22]. The upper half of Figure 22.7 illustrates
such a distribution for D = [1..10, 1..8] and the target index domain 1..4. Zero
elements are represented by empty fields; nonzeros are explicitly specified and
numbered in row major order (for simplicity, we have chosen as the value its
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FIGURE 22.7: Sparse-matrix distribution.

position in this numbering scheme).
The four boxes defining the subdomains of D generated by the partition

in the example are given as: box1 = [1..7, 1..5], box2 = [8..10, 1..4], box3 =
[1..7, 6..8], and box4 = [8..10, 5..8]. The global map is defined as mapD(i, j) =
k for all (i, j) ∈ boxk.

The sparse subdomain of D, as shown in the example, is given as:

DD = {(1, 2), (2, 7), (3, 1), (3, 8), (4, 6), (5, 4), (6, 5), (7, 7), (8, 5),
(8, 8), (9, 2), (9, 3), (9, 5), (10, 1), (10, 4), (10, 7)}

Given the partition of D and the global mapping, a corresponding partition
of DD and its mapping can be immediately inferred. The inferred mapping is
the restriction of the original map to indices associated with nonzero elements:
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mapDD = mapD | DD

We turn now to the specification of the layout, for which we choose the com-
pressed row storage (CRS) distribution format in this example. This means
that in each locale, k:

• The local data domain, LocalDomain, is established as a one-dimensional
arithmetic domain, representing the nonzero elements in the associated
box, boxk, in the lexicographic order of their indices.

• The column index vector maps the local index of each nonzero element
(i.e., its index in the local-data domain) to the second component of its
index in the global-dense domain, D.

• The row vector determines for each row in D that is part of boxk the
local index of the first nonzero element in that row (if such an element
exists).

The lower half of Figure 22.7 illustrates the CRS representation for the four
boxes in the example. Figure 22.8 outlines the definition of the layout (class
CRS).

class BRD: D i s t r i bu t i on
{

. . .
function map( i : index ( source ) ) : locale { . . . }
// mapping dense domain
// t h i s y i e l d s the box a s s o c i a t e d wi th l o c :
function GetDistr ibut ionSegment ( l o c : locale ) : Domain { . . . }
. . .
}
class CRS: LocalSegment {
const l o c : locale = this . g e tLoca l e ( ) ;
// dense d i s t r i b u t i o n segment f o r l o c :

const locD : domain ( 2 ) ;
// sparse d i s t r i b u t i o n segment f o r l o c :
const locDD : sparse domain( locD)=GetDistr ibut ionSegment ( l o c ) ;

// number o f e lements in locDD :
const nnz : integer=locDD . extent ( ) ;
// row numbers o f f i r s t and l a s t index in locDD :
const l 1 : integer=locDD ( 1 ) . f i r s t ( ) ;
const u1 : integer = locDD ( 1 ) . l a s t ( ) ;
// l o c a l data domain and ex t ens i on :
const LocalDomain : domain ( 1 )=1 . . nnz ;
const xLocalDomain : domain ( 1 )=1 . . nnz+1;

// p e r s i s t e n t data s t r u c t u r e s in the l o c a l segment f o r
// a l l arrays a s s o c i a t e d wi th the sparse domain :
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var cx : [ LocalDomain ] index ( locD ( 2 ) ) ; //column index vec t o r
var ro : [ l 1 . . u1+1] index ( xLocalDomain ) ; //row vec to r

// a u x i l i a r y f unc t i on s :
// mapping l o c a l index z to i t s g l o b a l index :

function nz2x ( z : index ( LocalDomain ) : index ( locDD ) ) { . . . } ;
// mapping g l o b a l index i to i t s l o c a l index :

function x2nz ( i : index ( locDD ) ) : index ( LocalDomain ) { . . . } ;
// the f o l l ow i n g func t ion , app l i e d to row r , y i e l d s
// t rue i f f the l o c a l sparse subdomain conta ins an
// element ( r , c ) f o r some c . Then the index o f the
// f i r s t such element i s re turned v ia argument f i r s t z :
function e x i s t s s p a r s e i n d e x ( r : index ( locD ( 1 ) ) ,

out f i r s t z : LocalDomain ) : bool { . . . } ;

function def ine co lumnVector ( ) do
[ z in LocalDomain ] cx ( z)= nz2x ( z ) ( 2 ) ;

function de f ine rowVector ( ) {
ro ( u1+1)=nnz+1;
for r in 1 . . u1 by −1 do

ro ( r ) = i f e x i s t s s p a r s e i n d e x ( r , f i r s t z )
then f i r s t z else ro ( r +1);

}

function l ayout ( i : index (D) ) : index ( LocalDomain )
return ( x2nz ( i ) ) ;

constructor LocalSegment ( ) {
de f i n e co lumn vec to r ( ) ; d e f i n e r ow ve c t o r ( ) ;

}
}

FIGURE 22.8: BRD distribution with CRS layout.
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22.5 Implementation

This section discusses the status of the Chapel compiler implementation
and the strategy for implementing distributions. This is a work in progress.

22.5.1 Compiler implementation status

Since Chapel is a new language, much effort has gone into the implemen-
tation of the (serial) base language. Our intent was to develop a highly pro-
ductive parallel language from first principles, unconstrained by features ir-
relevant for that purpose. Specifically, the design goals have focused on the
complete and consistent specification of concurrency, threading, and synchro-
nization in the framework of a powerful base language.

The base language has been designed with the dual goals of providing gen-
erality and supporting analysis and optimization of programs. Its features in-
clude type and value safety, static typing, value and reference classes, and type
parameterization. Also, Chapel syntax is designed for high productivity, and
as a result, programs written in Chapel are more compact and easier to read
and understand than their counterparts in languages such as Java and C++.

The current implementation covers the majority of language features de-
scribed in the language document [9]. This includes arithmetic and indefinite
domains as well as their respective arrays.

We decided to take a source-to-source compilation approach in order to
support rapid development and prototyping of the compiler, and to be able
to run the generated code on a variety of platforms. The Chapel compiler is
written in C++. The compiler-generated code and runtime libraries are being
developed in ISO C in order to closely match the target machine architectures,
and to avoid relying on obtaining production-grade performance from C++
compilers on parallel architectures (since they have typically not received as
much attention as C compilers). While it is tempting to use C++ as our
target language in order to ease the burden of implementing Chapel’s generic
programming and object-oriented features, we believe that Chapel’s features
are sufficiently more aggressive than that of C++ so that the benefits would
be minimal.

22.5.2 Distribution-implementation strategy

Arrays and domains are implemented as standard Chapel modules using the
Chapel language itself. Arithmetic and associative arrays both specialize an
abstract Array class, while arithmetic and indefinite domains both specialize
an abstract Domain class.

Chapel supports both task and data parallelism. However, we focus on the
latter model in this chapter.
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FIGURE 22.9: Data-parallel execution model.

In Figure 22.9 we depict a typical transformation of a forall loop. That
is, one thread per locale involved in the computation is spawned upon en-
countering the forall statement. These are heavyweight threads, which
account for coarse-grain data parallelism. Within each locale, a number of
lightweight threads are spawned and scheduled depending on the locale in-
ternal configuration. Accesses to data are classified as either local or global:
an access is considered local if the compiler can determine that it references
data in the same locale as the executing thread, otherwise it is global. This
reflects the fact that Chapel is a global-view language, in which a program
can access data without taking into account the locality of access.∗ Although
for regular codes compiler analyses can often distinguish between local and

∗In certain contexts the language allows the programmer to assert locality with a special
attribute, in order to enhance performance.
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remote accesses, using this information for the optimization of communica-
tion [18, 1, 17], in general this decision can only be made at execution time. In
such cases, for example when accessing irregular data structures, optimization
of communication must be based on runtime analysis.

Most partitioned global address space (PGAS) languages, such as Co-Array
Fortran [11] or X10 [12, 8], deal with this issue by making an explicit distinc-
tion between local and non-local accesses at the source level. This creates a
burden for the programmer but makes it easier for the compiler to generate
efficient code.

We have developed a general translation scheme for the data-parallel idioms
in Chapel. Our scheme primarily addresses, (1) processing of domain declara-
tions, including distribution and layout assertions, (2) array declarations over
domains, (3) array references and subscript translation, (4) transformations
of forall loops, (5) remote-access optimization, and (6) runtime support for
distributed storage management and execution.

At present, we are developing an experimental framework that will allow a
comparison of the performance of programs written in Chapel with manually
parallelized codes based on a combination of a sequential language and MPI.

22.6 Related Work

This section does not provide an extensive review of general parallel and
concurrent programming languages and systems. Such overviews are given
elsewhere [21, 20]. Instead, we review efforts which are most closely related
to the focus of this chapter.

Fortran D [13], Vienna Fortran [7], and Connection Machine Fortran [2],
the major predecessors of High Performance Fortran [19], all offered facilities
for combining multidimensional array declarations with the specification of
a data distribution or alignment. These languages follow the data-parallel
programming model and provide built-in data distributions and alignments.
In addition, Vienna Fortran introduced a capability for user-defined map-
pings from Fortran arrays to a set of abstract processors, and for user-defined
alignments between arrays in a Fortran 77 language framework.

ZPL [6] supports a concept of dimensional distributions organized into five
types: block, cyclic, multi-block, non-dist, and irregular. These types give the
compiler the information it needs to generate loop nests and communication,
abstracting the details of the distribution from the compiler’s knowledge. This
strategy was detailed in [10].

Other language developments include the class of partitioned global ad-
dress space (PGAS) languages, with Co-Array Fortran [11], Unified Parallel
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C (UPC) [16], and Titanium [23] as their main representatives. These lan-
guages are based on the single-program, multiple-data (SPMD) paradigm,
provide features for the partitioning of the address space, and support for
one-sided communication. They represent a significant productivity improve-
ment over communication libraries such as MPI, however, while still relying
on a processor-centric programming model that requires users to manually
decompose their data structures and control flow into per-processor chunks.†

Chapel is more general than these languages for a number of reasons. First,
its model of concurrency covers data as well as task parallelism. Secondly,
Chapel’s indefinite domains and generalized arrays constitute a more powerful
base language. Third, Chapel provides a general object-oriented framework
for the specification of user-defined distributions, which is the only way for
introducing distributions: there are no built-in distribution classes as with
the other languages. Furthermore, Chapel is the only programming language
which offers facilities for specifying the on-locale data layout rather than re-
lying on compiler-selected standard representations. As illustrated with the
distributed sparse matrix example, this framework is general enough to deal
with arbitrarily complex data structures.

Closer to the goals represented by Chapel are two languages developed along
with Chapel in DARPA’s High Productivity Computing Systems (HPCS) pro-
gram: X10, designed in the PERCS project led by IBM [12, 8], and Fortress [3],
developed at SUN Microsystems. X10 and Fortress both provide built-in dis-
tributions as well as the possibility to create new distributions by combining
existing ones. However, they do not contain a framework for specifying user-
defined distributions and layouts such as Chapel.

22.7 Conclusion and Future Work

Today’s high-performance computing systems are characterized by massive
parallelism and a physically distributed memory. The state-of-the-art ap-
proach for programming these systems has been based on the extension of
sequential programming languages, such as Fortran, C, and C++, with the
MPI message-passing library. We believe that in view of emerging systems
with tens of thousands of processors and the growing complexity of applica-
tions, a higher level of programming such architectures should be adopted.
Specifically, we consider it necessary to provide the user with an inherently
parallel language that allows the management of concurrency and locality at

†The one exception to this is UPC which has support for 1D block-cyclic distributions of
1D arrays over a 1D set of processors (threads) and a stylized upc forall loop that supports
an affinity expression to map iterations to threads.
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a high level of abstraction. This is the main motivation for the design of
Chapel, a general-purpose parallel-programming language with support for
object-oriented programming, type and value safety, data and task paral-
lelism, and explicit locality control.

After outlining the powerful features of the Chapel base language — in
particular the unified treatment of regular and irregular data structures under
generalized concepts of domains and arrays — this chapter focused on the
discussion of an object-oriented framework for the specification of user-defined
distributions, orthogonal to the specification of algorithms. The generation
of communication, synchronization, and thread management is relegated to
the compiler and runtime system; however, a sophisticated user may control
many low-level details using the distribution framework.

Future language work will focus on the refinement of the distribution frame-
work and on extending the semantics of replication and alignment, in partic-
ular, with a view on performance and data consistency. A major goal for our
work on the compiler and runtime system is the validation of our assertion
that the distribution framework will lead to higher productivity, compared to
the message-passing approach as well as to other high-level languages. First,
we will show that our reliance on the distribution framework for standard
distributions does not lead to a loss of performance compared to languages
with built-in distributions. Secondly, we will demonstrate that exploiting the
full generality of the distribution framework will not only allow a high level
of abstraction for the specification of complex data structures such as those
occurring in sparse-matrix algorithms, but also guarantee performance com-
parable to that of manually parallelized programs.
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23.1 Introduction

The development of computer technology brought an unprecedented per-
formance increase during the last five decades. Coming from a few hundreds
of floating-point operations per second we will reach at the end of this decade
more than a petaflop per second (PFLOPS). In the same time frame numerical
research got a big impetus. We will show that the appearance of a new com-
puter technology also changed numerical algorithms. This also will be true
for the large machines of the petascale class. It may be that the petascale
class of machines will force even larger changes in numerical paradigms. In
the following we will give a short synopsis of the development of modern com-
puter systems for numerical purposes together with mathematical methods
which where developed and heavily used at the same time. This should show
how architectures and algorithms correspond over time. Discussing technical
issues of recent and future computer architectures we will try to anticipate
the implications of petascale computers on algorithms. Further, we will make
some remarks on the economical impact of petascale computing.

487
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23.2 A Short History of Numerical Computing and Com-
puters

We first want to give a short overview of the history of supercomputing in
order to better understand the challenges ahead and to show how algorithms
have changed over time depending on available hardware architectures.

23.2.1 The Sixties

The most important and interesting machine in the 1960s was Cray’s CDC
6600, first delivered in 1964. The cycle time of this computer was 100 nsec.
A floating point multiply needed 10 cycles. The machine had a memory ac-
cess time of 0.2 μsec or 2 cycles. The bandwidth was 32 MWords/sec for a
peak performance of 3 MFLOPS. Different from the current development, nei-
ther memory access time nor bandwidth were an issue for performance. The
main bottleneck was the floating-point performance. Today’s processors may
have hundreds of cycles of memory latencies and deliver 1 byte per potential
floating-point operation. The CDC 6600 was already a pipelined system. It
had a second level memory (ECS) and in-parallel operating peripheral proces-
sors for I/O. These machines were able to solve discretized partial differential
equations on meshes with small cell numbers. To save memory, orthogonal
meshes with a small number of points on simple geometries were used. But the
development of FEM packages still in use today (e.g., NASTRAN at NASA)
began. The involved linear systems were solved by direct methods based on
sparse matrix representations. Amdahl gave the pessimistic prediction that
parallel computers would never be successful [2]. Fortran became the standard
language for numerical computing. Computers were an expensive resource and
all computers were supercomputers.

23.2.2 The Seventies

Computers still were an expensive resource but were accessible for all tech-
nical universities. The user interface was the batch queue. Memory sizes
were still less than 256 KWords. The FEM packages for the solution of static
and dynamic engineering problems developed which are still widely used in
a lot of different areas. These codes were written using out-of-core methods
for program instructions (overlays) and data (paging techniques) — a tech-
nique reused for small local memories. Direct sparse solvers developed for
the increasing size of FEM problems. Much work was dedicated to decrease
the bandwidth of these matrices and the computational effort in solving the
respective linear equations. First libraries for dense matrix problems were
developed.
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Linpack and Eispack assembled modern algorithms for the solution of lin-
ear and eigenvalue systems. The computing kernels of these libraries were
collected in the Basic Linear Algebra Subprograms (BLAS) library and op-
timized for different architectures. The main difficulty was the optimization
of floating-point operations (which since then describe system performance).
Memory bandwidth played some role but not the memory latency. The Lin-
pack benchmark was established as a test for system performance. This simple
test seduced computer architects in the following decades to neglect memory
bandwidth.

23.2.3 The Eighties

In the early 1980s computers like CRAY 1, Cyber 205, NEC SX-1, Fujitsu
VP-200, IBM 3090 spread out for numerical computing. They all had vector
architectures and provided a performance jump compared to previous sys-
tems in all disciplines: vector and scalar floating-point performance, memory
bandwidth and I/O. The Convex minisupercomputer closed the gap to work-
stations. The parallel-programming model was directives similar to OpenMP.

The appearance of vector computers led to widespread use of Krylov space
procedures for the solution of large, sparse linear systems which provide long
vectors for suitable column-ordered data structures of the sparse matrices.
Later on, Krylov space procedures for the solution of discretized partial differ-
ential equations turned out to be easily and efficiently parallelizable. Lapack
was developed as a comprehensive library for dense linear and eigenvalue prob-
lems based on optimized BLAS-2 and -3 kernels. The reduction of memory
traffic per floating-point operation in these kernels was an excellent anticipa-
tion of the needs of hierarchical memory architectures in the following era.

The late 1980s brought the first parallel architectures. The German Suprenum
machine was one of the early parallel machines and combined scalar and vector
processors. Suprenum was built with multigrid algorithms in mind. Systems
like the Connection machine and Maspar were massively parallel comput-
ers which enforced a parallel-programming paradigm that became the “array
syntax” part of Fortran 90. Their SIMD concept is seen again today in the
ClearSpeed card. Ncube was a massively parallel machine comparable to
the IBM Blue Gene machine. All these approaches suffered from the lack of
parallelized software.

23.2.4 The Nineties

During the early 1990s massively parallel systems began to influence sci-
entific programming — like the Thinking Machines CM-5, CRAY T3E, SGI
Origin, and Intel Paragon. Further, workstation architectures were developed
into shared-memory parallel systems such as SGI Power Challenge, Sun En-
terprise, the IBM SP systems, and DEC Alpha-based systems. Indispensable
for the further development of parallel architectures was the standardization
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of MPI and OpenMP as parallel-programming methods.
The peak performance of processors was continuously growing mainly due

to the frequency improvement but also because of architectural changes like
better pipelining, support of out-of-order execution, higher associativity of
caches, and better branch prediction. The memory and memory bus systems
could not and still cannot keep up with this. Especially for shared memory
systems, this often implied that parallelized programs were not essentially
faster than the serial original.

Later in the 1990s, computing as a whole was influenced by the pervasive
usage of PCs, replacing workstations, triggering the development of Linux as
a replacement for UNIX. Based on these PCs, first Beowulf clusters appeared
on the scene. Visionaries declared the end of traditional supercomputers.
Vendors started to move away from the concept.

In the field of application development, parallel computers had a clear im-
pact. With increasing size of overall main memory, adaptive complex methods
become popular. As domain decomposition became the algorithmic paradigm
load balancing and adaptation were implemented. Beyond mesh-based meth-
ods, particle methods became interesting on large-scale systems. For both
approaches pointers became essential. As FORTRAN did not support un-
structured approaches with pointers it was partially replaced by C.

The close connection to the hardware base was broken. Performance became
identified more with scaling of code on a parallel machine rather than single-
processor performance. The gap between peak and sustained performance
began to widen.

On the other hand, the pessimistic Amdahl assumption of the impossibility
of parallelizing a fixed workload across a growing number of processors to
reduce compute time — later called “strong scaling” — was replaced by the
more optimistic assumption of Gustafson of growing the amount of work for
a fixed calculation time on a growing number of processors — later called
“weak scaling.”

23.2.5 2000 and beyond

Recent years were marked by the propagation of PC clusters leading to
inexpensive solutions in high performance computing (HPC) for a wide com-
munity. Standardization in processor technology, network technology and
operating systems made these clusters extremely successful and interesting
for ISVs. Nevertheless special machines are not out of business as is shown by
systems such as the Cray XT3, the IBM Blue Gene, and the SGI Origin/Altix.

The main hard physical limit for all these systems is latency while band-
width can somehow be managed. In effect these relatively high latencies
reduce the effective bandwidth for small-sized objects. At the processor level,
latencies theoretically can be hidden by prefetching methods. However, lit-
tle support for this is available in programming languages and compilers as
of today. For inter-processor communication, MPI latencies have become a
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bottleneck. They are not decreasing at the same speed that node perfor-
mance is increasing. A work-around is the reduction of messages by collecting
small messages into a single larger one. This is supported by special engines
(Quadrics, Infiniband).

At the algorithmic level the increasing size of main memory allows much
large simulations but leads to runtimes in the range of weeks or even months
due to time step limitations. This is true for both structured and unstructured
meshes. As structured meshes lead to higher cache reuse, software develop-
ers partially at least return to structured mesh approaches. This “archaic”
approach makes parallelization, load balancing, vectorization, and compiler
optimization simpler and more efficient.

23.3 Architectures

In this chapter some aspects of recent processor development are described.
We specifically refer to the power consumption problem and to parallel pro-
gramming paradigms.

23.3.1 Processor development

For 35 years, clock frequency has increased continuously with decreased
feature size following Moore’s law. However, frequency for a given technology
is also directly attached to electrical power consumption:

power = capacitance ∗ voltage2 ∗ frequency (23.1)

An increased frequency implies a linear increase of voltage and an increase
in power consumption of 2.7 to 3. This is one of the reasons for the current
frequency stagnation. A second one is the signal delay on long on-chip wires
due to the decreasing size of the technology and the increase of its per-length
capacities. A third reason is the decrease of the number of gates which can
be crossed during the shortened clock cycle. A fourth is the increase of the
leakage power losses [3] towards more than 50%. A fifth reason is the in-
crease of the memory latency in terms of processor clock cycles because of the
complicated memory systems of shared-memory processors and their need for
cache-coherency protocols. Optical interconnections might help in accessing
the memory with higher bandwidth and less electrical losses and the number
of lines [12] but it may take a while before such optical technology can be
found in standard processors.

So today we are faced with the challenge of getting performance boosts
mainly by an increase in the number of active cores or parallel units in a
processor. Decreasing the frequency by a factor of two today allows for the
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implementation of 8 identical cores within the same power budget. Switching
to a smaller feature size there will be an even larger gain and first samples of
chips with 80 caches have been presented recently by Intel.

As the number of cores increases, programs unaware of the underlying ar-
chitecture may experience high losses in performance. Some algorithms may
benefit. Dense matrix algebra for larger matrices may provide enough opera-
tions for hiding memory accesses efficiently. Another good example is molec-
ular dynamics as long as interactions for every pair of atoms or molecules
have to be calculated in an n × n operation. These operations today are the
basis for special accelerators like MD-Grape. But large memory bandwidth
is the key to performance for a lot of other numerical algorithms, specifically
in computational fluid dynamics and sparse-matrix algebra arising from fi-
nite element (FE), finite volume (FV) or finite difference (FD). MPI-based
domain decomposition approaches will fail because of a lack of spatial and/or
temporal data locality and memory reuse.

Multicore architectures rely on local caches to minimize concurrency of
memory requests. The efficient use of these caches implies the usage of hard-
ware and software prefetching mechanisms to limit the memory latency effects.
Any parallel-programming model has to allow controlling the locality of the
core for a specified process or thread. A way to do this might be an enhanced
OpenMP model. This would have to support core locality and hierarchical
caches. For larger numbers, hierarchical filters or directory-based protocols
(SGI Origin/Altix) are needed to decrease the cache-coherence traffic.

Present languages do not provide portable means to separate data fetch and
store on one side and the calculations on the other side. Today’s compilers
enable the use of prefetching hints. These can be directive-based but are not
portable. Data for local memories instead of caches have to be loaded and
stored explicitly. They will complicate programs considerably. But they give
the chance of a perfect data locality over a long time and are not disturbing
the data access of concurrent processes.

We see this kind of separation of data movement and calculation as a basic
principle of the Cell Broadband Engine processor (see next section). Transac-
tional memory is able to mark memory cells forcing the requesting processor
to repeat the memory operation if a concurrent access has changed its state.
In that way it is possible to use the same data concurrently by different pro-
cessors or threads allowing for reduction of the overhead of critical sections.
This is useful for the case of rare concurrent updates of the same data by
different processors.

A further challenge might be that cores are not identical but have varying
architectures and tasks. We might see floating-point accelerators, MPI accel-
erators, TCP/IP off-load engines, or graphic accelerators on a single die. The
chips will support different architectures and instruction sets on the same
die. The compiling system will have to reflect the different purposes. The
general executables must include the special purpose executables. All these
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arrangements could cut latencies and remove obstacles for sustained high per-
formance.

23.3.2 Cell Broadband Engine processor

The Cell Broadband Engine processor [10] was initially developed to power
the Sony PlayStation 3 and intended to be used also for high definition tele-
vision (HDTV). Given the mass market for game consoles it is a relatively
cheap and at the same time relatively fast computing system — hence very
attractive for HPC.

The machine has an uncommon architecture. On a single chip a PowerPC
processor serves as a host for 8 synergistic processor elements (SPE). It runs
the operating system, does the I/O and controls the different tasks. The Pow-
erPC allows for two hardware threads and operates in order. This simplifies
the architecture and allows for higher clock frequencies. However, the burden
for the compiler becomes heavier.

The 512 KB L2-cache of the Cell BE processor is on die and directly ac-
cessible by the SPEs and the host processor. The SPEs are like independent
vector processors. Each has its own local memory of 256 KB. The total single
precision peak performance of all SPEs of a 3.2 GHz processor is around 200
GFLOPS while the IEEE double precision performance is 26 GFLOPS. The
double precision performance is expected to increase substantially for future
versions.

A special direct memory access (DMA) engine in each SPE maps parts of
the main memory to the local memory and initiates and performs block-data
transfers. This engine allows for the separation of computation and memory
access which is crucial to achieve high sustained performance. The block-data
transfers may also be performed between different SPEs’ of different Cell BEs
which are connected by the fast FLEXIO interface of aggregated 76 GB/s
bandwidth. The negative consequences of relatively low bandwidth should
be attenuated by the SPEs local stores. They enable the programmers to
optimize the codes by decoupling heavily used data from the main memory.

The high peak performance of the Cell BE processor makes it attractive for
technical computing. The architectural restrictions will generate new algo-
rithmic techniques. Even though it is not a shared-memory system, OpenMP
looks like a promising programming model for this system. Vectorization of
codes will become important again as the SPEs can be programmed like vec-
tor coprocessors. Most important is the ability of the Cell BE processor also
to boost relatively small numerical problems to high performance. Potential
applications may be gene sequencing while sparse-matrix applications may
well fail to harness the power of the vector-like SPEs.
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23.3.3 ClearSpeed card

The ClearSpeed card offers a very different paradigm. It is an independent
card installed in a standard bus. The low frequency (250 MHz) of the proces-
sors guarantees very small heat dissipation. Its 96 functional units lead to a
peak performance of 50 GFLOPS. Each processing element is equipped with
a small local memory (6KB). The SIMD approach is similar to the Connec-
tion and Maspar machines (see above). The programming style is similar to a
vector model, using vectors of methods on data instead of data vectors. The
parallel-programming model is based on a C dialect with additional syntax
elements for declaration of variables.

The decisive bottleneck of the machine is the memory bandwidth to the on-
board memory. The CSX 600 model consists of two onboard processors with
their own memory on a PCI-X card. Loading the data from the host computer
to the accelerator’s memory may be time consuming, at least for solving sets
of small problems. Special-data movement instructions allow for distributing
data to the processing elements. But we notice an insufficient card memory
bandwidth limiting the sustained performance for problems with modest data
intensity. Because of the bandwidth problems, there are only a few exam-
ples showing the performance potential of the two processor cards. Dense
matrix operations, fast Fourier transforms and some techniques of molecular
dynamics may benefit from the card.

As the concept shows high aggregated performance and low power con-
sumption, ClearSpeed cards have been part of a recent large installation at
the Tokyo Institute of Technology (TITech). For the future we expect such
SIMD-like parallel-processing elements to be part of standard processors.

23.3.4 Vector-like architectures

With increasing frequencies deeper pipelining seemed to be unnecessary and
counterproductive. It was in conflict with the object-oriented programming
paradigm which is trying to hide even regular data layout from the program-
mer and from the compiler. A vector architecture, however, is no obstacle to
object-oriented programming. Instead of using sets of atomic small objects,
large objects of sets have to be used. The loops in their methods should not
work on the atomic objects but directly on buffers. This approach saves the
full potential of vectorization.

The situation has changed since clock-frequency limits became apparent and
the power consumption became a topic. Hence, there is a growing interest
in vectorization and SIMD techniques. Special purpose processors (GPU,
Cell BE processor, ClearSpeed) and special processor instructions (SSE), and
further new approaches (IRAM [9]) complement the vector architectures of
CRAY and NEC.

Whereas traditional technologies use pipelined vector registers, the other
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approaches focus on data-parallel mechanisms on register files of a moder-
ate size. Both approaches may boost the performance by factors from 2 to
100 depending on the number of functional units in the system. Sustainable
bandwidth to support the operations is essential. The bandwidth may be
provided by the central or global memory with a large number of expensive
banks. However, this is getting more and more difficult. Larger (vector)
caches are the most elegant solution for the programmer but may suffer from
system overhead (coherency requirements and administration of cache lines).
Nearby local memories allow for deterministic data access and exact blocking
but impose penalties for the programmer and for context switches. They may,
however, be a good solution if they are not too small.

Traditional vector machines are expected to keep up with the multicore
progress. They can get the same cost advantages as the microprocessor de-
velopment by the decreased feature size. They can handle a higher power
dissipation per chip because the number of chips to get the same sustained
performance will be smaller and cooling is more effective. The vector machines
will be part of hybrid concepts taking advantage of microprocessor multicore
development as well as the special vector design. They will also in future
offer a relatively high memory bandwidth which still is one key to success for
sustained performance.

23.3.5 Power consumption and cost aspects

Aggregating a large number of parts results in very high total power con-
sumption. Petaflops computers are currently expected to require in excess of
10 MW. Cooling power in the same range has to be added. With this increase
in power consumption comes an increase in costs. Power is becoming a major
factor in the total cost-of-ownership calculation. Furthermore, it is increas-
ingly difficult for HPC centers to handle the infrastructural requirements.

As a consequence, HPC simulation may become so expensive it may be
cheaper to do experiments. This runs against the purpose of simulation and
may well hamper further progress in the field. Hence, performance/watt will
become a key figure for evaluation of future hardware architectures.

Furthermore, we see rising costs for HPC systems. While in 1995 a center
could compete in the top 10 with a budget in the range of $20 Million, today
a factor of at least 5 (i.e. $100 Million) is required. Even though large-scale
clusters still come with a price/performance bonus, the gap between large-
scale systems and average HPC installations is widening dramatically. This
may lead to a decoupling of user communities. The damage done to HPC
may be substantial.

23.3.6 Communication network

In a very large computer with millions of nodes the interconnecting network
plays a dominant role. From the technical point of view it would be desirable
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to have multiple networks with a small number of hubs or routers between any
pair of nodes. This would lead to well-known solutions like hypercubes (but
only for 2n machines) or 3D tori or fat trees to maintain the total bandwidth
between any pair of nodes. On the other hand, the network can be expected
to be very large because of the high number of nodes. Therefore a large part
of the total investment will go into the network. This may exclude excellent
but expensive interconnects.

The machines will have large physical sizes. This implies varying latencies
through the whole machine. An important feature will be that a running
application program will able to differentiate latency and bandwidth of the
different lines. It would also be helpful to recognize hierarchical structures in
the network for numerical purposes. Definitely communication protocols on
the networks have to support pipelining.

23.3.7 Communication protocols and parallel paradigms

Currently, the most important parallel paradigm is the distributed memory
based on MPI. Within the last ten years a lot of codes have been parallelized
in that way and showed good speedup even on a large number of processors.
But MPI has a deep calling stack and is not designed to pipeline multiple
messages. As MPI is independent of the programming language there is hardly
a chance for optimization by the compiler. As a consequence, MPI latencies
are decreasing only slowly. There is some hope for hardware support of MPI as
we see it with the InfiniPath/Pathscale chip. On the other hand, special cores
could be reserved for special MPI accelerators on future multicore systems.
As shared memory nodes will have an increasing number of cores in the future,
OpenMP will play a more important role.

In addition to these parallel-programming paradigms, we see Partitioned
Global Address Space (PGAS) languages as a supplement for the complete
system but also for the parallelization on multicore chips. UPC and Co-Array
Fortran are of this type. Co-Array Fortran is proposed for the next Fortran
standard. The role of new languages like Chapel, X-10 and Fortress is not
yet fully clear. The portability of these languages to other platforms will be
important.

23.4 Algorithms for Very Large Computers

23.4.1 Large-scale machines

Considering the question of algorithms for a petaflop system, we have to
look at potential systems able to provide that level of performance at least
theoretically. What we find is the following:
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• Any future large-scale system will be composed of a large number of
components. This will also be true for vector systems even though the
number may be an order of magnitude smaller. Any algorithm will
have to consider that it truly has to be massively parallel but also that
optimum usage of memory and of networks may require a re-design.

• Any future large-scale system will be hybrid by nature. Vendors will
assemble the best parts in order to achieve maximum performance.
Combinations like the ones discussed in the Roadrunner project or the
Japanese next generation HPC project will become standard. A first fla-
vor of this mix of components can be found in the most recent TITech
installation.

For the algorithms that want to achieve a sustained level of performance in
the petaflops range the consequences are:

• Algorithms will have to be developed that are able to feed hundreds
of thousands of components. This will require decoupling as much as
possible. Decoupling of algorithmic building blocks will be as essential
as well as decoupling of computation, communication and I/O.

• Given current limitations of algorithms for very large problem sizes we
have to find ways to solve small problems on large-scale systems. This
is going to be much more important than solving even larger problems.
Approaches in the right direction are coming from multiphysics and
multi-scale. In both cases additional compute power is used to bring in
additional quality rather than quantity.

• As a consequence of memory and interconnect deficiencies we will have
to return to structured data handling. Such regular data structures
can be flexible. However, they have to give compilers a chance to fill
functional units as much as possible considering memory hierarchies and
communication network limitations.

23.4.2 Linpack will show limits

Since the 1980s the Linpack benchmark serves as a well-accepted criterion of
all types of computers. For larger problem sizes it measures the performance of
a matrix multiply (DGEMM) which is dominated by floating-point operations.
Lack of memory bandwidth can be hidden by clever programming. The new
High Performance Linpack (HPL) test moves from a fixed size measurement
to maximum performance achieved for an unrestricted size of system, ignoring
runtime.

To see whether Linpack also is suited to analyze system performance in the
future, we analyze the runtime estimations for the “increasing-ring (modified)
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variant” in the “long variant” given in [8] by the formula
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with

• α time to set up a message between two different processors,

• β = 1/bandwidth time to transfer an 8-byte word

• γ3 time for one floating-point operation in a matrix multiply subprogram

• nb block size of matrix blocks used to get single processor performance.
nb must not be too small

• z number of matrix blocks per processor

• P,Q parameters defining a rectangular processor array, Mproc = P Q is
the number of processors

• The memory consumption per processor Mem = n2

Mproc
in 8-byte words

is assumed to be constant (weak scaling)

We neglect the log(P ) part and replace the total matrix size by n = (Mem P Q)
1
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If we neglect the term 6β2Mem we receive
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To make the implications clearer we compare this with the time, T1, for the
local problem size
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Both parts are strongly increasing with the number of processors Mproc, the
second much stronger. This indicates that the benchmark needs more and
more time if the processor number increases. That cannot be the intention of
a benchmark.

A detailed analysis shows that the second term is connected to the commun-
ication parameters. Millions of processors are needed to make this term dom-
inant. On the other hand, the slower increasing first term shows that the
benchmark time increases as the machine size increases. The growth of the
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relative execution time with the square root of the processor number is un-
avoidable because the process size cannot be decreased under a certain limit
to maintain good per-processor performance.

This example shows the behavior of all algorithms for which the computing
time needed is increasing faster than their size. Their runtime will grow with
processor counts if the problem size for a single processor is not allowed to
shrink. Doing this would, however, reduce processor-level performance. The
reason for this is that the immanent processor latencies become more domi-
nant for small sizes. To show the consequence of this we analyze Figures 23.1
and 23.2.
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FIGURE 23.1: Changed peak performance for fit to the NEC SX-8 perfor-
mance curve.

They show a comparison of the Eispack routine SVD for the Intel Woodcrest
processor with a frequency of 2666 MHz and the vector machine NEC SX-8
with a frequency of 1000 MHz which has a larger inherent parallelism. The
results are limited to relatively small matrices and show that, for smaller cases,
the PC processor is significantly faster. In the figures we add performance
curves for

performance =
1

latency/size + Δt
(23.6)

where 1
Δt is the peak performance of the code segment; latency assembles

all setup times as loop overhead and memory latencies. This is a very simple
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approximation of the performance curve but accurate enough for our purposes.
We fitted the parameters and then varied latency as well as Δt. In Fig-

ure 23.1, the Δt for the vector system is changed. In Figures 23.2, the latency
is reduced. Apparently the peak performance plays an insignificant role for
the behavior of the curve in contrast to the latency. It is interesting to note
that an eight-times smaller latency for the NEC SX-8 fits the first part of the
performance curve of the Woodcrest processor.

Figure 23.3 shows a similar problem for an OpenMP-parallelized version of
a sparse-matrix vector multiplication. Here latency is to be understood as the
losses in the startup and the ending phases of the parallel-code segment. We
see that the absolute performance may only be increased for quite large cases.
This is again caused by the startup latency which has been extracted from a
fit to the initial part of the curves. The latency (=startup) curve is the upper
limit of the parallel performance of that machine for an infinite number of
processors. Additional curves show the effect of smaller startups. We see the
consequences of Amdahl’s Law.

Decreasing the problem size without larger penalties is possible only by
decreasing parasitoid times like startup, loop overhead, memory latencies or
overlap of latencies with productive times. With a fixed frequency the archi-
tecture must be improved to achieve higher performance.

It is definitely not possible to use MPI for that purpose because of the
inherent overhead. Communication between nearby processors has to be done
directly by special machine instructions. Only in this case it can be assured
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that latencies become as small as clock-cycle times. For the purpose of local
synchronization the on-chip-cores architecture should provide special wires
and registers for fast barriers and fast reductions.

23.4.3 Narrowing the path to algorithms

The Linpack benchmark as shown above is a good example for a scalable
benchmark. For tightly coupled simulations, results of an analysis would
be even worse because the amount and the frequency of communication are
larger. The grid density of a Lattice-Boltzmann experiment cannot further be
refined if results have to be simulated in reasonable time. Real-time predic-
tions of turbulence will hence remain utopian with current technology unless
the processor speed increases dramatically and communication parameters
improve. Reduction of cell sizes in weather prediction will only be possible as
long as the calculation time does not exceed the time frame predicted.

Changing numerics in a way that more computational efforts are done for
less entities (nodes, elements, cells) will reduce the negative impact of the
enforced weak scalability. Examples are higher order finite elements such
as Discontinuous Galerkin or spectral element techniques or usage of locally
known solutions.

On the other hand, only algorithms with linear numerical complexity are
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well suited to scale for a fixed time frame. One important candidate of al-
gorithms fulfilling this condition on multigrid ones. The disadvantage is the
reduction of points at different levels. The best we can get is a logarithmic
dependence of the computing time on the problem size. This seems to be ac-
ceptable. But the multigrid has a relatively high need of memory bandwidth
per flop. For the simplest case of a 3D Poisson equation on a rectangular grid,
more than 6 bytes/flop are necessary. Suppose a chip with 64 cores is running
at a moderate frequency of 1 GHz. Each core should have a peak performance
of 2 operations per clock. Aggregated memory bandwidth would have to be
6 bytes/operation × 2 operations × 64 cores × 1 GHz = 768 GB/sec. This
is beyond the speed even of current vector systems.

H-matrices [7] also provide algorithms of low numerical complexity. This
may fit into the computer science approach of so called hierarchical tiled
matrices (HTA) [1, 13] which are proposed to have direct compiler support
for the localization of data. But even if the localization of data is increased
there is still a high demand for sustained memory bandwidth. This can be
provided by optical links and forces the access to a memory system consisting
of large and expensive numbers of independent banks.

Examples for effectively working projects may be the composition of known
parameterized solutions to new larger interacting phenomena. The simplest
solution will be to solve trivially parallel numerical problems. Parameter-
ized investigations are needed in most engineering disciplines for design and
optimization. These investigations need capacity machines. Tightly coupled
parallel high-performance machines are only needed for the single (smaller)
job. Based on strategies like genetic algorithms, gradient-based search, and
solution of the dual equations, many (parallel) solutions of the underlying
problem are required and a lot of them can be done at the same time. A lot
of life sciences and molecular dynamics problems are of this type.

Meta-programming languages are necessary for that purpose, which allow
for a simple formulation of the optimization workflow on top of the parallel
simulation experiment. The optimization strategy would be formulated in the
meta language independent of the specific task. Examples for these meta lan-
guages for workflow environments are NIMROD, ILAB [6, 14], SEGL [4, 5].
The workflow environment has to administrate the large amount of large data
sets, has to be aware of the scheduling policy of the supercomputer and has
to integrate batch mechanisms and interactive access to the running exper-
iment. The program itself could have some message-passing-like interfaces
for communication with other programs. Multidisciplinary design is part of
this approach. Unless diverse equations define a stiff combined equation that
must be solved by an integrated algorithm, they may be solved in different
programs running at the same time on the same machine, but communicating
from time to time. This requires a different communication layer which is not
only simply transporting data but also changing their semantics. The grids
for an electromagnetic calculation on the same domain as a connected FEM
calculation may be very different. An appropriate interpolation must take
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place. MPCCI [11] has been developed for that purpose.
Multi-scale technologies can be combined such that different scales are cal-

culated at the same time on the machine in different parts and exchanging
parameter data iteratively. An example might be Steve Ashby’s/LLNL tech-
nique of using different models for a stressed material. Most of the elements
will conform to the continuum hypothesis. For the elements not conforming
a molecular dynamics code will be called by “remote procedure invocation”
which handles the local problem by a part of the parallel machine in a dynamic
way. Load balancing is difficult and assumes large resources of the machine.

Programming will be more difficult and assumes also programming of the
meta level combining the different solution steps in the machine. The user pro-
gram needs closer connection to the machine scheduler. The program must be
able to anticipate the machine status for some future time. Machine resources
such as sets of nodes, hardware accelerators, file space, communication con-
nections have to be prefetched to be ready at the right time. The allocation
of resources should be signaled early enough to the machine scheduler.

23.5 Impact on Other Technologies

What will be the impact of the large-scale systems that we will se in the next
five years? First there will be an increased level of sustained performance for a
number of applications. How many applications will actually benefit remains
to be seen. We have pointed out some of them in this chapter. It is most likely
that over the next years the number of applications to reach extreme levels
of performance will be quite limited. On the other hand, much higher levels
of performance will allow tackling new problems. Some of these problems can
be found in genomics and bioinformatics.

In general, however, there is a widening gap between standard applications
— as we have seen them for years in computational fluid dynamics (CFD)
and other fields — and applications being able to exploit petaflops systems.
This widening gap is due to the fact that HPC is deviating from mainstream
computing. It goes without saying that HPC for a long time has been different
from workstations and PCs. But during the 1970s and 1980s, HPC was a
development tool for new standard systems and at the same time the only
means to do realistic simulations. The current situation is different in that
users have more options. The use of a medium-sized cluster will allow for
achieving reasonable performance to do reasonably large simulations.

The simulation community may become split in purpose. Large-scale sys-
tems may only be used for theoretical research looking at basic problems in
physics, astrophysics and so forth. At the same time, applied research may
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turn away from sophisticated HPC architectures and focus on mainstream ar-
chitectures. Whether specialized hardware like the Cell BE processor or Blue
Gene will ever become part of standard hardware remains to be seen. If this
is not the case then it will become increasingly more difficult for HPC centers
to justify the expense for a large-scale system.

On the other hand, the increased speed of multicore systems will open up
entirely new fields. To mention only one, medical applications will benefit. We
can expect to see embedded multicore processors in medical devices allowing
embedding of simulation in the process of diagnostic procedures. This may
lead to a new market for specialized hardware further driving the development
of architectures like the Cell Broadband Engine processor.

Summarizing, it is extremely difficult to achieve sustained petaflops on those
systems we expect to see in computer rooms over the next five years. We ex-
pect to see a separation between basic research that may be able to exploit
such architectures and standard technologies like CFD or weather forecast-
ing which are hooked to the classical single processor model and have only
gradually been adapted to massively parallel systems. This gap between basic
and applied research may be widened by independent software vendors that
already today have begun to ignore nonstandard architectures. As a conse-
quence, these independent software packages lose their ability to bring new
users into the HPC arena. Risks and chances are associated with the intro-
duction of petaflops systems. Our role as leaders in HPC is to build on the
chances and find ways to avoid the risks.
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24.1 Current Challenges In Relativistic Astrophysics and
the Gamma-Ray Burst Problem

Ninety years after Einstein first proposed his General Theory of Relativity
(GR), astrophysicists more than ever and in greater detail are probing into
regions of the universe where gravity is very strong and where, according to
GR’s geometric description, the curvature of space-time is large.

The realm of strong curvature is notoriously difficult to investigate with
conventional observational astronomy, and some phenomena might bear no
observable electro magnetic signature at all and may only be visible in neu-
trinos (if sufficiently close to Earth) or in gravitational waves — ripples of
space-time itself which are predicted by Einstein’s GR. Gravitational waves
have not been observed directly to date, but gravitational-wave detectors (e.g.,
LIGO [21], GEO [14], VIRGO [36]) are in the process of reaching sensitivities
sufficiently high to observe interesting astrophysical phenomena.

Until gravitational-wave astronomy becomes a reality, astrophysicists must
rely on computationally and conceptually challenging large-scale numerical
simulations in order to grasp the details of the energetic processes occurring
in regions of strong curvature that are shrouded from direct observation in
the electromagnetic spectrum by intervening matter, or that have little or no
electromagnetic signature at all. Such astrophysical systems and phenomena
include the birth of neutron stars (NSs) or black holes (BHs) in collapsing
evolved massive stars, coalescence of compact∗ binary systems, gamma-ray
bursts (GRBs), active galactic nuclei harboring super-massive black holes,
pulsars, and quasi-periodically oscillating NSs (QPOs). In Figure 24.1 we
present example visualizations of binary BH and stellar-collapse calculations
carried out by our groups.

From these, GRBs, intense narrowly beamed flashes of γ-rays of cosmo-
logical origin, are among the most scientifically interesting and the riddle
concerning their central engines and emission mechanisms is one of the most
complex and challenging problems of astrophysics today.

GRBs last between 0.5–1000 secs, with a bimodal distribution of dura-
tion [23], indicating two distinct classes of mechanisms and central engines.
The short-hard (duration <∼ 2 secs) group of GRBs (hard, because their γ-ray
spectra peak at a shorter wavelength) predominantly occurs in elliptical galax-
ies with old stellar populations at moderate astronomical distances [38, 23].

∗The term “compact” refers to the compact stellar nature of the binary members in such
systems: white dwarfs, neutron stars, black holes.



Cactus Framework: Black Holes to Gamma Ray Bursts 509

FIGURE 24.1: (See color insert following page 18.) Left: Gravitational waves
and horizons are shown in a binary black hole in spiral simulation. Simulation
is by AEI/CCT collaboration, image by W. Benger (CCT/AEI/ZIB). Right:
A rotationally deformed proto-neutron star formed in the iron core collapse of
an evolved massive star is pictured. Shown are a volume rendering of the rest-
mass density and a 2D rendition of outgoing gravitational waves. Simulation
is by [28], image by R. Kähler.

The energy released in a short-hard GRB and its duration suggest [38, 23] a
black hole with a ∼0.1 solar-mass (M�) accretion disk as the central engine.
Such a BH–accretion-disk system is likely to be formed by the coalescence of
NS–NS or NS–BH systems (e.g., [33]).

Long-soft (duration ∼2–1000 secs) GRBs, on the other hand, seem to occur
exclusively in the star-forming regions of spiral or irregular galaxies with young
stellar populations and low metallicity.† Observations that have recently be-
come available (see [23] for reviews) indicate features in the x-ray and optical
afterglow spectra and luminosity evolutions of long-soft GRBs that show sim-
ilarities with spectra and light curves obtained from Type-Ib/c core-collapse
supernovae, whose progenitors are evolved massive stars (M >∼ 25 M�) that
have lost their extended hydrogen envelopes, and probably also a fair fraction
of their helium shells. These observations support the collapsar model [38]
of long-soft GRBs that envisions a stellar-mass black hole formed in the af-
termath of a stellar core-collapse event with a massive ∼1 M� rotationally
supported accretion disk as the central engine, powering the GRB jet that
punches through the compact and rotationally evacuated polar stellar enve-
lope reaching ultra-relativistic velocities [23].

†The metallicity of an astrophysical object is the mass fraction in chemical elements other
than hydrogen and helium. In big-bang nucleosynthesis, only hydrogen and helium were
formed. All other elements are ashes of nuclear-burning processes in stars.
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Although observations are aiding our theoretical understanding, much that
is said about the GRB central engine will remain speculation until it is possi-
ble to self-consistently model (i) the processes that lead to the formation of the
GRB central engine, and (ii) the way the central engine utilizes gravitational
(accretion) and rotational energy to launch the GRB jet via magnetic stresses
and/or polar neutrino pair-annihilation processes. The physics necessary in
such a model includes general relativity, relativistic magneto-hydrodynamics,
nuclear physics (describing nuclear reactions and the equation of state of dense
matter), neutrino physics (weak interactions), and neutrino and photon ra-
diation transport. In addition, it is necessary to adequately resolve physical
processes with characteristic scales from ∼100 meters near the central engine
to ∼5–10 million kilometers, the approximate radius of the collapsar progen-
itor star.

24.1.1 GRBs and petascale computing

The complexity of the GRB central engine and its environs requires a multi-
physics, multi-length-scale approach that cannot be fully realized on present-
day computers. Computing at multiple sustained petaflops (PFLOPS) of
performance will allow us to tackle the full GRB problem and provide complete
numerical models whose output can be compared with observations.

In this chapter we outline our petascale approach to the GRB problem and
discuss the computational toolkits and numerical codes that are currently in
use, and that will be scaled up to run on emerging PFLOPS-scale computing
platforms in the near future.

Any comprehensive approach to GRBs must naturally draw techniques and
tools from both numerical relativity and core-collapse supernova and neutron
star theory. Hence, much of the work presented and suggested here builds
upon the dramatic progress that has been made in these fields in the past
decade. In numerical relativity, immense improvements in the long-term sta-
bility of 3D GR vacuum and hydrodynamics evolutions (e.g., [1, 30]) allow for
the first time long-term stable binary black hole merger, binary neutron star
merger, neutron star and evolved massive star collapse calculations. Super-
nova theory, on the other hand, has made giant leaps from spherically symmet-
ric (1D) models with approximate neutrino radiation transport in the early
1990s, to Newtonian or approximate GR to 2D and the first 3D [13] calcula-
tions, including detailed neutrino and nuclear physics and energy-dependent
multispecies Boltzmann neutrino transport [6] or neutrino flux-limited diffu-
sion [8] and magneto-hydrodynamics [7].

As we shall discuss, our present suite of terascale codes, comprised of the
space-time evolution code Ccatie and the GR hydrodynamics code Whisky,
can be and has already been applied to the realistic modeling of the in-spiral
and merger phase of NS–NS and NS-BH binaries, to the collapse of polytropic
(cold) supermassive NSs, and to the collapse and early post-bounce phase of
a core-collapse supernova or a collapsar. As the codes will be upgraded and
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readied for petascale, the remaining physics modules will be developed and
integrated. In particular, energy-dependent neutrino transport and magneto-
hydrodynamics, both likely to be crucial for the GRB central engine, will be
given high priority.

To estimate roughly the petaflopage and petabyteage required for a full
collapsar-type GRB calculation, we assume a Berger-Oliger-type [5] adaptive-
mesh refinement setup with 16 refinement levels, resolving features with reso-
lutions of 10,000 km down to 100 m across a domain of 5 million cubic km. To
simplify things, we assume that each level of refinement has twice the resolu-
tion as the previous level and covers approximately half the domain. Taking
a base grid size of 10243 and 512 3D grid functions, storing the curvature
and radiation-hydrodynamics data on each level, we estimate a total memory
consumption of ∼0.0625 petabytes (64 terabytes). To obtain an estimate of
the required sustained petaflopage, we first compute the number of time steps
that are necessary to evolve for 100 s in physical time. Assuming a time step
that is half the light-crossing time of each grid cell on each individual level,
the base grid has to be evolved for ∼6000 time steps, while the finest grid
will have to be evolved for 216−1 × 6000 individual time steps. Ccatie plus
Whisky require approximately 10k flops per grid-point per time step. When
we assume that additional physics (neutrino and photon radiation transport,
magnetic fields; some of which may be evolved with different and varying
time-step sizes) requires on average an additional 22k flops, one time step of
one refinement level requires 10−5 PFLOPS. Summing up over all levels and
time steps, we arrive at a total petaflopage of ∼13 million. On a machine with
2 PFLOPS sustained, the runtime of the simulation would come to ∼75 days.
GRBs pose a true petascale problem.

24.2 The Cactus Framework

To reduce the development time for creating simulation codes and encour-
age code reuse, researchers have created computational frameworks such as
the Cactus framework [16, 9]. Such modular component-based frameworks al-
low scientists and engineers to develop their own application modules and use
them in conjunction with existing modules to solve computational problems.
Cactus provides tools ranging from basic computational building blocks to
complete toolkits that can be used to solve a range of application problems.
Cactus runs on a wide range of hardware ranging from desktop PCs, large
supercomputers, to “grid” environments. The Cactus framework and core
toolkits are distributed with an open-source license from the Cactus Web-
site [9], are fully documented, and are maintained by active developer and
user communities.
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The Cactus framework consists of a central part (“flesh”) and components
(“thorns”). The flesh has minimal computational functionality and serves as
a module manager, coordinating the flow of data between the different com-
ponents to perform specific tasks. The components or “thorns” perform tasks
ranging from setting up a computational grid, decomposing the grid for paral-
lel processing, setting up coordinate systems, boundary and initial conditions,
communication of data from one processor to another, solving partial differen-
tial equations, to input and output and streaming of visualization data. One
standard set of thorns is distributed as the Cactus Computational Toolkit to
provide basic functionality for computational science.

Cactus was originally designed for scientists and engineers to collaboratively
develop large-scale, parallel scientific codes which would be run on laptops
and workstations (for development) and large supercomputers (for production
runs). The Cactus thorns are organized in a manner that provides a clear sep-
aration of the roles and responsibilities between the “expert computer scien-
tists” who implement complex parallel abstractions (typically in C or C++),
and the “expert mathematicians and physicists” who program thorns that
look like serial blocks of code (typically, in F77, F90, or C), implementing
complex numerical algorithms. Cactus provides the basic parallel framework
supporting several different codes in the numerical relativity community used
for modeling black holes, neutron and boson stars and gravitational waves.
This has led to over 150 scientific publications in numerical relativity which
have used Cactus and the establishment of a Cactus Einstein toolkit of shared
community thorns. Other fields of science and engineering are also using the
Cactus framework, including quantum gravity, computation fluid dynamics,
computational biology, coastal modeling, applied mathematics, etc., and in
some of these areas community toolkits and shared domain-specific tools and
interfaces are emerging.

Cactus provides a range of advanced development and runtime tools in-
cluding an HTTPD thorn that incorporates a simplified web server into the
simulation allowing for real-time monitoring and steering through any web in-
terface; a general timer infrastructure for users to easily profile and optimize
their codes; visualization readers and writers for scientific visualization pack-
ages; and interfaces to grid application toolkits for developing new scientific
scenarios taking advantage of distributed computing resources.

Cactus is highly portable. Its build system detects differences in machine
architecture and compiler features, using automatic detection where possi-
ble and a database of known information where auto-detection is impractical
— e.g., which libraries are necessary to link Fortran and C code together.
Cactus runs on all variants of the Unix and on Windows operating systems.
Codes written using Cactus have been run on some of the fastest computers in
the world, such as the Japanese Earth Simulator and the IBM Blue Gene/L,
Cray X1e, and the Cray XT3/XT4 systems [25, 26, 24, 11, 19, 34] This enables
Cactus developers to write and test code on their laptop computers, and then
deploy the very same code on the full scale systems with very little effort.
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24.3 Space-time and Hydrodynamics Codes

24.3.1 Ccatie: Space-time evolution

In strong gravitational fields, such as in the presence of neutron stars or
black holes, it is necessary to solve the full Einstein equations. Our code
employs a 3 + 1 decomposition [3, 39], which renders the four-dimensional
spacetime equations into hyperbolic time-evolution equations in three dimen-
sions, plus a set of constraint equations which have to be satisfied by the
initial condition. The equations are discretized using high-order finite differ-
ences with adaptive mesh refinement and using Runge–Kutta time integrators,
as described below.

The time evolution equations are formulated using a variant of the BSSN
formulation described in [2] and coordinate conditions described in [1] and
[35]. These are a set of 25 coupled partial differential equations which are
first order in time and second order in space. One central variable describing
the geometry is the three-metric γij , which is a symmetric positive definite
tensor defined everywhere in space, defining a scalar product which defines
distances and angles.
Ccatie contains the formulation and discretization of the right-hand sides of

the time-evolution equations. Initial data and many analysis tools, as well as
time integration and parallelization, are handled by other thorns. The current
state of the time evolution, i.e., the three-metric γij and related variables,
is communicated into and out of Ccatie using a standard set of variables
(which is different from Ccatie’s evolved variables), which makes it possible
to combine unrelated initial data solvers and analysis tools with Ccatie, or
to replace Ccatie by other evolution methods, while reusing all other thorns.

We have a variety of initial conditions available, ranging from simple test
cases, analytically known and perturbative solutions to binary systems con-
taining neutron stars and black holes.

The numerical kernel of Ccatie has been hand-coded and extensively op-
timized for floating-point unit (FPU) performance where the greatest part
of the computation lies. (Some analysis methods can be similarly expensive
and have been similarly optimized, e.g., the calculation of gravitational-wave
quantities.) The Cactus/Ccatie combination has won various awards for per-
formance.‡

24.3.2 Whisky: General relativistic hydrodynamics

The Whisky code [4, 37] is a GR hydrodynamics code originally developed
under the auspices of the European Union research training network “Sources

‡See http://www.cactuscode.org/About/Prizes
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of Gravitational Waves” [12].
While Ccatie in combination with Cactus’s time-integration methods pro-

vides the time evolution of the curvature part of space-time, Whisky evolves
the “right-hand side,” the matter part, of the Einstein equations. The cou-
pling of curvature with matter is handled by Cactus via a transparent and
generic interface, providing for modularity and interchangeability of curva-
ture and matter-evolution methods. Whisky is also fully integrated with the
Carpet mesh refinement driver discussed in Section 24.4.2.
Whisky implements the equations of GR hydrodynamics in a semi-discrete

fashion, discretizing only in space and leaving the explicit time integration to
Cactus. The update terms for the hydrodynamic variables are computed via
flux-conservative finite-volume methods exploiting the characteristic structure
of the equations of GR hydrodynamics. Multiple dimensions are handled
via directional splitting. Fluxes are computed via piecewise-parabolic cell-
interface reconstruction and approximate Riemann solvers to provide right-
hand side data that are accurate to (locally) third-order in space and first-
order in time. High-temporal accuracy is obtained via Runge-Kutta-type
time-integration cycles handled by Cactus.
Whisky has found extensive use in the study of neutron-star collapse to a

black hole, incorporates matter excision techniques for stable non-vacuum BH
evolutions, has been applied to BH–NS systems, and NS rotational instabili-
ties.

In a recent upgrade, Whisky has been endowed with the capability to han-
dle realistic finite-temperature nuclear equations of state and to approximate
the effects of electron capture on free protons and heavy nuclei in the col-
lapse phase of core-collapse supernovae and/or collapsars [28]. In addition,
a magneto-hydrodynamics version of Whisky, WhiskyMHD, is approaching the
production stage [15].

24.4 Parallel Implementation and Mesh Refinement

Cactus has generally been used to date for calculations based upon explicit
finite-difference methods. Each simulation routine is called with a block of
data — e.g., in a 3-dimensional simulation the routine is passed as a cuboid,
in a 2-dimensional simulation as a rectangle — and integrates the data in this
block forward in time. In a single-processor simulation the block would consist
of all the data for the whole of the simulation domain, and in a multiprocessor
simulation the domain is decomposed into smaller sub-domains, where each
processor computes the block of data from its sub-domain. In a finite differ-
ence calculation, the main form of communication between these sub-domains
is on the boundaries, and this is done by ghost-zone exchange whereby each
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FIGURE 24.2: PUGH scaling result from Blue Gene/L. (See also Figure 1.6
in Chapter 1 of this book [27] for similar Cactus/PUGH benchmarks.)

sub-domain’s data-block is enlarged by the nearest boundary data from neigh-
boring blocks. The data from these ghost zones is then exchanged once per
iteration of the simulation.

In Cactus, infrastructure components providing storage handling, paral-
lelization, mesh refinement, and I/O methods are implemented by thorns in
the same manner that numerical components provide boundary conditions or
physics components provide initial data. The component which defines the
order in which the time evolution is orchestrated is called the driver.

There are several drivers available for Cactus. In this chapter we present
results using the unigrid PUGH driver and using the adaptive mesh-refinement
(AMR) driver Carpet.

24.4.1 PUGH

The Parallel UniGrid Hierarchy (PUGH) driver was the first parallel driver
available in Cactus. PUGH decomposes the problem domain into one block
per processor using the Message Passing Interface (MPI) for the ghost-zone
exchange described above. PUGH has been successfully used on many ar-
chitectures and has proven scaling up to many thousands of processors [25].
Figure 24.2 shows benchmark results from Blue Gene/L. (See also Figure 1.6
in the Chapter 1 of this book [27].)

24.4.2 Adaptive mesh refinement with Carpet

Carpet [32, 10] is a driver which implements Berger–Oliger mesh refine-
ment [5]. Carpet refines parts of the simulation domain in space and/or time
by factors of two. Each refined region is block-structured, which allows for
efficient representations, e.g., as Fortran arrays.

In addition to mesh refinement, Carpet also provides parallelism by dis-
tributing grid functions onto processors, corresponding I/O methods for ASCII
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and HDF5 output and for checkpointing and restart, interpolation of values
to arbitrary points, and reduction operations such as norms and maxima.

Fine-grid boundary conditions require interpolation in space. This is cur-
rently implemented up to the seventh order, and the fifth order is commonly
used. When refining in time, finer grids take smaller time steps to satisfy the
local CFL criterion. In this case, Carpet may need to interpolate coarse-grid
data in time to provide boundary conditions for fine grids. Similarly, time
interpolation may also be required for interpolation or reduction operations
at times when no coarse-grid data exist. Such time interpolation is currently
implemented with up to a fourth order accuracy, although only the second
order is commonly used.

In order to achieve convergence at mesh-refinement boundaries when second
spatial derivatives appear in the time-evolution equations, we do not apply
boundary conditions during the substeps of a Runge–Kutta time integrator.
Instead we extend the refined region by a certain number of grid-points before
each time step (called buffer zones) and only interpolate after each complete
time step. We find that this is not necessary when no second derivatives are
present, such as in discretizations of the Euler equations without the Einstein
equations. The details of this algorithm are laid out in [32].

Carpet is currently mostly used in situations where compact objects need
to be resolved in a large domain, and Carpet’s mesh-refinement adaptivity is
tailored for these applications. One can define several centers of interest, and
space will be refined around these. This is ideal, e.g., for simulating binary
systems, but is not well suited for resolving shock fronts as they, e.g., appear in
collapse scenarios. We plan to address this soon in future versions of Carpet.

24.4.3 I/O

Our I/O methods are based on the HDF5 [17] library, which provides a
platform-independent high-performance file parallel format. Data sets are an-
notated with Cactus-specific descriptive attributes providing meta-data, e.g.,
for the coordinate systems, tensor types, or the mesh-refinement hierarchy.

Some file systems can only achieve high performance when each processor
or node writes its own file. However, writing one file per processor on mas-
sively concurrent systems will be bottlenecked by the meta-data server, which
often limits file-creation rates to only hundreds of files per second. Further-
more, creation of many thousands of files can create considerable meta-data
management headaches. Therefore the most efficient output setup is typically
to designate every nth processor as an output processor, which collects data
from n − 1 other processors and writes the data into a file.

Input performance is also important when restarting from a checkpoint.
We currently use an algorithm where each processor reads data only for itself,
trying to minimize the number of input files which it examines.

Cactus also supports novel server-directed I/O methods such as PANDA,
and other I/O file formats such as SDF and FlexIO. All of these I/O methods
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TABLE 24.1: Our benchmarks and their characteristics. The
PUGH and Carpet 1lev benchmarks evolve the vacuum Einstein
equations without mesh refinement, with identical setups but
using different communication strategies. Carpet 8lev features 8
fixed levels with the same number of grid-points on each level.
Whisky 8lev evolves the relativistic Euler equations in addition to
the Einstein equations. BenchIO HDF5 80l writes several large
files to disk using the Cactus checkpointing facility.

Name type complexity physics
Bench Ccatie PUGH compute unigrid vacuum
Bench Ccatie Carpet 1lev compute unigrid vacuum
Bench Ccatie Carpet 8lev compute AMR vacuum
Bench Ccatie Whisky Carpet compute AMR hydro
BenchIO HDF5 80l I/O unigrid vacuum

are interchangeable modules that can be selected by the user at compile time
or runtime depending on the needs and local performance characteristics of
the cluster file systems. This makes it very easy to provide head-to-head com-
parisons between different I/O subsystem implementations that are nominally
writing out exactly the same data.

24.5 Scaling on Current Machines

We have evaluated the performance of the kernels of our applications on
various contemporary machines to establish the current state of the code. This
is part of an ongoing effort to continually adapt the code to new architectures.
These benchmark kernels include the time-evolution methods of Ccatie with
and without Whisky, using as a driver either PUGH or Carpet. We present
some recent benchmarking results below; we list the benchmarks in Table
24.1 and the machines and their characteristics in Table 24.2.

Since the performance of the computational kernel does not depend on
the data which are evolved, we choose trivial initial data for our space-time
simulations, namely the Minkowski space-time (i.e., vacuum). We perform no
analysis on the results and perform no output. We choose our resolution such
that approximately 800 MByte of main memory is used per process, since
we presume that this makes efficient use of a node’s memory without leading
to swapping. We run the simulation for several time steps requiring several
wall-time minutes. We increase the number of grid-points with the number
of processes. We note that the typical usage model for this code favors weak
scaling as the resolution of the computational mesh is a major limiting factor
for accurate modeling of the most demanding problems.
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TABLE 24.2: The machines used for the
benchmarks in this section. Note that we speak of
“processes” as defined in the MPI standard; these are
implicitly mapped onto the hardware “cores” or “CPUs.”

Name Host CPU ISA Interconnect
Abe NCSA Clovertown x86-64 InfiniBand
Damiana AEI Woodcrest x86-64 InfiniBand
Eric LONI Woodcrest x86-64 InfiniBand
Pelican LSU Power5+ Federation
Peyote AEI Xeon x86-32 GigaBit

Name # proc cores/ cores/ memory/ CPU freq.
node socket proc

Abe 9600 8 4 1 GByte 2.30 GHz
Damiana 672 4 2 2 GByte 3.00 GHz
Eric 512 4 2 1 GByte 2.33 GHz
Pelican 128 16 2 2 GByte 1.90 GHz
Peyote 256 2 1 1 GByte 2.80 GHz

Our benchmark source code, configurations, parameter files, and detailed
benchmarking instruction are available from the Cactus Web site [9].§ There
we also present results for other benchmarks and machines.

24.5.1 Floating-point performance

Figure 24.3 compares the scaling performance of our code on different ma-
chines. The graphs show scaling results calculated from the wall time for the
whole simulation, but excluding startup and shutdown. The ideal result in
all graphs is a straight horizontal line, and larger numbers are better. Values
near zero indicate lack of scaling.

Since the benchmarks Bench Ccatie PUGH and Bench Ccatie Carpet 1lev
use identical setups, they should ideally also exhibit the same scaling behav-
ior. However, as the graphs show, PUGH scales, e.g., up to 1024 processors
on Abe, while Carpet scales only up to 128 processors on the same machine.
The differences are caused by the different communication strategies used by
PUGH and Carpet, and likely also by the different internal bookkeeping mech-
anisms. Since Carpet is a mesh-refinement driver, there is some internal (but
no communication) overhead even in unigrid simulations.

PUGH exchanges ghost-zone information in three sequential steps, first in
the x, then in the y, and then in the z directions. In each step, each processor
communicates with two of its neighbors. Carpet exchanges ghost-zone infor-
mation in a single step, where each processor has to communicate with all 26

§See http://www.cactuscode.org/Benchmarks/
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FIGURE 24.3: Weak-scaling tests using our four benchmarks on various ma-
chines are shown. The graphs show the fraction of single processor perfor-
mance which is achieved on multiple processors. The PUGH and 1lev bench-
marks have identical setups, but use different drivers with different commun-
ication strategies. On Eric, we also compare two different MPI implementa-
tions.
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FIGURE 24.4: I/O scaling on various machines. This benchmark was only
run on Abe and Eric. For each processor, 369 MByte of data are written to
disk.

neighbors. In principle, Carpet’s algorithm should be more efficient, since it
does not contain several sequential steps; in practice, many MPI implementa-
tions seem to have trouble since there are more messages sent. Both PUGH
and Carpet use MPI Irecv MPI Isend, and MPI Wait to exchange data.

The falloff at small processor numbers coincides with the node boundaries.
For example, Abe drops off at the 8-processor boundary, and Pelican drops off
at the 16-processor boundary. We assume that this is because a fully loaded
node provides less memory bandwidth to each process.

The scaling drop-off at large processor numbers is likely caused by using
“too much” memory on each node. This drop-off is different for different MPI
implementations, as is, e.g., evident on Eric, where OpenMPI scales further
than MVAPICH. This problem could be caused by translation lookaside buffer
(TLB) thrashing: a TLB miss causes potentially up to a 3-4k cycle stall, so
it may only take a 1% miss rate to have a dramatic effect on performance.

24.5.2 I/O performance

Figure 24.4 compares the scaling of different I/O methods: collecting the
output onto a single processor, having every nth processor perform output,
and outputting on every processor. Each output processor creates one file.
In these benchmarks, for each compute processor, 369 MBytes need to be
written to disk. There is a small additional overhead per generated file which
is less than 1 MByte.

The throughput graphs of Abe and Eric show that the maximum single-
node throughput is limited, but the overall throughput can be increased if
multiple nodes write simultaneously. While Abe has sufficient bandwidth to
support every CPU writing at the same time, it is more efficient on Eric to
collect the data first onto fewer processors.
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24.6 Developing for Petascale

Petascale computing requires additional ingredients over conventional par-
allelism. The large number of available processors can only be fully exploited
with mechanisms for significantly more fine-grained parallelism, in particular
more fine grained than that offered by the MPI standard’s collective commun-
ication calls. In order to ensure correctness in the presence of more complex
codes and of increasingly likely hardware failures, simulations should be di-
vided into packets describing a certain amount of computation. These packets
can then be autonomously and dynamically distributed over the available CPU
power, and can be rescheduled in response to hardware failure, thus achieving
both load balancing and end-to-end correctness, akin to the way the IP proto-
col is used to deliver reliability over unreliable components. Furthermore, the
current static-simulation schedule — often described by a sequence of subrou-
tine calls — needs to become dynamic. The latter can be achieved, e.g., by
listing pre- and postconditions of each substep, and determining an efficient
execution order only at runtime, akin to the way UNIX make functions.

Clearly, these are only some measures, and a reliable methodology for peta-
scale computing requires a comprehensive set of concepts which enable and
encourage the corresponding algorithms and programming styles. It will very
likely be necessary to develop new algorithms for petascale machines. These
algorithms may not necessarily run efficiently on single processors or today’s
popular small workstation clusters, in the same way in which vectorised codes
do not work well on non-vector machines, or in which MPI codes may not
work well on single-processor machines.

One example of a non-petascale parallelization algorithm which is currently
widely employed is the use of ghost zones to distribute arrays onto multiple
processors. As the number of processors increases, each processor receives a
correspondingly smaller part of the original array, while the overhead (the
ratio between the number of ghost zones to the number of owned points)
increases. Some typical numbers illustrate this. Our fourth-order stencils
require a ghost-zone layer which is 3 points wide. If a processor owns 203 grid-
points of a 3D array, the overhead is (263 − 203)/203 ≈ 20%. If a processor
owns only 103 grid-points, then the overhead increases to (163 − 103)/103 ≈
310%: the number of ghost zones is more than three times the number of
owned points. Clearly this cannot scale in its current form.

Another problem for petascale simulations is time integration, i.e., the so-
lution of hyperbolic equations. Since each time step depends on the result of
the previous time step, time integration is inherently serial. If a million time
steps are required, the total time to solution is at least a million times the
time for a single time step.

The Cactus framework with its clear division between physical calculations
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and computational infrastructure already provides a partial pathway to peta-
scale computations. By improving or exchanging the driver, existing physics
modules can be used in novel ways, e.g., invoking them on smaller parts of the
domain, or scheduling several at the same time to overlap computation and
communication. Such improvement would be very difficult without a compu-
tational framework. However, achieving full petascale performance will also
require improvements to the framework itself, i.e., to the way in which a
physics calculation describes itself and its interface to the framework.

24.6.1 Physics: Radiation transport

The most conceptually and technically challenging part of the petascale
development will be related to the implementation of neutrino and photon
radiation transport. While photons play an important role in the jet propa-
gation and, naturally, in the gamma-ray emission of the GRB, neutrinos are
of paramount importance in the genesis and evolution of the GRB engine, in
particular in the collapsar context. During the initial gravitational collapse to
a proto-neutron star and in the latter’s short cooling period before black-hole
formation, neutrinos carry away ∼99% of the liberated gravitational binding
energy. After black-hole formation, neutrino cooling of the accretion disk and
polar neutrino-antineutrino-pair annihilation are likely to be key ingredients
for the GRB mechanism.

Ideally, the neutrino radiation field should be described and evolved via
the Boltzmann equation, making the transport problem 7-dimensional and
requiring the inversion of a gigantic semi-sparse matrix at each time step.
This matrix inversion will be at the heart of the difficulties associated with
the parallel scaling of radiation transport algorithms and it is likely that
even highly integrated low-latency petascale systems will not suffice for full
Boltzmann radiation transport, and sensible approximations will have to be
worked out and implemented.

One such approximation may be neutrino, multi-energy-group, flux-limited
diffusion (MGFLD) along individual radial rays that are not coupled with
each other and whose ensemble covers the entire sphere/grid with reasonable
resolution of a few degrees. When, in addition, energy-bin coupling (down-
scattering of neutrinos, a less-than-10% effect) and neutrino flavor changes are
neglected, each ray for each energy group can be treated as a mono-energetic
spherically symmetric calculation. Each of these rays can then be domain de-
composed, and the entire ensemble of rays and energy groups can be updated
in massively parallel and entirely scalable petascale fashion.

A clear downside of MGFLD is that all local angular dependence of the
radiation field is neglected, making it (for example) fundamentally difficult
to consistently estimate the energy deposited by radiation-momentum angle-
dependent neutrino-antineutrino annihilation. An alternative to the MGFLD
approximation that can provide an exact solution to the Boltzmann transport
equation, while maintaining scalability, is the statistical Monte Carlo approach
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that follows a significant set of sample particle random walks. Monte Carlo
may also be the method of choice for photon transport.

24.6.2 Scalability

In its current incarnation, the Cactus framework and its drivers PUGH and
Carpet are not yet fully ready for petascale applications. Typical petascale
machines will have many more processing units than today’s machines, with
more processing units per node, but likely with less memory-per-processing
unit.

One immediate consequence is that it will be impossible to replicate meta-
data across all processors. Not only the simulation data themselves, but also
all secondary data structures will need to be distributed, and will have to
allow asynchronous remote access. The driver thorns will have to be adapted
to function without global knowledge of the simulation state, communicating
only between neighboring processors, making global load balancing a chal-
lenge.

The larger number of cores per node will make hybrid communication
schemes feasible and necessary, where intra-node communication uses shared
memory while inter-node communication remains message-based. Explicit or
implicit multithreading within a node will reduce the memory requirements,
since data structures are kept only once per node, but will require a more
complex overall orchestration to keep all threads well fed. Multithreading
will have direct consequences for and may require alterations to almost all
existing components. Multithreading will require a change of programming
paradigm, as programmers will have to avoid race conditions, and debugging
will be much more difficult than for a single-threaded code.

With the increasing number of nodes, globally synchronous operations will
become prohibitively expensive, and thus the notion of “the current simulation
time” will need to be abolished. Instead of explicitly stepping a simulation
through time, different parts will advance at different speeds. Currently global
operations, such as reduction or interpolation operations, will need to be
broken up into pieces which are potentially executed at different times, where
the framework has to ensure that these operations find the corresponding
data, and that the results of such operations are collected back where they
were requested.

Current Cactus thorns often combine the physics equations which are to
be solved and the discretization methods used to implement them, e.g. fi-
nite differences on block-structured grids. Petascale computing may require
different discretization techniques, and it will thus be necessary to isolate
equations from their discretization so that one can be changed while keeping
the other. Automated code generation tools such as, e.g., Kranc [18, 20] can
automatically generate physics modules from given equations, achieving this
independence.

As a framework, Cactus will not implement solutions to these problems
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directly, but will instead provide abstractions which can be implemented by
a variety of codes. As external AMR drivers mature and prove themselves,
they can be connected into Cactus. We are currently engaged in projects
to incorporate the PARAMESH [29, 22] and SAMRAI [31] AMR infrastruc-
tures into Cactus drivers in the projects Parca (funded by NASA) and Taka,
respectively.

Instead of continuing to base drivers on MPI, we plan to investigate existing
new languages such as, e.g., co-array Fortran, Titanium, and UPC to provide
parallelism, while we will also examine novel parallel-computing paradigms
such as ParalleX¶. Cactus will be able to abstract most of the differences
between these, so that the same physics and/or numerics components can be
used with different drivers.

It should be noted that the Cactus framework does not prescribe a partic-
ular computing model. For example, after introducing AMR capabilities into
Cactus, most existing unigrid thorns could be AMR-ified with relatively little
work; the existing abstraction that each routine works on a block-structured
set of grid-point was sufficient to enable the introduction of mesh refinement.
We expect that the existing abstractions will need to be updated for peta-
scale computing, containing, e.g., information about simultaneous action of
different threads and removing the notion of a global-simulation time, but we
also expect that this same abstraction will then cover a multitude of possible
petascale-computing models.

24.6.3 Tools

Petascale computing provides not only new challenges for programming
methodologies, but will also require new tools to enable programmers to cope
with the new hardware and software infrastructure. Debugging on 100, 000+
processors will be a formidable challenge, and only good and meaningful pro-
filing information for the new dynamic algorithms will make petascale per-
formance possible. These issues are being addressed in three U.S. National
Science Foundation (NSF) funded projects.

In the ALPACA (Application Level Profiling And Correctness Analysis)
project, we are developing interactive tools to debug and profile scientific
applications at the petascale level. When a code has left the stage where it has
segmentation faults, it is still very far from giving correct physical answers. We
plan to provide debuggers and profilers which will not examine the program
from the outside, but will run together with the program, being coupled to
the program via the framework, so that it has first-class information about
the current state of the simulation. We envision a smooth transition between
debugging and watching a production run progressing, or between running a

¶See http://www.cs.sandia.gov/CSRI/Workshops/2006/HPC_WPL_workshop/

Presentations/22-Sterling-ParalleX.pdf.
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special benchmark and collecting profiling information from production runs
on the side.

The high cost of petascale simulations will make it necessary to treat sim-
ulation results similar to data gathered in expensive experiments. Our XiRel
(CyberInfrastructure for Numerical Relativity) project seeks to provide scal-
able adaptive mesh refinement on the one hand, but also to provide means
to describe and annotate simulation results, so that these results can later
be interpreted and analyzed unambiguously so that the provenance of these
data remains clear. With ever-increasing hardware and software complexity,
ensuring reproducibility of numerical results is becoming an important part
of scientific integrity.

The DynaCode project is providing capabilities and tools to adapt and
respond to changes in the computational environment, such as, e.g., hard-
ware failures, changes in the memory requirement of the simulation, or user-
generated requests for additional analysis or visualization. This will include
interoperability with other frameworks.
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